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CHAPTER 1

INTRODUCTION

A new and exciting era of positioning on land, on the sea, and in space began with
the launch of the first global positioning system (GPS) satellite on February 22, 1978.
The primary purpose of the satellite system was to meet the needs of the military and
national security, in regards to positioning and timing, on a 24-hour per day basis all
around the world and under all weather conditions. Very soon, however, the potential
benefits of GPS for civilian applications became apparent, with that number rapidly
increasing and no end in sight twenty plus years later.

The satellites transmit at frequencies L1 (1575.42 MHz) and L2 (1227.6 MHz)
modulated with two types of codes and the navigation message. The codes are the
civilian C/A-code and the encrypted military P(Y)-codes. At present the L1 carrier
is modulated with both types of codes, whereas L2 is modulated with a P-code only.
Modernized GPS will transmit a second civil code on L2 and a third civil code on a
new carrier L5 (1176.45 MHz).

There are two types of observables of interest to users. One of them is the pseu-
dorange, which equals the distance between the satellite and the receiver plus small
corrective terms due to receiver and satellite clock errors, the impact of the ionosphere
and troposphere on signal propagation, and multipath. Given the geometric positions
of the satellites as a function of time, i.e., satellite ephemeris, four pseudoranges are
in principle sufficient to compute the location of the receiver and its clock correction.
Pseudoranges are a measure of the travel time of the codes, C/A or P(Y). The sec-
ond observable, the carrier phase, is the difference between the received phase and
the phase of the receiver oscillator at the epoch of measurement. Receivers are pro-
grammed to make phase observations at the same equally spaced epochs. In addition,
receivers keep track of the number of complete cycles received since the beginning

1
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of a measurement. Thus, the actual output is the accumulated phase observable at
pre-set epochs.

Government policies (SPS, 2001) currently define a standard positioning service
(SPS) based on the C/A-code observations and a precise positioning service (PPS)
based on P(Y)-code observations. SPS and PPS address “classical satellite” navi-
gation methods where one receiver observes several satellites in order to determine
its geocentric position, using the broadcast ephemeris. Typically, a position is com-
puted for every epoch of observation. The advantages of relative positioning have
long been recognized as a way to satisfy the high accuracy requirements of geodesy,
surveying, and other geosciences. In relative positioning, also called differential po-
sitioning, the relative location between co-observing receivers is determined. In this
case many common errors cancel, or their impact is significantly reduced. During the
pioneering years of GPS, there appeared to be a clear distinction between applications
in navigation and surveying. This distinction, if ever real, has rapidly disappeared.
Whereas navigation solutions used to incorporate primarily pseudorange observa-
tions, surveying solutions have always been based on the millimeter-accurate carrier
phase observations. Modern approaches combine both types of observables in an op-
timal manner. This leads to a unified GPS positioning theory for both surveying and
navigation. The availability of precise, postprocessed ephemerides—even predicted
precise ephemerides—allows for single-point positioning that is better than specified
for SPS or even PPS. Powerful processing algorithms reduce the time required for
data collection, so as to render even the distinction between static (both receivers are
static) and kinematic (at least one receiver moves) techniques unnecessary.

The achievable accuracy very much depends on many factors that will be detailed
throughout this book. In order to emphasize the characteristic difference between
geocentric and relative position accuracy, let us simply state that geocentric position
accuracy ranges from meters to decimeters, whereas the relative position accuracy is
at the centimeters to millimeters level. The secrets that make GPS such a powerful
positioning device can be readily explained. At the center is the ability to measure
carrier phases to about 1/100 of a cycle, which equals about 2 mm in linear distance.
The high frequencies (L1 and L2) penetrate the ionosphere relatively well. Because
the time delay caused by the ionosphere is inversely proportional to the square of the
frequency, carrier phase observations at both frequencies can be used to model and,
thus, eliminate most ionospheric effects. Dual-frequency observations are particularly
useful when the station separation is large and when shortening the observation time is
important. There has been significant progress in the design of stable clocks and their
miniaturization, providing precise timing at the satellite. The GPS satellite orbits are
stable because at such high satellite altitudes only the major gravitational forces affect
their motion. There are no atmospheric drag effects acting on satellites. The impact of
the sun and the moon on the orbits is significant but can be computed accurately. The
remaining worrisome physical aspects are solar radiation pressure on the satellites,
as well as the tropospheric delay and multipath effects on signal propagation. On
the algorithmic side, much is gained by using linear combinations of the basic phase
observables. For example, unwanted parameters are eliminated and certain effects
need not be modeled. Let the receivers k and m observe satellite p at the same time.
The difference between these two phase observations is called a single-difference
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observable. It can be readily shown that single differences are largely independent of
satellite frequency offset and linear drift. Next, assume that two single differences are
available, one referring to satellite p and one to satellite q. The difference between
these two single differences, called the double-difference observable, is largely inde-
pendent of receiver clock errors. Finally, taking the difference of two double differ-
ences that refer to different epochs yields the triple-difference observable. This last
type of observation is useful for initial processing and screening of the data.

Single-, double-, or triple-difference processing yields the relative location be-
tween the co-observing receivers and is usually referred to as the vector between the
stations. Because the satellites are at a finite distance from the earth, there is also
a “geocentric positioning component” to these observables which is, as a matter of
fact, a function of the baseline length. In practice, the absolute location of the baseline
must be sufficiently known in order not to degrade the relative positioning capability.
This topic will be discussed later. By itself, one accurate vector between stations is
generally not of much use, at least in surveying. Of course, one can add the vector to
the geocentric position of the “known” station and formally compute the geocentric
position of the new station. The problem with this procedure is that the uncertainty of
the “known” station is transferred in full to the new station. Also, despite all of modern
technology, the vectors themselves can still be in error. Possibilities of misidentify-
ing ground marks, centering errors, misreading antenna heights, etc., can never be
completely avoided. Like other observations, the GPS vector observations are most
effectively controlled by a least-squares network adjustment consisting of a set of
redundant vectors. Such network solutions make it possible to assess the quality of
the observations, validate the correctness of statistical data, and detect (and possi-
bly remove) existing blunders. Therefore, the primary result of a GPS survey is a
polyhedron of stations whose accurate relative locations have been controlled by a
least-squares adjustment.

1.1 HISTORICAL PERSPECTIVE

A summary of GPS development and performance to date is detailed in Table 1.1.
Because the scope of GPS research and application development is so broad and
conducted by researchers all over the globe, it is impossible to give a comprehensive
listing. Table 1.1, therefore, merely demonstrates the extraordinarily rapid develop-
ment of the GPS positioning system.

GPS made its debut in surveying and geodesy with a big bang. During the summer
of 1982, the testing of the Macrometer receiver, developed by C. C. Counselman at
M.I.T., verified a GPS surveying accuracy of 1–2 parts per million (ppm) of the station
separation. Baselines were measured repeatedly using several hours of observations
to study this new surveying technique and to gain initial experience with GPS. Dur-
ing 1983 a thirty (plus)-station first-order network densification in the Eifel region
of Germany was observed (Bock et al., 1985). This project was a joint effort by the
State Surveying Office of North Rhein-Westfalia, a private U.S. firm, and scientists
from M.I.T. In early 1984, the geodetic network densification of Montgomery County
(Pennsylvania) was completed. The sole guidance of this project rested with a private
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TABLE 1.1 GPS Development and Performance at a Glance

1978 Launch of first GPS satellite

1982 Prototype Macrometer testing at M.I.T.

1983
Geodetic network densification (Eifel, Germany)
President Reagan offers GPS to the world “free of charge”

Geodetic network densification (Montgomery County, Pennsylvania)
1984 Engineering survey at Stanford

Remondi’s dissertation

Precise geoid undulation differences for Eifel network
Codeless dual band observations

1985 Kinematic GPS surveying
Antenna swap for ambiguity initialization
First international symposium on precise positioning with GPS

1986
Challenger accident (January 28)
10 cm aircraft positioning

1987 JPL baseline repeatability tests to 0.2–0.04 ppm

1989

Launch of first Block II satellite
OTF solution
Wide area differential GPS (WADGPS) concepts
U.S. Coast Guard GPS Information Center (GPSIC)

1990 GEOID90 for NAD83 datum

1991
NGS ephemeris service
GIG 91 experiment (January 22–February 13)

1992

IGS campaign (June 21–September 23)
Initial solutions to deal with antispoofing (AS)
Narrow correlator spacing C/A-code receiver
Attitude determination system

1993

Real-time kinematic GPS
ACSM ad hoc committee on accuracy standards
Orange County GIS/cadastral densification
Initial operational capability (IOC) on December 8
1–2 ppb baseline repeatability
LAMBDA

1994

IGS service beginning January 1
Antispoofing implementation (January 31)
RTCM recommendations on differential GPS (Version 2.1)
National Spatial Reference System Committee (NGS)
Multiple (single-frequency) receiver experiments for OTF
Proposal to monitor the earth’s atmosphere with GPS (occultations)

1995
Full operational capability (FOC) on July 17
Precise point positioning (PPP) at JPL
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TABLE 1.1 (Continued)

1996 Presidential Decision Directive, first U.S. GPS policy

1998
Vice president announces second GPS civil signal at 1227.60 MHz
JPL’s automated GPS data analysis service via Internet

1999
Vice president announces GPS modernization initiative and third civil GPS signal
at 1176.45 MHz
IGDG (Internet-based global differential GPS) at JPL

2000
Selective availability set to zero
GPS JPO begins modifications to IIR-M and IIF satellites

GPS surveying firm (Collins and Leick, 1985). Also in 1984, GPS was used at Stan-
ford University for a high-precision GPS engineering survey to support construction
for extending the Stanford Linear Accelerator (SLAC). Terrestrial observations (an-
gles and distances) were combined with GPS vectors. The Stanford project yielded
a truly millimeter-accurate GPS network, thus demonstrating, among other things,
the high quality of the Macrometer antenna. This accuracy could be verified through
comparison with the alignment laser at the accelerator, which reproduces a straight
line within one-tenth of a millimeter (Ruland and Leick, 1985). Therefore, by the
middle of 1984, 1–2 ppm GPS surveying had been demonstrated beyond any doubt.
No visibility was required between the stations. Data processing could be done on
a microcomputer. Hands-on experience was sufficient to acquire most of the skills
needed to process the data—i.e., first-order geodetic network densification suddenly
became within the capability of individual surveyors.

President Reagan offered GPS free of charge for civilian aircraft navigation in
1983 once the system became fully operational. This announcement was made after
the Soviet downing of the Korean Air flight 007 over the Korea Eastern Sea. This
announcement can be viewed as the beginning of sharing arrangements of GPS for
military and civilian users.

Engelis et al. (1985) computed accurate geoid undulation differences for the Eifel
network, demonstrating how GPS results can be combined with orthometric heights,
as well as what it takes to carry out such combinations accurately. New receivers
became available—e.g., the dual-frequency P-code receiver TI-4100 from Texas
Instruments—which was developed with the support of several federal agencies. Ladd
et al. (1985) reported on a survey using codeless dual-frequency receivers and claimed
1 ppm in all three components of a vector in as little as 15 minutes of observation time.
Thus, the move toward rapid static surveying had begun. Around 1985, kinematic
GPS became available (Remondi, 1985). Kinematic GPS refers to ambiguity-fixed
solutions that yield centimeter (and better) relative accuracy for a moving antenna.
The only constraint on the path of the moving antenna is visibility of the same four
(at least) satellites at both receivers. Remondi introduced the antenna swapping tech-
nique for the rapid initialization of ambiguities. Antenna swapping made kinematic
positioning in surveying more efficient.
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The deployment of GPS satellites came to a sudden halt due to the tragic January
28, 1986 Challenger accident. Several years passed until the Delta II launch vehicle
was modified to carry GPS satellites. However, the theoretical developments contin-
ued at full speed. They were certainly facilitated by the publication of Remondi’s
(1984) dissertation, the very successful First International Symposium on Precise
Positioning with the Global Positioning System (Goad, 1985), and a specialty con-
ference on GPS held by the American Society of Civil Engineers in Nashville in 1988.

Kinematic GPS was used for decimeter positioning of airplanes relative to re-
ceivers on the ground (Mader, 1986; Krabill and Martin, 1987). The goal of these tests
was to reduce the need for traditional and expensive ground control in photogram-
metry. These early successes not only made it clear that precise airplane positioning
would play a major role in photogrammetry, but they also highlighted the interest in
positioning other remote sensing devices in airplanes and spacecraft.

Lichten and Border (1987) report repeatability of 2–5 parts in 108 in all three com-
ponents for static baselines. Note that 1 part in 108 corresponds to 1 mm in 100 km.
Such highly accurate solutions require satellite positions of about 1 m and better. Be-
cause such accurate orbits were not yet available at the time, researchers were forced
to estimate improved GPS orbits simultaneously with baseline estimation. The need
for a precise orbital service became apparent. Other limitations, such as the uncer-
tainty in the tropospheric delay over long baselines, also became apparent and created
an interest in exploring water vapor radiometers to measure the wet part of the tro-
posphere along the path of the satellite transmissions. The geophysical community
requires high baseline accuracy for obvious reasons; e.g., slow-moving crustal mo-
tions can be detected earlier with more accurate baseline observations. However, the
GPS positioning capability of a few parts in 108 was also noticed by surveyors for
its potential to change well-established methods of spatial referencing and geodetic
network design.

Perhaps the year 1989 could be labeled the year when “modern GPS” position-
ing began in earnest. This was the year when the first production satellite, Block
II, was launched. Seeber and Wübbena (1989) discussed a kinematic technique that
used carrier phases and resolved the ambiguity “on-the-way.” This technique is to-
day usually called “on-the-fly” (OTF) ambiguity resolution (fixing), meaning there
is no static initialization required to resolve the ambiguities. The technique works
for postprocessing and real-time applications. OTF is one of the modern techniques
that applies to both navigation and surveying. The navigation community began in
1989 to take advantage of relative positioning, in order to eliminate errors common
to co-observing receivers, and to make attempts to extend the distance in relative
positioning. Brown (1989) referred to it as extended differential GPS, but it is more
frequently referred to as wide area differential GPS (WADGPS). Many efforts were
made to standardize real-time differential GPS procedures, resulting in several pub-
lications by the Radio Technical Commission for Maritime Services. The U.S. Coast
Guard established the GPS Information Center (GPSIC) to serve nonmilitary user
needs for GPS information.

The introduction of the geoid model GEOID90 in reference to the NAD83 datum
represented a major advancement for combining GPS (ellipsoidal) and orthometric
height differences. The most recent version is GEOID99.
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During 1991 and 1992, the geodetic community embarked on major efforts to
explore the limits of GPS on a global scale. The efforts began with the GIG91 cam-
paign and continued the following year with the International GPS Service (IGS)
campaign. GIG91 (GPS experiment for International Earth Rotation Service [IERS]
and Geodynamics) resulted in very accurate polar motion coordinates and earth rota-
tion parameters. Geocentric coordinates were obtained that agreed with those derived
from satellite laser ranging within 10 to 15 cm, and ambiguities could be fixed on a
global scale providing daily repeatability of about 1 part in 109. Such results are
possible because of the truly global distribution of the tracking stations. The primary
purpose of the IGS campaign was to prove that the scientific community is able to
produce high-accuracy orbits on an operational basis. The campaign was successful
beyond all expectations, confirming that the concept of IGS is possible. The IGS
service formally began January 1, 1994.

For many years, users worried about what impact antispoofing (AS) would have
on the practical uses of GPS. AS implies switching from the known P-code to the
encrypted Y-code, expressed by the notation P(Y)-code. The purpose of AS is to make
the P-codes available only to authorized (military) users. The anxiety about AS was
considerably relieved when Hatch et al. (1992) reported on the code-aided squaring
technique to be used when AS is active. Most manufacturers developed proprietary
solutions for dealing with AS. When AS was actually implemented on January 31,
1994, it presented no insurmountable hindrance to the continued use of GPS and,
particularly, the use of modern techniques such as OTF. GPS users became even less
dependent on AS with the introduction of accurate narrow correlator spacing C/A-
code receivers (van Dierendonck et al., 1992), since the C/A-code is not subject to
AS measures. By providing a second civil code on L2, and eventually a third one
on L5, and adding new military codes, GPS modernization will make the P(Y)-
code encryption a nonissue for civilian applications, and at the same time, provide
enhanced performance to civilian and military users.

A major milestone in the development of GPS was achieved on December 8, 1993,
when the initial operational capability (IOC) was declared when twenty-four satellites
(Blocks I, II, IIA) became successfully operational. The implication of IOC was
that commercial, national, and international civil users could henceforth rely on the
availability of the SPS. Full operational capability (FOC) would be declared July 17,
1995, when twenty-four satellites of the type Blocks II and IIA became operational.
Teunissen (1993) introduced the least-squares ambiguity decorrelation adjustment
(LAMBDA), which is now widely used.

The determination of attitude/orientation using GPS has drawn attention for quite
some time. Qin et al. (1992) report on a commercial product for attitude determi-
nation. Talbot (1993) reports on a real-time kinematic centimeter-accuracy survey-
ing system. Lachapelle et al. (1994) experiment with multiple (single-frequency)
receiver configurations, in order to accelerate the on-the-fly ambiguity resolution
by means of imposing length constraints and conditions between the ambiguities.
While much attention was given to monitoring the ionosphere with dual-frequency
and single-frequency code or carrier phase observations, Kursinski (1994) discusses
the applicability of radio occultation techniques to use GPS in a general earth’s at-



8 HISTORICAL PERSPECTIVE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[8],

Lin

—
0.0
——
Nor

PgE

[8],

mospheric monitoring system (which could provide high vertical-resolution profiles
of atmospheric temperature across the globe).

The surveying community promptly responded to the opportunities and challenges
that came with GPS. The American Congress on Surveying and Mapping (ACSM)
tasked an ad hoc committee in 1993 to study the accuracy standards to be used in
the era of GPS. The committee addressed questions concerning relative and absolute
accuracy standards. The National Geodetic Survey (NGS) enlisted the advice of
experts regarding the shape and content of the geodetic reference frame; these efforts
eventually resulted in the continuously operating reference stations (CORS). Orange
County (California) established 2000 plus stations to support geographic information
systems (GIS) and cadastral activities. There are many other examples.

Zumberge et al. (1998a,b) report single-point positioning at the couple of centime-
ters level for static receivers and at the subdecimeter level for moving receivers. This
technique became available at the Jet Propulsion Laboratory (JPL) around 1995. The
technique that requires dual-frequency observations, a precise ephemeris, and precise
clock corrections is referred to as precise point positioning (PPP). These remarkable
results were achieved with postprocessed ephemerides at a time when selective avail-
ability (SA) was still active. Since 1998 JPL has offered automated data processing
and analysis for PPP on the Internet (Zumberge, 1998). Users submit the observa-
tion file over the Internet and retrieve the results via FTP soon thereafter. Since 1999
JPL has operated an Internet-based dual-frequency global differential GPS system
(IGDG). This system determines satellite orbits, satellite clock corrections, and earth
orientation parameters in real-time and makes corrections available via the Internet
for real time positioning. A website at JPL demonstrates real-time kinematic posi-
tioning at the subdecimeter of a receiver located at JPL’s facilities in Pasadena.

Finally, during 1998 and 1999, major decisions were announced regarding the
modernization of GPS. In 2000, SA was set to zero as per Presidential Directive.
When active, SA entails an intentional falsification of the satellite clock (SA-dither)
and of the broadcast satellite ephemeris (SA-epsilon); when active it is effectively an
intentional denial to civilian users of the full capability of GPS.

1.2 GEODETIC ASPECTS

The three-dimensional (3D) geodetic model is definitely the preferred model for ad-
justing three-dimensional GPS vector observations and combining them with classi-
cal terrestrial observations such as slant distance, horizontal angle, azimuth, vertical
angle, and, with some restrictions, leveled height differences. The three-dimensional
model is applicable with equal ease to the following: small surveys the size of a par-
cel or smaller, large surveys covering whole regions and nations, three-dimensional
surveys for measuring and monitoring engineering structures, and the “pseudo three-
dimensional” surveys typical of classical geodetic networks or in “plane surveying.”
Application of simple concepts from the theory of adjustments, such as “weighted
parameters” and “significance of parameters,” make it possible to use the three-
dimensional model in all of these applications in a uniform manner. Perhaps the most
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important point in favor of the three-dimensional model is that the geodesic line on
the ellipsoid is not needed at all. Anyone who has studied the mathematics related to
geodesics will certainly appreciate this simplification of surveying theory.

The 3D geodetic model requires that the observations are reduced for polar mo-
tion and deflection of the vertical. It is well known that the theodolite senses the
local plumb line and, thus, measures with respect to the local vertical and the local
astronomic horizon. It is further known that astronomic observations depend on the
position of the instantaneous pole of rotation. The goal is to reduce angular obser-
vations measured with the theodolite to the ellipsoidal normal (deflection of vertical
reduction) and to reduce the astronomic quantities to the conventional terrestrial pole
(CTP). Having said this, I would like to comfort worried surveyors by reminding
them that the most popular observations do not depend critically on polar motion and
deflection of the vertical; e.g., horizontal angles depend very little on the deflection
of the vertical (because horizontal angles are the difference between two azimuths,
the largest deflection term cancels). The GPS vector observations (which refer to a
crust-fixed coordinate system, whose third axis coincides with the CTP) and distances
measured with the electronic distance meter (EDM) do not depend on either polar
motion or deflection of the vertical. Furthermore, modern surveyors are unlikely to
make astronomic observations in view of GPS surveying capability.

In surveying applications, there will typically be no need to improve on the de-
flection of the vertical already available from, e.g., the NGS. Besides, surveyors can
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Figure 1.1 Geodetic models.
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conveniently introduce their own local ellipsoid that is tangent to the equipotential
surface at the center of the survey area. The deflections of the vertical with respect to
the local ellipsoid are then zero for all practical purposes within the small geograph-
ical region of interest. The adjustment and the quality control of the observations
can be carried out in this system. The controlled observations can be deposited in a
database.

The approach followed in this book is shown in Figure 1.1. The scheme starts
with observations, which are reduced for polar motion and deflection of the vertical
(if applicable), adjusted in the three-dimensional model, and then corrected (with the
opposite sign) for deflection of the vertical. The results are quality-controlled obser-
vations that refer to the local plumb line and the conventional terrestrial coordinate
system. The two remaining loops in Figure 1.1 are actually redundant when viewed
from a “narrow geodetic” perspective, but they are still of much interest to surveyors
because of conformal mappings such as the state plane coordinate (SPC) system. In
this book, the expressions for the ellipsoidal surface model and the conformal map-
ping model are only summarized.

Aspects of GPS satellite surveying can be found in several excellent publica-
tions, i.e., Hoffmann-Wellenhof et al. (2001), Kaplan (1996), Misra and Enge (2001),
Parkinson et al. (1996), Seeber (2003), and Strang and Borre (1997). Navigation,
published by the Institute of Navigation, and GPS Solutions, published by Springer
Verlag, are journals that focus on GPS.
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CHAPTER 2

GEODETIC REFERENCE SYSTEMS

It becomes increasingly important to focus on the definition of reference frames as
accuracy of geodetic space techniques increases. There are three types of frames we
are concerned with—the earth-fixed (international terrestrial reference frame, ITRF)
frame, the space-fixed (international celestial reference frame, ICRF) frame, and the
geodetic datum. Of course, we also need to be able to transform between the frames.
To satisfy the needs of scientists for a clear definition of coordinates, as well as to
explore fully the phenomenal increase in accuracy of geodetic space techniques,
the definition and maintenance of these reference frames in connection with the
deformable earth has become a science in itself. Current solutions have evolved over
many years, with contributions from the best scientific minds. The literature is rich
in contributions that document the interdisciplinary spectrum and depth needed to
arrive at solutions.

The International Earth Rotation Service (IERS) is responsible for establishing and
maintaining the ITRF and ICRF frames, whereas typically a national geodetic agency
is responsible for establishing and maintaining the datum. The IERS relies on the
cooperation of many research groups and national agencies to accomplish its tasks.
The International Astronomical Union (IAU) and the International Union of Geodesy
and Geophysics (IUGG) established the service in 1988. The IERS maintains a central
bureau that is responsible for the general management of the IERS and is governed by
a directing board. The conventions underlying the ITRF and the ICRF are published in
McCarthy (1996). They are currently completing revision and will become available
as IERS Conventions 2000. The old and new conventions are posted at the IERS
(2002). McCarthy (1996) is the principal reference for this chapter. For additional
details, please consult the many references listed in that publication.

11



12 GEODETIC REFERENCE SYSTEMS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[12

Lin

—
0.0
——
Nor

PgE

[12

Accurate positioning within the ITRF and ICRF frames requires application of
a number of complex mathematical expressions to account for phenomena, such as
polar motion, plate tectonic movements, solid earth tides, and ocean loading dis-
placements, as well as precession and nutations. The respective software for these
corrections is available, generally on the web. Because the names of computer di-
rectories often change, we do not list the full URLs at which the specific software
resides. Instead, it is recommended that the reader simply navigate to key agencies
and research groups and follow the link to the appropriate levels and directories. A
recommended starting point is IERS (2002). Other important sites are of the Interna-
tional GPS Service (IGS), IGS (2002), the U.S. Naval Observatory, USNO (2002),
and the National Geodetic Survey, NGS (2002). Because the software is readily avail-
able at these sites, we only list mathematical expressions to the extent needed for a
conceptual presentation of the topics. However, users striving to achieve complete
clarity in definition and the ultimate in positional accuracy must make sure that the
software components are mutually consistent and be aware of reductions that might
already have been applied to observations.

Most scientists prefer to work with geocentric Cartesian coordinates. In many
cases, however, it is easier to interpret results in terms of ellipsoidal coordinates such
as geodetic latitude, longitude, and height. It then becomes important to specify the
location of the origin of the ellipsoid and its orientation. Ideally, one would like to see
the origin coincide with the center of mass and the axes coincide with the directions of
the ITRF. The location and orientation of the ellipsoid, as well as its size and shape,
are part of the definition of a datum. Below we discuss the details for converting
between Cartesian coordinates and geodetic latitude, longitude, and height.

GPS observations such as pseudoranges and carrier phases depend only indirectly
on gravity. For example, once the orbit of the satellites has been computed and the
ephemeris is available, there is no need to further consider gravity. To make the use
of GPS even easier, the GPS ephemeris is typically provided in a well-defined earth-
centered earth-fixed (ECEF) coordinate system to which the user can directly relate.
In contrast, astronomic latitude, longitude, and azimuth determinations with a theodo-
lite using star observations refer to the instantaneous rotation axis, the instantaneous
terrestrial equator of the earth, and the local astronomic horizon (the plane perpendic-
ular to the local plumb line). For applications where accuracy matters, it is typically
the responsibility of the user to apply the necessary reductions or corrections to ob-
tain positions in an ECEF coordinate system. Even vertical and horizontal angles as
measured by surveyors with a theodolite or total station refer to the plumb line and
the local astronomic horizon. Another type of observation that depends on the plumb
line is leveling. To deal with types of observations that depend on the direction of
gravity (plumb line, horizon), we introduce the geoid.

The goal is to reduce observations that depend on the direction of gravity and to
model observations that refer to the ellipsoid. This is accomplished by applying geoid
undulations and deflection of the vertical correction. These “connecting elements”
are part of the definition of the datum. For a modern datum these elements are
readily available, typically on the web (for an example, see NGS, 2002). The reduced
observations are the model observation of the 3D geodetic model.
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2.1 CONVENTIONAL TERRESTRIAL REFERENCE SYSTEM

A conventional terrestrial reference system (CTRS) must allow the products of vari-
ous geodetic space techniques, such as coordinates and orientation parameters of the
deformable earth, to be combined into a unified data set. Such a reference system
should (a) be geocentric (whole earth, including oceans and atmosphere), (b) incor-
porate corrections or procedures stemming from the relativistic theory of gravitation,
(c) maintain consistency in orientation with earlier definitions, and (d) have no resid-
ual global rotation with respect to the crust as viewed over time. This section deals
with the major phenomena such as polar motion, plate tectonic motions, solid earth
tides, and ocean loading that cause variations of coordinates in a terrestrial reference
frame. To appreciate the demand placed on a modern reference system, consider the
following statement: “GPS data are used to compute daily estimates of the earth’s
center of mass and scale. Recent center of mass estimates have daily repeatability at
the level of 1 cm in x, 1 cm in y, and 1.5 cm in z. Seasonal variations in the center
of mass occur at the 3–4 mm level, due primarily to global water mass redistribution.
Recent scale estimates repeat daily at the level of 0.3 parts per billion” (Heflin, JPL,
private communication).

2.1.1 Polar Motion

The intersection of the earth’s instantaneous rotation axis and the crust moves with
time. This motion is called polar motion. Figure 2.1 shows polar motion for the time
2001–2003. This motion is somewhat periodic. There is a major constituent of about
434 days, called the Chandler period. The amplitude varies but does not seem to
exceed 10 m. Several of the polar motion features can be explained satisfactorily
from a geophysical model of the earth; however, the fine structures in polar motion
are still subject to research.

To avoid variations in latitude and longitude of about 10 m due to polar motion,
we need to define a conventional terrestrial pole (CTP) that is fixed to the crust.
Originally, this pole was defined as the center of figure of polar motion for the
years 1900–1905. This definition required several refinements as the observation
techniques improved. The instantaneous rotation axis can be referenced to the CTP
by the polar motion coordinates (xp, yp). The origin of the polar motion coordinate
system is at the CTP, the x axis is along the conventional zero meridian, and the y

axis is positive along the 270° meridian. The center of figure of today’s polar motion
does not contain the CTP. There appears to be “polar wander” (gradual shifting of the
center of figure away from the CTP).

The CTP represents the direction of the third axis of the conventional terrestrial
reference system. The definition of the CTRS becomes increasingly complicated be-
cause of plate tectonic motions that cause observable station drifts and other temporal
variations in the coordinates of a “crust-fixed” coordinate system. As the plates move,
the fixed station coordinates become inconsistent with each other. The solution is to
define the reference frame by a consistent set of coordinates and their velocities of
a global network of stations at a specific epoch. The center of mass of the earth is
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Figure 2.1 Polar motion, 2001–2003. The solid line represents the mean pole displacement,
1900–2000. (Courtesy of the International Earth Orientation Service [IERS], Paris Obser-
vatory.)

the natural choice for the origin of the CTRS because satellite dynamics are sensi-
tive to the center of mass (whole earth plus oceans and atmosphere). A particular
realization of a CTRS is the ITRF. The IERS maintains the ITRF using extrater-
restrial data from various sources, such as GPS, very long baseline interferometry
(VLBI), satellite laser ranging (SLR), and Doppler orbitography and radioposition-
ing integrated on satellite (DORIS). GPS is a viable tool for defining a global ref-
erence frame either alone or in combination with the other systems (Heflin et al.,
2002). Because the motions of the deformable earth are so complex, there is a need
to identify the sites that are part of the solution and, because of evolving data reduc-
tion techniques, the IERS publishes updated ITRF solutions. These are designated by
adding the year; e.g., ITRF96, ITRF97, and ITRF00. Transformation parameters for
the family of ITRFs have been estimated and are available from the IERS. Details on
ITRF transformations are found in Soler and Marshall (2002) and the literature listed
therein.

An ITRF-type of reference frame is also called an ECEF frame. We denote an
ECEF frame by (x) and the coordinate triplet by (x, y, z). The z axis as defined by
the IERS is the origin of the polar motion coordinate system. The x and y axes define
the terrestrial equatorial plane. In order to maintain continuity with older realizations,
the x axis lies in what may be loosely called the Greenwich meridian.
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Historically speaking, the International Latitude Service (ILS) was created in
1895, shortly after polar motion had been verified observationally. It was the first
international group using globally distributed stations to monitor the reference frame.
This group evolved into the International Polar Motion Service (IPMS) in 1962. The
IERS was established in 1988 as a single international authority that henceforth uses
modern geodetic space techniques to establish and maintain the reference frames.
GPS increasingly contributes to the definition and maintenance of the terrestrial ref-
erence frame, largely due to the excellent cooperation of international research groups
and agencies with the IGS. The IGS began routine operation in 1994, providing GPS
orbits, tracking data, and offering other data products in support of geodetic and geo-
physical research.

2.1.2 Tectonic Plate Motion

The tectonic plate rotations can be approximated by spherical geophysical models
such as NNR-NUVELL1A (DeMets et al., 1994). This model is an improved version
of the original NUVEL-1 (Argus and Gordon, 1991). Table 2.1 lists the Cartesian
angular velocity components for each of the thirteen major plates. At the edges of
some of these plates, the motions can be as much as 5 cm per year. Denoting the
vector of rotation velocities by Ω = [Ωx Ωy Ωz]T and specifying the matrix R as

R(Ω) ≡



0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0


 (2.1)

TABLE 2.1 The NNR-NUVEL1A Kinematic Plate Model

Plate Name Ωx (mas/y) Ωy (mas/y) Ωz (mas/y)
∣∣∣
∣∣∣Ω
∣∣∣
∣∣∣ (mas/y)

Africa 0.1837 −0.6392 0.8090 1.047283
Antarctica −0.1693 −0.3508 0.7644 0.857922
Arabia 1.3789 −0.1075 1.3943 1.963923
Australia 1.6169 1.0569 1.2957 2.325992
Caribbean −0.0367 −0.6982 0.3261 0.771473
Cocos −2.1503 −4.4563 2.2534 5.436930
Eurasia −0.2023 −0.4940 0.6503 0.841339
India 1.3758 0.0082 1.4005 1.407265
Nazca −0.3160 −1.7691 1.9820 2.675424
North America 0.0532 −0.7423 −0.0316 0.744874
Pacific −0.3115 0.9983 −2.0564 2.307036
South America −0.2141 −0.3125 −0.1794 0.419141
Philippines 2.0812 −1.4768 −1.9946 3.238944

Sources: McCarthy, 1996, p. 14, and Soler and Marshall (2002).

Note: The units were changed to milliarc seconds per year for easier visualization.
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the transformation between two epochs is accomplished by (McCarthy, 1996, p. 16)

x(t) = [I + 4.84813681 ∗ 10−9 R(Ω) (t − t0)
]

x(t0) (2.2)

Expression (2.2) propagates the position vector x from epoch t0 to epoch t within
the same reference frame. The NNR-NUVELL1A model can be applied to reference
station coordinates to update them as closely as possible to the actual epoch of
observations. For consistency, the reference frame for all fiducial points should be the
one implicit in the precise ephemeris used. The resulting coordinates would then refer
to the reference system of the precise ephemeris and the epoch of the observations.
Long-term station motions can readily be appreciated from Figures 2.2 and 2.3.

Because the definition of the frame ultimately involves stations that move with
the crust, one must take the time dependency of transformation parameters into
consideration when transforming between frames. For example, the parameters listed
in Table 2.2 refer to the IGS realization of the ITRF, which is expressed by the
designation IGS(ITRFxx). The epoch for these transformation parameters happens to
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Figure 2.2 Observed motions of globally distributed stations. Velocities for each site
were determined from more than eleven years of GPS data. Results are shown in the ITRF00
reference frame with no-net rotation of the crust. Rigid plate motion is clearly visible and
describes roughly 80% of the observed motion. The remaining 20% is nonrigid motion in plate
boundary zones associated with seismic and volcanic activity. The most visible plate boundary
zone on the map is southern California. (Courtesy of Mike Heflin, JPL.)
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Figure 2.3 Observed motion of station ALGO. The GPS data are used to compute daily
estimates of latitude, longitude, and height at each site. Velocity estimates are derived from
the time series and typically improve with the time span T in years according to 3.6 mm/T,
4.5 mm/T, and 9.1 mm/T for the north, east, and vertical components, respectively. Recent
comparisons of the GPS velocities with ITRF00 show agreement at the level of 0.7 mm/yr for
north and east, and 1.5 mm/yr for the vertical. (Courtesy of Mike Heflin, JPL.)
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TABLE 2.2 Example of Fourteen-Parameter Transformation between Geocentric
Frames

Tx (m) Ty (m) Tz (m) εx (mas) εy (mas) εz (mas) s (ppb)

0.0047 0.0028 −0.0256 −0.030 −0.003 −0.140 1.48
±0.0005 ±0.0006 ±0.0008 ±0.025 ±0.021 ±0.021 ±0.09

Ṫx (m/y) Ṫy (m/y) Ṫz (m/y) ε̇x (mas/y) ε̇y (mas/y) ε̇z (mas/y) ṡ (ppb/y)

−0.0004 −0.0008 −0.0016 0.003 −0.001 −0.030 0.03
±0.0003 ±0.0003 ±0.0004 ±0.012 ±0.011 ±0.011 ±0.05

Note: Transformation from IGS(ITRF00) to IGS(ITRF97) at epoch tk = 2001.5 (Ferland, 2002, p. 26).
Anticlockwise rotations are positive (mas = milliarc seconds, ppb = part per billion).

be 2001.5 (the fraction of the year is given to one decimal). Soler and Marshall (2002)
derive the following fourteen-parameter transformation for transforming ITRFyy to
ITRFzz

xt,ITRFzz = ttk + (1 + stk

) (
I − R

(
εtk

))
xt,ITRFyy

+ (t − tk)
{
ṫ + [− (1 + stk

)
R(ε̇) + ṡ

(
I − R

(
εtk

))]
xt,ITRFyy

} (2.3)

The xt,ITRFyy positions on the right side of (2.3) can be computed from

xt,IRTFyy = xt0,IRTFyy + (t − t0) vt0,IRTFyy (2.4)

In terms of notation, tk is the epoch at which the transformation parameters are given,
t0 is the epoch of the initial frame IRTFyy, and t is the epoch of the final transformed
frame ITRFzz (t could be the actual time of the GPS observations). The vector tk
contains the Cartesian coordinates of the origin of ITRFyy in the frame ITRFzz, i.e.,
it is the shift between the two frames. ε = [εx εy εz]T denotes three differential
counterclockwise rotations around the x, y, and z axes of the ITRFyy frame, to
establish parallelism with the ITRFzz frame. The symbol s denotes the differential
scale change. When applying (2.3), the units must be conformable. The simplified
form of Equation (2.3) assumes that the velocities vtk = vt0 are in the same frame.
The transformation parameters are available from the IERS or research institutions
that maintain their own realization of the ITRF. Respective software is also readily
available on the web, e.g., Kouba (2001).

2.1.3 Solid Earth Tides

Tides are caused by the temporal variation of the gravitational attraction of the sun
and the moon on the earth due to orbital motion. While the ocean tides are very much
influenced by the coastal outlines and the shape of the near-coastal ocean floor, the
solid earth tides are accurately computable from relatively simple earth models. Their



CONVENTIONAL CELESTIAL REFERENCE SYSTEM 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[19

Lin

—
3.5
——
Cu

PgE

[19

periodicities can be directly derived from the motion of the celestial bodies, similar
to nutation (see below). The solid earth tides generate periodic site displacements
of stations that depend on latitude. The tidal variation can be as much as 30 cm in
the vertical and 5 cm in the horizontal. McCarthy (1996, p. 61) lists the following
expression:

∆x =
3∑

j=2

GMj

GME

‖rE‖4

∥∥rj

∥∥3

{
h2e
(

3

2

(
rj · e
)2 − 1

2

)
+ 3l2

(
rj · e
) [

rj − (rj · e
)

e
]}

(2.5)

In this expression, GME is the gravitational constant of the earth, GMj is the one for
the moon (subscript j = 2) and the sun (j = 3), e is the unit vector of the station
in the geocentric coordinate system (x), and r denotes the unit vector of the celestial
body. h2 and l2 are the nominal degree 2 Love and Shida numbers that describe elastic
properties of the earth model. Equation (2.5) gives the solid earth tides accurate to at
least 5 mm. For additional expressions concerning higher-order terms or expressions
for the permanent tide, see McCarthy (1996).

2.1.4 Ocean Loading

Ocean loading refers to the deformation of the sea floor and coastal land that results
from the redistribution of ocean water that takes place during the ocean tide. The
earth’s crust yields under the weight of the tidal water. McCarthy (1996, p. 53) lists
the following expression for the site displacement components ∆c (where the c refers
to the radial, west, and south component) at a particular site at time t ,

∆c =
∑

j

fjAcj cos
(
ωj t + χj + uj − Φcj

)
(2.6)

The summation over j represents eleven tidal waves traditionally designated as semi-
diurnal M2, S2, N2, K2, diurnal K1, O1, P1, and long-periodic Mf , Mm, Ssa . The
symbols ωj and χj denote the angular velocities and the astronomic arguments at
time t = 0h. The fundamental arguments χj reflect the position of the sun and the
moon (see nutations below). fj and uj depend on the longitude of the lunar node.
The station-specific amplitudes Acj and phases Φcj can be computed using ocean
tide models and coastal outline data. The IERS makes these values available for most
ITRF reference stations. Typically the M2 loading deformations are largest, but they
do not exceed 5 cm in the vertical and 2 cm in the horizontal.

2.2 CONVENTIONAL CELESTIAL REFERENCE SYSTEM

Dynamical equations of motion are solved in this inertial frame. The equator, ecliptic,
and pole of the rotation of the earth historically defined the celestial reference frame.
Two-dimensional coordinates of a large number of stars realized it. Present-day ICRF
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is defined by coordinates of a smaller set of essentially stationary quasars whose
positions are accurately known.

We denote the directions of the instantaneous rotation axis by the celestial ephe-
meris pole (CEP) and the normal of the ecliptic by the north ecliptic pole (NEP). The
angle between both directions, or the obliquity, is about 23.5°, which, by virtue of
geometry, is also the angle between the instantaneous equator and the ecliptic. As
shown in Figure 2.4, the rotation axis can be viewed as moving on a mantle of a cone
whose axis coincides with the ecliptic normal.

Mathematically, the motion is split into a smooth long-periodic motion called lu-
nisolar precession and short-periodic motions called nutations. Precession and nuta-
tion therefore refer to the motion of the earth’s instantaneous rotation axis in space. It
takes about 26,000 years for the rotation axis to complete one motion around the cone.
The nutations can be viewed as ripples on the circular cone. The longest nutation is
18.6 years and has the largest amplitude of about 20′′. The cause of precession and
nutation is the ever-changing gravitational attraction of the sun, the moon, and the
planets on the earth. Newton’s law of gravitation states that the gravitational force
between two bodies is proportional to their masses and is inversely proportional to
the square of their separation. Because of the earth’s and the moon’s orbital motions,
the separation between the sun, the moon, and the earth changes continuously. Since
these changes are periodic, the resulting precession and nutations are periodic in time
as well, reflecting the periodic orbital motions. The only exception is a small plan-
etary precession stemming from a motion of the ecliptic. Because of Newton’s law
of gravitation, the distribution of the earth’s mass also critically impacts precession
and nutation. Important features are the flattening of the earth, the noncoincidence of
the equatorial plane with the ecliptic, and the noncoincidence of the orbital plane of
the moon with the ecliptic. Nonrigidity effects of the earth on the nutations can be
observed with today’s high-precision measurement systems. A spherical earth with
homogeneous density distribution would neither precess nor nutate.

Figure 2.4 Lunisolar precession and nutation. The spatial
motion of the CEP is parameterized in terms of precession and
nutation.

NEP
CEP

ε = 23.5
o
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Because the rotation axis moves in space, the coordinates of stars or extragalac-
tic radio sources change with time due to the motion of the coordinate system. A
conventional celestial reference frame (CCRF) has been defined for the fundamental
epoch

J2000.0 ≡ January 1, 2000, 12h TT (2.7)

The letter “J” in J2000.0 indicates “Julian.” In a separate section below, we treat the
subject of time in greater detail. Let it suffice here to simply state that TT represents
terrestrial time (McCarthy, 1996, p. 83), which is realized by the international atomic
time (TAI) as

TT � TAI + 32s.184 (2.8)

We denote the respective coordinate system, called the mean celestial coordinate
system at epoch J2000.0, by (X̄). The Z̄ axis coincides with the mean pole. This
is the direction of a fictitious rotation axis that has been corrected for nutation, i.e.,
the fictitious rotation axis that is “driven” by precession only. The mean celestial
equatorial plane is the plane perpendicular to the direction of Z̄. The X̄ axis lies
in the equatorial plane and points toward the vernal equinox (intersection of mean
celestial equatorial plane and ecliptic). In reality, the precise definition of the first
axis takes earlier definitions into consideration that were based on fundamental star
catalogues in order to maintain consistency.

Because the CCRF is defined for the epoch J2000.0, the directions of the axis
are stable in space per definition. The practical realization of the celestial frame, and
therefore the directions of the coordinate axes, is based on a set of celestial radio
source coordinates. The IERS selects the celestial radio sources and specifies the ob-
servation techniques and analysis procedures. The outcome of this coordinated effort
is the ICRF. Extragalactic radio sources, such as quasars, whose signals can be ob-
served with VLBI, play a key role in the establishment and maintenance of the ICRF.
Consider two widely separated VLBI antennas on the surface of the earth observing
the signals from a quasar. Because of the large distance to quasars, their direction is
the same to observers regardless of where the observer is on the earth’s surface, as
well as where the earth is on its orbit around the sun. The VLBI observations allow
one to relate the orientation of the baseline, and therefore the orientation of the earth,
to the inertial directions to the quasars.

Any variation in the earth’s daily rotation around the instantaneous rotation axis, in
polar motion, or any deficiencies in the adopted mathematical model of nutations, can
be detected. Today, many quasars and a global network of VLBI antennas are used to
measure and monitor these variations. The current ICRF solution includes more than
600 extragalactic radio sources. The details of VLBI are not discussed here, but they
are available in the specialized literature. VLBI techniques are very similar to those
used in GPS. In fact, the early developments in accurate GPS baseline determination
very much benefited from existing knowledge of and experience with VLBI.
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2.2.1 Transforming between ITRF and ICRF

The transformation from the ITRF coordinate system (x) to the ICRF coordinate
system (X̄) at epoch t is (McCarthy, 1996, p. 21; Mueller, 1969, p. 65):

X̄ = R̄(t)
�

R(t)
�

R(t)x (2.9)

where

R̄(t) = P(t)N(t) (2.10)

�

R(t) = R3(−GAST) (2.11)

�

R(t) = R1(yp)R2(xp) (2.12)

P(t) = R3(ζ)R2(−θ)R3(z) (2.13)

N(t) = R1(−ε)R3(∆ψ)R1(ε + ∆ε) (2.14)

with

ζ = 2306′′.2181t + 0′′.30188t2 + 0′′.017998t3 (2.15)

z = 2306′′.2181t + 1′′.09468t2 + 0′′.018203t3 (2.16)

θ = 2004′′.3109t − 0′′.42665t2 − 0′′.041833t3 (2.17)

∆ψ = −17′′.1996 sin(Ω) + 0′′.2062 sin(2Ω)

− 1′′.3187 sin(2F − 2D + 2Ω) + · · · + dψ
(2.18)

∆ε = 9′′.2025 cos(Ω) − 0′′.0895 cos(2Ω)

+ 0′′.5736 cos(2F − 2D + 2Ω) + · · · + dε
(2.19)

ε = 84381′′.448 − 46′′.8150t − 0′′.00059t2 + 0′′.001813t3 (2.20)

where t is the time since J2000.0, expressed in Julian centuries of 36,525 days. The
arguments of the trigonometric terms in (2.18) and (2.19) are integer multiples of
the fundamental periodic elements l, l′, F , D, and Ω, resulting in nutation periods
that vary from 18.6 years to about 5 days. Of particular interest is Ω, which appears
as an argument in the first term of these equations. The largest nutation, which
also has the longest period (18.6 years), is a function of Ω, which represents the
rotation of the lunar orbital plane around the ecliptic pole. The complete set of
nutations contains more than 100 entries. The amplitudes of the nutations are based
on geophysical models of the earth. Currently, the IAU 2000 precession and nutation
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Figure 2.5 Celestial pole offset for 1999 with respect to the IAU 1980 Nutation Model.
(Data from 1999 IERS Annual Report.)

model is replacing the IAU 1980 theory of nutations. Because any model is imperfect
and imperfections become noticeable as the observation accuracy increases, the so-
called celestial pole offsets dψ and dε have been added to (2.18) and (2.19). These
offsets are determined and reported by the IERS. An example is seen in Figure 2.5.

The element Ω also describes the 18.6-year tidal period. Because tides and nutation
are caused by the same gravitational attraction, it is actually possible to transform the
mathematical series of nutations into the corresponding series of tides. Therefore,
Expression (2.5) could be developed into a series of sine and cosine terms with the
fundamental periodic elements as arguments. These elements are

l = Mean Anomaly of the Moon

= 134°.96340251 + 1717915923′′.2178t + 31′′.8792t2 + 0′′.051635t3 + · · ·
(2.21)

l′ = Mean Anomaly of the Sun

= 357°.52910918 + 12596581′′.0481t − 0′′.5532t2 − 0′′.000136t3 + · · ·
(2.22)

F = L − Ω

= 93°.27209062 + 1739527262′′.8478t − 12′′.7512t2 − 0′′.001037t3 + · · ·
(2.23)

D = Mean Elongation of the Moon from the Sun

= 297°.85019547 + 1602961601′′.2090t − 6′′.3706t2 + 0′′.006593t3 + · · ·
(2.24)

Ω = Mean Longitude of the Ascending Node of the Moon

= 125°.04455501 − 6962890′′.2665t + 7′′.4722t2 + 0′′.007702t3 + · · ·
(2.25)

L is mean longitude of the moon. In these equations, the time t is measured in Julian
centuries of 36,525 days since J2000.0,
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t = (TT − J2000.0)[days]/36,525 (2.26)

The Julian date (JD) of the fundamental epoch is

JD(J2000.0) = 2,451,545.0TT (2.27)

It follows that t can be computed as

t = JD + TT[h]/24 − 2,451,545.0

36,525
(2.28)

The Julian date is a convenient counter for mean solar days. Conversion of any
Gregorian calendar date (Y = year, M = month, D = day) to JD is accomplished
by (van Flandern and Pulkkinen, 1979)

JD = 367 × Y − 7 × [Y + (M + 9)/12]/4 + 275 × M/9 + D + 1,721,014 (2.29)

for Greenwich noon. This expression is valid for dates since March 1900. The ex-
pression is read as a Fortran-type statement; division by integers implies truncation
of the quotients of integers (no decimals are carried). Note that D is an integer.

In order to compute the Greenwich apparent sidereal time (GAST) needed in
(2.11), we must have the universal time (UT1) for the epoch of observation. The latter
time is obtained from UTC (coordinate universal time) of the epoch of observation
and the UT1-UTC correction. UTC and UT1 will be discussed below. Suffice to say
that the correction UT1-UTC is a byproduct of the observations; in other words, it is
available from IERS publications. GAST is best computed in three steps. First, we
compute Greenwich mean sidereal time (GMST) at the epoch 0hUT1,

GMST0hUT1 = 6h41m50s.54841 + 8640184s.812866Tu + 0s.093104T2
u

− 6s.2 × 10−6T3
u

(2.30)

where Tu = du/36525 and du is the number of days elapsed since January 1, 2000,
12hUT1 (taking on values ±0.5, ±1.5, etc.). In the second step, we add the difference
in sidereal time that corresponds to UT1 hours of mean time,

GMST = GMST0hUT1 + r[(UT1 − UTC) + UTC] (2.31)

r = 1.002737909350795 + 5.9006 × 10−11Tu − 5.9 × 10−15T2
u (2.32)

In step 3, we apply the nutation to convert the mean sidereal time to apparent sidereal
time,

GAST = GMST + ∆ψ cos ε + 0′′.00264 sin Ω + 0′′.000063 sin 2Ω (2.33)

The true celestial coordinate system (X), whose third axis coincides with instan-
taneous rotation axis and X and Y axes span true celestial equator, follows from
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X = R3(−GAST)R1(yp)R2(xp)x (2.34)

The intermediary coordinate system (
�

x),

�

x = R1(yp)R2(xp)x (2.35)

is not completely crust-fixed, because the third axis moves with polar motion. (
�

x) is
sometimes referred to as the instantaneous terrestrial coordinate system.

Using (X), the apparent right ascension and declination are computed from the
expression

α = tan−1 Y

X
(2.36)

δ = tan−1 Z√
X2 + Y 2

(2.37)

with 0° ≤ α < 360°. Applying (2.36) and (2.37) to (x) gives the spherical longitude λ

and latitude φ, respectively. Whereas the zero right ascension is at the vernal equinox
and zero longitude is at the reference meridian, both increase counterclockwise when
viewed from the third axis.

2.2.2 Time Systems

The GAST relates the terrestrial and celestial reference frames, as far as the earth’s
daily rotation is concerned, as is seen from (2.34). Twenty-four hours of GAST
represents the time for two consecutive transits of the same meridian over the vernal
equinox (the direction of the X axis). Unfortunately, these “twenty-four” hours are
not suitable to define a constant time interval. As seen from (2.33), GAST depends
on the nutation in longitude, ∆ψ, which in turn is a function of time according to
(2.18). The vernal equinox reference direction moves along the celestial equator by
the time-varying amount ∆ψcosε. In addition, the earth’s daily rotation rate slows
down or speeds up. This rate variation can affect the length of day by about 1 ms,
corresponding to a length of 4.5 m on the equator.

Let us assume that a geodetic space technique is available for which the mathe-
matical function between observations � and parameters is known,

� = f
(
X, x, GAST, xp, yp

)
(2.38)

While we do not go into the details of such solutions, one can readily imagine different
types of solutions depending on which parameters are unknown and the type of
observations available. For simplicity, let X (space object) and x (observing station)
be known. Then, given sufficient observational strength, it is conceptually possible to
solve (2.38) for GAST, and polar motion xp, and yp, given �. We could then compute
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GMST from (2.33) and substitute it in (2.31). Finally, assuming that the observations
� were taken at known UTC epochs, Expression (2.31) can be solved for the correction

∆UT1 = UT1 − UTC (2.39)

UTC is related to TAI as established by atomic clocks. Briefly, at the 13th General
Conference of Weights and Measures (CGPM) in Paris in 1967, the definition of
the atomic second, also called the international system (SI) second, was defined as
the duration of 9,192,631,770 periods of the radiation corresponding to the state-
energy transition between two hyperfine levels of the ground state of the cesium-133
atom. This definition made the atomic second agree with the length of the ephemeris
time (ET) second, to the extent that measurement allowed. ET was the most stable
time available around 1960 but is no longer in use. ET was derived from orbital
positions of the earth around the sun. Its second was defined as a fraction of the
year 1900. Because of the complicated gravitational interactions between the earth
and the moon, potential loss of energy due to tidal frictions, etc., the realization
of ET was difficult. Its stability eventually did not meet the demands of emerging
measurement capabilities. It served as an interim time system. Prior to ET, time was
defined in terms of the earth rotation, the so-called earth rotational time scales such
as GMST. The rotational time scales were even less constant because of the earth’s
rotational variations. It takes a good cesium clock 20 to 30 million years to gain or
lose one second. Under the same environmental conditions, atomic transitions are
identical from atom to atom and do not change their properties. Clocks based on
such transitions should generate the same time. Bergquist et al. (2001) offer up-to-
date insight on modern atomic clocks.

TAI is based on the SI second; its epoch is such that ET − TAI = 32s.184 on
January 1, 1977. TAI is related to state transitions of atoms and not to the rotation
of the earth. Even though atoms are suitable to define an extremely constant time
scale, it could in principle happen that in the distant future we would have noon, i.e.,
lunchtime at midnight TAI. The hybrid time scale UTC avoids a possible divergence
by using the SI second but changing the epoch labeling such that

|∆UT1| < 0s.9 (2.40)

UTC is the time that is broadcast on TV, on radio, and by other time services.
To visualize the mean universal time (UT1), consider a mean (mathematical) earth

traveling in the ecliptic in a circular orbit at constant angular rate. Let this mean
earth begin its motion at the time when the true earth is in the direction of the vernal
equinox. At each consecutive annual rotation, the mean earth and the true earth should
arrive at the vernal equinox at the same time. One often adopts the view as seen
from the center of the earth. In that case, one speaks about a mean sun moving around
the earth at a constant rate. Twenty-four hours of UT1, i.e., a mean solar day, equals
the time it takes for two consecutive transits of the sun over a meridian of the mean
earth, or equivalently, two consecutive transits of the mean sun when viewed from the
earth-fixed reference frame. If we consider the actual earth or sun, as opposed to their
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mean motions, we speak of true solar time. Astronomers call the difference between
mean time and true time the equation of time. Geometrically, it represents the angle
between the true earth and the mean earth as viewed from the sun. Simple graphics
shows that the mean solar day is longer than the sidereal day by about 24h/365 ≈ 4m.
The accurate ratio of universal day over sidereal day is given in (2.32). The condition
(2.40) underscores the compromising role of UTC. The precise time and frequency
users get the most uniform and accurate time available, and yet the epoch closely
adjusts to the rotational behavior of the earth.

Let’s consider Equation (2.31) once again. If the earth were to rotate with constant
speed, and if the SI second would be absolutely equal to the theoretical value of the
ET (or UT1) second, then the difference UT1−UTC in (2.31) would be constant. Any
variation in this difference is therefore attributable to variations in the earth’s rotation
and the definition of the SI second. UTC is adjusted in steps of a full second (leap
second) if the difference (2.40) exceeds the specified limit. Adjustments are made on
either June 30 or December 31, if a change is warranted. The IERS determines the
need for a leap second and announces any forthcoming step adjustment. Figure 2.6
shows the history of leap second adjustments. The trend seen in Figure 2.6 could be re-
moved by changing the definition of the SI second, i.e., adopting a different number of
energy state transitions. However, changing the definition of a fundamental constant
has many implications (Mohr and Taylor, 2001). Figure 2.7 shows the total variation
of UT1 − UTC. This includes the seasonal variations (annual and semiannual), as
well as variations due to zonal tides. Similarly to the effect on the nutations and solid
earth tides, the solar and lunar gravitational attractions cause periodic variations in

Figure 2.6 Leap second adjustments. (Data from IERS (2002).)
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Figure 2.7 UT1-UTC variation during 1999. (Data from 1999 IERS Annual Report.)

the earth’s rotation. These forced variations are computable. The currently adopted
model includes terms with periods up to thirty-five days.

The five corrections, UT1 − UTC, polar motion xp, and yp, and the celestial pole
offsets dψ and dε, are required to transform the terrestrial reference frame to the
celestial one and vice versa. The IERS monitors and publishes these values. They
are the earth orientation parameters (EOP). Modern space techniques allow these
parameters to be determined with centimeter accuracy.

Various laboratories and agencies operate several atomic clocks and produce their
own independent atomic time. For example, the time scale of the U.S. Naval Observa-
tory is called UTC(USNO), and the National Institute of Standards and Technology
(NIST) produces UTC(NIST). The IERS, which uses input from 200 plus clocks from
sixty plus different laboratories scattered around the world, computes TAI. UTC and
TAI differ by the integer leap seconds. TAI is not adjusted, but UTC is adjusted for
leap seconds.

The GPS satellites follow GPS time (GPST). This time scale is steered to be within
one microsecond of UTC(USNO). The initial epoch of GPST is 0hUTC January 6,
1980. Since that epoch, GPST has not been adjusted to account for leap seconds. It
follows that GPST − TAI = −19s, i.e., equal to the offset of TAI and UTC at the
initial GPST epoch. Each satellite carries several atomic clocks, including the spare
clock. These clocks establish the space vehicle time. The control center synchronizes
the clocks of the various space vehicles to GPST.

The Julian day date (JD) used in (2.29) is but a convenient continuous counter
of mean solar days from the beginning of the year 4713 b.c. By tradition, the Julian
day date begins at Greenwich noon, i.e., 12hUT1. As such, the JD has nothing to
do with the Julian calendar, which was created by Julius Caesar. It provided for
the leap year rule that declared a leap year of 366 days if the year’s numerical
designation is divisible by 4. This rule was later supplemented in the Gregorian
calendar by specifying that the centuries that are not divisible by 400 are not leap
years. Accordingly, the year 2000 was a leap year but the year 2100 will not be. The
Gregorian calendar reform also included that the day following October 4 (Julian
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calendar), 1582, was labeled October 15 (Gregorian calendar). The proceedings of
the conference to commemorate the 400th anniversary of the Gregorian calendar
(Coyne et al., 1983) give background information on the Gregorian calendar. The
astronomic justification for the leap year rules stems from the fact that the tropical
year consists of 365d.24219879 mean solar days. The tropical year equals the time it
take the mean (fictitious) sun to make two consecutive passages over the mean vernal
equinox.

2.3 DATUM

The complete definition of a geodetic datum includes the size and shape of the ellip-
soid, its location and orientation, and its relation to the geoid by means of geoid un-
dulations and deflection of the vertical. The datum currently used in the United States
is NAD83, which was developed by the NGS (NGS, 2002). In the discussion below
we briefly introduce the geoid and the ellipsoid. A discussion of geoid undulations
and deflection of the vertical follows, with emphasis on how to use these elements to
reduce observations to the ellipsoidal normal and the geodetic horizon. Finally, the 3D
geodetic model is introduced as a general and unified model that not only deals with
observations in all three dimensions, but is also mathematically the simplest of all.

2.3.1 Geoid

The geoid is a fundamental physical reference surface to which all observations refer
if they depend on gravity. Because its shape is a result of the mass distribution inside
the earth, the geoid is not only of interest to the measurement specialist but also to
scientists who study the interior of the earth. Consider two point masses m1 and m2

separated by a distance s. According to Newton’s law of gravitation, they attract each
other with the force

F = k2m1m2

s2
(2.41)

where k2 is the universal gravitational constant. The attraction between the point
masses is symmetric and opposite in direction. As a matter of convenience, we
consider one mass to be the “attracting” mass and the other to be the “attracted” mass.
Furthermore, we assign to the attracted mass the unit mass (m2 = 1) and denote the
attracting mass with m. The force equation then becomes

F = k2m

s2
(2.42)

and we speak about the force between an attracting mass and a unit mass being at-
tracted. Introducing an arbitrary coordinate system, as seen in Figure 2.8, we decom-
pose the force vector into Cartesian components. Thus,
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Figure 2.8 Components of the gravity vector.
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s
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s

z − ζ

s




(2.43)

where

s =
√

(x − ξ)2 + (y − η)2 + (z − ζ)2 (2.44)

The negative sign in the decomposition indicates the convention that the force vector
points from the attracted mass toward the attracting mass. The coordinates (x, y, z)

identify the location of the attracted mass in the specified coordinate system, and
(ξ, η, ζ) denote the location of the attracting mass. The expression

V = k2m

s
(2.45)

is called the potential of gravitation. It is a measure of the amount of work required to
transport the unit mass from its initial position, a distance s from the attracting mass,
to infinity. Integrating the force equation (2.42) gives

V =
∫ ∞

s

F ds =
∫ ∞

s

k2m

s2
ds = −k2m

s

∣∣∣∣
∞

s

= k2m

s
(2.46)

In vector notation, the potential of gravitation V and the gravitational force vector F
are related by
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Fx = ∂V

∂x
= k2m

∂

∂x

(
1

s

)
= −k2m

s2

∂s

∂x
= −k2m

s2

x − ξ

s
(2.47)

Similar expressions can be written for Fy and Fz. Thus, the gradient V is

grad V ≡
[
∂V

∂x

∂V

∂y

∂V

∂z

]T

= [Fx Fy Fz

]T
(2.48)

From (2.45) it is apparent that the gravitational potential is a function only of the
separation of the masses and is independent of any coordinate system used to de-
scribe the position of the attracting mass and the direction of the force vector F. The
gravitational potential, however, completely characterizes the gravitational force at
any point by use of (2.48).

Because the potential is a scalar, the potential at a point is the sum of the individual
potentials,

V =
∑

Vi =
∑ k2mi

si

(2.49)

Considering a solid body M rather than individual masses, a volume integral replaces
the discrete summation over the body,

V (x, y, z) = k2
∫∫∫

M

dm

s
= k2

∫∫∫
v

ρ dv

s
(2.50)

where ρ denotes a density that varies throughout the body and v denotes the mass
volume.

When deriving (2.50), we assumed that the body is at rest. In the case of the earth,
we must consider the earth’s rotation. Let the vector f denote the centrifugal force
acting on the unit mass. If the angular velocity of the earth’s rotation is ω, then the
centrifugal force vector can be written

f = ω2p = [ω2x ω2y 0
]T

(2.51)

The centrifugal force acts parallel to the equatorial plane and is directed away from
the axis of rotation. The vector p is the distance from the rotation axis. Using the
definition of the potential and having the z axis coincide with the rotation axis, we
obtain the centrifugal potential:

Φ = 1

2
ω2
(
x2 + y2

)
(2.52)

Equation (2.52) can be verified by taking the gradient to get (2.51). Note again that
the centrifugal potential is a function only of the distance from the rotation axis and
is not affected by a particular coordinate system definition. The potential of gravity
W is the sum of the gravitational and centrifugal potentials:
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W(x, y, z) = V + Φ = k2
∫∫∫

v

ρ dv

s
+ 1

2
ω2
(
x2 + y2

)
(2.53)

The gravity force vector g is the gradient of the gravity potential,

g(x, y, z) = grad W =
[
∂W

∂x

∂W

∂y

∂W

∂z

]T

(2.54)

and represents the total force acting at a point as a result of the gravitational and cen-
trifugal forces. The magnitude ‖g‖ = g is called gravity. It is traditionally measured
in units of gals where 1 gal = 1 cm/sec2. The gravity increases as one moves from the
equator to the poles because of the decrease in centrifugal force. Approximate values
for gravity are gequator

∼= 978 gal and gpoles
∼= 983 gal. The units of gravity are those

of acceleration, implying the equivalence of force per unit mass and acceleration. Be-
cause of this, the gravity vector g is often termed gravity acceleration. The direction
of g at a point and the direction of the plumb line or the vertical are the same.

Surfaces on which W(x, y, z) is a constant are called equipotential surfaces, or
level surfaces. These surfaces can principally be determined by evaluating (2.53)
if the density distribution and angular velocity are known. Of course, the density
distribution of the earth is not precisely known. Physical geodesy deals with theories
that allow estimation of the equipotential surface without explicit knowledge of the
density distribution. The geoid is defined to be a specific equipotential surface having
gravity potential

W(x, y, z) = W0 (2.55)

In practice this equipotential surface is chosen such that on the average it coincides
with the global ocean surface. This is a purely arbitrary specification chosen for ease
of the physical interpretation. The geoid is per definition an equipotential surface, not
some ideal ocean surface.

There is an important relationship between the direction of the gravity force and
equipotential surfaces, demonstrated by Figure 2.9. The total differential of the grav-
ity potential at a point is

dW = ∂W

∂x
dx + ∂W

∂y
dy + ∂W

∂z
dz

= [grad W
]T · dx = g · dx

(2.56)

The quantity dW is the change in potential between two differentially separated
points P(x, y, z) and P ′(x + dx, y + dy, z + dz). If the vector, dx is chosen such
that P and P ′ occupy the same equipotential surface, then dW = 0 and

g · dx = 0 (2.57)

Expression (2.57) implies that the direction of the gravity force vector at a point is
normal or perpendicular to the equipotential surface passing through the point.
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Figure 2.9 Equipotential surfaces and the gravity force vector.

The shapes of equipotential surfaces, which are related to the mass distribution
within the earth through (2.53), have no simple analytic expressions. The plumb
lines are normal to the equipotential surfaces and are space curves with finite radii
of curvature and torsion. The distance along a plumb line from the geoid to a point
is called the orthometric height, H . The orthometric height is often misidentified as
the “height above sea level.” Possibly, confusion stems from the specification that the
geoid closely approximates the global ocean surface.

Consider a differential line element dx along the plumb line, ‖dx‖ = dH . By
noting that H is reckoned positive upward and g points downward, we can rewrite
(2.56) as

dW = g · dx

= g dH cos(g, dx) = g dH cos(180°) = −g dH
(2.58)

This expression relates the change in potential to a change in the orthometric height.
This equation is central in the development of the theory of geometric leveling.
Writing (2.58) as

g = −dW

dH
(2.59)

it is obvious that the gravity g cannot be constant on the same equipotential surface
because the equipotential surfaces are neither regular nor concentric with respect to
the center of mass of the earth. This is illustrated in Figure 2.10, which shows two
differentially separate equipotential surfaces. It is observed that

g1 = −dW

dH1
�= g2 = −dW

dH2
(2.60)
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Figure 2.10 Gravity on the equipotential surface.

The astronomic latitude, longitude, and azimuth refer to the plumb line at the
observing station. Figure 2.11 shows an equipotential surface through a surface point
P and the instantaneous rotation axis and equator. The astronomic normal at point
P , also called the local vertical, is identical to the direction of the gravity force at
that point, which in turn is tangent to the plumb line. The astronomic latitude Φ at
P is the angle subtended on the instantaneous equator by the astronomic normal.
The astronomic normal and the parallel line to the instantaneous rotation axis span
the astronomic meridian plane at point P . Note that the instantaneous rotation axis
and the astronomic normal may or may not intersect. The astronomic longitude Λ

is the angle subtended in the instantaneous equatorial plane between this astronomic
meridian and a reference meridian, nominally the Greenwich meridian.

The geopotential number C is simply the algebraic difference between the poten-
tials at the geoid and point P ,

C = W0 − W (2.61)

Figure 2.11 Astronomic latitude.
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From (2.58) it follows that

W = W0 −
∫ H

0
g dH (2.62)

or

C = W0 − W =
∫ H

0
g dH (2.63)

or

H = −
∫ W

W0

dW

g
=
∫ C

0

dC

g
(2.64)

Equation (2.63) shows how combining gravity observations and leveling yields po-
tential differences. The increment dH is obtained from spirit leveling, and the gravity
g is measured along the leveling path. Consider a leveling loop as an example. Be-
cause one returns to the same point when leveling a loop, i.e., one returns to the same
equipotential surface, (2.63) implies that the integral (or the sum) of the products g dH

adds up to zero. Because g varies along the loop, the sum over the leveled differences
dH does not necessarily add up to zero.

The difference between the orthometric heights and the leveled heights is called the
orthometric correction. Expressions for computing the orthometric correction from
gravity are available in the specialized geodetic literature. An excellent introduction
to height systems is Heiskanen and Moritz (1967, Chapter 4). Guidelines for accurate
leveling are available from the NGS (Schomaker and Berry, 1981).

2.3.2 Ellipsoid of Revolution

The ellipsoid of revolution, called here simply the ellipsoid, is a relatively simple
mathematical figure that closely approximates the actual geoid. When using an ellip-
soid for geodetic purposes, we need to specify its shape, location, and orientation with
respect to the earth. The size and shape of the ellipsoid is defined by two parameters:
the semimajor axis a and the flattening f . The flattening is related to the semiminor
axis b by

f = a − b

a
(2.65)

Appendix B contains the details of the mathematics of the ellipsoid and common val-
ues for a and b. The orientation and location of the ellipsoid often depends on when
and how it was established. In the presatellite era, the goal often was to establish a
local ellipsoid that best fitted the geoid in a well-defined region, i.e., the border of
a nation-state. The third axis, of course, always pointed toward the North Pole and
the first axis in the direction of the Greenwich meridian. Using local ellipsoids as
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a reference does have the advantage that some of the reductions (geoid undulation,
deflection of the vertical) can possibly be neglected, which is an important considera-
tion when the geoid is not known accurately. With today’s advanced geodetic satellite
techniques, in particular GPS, and accurate knowledge of the geoid, one prefers so-
called global ellipsoids that fit the geoid globally (whose center of figure is at the
center of mass, and whose axes coincide with the directions of the ITRF). The rela-
tionship between the Cartesian coordinates (x) = (x, y, z) and the geodetic coordi-
nates (ϕ) = (ϕ, λ, h) is according to B.9 to B.11,

x = (N + h) cos ϕ cos λ (2.66)

y = (N + h) cos ϕ sin λ (2.67)

z = [N(1 − e2) + h] sin ϕ (2.68)

where the auxiliary quantities N and e are

N = a√
1 − e2 sin2 ϕ

(2.69)

e2 = 2f − f 2 (2.70)

The transformation from (x) to (ϕ) is given in Appendix B. It is typically performed
iteratively.

The expression (2.3) can be applied to transform between a local datum and a
geocentric datum provided the transformation parameters are known. It is best to
contact the responsible agency for the latest set of parameters because the transforma-
tion parameters are continuously updated, particularly for older datums. For example,
the large collection that includes probably all known datums is available through the
National Imagery and Mapping Agency, NIMA (2002). The NGS makes the trans-
formation software regarding the NAD83 available at NGS (2002). Both agencies
provide software that in some cases considers the geodetic network distortions and
crustal motions to achieve a more accurate transformation. A difficulty in using (2.3)
is that in the past, one dealt with a horizontal and vertical datum separately and that
the respective connecting elements, the geoid undulations, might not be available.

2.3.3 Geoid Undulations and Deflections of the Vertical

One approach to estimate the geoid undulation is by measuring gravity or gravity
gradients at the surface of the earth. At least in principle, any observable that is a
function of the gravity field is suitable for determining the geoid. Low-earth orbiting
satellites (LEOs) have successfully been used to determine the large structure of the
geoid. Satellite-to-satellite tracking is being used to determine the temporal variations
of the gravity field, and thus the geoid. The reader may want to check the results
of the Gravity Recovery and Climate Experiment (GRACE) mission launched in
early 2002.
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The gravity field or functions of the gravity field are typically expressed in terms of
spherical harmonic expansions. For example, the expression for the geoid undulation
N is (Lemoine et al., 1998, pp. 5–11),

N = GM

γr

∞∑
n=2

(a

r

)n
n∑

m=0

(
C̄nm cos mλ + S̄nm sin mλ

)
P̄nm(cos θ) (2.71)

In this equation the following notation is used:

N Geoid undulation. There should not be cause for confusion using
the same symbol for the geoid undulation (2.71) and the radius of
curvature of the prime vertical (2.69); both notations are traditional in
the geodetic literature.

ϕ, λ Latitude and longitude of station where the undulation is computed.

C̄nm, S̄nm Normalized spherical harmonic coefficients (geopotential coefficients),
of degree n and order m. A set degree and order 360 is currently
published by the Goddard Space Flight Center (GSFC, 2002). In this
notation, C̄nm denotes the difference between the spherical harmonics
of the geopotential and the normal gravity field harmonics.

P̄nm(cos θ) Associated Legendre functions. θ = 90 − ϕ is the colatitude.

r Geocentric distance of the station.

GM Product of the gravitational constant and the mass of the earth. GM

is identical to k2M used elsewhere in this book. Unfortunately, the
symbolism is not unique in the literature. We retain the symbols
typically used within the respective context.

γ Normal gravity. Details are given below.

a Semimajor axis of the ellipsoid.

Geoid undulation computed from an expression like (2.71) refers to a geocentric
ellipsoid with semimajor axis a. The coefficients C̄nm are computationally adjusted
to the specific flattening of the reference ellipsoid. The summation starts with n = 2.
Figure 2.12 shows a map of a global geoid.

There is a simple mathematical relationship between the geoid undulation and the
deflection of the vertical. The deflections of the vertical are related to the undulations
as follows (Heiskanen and Moritz, 1967, p. 112):

ξ = −1

r

∂N

∂θ
(2.72)

η = − 1

r sin θ

∂N

∂λ
(2.73)

Differentiating (2.71) gives

ξ = −GM

γr2

∞∑
n=2

(a

r

)n
n∑

m=0

(
C̄nm cos mλ + S̄nm sin mλ

) dP̄nm(cos θ)

dθ
(2.74)
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η = − GM

γr2 sin θ

∞∑
n=2

(a

r

)n
n∑

m=0

m
(−C̄nm sin mλ + S̄nm cos mλ

)
P̄nm(cos θ) (2.75)

Geoid and deflection of the vertical maps specifically adjusted to the NAD83 datum
can be viewed at NGS (2002). NGS also provides software for convenient computa-
tion of these gravity functions.

The ellipsoid of revolution provides a simple model for the geometric shape of the
earth. It is the reference for geometric computations in two and three dimensions.
Assigning a gravitational field that approximates the actual gravitational field of
the earth extends the functionality of the ellipsoid. Merely a few specifications are
needed to fix the gravity and potential of the ellipsoid of revolution. We need an
appropriate mass for the ellipsoid and assume that the ellipsoid rotates with the earth.
Furthermore, by means of mathematical conditions, the surface of the ellipsoid is
defined to be an equipotential surface of its own gravity field. Therefore, the plumb
lines of this gravity field intersect the ellipsoid perpendicularly. Because of this
property, this gravity field is called the normal gravity field, and the ellipsoid itself is
sometimes referred to as the level ellipsoid.

It can be shown that the normal gravity potential U is completely specified by four
defining constants, which are symbolically expressed by

U = f (a, J2, GM, ω) (2.76)

In addition to a and GM , which have already been introduced above, we need the
dynamical form factor J2 and the angular velocity of the earth ω. The dynamic
form factor is a function of the principal moments of inertia of the earth (polar
and equatorial moment of inertia) and is functionally related to the flattening of
the ellipsoid. One important definition of the four constants in (2.76) comprises the
Geodetic Reference System of 1980 (GRS80). The defining constants are listed in
Table 2.3. A full documentation on this reference system is available in Moritz (1984).

The normal gravitational potential does not depend on the longitude and is given
by a series of zonal spherical harmonics

TABLE 2.3 Constants for GRS80

Defining Constants Derived Constants

a = 6378138 m b = 6356752.3141 m

GM = 3986005 × 108 m3/s2 1/f = 298.257222101

J2 = 108263 × 10−8 m = 0.00344978600308

ω = 7292115 × 10−11 rad/s γe = 9.7803267715 m/s2

γp = 9.8321863685 m/s2
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V = GM

r

[
1 −

∞∑
n=1

J2n

(a

r

)2n

P2n(cos θ)

]
(2.77)

Note that the subscript 2n is to be read “2 times n.” P2n denotes Legendre polyno-
mials. The coefficients J2n are a function of J2 that can be readily computed. Sev-
eral useful expressions can be derived from (2.77). For example, the normal gravity,
defined as the magnitude of the gradient of the normal gravity field (normal gravita-
tional potential plus centrifugal potential), is given by Somigliana’s closed formula
(Heiskanen and Moritz, 1967, p. 70):

γ = aγe cos2 ϕ + bγp sin2 ϕ√
a2 cos2 ϕ + b2 sin2 ϕ

(2.78)

The normal gravity at height h above the ellipsoid is given by (Heiskanen and Moritz,
1967, p. 70)

γh − γ = −2γe

a

[
1 + f + m +

(
−3f + 5

2
m

)
sin2 ϕ

]
h + 3γe

a2
h2 (2.79)

Equations (2.78) and (2.79) are often useful approximations of the actual gravity. The
value for the auxiliary quantity m in (2.79) is given in Table 2.3. The normal gravity
values for the poles and the equator, γp and γe are also listed in Table 2.3.

2.3.4 Reductions to the Ellipsoid

The relationship between the ellipsoidal height h, the orthometric height H , and the
geoid undulation is

h = H + N (2.80)

Figure 2.13 Orthometric versus ellipsoidal heights.
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Figure 2.14 Astronomic and ellipsoidal normal on a topocentric sphere of direction.
The astronomic normal is perpendicular to the equipotential surface at P1. The ellipsoidal
normal passes through P1.

where N is the geoid undulation with respect to the specific ellipsoid. See Figure
2.13.

Parallelism of the semiminor axis of the ellipsoid and the direction of the CTP
leads to important relationships between the reduced astronomic quantities (ΦCTP,

ΛCTP, ACTP) and the corresponding ellipsoidal or geodetic quantities (ϕ, λ, α). The
geometric relationships are shown in Figures 2.14 and 2.15. The following symbols
are used:

Za Astronomic zenith (= intersection of local vertical with the sphere
direction)

CTP Position of the conventional terrestrial pole
Ze Ellipsoidal zenith (= intersection of the ellipsoidal normal through

P1 with the sphere of direction)
T Target point to which the azimuth is measured
ACTP Reduced astronomic azimuth
ΦCTP, ΛCTP Reduced astronomic latitude and longitude
ϑ ′ Observed zenith angle
ϕ, λ Ellipsoidal (geodetic) latitude and longitude
α Ellipsoidal (geodetic) azimuth between two normal planes
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ϑ Ellipsoidal (geodetic) zenith angle
θ Total deflection of the vertical (not colatitude)
ε Deflection of the vertical in the direction of azimuth
ξ, η Deflection of the vertical components along the meridian and the

prime vertical

By applying spherical trigonometry to the various triangles in Figure 2.15, we can
eventually derive the following relations:

ACTP − α = (ΛCTP − λ) sin ϕ + (ξ sin α − η cos α) cot ϑ (2.81)

ξ = ΦCTP − ϕ (2.82)

η = (ΛCTP − λ) cos ϕ (2.83)

ϑ = ϑ ′ + ξ cos α + η sin α (2.84)

The derivations of these classical equations can be found in most of the geode-
tic literature, e.g., Heiskanen and Moritz (1967, p. 186). They are also given in
Leick (2002). Equation (2.81) is the Laplace equation. It relates the reduced as-
tronomic azimuth and the geodetic azimuth of the normal section containing the
target point. Equations (2.82) and (2.83) define the deflection of the vertical com-
ponents. The deflection of the vertical is simply the angle between the directions
of the plumb line and the ellipsoidal normal at the same point. By convention, the
deflection of the vertical is decomposed into two components, one lying in the merid-
ian and one lying in the prime vertical, or orthogonal to the meridian. The deflec-
tion components depend directly on the shape of the geoid in the region. Because
the deflections of the vertical are merely another manifestation of the irregularity of

Figure 2.15 Deflection of the vertical components.
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the gravity field or the geoid, they are mathematically related to the geoid undula-
tion. Equation (2.84) relates the ellipsoidal and observed zenith angle (refraction not
considered).

Equations (2.81) to (2.83) can be used to correct the reduced astronomic latitude,
longitude, and azimuth and thus to obtain the ellipsoidal latitude, longitude, and az-
imuth. It is important to note that the reduction of a horizontal angle due to deflection
of the vertical is obtained from the difference of (2.81) as applied to both legs of the
angle. If the zenith angle to the endpoints of both legs is close to 90°, then the correc-
tions are small and can possibly be neglected. Historically, Equation (2.81) was used
as a condition between the reduced astronomic azimuth and the computed geodetic
azimuth to control systematic errors. This can best be accomplished now with GPS.
However, if surveyors were to check the orientation of a GPS vector with the as-
tronomic azimuth from the sun or polaris, they must expect a discrepancy indicated
by (2.81).

Equations (2.81) to (2.83) also show how to specify a local ellipsoid that is tangent
to the geoid at some centrally located station called the initial point, and whose
semiminor axis is still parallel to the CTP. If we specify that at the initial point the
reduced astronomic latitude, longitude, and azimuth equal the ellipsoidal latitude,
longitude, and azimuth, respectively, then we ensure parallelism of the semimajor axis
and the direction of the CTP; the geoid normal and the ellipsoidal normal coincide
at that initial point. If, in addition, we set the undulation to zero, then the ellipsoid
touches the geoid tangentially at the initial point. Thus the local ellipsoid will have
at the initial point:

ϕ = ΦCTP (2.85)

λ = ΛCTP (2.86)

α = ACTP (2.87)

N = 0 (2.88)

Other possibilities for specifying a local ellipsoid exist.
The local ellipsoid can serve as a convenient computation reference for least-

squares adjustments of networks typically encountered in local and regional surveys.
In these cases, it is not at all necessary to determine the size and shape of a best-fitting
local ellipsoid. It is sufficient to adopt the size and shape of any of the currently valid
geocentric ellipsoids. Because the deflections of the vertical will be small in the region
around the initial point, they can often be neglected completely. This is especially true
for the reduction of angles. The local ellipsoid is even more useful than it appears
at first sight. So long as typical observations, such as horizontal directions, angles,
and slant distances, are adjusted, the accurate position of the initial point in (2.85)
and (2.86) is not needed. In fact, if the (local) undulation variation is negligible, the
coordinate values for the position of the initial point are arbitrary. The same is true
for the azimuth condition (2.87). These simplifications make it attractive to use an
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ellipsoid as a reference for the adjustment of even the smallest survey, thus providing
a unified adjustment approach for surveys of large and small areas.

2.3.5 The 3D Geodetic Model

Once the angular observations have been corrected for the deflection of the vertical, it
is a simple matter to develop the mathematics for the 3D geodetic model. The reduced
observations, i.e., the observables of the 3D geodetic model, are the geodetic azimuth
α, the geodetic horizontal angle δ, the geodetic vertical angle β (or the geodetic zenith
angle ϑ), and the slant distance s. Geometrically speaking, these observables refer to
the geodetic horizon and the ellipsoidal normal. The reduced horizontal angle is an
angle between two normal planes, defined by the target points and the ellipsoidal
normal at the observing stations. The geodetic vertical angle is the angle between the
geodetic horizon and the line of sight to the targets.

We assume that the vertical angle has been corrected for atmospheric refraction.
The model can be readily extended to include refraction parameters if needed. Thanks
to the availability of GPS, we no longer depend on vertical angle observations to
support the vertical dimension, except possibly for applications that call for first-
order leveling accuracy. The primary purpose of vertical angles in most cases is to
support the vertical dimension when adjusting slant distances (because slant distances
contribute primarily horizontal information, at least in flat terrain).

Figure 2.16 shows the local geodetic coordinate system (w) = (n, e, u), which
plays a central role in the development of the mathematical model. The axes n and e

span the local geodetic horizon (plane perpendicular to the ellipsoidal normal through
the point P1 on the surface of the earth). The n axis points north, the e axis points east,
and the u axis coincides with the ellipsoidal normal (with the positive end outward
of the ellipsoid). The spatial orientation of the local geodetic coordinate system is
completely specified by the geodetic latitude ϕ and the geodetic longitude λ. Recall
that the z axis coincides with the direction of the CTP.

Figure 2.16 The local geodetic coor-
dinate system.

x

y

z

λ
ϕ

P h1( )ϕ,λ,
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Figure 2.17 3D model observations.

Figure 2.17 shows the geodetic azimuth and vertical angle (or zenith angle) be-
tween points P1 and P2 in relation to the local geodetic coordinate system. One should
keep in mind that the symbol h still denotes the geodetic height of a point above the
ellipsoid, whereas the u coordinate refers to the height of the second station P2 above
the local geodetic horizon of P1. It follows that

n = s cos β cos α (2.89)

e = s cos β sin α (2.90)

u = s sin β (2.91)

The inverses of (2.89) to (2.91) are

α = tan−1
( e

n

)
(2.92)

β = 90° − ϑ = sin−1
(u

s

)
(2.93)

s =
√

n2 + e2 + u2 (2.94)

The relationship between the local geodetic coordinate system and the geocentric
Cartesian system (x) is illustrated in Figure 2.16:




n

−e

u


 = R2 (ϕ − 90°) R3 (λ − 180°)




∆x

∆y

∆z


 (2.95)

where R2 and R3 denote the rotation matrices given in Appendix A, and

∆X ≡



∆x

∆y

∆z


 =




x2 − x1

y2 − y1

z2 − z1


 (2.96)
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Subscripts will be used when needed to clarify the use of symbols. For example,
the differencing operation ∆ in (2.95) implies ∆x ≡ ∆x12 = x2 − x1. The same
convention is followed for other differences. A more complete notation for the local
geodetic coordinates is (n1, e1, u1) instead of (n, e, u), to emphasize that these com-
ponents refer to the geodetic horizon at P1. Similarly, a more unambiguous notation
is (α12, β12, ϑ12) instead of just (α, β, ϑ) or even (α1, β1, ϑ1), to emphasize that these
observables are taken at station P1 with foresight P2. For slant distance, the subscripts
do not matter because s = s1 = s12 = s21.

Changing the sign of e in (2.95) and combining the rotation matrices R2 and R3

one obtains

w = R(ϕ, λ) ∆x (2.97)

with

R =



− sin ϕ cos λ − sin ϕ sin λ cos ϕ

− sin λ cos λ 0

cos ϕ cos λ cos ϕ sin λ sin ϕ


 (2.98)

Substituting (2.97) and (2.98) into (2.92) to (2.94) gives expressions for the geodetic
observables as functions of the geocentric Cartesian coordinate differences and the
geodetic position of P1:

α1 = tan−1

( − sin λ1 ∆x + cos λ1 ∆y

− sin ϕ1 cos λ1 ∆x − sin ϕ1 sin λ1 ∆y + cos ϕ1 ∆z

)
(2.99)

β1 = sin−1

(
cos ϕ1 cos λ1 ∆x + cos ϕ1 sin λ1 ∆y + sin ϕ1 ∆z√

∆x2 + ∆y2 + ∆z2

)
(2.100)

s =
√

∆x2 + ∆y2 + ∆z2 (2.101)

Equations (2.99) to (2.101) are the backbone of the 3D geodetic model. Other
observations such as horizontal angles, heights, and height differences—even GPS
vectors—can be readily implemented. Equation (2.100) assumes that the vertical an-
gle has been corrected for refraction. One should take note of the fact how little math-
ematics is required to derive these equations. Differential geometry is not required,
and neither is the geodesic line.

2.3.5.1 Partial Derivatives Because (2.99) to (2.101) expressed the geodetic
observables explicitly as a function of the coordinates, the observation equation ad-
justment model �a = f(xa) can be readily used. The 3D nonlinear model has the
general form

α1 = α (x1, y1, z1, x2, y2, z2) (2.102)
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β1 = β (x1, y1, z1, x2, y2, z2) (2.103)

s = s (x1, y1, z1, x2, y2, z2) (2.104)

The observables and parameters are {α1, β1, s} and {x1, y1, z1, x2, y2, z2}, respec-
tively. To find the elements of the design matrix, we require the total partial derivatives
with respect to the parameters. The general form is




dα1

dβ1

ds


 =




g11 g12 g13 g14 g15 g16

g21 g22 g23 : g24 g25 g26

g31 g32 g33 g34 g35 g36







dx1

dy1

dz1

· · ·
dx2

dy2

dz2




= [G1 : G2]




dx1

· · ·
dx2




(2.105)

with dxi = [dxi dyi dzi]T. The partial derivatives are listed in Table 2.4. This
particular form of the partial derivatives follows from those of Wolf (1963), after
some additional algebraic manipulations.

TABLE 2.4 Partial Derivatives with Respect to Cartesian Coordinates

g11 = ∂α1

∂x1
= −g14 = − sin ϕ1 cos λ1 sin α1 + sin λ1 cos α1

s cos β1
(a)

g12 = ∂α1

∂y1
= −g15 = − sin ϕ1 sin λ1 sin α1 − cos λ1 cos α1

s cos β1
(b)

g13 = ∂α1

∂z1
= −g16 = cos ϕ1 sin α1

s cos β1
(c)

g21 = ∂β1

∂x1
= −g24 = −s cos ϕ1 cos λ1 + sin β1 ∆x

s2 cos β1
(d)

g22 = ∂β1

∂y1
= −g25 = −s cos ϕ1 sin λ1 + sin β1 ∆x

s2 cos β1
(e)

g23 = ∂β1

∂z1
= −g26 = −s sin ϕ1 + sin β1 ∆z

s2 cos β1
(f)

g31 = ∂s

∂x1
= −g34 = −∆x

s
(g)

g32 = ∂s

∂y1
= −g35 = −∆y

s
(h)

g33 = ∂s

∂z1
= −g36 = −∆z

s
(i)
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2.3.5.2 Reparameterization Often the geodetic latitude, longitude, and height
are preferred as parameters instead of the Cartesian components of (x). One reason
for such a reparameterization is that humans can visualize changes more readily in
latitude, longitude, and height than changes in geocentric coordinates. The required
transformation is given by (B.16).

dx =



−(M + h) cos λ sin ϕ −(N + h) cos ϕ sin λ cos ϕ cos λ

−(M + h) sin λ sin ϕ (N + h) cos ϕ cos λ cos ϕ sin λ

(M + h) cos ϕ 0 sin ϕ







dϕ

dλ

dh




= J




dϕ

dλ

dh


 (2.106)

The expressions for the radius of curvatures Mand N are given in (B.7) and (B.6).
The matrix J must be evaluated for the geodetic latitude and longitude of the point
under consideration; thus, J1(ϕ1, λ1, h1) and J2(ϕ2, λ2, h2) denote the transformation
matrices for points P1 and P2, respectively. Substituting (2.106) into (2.105), we
obtain the parameterization in terms of geodetic latitude, longitude, and height:




dα1

dβ1

ds


 = [G1J1 : G2J2]




dϕ1

dλ1

dh1

· · ·
dϕ2

dλ2

dh2




(2.107)

To achieve a parameterization that is even easier to interpret, we transform the
differential changes in geodetic latitude and longitude parameters (dϕ, dλ) into cor-
responding changes (dn, de) in the local geodetic horizon. Keeping the geometric
interpretation of the radii of curvatures M and N as detailed in Appendix B one can
further deduce that

dw =



M + h 0 0

0 (N + h) cos ϕ 0

0 0 1







dϕ

dλ

dh


 = H(ϕ, h)




dϕ

dλ

dh


 (2.108)

The components dw = [dn de du]T intuitively related to the “horizontal” and
“vertical” and because the units are in length, the standard deviations of the param-
eters can be readily visualized. The matrix H is evaluated for the station under con-
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sideration. The final parameterization becomes




dα1

dβ1

ds


 = A




dw1

· · ·
dw2


 (2.109)

with

A = [G1J1H−1
1 : G2J2H−1

2

] =



a11 a12 a13 a14 a15 a16

a21 a22 a23 : a24 a25 a26

a31 a32 a33 a34 a35 a36


 (2.110)

The partial derivatives are given in Table 2.5 (Wolf, 1963; Heiskanen and Moritz,
1967; Vincenty, 1979). Some of the partial derivatives have been expressed in terms
of the back azimuth α2 ≡ α21 and the back vertical angle β2 ≡ β21, meaning azimuth
and vertical angle from station 2 to station 1.

2.3.5.3 Implementation Considerations It is not only easy to derive the 3D
geodetic model; it is also easy to implement it in software. Normally, the observations
will be uncorrelated and their contribution to the normal equations can be added one
by one. The following are some useful things to keep in mind when using this model:

• Point of Expansion: As in any nonlinear adjustment, the partial derivatives must
be evaluated at the current point of expansion (adjusted positions of the previous
iteration). This applies to coordinates and azimuths and angles used to express
the mathematical functions for the partial derivatives.

• Reduction to the Mark: An advantage of the 3D geodetic model is that the
observations do not have to be reduced to the marks on the ground. When
computing �0 from (2.99) to (2.101), use h + ∆h instead of h for the station
heights. The symbol ∆h denotes the height of the instrument or that of the
target above the mark on the ground. �b always denotes the measured value,
i.e., the geodetic observable that is not further reduced. After completion of
the adjustment, the adjusted observations �a , with respect to the marks on the
ground, can be computed from the adjusted positions using h in (2.99) to (2.101).

• Minimal Constraints: The (ϕ) or (w) parameterizations are particularly useful
for introducing height observations, height difference observations, or minimal
constraints by fixing or weighting individual coordinates. The set of minimal
constraints depends on the type of observations available and where the obser-
vations are located within the network. One choice for the minimal constraints
might be to fix the coordinates (ϕ, λ, h) of one station (translation), the azimuth
or the longitude of another station (rotation in azimuth), and the heights of two
additional stations.
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TABLE 2.5 Partial Derivatives with Respect to Local Geodetic Coordinates

a11 = ∂α1

∂n1
= sin α1

s cos β1
(a) a12 = ∂α1

∂e1
= − cos α1

s cos β1
(b)

a13 = ∂α1

∂u1
= 0 (c)

a14 = ∂α1

∂n2
= − sin α1

s cos β1
[cos (ϕ2 − ϕ1) + sin ϕ2 sin (λ2 − λ1) cot α1] (d)

a15 = ∂α1

∂e2
= cos α1

s cos β1
[cos (λ2 − λ1) − sin ϕ1 sin (λ2 − λ1) tan α1] (e)

a16 = ∂α1

∂u2
= cos α1 cos ϕ2

s cos β1
[sin (λ2 − λ1) + (sin ϕ1 cos (λ2 − λ1) − cos ϕ1 tan ϕ2) tan α1] (f)

a21 = ∂β1

∂n1
= sin β1 cos α1

s
(g) a22 = ∂β1

∂e1
= sin β1 sin α1

s
(h)

a23 = ∂β1

∂u1
= − cos β1

s
(i)

a24 = ∂β1

∂n2
= − cos ϕ1 sin ϕ2 cos (λ2 − λ1) + sin ϕ1 cos ϕ2 + sin β1 cos β2 cos α2

s cos β1
(j)

a25 = ∂β1

∂e2
= − cos ϕ1 sin (λ2 − λ1) + sin β1 cos β2 sin α2

s cos β1
(k)

a26 = ∂β1

∂u2
= sin β1 sin β2 + sin ϕ1 sin ϕ2 + cos ϕ1 cos ϕ2 cos (λ2 − λ1)

s cos β1
(l)

a31 = ∂s

∂n1
= − cos β1 cos α1 (m) a32 = ∂s

∂e1
= − cos β1 sin α1 (n)

a33 = ∂s

∂u1
= − sin β1 (o) a34 = ∂s

∂n2
= − cos β2 cos α2 (p)

a35 = ∂s

∂e2
= − cos β2 sin α2 (q) a36 = ∂s

∂u2
= − sin β2 (r)

• Transforming Postadjustment Results: If the adjustment happens to have been
carried out with the (x) parameterization, and it is, subsequently, determined
necessary to transform the result into the (ϕ) or (w) coordinates, then the trans-
formations (2.106) and (2.108) can be used; i.e.,

dw = R dx (2.111)

where
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R = H J−1 (2.112)

according to (2.98). The law of variance-covariance propagation provides the
3 × 3 covariance submatrices:

Σ(w) = R Σ(x)RT (2.113)

Σ(ϕ,λ,h) = J−1Σ(x)

(
J−1
)T

(2.114)

• Leveled Height Differences: If geoid undulation differences are available, then
leveled height differences can be corrected for the undulation differences to yield
ellipsoidal height differences. The respective elements of the design matrix are
1 and −1. The accuracy of incorporating leveling data in this manner is limited
by our ability to compute accurate undulation differences.

• Refraction: If vertical angles are observed for providing an accurate vertical
dimension, it may be necessary to introduce and estimate vertical refraction
parameters. If this is done, we must be careful to avoid overparameterization by
introducing too many refraction parameters that could potentially absorb other
systematic effects not caused by refraction and/or result in an ill-conditioned
solution. However, it may be sufficient to correct the observations for refraction
using a standard model for the atmosphere.

In view of GPS capability, the importance of high-precision vertical angle
measurement is diminishing. The primary purpose of vertical angles is to give
sufficient height information to process the slant distances. Therefore, the types
of observations most likely to be used by the modern surveyors are horizontal
angles, slant distances, and GPS vectors.

• Horizontal Angles: Horizontal angles, of course, are simply the difference of
azimuths. Using the 2-1-3 subscript notation to identify an angle measured at
station 1 from station 2 to station 3 in a clockwise sense the mathematical model
for the geodetic angle δ213 is

δ213 = tan−1

( − sin λ1 ∆x12 + cos λ1 ∆y12

− sin ϕ1 cos λ1 ∆x12 − sin ϕ1 sin λ1 ∆y12 + cos ϕ1 ∆z12

)

− tan−1

( − sin λ1 ∆x13 + cos λ1 ∆y13

− sin ϕ1 cos λ1 ∆x13 − sin ϕ1 sin λ1 ∆y13 + cos ϕ1 ∆z13

) (2.115)

The partial derivatives can be readily obtained from the coefficients a2i listed in
Table 2.5 by applying them to both legs of the angles and then subtracting.

• Height-Controlled 3D Adjustment: If the observations contain little or no
vertical information, i.e., if zenith angles and leveling data are not available, it is
still possible to adjust the network in three dimensions. The height parameters
h can be weighted using reasonable estimates for their a priori variances. This
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is the so-called height-controlled three-dimensional adjustment. In the extreme
case, the height parameters can even be eliminated altogether from the list of
parameters.

A priori weights can also be assigned to the geodetic latitude and longitude
or to the local geodetic coordinates n and e. Weighting of parameters is a conve-
nient method for incorporating existing information about control stations into
the adjustment.
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CHAPTER 3

SATELLITE SYSTEMS

Satellite motions are introduced by means of normal orbits and the derivation and dis-
cussion of the three Kepler laws. A summary of the major effects that cause orbital
perturbed motions follows. The description of the global positioning system (GPS)
takes up most of this chapter. A brief summary of GPS modernization is offered. The
chapter concludes with a description of GLONASS and the forthcoming Galileo sys-
tem. Readers interested in signal processing inside receivers are encouraged to consult
the excellent references Kaplan (1986), Misra and Enge (2001), and Parkinson et al.
(1996).

3.1 MOTION OF SATELLITES

The orbital motion of a satellite is a result of the earth’s gravitational attraction, as
well as a number of other forces acting on the satellite. The attraction of the sun and
the moon and the pressure on the satellite caused by impacting solar radiation parti-
cles are examples of these forces. For high-orbiting satellites, the atmospheric drag
is negligible. Mathematically, the equations of motion for satellites are differential
equations that are solved by numerical integration over time. The integration begins
with initial conditions, such as the position and velocity of the satellite at some ini-
tial epoch. The computed (predicted) satellite positions can be compared with actual
observations. Possible discrepancies are useful to improve the force function or the
station position of the observer.

53
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3.1.1 Kepler Elements

Six Kepler elements are often used to describe the position of satellites in space. To
simplify attempts to study satellite motions, we study so-called normal orbits. For
normal orbits the satellites move in an orbital plane that is fixed in space; the actual
path of the satellite in the orbital plane is an ellipse in the mathematically strict sense.
One focal point of the orbital ellipse is at the center of the earth. The conditions
leading to such a simple orbital motion are as follows:

1. The earth is treated as a point mass, or, equivalently, as a sphere with spherically
symmetric density distribution. The gravitational field of such a body is radially
symmetric; i.e., the plumb lines are all straight lines and point toward the center
of the sphere.

2. The mass of the satellite is negligible compared to the mass of the earth.

3. The motion of the satellite takes place in a vacuum; i.e., there is no atmospheric
drag acting on the satellite and no solar radiation pressure.

4. No sun, moon, or other celestial body exerts a gravitational attraction on the
satellite.

The orbital plane of a satellite moving under such conditions is shown in Figure 3.1.
The ellipse denotes the path of the satellite. The shape of the ellipse is determined by
the semimajor axis a and the semiminor axis b. The symbol e denotes the eccentricity
of the ellipse. The ellipse is enclosed by an auxiliary circle with radius a. The principal
axes of the ellipse form the coordinate system (ξ, η). S denotes the current position
of the satellite; the line SS ′ is in the orbital plane and is parallel to the η axis. The
coordinate system (q1, q2) is in the orbital plane with its origin at the focal point F

of the ellipse that coincides with the center of the earth. The third axis q3, not shown
in Figure 3.1, completes the right-handed coordinate system. The geocentric distance
from the center of the earth to the satellite is denoted by r . The orbital locations closest
to and farthest from the focal point are called the perigee and apogee, respectively.
The true anomaly f and the eccentric anomaly E are measured counterclockwise, as
shown in Figure 3.2.

S

�

�

b

F

fE

S�

q2

q1

r

perigeeapogee

orbital path

circle

satellite

�e

�

Figure 3.1 Coordinate systems in the orbital plane.
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i

Z = CEP

Y

ascending node

orbital plane nodal line

Ω
ω

f

r
q3

X

F

line of apsides

satellite

Figure 3.2 Orbital plane on the sphere of direction.

The orbital plane is shown in Figure 3.2, with respect to the true celestial coordi-
nate system. The center of the sphere of directions is located at the focal point F . The
X axis is in the direction of the vernal equinox, the Z axis coincides with the celestial
ephemeris pole, and Y is located in the equator, thus completing the right-handed
coordinate system. The intersection of the orbital plane with the equator is called
the nodal line. The point at which the satellite ascends the equator is the ascending
node. The right ascension of the ascending node is denoted by Ω. The line of apsides
connects the focal point F and the perigee. The angle subtended by the nodal line and
the line of apsides is called the argument of perigee, ω. The true anomaly f and the
argument of perigee ω lie in the orbital plane. Finally, the angle between the orbital
plane and the equator is the inclination i. Figure 3.2 shows that (Ω, i) determines the
position of the orbital plane in the true celestial system, (Ω, ω, i) the orbital ellipse
in space, and (a, e, f ) the position of the satellite within the orbital plane.

The six Kepler elements are {Ω, ω, i, a, e, f }. The true anomaly f is the only
Kepler element that is a function of time in the case of normal orbits; the remaining
five Kepler elements are constant. For actual satellite orbits, which are not subject to
the conditions of normal orbits, all Kepler elements are a function of time. They are
called osculating Kepler elements.

3.1.2 Normal Orbital Theory

Normal orbits are particularly useful for understanding and visualizing the spatial
motions of satellites. The solutions of the respective equations of motions can be
given by simple, analytical expressions. Since normal orbits are a function of the
central portion of the earth’s gravitational field, which is by far the largest force
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acting on the satellite, normal orbits are indeed usable for orbital predictions over
short periods of time when low accuracy is sufficient. Thus, one of the popular uses
of normal orbits is for the construction of satellite visibility charts.

The normal motion of satellites is completely determined by Newton’s law of
gravitation:

F = k2mM

r2
(3.1)

In (3.1), M and m denote the mass of the earth and the satellite, respectively, k2 is
the universal constant of gravitation, r is the geocentric distance to the satellite, and
F is the gravitational force between the two bodies. This force can also be written as

F = ma (3.2)

where a in this instance denotes the acceleration experienced by the satellite. Com-
bining (3.1) and (3.2) gives

a = k2M

r2
(3.3)

This equation can be written in vector form as

r̈ = −k2M
r
r3

= −µ
r
r3

(3.4)

where

µ = k2M (3.5)

is the earth’s gravitational constant. Including the earth’s atmosphere, it has the value
µ = 3,986,005×108 m3s−2. The vector r is directed from the central body (earth) to
the satellite. The sign has been chosen such that the acceleration is directed toward
the earth. The colinearity of the acceleration and the position vector as in (3.4) is a
characteristic of central gravity fields. A particle released from rest would fall along
a straight line toward the earth (straight plumb line).

Equation (3.4) is valid for the motion with respect to an inertial origin. In general,
one is interested in determining the motion of the satellite with respect to the earth.
The modified equation of motion for accomplishing this is given by Escobal (1965,
p. 37) as

r̈ = −k2(M + m)
r
r3

(3.6)

Because m � M , the second term is often neglected and (3.6) becomes (3.4).
Figure 3.1 gives the position of the satellite in the (q) orbital plane coordinate

system q = [q1 q2 q3]T as
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q = r




cos f

sin f

0


 (3.7)

Because the geocentric distance and the true anomaly are functions of time, the
derivative with respect to time, denoted by a dot , is

q̇ = ṙ




cos f

sin f

0


+ rḟ




− sin f

cos f

0


 (3.8)

The second derivatives with respect to time are

q̈ = r̈




cos f

sin f

0


+ 2ṙ ḟ




− sin f

cos f

0


+ rf̈




− sin f

cos f

0


− r(ḟ )2




cos f

sin f

0


 (3.9)

The second derivative is written according to (3.4) and (3.7) as

r̈ = −µ

r2




cos f

sin f

0


 (3.10)

Evaluating (3.9) and (3.10) at f = 0 (perigee) and substituting (3.10) for the left-hand
side of (3.9) gives

r̈ − r(ḟ )2 = −µ

r2
(3.11)

rf̈ + 2ṙ ḟ = 0 (3.12)

Equation (3.12) is further developed by multiplying by r and integrating
∫ (

r2f̈ + 2rṙḟ
)

dt = C (3.13)

The result of the integration is

r2ḟ + 2r2ḟ = C (3.14)

as can be readily verified through differentiation. Combining both terms yields

r2ḟ = h (3.15)
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where h is a new constant. Equation (3.15) is identified as an angular momentum
equation, implying that the angular momentum for the orbiting satellite is conserved.

In order to integrate (3.11), we define a new variable:

u ≡ 1

r
(3.16)

By using Equation (3.15) for dt/df , the differential of (3.16) becomes

du

df
= du

dr

dr

dt

dt

df
= − ṙ

h
(3.17)

Differentiating again gives

d2u

df 2
= d

dt

(
− ṙ

h

)
dt

df
= − r̈

u2h2
(3.18)

or

r̈ = −h2u2 d2u

df 2
(3.19)

By substituting (3.19) in (3.11), substituting ḟ from (3.15) in (3.11), and replacing r

by u according to (3.16), Equation (3.11) becomes

d2u

df 2
+ u = µ

h2
(3.20)

which can readily be integrated as

1

r
≡ u = C cos f + µ

h2
(3.21)

where C is a constant.
Equation (3.21) is the equation of an ellipse. This is verified by writing the equation

for the orbital ellipse in Figure 3.1 in the principal axis form:

ξ2

a2
+ η2

b2
= 1 (3.22)

where

ξ = ae + r cos f (3.23)

η = r sin f (3.24)

b2 = a2(1 − e2) (3.25)
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Equation (3.25) is valid for any ellipse. Substituting Equations (3.23) through (3.25)
into (3.22) and solving the resulting second-order equation for r gives

1

r
= 1

a(1 − e2)
+ e

a(1 − e2)
cos f (3.26)

With

C = e

a(1 − e2)
(3.27)

and

h =
√

µa(1 − e2) (3.28)

the identity between the expression for the ellipse (3.26) and Equation (3.21) is
established. Thus the motion of a satellite under the condition of a normal orbit is
an ellipse. This is the content of Kepler’s first law. The focus of the ellipse is at the
center of mass. Kepler’s second law states that the geocentric vector r sweeps equal
areas during equal times. Because the area swept for the differential angle df is

dA = 1

2
r2 df (3.29)

it follows from (3.15) and (3.28) that

dA

dt
= 1

2

√
µa
(
1 − e2

)
(3.30)

which is a constant. The derivation of Kepler’s third law requires the introduction of
the eccentric anomaly E. From Figure 3.1 we see that

q1 = ξ − ae = a(cos E − e) (3.31)

where

ξ = a cos E (3.32)

From Equation (3.22)

q2 ≡ η =
√√√√
(

1 − ξ2

a2

)
b2 (3.33)

Substitute (3.32) in (3.33); then

q2 ≡ η = b sin E (3.34)
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With (3.31), (3.34), and (3.25) the geocentric satellite distance becomes

r =
√

q2
1 + q2

2 = a(1 − e cos E) (3.35)

Differentiating Equations (3.35) and (3.26) gives

dr = ae sin E dE (3.36)

dr = r2e

a
(
1 − e2

) sin f df (3.37)

Equating (3.37) and (3.36) and using (3.24), (3.25), (3.34), and (3.7) and multiplying
the resulting equation by r gives

rb dE = r2 df (3.38)

Substituting (3.25) for b and (3.35) for r , replacing df by dt using (3.15), using (3.28)
for h, and then integrating, we obtain

∫ E

E=0
(1 − e cos E) dE =

∫ t

t0

√
µ

a3
dt (3.39)

Integrating both sides gives

E − e sin E = M (3.40)

M = n (t − t0) (3.41)

n =
√

µ

a3
(3.42)

Equation (3.42) is Kepler’s third law. Equation (3.40) is called the Kepler equation.
The symbol n denotes the mean motion, M is the mean anomaly, and t0 denotes the
time of perigee passage of the satellite. The mean anomaly M should not be confused
with the same symbol used for the mass of the central body in (3.1). Let P denote the
orbital period, i.e., the time required for one complete revolution; then

P = 2π

n
(3.43)

The mean motion n equals the average angular velocity of the satellite. Equation
(3.42) shows that the semimajor axis completely determines the mean motion and
thus the period of the orbit.

With the Kepler laws in place, one can identify alternative sets of Kepler elements,
such as {Ω, ω, i, a, e, M} or {Ω, ω, i, a, e, E}. Often the orbit is not specified by
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the Kepler elements but by the vector r = [X Y Z]T = X and the velocity
ṙ = [Ẋ Ẏ Ż]T = Ẋ, expressed in the true celestial coordinate system (X). Figure
3.2 shows that

q = R3(ω) R1(i) R3(Ω) X

= RqX(Ω, i, ω) X
(3.44)

where Ri denotes a rotation around axis i. The inverse transformation is

X = R−1
qX(Ω, i, ω) q (3.45)

Differentiating (3.45) once gives

Ẋ = R−1
qX(Ω, i, ω)q̇ (3.46)

Note that the elements of RqX are constants, because the orbital ellipse does not
change its position in space. Using relations (3.25), (3.31), and (3.34), it follows that

q =




a(cos E − e)

a
√

1 − e2 sin E

0


 =




r cos f

r sin f

0


 (3.47)

The velocity becomes

q̇ = na

1 − e cos E




− sin E
√

1 − e2 cos E

0


 = na√

1 − e2




− sin f

e + cos f

0


 (3.48)

The first part of (3.48) follows from (3.39), and the second part can be verified using
known relations between the anomalies E and f . Equations (3.45) to (3.48) transform
the Kepler elements into Cartesian coordinates and their velocities (X, Ẋ).

The transformation from (X, Ẋ) to Kepler elements starts with the computation of
the magnitude and direction of the angular momentum vector

h = X × Ẋ = [hX hY hZ]T (3.49)

which is the vector form of Equation (3.15). The various components of h are shown
in Figure 3.3. The right ascension of the ascending node and the inclination of the
orbital plane are, according to Figure 3.3,

Ω = tan−1

(
hX

−hY

)
(3.50)
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Figure 3.3 Angular momentum vector and Kepler elements. The angular momentum
vector is orthogonal to the orbital plane.

i = tan−1



√

h2
X + h2

Y

hZ


 (3.51)

By defining the auxiliary coordinate system (p) such that the p1 axis is along the nodal
line, p3 is along the angular momentum vector, and p2 completes a right-handed
coordinate system, we obtain

p = R1(i)R3(Ω)X (3.52)

The sum of the argument of perigee and the true anomaly becomes

ω + f = tan−1

(
p2

p1

)
(3.53)

Thus far, the orbital plane and the orientation of the orbital ellipse have been deter-
mined. The shape and size of the ellipse depend on the velocity of the satellite. The
velocity, geocentric distance, and the magnitude of the angular momentum are

v = ∥∥Ẋ∥∥ (3.54)

r = ‖X‖ (3.55)

h = ‖h‖ (3.56)
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The velocity expressed in the (q) coordinate system can be written as follows, using
(3.26), (3.42), and (3.48):

v2 = q̇2
1 + q̇2

2

= n2a2

1 − e2

(
sin2 f + e2 + 2e cos f + cos2 f

)

= µ

a
(
1 − e2

) [2 + 2e cos f − (1 − e2
)]

= µ

(
2

r
− 1

a

)

(3.57)

Equation (3.57) yields the expression for the semimajor axis

a = r

2 − rv2/µ
(3.58)

From Equation (3.28), it follows that

e =
(

1 − h2

µa

)1/2

(3.59)

and Equations (3.35), (3.47), and (3.48) give an expression for the eccentric anomaly:

cos E = a − r

a e
(3.60)

sin E = q · q̇
e
√

µa
(3.61)

Equations (3.60) and (3.61) together determine the quadrant of the eccentric anomaly.
Having E, the true anomaly follows from (3.47):

f = tan−1

√
1 − e2 sin E

cos E − e
(3.62)

Finally, Kepler’s equation yields the mean anomaly:

M = E − e sin E (3.63)

Equations (3.50) to (3.63) comprise the transformation from (X, Ẋ) to the Kepler
elements.

Table 3.1 shows six examples of trajectories for which the orbital eccentricity
is zero, e = 0. The satellites’ positions x in the earth-centered earth-fixed (ECEF)



64

123456789101112131415161718192021222324252627282930313233343536373839404142434445

[64

L
i n—

6.8
—

—
N

or

*
PgE

[64

TABLE 3.1 Trajectories of Normal Orbits

n̄ = 2 δλ > 2π

n̄ = 1

cos i
δλ > 2π

π

2
+ sin−1

(√
1 − n̄ cos i

sin i

)
− n̄

{
π

2
+ tan−1

(√
(1 − n̄ cos i) cos i

n̄ − cos i

)}
= 0 δλ = 3 ∆λ

n̄ = 1 δλ = 2

{
tan−1

(
cos i

√
1 − cos i

sin2 i − 1 + cos i

)
− sin−1

(√
1 − cos i

sin i

)}

3π

2
− sin−1

(√
1 − n̄ cos i

sin i

)
− n̄

{
3π

2
− tan−1

(√
(1 − n̄ cos i) cos i

n̄ − cos i

)}
= 0 δλ = 3 ∆λ

n̄ = cos i δλ = tan−1 {cos i tan (2πn̄)} − 2π
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coordinate system can be readily computed from X by applying 2.34. We can then
readily compute spherical latitude and longitude (φ, λ) and the trajectories of the
satellites on the sphere. For reasons of convenience, we express the mean motion
of the satellites in revolutions per day, n̄ = n/ω. The longitude difference between
consecutive equator crossings can then be computed from

∆λ = π

(
1 − 1

n̄

)
(3.64)

Table 3.1 also lists the change in longitude of the trajectory over a 24-hour period,
denoted by δλ. The number in parentheses on the graphs indicates the number of days
plotted. In all cases the inclination is i = 65°. The maximum and minimum of the
trajectories occur at a latitude of i and −i, respectively.

Case 1, specified by n̄ = 2, applies to GPS because the satellite orbits twice per
(sidereal) day. Case 2 has been constructed such that the trajectories intersect the
equator at 90°. In case 3 the point at which the trajectory touches, having common
vertical tangent, and the point of either maximum or minimum have the same longi-
tude. The mean motion must be computed from a nonlinear equation, but n̄ > 1 is
valid. In case 4 the satellite completes one orbital revolution in exactly one (sidereal)
day. Case 5 represents a retrograde motion with n̄ < 1 but with the same properties as
case 3. In case 6 the common tangent at the extrema is vertical. The interested reader
may verify that

λ = tan−1

(
cos i

sin φ√
sin2 i − sin2 φ

)
− 1

n̄
sin−1

(
sin φ

sin i

)
(3.65)

and

dφ

dλ
= cos φ

√
sin2 i − sin2 φ

n̄ cos i − cos2 φ
n̄ (3.66)

is valid for all cases.

3.1.3 Satellite Visibility and Topocentric Motion

The topocentric motion of a satellite as seen by an observer on the surface of the earth
can be readily computed from existing expressions. Let XS denote the geocentric
position of the satellite in the celestial coordinate system (X). These positions could,
for example, have been obtained from (3.45) in the case of normal motion or from the
integration of perturbed orbits discussed below. The position XS can then be readily
transformed to crust-fixed coordinate system (x), giving xS by applying (2.34). If
we further assume that the position of the observer on the ground in the crust-fixed
coordinate system is xP , then the topocentric coordinate difference

∆x = xS − xP (3.67)
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can be substituted into Equations (2.99) to (2.101) to obtain the topocentric geode-
tic azimuth, elevation, and distance of the satellite. The geodetic latitude and longi-
tude in these expressions can be computed from xP , if necessary. For low-accuracy
applications such as the creation of visibility charts it is sufficient to use spherical
approximations.

3.1.4 Perturbed Satellite Motion

The accurate determination of satellite positions must consider various disturbing
forces. Disturbing forces are all those forces causing the satellite to deviate from the
simple normal orbit. The disturbances are caused primarily by the nonsphericity of the
gravitational potential, the attraction of the sun and the moon, the solar radiation pres-
sure, and other smaller forces acting on the satellites. For example, albedo is a force
due to electromagnetic radiation reflected by the earth. There could be thermal rera-
diation forces caused by anisotropic radiation from the surface of the spacecraft. Ad-
ditional forces, such as residual atmospheric drag, affect satellites closer to the earth.

Several of the disturbing forces can be readily computed; others, in particular the
smaller forces, require detailed modeling and are still subject to further research.
Knowing the accurate location of the satellites, i.e., being able to treat satellite po-
sition coordinates as known quantities, is important in surveying, in particular for
long baseline determination. Most scientific applications of GPS demand the highest
orbital accuracy, all the way down to the centimeter level. However, even surveying
benefits from such accurate orbits, e.g., in precise point positioning with one receiver.
See Section 7.5 for additional detail on this technique. One of the goals of the Inter-
national GPS Service (IGS) and its contributing agencies and research groups is to
refine continuously orbital computation and modeling and to make the most accurate
satellite ephemeris available to the users. In this section, we provide only an intro-
ductory exposition of orbital determination. The details are found in the extensive
literature, going all the way back to the days of the first artificial satellites.

The equations of motion are expressed in an inertial (celestial) coordinate system,
corresponding to the epoch of the initial conditions. The initial conditions are either
(X, Ẋ) or the Kepler elements at a specified epoch. Because of the disturbing forces,
all Kepler elements are functions of time. The transformation given above can be used
to transform the initial conditions from (X, Ẋ) to Kepler elements and vice versa. The
equations of motion, as expressed in Cartesian coordinates, are

dX
dt

= Ẋ (3.68)

dẊ
dt

= − µX

‖X‖3 + Ẍg + Ẍs + Ẍm + ẌSRP + · · · (3.69)

These are six first-order differential equations. The symbol µ denotes the geocentric
gravitational constant (3.5). The first term in (3.69) represents the acceleration of the
central gravity field that generates the normal orbits discussed in the previous section.
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Compare (3.69) with (3.4). The remaining accelerations are discussed briefly below.
The most simple way to solve (3.68) and (3.69) is to carry out a simultaneous nu-
merical integration. Most of the high-quality engineering or mathematical software
packages have such integration routines available. Kaula (1966) expresses the equa-
tions of motion in terms of Kepler elements and expresses the disturbing potential in
terms of Kepler elements. Kaula (1962) gives similar expressions for the disturbing
functions of the sun and the moon.

3.1.4.1 Gravitational Field of the Earth The acceleration of the noncentral
portion of the gravity field of the earth is given by

Ẍg =
[

∂R

∂X

∂R

∂Y

∂R

∂Z

]T

(3.70)

The disturbing potential R is

R =
∞∑

n=2

n∑
m=0

µan
e

rn+1
P̄nm (cos θ)

[
C̄nm cos mλ + S̄nm sin mλ

]
(3.71)

with

Pnm (cos θ) =
(
1 − cos2 θ

)m/2

2nn!

d(n+m)

d(cos θ)(n+m)

(
cos2 θ − 1

)n
(3.72)

P̄n = √
2n + 1 Pn (3.73)

P̄nm =
(

(n + m)!

2(2n + 1)(n − m)!

)−1/2

Pnm (3.74)

Equation (3.71) expresses the disturbing potential (as used in satellite orbital
computations) in terms of a spherical harmonic expansion. The symbol ae denotes
the mean earth radius, r is the geocentric distance to the satellite, and θ and λ are
the spherical co-latitude and longitude of the satellite position in the earth-fixed
coordinate system, i.e., x = x(r, θ, λ). The positions in the celestial system (X)
follow from (2.34). P̄nm denotes the associated Legendre functions, which are known
mathematical functions of the latitude. C̄nm and S̄nm are the spherical harmonic
coefficients of degree n and order m. The bar indicates fully normalized potential
coefficients. Note that the summation in (3.71) starts at n = 2. The term n = 0
equals the central component of the gravitational field. It can be shown that the
coefficients for n = 1 are zero for coordinate systems whose origin is at the center
of mass. Equation (3.71) shows that the disturbing potential decreases exponentially
with the power of n. The high-order coefficients represent the detailed structure of
the disturbing potential, and, as such, the fine structure of the gravity field of the
earth. Only the coefficients of lower degree and order, say, up to degree and order
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36, are significant for satellite orbital computations. The higher the altitude of the
satellite, the less the impact of higher-order coefficients on orbital disturbances. A
set of spherical harmonic coefficients can be found in GSFC (2002).

The largest coefficient in (3.71) is C̄20. This coefficient represents the effect of the
flattening of the earth on the gravitational field. Its magnitude is about 1000 times
larger than any of the other spherical harmonic coefficients.

Useful insight into the orbital disturbance of the flattening of the earth is obtained
by considering the effect C̄20 only. An analytical expression is obtained if one ex-
presses the equations of motion (3.68) and (3.69) in terms of Kepler elements. The
actual derivation of such equations is beyond the scope of this book. The reader is
referred to Kaula (1966). Mueller (1964) offers the following result,

ω̇ = −
( µ

a3

)1/2
(

ae

a
(
1 − e2

)
)2

3

2
J2
(
1 + cos2 i − 1.5 sin2 i

)
(3.75)

Ω̇ = −
( µ

a3

)1/2
(

ae

a
(
1 − e2

)
)2

3

2
J2 cos i (3.76)

In these equations we have made the substitution C̄20 = −J2

√
5. The variations of

the argument of perigee and the right ascension of the ascending node are shown in
Figure 3.4 as a function of the inclination. At the critical inclination of approximately
63.5° the perigee motion is stationary. The perigee and the node regress if i > 63.5°.
This orbital plane rotation is zero for polar orbits i = 90°. Equation (3.76) is also
useful for understanding the connection between the earth flattening and precession
and the 18.6-year nutation/tidal period.

Figure 3.4 Impact of the earth’s flattening on the motion of the perigee and the nodal
line. The data refer to a = 26,600 km.
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3.1.4.2 Acceleration due to the Sun and the Moon The lunar and solar
accelerations on the satellites are (Escobal, 1965, p. 37)

Ẍm = µmm

me

(
Xm − X

‖Xm − X‖3 − Xm

‖Xm‖3

)
(3.77)

Ẍs = µms

me

(
Xs − X

‖Xs − X‖3 − Xs

‖Xs‖3

)
(3.78)

The commonly used values for the mass ratios are mm/me = 0.0123002 and ms/me

= 332,946. Mathematical expressions for the geocentric positions of the moon Xm

and the sun Xs are given, for example, in van Flandern and Pulkkinen (1979).

3.1.4.3 Solar Radiation Pressure Solar radiation pressure (SRP) is a result
of the impact of light photons emitted from the sun on the satellite’s surface. The basic
parameters of the SRP are the effective area (surface normal to the incident radiation),
the surface reflectivity, thermal state of the surface, luminosity of the sun, and the dis-
tance to the sun. Computing SRP requires the evaluation of surface integrals over the
illuminated regions, taking shadowed components into account. Even if these regions
are known, the evaluation of the surface integrals can still be difficult because of the
complex shape of the satellite. The ROCK4 and ROCK42 models represent early
attempts to take most of these complex relations and properties into consideration
for GPS Block I, Block II, and Block IIa satellites, respectively (Fliegel et al., 1985;
Fliegel and Gallini, 1989). Fliegel et al. (1992) describe an SRP force model for
geodetic applications. Springer et al. (1999) report on SRP model parameter estima-
tion on a satellite-by-satellite basis, as part of orbital determinations from heavily
overdetermined global networks. Ziebart et al. (2002) discuss a pixel array method
in connection with finite analysis, in order to delineate even better the illuminated
satellite surfaces and surface temperature distribution.

One of the earliest and simplest SRP models uses merely two parameters. Consider
the body-fixed coordinate system of Figure 3.5. The z′ axis is aligned with the antenna
and points toward the center of the earth. The satellite finds this direction and remains
locked to it with the help of an earth limb sensor. The x ′ axis is positive toward the half
plane that contains the sun. The y ′ axis completes the right-handed coordinate system
and points along the solar panel axis. The satellites are always oriented such that the
y ′ axis remains perpendicular to the earth-satellite-sun plane. The only motion of the
spacecraft in this body-fixed frame is the rotation of the solar panels around the y ′
axis to make the surface of the solar panels perpendicular to the direction of the sun.
The direction of the sun is denoted by e in Figure 3.5.

In reference to this body-fixed coordinate system, a simple SRP model formula-
tion is

ẌSRP = −p
Xsun − X

‖Xsun − X‖ + Y
Xsun × X

‖Xsun × X‖ (3.79)
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Figure 3.5 The satellite body-fixed coordinate system.

The symbol p denotes the SRP in the direction of the sun. With the sign convention
of Equation (3.79), p should be positive. The other parameter is called the Y bias.
The reasons for its existence could be structural misalignments, thermal phenomena,
or possibly misalignment of the solar panels with the direction of the solar photon
flux. The fact that a Y bias exists demonstrates the complexity of accurate solar
radiation pressure modeling. Table 3.2 shows the effects of the various perturbations
over the period of one day. The table shows the difference between two integrations,
one containing the specific orbital perturbation and the others turned off. It is seen
that SRP orbital disturbance reaches close to 100 m in a day. This is very significant
considering that the goal is centimeter orbital accuracy. Over a period of 1–2 weeks
the SRP disturbance can grow to over 1 km.

3.1.4.4 Eclipse Transits and Yaw Maneuvers Orbital determination is fur-
ther complicated when satellites travel through the earth shadow region (eclipse). The

TABLE 3.2 Effect of Perturbations on GPS Satellites over One Day

Perturbation Radial Along Cross Total

Earth flattening 1335 12902 6101 14334
Moon 191 1317 361 1379
Sun 83 649 145 670
C̄2,2, S̄2,2 32 175 9 178
SRP 29 87 3 92
C̄n,m, S̄n,m 6 46 4 46
(n, m = 3 . . . 8)

Source: Springer et al., 1999.

Note: The units are in meters.
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Figure 3.6 Biannual eclipse periods.

satellite travels through the earth’s shadow region twice per year. This occurs when-
ever the sun is in or near the orbital plane. See Figures 3.6 and 3.7 for a graphical
presentation. The umbra is that portion of the shadow cone that no light from the sun
can reach. The penumbra is the region of partial shadowing; it surrounds the umbra
cone. While the satellite transits through the shadow regions, the solar radiation force
acting on the satellite is either zero (umbra) or changing (penumbra). These changes
in force must be taken into consideration in precise orbital computations. In addition,
the thermal reradiation forces change as the temperature of the satellite drops. GPS
satellites move through the shadow regions in less than 60 minutes, twice per day.

The shadow regions cause an additional problem for precise orbit determination.
The solar panels are orientated toward the sun by the attitude control system (ACS)

Figure 3.7 Earth shadow regions.
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solar sensors mounted on the solar panels. The condition that the z′ axis continuously
points toward the center of the earth and the solar panels are continuously normal
to the satellite-sun direction, the satellite must yaw, i.e., rotate around the z′ axis, in
addition to rotating the antennas around the y ′ axis. While the satellite passes through
the shadow region, the ACS solar sensors do not receive sunlight and, therefore,
cannot maintain the exact alignment of the solar panels. The satellite starts yawing in
a somewhat unpredictable way. Errors in yaw cause errors in GPS observations in two
ways. First, the range correction from the center of the satellite antenna to the satellite
center of mass becomes uncertain. Second, there is an additional but unknown windup
error. See Section 7.2.1 for more information on the windup error.

Bar-Sever (1996) has investigated the GPS yaw attitude problem and the compen-
sation method in detail. During shadow, the output of the solar sensors is essentially
zero and the ACS is driven by the noise of the system. Even a small amount of noise
can trigger a significant yaw change. As a corrective action, a small bias signal is
added to the signals of the solar sensors that amounts to a yaw of about 0.5°. As a
result, during the time when the sun can be observed, the yaw will be in error by
that amount. During eclipse times, the biased noise will yaw the satellite in the di-
rection of the bias, thus avoiding larger and erratic yaw motions. When the satellite
leaves the shadow region, the solar sensors provide the information to determine the
correct yaw angle. The yaw maneuvers carried out by the satellite from the time it
enters the shadow region to the time it leaves it are collectively called “the midnight
maneuvers.” When the satellite is on the sun-earth axis and between the sun and the
earth, the ACS encounters a singularity because any yaw angle represents an optimal
orientation of the solar panels for this particular geometry. Any maneuvers that deal
with this situation are called “the noon maneuver.”

3.2 GPS GLOBAL POSITIONING SYSTEM

Satellite-based positioning has been pursued since the 1960s. An early and very
successful satellite positioning system was the Navy Navigation Satellite System
(TRANSIT). Since its release for commercial use in 1967, the TRANSIT positioning
system was often used to determine widely spaced networks covering large regions—
even the globe. It was instrumental in establishing modern geocentric datums and in
connecting various national datums to a geocentric reference frame. The TRANSIT
satellites were orbiting in polar plane at about 1100 km altitude. The TRANSIT
satellites were affected more by gravity field variations than the much higher-orbiting
GPS satellites. In addition, their transmissions at 150 and 400 MHz were more
susceptible to ionospheric delays and disturbances than the higher GPS frequencies.
The TRANSIT system was discontinued at the end of 1996 and replaced by GPS.

3.2.1 General Description

The Navigation Satellite Timing and Ranging (NAVSTAR) GPS provides position-
ing and timing 24 hours per day, anywhere in the world, and under any weather
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conditions. The U.S. government operates GPS. It was designed as a dual-use system,
with the primary purpose of meeting the military’s needs for positioning and timing.
Over the past decade, the number of civilian applications has increased significantly,
with no end in sight. Because GPS is so well known by now, not just by the experts but
by general citizens as well, there is no need to dwell on which innovative application
will be next or even attempt to list its numerous current uses.

The buildup of the satellite constellation began with the series Block I satellites.
These were concept validation satellites that did not have selective availability (SA)
or antispoofing (AS) capability. They were launched into three 63° inclined orbital
planes. Their positions within the planes were such that optimal observing geometry
was achieved over certain military proving grounds in the continental United States.
Eleven Block I satellites were launched between 1978 and 1985 (with one launch
failure). The average lifetime was 8–9 years. They were designed to provide 3–4 days
of positioning service without contact with the ground control center. The launch of
the second generation of GPS satellites, called Block II, began in February 1989. In
addition to radiation-hardened electronics, these operational satellites had full SA/AS
capability and carried a navigation data message that was valid for fourteen days.
Additional modifications resulted in the satellite called Block IIA. These satellites
can provide about six weeks of positioning service without contact from the control
segment. Twenty-eight Block II/IIA satellites were launched between 1989 and 1997
into six planes, 55° inclined. The first third-generation GPS satellite, called Block IIR
(R for replenishment), was successfully launched in 1997. These satellites have the
capability to determine their orbits autonomously through UHF cross-link ranging
and to generate their own navigation message by onboard processing. They are able
to measure ranges between themselves and transmit observations to other satellites as
well as to ground control. Currently, GPS is undergoing a major modernization. Most
important, GPS satellites will transmit more signals that allow a better delineation of
military and civilian uses, and thus increase the performance of GPS even more. Table
3.3 shows the expected progression of the modernization. We anticipate the launch
of the IIR-M (M for modified) satellites soon. These satellites will transmit new civil
codes on L2 and new military codes on L1 and L2. Given the continued progress in
microelectronics, it will then be possible to manufacture inexpensive, compact dual-
frequency receivers for civilian uses. Around 2005/2006, we expect the launch of

TABLE 3.3 New GPS Signals

IIR IIR-M IIF
Signal 1978–2003 2003 (expected) 2005 (expected)

L1 C/A X X X
L1 P(Y) X X X

L1M X X
L2C X X

L2 P(Y) X X X
L2 M X X
L5C X
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the first IIF (F for follow on) satellites. These satellites will transmit a third civil
frequency, called L5.

The U.S. government’s current policy is to make GPS available in two services.
The precise positioning service (PPS) is available to the military and other authorized
users. The standard positioning service (SPS) is available to anyone. See SPS (2001)
for a detailed documentation of this service. Without going into detail, let it suffice to
say that PPS users have access to the encrypted P(Y)-codes on the L1 and L2 carriers,
while SPS users can only observe the public C/A-code on L1. The encryption of the
P-codes began January 31, 1994. SPS positioning capability was degraded by SA
measures, which entailed an intentional dither of the satellite clocks and falsification
of the navigation message. In keeping with the policy, SA was implemented on March
25, 1990, on all Block II satellites. The level of degradation was reduced in September
1990 during the Gulf conflict, but was reactivated to its full level on July 1, 1991, until
it was discontinued on May 1, 2000, upon direction of the U.S. president.

Over time, both satellite and receiver technologies have improved significantly.
Whereas older receivers could observe the P(Y)-code more accurately than the C/A-
codes, this distinction has all but disappeared with modern receiver technology. Dual-
frequency P(Y)-code users do have the advantage of being able to correct the effect of
the ionosphere on the signals. However, this simple classification of PPS and SPS by
no means characterizes how GPS is used today. Researchers have devised various, of-
ten patented procedures that make it possible to observe or utilize the encrypted P(Y)-
codes effectively, and in doing so, make dual-frequency observations available, at
least to high-end receivers. In certain surveying applications where the primary quan-
tity of interest is the vector between nearby stations, intentional degradation of SA
could be overcome by differencing the observations between stations and satellites.
However, in many applications, positioning with GPS works much better without SA.

The six orbital planes of GPS are evenly spaced in right ascension and are inclined
by 55° with respect to the equator. Because of the flattening of the earth, the nodal
regression is about −0.04187° per day; an annual orbital adjustment keeps the orbits
close to their nominal location. Each orbital plane contains four satellites; however,
to optimize global satellite visibility, the satellites are not evenly spaced within the
orbital plane. The orbits are nominally circular, with a semimajor axis of about 26,660
km. Using Kepler’s third law (3.42), one obtains an orbital period of slightly less than
12 hours. The satellites will complete two orbital revolutions in one sidereal day. This
means the satellites will rise about 4 minutes earlier each day. Because the orbital
period is an exact multiple of the period of the earth’s rotation, the satellite trajectory
on the earth (i.e., the trace of the geocentric satellite vector on the earth’s surface)
repeats itself daily.

Because of their high altitude, the GPS satellites can be viewed simultaneously
over large portions of the earth. Usually the satellites are observed only above a
certain vertical angle, called the mask angle. Typical values for the mask angle are 10–
15°. At low elevation angles the tropospheric effects on the signal can be especially
severe and difficult to model accurately. Let ε denote the mask angle, and let α denote
the geocentric angle of visibility for a spherical earth; then one can find the relation
(ε = 0°, α = 152°), (ε = 5°, α = 142°), (ε = 10°, α = 132°). The viewing angle
from the satellite to the limb of the earth is about 27°.
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3.2.2 Satellite Transmissions at 2002

The ICD-GPS-200C (2000) is the authoritative source for details on the GPS signal
structures, usage of these signals, and other information broadcasts by the satellites.
The document can be downloaded from GPS (2002). All satellite transmissions are
coherently derived from the fundamental frequency of 10.23 MHz, made available
by onboard atomic clocks. This is also true for the new signals discussed further
below. Multiplying the fundamental frequency by 154 gives the frequency for the L1
carrier, f1 = 1575.42 MHz, and multiplying by 120 gives the frequency of the L2
carrier, f2 = 1227.60 MHz. The chipping (code) rate of the P(Y)-code is that of
the fundamental frequency, i.e., 10.23 MHz, whereas the chipping rate of the C/A-
code is 1.023 MHz (one-tenth of the fundamental frequency). The navigation message
(telemetry) is modulated on both the L1 and the L2 carriers at a chipping rate of 50
bps. It contains information on the ephemerides of the satellites, GPS time, clock
behavior, and system status messages.

The space vehicle time is defined by the onboard atomic clocks of each satellite.
The satellite operates on its own time system, i.e., all satellite transmissions such as
the C/A-code, the P(Y)-codes, and the navigation message are initiated by satellite
time. The data in the navigation message, however, are relative to GPS time. Time is
maintained by the control segment and follows UTC(USNO) within specified limits.
GPS time is a continuous time scale and is not adjusted for leap seconds. The last com-
mon epoch between GPS time and UTC(USNO) was midnight January 5–6, 1980.
The navigation message contains the necessary corrections to convert space vehicle
time to GPS time. The largest unit of GPS time is one week, defined as 604,800 sec.
Additional details on the satellite clock correction are given in Section 5.3.1.

The atomic clocks in the satellites are affected by both special relativity (the
satellite’s velocity) and general relativity (the difference in the gravitational potential
at the satellite’s position relative to the potential at the earth’s surface). Jorgensen
(1986) gives a discussion in lay terms of these effects and identifies two distinct parts
in the relativity correction. The predominant portion is common to all satellites and
is independent of the orbital eccentricity. The respective relative frequency offset
is ∆f / f = −4.4647 × 10−10. This offset corresponds to an increase in time of
38.3 µs per day; the clocks in orbit appear to run faster. The apparent change in
frequency is ∆f = 0.0045674 Hz at the fundamental frequency of 10.23 MHz. The
frequency is corrected by adjusting the frequency of the satellite clocks in the factory
before launch to 10.22999999543 MHz. The second portion of the relativistic effect
is proportional to the eccentricity of the satellite’s orbit. For exact circular orbits,
this correction is zero. For GPS orbits with an eccentricity of 0.02 this effect can be
as large as 45 ns, corresponding to a ranging error of about 14 m. This relativistic
effect can be computed from a simple mathematical expression that is a function of
the semimajor axis, the eccentricity, and the eccentric anomaly (see Section 5.3.1). In
relative positioning as typically carried out in surveying, the relativistic effects cancel
for all practical purposes.

The precision P(Y)-code is the principal code used for military navigation. It is
a pseudorandom noise (PRN) code which itself is the modulo-2 sum of two other
pseudorandom codes. The P(Y)-code does not repeat itself for thirty-seven weeks.
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Thus, it is possible to assign weekly portions of this code to the various satellites.
As a result, all satellites can transmit on the same carrier frequency and yet can be
distinguished because of the mutually exclusive code sequences being transmitted.
All codes are initialized once per GPS week at midnight from Saturday to Sunday,
thus creating, in effect, the GPS week as a major unit of time. The L1 and L2 carriers
are both modulated with the same P(Y)-code.

The period of the coarse/acquisition (C/A) code is merely 1 ms and consists of
1023 bits. Each satellite transmits a different set of C/A-codes. These codes are cur-
rently transmitted only on L1. The C/A-codes belong to the family of Gold codes,
which characteristically have low cross-correlation between all members. This prop-
erty makes it possible to distinguish the signals received simultaneously from differ-
ent satellites rapidly.

One of the satellite identification systems makes use of the PRN weekly number.
For example, if one refers to satellite PRN 13, one refers to the satellite that transmits
the thirteenth weekly portion of the PRN-code. The short version of PRN 13 is SV
13 (SV = space vehicle). Another identification system uses the space vehicle launch
number (SVN). For example, the identification of PRN 13 in terms of launch number
is NAVSTAR 9, or SVN 9.

3.2.2.1 Signal Structure The carrier is modulated by several codes and the
navigation (data) message. There are at least three commonly used digital modulation
methods: amplitude shift keying (ASK), frequency shift keying (FSK), and phase
shift keying (PSK). GPS uses PSK. Figure 3.8 briefly demonstrates some of the
principles involved. The figure shows an arbitrary digital data stream consisting of
binary digits 0 and 1. These binary digits are also called chips, bits, codes, or pulses.
In the case of GPS, the digital data stream contains the navigation message or the
pseudorandom sequences of the codes. The code sequences look random but actually
follow a mathematical formula. ASK corresponds to an on/off operation. The digit 1
might represent turning the carrier on and 0 might mean turning it off. FSK implies
transmission on one or the other frequency. The transmitting oscillator is required
to switch back and forth between two distinct frequencies. In the case of PSK, the
same carrier frequency is used, but the phase changes abruptly. With binary phase
shift keying (BPSK), the phase shifts 0° and 180°. The BPSK method is used with
GPS signals.

Figure 3.9 shows two data streams. The sequence (a) could represent the naviga-
tion data chipped rate of 50 bits per seconds (bps), and (b) could be the C/A-code or
the P(Y)-code chipped at the 1.023 MHz or 10.23 MHz, respectively. The times of
bit transition are aligned. The navigation message and the code streams have signif-
icantly different chipping rates. A chipping rate of 50 bps implies 50 opportunities
per second for the digital stream to change from 1 to 0 and vice versa. Within the
time of a telemetry chip there are 31,508,400 L1 cycles, 20,460 C/A-code chips, and
204,600 P(Y)-code chips. Looking at this in the distance domain, one telemetry chip
is 5950 km long, whereas the lengths of the C/A and P(Y)-codes are 293 m and 29.3
m, respectively. Thus, the P(Y)-code can change the carrier by 180° every 29.3 m,
the C/A-code every 293 m, and the telemetry every 5950 km.
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Figure 3.8 Digital modulation methods.

One of the tasks to be accomplished is reading the navigation message at the
receiver. We need this information to compute the positions of the satellites. To
accomplish this, the data streams (a) and (b) in Figure 3.9 are modulo-2 added
before transmission at the satellite. Modulo-2 addition follows the well-known rules:
0+0 = 0, 1+0 = 1, 0+1 = 1, and 1+1 = 0. The result is labeled (c). The figure also
shows the phase history of the transmitted carrier. Whenever a binary 1 occurs in the

Figure 3.9 Modulo-2 addition of binary data streams.
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50 bps navigation data stream, the modulo-2 addition inverts 20,460 adjacent digits
of the C/A-code. A binary 1 becomes 0 and vice versa. A binary 0 leaves the next
20,460 C/A-codes unchanged. Let the receiver reproduce the original code sequence
that is shifted in time to match the transmitted code. We can then modulo-2 add the
receiver-generated code with the received, phase-modulated carrier. The sum is the
demodulated 50 bps telemetry data stream.

The modulo-2 addition method must be generalized one additional step because
the L1 carrier is modulated by three data streams: the navigation data, the C/A-codes,
and P(Y)-codes. Thus, the task of superimposing both code streams and the navi-
gation data stream arises. Two sequential superimpositions are not unique, because
the C/A-code and the P(Y)-code have identical bit transition epochs (although their
length is different). The solution is called quadrature phase shift keying (QPSK). The
carrier is split into two parts, the inphase component (I) and the quadrature component
(Q). The latter is shifted by 90°. Each component is then binary phase-modulated, the
inphase component is modulated by the P(Y)-code, and the quadrature component is
modulated by the C/A-code. Therefore, the C/A-code signal carrier lags the P(Y)-
code carrier by 90°. For the L1 and L2 carriers we have

S
p

1 (t) = AP P p(t)Dp(t) cos (2πf1t) + ACGp(t)Dp(t) sin (2πf1t) (3.80)

S
p

2 (t) = BP P p(t)Dp(t) cos (2πf2t) (3.81)

In these equations the symbols denote

p Superscript identifying the PRN number of the satellite
AP , AC, BP Amplitudes (power) of P(Y)-codes and C/A-code
P p(t) Pseudorandom P(Y)-code
Gp(t) C/A-code (Gold code)
Dp(t) Telemetry or navigation data stream

The products P p(t)Dp(t) and Gp(t)Dp(t) imply modulo-2 addition. The P(Y)-code
by itself is a modulo-2 sum of two pseudorandom data streams X1(t) and X2(t −pT )

as follows:

P p(t) = X1(t)X2(t − pT ) (3.82)

0 ≤ p ≤ 36 (3.83)

1

T
= 10.23 MHz (3.84)

Expression (3.82) defines the code according to the PRN number p. Using (3.83), one
can define thirty-seven mutually exclusive P(Y)-code sequences. At the beginning of
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Figure 3.10 Simple FBSR.

the GPS week, the P(Y)-codes are reset. Similarly, the C/A-codes are the modulo-2
sum of two 1023 pseudorandom bit codes as follows:

Gp(t) = G1(t)G2
[
t − Np(10T )

]
(3.85)

Gp(t) is 1023 bits long or has a 1 ms duration at a 1.023 Mbps bit rate. The Gp(t)

chip is ten times as long as the X1 chip. The G2-code is selectively delayed by an
integer number of chips, expressed by the integer Np, to produce thirty-six unique
Gold codes, one for each of the thirty-six different P(Y)-codes.

The actual generation of the codes X1, X2, G1, and G2 is accomplished by a
feedback shift register (FBSR). Such devices can generate a large variety of pseu-
dorandom codes. These codes look random over a certain interval, but the feedback
mechanism causes the codes to repeat after some time. Figure 3.10 shows a very
simple register. A block represents a stage register whose content is in either a one
or a zero state. When the clock pulse is input to the register, each block has its state
shifted one block to the right. In this particular example, the output of the last two
stages is modulo-2 added, and the result is fed back into the first stage and modulo-2
added to the old state to create the new state. The successive states of the individual
blocks as the FBSR is stepped through a complete cycle are shown in Table 3.4. The
elements of the column represent the state of each block, and the successive columns
represent the behavior of the shift register as the succession of timing pulses cause it
to shift from state to state. In this example, the initial state is (0001). For n blocks,
2n −1 states are possible before repetition occurs. The output corresponds to the state
of the last block, and would represent the PRN code if it were generated by such a
four-stage FBSR.

The shift registers that are used in GPS code generation are much more com-
plex. They have many more feedback loops and they have many more blocks in

TABLE 3.4 Output of FBSR

x1 0 1 0 0 · · · 1 0 0 0
x2 0 0 1 0 · · · 1 1 0 0
x3 0 0 0 1 · · · 1 1 1 0
x4 1 0 0 0 · · · 1 1 1 1

Output 1 0 0 0 · · · 1 1 1 1
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the sequence. The P(Y)-code is derived from two twelve-stage shift registers, X1(t)

and X2(t), having 15,345,000 and 15,345,037 stages (chips), respectively. Both reg-
isters continuously recycle. The modulo-2 sum of both registers has the length of
15,345,000 times 15,345,037 chips. At the chipping rate of 10.23 MHz it takes 266.4
days to complete the whole P(Y)-code cycle. It takes 1.5 s for the X1 register to go
though one cycle. The X1 cycles (epochs) are known as the Z count.

The bandwidth terminology is often used in connection with pseudorandom noise
modulation. Let T denote the duration of the chip (rectangular pulse), then the band-
width is inverse proportional to T . Therefore, shorter chips (pulses) require greater
bandwidth and vice versa. If we subject the rectangular pulse function to a Fourier
transform we obtain the well-known sinc (sine-cardinal) function

S(∆f, fc) = 1

fc

(
sin (π ∆f/fc)

π ∆f/fc

)2

(3.86)

The symbol ∆f is the difference with respect to the carrier frequency L1 or L2.
The code frequency 10.23 MHz or 1.023 MHz, respectively, is denoted by fc. The
factor 1/fc serves as a normalizing (unit area) scalar. Figure 3.13 shows the power
spectral density (3.86) for the P(Y)- and C/A-codes. This symmetric function is zero
at multiples of the code rate fc. The first lobe stretches over the bandwidth, covering
the range of ±fc with respect to the center frequency. The spectral portion signal
beyond one bandwidth is filtered out at the satellite and is not transmitted.

Power ratios in electronics and in connection with signals and antennas are ex-
pressed in terms of decibels (dB) on a logarithmic scale. Of course, sound levels are
typically also given in units of decibels. One decibel is just detectable by the human
ear and a power of 100 watts is perceived to be twice as loud as 10 watts. The latter
relationship justifies the preference of using the logarithmic scale in addition to the
ability to express very large or very small ratios with a few digits. The power ratio in
terms of decibel units is defined as

g[dB] = 10 log10
P2

P1
(3.87)

Absolute power can be expressed with respect to a unit power P1. For example, the
units dBW or dBm imply P1 = 1 W or P1 = 1 mW, respectively. Frequently the
relation

g[dB] = 20 log10
V2

V1
(3.88)

is seen. In (3.88) the symbols V1 and V2 denote voltages. Both decibel expressions are
related by the fact that the square of the voltage divided by resistance equals power.

The power of the received GPS signals on the ground is lower than the background
noise (thermal noise). The specifications call for a minimum power at the user on the
earth of −160 dBW for the C/A-code, −163 dBW for the P(Y)-code on L1, and
−166 dBW for the P(Y)-code on L2. To track the signal, the receiver correlates the
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incoming signal by a locally generated replica of the code. This correlation process
results in a signal that is well above the noise level.

3.2.2.2 Navigation Message The Master Control Station, located near Col-
orado Springs, uses data from a network of monitoring stations around the world to
monitor the satellite transmissions continuously, compute the broadcast ephemerides,
calibrate the satellite clocks, and periodically update the navigation message. This
“control segment” ensures that the SPS and PPS are available as specified in SPS
(2001).

The satellites transmit a navigation message that contains, among other things,
orbital data for computing the positions of all satellites. A complete message consists
of 25 frames, each containing 1500 bits. Each frame is subdivided into 5 300-bit
subframes, and each subframe consists of 10 words of 30 bits each. At the 50 bps rate
it takes 6 seconds to transmit a subframe, 30 seconds to complete a frame, and 12.5
minutes for one complete transmission of the navigation message. The subframes 1,
2, and 3 are transmitted with each frame. Subframes 4 and 5 are each subcommutated
25 times. The 25 versions of subframes 4 and 5 are referred to as pages 1 through 25.
Thus, each of these pages repeats every 12.5 minutes.

Each subframe begins with the telemetry word (TLM) and the handover word
(HOW). The TLM begins with a preamble and otherwise contains only information
that is needed by the authorized user. The HOW is a truncation of the GPS time of
week (TOW). HOW, when multiplied by 4, gives the X1 count at the start of the
following subframe. As soon as a receiver has locked to the C/A-code, the HOW
word is extracted and is used to identify the X1 count at the start of the following
subframe. In this way, the receiver knows exactly which part of the long P(Y)-code is
being transmitted. P(Y)-code tracking can then readily begin, thus the term handover
word. To lock rapidly to the P(Y)-code, the HOW is included on each subframe (see
Figure 3.11).

GPS time is directly related to the X1 counts of the P(Y)-code. The Z count is a
twenty-nine-bit number that contains several pieces of timing information. It can be
used to extract the HOW, which relates to the X1 count as discussed above, and the
TOW, which represents the number of seconds since the beginning of the GPS week.
A full week has 403,199 X1 counts. The Z count gives the current GPS week number
(modulo-1024). The beginning of the GPS week is offset from midnight UTC by the
accumulated number of leap seconds since January 5–6, 1980, the beginning of GPS
time.

Subframe 1 contains the GPS week number, space vehicle accuracy and health
status, satellite clock correction terms af 0, af 1, af 2 and the clock reference time toc

(Section 5.3.1), the differential group delay, TGD (Section 5.4), and the issue of date
clock (IODC) term. The latter term is the issue number of the clock data set and can
be conveniently used to detect any change in the correction parameters. The messages
are updated usually every 4 hours.

Subframes 2 and 3 contain the ephemeris parameters for the transmitting satellite.
The various elements are listed in Table 3.5. These elements are a result of least-
squares fitting of the predicted ephemeris over a well-specified interval of time. The
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Figure 3.11 HOW versus X1 epochs.

issue of data ephemeris (IODE) term allows users to detect changes in the ephemeris
parameters. For each upload, the control center assigns a new number. The IODE is
given in both subframes. During the time of an upload, both IODEs will have different
values. Users should download ephemeris data only when both IODEs have the same
value. The broadcast elements are used with the algorithm of Table 3.6. The results are
coordinates of the phase center of the space vehicle’s antennas in the World Geodetic
System of 1984 (WGS84). The latter is an ECEF coordinate system that is closely
aligned with the international terrestrial reference frame (ITRF). There is no need for
an explicit polar motion rotation, since the respective rotations are incorporated in
the representation parameters. However, when computing the topocentric distance,
the user must account for the rotation of the earth during the signal travel time from
satellite to receiver.

Subframes 4 and 5 contain special messages, ionospheric correction terms, coeffi-
cients to convert GPS time to universal time coordinated (UTC), and almanac data on
pages 2–5 and 7–10 (subframe 4) and 1–24 (subframe 5). The ionospheric terms are
the eight coefficients {αn, βn} referenced in Table 6.3. For accurate computation of
UTC from GPS time, the message provides a constant offset term, a linear polynomial
term, the reference time tot, and the current value of the leap second. The almanac pro-
vides data to compute the positions of satellites other than the transmitting satellite. It
is a reduced-precision subset of the clock and ephemeris parameters of subframes 1
to 3. For each satellite, the almanac contains the following: toa, δi , af 0, af 1, e, Ω̇, a1/2,
Ω0, ω, and M0. The almanac reference time is toa. The correction to the inclination
δi is given with respect to the fixed value i0 = 0.30 semicircles (= 54°). The clock
polynomial coefficients af 0 and af 1 are used to convert space vehicle (SV) time to
GPS time, following Equation (5.38). The remaining elements of the almanac are
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TABLE 3.5 Elements of Subframes 2 and 3

M0 Mean anomaly at reference time
∆n Mean motion difference from computed value
e Eccentricity√

a Square root of the semimajor axis
Ω0 Longitude of ascending node of orbit plane at beginning of week
i0 Inclination angle at reference time
ω Argument of perigee
Ω̇ Rate of right ascension
IDOT Rate of inclination angle
Cuc, Cus, Crc, Crs , Cic, Cis Amplitude of second-order harmonic perturbations
toe Ephemeris reference time
IODE Issue of data (ephemeris)

identical to those listed in Table 3.5. The algorithm of Table 3.6 applies, using zero
for all elements that are not included in the almanac and replacing the reference time
toe by toa.

The mean anomaly, the longitude of the ascending node, the inclination, and UTC
(if desired) are formulated as polynomials in time; the time argument is GPS time.
The polynomial coefficients are, of course, a function of the epoch of expansion. The
respective epochs are toc, toe, toa, and tot.

The navigation message contains other relevant information, such as the user range
error (URE). This measure equals the projection of the ephemeris curve fit errors onto
the user range and includes effects of satellite timing errors (and possibly SA).

3.2.3 GPS Modernization

GPS modernization becomes possible because of advances in technology as used
in the satellite and the receiver. The additional signals transmitted by modernized
satellites will improve the antijamming capability, increase protection against anti-
spoofing, shorten the time to first fix, and provide a civilian “safety of life” signal
(L5) within the protected Aeronautical Radio Navigation Service (ARNS) frequency
band. The new L2C signal will increase robustness of the signal, improve resistance
to interference, allow for longer integration times in the receiver, thereby reducing
tracking noise and increasing accuracy, as well as providing better positioning inside
buildings and in wooded areas. The second civil frequency will eliminate the need
to use inefficient squaring, cross-correlation, or other patented techniques currently
used by civilians in connection with L2. Once the GPS modernization is completed,
the dual-frequency or triple-frequency receivers are expected to be in common use
and affordable to the mass market.

At the same time, new military codes called the M-codes will be added to L1 and
L2, but will be spectrally separated from the civilian codes. There is no military code
planned on L5.
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TABLE 3.6 GPS Broadcast Ephemeris Algorithm

µ = 3.986005 × 1014 m3/s2 Gravitational constant for WGS84

Ω̇e = 7.2921151467 × 10−5 rad/s Earth’s rotation rate for WGS84

a = (√a
)2

Semimajor axis

n0 =
√

µ

a3
Computed mean motion—rad/s

tk = t − t∗oe Time from ephemeris reference epoch

n = n0 + ∆n Corrected mean motion

Mk = M0 + ntk Mean anomaly

Mk = Ek − e sin Ek Kepler’s equation for eccentric anomaly

fk = tan−1

{√
1 − e2 sin Ek

cos Ek − e

}
True anomaly

Ek = cos−1

[
e + cos fk

1 + e cos fk

]
Eccentricity anomaly

φk = fk + ω Argument of latitude

δuk = Cus sin 2φk + Cuc cos 2φk

δrk = Crc cos 2φk + Crs sin 2φk

δik = Cic cos 2φk + Cis sin 2φk


 Second harmonic perturbations

uk = φk + δuk Corrected argument of latitude

rk = a (1 − e cos Ek) + δrk Corrected radius

ik = i0 + δik + (IDOT) tk Corrected inclination

x ′
k = rk cos uk

y ′
k = rk sin uk

}
Positions in orbital plane

Ωk = Ω0 + (Ω̇ − Ω̇e

)
tk − Ω̇etoe Corrected longitude of ascending node

xk = x ′
k cos Ωk − y ′

k cos ik sin Ωk

yk = x ′
k sin Ωk + y ′

k cos ik cos Ωk

zk = y ′
k sin ik


 Earth-fixed coordinates

Note: t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed
of light). Furthermore, tk shall be the actual total time difference between the time t and the epoch time toe,
and must account for beginning or end of week crossovers. That is, if tk is greater than 302,400, subtract
604,800 from tk . If tk is less than −302,400 sec, add 604,800 sec to tk .

Fortunately, there is good documentation available on the anticipated GPS signal
modernization. GPS (2002) contains several relevant documents and other material
on briefings. The material for L2 was extracted from PPIRN-200C-007 (2001). The
description of the new L5 signal is found in ICD-GPS-705 (2002). Both documents
can be downloaded from GPS (2002). See also Fontana et al. (2001a,b).

3.2.3.1 Civil L2C Codes The new L2 will be shared between civil and military
signals. To increase GPS performance for civilian users, the new space vehicles IIR-M
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and IIF will have two additional civil ranging codes, L2CM (civil moderate length)
and L2CL (civil long). As is the case for L1, the new L2 carrier will consist of two
BPSK modulated carrier components that are in phase quadrature with each other.
The inphase carrier will continue to be BPSK modulated by the bit train that is the
modulo-2 sum of the military P(Y)-code and the legacy navigation data Dp(t). There
will be three options available for BPSK modulating the quadrature carrier (also
called the L2C carrier or the new L2 civil signal):

1. Chip-by-chip time multiplex combinations of bit trains consisting of the
modulo-2 sum of the L2CM code and a new navigation message structure
DC(t). The resultant bit trains are then combined with the L2CL code and used
to modulate the L2 quadrature carrier. The IIR-M space vehicles will have the
option of using the old navigation message Dp(t) instead of DC(t).

2. Modulo-2 sum of the legacy C/A-code and legacy navigation data Dp(t).

3. C/A-code with no navigation data.

The chipping rate for L2CM and L2CL is 511.5 Kbps. L2CM is 10,230 chips long and
lasts 20 ms, whereas L2CL has 767,250 chips and lasts 1.5 s. L2CL is 75 times longer
than L2CM. DC(t) is the new navigation data message and has the same structure as
the one adopted for the new L5 civil signal. It is both more compact and more flexible
than the legacy message.

3.2.3.2 Civil L5 Code The carrier frequency of L5 is 1176.45 MHz. As is the
case for L1, two L5 carriers are in phase quadrature and each is BPSK modulated
separately by bit trains. The bit train of the inphase component is a modulo-2 sum of
PRN codes and navigation data. The quadraphase code is a separate PRN code but
has no navigation data. The chipping rate of the codes is 10.23 MHz. Each code is
a modulo-2 sum of two subsequences, whose lengths are 8,190 and 8,191 chips that
recycle to generate 10,230 chip codes. Therefore the length of these codes is 1 ms.

3.2.3.3 M-Code For conventional rectangular spreading codes, which are the
basis of the P(Y)-codes, the C/A-code heritage signals, and the new L2C and L5
codes, the frequency bandwidth is inversely proportional to the length of the chip.
Modulating with faster chipping rates to improve or add additional signals might be
impractical because of frequency bandwidth limitations. More advanced modulations
have been studied recently that better share existing frequency allocations with each
other and with heritage signals by increasing spectral separation, and thus preserve the
spectrum. Betz (2002) describes binary-valued modulations, also referred to as binary
offset carrier (BOC). Block IIR-M and IIF satellites will transmit a new military M-
code signal on L1 and L2 that uses BOC.

If fc denotes again the chipping (code) rate and if we denote the subcarrier fre-
quency by fs then (Betz, 2002)

fc = 1

nTs

= 2

n
fs (3.89)
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where n is a positive integer, and the normalized power spectral density of the BOC
modulation can be written as

g(fs, fc, ∆f ) =




fc

(
tan (π ∆f/2fs) cos (π ∆f/fc)

π ∆f

)2

if n is odd

fc

(
tan (π ∆f/2fs) sin (π ∆f/fc)

π ∆f

)2

if n is even

(3.90)

We further adopt Betz’s abbreviated notation BOC(α, β) to specify the frequencies,
i.e., fs = 1.023α MHz and fc = 1.023β MHz. For example, the modulation
BOC(10,5) uses the subcarrier frequency and the spreading code rate of 10.23 MHz
and 5.115 MHz, respectively.

A characteristic difference between the BOC and the conventional rectangular
spreading code modulation is seen in the power spectral densities of Figure 3.13. The
densities for BOC, in this case BOC(10,5), are maximum at the nulls of the P(Y)-
codes. Such a property is important for increasing the spectral separation of modu-
lations. The sum of the number of mainlobes and sidelobes between the mainlobes
is equal to n, i.e., twice the ratio of the subcarrier frequency to the code rate (3.89).
As in conventional PSK the zero crossings of each mainlobe are spaced by twice the
code rate, while the zero crossings of each sidelobe are spaced at the code rate. For
example, with n = 5 the BOC(5,2) modulations have three sidelobes between two
mainlobes; with n = 10 the BOC(5,1) modulations have eight sidelobes between two
mainlobes. In the case of n = 1, that is the case of BOC(fc/2, fc), Equations (3.90)
and (3.86) give the same power spectral density.

The new military M-codes will use BOC(10,5), which means the subcarrier fre-
quency and the spreading code rate will be 10.23 MHz and 5.115 MHz, respectively,
as well as quadraphase modulated, i.e., they share the same carrier with the civilian
signals.

3.3 GLONASS

The Russian Global’naya Navigatsionnaya Sputnikkovaya Sistema (GLONASS—
global navigation satellite system [GNSS]) system traces its beginnings to 1982, when
the first satellite of this navigation satellite system was launched. A time line of the
space segment is shown in Figure 3.12. The technical information about GLONASS
can be found in the interface control document GLONASS (1998). Additional details
on the system and its use, plus many references to relevant publications on the subject,
are available in Roßbach (2001).

Like GPS, GLONASS was planned to contain at least twenty-four satellites. The
nominal orbits of the satellites are in three orbital planes separated by 120°; the satel-
lites are equally spaced within each plane with nominal inclination of 64.8°. The
nominal orbits are circular with each radius being about 25,500 km. This translates
into an orbital period of about 11 hours and 15 minutes.
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Figure 3.12 Operational GPS and GLONASS satellites. (Data from various Internet
documents.)

A major difference between GLONASS and GPS is that each GLONASS satellite
transmits at its own carrier frequency. Let p denote the channel number that is specific
to the satellite, then

f
p

1 = 1602 + 0.5625p MHz (3.91)

f
p

2 = 1246 + 0.4375p MHz (3.92)

with

f
p

1

f
p

2

= 9

7
(3.93)

The original GLONASS signal structure used 1 ≤ p ≤ 24, covering a frequency
range in L1 from 1602.5625 MHz to 1615.5 MHz. However, receivers have an inter-
ference problem in the presence of mobile-satellite terminals that operate at the 1610
to 1621 MHz range. To avoid such interference, it has been suggested that channel
numbers will be limited to −7 ≤ p ≤ 13 and satellites located in antipodal slots of
the same orbital plane may transmit at the same frequency (GLONASS, 1998).

The L1 and L2 frequencies are coherently derived from common onboard fre-
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Figure 3.13 Power spectral densities.

quency, standard running at 5.0 MHz. In order to account for relativistic effects, this
value is adjusted to 4.99999999782 MHz. As is the case with GPS, there are C/A-
codes on L1 and P-codes on L1 and L2, although the code structures differ. The
satellite clocks are steered according to UTC(SU). The GLONASS satellite clocks,
therefore, are adjusted for leap seconds.

The GLONASS broadcast navigation message contains satellite positions and
velocities in the PZ90 ECEF geodetic system and accelerations due to luni-solar
attraction at epoch t0. These data are updated every 30 minutes and serve as ini-
tial conditions for orbital integration. The satellite ephemeris at the epoch tb with
|tb − t0| ≤ 15 min is calculated by numerical integration of the differential equations
of motion (3.69). Because the integration time is short, it is sufficient to consider a
simplified force model for the acceleration of the gravity field of the earth. Since the
gravitational potential of the earth is in first approximation rotationally symmetric,
the contributions of the tesseral harmonics m �= 0 are neglected in (3.71). Since
C̄20 
 C̄n0 for n > 2, we neglect the higher-order zonal harmonics. With these
simplifications the disturbing potential (3.71) becomes

R = µa2
e

r3
C̄20P̄2(cos θ) = µa2

e

r3
J2P2(cos θ)

= µa2
e

r3
J2

(
3

2
cos2 θ − 1

2

) (3.94)
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In Expression (3.94) we switched from the fully normalized spherical harmonic co-
efficients to regular ones and substituted the expression for the Legendre polynomial
P2(cos θ). Since Z = r cos θ, Equation (3.94) can be rewritten as:

R = µa2
e

r3
J2

(
3

2

Z2

r2
− 1

2

)
(3.95)

Recognizing that r = (X2 + Y 2 + Z2)1/2, we can readily differentiate and compute
the acceleration Ẍg as per (3.70)

Ẍ = − µ

r3
X − 3

2
J2

µa2
e

r5
X

(
1 − 5

Z2

r2

)
+ Ẍs+m (3.96)

Ÿ = − µ

r3
Y − 3

2
J2

µa2
e

r5
Y

(
1 − 5

Z2

r2

)
+ Ÿs+m (3.97)

Z̈ = − µ

r3
Z − 3

2
J2

µa2
e

r5
Z

(
1 − 5

Z2

r2

)
+ Z̈s+m (3.98)

These equations are valid in the inertial system (X) and could be integrated. The PZ90
reference system, however, is ECEF and rotates with the earth. It is possible to rewrite
these equations in the ECEF system (x). Since the integration interval is only ±15
min, we can neglect the change in precession, nutation, and polar motion and only
take the rotation of the earth around the z axis into consideration. The final form of
the satellite’s equations of motion then becomes:

ẍ = − µ

r3
x − 3

2
J2

µa2
e

r5
x

(
1 − 5

z2

r2

)
+ ω2

3x + 2ω3ẏ + ẍs+m (3.99)

ÿ = − µ

r3
y − 3

2
J2

µa2
e

r5
y

(
1 − 5

z2

r2

)
+ ω2

3y + 2ω3ẋ + ÿs+m (3.100)

z̈ = − µ

r3
z − 3

2
J2

µa2
e

r5
z

(
1 − 5

z2

r2

)
+ z̈s+m (3.101)

Note that (ẍ, ÿ, z̈)s+m are the accelerations of the sun and the moon given in the
PZ90 frame. These values are assumed constant when integrating over the ±15 min
interval. In order to maintain consistency, the values for µ, ae, J2, and ω3 should
be adopted from GLONASS (2002). This document recommends a four-step Runge-
Kutta method for integration.

Various international observation campaigns have been conducted to establish
accurate transformation parameters between WGS84 and PZ90, with respect to the
ITRF. Efforts are continuing to include the precise GLONASS ephemeris into the IGS
products.
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The most recent launch of three satellites as of this writing (summer 2002) took
place on December 1, 2001. The GLONASS program is also undergoing a modern-
ization. The new series of satellites is called GLONASS-M. The interface control
documents provide some information on the new (planned) features. The interested
reader is advised to consult the current literature to learn about ongoing developments
and the status of the GLONASS constellation.

Finally, GLONASS satellites have been used successfully for accurate baseline
determination since the mid-1990s (Leick et al., 1995). The additional difficulties
encountered in baseline processing because of GLONASS satellites transmitting on
different carrier frequencies will be discussed in Chapter 7. GLONASS observations
have primarily been used to supplement and strengthen GPS solutions. The improved
productivity when including extra GLONASS satellites is clearly noticeable and has
heightened the expectations among practitioners for the not-to-distance future when
more GLONASS satellites are available again, Galileo becomes available, and, in
general, the modernization of the systems has progressed.

3.4 GALILEO

On March 26, 2002, the European Council agreed on the launch of the European
Civil Satellite Navigation Program, called Galileo. Civilian European institutions
fund this program but complementary financing by public-private partnership is also
under consideration. Some of Galileo’s services might eventually be subject to a user
fee. The space segment is expected to consist of a global constellation of about thirty
satellites, distributed over three planes. The nominal orbits are expected to be circular,
with semimajor axes being close to those of GPS and GLONASS. Consult Galileo
(2002) for up-to-date information on this satellite system, in particular, regarding the
details of signal structure and the definition of the various services. The status of
Galileo as of fall 2002 can be found in Hein et al. (2002).

As can be seen from Figure 3.14, the Galileo E5A signals share the frequency band
with GPS L5. The adjacent region is reserved for Galileo E5B. At the World Radio
Conference (WRC) 2000 at Istanbul, Turkey, several decisions were made that deal

L5

E5A

E5B L2 G2 E6 L1 G1

E3 E4 E2 E1

1559 161013001164

Figure 3.14 Allocation of GPS, GLONASS, and Galileo frequency bands. GPS: L1, L2,
L5; GLONASS: G1, G2; Galileo: E1, E2, E3, E4, E5A, E5B, E6. The symbols E1, E2, E3, and
E4 indicate the location of very narrow bands.
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TABLE 3.7 GPS, GLONASS, and Galileo Carrier Frequencies

Carrier Multiple of 10.23 Carrier Frequency [MHz]

L5 & E5A 115 1176.45
E5B 117.5 1202.025 (tentatively)
L2 120 1227.60
G 2 see (3.92) per satellite
E6 125 1278.750
L1, E1-L1-E2 154 1575.42
G 1 see (3.91) per satellite

with the increasing demand for frequency space. For example, the WRC expanded the
bottom end of one of the radio navigation satellite services (RNSS) bands to between
1164 and 1260 MHz, putting E5A, E5B, and L5 under RNSS protection. Galileo
has also been assigned the range 1260 to 1300 MHz, labeled E6, at the lower L-band
region. At the upper L-band, two narrow bands, labeled E1 and E2, have been reserved
for Galileo adjacent to the GPS L1 band. Using BOC modulation techniques, it will
be possible to construct a Galileo signal that will have maximum spectral density at
E1 and E2 but cover the whole E1-L1-E2 band.

In order to make Galileo and GPS compatible, i.e., allow for the use of common
receiver components, the carrier frequency for the Galileo E1-L1-E2 will be 1575.42
MHz, which is the same as GPS L1. Similarly, E5A and L5 will use 1176.45 MHz as
the common carrier frequency.

The modulation (inhase and quadrahase) codes and chipping rate for the various
carriers must still be finalized. The remaining issues regarding frequency allocation
and signal structure are expected to be resolved at a future WRC. Whereas L5, E5, L1,
and G1 are within the ARNS bands the middle bands (L2, G2, and E6) currently do
not enjoy such a protected status. There is a potential for interference from joint tacti-
cal information distribution system (JTIDS), multifunctional information distribution
system (MIDS), distance measuring equipment (DME), and tactical air navigation
system (TACAN) that requires attention. Table 3.7 summarizes the location of the
carrier frequencies.
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CHAPTER 4

LEAST-SQUARES ADJUSTMENTS

Least-squares adjustment is a device for carrying out objective quality control of mea-
surements by processing sets of redundant observations according to mathematically
well-defined rules. The objectivity of least-squares quality control is especially useful
when depositing or exchanging observations. Least-squares solutions require redun-
dant observations, i.e., more observations are required than are necessary to deter-
mine a set of unknowns exactly. Details will be given as to what constitutes optimal
redundancy. This chapter contains compact but complete derivations of least-squares
algorithms.

First, the statistical nature of measurements is analyzed, followed by a discussion
of stochastic and mathematical models and the law of variance-covariance propa-
gation of random variables. The mixed adjustment model is derived in detail, and
the observation equation and the condition equation models are deduced from the
mixed model through appropriate specification. The cases of observed and weighted
parameters are presented as well. A special section is devoted to minimal and inner
constraint solutions and to those quantities that remain invariant with respect to a
change in minimal constraints. Whenever the goal is to perform quality control on
the observations, minimal or inner constraint solutions are especially relevant. Sta-
tistical testing is important for judging the quality of observations or the outcome of
an adjustment. A separate section deals with statistics in least-squares adjustments.
The chapter ends with a presentation of additional quality measures, such as inter-
nal and external reliability and blunder detection and a brief exposition of Kalman
filtering.

92
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4.1 ELEMENTS

Objective quality control of observations is necessary when dealing with any kind
of measurements such as angles, distances, pseudoranges, carrier phases, and the
geopotential. It is best to separate conceptually quality control of observations and
precision or accuracy of parameters. It is unfortunate that least-squares adjustment is
most often associated only with high-precision surveying. It may be as important to
discover and remove a 10 m blunder in a low-precision survey as a 1 cm blunder in a
high-precision survey.

Least-squares adjustment allows the combination of different types of observa-
tions (such as angles, distances, and height differences) into one solution and permits
simultaneous statistical analysis. For example, there is no need to treat traverses, in-
tersections, and resections separately. Since these geometric figures consist of angle
and distance measurements, the least-square rules apply to all of them, regardless of
the specific arrangements of the observations or the geometric shape they represent.

Least-squares adjustment simulation is a useful tool to plan a survey and to ensure
that accuracy specifications will be met once the actual observations have been made.
Simulations allow the observation selection to be optimized when alternatives exist.
For example, should one primarily measure angles or rely on distances? Considering
the available instrumentation, what is the optimal use of the equipment under the
constraints of the project? Experienced surveyors often answer these questions intu-
itively. Even in these cases, an objective verification using least-squares simulation
and the concept of internal and external reliability of networks is a welcome assurance
to those who carry responsibility for the project.

4.1.1 Statistical Nature of Surveying Measurement

Assume that a distance of 100 m is measured repeatedly with a tape that has cen-
timeter divisions. A likely outcome of these measurements could be 99.99, 100.02,
100.00, 100.01, etc. Because of the centimeter subdivision of the tape, the surveyor
is likely to record the observations to two decimal places. The result therefore is a
series of numbers ending with two decimal places. One could wrongly conclude that
this measurement process belongs to the realm of discrete statistics yielding discrete
outcomes with two decimal places. In reality, however, the series is given two decimal
places because of the centimeter division of the tape and the fact that the surveyor did
not choose to estimate the millimeters. Imagining a reading device that allows us to
read the tape to as many decimal places as desired, we readily see that the process of
measuring a distance belongs to the realm of continuous statistics. The same is true
for other types of measurements typically used in positioning. A classic textbook case
for a discrete statistical process is the throwing of a die in which case the outcome is
limited to integers.

When measuring the distance we recognize that any value xi could be obtained,
although experience tells us that values close to 100.00 are most likely. Values such
as 99.90 or 100.25 are very unlikely when measured with care. Assume that n
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measurements have been made and that they have been grouped into bins of length
∆x, with bin i containing ni observations. Graphing the bins in a coordinate system of
relative frequency ni/n versus xi gives the histogram. For surveying measurements,
the smoothed step function of the rectangular bins typically has a bell-like shape. The
maximum occurs around the sample mean. The larger the deviation from the mean,
the smaller the relative frequency, i.e., the probability that such a measurement will
actually be obtained. A goodness-of-fit test would normally confirm the hypothe-
sis that the observations have a normal distribution. Thus, the typical measurement
process in surveying follows the statistical law of normal distribution.

4.1.2 Elementary Statistical Concepts

Several concepts from statistics are required in least-squares adjustment. The follow-
ing is a partial listing of frequently used concepts and terminology:

• Observation: An observation, or a statistical event, is the outcome of a statistical
experiment, e.g., throwing a dice or measuring an angle or a distance.

• Random Variable: A random variable is the outcome of an event. The random
variable is denoted by a tilde. Thus, x̃ is a random variable and x̃ is a vector of
random variables. However, we will frequently not use the tilde to simplify the
notation when it is unambiguous which symbol represents the random variable.

• Population: The population is the totality of all events. It includes all possible
values that the random variable can have. The population is described by a finite
set of parameters, called the population parameters. The normal distribution,
e.g., describes such a population and is completely specified by the mean and
the variance.

• Sample: A sample is a subset of the population. For example, if the same distance
is measured ten times, then these ten measurements are a sample of all the
possible measurements.

• A statistic represents an estimate of the population parameters or functions of
these parameters. It is computed from a sample. For example, the ten measure-
ments of the same distance can be used to estimate the mean and the variance of
the normal distribution.

• Probability: Probability is related to the frequency of occurrence of a specific
event. Each value of the random variable has an associated probability.

• Probability Density Function: The probability density function relates the prob-
ability to the possible values of the random variable. If f (x) denotes the proba-
bility density function, then

P(a ≤ x̃ ≤ b) =
∫ b

a

f (x) dx (4.1)

is the probability that the random variable x̃ assumes a value in the interval [a, b].
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4.1.3 Observational Errors

Field observations are not perfect, and neither are the recordings and management of
observations. The measurement process suffers from several error sources. Repeated
measurements do not yield identical numerical values because of random measure-
ment errors. These errors are usually small, and the probability of a positive or a
negative error of a given magnitude is the same (equal frequency of occurrence). Ran-
dom errors are inherent in the nature of measurements and can never be completely
overcome. Random errors are dealt with in least-squares adjustment.

Systematic errors are errors that vary systematically in sign and/or magnitude.
Examples are a tape that is 10 cm too short or the failure to correct for vertical or lat-
eral refraction in angular measurement. Systematic errors are particularly dangerous
because they tend to accumulate. Adequate instrument calibration, care when observ-
ing, such as double centering, and observing under various external conditions help
avoid systematic errors. If the errors are known, the observations can be corrected
before making the adjustment; otherwise, one might attempt to model and estimate
these errors. Discovering and dealing with systematic errors requires a great deal of
experience with the data. Success is not at all guaranteed.

Blunders are usually large errors resulting from carelessness. Examples of blun-
ders are counting errors in a whole tape length, transposing digits when recording field
observations, continuing measurements after upsetting the tripod, and so on. Blun-
ders can largely be avoided through careful observation, although there can never
be absolute certainty that all blunders have been avoided or eliminated. Therefore,
an important part of least-squares adjustment is to discover and remove remaining
blunders in the observations.

4.1.4 Accuracy and Precision

Accuracy refers to the closeness of the observations (or the quantities derived from
the observations) to the true value. Precision refers to the closeness of repeated
observations (or quantities derived from repeated sets of observations) to the sample
mean. Figure 4.1 shows four density functions that represent four distinctly different
measurement processes of the same quantity. Curves 1 and 2 are symmetric with
respect to the true value xT . These measurements have a high accuracy, because the
sample mean coincides or is very close to the true value. However, the shapes of
both curves are quite different. Curve 1 is tall and narrow, whereas curve 2 is short
and broad. The observations of process 1 are clustered closely around the mean (true
value), whereas the spread of observations around the mean is larger for process 2.
Larger deviations from the true value occur more frequently for process 2 than for
process 1. Thus, process 1 is more precise than process 2; however, both processes
are equally accurate. Curves 3 and 4 are symmetric with respect to the sample mean
xS , which differs from the true value xT . Both sequences have equally low accuracy,
but the precision of process 3 is higher than that of process 4. The difference xT − xS

is caused by a systematic error. An increase in the number of observations does not
reduce this difference.
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Figure 4.1 Accuracy and precision.

4.2 STOCHASTIC AND MATHEMATICAL MODELS

Least-squares adjustment deals with two equally important components: the stochas-
tic model and the mathematical model. Both components are indispensable and con-
tribute to the adjustment algorithm (see Figure 4.2). We denote the vector of ob-
servation with �b, and the number of observations by n. The observations are ran-
dom variables; thus the complete notation for the n × 1 vector of observations is
�̃b. To simplify the notation, we do not use the tilde in connection with �b. The true
value of the observations, i.e., the means of the populations, are estimated from the
sample measurements. Since each observation belongs to a different population, the
sample size is usually 1. The variances of these distributions comprise the stochastic
model. It introduces information about the precision of the observations (or accuracy
if only random errors are present). The variance-covariance matrix Σ�b expresses the
stochastic model. In many cases, the observations are not correlated and the variance-
covariance matrix is diagonal. Occasionally, when so-called derived observations are
used which are the outcome from a previous adjustment, or when linear combina-
tions of original observations are adjusted, the variance-covariance matrix contains
off-diagonal elements. Because in surveying the observations are normal distributed,
the vector of observations has a multivariate normal distribution. We use the notation

�b ∼ N
(
�T , Σ�b

)
(4.2)

where �T is the vector mean of the population. The cofactor matrix of the observations
Q�b

and the weight matrix P are defined by

Q�b
= 1

σ2
0

Σ�b
(4.3)

P = Q−1
�b

= σ2
0 Σ−1

�b
(4.4)
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Figure 4.2 Elements of least-squares adjustment.

Typically we do not use a subscript to identify P as the weight matrix of the observa-
tions. The symbol σ2

0 denotes the a priori variance of unit weight. It relates the weight
matrix and the inverted covariance matrix. An important capability of least-squares
adjustment is the estimation of σ2

0 from observations. We denote that estimate by σ̂
2
0

and it is the a posteriori variance of unit weight. If the a priori and a posteriori vari-
ances of unit weight are statistically equal, the adjustment is said to be correct. More
on this fundamental statistical test and its implications will follow in later sections.
In general, the a priori variance of unit weight σ2

0 is set to 1; i.e., the weight matrix is
equated with the inverse of the variance-covariance matrix of the observations. The
term variance of unit weight is derived from the fact that if the variance of an obser-
vation equals σ2

0, then the weight for this observation equals unity. The special cases
that P equals the identify matrix, P = I, frequently allow a simple and geometrically
intuitive interpretation of the minimization.

The mathematical model expresses a simplification of existing physical reality.
It attempts to express mathematically the relations between observations and pa-
rameters (unknowns) such as coordinates, heights, and refraction coefficients. Least-
squares adjustment is a very general tool that can be used whenever a relationship
between observations and parameters has been established. Even though the math-
ematical model is well known for many routine applications, there are always new



98 LEAST-SQUARES ADJUSTMENTS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[98

Lin

—
0.0
——
Nor

PgE

[98

cases that require a new mathematical model. Finding the right mathematical model
can be a challenge.

Much research has gone into establishing a mathematical formulation that is gen-
eral enough to deal with all types of globally distributed measurement in a unified
model. The collection of observations might include distances, angles, heights, grav-
ity anomalies, gravity gradients, geopotential differences, astronomical observations,
and GPS observations. The mathematical models become simpler if one does not deal
with all types of observations at the same time but instead uses additional external
information. See Chapter 2 for a detailed discussion on the 3D geodetic model.

A popular approach is to reduce (modify) the original observations to be compat-
ible with the mathematical model. These are the model observations. For example, if
measured vertical angles are used, the mathematical model must include refraction
parameters. On the other hand, the original measurements can be corrected for re-
fraction using an atmospheric refraction model. The thus reduced observations refer
to a simpler model that does not require refraction parameters. The more reductions
are applied to the original observation, the less general the respective mathematical
model is. The final form of the model also depends on the purpose of the adjustment.
For example, if the objective is to study refraction, one needs refraction parameters
in the model. In surveying applications where the objective typically is to determine
location, one prefers not to deal with refraction parameters explicitly. The relation
between observations and parameterization is central to the success of estimation
and at times requires much attention.

In the most general case, the observations and the parameters are related by an
implicit nonlinear function:

f (xa, �a) = o (4.5)

This is the mixed adjustment model. The subscript a is to be read as “adjusted.” The
symbol �a denotes the n×1 vector of adjusted observations, and the vector xa contains
u adjusted parameters. There are r nonlinear mathematical functions in f . Often the
observations are explicitly related to the parameters, such as in

�a = f (xa) (4.6)

This is the observation equation model. A further variation is the absence of any
parameters as in

f (�a) = o (4.7)

This is the condition equation model.
The application usually dictates which model might be preferred. Selecting an-

other model might require a mathematically more involved formulation. In the case
of a leveling network, e.g., the observation equation model and the condition equation
model can be applied with equal ease.

The observation equation model has the major advantage in that each observation
adds one equation. This allows the observation equation model to be implemented
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relatively easily and generally in software. One does not have to identify independent
loop closures, etc.

Figure 4.2 indicates some of the outcomes from the adjustment. Statistical tests
are available to verify the acceptance of the adjustment or aid in discovering and
removing blunders. The adjustment provides probability regions for the estimated
parameters and allows variance-covariance propagation to determine functions of the
estimated parameters and the respective standard deviations. Of particular interest is
the ability of the least-squares adjustment to perform internal and external reliability
analysis, in order to quantify marginally detectable blunders and to determine their
potential influence on the estimated parameters.

Statistical concepts enter the least-squares adjustment in two distinct ways. The
actual least-squares solution merely requires the existence of the variance-covariance
matrix; there is no need to specify a particular distribution for the observations. If
statistical tests are required, then the distribution of the observations must be known.
In most cases, one indeed desires to carry out some statistical testing.

4.3 VARIANCE-COVARIANCE PROPAGATION

The purpose of variance-covariance propagation is to compute the variances and
covariances of linear functions of random variables. Nonlinear functions must first be
linearized. Variance-covariance propagation is applicable to single random variables
or to vectors of random variables.

Probability Density and Accumulative Probability For f (x) to be a proba-
bility function of the random variable x̃, it has to fulfill certain conditions. First, f (x)

must be a nonnegative function, because there is always an outcome of an experiment;
i.e., the observation can be positive, negative, or even zero. Second, the probability
that a sample (observation) is one of all possible outcomes should be 1. Thus the
density function f (x) must fulfill the following conditions:

f (x) ≥ 0 (4.8)

∫ ∞

−∞
f (x) dx = 1 (4.9)

The integration is taken over the whole range (population) of the random variable.
Conditions (4.8) and (4.9) imply that the density function is zero at minus infinity
and plus infinity. The probability

P(x̃ ≤ x) = F(x) =
∫ x

−∞
f (t) dt (4.10)

is called the cumulative distribution function. It is a nondecreasing function because
of condition (4.8).
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Mean The mean, also called the expected value of a continuously distributed ran-
dom variable, is defined as

µx = E(x̃) =
∫ ∞

−∞
x f (x) dx (4.11)

The mean is a function of the density function of the random variable. The integration
is extended over the whole population. Equation (4.11) is the analogy to the weighted
mean in the case of discrete distributions.

Variance The variance is defined by

σ2
x = E

(
x̃ − µx

)2 =
∫ ∞

−∞

(
x − µx

)2
f (x) dx (4.12)

The variance measures the spread of the probability density in the sense that it
gives the expected value of the squared deviations from the mean. A small variance
therefore indicates that most of the probability density is located around the mean.

Multivariate Distribution Any function f (x1, x2, . . . , xn) of n continuous vari-
ables x̃i can be a joint density function provided that

f (x1, x2, . . . , xn) ≥ 0 (4.13)

∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x1, x2, . . . , xn) dx1 · · · dxn = 1 (4.14)

It follows as a natural extension from (4.10) that

P(x̃1 < a1, . . . , x̃n < an) =
∫ a1

−∞
· · ·
∫ an

−∞
f (x1, x2, . . . , xn) dx1 · · · dxn (4.15)

The marginal density of a subset of random variables (x1, x2, . . . , xp) is

g
(
x1, x2, . . . , xp

) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x1, x2, . . . , xn) dxp+1 dxp+2 · · · dxn (4.16)

Stochastic Independence The concept of stochastic independence is required
when dealing with multivariate distributions. Two sets of random variables, (x̃1, . . . ,

x̃p) and (x̃p+1, . . . , x̃n), are stochastically independent if the joint density function
can be written as a product of the two respective marginal density functions, e.g.,

f (x1, x2, . . . , xn) = g1
(
x1, x2, . . . , xp

)
g2
(
xp+1, xp+2, . . . , xn

)
(4.17)

Vector of Means The expected value for the individual parameter xi is
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µxi
= E(x̃i) =

∫ ∞

−∞
. . .

∫ ∞

−∞
xif (x1, x2, . . . , xn) dx1 dx2 · · · dxn (4.18)

In vector notation the expected values of all parameters are

E(x̃) = [E(x̃1) · · · E(x̃n)
]T

(4.19)

Variance The variance of an individual parameter is given by

σ2
xi

= E
(
x̃i − µxi

)2 =
∫ ∞

−∞
· · ·
∫ ∞

−∞

(
xi − µxi

)2
f (x1, x2, . . . , xn) dx1 · · · dxn

(4.20)

Covariance For multivariate distributions, another quantity called the covariance
becomes important. The covariance describes the statistical relationship between two
random variables. The covariance is

σxi ,xj
= E

[(
xi − µxi

)(
xj − µxj

)]

=
∫ ∞

−∞
· · ·
∫ ∞

−∞

(
xi − µxi

) (
xj − µxj

)
f (x1, x2, . . . , xn) dx1 · · · dxn

(4.21)

Whereas the variance is always larger than or equal to zero, the covariance can be
negative, positive, or even zero.

Correlation Coefficients The correlation coefficient of two random variables is
defined as

ρxi ,xj
=

E
[(

x̃i − µxi

) (
x̃j − µxj

)]

σxi
σxj

= σxi ,xj

σxi
σxj

(4.22)

Therefore, the correlation coefficient equals the covariance divided by the respective
standard deviations. An important property of the correlation coefficient is that

−1 ≤ ρxi ,xj
≤ 1 (4.23)

If two random variables are stochastically independent, then the covariance (and thus
the correlation coefficient) is zero. By making use of (4.17) for the density function
of stochastically independent random variables, we can write (4.21) as

σxi ,xj
=
∫ ∞

−∞

∫ ∞

−∞

(
xi − µxi

) (
xj − µxj

)
gi(xi)gj (xj ) dxi dxj

=
∫ ∞

−∞

(
xi − µxi

)
gi(xi) dxi

∫ ∞

−∞

(
xj − µxj

)
gj (xj ) dxj (4.24)
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These integrals are zero because of the definition of the mean. The converse, i.e., zero
correlation, implies stochastic independence is valid only for the multivariate normal
distribution.

Variance-Covariance Matrix Equations (4.20) and (4.21) can be used to com-
pute the variances and covariances for all components in the random vector x̃. Arrang-
ing the result in the form of a matrix yields the variance-covariance matrix. Thus, for
the random vector

x̃ − µx = [x̃1 − µx1
· · · x̃n − µxn

]T
(4.25)

the (n × n) variance-covariance matrix becomes

Σx = E
[(

x̃ − µx

) (
x̃ − µx

)T] =




σ2
x1

σx1,x2 · · · σx1,xn

· · · σx2,xn

. . .
...

sym σ2
xn




(4.26)

The variance-covariance matrix is symmetric because of (4.21). The expectation
operator E is applied to each matrix element. The variance-covariance matrix is
simply called the covariance matrix for the sake of brevity. The correlations are
computed according to Equation (4.22) and can be arranged in the same order. Thus,
the correlation matrix is

C =




1 ρx1,x2
· · · ρx1,xn

· · · ρx2,xn

. . .
...

sym 1




(4.27)

The correlation matrix is symmetric, the diagonal elements equal 1, and the off-
diagonal elements are between −1 and +1.

Propagation Usually we are more interested in a linear function of the random
variables than in the random variables themselves. Typical examples are the adjusted
coordinates used to compute distances and angles. From the definition of the mean
(4.11), it follows that for a constant c

E(c) = c

∫ ∞

−∞
f (x) dx = c (4.28)

and
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E(cx̃) = cE(x̃) (4.29)

The expected value (mean) of a constant equals the constant. Because the mean is a
constant, it follows that

E
[
E(x̃)

] = µx (4.30)

Relations (4.28) and (4.29) also hold for multivariate density functions, as can be seen
from (4.18). Let ỹ = x̃1 + x̃2 be a linear function of random variables, then

E(x̃1 + x̃2) =
∫ ∞

−∞

∫ ∞

−∞
(x1 + x2) f (x1, x2) dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
x1f (x1, x2) dx1 dx2 +

∫ ∞

−∞

∫ ∞

−∞
x2f (x1, x2) dx1 dx2

= E(x̃1) + E(x̃2) (4.31)

Thus, the expected value of the sum of two random variables equals the sum of the
individual expected values. By combining (4.28) and (4.31), we can compute the
expected value of a general linear function of random variables. Thus, if the elements
of the n × u matrix A and the n × 1 vector a0 are constants and

ỹ = a0 + Ax̃ (4.32)

then the expected value is

E (ỹ) = a0 + AE(x̃) (4.33)

This is the law for propagating the mean. The law of variance-covariance propagation
is as follows:

Σy ≡ E
[(

ỹ − µy

) (
ỹ − µy

)T]

= E
{[

ỹ − E(ỹ)
] [

ỹ − E(ỹ)
]T}

= E
{[

ỹ − a0 − AE(x̃)
] [

ỹ − a0 − AE(x̃)
]T}

= E
{
[Ax̃ − AE(x̃)] [Ax̃ − AE(x̃)]T}

= AE
{
[x̃ − E(x̃)] [x̃ − E(x̃)]T}AT

= AΣxAT

(4.34)

The first line in Expression (4.34) is the general expression for the variance-covariance
matrix of the random variable ỹ according to definition (4.26); µy is the expected
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value of ỹ. The third line follows by substituting (4.33) for the expected value of ỹ.
Equation (4.32) has been substituted in the third line for ỹ, and, finally, the A matrix
has been factored out. Thus the variance-covariance matrix of the random variable ỹ
is obtained by pre- and postmultiplying the variance-covariance matrix of the original
random variable x̃ by the coefficient matrix A and its transpose. The constant term
a0 cancels. This is the law of variance-covariance propagation for linear functions of
random variables. The covariance matrix Σy is a full matrix in general.

For later reference, the expression for the covariance matrix (4.26) can be rewritten
as

Σx = E
[(

x̃ − µx

) (
x̃ − µx

)T]

= E
[
x̃ x̃T − µxµ

T
x

] (4.35)

4.4 MIXED ADJUSTMENT MODEL

To simplify the notation, the tilde will not be used in this section to identify random
variables. Observations or functions of observations are always random variables. A
caret is used to identify quantities estimated by least-squares, i.e., those quantities that
are a solution of a specific minimization. Caret quantities are always random variables
because they are functions of observations. To simplify the notation even further, the
caret symbol is used consistently only in connection with the parameters x.

In the mixed adjustment model, the observations and the parameters are implicitly
related. If �a denotes the vector of n adjusted observations and xa denotes u adjusted
parameters (unknowns), the mathematical model is given by

f (�a, xa) = o (4.36)

The total number of equations in (4.36) is denoted by r . The stochastic model is

P = σ2
0 Σ−1

�b
(4.37)

where P denotes the n × n weight matrix, and Σ�b
denotes the covariance matrix

of the observations. The objective is to estimate the parameters. It should be noted
that the observations are stochastic (random) variables and that the parameters are
deterministic quantities. The parameters exist, but their values are unknown. The
estimated parameters, however, will be functions of the observations and therefore
random variables.

4.4.1 Linearization

If we let x0 denote a vector of known approximate values of the parameters, then the
parameter corrections x are
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x = xa − x0 (4.38)

If �b denotes the vector of observations, then the residuals are defined by

v = �a − �b (4.39)

With (4.38) and (4.39) the mathematical model can be written as

f (�b + v, x0 + x) = o (4.40)

The nonlinear mathematical model is linearized around the known point of expansion
(�b, x0), giving

rBn nv1 + rAu ux1 + rw1 = ro1 (4.41)

where

B = ∂f
∂�

∣∣∣∣
x0,�b

(4.42)

A = ∂f
∂x

∣∣∣∣
x0,�b

(4.43)

w = f (�b, x0) (4.44)

See Appendix A for linearization of multivariable functions. The coefficient matrices
must be evaluated at the point of expansion, which consists of observations and ap-
proximate parameters. The discrepancies w must be evaluated for the same point of
expansion. The better the approximate values x0, the smaller the parameter correc-
tions x.

4.4.2 Minimization and Solution

The least-squares estimate x̂ is based on the minimization of the function vTPv. A so-
lution is obtained by introducing a vector of Lagrange multipliers, k, and minimizing
the function

φ(v, k, x) = vTPv − 2kT(Bv + Ax + w) (4.45)

Equation (4.45) is a function of three variables, namely, v, k, and x. A necessary
condition for the minimum is that the partial derivatives must be zero. It can be readily
shown that this condition is also sufficient. Differentiating (4.45) following the rules
of Appendix A and setting the partial derivatives to zero gives

1

2

∂φ

∂v
= Pv̂ − BTk̂ = o (4.46)



106 LEAST-SQUARES ADJUSTMENTS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[10

Lin

—
* 15

——
Lon

PgE

[10

1

2

∂φ

∂k
= Bv̂ + Ax̂ + w = o (4.47)

1

2

∂φ

∂x
= −AT k̂ = o (4.48)

The solution of (4.46) to (4.48) starts with the recognition that P is a square matrix
and can be inverted. Thus, the expression for the residuals follows from (4.46):

v̂ = P−1BTk̂ (4.49)

Substituting (4.49) into (4.47), we obtain the solution for the Lagrange multiplier:

k̂ = −M−1(Ax̂ + w) (4.50)

with

rMr = rBn nP−1
n nBT

r (4.51)

Finally, the estimate x̂ follows from (4.48) and (4.50)

x̂ = − (ATM−1A
)−1

ATM−1w (4.52)

The estimates x̂ and v̂ are independent of the a priori variance of unit weight. The
first step is to compute the parameters x̂ from (4.52), then the Lagrange multipliers k̂
from (4.50), followed by the residuals v̂ (4.49). The adjusted parameters and adjusted
observations follow from (4.38) and (4.39).

The caret symbol in v̂, k̂, and x̂ indicates that all three estimated values follow from
minimizing of vTPv. However, as stated earlier, the caret is only used consistently for
the estimated parameters x̂ in order to simplify the notation.

4.4.3 Cofactor Matrices

Equation (4.44) shows that w is a random variable because it is a function of the
observation �b. With (4.37), the law of variance-covariance propagation (4.34), and
the use of B in (4.42), the cofactor matrix Qw becomes

Qw = BP−1BT = M (4.53)

From (4.53) and (4.52) it follows that

Qx = (ATM−1A
)−1

(4.54)

Combining (4.49) through (4.52) the expression for the residuals becomes

v = [P−1BTM−1A
(
ATM−1A

)−1
ATM−1 − P−1BTM−1

]
w (4.55)
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It follows from the law of variance propagation (4.34) and (4.53) that

Qv = P−1BT M−1
[
M − A

(
AT M−1A

)−1
AT
]
M−1BP−1 (4.56)

The adjusted observations are

�a = �b + v

= �b + [P−1BT M−1A
(
AT M−1A

)−1
AT M−1 − P−1BT M−1

]
w

(4.57)

Because

∂�a

∂�b
= I + P−1BT M−1A

(
AT M−1A

)−1
AT M−1B − P−1BT M−1B (4.58)

it follows that

Q�a
= Q�b

− Qv (4.59)

where the inverse of P has been replaced by Q�b
according to (4.4)

4.4.4 A Posteriori Variance of Unit Weight

The minimum of vTPv follows from (4.49), (4.50), and (4.52) as

vTPv = wT
[
M−1 − M−1A

(
AT M−1A

)−1
AT M−1]w (4.60)

The expected value of this random variable is

E
(
vTPv

) = E
(
Tr vTPv

)

= E
{

Tr
[
wT
(
M−1 − M−1A

(
AT M−1A

)−1
AT M−1

)
w
]}

= E
{

Tr
[(

M−1 − M−1A
(
AT M−1A

)−1
AT M−1

)
wwT
]}

= Tr
{[

M−1 − M−1A
(
AT M−1A

)−1
AT M−1

]
E
(
wwT
)}

(4.61)

The trace (Tr) of a matrix equals the sum of its diagonal elements. In the first part
of (4.61), the property that the trace of a 1 × 1 matrix equals the matrix element
itself is used. Next, the matrix products are switched, leaving the trace invariant. In
the last part of the equation, the expectation operator and the trace are switched. The
expected value E(wwT) can be readily computed. Per definition, the expected value
of the residuals

E(v) = o (4.62)



108 LEAST-SQUARES ADJUSTMENTS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[10

Lin

—
2.7
——
Lon

PgE

[10

is zero because the residuals represent random errors for which positive and negative
errors of the same magnitude occur with the same probability. It follows from (4.41)
that

E(w) = −Ax (4.63)

Note that x in (4.63) or (4.41) is not a random variable. In this expression, x simply
denotes the vector of unknown parameters that have fixed values, even though the
values are not known. The estimate x̂ is a random variable because it is a function of
the observations. By using (4.35) for the definition of the covariance matrix (4.53)
and using (4.63), it follows that

E
(
wwT
) = Σw + E(w)E(w)T

= σ2
0 M + AxxT AT

(4.64)

Substituting (4.64) into (4.61) yields the expected value for vT Pv:

E
(
vTPv

) = σ2
0 Tr
{

rIr − M−1A
(
AT M−1A

)−1
AT
}

= σ2
0 (r − u)

(4.65)

The difference r − u is called the degree of freedom and equals the number of
redundant equations in the model (4.36). Strictly, the degree of freedom is r − R(A)

because the second matrix in (4.65) is idempotent. The symbol R(A) denotes the rank
of the matrix A. The a posteriori variance of unit weight is computed from

σ̂
2
0 = v̂T Pv̂

r − u
(4.66)

Using (4.65), we see that

E
(
σ̂

2
0

)
= σ2

0 (4.67)

The expected value of the a posteriori variance of unit weight equals the a priori
variance of unit weight.

Finally, the estimated covariance matrices are

Σx = σ̂
2
0 Qx (4.68)

Σv = σ̂
2
0 Qv (4.69)

Σ�a
= σ̂

2
0 Q�a

(4.70)

With Equation (4.59) it follows that

Σ�a
= Σ�b

− Σv (4.71)
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Because the diagonal elements of all three covariance matrices in (4.71) are positive,
it follows that the variances of the adjusted observations are smaller than those of the
original observations. The difference is a function of the geometry of the adjustment,
as implied by the covariance matrix Σv .

4.4.5 Iterations

Because the mathematical model is generally nonlinear, the least-squares solution
must be iterated. Recall that (4.36) is true only for (�a, xa). Since neither of these
quantities is known before the adjustment, the initial point of expansion is chosen as
(�b, x0). For the ith iteration, the linearized model can be written

Bx0i ,�0i
v̄i + Ax0i ,�0i

xi + wx0i ,�0i
= o (4.72)

where the point of expansion (�0i , x0i ) represents the previous solution. The symbols
�ai and xai denote the adjusted observations and adjusted parameters for the current
(ith) solution. They are computed from

v̄i = �ai − �0i (4.73)

xi = xai − x0i (4.74)

once the least-squares solution of (4.72) has been obtained. The iteration starts with
�01 = �b and x01 = x0. If the adjustment converges properly, then both v̄i and
xi converge to zero, or, stated differently, �ai and xai converge toward �a and xa ,
respectively. The quantity v̄i does not equal the residuals. The residuals express the
random difference between the adjusted observations and the original observations
according to Equation (4.39). Defining

vi = �ai − �b (4.75)

it follows from (4.73) that

v̄i = vi + (�b − �0i ) (4.76)

Substituting this expression into (4.72) gives

Bx0i ,�01
vi + Ax0i ,�01

xi + wx0i ,�01
+ Bx0i ,�01

(�b − �0i ) = o (4.77)

The formulation (4.77) assures that the vector vi converges toward the vector of
residuals v. The last term in (4.77) will be zero for the first iteration when �0i = �b.
The iteration has converged if

∣∣vTPvi − vTPvi−1

∣∣ < ε (4.78)

where ε is a small positive number.
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4.5 OBSERVATION AND CONDITION EQUATION MODELS

Often there is an explicit relationship between the observations and the parameters,
such as

�a = f(xa) (4.79)

This is the observation equation model. Comparing both mathematical models (4.36)
and (4.79), and taking the definition of the matrix B (4.42) into account, we see that
the observation equation model follows from the mixed model using the specification

B ≡ −I (4.80)

� ≡ w = f(x0) − �b = �0 − �b (4.81)

It is customary to denote the discrepancy by � instead of w when dealing with the
observation equation model. The symbol �0 equals the value of the observations
as computed from the approximate parameters x0. The point of expansion for the
linearization is x0; the observation vector is not involved in the iteration because of
the explicit form of (4.79). The linearized equations

nv1 = nAu ux1 + n�1 (4.82)

are the observation equations. There is one equation for each observation in (4.82).
If the observations are related by a nonlinear function without use of parameters,

we speak of the condition equation model. It is written as

f(�a) = o (4.83)

By comparing this with the mixed model (4.36), and applying the definition of the A
matrix (4.43) we see that the condition equation model follows upon the specification

A = O (4.84)

The linear equations

rBn nv1 + rw1 = o (4.85)

are called the condition equations. The iteration for the model (4.85) is analogous to a
mixed model with the added simplification that there is no A matrix and no parameter
vector x.

The significance of these three models (observation, condition, and mixed) is that
a specific adjustment problem can usually be formulated more easily in one of the
models. Clearly, that model should be chosen. There are situations in which it is
equally easy to use any of the models. A typical example is the adjustment of a level
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TABLE 4.1 Three Adjustment Models

Mixed Model Observation Model Condition Model

Nonlinear model f (�a, xa) = o �a = f (xa) f (�a) = o

Specifications B = −I, � = w, A = O
r = n

Linear model Bv + Ax + w = o v = Ax + � Bv + w = o

Normal equation M = BP−1BT M = P−1

elements N = AT M−1A N = AT PA M = BP−1BT

u = AT M−1w u = AT P�

Normal equations Nx̂ = −u Nx̂ = −u

Minimum vTPv vTPv = −uT N−1u + wT M−1w vTPv = −uT N−1u + �T P� vTPv = wT M−1w

Estimated parameters x̂ = −N−1u x̂ = −N−1u —

Estimated residuals v̂ = P−1BT k̂ v̂ = Ax̂ + � v̂ = P−1BT k̂

Estimated variance
σ̂

2
0 = v̂T Pv̂

r − u
σ̂

2
0 = v̂T Pv̂

n − u
σ̂

2
0 = v̂T Pv̂

rof unit weight

Estimated parameter Qx = N−1 Qx = N−1 —
cofactor matrix

Estimated residual
Qv = P−1BT M−1

(
M − AN−1AT

)
M−1BP−1 Qv = P−1 − AN−1AT Qv = P−1BT M−1BP−1

cofactor matrix

Adjusted observation
Q�a

= Q�b
− Qv Q�a

= Q�b
− Qv Q�a

= Q�b
− Qvcofactor matrix
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network. Most of the time, however, the observation equation model is preferred,
because the simple rule “one observation, one equation” is suitable for setting up
general software. Table 4.1 lists the important expressions for all three models.

4.6 SEQUENTIAL SOLUTION

Assume that observations are made in two groups, with the second group consisting
of one or several observations. Both groups have a common set of parameters. The
two mixed adjustment models can be written as

f1 (�1a, xa) = o (4.86)

f2 (�2a, xa) = o (4.87)

Both sets of observations should be uncorrelated, and the a priori variance of unit
weight should be the same for both groups; i.e.,

P =
[

P1 O

O P2

]
= σ2

0

[
Σ−1

1 O

O Σ−1
2

]
(4.88)

The number of observations in �1a and �2a are n1 and n2, respectively; and r1 and r2

are the number of equations in the models f1 and f2, respectively. The linearization
of (4.86) and (4.87) yields

B1v1 + A1x + w1 = o (4.89)

B2v2 + A2x + w2 = o (4.90)

where

B1 = ∂f1

∂�1

∣∣∣∣
�1b,x0

A1 = ∂f1

∂x

∣∣∣∣
�1b,x0

w1 = f1(�1b, x0)

B2 = ∂f2

∂�2

∣∣∣∣
�2b,x0

A2 = ∂f2

∂x

∣∣∣∣
�2b,x0

w2 = f2(�2b, x0)




(4.91)

The function to be minimized is

φ
(
v1, v2, k1, k2, x

) = vT
1 P1v1 + vT

2 P2v2 − 2kT
1

(
B1v1 + A1x + w1

)

− 2kT
2

(
B2v2 + A2x + w2

) (4.92)

The solution is obtained by setting the partial derivatives of (4.92) to zero,
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1

2

∂φ

∂v1
= P1v1 − BT

1 k1 = o (4.93)

1

2

∂φ

∂v2

= P2v2 − BT
2 k2 = o (4.94)

1

2

∂φ

∂x
= −AT

1 k1 − AT
2 k2 = o (4.95)

1

2

∂φ

∂k1

= B1v1 + A1x̂ + w1 = o (4.96)

1

2

∂φ

∂k2

= B2v2 + A2x̂ + w2 = o (4.97)

and solving for v1, v2, k1, k2 and x. Equations (4.93) and (4.94) give the residuals

v1 = P−1
1 BT

1 k1 (4.98)

v2 = P−1
2 BT

2 k2 (4.99)

Combining (4.98) and (4.96) yields

M1k1 + A1x̂ + w1 = o (4.100)

where

M1 = B1P−1
1 BT

1 (4.101)

is an r1 × r1 symmetric matrix. The Lagrange multiplier becomes

k1 = −M−1
1 A1x̂ − M−1

1 w1 (4.102)

Equations (4.95) and (4.97) become, after combination with (4.102) and (4.99),

AT
1 M−1

1 A1 x̂ + AT
1 M−1

1 w1 − AT
2 k2 = o (4.103)

B2P−1
2 BT

2 k2 + A2x̂ + w2 = o (4.104)

By using

M2 = B2P−1
2 BT

2 (4.105)

we can write both Equations (4.103) and (4.104) in matrix form:
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[
AT

1 M−1
1 A1 AT

2

A2 −M2

][
x̂

−k2

]
=
[

−AT
1 M−1

1 w1

−w2

]
(4.106)

Equation (4.106) shows how the normal matrix of the first group must be augmented
in order to find the solution of both groups. The whole matrix can be inverted in one
step to give the solution for x̂ and k2. Alternatively, one can compute the inverse using
the matrix partitioning techniques of Section A.3.5, giving

x̂ = −Q11AT
1 M−1

1 w1 − Q12w2 (4.107)

k2 = Q21AT
1 M−1

1 w1 + Q22w2 (4.108)

Setting

N1 = AT
1 M−1

1 A1 (4.109)

N2 = AT
2 M−1

2 A2 (4.110)

then

Qx ≡ Q11 = (N1 + N2

)−1 = N−1
1 − N−1

1 AT
2

[
M2 + A2N−1

1 AT
2

]−1
A2N−1

1 (4.111)

Q12 = QT
21 = N−1

1 AT
2

[
M2 + A2N−1

1 AT
2

]−1
(4.112)

Q22 = − [M2 + A2N−1
1 AT

2

]−1
(4.113)

Substituting Q11 and Q12 into (4.107) gives the sequential solution for the param-
eters. We denote the solution of the first group by an asterisk and the contribution of
the second group by ∆. In that notation, the estimated parameters of the first group
are denoted by x̂∗, which is simplified to x∗. Thus,

x̂ = x∗ + ∆x (4.114)

Comparing (4.107) and (4.52) the sequential solution becomes

x∗ = −N−1
1 AT

1 M−1
1 w1 (4.115)

and

∆x = −N−1
1 AT

2

[
M2 + A2N−1

1 AT
2

]−1 (
A2x∗ + w2

)
(4.116)

Similarly, the expression for the Lagrange multiplier k2 is

k2 = − [M2 + A2N−1
1 AT

2

]−1 (
A2x∗ + w2

)
(4.117)
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A different form for the solution of the augmented system (4.106) is obtained by
using alternative relations of the matrix partitioning inverse Expressions (A.82) to
(A.89). It follows readily that

x̂ = − (N1 + N2

)−1 (
AT

1 M−1
1 w1 + AT

2 M−1
2 w2

)

= − (N1 + N2

)−1 (−N1x∗ + AT
2 M−1

2 w2

)

= x∗ − (N1 + N2)
−1
(
N2x∗ + AT

2 M−1
2 w2

)
(4.118)

The procedure implied by the first line in (4.118) is called the method of adding
normal equations. The contributions of the new observations are simply added ap-
propriately.

The cofactor matrix Qx of the parameters can be written in sequential form as

Qx = Qx∗ − Qx∗AT
2

[
M2 + A2Qx∗AT

2

]−1
A2Qx∗

= Qx∗ + ∆Qx

(4.119)

Qx∗ is the cofactor matrix of the first group of observations and equals N−1
1 . The

contribution of the second group of observations to the cofactor matrix is

∆Qx = −Qx∗AT
2

[
M2 + A2Qx∗AT

2

]−1
A2Qx∗ (4.120)

The change ∆Qx can be computed without having the actual observations of the
second group. This is relevant in simulation studies.

The computation of vT Pv proceeds as usual

vTPv = vT
1 P1v1 + vT

2 P2v2

= −kT
1 w1 − kT

2 w2

(4.121)

The second part of (4.121) follows from (4.95) to (4.99). Using (4.102) for k1, (4.114)
for x̂, (4.116) for ∆x, and (4.117) for k2, then the sequential solution becomes

vTPv = vTPv∗ + ∆vTPv

= vTPv∗ + (A2x∗ + w2

)T [
M2 + A2N−1

1 AT
2

]−1 (
A2x∗ + w2

) (4.122)

with vTPv∗ being obtained from (4.60) for the first group only.
The a posteriori variance of unit weight is computed in the usual way:

σ̂
2
0 = vTPv

r1 + r2 − u
(4.123)

where r1 and r2 are the number of equations in (4.86) and (4.87), respectively. The
letter u denotes, again, the number of parameters.
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The second set of observations contributes to all residuals. From (4.98), (4.102),
and (4.114) we obtain

v1 = v∗
1 + ∆v1

= −P−1
1 BT

1 M−1
1

(
A1x∗ + w1

)− P−1
1 BT

1 M−1
1 A1∆x

(4.124)

The expression for v2 follows from Equations (4.99) and (4.117):

v2 = −P−1
2 BT

2 T
(
A2x∗ + w2

)
(4.125)

where

T = (M2 + A2N−1
1 AT

2

)−1
(4.126)

The cofactor matrices for the residuals follow, again, from the law of variance-
covariance propagation. The residuals v1 are a function of w1 and w2, according to
(4.124). Substituting the expressions for x∗ and ∆x, we obtain, from (4.124)

∂v1

∂w1
= −P−1

1 BT
1 M−1

1

(
I − A1N−1

1 AT
1 M−1

1 + A1N−1
1 AT

2 TA2N−1
1 AT

1 M−1
1

)
(4.127)

∂v1

∂w2
= −P−1

1 BT
1 M−1

1 A1N−1
1 AT

2 T (4.128)

Applying the law of covariance propagation to w1 and w2 of (4.91) and knowing that
the observations are uncorrelated gives

Qw1,w2 =
[

M1 O

O M2

]
(4.129)

By using the partial derivatives (4.127) and (4.128), Expression (4.129), and the law
of variance-covariance propagation, we obtain, after some algebraic computations,
the cofactor matrices:

Qv1 = Qv∗
1
+ ∆Qv1 (4.130)

where

Qv∗
1

= P−1
1 BT

1 M−1
1

(
P−1

1 BT
1

)T − (P−1
1 BT

1 M−1
1 A1

)
N−1

1

(
P−1

1 BT
1 M−1

1 A1
)T

(4.131)

∆Qv1 = (P−1
1 BT

1 M−1
1 A1N−1

1 AT
2

)
T
(
P−1

1 BT
1 M−1

1 A1N−1
1 AT

2

)T
(4.132)

The partial derivatives of v2 with respect to w1 and w2 follow from (4.125):

∂v2

∂w1
= P−1

2 BT
2 TA2N−1

1 AT
1 M−1

1 (4.133)
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∂v2

∂w2
= −P−1

2 BT
2 T (4.134)

By using, again, the law of variance-covariance propagation and (4.129), we obtain
the cofactor for v2:

Qv2
= P−1

2 BT
2 TB2P−1

2 (4.135)

The estimated variance-covariance matrix is

Σ̂v2 = σ̂
2
0Qv2 (4.136)

The variance-covariance matrix of the adjusted observations is, as usual,

Σ�a
= Σ�b

− Σv (4.137)

As for iterations, one has to make sure that all groups are evaluated for the same
approximate parameters. If the first system is iterated, the approximate coordinates
for the last iteration must be used as expansion points for the second group. Because
there are no observations common to both groups, the iteration with respect to the
observations can be done individually for each group.

Occasionally, it is desirable to remove a set of observations from an existing so-
lution. Consider again the uncorrelated case in which the set of observations to be
removed is not correlated with the other sets. The procedure is readily seen from
(4.118), which shows how normal equations are added. When observations are re-
moved, the respective parts of the normal matrix and the right-hand term must be
subtracted. Equation (4.118) becomes

x̂ = − (AT
1 M−1

1 A1 − AT
2 M−1

2 A2

)−1 (
AT

1 M−1
1 w1 − AT

2 M−1
2 w2

)

= − [AT
1 M−1

1 A1 + AT
2

(−M−1
2

)
A2

]−1 [
AT

1 M−1
1 w1 + AT

2

(−M−1
2

)
w2

] (4.138)

One only has to use a negative weight matrix of the group of observations that is
being removed, because

−M2 = B2

(−P−1
2

)
BT

2 (4.139)

Observations can be removed sequentially following (4.116).
The sequential solution can be used in quite a general manner. One can add

or remove any number of groups sequentially. A group may consist of a single
observation. Given the solution for i − 1 groups, some of the relevant expressions
that include all i groups of observations are,

x̂i = x̂i−1 + ∆x̂i (4.140)

∆x̂i = −Qi−1AT
i

(
Mi + AiQi−1AT

i

)−1 (
Ai x̂i−1 + wi

)
(4.141)
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vTPvi = vTPvi−1 + ∆vTPvi (4.142)

∆vTPvi = (Ai x̂i−1 + wi

)T (
Mi + AiQi−1AT

i

)−1 (
Ai x̂i−1 + wi

)
(4.143)

Qi = Qi−1 −Qi−1AT
i

(
Mi + AiQi−1AT

i

)−1
AiQi−1 (4.144)

Every sequential solution is equivalent to a one-step adjustment that contains the
same observations. The sequential solution requires the inverse of the normal matrix.
Because computing the inverse of the normal matrix requires many more compu-
tations than merely solving the system of normal equations, one might sometimes
prefer to use the one-step solution instead of the sequential approach.

4.7 WEIGHTED PARAMETERS AND CONDITIONS

The algorithms developed in the previous section can be used to incorporate exte-
rior information about parameters. This includes weighted functions of parameters,
weighted individual parameters, and conditions on parameters. The objective is to
incorporate new types of observations that directly refer to the parameters, to specify
parameters in order to avoid singularity of the normal equations, or to incorporate
the results of prior adjustments. Evaluating conditions between the parameters is the
basis for hypothesis testing. These cases are obtained by specifying the coefficient
matrices A and B of the mixed model. For example, the mixed model (4.86) and
(4.87) can be specified as

f1(�1a, xa) = o (4.145)

�2a = f2(xa) (4.146)

The linearized form is

B1v1 + A1x + w1 = o (4.147)

v2 = A2x + �2 (4.148)

The specifications are B2 = −I and �2 = w2. For the observation equation model we
obtain

�1a = f1(xa) (4.149)

�2a = f2(xa) (4.150)

with the linearized form being

v1 = A1x + �1 (4.151)
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v2 = A2x + �2 (4.152)

The stochastic model is given by the matrices P1 and P2. With proper choice of the
elements of A2 and P2, it is possible to introduce a variety of relations about the
parameters.

As a first case, consider nonlinear relations between parameters. The design matrix
A2 contains the partial derivatives, and �2b contains the observed value of the function.
This is the case of weighted functions of parameters. Examples are the area or volume
of geometric figures as computed from coordinates, angles in geodetic networks,
and differences between parameters (coordinates). Each function contributes one
equation to (4.148) or (4.152). The respective expressions are identical with those
given in Table 4.2 and require no further discussion.

As a second case, consider information about individual parameters. This is a
special case of the general method discussed above. Each row of A2 contains zeros
with the exception of one position, which contains a 1. The number of rows in the
A2 matrix corresponds to the number of weighted parameters. The expressions of
Table 4.2 are still valid for this case. If information enters into the adjustment in this
manner, one speaks of the method of weighted parameters. In the most general case,
all parameters are observed and weighted, giving

�2a = xa (4.153)

�2b = xb (4.154)

A2 = I (4.155)

�2 = f2(x0) − �2b = x0 − xb (4.156)

The symbols xb and x0 denote the observed parameters and approximate parame-
ters. During the iterations, x0 converges toward the solution, whereas xb remains
unchanged just as does the vector �2b. As a special case, the vector �2 can be zero,
which implies that the current values for the approximate parameters also serve as
observations of the parameters. This can generally be done if the intent is to define
the coordinate system by assigning weights to the current approximate parameters.
Table 4.3 summarizes the solution for weighted parameters for the observation equa-
tion model. The parameters are weighted simply by adding the respective weights to
the diagonal elements of the normal matrix. The parameters not weighted have zeros
in the respective diagonal elements of P2. This is a convenient way of weighting a
subset of parameters. Parameters can be fixed by assigning a large weight.

It is not necessary that the second group of observations represent the observed
parameters. Table 4.4 shows the case in which the first group consists of the observed
parameters. This approach has the unique feature that all observations can be added
to the adjustment in a sequential manner; the first solution is a nonredundant one
based solely on the values of the observed parameters. It is important, once again,
to distinguish the roles of the observed parameters xb and the approximations x0.
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TABLE 4.2 Sequential Adjustment Models

Mixed Model Observation Model

f1 (�1a, xa) = o �1a = f1 (xa)

Nonlinear f2 (�2a, xa) = o �2a = f2 (xa)

model
P =

P1 O

O P2


 P =


P1 O

O P2




Linear B1v1 + A1x + w1 = o v1 = A1x + �1

model B2v2 + A2x + w2 = o v2 = A2x + �2

M1 = B1P−1
1 BT

1 M2 = B2P−1
2 BT

2

N1 = AT
1 M−1

1 A1 N2 = AT
2 M−1

2 A2

u1 = AT
1 M−1

1 w1 u2 = AT
2 M−1

2 w2

M1 = P−1
1 M2 = P−1

2

N1 = AT
1 P1A1 N2 = AT

2 P2A2

u1 = AT
1 P1�1 u2 = AT

2 P2�2

Normal
equation
elements

vT Pv = vT Pv∗ + ∆vT Pv vT Pv = vT Pv∗ + ∆vT Pv
Minimum

vT Pv∗ = −uT
1 N−1

1 u1 + wT
1 M−1

1 w1 vT Pv∗ = −uT
1 N−1

1 u1 + �T
1 P1�1vT Pv

∆vT Pv = (A2x∗ + w2)
T T (A2x∗ + w2) ∆vT Pv = (A2x∗ + �2)

T T (A2x∗ + �2)

x̂ = x∗ + ∆x x̂ = x∗ + ∆x

Estimated x∗ = −N−1
1 u1 x∗ = −N−1

1 u1

parameters T = (M2 + A2N−1
1 AT

2

)−1
T = (P−1

2 + A2N−1
1 AT

2

)−1

∆x = −N−1
1 AT

2 T
(
A2x∗ + w2

)
∆x = −N−1

1 AT
2 T
(
A2x∗ + �2

)

Estimated
v1 = v∗

1 + ∆v1 v1 = v∗
1 + ∆v1

residuals
v∗

1 = −P−1
1 BT

1 M−1
1

(
A1x∗ + w1

)
v∗

1 = A1x∗ + �1

∆v1 = −P−1
1 BT

1 M−1
1 A1 ∆x ∆v1 = A1 ∆x

Estimated
variance of σ̂

2
0 = vT Pv

r1 + r2 − u
σ̂

2
0 = vT Pv

n1 + n2 − u
unit weight

Estimated Qx = Qx∗ + ∆Q Qx = Qx∗ + ∆Q
parameter

Qx∗ = N−1
1 Qx∗ = N−1

1cofactor
∆Q = −N−1

1 AT
2 TA2N−1

1 ∆Q = −N−1
1 AT

2 TA2N−1
1matrix

Because, in most cases the P1 matrix will be diagonal, no matrix inverse computation
is required. The size of the matrix T equals the number of observations in the second
group. Thus, if one observation is added at a time, only a 1×1 matrix must be inverted.
The residuals can be computed directly from the mathematical model as desired.

A third case pertains to the role of the weight matrix of the parameters. The weight
matrix expresses the quality of the information known about the observed parameters.
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TABLE 4.3 Observed Parameters

�1a = f1 (xa) �2a = xa P =
[

P1 O

O P2

]

v1 = A1x + �1 v2 = x + �2 �2 = x0 − xb

N1 = AT
1 P1A1 N2 = P2

u1 = AT
1 P1�1 u2 = P2�2

x̂ = − (N1 + P2)
−1 (u1 + P2�2)

Qx = (N1 + P2)
−1

Note: Case of observation equation model.

For the adjustment to be meaningful, one must make every attempt to obtain a weight
matrix that truly reflects the quality of the additional information. Low weights, or,
equivalently, large variances, imply low precision. Even low-weighted parameters
can have, occasionally, a positive effect on the quality of the least-squares solution. If
the parameters or functions of the parameters are introduced with an infinitely large
weight, one speaks of conditions between parameters. The only specifications for
implementing conditions are:

P−1
2 = O (4.157)

and

P2 = ∞ (4.158)

The respective mathematical models are

f(�1a, xa) = o (4.159)

g(xa) = o (4.160)

with

B1v1 + A1x + w1 = o (4.161)

A2x + �2 = o (4.162)

and

�1a = f(xa) (4.163)

g(xa) = o (4.164)
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TABLE 4.4 Sequential Solution without Inverting the Normal Matrix

�1a = xa

�2a = f2a (xa)
P =
[

P1 O

O P2

]

v1 = x + �1

�1 = x0 − xb

v2 = A2x + �2

N1 = P1 N2 = AT
2 P2A2

u1 = P1�1 u2 = AT
2 P2�2

x̂1 = − (x0 − xb)

Q1 = P−1
1

vTPv1 = 0

x̂i = x̂i−1 + ∆x̂i−1

vTPvi = vTPvi−1 + ∆vTPvi−1

Qi = Qi−1 + ∆Qi−1

T =
(

P−1
i + AiQi−1AT

i

)−1

∆xi−1 = −Qi−1AT
i T
(
Ai x̂i−1 + �i

)

∆vTPvi−1 = (Ai x̂i−1 + �i )
T T (Ai x̂i−1 + �i )

∆Qi−1 = −Qi−1AT
i TAiQi−1

Note: Case of observation equation model.

with

v1 = A1x + �1 (4.165)

A2x + �2 = o (4.166)

Table 4.5 contains the expression of the sequential solution with conditions between
parameters. If (4.158) is used to impose the conditions, the largest numbers that can
still be represented in the computer should be used. In most situations, it will be
readily clear what constitutes a large weight; the weight must simply be large enough
so that the respective observations or parameters do not change during the adjustment.
For sequential solution, the solution of the first group must exist. Conditions cannot
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TABLE 4.5 Conditions on Parameters

Mixed Model with Conditions Observation Model with Conditions

Nonlinear
model

f1 (�1a, xa) = o
P1g (xa) = o

�1a = f1 (xa)
P1g (xa) = o

Linear
model

B1v1 + A1x + w1 = o

A2x + �2 = o

v1 = A1x + �1

A2x + �2 = o

Normal
equation
elements

M1 = B1P−1
1 BT

1

N1 = AT
1 M−1

1 A1

u1 = AT
1 M−1

1 w1

M1 = P−1
1

N1 = AT
1 P1A1

u1 = AT
1 P1�1

Minimum

vTPv

vTPv = vTPv∗ + ∆vTPv

vTPv∗ = −uT
1 N−1

1 u1 + wT
1 M−1

1 w1

∆vTPv = (A2x∗ + �2

)T
T
(
A2x∗ + �2

)

vTPv = vTPv∗ + ∆vTPv

vTPv∗ = −uT
1 N−1

1 u1 + �T
1 P1�1

∆vTPv = (A2x∗ + �2

)T
T
(
A2x∗ + �2

)

Estimated
parameters

x̂ = x∗ + ∆x

x∗ = −N−1
1 u1

T = (A2N−1
1 AT

2

)−1

∆x = −N−1
1 AT

2 T
(
A2x∗ + w2

)

x̂ = x∗ + ∆x

x∗ = −N−1
1 u1

T = (A2N−1
1 AT

2

)−1

∆x = −N−1
1 AT

2 T
(
A2x∗ + �2

)

Estimated
residuals

v1 = v∗
1 + ∆v1

v∗
1 = −P−1

1 BT
1 M−1

1

(
A1x∗ + w1

)

∆v1 = −P−1
1 BT

1 M−1
1 A1 ∆x

v1 = v∗
1 + ∆v1

v∗
1 = A1x∗ + �1

∆v1 = A1 ∆x

Estimated
variance

σ̂
2
0 = vTPv

r1 + r2 − u
σ̂

2
0 = vTPv

n1 + n2 − uof unit
weight

Estimated
parameter

Qx = Qx∗ + ∆Q

Qx∗ = N−1
1

∆Q = −N−1
1 AT

2 TA2N−1
1

Qx = Qx∗ + ∆Q

Qx∗ = N−1
1

∆Q = −N−1
1 AT

2 TA2N−1
1

cofactor
matrix
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be imposed sequentially to eliminate a singularity in the first group; e.g., conditions
should not be used sequentially to define the coordinate system. A one-step solution
is given by (4.118).

The a posteriori variance of unit weight is always computed from the final set
of residuals. The degree of freedom increases by 1 for every observed parameter
function, weighted parameter, or condition. In nonlinear adjustments the linearized
condition must always be evaluated for the current point of expansion, i.e., the point
of expansion of the last iteration (current solution).

The expressions in Table 4.2 and Table 4.5 are almost identical. The only differ-
ence is that the matrix T contains the matrix M2 in Table 4.2.

4.8 MINIMAL AND INNER CONSTRAINTS

This section deals with the implementation of minimal and inner constraints to the
observation equation model. The symbol r denotes the rank of the design matrix,
R(nAu) = R(AT PA) = r ≤ u. Note that the use of the symbol r in this context
is entirely different from its use in the mixed model, where r denotes the number of
equations. The rank deficiency of u − r is generally caused by a lack of coordinate
system definition. For example, a network of distances is invariant with respect to
translation and rotation, a network of angles is invariant with respect to translation,
rotation, and scaling, and a level network (consisting of measured height differences)
is invariant with respect to a translation in the vertical. The rank deficiency is dealt
with by specifying u − r conditions of the parameters. Much of the theory of inner
and minimal constraint solution is discussed by Pope (1971). The main reason for
dealing with minimal and inner constraint solutions is that this type of adjustment is
important for the quality control of observations. Inner constraint solutions have the
additional advantage that the standard ellipses (ellipsoids) represent the geometry as
implied by the A and P matrices.

The formulation of the least-squares adjustment for the observation equation model
in the presence of a rank deficiency is

nv1 = nAu xB + n�1 (4.167)

P = σ2
0 Σ−1

�b
(4.168)

u−rBu xB = o (4.169)

The subscript B indicates that the solution of the parameters x depends on the special
condition implied by the B matrix in (4.169). This is the observation equation model
with conditions between the parameters that was treated in Section 4.7. The one-step
solution is given by (4.106):

[
AT PA BT

B O

][
x̂B

−k̂2

]
=
[

−AT P�

o

]
(4.170)
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The matrix on the left side of (4.170) is a nonsingular matrix if the conditions (4.169)
are linearly independent; i.e., the (u− r)×u matrix B has full row rank, and the rows
are linear-independent of the rows of the design matrix A. A general expression for
the inverse is obtained from

[
AT PA BT

B O

][
QB ST

S R

]
=
[

I O

O I

]
(4.171)

This matrix equation gives the following four equations of submatrices:

AT PAQB + BT S = I (4.172)

AT PAST + BT R = O (4.173)

BQB = O (4.174)

BST = I (4.175)

The solution of these equations requires the introduction of the (u− r)×u matrix E,
whose rows span the null space of the design matrix A or the null space of the normal
matrix. According to (A.53), there is a matrix E such that

(
AT PA

)
ET = O (4.176)

or

AET = O or EAT = O (4.177)

Because the rows of B are linearly independent of the rows of A, the (u−r)×(u−r)

matrix BET has full rank and thus can be inverted. Multiplying (4.172) by E from the
left and using (4.177), we get

S = (EBT
)−1

E (4.178)

This expression also satisfies (4.175). Substituting S into (4.173) gives

AT PAET (BET
)−1 + BT R = O (4.179)

Because of (4.176), this expression becomes

BT R = O (4.180)

Because B has full rank, it follows that the matrix R = O. Thus,

[
AT PA BT

B O

]−1

=

 QB ET

(
BET
)−1

(
EBT
)−1

E O


 (4.181)
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Substituting Expression (4.178) for S into (4.172) gives the nonsymmetric matrix

TB ≡ AT PAQB = I − BT
(
EBT
)−1

E (4.182)

This expression is modified with the help of (4.174), (4.176), and (4.182):

(
AT PA + BT B

) [
QB + ET

(
BET
)−1 (

EBT
)−1

E
]

= I (4.183)

It can be solved for QB :

QB = (AT PA + BT B
)−1 − ET

(
EBT BET

)−1
E (4.184)

The least-squares solution of x̂B subject to condition (4.169) is, according to (4.170),
(4.171), and (4.181),

x̂B = −QBAT P� (4.185)

The cofactor matrix of the parameters follows from the law of variance-covariance
propagation

QxB
= QBAT PAQB = QB (4.186)

The latter part of (4.186) follows from (4.182) upon multiplying from the left by QB

and using (4.174). Multiplying (4.182) from the right by AT PA and using (4.177)
gives

AT PA = ATPAQBAT PA (4.187)

The relation implied in (4.186) is

QBAT PAQB = QB (4.188)

u−r conditions are necessary to solve the least-squares problem; i.e., the minimal
number of conditions is equal to the rank defect of the design (or normal) matrix. Any
solution derived in this manner is called a minimal constraint solution. There are ob-
viously many different sets of minimal constraints possible for the same adjustment.
The only prerequisite on the B matrix is that it have full row rank and that its rows be
linearly independent of A. Assume that

CxC = o (4.189)

is an alternative set of conditions. The solution x̂C follows from the expressions given
by simply replacing the matrix B by C. The pertinent expressions are

x̂C = −QCAT P� (4.190)
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QC = (AT PA + CT C
)−1 − ET

(
ECT CET)−1

E (4.191)

TC ≡ AT PAQC = I − CT
(
ECT)−1

E (4.192)

AT PAQCAT PA = AT PA (4.193)

QCAT PAQC = QC (4.194)

The solutions pertaining to the various alternative sets of conditions are all related.
In particular,

x̂B = TT
B x̂C (4.195)

QB = TT
B QCTB (4.196)

x̂C = TT
C x̂B (4.197)

QC = TT
C QBTC (4.198)

Equations (4.195) to (4.198) constitute the transformation of minimal control; i.e.,
they relate the adjusted parameters and the covariance matrix for different minimal
constraints. These transformation expressions are readily proven. For example, by
using (4.190), (4.182), (4.192), and (4.177), we obtain

TT
B x̂C = −TT

B QCAT P�

= −QBAT PAQCAT P�

= −QB

[
I − CT

(
ECT)−1

E
]

AT P�

= −QBAT P�

= x̂B

(4.199)

With (4.192), (4.187), and (4.194), it follows that

TT
C QBTC = QCAT PAQBAT PAQC

= QCAT PAQC

= QC

(4.200)

Instead of using the general condition (4.189), we can use the condition

ExP = o (4.201)
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The rows of E are linearly independent of A because of (4.177). Thus, replacing the
matrix C by E in Equations (4.190) through (4.198) gives this special solution:

x̂P = −QP AT P� (4.202)

QP = (AT PA + ET E
)−1 − ET

(
EET EET

)−1
E (4.203)

TP ≡ AT PAQP = I − ET
(
EET
)−1

E (4.204)

AT PAQP AT PA = AT PA (4.205)

QP AT PAQP = QP (4.206)

x̂B = TT
B x̂P (4.207)

QB = TT
B QP TB (4.208)

x̂P = TT
P x̂B (4.209)

QP = TT
P QBTP (4.210)

The solution (4.202) is called the inner constraint solution. The matrix TP in (4.204)
is symmetric. The matrix QP is a generalized inverse, called the pseudoinverse of the
normal matrix; the following notation is used:

QP = N+ = (AT PA
)+

(4.211)

The pseudoinverse of the normal matrix is computed from available algorithms of
generalized matrix inverses or, equivalently, by finding the E matrix and using Equa-
tion (4.203). For typical applications in surveying, the matrix E can be readily iden-
tified. Because of (4.177), the solution (4.202) can also be written as

x̂P = − (AT PA + ET E
)−1

AT P� (4.212)

Note that the covariance matrix of the adjusted parameters is

Σx = σ̂
2
0QB,C,P (4.213)

depending on whether constraint (4.169), (4.189), or (4.201) is used.
The inner constraint solution is yet another minimal constraint solution, although it

has some special features. It can be shown that among all possible minimal constraint
solutions, the inner constraint solution also minimizes the sum of the squares of the
parameters, i.e.,
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xT x = minimum (4.214)

This property can be used to obtain a geometric interpretation of the inner constraints.
For example, it can be shown that the approximate parameters x0 and the adjusted
parameters x̂P can be related by a similarity transformation whose least-squares
estimates of translation and rotation are zero. For inner constraint solutions, the
standard ellipses show the geometry of the network and are not affected by the
definition of the coordinate system. It can also be shown that the trace of QP is the
smallest compared to the trace of the other cofactor matrices. All minimal constraint
solutions yield the same adjusted observations, a posteriori variance of unit weight,
covariance matrices for residuals, and the same values for estimable functions of the
parameters and their variances. The next section presents a further explanation of
quantities invariant with respect to changes in minimal constraints.

4.9 STATISTICS IN LEAST-SQUARES ADJUSTMENT

Statistics completes the theory of adjustments, because it allows one to make objec-
tive statements about the data. The basic requirements, however, are that the mathe-
matical model and the stochastic model be correct and that the observations have a
multivariate normal distribution. Statistics cannot guarantee the right decision, but it
can be helpful in gaining deeper insight into often unconscious motives that lead to
certain decisions.

4.9.1 Multivariate Normal Distribution

This section contains a brief introduction to multivariate normal distribution. A few
theorems are given that will be helpful in subsequent derivations. The multivariate
normal distribution is especially pleasing, because the marginal distributions derived
from multivariate normal distributions are also normally distributed. An extensive
treatment of this distribution is found in the standard statistical literature. To simplify
notation, the tilde is not used to identify random variables. The random nature of
variables can be readily deduced from the context.

Let x be a vector with n random components with a mean of

E(x) = µ (4.215)

and a covariance matrix of

E
[
(x − µ)(x − µ)T

] = nΣn (4.216)

If x has a multivariate normal distribution, then the multivariate density function is

f
(
x1, . . . , xn

) = 1

(2π)n/2 |Σ|1/2 e−(x−µ)T Σ−1(x−µ)/2 (4.217)
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The mean and the covariance matrix completely describe the multivariate normal
distribution. The notation

nx1 ∼ Nn

(
nµ1, nΣn

)
(4.218)

is used. The dimension of the distribution is n.
In the following, some theorems on multivariate normal distributions are given

without proofs. These theorems are useful in deriving the distribution of vT Pv and
some of the basic statistical tests in least-squares adjustments.

Theorem 1 If x is multivariate normal

x ∼ N(µ, Σ) (4.219)

and

z = mDnx (4.220)

is a linear function of the random variable, where D is a m×n matrix of rank m ≤ n,
then

z ∼ Nm

(
D µ, DΣDT

)
(4.221)

is a multivariate normal distribution of dimension m. The mean and variance of the
random variable z follow from the laws for propagating the mean (4.33) and variance-
covariances (4.34).

Theorem 2 If x is multivariate normal x ∼ N(µ, Σ), the marginal distribution
of any set of components of x is multivariate normal with means, variances, and
covariances obtained by taking the proper component of µ and Σ. For example, if

x =
[

x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(4.222)

then the marginal distribution of x2 is

x2 ∼ N
(
µ2, Σ22

)
(4.223)

The same law holds, of course, if the set contains only one component, say xi . The
marginal distribution of xi is then

xi ∼ n
(
µi , σ

2
i

)
(4.224)

Theorem 3 If x is multivariate normal, a necessary and sufficient condition that two
subsets of the random variables are stochastically independent is that the covariances
be zero. For example, if
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[
x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 O

O Σ22

])
(4.225)

then x1 and x2 are stochastically independent. If one set of normally distributed ran-
dom variables is uncorrelated with the remaining variables, the two sets are indepen-
dent. The proof of the above theorem follows from the fact that the density function
can be written as a product of f1(x1) and f2(x2) because of the special form of the
density function (4.217).

4.9.2 Distribution of vTPv

The derivation of the distribution is based on the assumption that the observations
have a multivariate normal distribution. The dimension of the distribution equals the
number of observations. In the subsequent derivations the observation equation model
is used. However, these statistical derivations could just as well have been carried out
with the mixed model.

The observation equations are

v = Ax + �0 − �b

= Ax + �
(4.226)

A first assumption is that the residuals are randomly distributed, i.e., the probability
for a positive or negative residual of the equal magnitude is the same. From this
assumption it follows that

E(v) = o (4.227)

Because x and �0 are constant vectors, it further follows that the mean and variance-
covariance matrix, respectively, are

E
(
�b

) = �0 + Ax (4.228)

E
(
vvT
) = E

{[
�b − E(�b)

][
�b − E(�b)

]T} = Σ�b
= σ2

0 P−1 (4.229)

The second basic assumption refers to the type of distribution of the observations. It
is assumed that the distribution is multivariate normal. Using the mean (4.228) and
the covariance matrix (4.229), the n-dimensional multivariate normal distribution of
�b is written as

�b ∼ Nn

(
�0 + Ax, Σ�b

)
(4.230)

Alternative expressions are

� ∼ Nn

(−Ax, Σ�b

)
(4.231)
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v ∼ Nn

(
o, Σ�b

) = Nn

(
o, σ2

0 P−1
)

(4.232)

Applying two orthogonal transformations we can conveniently derive vT Pv. If Σ�b

is nondiagonal, one can always find observations that are stochastically independent
and have a unit variate normal distribution. As discussed in Appendix A, for a positive
definite matrix P there exists a nonsingular matrix D such that the following is valid,

D = E Λ−1/2 (4.233)

DT P−1 D = I (4.234)

DT v = DT Ax + DT � (4.235)

v̄ = Āx + �̄ (4.236)

�̄ = DT �0 − DT �b = �̄0 − �̄b (4.237)

E(v̄) = DT E(v) = o (4.238)

Σv̄ = σ2
0 DTP−1 D = σ2

0 I (4.239)

v̄ ∼ Nn

(
o, σ2

0 I
)

(4.240)

The columns of the orthogonal matrix E consist of the normalized eigenvectors of
P−1; Λ is a diagonal matrix having the eigenvalues of P−1 at the diagonal. The
quadratic form vTPv remains invariant under this transformation because

R ≡ vTPv = v̄TΛ1/2 ETPEΛ1/2v̄ = v̄TΛ1/2Λ−1Λ1/2v̄ = v̄Tv̄ (4.241)

If the covariance matrix Σ�b
has a rank defect, then one could use matrix F of (A.52)

for the transformation. The dimension of the transformed observations �̄b equals the
rank of the covariance matrix.

In the next step, the parameters are transformed to a new set that is stochastically
independent. To keep the generality, let the matrix Ā in (4.236) have less than full
column rank, i.e., R(Ā) = r < u. Let the matrix F be an n × r matrix whose
columns constitute an orthonormal basis for the column space of Ā. One such choice
for the columns of F may be to take the normalized eigenvectors of ĀĀ

T
. Let G be

an n × (n − r) matrix, such that [F G] is orthogonal and such that the columns of G
constitute an orthonormal basis to the n − r-dimensional null space of ĀĀ

T
. Such a

matrix always exists. There is no need to compute this matrix explicitly. With these
specifications we obtain

[
FT

GT

]
[F G] =

[
FT F FT G

GT F GT G

]
=
[

rIr O

O n−rIn−r

]
(4.242)
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[F G] [F G]T = F FT + G GT = I (4.243)

ĀT G = O (4.244)

GT Ā = O (4.245)

The required transformation is
[

FT

GT

]
v̄ =
[

FT

GT

]
Āx +

[
FT

GT

]
�̄ (4.246)

or, equivalently,
[

FT v̄

GT v̄

]
=
[

FT Āx

o

]
+
[

FT �̄

GT �̄

]
(4.247)

Labeling the newly transformed observations by z, i.e.,

z =
[

z1

z2

]
=
[

FT �̄

GT �̄

]
(4.248)

we can write (4.247) as

v̄z =
[

v̄z1

v̄z2

]
=
[

FT Āx

o

]
+
[

z1

z2

]
(4.249)

There are r random variables in z1 and n − r random variables in z2. The quadratic
form again remains invariant under the orthogonal transformation, since

v̄T
z v̄z = v̄T

(
FFT + GGT) v̄

= v̄Tv̄ = R
(4.250)

according to (4.243). The actual quadratic form is obtained from (4.249):

R = v̄T
z v̄z = (FTĀx + z1

)T (
FTĀx + z1

)+ zT
2 z2 (4.251)

The least-squares solution requires that R be minimized by variation of the parame-
ters. Generally, equating partial derivatives with respect to x to zero and solving the
resulting equations gives the minimum. The special form of (4.251) permits a much
simpler approach. The expressions on the right side of Equation (4.251) consist of the
sum of two positive terms (sum of squares). Because only the first term is a function
of the parameters x, the minimum is achieved if the first term is zero, i.e.,

− rFT
n n Āu ux̂1 = z1 (4.252)
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Note that the caret identifies the estimated parameters. Consequently, the estimate of
the quadratic form is

R̂ = zT
2 z2 (4.253)

Because there are r < u equations for the u parameters in (4.252), there always
exists a solution for x̂. The simplest approach is to equate u − r parameters to zero.
This would be identical to having these u − r parameters treated as constants in
the adjustment. They could be left out when setting up the design matrix and thus,
the singularity problem would be avoided altogether. Equation (4.252) can be solved
subject to u − r general conditions between the parameters. The resulting solution
is a minimal constraint solution. If the particular condition (4.201) is applied, one
obtains the inner constraint solution. If Ā has no rank defect, then the system (4.252)
consists of u equations for u unknowns.

The estimate for the quadratic form (4.253) does not depend on the parameters
x and, thus, is invariant with respect to the selection of the minimal constraints
for finding the least-square estimate of x. Moreover, the residuals themselves are
independent of the minimal constraints. Substituting the solution (4.252) into (4.247)
gives

[
FT

GT

]
ˆ̄v =
[

o

GT �̄

]
(4.254)

Since the matrix [F G] is orthonormal, the expression for the residuals becomes

ˆ̄v = [F G]

[
o

GT �̄

]
= GGT �̄ (4.255)

Thus, the residuals are independent of the specific solution for x̂. The matrix G
depends only on the structure of the design matrix Ā. By applying the law of variance-
covariance propagation to (4.255), we clearly see that the covariance matrix of the
adjusted residuals, and thus the covariance matrix of the adjusted observations, does
not depend on the specific set of minimal constraints. Note that the transformation
(4.235) does not invalidate these statements, since the D matrix is not related to the
parameters.

Returning to the derivation of the distribution of vT Pv, we find from (4.248) that

E(z) =
[

−FT Āx

o

]
(4.256)

using (4.245) and the fact that E(�̄) = −Āx according to (4.236). Making use of
(4.240) the covariance matrix is

Σz = σ2
0

[
FT

GT

]
I [F G] = σ2

0

[
FT F FT G

GT F GT G

]
= σ2

0

[
I O

O I

]
(4.257)
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Since a linear transformation of a random variable with multivariate normal distri-
bution results in another multivariate normal distribution according to Theorem 1, it
follows that z is distributed as

z ∼ Nn

([
−FT Āx

o

]
, σ2

0

[
rIr O

O n−rIn−r

])
(4.258)

The random variables z1 and z2 are stochastically independent, as are the individ-
ual components according to Theorem 3. From Theorem 2 it follows that

z2 ∼ Nn−r (o, σ2
0 I) (4.259)

Thus

z2i ∼ n
(
0, σ2

0

)
(4.260)

z2i

σ0
∼ n(0, 1) (4.261)

are unit variate normal distributed. As listed in Appendix A5, the square of a stan-
dardized normal distributed variable has a chi-square distribution with one degree of
freedom. In addition, the sum of chi-square distributed variables is also a chi-square
distribution with a degree of freedom equal to the sum of the individual degrees of
freedom. Using these functions of random variables, it follows that vT Pv

R̂

σ2
0

= zT
2 z2

σ2
0

=
n−r∑
i=1

z2
2i

σ2
0

∼ χ2
n−r (4.262)

has a chi-square distribution with n − r degrees of freedom.

4.9.3 Testing vTPv and ∆vTPv

Combining the result of (4.262) with the expression for the a posteriori variance of
unit weight of Table 4.1, we obtain the formulation for a fundamental statistical test
in least-squares estimation:

vT Pv

σ2
0

= σ̂
2
0

σ2
0

(n − r) ∼ χ2
n−r (4.263)

Note that n−r is the degree of freedom of the adjustment. If there is no rank deficiency
in the design matrix, the degree of freedom is n−u. Based on the statistics (4.263), the
test can be performed to find out whether the adjustment is distorted. The formulation
of the hypothesis is as follows:

H0: σ2
0 = σ̂

2
0 (4.264)
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H1: σ2
0 �= σ̂

2
0 (4.265)

The zero hypothesis states that the a priori variance of unit weight statistically equals
the a posteriori variance of unit weight. Recall that the a posteriori variance of unit
weight is a random variable; the adjustment makes a sample value available for this
quantity on the basis of the observations (the samples). Both variances of unit weight
do not have to be numerically equal; but they should be statistically equal in the sense
of (4.67). If the zero hypothesis is accepted, the adjustment is judged to be correct. If
the numerical value

χ2 = σ̂
2
0

σ2
0

(n − r) = vT Pv

σ2
0

(4.266)

is such that

χ2 < χ2
n−r,1−α/2 (4.267)

χ2 > χ2
n−r,α/2 (4.268)

then the zero hypothesis is rejected. The significance level α, i.e., the probability of a
type-I error, or the probability of rejecting the zero hypothesis even though it is true,
is generally fixed to 0.05. Here the significance level is the sum of the probabilities
in both tails. Table 4.6 lists selected values from the chi-square distribution χ2

n−r,α.
Rejection of the zero hypothesis is taken to indicate that something is wrong with
the adjustment. The cause for rejection remains to be clarified. Figure 4.3 shows the
limits for the posteriori variance of unit weight as a function of the degree of freedom
given the significance level α = 0.05.

The probability β of the type-II error, i.e., the probability of rejecting the alternative
hypothesis and accepting the zero hypothesis even though the alternative hypothesis
is true, is generally not computed. Type-II errors are considered in Section 4.10.2
in regards to reliability and in Section 7.8.3 in regards to discernibility of estimated
ambiguity sets.

TABLE 4.6 Selected Values for Chi-Square

Probability α
Degree of

Freedom (DF) 0.975 0.950 0.050 0.025

1 0.00 0.00 3.84 5.02
5 0.83 1.15 11.07 12.83

10 3.25 3.94 18.31 20.48
20 9.59 10.85 31.41 34.17
50 32.36 34.76 67.50 71.42

100 74.22 77.93 124.34 129.56
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Figure 4.3 Limits on the a posteriori variance of unit weight. The figure refers to α =
0.05.

The test statistics for testing groups of observations is based on vTPv∗ and the
change ∆vTPv. According to Table 4.2 we have

∆vTPv = (A2x∗ + �2
)T

T
(
A2x∗ + �2

)

= zT
3 T z3

(4.269)

The new random variable z3 is a function of observations �1 and �2. Applying the
laws of propagation of mean and variance, one finds

E(z3) = A2E(x∗) + E(�2) = A2x − A2x = o (4.270)

Σz3
= T−1 (4.271)

z3 ∼ N
(
o, σ2

0 T−1
)

(4.272)

Carrying out the orthonormal transformation yields a random vector whose compo-
nents are stochastically independent and normally distributed. By standardizing these
distributions and summing the squares of these random variables, it follows that

∆vTPv

σ2
0

= zT
3 Tz3

σ2
0

∼χ2
n2

(4.273)

has a chi-square distribution with n2 degrees of freedom, where n2 equals the number
of observations in the second group. The random variables (4.273) and (4.263) are
stochastically independent. To prove this, consider the new random variable z =
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[z1 z2 z3]T, which is a linear function of the random variables � (first group) and �2,
according to Equations (4.235), (2.248), and (4.269). By using the covariance matrix
(4.88) and applying variance-covariance propagation, we find that the covariances
between the zi are zero. Because the distribution of the z is multivariate normal, it
follows that the random variables zi are stochastically independent. Since ∆vT Pv is
a function of z3 only, it follows that vTPv in (4.263), which is only a function of z2,
and ∆vT Pv in (4.273) are stochastically independent. Thus, it is permissible to form
the following ratio of random variables:

∆vTPv(n1 − r)

vTPv∗(n2)
∼ Fn2,n1−r (4.274)

which has an F distribution.
Thus the fundamental test in sequential adjustment is based on the F distribution.

The zero hypothesis states that the second group of observations does not distort
the adjustment, or that there is no indication that something is wrong with the second
group of observations. The alternative hypothesis states that there is an indication that
the second group of observations contains errors. The zero hypothesis is rejected, and
the alternative hypothesis is accepted if

F < Fn2,n1−r,1−α/2 (4.275)

F > Fn2,n1−r,α/2 (4.276)

Table 4.7 lists selected values from the F distribution as a function of the degrees
of freedom and probability. The tabulation refers to the parameters as specified in
Fn1,n2,0.05.

4.9.4 General Linear Hypothesis

The general linear hypothesis deals with linear conditions between parameters. Non-
linear conditions are first linearized. The basic idea is to test the change ∆vT Pv for its
statistical significance. Any of the three adjustment models can be used to carry out

TABLE 4.7 Selected Values for F

n1

n2 1 2 3 4

5 6.61 5.79 5.41 5.19
10 4.96 4.10 3.71 3.48
20 4.35 3.49 3.10 2.87
60 4.00 3.15 2.76 2.53

120 3.92 3.07 2.68 2.45
∞ 3.84 3.00 2.60 2.37
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the general linear hypothesis test. For the observation equation model with additional
conditions between the parameters, one has

v1 = A1x + �1 (4.277)

H0: A2x + �2 = o (4.278)

Equation (4.278) expresses the zero hypothesis H0. The solution of the combined
adjustment is found in Table 4.5. Adjusting (4.277) alone results in vT Pv∗, which
has a chi-square distribution with n− r degrees of freedom according to (4.273). The
change ∆vT Pv resulting from the condition (4.278) is

∆vT Pv = (A2x∗ + �2

)T
T
(
A2x∗ + �2

)
(4.279)

The expression in (4.279) differs from (4.269) in two respects. First, the matrix T dif-
fers; i.e., the matrix T in (4.279) does not contain the P2 matrix. Second, the quantity
�2 is not a random variable. These differences, however, do not matter in the proof
of stochastic independence of vT Pv∗ and ∆vT Pv. Analogously to (4.269), we can
express the change ∆vT Pv in (4.279) as a function of a new random variable z3. The
proof for stochastic independence follows the same lines of thought as given before
(for the case of additional observations). Thus, just as (4.274) is the basis for testing
two groups of observations, the basic test for the general linear hypothesis (4.278) is

∆vT Pv (n1 − r)

vT Pv∗ n2
∼ Fn2, n1−r (4.280)

A small ∆vT Pv implies that the null hypothesis (4.278) is acceptable; i.e., the con-
ditions are in agreement with the observations. The conditions do not impose any
distortions on the adjustment. The rejection criterion is based on the one-tail test at
the upper end of the distribution. Thus, reject H0 at a 100α% significance level if

F > Fn2, n1−r, α (4.281)

The general formulation of the null hypothesis in (4.278) makes it possible to
test any hypothesis on the parameters, so long as the hypothesis can be expressed
in a mathematical equation. Nonlinear hypotheses must first be linearized. Simple
hypotheses could be used to test whether an individual parameter has a certain nu-
merical value, whether two parameters are equal, whether the distance between two
stations has a certain length, whether an angle has a certain size, etc. For example,
consider the hypothesis

H0: x − xT = o (4.282)

H1: x − xT �= o (4.283)
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The zero hypothesis states that the parameters equal a certain (true) value xT. From
(4.278) it follows that A2 = I and �2 = −xT . Using these specifications we can use
T = N in (4.279), and the statistic (4.280) becomes

(
x̂∗ − xT

)T
N
(
x̂∗ − xT

)

σ̂
2
0 r

∼ Fr, n1−r, α (4.284)

where the a posteriori variance of unit weight (first group only) has been substituted
for vT Pv∗. Once the adjustment of the first group (4.277) is completed, the values
for the adjusted parameters and the a posteriori variance of unit weight are entered
in (4.284), and the fraction is computed and compared with the F value (taking the
proper degrees of freedom and the desired significance level into account). Rejection
or acceptance of the zero hypothesis follows rule (4.281).

Note that one of the degrees of freedom in (4.284) is r = R(N) < u, instead of
u, which equals the number of parameters, even though Equation (4.282) expresses
u conditions. Because of the possible rank defect of the normal matrix N, the distri-
bution of ∆vT Pv in (4.279) is a chi-square distribution with r degrees of freedom.
Consider the derivation leading to (4.273). The u components of z3 are transformed
to r stochastically independent unit variate normal distributions that are then squared
and summed to yield the distribution of ∆vT Pv. The interpretation is that (4.282)
represents one hypothesis on all parameters x, and not u hypotheses on the u compo-
nents on x.

Expression (4.284) can be used to define the r-dimensional confidence region.
Replace the particular xT by the unknown parameter x, and drop the asterisk; then

P

[
(x̂ − x)

T N (x̂ − x)

σ̂
2
0 r

≤ Fr,n1−r,α

]
=
∫ Fr,n1−r,α

0
Fr,n1−rdF = 1 − α (4.285)

The probability region described by the expression on the left side of Equation
(4.285) is an R(N)-dimensional ellipsoid. The probability region is an ellipsoid,
because the normal matrix N is positive definite or, at least, semipositive definite.
If one identifies the center of the ellipsoid with x̂, then there is (1 − α) probability
that the unknown point x lies within the ellipsoid. The orientation and the size of
this ellipsoid are a function of the eigenvectors and eigenvalues of the normal matrix,
the rank of the normal matrix, and the degree of freedom. Consider the orthonormal
transformation

z = FT (x − x̂) (4.286)

with F as specified in (A.52) and containing the normalized eigenvectors of N, then

FT NF = Λ (4.287)

with Λ containing the r eigenvalues of N, and
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(x̂ − x)
T N (x̂ − x) = zTΛz =

r∑
i=1

z2
i λi =

r∑
i=1

z2
i(

1/
√

λi

)2 (4.288)

Combining Equations (4.285) and (4.288), we can write the r-dimensional ellipsoid,
or the r-dimensional confidence region, in the principal axes form:

P

[
z2

1(
σ̂0
√

rFr,n−r,α/λ1
)2 + · · · + z2

r(
σ̂0
√

rFr,n−r,α/λr

)2 ≤ 1

]
= 1 − α (4.289)

The confidence region is centered at x̂. Whenever the zero hypothesis H0 of (4.282)
is accepted, the point xT falls within the confidence region. The probability that the
ellipsoid contains the true parameters xT , is 1 − α. For these reasons, one naturally
would like the ellipsoid to be small. Equation (4.289) shows that the semimajor axes
are proportional to the inverse of the eigenvalues of the normal matrix. It is exactly this
relationship that makes us choose the eigenvalues of N as large as possible, provided
that we have a choice through appropriate network design variation. As an eigenvalue
approaches zero, the respective axis of the confidence ellipsoid approaches infinity;
this is an undesirable situation, both from a statistical point of view and because of
the numerical difficulties encountered during the inversion of the normal matrix.

4.9.5 Ellipses as Confidence Regions

Confidence ellipses are statements of precision. They are frequently used in con-
nection with two-dimensional networks in order to make the directional precision
of station location visible. Ellipses of confidence follow from Section 4.9.4 simply
by limiting the hypothesis (4.282) to two parameters, i.e., the Cartesian coordinates
of a station. Of course, in a three-dimensional network one can compute three-
dimensional ellipsoids or several ellipses, e.g., one for the horizontal and others for
the vertical. Confidence ellipses or ellipsoids are not limited to the specific applica-
tion of networks. However, in networks the confidence regions can be referenced with
respect to the coordinate system of the network and thus can provide an integrated
view of the geometry of the confidence regions and the network.

Consider the following hypothesis:

H0: xi − xi,T = o (4.290)

where the notation

xi = [x1 x2]T (4.291)

is used. The symbols x1 and x2 denote the Cartesian coordinates of a two-dimensional
network station Pi . The test of this hypothesis follows the outline given in the previous
section. The A2 matrix is of size 2×u because there are two separate equations in the
hypothesis and u components in x. The elements of A2 are zero except those elements
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of rows 1 and 2, which correspond to the respective positions of x1 and x2 in x. With
these specifications it follows that

Qi = A2N−1AT
2 =
[

qx1 qx1,x2

qx2,x1 qx2

]
(4.292)

Qi contains the respective elements of the inverse of the normal matrix. With these
specifications T = Q−1

i and Expression (4.280) becomes

1

2σ̂
2
0

(
x̂i − xi,T

)T
Q−1

i

(
x̂i − xi,T

) ∼ F2,n−r (4.293)

Given the significance level α, the hypothesis test can be carried out. The two-
dimensional confidence region is

P

[
(x̂i − xi )

T Q−1
i (x̂i − xi )

2σ̂
2
0

≤ F2,n−r,α

]
=
∫ F2,n−r,α

0
F2,n−r dF = 1 − α (4.294)

The size of the confidence ellipses defined by (4.294) depends on the degree of
freedom of the adjustment and the significance level. The ellipses are centered at
the adjusted position and delimit the (1 − α) probability area for the true position.
The principal axis form of (4.294) is obtained through orthogonal transformation. Let
Ri denote the matrix whose rows are the orthonormal eigenvectors of Qi , then

RT
i Q−1

i Ri = Λ−1
i (4.295)

according to (A.48). The matrix Λi is diagonal and contains the eigenvalues λ
Q
i and

λ
Q
2 of Q1. With

zi = RT
i

(
x̂i − xi

)
(4.296)

Expression (4.294) becomes

P







z2
1(

σ̂0

√
λ

Q
1 2F2,n−r,α

)2 + z2
2(

σ̂0

√
λ

Q
2 2F2,n−r,α

)2


 ≤ 1




=
∫ F2,n−r,α

0
F2,n−r dF = 1 − α

(4.297)

For F2,n−r,α = 1/2, the ellipse is called the standard ellipse or the error ellipse. Thus,
the probability enclosed by the standard ellipse is a function of the degree of freedom
n − r and is computed as follows:

P(standard ellipse) =
∫ 1/2

0
F2,n−r dF (4.298)
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TABLE 4.8 Magnification Factor for Standard Ellipses

Probability 1 − α

n − r 95% 98% 99%

1 20.00 50.00 100.00
2 6.16 9.90 14.10
3 4.37 6.14 7.85
4 3.73 4.93 6.00
5 3.40 4.35 5.15
6 3.21 4.01 4.67
8 2.99 3.64 4.16

10 2.86 3.44 3.89
12 2.79 3.32 3.72
15 2.71 3.20 3.57
20 2.64 3.09 3.42
30 2.58 2.99 3.28
50 2.52 2.91 3.18

100 2.49 2.85 3.11
∞ 2.45 2.80 3.03

The magnification factor,
√

2F2,n−r,α, as a function of the probability and the de-
gree of freedom, is shown in Table 4.8. The table shows immediately that a small
degree of freedom requires a large magnification factor to obtain, e.g., 95% prob-
ability. It is seen that in the range of small degrees of freedom, an increase in the
degree of freedom rapidly decreases the magnification factor, whereas with a large
degree of freedom, any additional observations cause only a minor reduction of the
magnification factor. After a degree of freedom of about 8 or 10, the decrease in the
magnification factor slows down noticeably. Thus, based on the speed of decreas-
ing magnification factor, a degree of 10 appears optimal, considering the expense of
additional observations and the little gain derived from them in the statistical sense.
For a degree of freedom of 10, the magnification factor is about 3 to cover 95%
probability.

The hypothesis (4.290) can readily be generalized to three dimensions encompass-
ing the Cartesian coordinates of a three-dimensional network station. The magnifica-
tion factor of the respective standard ellipsoid is

√
3F3,n−r,α for it to contain (1 − α)

probability. Similarly, the standard deviation of an individual coordinate is converted
to a (1 − α) probability confidence interval by multiplication with

√
F1,n−r,α. These

magnification factors are shown in Figure 4.4 for α = 0.05. For higher degrees of
freedom, the magnification factors converge toward the respective chi-square values
because of the relationship rFr,∞ = χ2

r .
For drawing the confidence ellipse at station Pi , we need the rotation angle ϕ

between the (xi) and (zi) coordinate systems as well as the semimajor and semiminor
axis of the ellipse. Let (yi ) denotes the translated (xi) coordinate system through the
adjusted point x̂i, then Equation (4.296) becomes

zi = RT
i yi (4.299)
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Figure 4.4 Magnification factors for confidence regions. The values refer to α = 0.05.

The eigenvectors of Qi determine the directions of the semiaxes, and the eigenvalues
determine their lengths. Rather than computing the vectors explicitly, we choose to
compute the rotation angle ϕ by comparing coefficients from quadratic forms. Figure
4.5 shows the rotational relation

zi =
[

cos ϕ sin ϕ

−sin ϕ cos ϕ

]
yi (4.300)

and Equations (4.295) and (4.299) give the two quadratic forms

yT
i Qi yi = zT

i Λi zi (4.301)

Figure 4.5 Rotation of the principal axis coor-
dinate system.



STATISTICS IN LEAST-SQUARES ADJUSTMENT 145

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[14

Lin

—
4.7
——
No

PgE

[14

We substitute (4.300) into the right-hand side of (4.301) and the matrix elements of
Qi of (4.292) into the left-hand side and compare the coefficient of y1y2 on both sides,
giving

sin 2ϕ = 2qx1,x2

λ
Q
1 − λ

Q
2

(4.302)

The eigenvalues follow directly from the characteristic equation

∣∣Qi − λQI
∣∣ =
∣∣∣∣∣
qx1 − λQ qx1,x2

qx1,x2 qx2 − λQ

∣∣∣∣∣ =
(
qx1 − λQ

) (
qx2 − λQ

)− q2
x1,x2

= 0

(4.303)

The solution of the quadratic equation is given in (4.304) to (4.308). The terms sin 2ϕ

and cos 2ϕ determine the quadrant of ϕ.

λ
Q
1 = qx1 + qx2

2
+ 1

2
W (4.304)

λ
Q
2 = qx1 + qx2

2
− 1

2
W (4.305)

W =
√(

qx1 − qx2

)2 + 4q2
x1,x2

(4.306)

sin 2ϕ = 2qx1,x2

W
(4.307)

cos 2ϕ = qx1 − qx2

W
(4.308)

Figure 4.6 shows the defining elements of the standard ellipse. Recall Equation
(4.297) regarding the interpretation of the standard ellipses as a confidence region.
In any adjustment, any two parameters can comprise xi , regardless of the geometric
meaning of the parameters. Examples are the intercept and slope in the fitting of a
straight line or ambiguity parameters in the case of GPS carrier phase solutions. The
components xi can always be interpreted as Cartesian coordinates for drawing the
standard ellipse and thus can give a graphical display of the covariance. In surveying
networks, the vectors xi contain coordinates of stations in a well-defined coordinate
system. If xi represents latitude and longitude or northing and easting, the horizontal
standard ellipse is computed. If xi contains the vertical coordinate and easting, then
the standard ellipse in the prime vertical is obtained.

Because the shape of the standard ellipses and ellipsoids depends on the geometry
of the network through the design matrix and the weight matrix, the geometric inter-
pretation is enhanced if the network and the standard ellipses are displayed together.
Occasionally, users prefer to compute coordinate differences and their covariance
matrix and plot relative standard ellipses.



146 LEAST-SQUARES ADJUSTMENTS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[14

Lin

—
6.5
——
Nor

PgE

[14

Figure 4.6 Defining elements of stan-
dard ellipse.

4.9.6 Properties of Standard Ellipses

The positional error p of a station is directly related to the standard ellipse, as seen
in Figure 4.7. The positional error is the standard deviation of a station in a certain
direction, say ψ. It is identical with the standard deviation of the distance to a known
(fixed) station along the same direction ψ, as computed from the linearized distance
equation and variance-covariance propagation. The linear function is

r = z1 cos ψ + z2 sin ψ (4.309)

Because of Equations (4.295) and (4.296), the distribution of the random variable zi

is multivariate normal with

[
z1

z2

]
∼ N

([
0

0

]
, σ̂

2
0

[
λ

Q
1 0

0 λ
Q
2

])
= N

([
0

0

]
,

[
a2 0

0 b2

])
(4.310)

Figure 4.7 Position error.
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The variance of the random variable r follows from the law of variance-covariance
propagation:

σ2
r = a2 cos2 ψ + b2 sin2 ψ (4.311)

The variance (4.311) is geometrically related to the standard ellipse. Let the ellipse
be projected onto the direction ψ. The point of tangency is denoted by P0. Because
the equation of the ellipse is

z2
1

a2
+ z2

2

b2
= 1 (4.312)

the slope of the tangent is

dz1

dz2
= −z2a

2

z1b2
= −tan ψ (4.313)

See Figure 4.7 regarding the relation of the slope of the tangent and the angle ψ. The
second part of (4.313) yields

z01

a2
sin ψ − z02

b2
cos ψ = 0 (4.314)

This equation relates the coordinates of the point of tangency P0 to the slope of the
tangent. The length p of the projection of the ellipse is, according to Figure 4.7,

p = z01 cos ψ + z02 sin ψ (4.315)

Next, (4.314) is squared and then multiplied with a2b2, and the result is added to the
square of (4.315), giving

p2 = a2 cos2 ψ + b2 sin2 ψ (4.316)

By comparing this expression with (4.311), it follows that σ̂r = p; i.e., the standard
deviation in a certain direction is equal to the projection of the standard ellipse onto
that direction. Therefore, the standard ellipse is not a standard deviation curve. Figure
4.8 shows the continuous standard deviation curve. We see that for narrow ellipses
there are only small segments of the standard deviations that are close to the length of
the semiminor axis. The standard deviation increases rapidly as the direction ψ moves
away from the minor axis. Therefore, an extremely narrow ellipse is not desirable if
the overall accuracy for the station position is important.

As a by-product of the property discussed, we see that the standard deviations of
the parameter x1 and x2

σ̂x1 = σ̂0
√

qx1 (4.317)

σ̂x2 = σ̂0
√

qx2 (4.318)
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Figure 4.8 Standard deviation curve.

are the projections of the ellipse in the directions of the x1 and x2 axes. This is shown
in Figure 4.9. Equations (4.317) and (4.318) follow from the fact that the diagonal
elements of the covariance matrix are the variances of the respective parameters.
Equation (4.316) confirms for ψ = 0 and ψ = 90° that the axes a and b equal
the maximum and minimum standard deviations, respectively. The rectangle formed
by the semisides σ̂x1 and σ̂x2 encloses the ellipse. This rectangle can be used as an
approximation for the ellipses. The diagonal itself is sometimes referred to as the
mean position error σ̂,

σ̂ =
√

σ̂
2
x1

+ σ̂
2
x2

= σ̂0
√

qx1 + qx2 (4.319)

The points of contact between the ellipse and the rectangle in Figure 4.9 are
functions of the correlation coefficients. For these points, the tangent on the ellipse is
either horizontal or vertical in the (yi) coordinate system. The equation of the ellipse
in the (y) system is, according to (4.294),

[y1 y2]

[
qx1 qx1,x2

qx1,x2 qx2

]−1 [
y1

y2

]
= σ̂

2
0 (4.320)

By replacing the matrix by its inverse, the expression becomes

[y1 y2]

[
qx2 −qx1,x2

−qx1,x2 qx1

][
y1

y2

]
= (qx1qx2 − q2

x1,x2

)
σ̂

2
0 (4.321)
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Figure 4.9 Characteristics of the standard deviation ellipse.

Evaluating the left-hand side and dividing both sides by qx1qx2 gives

y2
1

qx1

+ y2
2

qx2

− 2y1y2qx1,x2

qx1qx2

= constant (4.322)

from which it follows that

dy1

dy2
= (2y2/qx2) − (2y1ρx1,x2

/
√

qx1qx2)

(2y2ρx1,x2
/
√

qx1qx2) − (2y1/qx1)
(4.323)

Consider the tangent for which the slope is infinity. The equation of this tangent line is

y2 = σ̂0
√

qx2 (4.324)

Substituting this expression into the denominator of (4.323) and equating it to zero
gives

σ̂0
√

qx2ρx1,x2√
qx1qx2

= y1

qx1

(4.325)
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which yields the y1 coordinate for the point of tangency:

y1 = σ̂0
√

qx1 ρx1,x2
= σ̂x1ρx1,x2

(4.326)

The equation for the horizontal tangent is

y1 = σ̂0
√

qx1 (4.327)

It follows from the numerator of (4.323) that

y2 = σ̂0
√

qx2 ρx1,x2
= σ̂x2ρx1,x2

(4.328)

Figure 4.9 shows that the standard ellipse becomes narrower the higher the correla-
tion. For correlation plus or minus 1 (linear dependence), the ellipse degenerates into
the diagonal of the rectangle. The ellipse becomes a circle if a = b, or σx1 = σx2 and
ρx1,x2

= 0.

4.9.7 Other Measures of Precision

In surveying and geodesy, the most popular measure of precision is the standard de-
viation. The confidence regions are usually expressed in terms of ellipses and ellip-
soids of standard deviation. These figures are often scaled to contain 95% probability
or higher. Because GPS is a popular tool for both surveying and navigation, several
of the measures of precision used in navigation are becoming increasingly popular in
surveying. Examples include the dilution of precision (DOP) numbers. The DOPs are
discussed in detail in Section 7.4.1. Other single-number measures refer to circular
or spherical confidence regions for which the eigenvalues of the cofactor matrix have
the same magnitude. In these cases, the standard deviations of the coordinates and
the semiaxes are of the same size. See Equation (4.297). When the standard devia-
tions are not equal, these measures become a function of the ratio of the semiaxes.
The derivation of the following measures and additional interpretation are given in
Greenwalt and Shultz (1962).

The radius of a circle that contains 50% probability is called the circular error
probable (CEP). This function is usually approximated by segments of straight lines.
The expression

CEP = 0.5887
(
σ̂x1 + σ̂x2

)
(4.329)

is, strictly speaking, valid in the region σmin/σmax ≥ 0.2, but it is the function used
most often. The 90% probability region

CMAS = 1.8227 × CEP (4.330)

is called the circular map accuracy standard. The mean position error (4.319) is also
called the mean square positional error (MSPE), or the distance root mean square
(DRMS), i.e.,
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DRMS =
√

σ̂
2
x1

+ σ̂
2
x2

(4.331)

This measure contains 64% to 77% probability. The related measure

2 DRMS = 2 × DRMS (4.332)

contains about 95% to 98% probability.
The three-dimensional equivalent of CEP is the spherical error probable (SEP),

defined as

SEP = 0.5127
(
σ̂x1 + σ̂x2 + σ̂x3

)
(4.333)

Expression (4.333) is, strictly speaking, valid in the region σmin/σmax ≥ 0.35. The
corresponding 90% probability region,

SAS = 1.626 × SEP (4.334)

is called the spherical accuracy standard (SAS). The mean radial spherical error
(MRSE) is defined as

MRSE =
√

σ̂
2
x1

+ σ̂
2
x2

+ σ̂
2
x3

(4.335)

and contains about 61% probability.
These measures of precision are sometimes used to capture the achieved or an-

ticipated precision conveniently using single numbers. However, the geometry of the
adjustment seldom produces covariance matrices that yield circular distribution. Con-
sequently, the probability levels contained in these measures of precision inevitably
are a function of the correlations between the parameters.

4.10 RELIABILITY

Small residuals are not necessarily an indication of a quality adjustment. Equally
important is the knowledge that all blunders in the data have been identified and re-
moved and that remaining small blunders in the observations do not adversely impact
the adjusted parameters. Reliability refers to the controllability of observations, i.e.,
the ability to detect blunders and to estimate the effects that undetected blunders may
have on a solution. The theory outlined here follows that of Baarda (1967, 1968), and
Kok (1984).

4.10.1 Redundancy Numbers

Following the expressions in Table 4.1 the residuals for the observation equation
model are

v̂ = QvP� (4.336)
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with a cofactor matrix for the residuals

Qv = P−1 − AN−1AT (4.337)

Compute the trace

Tr(Qv P) = Tr
(
I − AN−1ATP

)

= n − Tr
(
N−1ATPA

)

= n − u

(4.338)

A more general expression is obtained by noting that the matrix AN−1AT P is idem-
potent. The trace of an idempotent matrix equals the rank of that matrix. Thus,

Tr
(
AN−1ATP

) = R
(
ATPA

) = R(A) = r ≤ u (4.339)

Thus, from Equations (4.338) and (4.339)

Tr(QvP) = Tr(PQv) = n − R(A) (4.340)

By denoting the diagonal element of the matrix QvP by ri , we can write

n∑
i=1

ri = n − R(A) (4.341)

The sum of the diagonal elements of QvP equals the degree of freedom. The element
ri is called the redundancy number for the observation i. It is the contribution of the
ith observation to the degree of freedom. If the weight matrix P is diagonal, which is
usually the case when original observations are adjusted, then

ri = qipi (4.342)

where qi is the diagonal element of the cofactor matrix Qv , and pi denotes the weight
of the ith observation. Equation (4.337) implies the inequality

0 ≤ qi ≤ 1

pi

(4.343)

Multiplying by pi gives the bounds for the redundancy numbers,

0 ≤ ri ≤ 1 (4.344)

Considering the general relation

Q�a
= Q�b

− Qv (4.345)
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given in Table 4.1 and the specification (4.342) for the redundancy number ri as the
diagonal element of QvP, it follows that if the redundancy number is close to 1,
then the variance of the residuals is close to the variance of the observations, and
the variance of the adjusted observations is close to zero. If the redundancy number
is close to zero, then the variance of the residuals is close to zero, and the variance of
the adjusted observations is close to the variance of the observations.

Intuitively, it is expected that the variance of the residuals and the variance of
the observations are close; for this case, the noise in the residuals equals that of the
observations, and the adjusted observations are determined with high precision. Thus
the case of ri close to 1 is preferred, and it is said that the gain of the adjustment is high.
If ri is close to zero, one expects the noise in the residuals to be small. Thus, small
residuals as compared to the expected noise of the observations are not necessarily
desirable. Because the inequality (4.344) is a result of the geometry as represented
by the design matrix A, small residuals can be an indication of a weak part of the
network.

Because the weight matrix P is considered diagonal, i.e.,

pi = σ2
0

σ2
i

(4.346)

it follows that

σ̂vi
= σ̂0

√
qi = σ̂0

√
ri

pi

= σ̂0

√
riσ

2
i

σ2
0

= σ̂0

σ0

σi

√
ri (4.347)

From (4.341) it follows that the average redundancy number is

rav = n − R(A)

n
(4.348)

The higher the degree of freedom, the closer the average redundancy number is to 1.
However, as seen from Table 4.8, the gain, in terms of probability enclosed by the
standard ellipses, reduces noticeably after a certain degree of freedom.

4.10.2 Controlling Type-II Error for a Single Blunder

Baarda’s (1967) development of the concept of reliability of networks is based on un-
Studentized hypothesis tests, which means that the a priori variance of unit weight is
assumed to be known. Consequently, the a priori variance of unit weight (not the a
posteriori variance of unit weight) is used in this section. The alternative hypothesis
Ha specifies that the observations contain one blunder, that the blunder be located at
observation i, and that its magnitude be ∇i . Thus the adjusted residuals for the case
of the alternative hypothesis are

v̂|Ha = v̂ − QvPei∇i (4.349)
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where

ei = [0 · · · 0 1 0 · · · 0]T (4.350)

denotes an n × 1 vector containing 1 in position i and zeros elsewhere. The expected
value and the covariance matrix are

E(v̂|Ha) = −QvPei∇i (4.351)

Σv|Ha
= Σ̂v = σ2

0 Qv (4.352)

It follows from Theorem 1 of Section 4.9.1 that

v̂|Ha ∼ N
(−QvPei∇i , σ

2
0 Qv

)
(4.353)

Since P is a diagonal matrix, the individual residuals are distributed as

v̂i |Ha ∼ n
(−qipi∇i , σ

2
0 qi

)
(4.354)

according to Theorem 2. Standardizing gives

wa|Ha = v̂i |Ha

σ0
√

qi

∼ n

(−qipi∇i

σ0
√

qi

, 1

)

= n

(−√
qi pi∇i

σ0
, 1

) (4.355)

or

Ha: wa = v̂i |Ha

σvi

∼ n

(−∇ipi

√
qi

σ0

, 1

)
(4.356)

The zero hypothesis, which states that there is no blunder, is

H0: w0 = v̂i |H0

σvi

∼ n(0, 1) (4.357)

The noncentrality parameter in (4.356), i.e., the mean of the noncentral normal dis-
tribution, is denoted by δi and is

δi = −∇ipi

√
qi

σ0

= −∇i

√
ri

σi

(4.358)

The parameter δi is a translation parameter of the normal distribution. The situation
is shown in Figure 4.10. The probability of committing an error of the first kind, i.e.,
of accepting the alternative hypothesis, equals the significance level α of the test
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P
(|w0| ≤ ta/2

) =
∫ ta/2

−ta/2

n (0, 1) dx = 1 − α (4.359)

or

P
(|w0| ≥ ta/2

) =
∫ t1−a/2

−∞
n (0, 1) dx +

∫ ∞

ta/2

n(0, 1) dx = α (4.360)

In 100α% of the cases, the observations are rejected and remeasurement or inves-
tigations for error sources are performed, even though the observations are correct
(they do not contain a blunder). From Figure 4.10 it is seen that the probability βi of
a type-II error, i.e., the probability of rejecting the alternative hypothesis (and accept-
ing the zero hypothesis) even though the alternative hypothesis is correct, depends on
the noncentrality factor δi . Because the blunder ∇i is not known, the noncentrality
factor is not known either. As a practical matter one can proceed in the reverse: one
can assume an acceptable probability β0 for the error of the second kind and compute
the respective noncentrality parameter δ0. This parameter in turn is used to compute
the lower limit for the blunder, which can still be detected. Figure 4.10 shows that

P
(|wa| ≤ ta/2

) =
∫ ta/2

−ta/2

n(δi , 1) dx ≥ β0 (4.361)

if

δi ≤ δ0 (4.362)

Figure 4.10 Defining the noncentrality.
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Substituting Equation (4.358) into (4.362) gives the limit for the marginally de-
tectable blunder, given the probability levels α and β0:

|∇0i | ≥ δ0√
ri

σi (4.363)

Equations (4.361) and (4.363) state that in 100(1 − β0)% of the cases, blunders
greater than those given in (4.363) are detected. In 100β0% of the cases, blunders
greater than those given in (4.363) remain undetected. The larger the redundancy
number, the smaller is the marginally detectable blunder (for the same δ0 and σi). It
is important to recognize that the marginally detectable blunders (4.363) are based
on adopted probabilities of type-I and type-II errors for the normal distribution.
The probability levels α and β0 refer to the one-dimensional test (4.357) of the
individual residual vi , with the noncentrality being δ0. The assumption is that only
one blunder at a time is present. The geometry is shown in Figure 4.10. It is readily
clear that there is a simple functional relationship δ0 = δn(α, β0) between two normal
distributions. Table 4.9 contains selected probability levels and the respective δ0

values.
The chi-square test (4.263) of the a posteriori variance of unit weight σ̂

2
0 is also

sensitive to the blunder ∇i . In fact, the blunder will cause a noncentrality of δi

for the chi-square distribution of the alternative hypothesis. One can choose the
probabilities αchi and βchi for this multidimensional chi-square test such that δ0 =
δchi
(
αchi, βchi, n − u

)
. The factor δ0 depends on the degree of freedom because the

chi-square distribution depends on it. Baarda’s B method suggests equal traceability
of errors through one-dimensional tests of individual residuals, vi , and the multi-
dimensional test of the a posteriori variance of unit weight σ̂

2
0. This is achieved

by requiring that the one-dimensional test and the multidimensional test have the
same type-II error, i.e., β0 = βchi. Under this condition there exists a relationship
between the probability of type-II error, the significance levels, and the degree of
freedom expressed symbolically by δ0 = δn

(
α, β0

) = δchi
(
αchi, β0, n − r

)
. The

B method assures equal traceability but implies different significance levels for the

TABLE 4.9 Selected Probability Levels
in Reliability

α β0 δ0

0.05 0.20 2.80
0.025 0.20 3.1
0.001 0.20 4.12
0.05 0.10 3.24
0.025 0.10 3.52
0.001 0.10 4.57
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one-dimensional and multidimensional tests. For details see Baarda (1968, p. 25). In
practical applications one chooses the factor δ0 on the basis of a reasonable value for
α and β0 from Table 4.9.

4.10.3 Internal Reliability

Even though the one-dimensional test is based on the assumption that only one
blunder exists in a set of observations, the limit (4.363) is usually computed for
all observations. The marginally detectable errors, computed for all observations,
are viewed as a measure of the capability of the network to detect blunders with
probability (1 − β0). They constitute the internal reliability of the network. Because
the marginally detectable errors (4.363) do not depend on the observations or on
the residuals, they can be computed as soon as the configuration of the network
and the stochastic model are known. If the limits (4.363) are of about the same
size, the observations are equally well checked, and the internal reliability is said
to be consistent. The emphasis is then on the variability of the marginally detectable
blunders rather on their magnitude. A typical value is δ0 = 4.

4.10.4 Absorption

According to (4.336) the residuals in the presence of one blunder are:

v = QvP (� − ei∇i ) (4.364)

The impact on the residual of observation i is

∇vi = −ri∇i (4.365)

Equation (4.365) is used to estimate the blunders that might cause large residuals.
Solving for ∇i gives

∇i = −∇vi

ri

≈ −v∗
i + ∇vi

ri

≈ −vi

ri

(4.366)

because v∗
i � ∇vi , where v∗

i denotes the residual without the effect of the blunder.
The computation (4.366) provides only estimates of possible blunders. Because the
matrix QvP is not a diagonal matrix, a specific blunder has an impact on all residuals.
If several blunders are present, their effects overlap and one blunder can mask others;
a blunder may cause rejection of a good observation.

Equation (4.365) demonstrates that the residuals in least-squares adjustments are
not robust with respect to blunders in the sense that the effect of a blunder on the
residuals is smaller than the blunder itself, because r varies between 0 and 1. The ab-
sorption, i.e., the portion of the blunder that propagates into the estimated parameters
and falsifies the solution, is
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Ai = (1 − ri) ∇i (4.367)

The factor (1−ri) is called the absorption number. The larger the redundancy number,
the less is a blunder absorbed, i.e., the less falsification. If ri = 1, the observation
is called fully controlled, because the residual completely reflects the blunder. A
zero redundancy implies uncontrolled observations in that a blunder enters into the
solution with its full size. Observations with small redundancy numbers might have
small residuals and instill false security in the analyst. Substituting ∇i from (4.366)
expresses the absorption as a function of the residuals:

Ai = −1 − ri

ri

vi (4.368)

The residuals can be looked on as the visible parts of errors. The factor in (4.368) is
required to compute the invisible part from the residuals.

4.10.5 External Reliability

A good and homogeneous internal reliability does not automatically guarantee reli-
able coordinates. What are the effects of undetectable blunders on the parameters? In
deformation analysis, where changes in parameters between adjustments of different
epochs indicate existing deformations, it is particularly important that the impact of
blunders on the parameters be minimal. The influence of each of the marginally de-
tectable errors on the parameters of the adjustment or on functions of the parameters
is called external reliability. The estimated parameters in the presence of a blunder
are, for the observation equation model,

x̂ = −N−1AT P (� − ei∇i ) (4.369)

The effect of the blunder in observation i is

∇x = N−1AT Pei∇i (4.370)

The shifts ∇x are sometimes called local external reliability. The blunder affects all
parameters. The impact of the marginally detectable blunder ∇0i is

∇x0i = N−1AT Pei∇0i (4.371)

Because there are n observations, one can compute n vectors (4.371), showing the
impact of each marginal detectable blunder on the parameters. Graphical representa-
tions of these effects can be very helpful in the analysis. The problem with (4.371) is
that the effect on the coordinates depends on the definition (minimal constraints) of
the coordinate system. Baarda (1968) suggested the following alternative expression:

λ2
0i = ∇xT

0i N ∇x0i

σ2
0

(4.372)
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By substituting (4.371) and (4.363), we can write this equation as

λ2
0i = ∇0ie

T
i PAN−1AT Pei∇0i

σ2
0

= ∇2
0ie

T
i P(I − QvP)ei

σ2
0

= ∇2
0ipi (1 − ri)

σ2
0

(4.373)

or

λ2
0i = 1 − ri

ri

δ2
0 (4.374)

The values λ0i are a measure of global external reliability. There is one such value
for each observation. If the λ0i are the same order of magnitude, the network is ho-
mogeneous with respect to external reliability. If ri is small, the external reliability
factor becomes large and the global falsification caused by a blunder can be signif-
icant. It follows that very small redundancy numbers are not desirable. The global
external reliability number (4.374) and the absorption number (4.368) have the same
dependency on the redundancy numbers.

4.10.6 Correlated Cases

The derivations for detectable blunders, internal reliability, absorption, and external
reliability assumes uncorrelated observations for which the covariance matrix Σ�b

is
diagonal. Correlated observations are decorrelated by the transformation (4.235). It
can be readily verified that the redundancy numbers for the decorrelated observations
�̄ are

r̄i = (Q̄v̄P̄
)
ii

= (I − DT AN−1AT D
)
ii

(4.375)

In many applications, the covariance matrix Σ�b
is of block-diagonal form. For ex-

ample, for GPS vector observations, this matrix consists of 3 × 3 full block-diagonal
matrices if the correlations between the vectors are neglected. In this case, the matrix
D is also block-diagonal and the redundancy numbers can be computed vector by
vector from (4.375). The sum of the redundancy numbers for the three vector compo-
nents varies between 0 and 3. Since, in general, the matrix D has a full rank, the degree
of freedom (n− r) of the adjustment does not change. Once the redundancy numbers
r̄i are available, the marginal detectable blunders ∇̄0i , the absorption numbers Āi

and other reliability values can be computed for the decorrelated observations. These
quantities, in turn, can be transformed back into the physical observation space by
premultiplication with the matrix (DT)−1.

4.11 BLUNDER DETECTION

Errors (blunders) made during the recording of field observations, data transfer, the
computation, etc., can be costly and time-consuming to find and eliminate. Blunder
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detection can be carried out before the adjustment or as part of the adjustment. Be-
fore the adjustment, the discrepancies (angle and/or distance of simple figures such as
triangles and traverses) are analyzed. A priori blunder detection is helpful in detect-
ing extralarge blunders caused by, e.g., erroneous station numbering. Blunder detec-
tion in conjunction with the adjustment is based on the analysis of the residuals. The
problem with using least-squares adjustments when blunders are present is that the
adjustments tend to hide (reduce) their impact and distribute their effects more or less
throughout the entire network (see (4.364) and (4.365), noting that the redundancy
number varies between zero and 1). The prerequisite for any blunder-detection pro-
cedure is the availability of a set of redundant observations. Only observations with
redundancy numbers greater than zero can be controlled.

It is important to understand that if a residual does not pass a statistical test, this
does not mean that there is a blunder in that observation. The observation is merely
flagged so that it can be examined and a decision about its retention or rejection can
be made. Blind rejection is never recommended. A blunder in one observation usually
affects the residuals in other observations. Therefore, the tests will often flag other
observations in addition to the ones containing blunders. If one or more observations
are flagged, the search begins to determine if there is a blunder.

The first step is to check the field notes to confirm that no error occurred during the
transfer of the observations to the computer file, and that all observations are reason-
able “at face value.” If a blunder is not located, the network should be broken down
into smaller networks, and each one should be adjusted separately. At the extreme,
the entire network may be broken down into triangles or other simple geometric en-
tities, such as traverses, and adjusted separately. Alternatively, the observations can
be added sequentially, one at a time, until the blunder is found. This procedure starts
with weights assigned to all parameters. The observations are then added sequentially.
The sum of the normalized residuals squared is then inspected for unusually large
variations. When searching for blunders, the coordinate system should be defined by
minimal constraints.

Blunder detection in conjunction with the adjustment takes advantage of the total
redundancy and the strength provided by the overall geometry of the network, and
thus is more sensitive to smaller blunders. Only if the existence of a blunder is
indicated does action need to be taken to locate the blunder. The flagged observations
are the best hint where to look for errors and thus avoid unnecessary and disorganized
searching of the whole observation data set.

4.11.1 The τ Test

The τ test was introduced by Pope (1976). The test belongs to the group of Studen-
tized tests, which make use of the a posteriori variance of unit weight as estimated
from the observations. The test statistic is

τi = vi

σ̂vi

= σ0vi

σ̂0σi

√
ri

∼ τn−r (4.376)
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The symbol τn−r denotes the τ distribution with n−r degrees of freedom. It is related
to Student’s t by

τn−r =
√

n − r tn−r−1√
n − r − 1 + t2

n−r−1

(4.377)

For an infinite degree of freedom the τ distribution converges toward the Student
distribution or the standardized normal distribution, i.e., τ∞ = t∞ = n(0, 1).

Pope’s blunder rejection procedure tests the hypothesis vi ∼ n(0, σ̂vi
/σ̂0). The

hypothesis is rejected, i.e., the observation is flagged for further investigation and
possibly rejection, if

|τi | ≥ c (4.378)

The critical value c is based on a preselected significance level. For large systems, the
redundancy numbers are often replaced by the average value according to Equation
(4.348), in order to reduce computation time; thus

τi = σ0

σ̂0

vi

σi

√
(n − r)/n

(4.379)

could be used instead of (4.376).

4.11.2 Data Snooping

Baarda’s data snooping applies to the testing of individual residuals as well. The
theory assumes that only one blunder be present in the set of observations. Applying
a series of one-dimensional tests, i.e., testing consecutively all residuals, is called
a data snooping strategy. Baarda’s test belongs to the group of un-Studentized tests
which assume that the a priori variance of unit weight is known. The zero hypothesis
(4.357) is written as

ni = vi

σ0
√

qi

∼ n(0, 1) (4.380)

At a significant level of 5%, the critical value is 1.96. The critical value for this test is
not a function of the number of observations in the adjustment. The statistic (4.380)
uses the a priori value σ0 and not the a posteriori estimate σ̂0.

Both the τ and the data snooping procedures work best for iterative solutions.
At each iteration step, the observation with the largest blunder should be removed.
Since least-squares attempts to distribute blunders, several correct observations might
receive large residuals and might be flagged mistakenly.
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4.11.3 Changing Weights of Observations

This method, although not based on rigorous statistical theory, is an automated method
whereby blunders are detected and their effects on the adjustment minimized (or
even eliminated). The advantage that this method has, compared to previous methods,
is that it locates and potentially eliminates the blunders automatically. The method
examines the residuals per iteration. If the magnitude of a residual is outside a de-
fined range, the weight of the corresponding observation is reduced. The process of
reweighting and readjusting continues until the solution converges, i.e., no weights
are being changed. The criteria for judging the residuals and choice for the reweight-
ing function are somewhat arbitrary. For example, a simple strategy for selection of
the new weights at iteration k + 1 could be

pk+1,i = pk,i

{
e−|vk,i |/3σi if

∣∣vk,i

∣∣ > 3σi

1 if
∣∣vk,i

∣∣ ≤ 3σi

(4.381)

where σi denotes the standard deviation of observation i.
The method works efficiently for networks with high redundancy. If the initial

approximate parameters are inaccurate, it is possible that correct observations are
deweighted after the first iteration because the nonlinearity of the adjustment can
cause large residuals. To avoid unnecessary rejection and reweighting, one might not
change the weights during the first iteration. Proper use of this method requires some
experience. All observations whose weights are changed must be investigated, and
the cause for the deweighting must be investigated.

4.12 EXAMPLES

In the following, we use plane two-dimensional networks to demonstrate the geom-
etry of adjustments. As mentioned above, the geometry of a least-squares adjust-
ment is the result of the combined effects of the stochastic model (weight matrix
P—representing the quality of the observations) and the mathematical model (design
matrix A—representing the geometry of the network and the spatial distribution of the
observations). For the purpose of these examples, it is not necessary to be concerned
about the physical realization of two-dimensional networks. The experienced reader
might think of such networks as being located on the conformal mapping plane and
all that it takes to compute the respective model observations. However, it is entirely
sufficient here to stay simply within the area of plane geometry.

We will use the observation equation model summarized in Table 4.1. Assume
there is a set of n observations, such as distances and angles that determine the points
of a network. For a two-dimensional network of s stations, there could be as many
as u = 2s unknown coordinates. Let the parameter vector xa consist of coordinates
only, i.e., we do not parameterize refraction, centering errors, etc. To be specific, xa

contains only coordinates that are to be estimated. Coordinates of known stations are
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constants and not included in xa . The mathematical model �a = f(xa) is very simple
in this case. The n components f will contain the functions:

dij =
√(

xi − xj

)2 + (yi − yj

)2
(4.382)

ajik = tan−1 xk − xi

yk − yi

− tan−1 xj − xi

yj − yi

(4.383)

In these expressions the subscripts i, j , and k identify the network points. The notation
ajik implies that the angle is measured at station i, from j to k in a clockwise sense.
The ordering of the components in f does not matter, as long as the same order is
maintained with respect to the rows of A and diagonal elements of P.

Although the f(xa) have been expressed in terms of xa , the components typically
depend only on a subset of the coordinates. The relevant partial derivatives in a row
of A are for distances and angles:

{−(yk − yi)

dik

,
−(xk − xi)

dik

,
yk − yi

dik

,
xk − xi

dik

}
(4.384)

{
xi − xj

d2
ij

, − yi − yj

d2
ij

,
xk − xj

d2
kj

− xi − xj

d2
ij

, − yk − yj

d2
kj

+ yi − yj

d2
ij

, − xk − xj

d2
kj

,
yk − yj

d2
kj

}
(4.385)

Other elements are zero. The column location for these partials depends on the
sequence in xa . In general, if α is the α-th component of �b and β the β-th component
of xa , then the element aα,β of A is

aα,β = ∂�α

∂xβ

(4.386)

The partial derivatives and the discrepancy �0 must be evaluated for the approximate
coordinates x0.

Example 1: This example demonstrates the impact of changes in the stochastic
model. Figure 4.11 shows a traverse connecting two known stations. Three solutions

Figure 4.11 Impact of changing the stochastic model.
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are given. In all cases, the distances are of the same length and observed with the same
accuracy. The angle observations are 180° and measured with the same accuracy but
are changed by a common factor for each solution. If we declare the solutions with
the smallest ellipses in Figure 4.11 as the base solutions with observational standard
deviation of σa then the other solutions use 2σa and 4σa , respectively. The shape of
the ellipses elongates as the standard deviation of the angles increases.

Example 2: This example demonstrates the impact of changing network geometry
using a resection. Four known stations lie exactly on an imaginary circle with radius
r . The coordinates of the new station are determined by angle measurements, i.e., no
distances are involved. For the first solution, the unknown station is located at the
center of the circle. In subsequent solutions it location moves to 0.5 r , 0.9 r , 1.1 r ,
and 1.5 r from the center while retaining the same standard deviation for the angle
observations in each case. Figure 4.12 shows that the ellipses become more elongated
the closer the unknown station moves to the circle. The solution is singular if the new
station is located exactly on the circle.

Figure 4.12 Impact of changing network geometry.

Example 3: Three cases are given that demonstrate how different definitions of the
coordinate system affect the ellipses of standard deviation. All cases refer to the
same plane network using the same observed angles and distances and the same
respective standard deviations of the observations. A plane network that contains
angle and distance observations requires three minimal constraints. Simply holding
three coordinates fixed imposes such minimal constraints. The particular coordinates
are constants and are not included in the parameter vector xa , and, consequently,
there are no columns in the A matrix that pertain to these three coordinates. Inner
constraints offer another possibility of defining the coordinate system.

Figure 4.13 shows the results of two different minimal constraints. The coordinates
of station 2 are fixed in both cases. In the first case, we hold one of the coordinates of
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Figure 4.13 Changing minimal constraints.

station 1 fixed. This results in a degenerated ellipse (straight line) at station 1 and a
regular ellipse at station 3. In the second case, we hold one of the coordinates of station
3 fixed. The result is a degenerated ellipse at station 3 and a regular ellipse at station 1.
The ellipses of standard deviation change significantly due to the change in minimal
constraints. Clearly, if one were to specify the quality of a survey in terms of ellipses
of standard deviation, one must also consider the underlying minimal constraints.
Figure 4.13 also shows that the adjusted coordinates for stations 1 and 3 differ in
both cases, although the internal shape of the adjusted network 1-2-3 is the same.

The inner constraint solution, which is a special case of the minimal constraint
solutions, has the property that no individual coordinates need to be held fixed.
All coordinates become adjustable; for s stations of a plane network, the vector xa

contains 2s coordinate parameters. The ellipses reflect the geometry of the network,
the distribution of the observations, and their standard deviations. Section 4.8 contains
the theory of inner constraints. The elements for drawing the ellipses are taken from
the cofactor matrix (4.203) and Equation (4.212) gives the adjusted parameters. A first
step is to find a matrix E that fulfills AET = O according to (4.177). The number of
rows of E equals the rank defect of A. For trilateration networks with distances and
angles we have

E =



· · · 1 0 · · · 1 0 · · ·
· · · 0 1 · · · 0 1 · · ·
· · · −yi xi · · · −yk xk · · ·


 (4.387)

Four constraints are required for triangulation networks that contain only angle ob-
servations. In addition to fixing translation and rotation, triangulation networks also
require scaling information. The E matrix for such networks is
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Figure 4.14 Inner constraint solution.

E =




· · · 1 0 · · · 1 0 · · · 1 0 · · ·
· · · 0 1 · · · 0 1 · · · 0 1 · · ·
· · · −yi xi · · · −yj xj · · · −yk xj · · ·
· · · xi yi · · · xj yj · · · xk yk · · ·




(4.388)

The inner constraint solution is shown in Figure 4.14. Every station has an ellipse. The
minimal constraint solutions and the inner constraint solution give the same estimates
for residuals, a posteriori variance of unit weight, and redundancy numbers. While
the estimated parameters (station coordinates) and their covariance matrix differ for
these solutions, the same result is obtained when using these quantities in covariance
propagation to compute other observables and their standard deviations.

Example 4: Weighting all approximate coordinates can also provide the coordinate
system definition. Table 4.3 contains expressions that include a priori weights on the
parameters. If the purpose of the adjustment is to control the quality of the observa-
tions, it is important that the weights of the approximate coordinate are small enough
to allow observations to adjust freely. For example, if the approximate coordinates are
accurate to 1 m, one can use a standard deviation of, say, 1–2 m, or even larger. Ideally,
of course, the weight should reflect our knowledge of the approximate coordinates by
using meaningful standard deviation. One may prefer to use large standard deviations
just to make sure that the internal geometry of the network solution is not affected.

Figure 4.15 shows all ellipses for the case when each approximate station coor-
dinate is assigned a standard deviation of 10 m. The ellipse at each network point
is approximately circular. The size of the ellipses is in the range of the a priori co-
ordinate standard deviations. The ellipses in Figure 4.15 imply a scale factor of 106

when compared to those in Figures 4.13 and 4.14, which roughly corresponds to the
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Figure 4.15 Weighting approximate coordinates to define the coordinate system.

ratio of the variances of the approximate coordinates over the average variance of the
observations.

The weighted parameter approach is also a convenient way of imposing minimal
constraints. Only a subset of three approximate coordinates needs to be weighted in
case of a plane angle and distance network.

4.13 KALMAN FILTERING

Least-squares solutions are often applied to surveying networks whose network points
refer to monuments that are fixed to the ground. When using the sequential least-
squares approach (4.140) to (4.144), the parameters x are typically treated as a time
invariant. The subscript i in these expressions identifies the set of additional obser-
vations added to the previous solution that contains the sets 1 ≤ i ≤ i − 1. Each set
of observations merely updates x, resulting in a more accurate determination of the
fixed monuments.

We generalize the sequential least-squares formulation by allowing the parameter
vector x to change with time. For example, the vector x might now contain the
three-dimensional coordinates of a moving receiver, the coordinates of satellites,
tropospheric delay of signals, or other time-varying parameters. We assume that the
dynamic model between parameters of adjacent epochs follows the system of linear
equations

xk(−) = Φk−1xk−1 + wk (4.389)

We have used the subscript k, instead of i, to emphasize that it now indicates the
epoch. The matrix Φk−1 is called the parameter transition matrix. The random vector
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wk is the system process noise and is distributed as wk ∼ N(o, Qwk
). The notation

(−) indicates the predicted value. Thus,

x̂k(−) = Φk−1x̂k−1 + wk (4.390)

x̂k(−) is the predicted parameter vector at epoch k, based on the estimated parameter
x̂k−1(−) from the previous epoch and the dynamic model. The solution that generated
x̂k−1 also generated the respective cofactor matrix Qk−1. The observation equations
for epoch k are given in the familiar form

vk = Akxk + �k (4.391)

with vk ∼ N(o, Q�k
).

The first step in arriving at the Kalman filter formulation is to apply variance-
covariance propagation to (4.389) to predict the parameter cofactor matrix at the next
epoch,

Qk(−) = Φk−1Qk−1Φ
T
k−1 + Qwk

(4.392)

Expression (4.392) assumes that the random variables �k and wk are uncorrelated. The
various observation sets �k are also uncorrelated, as implied by (4.88). The second
step involves updating the predicted parameters x̂k(−), based on the observations �k .
Following the sequential least-squares formulation (4.140) to (4.144), we obtain

Tk =
[
Q�k

+ AkQk(−)AT
k

]−1
(4.393)

x̂k = x̂k(−) − Kk

[
Ak x̂k(−) + �k

]
(4.394)

Qk = [I − KkAk] Qk(−) (4.395)

vT Pvk = vT Pvk−1 + [Ak x̂k(−) + �k

]T
Tk

[
Ak x̂k(−) + �k

]
(4.396)

where the matrix

Kk = Qk(−)AT
k Tk (4.397)

is called the Kalman gain matrix.
If the parameter xk+1 depends only on the past (previous) solution xk , we speak of

a first-order Markov process. If noise wk has a normal distribution, we talk about a
first-order Gauss-Markov process,

xk+1 = ϕxk + wk (4.398)

with wk ∼ n(0, qwk
). In many applications a useful choice for ϕ is

ϕ = e−T/τ (4.399)
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which implies that the variable x is exponentially correlated, i.e., the autocorrelation
function is decreasing exponentially (Gelb, 1974, p. 81). The symbol τ denotes the
correlation time, and T denotes the time difference between epochs k + 1 and k. The
variance of the process noise for correlation time τ is

qwk
= E(wkwk) = τ

2

[
1 − e−2T/τ

]
qk (4.400)

with qk being the variance of the process noise (Gelb, 1974, p. 82). The quantities
(τ, qk) could be initially determined from data by fitting a sample mean and sample
autocorrelation function.

As τ approaches zero, then ϕ = 0. This describes the pure white noise model with
no correlation from epoch to epoch. x can be thought of as a random constant that is
a nondynamic quantity.

As τ approaches infinity, we obtain the pure random walk. Applying l’Hospital
rule for computing the limit or using series expansion, we obtain ϕ = 1 and qwk

=
T qk . The random noises wk are uncorrelated.

In general, both the dynamic model (4.389) and the observation model (4.391) are
nonlinear. The extended Kalman filter formulation (Gelb, 1974, p. 187) applies to
this general case. The reader is urged to consult that reference or other specialized
literature for additional details on Kalman filtering.
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CHAPTER 5

PSEUDORANGE AND CARRIER PHASE
OBSERVABLES

Pseudoranges and carrier phases are the most important GPS observations (observ-
ables) used for positioning. Solutions are available that use pseudoranges only, carrier
phases only, or both types of observations. The early solutions for navigation relied
on pseudoranges. More recently, even point positioning often includes the carrier
phase observable. Carrier phases are always required for accurate surveying at the
centimeter level. Processing algorithms exist that use the (undifferenced) observa-
tions directly. However, one often uses certain linear combinations. Popular examples
are the double differences and the triple differences.

Measuring pseudoranges and carrier phases involves advanced techniques in elec-
tronics and digital signal processing. This chapter deals with the equations that di-
rectly apply to the pseudoranges and carrier phases as downloaded from the receiver.
The goal is to determine geocentric positions (point positioning) or relative positions
between co-observing stations (differential or relative positioning). These equations
are also the basis for estimating ionospheric and tropospheric parameters with GPS,
or the transfer of time.

In addition to deriving and discussing the basic pseudorange and carrier phase
equations and the double- and triple-difference functions, we address frequently
asked questions of novice GPS users. Examples include simultaneity of observations,
singularities, and a priori knowledge of initial station and ephemeris. The implications
of relativity for GPS observables have widely been addressed in the literature, e.g.,
Grafarend (1992), Hatch (1992), Ashby (1993), and Schwarze et al. (1993). In this
chapter, remarks on relativity are limited to Section 5.3.1, where a clock correction
term is given to account for satellite orbital eccentricity. The correction and the ad-
justment to the fundamental frequency of 10.23 MHz mentioned in Section 3.2.2 are
the only references to the applicability of relativity to GPS in this book. In relative
positioning, most of the relativistic effects cancel or become negligible.

170
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Throughout this and subsequent chapters, a superscript identifies the satellite,
and a subscript identifies the receiver. Lowercase letters p and q generally label the
satellites, whereas k and m refer to receivers. In relative positioning when two or
more receivers observe at the same time, we occasionally refer to the concept of a
base satellite and a base station. Usually the letter p will denote the base satellite
and k the base station. One may think of p and q as the pseudorandom noise (PRN)
numbers of the satellite or simply as sequential numbers identifying the satellites. The
L1 and L2 carrier frequencies are indicated by the subscripts 1 and 2, respectively.
In this notation we write the L1-pseudorange observation at station k to satellite
p as P

p

k,1. The respective notation for the L1-carrier phase in cycles is ϕ
p

k,1. The
symbol Φp

k,1 refers to carrier phases scaled to distance. Occasionally we identify other
terms that relate to pseudoranges or carrier phases with subscripts P , ϕ, and Φ. For
example, I

p

k,2,P identifies the ionospheric delay of the L2-pseudorange measurement
from station k to satellite p.

In many cases, the superscripts and subscripts also indicate specific functions of
the observables. For example, if we label the epoch of the observations by t , the single
difference (SD) and double difference (DD) are defined as

ϕ
p

km(t) = ϕ
p

k (t) − ϕp
m(t) (5.1)

ϕ
pq

km(t) = ϕ
p

km(t) − ϕ
q

km(t) (5.2)

This notation does not use a comma between subscripts k and m and superscripts
p and q. Notice that the subscript combinations km and pq as used here imply a
differencing of “k-m” and “p-q” respectively. The triple difference (TD) refers to the
difference over time,

∆ϕ
pq

km

(
t2, t1
) = ϕ

pq

km

(
t2
)− ϕ

pq

km

(
t1
)

(5.3)

The between satellite difference (BSD) is identified by

ϕ
pq

k (t) = ϕ
p

k (t) − ϕ
q

k (t) (5.4)

The receiver sets the epochs of observation internally. Without going into the inner
workings of receivers, suffice it to note from the users’ point of view that receivers
make measurements of several satellites (usually all satellites in view) at the same
epoch. The output is available typically at the full second, half second, etc. The user
usually can set the rate of output. With this understanding, we will be able to simplify
notation at times by simply dropping the time label t .

5.1 PSEUDORANGES AND CARRIER PHASES

The pseudorange is related to the distance between the satellite and the receiver’s
antenna, implied by the epochs of emission and reception of the codes. The trans-
mission (travel) time of the codes is measured by correlating identical PRN codes
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generated by the satellite with those generated internally by the receiver. The code-
tracking loop within the receiver shifts the internal replica of the PRN code in time
until maximum correlation occurs. The codes generated by the receiver are based on
the receiver’s own clock, and the codes of the satellite transmissions are generated
by the satellite clock. Unavoidable timing errors at the satellite and the receiver will
cause the measured pseudorange to differ from the geometric distance corresponding
to the instants of emission and reception. Pseudoranging is applicable to P(Y)-codes
and C/A-codes.

The equation for the pseudorange observable can easily be built by considering
first the spatial distance in vacuum,

ρ
p

k (
�

t p) = (�t k − �

t p
)
c = (tk + dt k − tp − dt̄p

)
c (5.5)

ρ
p

k (
�

t p) Geometric distance (vacuum distance) traveled by the code from
transmission at satellite p to reception at the receiver antenna k. This
distance will eventually have to be computed as part of the receiver
position computations. See details below.

�

t k True time at the receiver at the epoch the code entered the antenna. The
nominal time, i.e., the receiver clock reading, is denoted by tk . This
nominal receiver time is in error by dt k .

�

t p True time at the epoch of code transmission. The nominal satellite time,
i.e., the satellite clock reading, is denoted by tp. This nominal satellite
clock time is in error by dt̄p.

c Velocity of light.

There is a direct linear relationship between codes and nominal clock time. The
code generation sequence is specified by time as a parameter. Therefore, the nominal
satellite time determines which code leaves the satellite and when. The same is
true regarding the nominal receiver time and the generation of the receiver’s code
sequence. The measure pseudorange is, therefore, a function of the nominal times.
For the vacuum we have

P
p

k (tk) ≡ (tk − tp
)
c = ρ

p

k (
�

t p) − cdt k + cdt̄p (5.6)

where P
p

k (tk) denotes the pseudorange.
The mathematical expression for the pseudorange observable must take into ac-

count the effects of the ionosphere and the troposphere, as well as hardware delays
at the satellite and at the receiver. Adding the subscript to identify the frequency, the
actual expression for the pseudorange observable becomes

P
p

k,1(tk) = ρ
p

k (
�

t p) − cdt k + cdt̄p + I
p

k,1,P (tk) + T
p

k (tk) + δ
p

k,1,P (tk) + ε1,P (5.7)

with
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ρ
p

k (
�

t p) = ∥∥xp − xk

∥∥ = √(xp − xk) · (xp − xk)

=
√

(xp − xk)
2 + (yp − yk)

2 + (zp − zk)
2

(5.8)

δ
p

k,1,P (tk) = dk,1,P (tk) + d
p

k,1,P (tk) + d
p

1,P (tk) (5.9)

ρ
p

k

(�
t p
)

This is again the geometric vacuum distance that is often computed from
the ECEF receiver coordinates xk and satellite coordinates xp, taking the
earth’s rotation during signal travel time into account. Given the nominal
time tp, we add the satellite clock correction given in the broadcast
message to compute and estimate the true time

�

t p. Because the satellites
carry atomic clocks that are carefully monitored and are fairly stable, one
can safely assume that the residual error in

�

t p is less than 1 microsecond.
For a topocentric range rate of

∣∣ρ̇p

k (t)
∣∣ < 800 m/s, the computation error

in distance is dρ < 1 mm because of dtp. This error is negligible.

I
p

k,1,P Ionospheric P(Y)-code delay at L1. This delay is always positive.
It depends on the ionospheric condition along the path and on the
frequency. Details are provided in Chapter 6.

T
p

k Tropospheric delay. This delay is always positive. It depends upon the
tropospheric condition along the path but is independent of the carrier
frequency. Therefore, there is no need to identify the frequency.

dk,1,P Receiver hardware delay. This delay does not depend on the satellite
being observed.

d
p

k,1,P Multipath delay. This delay depends on the direction of the satellite.

d
p

1,P Satellite hardware delay.

ε1,P Pseudorange measurement noise (approximately 30 cm for P(Y) code
pseudoranges and worse for C/A-code pseudoranges, depending on the
technology used).

The pseudorange (5.7) would equal the geometric distance from the satellite at epoch
of transmission to reception at the receiver if the propagation medium were a vacuum
and if there were no clock errors and no other biases.

The phase observable is the sum of the fractional carrier phase at nominal fre-
quency f1, which arrives at the antenna at the nominal time tk , and an unknown integer
constant representing full waves. In units of cycles the equation for the carrier phase
L1 is

ϕ
p

k,1(tk) = f1

c
ρ

p

k (
�

t p) + N
p

k (1) − f1 dt k + f1 dt̄p + I
p

k,1,ϕ(tk) + f1

c
T

p

k (tk)

+ δ
p

k,1,ϕ(tk) + ε1,ϕ

(5.10)

δ
p

k,1,ϕ(tk) = dk,1,ϕ(tk) + d
p

k,1,ϕ(tk) + d
p

1,ϕ(tk) (5.11)
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This expression differs from the pseudorange (5.7) as follows:

N
p

k (1) Integer ambiguity: This integer refers to the first epoch of observations
and remains constant during the period of observation. During this
period, the receiver accumulates the phase differences between
arriving phases and internally generated receiver phases. The
receiver, therefore, effectively generates an accumulated carrier
phase observable that reflects the changes in distance to the
satellite. The observation series is continuous until a cycle slip
occurs, which introduces an integer jump. After the cycle slip
has occurred, the observation series continues with a new integer
constant N

p

k .

I
p

k,1,ϕ Ionospheric L1 carrier phase advance. This value is negative. The
numerical value is a function of the frequency and the ionospheric
condition along the path. See Chapter 6 for details of this delay and its
relation to the corresponding ionospheric pseudorange delay.

δ
p

k,1,ϕ Hardware delays and multipath effects on the L1 carrier phase.

ε1,ϕ L1 phase measurement noise (< 0.01 cycles)

The carrier phase can be scaled to unit of length by multiplying with λ1 = c/f1. Thus
(5.10) becomes

Φ
p

k,1(tk) = ρ
p

k (
�

t p) + λ1N
p

k (1) − c dt k + c dt̄p + I
p

k,1,Φ(tk) + T
p

k (tk)

+ δ
p

k,1,Φ(tk) + ε1,Φ

(5.12)

The subscript Φ implies that the respective quantities are in units of length, e.g.,
I

p

k,1,Φ = λ1 I
p

k,1,ϕ .
Receivers observe pseudoranges and carrier phases to several satellites at the same

time. Today’s all-in-view receivers generate these observables for all visible satellites
at the same nominal time tk , for L1 and L2 frequencies. Therefore, the receiver clock
error and the hardware delays are the same for all observations at the same epoch.
Since GLONASS satellites transmit at different frequencies, special attention must
be given to the implications of the receiver clock errors when expressing the carrier
phases. For details on GLONASS phase processing, see Section 7.7.6.

The following simple functions of the L1 and L2 frequencies are useful for future
references,

αf = (f1/f2)
2 = (77/60)2 ≈ 1.647 (5.13)

βf = f 2
1 /
(
f 2

1 − f 2
2

) = αf /
(
αf − 1

) = 772/
(
772 − 602

) ≈ 2.546 (5.14)

γf = f 2
2 /
(
f 2

1 − f 2
2

) = 1/
(
αf − 1

) = 602/
(
772 − 602

) ≈ 1.546 (5.15)

δf = f1f2/
(
f 2

1 − f 2
2

) = √
αf /(αf − 1) = 77 ∗ 60/

(
772 − 602

) ≈ 1.984 (5.16)
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5.2 DIFFERENCING

For receivers at stations k and m, observing the same satellite p at the nominal
times tk and tm, one can write two pseudorange equations (5.7) and two carrier phase
equations (5.10). Let tk be approximately equal to tm. Some manufacturers time-shift
the observations to make these nominal times equal, say, to the full second. Even if
the nominal times are the same, the respective signals leave the satellite p at slightly
different times. This is so because the distances between receivers and satellite differ.
Because the satellite clocks are highly stable, we assume that the satellite clock errors
are the same for these near-simultaneous transmissions. The same assumption is made
in regard to the internal satellite hardware delays. Under such a condition of near-
simultaneity, the single-difference phase observable (5.1) becomes

ϕ
p

km,1(t) = f

c
ρ

p

km(
�

t p) + N
p

km,1(1) − f (dt k − dt m)

+ I
p

km,1,ϕ(t) + f

c
T

p

km(t) + dkm,1,ϕ(t) + d
p

km,1,ϕ(t) + ε
p

km,1,ϕ

(5.17)

To simplify the notation, we have used the symbol t to denote the time of observations
in those terms where the distinction between tk and tp is not necessary. Computing
ρ

p

km requires two different emission times, one with respect to the observation from
receiver k and one with respect to receiver m. We introduce no additional notation
to label these two different emission times because it is clear from the context which
times must be used for ephemeris interpolation. Following the subscript convention
for differencing, we have

ρ
p

km(
�

t p) = ρ
p

k (
�

t p) − ρp
m(

�

t p) (5.18)

N
p

km(1) = N
p

k (1) − Np
m(1) (5.19)

I
p

km,1,ϕ(t) = I
p

k,1,ϕ(t) − I
p

m,1,ϕ(t) (5.20)

T
p

km(t) = T
p

k (t) − T p
m (t) (5.21)

dkm,1,ϕ(t) = dk,1,ϕ(t) − dm,1,ϕ(t) (5.22)

d
p

km,1,ϕ(t) = d
p

k,1,ϕ(t) − d
p

m,1,ϕ(t) (5.23)

ε
p

km,1,ϕ(t) = ε
p

k,1,ϕ(t) − ε
p

m,1,ϕ(t) (5.24)

We notice that the satellite clock error and the satellite hardware delay have can-
celed in the single differences. However, the single-difference observations remain
sensitive to both receiver clock errors dt k and dt m, and to signal multipath at the
receiver.
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If two receivers k and m observe two satellites p and q at the same nominal time,
the double-difference phase observable (5.2) is

ϕ
pq

km,1(t) = f

c
ρ

pq

km(
�

t p) + N
pq

km,1(1) + I
pq

km,1,ϕ(t) + f

c
T

pq

km (t) + d
pq

km,1,ϕ(t) + ε
pq

km,1,ϕ

(5.25)

where

ρ
pq

km(
�

t p) = ρ
p

km(
�

t p) − ρ
q

km(
�

t p) (5.26)

N
pq

km(1) = N
p

km(1) − N
q

km(1) (5.27)

I
pq

km,ϕ(t) = I
p

km,ϕ(t) − I
q

km,ϕ(t) (5.28)

T
pq

km (t) = T
p

km(t) − T
q

km(t) (5.29)

d
pq

km,ϕ(t) = d
p

km,ϕ(t) − d
q

km,ϕ(t) (5.30)

ε
pq

km,ϕ = ε
p

km,ϕ − ε
q

km,ϕ (5.31)

The most important feature of the double-difference observation is the cancellation
of the large receiver clock errors dt k and dt m (in addition to the cancellation of
the satellite clock errors and the satellite hardware delays). The receiver hardware
delays at a given receiver also cancel, as long as they are the same for every satellite
observed. Because multipath is a function of the geometry between receiver, satellite,
and reflector, the term (5.30) does not cancel in the double-difference observable.

The double-difference integer ambiguity N
pq

km plays an important role in accurate
relative positioning using double differences. Estimating the ambiguity together with
the other parameters as a real number, one gets the so-called float solution. If the
estimated ambiguities N̂

pq

km can be successfully constrained to integer, one gets the
ambiguity fixed solution. Because of residual model errors the estimated ambiguities
will, at best, be close to integers. Imposing integer constraints adds strength to the
solution, because the number of parameters is reduced and the correlations between
parameters reduce as well. Much effort has gone into extending the baseline length
over which ambiguities can be fixed. At the same time, much research has been
carried out to develop algorithms that allow the ambiguities to be fixed from short
observation spans over short baselines. Having the possibility of imposing the integer
constraint on the estimated ambiguity is a major strength of the double-differencing
approach. For details on this topic, see Chapter 7.

The triple difference (5.3) is the difference of two double differences over time

∆ϕ
pq

km,1 (t2, t1) = f1

c

[
∆ρ

pq

km(
�

t p,
�

t q)
]
+

+ ∆I
pq

km,1,ϕ(t2, t1) + f

c
∆T

pq

km (t2, t1) + ∆d
pq

km,1,ϕ(t2, t1) + ∆ε
pq

km,1,ϕ

(5.32)
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∆ρ
pq

km(
�

t p,
�

t q) = ρ
pq

km

(�
t
p

2 ,
�

t
q

2

)− ρ
pq

km

(�
t
p

1 ,
�

t
q

1

)
(5.33)

The initial integer ambiguity N
pq

km(1) cancels in (5.32). The triple-difference ob-
servable is probably the easiest to deal with because of this cancellation. Often the
triple-difference solution serves as a preprocessor to get good initial positions for the
double-difference solution. The triple differences have the advantage in that cycle
slips are mapped as individual outliers in the computed residuals. Individual outliers
can usually be detected and removed. The resulting cycle slip free observations can
then be used in the double-difference solution.

A delta range is the difference in time of observables at the same station. For
example,

∆ϕ
p

k,1(t2, t1) = f1

c
∆ρ

p

k

(�
t
p

2 ,
�

t
p

1

)− f1 ∆dt k + f1 ∆dt̄p + ∆I
p

k,1,ϕ(t)

+ f1

c
∆T

p

k (t) + ∆δ
p

k,1,ϕ(t) + ∆ε1,ϕ

(5.34)

∆ρ
p

k

(�
t
p

2 ,
�

t
p

1

) = ρ
p

k

(�
t
p

2

)− ρ
p

k

(�
t
p

1

)
(5.35)

These delta ranges are a function of the change in topocentric distance between the
station and the satellite, provided there is no cycle slip between the epochs t1 and t2.
They do not depend on the initial ambiguity because of the differencing over time.
The delta range (5.34) depends on the change of the receiver and satellite clock errors
from epoch t1 to epoch t2.

The between-satellite difference (5.4)

ϕ
pq

k,1(t) = f1

c
ρ

pq

k (
�

t p,
�

t q) + N
pq

k (1) + f1 dtpq + I
pq

k,1,ϕ(t) + f1

c
T

pq

k (t)

+ δ
pq

k,1,ϕ(t) + ε1,ϕ

(5.36)

ρ
pq

k (
�

t p,
�

t q) = ρ
p

k (
�

t p) − ρ
q

k (
�

t q) (5.37)

does not depend on the receiver clock error but, instead, contains again an integer
ambiguity.

5.3 INITIAL EVALUATION

5.3.1 Satellite Clock Corrections

The control segment maintains GPS time to within 1 µs of UTC(USNO) according
to the Interface Control Document (ICD-GPS-200C, 2000), but GPS time does not
follow the UTC leap-second jumps. The full second offset is readily available on
the Internet and from various data services, if needed. The user needs GPS time
and not UTC because the observations are time-tagged with GPS time; it is also
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the time argument for the broadcast and precise ephemerides. Because the satellite
transmissions are steered by the nominal time of the individual satellite (satellite
time), it is important to know the differences between GPS time and the individual
satellite time. In the notation and sign convention as used by the interface control
document, the time correction to the nominal space vehicle time tSV is

∆tSV = af 0 + af 1 (tSV − toc) + af 2 (tSV − toc)
2 + ∆tR (5.38)

with

tGPS = tSV − ∆tSV (5.39)

and

∆tR = − 2

c2

√
aµ e sin E = − 2

c2
X · Ẋ (5.40)

The polynomial coefficients are transmitted in units of sec, sec/sec, and sec/sec2;
the clock data reference time toc is also broadcast in seconds in subframe 1 of the
navigation message. As is required when using the ephemeris expressions, the value
of tSV must account for the beginning or end-of-week crossovers. That is, if (tSV −toc)

is greater than 302,400, subtract 604,800 from tSV. If (tSV−toc) is less than −302,400,
add 604,800 to tSV.

The second part of (5.40) follows from (3.61). ∆tR is a small relativistic clock
correction caused by the orbital eccentricity e. The symbol µ denotes the gravitational
constant, a is the semimajor axis of the orbit, and E is the eccentric anomaly. See
Chapter 3 for details on these elements. Using a ≈ 26,600 km we have

∆tR[µsec] ≈ −2e sin E (5.41)

5.3.2 Topocentric Range

The pseudorange equation (5.7) and the carrier phase equation (5.10) require that the
topocentric distance ρ

p

k be computed. In the inertial coordinate system (X), this is
simply accomplished by

ρ
p

k = ∥∥Xk(
�

t k) − Xp(
�

t p)
∥∥ (5.42)

In the inertial coordinate system, the receiver coordinates are a function of time due
to the earth’s rotation. If the receiver antenna and satellite ephemeris are available
in the terrestrial coordinate system, we must take the earth’s rotation explicitly into
account. Neglecting polar motion, the Greenwich apparent sidereal time relates the
terrestrial coordinate system (x) to the inertial system (X) by (2.34). Let θp and θk

denote the Greenwich apparent sidereal times for transmission and reception of the
signal, then
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ρ
p

k = ∥∥R3(−θk)xk − R3(−θp)xp(
�

t p)
∥∥ (5.43)

If τ denotes the travel time for the signal, then the earth rotates during that time by

θ = θk − θp = Ω̇e

(�
t k − �

t p
) = Ω̇eτ (5.44)

with Ω̇e being the earth rotation rate and τ the travel time of the signal. The topocentric
distance becomes

ρ
p

k = ∥∥R3(−θk)xk − R3(−θk + θ)xp(
�

t p)
∥∥

= ∥∥R3(−θp)
{
R3(−θ)xk − xp(

�

t p)
}∥∥

= ∥∥R3(−θ)xk − xp(
�

t p)
∥∥

= ∥∥xk − R3(θ)xp(
�

t p)
∥∥

(5.45)

In modifying (5.45), we used the facts that a distance is invariant with respect to the
rotation of the coordinate system and that the rotation matrix R3 is orthonormal.

Because θ is a function of τ, Equation (5.45) must be iterated. A good initial
estimate is τ0 = 0.075 sec. Computing θ1 from (5.44) and using this value in (5.45)
gives the initial value ρ1 for the distance. The second estimate of the travel time
follows from τ2 = ρ1/c. This value is used in (5.44) to continue the iteration loop.

5.3.3 Cycle Slips

A cycle slip is a sudden jump in the carrier phase observable by an integer number
of cycles. The fractional portion of the phase is not affected by this discontinuity
in the observation sequence. Cycle slips are caused by the loss of lock of the phase
lock loops. Loss of lock may occur briefly between two epochs or may last several
minutes or more, if the satellite signals cannot reach the antenna. If receiver software
would not attempt to correct for cycle slips, it would be a characteristic of a cycle
slip that all observations after the cycle slip would be shifted by the same integer.
This is demonstrated in Table 5.1, where a cycle slip is assumed to have occurred for

TABLE 5.1 Effect of Cycle Slips on Carrier Phase Differences

Double Triple
Carrier Phase Difference Difference

ϕ
p

k (i − 2) ϕ
p
m(i − 2) ϕ

q

k (i − 2) ϕ
q
m(i − 2) ϕ

pq

km(i − 2) ∆ϕ
pq

km(i − 1, i − 2)

ϕ
p

k (i − 1) ϕ
p
m(i − 1) ϕ

q

k (i − 1) ϕ
q
m(i − 1) ϕ

pq

km(i − 1) ∆ϕ
pq

km(i, i − 1) − ∆

ϕ
p

k (i) ϕ
p
m(i) ϕ

q

k (i) + ∆ ϕ
q
m(i) ϕ

pq

km(i) − ∆ ∆ϕ
pq

km(i + 1, i)

ϕ
p

k (i + 1) ϕ
p
m(i + 1) ϕ

q

k (i + 1) + ∆ ϕ
q
m(i + 1) ϕ

pq

km(i + 1) − ∆ ∆ϕ
pq

km(i + 2, i + 1)

ϕ
p

k (i + 2) ϕ
p
m(i + 2) ϕ

q

k (i + 2) + ∆ ϕ
q
m(i + 2) ϕ

pq

km(i + 2) − ∆
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receiver k while observing satellite q between the epochs i − 1 and i. The cycle slip
is denoted by ∆. Because the double differences are a function of observations at one
epoch, all double differences starting with epoch i are offset by the amount ∆. Only
one of the triple-differences is affected by the cycle slip, because triple differences are
differences over time. For each additional slip there is one additional triple-difference
outlier and one additional step in the double-difference sequence. A cycle slip may
be limited to just one cycle or could be millions of cycles.

This simple relation can break down if the receiver software attempts to fix the slips
internally. Assume the receiver successfully corrects for a slip immediately following
the epoch of occurrence. The result is an outlier (not a step function) for double
differences and two outliers for the triple differences.

There is probably no best method for cycle slip removal, leaving lots of space for
optimization and innovation. For example, in the case of simple static applications,
one could fit polynomials, generate and analyze higher-order differences, visually
inspect the observation sequences using graphical tools, or introduce new ambiguity
parameters to be estimated whenever a slip might have occurred. The latter option is
very attractive in kinematic positioning.

It is best to inspect the discrepancies rather than the actual observations. The
observed double and triple differences show a large time variation that depends on
the length of the baseline and the satellites selected. These variations can mask small
slips. The discrepancies are the difference between the computed observations and
the actual observed values. If good approximate station coordinates are used then the
discrepancies are rather flat and make even small slips easily detectable.

For static positioning, one could begin with the triple-difference solution. The
affected triple-difference observations can be treated as observations with blunders
and dealt with using the blunder detection techniques given in Chapter 4. A simple
method is to change the weights of those triple-difference observations that have par-
ticularly large residuals. Once the least-squares solution has converged, the residuals
will indicate the size of the cycle slips. Not only is triple-difference processing a
robust technique for cycle slip detection, it also provides good station coordinates,
which, in turn, can be used as approximations in a subsequent double-difference
solution.

Before computing the double-difference solution, the double-difference observa-
tions should be corrected for cycle slips identified from the triple-difference solution.
If only two receivers observe, it is not possible to identify the specific undifferenced
phase sequence where the cycle slip occurred from analysis of the double difference.
Consider the double differences

ϕ
1p

12 = (ϕ1
1 − ϕ1

2

)− (ϕp

1 − ϕ
p

2

)
(5.46)

for stations 1 and 2 and satellites 1 and p. The superscript p denoting the satellites
varies from 2 to S, the total number of satellites. Equation (5.46) shows that a cycle
slip in ϕ1

1 or ϕ1
2 will affect all double differences for all satellites and cannot be

separately identified. The slips ∆1
1 and −∆1

2 cause the same jump in the double-
difference observation. The same is true for slips in the phase from station 1 to satellite
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p and station 2 to satellite p. However, a slip in the latter phase sequences affects only
the double differences containing satellite p. Other double-difference sequences are
not affected.

For a session network, the double-difference observation is

ϕ
1p

1m = (ϕ1
1 − ϕ1

m

)− (ϕp

1 − ϕp
m

)
(5.47)

The superscript p goes from 2 to S, and the subscript m runs from 2 to R. It is
readily seen that a cycle slip in ϕ1

1 affects all double-difference observations, an error
in ϕ1

m affects all double differences pertaining to the baseline 1 to m, an error in
ϕ

p

1 affects all double differences containing satellite p, and an error in ϕ
p
m affects

only one series of double differences, namely, the one that contains station m and
satellite p. Thus, by analyzing the distribution of a blunder in all double differences
at the same epoch, we can identify the undifferenced phase observation sequence
that contains the blunder. This identification gets more complicated if several slips
occur at the same epoch. In session network processing, it is always necessary to
carry out cross-checks. The same cycle slip must be verified in all relevant double
differences before it can be declared an actual cycle slip. Whenever a cycle slip
occurs in the undifferenced phase observations from the base station or to the base
satellite, the cycle slip enters several double-difference sequences. Actually it is not
necessary that the undifferenced phase observations be corrected; it is sufficient to
limit the correction to the double-difference phase observations if the final position
computation is based on double differences.

It is also possible to use the geometry-free functions of the observables to detect
cycle slips. The geometry-free functions are discussed in Chapter 7.

5.3.4 Singularities

A case of a critical configuration for terrestrial observations is discussed in Chapter 4.
For example, Figure 4.12 shows how ellipses of standard deviation display the change
in the geometry as the critical configuration (singularity) is reached for the plane
resections. The dilution of precision (DOP) introduced in Section 7.4.1 is a one-
number indicator for the geometry of the point positioning solutions. At the critical
configurations the columns of the design matrix become linearly dependent. When
the satellite constellation approaches a critical configuration, the resulting positioning
solution can be ill conditioned.

Linearizing the pseudorange equation (5.7) around the receiver location xk gives

dP
p

k = −
[

xp − xk

ρ
p

k

yp − yk

ρ
p

k

zp − zk

ρ
p

k

]
dxk

dyk

dzk


 = −ep

k · dxk

= − 1

ρ
p

k

ρ
p

k · dxk

(5.48)
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where ep

k is the unit vector pointing from the station to the satellite and ρ
p

k is the
respective unscaled topocentric vector.

Figure 5.1 shows a situation where all satellites are located on a circular cone.
This is obviously a special situation. The vertex of the cone is at the receiver. The
unit vector eaxis specifies the axis of the cone. For all satellites that are located on the
cone, the dot product

ei
k · eaxis = cos θ (5.49)

is constant. ei
k represents the first three elements of row i of the design matrix.

Therefore, (5.49) expresses a perfect linear dependency of the four columns. Another
critical configuration occurs when the satellites and the receiver are located in the
same plane. In this case, the first three columns of the design matrix fulfill the cross-
product vector function

ei
k × ej

k = n (5.50)

where n is a constant vector.
Critical configurations usually do not last long because of the continuous motion

of the satellites. The critical configurations present a problem only in continuous
kinematic or very short rapid static applications. The more satellites are available,
the less likely it is that a critical configuration will ever occur.

In relative positioning, one can encounter critical configurations as well. Clearly,
the satellites cannot be located on a perfectly circular cone as viewed from each of the

earth

eaxis

θ

Figure 5.1 Critical configuration on a circular cone.
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stations. However, for short baselines, the satellites could be located approximately on
circular cones. Consider the relevant portion of the double-difference phase equation
(5.25) scaled to distances,

P
pq

km = ρ
p

k − ρp
m − [ρq

k − ρq
m

]+ · · · (5.51)

The total differential

dP
pq

km = −ep

k · dxk + ep
m · dxm + eq

k · dxk − eq
m · dxm

= [eq

k − ep

k

] · dxk + [ep
m − eq

m

] · dxm

(5.52)

expresses the change in the double-difference observable in terms of differential
changes in station coordinates. The coefficients in the brackets represent the differ-
ences in the direction cosines from one station and two satellites. For short baselines
these differences approach zero. It can readily be seen that the direction vectors ep

k

are related to the vector of directions from the center of the baseline to the satellite
ep
c as

ep

k = ep
c + ε

p

k (5.53)

where the components of the vector ε
p

k are of the order O(b/ρ
p

k ). The symbol b

denotes the length of the baseline. Referencing the other vectors also to the center
of the baseline, Equation (5.52) becomes

dP
pq

km = [eq
c − ep

c + ε
q

k − ε
p

k

] · dxk + [ep
c − eq

c + εp
m − εq

m

] · dxm (5.54)

For the special case that the vertex of the circular cone is at the center of the baseline,
the condition

ei
c · eaxis = cos θ (5.55)

is valid for all satellites on the cone. This means that the dot products

[
eq
c − ep

c + ε
q

k − ε
p

k

] · eaxis = [εq

k − ε
p

k

] · eaxis = O
(
b/ρ

p

k

)
(5.56)

in (5.54) are of the order O(b/ρ
p

k ). These products become smaller the shorter the
baseline. A product like (5.56) applies to every double-difference observation. There-
fore, we are dealing with a near-singular situation since the columns of the double-
difference design matrix are nearly dependent. The shorter the baseline, the more
likely it is that the near-singularity damages the baseline solution.

5.3.5 Impact of a Priori Position Errors

A frequent concern is the need for a priori knowledge of geocentric station positions
and the effects of ephemeris errors on the relative positions. The answer to these
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concerns lies again in the linearized double-difference equations. Without loss of
generality, it is sufficient to investigate the difference between one satellite and two
ground stations. Scaled to distances, the relevant portion of the double-difference
equation is

P
pq

km (t) = ρ
p

k (t) − ρp
m (t) + · · · (5.57)

The linearized form is

dP
pq

km = −ep

k · dxk + ep
m · dxm + [ep

k − ep
m

] · dxp (5.58)

Next, we transform the coordinate corrections into their differences and sums. This
is accomplished by

dxk − dxm = d(xk − xm) = db (5.59)

dxk + dxm

2
= d

(
xk + xm

2

)
= dxc (5.60)

The difference (5.59) represents the change in the baseline vector, i.e., the change in
length and orientation of the baseline, and (5.60) represents the change in the geo-
centric location of the baseline center. The latter can be interpreted as the translatory
uncertainty of the baseline, or the uncertainty of the fixed baseline station. Trans-
forming (5.58) to the difference and sum gives

dP
pq

km = −1

2

[
ep

k + ep
m

] · db − [ep

k − ep
m

] · dxc + [ep

k − ep
m

] · dxp (5.61)

There is a characteristic difference in magnitude between the first bracket and the
others. Allowing an error of the order O(b/ρ

p

k ), the first bracket simplifies to 2ep
m or

2ep

k . The second and the third brackets are of opposite signs but the same magnitude.
It is readily verified that the terms in the latter two brackets are of the order O(b/ρ

p

k ).
When the baseline vector is defined by

b ≡ ρp
m − ρ

p

k (5.62)

Equation (5.61) becomes, after neglecting the usual small terms,

dP
pq

km = −ep
m · db + b

ρ
p
m

· dxc − b
ρ

p
m

· dxp (5.63)

The orders of magnitude for the coefficients in this equation will not change, even
if double-difference expressions are fully considered. Equating the first two terms
in (5.63), we get the relative impact of changes in the baseline and the translatory
position of the baseline from

ρp
m · db = b · dxc (5.64)
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Similarly, changes in the baseline vector and ephemeris position are related by

ρp
m · db = b · dxp (5.65)

These relations are usually quoted in terms of absolute values, thereby neglecting the
cosine terms of the dot product. In this sense, a rule of thumb for relating baseline
accuracy, a priori geocentric position accuracy, and ephemeris accuracy is

‖db‖
b

= ‖dxc‖
ρ

p
m

=
∥∥dxP

∥∥
ρ

p
m

(5.66)

Equation (5.66) shows that the accuracy requirements for the a priori geocentric
station coordinates and the satellite orbital positions are the same. The accuracy
requirement is proportional to the baseline length. This means that for short baselines
an accurate position of the reference station might not be required and that the simple
point positioning might be sufficient. A 1000 km line can be measured to 1 cm if the
ephemeris errors and the geocentric location error can be reduced to 0.2 m, according
to the rule of thumb given above.

The simplified derivation given in this section neglects the impact of the satel-
lite constellation on the geometry of the solution. The only elements that enter the
derivations are the baseline length and the receiver-satellite distance.

5.3.6 Cancellation of Common Mode Errors

GPS positioning benefits considerably from the fact that common-mode errors can
be combined with other parameters or canceled at times. It has been pointed out in
detail how single and double differences reduce the effects of clock errors. Additional
detail is provided here for both point and relative positioning.

5.3.6.1 Point Positioning Generally, the propagation media affects satellite
signals as a function of azimuth and elevation angle. For example, in the case of the
ionosphere we split the total effect into a station average component Ik,P and one that
is a function of the direction of the satellite δI

p

k,P ,

I
p

k,P = Ik,P + δI
p

k,P (5.67)

The tropospheric delay can be split in a similar manner. The receiver hardware delay
can also be a common source of errors. It is even possible that the satellite clocks
contain a common offset, e.g., an incomplete correction due to relativity. The common
components are combined with the receiver clock error into a new epoch parameter
ξk , giving

ξk = dt k − Ik,P

c
− Tk

c
− dk,P

c
(5.68)

The symbols for the ionosphere and the troposphere have no superscript p in (5.68) to
indicate the common component. The symbol ξk represents a new unknown, which,
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in addition to the station clock error, contains the common components of all the other
errors. The relevant portion of the pseudorange equations can now be written as

P
p

k = ρ
p

k − c ξk + cdtp + δI
p

k,P + δT
p

k (5.69)

The linearly dependent common components ξk in (5.68) cannot be estimated sep-
arately from the epoch point positioning solution but rather are absorbed by the
estimate of the receiver clock error dt k . Unmodeled errors that are common to all
observations at a particular station do not affect the estimated position. Thus, model-
ing of the ionosphere and troposphere, e.g., is useful only if it reduces the variability
with respect to the common portion.

Equation (5.68) also demonstrates how the requirements for positioning and tim-
ing with GPS are quite different. If the goal is to determine time, then modeling or
controlling the common station errors is of critical importance.

5.3.6.2 Relative Positioning In relative positioning, the errors common to
both stations tend to cancel during double differencing. For example, the tropospheric
correction can be decomposed into the common station parts Tk and Tm and the
satellite-dependent part as follows:

T
pq

km = [Tkm + (δT p

k − δT p
m

)]− [Tkm + (δT q

k − δT q
m

)]

= (δT p

k − δT p
m

)− (δT q

k − δT q
m

) (5.70)

It is useful to apply tropospheric and ionospheric corrections if the differential correc-
tion between the stations can be determined accurately. If this is not the case, because,
say, the meteorological data are not representative of the actual tropospheric condi-
tions, it might be better not to apply the correction at all and to rely on the common-
mode elimination. Because the ionosphere and the troposphere are highly correlated
over short distances, most of their delays are common to both stations. In terms of
the tropospheric effect, an exception to this rule might apply to nearby stations that
are located at significantly different elevations.

Because of the cancellation of most of the effects of the propagation media, the
clock errors, and hardware delays, relative positioning has become especially popular
and useful in surveying. Although the presence of the ambiguity parameters in the
double differences might initially be perceived as a nuisance, they provide a unique
vehicle to improve the solution if they can be successfully constrained to integers.

5.4 SATELLITE CODE OFFSETS

According to the ICD-GPS-200C (2000), the P1 and P2 codes are offset by T
p

GD.
This offset is also referred to as the differential group delay (DGD) or more generally
the differential code bias (DCB) for P1 and P2. The purpose of this delay is to allow
dual-frequency users to conveniently eliminate the ionospheric effect on pseudorange
observations when computing positions. This aspect is treated in detail in Chapter 7.
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The satellite manufacturer initially determines the offset T
p

GD for each satellite
during factory testing. The offset is available to users through the broadcast message.
The code emission times on both frequencies are related as follows:

t
p

L1 − t
p

L2 = T
p

GD

(
1 − αf

)
(5.71)

The symbol αf is given in (5.13). The offset can be treated as an additional clock
correction for code phase observations,

P
p

k,1(t) = ρ
p

k (
�

t p) − c dt k + c
(
dt̄p + T

p

GD

)+ I
p

k,1,P (t) + T
p

k (t)

+ δ
p

k,1,P (t) + ε1,P

(5.72)

P
p

k,2(t) = ρ
p

k (
�

t p) − c dt k + c
(
dt̄p + αf T

p

GD

)+ I
p

k,2,P (t) + T
p

k (t)

+ δ
p

k,2,P (t) + ε2,P

(5.73)

Following the sign convention of (5.39), L1 users can modify the computed satellite
clock correction by subtracting T

p

GD; L2-only users must subtract αf T
p

GD. The offset
T

p

GD can be combined with and is indeed inseparable from the satellite hardware delay
denoted by d

p

1,P above. The same is true for L2.
The T

p

GD offsets change with time. For example, changes in satellite configuration
due to use of backup hardware might impact the offsets. The offsets are routinely
estimated from ground observations. See Sardón et al. (1994) and Sardón and Zarraoa
(1997) for details on the observation and processing techniques. As an example, the
results of a recent determination (Wilson et al., 1999) show a spread in the offset
between the various satellites from close to zero to 12 ns, corresponding to about 4
m. The broadcast values are updated approximately four times per year. The actual
biases are monitored daily to identify any abrupt changes (B. D. Wilson, JPL, private
communication).

In addition to the P1-P2 interfrequency P-code bias, there is a bias between C/A
and P-code pseudoranges. The C/A-P1 biases can also reach several nanoseconds.
Current value estimates of these biases are available on the Internet. For example,
JPL estimates these biases as part of the real-time Internet-based global differential
GPS solution.
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CHAPTER 6

TROPOSPHERE AND IONOSPHERE

This chapter begins with a general overview of the troposphere and ionosphere and
a brief discussion of the relevancy of the atmosphere to GPS surveying. In Section
6.2 the tropospheric refraction is derived starting with the commonly used equation
that expresses the refractivity as a function of partial pressure of dry air, partial water
vapor pressure, and temperature. The equation for the zenith hydrostatic delay (ZHD)
by Saastamoinen (1972), the expression for the zenith wet delay (ZWD) by Mendes
and Langley (1999), and Niell’s (1996) function for mapping the slant delays to the
zenith delays are given without derivation. The horizontal gradient method is briefly
discussed as a means to incorporate azimuth dependency of the refractivity. We then
establish the relationship between the zenith wet delay and precipitable water vapor
(PWV). Section 6.3 deals with tropospheric absorption and water vapor radiometers
(WVR) that measure the tropospheric wet delay. We present and discuss the radiative
transfer equation and the concept of brightness temperature. To demonstrate further
the principles of the water vapor radiometer, we discuss the relevant absorption
line profiles for water vapor, oxygen, and liquid water. This is followed by a brief
discussion of retrieval techniques to compute the wet delay and radiometer calibration
using tipping curves.

In Section 6.4 the causes of ionization are briefly discussed. The derivation of
the ionospheric refraction is sketched beginning with the Appleton-Hartree formula.
Section 6.5 gives expressions for the ionospheric delay of codes and ionospheric ad-
vances of carrier phases. Section 6.6 centers around the ionospheric-free and iono-
spheric functions for pseudoranges and carrier phases. The chapter concludes with
brief remarks on the global ionospheric model (GIM).

188
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6.1 OVERVIEW

The propagation media affect electromagnetic wave propagation at all frequencies,
resulting in a bending of the signal path, time delays of arriving modulations, ad-
vances of carrier phases, scintillation, and other changes. In GPS positioning one is
primarily concerned with the arriving times of carrier modulations and carrier phases.
Geometric bending of the signal path causes a small delay that is negligible for eleva-
tion angles above 5°. The propagation of electromagnetic waves through the various
atmospheric regions varies with location and time in a complex manner and is still
the subject of active research. The relevant propagation regions are the troposphere
and the ionosphere. Whereas positioning with GPS requires careful consideration of
the impacts of the propagation media, GPS, in turn, has become a tool for studying
the atmosphere. The subject of propagation of electromagnetic signals in the GPS
frequency range, which is approximately the microwave region, is discussed but only
to the extent required for GPS positioning.

Most of the mass of the atmosphere is located in the troposphere. We are concerned
with the tropospheric delay of pseudoranges and carrier phases. For frequencies
below 30 GHz, the troposphere behaves essentially like a nondispersive medium;
i.e., the refraction is independent of the frequency of the signals passing through it.
This tropospheric refraction includes the effect of the neutral, gaseous atmosphere.
The effective height of the troposphere is about 40 km. The density in higher regions
is too small to have a measurable effect. Mendes (1999) and Schüler (2001) recently
studied the details of tropospheric refractions. Typically, tropospheric refraction is
treated in two parts. The first part is the hydrostatic component that follows the
laws of ideal gases. It is responsible for a zenith delay of about 240 cm at sea level
locations. It can be computed accurately from pressure measured at the receiver
antenna. The more variable second part is the wet component, or more precisely
labeled the nonhydrostatic wet component, which is responsible for up to 40 cm of
delay in the zenith direction. Computing the wet delay accurately is a difficult task
because of the spatial and temporal variation of water vapor. Figure 6.1 shows the
ZWD every 5 minutes for eleven consecutive days, beginning on July 10, 1999, at
Lamont, Oklahoma, as determined by GPS, and the difference between the GPS and
WVR determination. Both determinations agree within 1 cm. The gaps indicate times
when suitable observations were not available.

Figure 6.2 demonstrates the impact water vapor variation can have over a 43 km
baseline. The observations were taken over eleven days and processed with the precise
ephemeris. Essentially, two cases are compared: (a) measuring the ZWD with the
WVR and reducing the measured value to the slant delay using a mapping function
that has no azimuth dependency; and (b) measuring the slant wet delay (SWD) with
the WVR pointed in the direction of the satellite. In both cases, the hydrostatic
delay was computed from the Saastamoinen model using barometric pressure. The
largest ellipse in Figure 6.2 shows the repeatability over eleven days using the zenith
radiometer corrections; the second largest (closest to spherical shape) shows the
repeatability over eleven days using the pointed radiometer corrections. The next to
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Figure 6.1 ZWD from GPS. (Data from Bar-Sever, JPL.)

smallest are daily repeatability using zenith corrections, and the smallest ellipses are
daily repeatability using pointed corrections.

The ionosphere covers the region between approximately 50 and 1500 km above
the earth and is characterized by the presence of free (negatively charged) electrons
and positively charged atoms and molecules called ions. The total electron content

Figure 6.2 Impact of modeled and observed water vapor variability on baseline. (Per-
mission of the American Geophysical Union.)
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Figure 6.3 Snapshot of TEC. (Courtesy of B. D. Wilson, JPL.)

(TEC) equals the number of free electrons in the column of unit area along which the
signal travels between receiver and satellite. Figure 6.3 shows a snapshot of the TEC.
The free electrons delay the pseudoranges and advance the carrier phases by equal
amounts. The size depends on the TEC and the carrier frequency; i.e., the ionosphere
is a dispersive medium. For GPS frequency the delays or advances can amount to the
tens of meters. Transmissions below 30 MHz are reflected. The texts by Hargreaves
(1992) and Davies (1990) are recommended for in-depth studies of the physics of the
ionosphere.

This GIM of the TEC on March 7, 2000, at 03 UT shows the typical global mor-
phology of the ionosphere when the Appleton (equatorial) anomaly is well developed.
There are two very strong peaks of ionization that lie on either side of the geomagnetic
equator. The peaks begin in the afternoon and stretch into the nighttime region. Also,
notice that the ionosphere is large since it is near solar maximum, although vertical
TECs can be larger than the 140 to 150 TECU on this day (1 TECU = 1016 el/m2).
The peak of the ionosphere is typically in the equatorial region at 14:00 local time.
Each dot is the location of a GPS receiver that was used in the GIM model run. This
GIM’s time resolution is 15 minutes, but images of the vertical TEC are typically
only made every hour for animations, which is why the image is labeled with the
time range 03–04 UT (B. D. Wilson, JPL, private communication).

The atmospheric parameters must be known with sufficient accuracy when apply-
ing respective corrections to observations. We typically use temperature, pressure,
and humidity at the receiver antenna, as well as the TEC. Mapping the spatial and
temporal distribution of these atmospheric parameters is also an area to which GPS
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Figure 6.4 Schematic view of an LEO
satellite and a GPS satellite configuration.

earth

LEOGPS

atmosphere

contributes. Figure 6.4 shows a schematic view of a low earth orbiter (LEO) and a
GPS satellite. As viewed from the LEO, an occultation takes place when the GPS
satellite rises or sets behind the earth’s ionosphere and troposphere. When the sig-
nals pass through the media they experience tropospheric delays, ionospheric code
delays, and phase advances. If the accurate position of the LEO is known and if the
LEO carries a GPS receiver, one can estimate atmospheric parameters by comparing
the travel time of the signal and the geometric distance between both satellites. Since
the modeling associated with GPS occultations is still evolving, as is accurate orbit
determination of LEOs, the reader should consult the current literature for details; a
recommended start is Kursinski et al. (1997). One often assumes in these computa-
tions that the travel path through the media is symmetric and considers the tangent
point as the point of measurement.

We present two figures showing typical products that can be derived from GPS
occultation. Figures 6.5 and 6.6 indicate results from the GPS/MET experiment that
was managed by the University Corporation for Atmospheric Research (UCAR) and
lasted from April 1995 to March 1997. A 2 kg TurboRogue receiver modified for
use in space was piggybacked on a LEO with a 730 km circular orbit and 60° in-
clination. Figure 6.5 shows a temperature profile as determined by GPS occultation,
direct radiosonde measurements, and an atmospheric weather model. The occulta-
tion occurred at 1:33 UT on May 5, 1995, over Hall Beach, Northwest Territory,
Canada. The radiosonde at 0:00 UT was 85 km from the occultation location and
spatially interpolated to the occultation location. The surface temperature was below
freezing with a sharply defined tropopause near 8 km. The good agreement with the
radiosonde in resolving the sharp tropopause and the change below 3 km illustrates
the high sensitivity and vertical resolution of the occultation technique. Figure 6.6
shows an electron density profile of the ionosphere as a function of height derived
from GPS/MET occultation, May 5, 1995, 3:20 UT. The figure also shows another
independent determination of the electron density at 3:40 UT using incoherent scatter
radar with a 320 µs pulse mode located at Millstone Hill (Massachusetts). Some of
the discrepancies seen in the figure are a result of spatial and temporal mismatch of the
observations and the spherical symmetry assumption for the signal path. The latter
assumption can be a problem because the signal travels through a large portion of
the ionosphere, in particular, the upper ionospheric region. Such a profile, of course,
changes with time and location.
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Figure 6.5 Comparison between occultation, radiosonde, and atmospheric model.
Source: Kursinski et al., 1996. Permission by American Geophysical Union.

The sections below provide details on the index of refraction and on absorption.
The general form of the index of refraction for electromagnetic wave can be written
as a complex number

n̄ = µ − iχ (6.1)

where µ and χ are related to refraction and absorption, respectively. Let A0 denote
the amplitude, we can write the equation of a wave as

A = A0e
i(ωt−n̄ωx/c) = A0e

i(ωt−µωx/c)e−χωx/c (6.2)

The wave propagates at speed c/µ, where c denotes the speed of light. The absorp-
tion in the medium is given by the exponential attenuation e−χωx/c. The absorption
coefficient is κ = ωχ/c. It is readily seen that the amplitude of the wave will reduce
by factor e at distance 1/κ.

For GPS frequencies and for frequencies in the microwave region, the index of
refraction can be written as

n̄ = n + n′(f ) + in′′(f ) (6.3)
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Figure 6.6 GPS/MET electron density profile. Source: Hajj and Romans, 1998. Permis-
sion by American Geophysical Union.

The medium is called dispersive if n̄ is a function of the frequency. When applying
(6.3) to the troposphere the real parts n and n′(f ) determine refraction that causes
the delays in pseudoranges and carrier phases. The nondispersive part of the index of
refraction is n. For frequencies in the microwave range the frequency-dependent real
term n′(f ) is negligible. The latter term causes delays around the millimeter level at
60 GHz and centimeter level at 300 GHz (Janssen, 1993, p. 218). In general, n′(f )

and n′′(f ) are due to interactions with line resonances of molecules in the vicinity of
the carrier frequency. The GPS frequencies are far from atmospheric resonance lines.
The imaginary part n′′(f ), however, quantifies absorption (emission) and is important
to the WVR observable. When applying (6.3) to the ionosphere the term n′(f ) is very
important.

6.2 TROPOSPHERIC REFRACTION AND DELAY

The index of refraction is a function of the actual tropospheric path through which
the ray passes, starting at the receiver antenna and continuing up to the end of the
effective troposphere. Let s denote the distance; the delay due to refraction is

ν =
∫

n(s) ds −
∫

ds =
∫

(n(s) − 1) ds (6.4)
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The first integral refers to the curved propagation path. The path is curved due to
the decreasing index of refraction with height above the earth. The second integral
is the geometric straight-line distance the wave would take if the atmosphere were a
vacuum. The integration begins at the height of the receiver antenna.

Because the index of refraction n(s) is numerically close to unity, it is convenient
to introduce a separate symbol for the difference,

n(s) − 1 = N(s) · 10−6 (6.5)

N(s) is called the refractivity. Great efforts have been made during the second part
of the last century to determine the refractivity for microwaves. Examples of relevant
literature are Thayer (1974) and Askne and Nordius (1987). The refractivity is usually
given in the form

N = k1
pd

T
Z−1

d + k2
pwv

T
Z−1

wv + k3
pwv

T 2
Z−1

wv (6.6)

pd Partial pressure of dry air (mbar). The dry gases of the atmosphere
are, in decreasing percentage of the total volume: N2, O2, Ar, CO2,
Ne, He, Kr, Xe, CH4, H2, and N2O. These gases represent 99.96% of
the volume.

pwv Partial pressure of water vapor (mbar). Water vapor is highly variable
but hardly exceeds 1% of the mass of the atmosphere. Most of the
water in the air is from water vapor. Even inside clouds, precipitation
and turbulence ensure that water droplet density remains low. This
variability presents a challenge to accurate GPS applications over long
distances on one hand, but on the other hand opens up a new field of
activity, i.e., remotely sensing the atmosphere for water vapor.

T Absolute temperature in degrees Kelvin [K].

Zd,Zwv Compressibility factors that take into account small departures in
behavior of moist atmosphere and ideal gas. Spilker (1996, p. 528)
lists the expressions. These factors are often set to unity.

k1, k2, k3 Physical constants that are based in part on theory and in part on
experimental observations. Bevis et al. (1994) lists: k1 = 77.60
K/mbar, k2 = 69.5 K/mbar, k3 = 370100 K2/mbar.

The partial water vapor pressure and the relative humidity Rh are related by the well-
known expression, e.g., WMO (1961),

pwv[mbar] = 0.01 Rh[%] e−37.2465+0.213166T −0.000256908T 2
(6.7)

The two partial pressures are related to the total pressure p, which is measured
directly, by

p = pd + pwv (6.8)
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The first term of (6.6) expresses the sum of distortions of electron charges of the dry-
gas molecules under the influence of an applied magnetic field. The second term of
(6.6) refers to the same effect but for water vapor. The third term is caused by the
permanent dipole moment of the water vapor molecule; it is a direct result of the
geometry of the water vapor molecular structure. Within the GPS frequency range
the third term is practically independent of frequency. This is not necessarily true for
higher frequencies that are close to the major water vapor resonance lines. Equation
(6.6) is further developed by splitting the first term into two terms, one that gives
refractivity of an ideal gas in hydrostatic equilibrium and another term that is a
function of the partial water vapor pressure. The large hydrostatic constituent can
then be accurately computed from ground-based total pressure. The smaller and more
variable water vapor contribution must be dealt with separately.

The modification of the first term (6.6) begins by applying the equation of state
for the gas constituent i, (i = d, i = wv),

pi = ZiρiRiT (6.9)

where ρi is the mass density and Ri is the specific gas constant (Ri = R/Mi , where
R is the universal gas constant and Mi is the molar mass). Substituting pd in (6.9) for
the first term in (6.6), replacing the ρd by the total density ρ and ρwv , and applying
(6.9) for ρwv gives for the first term

k1
pd

T
Z−1

d = k1Rdρd = k1Rdρ − k1Rdρwv = k1Rdρ − k1
Rd

Rwv

pwv

T
Z−1

wv (6.10)

Substituting (6.10) in (6.6) and combining it with the second term of that equation
gives

N = k1Rdρ + k′
2

pwv

T
Z−1

wv + k3
pwv

T 2
Z−1

wv (6.11)

The new constant k′
2 is

k′
2 = k2 − k1

Rd

Rwv

= k2 − k1
Mwv

Md

(6.12)

Bevis et al. (1994) gives k′
2 = 22.1 K/mbar.

We can now define the hydrostatic and wet (nonhydrostatic) refractivity as

Nd = k1Rdρ = k1
p

T
(6.13)

Nwv = k′
2

pwv

T
Z−1

wv + k3
pwv

T 2
Z−1

wv (6.14)

If we integrate (6.6) along the zenith direction using (6.13) and (6.14), we obtain the
ZHD and ZWD, respectively,
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ZHD = 10−6
∫

Nd(h) dh (6.15)

ZWD = 10−6
∫

Nwv(h) dh (6.16)

The hydrostatic refractivity Nd depends on total density ρ or the total pressure p.
When integrating Nd along the ray path the hydrostatic equilibrium condition to ideal
gases is applied. The integration of Nwv is complicated by the temporal and spatial
variation of the partial water vapor pressure pwv along the path.

6.2.1 Model Zenith Delay Functions

Even though the hydrostatic refractivity is based on the laws of ideal gases, the
integration (6.15) still requires assumptions about the variation of temperature and
gravity along the path. Examples of solutions for the ZHD are Hopfield (1969) and
Saastamoinen (1972). Saastamoinen’s solution is given in Davis et al. (1985) in the
form

ZHD[m] = 0.0022768p0[mbar]

1 − 0.00266 cos 2ϕ − 0.00028H[km]
(6.17)

The symbol p0 denotes the total pressure at the site whose orthometric height is H

and latitude is ϕ.
The model assumptions regarding the wet refractivity are more problematic be-

cause of temporal and spatial variability of water vapor. Mendes and Langley (1999)
analyzed radiosonde data and explored the correlation between the ZWD and the
surface partial water vapor pressure pwv,0. Their model is

ZWD[m] = 0.0122 + 0.00943pwv,0[mbar] (6.18)

Surface meteorological data should be used with caution in the estimation of the
ZWD. Typical field observations can be influenced by “surface layer biases” intro-
duced by micro-meteorological effects. The measurements at the earth’s surface are
not necessarily representative of adjacent layers along the line of sight to the satellites.
Temperature inversion can occur during nighttime when the air layers close to the
ground are cooler than the higher air layers, due to ground surface radiation loss. Con-
vection can occur during noontime when the sun heats the air layers near the ground.

Expressions exist that do not explicitly separate between ZHD and ZWD. In some
cases, the models are independent of direct meteorological measurements. The latter
typically derive their input from model atmospheres.

6.2.2 Model Mapping Functions

Tropospheric delay is shortest in the zenith direction and increases with the zenith an-
gle ϑ as the air mass traversed by the signal increases. The exact functional relationship
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is again complicated by temporal and spatial variability of the troposphere. The map-
ping function models this dependency. We relate the slant hydrostatic and wet delays,
SHD and SWD, to the respective zenith delays by

SHD = ZHD · mh(ϑ) (6.19)

SWD = ZWD · mwv(ϑ) (6.20)

The slant total delay (STD) is

STD = ZHD · mh(ϑ) + ZWD · mwv(ϑ) (6.21)

The literature contains many models for the mapping functions mh and mwv . The one
in common use is Niell’s (1996) function,

m(ϑ) =

1 + a

1 + b

1 + c

cos ϑ + a

cos ϑ + b

cos ϑ + c

+ h[km]




1

cos ϑ
−

1 + ah

1 + bh

1 + ch

cos ϑ + ah

cos ϑ + bh

cos ϑ + ch




(6.22)

The coefficients for this expression are listed in Table 6.1 (for mh) and Table 6.2
(for mwv) as a function of the latitude ϕ of the station. If ϕ < 15° one should use
the tabulated values for ϕ = 15°; if ϕ > 75° then use the values for ϕ = 75°; if
15° ≤ ϕ ≤ 75°, linear interpolation applies. Expression (6.22) gives the hydrostatic
mapping functions if the coefficients of Table 6.1 are used. Before substitution, how-
ever, the coefficients a, b, and c must be corrected for periodic terms following the
general formula

a(ϕ, DOY) = ã − ap cos

(
2π

DOY − DOY0

365.25

)
(6.23)

TABLE 6.1 Coefficients for Niell’s Hydrostatic Mapping Function

ϕ ã · 103 b̃ · 103 c̃ · 103 ap · 105 bp · 105 cp · 105

15 1.2769934 2.9153695 62.610505 0 0 0
30 1.2683230 209152299 62.837393 1.2709626 2.1414979 9.0128400
45 102465397 209288445 63.721774 2.6523662 3.0160779 4.3497037
60 102196049 209022565 63.824265 3.4000452 7.2562722 84.795348
75 102045996 2.9024912 64.258455 4.1202191 11.723375 170.37206

ah · 105 bh · 103 ch · 103

2.53 5.49 1.14
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TABLE 6.2 Coefficients for Niell’s Wet Mapping Function

ϕ a · 104 b · 103 c · 102

15 5.8021897 1.4275268 4.3472961
30 5.6794847 1.5138625 4.6729510
45 5.8118019 1.4572752 4.3908931
60 5.9727542 1.5007428 4.4626982
75 6.1641693 1.7599082 5.4736038

where DOY denotes the day of year and DOY0 is 28 or 211 for stations in the Southern
or Northern Hemisphere, respectively. When computing the wet mapping function,
the height-dependent second term in (6.22) is dropped and the coefficients of Table
6.2 apply.

The Niell function enjoys such popularity because it is accurate, is independent
of surface meteorology, and requires only site location and time of year as input.
The Niell model assumes azimuthal symmetry. However, efforts have been reported
in Niell (2000) and Rocken et al. (2001) to improve the mapping function for low
elevation angles by incorporating temperature, pressure, and humidity profiles for a
specific location and time period.

6.2.3 Horizontal Gradient Model

As has been mentioned, the variability of the water vapor is of much concern in
accurate GPS applications. The water vapor exists mostly in the lower 5 km of
the troposphere. Its distribution may show an azimuthal dependency primarily due
to terrain and wind effects. One could attempt to model the lateral water vapor
refractivity by the gradient method.

Assume that a point is parameterized in the local geodetic coordinate system
specified by the northing, easting, and up coordinates, w = [n e u]T. See Section
2.3.5 for the exact definition of this coordinate system. The refractive index at height
u above the station can be expanded as

Nwv(w) = Nwv(w = 0) + ∂Nwv

∂n
n + ∂Nwv

∂e
e + ∂Nwv

∂u
u (6.24)

Next we solve (2.91) for the distance s and substitute it in (2.89) and (2.90) and then
substitute the resulting expressions for northing n and easting e into (6.24), giving

Nwv(w) = Nwv,0(w = 0) + ∂Nwv

∂u
u + 1

tan β

(
u

∂Nwv

∂n
cos α + u

∂Nwv

∂e
sin α

)
(6.25)

The zenith delay is obtained by integrating along the vertical from the station to the
end of the effective troposphere,
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ZWD (α, β) = 10−6

(
Nwv(w = 0) +

∫
∂

∂u
Nwv du

)

+ 10−6

tan β

(∫
∂Nwv

∂n
cos α du +

∫
∂Nwv

∂e
sin α du

)

= ZWD + 1

tan β
(Gn cos α + Ge sin a) (6.26)

One may attempt to estimate the model coefficients Gn and Ge from observations.
Depending on the application and weather conditions, a possibly piecewise linear
modeling might be appropriate. Applications of the horizontal gradient method are
reported, e.g., by Bar-Sever et al. (1998) and Liu (1999).

6.2.4 Precipitable Water Vapor

The GPS observables directly depend on the STD. This quantity, therefore, can be
estimated from GPS observations. One might envision the scenario where widely
spaced receivers are located at known stations and that the precise ephemeris is also
available. If all other errors are taken into consideration, then the residual misclo-
sures of the observations are the STD. We compute the ZHD from surface pressure
measurements and a hydrostatic delay model. Using appropriate mapping functions,
we could then compute ZWD from (6.21) using the estimated STD. Input to weather
models typically requires that the ZWD be converted to precipitable water.

The integrated water vapor (IWV) along the vertical and the precipitable water
vapor (PWV) are defined as

IWV ≡
∫

ρwv dh (6.27)

PWV ≡ IWV

ρw

(6.28)

where ρw is the density of liquid water. To relate the ZWD to these measures, it is
convenient to introduce the mean temperature Tm,

Tm ≡
∫ pwv

T
Z−1

wv dh

∫ pwv

T 2
Z−1

wv dh
(6.29)

The ZWD follows then from (6.16), using (6.14),

ZWD = 10−6

(
k′

2 + k3

Tm

)∫
pwv

T
Z−1

wv dh (6.30)

To be precise let us recall that (6.30) represents the nonhydrostatic zenith delay. Using
the state equation of water vapor gas,
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pwv

T
Z−1

wv = Rwvρwv (6.31)

in the integrand gives

ZWD = 10−6

(
k′

2 + k3

Tm

)
Rwv

∫
ρwv dh (6.32)

We replace the integrand in (6.32) by IWV according to (6.27) and then replace
the specific gas constant Rwv by the universal gas constant R and the molar mass
Mwv . The conversion factor Q that relates the zenith nonhydrostatic wet delay to the
precipitable water becomes

Q ≡ ZWD

PWV
= ρw

R

Mwv

(
k′

2 + k3

Tm

)
10−6 (6.33)

The constants needed in (6.33) are known with sufficient accuracy. The largest error
contribution comes from Tm, which varies with location, height, season, and weather.
The Q value varies between 5.9 and 6.5, depending on the air temperature. For
warmer conditions, when the air can hold more water vapor, the ratio is toward the
low end. Bevis et al. (1992) correlate Tm with the surface temperature T0 and offer
the model

Tm[K] = 70.2 + 0.72T0[K] (6.34)

The following models for Q are based on radiosonde observations (Keihm, JPL,
private communication).

Q = 6.135 − 0.01294 (T0 − 300) (6.35)

Q = 6.517 − 0.1686 PWV + 0.0181 PWV2 (6.36)

Q = 6.524 − 0.02797 ZWD + 0.00049 ZWD2 (6.37)

If no surface temperatures are available, one can use (6.36) and (6.37), which take
advantage of the fact that Q correlates with PWV (since higher PWV values are
generally associated with higher tropospheric temperatures).

6.3 TROPOSPHERIC ABSORPTION

This section deals briefly with some elements of remote sensing by microwaves. The
interested reader may consult general texts on remote sensing. We recommend the
book by Janssen (1993) because it is dedicated to atmospheric remote sensing by mi-
crowave radiometry. The material presented below very much depends on that source.
Solheim’s (1993) dissertation is also highly recommended for additional reading.
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6.3.1 The Radiative Transfer Equation

The energy emission and absorption of molecules are due to transitions between
allowed energy states. Several fundamental laws of physics relate to the emissions and
absorptions of gaseous molecules. Bohr’s frequency condition relates the frequency f

of a photon emission or absorption to the energy levels Ea and Eb of the molecule and
to Planck’s constant h. Einstein’s law of emission and absorption specifies that if Ea >

Eb, the probability of stimulated emission of a photon by a transition from state a to
state b is equal to the probability of absorption of a photon by a transition from b to a.
These two probabilities are proportional to the incident energy at frequency f. Dirac’s
perturbation theory gives the conditions that must be fulfilled, in order to enable
the electromagnetic field to introduce transitions between states. For wavelengths
that are very long compared to molecular dimensions, this operator is the dipole
moment. This is the case in microwave radiometry. We typically observe the rotation
spectra, corresponding to radiation emitted in transition between rotational states of
a molecule having an electric dipole moment. The rotational motion of a diatomic
molecule can be visualized as a rotation of a rigid body about its center of mass.
Other types of transitions of molecular quantum states that emit at the ultraviolet,
gamma, or infrared range are not relevant to sensing of water vapor. Although the
atmosphere contains other polar gases, only water vapor and oxygen are present in
enough quantity to emit significantly at microwave range.

Let I (f ) denote the instantaneous radiant power that flows at a point in a medium,
over a unit area, per unit-frequency interval at a specified frequency f, and in a given
direction per unit solid angle. As the signal travels along the path s, the power changes
when it encounters sources and sinks of radiation. This change is described by the
differential equation

dI (f )

ds
= −I (f ) α + S (6.38)

The symbol α denotes the absorption (describing the loss) and S is the source (de-
scribing the gain) into the given direction.

Scattering from other directions can lead to losses and gains to the intensity. In the
following we will ignore scattering. We assume thermodynamic equilibrium, which
means that each point along the path s the source can be characterized by temperature
T. The law of conservation of energy for absorbed and emitted energy relates the
source and absorption as

S = α B(f, T ) (6.39)

where

B(f, T ) = 2πhf 3

c2
(
ehf/kT − 1

) (6.40)

B(f, T ) is the Planck function, h is the Planck constant, k is the Boltzmann constant,
T is the physical temperature, and c denotes the speed of light. Please consult the
specialized literature for details on (6.40).
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With stated assumptions, Equation (6.38) becomes a standard differential equation
with all terms depending only on the intensity along the path of propagation. The
solution can be written as

I (f, 0) = I (f, s0) e−τ(s0) +
∫ s0

0
B(f, T ) e−τ(s) α ds (6.41)

τ(s) =
∫ s

0
α(s ′) ds ′ (6.42)

Equation (6.41) is called the radiative transfer equation. I (f, 0) is the intensity at the
measurement location s = 0, and I (f, s0) is the intensity at some boundary location
s = s0. The symbol τ(s) denotes the optical depth or the opacity.

If hf � kT , as is the case for microwaves and longer waves, the denominator
in (6.40) can be expanded in terms of hf/k T . After truncating the expansion, the
Planck function becomes the Rayleigh-Jeans approximation

B(λ, T ) ≈ 2f 2kT

c2
= 2kT

λ2 (6.43)

The symbol λ denotes the wavelength. Expression (6.43) expresses a linear relation-
ship between Planck function and temperature T . For a given opacity (6.42) the in-
tensity (6.41) is proportional to the temperature of the field of view of the radiometer
antenna given (6.43).

The Rayleigh-Jeans brightness temperature Tb(f ) is defined by

Tb(f ) ≡ λ2

2k
I (f ) (6.44)

Tb(f ) is measured in degrees Kelvin; it is a simple function of the intensity of the
radiation at the measurement location. If we declare the space beyond the boundary
s0 as the background space, we can write the Rayleigh-Jeans background brightness
temperature as

Tb0(f ) ≡ λ2

2k
I (f, s0) (6.45)

Using definitions (6.44) and (6.45), the approximation (6.43), and T = Tb, the
radiative transfer equation (6.41) becomes

Tb = Tb0 e−τ(s0) +
∫ s0

0
T (s) α e−τ(s) ds (6.46)

This is Chandrasekhar’s equation of radiative transfer as used in microwave remote
sensing. For ground-based GPS applications, the sensor (radiometer) is on the ground
(s = 0) and senses all the way to s = ∞. Tb0 becomes the cosmic background
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temperature Tcosmic, which results from the residual cosmic radiation of outer space
that is left from the Big Bang. Thus

Tb = Tcosmic e−τ(∞) +
∫ ∞

0
T (s) α e−τ(s) ds (6.47)

τ(∞) =
∫ ∞

0
α(s) ds (6.48)

Tcosmic = 2.7K (6.49)

The brightness temperature (6.47) depends on the atmospheric profiles of physical
temperature T and absorption α. For the atmosphere the latter is a function of pres-
sure, temperature, and humidity. Equation (6.47) represents the forward problem, i.e.,
given temperature and absorption profiles along the path one can compute brightness
temperature. The inverse solution of (6.47) is of much practical interest. It potentially
allows the determination of atmospheric properties such as T and α, as well as their
spatial distribution from brightness temperature measurements.

Consider the following special cases. Assume that the temperature T is constant.
Neglecting the cosmic term, using dτ = α ds, the radiative transfer equation (6.47)
becomes

Tb = T

∫ τ(a)

0
e−τ dτ = T

(
1 − e−τ(a)

)
(6.50)

For a large optical depth τ(a) 
 1 we get Tb = T and the radiometer acts like a
thermometer. For a small optical path τ(a)�1 we get Tb = T τ(a). If the temperature
is known, then τ(a) can be determined. If we also know the absorption properties of
the constituencies, it might be possible to estimate the concentration of a particular
constituent of the atmosphere.

For the sake of clarity, we reiterate that (6.44) defines the Rayleigh-Jeans bright-
ness temperature. The thermodynamic brightness temperature is defined as the tem-
perature of a blackbody radiator that produces the same intensity as the source
being observed. The latter definition refers to the physical temperature, whereas the
Rayleigh-Jeans definition directly relates to the radiated intensity. The difference be-
tween both definitions can be traced back to the approximation implied in (6.43). A
graphical representation of the differences is found in Janssen (1993, p. 10).

6.3.2 Absorption Line Profiles

Microwave radiometers measure the brightness temperature. In ground-based ra-
diometry, the relevant molecules are water vapor, diatomic oxygen (O2), and liquid
water. Mathematical models have been developed for the absorption. For isolated
molecules, the quantum mechanic transitions occur at well-defined resonance fre-
quencies (line spectrum). Collision with other molecules broadens these spectral



TROPOSPHERIC ABSORPTION 205

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[20

Lin

—
4.0
——
No

PgE

[20

lines. When gas molecules interact the potential energy changes, due to changed rel-
ative positions and orientations of the molecules. As a result, the gas is able to absorb
photons at frequencies well removed from the resonance lines. Pressure broadening
converts the line spectrum into a continuous absorption spectrum, called the line pro-
file. The interactions and thus the broadening increase with pressure. Given the struc-
ture of molecules it is possible to derive mathematical functions for the line profiles.
Because of the complexities of these computations and the presence of collisions,
these functions typically require refinement with laboratory observations. The results
are line profile models.

Figures 6.7 and 6.8 show line profiles for water vapor, oxygen, and liquid water
computed with Fortran routines provided by Rosenkranz. (See also Rosenkranz,
1998). All computations refer to a temperature of 15°C. The top three lines in Figure
6.7 show the line profiles for water vapor for pressures of 700 mbar, 850 mbar,
and 1013 mbar, and a water vapor density of 10 g/m3. The maximum absorption
occurs at the resonance frequency of 22.235 GHz. The effect of pressure broadening
on the absorption curve is readily visible. Between about 20.4 GHz and 23.8 GHz
the absorption is less, the higher the pressure. The reverse is true in wings of the
line profile. In the vicinity of these two particular frequencies, the absorption is
relatively independent of pressure. Most WVRs use at least one of these frequencies to
minimize the sensitivity of brightness temperature to the vertical distribution of water
vapor. The water vapor absorption is fairly stable in regard to changes in frequency
around 31.4 GHz. Dual-frequency WVRs for ground-based sensing of water vapor
typically also use the 31.4 GHz frequency to separate the effects of water vapor from
cloud liquid. The 31.4 GHz channel is approximately twice as sensitive to cloud liquid
emissions as the channel near 20.4 GHz. The opposite is true for water vapor, allowing
separate retrievals of the two most variable atmospheric constituents. The absorption
line of oxygen in Figure 6.7 refers to a water vapor density of 10 g/m3 and a pressure

Figure 6.7 Absorption of water vapor, liquid water, and oxygen between 10 and 40 GHz.
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Figure 6.8 Absorption of water vapor, liquid water, and oxygen between 10 and 900
GHz.

of 1013 mbar. The line of liquid water (suspended water droplets) is based on a water
density of 0.1 g/m3. The absorption used in the radiative transfer equation (6.47) is
the sum of the absorption of the individual molecular constituencies, i.e.,

α = αwv(f, T , p, ρwv) + αlw

(
f, T , ρlw

)+ αox(f, T , p, ρwv) (6.51)

The absorption units are typically referred to as neper per kilometer. The absorp-
tion unit refers to the fractional loss of intensity per unit distance (km) traveled in
a logarithmic sense. That is, an absorption value of 1 neper/km would imply that
the power would be attenuated by 1/e fractional amount over 1 km given that the
absorption properties remained constant over that kilometer. A neper is the natural
logarithm of a voltage ratio and is related to the dB unit as follows:

dB = 20

ln(10)
neper ≈ 8.686 neper (6.52)

The line profiles contain other maxima, as seen in Figure 6.8. A large maximum for
water vapor at 183.310 GHz is relevant to water vapor sensing in airborne radiometry.
The liquid water absorption increases monotonically with frequency in the microwave
range. Oxygen has a band of resonance near 60 GHz. The oxygen absorption is well
modeled with pressure and temperature measurements on the ground; the absorption
is small compared to that of water vapor and nearly constant for a specific site because
oxygen is mixed well in the air. The profiles of Figure 6.8 refer to a temperature of
15°C, a water vapor density of 10 g/m3, a pressure of 1013 mbar, and a liquid water
density 0.1 g/m3.

Since the absorption of oxygen can be computed from the model and ground-based
observations, it is possible to separate its known contribution in (6.47) and invert
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the radiative transfer equation to determine integrated water vapor and liquid water
as a function of the observed brightness temperatures. Westwater (1978) provides a
thorough error analysis for this standard dual-frequency case. The fact that at 23.8
GHz the absorption of water vapor is significantly higher than at 31.4 GHz (while
the absorption of liquid water changes monotonically over that region) can be used
to retrieve separately integrated water vapor and liquid water from the inversion of
the radiative transfer equation. With more channels distributed appropriately over the
frequency, one can roughly infer the water vapor profiles as well as integrated water
vapor and liquid water, or even temperature, vapor, and liquid profiles (Ware, 2002,
private communication).

6.3.3 General Statistical Retrieval

Consider the following experiment. Use a radiosonde to measure the temperature and
water vapor density profile along the vertical and use equations (6.27) and (6.28) to
compute IWV and PWV. Compute the brightness temperature Tb from the radiative
transfer equation (6.47) for each radiometer frequency using the frequency-dependent
absorption model for water vapor αwv(f, T , p, pw) and oxygen absorption.

Figure 6.9 shows the result of such an experiment. The plot shows the observed
Tb for WVR channels at 20.7 and 31.4 GHz. The data refer to a Bermuda radiosonde
station and were collected over a three-year period. The Bermuda site experiences
nearly the full range of global humidity and cloud cover conditions. The scatter about
the heavily populated “clear” lines is due to the occurrence of cloudy cases. The
slopes of Tb(20.7) are approximately 2.2 times the slopes of the Tb(31.4). The scatter
about the Tb(31.4) “clear” line is approximately twice as large as the scatter about the
Tb(20.7) “clear” line. These results are indicative of the facts that (1) the sensitivity of
Tb(20.7) to PWV is approximately 2.2 times greater than that of Tb(31.4) and (2) that
the sensitivity of Tb(31.4) to liquid water is approximately 2 times greater than that
of Tb(20.7). The sensitivity to liquid water is also illustrated in Figure 6.10, which

Figure 6.9 Brightness temperature versus precipitable water vapor. (Date source: Keihm, JPL.)
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Figure 6.10 Brightness temperature versus cloud liquid. (Date source: Keihm, JPL.)

shows Tb variations versus cloud liquid. Despite the large scatter (due to variable
PWV), one can see that the slope of the Tb(31.4) data is approximately twice as large
as the slope of the Tb(20.7) data.

Because of the relationships between ZWD, IWV, and PWV as seen by (6.32),
(6.27), and (6.28), the strong correlation seen in Figure 6.9 between PWV and the
brightness temperature makes a simple statistical retrieval procedure for the ZWD
possible. Assume a radiosonde reference station is available to determine ZWD and
that a WVR measures zenith T20.7 and T31.4. Using the model

ZWD = c0 + c20.7T20.7 + c31.4T31.4 (6.53)

we can estimate accurate retrieval coefficients ĉ0, ĉ20.7, and ĉ31.4. When users operate
a WVR in the same climatological region, they can then readily compute the ZWD
at their location from the observed brightness temperature and the estimated regres-
sion coefficients. This statistical retrieval procedure can be generalized by using an
expanded regression model in (6.53) and by incorporating brightness temperature
measurements from several radiosonde references distributed over a region.

The opacity may also be used in this regression. In fact, opacity varies more
linearly with PWV than does the brightness temperature Tb. At high levels of water
vapor, or low elevation angles, the Tb measurements will eventually begin to saturate,
i.e., the rate of the Tb increase with increasing vapor will start to fall off. This is not
true for opacity, which essentially remains linear with the in-path vapor abundance.
Opacity is available from (6.48) but also can be conveniently related to the brightness
temperature. Define mean radiation temperature Tmr as

Tmr ≡
∫∞

0 T (s) α(s) e−τ(s) ds∫∞
0 α(s) e−τ(s) ds

(6.54)
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This auxiliary quantity can be accurately estimated from climatologic data. Correc-
tions with surface temperature permit Tmr estimates to be computed to a typical ac-
curacy of ∼3 K. Using the relationship

∫ τ(∞)

0
αe−τ ds = 1 − e−τ(∞) (6.55)

where we used again dτ = α ds, the radiative transfer equation (6.47) can be written as

Tb = Tcosmic e−τ(∞) + Tmr
(
1 − e−τ(∞)

)
(6.56)

which, in turn, can be rewritten as

τ(∞) = ln

(
Tmr − Tcosmic

Tmr − Tb

)
(6.57)

The opacities and brightness temperature show similarly high correlations with the
wet delay. In fact, at low elevation angles the opacities correlate even better with the
wet delay than do brightness temperatures.

If the user measures the brightness temperatures along the slant path rather than the
zenith direction, the observed Tb must be converted to the vertical to estimate ZWD
using (6.53). Given the slant Tb measurement at zenith angle ϑ , and an estimate of
Tmr, the slant opacity can be computed and converted to the zenith opacity using the
simple 1/ cos(ϑ) mapping function. The equivalent zenith Tb follows from (6.56).
For elevation angles above 15° this conversion is very accurate.

Tmr for a specific site is computed from (6.54) using radiosonde data that typify
the site. The variation of Tmr with slant angle is minimal for elevations down to about
20°. The value used for WVR calibration and water vapor retrievals can be a site-
average (standard deviation typically about 10 K), or can be adjusted for season to
reduce the uncertainty. If surface temperatures T are available, then Tmr correlations
with T can reduce the Tmr uncertainty to about 3 K.

6.3.4 Calibration of WVR

Because the intensity of the atmospheric microwave emission is very low, the WVR
calibration is important. Microwave radiometers receive roughly a billionth of a watt
in microwave energy from the atmosphere. The calibration establishes a relationship
between the radiometer reading and the brightness temperature. Here we briefly dis-
cuss the calibration with tipping curves. This technique provides accurate brightness
temperatures and the instrument gain without any prior knowledge of either.

Under the assumption that the atmosphere is horizontally homogeneous and that
the sky is clear, the opacity is proportional to the thickness of the atmosphere. Clearly
the amount of atmosphere sensed increases with the zenith angle. For zenith angles
less than about 60° one might consider adopting the following model for the mapping
function for the opacity:
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mτ(ϑ) ≡ τ(ϑ)

τ(ϑ = 0)
= 1

cos(ϑ)
(6.58)

Figure 6.11 shows an example of radiometer calibration using tipping. The opacity is
plotted versus air mass. Looking straight up, the opacity of one air mass is observed.
Looking at 30°, the opacity of two air masses is observed, etc. Since opacity is linear,
we can extrapolate to zero air mass. At zero air mass, we have mτ(ϑ) = 0 because
there is no opacity for a zero atmosphere.

The calibration starts with a radiometer voltage (noise diode, labeled ND in Figure
6.11) reading Nbb of an internal reference object, which one might think of as a black
body. The physical temperature of that object is Tbb. Let G denote the initial estimate
of the gain factor (change in radiometer count reading over change in temperature).
The observed brightness temperature at various zenith angles, measured by tipping
the antenna, is then computed by

T (ϑ) = Tbb − 1

G
(Nbb − N(ϑ)) (6.59)

Figure 6.11 Tipping curve example. (Courtesy of R. Ware, Radiometrics Corporation,
Boulder)
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The brightness temperatures are substituted into (6.57) to get the opacity. If the
linear regression line through the computed opacities does not pass through the
origin, the gain factor G is adjusted until it passes though the origin. If the regression
coefficient of the linear fit is better than a threshold value, typically r = 0.99, the
tip curve calibration is accepted. The time series in Figure 6.11 show the history of
passed tip curve calibrations at the various microwave frequencies. Additional details
on radiometer calibration are best obtained from manufacturers.

The tipping curve calibration assumes that we know the microwave cosmic back-
ground brightness temperature Tcosmic = 2.7 K. Arno Penzias and Robert Wilson
received the Nobel Prize for physics in 1978 for their discovery of the cosmic back-
ground radiation. Conducting their radio astronomy experiments, they realized a
residual radiation that was characteristically independent of the orientation of the
antenna.

6.4 IONOSPHERIC REFRACTION

Coronal mass ejections (CMEs) and extreme ultraviolet (EUV) solar radiation (solar
flux) are the primary cause of the ionization (Webb and Howard, 1994). A CME is
a major solar eruption. When passing the earth it causes at times sudden and large
geomagnetic storms, which generate convection motions within the ionosphere, as
well as enhanced localized currents. The phenomena can produce large spatial and
temporal variation in the TEC and increased scintillation in phase and amplitude.
Complicating matters are coronal holes, which are pathways of low density through
which high-speed solar wind can escape the sun. Coronal holes and CME are the two
major drivers of magnetic activities on the earth. Larger magnetic storms are rare but
may occur at any time.

Solar flux originates high in the sun’s chromosphere and low in its corona. Even a
quiet sun emits radio energy across a broad frequency spectrum, with slowly varying
intensity. EUV radiation is absorbed by the neutral atmosphere and therefore cannot
be measured accurately from ground-based instrumentation. Accurate determination
of the EUV flux requires observations from space-based platforms above the iono-
sphere. A popular surrogate measure to the EUV radiation is the widely observed flux
at 2800 MHz (10.7 cm). The 10.7 cm flux is useful for studying the ozone layer and
global warming. However, Doherty et al. (2000) point out that predicting the TEC by
using the daily values of solar 10.7 cm radio flux is not useful due to the irregular,
and sometimes very poor, correlation between the TEC and the flux. The TEC at any
given place and time is not a simple function of the amount of solar ionizing flux.

The transition from a gas to an ionized gas, i.e., plasma, occurs gradually. During
the process, a molecular gas dissociates first into an atomic gas that, with increasing
temperature, ionizes as the collisions between atoms break up the outermost orbital
electrons. The resulting plasma consists of a mixture of neutral particles, positive ions
(atoms or molecules that have lost one or more electrons), and negative electrons.
Once produced, the free electron and the ions tend to recombine, and a balance is
established between the electron-ion production and loss. The net concentration of
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free electrons is what impacts electromagnetic waves passing through the ionosphere.
In order for gases to be ionized, a certain amount of radiated energy must be absorbed.
Hargreaves (1992, p. 223) gives maximum wavelengths for radiation needed to ionize
various gases. The average wavelength is about 900 Å (1 Å equals 0.1 nm). The
primary gases available at the upper atmosphere for ionization are oxygen, ozone,
nitrogen, and nitrous oxide.

Because the ionosphere contains particles that are electrically charged and capable
of creating and interacting with electromagnetic fields, there are many phenomena in
the ionosphere that are not present in ordinary fluids and solids. For example, the
degree of ionization does not uniformly increase with the distance from the earth’s
surface. Instead, there are regions of ionization, historically labeled D, E, and F ,
that have special characteristics as a result of variation in the EUV absorption, the
predominant type of ions present, or pathways generated by the electromagnetic field.
The electron density is not constant within such a region and the transition to another
region is continuous. Whereas the TEC determines the amount of pseudorange delays
and carrier phase advances, it is the layering that is relevant to radio communication
in terms of signal reflection and distance that can be bridged at a given time of the
day. In the lowest D region, approximately 60–90 km above the earth, the atmosphere
is still dense and atoms that have been broken up into ions recombine quickly. The
level of ionization is directly related to radiation that begins at sunrise, disappears at
sunset, and generally varies with the sun’s elevation angle. There is still some residual
ionization left at local midnight. The E region extends from about 90–150 km and
peaks around 105–110 km. In the F region, the electrons and ions recombine slowly
due to low pressure. The observable effect of the solar radiation develops more slowly
and peaks after noon. During daytime this region separates into the F1 and F2 layers.
The F2 layer (upper layer) is the region of highest electron density. The top part of
the ionosphere reaches up to 1000 to 1500 km. There is no real boundary between
the ionosphere and the outer magnetosphere.

Ionospheric convection is the main result of the coupling between the magneto-
sphere and ionosphere. While in low altitudes the ionospheric plasma co-rotates with
the earth, at higher latitudes it is convecting under the influence of the large-scale
magnetospheric electric field. Electrons and protons that speed along the magnetic
field lines until they strike the atmosphere not only generate the spectacular lights of
the aurora in higher latitudes, but they also cause additional ionization. Peaks of elec-
tron densities are also found at lower latitudes on both sides of the magnetic equator.
The electric field and the horizontal magnetic field interact at the magnetic equator
to raise ionization from the magnetic equator to greater heights, where it diffuses
along magnetic field lines to latitudes approximately ±15° to 20° on either side of
the magnetic equator. The largest TEC values in the world typically occur at these
so-called equatorial anomaly latitudes.

There are local disturbances of electron density in the ionosphere. On a small
scale, irregularities of a few hundred meters in size can cause amplitude fading and
phase scintillation of GPS signals. Larger disturbances of the size of a few kilome-
ters can significantly impact the TEC. Amplitude fading and scintillation can cause
receivers to lose lock, or receivers may not be able to maintain lock for a prolonged
period of time. Scintillation on GPS frequencies is rare in the midlatitudes, and am-
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plitude scintillation, even under geomagnetically disturbed conditions, is normally
not large in the auroral regions. However, rapid phase scintillation can be a problem
in both the equatorial and the auroral regions, especially for semicodeless L2 GPS
receivers, as the bandwidth of such receivers might be too narrow to follow rapid
phase scintillation effects. Strong scintillation in the equatorial region generally oc-
curs in the postsunset to local midnight time period, during geomagnetically quiet
periods, mostly during equinoctial months in years having high solar activity. Even
during times of strong amplitude scintillation the likelihood of simultaneous deep
amplitude fading to occur on more than one GPS satellite is small. Thus, a modern
GPS receiver observing all satellites in view should be able to operate continuously
through strong scintillation albeit with a continuously changing geometric dilution of
precision (GDOP) due to the continually changing “mix” of GPS satellites in lock.

Sunspots are seen as dark areas in the solar disk. At the dark centers the temper-
ature drops to about 3700 K from 5700 K for the surrounding photosphere. They
are magnetic regions with field strengths thousands of times stronger than the earth’s
magnetic field. Sunspots often appear in groups with sets of two spots, one with pos-
itive (north) magnetic fields, and one with negative (south) magnetic fields. Sunspots
have an approximate lifetime of a few days to a month. The systematic recording of
these events began in 1849 when the Swiss astronomer Johann Wolf introduced the
sunspot number. This number captures the total number of spots seen, the number
of disturbed regions, and the sensitivity of the observing instrument. Wolf searched
observatory records to tabulate past sunspot activities. He apparently traced the ac-
tivities to 1610, the year Galileo Galilei first observed sunspots through his telescope
(McKinnon, 1987). Sunspot activities follow a periodic variation, with a principal
period of eleven years, as seen in Figure 6.12. The cycles are usually not symmetric.
The time from minimum to maximum is shorter than the time from maximum to
minimum.

Sunspots are good indicators of solar activities. Even though sunspots have a high
correlation with CME and solar flux, there is no strict mathematical relationship

Figure 6.12 Sunspot numbers.
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between them. It can happen that GPS is adversely affected even when daily sunspot
numbers are actually low. Kunches and Klobuchar (2000) point out that GPS opera-
tions are more problematic during certain years of the solar cycle and during certain
months of those years. The years at or just after the solar maximum will be stormy,
and the months near the equinoxes will contain the greatest number of storm days.
Sunspots are good for long-term prediction of ionospheric states.

The Appleton-Hartree formula is usually taken in the literature as the start for
developing the ionospheric index of refraction that is applicable to the range of GPS
frequencies. The formula is valid for a homogeneous plasma that consists of electrons
and heavy positive ions, a uniform magnetic field, and a given electron collision
frequency. Following Davies (1990, p. 72), the Appleton-Hartree formula is

n2 = 1 − X

1 − iZ − Y 2
T

2 (1 − X − iZ)
±
√

Y 4
T

4 (1 − X − iZ)2 + Y 2
L

(6.60)

Since the goal is to find the ionospheric index of refraction that applies to the GPS
frequency f , several simplifications are permissible. The element Z = ν/f is the
ratio of the electron collision frequency ν and the satellite frequency. This term
quantifies the absorption. We simply set Z = 0. The index n now becomes a real
number; in the notation of (6.3) we have n′′(f ) = 0. The symbols YT and YL relate
to the magnetic field with reference to the direction of the wave normal, i.e., phase
propagation. The commonly used first-order ionospheric delay expression is obtained
by setting YT = YL = 0. An excellent summary of the higher-order ionospheric
terms and their effects on the GPS observables is given in Odijk (2002). With these
simplifications we obtain

n2 = 1 − X = 1 − f 2
N

f 2
(6.61)

The plasma frequency fN is a measure of the electron motion (oscillation) around the
heavy ions. It is a basic constant of plasma. Davies (1990, pp. 21, 73) gives

f 2
N = Ne e2

4π2ε0me

= 80.6Ne[el/m3] (6.62)

In (6.62) the symbol e = 1.60218 · 10−19 coulombs denotes the electron charge with
mass me = 9.10939 · 10−31 kg; ε0 = 8.854119 · 10−12 faradays/m is the permittivity
of free space. The relevant term is the electron density Ne, which is typically given in
units of electrons per cubic meter [el/m3]. Substituting (6.62) in (6.61) and developing
a series gives

n =
√

1 − f 2
N

f 2
= 1 − f 2

N

2f 2
+ · · · = 1 − NI (6.63)



IONOSPHERIC CODE DELAYS AND PHASE ADVANCES 215

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[21

Lin

—
-2
——
No

* PgE

[21

The ionospheric refractivity is

NI = f 2
N

2f 2
+ · · · = 40.30

f 2
Ne �1 (6.64)

The total electron content (TEC) along the path from receiver to the end of the
effective ionosphere is

TEC =
∫

Ne ds (6.65)

The TEC represents the number of free electrons in a 1-square-meter column along
the path and is given in units of [el/m2].

6.5 IONOSPHERIC CODE DELAYS AND PHASE ADVANCES

We need to deal with the phenomena of carrier phase advancement and group delay of
the codes due to the ionosphere. As an introduction to the propagation in a dispersive
medium, we consider the simplified situation of wave propagation in a homogeneous
and isotropic medium. In a homogeneous medium, the index of refraction is constant
and the isotropic property implies that the propagation velocity at any given point
in the medium is independent of the direction of the propagation. In such medium a
harmonic wave with unit amplitude is described by

ϕ = cos ω

(
t − x

cϕ

)
(6.66)

The symbol t denotes the time, cϕ[m/sec] is the phase velocity (propagation speed
of the wave), and x is the distance from the transmitting source. The angular fre-
quency ω[rad/sec], the frequency f [Hz], the wavelength λϕ[m], and the wave number
k[rad/m] (phase propagation constant), are related by

ω = 2πf (6.67)

λϕ = cϕ

f
(6.68)

k = 2π

λϕ

(6.69)

Using the relations (6.67) to (6.69) the wave equation (6.66) can be written as

ϕ1 = cos(ω t − k x) (6.70)

Let us consider another wave that has a slightly different frequency and wave number,
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ϕ2 = cos [(ω + ∆ω) t − (k + ∆k) x] (6.71)

These two harmonic waves can be superimposed by addition,

ϕs = ϕ1 + ϕ2 = 2 cos
∆ω t − ∆k x

2
cos

[(
ω + ∆ω

2

)
t −
(

k + ∆k

2

)
x

]
(6.72)

This resultant wave is displayed in Figure 6.13. The combined signal shows two
component waves of significantly different frequency. The slowly varying amplitude
modulation represented by the envelope wave is

Ψ = 2 cos 1
2 (∆ω t − ∆k x) (6.73)

having a propagation velocity wave of ∆ω/∆k. At the limit, ∆ω → 0 and ∆k → 0
we obtain

cg = dω

dk
(6.74)

The quantity cg is the velocity of the modulation and called the group velocity. In
the context of GPS signals cg is the velocity of the P-code or C/A-codes. The second
wave component in (6.72) can be viewed as representing the carrier.

Figure 6.13 Concept of group and phase propagation. A point on the envelope travels
with group velocity cg , whereas the waveform within the envelope travels with phase veloc-
ity cϕ .
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The products of phase index of refraction nϕ and velocity cϕ , and group index of
refraction ng and velocity cg equal the speed of light in vacuum, i.e.,

nϕ cϕ = c (6.75)

ng cg = c (6.76)

Using the various relationships identified above, the group index of refraction can be
expressed as

ng = nϕ + f
dnϕ

df
(6.77)

If the group index of refraction depends on the frequency f, i.e., the derivative dnϕ/

df in (6.77) is not zero, then nϕ �= ng and we call the medium dispersive. It follows
that the phase velocity and the group velocity are not the same in a dispersive medium
whereas in a nondispersive medium we have cϕ = cg and the wave envelope moves
with the same velocity as the wave.

Expression (6.77) is applicable in quantifying the impact of the ionosphere on the
GPS signals. Substituting the phase index of refraction (6.63) into (6.77) and carrying
out the differentiation gives the expression for the group index of refraction,

ng = nϕ + f
dnϕ

df
= 1 + NI (6.78)

Neglecting terms of the order NI squared and higher, the expressions for the phase
and group velocities become

cϕ = c

nϕ

= c

1 − NI

= c (1 + NI) (6.79)

cg = c

ng

= c

1 + NI

= c (1 − NI) (6.80)

Since NI is a positive number, the phase velocity is larger than vacuum speed and the
group velocity is smaller than vacuum speed by the same amount ∆ c; i.e.,

∆ c = c NI = 40.30 c

f 2
Ne (6.81)

The time of a code delay or the phase advancement that is registered at the receiver
is directly related to the velocity difference ∆c and its variations along the path.
Integrating (6.81) over time and realizing that ds = c dt gives the ionospheric delay
in units of distance

If,P ≡ I
p

k,f,P = 40.30

f 2

∫
Ne ds (6.82)
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The subscript f in (6.82) denotes the frequency of the carrier and the next subscript
identifies the sign and the unit. If that subscript is P , as in case of (6.82), the distance is
given in units of meters. The integral in (6.82) equals the total electron content (TEC)
according to (6.65). Using short notation, i.e., neglecting the subscript k (receiver) and
superscript p (satellite), we obtain

If,P = 40.30

f 2
TEC (6.83)

The corresponding ionospheric time delay (codes) or time advance (phases) follows
as

νf = If,P

c
= 40.30 TEC

cf 2
(6.84)

The time delay is proportional to the inverse of the frequency squared. Consequently,
the ionosphere affects transmissions at higher frequencies less.

The unit for the ionospheric code delay is in meters, whereas it is typically ex-
pressed in cycles for carrier phases, unless the carrier phases have explicitly been
scaled to distance. The following notation convention applies to identify sign and
units,

I1,P = −I1,Φ = − c

f1
I1,ϕ (6.85)

I2,P = −I2,Φ = − c

f2
I2,ϕ (6.86)

I1,P

I2,P

= f 2
2

f 2
1

(6.87)

I1,ϕ

I2,ϕ

= f2

f1

(6.88)

Figure 6.14 shows the ionospheric delays for GPS frequencies as a function of TEC.
Typically the TEC values range from 1016 to 1018. Often the total electron content is
expressed in terms of TEC units (TECU), with one TECU being 1016 electrons per
1-square-meter column.

Even though they are very important, phase advancement and group delay are
not the only manifestations of the ionosphere on the signal propagation. Some of the
phase variations are converted to amplitude variation by means of diffraction. The re-
sult can be an irregular but rapid variation in amplitude and phase, called scintillation.
The signal can experience short-term fading by losing strength. Scintillations might
occasionally cause phase-lock problems to occur in receivers. A receiver’s bandwidth
must be sufficiently wide not only to accommodate the normal rate of change of the
geometric Doppler shift, (up to 1 Hz), but also the phase fluctuations due to strong
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Figure 6.14 Ionospheric range correction.

amplitude and phase scintillation. These scintillation effects generally require a min-
imum receiver bandwidth of at least 3 Hz under severe fading and phase jitter condi-
tions. Semicodeless L2 receivers generally do not perform well under conditions of
severe phase scintillation due to the required narrow bandwidth of such receivers. If
the receiver bandwidth is set to 1 Hz to deal with the rate of change of the geometric
Doppler shift, and if the ionosphere causes an additional 1 Hz shift, the receiver might
lose phase lock. Assuming a maximum TEC of 1018 el/m2, a change of 1.12% TEC
causes a single-cycle change in L1.

6.6 IONOSPHERIC SOLUTIONS

The primary purpose of multiple frequencies is to neutralize the effect of the iono-
sphere on position determination. Functions of the dual-frequency observables are
readily available that do not depend on the ionosphere.

6.6.1 Single Frequencies and the Broadcast Ionospheric Model

To support point positioning for single-frequency users, the broadcast message con-
tains eight ionospheric model coefficients for computing the ionospheric group delay
along the signal path. The algorithm was developed by Klobuchar (1987) and is listed
in Table 6.1. In addition to the broadcast coefficients, other input parameters are the
geodetic latitude and longitude of the receiver, the azimuth and elevation angle of
the satellite as viewed from the receiver, and the time. Note that several angular argu-
ments are expressed in semicircles (SC). All auxiliary quantities in the middle portion
of the table can be computed one at a time starting from the top. The function in the
third part of the table has been multiplied with the velocity of light, in order to yield
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the slant group delay directly in meters. The algorithm presented here compensates
for 50–60% of the actual group delay.

The Klobuchar algorithm is based on the “shell model” or single-layer model
of the ionosphere. The implicit assumption is that the TEC is concentrated in an
infinitesimally thin spherical layer at a certain height, e.g., 350 km. The model further
assumes that the maximum ionospheric disturbance occurs at 14:00 local time. The
factor F in Table 6.3 is the mapping function that converts the vertical ionospheric
delay at the ionospheric pierce point to the slant delay at the receiver location. The
ionospheric pierce point is the intersection of the line of sight and the ionospheric
layer. The geomagnetic latitude of the ionospheric pierce point is φ, and its geodetic
latitude and longitude is ϕIP and λIP. The angle ψ denotes the earth’s central angle
between the user and the ionospheric pierce point, t is the local time, P is the period
in seconds, x is the phase in radians, and A denotes the amplitude in seconds.

TABLE 6.3 The Broadcast Ionospheric Model

ϕ, λ geodetic latitude and longitude of receiver [SC] T = GPS time [s]

α
p

k , β
p

k azimuth and altitude of satellite [SC] αn, γn broadcast coefficients

F = 1 + 16
(
0.53 − β

p

k

)3
(a) ψ = 0.0137

α
p

k + 0.11
− 0.022 (b)

ϕIP =



ϕ + ψ cos α
p

k if |ϕIP| ≤ 0.416

0.416 if ϕIP > 0.416

−0.416 if ϕIP < −0.416

(c) λIP = λ + ψ sin α
p

k

cos ϕIP
(d)

φ = ϕIP + 0.064 cos (λIP − 1.617) (e)

t =



λIP 4.32 × 104 + T if 0 ≤ t < 86400

λIP 4.32 × 104 + T − 86400 if t ≥ 86400

λIP 4.32 × 104 + T + 86400 if t < 0

(f)

x = 2π(t − 50400)

P
(g)

P =




3∑
n=0

γn φn if P ≥ 72000

72000 if P < 72000

(h) A =




3∑
n=0

αnφ
n if A ≥ 0

A = 0 if A < 0

(i)

I
p

k,1,P =




c F

[
5 × 10−9 + A

(
1 − x2

2
+ x4

24

)]
if |x| < 1.57

c F
(
5 × 10−9

)
if |x| > 1.57

(j)

Conversion of SC unit: 1 SC = 180°
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For accurate relative positioning with carrier phase observations, single-frequency
users still depend on the elimination of ionospheric effects through single or double
differencing, as discussed in connection with Equations (5.20) and (5.28). Better
ionospheric corrections will be available to single-frequency users in the near future
from services provided by the IGS or other entities.

6.6.2 Ionospheric-Free Functions

Since the ionospheric code delay and the phase advance are dependent on frequency,
it is possible to eliminate the ionospheric effects for dual-frequency observation.
Using simplified notation, the pseudoranges of Equation (5.7) for L1 and L2 can
be expressed as

P1 = ρ − c dt + c
(
dt̄ + TGD

)+ I1,P + T + δ1,P + ε1,P (6.89)

P2 = ρ − c dt + c
(
dt̄ + αf TGD

)+ I2,P + T + δ2,P + ε2,P (6.90)

The objective is to find functions that do not depend on the ionosphere. Using the
coefficients αf , βf , γf and δf defined in (5.13) to (5.16), the ionospheric-free pseu-
dorange function PIF,

PIF ≡ βf P1 − γf P2 = 1(
1 − αf

){P2 − αf P1

} = ρ − c dt + c dt̄ + T + δP,IF + εP,IF

(6.91)

serves this purpose. In Equation (6.91) the ionospheric terms cancel. The symbols
δP,IF and εP,IF are functions of δ1,P , δ2,P , ε1,P and ε2,P . The satellite code phase
offset TGD has also canceled, whereas the other hardware delays and multipath terms
do not cancel (but are not listed explicitly in (6.91)).

The dual-frequency carrier phase equations (5.10) in units of cycles are in simpli-
fied notation

ϕ1 = f1

c
ρ + N1 − f1 dt + f1 dt̄ − f1

c
I1,P + f1

c
T + δ1,ϕ + ε1,ϕ (6.92)

ϕ2 = f2

c
ρ + N2 − f2 dt + f2 dt̄ − f2

c
I2,P + f2

c
T + δ2,ϕ + ε2,ϕ (6.93)

The ionospheric-free carrier phase function ϕIF is

ϕIF ≡ βf ϕ1 − δf ϕ2 = f1

c
ρ −f1 dt +f1 dt̄ + βf N1 − δf N2 + f1

c
T + δϕ,IF + εϕ,IF

(6.94)

where δϕ,IF and εϕ,IF are functions of δ1,ϕ , δ2,ϕ , ε1,ϕ , and ε2,ϕ . The ionospheric-
free phase function (6.94) does not contain the ionospheric term. Unfortunately, the
integer-nature of the ambiguities has been lost, because the multipliers βf and δf are



222 TROPOSPHERE AND IONOSPHERE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[22

Lin

—
3.5
——
Nor

PgE

[22

not integers. Using (6.94) alone, in either undifferenced or double-differenced form,
only the N1 and N2 linear ambiguity combination is estimable. Any hardware delays
in receiver or satellite that are constant in time will also be absorbed by the estimated
ambiguities.

6.6.3 Ionospheric Functions

Because the ionosphere delays the codes by the same amount as it advances the carrier
phases, the difference of both observations depends on twice the ionosphereic delay
while some other terms cancel. Differencing (6.89) and (6.92), and recalling that
I1,P = −I1,Φ, one obtains for a single frequency

R1,I ≡ P1 − Φ1 = 2I1,P − c

f1
N1 + cTGD + δ1,R,I + ε1,R,I (6.95)

where δ1,R,I and ε1,R,I are functions of δ1,P , δ1,Φ, ε1,P , and ε1,Φ. The multipath of the
pseudorange measurement typically sets the accuracy limit for this function. Since the
ambiguity is not known, this function does not give the absolute ionospheric delay.
The initial ambiguity and the code phase offsets cancel when differencing over time,

R1 (t1, t2) = 2
[
I1,P (t2) − I1,P (t1)

] = 2 × 40.30

f1
[TEC (t2) − TEC (t1)] (6.96)

as long as the general hardware and multipath terms are constant.
Differencing the dual-frequency pseudoranges (6.89) and (6.90) gives

PI ≡ P1 − P2 = (1 − αf

)
I1,P + c

(
1 − αf

)
TGD + δP,I + εP,I (6.97)

where δP,I and εP,I are functions of δ1,P , δ2,P , ε1,P , and ε2,P . This function readily
shows the difficulties encountered when measuring the total ionosphere, or the TEC,
with dual-frequency receivers. The system specification for the stability of the satel-
lite offset TGD is ±3 ns (2-sigma) level. This poses a limitation on determining the
TEC, because 3 ns of differential delay between L2 minus L1 corresponds to 0.9 m
delay or 8.5 TECU and has resulted in efforts to determine these delays more accu-
rately. The separation of the hardware delays and the TEC estimates becomes possible
because the impact of the ionosphere depends on the elevation angle, whereas that of
the satellite hardware delay does not.

The ionospheric function for the carrier phases follows readily from (6.92) and
(6.93),

ϕI ≡ ϕ1 − f1

f2
ϕ2 = N1 − f1

f2
N2 − f1

c

(
1 − αf

)
I1,P + δϕ,I + εϕ,I (6.98)

where δϕ,I is a function of the carrier phase hardware delays and multipath.
The hardware delays are not listed explicitly. The ionospheric function (6.98) re-
flects the time variation of the TEC. This variation can be measured accu-
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rately because of high carrier phase resolution and the small multipath (as compared
to the one for code measurements). Unfortunately, this function alone does not per-
mit the estimation of the absolute TEC, because the initial ambiguities are not known.
Expressing (6.92) and (6.93) in units of length, we obtain the function

ΦI ≡ Φ2 − Φ1 = (1 − αf

)
I1,P + c

f2
N2 − c

f1
N1 + δΦ,I + εΦ,I (6.99)

where δΦ,I is a function of the carrier phase hardware delays and multipath. In
Expression (6.99) we have made used of Equations (6.85) to (6.88) to convert the
ionospheric phase delays to respective pseudorange delays. The functions PI and ΦI

are affected by the ionosphere by the same amount.

6.6.4 Discriminating Small Cycle Slips

Analysis of dual-frequency carrier phase functions requires some extra attention be-
cause certain combinations of slips in L1 and L2 phases generate almost identical
effects. For example, consider the ionosphere-free phase observable (6.94). Unfortu-
nately, the ambiguities enter this function not as integers but in the combination of
βf N1 − δf N2, necessitating a search for a noninteger fraction in the residuals of the
ionosphere-free phase. Table 6.4 lists in columns 1 and 2 small changes in the am-
biguities and illustrates in columns 3 and 4 their effects on the ionospheric-free and
the ionospheric phase functions, respectively. Certain combinations of both integers
produce almost identical changes in the ionosphere-free phase function. For example,
a change of (−7, −9) causes a small change of 0.033 cycles, whereas (1, 1) causes
a change of 0.562 cycles, which is almost identical to the one caused by (8, 10). If
pseudorange positioning is accurate enough to resolve the ambiguities within three
to four cycles, then these additional difficulties in identifying slip combination can
be resolved.

TABLE 6.4 Small Cycle Slips and Phase Functions

∆N1 ∆N2 βf ∆N1 − δf ∆N2 ∆N1 − √
αf ∆N2

±1 ±1 ±0.562 ∓0.283
±2 ±2 ±1.124 ∓0.567
±1 ±2 ∓1.422 ∓1.567
±2 ±3 ±0.860 ∓1.850

±3 ±4 ∓0.298 ∓2.133
±4 ±5 ±0.264 ∓2.417
±5 ±6 ±0.827 ∓2.700
±6 ±7 ±1.389 ∓2.983
±5 ±7 ∓1.157 ∓3.983
±6 ±8 ∓0.595 ∓4.267
±7 ±9 ∓0.033 ∓4.550
±8 ±10 ±0.529 ∓4.833
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TABLE 6.5 Effects of Selected Slips on the Ionospheric Phase Function

∆N1 ∆N2 ∆N1 − √
αf ∆N2 ∆N1 ∆N2 ∆N1 − √

αf ∆N2

−2 −7 6.983 7 0 7.000
−2 −6 5.700 7 1 5.717
−2 −5 4.417 7 2 4.433
−2 −4 3.133 7 3 3.150
−2 −3 1.850 7 4 1.867
−2 −2 0.567 7 5 0.583
−2 −1 −0.718 7 6 −0.700
−2 0 −2.000 7 7 −1.983

2 0 2.000 −7 −7 1.983
2 1 0.717 −7 −6 0.700
2 2 −0.567 −7 −5 −0.583
2 3 −1.850 −7 −4 −1.867
2 4 −3.133 −7 −3 −3.150
2 5 −4.417 −7 −2 −4.433
2 6 −5.700 −7 −1 −5.717
2 7 −6.983 −7 0 −7.000

Table 6.5 shows an arrangement of integers that have a practically undistinguish-
able effect on the ionospheric function. It is seen that, e.g., the impact of the combi-
nations (−2, −7) and (7, 0) differs by only 0.02 cycle. This amount is too small to
be discovered reliably in an observation sequence. Unfortunately, there is no unique
combination of small (∆N1, ∆N2) that smooths the ionospheric function if slips are
present.

6.6.5 Multipath Equations

The multipath equations relate a pseudorange and carrier phases of both frequencies
as follows,

M1 ≡ P1 − Φ1 + 2

1 − αf

(
Φ1 − Φ2

) = −λ1N1 + 2

1 − αf

(
λ1N1 − λ2N2

)

+ cTGD + δM1

(6.100)

M2 ≡ P2 − Φ2 + 2αf

1 − αf

(
Φ1 − Φ2

) = −λ2N2 + 2αf

1 − αf

(
λ1N1 − λ2N2

)

+ cαf TGD + δM2

(6.101)

These expressions can be readily verified. Analyzing these expressions over time is
useful for initial cycle slip scanning. While these multipath functions should theoreti-
cally be constant in time, the actual variation is dominated by measurement accuracy
and multipath of the pseudoranges.
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6.6.6 Generalizing the Dual-Frequency Phase Function

The general linear combination of dual-frequency carrier phase observations at a
given station is,

ϕm,n ≡ mϕ1 + nϕ2

= λ−1
m,n ρ + Nm,n − fm,n dt + fm,n dt̄ + Im,n,ϕ + λ−1

m,n T + δm,n,ϕ + εm,n,ϕ

(6.102)

The frequency, wavelength, ambiguity, and the ionospheric terms for the general
carrier phase function ϕm,n are

fm,n = mf1 + nf2 (6.103)

λm,n = c

fm,n

= c

mf1 + nf2
(6.104)

Nm,n = mN1 + nN2 (6.105)

Im,n,ϕ = mI1,ϕ + nI2,ϕ = mf2 + nf1

f2
I1,ϕ (6.106)

Im,n,Φ = λm,n Im,n,ϕ (6.107)

Because the GPS L1 and L2 frequencies are related as f1/f2 = 77/60, the m = 70
and n = −60 combination does not depend in the ionosphere. Expressed in units of
length, the function (6.102) becomes

Φm,n = ρ + λm,nNm,n − c dt + c dt̄ + Im,n,Φ + T + δm,n,Φ + εm,n,Φ (6.108)

with δm,n,Φ and εm,n,Φ being the respective functions of the hardware delays, multi-
path, and measurement noise. The ionospheric ratio with respect to the L1 carrier can
be written as

I
p

k,m,n,Φ

I
p

k,1,Φ

= f1

f2

(
mf2 + nf1

mf1 + nf2

)
(6.109)

In (6.102) the distances are expressed in units of the wavelength. A change in ϕm,n

by one cycle, or a change of the ambiguity Nm,n by one cycle, represents a distance
change along the station-satellite direction by one wavelength of λm,n. The distance
corresponding to one wavelength is frequently called a lane. Determination of the
ambiguity Nm,n thus implies that the topocentric range has been resolved within the
unit of λm,n. One might, therefore, prefer transformations that give large wavelengths
and solve the respective ambiguities. The assumption is that the unmodeled errors are
small enough to allow a unique determination of these ambiguities. In a subsequent
solution, when estimating N1 and N2, one could constrain the Nm,n. Unfortunately,
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the m and n factors that generate long wavelengths according to (6.104), might also
increase the impact of multipath errors and other disturbances according to (6.102).

Combinations for which m and n have different signs are called the wide-lane
observables. Because the specific observable (1, −1) is the most important of all the
wide-lane observables, it is usually referred to simply as the widelane (without explic-
itly mentioning the m and n); the subscript w is also used to identify this combination.
If the m and n have the same sign, we speak of narrow-lane observables. The partic-
ular combination (1, 1) is simply the narrowlane (without explicitly mentioning the
m and n). The subscript n identifies the narrowlane. For example,

ϕn = ϕ1 + ϕ2 (6.110)

ϕw = ϕ1 − ϕ2 (6.111)

λn = c

fn

= c

f1 + f2
≈ 0.11 m (6.112)

λw = c

fw

= c

f1 − f2
≈ 0.86 m (6.113)

It is important to note that for any linear combination of the carrier phase obser-
vations, the respective variance-covariance preparation must be carried out properly.
Finding the optimal combination has at times generated considerable interest. How-
ever, that is no longer the case because of the optimal performance of LAMBDA
(Teunissen, 1999). LAMBDA automatically includes widelaning but is even more
general.

6.6.7 Global Ionospheric Models

The ionosphere can be estimated from (6.97) and (6.99), given dual-frequency ob-
servations. Although multipath of the GPS signals is a limiting factor in all GPS
applications, we neglect the multipath terms in these equations assuming that their
effect averages out or has been corrected computationally using multipath models.
Adding the subscript k and superscript p for clarity, we can write

P
p

k,I = (1 − αf

)
I

p

k,1,P + c
(
1 − αf

)
T

p

GD + d1,P − d2,P (6.114)

Φ
p

k,I = (1 − αf

)
I

p

k,1,P + λ2N
p

k,2 − λ1N
p

k,1 + d2,Φ − d1,Φ (6.115)

The first step in estimating the ionosphere is to correct all cycle slips, using, e.g., the
“phase-connected” arc method (Blewitt, 1990) or any other suitable technique. In the
second step, we assume that the receiver hardware delays d1,P −d2,P and d2,Φ −d1,Φ

are constant over the time of the arc and compute the offset for the arc
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∆
p

k = 1

n

n∑
i=1

(
P

p

k,I − Φ
p

k,I

)
i

(6.116)

The summation goes over the n epochs in the arc. Perhaps one might adopt an
elevation dependent weighting scheme in (6.116) to take into account the decrease of
measurement accuracy with elevation angle. The computed offset is added to (6.115)
which can then be modeled as

Φ
p

k,I (t) − ∆
p

k = (1 − αf

)
I

p

k,1,P (t) + dp − dk (6.117)

over the arc. The term dp is the residual interfrequency satellite delay, which is
essentially an estimate of T

p

GD, and dk is a residual interfrequency receiver delay. As
with the broadcast ionospheric model, we also relate the slant and vertical ionospheric
delays by the mapping function F(β) such that

I
p

k,1,P (λ, ϕ, t) = F(β)Ik,1,P (λIP, ϕIP, t) (6.118)

One could use the simple mapping function of Table 6.3 or one that is based on a
realistic electron density profile model, such as the extended slab density model by
Coster et al. (1992). The symbols ϕIP and λIP denote the latitude and longitude of the
ionospheric pierce point, whereas λ and ϕ identify the receiver location. Since the
ionospheric disturbances follow the motion of the sun (the maximum disturbances
occur around 14:00 local time) and tend to follow geomagnetic field lines, it is ad-
vantageous to parameterize the model for the vertical ionospheric delay Ik,1,P in a
solar-fixed coordinate system whose third axis coincides with the geomagnetic pole
rather the geographic pole. One might model Ik,1,P by a spherical harmonic series
and estimate the spherical harmonic coefficients for global ionospheric models. The
Kalman filter implementation of Mannucci et al. (1998) divides the surface of the
earth into tiles (triangles) and estimates the vertical TEC for the vertices. Only obser-
vations that fall within the triangle are used to estimate the TEC at the vertices of that
triangle. They assume that the TEC varies linearly within the triangle. Because the
instrumental biases dp and dk are geometry-independent, but the ionospheric delay
depends on the azimuth and elevation of the satellite, the biases and the ionospheric
effect are estimable. The biases are fairly stable and need to be estimated less often
than the rapidly varying ionospheric parameters. See Sardón et al. (1994) for addi-
tional details on the parameterization of TEC and satellite and receiver biases.
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CHAPTER 7

PROCESSING PSEUDORANGES
AND CARRIER PHASES

In keeping with the objectives of this book, this chapter does not contain the depth
required to determine global positioning system (GPS) orbits or orbits of near-earth
satellites. Rather, the position is taken that precise GPS satellite ephemerides will
be available from the International GPS Service (IGS) and participating agencies
and individuals who will continue to fine-tune their models as part of their research
agenda. Therefore, the first section deals with the IGS and its products.

A separate section is devoted to antennas. Because of the increasing popularity of
precise point positioning (PPP), material is included on the phase windup correction
that results from the fact that the GPS satellite transmissions are right circularly
polarized. The separation between the center of the satellite antenna and the satellite’s
center of mass must be properly dealt with in precise PPP application and respective
corrections must be applied. The two types of corrections are little known among
users performing relative positioning over short distances, because they cancel. All
users however, must be concerned with receiver antenna phase center offsets and
variations, and, certainly, signal multipath. These phenomena are treated in some
detail.

The various GPS positioning techniques are subdivided into geometry-free so-
lutions, point positioning (navigation solution), precise point positioning, real-time
precise point positioning, relative positioning (differential positioning), and real-time
relative positioning (real-time kinematic positioning [RTK] and network-aided RTK).
PPP, in either the static or kinematic mode, is becoming increasingly important be-
cause of the availability of very precise postprocessed satellite ephemerides within a
short delay time or even predicted precise ephemerides, and the discontinuation of se-
lective availability (SA). PPP becomes even more attractive because of computational
services that conveniently are available over the Internet. An example is the service
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provided by the Jet Propulsion Laboratory (JPL). Relative positioning has thus far
been the backbone of most positioning with GPS and will still remain very important
in the future. The burden of processing for relative positioning has been lessened be-
cause of Internet processing services provided by, e.g., the National Geodetic Survey
(NGS). Ambiguity fixing, with emphasis on least-squares ambiguity decorrelation
adjustment (LAMBDA), is dealt with in a separate section because of its importance
to achieving centimeter-accurate relative positioning. The nonlinear pseudorange po-
sition solutions are given for point positioning and relative positioning.

7.1 THE IGS AND ITS PRODUCTS

The IGS is a response to a call by international users for an organizational structure
that helps maximize the potential of GPS. It is a globally decentralized organization
that is self-governed by its members and is without a central resource of funding. The
support comes from various member organizations and agencies around the world,
called contributing organizations. The IGS was formerly established by the Interna-
tional Association of Geodesy (IAG) in 1993 and officially began its operations on
January 1, 1994.

A governing board sets the IGS policies and exercises broad oversight of all IGS
functions. The executive arm of the board is the central bureau, which is located at
the JPL and is sponsored by NASA. There are nearly 300 globally distributed perma-
nent GPS tracking sites (Figure 7.1). These stations operate continuously and deliver
data hourly or daily to data centers. There are currently three global data centers,
five regional data centers, and twenty-three operational data centers. This scheme
of data centers provides for efficient access and storage of data, data redundancy,

GMT Jan 2 16:10:25 2003

Figure 7.1 IGS permanent tracking network in 2002. (Courtesy NASA/JPL/Caltech.)



230 PROCESSING PSEUDORANGES AND CARRIER PHASES

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[23

Lin

—
2.0
——
Nor

PgE

[23

and security at the same time. There are eight analysis centers. These centers are the
scientific backbone of the IGS that use the global data sets to produce products of
the highest quality. The analysis centers cooperate with an analysis center coordina-
tor, whose main task is to combine the products of the centers into single product,
which becomes the official IGS product. The global data centers and central bureau
make it available. The analysis centers are: (1) Astronomical Institute University of
Bern, Center for Orbit Determination in Europe, Switzerland; (2) European Space
Agency/European Space Operations Center, Germany; (3) GeoForschungsZentrum,
Potsdam, Germany; (4) NASA Jet Propulsion Laboratory, California Institute of
Technology, United States; (5) National Geodetic Survey, National Oceanic and At-
mospheric Administration, United States; (6) Natural Resource, Canada; (7) Scripps
Orbit and Permanent Array Center, Scripps Institution of Oceanography, United
States; and (8) U.S. Naval Observatory, United States.

Detailed information about the IGS is available at the website (IGS, 2002). A
strategic plan for the years 2002–2007 found at that website lists the long-term goals
and objectives of the IGS:

• Provide the highest-quality, reliable global navigation satellite system (GNSS)
data and products openly and readily available to all user communities.

• Promote universal acceptance of IGS products and conventions as the world
standard.

• Continuously innovate by attracting leading-edge expertise and pursuing chal-
lenging projects and ideas.

• Seek to implement new growth opportunities while responding to changing user
needs.

• Sustain and nurture the IGS culture of collegiality, openness, inclusiveness, and
cooperation.

• Maintain a voluntary organization with effective leadership, governance, and
management.

The various IGS products are summarized in Table 7.1. These products have become a
de facto world standard for many GPS applications. Examples of universally accepted
formats include receiver independent exchange format (RINEX), standard product
#3 for ECEF (earth centered earth fixed) orbital files (SP3), and solution independent
exchange format (SINEX).

7.2 ANTENNA CORRECTIONS

It is important that the GPS signals are treated/modeled correctly at the satellite and at
the receiver. We discuss the phase windup correction and how to deal with the separa-
tion of satellite antenna phase and satellite center of mass. The receiver phase center
offset and variation is generally dealt with in terms of relative and absolute antenna
calibration. Several examples are given to shed light on the nature of signal multipath.
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TABLE 7.1 IGS Products in 2002

Product Accuracy Latency Updates

GPS Satellite Ephemeris
and Satellite Clocks

Predicted (Ultra Rapid) ∼25 cm; ∼5 ns real time Twice daily

Rapid 5 cm; 0.2 ns 17 hours daily

Final < 5 cm; 0.1 ns ∼13 days weekly

Geocentric Coordinates
of IGS Tracking Stations

Final horizontal and 3 mm & 6 mm 12 days weekly
vertical positions

Final horizontal and 2 mm/yr & 3 mm/yr 12 days weekly
vertical velocities

Earth Rotation Parameters

Rapid polar motion 0.2 mas
Polar motion rates 0.4 mas/day 17 hours daily

Length-of-day 0.030 ms

Final polar motion 0.1 mas
Polar motion rates 0.2 mas/day ∼13 days weekly

Length-of-day 0.020 ms

Atmospheric Parameters

Final tropospheric 4 mm zenith path delay < 4 weeks weekly

Ionospheric TEC grid Under development

Source: IGS (2002).

7.2.1 Phase Windup Correction

One must go back to the electromagnetic nature of GPS transmissions in order to
understand this correction. In short, the GPS carrier waves are right circularly polar-
ized (RCP). The electromagnetic wave may be visualized as a rotating electric vector
field that propagates from the satellite antenna to the receiver antenna. The vector
rotates 360° every spatial wavelength or every temporal cycle of the wave. The ob-
served carrier phase can be viewed as the geometric angle between the instantaneous
electric field vector at the receiving antenna and some reference direction on the an-
tenna. As the receiving antenna rotates in azimuth, this measured phase changes. The
same is true if the transmitting antenna changes its orientation with respect to the
receiver antenna. Since the phase is measured in the plane of the receiving antenna,
its value depends on the direction of the line of sight to the satellite, in addition to the
orientation of the antenna.
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Figure 7.2 Antenna rotation test. (Data from R. J. Muellerschoen, JPL.)

Figure 7.2 shows the results of a simple test to demonstrate RCP of GPS signals.
Two antennas, about 5 m apart, were connected to the same receiver and oscillator.
Observations were recorded once per second for half an hour. One of the antennas
was rotated 360° in azimuth four times clockwise (as viewed looking down on the
ground plate), with 1 minute between the rotations, and then four times rotated coun-
terclockwise, again with 1 minute between the rotations. The carrier phase observa-
tions were differenced and a linear trend was removed to account for the phase biases
and a differential rate (caused by the separation of the antennas). Figure 7.2 shows the
change in the single differences for both L1 and L2. Each complete antenna rotation
in azimuth causes a change of 1 wavelength.

An introductory discussion of the carrier phase windup correction for rotating
GPS antennas is found in Tetewsky and Mullen (1997). Wu et al. (1993) derived the
phase windup correction expressions for a crossed dipole antenna, but their results
are applicable to cases that are more general. Following their derivations, at a given
instant the windup correction is expressed as a function of the directions of the dipoles
and of the line of sight to the satellite.

Let x̂ and ŷ denote the unit vectors in the direction of the two-dipole elements in
the receiving antenna in which the signal from the y-dipole element is delayed by
90° relative to that from the x-dipole element. k is the unit vector pointing from
the satellite to the receiver. We consider a similar definition for x̂′ and ŷ′ at the
satellite, i.e., the current in the y ′-dipole lags that in the x ′-dipole by 90°. They define
the effective dipole that represents the resultant of a crossed dipole antenna for the
receiver and the transmitter, respectively,

d = x̂ − k (k · x̂) + k × ŷ (7.1)

d′ = x̂′ − k
(
k · x̂′)− k × ŷ′ (7.2)
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The windup correction is (Wu et al., 1993, p. 95)

δϕ = sign
[
k · (d′ × d

)]
cos−1

(
d′ · d

‖d′‖ ‖d‖
)

(7.3)

At a given instant in time, the windup correction δϕ cannot be separated from the
undifferenced ambiguities, nor is it absorbed by the receiver clock error because it
is a function of the receiver and the satellite. In practical applications it is therefore
sufficient to interpret x̂ and ŷ as unit vectors along northing and easting and x̂′ and ŷ′
as unit vectors in the satellite body coordinate system. Any additional windup error
resulting from this redefinition of the coordinate system will also be absorbed by
the undifferenced ambiguities. Taken over time, however, the values of δϕ reflect the
change in orientation of receiver and satellite antennas.

The value of the windup correction for single and double differences has an in-
teresting connection to spherical trigonometry. Consider a spherical triangle whose
vertices are given by the latitudes and longitudes of the receivers k and m, and the
satellite. In addition, we assume that GPS transmitting antennas are pointing toward
the center of the earth and that the ground receiver antennas are pointing upward. This
assumption is usually met in the real world. It can be shown that single difference
windup correction δϕ

p

km = δϕ
p

k − δϕ
p
m is equal to the spherical excess if the satellite

appears on the left as viewed from station k to station m, and it equals the negative
spherical excess if the satellite appears to the right. The double-differencing windup
correction δϕ

pq

km equals the spherical excess of the respective quadrilateral. The sign
of the correction depends on orientation of the satellite with respect to the baseline.
For details, refer to Wu et al. (1993).

The windup correction can be neglected for short baselines because the spher-
ical excess of the respective triangles is small. Neglecting the windup correction
might cause problems when fixing the double-difference ambiguities, in particular
for longer lines. The float ambiguities absorb the constant part of the windup correc-
tion. The variation of the windup correction over time might not be negligible in float
solutions of long baselines.

There is no windup-type correction for the pseudoranges. Consider the simple case
of a rotating antenna that is at a constant distance from the transmitting source and
the antenna plane perpendicular to the direction of the transmitting source. Although
the measured phase would change due to the rotation of the antenna the pseudorange
will not change because the distance is constant.

7.2.2 Satellite Antenna Phase Center Offset

The satellite antenna phase center offsets are usually given in the satellite-fixed co-
ordinate system (x′) that is also used to express solar radiation pressure (see Section
3.1.4.3). The origin of this coordinate system is at the satellite’s center of mass. If e de-
notes the unit vector pointing to the sun, expressed in the ECEF coordinate system (x),
then the axes of (x′) are defined by the unit vector k (pointing from the satellite toward
the earth’s center), the vector j = (k × e)/|k × e| (pointing along the solar panel axis),
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and the vector i = j × k that completes the right-handed coordinate system (also
located in the sun-satellite-earth plane). For example, the offsets adopted for Block
II/IIA satellites are x′ = [0.279 0 1.023]T meters. It can readily be verified that

xsa = xsc + [ i j k ] x′ (7.4)

where xsa is the position of the satellite antenna and xsc denotes the position of the
satellite’s center of mass.

The satellite phase center offsets must be determined for each satellite type. When
estimating the offsets from observations while the satellite is in orbit, the effect of
the offsets might be absorbed, at least in part, by other parameters. An example is the
offset in direction k and the receiver clock error. Mader and Czopek (2001) report on
an effort to calibrate the phase center of the satellite antenna for a Block IIA antenna
using ground measurements.

7.2.3 Receiver Antenna Phase Center Offset and Variation

The immediate reference point in positioning with GPS is the phase center of the
receiver antenna. Since the phase center cannot be accessed directly with tape we
need to know the relationship between the phase center and an external antenna
reference point (ARP) in order to relate the GPS-determined positions to a surveying
monument. Unfortunately, the phase center is not well defined. Its location varies
with the elevation angle of the arriving signal, i.e., the direction of the satellite. For
some antennas it also depends, although slightly, on the azimuth. The relationship
between the ARP and the phase center, which is the object of antenna calibration, is
usually parameterized in term of phase offset (PO) and phase center variation (PCV).
The largest offset is in height, which can be as much as 10 cm. The PO and the PCV
also depend on the frequency.

Imagine a perfect antenna that has an ARP and a phase center offset that is well
known. Imagine further that you connect a “phase meter” to the antenna and that you
move a transmitter along the surface of a sphere that is centered on the phase center.
In this ideal case, since the distance from the transmitter to the phase center never
changes, the output phase will always read a constant amount. In actuality, there is no
perfect antenna, and that situation can never be realized. Instead, one effectively moves
a source along a sphere centered on a point that one selects as an average phase center.
Now instead of recording a constant phase, one detects phase variations, primarily as
a function of elevation. Since the distance from source to antenna is constant, these
phase variations must be removed so that constant geometric distance is represented
by constant phase measurements. Had we picked another phase center, we would get
another set of phase variations. That is why the PO and PCVs must be used together
and why different POs and PCVs sets will lead one back to the same ARP.

For a long observation series one might hope that the average location of the PCV
is well defined and that the position refers to the average phase center. For RTK
applications there is certainly no such averaging possible. For short baselines where
the antennas at the ends of the line see a satellite at approximately the same elevation
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angle, orienting both antennas in the same direction can largely eliminate the PO and
PCV. This elimination procedure works only for the same antenna types. For large
baselines or when mixing antenna types, the antenna calibration is necessary and
corrections must be applied. Antenna calibration is also important when estimating
tropospheric parameters, since both the PCV and the tropospheric delay depend on
the elevation angle.

The NGS (Mader, 1999) has developed procedures for relative antenna calibration
using field observations. All test antennas are calibrated with respect to the same
reference antenna, which happens to be an AOAD/M T choke ring antenna. The
basic idea is that if the same reference antenna is always used for all calibrations, the
PO and PCV of the reference antenna cancel when double-differencing observations
of a new baseline and applying the calibrated PO and PCV to both antennas. This
technique is accurate as long as the elevation difference of a satellite, as seen from
both antennas, is negligible in terms of the PCV (which is parameterized as a function
of the elevation angle). Since the PCV amounts to about only 1–2 cm and varies
smoothly with elevation angle, relative phase calibration is applicable to baselines of
several thousand kilometers in length. NGS uses a calibration baseline of 5 m. The
reference antenna and the test antenna are connected to the same type of receiver. Both
receivers use the same rubidium oscillator as an external frequency standard. Because
the test baseline is known, a common frequency standard is used, and because the
tropospheric and ionospheric effects cancel over such a short baseline, the single-
difference discrepancies over time are very flat and can be modeled as

(
ϕ

p

12,b − ϕ
p

12,0

)
i
= τi + α1β

p

i + α2
(
β

p

i

)2 + α3
(
β

p

i

)3 + α4
(
β

p

i

)4
(7.5)

The subscript i denotes the epoch, the superscript p identifies the satellite having
elevation angle βi , and τi is the remaining relative time delay (receiver clock error).
The coefficients α1 to α4 and τi are estimated by observing all satellites from rising
to setting. The result of the relative calibration of the test antenna is then given by

ϕ̂antenna,PCV(β) = α̂1β + α̂2β
2 + α̂3β

3 + α̂4β
4 + ξ (7.6)

The symbol ξ denotes a translation such that ϕ̂antenna,PCV(90°) = 0. The remaining
clock difference estimate τ̂ is not included in (7.6), Both τ̂ and ξ cancel in double
differencing. Recall that the NGS calibration is relative and therefore (7.6) must
be applied in the double-differencing mode. An example of relative PCV is seen in
Figure 7.3. The vertical axis shows the difference

(
ϕ

p

12,b − ϕ
p

12,0

)
i
−τ̂i for all satellites.

The multipath is clearly visible in this figure; it has a much higher frequency than the
PCV and therefore does not affect the polynomial estimation. Equation (7.6) is used
together with the PO that NGS derives from 24-hour data sets. Again, it is sufficient
to define the PO of the reference antenna because the calibrated POs are used in the
relative mode.

Automated absolute field calibration of GPS antennas in real time is discussed
in Wübbena et al. (2000), Schmitz et al. (2002), and references listed therein. They
use a robotic arm to determine the absolute PO and PCV as a function of elevation
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Figure 7.3 Relative vertical antenna phase variation calibration at NGS. (Data Source:
Gerry Mader, NGS.)

and azimuth. This real-time calibration uses undifferenced observations from the
test antenna that are differenced over very short time intervals. The intervals are
sufficiently short so that multipath is eliminated in the differencing. This calibration
technique therefore becomes site-independent. Rapid changes of orientation of the
calibration robot allow the separation of PCV and any residual multipath effects.
Several thousand observations are taken at different robot positions. The calibration
takes only a few hours. Figure 7.4 shows the results of the absolute calibration for the
AOAD/M T choke ring antenna.

Figure 7.4 Absolute PCV of AOAD/M T antenna. The PO are nPO = 0.6, ePO = −0.5,

uPO = 91.2, and (−0.1, −0.6, 120.1) millimeters for L1 and L2, respectively. (Data from
NGS, 2002.)
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There are other approaches available for absolute antenna calibration. For exam-
ple, Schupler and Clark (2001) mount the antenna on a platform that allows it to
be rotated in elevation and azimuth and then place the whole device in an anechoic
chamber. The interior of the chamber is lined with radiofrequency absorbent material
that reduces signal reflections or “echoes” to a minimum. A signal source antenna
generates the signals. Since the source antenna can transmit at different frequencies,
these anechoic chamber techniques are suitable for studying the frequency depen-
dency of PO and PCV for L1, L2, and other frequencies.

The PO can be dealt with like an eccentricity offset at the station in order to
reference it to the surveying monument. Since the up component uPO is the largest
one it might be sufficient to correct the carrier phase by

∆ϕPO = λ−1uPO sin θ (7.7)

where λ denotes the wavelength and θ is the elevation angle.

7.2.4 Multipath

Once the satellite signals reach the earth’s surface, ideally they enter the antenna
directly. However, objects in the receiver’s vicinity may reflect some signals before
they enter the antenna, causing unwanted signatures in pseudorange and carrier phase
observations. Although the direct and reflected signals have a common emission time
at the satellite, the reflected signals are always delayed relative to the line-of-sight sig-
nals because they travel longer paths. The amplitude (voltage) of the reflected signal
is always reduced because of attenuation. The attenuation depends on the properties
of the reflector material, the incident angle of the reflection, and the polarization. In
general, reflections with very low incident angle have little attenuation. In addition,
the impact of multipath on the GPS observables depends on the sensitivity of the an-
tenna in terms of sensing signals from different directions, and the receiver’s internal
processing to mitigate multipath effects. Multipath is still one of the dominating, if
not the dominant, sources of error in GPS positioning.

Signals can be reflected at the satellite (satellite multipath) or in the surroundings
of the receiver (receiver multipath). Satellite multipath is likely to cancel in the single-
difference observables for short baselines. Reflective objects for receivers on the
ground can be the earth’s surface itself (ground and water), buildings, trees, hills,
etc. Rooftops are known to be bad multipath environments because there are often
many vents and other reflective objects within the antenna’s field of view.

The impact of multipath on the carrier phases can be demonstrated using a planar
vertical reflection surface at distance d from the antenna (Georgiadou and Kleusberg,
1988; Bishop et al., 1985). The geometry is shown in Figure 7.5. We write the direct
line-of-sight carrier phase observable for receiver k and satellite p as

SD = A cos ϕ (7.8)

In Equation (7.8) we do not use the subscript k and superscript p in order to simplify
the notation. The symbols A and ϕ denote the amplitude (signal voltage) and the
phase, respectively. The reflected signal is written as
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Figure 7.5 Geometry for reflection on a vertical planar plane.

SR = α A cos (ϕ + θ) , 0 ≤ α ≤ 1 (7.9)

The amplitude reduction factor (attenuation) is α = A′/A, where A′ is the amplitude
of the reflected signal. The total multipath phase shift is

θ = f ∆τ + φ (7.10)

where f is the frequency, ∆τ is the time delay, and φ is the fractional shift. The
multipath delay shown in Figure 7.5 is the sum of the distances AB and BC, which
equals 2d cos β. Converting this distance into cycles and then to radians gives

θ = 4πd

λ
cos β + φ (7.11)

where λ is the carrier wavelength. The composite signal at the antenna is the sum of
the direct and reflected signal,

S = SD + SR = R cos (ϕ + ψ) (7.12)

It can be verified that resultant carrier phase voltage R(A, α, θ) and the carrier phase
multipath delay ψ(α, θ) are

R(A, α, θ) = A
(
1 + 2α cos θ + α2

)1/2
(7.13)

ψ(α, θ) = tan−1

(
α sin θ

1 + α cos θ

)
(7.14)

Regarding notation, we used the symbols d
p

k,1 and d
p

k,2 in Chapter 5 to denote the total
multipath, i.e., the multipath effect of all reflections on L1 and L2, respectively. If we
consider the case of constant reflectivity, i.e., α is constant, the maximum path delay
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is found when ∂ψ/∂θ = 0. This occurs at θ(ψmax) = ± cos−1 (−α), the maximum
value being ψmax = ± sin−1 α. The maximum multipath carrier phase error is only
a function of the amplitude attenuation α in this particular case. The largest value is
±90° and occurs for α = 1. This maximum corresponds to λ/4. If α � 1 then ψ can
be approximated by α sin θ.

The multipath effect on pseudoranges depends among other things on the chipping
rate T of the codes and the receiver’s internal sampling interval S. A necessary step
for each receiver is to correlate the received signal with an internally generated code
replica. The offset in time that maximizes the correlation is a measure of the pseudo-
range. Avoiding the technical details, suffice it to say that time-shifting the internal
code replica and determining the correlation for early, prompt, and late delays even-
tually determines the offset. The early and late delays differ from the prompt delay
by −S and S, respectively. When the early minus late correlation are zero, i.e., they
have the same amplitude, the prompt delay is used as a measure of the pseudorange.
Consult Kaplan (1996, p. 148) for additional details on the topic of code tracking
loops and correlation. For a single multipath signal, the correlation function consists
of the sum of two triangles, one for the direct signal and one for the multipath signal.
This is conceptually demonstrated in Figure 7.6. The solid thin line and the dashed
line represent the correlation functions of the direct and multipath signals, respec-
tively. The thick solid line indicates the combined correlation function, i.e., the sum
of the thin line and dashed line. The left figure refers to destructive reflection when the
reflected signal arrives out of phase with respect to the direct signal. The right figure
refers to constructive reflection when the reflected and direct signals are in phase. Let
the combined signal be sampled at the early and late delays. The figure shows that the
prompt delay would coincide with the maximum correlation for the direct signal and
indicate the correct pseudorange but will be in error by the multipath-induced range
error q for the combined signal. The resulting pseudorange measurement errors are
negative for destructive reflection and positive for constructive reflection even though
the reflected signal always arrives later than the direct one.

The pseudorange multipath error further depends on whether the sampling interval
is greater or smaller than half the chipping period. Byun et al. (2002) provide the
following expressions. If S > T/2 (wide sampling) then

q q p

-T T -T T0 0

p

a
m

p
lit

u
d
e

constructivedestructive

Figure 7.6 Correlation function in the presence of multipath. p denotes the time delay
of the multipath signal and q is the multipath induced pseudorange error.
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∆τP =




∆τ α cos
(
f ∆τ + φ

)

1 + α cos
(
f ∆τ + φ

) if ∆τ < T − S + ∆τP

(
T − S + ∆τ

)
α cos

(
f ∆τ + φ

)

2 + α cos
(
f ∆τ + φ

) if T − S + ∆τP < ∆τ < S + ∆τP

(
T + S − ∆τ

)
α cos

(
f ∆τ + φ

)

2 − α cos
(
f ∆τ + φ

) if S + ∆τP < ∆τ < T + S + ∆τP

0 if ∆τ > T + S + ∆τP (7.15)

and if S < T/2 (narrow sampling) then

∆τP =




∆τ α cos
(
f ∆τ + φ

)

1 + α cos
(
f ∆τ + φ

) if ∆τ < S + ∆τP

S α cos
(
f ∆τ + φ

)
if S + ∆τP < ∆τ < T − S + ∆τP

(
T + S − ∆τ

)
α cos

(
f ∆τ + φ

)

2 − α cos
(
f ∆τ + φ

) if T − S + ∆τP < ∆τ < T + S

0 if ∆τ > T + S (7.16)

The pseudorange multipath error is dP = c ∆τP , and ∆τ denotes the time delay of
the multipath signal. The expressions are valid for the P-codes and the C/A-code as
long as the appropriate chipping period T is used.

Figure 7.7 shows an example of the envelope for the P1-code multipath range error
∆τP 1 oscillations versus time delay ∆τ for the wide-sampling case S > T/2. As the
phase varies by π the multipath error changes from upper to lower bounds and vice
versa. The distinct regions of Equation (7.15) are readily visible in the figure. Figure
7.8 shows an example of the C/A-code multipath range error for the narrow-sampling
case S < T/2. The main difference between the wide and narrow sampling interval is
that the latter has a constant peak at region 2. In fact, shortening the sampling interval
S has long been recognized as a means to reduce the pseudorange multipath error.

Figure 7.7 P1-code pseudorange multipath delay envelope in case of wide sampling.
(T = 98 ns, S = 60 ns, α1 = 0.1, φ1 = 0)
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Figure 7.8 C/A-code pseudorange multipath delay envelope in case of narrow sampling.
(T = 980 ns, S = 48 ns; α1 = 0.1, φ1 = 0)

See second component of Equation (7.16), where S appears as a factor. Comparing
(7.15) and (7.16), we find that in region 1 the slopes of the envelopes are the same for
wide and narrow correlating. Narrow correlation causes the bounds in region 2 to be
smaller. Region 4, for which the multipath error is zero, is reached earlier the narrower
the sampling (given the same chipping rate). The lower envelope in these figures
corresponds to destructive reflection while the upper envelope refers to constructive
reflection.

The multipath frequency fψ depends on the variation of the phase delay θ, as can
be seen from (7.9), (7.14), (7.15), or (7.16). Differentiating (7.11) gives the expression
for the multipath frequency,

fψ = 1

2π

d θ

dt
= 2d

λ
sin β

∣∣β̇∣∣ (7.17)

The multipath frequency is a function of the elevation angle and is proportional to
the distance d and the carrier frequency. For example, if we take β̇ = 0.07 mrad/sec
(= one-half of the satellite’s mean motion) and β = 45°, then the multipath period
is about 5 minutes if d = 10 m and about 50 minutes if d = 1 m. The variation in
satellite elevation angle causes the multipath frequency to become a function of time.
According to (7.17), the ratio of the multipath frequencies for L1 and L2 equals that
of the carrier frequencies, fψ,1/fψ,2 = f1/f2.

As an example of a carrier phase multipath, consider a single multipath signal
and the ionospheric phase observable (6.98). The effect of the multipath for this
function is

ϕMP ≡ ψ1 − f1

f2
ψ2

= tan−1

(
α sin θ1

1 + α cos θ1

)
− f1

f2
tan−1

(
α sin θ2

1 + α cos θ2

) (7.18)

Figure 7.9 shows that the multipath ϕMP impacts the ionospheric observable in a com-
plicated manner. The amplitude of the cyclic phase variations is nearly proportional to
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Figure 7.9 Example of multipath on the ionospheric carrier phase observable from a
vertical planar surface. (d = 10 m, φ1 = φ2 = 0)

α. When analyzing the ionospheric observable in order to map the temporal variation
of the ionospheric delay, the multipath signature (7.18) cannot be ignored. In fact, the
multipath variation of (7.14) might occasionally impact our ability to fix the integer
ambiguities, even for short baselines.

Figure 7.10 shows the effects of multipath on the pseudoranges P1 and P2, and
the ionospheric free function (6.91). We are using the expression for region 1 in
(7.15) or (7.16), since we consider the case of a nearby reflection. The time delay ∆τ

is a function of the satellite elevation angle and can be computed from (7.11). The
figures show the multipath for a satellite that rises (β = 0°) until it passes overhead

Figure 7.10 Pseudorange multipath from a single reflection on a vertical planar surface.
(α = 0.1, d = 5 λ 1, φ1 = φ2 = 0)
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(β = 90°). The multipath is largest for a satellite in the horizon (reflection on vertical
surface). In the case of reflection from a horizontal surface, the multipath has a reverse
dependency, i.e., it is largest for satellites at the zenith, as can readily be verified.

Fenton et al. (1991) discuss one of the early implementations of narrow correla-
tion in C/A-code receivers. Narrow correlator technology and on-receiver processing
methods to reduce carrier phase and pseudorange multipath effects are extensively
documented in the literature, e.g., van Dierendonck et al. (1992), Meehan and Young
(1992), Veitsel et al. (1998), and Zhdanov et al. (2001). If the phase shift θ changes
rapidly, one might even attempt to average the pseudorange measurements. In addi-
tion to sophisticated on-receiver signal processing, there are several external ways to
mitigate multipath.

• Since multipath can also arrive from below the antenna (due to edge diffraction),
a ground plate is helpful. The ground plate is usually a metallic surface of
circular or rectangular form.

• Partial multipath rejection can be achieved by shaping the gain pattern of the
antenna. Since a lot of multipath arrives from reflections near the horizon, mul-
tipath may be sharply reduced by using antennas having low gain in these direc-
tions.

• Improved multipath resistance is achieved with choke rings. These are metallic
circular grooves with quarter-wavelength depth.

• Highly reflective surfaces change the polarization from right-hand circular (sig-
nal received directly from the GPS satellite) to left-hand circular. GPS antennas
that are designed to receive right-hand polarized signals will attenuate signals
of opposite polarization.

• Arrays of antennas can also be used to mitigate multipath. Due to a different mul-
tipath geometry, each antenna sees the multipath effect differently. Combined
processing of signals from all antennas allows multipath mitigation (Fu et al.,
2003). In a design proposed by Counselman the antenna elements are arranged
along the vertical rather than the horizontal platter (Counselman, 1999).

• Since the geometry between a GPS satellite and a receiver-reflector repeats ev-
ery sidereal day, multipath shows the same pattern between consecutive days.
Such repetition is useful to verify the presence of multipath by analyzing the
repeatability patterns and eventually model the multipath at the station. In rela-
tive positioning the double-difference observable is affected by multipath at both
stations.

In practical applications, of course, the various satellite signals are reflected at dif-
ferent objects. The attenuation properties of these objects generally vary; in some
cases attenuation might even depend on time. Since the angle of incident also affects
attenuation, it can readily be appreciated that the multipath is a difficult error source
to deal with. It is common practice not to observe satellites close to the horizon in
order reduce multipath.

Equations (6.100) and (6.101) are useful to gage the multipath, in particular the
multipath effect on the pseudoranges, if dual-frequency observations are available.
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7.3 GEOMETRY-FREE SOLUTIONS

The undifferenced pseudorange (5.7) or (5.72) and carrier phase (5.10) equations
make up the epoch solution. Using the short notation, which neglects the subscript
for station k, the superscript for satellite p, and the epoch designator t , the geometry-
free epoch solution using dual-frequency pseudoranges and carrier phases is written
in the following form:




P1 − cTGD

P2 − αf cTGD

Φ1

Φ2




=




1 1 0 0

1 αf 0 0

1 −1 λ1 0

1 −αf 0 λ2







ρ + ∆

I1,P

N1

N2




+




δ1,P

δ2,P

δ1,Φ

δ2,Φ




+




ε1,P

ε2,P

ε1,Φ

ε2,Φ




(7.19)

∆ = −c dt + c dt̄ + T (7.20)

The carrier phases have been expressed in terms of distance values Φ1 and Φ2.
In the usual notation, the interfrequency code offset at the satellite is TGD, and ρ

denotes the geometric topocentric distance from the receiver antenna to the satellite
at the instant of signal transmission. The auxiliary parameter ∆ combines the receiver
clock correction dt , satellite clock correction dt̄ , and the tropospheric delay T . Other
parameters are the ionospheric delay I1,P , and the ambiguities N1 and N2. The factor
αf is given in (5.13). The δ terms represent the hardware delays at the receiver and
satellite and the signal multipath, and the epsilons are the noise. We can write (7.19)
in matrix notation,

�b = Ax + δ + ε (7.21)

Because the A matrix contains constants that do not depend on the receiver-satellite
geometry, (7.19) is called the geometry-free model and is valid for static or moving
receivers. Whereas the parameters ρ + ∆ and I1,P change with time, the ambiguity
parameters are constant unless there are cycle slips. The parameters can be estimated
using least-squares or Kalman filtering. For example, Goad (1990) and Euler and
Goad (1991) use the geometry-free model to study optimal filtering for the combined
pseudorange and carrier phase observations for single and dual frequency. Neglecting
the δ terms and the observational noise, the epoch solution for the parameters is

x = A−1�b (7.22)

A−1 =




βf −γf 0 0

−γf γf 0 0

−λ−1
1

(
βf + γf

)
2λ−1

1 γf λ−1
1

(
βf − γf

)
0

−2λ−1
2 βf λ−1

2

(
βf + γf

)
0 λ−1

2

(
βf − γf

)




(7.23)
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The coefficients βf and γf are given by (5.14) and (5.15). The geometry of the
epoch solution is implicit in the covariance matrix. For computing the epoch co-
variance matrix, we assume that the observations �b are not correlated. We further
assume that the standard deviation of the carrier phases σ1,ϕ and σ2,ϕ are related as,
σ2,Φ = σ1,Φ

√
αf , and that the standard deviations of the pseudorange and the linear

carrier phases follow k = σP /σΦ for both frequencies. With these assumptions the
covariance matrix Σ�b

consists of diagonal elements k2, αf k2, 1, αf , and a scalar σ2
Φ.

Applying the law of variance-covariance propagation (4.34), the covariance matrix
of the parameters becomes

Σx = A−1 Σ�b

(
A−1
)T

(7.24)

If we set k equal to 154, which corresponds to the ratio of the L1 frequency and the
P-code chipping rate, and use σ1,Φ = 0.002 m, then the standard deviations and the
correlation matrix are

(
σρ+∆, σI , σ1,N , σ2,N

) = (0.99 m, 0.77 m, 9.22 cycL1, 9.22 cycL2) (7.25)

Cx =




1 −0.9697 −0.9942 −0.9904

1 0.9904 0.9942

1 0.9995

1




(7.26)

The standard deviations for the integer ambiguities have been converted to cycles
in (7.25). Striking features of the epoch solution are the equality of the standard
deviation for both ambiguities and the high correlation between all parameters. Of
particular interest is the shape and orientation of the ellipse of standard deviation for
the ambiguities. The general expressions (4.304) to (4.308) can be applied to the third
and fourth parameters. The ellipse can be drawn with respect to the perpendicular N1
and N2 axes, which carry the units L1 cycles and L2 cycles. The computations show
that the ellipse almost degenerates into a straight line with an azimuth of 45°, the
semiminor and semimajor axes being 0.20 and 13.04, respectively.

A standard procedure for breaking high correlation is reparameterization by means
of an appropriate transformation. For example, consider the transformation

z = Zx (7.27)

Z =




1 0 0 0

0 1 0 0

0 0 1 −1

0 0 1 0




(7.28)
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which yields the following parameters and covariance matrix

z = [ ρ + ∆ I1,P Nw ≡ N1 − N2 N1 ]T (7.29)

Σz = Z Σx ZT (7.30)

Using again the numerical values k = 154 and σ1,Φ = 0.002 m, the standard devia-
tions and the correlation matrix become

(
σρ+∆, σI , σw, σ1,N

) = (0.99 m, 0.77 m, 0.28 cycLw, 9.22 cycL1

)
(7.31)

Cz =




1 −0.9697 −0.1230 −0.9942

1 0.1230 0.9904

1 0.0154

sym 1




(7.32)

The third parameter in (7.29) is the wide-lane ambiguity. We observed that there is
little correlation between the wide-lane and L1 ambiguities. Furthermore, the corre-
lations between the wide-lane ambiguity and both the topocentric distance and the
ionospheric parameter have been reduced dramatically. Considering the small stan-
dard deviation for the wide-lane ambiguity in (7.31) and its low correlations with
the other parameters, it should be possible to estimate the wide-lane ambiguity from
epoch solutions. The semiaxes of the ellipse of standard deviation for the ambiguities
are 9.22 and 0.28, respectively, and an orientation of 89.97° for the semimajor axis,
i.e., the ellipse is elongated along the N1 direction. The correlation matrix (7.32) still
shows high correlations between N1, the ionosphere, and the topocentric distance.
If we consider the square root of the determinant of the covariance matrix to be a
single number that measures correlation, then (|Cz|/|Cx |)1/2 ≈ 33 implies a major
decorrelation of the epoch parameters.

The solution (7.29) is also obtained if we express the carrier phases (7.19) in cycles
and then multiply with Z from the left. In fact, the following popular expressions can
be readily verified,

Nw = ϕw − f1P1 + f2P2

(f1 + f2) λw

+ f (δ1,P , δ2,P , δ1,ϕ, δ2,ϕ)

≈ ϕw − 0.65 P1 − 0.51 P2 + · · ·
(7.33)

ϕw = ϕ1 − ϕ2 (7.34)

λw = c

fw

= c

f1 − f2
≈ 0.86 m (7.35)
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Equation (7.33) is frequently used to screen the observation for cycle slips. Alter-
natively, one might attempt to determine the wide-lane integer from a short set of
observations, conceivably just one epoch, and then constrain that integer to resolve
the integer for N1 rapidly. As more frequencies are added to the satellites one will be
able to carry out additional widelaning (Hatch et al., 2000).

Figure 7.11 shows the computed wide-lane ambiguity (7.33) for three consecutive
days. The elevation angle of satellite PRN 07 changes from 50° to 5° during the
1.5 hours of observations. The plotted lines are shifted by integers for purpose of
graphical separation. It can be readily seen that the wide-lane integer ambiguities can
be estimated from these data. The origins of the plots are shifted 4 minutes each day in
order to emphasize similarity in multipath disturbances. The same receiver-satellite
geometry repeats about 4 minutes earlier each succeeding day.

The geometry-free epoch solution also applies to relative positioning. Using sub-
scripts k and m, and the superscripts p and q to indicate differencing, we obtain from
(7.19)




P
p

km,1

P
p

km,2

Φ
p

km,1

Φ
p

km,2




=




1 1 0 0

1 αf 0 0

1 −1 λ1 0

1 −αf 0 λ2







ρ
p

km − dtkm + T
p

km

I
p

km,1,P

N
p

km,1

N
p

km,2




+




δ
p

km,1,P

δ
p

km,2,P

δ
p

km,1,Φ

δ
p

km,2,Φ




+




ε
p

km,1,P

ε
p

km,2,P

ε
p

km,1,Φ

ε
p

km,2,Φ




(7.36)

Figure 7.11 Variation in wide-lane ambiguity.
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


P
pq

km,1

P
pq

km,2

Φ
pq

km,1

Φ
pq

km,2




=




1 1 0 0

1 αf 0 0

1 −1 λ1 0

1 −αf 0 λ2







ρ
pq

km + T
pq

km

I
pq

km,1,P

N
pq

km,1

N
pq

km,2




+




d
pq

km,1,P

d
pq

km,2,P

d
pq

km,1,Φ

d
pq

km,2,Φ




+




ε
pq

km,1,P

ε
pq

km,2,P

ε
pq

km,1,Φ

ε
pq

km,2,Φ




(7.37)

In single differencing the satellite clock error and the interfrequency bias TGD cancel.
In double differencing the receiver clock error cancels. The fast changing terms ρ

p

km

and ρ
pq

km in the expressions above can be eliminated by subtracting the respective first
equation. For example, for the case of single differencing we get



P
p

km,2 − P
p

km,1

Φ
p

km,1 − P
p

km,1

Φ
p

km,2 − P
p

km,1


 =




αf − 1 0 0

−2 λ1 0

−αf − 1 0 λ2







I
p

km,1,P

N
p

km,1

N
p

km,2


+




δ
p

km,2,P − δ
p

km,1,P

δ
p

km,1,Φ − δ
p

km,1,P

δ
p

km,2,Φ − δ
p

km,1,P




+




ε
p

km,2,P − ε
p

km,1,P

ε
p

km,1,Φ − ε
p

km,1,P

ε
p

km,2,Φ − ε
p

km,1,P


 (7.38)

This expression is especially useful for discovering and repairing cycle slips in single-
difference ambiguities. The expression can be further simplified by recognizing that
I

p

km,1,P ≈ 0 for short baselines. For longer baselines, the ionospheric term can
be modeled by a first-order polynomial in time (ionospheric bias and drift). The
ambiguities can readily be transformed to N

p

km,w and N
p

km,1 or N
pq

km,w and N
pq

km,1,
respectively, by using the Z matrix and thus providing the possibility of fixing the
wide-lane ambiguities early. Expressing the carrier phases in cycles, the following
expression can be readily verified from (7.37),

N
pq

km,1 = ϕ
pq

km,1 + f1

f1 − f2

[
N

pq

km,w − ϕ
pq

km,w

]+ f1 + f2

f2
I

pq

km,1,ϕ + f
(
d

pq

km,1,ϕ, d
pq

km,2,ϕ

)

≈ ϕ
pq

km,1 + 4.5
[
N

pq

km,w − ϕ
pq

km,w

]+ · · · (7.39)

This is the extra-wide-lane equation. If the wide-lane ambiguities are known from
prior analysis, the double-differenced L1 ambiguity can be computed from the carrier
phases only. Fortunately, Expression (7.39) does not depend on the large pseudorange
multipath terms, but on the smaller carrier phase multipath terms. If the wide-lane
ambiguity happens to be incorrectly identified by one, a situation that might occur for
satellites at low elevation angles, the computed L1 ambiguity changes by 4.5 cycles.
The first decimal of the computed L1 ambiguity would be close to 5. Because of prior
knowledge that the L1 ambiguity is an integer, we can use that fact to decide between
two candidate wide-lane ambiguities. This procedure is known as extra widelaning
(Wübbena, 1990).
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Figure 7.12 Variation in extra widelaning.

Figure 7.12 shows the variation of the computed L1 double-difference ambigu-
ity using (7.39). For this 1-hour stretch of data the elevation angles of both satellites
were above 45°. The integer double-difference wide-lane ambiguities were estimated
first using (7.33) and then substituted in (7.39). The variation around the integer
−42 is due to double differenced multipath. The ionospheric effects cancel because
the baseline is so short. Studying figures like Figures 7.11 and 7.12 it can be read-
ily appreciated that, under favorable circumstances, the L1 double-difference inte-
ger ambiguities can be determined from just one epoch of observations using the
geometry-free solution.

We substitute the geometry-free epoch equation (7.19) into the ionospheric-free
equations (6.91) and (6.94) and ionospheric equations (6.97) and (6.98). For single
and double differences we obtain




P
p

km,IF

P
p

km,I

Φ
p

km,IF

Φ
p

km,I




≡




βf P
p

km,1 − γf P
p

km,2

P
p

km,1 − P
p

km,2

βf Φ
p

km,1 − γf Φ
p

km,2

Φ
p

km,1 − Φ
p

km,2




=




1 0 0 0

0 1 − αf 0 0

1 0 βf λ1 −γf λ2

0 1 − αf λ1 −λ2







ρ
p

km − dtkm + T
p

km

I
p

km,1,P

N
p

km,1

N
p

km,2




+




δ
p

km,IF,P

δ
p

km,I,P

δ
p

km,IF,Φ

δ
p

km,I,Φ




(7.40)
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(7.41)

The receiver and satellite hardware delay and signal multipath terms have been suit-
ably transformed (note the subscripts of the δ terms).

7.4 POINT POSITIONING

According to the first equation in the geometry-free model (7.19), we estimate the
sum ρ + ∆ every epoch, using sequential least-squares or Kalman filtering. The
topocentric distance ρ, of course, is a function of the receiver antenna position xk

and the satellite position xp. By using xk and xp explicitly in (7.19) we introduce the
dependency on the receiver-satellite geometry. We further replace the auxiliary quan-
tity ∆ with the original definition (7.20), thus introducing the receiver and satellite
clock errors explicitly.

Point positioning refers to the estimation of receiver antenna coordinates xk and the
receiver clock error dtk using pseudorange observables. The role of carrier phases is
limited to smoothing the pseudoranges, if used at all. More specifically, the term point
positioning as used here implies several simplifying assumptions. The satellite posi-
tions xp at transmission times are assumed known and available from the broadcast
ephemeris. While we estimate the receiver clock error at every epoch, we neglect the
residual satellite clock errors dt̄p. Of course, the satellite clock broadcast correction
must be applied following (5.38). The satellite clocks are constantly monitored by
the control center, which models the clock offsets by polynomials in time. The latter
are part of the navigation message. The ionospheric and tropospheric delays are also
computed from models, as explained in Chapter 6. Hardware delays and multipath
are neglected.

The four unknowns xk and dtk can be computed using four pseudoranges measured
simultaneously to four satellites. Using the simplifying assumptions made above we
can write four equations of the type

P
p

k − cT
p

GD = ∥∥xp − xk

∥∥− c dtk = ρ
p

k − c dtk, (7.42)

one for each satellite (superscript p varies). The effect of the earth’s rotation during
the signal travel time must be incorporated in (7.42) following Section 5.3.2. Since the
receiver clock error dtk is solved together with the position of the receiver’s antenna
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each epoch, a relatively inexpensive quartz crystal clock in the receiver is sufficient
rather than an expensive atomic clock. The basic requirement, however, is that there
are four satellites visible at a given epoch. This visibility requirement is a key factor
in the design of the GPS-type of constellation that assures global coverage is available
at any time.

Modifications of the basic point positioning solution can be readily envisioned.
For example, for applications on the ocean it might be possible to determine the
ellipsoidal height accurately from the height above water and the geoid undulation.
Equations (7.42) can be expressed in terms of ellipsoidal latitude, longitude, and
height using transformations (2.66) through (2.68) and the ellipsoidal height can be
considered a known quantity. Therefore, at least in principle, pseudoranges of three
satellites are sufficient to determine positions at sea. Other variations are possible.

Point positioning accuracy depends on the accuracy of the navigation message
and the satellite constellation used. In practice, one prefers to observe not just four
satellites but all satellites in view in order to achieve redundancy and better geometry.
See the discussion on dilution of precision (DOP) below. The achievable accuracy is
therefore subject to change as receiver technology keeps improving and the broadcast
ephemeris gets more accurate. The modernization of GPS will, of course, have a
major positive impact. Dual-frequency users can use the ionospheric-free function in
Equation (7.42) and, therefore, eliminate the effect of the ionosphere. While single-
frequency users can use the C/A-code pseudoranges, they unfortunately depend on
the ionospheric model to reduce the impact of the ionosphere on the solutions.

7.4.1 Linearized Solution and DOPs

It has become common practice to use DOP factors to describe the effect of receiver-
satellite geometry on the accuracy of point positioning. The DOP factors are simple
functions of the diagonal elements of the covariance matrix of the adjusted parame-
ters, derived from the linearized model. In general,

σ = σ0 DOP (7.43)

where σ0 denotes the standard deviation of the observed pseudoranges, and σ is a
one-number representation of the standard deviation of position and/or time. When
computing DOPs, the pseudorange observations are considered uncorrelated and of
the same accuracy; i.e., the weight matrix is P = I. If the ordered set of parameters is

xT = [ dxk dyk dzk dtk ] (7.44)

then the design matrix follows from (7.42) after linearization around the nominal
station location xk,0,

A =




e1
k c

e2
k c

e3
k c
...

...




(7.45)
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The A matrix has as many rows as there are satellites observed, which typically
includes all satellites in view. The superscript i is a sequential identification for the
satellite and not necessarily equal to the PRN number. The symbol ei

k denotes the
1 × 3 row vector defined in (5.48). It contains the direction cosines for the vector
from the nominal station location to satellite. The clock error parameter is often set
to ξk = c dtk , making the elements in the second column of (7.45) unity. The cofactor
matrix for the adjusted receiver position and receiver clock is

Qx = (ATA
)−1 =




qx qxy qxz qxt

qy qyz qyt

qz qzt

sym qt




(7.46)

Since it is more convenient to interpret results in the local geodetic coordinate system
(w) (consisting of the coordinates northing n, easting e, and up u), we transform the
cofactor matrix (7.46) using (2.112) and (2.113) of Section 2.3.5.3. The result is

Qw =



qn qne qnu

qe qeu

sym qu


 (7.47)

The DOP factors are functions of the diagonal elements of (7.46) or (7.47). Table
7.2 shows the various dilution factors: vertical dilution of precision (VDOP) for the
height, horizontal dilution of precision (HDOP) for horizontal positions, positional
dilution of precision (PDOP), time dilution of precision (TDOP) and geometric dilu-
tion of precision (GDOP). GDOP is a composite measure reflecting the geometry of
the position and time estimates.

The DOPs can be computed in advance, given the approximate receiver location
and a predicted satellite ephemeris. The DOPs are useful for finding the best subset
of satellites if a receiver has only four or five channels. Even though most receivers
today observe all satellites in view, the DOPs are still useful to identify a temporal
weakness in geometry in kinematic applications, in particular in the presence of signal
obstruction.

TABLE 7.2 DOP Expressions

VDOP = √
qu

HDOP = √
qn + qe

PDOP = √
qn + qe + qu = √qx + qy + qz

TDOP = √
qt

GDOP =
√

qn + qe + qu + qt c2
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7.4.2 Closed Solution

The closed-form point positioning solution has recently been treated in detail in
Grafarend and Shan (2002) and Awange and Grafarend (2002a,b). The reader might
consult these publications for in-depth study of closed expressions, for derivations,
and as a good source of additional references. Bancroft’s (1985) solution is a very
early, if not the first, contribution on this topic. We merely summarize the solution
using the notation of Goad (1998). In order to achieve compact expressions we define
the following product of two arbitrary vectors g and h as

〈g, h〉 ≡ gTMh (7.48)

where M is the matrix

M =
[

3I3 O

O −1

]
(7.49)

The relevant terms of the pseudorange (7.42) are, if the interfrequency bias T i has
been applied,

P i
k + c dtk = ∥∥xi − xk

∥∥ , 1 ≤ i ≤ 4 (7.50)

Squaring both sides gives

(
xi · xi − P i2

k

)− 2
(
xi · xk + P i

k c dtk
) = −(xk · xk − c2 dt2

k

)
(7.51)

As can be verified, the four pseudorange equations can be written in the compact form

α − BM

[
xk

c dtk

]
+ Λτ = 0 (7.52)

where

Λ = 1

2

〈[
xk

c dtk

]
,

[
xk

c dtk

]〉
(7.53)

αi = 1

2

〈[
xi

P i
k

]
,

[
xi

P i
k

]〉
(7.54)

αT = [α1 α2 α3 α4
]

(7.55)

τT = [1 1 1 1] (7.56)
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B =




x1 y1 z1 −P 1
k

x2 y2 z2 −P 2
k

x3 y3 z3 −P 3
k

x4 y4 z4 −P 4
k




(7.57)

The solution of (7.52) is
[

xk

c dtk

]
= MB−1 (Λτ + α) (7.58)

We note, however, that Λ is also a function of the unknowns xk and dtk . We substitute
(7.58) into (7.53), giving

〈
B−1τ, B−1τ

〉
Λ2 + 2

{〈
B−1τ, B−1α

〉− 1
}
Λ + 〈B−1α, B−1α

〉 = 0 (7.59)

This is a quadratic equation of Λ. Substituting its roots into (7.58) gives two solutions
for the station coordinates xk . Converting the solution to geodetic coordinates and
inspecting the respective ellipsoidal heights readily identifies the valid solution.

7.5 PRECISE POINT POSITIONING

Precise point positioning (PPP) refers to centimeter position accuracy of a single
static receiver using a long observation series, and to subdecimeter accuracy of a
roving receiver using the ionospheric-free pseudorange and carrier phase functions.
The receiver clock error dtk and the zenith tropospheric delay Tk (no superscript
here) are estimated for each epoch, in addition to a constant R

p

k . When using PPP,
one must avoid any simplifying assumptions, i.e., all known corrections must be ap-
plied to the observations and the corrections must be consistent. The satellite posi-
tions xk at transmission times are typically computed from the postprocessed precise
ephemeris available from the IGS or its associated processing centers. A crucial el-
ement in achieving centimeter position accuracy with PPP is accurate satellite clock
corrections dt̄p, which are part of the precise ephemeris. The ionospheric effects are
eliminated by using the ionospheric-free functions (6.91) and (6.94). The L1 and
L2 integer ambiguities are combined into a rational constant R

p

k , which also serves
to absorb unmodeled receiver and satellite hardware delays that might change with
time, as well as the initial phase windup angles. The PPP model is

P
p

k,IF = ρ
p

k − c dtk + T
p

k,0 + dTk m(ϑp) (7.60)

ϕ
p

k,IF = f1

c
ρ

p

k − f1 dtk + R
p

k + f1

c
T

p

k,0 + f1

c sin ϑp
dTk (7.61)

where the approximate tropospheric slant total delay (STD)
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T
p

k,0 = ZHDk mh(ϑ
p) + ZWDk mwv(ϑ

p) (7.62)

can be computed from the zenith hydrostatic delay (ZHD) and the zenith wet delay
(ZWD) models (6.17) and (6.18) and meteorological data. The mapping functions mh

and mwv follow from (6.22). The estimated zenith total delay then becomes

Tk = T
p

k,0

m(ϑp)
+ dTk (7.63)

Zumberge et al. (1998a) introduced PPP at centimeter level with GPS. One of their
goals was to use postprocessed data from a permanently operating global network of
stations to compute highly accurate positions for individual receivers that are not part
of the permanent network. They also viewed PPP as a data compression strategy when
they addressed the relationship between achievable position accuracy for individual
stations as a function of the number of permanently observing network stations.
Zumberge et al. (1998b) reported centimeter-level accuracy for static receivers and
subdecimeter-level accuracy for kinematic receivers, even at a time when selective
availability was still active. They modeled the receiver clock as white noise and the
tropospheric delay as random walk in the Kalman filter.

JPL provides a free Internet processing service for PPP (Zumberge, 1998). Witcha-
yangkoon and Segantine (1999) used this service to test the technique for various data
sets varying from 1 hour to 24 hours. They reported generally 1 dm repeatability for
1-hour data sets and 1–2 cm repeatability for data sets greater than 4 hours. Of course
the performance characteristics change for the better as the PPP model improves over
time. The JPL service can be used to substitute baseline processing by submitting both
data files of the baseline stations separately. Figure 7.13 further confirms the high
accuracy of the PPP approach. In this particular test the solid earth tides corrections
were not applied. Instead, the station coordinates were estimated every epoch together
with the other parameters after the Kalman filter had initially stabilized. The top part
of the figure shows the estimated variation in coordinates, estimated every 30 seconds
using JPL’s high clock rate ephemeris, whereas the bottom part shows the solid earth
tides, computed from software downloaded from the IERS website. The outliers in
the estimated up component are caused by the addition of a rising satellite.

Absolute positioning with only single-frequency observations is expected to be
less accurate, especially in the height. An obvious reason for the degradation in
accuracy is the effect of unmodeled ionospheric delays (Lachapelle et al., 1996).
Øvstedal (2002) used the global ionospheric model provided by the IGS in connection
with single-frequency observations and demonstrated a horizontal epoch-to-epoch
accuracy of better than 1 m and a vertical accuracy of about 1 m.

As pointed out by Kouba (2001), the success of PPP depends on applying a
consistent set of corrections. For example, whereas it is clear that the satellite an-
tenna offsets must be carefully taken into consideration since there is no differenc-
ing of observations between stations that would effectively cancel the impact of
these offsets, knowledge of the satellite clock errors is extremely important for PPP
positioning to be accurate. However, the estimates of satellite antenna offsets and
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Figure 7.13 Estimated and computed solid earth tide variations. Station WES2, Mas-
sachusetts, DOY 2 (2000), epochs 17400–21600 seconds of day. (Witchayangkoon, 2000).
Units are in meters.

satellite clock are highly correlated. One must, therefore, use the same antenna offsets
that were used for generating the precise ephemeris (of which the satellite clock error
is a part). The precise ephemeris must, of course, always refer to the same reference
frame for positions derived with PPP to maintain their consistency. All errors that are
typically expected to cancel in double differencing must be applied in PPP. For ex-
ample, although the phase windup correction is little known to GPS users because its
effect cancels in double differencing over short baselines, it directly affects PPP. The
phase windup correction is especially important in kinematic applications where the
antenna can readily rotate in azimuth. The absolute location of the receiver antenna
phase center must be accurately known, in order to reduce the measurements to the
height of the monument. The magnitude of the solid earth tides far exceeds the PPP
accuracy and must therefore be incorporated. Even ocean loading is important for the
most accurate applications of PPP.

7.6 REAL-TIME PRECISE POINT POSITIONING

Point positioning as described above refers to positioning of a single receiver us-
ing single- or dual-frequency pseudoranges and the broadcast ephemeris to compute
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satellite positions and satellite clock corrections. If we use the ionospheric-free pseu-
dorange function, the postprocessed precise ephemeris, and precise satellite clock
corrections, we call it precise point positioning. The latter term also applies when us-
ing the IGS rapid ephemeris that is currently available with a delay of several hours,
or the predicted (ultrarapid) IGS ephemeris instead of the postprocessed ephemeris.
Fortunately, the satellite clocks can now be more accurately predicted since selective
availability has been turned off. If the satellite ephemeris and clocks are estimated
from observations and are available in near real time, say with a latency of merely
seconds, one speaks of real-time precise point positioning (real-time PPP). The latter
approach requires (a) real-time orbit determination processing capability, a global
network of tracking stations that forward dual-frequency observations to a process-
ing center in real time and (b) communicating the results of the orbit determination,
usually in the form of corrections, to the user in the field in real time.

Muellerschoen et al. (2000) describe the results of an Internet-based dual-frequency
real-time precise point positioning system developed at JPL. The website IGDG
(2002) contains several publications on the subject and offers a live demonstration of
position determination at the JPL facility using Internet-based global differential GPS
(IGDG), as the technique is called at JPL. Aspects of real-time orbital determination
are addressed in Muellerschoen et al. (2001). JPL uses, at least originally when
developing the technique, about fifty sites of NASA’s global GPS network that is
operated in batch mode over the Internet. Data forwarded by the stations include
C/A-code and P1 and P2 code pseudoranges, the carrier phase observations, signal-
to-noise ratios, and the receiver’s point positioning solution. JPL’s modified GIPSY
program, called real-time GIPSY (RTG), is used to estimate orbits, polar motion,
UT1-UTC, and tropospheric corrections at the known network reference stations once
per minute. The satellite clock corrections are computed once per second. Figure 7.14

Figure 7.14 Radial, cross-track, and along-track RMS of difference between real-time
orbits and IGS rapid solution for October 9, 2002. The computation interval is 15 minutes.
(Data from Bar-Sever, JPL.)
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Figure 7.15 Zenith tropospheric delay difference for real-time estimates and computed
values using the IGS rapid orbit and satellite clock solution. Data were recorded at the
Madrid and Santiago reference stations on October 9, 2002. The estimation interval is 5
minutes. (Data from Bar-Sever, JPL.)

shows a comparison for one day between the real-time orbital solution and the IGS
rapid ephemeris. Figure 7.15 is an example of real-time tropospheric delay estimation
at two geographically widely separated stations; again, the comparison is with respect
to the IGS rapid solution.

A global differential correction is computed for each satellite. The corrections
represent the difference between the estimated precise real-time and broadcast ephem-
erides, and the estimated precise and broadcast satellite clock corrections. The correc-
tions, parameterized in terms of Cartesian satellite coordinate corrections and satellite
clock corrections, are available over the open Internet via a TCP server running at JPL.
Hatch et al. (2002) describe a system, called StarFire, which transmits the correction
via Inmarsat L-band communication frequency (1525–1565 MHz). It uses an L-band
satellite communication receiver with a single, multifunction antenna designed to
receive both GPS frequencies and the Inmarsat signals. Users apply the global dif-
ferential corrections and use their dual-frequency pseudorange and ionospheric-free
carrier phase observations to estimate the position and receiver clock per epoch and,
optionally, estimate the troposphere (similar to PPP).

The global differential correction arrives at the user with some latency. It takes
about 2 seconds to accumulate the global data set over the Internet and 0.5 second
to process the clock solution. For Inmarsat one must add 1.5 seconds for uplink and
downlink time. For real time, the correction must therefore be extrapolated over 4–5
seconds, which causes no substantial loss of accuracy, primarily because the satellite
clocks are stable (when selective availability is off).

Both PPP and real-time PPP are uniformly accurate over the whole globe since
both rely on the dual-frequency ionospheric-free function, which is not affected by
the spatial and temporal variations of the ionosphere. The commercial version of real-
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Figure 7.16 Example of real-time precise point positioning from Starfire at Redondo
and Melbourne on September 18, 2002. The horizontal position error generally stays within
1 dm.

time PPP described in Hatch et al. (2002) applies the model tropospheric refraction,
thus alleviating the need to estimate the troposphere by the user (which is adequate
since StarFire does not offer centimeter-level accuracy but global decimeter accuracy
in the horizontal, and perhaps slightly worse accuracy in the vertical). Figure 7.16
demonstrates the performance of StarFire.

7.7 RELATIVE POSITIONING

In relative positioning, the vector between two stations is determined when two re-
ceivers observe simultaneously. If more than two receivers observe at the same time,
we speak of a session network consisting of all the co-observing stations. Session
solutions result in a set of correlated vectors between the stations. In relative posi-
tioning, one tends to use double- or triple-difference observations, although single-
difference observations could be used as well. Typically, one station is held fixed, i.e.,
coordinates xk are known, and the coordinates xm of the other station are estimated.
We discussed the details as to the accuracy required for the location of the known
station as a function of baseline length and satellite ephemeris accuracy in Section
5.35. The formulation given in that section can be readily generalized for the case
when both receivers occupying the endpoints of a baseline are in motion.

7.7.1 Using Pseudoranges

In our customary notation the superscript p denotes the base satellite. If S satellites
are observed at the same instant, then the superscript q takes on S − 1 values, i.e.,
there are S − 1 independent double-difference equations (7.38),
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P
pq

km,1 = ∥∥xp − xk

∥∥− ∥∥xp − xm

∥∥− {∥∥xq − xk

∥∥− ∥∥xq − xm

∥∥}+ d
pq

km,1,P + ε
pq

km,1,P

= ρ
pq

km + d
pq

km,1,P + ε
pq

km,1,P (7.64)

available at each epoch. The hardware delay terms cancel in (7.64) and the unknown
pseudorange multipath d

pq

km , while potentially large, is typically neglected. If the
system (7.64) is solved by linearization and subsequent least-squares, then the row
of the design matrix contains, respectively,

∂P
pq

km

∂xm

= ep
m − eq

m (7.65)

for each double difference.
In relative positioning with pseudoranges, the processing is usually carried out

baseline by baseline and mathematical correlation between the double-differenced
pseudorange observations are often neglected. These correlations are typically not
neglected for carrier phase observations, which are the more accurate type of obser-
vations, and will be discussed below.

A closed solution is readily available for relative positioning with pseudoranges.
Consider the three double differences that can be formed from the observations of
four satellites,

P
pi

km = ∥∥xp − xk

∥∥− ∥∥xp − xm

∥∥− {∥∥xi − xk

∥∥− ∥∥xi − xm

∥∥} , 1 ≤ i ≤ 3 (7.66)

Let p denote the base satellite, in this case p = 4. Since the satellite coordinates and
the station coordinates xk are known, we can compute the auxiliary quantity Q,

Q
pi

km = P
pi

km − ∥∥xp − xk

∥∥+ ∥∥xi − xk

∥∥ (7.67)

Comparing (7.66) and (7.67), we find that Q relates to the unknown xm as

Q
pi

km = − ∥∥xp − xm

∥∥+ ∥∥xi − xm

∥∥ (7.68)

Following Chaffee and Abel (1994), we translate the origin of the coordinate system
to satellite p

x̃i = xi − xp (7.69)

Noting that in the translated coordinate system x̃p = 0, we obtain from (7.68)

Q
pi

km + ‖x̃m‖ = ∥∥x̃i − x̃m

∥∥ (7.70)

Equations (7.70) and (7.50) are of the same form. Once x̃m is computed the coordi-
nates can be translated to xm using (7.69). Squaring (7.70) gives
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(
x̃i · x̃i − Q

pi2
km

)
− 2
(

x̃i · x̃m + ‖x̃m‖Qpi

km

)
= 0 (7.71)

This equation can be verified using

Λ2 = x̃m · x̃m (7.72)

αi = 1

2

〈[
x̃i

Q
pi

km

]
,

[
x̃i

Q
pi

km

]〉
(7.73)

B =



x̃1 ỹ1 z̃1

x̃2 ỹ2 z̃2

x̃3 ỹ3 z̃3


 (7.74)

τT =
[
−Q

p1
km −Q

p2
km −Q

p3
km

]
(7.75)

x̃m = B−1 (Λτ + α) (7.76)

Substituting (7.76) in (7.72) gives the quadratic equation for Λ,
( 〈

B−1τ, B−1τ
〉− 1

)
Λ2 + 2

〈
B−1τ, B−1α

〉
Λ + 〈B−1α, B−1α

〉 = 0 (7.77)

The two solutions for Λ are substituted in (7.76) to obtain two positions for station
m. The ellipsoidal height can be used to decide which of the positions for m is the
correct one.

The closed formulas can be generalized for more than four satellites. In this case
the number of rows in B equals the number of satellites or the number of double
differences. We multiply (7.52) from the left with BT and set ᾱ = BTα, B̄ = BTB,
and τ̄ = BTτ. Equations (7.59) or (7.77) can then be rewrite in the bar-notation and
solved for Λ.

7.7.2 Double-Difference Float and Triple-Difference Solutions

R receivers observing S satellites at T epochs generate at most RST carrier phase
observations. In many cases, the data set might not be complete due to cycle slips and
signal blockage. To see the symmetry of the expressions, we order the undifferenced
phase observations ψ first by epoch, then by receiver, and then by satellite. For epoch
i we have

ψi = [ ϕ1
1(i) · · · ϕS

1 (i) · · · ϕ1
R(i) · · · ϕS

R(i) ]T (7.78)

ψ =




ψ1
...

ψT


 (7.79)
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Regarding the stochastic model, we make the simplifying assumption that all carrier
phase observations are uncorrelated and are of the same accuracy. Thus the complete
RST × RST cofactor matrix of the undifferenced phase observations is

Qϕ = σ2
ϕI (7.80)

with σϕ denoting the standard deviation of the phase measurement expressed in
cycles.

The next task is to find the complete set of independent double-difference obser-
vations. We designate one station as the base station and one satellite as the base
satellite. Without loss of generality, let station 1 be the base station, and satellite 1 be
the base satellite. The session network of R stations is now thought of as consisting
of R − 1 baselines emanating from the base station. There are S − 1 independent
double differences for each baseline. Thus, a total of (R − 1)(S − 1) independent
double differences can be computed for the session network. On the basis of an or-
dered observation vector like (7.78), and the base station and base satellite ordering
scheme, an independent set of double differences for epoch i is

∆i = [ϕ12
12(i) · · · ϕ1S

12 (i) · · · ϕ12
1R(i) · · · ϕ1S

1R(i)
]T

(7.81)

∆ =



∆1
...

∆T


 (7.82)

The transformation from undifferenced to double-differenced observations is

∆ = D ψ (7.83)

where D is the (R − 1)(S − 1)T × RST double-difference coefficient matrix. If we

define the auxiliary matrix
�

I as

�

I =



1 −1 0 0

1 0 −1 0

1 0 0 −1


 (7.84)

then the pattern of D can be readily seen from Table 7.3. The boxes highlight the
columns and rows that refer to a specific epoch. Each additional baseline adds another
row and column to the highlighted area.

For the ordered vector of triple-difference observations, we have

∇i = [ϕ12
12(i + 1, i) · · · ϕ1S

12 (i + 1, i) · · · ϕ12
1R(i + 1, i) · · · ϕ1S

1R(i + 1, i)
]T

(7.85)
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TABLE 7.3 Specification of the D Matrix

I

I

II

I

I

II

I

I

I

I

I

I

Note: R = 3, S = 4, T = 3. The matrix Ĭ is of size 3 by 4.

∇ =




∇1
...

∇T −1


 (7.86)

∇ = T ∆ = TD ψ (7.87)

The matrix T might be called the epoch differencing coefficient matrix transforming
double differences to triple differences. The product matrix TD might be called the
triple-difference coefficient matrix that transforms single differences directly into
double differences. The pattern of the T matrix is seen in Table 7.4. Each baseline
adds one row and each epoch adds one column to this matrix.

The double- and the triple-difference observations are linear functions of the ob-
served carrier phases. By applying covariance propagation and taking the cofactor
matrix (7.80) into account, the respective cofactor matrices are

Q∆ = σ2
ϕDDT (7.88)

Q∇ = TQ∆TT (7.89)

The double-difference cofactor matrix Q∆ is block-diagonal. The diagonal submatrix
in the case of R = 3 and S = 4 is

TABLE 7.4 Specifications of the T Matrix

I I

I I

Note: R = 3, S = 4, T = 3. The matrix I is of size 6
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�

Q∆ =




4 2 2 2 1 1

2 4 2 1 2 1

2 2 4 1 1 2

2 1 1 4 2 2

1 2 1 2 4 2

1 1 2 2 2 4




(7.90)

Each epoch adds a block to the diagonal of Q∆. The triple-difference cofactor matrix
is in the case of R = 3, S = 4, and T = 3,

�

Q∇ =

 2

�

Q∆ − �

Q∆

− �

Q∆ 2
�

Q∆


 (7.91)

The triple-difference cofactor matrix is band-diagonal for T >3. The triple-difference
observations between consecutive (adjacent) epochs are correlated. The inverse of the
triple-difference cofactor matrix, which is required in the least-squares solution, is a
full matrix. Eren (1987) gives an algorithm for computing the elements of the cofactor
matrices (7.88) and (7.89), requiring no explicit matrix multiplication. The subscripts
and superscripts of the undifferenced phase observations are used to compute the
elements of the cofactor matrices directly.

The relevant terms of the double-difference carrier phase equation (5.25) are

ϕ
pq

km = f

c

{∥∥xp − xk

∥∥− ∥∥xp − xm

∥∥− ∥∥xq − xk

∥∥+ ∥∥xq − xm

∥∥}

+ N
pq

km + d
pq

km,ϕ + ε
pq

km,ϕ

= f

c
ρ

pq

km + N
pq

km + d
pq

km,ϕ + ε
pq

km,ϕ

(7.92)

The residual ionospheric and tropospheric terms are not explicitly listed in (7.92)
since they are expected to cancel over short baselines. Notice the addition of the am-
biguity term N

pq

km in (7.92) as compared to the expression (7.64) for pseudoranges.
Assuming again that the station coordinates xk are known, the parameters to be esti-
mated are xm and the double-difference ambiguities. Since the carrier phase multipath
d

pq

km,ϕ is not known it is typically treated as a model error and ignored. A row of the
design matrix consists of

∂ϕ
pq

km

∂xm

= f

c

(
ep
m − eq

m

)
(7.93)

and contains a 1 in the column of the respective double-difference ambiguity param-
eter, and zero elsewhere. The least-squares solution or Kalman filter solution that
estimates the parameters
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x =
[

xm

b

]
(7.94)

bT = [N12
12 · · · N1S

12 N12
13 · · · N1S

13

]
(7.95)

is called the double-difference float solution.
Finally, the partial derivatives of triple differences follow from those of double

differences by differencing

∂ϕ
pq

km(j, i)

∂xm

= ∂ϕ
pq

km(j)

∂xm

− ∂ϕ
pq

km(i)

∂xm

(7.96)

because the triple difference is the difference of two double differences. The design
matrix of the triple difference contains no columns for the initial ambiguities, because
these parameters cancel during the differencing.

7.7.3 Independent Baselines

The ordering scheme of base station and base satellite used for identifying the set of
independent double-difference observations is not the only scheme available. It has
been used here because of its simplicity. An example where the base station and base
satellite scheme requires a slight modification occurs when the base station does not
observe at a certain epoch due to temporary signal blockage or some other cause. If
station 1 does not observe, then the double difference ∆ϕ

pq

23 can be computed for this
particular epoch. Because of the relationship

ϕ
pq

23 = ϕ
pq

13 − ϕ
pq

12 (7.97)

the ambiguity N
pq

23 is related to the base station ambiguities as

N
pq

23 = N
pq

13 − N
pq

12 (7.98)

Introduction of N
pq

23 as an additional parameter would create a singularity of the nor-
mal matrix because of the dependency expressed in (7.98). Instead of adding this
new ambiguity, the base station ambiguities N

pq

12 and N
pq

13 are given the coefficients
1 and −1, respectively, in the design matrix. The partial derivatives with respect
to the station coordinates can be computed as required by (7.97) and entered di-
rectly into the design matrix, because the respective columns are already there. A
similar situation arises when the base satellite changes. The linear functions in this
case are:

ϕ23
km = ϕ13

km − ϕ12
km (7.99)

N23
km = N13

km − N12
km (7.100)
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The respective elements for the base satellite ambiguities in the design matrix are,
again, 1 and −1.

One must identify (R − 1)(S − 1) independent double-difference functions in
network solutions. In session networks that contain a mixture of long and short base-
lines, it might be important to take advantage of short baselines because the respective
unmodeled errors (troposphere, ionosphere, and possibly orbit) are expected to be
small. Fixing the ambiguities to integers adds strength to the solution. This additional
strength gained by fixing the ambiguities of a short baseline may also make it possible
to fix the ambiguities for the next longer baseline, even though the ambiguity search
algorithms might not have been successful without that constraint. The technique is
sometimes referred to as “boot-strapping” from shorter to longer baselines. A suitable
procedure would be to take baselines in all combinations and order them by increasing
length and identify the set of independent baselines, starting with the shortest.

There are several schemes available to identify independent baselines and observa-
tions. Hilla and Jackson (2000) report using a tree structure and edges. Here we follow
the suggestion of Goad and Mueller (1988) because it highlights yet another useful
application of the Cholesky decomposition. Assume that matrix D of (7.83) reflects
the ordering suggested here; i.e., the first rows of D refer to the double differences of
the shortest baseline, the next set of rows refer to the second shortest baseline, and so
on. We write the cofactor matrix (7.88) as

Q∆ = σ2
0 DDT = σ2

0 L LT (7.101)

where L denotes the Cholesky factor (A.94). The elements of the cofactor matrix Q∆

are

qij =
∑

k

di(k) dj (k) (7.102)

where di(k) denotes the ith row of the matrix D. It is readily verified that the ith and
j th columns of Q∆ are linearly dependent if the ith and j th rows of D are linearly
dependent. In such a case Q∆ is singular. This situation exists when two double
differences are linearly dependent. The diagonal element j of the Cholesky factor
L will be zero. Thus, one procedure for eliminating the dependent observations is
to carry out the computation of L and to discard those double differences that cause
a zero on the diagonal. The matrix Q∆ can be computed row by row starting at the
top; i.e., the double differences can be processed sequentially one at a time, from
the top to the bottom. For each double difference, the respective row of L can be
computed. In this way, the dependent observations can be immediately discovered
and removed. Only the independent observations remain. The process ends as soon
as (R − 1) × (S − 1) double differences have been found.

If all receivers observe all satellites for all epochs, this identification process needs
to be carried out only once. The matrix L, since it is now available, can be used to
decorrelate the double differences. The corresponding residuals might be difficult to
interpret, but could be transformed to the original observational space using L again.
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7.7.4 Ambiguity Function

The least-squares techniques discussed above require partial derivatives and the min-
imization of vTPv, with v and P being the double-difference residuals and double-
difference weight matrix. The derivatives and the discrepancy terms depend on the
assumed approximate coordinates of the stations. The least-squares solution is iter-
ated until the solution converges. In the case of the ambiguity function technique,
we search for station coordinates that maximize the cosine of the residuals. Consider
again the double-difference observation equation

v
pq

km = ϕ
pq

km,a − ϕ
pq

km,b = f

c
ρ

pq

km,a + N
pq

km,a − ϕ
pq

km,b (7.103)

In usual adjustment notation, the subscripts a and b denote the adjusted and the
observed values, respectively. In (7.103) we have neglected again the residual double-
difference ionospheric and tropospheric terms, as well as the signal multipath term.
The residuals in units of radians are

ψ
pq

km = 2π v
pq

km (7.104)

The key idea of the ambiguity function technique is to realize that a change in the
integer N

pq

km changes the function ψ
pq

km by a multiple 2π and that the cosine of this
function is not affected by such a change because

cos
(
ψ

pq

km,L

) = cos
(
2π v

pq

km,L

) = cos
[
2π
(
v

pq

km,L + ∆N
pq

km,L

)]
(7.105)

where ∆N
pq

km,L denotes the arbitrary integer. The subscript L, denoting the frequency
identifier, has been added for the purpose of generality.

There are 2 (R − 1) (S − 1) double differences available for dual-frequency ob-
servations . If we further assume that all observations are equally weighted, then the
sum of the squared residuals becomes, with the help of (7.104),

vTPv
(
xm, N

pq

km,L

) =
2∑

L=1

R−1∑
m=1

S−1∑
q=1

(
v

pq

km,L

)2 = 1

4π2

2∑
L=1

R−1∑
m=1

S−1∑
q=1

(
ψ

pq

km,L

)2
(7.106)

If the station coordinates xk are known, the function could be minimized by varying
the coordinates xm and the ambiguities using least-squares estimation. The ambiguity
function is defined as

AF(xm) ≡
2∑

L=1

R−1∑
m=1

S−1∑
q=1

cos
(
ψ

pq

km,L

)

=
2∑

L=1

R−1∑
m=1

S−1∑
q=1

cos

{
2π

[
fL

c
ρ

pq

km,a + N
pq

km,L,a − ϕ
pq

km,L,b

]}
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=
2∑

L=1

R−1∑
m=1

S−1∑
q=1

cos

{
2π

[
fL

c
ρ

pq

km,a − ϕ
pq

km,L,b

]}
(7.107)

The small double-difference ionospheric, tropospheric, and multipath terms are not
listed explicitly in this equation, although they are present and will affect the ambigu-
ity function technique just as they do the other solution methods. Nevertheless, if we
assume for a moment that these terms are negligible, and that the receiver positions
are perfectly known, then Equation (7.107) shows that the maximum value of the
ambiguity function is 2 (R − 1) (S − 1) because the cosine of each term could be
1. Observational noise will cause the value of the ambiguity function to be slightly
below the theoretical maximum. Since the ambiguity function does not depend on
the ambiguities, it is also independent of cycle slips. This invariant property is the
most outstanding feature of the ambiguity function and is unique among all the other
solution methods.

Because the function ψ
pq

km,L in (7.104) is small when good approximate coordi-
nates are available (typically corresponding to several hundredths of a cycle), we can
expand the cosine function in a series and neglect higher-order terms. Thus,

AF(xm) =
2∑

L=1

R−1∑
m=1

S−1∑
q=1

cos ψ
pq

km,L =
2∑

L=1

R−1∑
m=1

S−1∑
q=1

[
1 −
(
ψ

pq

km,L

)2
2!

+ · · ·
]

= 2(R − 1) (S − 1) − 1

2

2∑
L=1

R−1∑
m=1

S−1∑
q=1

(
ψ

pq

km,L

)2

= 2(R − 1) (S − 1) − 2π2vTPv

(7.108)

The last part of this equation follows from (7.106). The ambiguity function and the
least-squares solution are equivalent in the sense that the ambiguity function reaches
maximum and vTPv minimum at the point of convergence, the correct xm (Lachapelle
et al., 1992).

There are several ways to initialize an ambiguity function solution. The simplest
procedure is to use a search volume centered at some initial estimate of the station
coordinates xm. Such an estimate could be computed from point positioning with
pseudoranges; the size of the search volume would be a function of the accuracy of
the estimate. This physical search volume is subdivided into a narrow grid of points
with equal spacing. Each grid point is considered a candidate for the solution and
used to compute the ambiguity function (7.107). The double-difference ranges ρ

pq

km,a ,
which are required in (7.107), are evaluated for the trial position. As the ambiguity
function is computed by adding the individual cosine terms one double difference at a
time, early exit strategies can be implemented to reduce the computational effort. For
example, if the trial position differs significantly from the true position, the residuals
are likely to be bigger than one would expect due to measurement noise, unmodeled
ionospheric and tropospheric effects, and the multipath. An appropriate strategy could
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be to abandon the current trial position, i.e., to stop accumulating the ambiguity
function and to begin with the next trial position. This would occur as soon as one
term is below the cutoff criteria, e.g.,

cos
{
2π
[
ϕ

pq

km,L,a(t) − ϕ
pq

km,L,b(t)
]}

i
< ε (7.109)

The choice of the cutoff criteria ε is critical, not only for accelerating solutions, but
also for assuring that the correct solution is not missed. This early exit strategy is
unforgiving in the sense that once the correct (trial) position is rejected, the scanning
of the remaining trial positions cannot yield the correct solution. The proper choice
for ε is largely experimental.

A matter of concern is that the grid of trial positions is close enough to assure that
the true solution is not missed. Of course, a very narrow spacing of the trial positions
increases the computational load, despite the early exit strategy. The optimal spacing
is somewhat related to the wavelength and to the number of satellites. On the other
hand, the ambiguity function technique can be modified in several ways in order to
increase its speed, such as using the double-difference widelanes. In this case, the
trial positions can initially be widely spaced to reflect the wide-lane wavelength of
86 cm. These solutions could serve to identify a smaller physical search space, which
can then be scanned using narrowly spaced trial positions.

The ambiguity function technique offers no opportunity to take the correlation
between the double-difference observables into account. There is no direct accuracy
measure for the final position that maximizes the ambiguity function, such as standard
deviations of the coordinates. The quality of the solution is related to the spacing of
the trial positions. If the trial positions, e.g., have a 1 cm spacing and a maximum
of the ambiguity function is uniquely identified, then one could speak of centimeter
accurate positioning. In order to arrive at a conventional accuracy measure, one can
take the position that maximizes the ambiguity function and carry out a regular
double-difference least-squares solution. Because the initial positions for this least-
squares solution are already very accurate, a single iteration is sufficient and it should
be possible to fix the integer. The fixed solution would give the desired statistical
information.

The ambiguity function values of all trial positions are ordered by size and normal-
ized (dividing by the number of observations). Often, peaks of lesser value surround
the highest peak and it might be impossible to identify the maximum reliably. This
situation typically happens when the observational strength is lacking. The solution
can be improved by observing longer, selecting a better satellite configuration, using
dual-frequency observations, etc.

The strength of the ambiguity function approach lies in the fact that the correct
solution is obtained even if the data contain cycle slips. Remondi (1984) discusses the
application of the ambiguity function technique to single differences. The geodetic
use of the ambiguity function technique seems to be traceable to very long baseline
interferometry (VLBI) observation processing. Counselman and Gourevitch (1981)
present a very general ambiguity function technique and discuss in detail the patterns
to be expected for various trial solutions.
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7.7.5 Initialization on the Ground

A kinematic survey requires an initialization. This means the double-difference am-
biguities are resolved first and then held fixed while other points are being surveyed,
assuming of course that no cycle slips occurred while the rover moves or that cycle
slips are repaired appropriately. A simple way for initial determination of ambiguities
is to occupy two known stations. The procedure works best for short baselines where
the ionospheric and tropospheric disturbances are negligible. The double-difference
equation (7.92) can be readily solved for the ambiguity,

N
pq

km = ϕ
pq

km − λ−1ρ
pq

km (7.110)

when both receiver locations xk and xm are known. Usually simple rounding of the
computed values is sufficient to obtain the integers. Once the initial ambiguities are
known, the kinematic survey can begin. Let the subscripts k and m now denote the
fixed and the moving receiver, then

ρpq
m = ρ

pq

k − λ
{
ϕ

pq

km − N
pq

km

}
(7.111)

If four satellites are observed simultaneously, there are three equations like (7.111)
available to compute the coordinates of the moving receiver xm. If more than four
satellites are available, the usual least-squares approach is applicable and cycle slips
can be repaired from phase observations. In principle, if five satellites are observed
we can repair one slip per epoch, if six satellites are observed, two slips can occur at
the same time, etc.

Remondi (1985) introduced the antenna swap procedure in order to initialize
the ambiguities for kinematic surveying. Assume that four or more satellites were
observed at least for one epoch while receiver R1 and its antenna were located at
station k and receiver R2 and its antenna were at station m. This is followed by the
antenna swap, meaning that antenna R1 moves to station m and antenna R2 moves to
station k, followed by at least one epoch of observations to the same satellites. The
antennas remain connected to their respective receivers. During data processing, it
is assumed that the antennas never moved. Using an expanded form of notation to
identify the receiver and the respective observation, a double difference at epoch 1
when R1 was at k and at epoch t when R1 was at m can be written, respectively, as

ϕ
pq

km(R2 − R1, 1) = λ−1
[
ρ

p

k (R1, 1) − ρ
q

k (R1, 1) − ρp
m(R2, 1) + ρq

m(R2, 1)
]+ N

pq

km

(7.112)

ϕ
pq

km(R2 − R1, t) = λ−1
[
ρp

m(R1, t) − ρq
m(R1, t) − ρ

p

k (R2, t) + ρ
q

k (R2, t)
]+ N

pq

km

(7.113)

Notice the sequence of subscripts on the right-hand side of (7.113). Differencing both
observations gives
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ϕ
pq

km(R2 − R1, 1) − ϕ
pq

km(R2 − R1, t) = λ−1
[
ρ

pq

k (t) − ρpq
m (t) + ρ

pq

k (1) − ρpq
m (1)

]

≈ 2λ−1
[
ρ

pq

k (t) − ρpq
m (t)

]
(7.114)

Equation (7.114) can be solved for xm, given xk and observations to at least four
satellites (three double differences). Once the position of m is known, the ambiguities
can be computed from (7.110).

If the topocentric satellite distances did not change during the antenna swapping
due to motion of the satellites, the antenna swap technique would yield a baseline
vector of twice the actual length. The geometry of antenna swap can be readily
visualized in a simplified one-dimensional situation. Consider a horizontal baseline
and a satellite located somewhere along the extension of that baseline. As one antenna
moves from one end of the baseline to the other, it will register, let’s say, a positive
accumulated carrier phase change equal to the length of the baseline. As the other
antenna switches location, it will also register a carrier phase change equal to the
negative of the length of the baseline. Both receivers together will register a motion
of twice the length of the baseline.

Initialization by antenna swap on the ground is conveniently done for a very short
baseline of a couple of meters. A typical point positioning solution for xk is sufficient
for such short baselines. See Equation (5.66) regarding the relationship between
accuracy requirements for xk as a function of the length of the baseline.

The initialization by antenna swap works for single- and dual-frequency receivers.
At the time it was introduced it represented a major move forward in making kine-
matic surveying attractive in practice because at the time, surveyors operated mostly
single-frequency receivers only. With dual-frequency receivers, all-in-view satellite
observations, and optimized algorithms that include such optimal integer estimators
as LAMBDA (to be discussed below), a baseline can be readily initialized without
an antenna swap. In fact, initialization, i.e., ambiguity fixing can even occur on-the-
fly (OTF) while the roving receiver is moving. Under the right conditions, i.e., dual-
frequency observation, many satellites visible, good antenna, etc. the ambiguities can
be fixed every epoch, making not only antenna swap obsolete but also masking the
difference between static and kinematic techniques. Including GLONASS satellites
will improve the reliability of epoch-by-epoch ambiguity resolutions, as will future
Galileo satellites and the addition of the L5 frequency to GPS, which is part of the
GPS modernization.

7.7.6 GLONASS Carrier Phase Processing

The GLONASS satellites transmit at different carrier frequencies as specified by
(3.91) and (3.92). Maintaining the notation introduced in Chapter 3 we use a su-
perscript to identify the GLONASS satellite frequency, using the channel number.
Since the GPS satellites use the same frequency, there is no need for this extra su-
perscript to identify GPS satellite frequencies. In general, the superscript q and s are
used to identify any of the SGPS GPS or SGLO GLONASS satellites, respectively. The
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superscripts p and r denote the respective base satellites. Following this notation, the
single-difference observations for a GPS and a GLONASS satellite, respectively, can
then be written as

ϕ
q

km,1,GPS = f1

c
ρ

q

km + N
q

km,1,GPS + dkm,1,GPS − f1 dtkm (7.115)

ϕs
km,1,GLO = f s

1

c
ρs

km + Ns
km,1,GLO + dkm,1,GLO − f s

1 dtkm (7.116)

These equations are based on the assumption that the receiver clock errors dtkm are
the same for both types of observations, GPS and GLONASS. The receiver hardware
delays dkm,1,GPS and dkm,1,GLO, on the contrary, are dealt with separately. We have
neglected the signal multipath terms.

In case of GPS-only processing, one can combine the receiver delay dkm,1,GPS

and clock f1dtkm term into a new receiver-dependent term ξkm that is estimated
every epoch. The station coordinates, the single-difference ambiguities, and the epoch
parameter ξkm can then be estimated from observations to several satellites over a
number of epochs using either least-squares or Kalman filtering. The usual ambiguity
fixing techniques can be applied. In the case of combined processing of GPS and
GLONASS single differences one uses the satellite-dependent parameterization,

ξ
q

km,GPS = N
q

km,1,GPS + dkm,1,GPS (7.117)

ξs
km,GLO = Ns

km,1,GLO + dkm,1,GLO (7.118)

We note that ξ parameters are constants in time but are not integers because of
the receiver hardware delays. Using these auxiliary parameters the single-difference
equations become

ϕ
q

km,1,GPS = f1

c
ρ

q

km + ξ
q

km,1,GPS − f1 dtkm (7.119)

ϕs
km,1,GLO = f s

1

c
ρs

km + ξs
km,1,GLO − f s

1 dtkm (7.120)

which allow us to estimate the station coordinates, the ξ constants, and the epoch
clock parameters, again, using classical least-squares or Kalman filtering formulation.
Unfortunately, the usual ambiguity fixing techniques cannot be directly applied to this
single-difference formulation because the ξ parameters are not integers. However, one
can still fix the double-difference ambiguities.

An immediate outcome of using (7.119) and (7.120) are the estimates ξ̂
q

km,1,GPS,

ξ̂
s

km,1,GLO and their respective variance-covariance matrix, denoted by the symbol
Cξ. Using a matrix D containing elements 1, −1, and 0 at appropriate places, the
estimated double-difference ambiguities with respect to the GPS reference satellite
p and GLONASS reference satellite r are
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


N̂
pq

km,GPS
...

N̂ rs
km,1,GLO

...




= SS+SGLO−2DSS+SGLO




ξ̂
q

km,GPS
...

ξ̂
s

km,GLO
...




(7.121)

Applying the covariance propagation (4.34), the covariance matrix of double-dif-
ference ambiguity is ΣN = DCξDT. Having ΣN it is possible to determine the integer
double-difference ambiguities using a technique such as LAMBDA. The subsequent
constraint solution, in which the integer ambiguities are treated as known quantities,
yields the final estimates for the station coordinates, the SGPS parameters ξ̂

q

km,1,GPS|N
and SGLO parameters ξ̂

s

km,1,GLO|N , as well as the final time estimates dt̂km|N .
The variance-covariance propagation step can be avoided by using a parameteri-

zation in terms of ξ
p

km,1,GPS for the base GPS satellite and the GPS double differences
ξ

pq

km,1,GPS ≡ N
pq

km,1,GPS. The respective parameters for the GLONASS satellites are
ξr

km,1,GLO and ξrs
km,1,GLO = Nrs

km,1,GLO. A submatrix of the design matrix that reflects
this parameterization is shown in Table 7.5. Ambiguity fixing can then be directly ap-
plied to the variance-covariance submatrix of the estimates ξ̂

pq

km,1,GPS and ξ̂
rs

km,1,GLO.
Having the parameter estimation completed, using single-difference observations

and fixing GPS-GPS and GLO-GLO double-difference ambiguities, we can inspect
the double difference (GPS and GLO base satellites)

∆ξ̂
pr

km,1 = ξ̂
p

km,1,GPS|N − ξ̂
r

km,1,GLO|N = N
pr

km,1 + dkm,1,GLO − dkm,1,GPS

= N
pr

km,1 + DDRB
(7.122)

TABLE 7.5 Submatrix for Alternate Parameterization of ξ

1

1 1

1 1

1 1

1 1

1

1 1

1 1

1 1

Note: The table shows the case for SGPS = 5 and SGLO = 4.
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Figure 7.17 DDRB differences between GPS and GLONASS with fixed GPS-GPS and
GLO-GLO double-difference ambiguities.

Since N
pr

km,1 is an integer the fractional part of ∆ξ̂
pr

km,1 is an estimate of the double-
difference L1 receiver hardware bias, labeled DDRB, as applied to GPS and
GLONASS. Figure 7.17 shows the estimated DDRB every 10 sec for a 1-hour series
of observations of a 10 m baseline at Irwin, California, using 3S Navigation receivers
that measured L1 pseudorange and carrier phases of GPS and GLONASS satellites
on June 12, 1998. All GPS satellites were observed; there were four GLONASS satel-
lites available during that hour. Figure 7.17 seems to suggest that one could further
strengthen the combined GPS and GLONASS solution by modeling the DDRB as a
constant.

The conventional double differencing of carrier phase observations has the well-
known form

ϕ
pq

km,1,GPS = f1

c
ρ

pq

km + N
pq

km,1,GPS (7.123)

ϕrs
km,1,GLO = f r

1

c
ρr

km − f s
1

c
ρs

km + Nrs
km,1,GLO − (f r

1 − f s
1

)
dtkm (7.124)

The GLONASS double differences depend on the receiver clock error and the fre-
quencies. This dependency is demonstrated in Figure 7.18, which shows the functions

ϕ
ps

km,1,b − f s
1

c
ρs

km,0 + f1

c
ρ

p

km,0 + ∆
ps

km = − (f1 − f s
1

)
dtkm (7.125)

where the observations have been corrected for the topocentric satellite distances
which have been evaluated for the known station coordinates and translated by ∆

ps

km

for the lines to go through zero at the first epoch. The observational data are the
same as those used in Figure 7.17. The order of the lines corresponds to that of the
frequencies f s

1 . Equations (7.123) and (7.124) are suitable for estimating the double-
difference integers, as long as the receiver clock differences are estimated at the same
time.
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Figure 7.18 Impact of receiver clock errors on GLONASS double-differenced obser-
vations.

Scaling the carrier phases to distances, or to a mean GLONASS frequency, or to
f r

1 or f s
1 eliminates the receiver clock term but introduces a linear combination of

single-difference ambiguities whose coefficients are nonintegers. For example, we
can write

ϕrs
km,1,GLO = ϕr

km,1,GLO − f r
1

f s
1

ϕs
km,1,GLO = f r

1

c
ρrs

km + Nr
km,1,GLO − f r

1

f s
1

Ns
km,1,GLO

(7.126)

The term Nr
km,1,GLO is an integer. In practical applications, one can compute an

approximate value Ns
km,1,GLO,0 for the single-difference ambiguity from (7.116) using

station coordinates and receiver clock estimates computed from pseudoranges. Note
that point positioning with GPS or GLONASS is conceptually the same, i.e., the
GLONASS point positioning is not burdened with ambiguity issues or extra receiver
clock complications. The double-difference GLONASS observation (7.126) can then
be written as

ϕrs
km,1,GLO + f r

1

f s
1

Ns
km,1,GLO,0 = f r

1

c
ρrs

km + Ñ rs
km,1,GLO + ηrs (7.127)

with

ηrs = f s
1 − f r

1

f s
1

dNs
km,1,GLO ≤ 0.01dNs

km,1,GLO (7.128)

The size of the η term depends on the quality of the initial estimate Ns
km,1,GLO,0, since

dNs
km,1,GLO = Ns

km,1,GLO − Ns
km,1,GLO,0. If we neglect this term, (7.127) has the same

form as a double-difference equation for GPS. However, neglecting the η term causes
a model error that might make ambiguity fixing difficult, if not impossible, depending
on the accuracy of the approximation Ns

km,1,GLO,0. The float solution does not require
the η term.



276 PROCESSING PSEUDORANGES AND CARRIER PHASES

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[27

Lin

—
0.0
——
Nor

PgE

[27

The GLONASS broadcast ephemeris provides the satellite positions in the PZ90
coordinates system. Much effort has been made to compute accurate transformation
parameters between PZ90 and WGS84. For example, see Bazlov et al. (1999a,b) and
references therein. For small baselines any residual error due to the inaccurate trans-
formation is likely to cancel when single differencing. When performing point posi-
tioning with pseudoranges it might be important to keep in mind that the GLONASS
clocks are steered according to UTC(SU) whereas GPS time follows UTC(USNO)
within prescribed margins. In the case of the precise ephemeris computed by the IGS
the reference frame is ITRF for both systems and time refers to a common standard.

Of course, the GLONASS observables can be used to form popular functions, such
as the ionospheric, the ionospheric-free, the wide-lane ambiguity, and the multipath
functions. Using the definition of the frequencies (3.91) and (3.92), we obtain the
expressions that correspond to (5.13) to (5.16) for GLONASS

αGLO = (f p

1 /f
p

2

)2 = (9/7)2 = 81/49 (7.129)

βGLO = αGLO/(αGLO − 1) = 81/32 (7.130)

γGLO = 1/(αGLO − 1) = 49/32 (7.131)

δGLO = √
αGLO/(αGLO − 1) = 63/32 (7.132)

GLONASS has attracted a lot of attention, not only because of its potential to
increase the number of usable satellites but also because of the fact that its satellites
transmit at different carrier frequencies. The following is a sample of relevant litera-
ture: Raby and Daly (1993), Leick et al. (1995, 1998), Gourevitch et al. (1996), Pov-
alyaev (1997), Pratt et al. (1997), Rapoport (1997), Kozlov and Tkachenko (1998),
Roßbach (2001), and Wang et al. (2001).

7.7.7 Relative Positioning within CORS

The National Geodetic Survey (NGS) is the lead agency in establishing and operating
the continuously operating reference station (CORS) system (NGS, 2002). The coop-
eration includes academic, commercial, and private organizations. While NGS does
not guarantee that a particular site is operating at any given time, it tries to expand
the system so that all points in the contiguous United States will be within a specified
distance from an operational site. See Figure 7.19 for a map of CORS sites; at this
writing there are more than 420 participating sites.

Tying to CORS stations is a practical way of connecting points determined by GPS
to the geodetic frame. All CORS sites are known with centimeter accuracy in either
the ITRF reference system or the NAD83 geodetic datum. The dual-frequency carrier
phase and pseudorange observations of any CORS site, plus other ancillary station
data and the precise ephemeris can be readily downloaded for postprocessing by the
user. NGS also offers a processing service, online positioning user service (OPUS),
via the Internet. The user simply uploads the observation files to NGS and receives
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Figure 7.19 NGS CORS network. Data are received at NGS daily, hourly, and even in real
time. In addition to serving the needs of postprocessing, the CORS system has the potential of
becoming the backbone for real-time geodetic applications nationwide. (Courtesy of NGS.)

the results of the baseline processing via email. At this time, only dual-frequency data
accepted.

7.8 AMBIGUITY FIXING

Fixing ambiguities implies converting real-valued ambiguity estimates to integers.
The procedures follow the general linear hypothesis testing as described in Section
4.9.4. The objective is to constrain the estimated ambiguities of the float solution.
Let’s assume that the parameters are grouped as

x∗ =
[

â

b̂

]
(7.133)

The symbol â then denotes the estimated station coordinates and possibly other
parameters such as tropospheric refraction or receiver clock errors. b̂ denotes the
estimated float ambiguities. Using the same partitioning, other relevant matrices from
the float solution are
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N = AT
1 PA1 =

[
N11 N21

N21 N22

]
=
[

L11 O

L12 L22

][
L11 O

L12 L22

]T

(7.134)

Qx∗ = N−1 =
[

Qa Qab

QT
ab Qb

]
(7.135)

Q−1
b = L22LT

22 (7.136)

The submatrices Lij are part of the Cholesky factor L. The relation (7.136) can be
readily verified. In the notation of Section 4.9.4 we state the zero hypothesis H0 as

H0: A2x∗ + �2 = o (7.137)

These are n conditions, one for each ambiguity. The hypothesis states that a particular
integer set is statistically compatible with the estimated ambiguities from the float
solution. When constraining the ambiguities the coefficient matrix A2 takes on the
simple form A2 = [O I]. The identity matrix I is of size n. The misclosure is
�2 = −b, where b is the set of integer ambiguity values that are to be tested. The
change in vTPv due to the n constraints can be written according to (4.279)

∆vTPv =
[
b̂ − b

]T
Q−1

b

[
b̂ − b

]
(7.138)

which can be used in the F test (4.280)

∆vTPv
vTPv∗

df

n
∼ Fn,df (7.139)

to test acceptance of H0. vTPv∗ comes from the float solution and df denotes the
degree of freedom of the latter.

In the early days of GPS surveying, a test set b of integer values was obtained by
simply rounding the estimated float ambiguities to the nearest integer. This approach
works well for long observation times where many satellites can be observed and
the change in satellite geometry over time significantly improves the float solution.
In such cases, the estimated real-valued ambiguities are already close to integers
and their estimated variances are small. The situation changes drastically when we
attempt to shorten the time of observation, possibly down to the extreme of just one
epoch. It is only the distribution of the satellites in the sky and the availability of
observations at multiple frequencies that adds strength to the geometry in such a
case. The estimated float ambiguities will not necessarily be close to integer, and the
estimates will have large variances and be highly correlated in general. A possible
solution is to find candidate sets bi of integers and compute ∆vTPvi according to
(7.138). Those with the smallest contribution are subjected to the test (7.139). There
are two potential problems with this approach.
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The first one is that we might have to test many sets bi if the variances of the real-
valued ambiguities are large. Let dj denote the range for ambiguity j based on the
estimated variance. If we form sets bi for all possible combinations, then there are Πdi

such sets, i = 1, . . . , n. An efficient algorithm is needed to shorten the computation
time for ambiguity fixing. If ambiguities can be successfully fixed with just one epoch
of observation, then the distinction between static and kinematic relative positioning
becomes less relevant; the economic benefits of such a rapid survey technique are
obvious. In addition, cycle slips would be rendered harmless because new ambiguities
could be fixed every epoch. Much effort has gone into optimizing the computational
approaches. The LAMBDA method has emerged as the favored method.

The second problem is that several candidate sets might pass the test (7.139).
Naturally, one would like to identify the correct candidate as soon as possible and
in doing so minimize the observation time. Discernibility of the candidate sets will
be addressed in Section 7.8.3.

7.8.1 Early Efforts

Given the float solution and the respective covariance matrix, Frei and Beutler (1990)
suggest a specific ordering scheme for the candidate ambiguity sets. The efficiency
of their algorithms relies on the fact that if a certain ambiguity set is rejected, then a
whole group of sets is identifiable that will also be rejected and consequently need
not be computed explicitly. Euler and Landau (1992) and Blomenhofer et al. (1993)
point out that the matrix L22 in (7.136) remains the same for all candidate sets. They
further recommend computing (7.138) in two steps. If

g = LT
22

[
b̂ − b

]
(7.140)

then ∆vTPv can be written as

∆vTPv = gTg =
n∑

i=1

g2
i (7.141)

As soon as the first element g1 has been computed, it can be squared and taken as the
first estimate of the quadratic form. Note that ∆vTPv ≥ g2

1 . The value ∆vTPv = g2
1

is substituted in (7.139) to compute the test statistic, which is then compared with the
critical F value. If that test fails, the respective trial ambiguity set can immediately
be rejected. There is no need to compute the remaining gi values. If the test passes,
then the next value, g2, is computed and the test statistic is computed based on
∆vTPv = g2

1 + g2
2 . If this test fails, the ambiguity set is rejected; otherwise, g3 is

computed, etc. This procedure continues until either the zero hypothesis is rejected
or all gi are computed and the complete sum of the g square terms is known. This
strategy can be combined with the ordering scheme mentioned above.

Chen and Lachapelle (1995) take advantage of the fact that integer ambiguity
resolution accelerates if the number of candidates di for ambiguity i is small. The
smaller these search ranges, the fewer ambiguity sets need to be tested. Their method
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leads to a sequential reduction of ambiguity range. The idea is readily demonstrated
by sequential conditional adjustment in which constraints are imposed sequentially
on the float solution. In general, the change in the cofactor matrix Qx∗ due to the
constraints (7.137), according to Table 4.5, is

∆Q = −N−1AT
2

(
A2N−1AT

2

)−1
A2N−1 (7.142)

Because the diagonal elements of the matrix ∆Q are negative, it follows that the
diagonal elements of the updated cofactor matrix Qx|H0 = Qx∗ + ∆Q are smaller
than those of Qx∗ . Hence, any ranges derived from Qx|H0 for the remaining ambigu-
ities will be smaller than if one had continued to use Qx∗ . The procedure starts with
determining the range of the first ambiguity (which could be the one with smallest
variance), using Qx∗ and identifying the j integer candidates b1,j that fall within a
certain interval, say

[
b∗

1 ± σ1
]
. The symbol σ1 denotes the square root of the respec-

tive diagonal element of Qx∗ . Next, one imposes the conditions b∗
1 = b1,j , using one

of the j candidates within the range d1. The impact of this condition on the other
ambiguities is (Table 4.5)

[
∆x

∆b

]

j

= −N−1A2
(
A2N−1AT

2

)−1 (
A2x∗ + �2,j

)
(7.143)

Expression (7.137) represents just one equation in this case, and (7.142) does not
change while the remaining candidates are used. The respective diagonal element of
the updated cofactor matrix Qx|b1 and all updates b∗

2 +∆b1,j are used to determine the
total range d2 for the second ambiguity and the respective integers b2,k that fall within
that range. Next, constrain all pairs b1,j and b2,k and determine the range for the third
ambiguity. This process continues until the last ambiguity has been reached, each
time using the updated covariance matrix and updated ambiguity to find the range.
Chen and Lachapelle implement this strategy in a Kalman filter, called fast ambiguity
search filter (FASF). They search all ambiguities every epoch. The attempt to fix the
ambiguities is terminated if the number of possible ambiguity candidate sets exceeds
a threshold value.

Melbourne (1985) discusses an approach in which station coordinates are elimi-
nated from the observation equation prior to the search for the ambiguities. Let the
3 × 1 vector x contain only the station coordinates, then

v = Ax + b + � (7.144)

should represent n double-difference observation equations at one epoch. Let G
denote an n × (n − 3) matrix that fulfills GTA = O, then (7.144) becomes

GT (b − v + �) = o (7.145)

The columns of the matrix G span the null space of A or AAT; such a matrix always
exists.
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If we consider v = o, then (7.145) represents n − 3 conditions for the n double-
difference ambiguities. Through trial and error one could attempt to identify the cor-
rect set of ambiguities. Each epoch adds another set of n−3 equations to (7.145). The
elements of G change with time as the coefficients in A change with the motion of
the satellites. Eventually, enough epochs will be available with different G matrices
to allow a unique identification of the ambiguity. Only the correct set of ambiguities
will always fulfill (7.145). In actual application where the residuals are not zero but
are small, one would be looking for ambiguity values that are close to integers. Alter-
natively, applying Equation (7.145) to several epochs can be readily used to build a
mixed-model least-squares solution to estimate b̂. The receivers could even be in mo-
tion as long as the locations are known well enough to compute the coefficients in A.

Hatch (1990) suggests a scheme that divides satellites into primary and sec-
ondary ones. Consider four satellites, called the primary satellites. The respective
three double-difference equations contain the station coordinates and three double-
difference ambiguities. When the satellite geometry changes over time, it is possible
to estimate all of these parameters. Any satellites in addition to these four satellites,
called the secondary satellites, are strictly speaking redundant, although we know
that these extra satellites improve the overall solution geometry. The extra satellites
are used to develop yet another procedure for rapidly identifying integer ambiguities.

The primary and secondary satellites are identified below by subscripts p and s,
respectively. We group the observation equations accordingly, i.e.,

vp = Apx + (bp + �p

) = Apx + �̃p (7.146)

vs = Asx + (bs + �s) = Asx + �̃s (7.147)

Note that the 3 × 1 vector x contains only coordinate parameters. Each of the two
groups may contain observations from one or several epochs. The method assumes
that the ambiguities bp are known and evaluates the effect of that assumption. The
procedure starts by computing trial sets bp,i for the three primary ambiguities using
an initial position estimate x0, obtained from the point positioning solution or from
the float solution if several epochs of observations are available and the receivers do
not move (see below). We can compute the change in position with respect to x0 for
a given set of primary trial ambiguities using the usual least-squares formulation

xp,i = −N−1
p AT

pPp �̃p,i (7.148)

with Np = AT
pPpAp. This is a nonredundant solution because only three observation

equations are available. Each ambiguity trial set gives a different position xp,i while
the matrices Ap and Pp do not change. The coefficients of Ap are evaluated for x0.
Using xp,i the ambiguities for the secondary satellites, bs,i , can be derived from

N
1q

km,s = ϕ
1q

km,s − ρ
1q

km,p(xp) (7.149)
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where we have denoted the base satellite with a superscript 1; the superscript q varies
over the secondary satellites. These estimates are rounded to the nearest integer.
Next we compute the correction to the positions xp,i using sequential least-squares
(Table 4.2):

∆xp,i = xp,i − N−1
p AT

s

(
Ps + AsN−1

p AT
s

)−1
(

Asxp,i + �̃s,i

)
(7.150)

The dimension of �̃s,i equals the number of additional satellites. If the set of primary
ambiguities used to generate xp,i is the correct one, then the respective secondary
ambiguities bs,i are correct and, consequently, ∆xp,i should be zero. If ∆xp,i falls
outside a tolerance region, whose size is a function of the accuracy of x0, then bs,i and
consequently bp,i are rejected and the search continues with (7.148) using a different
trial set bp,j . If the set is acceptable, the residuals for the combined solution of primary
and secondary observations are

vp = Ap∆xP (7.151)

vs = As

(
xp + ∆xP

)+ �̃s (7.152)

The quadratic function

vTPv = vT
pPp vp + vT

s Ps vs (7.153)

can be used to discern several qualifying solutions.

7.8.2 LAMBDA

Teunissen (1993) introduced the least-squares ambiguity decorrelation adjustment
(LAMBDA) method. The LAMBDA technique, which has been referred to as the
integer least-squares estimator, is the estimator that has the highest probability of
correct integer estimation among all possible admissible integer estimators (Teunis-
sen, 1999). This probabilistic justification of LAMBDA in addition to its speed has
resulted in a high popularity and general acceptance of the technique. This section
merely highlights some features of the LAMBDA algorithm. The reader is refered to
Jonge and Tiberius (1996) for details of implementation. At the core of LAMBDA is
the Z transformation

z = ZT b (7.154)

ẑ = ZT b̂ (7.155)

Qz = ZTQbZ (7.156)

where Z is a regular and square matrix. In order for integers to be preserved, i.e., the
integers b should be mapped into integers z and vice versa, it is necessary that the
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elements of both matrices Z and Z−1 are integers. The condition |Z| = ±1 assures
that the inverse contains only integer elements if Z contains integers. Simply consider
this: if all elements of Z are integers, then this is also true for the cofactor matrix C.
Therefore, the inverse

Z−1 = CT

|Z| (7.157)

has integer elements because of the condition |Z| = ±1. The latter condition also
implies that

|Qz| = ∣∣ZTQbZ
∣∣ = ∣∣ZT

∣∣ |Qb| |Z| = |Qb| (7.158)

The quadratic form also remains invariant with respect to the Z transformation.
Substituting (7.154) and (7.155) in (7.138) and using the inverse of (7.156) gives

∆vTPv =
[
b̂ − b

]T
Q−1

b

[
b̂ − b

]

= [ẑ − z
]T (

Z−1
)T

Q−1
b Z−1

[
ẑ − z

]

= [ẑ − z
]T

Q−1
z

[
ẑ − z

]
(7.159)

Consider the following example with two random integer variables b̂ = [b̂1 b̂2]T.
Let the respective covariance matrix be

Σb =
[

σ2
b1

σb1b2

σb2b1 σ2
b2

]
(7.160)

The transformation z = ZTb utilizes a transformation matrix of the special form

ZT =
[

1 β

0 1

]
(7.161)

where ẑ = [ẑ1 ẑ2]T. Note that |Z| = 1. The element β is obtained by rounding
−σb1b2/σ

2
b2

to the nearest integer β = int
(−σb1b2/σ

2
b2

)
. Because β is an integer, the

transformed z variables will also be integers. Variance-covariance propagation gives

Σz = ZT Σb Z =

 β2σ2

b2
+ 2βσb1b2 + σ2

b1
βσ2

b2
+ σb1b2

βσ2
b2

+ σb1b2 σ2
b2


 (7.162)

Let ε denote the change due to the rounding, i.e., ε = σb1b2/σ
2
b2

+ β. Using (7.162),
the variance σ2

z of the transformed variable z1 can be written as
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σ2
z1

= σ2
b1

−
(

σ2
b1b2

σ4
b2

− ε2

)
σ2

b2
(7.163)

This expression shows that the variance of the transformed variable decreases com-
pared to the original one, i.e., σ2

z1
< σ2

b1
whenever

∣∣ σb1b2

/
σ2

b2

∣∣ > 0.5 (7.164)

and that both are equal when
∣∣σb1b2/σ

2
b2

∣∣ = | ε | = 0.5. The property of decreasing
the variance while preserving the integer makes the transformation (7.161) a favorite
to resolve ambiguities because it minimizes the search. It is interesting to note that
z1 and z2 would be completely decorrelated if one were to choose β = −σb1b2/σ

2
b2

.
However, such a selection is not permissible because it would not preserve the integer
property of the transformed variables.

When implementing LAMBDA, the Z matrix is constructed from the n×n subma-
trix Qb (7.135). There are n variables b̂ that must be transformed. Using the Cholesky
decomposition we find

Qb = HT K H (7.165)

The matrix H is the modified Cholesky factor that contains 1 at the diagonal and
follows (7.136). K is a diagonal matrix containing the diagonal squared terms of the
Cholesky factor. Assume that we are dealing with ambiguities i and i+1 and partition
these two matrices accordingly,

H =




1
...

. . .

hi,1 · · · 1

hi+1,1 · · · hi+1,i 1
... · · · ...

...
. . .

hn,1 · · · hn,i hn,i+1 · · · 1




=



H11 O O

H21 H22 O

H31 H32 H33


 (7.166)

- - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - -

K =




k1,1

. . .

ki,i

ki+1,i+1

. . .

kn,n




=



K11 O O

O K22 O

O O K33


 (7.167)
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The transformation matrix Z is partitioned similarly,

Z1 =




I

1 0

β 1

I




=



I11 O O

O Z22 O

O O I33


 (7.168)

- - - - - - - - - - - -

- - - - - - - - - - - -

where β = −int
(
hi+1,i

)
represents the negative of the rounded value of hi+1,i .

ẑ1 = ZT
1 b̂ (7.169)

Qz,1 = ZT
1 QbZ1 = ZT

1 HTKHZ1 = HT
1 K1H1 (7.170)

It can be shown that the specific form of Z1 and the choice of Z22 imply the following
updates

Qz,1 =




Q11 sym

ZT
22Q21 ZT

22Q22Z22

Q31 Q32Z22 Q33


 (7.171)

H1 = HZ1 =




H11 O O

H21 H̄22 O

H31 H̄32 H33


 (7.172)

H̄22 =
[

1 0

hi+1,i + β 1

]
(7.173)

H̄32 =




hi+2,i + βhi+2,i+1 hi+2,i+1

hi+3,i + βhi+3,i+1 hi+3,i+1

...
...

hn,i + βhn,i+1 hn,i+1




(7.174)

K1 = K (7.175)

The matrix K does not change due to this decorrelation transformation.
If β = 0 the transformation (7.169) is not necessary. However, it is necessary to

check whether or not the ambiguities i and i+1 should be permuted to achieve further
decorrelation. Consider the permutation transformation
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Z2 =




I

0 1

1 0

I




=



I11 O O

O P O

O O I33


 (7.176)

- - - - - - - - - - - -

- - - - - - - - - - - -

This specific choice for Z2 leads to

H̄22 =
[

1 0

h′
i+1,i 1

]
=



1 0

hi+1,iki+1,i+1

ki,i + h2
i+1,iki+1,i+1

1


 (7.177)

H̄21 =




−hi+1,i 1

ki,i

ki,i + h2
i+1,iki+1,i+1

h′
i+1,j


H21 (7.178)

H̄32 =




hi+2,i+1 hi+2,i

hi+3,i+1 hi+3,i

...
...

hn,i+1 hn,i




(7.179)

K̄22 =
[

k′
i,i 0

0 k′
i+1,i+1

]
=




ki+1,i+1 − h2
i+1,ik

2
i+1,i+1

ki,i + h2
i+1,iki+1,i+1

0

0 ki,i + h2
i+1,iki+1,i+1




(7.180)

Permutation changes the matrix K at K̄22. To achieve full decorrelation, the terms
k′
i+1,i+1 and ki+1,i+1 must be inspected while the ith and (i + 1)th ambiguity are

considered. Permutation is required if k′
i+1,i+1 < ki+1,i+1. If permutation occurs, the

procedure again starts with the last pair of the (n−1)th and nth ambiguities and tries to
reach the first and second ambiguities. A new Z transformation matrix is constructed
whenever decorrelation takes place or the order of two ambiguities is permuted. This
procedure is completed when no diagonal elements are interchanged.

The result of the Z transformations can be written as

ẑ = ZT
q · · · ZT

2 ZT
1 b̂ (7.181)

Qz,q = ZT
q · · · ZT

2 ZT
1 QbZ1Z2 · · · Zq = HT

q KqHq (7.182)
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The matrices Hq and Kq are obtained as part of the consecutive transformations.
The permuting steps assure that Kq contains decreasing diagonal elements, the small-
est element being located at the lower right corner. As a measure of decorrelation
between the ambiguities, we might consider the scalar (Teunissen, 1994)

r = |R|1/2 0 ≤ r ≤ 1 (7.183)

where R represents a correlation matrix. Applying (7.183) to Qb and Qz,q will give
a relative sense of the decorrelation achieved. A value of r close to 1 implies a high
decorrelation. Therefore, we expect rb < rz,q . The scalar r is called the ambiguity
decorrelation number.

The search step entails finding candidate sets of ẑi given (ẑ, Qz,q), which minimize

∆vTPv = [ẑ − z
]T

Q−1
z,q

[
ẑ − z

]
(7.184)

A possible procedure would be to use the diagonal elements of Qz,q , construct a range
for each ambiguity centered around ẑi, form all possible sets zi , evaluate the quadratic
form for each set, and keep track of those sets that produce the smallest ∆vTPv. A
more organized and efficient approach is achieved by transforming the ẑ variables
into variables ŵ that are stochastically independent. First, we decompose the inverse
of Qz,q as

Q−1
ẑ,q

= M S MT (7.185)

where M denotes the lower triangular matrix with 1’s along the diagonal, and S is a
diagonal matrix containing positive values that increase toward the lower right corner.
The latter property follows from the fact that S is the inverse of Kq . The transformed
variables ŵ,

ŵ = MT
[
ẑ − z

]
(7.186)

are distributed as ŵ ∼ N(o, S−1). Because S is a diagonal matrix the variables ŵ are
stochastically independent. Using (7.186) and (7.185) the quadratic form (7.184) can
be written as

∆vTPv ≡ ŵT S ŵ =
n∑

i=1

ŵ2
i si,i ≤ χ2 (7.187)

The symbol χ2 acts as a scalar; additional explanations will be given below. Finally,
we introduce the auxiliary quantity, also called the conditional estimate,

ŵi| I =
n∑

j=i+1

mj,i

(
ẑj − zj

)
(7.188)



288 PROCESSING PSEUDORANGES AND CARRIER PHASES

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[28

Lin

—
0.0
——
Nor

PgE

[28

The symbol | I indicates the values for zj have already been selected, i.e., are known.
Note that the subscript j goes from i + 1 to n. Since mi,i = 1 and using (7.188) and
(7.186), we can write the ith component as

ŵi = ẑi − zi + ŵi| I i = 1, n − 1 (7.189)

The bounds of the z parameters follow from (7.187). We begin with the nth level to
determine the bounds for the nth ambiguity and then proceed to level 1, establishing
the bound for the other ambiguities. Using the term with ŵnsn,n in (7.187), and
knowing that the matrix element mn,n = 1 in (7.186), we find

ŵ2
nsn,n = (zn − ẑn

)2
sn,n ≤ χ2 (7.190)

The bounds are

ẑn − (χ2/sn,n

)1/2 ≤ zn ≤ ẑn + (χ2/sn,n

)1/2
(7.191)

Using the terms from i to n in (7.187) and (7.189), we obtain for level i,

ŵ2
i si,i = (ẑi − zi + ŵi|I

)2
si,i ≤


χ2 −

n∑
j=i+1

ŵ2
j sj,j


 (7.192)

ẑi + ŵi|I − 1√
si,i


χ2 −

n∑
j=i+1

ŵ2
j sj,j




1/2

≤ zi

≤ ẑi + ŵi|I + 1√
si,i


χ2 −

n∑
j=i+1

ŵ2
j sj,j




1/2
(7.193)

The bounds (7.191) and (7.193) can contain one or several integer values zn or
zi . All values must be used when locating the bounds and integer values at the next
lower level. The process stops when level 1 is reached. For certain combinations, the
process stops earlier if the square root in (7.193) becomes negative.

Figure 7.20 demonstrates how one can proceed systematically, trying to reach the
first level. At a given level, one proceeds from the left to the right while reaching a
lower level. This example deals with n = 4 ambiguities z1, z2, z3, and z4. The fourth
level produced the qualifying values z4 = {−1, 0, 1}. Using z4 = −1 or z4 = 1
does not produce a solution at level 3 and the branch terminates. Using z4 = 0
gives z3 = {−1, 0} at level 3. Using z3 = −1 and z4 = 0, or in short notation
z = (−1, 0), one gets z2 = 0 at level 2. The combination z = (0, −1, 0) does not
produce a solution at level 1; the branch terminates. Returning to level 3, we try the
combination z = (0, 0), giving z2 = {−1, 0, 1} at level 2. Trying the left branch with
z = (−1, 0, 0) gives no solution and the branch terminates. Using z = (0, 0, 0) gives
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z4

z3
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z2

Figure 7.20 Candidate ambiguities encountered
during the search procedure with decorrelation.

z1 = {−2, −1, 0, 1, 2} at the first level. The last possibility, using z = (1, 0, 0),
gives no solution. We conclude that five ambiguity sets zi = (z1, 0, 0, 0) satisfy the
condition (7.187). In general, several branches can reach the first level. Because sn,n

is the largest value in S, the number of zn candidates is correspondingly small, thus
lowering the number of branches that originate from level n and assuring that not
many branches reach level 1.

The change ∆vTPvi can be computed efficiently from (7.187) because all ŵi sets
become available as part of computing the candidate ambiguity sets. The matrix S
does not change. The qualifying candidates zi are converted back to bi using the
inverse of (7.181).

If the constant χ2 for ambiguity search is chosen improperly, it is possible that the
search procedure may not find any candidate vector or that too many candidate vectors
are obtained. The latter results in time-consuming searches. This dilemma can be
avoided if the constant is set close to the ∆vTPv value of the best candidate ambiguity
vector. To do so, the real-valued ambiguities of the float solution are rounded to the
nearest integer, and then substituted into (7.184). The constant is then taken to be
equal to ∆vTPv. This approach guarantees obtaining at least one candidate vector,
which consequently is probably the best candidate vector because the decorrelated
ambiguities have such a high precision. One can compute a new constant χ2 by adding
or subtracting an increment to one of the nearest integer entries. Using this procedure
results in only a few candidate integer ambiguity vectors and guarantees that at least
two vectors are obtained.

LAMBDA is a general procedure that requires only the covariance submatrix and
the float estimates of the ambiguities. Therefore, the LAMBDA procedure applies
even if other parameters are estimated at the same time, such as station coordi-
nates, tropospheric parameters, and clock errors. LAMBDA readily applies to dual-
frequency observations, or even future situations, when observations from more than
two frequencies become available. Since only the covariance submatrix matters, the
observations can come from any available satellite system such as GPS, GLONASS,
or even Galileo. Even more generally, LAMBDA applies to any least-squares integer
estimation, regardless of what the physical meaning of the integer parameters is.
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LAMBDA is also applicable to estimating a subset of ambiguities. For example,
in the case of dual-frequency ambiguities one might parameterize in terms of the
widelane and the L1 ambiguities. LAMBDA could operate initially on the wide-
lane covariance submatrix and fix the wide-lane ambiguities immediately, and then
attempt to fix the L1 ambiguities as sufficient geometry becomes available. Teunissen
(1997) shows that the Z transformation always includes the widelane but goes far
beyond that to achieve an even better decorrelation.

In order to judge the expected performance of the ambiguity resolution, one can
compute the success rate, i.e., the probability of correct integer estimation. The suc-
cess rate depends on the covariance matrix and as such on the geometry embedded
in the functional and stochastic model (Teunissen, 1998).

7.8.3 Discernibility

The ambiguity testing outlined above is a repeated application of null hypotheses
testing for each ambiguity set. The procedure tests the changes ∆vTPv due to the
constraints. The decision to accept or to reject the null hypothesis is based on the
probability of the type-I error, which is usually taken to be α = 0.05. In many cases,
several of the null hypotheses will pass, thus identifying several qualifying ambiguity
sets. This happens if there is not enough information in the observations to determine
the integers uniquely and reliably. Additional observations might help resolve the
situation. The ambiguity set that generates the smallest ∆vTPv fits the float solution
best and, consequently, is considered the most favored fixed solution. The goal of
additional statistical considerations is to provide conditions that make it possible to
discard all but one of the ambiguity sets that passed the null hypotheses test.

The alternative hypothesis Ha is always relative to the null hypothesis H0. The
formalism for the null hypothesis is given in Section 4.9.4. In general, the null and
alternative hypotheses are

H0: A2x∗ + �2 = o (7.194)

Ha: A2x∗ + �2 + w2 = o (7.195)

Under the null hypothesis the expected value of the constraint is zero. See also
Equation (4.270). Thus,

E
(
zH0

) ≡ E
(
A2x∗ + �2

) = o (7.196)

Because w2 is a constant, it follows that

E
(
zHa

) ≡ E
(
A2x∗ + �2 + w2

) = w2 (7.197)

The random variable zHa
is multivariate normal distributed with mean w2, i.e.,
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zHa
∼ Nn−r

(
w2, σ2

0 T−1
)

(7.198)

See Equation (4.272) for the corresponding expression for the zero hypothesis. The
matrix T has the same meaning as in Section 4.9.4, i.e.,

T = (A2N−1
1 AT

2

)−1
(7.199)

The next step is to diagonalize the covariance matrix of ZHa
and to compute the sum

of the squares of the transformed random variables. These newly formed random
variables have a unit variate normal distribution with a nonzero mean. According to
Section A.5.2, the sum of the squares has a noncentral chi-square distribution. Thus,

∆vTPv

σ2
0

= zT
Ha

T zHa

σ2
0

∼ χ2
n2,λ

(7.200)

where the noncentrality parameter is

λ = wT
2 T w2

σ2
0

(7.201)

The reader is referred to the statistical literature, such as Koch (1988), for additional
details on noncentral distributions and their respective derivations. Finally, the ratio

∆vTPv
vTPv∗

n1 − r

n2
∼ Fn2, n1−r,λ (7.202)

has a noncentral F distribution with noncentrality λ. If the test statistic computed
under the specifications of H0 fulfills F ≤ Fn2, n1−r,α, then H0 is accepted with a
type-I error of α. The alternative hypothesis Ha can be separated from H0 with the
power 1 − β(α, λ). The type-II error is

β (α, λ) =
∫ Fn 2 , n 1−r, 1−α

0
Fn2,n1−r,λ dx (7.203)

The integration is taken over the noncentral F -distribution function from zero to the
value Fn2, n1−r,α, which is specified by the significance level α.

Because the noncentrality is different for each alternative hypothesis according to
(7.201), the type-II error β (α, λ) also varies with Ha . Rather than using the individual
type-II errors to make decisions, Euler and Schaffrin (1990) propose using the ratio of
noncentrality parameters. They designate the float solution as the common alternative
hypothesis Ha , for all null hypotheses. In this case, the value w2 in (7.195) is

w2 = − (A2x ∗ + �2
)

(7.204)

and the noncentrality parameter becomes
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λ ≡ wT
2 T w2

σ2
0

= ∆vTPv

σ2
0

(7.205)

where ∆vTPv is the change of the sum of squares due to the constraint of the null
hypothesis.

Let the null hypothesis that causes the smallest change ∆vTPv be denoted by Hsm.
The change in the sum of the squares and the noncentrality are ∆vTPvsm and λsm,
respectively. For any other null hypothesis we have λj > λsm. If

∆vTPvj

∆vTPvsm
= λj

λsm
≥ λ0

(
α, βsm, βj

)
(7.206)

then the two ambiguity sets comprising the null hypotheses Hsm and Hj are suffi-
ciently discernible. Both hypotheses are sufficiently different to be distinguishable
by means of their type-II errors. Because of its better compatibility with the float
solution, the ambiguity set of the Hsm hypothesis is kept, and the set comprising Hj

is discarded.
Figure 7.21 shows the ratio λ0(α, βsm, βj ) as a function of the degree of freedom

and the number of conditions. Euler and Schaffrin (1990) recommend a ratio between
5 and 10, which reflects a relatively large βsm and a smaller βj . Since Hsm is the
hypothesis with the least impact on the adjustment, i.e., the most compatible with
the float solution, it is desirable to have βsm > βj (recall that the type-II error equals
the probability of accepting the wrong null hypothesis). Observing more satellites
reduces the ratio for given type-II errors.

Figure 7.21 Discernibility ratio. (Permission by Springer Verlag.)
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Many software packages implement a fixed value for the ratio of the best and the
second-best solutions, e.g.,

∆vTPv2nd smallest

∆vTPvsm
> 3 (7.207)

to decide on discernibility. The explanations given above lend some theoretical justi-
fication to this commonly used practice, at least for a high degree of freedom. Other
discrimination tests are proposed in Wang et al. (1998).

7.9 REAL-TIME RELATIVE POSITIONING

Transmitting the pseudorange and/or the carrier phase observations from a reference
station to a moving receiver allows the latter to compute its location in real time. On-
site computations allow for real-time quality assurance of kinematic applications and
precise navigation to a known location. Various approaches have become available
that apply to local areas, regions, or even the globe. Local area approaches generally
aim to transmit sufficiently accurate information to allow a mobile user to fix ambi-
guities and therefore determine its position at the centimeter level with respect to the
reference station. There are various options available for transmitting the data, i.e.,
cell phones, dedicated ground transmitters, geostationary satellites, and the Internet.

7.9.1 Carrier Phase and Pseudorange Corrections

Transmitting corrections is less of a telemetry load than transmitting the raw obser-
vations, because the dynamic range of the corrections is small. For every satellite p

observed at station k, we determine an integer number K
p

k ,

K
p

k = int

(
P

p

k,b(1) − Φ
p

k,b(1)

λ

)
=int

(
1

λ
2I

p

k,P (1) − N
p

k (1) + c

λ
T

p

GD

+ 1

λ
δ
p

k,P (1) − 1

λ
δ
p

k,Φ(1)

) (7.208)

using the observed pseudoranges and carrier phases at some initial epoch, and then
compute the carrier phase range Θ

p

k (t) at subsequent epochs as

Θ
p

k,b(t) = Φ
p

k,b(t) + λK
p

k (7.209)

The numerical value of the carrier phase range is close to that of the pseudorange,
differing primarily because of the ionosphere, as can be seen from the right side of
(7.208). The discrepancy for the carrier phase range at epoch t is
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�
p

k = Θ
p

k,0 − Θ
p

k,b = ρ
p

k,0 − Θ
p

k,b = ρ
p

k,0 − (Φp

k,b + λK
p

k

)

= −λ
(
N

p

k + K
p

k

)+ c dtk − c dt̄P − I
p

k,Φ − T
p

k − δ
p

k,Φ

= λ ∆N
p

k + c dtk − c dt̄P − I
p

k,Φ − T
p

k − δ
p

k,Φ

(7.210)

The term ∆N
p

k is present because K
p

k only approximates N
p

k . The mean discrepancy
µk of all satellites observed at the site and epoch t is

µk(t) = 1

S

S∑
p=1

�
p

k (t) (7.211)

where S denotes the number of satellites. This mean discrepancy is driven primarily
by the receiver clock error. The carrier phase correction at epoch t is

∆Φ
p

k = ρ
p

k,0 − Θ
p

k,b − µk = ρ
p

k,0 − (Φp

k,b + λK
p

k

)− µk (7.212)

The second part of this equation follows by substituting (7.209) for the carrier phase
range. The phase correction (7.212) is transmitted to the moving receiver m. The
rover’s carrier phase Φp

m is corrected by adding the carrier phase correction, which
was computed at receiver k,

Φ̄
p

m = Φp
m + ∆Φ

p

k (7.213)

Let us consider the single-difference observable (5.12) in the form

Φ
p

k − Φp
m = ρ

p

k − ρp
m + λN

p

km − c(dtk − dtm) + I
p

km,Φ + T
p

km + δ
p

km,Φ (7.214)

Equation (7.212) can be solved for Φ
p

k and substituted into (7.214). After rearrange-
ment, one obtains

−Φ̄
p

m = −ρp
m + λ

(
N

p

km + K
p

k

)− c(dtk − dtm) + µk + I
p

km,Φ + T
p

km + δ
p

km,Φ

(7.215)

The left side of this equation is equal to the negative of the corrected carrier phase
Φ̄

p

m. The differencing equation (7.215) between two satellites gives an expression that
corresponds to the double-difference observable

Φ̄
qp

m ≡ Φ̄
p

m − Φ̄
q

m = ρq
m − ρp

m + λ
(
N

pq

km + K
p

k − K
q

k

)+ I
pq

km,Φ + T
pq

km + d
pq

km,Φ

(7.216)

The position of station m can now be computed at site m using the corrected obser-
vation Φ̄

p

m to at least four satellites and forming three equations like (7.216). These
equations differ from their conventional double-difference form by the fact that the
modified ambiguity
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N̄
pq

km = N
pq

km + K
p

k − K
q

k (7.217)

is estimated instead of N
pq

km .
The telemetry load can be further reduced if it is possible to increase the time

between transmissions of the carrier phase corrections. For example, if the change in
the discrepancy from one epoch to the next is smaller than the measurement accuracy
at the moving receiver, or if the variations in the discrepancy are too small to affect
adversely the required minimal accuracy for the moving receiver’s position, it is
possible to average carrier phase corrections over time and to transmit the averages.
It might be desirable to transmit the rate of correction ∂∆Φ/∂t . If t0 denotes the
reference epoch, the user can interpolate the correctors over time as

∆Φ
p

k (t) = ∆Φ
p

k (t0) + ∂∆Φ
p

k

∂t
(t − t0) (7.218)

One way to reduce the size and the slope of the discrepancy is to use the best
available coordinates for the fixed receiver and a good satellite ephemeris. Clock
errors affect the discrepancies directly, as is seen in Equation (7.210). Connecting
a rubidium clock to the fixed receiver can effectively control the variations of the
receiver clock error dtk . Prior to its termination, selective availability was the primary
cause of satellite clock error dt̄p and was a determining factor that limited modeling
like (7.218).

In the case of pseudorange corrections, we obtain similarly

�
p

k = ρ
p

k − P
p

k (7.219)

∆P
p

k = ρ
p

k,0 − P
p

k − µk (7.220)

P̄ p
m(t) = P p

m(t) + ∆P
p

k (t) (7.221)

P̄ qp
m (t) ≡ P̄ p

m − P̄ q
m = ρq

m(t) − ρp
m(t) + I

pq

km,P + T
pq

km + d
pq

km,P (7.222)

The approach described here is applicable to the L1 and L2 carrier phases and to all
three codes.

7.9.2 Local Network Corrections

The impact of the troposphere, the ionosphere, and orbital errors on the single- and
double-difference observables are at the same level as the carrier phase measurement
resolution for short baselines or less. In fact, the definition of short baselines is directly
linked to this cancellation of tropospheric and ionospheric effects and orbital errors on
the single-difference observables, i.e., T p

km ≈ 0, I
p

km ≈ 0, and dρ
p

km ≈ 0. It is common
practice for short baselines to fix the double-difference ambiguities to integers using
the LAMBDA procedure, yielding centimeter-accurate baselines. Traditionally, RTK
techniques are applied to short baselines involving one base station and one roving
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receiver, using double differencing and employing some ambiguity fixing technique.
Since RTK positioning is very economical, it is desirable to extend the reach of
RTK over longer baselines. Because of the high spatial correlation of troposphere,
ionosphere, and orbital errors, one expects that over a sufficiently small region the
error terms T

p

km, I
p

km, and dρ
p

km depend on the distance between receivers. Wübbena
et al. (1996) took advantage of this dependency and suggested the use of reference
station networks to extend the reach of RTK.

There are two requirements at the heart of multiple reference station RTK. First,
the positions of the reference stations must be accurately known at the centimeter
level. This can be readily accomplished using postprocessing and long observation
times. The second requirement is that the single- or double-difference integer ambi-
guities for baselines between reference stations are also known. It is then possible
to compute tropospheric and ionospheric corrections and transmit these to an RTK
user, to be applied to the rover’s observations. For the discussion below we assume
that the tropospheric term T

p

km includes the orbital error dρ
p

km, which is permissible
according to (7.19) and (7.20).

There are several variations available regarding the practical implementation of
multiple reference station RTK. Because of its prevailing use with short baselines
and because of the design of existing software, the initial implementation of multiple
reference station networks was derived from double-difference observations. Below
we give a general description using single differences. One could begin with the dual-
frequency pseudorange and carrier phase observations and use (7.33) to compute the
wide-lane ambiguity integers N

p

km,w = N
p

km,1 − N
p

km,2 between network reference
stations and for every satellite. One could then compute the tropospheric delay T

p

km

using measured meteorological data, the tropospheric models such as (6.17) and
(6.18) for the vertical dry and wet delays, and the tropospheric model mapping
function (6.22). Alternatively, a continuously running Kalman filter can be used on
the ionospheric-free function (7.41)

Φ
p

km,IF − ρ
p

km,0 = Tkm
(
ϑ

p

k

)− Tmm
(
ϑp

m

)+ c dtkm + R
p

km (7.223)

to estimate the vertical tropospheric delays Tk and Tm, the receiver clock difference
dtkm, and the ambiguity constant Rp

km using observations from all satellites. A simpler
parameterization Tkmm(ϑ

p

k ) or Tkmm(ϑ
q

k ) may be permissible for the relative tropo-
spheric correction. The subscript zero in ρ

p

km,0 indicates that the known reference
station coordinates are used to compute the ranges. The individual ambiguities N

p

km,1

and N
p

km,2 can then be estimated from

R
p

km = βf λ1N
p

km,1 − γf λ2N
p

km,2 (7.224)

N
p

km,w = N
p

km,1 − N
p

km,2 (7.225)

The ionospheric term I
p

km,1,P can then be computed from the ionospheric function
(7.40)
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I
p

km,1,P = (1 − αf

)−1 (
Φ

p

km,I − λ1N
p

km,1 + λ2N
p

km,2

)
(7.226)

Let k now denote the master reference station and m the other reference stations.
The master reference station generates its own observations and receives observations
from the other reference stations in real time. The Kalman filter, which runs at the
master reference station, generates the corrections T

p

km = Tkm(ϑ
p

k ) − Tmm(ϑ
p
m) and

I
p

km,1,P at every epoch, for all reference stations and all satellites. These corrections
are used to predict the respective corrections at a roving receiver’s location. Various
models are in use for computing these corrections. For example, the parameterization
could be in terms of latitude, longitude, and height and using different models for T

p

km

and I
p

km,1,P to consider their characteristic spatial and temporal behavior. One of the
simplest location-dependent models is a plane

T
p

km(t) = a
p

1 (t) + a
p

2 (t) nm + a
p

3 (t) em + a
p

4 (t) um (7.227)

I
p

km1,P (t) = b
p

1 (t) + b
p

2 (t) nm + b
p

3 (t) em + b
p

4 (t) um (7.228)

The symbols nm, em, and um denote northing, easting, and up coordinates in the
geodetic horizon at the master reference station k. The symbol m varies to include
all other reference stations in the network. A set of coefficients a

p

i (t) and b
p

i (t), also
called the network coefficients, are estimated by least-squares for every satellite p

and, in principle, every epoch. Because of the high temporal correlation of the tropo-
sphere and ionosphere, one might model these coefficients over time, thus reducing
the amount of data to be transmitted. The master reference station k transmits its
own carrier phase observations, or alternatively, the carrier phase corrections as de-
scribed by (7.212) and the network coefficients {ai, bi} over the network. A rover
n applies the tropospheric and ionospheric corrections (7.227) and (7.228) for its
approximate position, and determines its precise location by least-squares from the
series of double-difference observations

Φ
pq

kn,IF(t) − T
pq

kn (t) = ρ
pq

kn (t) + βf λ1N
pq

kn,1 − γf λ2N
pq

kn,2 + d
pq

kn,I,Φ (7.229)

Φ
pq

kn,I (t) − (1 − αf

)
I

pq

kn,1,P (t) = λ1N
pq

kn,1 − λ2N
pq

kn,2 + d
pq

kn,IF,Φ (7.230)

using the standard ambiguity fixing techniques.
Rather than transmitting network coefficients {ap

i , b
p

i }, one might consider trans-
mitting corrections {T p

km, I
p

km,1,P } for a grid of points at known locations within the
network. The mobile user would interpolate the corrections for the rover’s approxi-
mate location and apply them to the observations. Vollath et al. (2000) suggest the
use of virtual reference stations (VRSs) to avoid changing existing software that
double-differences the original observations directly. The VRS concept requires that
the rover transmit its approximate location to the master reference station, which
computes the corrections {T p

km, I
p

km,1,P } for the rover’s approximate location. In addi-
tion, the master reference station computes virtual observations for the approximate
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rover location using its own observations and then corrects them for troposphere and
ionosphere, i.e.,




P
p

v,1

P
p

v,2

Φ
p

v,1

Φ
p

v,2




=




P
p

k,1

P
p

k,2

Φ
p

k,1

Φ
p

k,2




+




1 1

1 αf

1 −1

1 αf





 ρ

p

vk + T
p

vk

I
p

vk,1,P


 (7.231)

and transmits the corrected, virtual observations to the rover. The rover merely has to
double-difference its own observations with those received from the master reference
station. No additional tropospheric or ionospheric corrections/interpolations are re-
quired at the rover because the effective, virtual baseline is very short, typically in the
range of meters corresponding to the rover’s initial determination of its approximate
location from pseudoranges. In Equation (7.231) the subscript v in ρ

p

vk indicates that
the distances are evaluated for the location of the virtual reference station v. The need
for the rover to transmit data can be eliminated if the master reference station trans-
mits corrected virtual observation to an evenly spaced grid of predetermined points
within the network. The rover can determine its position with respect to the nearest
virtual grid point. The grid approach supports many mobile users, since they all use
the same data sent from the master reference station.

The multiple reference station techniques described above depend on the master
reference station operator’s skill in modeling the spatial and temporal corrections
(7.227) and (7.228). The success of fixing the ambiguities correctly at the rover di-
rectly depends on the validity of the tropospheric and ionospheric corrections. Raquet
(1998), Lachapelle et al. (2000), and Fortes (2002) compute a covariance function
from the double-difference carrier phase discrepancies of the known network base-
lines. They then use least-squares collocation to compute undifferenced corrections
for each satellite at all reference stations and predict undifferenced corrections for a
grid of known locations. The conversion of corrections from the double-difference
domain to the undifferenced domain is carried out based on covariance functions
associated with spatial differential errors (for troposphere/orbits and ionosphere) and
assigning the absolute errors equal to zero at a reference point normally located close
to the center of the region covered by the network (considering that the user software
normally implements the double-difference model, what matters is how the residual
errors change from one location to the other and not their actual absolute values).
These covariance functions are then used to compute covariance matrices to be ap-
plied in the prediction of the errors at the user location using least-squares colloca-
tion. The master reference station transmits these corrections to the other reference
stations, where they are applied to the undifferenced observations. These corrected
undifferenced observations are broadcast over the network (in addition to the pre-
dicted gridded corrections). Zebhauser et al. (2002) suggest transmitting the obser-
vation of the master reference station and the observation differences between pairs
of reference stations. The latter would be corrected for location, receiver clock, and
ambiguities, i.e.,
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Φ
p

km,IF − ρ
p

km − dtkm − R
p

km = T
p

km + d
p

km,IF,Φ (7.232)

Φ
p

km,I (t) − λ1N
p

km,1 + λ2N
p

km,2 = (1 − αf

)
I

p

km,1,P (t) + d
p

km,I,Φ (7.233)

The user at the roving station is free to use any modeling and interpolation model to
compute the respective tropospheric and ionospheric corrections.

The message formats for data exchange between a single base station and a sin-
gle rover generally follow the standards set by the Radio Technical Commission for
Maritime Services (RTCM). RTCM is a nonprofit scientific and educational organi-
zation consisting of international member organizations that include manufacturers,
marketing, service providers, maritime user entities representing interests from small
recreational craft to deep-sea shipping, educational institutions, labor unions, and
government agencies (RTCM, 2002). RTCM special committees address in-depth
radiocommunication and radionavigation areas of concern to the RTCM members.
The reports prepared by these committees are usually published as RTCM recom-
mendations. The RTCM special committee 104 deals with global navigation satellite
systems. It has issued Standards for Differential GNSS (currently version 2.3) and
Standards for Differential Navstar GNSS Reference Stations (currently Version 1.1).
It is expected that RTCM standards will be available in the near future, including all
message types needed for real-time RTK within multiple reference station networks.

7.9.3 WADGPS

The modeling in (7.227) and (7.228) and the achievable accuracy for the corrections
T

p

kn and I
p

kn,1,P usually determine the size of the area over which real-time RTK is
possible, unless accurate corrections are available from other sources. As the area in-
creases, the ambiguities cannot be fixed and the carrier phases are used to smooth the
pseudoranges. The tropospheric and ionospheric corrections are typically parameter-
ized by latitude and longitude and transmitted to the user via geostationary satellites
for such wide area differential GPS (WADGPS) networks. Also, the tropospheric cor-
rections and the orbital satellite errors are typically dealt with separately. Early work
on WADGPS is found in Brown (1989), Kee et al. (1991), and Ashkenazi et al. (1992).

Several WADGPS systems have been implemented around the world; e.g., White-
head et al. (1998) describe a system that is privately operated to support precision
agriculture. The Federal Aviation Administration (FAA) is developing a WADGPS
called WAAS (wide area augmentation system). WAAS is a satellite-based augmen-
tation system (SBAS), meaning that the differential corrections and other relevant
data important for enhancing reliability and integrity of the system are transmitted
via satellites. WAAS will provide guidance to aircraft at thousands of airports and
airstrips where there has previously been no precision landing capability (Loh et al.,
1995). Other SBASs have been developed in Europe and Japan under the names Eu-
ropean Geostationary Navigation Overlay Service (EGNOS) and MTSAT Satellite-
based Augmentation System (MSAS). Several U.S. agencies, such as the Federal
Railroad Administration, the U.S. Coast Guard, the Federal Highway Administration,
and the Office of the Secretary of Transportation are developing the nationwide differ-
ential global positioning system (NDGPS). The system began as an expansion of the
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U.S. Coast Guard’s maritime differential GPS service and incorporated the ground
wave emergency network (GWEN) sites, which became available at the end of the
cold war (Allen, 1999; Cook, 2000). NDGPS utilizes powerful ground transmitters
to broadcast the corrections.

As the coverage area of a WADGPS further increases, it eventually will become a
global system, being conceptually similar to the one discussed in Section 7.6.
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CHAPTER 8

NETWORK ADJUSTMENTS

This chapter deals with minimal or inner constraint solutions for a polyhedron of
stations, i.e., the GPS vector network. The relative locations in such networks are
usually more accurate than the geocentric location of the polyhedron. Typically, the
relative position accuracy is derived from fixed carrier phase solutions, whereas the
geocentric location is obtained from point positioning with pseudoranges. Despite
the versatility of GPS, there are still many situations in which terrestrial observations
such as angles and distances measured with theodolite and electronic distance mea-
surement (EDM) are useful for supplementing GPS vectors. We discuss combination
solutions that use additional parameters, such as three rotations and a scale factor.
The rotation parameters can absorb rotational misalignment between the coordinate
system of the GPS ephemeris and the terrestrial coordinate system. If applied in local
networks, these rotation parameters may also be useful for absorbing a geoid slope if
geoid undulations are not available in the terrestrial system.

The 3D geodetic model discussed in Chapter 2 is the most natural one to be used
for these network adjustments. Since GPS gives accurate geodetic height differences,
the clear distinction between orthometric and geodetic (ellipsoidal) heights is always
important. This is particularly true when traditional leveling is replaced with GPS
height determination.

The chapter contains three examples of vector adjustments. While observing GPS
vector networks has become a routine occurrence, these examples have some “his-
toric value” as they helped establish GPS as a tool for accurate surveying. The Mont-
gomery County geodetic network densification demonstrated the utility of GPS to
densify classical first-order horizontal geodetic networks in terms of the achievable
accuracy and the high degree of flexibility in network design. The Stanford Linear
Collider (SLC) engineering survey pioneered in the sense that millimeter accuracy

301
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was achieved using satellite techniques and that an independent method for verifying
this accuracy was available. The Orange County densification demonstrated the use
of least-squares to quality control large vector data sets.

8.1 GPS VECTOR NETWORKS

In the case of two receivers observing, carrier phase processing gives the vector
between the stations, expressed in the reference frame of the ephemeris, and the 3×3
covariance matrix of the coordinate differences. The covariance matrix of all vector
observations is block-diagonal, with 3×3 submatrices along the diagonal. In a session
solutions, in which case R receivers observe the same satellites simultaneously, the
results are (R−1) independent vectors, and a 3(R−1)×3(R−1) covariance matrix.
The covariance matrix is still block-diagonal, but the size of the nonzero diagonal
matrices is a function of R.

Like any other survey, a GPS survey that has determined the relative locations of a
cluster of stations should be subjected to a minimal or inner constraint adjustment for
purposes of quality control. For example, the network should not contain unconnected
vectors whose endpoints are not tied to other parts of the network. At the network
level, the quality of the derived vector observations can be assessed, the geometric
strength of the overall network can be analyzed, internal and external reliability can be
computed, and blunders may be discoverable and removable. For example, a blunder
in an antenna height will not be discovered when processing a single baseline, but it
will be noticeable in the network solution if stations are reoccupied independently.
Covariance propagation for computing distances, angles, or other functions of the
coordinates should be done, as usual, with the minimal or inner constraint solution.

The mathematical model is the standard observation equation model, i.e.,

�a = f(xa) (8.1)

where �a contains the adjusted observations and xa denotes the adjusted station
coordinates. The mathematical model is linear if the parameterization of receiver
positions is in terms of Cartesian coordinates. In this case the vector observation
between stations k and m is modeled simply as




∆xkm

∆ykm

∆zkm


 =




xk − xm

yk − ym

zk − zm


 (8.2)

The relevant portion of the design matrix A for the model (8.2) is

xk yk zk xm ym zm

Akm =



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1


 (8.3)
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The design matrix looks like one for a leveling network. The coefficients are either
1, −1, or 0. Each vector contributes three rows. Because vector observations contain
information about the orientation and scale, one only needs to fix the translational lo-
cation of the polyhedron. Minimal constraints for fixing the origin can be imposed by
simply deleting the three coordinate parameters of one station, holding that particular
station effectively fixed.

Inner constraints must fulfill the condition

Ex = o (8.4)

according to (4.201), or, what amounts to the same condition,

ETA = O (8.5)

It can be readily verified that

E = [3I3 3I3 3I3 · · · ] (8.6)

fulfills these conditions. The matrix E consists of a row of 3 × 3 identity matrices.
There are as many identity matrices as there are stations in the network. The inner
constraint solution uses the pseudoinverse (4.203)

N+ = (ATPA + ETE
)−1 − ET

(
EETEET

)−1
E (8.7)

of the normal matrix. If one sets the approximate coordinates to zero, which can be
done since the mathematical model is linear, then the origin of the coordinate system
is at the centroid of the cluster of stations. For nonzero approximate coordinates,
the coordinates of the centroid remain invariant; i.e., the values are the same whether
computed from the approximate coordinates or the adjusted coordinates. The standard
ellipsoid reflects the true geometry of the network and the satellite constellation. See
Chapter 4 for a discussion on which quantities are variant or invariant with respect to
different choices of minimal constraints.

The GPS-determined coordinates refer to the coordinate system of the satellite po-
sitions (ephemeris). The broadcast ephemeris coordinate system is given in WGS84,
and the precise ephemeris is in ITRF. Both coordinate systems agree at the couple-
of-centimeters level.

The primary result of a typical GPS survey is best viewed as a polyhedron of sta-
tions whose relative positions have been accurately determined (to the centimeter or
even the millimeter level), but the translational position of the polyhedron is typically
known only at the meter level (point positioning with pseudoranges). The orientation
of the polyhedron is implied by the vector observations. The Cartesian coordinates
(or coordinate differences) of the GPS survey can, of course, be converted to geode-
tic latitude, longitude, and height. If geoid undulations are available, the orthometric
heights (height differences) can be readily computed. The variance-covariance com-
ponents of the adjusted parameters can be transformed to the local geodetic system
for ease of interpretation using (2.113).
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8.2 TRANSFORMING NEARLY ALIGNED COORDINATE SYSTEMS

The transformation of three-dimensional coordinate systems has been given much
attention ever since geodetic satellite techniques made it possible to relate local and
geocentric geodetic datums. Some of the pertinent works are Veis (1960), Moloden-
skii et al. (1962), Badekas (1969), Vanic̆ek and and Wells (1974), Leick and van
Gelder (1975), and Soler and van Gelder (1987). We assume that the Cartesian coor-
dinates of points on the earth’s surface are available in two systems. Often it might be
difficult to obtain the Cartesian coordinates in the local geodetic datum because the
geoid undulations with respect to the local datum might not be accurately known.

Figure 8.1 shows the coordinate system (x) = (x, y, z), which is related to the
coordinate system (u) = (u, v, w) by the translation vector t = [∆x ∆y ∆z]T

between the origins of the two coordinate systems and the small rotations (ε, ψ, ω)

around the (u, v, w) axes, respectively. The transformation equation expressed in the
(x) coordinate system can be seen from Figure 8.1:

t + (1 + s) Ru − x = o (8.8)

where 1 + s denotes the scale factor between the systems and R is the product of
three consecutive orthogonal rotations around the axes of (u):

R = R3(ω)R2(ψ)R1(ε) (8.9)

The symbol Ri denotes the rotation matrix for a rotation around axis i (see Section
A.2). The angles (ε, ψ, ω) are positive for counterclockwise rotations about the re-
spective (u, v, w) axes, as viewed from the end of the positive axis. For nearly aligned
coordinate systems these rotation angles are differentially small, allowing the follow-
ing simplification

R = I + Q = I +



0 ω −ψ

−ω 0 ε

ψ −ε 0


 (8.10)

Figure 8.1 Differential transformation be-
tween Cartesian coordinate systems.

x

y

z

u

v

w

T
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Combining (8.8) and (8.10) gives the linearized form

t + u + su + Qu − x = o (8.11)

For the purpose of distinguishing various approaches, we call the transformation
(8.8) model 1. The seven transformation parameters (∆x, ∆y, ∆z, s, ε, ψ, ω) can be
estimated by a least-squares. The Cartesian coordinates u and x are the observations.
Equation (8.11) represents a mixed model f(�a, xa) = o. See Section 4.4 for addi-
tional explanations of the mixed model adjustment. Each station contributes three
equations to (8.8).

A variation of (8.8), called model 2, is

t + u0 + (1 + s) R (u − u0) − x = o (8.12)

where u0 is the vector in the system (u) to a point located somewhere within the
network that is to be transformed. A likely choice for u0 is the centroid. All other
notation is the same as in Equation (8.8). If one follows the same procedure as
described for the previous model, i.e., omitting second-order terms in scale and
rotation and their products, then (8.12) becomes

t + u + s (u − u0) + Q (u − u0) − x = o (8.13)

Model 3 uses the same rotation point u0 as model 2, but the rotations are about
the axes (n, e, u) of the local geodetic coordinate system at u0. The n axis is tangent
to the geodetic meridian, but the positive direction is toward the south; the e axis is
perpendicular to the meridian plane and is positive eastward. The u axis is along the
ellipsoidal normal with its positive direction upward, forming a right-handed system
with n and e. Similar to Equation (8.12), one obtains

t + u0 + (1 + s) M (u − u0) − x = o (8.14)

If (η, ξ, α) denote positive rotations about the (n, e, u) axes and if (ϕ0, λ0, h0) are the
geodetic coordinates for the point of rotation u0, it can be verified that the M matrix is

M = RT
3 (λ0)RT

2 (90 − ϕ0)R3(α)R2(ξ)R1(η)R2(90 − ϕ0)R3(λ0) (8.15)

Since the rotation angles (η, ξ, α) are differentially small, the matrix M simplifies to

M(λ0, ϕ0, η, ξ, α) = αMα + ξMξ + ηMη + I (8.16)

where

Mα =



0 sin ϕ0 − cos ϕ0 sin λ0

− sin ϕ0 0 cos ϕ0 cos λ0

cos ϕ0 sin λ0 − cos ϕ0 cos λ0 0


 (8.17)
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Mξ=



0 0 − cos λ0

0 0 − sin λ0

cos λ0 sin λ0 0


 (8.18)

Mη=



0 − cos ϕ0 − sin ϕ0 sin λ0

cos ϕ0 0 sin ϕ0 cos λ0

sin ϕ0 sin λ0 − sin ϕ0 cos λ0 0


 (8.19)

If, again, second-order terms in scale and rotations and their products are neglected,
the model (8.14) becomes

t + u + s (u − u0) + (1 + s) (M − I) (u − u0) − x = o (8.20)

Models 2 and 3 differ in that the rotations in model 3 are around the local geodetic
coordinate axes at u0. The rotations (η, ξ, α) are (ε, ψ, ω) as related as follows:




η

ξ

α


 = R2(90 − ϕ0)R3(λ0)




ε

ψ

ω


 (8.21)

Models 1 and 2 use the same rotation angles. The translations for models 1 and 2 are
related as

t2 = t1 − u0 + (1 + s)R u0 (8.22)

according to (8.8) and (8.12). Only t1, i.e., the translation vector of the origin as
estimated from model 1, corresponds to the geometric vector between the origins
of the coordinate systems (x) and (u). The translational component of model 2,
t2, is a function of u0, as shown in (8.22). Because models 2 and 3 use the same
u0, both yield identical translational components. It is not necessary that all seven
parameters always be estimated. In small areas it might be sufficient to estimate only
the translation components.

8.3 COMBINATION THROUGH ROTATION AND SCALING

Assume a situation in which a network of terrestrial observations, such as horizontal
angles, slant distances, zenith angles, leveled height differences, and geoid undula-
tions, are available. Assume further that the relative positions of some of these net-
work stations have been determined with GPS. As a first step one could carry out
separate minimal or inner constraint solutions for the terrestrial observations and the
GPS vectors, as a matter of quality control. When combining both sets of observations
in one adjustment, the definition of the coordinate systems might become important.
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For example, consider the case that coordinates of some of the stations are known
in the “local datum” (u) and that (u) does not coincide with (x), i.e., the coordinate
system of the GPS vectors. Let it be further required that if the adjusted coordinates
should be expressed in (u), then the following model

�1a = f1(xa) (8.23)

�2a = f2(s, η, ξ, α, xa) (8.24)

might be applicable. The model (8.23) pertains to the terrestrial observations, denoted
here as the �1 set. This model is discussed in Chapter 2. In adjustment notation the
parameters xa denote station coordinates in the geodetic system (u). The observa-
tions for Model (8.24) are the Cartesian coordinate differences between stations as
obtained from GPS carrier phase processing. The additional parameters in (8.24) are
the scale correction s and three rotation angles. The rotation angles are small as they
relate the nearly aligned geodetic coordinate systems (u) and (x). Because GPS yields
the coordinate differences, there is no need to include the translation parameter t. If
the coordinate systems (u) and (x) coincide, then the estimate of the rotation angles
should statistically be zero. Even if �1 in (8.23) does not contain observations at all,
some of the station coordinates in the (u) system can still be treated as observed
parameters and thus allow the estimation of the scale and rotation parameters. This
is a simple way to implement the GPS vector observations into the existing network.

The mathematical model (8.24) follows directly from the transformation expres-
sion (8.14). Applying this expression to the coordinate differences for stations k and
m yields

(1 + s) M(λ0, ϕ0, η, ξ, α) (uk − um) − (xk − xm) = o (8.25)

The coordinate differences

xkm = xk − xm (8.26)

represent the observed GPS vector between stations k and m. Thus the mathematical
model (8.24) can be written as

xkm = (1 + s) M(λ0, ϕ0, η, ξ, α) (uk − um) (8.27)

After substituting (8.16) into (8.27), we readily obtain the partial derivatives of
the design matrix. Table 8.1 lists the partial derivatives with respect to the station

TABLE 8.1 Design Submatrix for Stations Occupied with Receivers

Parameterization Station m Station k

(u)

(ϕ, λ, h)

(n, e, u)

(1 + s) M

(1 + s) MJ(ϕm, λm)

(1 + s) MJ(ϕm, λm)H−1(ϕm)

− (1 + s) M

− (1 + s) MJ(ϕk, λk)

− (1 + s) MJ(ϕk, λk)H−1(ϕk)
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TABLE 8.2 Design Submatrix for the Transformation Parameters

s η ξ α

um − uk Mη (um − uk) Mξ (um − uk) Mα (um − uk)

coordinates for (a) Cartesian parameterization, (b) parameterization in terms of geo-
detic latitude, longitude, and height, and (c) parameterization in terms of the local
geodetic coordinate systems. The transformation matrices J and H referred to in the
table are those of (2.106) and (2.108). Table 8.2 contains the partial derivatives of the
transformation parameters.

8.4 GPS NETWORK EXAMPLES

In these examples only independent vectors between stations are included; i.e., if
three receivers observe simultaneously, only two vectors are used. The stochastic
model does not include the mathematical correlation between simultaneously ob-
served vectors. The variance-covariance matrix of the observed vectors is 3 × 3
block-diagonal. Craymer and Beck (1992) discuss various aspects of session ver-
sus single-baseline processing. They also point out that inclusion of the trivial (de-
pendent) baselines distorts the formal accuracy by increasing the redundancy in the
model artificially, resulting in overly optimistic covariance matrices. The covariance
information used was obtained directly from baseline processing and does not accom-
modate small uncertainties in eccentricity, i.e., setting up the antenna over the mark.
Only single-frequency carrier phases were available at the time the observations were
made.

8.4.1 Montgomery County Geodetic Network

At the time of the Montgomery County (Pennsylvania) geodetic network densifica-
tion, the window of satellite visibility was about 5 hours for GPS, just long enough to
allow two sessions with the then state-of-the-art static approach (Collins and Leick,
1985). Much liberty was taken in the network design (Figure 8.2) by taking advan-
tage of GPS’s insensitivity to the shape of the network (as compared to the many
rules of classical triangulation and trilateration). The longest baseline observed was
about 42 km. Six horizontal stations with known geodetic latitude and longitude and
seven vertical stations with known orthometric height were available for tying the
GPS survey to the existing geodetic networks. Accurate geoid information was not
available at the time.

Figure 8.3 shows two intersections of the ellipsoid of standard deviation for the
inner constraint least-squares solution. The top set of ellipses shows the horizontal
intersection (i.e., the ellipses of standard deviation in the geodetic horizon), and the
bottom set of ellipses shows the vertical intersection in the east-west direction. The
figure also shows the daily satellite visibility plot for the time and area of the project.
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Figure 8.2 Existing geodetic control and independent baselines.

The dots in that figure represent the directions of the semimajor axis of the ellipsoids
of standard deviation for each station. These directions tend to be located around
the center of the satellite constellation. The standard ellipses show a systematic
orientation in both the horizontal and the vertical planes. This dependency of the
shape of the ellipses with the satellite constellation enters into the adjustment through
the 3 × 3 correlation matrices. With a better distribution of the satellites over the
hemisphere, the alignments seen in Figure 8.3 for the horizontal ellipses do not occur.
Because satellites are observed above the horizon, the ellipses will still be stretched
along the vertical.

The coordinates of the polyhedron of stations are given in the coordinate system
of the broadcast ephemeris; at the time of the Montgomery County survey this was
WGS72 (today this would be WGS84 or the latest ITRF). The positions of the poly-
hedron stations can be expressed in terms of geodetic coordinates relative to any el-
lipsoid, as long as the location of the ellipsoid is specified. For example, the minimal
constraints could be specified by equating the geodetic and astronomic latitude and
longitude of station 29, and equating the ellipsoidal height and the orthometric height.
The ellipsoid defined in that manner is tangent to the geoid at station 29. By com-
paring the resulting geodetic heights with known orthometric heights at the vertical
stations, we can construct a geoid undulation map (with respect to the thus defined
ellipsoid). The geoid undulations at other stations can be interpolated to give ortho-
metric height from the basic relation H = h − N .

The method described above can be generalized by not using the astronomic
position for station 29. The geodetic latitude and longitude, such as the NAD83
positions, can be used as minimal constraints. The thus defined local ellipsoid is not
tangent to the geoid at station 29. The undulations with respect to such an ellipsoid
are shown in Figure 8.4.
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Figure 8.3 Inner constraint solution, ellipses of standard deviation, and satellite visibil-
ity plot.
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Figure 8.4 Geoid undulations with respect to the local ellipsoid. Units are in centimeters.

Alternatively, one can estimate the topocentric rotations (η, ξ, α) and a scale factor
implied by model (8.27). There are seven minimal constraints required in this case,
e.g., the geodetic latitude and longitude for two stations and the geodetic heights
for three stations distributed well over the network. If one uses orthometric heights
for these three stations instead, the angles (ξ, η) reflect the average deflection of
the vertical angles. Using orthometric heights instead of geodetic heights forces the
ellipsoid to coincide locally with the geoid (as defined or implied by the orthometric
heights at the vertical stations). The rotation in azimuth α is determined by the
azimuthal difference between the two stations held fixed and the GPS vector between
the same stations. The scale factor is also determined by the two stations held fixed;
it contains the possible scale error of the existing geodetic network and the effect of a
constant but unknown undulation (i.e., geoid undulations with respect to the ellipsoid
of the existing geodetic network).

Simple geometric interpolation of geoid undulations has its limits, of course. For
example, any error in a given orthometric height will result inevitably in an erroneous
geoid feature. As a result, the orthometric heights computed from the interpolated
geoid undulations will be in error. Depending on the size of the survey area and the
“smoothness” of the geoid in that region, such erroneous geoid features might or
might not be discovered from data analysis. These difficulties can be avoided if an
accurate geoid model is available.
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8.4.2 SLC Engineering Survey

A GPS survey was carried out in 1984 to support construction of the Stanford Linear
Collider (SLC) with the objective of achieving millimeter relative positional accuracy
with GPS and combining GPS vector with terrestrial observations (Ruland and Leick,
1985). Because the network was only 4 km long, the broadcast ephemeris errors as
well as the impact of the troposphere and ionosphere cancel. The position accuracy in
such small networks is limited by the carrier phase measurement accuracy, the phase
center variation of the receiver antenna, and the multipath. We used the Macrome-
ter antenna, which is known for its good multipath rejection property and accurate
definition of the phase center.

The network is shown in Figure 8.5. Stations 1, 10, 19, and 42 are along the 2-
mile-long linear accelerator (linac); the remaining stations of the “loop” were to be
determined with respect to these linac stations. The disadvantageous configuration
of this network, in regard to terrestrial observations such as angles and distances, is
obvious. To improve this configuration, one would have to add stations adjacent to the
linac; this would have been costly because of the local topography and construction.
For GPS positioning such a network configuration is acceptable because the accuracy
of positioning depends primarily on the satellite configuration and not on the shape
of the network. Figure 8.6 shows the horizontal ellipses of standard deviation and
the satellite visibility plot for the inner constraint vector solution. The dark spot on
the visibility plot represents the directions of the semimajor axes of the standard
ellipsoids.

This survey offered an interesting comparison. For the frequent realignment of
the linear accelerator, the linac laser alignment system was installed. This system is
capable of determining positions perpendicular to the axis of the linac to better than
±0.1 mm over the total length of 3050 m. A comparison of the linac stations 1, 10,
19, and 42, as determined from the GPS vector solution with respect to the linac
alignment system, was done by means of a transformation. The discrepancies did not
exceed ±1 mm for any of the four linac stations.

8.4.3 Orange County Densification

The Orange County GPS survey was comprised of more than 7000 vectors linking
2000 plus stations at about 0.5 mile spacing. With that many vector observations,
it is beneficial to use graphics to analyze observations, the adjustments, and other

Figure 8.5 The SLC network configuration.
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[31Figure 8.6 Horizontal standard ellipses for GPS inner constraint solution and visibility
plot.

relevant quantities. Some of these plots indicate outliers (i.e., a deviation from an
otherwise systematic variation). These outliers are the prime candidates for in-depth
studies and analysis. Redundancy number and internal reliability plots appear useful
for identifying weak portions of the network (which may result from a deweighting
of observations during automated blunder detection). The variance-covariance matrix
of vector observations is the determining factor that shapes most of the functions.
The graphs below refer to the minimal constraint solutions only. Other aspects of the
solution are given in Leick and Emmons (1994).

A Priori Stochastic Information The study begins with the variance-covariance
matrices of the estimated vectors from the phase processing step. A simple function
of the a priori statistics such as

σk =
√

σ2
k1 + σ2

k2 + σ2
k3 (8.28)

is sufficient, where k identifies the vector. Other simple functions, such as the trace
of the variance-covariance matrix, can be used as well. The symbols on the right-
hand side of (8.28) denote the diagonal elements of the 3 × 3 variance-covariance
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Figure 8.7 A priori precision of length of baseline. (Permission by ASCE.)

matrix. Figure 8.7 displays σk as a function of the length of the vectors. For longer
lines, there appears to be a weak length dependency of about 1:200,000. Several
of the shorter baselines show larger-than-expected values. While is not necessarily
detrimental to include vectors with large variances in an adjustment, they are unlikely
to contribute to the strength of the network solution. Analyzing the averages of σk

for all vectors of a particular station is useful in discovering stations that might be
connected exclusively to low-precision vector observations.

Variance Factor Figures 8.8 and 8.9 show the square root of the estimated variance
factor fk for each vector k. The factor is computed from

fk =
√

v̄T
k v̄k

Rk

(8.29)

with

Rk = r̄k1 + r̄k2 + r̄k3 0 ≤ Rk ≤ 3 (8.30)

where v̄k denote the decorrelated residuals and r̄k1, r̄k2, and r̄k3 are the redundancy
numbers of the decorrelated vector components. See Equation (4.375) regarding
the decorrelation of vector observations. The estimates of fk are shown in Figures
8.8 and 8.9 as a function of the baseline length and the a priori statistics σk . The
scale factor fk in Figure 8.10 is computed following the procedure of automatic
deweighting observations discussed in Section 4.11.3 (i.e., if the ratio of residual and
standard deviation is beyond a threshold value, the scaling factor is computed from



GPS NETWORK EXAMPLES 315

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[31

Lin

—
0.5
——
No

PgE

[31

Figure 8.8 Variance factor versus length of baseline. (Permission ASCE.)

an empirical rule and the residuals). All components of the vector are multiplied with
the same factor (the largest of three). Figures 8.8 to 8.10 show that the largest factors
are associated with the shortest baselines or lines with small σk (which tend to be
the shortest baselines). For short baselines the centering errors of the antenna and the
separation of the electronic and geometric center of the antenna are important; neither
is reflected by the stochastic model used here. The variance-covariance submatrices

Figure 8.9 Variance factor versus precision of baseline. (Permission ASCE.)
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Figure 8.10 Applied variance scale factor. (Permisson ASCE.)

should be scaled only after the observations with the largest computed factors have
been analyzed and possibly been corrected. If proper justification can be found, the
factors can be applied. The factors fk of Figure 8.10 were used in these solutions.

Redundancy Numbers The vector redundancy number Rk in (8.30) varies be-
tween 3 and zero. Values close to 3 indicate maximum contribution to the redundancy
and minimum contribution to the solution, i.e., the observation is literally redundant.
Such observations contribute little, if anything at all, to the adjustment because of the
presence of other, usually much more accurate, observations. A redundancy of zero
indicates an uncontrolled observation, which occurs, e.g., if a station is determined by
one observation only. A small redundancy number implies little contribution to the re-
dundancy but a big contribution to the solution. Such observations “overpower” other
observations and usually have small residuals. As a consequence of their “strength,”
blunders in these observations might not be discovered.

The ordered redundancy numbers in Figure 8.11 exhibit a distinctly sharp decrease
as the smallest values are reached. Inspection of the data indicates that these very
small redundancies occur whenever there is only one good vector observation left to
a particular station, while the other vectors to that station have been deweighted by
scaling the variance-covariance matrices as part of the automatic blunder detection
procedure. Typically, the scaled vectors have a high redundancy number, indicating
their diminished contribution. The only remaining unscaled observation contributes
the most; therefore, the respective residuals are very small, usually in the millimeter
range. Consequently, a danger of automated blunder detection and deweighting is that
parts of the network might become uncontrolled.
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Figure 8.11 Ordered vector redundancy. (Permission ASCE.)

Figure 8.12 indicates that long vectors have large redundancy numbers. The shapes
in this figure suggest that it might be possible to identify vectors that can be deleted
from the adjustment without affecting the strength of the solution. The steep slope
suggests that the assembly of short baselines determines the shape of the network.
Mixing short and long baselines is useful only if long baselines have been deter-
mined with an accuracy comparable to that of shorter lines. This can possibly be

Figure 8.12 Vector redundancy versus length of baseline. (Permission ASCE.)
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accomplished through longer observation times, using dual-frequency receivers, and
processing with a precise ephemeris.

Internal Reliability Internal reliability values are shown in Figure 8.13. These
values are a function of the internal reliability vector components as follows:

Ik =
√

I 2
k1 + I 2

k2 + I 2
k3 (8.31)

The internal reliability components are computed according to Equation (4.363) for
the decorrelated vector observations, and are then transformed back to the physical
observation space. The values plotted are based on the factor δ0 = 4.12. There is
essentially a linear relationship between internal reliability and the quality of the
observations as expressed by σk . The slope essentially equals δ0. The outliers in
Figure 8.13 are associated with small σk and pertain to a group of “single vectors”
that result when the other vectors to the same station have been deweighted. The
linear relationship makes it possible to identify the outliers for further inspection and
analysis. Furthermore, this linear relationship nicely confirms that internal reliability
is not a function of the shape of the GPS network.

Blunders and Absorption Figure 8.14 shows blunders as predicted by the respec-
tive residuals. As detailed in (4.366), a relationship exists between computed blun-
ders, residuals, and redundancies. The figure shows the blunder function

Bk =
√

B2
k1 + B2

k2 + B2
k3 (8.32)

Figure 8.13 Internal reliability versus precision of baseline. (Permission ASCE.)
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Figure 8.14 Computed blunders versus residuals. (Permission ASCE.)

versus the residual function

vk =
√

v2
k1 + v2

k2 + v2
k3 (8.33)

The computed blunder and the residuals refer to the physical observation space. This
relationship appears to be primarily linear with slope 1:1 (at least for the larger

Figure 8.15 Absorption versus redundancy. (Permission ASCE.)
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residuals). The outliers seen for small residuals refer to the group of observations
with smallest redundancy numbers.

Figure 8.15 shows absorption versus redundancy. Absorption specifies that part of
a blunder which is absorbed in the solution, i.e., absorption indicates falsification of
the solution. The values

Ak = −vk + Bk (8.34)

are plotted. As expected, the observations with lowest redundancy tend to absorb the
most. In the extreme case, the absorption is infinite for zero redundancy, and zero for
a redundancy of 3 (vector observations). Clearly, very small redundancies reflect an
insensitivity to blunders, which is not desirable.

As is the case for terrestrial observation, it is not sufficient to limit quality control
to residuals and normalized residuals. It is equally important that the quality of
the network be presented in terms of redundancy and reliability measures. These
functions are, among other things, useful in judging the implications of deweighting.
The consequences of deweighting are not always readily apparent in large networks.
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CHAPTER 9

TWO-DIMENSIONAL GEODETIC
MODELS

Computations on the ellipsoid and the conformal mapping plane became popular
when K. F. Gauss significantly advanced the field of differential geometry and least-
squares. Gauss used his many talents to develop geodetic computations on the el-
lipsoidal surface and on the conformal map. The problem presented itself to Gauss
when he was asked to observe and compute a geodetic network in northern Germany.
Since the curvature of the ellipsoidal changes with latitude, the mathematics of com-
puting on the ellipsoidal surface becomes mathematically complex. With the con-
formal mapping approach, additional mathematical developments are needed. Both
approaches require a new element not discussed thus far, the geodesic (the shortest
distance between two points on a surface). Developing expressions for the geodesic
on the ellipsoidal surface and its image on the map requires advanced mathematical
skills.

Computations on either the ellipsoidal surface or the conformal map are inher-
ently two-dimensional. The stations are parameterized in terms of geodetic latitude
and longitude or conformal mapping coordinates. The third dimension, the height,
does not appear explicitly as a parameter but has been “used up” during the reduction
of the spatial observations to the computation surface. Networks on the ellipsoidal
surface or the conformal map have historically been labeled “horizontal networks”
and treated separately from a one-dimensional “vertical network.” Such a separation
was justified at a time when the measurement tools could be readily separated into
those that measured primarily “horizontal information” and those that yielded primar-
ily “vertical information.” GPS breaks this separation because it provides accurate
three-dimensional positions.

Because the two-dimensional geodetic models have such a long tradition and
were the backbone of geodetic computations prior to the introduction of geodetic

321
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space techniques, the respective solutions belong to the most classical of all geodetic
theories and are appropriately documented in the literature. Unfortunately, many of
the references on this subject are out of print. We therefore summarize the Gauss
midlatitude solution, the transverse Mercator mapping, and Lambert conformal map-
ping in Appendixes B and C. Supporting material from differential geometry is also
provided in order to appreciate the “roots and flavor” of the mathematics involved.
Additional derivations are available in Leick (2002) that support lectures on the sub-
ject. The following literature has been found helpful: Dozier (1980), Heck (1987),
Kneissl (1959), Grossman (1976), Hristow (1955), Lambert (1772), Lee (1976), Sny-
der (1982), and Thomas (1952). Publication of many of these “classical” references
has been discontinued.

The ellipsoidal and conformal mapping expressions are generally given in the
form of mathematical series that are a result of multiple truncations at various steps
during the development. These truncations affect the computational accuracy of the
expressions and their applicability to the size of the area. The expressions given
here are sufficiently accurate for typical applications in surveying and geodesy. Some
terms may even be negligible when applied over small areas. For unusual applications
covering large areas, one might have to use more accurate expressions found in the
specialized literature. In all cases, however, given today’s powerful computers, one
should not be overly concerned about a few unnecessary algebraic operations.

Two types of observations apply to computations on a surface: azimuth (angle)
and distance. The reductions, partial derivatives, and other quantities that apply to
angles can be conveniently obtained through differencing the respective expressions
for azimuths.

9.1 THE ELLIPSOIDAL MODEL

This section contains the mathematical formulations needed to carry out computa-
tions on the ellipsoidal surface. We introduce the geodesic line and reduce the 3D
geodetic observations to geodesic azimuth and distance. The direct and inverse solu-
tions are based on the Gauss midlatitude expressions. Finally, the partial derivatives
are given that allow network adjustment on the ellipsoid.

9.1.1 Reduction of Observations

The geodetic azimuth α of Section 2.3.5 is the angle between two normal planes that
have the ellipsoidal normal in common; the geodetic horizontal angle δ is defined
similarly. These 3D model observations follow from the original observation upon
corrections for the deflection of the vertical. Spatial distances can be used directly
in the 3D model presented in Section 2.3.5. However, angles and distances must be
reduced further in order to obtain model observables on the ellipsoidal surface with
respect to the geodesic.

9.1.1.1 Angular Reduction to Geodesic Figure 9.1 shows the reduction of
azimuth. The geodetic azimuth, α, is shown in the figure as the azimuth of the normal
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Figure 9.1 Normal section azimuth versus height of target.

plane defined by the ellipsoidal normal of P1 and the space point P2. The represen-
tatives of these space points are located along the respective ellipsoidal normals on
the surface of the ellipsoid and are denoted by P ′

1 and P ′
2. The dotted line P ′

1 to P ′′
2

denotes the intersection of this normal plane with the ellipsoid. The azimuth of the
normal section defined by the ellipsoidal normal at P1 and the surface point P ′

2 is α′.
The angular difference (α′ − α) is the reduction in azimuth due to height of P2; the
expression is given in Table 9.1. The height of the observing station P1 does not affect
the reduction because α is the angle between planes.

The need for another angular reduction follows from Figure 9.2. Assume that two
ellipsoidal surface points P1 and P2 (labeled P ′

1 and P ′
2 in Figure 9.1) are located at

TABLE 9.1 Reducing Geodetic Azimuth to Geodesic Azimuth

(
α′

1 − α1

)
[arcs] = 0.108 cos2 ϕ1 sin 2α1 h2[km] (a)

(
�
α1 − α′

1

)
[arcs]

= −0.028 cos2 ϕ1 sin 2α1

(
�
s [km]

100

)2

(b)

∆α[arcs] = 0.108 cos2 ϕ1 sin 2α1h2[km] − 0.028 cos2 ϕ1 sin 2α1

(
�
s [km]

100

)2

(c)
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Figure 9.2 Normal sections on the ellipsoid.

different latitudes. Line 1 is the normal section from P1 to P2 and line 2 indicates
the normal section from P2 to P1. It can be readily seen that these two normal
sections do not coincide, because the curvature of the ellipsoidal meridian changes
with latitude. The question is, which of these two normal sections should be adopted
for the computations? Introducing the geodesic, which connects these two points in
a unique way, solves this dilemma. There is only one geodesic from P1 to P2. Figure
9.3 shows the approximate geometric relationship between the normal sections and
the geodesic. The angular reduction (

�

α − α′) is required to get the azimuth
�

α of the
geodesic. The expression is listed in Table 9.1 (note that approximate values for the
azimuth α and length

�

s of the geodesic are sufficient for expressions on the right-hand
side of Table 9.1).

Figure 9.3 Normal section azimuth versus geodesic azimuth.
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P1

P2

h2

h1

�

� RR

s

s
�

Figure 9.4 Slant distance versus geodesic.

9.1.1.2 Distance Reduction to Geodesic The slant distance s (not to be
confused with the scale correction of Section 8.2 which uses the same symbol) must
be reduced to the length of a geodesic

�

s. Figure 9.4 shows an ellipsoidal section along
the line of sight. The expression for the length

�

s of the geodesic is typically based on
a spherical approximation of the ellipsoidal arc. At this level of approximation, there
is no need to distinguish between the lengths of the geodesic and the normal section.
The radius R, which is evaluated according to Euler’s equation (B.8) for the center of
the line, serves as radius of curvature of the spherical arc. The expressions in Table
9.2 relate the slant distance s to the lengths of the geodesic

�

s.
One should note that computing the length of the geodesic requires knowledge

of the ellipsoidal heights. Using orthometric heights might introduce errors in the
distance reduction. The height difference ∆h = h2−h1 in Expression (e) of Table 9.2
must be accurately known for lines with a large slope. Differentiating this expression
gives the approximate relation

dµ ≈ −∆h

µ
d∆h (9.1)

where d∆h represents the error in the height difference. Surveyors often reduce the
slant distance in the field to the local geodetic horizon using the elevation angle

TABLE 9.2 Reducing Slant Distance to Geodesic

1

R
= cos2 α

M
+ sin2 α

N
(d)

µ =
√√√√√

s2 − ∆h2

(
1 + h1

R

)(
1 + h2

R

) (e)

�
s = Rψ = 2R sin−1

( µ

2R

)
(f)
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TABLE 9.3 Relative Distance Error versus Height

hm[m] hm/R

6.37 1:1000000
63.7 1:100000
100 1:64000
500 1:13000
637 1:10000
1000 1:6300

that is measured together with the slant distance. For observations reduced in such a
manner, ∆h is small (although not zero), but there is now a corresponding accuracy
requirement regarding the measured elevation angle.

If both stations are located at about the same height h1 ≈ h2 ≈ hm, one obtains
from (e)

s − µ

µ
≈ hm

R
(9.2)

This equation relates the relative error in distance reduction to the mean height of
the line. Table 9.3 shows that just 6 m in height error causes a 1 ppm error in the
reduction. Networks are routinely achieved that accurately with GPS.

Since modern EDM instruments are very accurate, it is desirable to apply the
height corrections consistently. It is good to remember the rule of thumb that a 6 m
error in height of the line causes a relative change in distance of 1 ppm. We recognize
that geodetic heights are required, not orthometric heights. Since geoid undulations
can be as large as 100 m, it is clear that they must be taken into account for high-
precision surveying.

9.1.2 Direct and Inverse Solutions on the Ellipsoid

The reductions discussed above produce the geodesic observables, i.e., the geodesic
azimuths

�

α, the geodesic distance
�

s, and the angle between geodesics
�

δ. At the heart of
computations on the ellipsoidal surface are the so-called direct and inverse problems,
which are summarized in Table 9.4. For the direct problem, the geodetic latitude and
longitude of one station, say, P1(ϕ1, λ1), and the geodesic azimuth

�

α12 and geodesic
distance

�

s12 to another point P2 are given; the geodetic latitude and longitude of
station P2(ϕ2, λ2), and the back azimuth

�

α21 must be computed. For the inverse
problem, the geodetic latitudes and longitudes of P1(ϕ1, λ1) and P2(ϕ2, λ2) are given,
and the forward and back azimuth and the length of the geodesic are required. Note
that

�

s12 = �

s21 but
�

α12 �= �

α21 ± 180°. There are many solutions available in the
literature for the direct and inverse problems. Some of these solutions are valid for
geodesics that go all around the ellipsoid. We use the Gauss midlatitude (GML)
functions given in Table B.2.

Because the GML functions are a result of series developments and, as such,
subject to truncation errors, Figure 9.5 has been prepared to provide some insight into
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TABLE 9.4 Direct and Inverse Solutions on the Ellipsoid

Direct Solution Inverse Solution

P1 (ϕ1, λ1) ,
�
α12,

�
s12 P1 (ϕ1, λ1) , P2 (ϕ2, λ2)

↓ ↓
(
ϕ2, λ2,

�
α21

) (
�
α12,

�
s12,

�
α21

)

the accuracy of these expressions. The center of the graph is at (ϕ = 45°, λ = 0) and
covers the 4° × 4° test area −43° < ϕ < 47° and −2° < λ < 2°. The first step is to
compute the inverse solution between the center P(ϕ = 45°, λ = 0) and various
points Pi(ϕi, λi ) within the area. The resulting geodesic distances and azimuths

(
�

si,
�

αi ) are then put in the direct solution to compute the positions Pi,c(ϕi,c, λi,c).
The figure shows contour lines for the difference

δ = R

√(
ϕi − ϕi,c

)2 + (λi − λi,c

)2
cos2 ϕi (9.3)

The contour lines increase from zero at the center to 0.15 mm at the edge. These
values represent the accumulated effect of truncations made when developing the
GML expressions. This truncation error is essentially zero for points close to the
meridian of the center point. There is a large area of about 1° × 1° around the center
where the truncation error is less than 0.1 mm. As one departs from this central area,

Figure 9.5 Accuracy of GML functions within a 4 × 4 degree area. Contour increment is 1/10 mm.
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the truncation error increases rapidly. The basic shape of this figure and the values do
not change significantly for different latitudes of the center. Because the ellipsoid is
a figure of rotation, the longitude of the center does not matter.

The GML solution satisfies typical geodetic applications. In the unlikely case that
they are not sufficient because long lines are involved, one can always replace them
with other solutions that are valid for long geodesics.

9.1.3 Network Adjustment on the Ellipsoid

The geodesic azimuths, geodesic distances, and the angles between geodesics form a
network of stations on the ellipsoidal surface that can be adjusted using standard least-
squares techniques. The ellipsoidal network contains no explicit height information.
The height information was used during the transition of the 3D geodetic observ-
ables to the geodesic observables on the ellipsoid. Conceptually, this is expressed by
{ϕ, λ, h} → {ϕ, λ} and {α, δ, β, s, ∆h, ∆N} → {�

α,
�

δ,
�

s}. The geodetic height h is no
longer a parameter, and geodesic observables do not include quantities that directly
correspond to the geodetic vertical angle, the geodetic height difference ∆h, or the
geoid undulation difference ∆N .

Least-squares techniques are discussed in detail in Chapter 4. For discussion in
this section, we use the observation equation model

v = Ax + (�0 − �b) (9.4)

In the familiar adjustment notation the symbol v denotes the residuals, A is the design
matrix, and x represents the corrections to the approximate parameters x0. The symbol
�b denotes the observations, in this case the geodesic observables, and �0 represents
the observables as computed from the approximate parameters

x0 = [ · · · ϕi,0 λi,0 · · · ]T (9.5)

using the GML functions. If we further use the (2-1-3) subscript notation to denote
the angle measured at station 1 from station 2 to station 3 in a clockwise sense, then
the geodesic observables can be expressed as

�

α12,b = α12,b + ∆α12 (9.6)

�

δ213,b = δ213,b + ∆α13 − ∆α12 (9.7)

�

s12 = s (s12, R, h1, h2) (9.8)

In order to make the interpretation of the coordinate (parameter) shifts easier, it is
advantageous to reparameterize the parameters to northing (dni = Mi dϕi) and east-
ing (dei = Ni cos ϕi dλi ). Using the partial derivatives in Table B.3, the observation
equations for the geodesic observables become
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v�
α

= sin
�

α12,0
�

s12,0

dn1 + cos
�

α21,0
�

s12,0

de1 + sin
�

α21,0
�

s12,0

dn2 − cos
�

α21,0
�

s12,0

de2 + (�α12,0 − �

α12,b

)

(9.9)

v�

δ
=
(

sin
�

α13,0
�

s13,0

− sin
�

α12,0
�

s12,0

)
dn1 +

(
cos

�

α31,0
�

s13,0

− cos
�

α21,0
�

s12,0

)
de1

− sin
�

α21,0
�

s12,0

dn2 + cos
�

α21,0
�

s12,0

de2

+ sin
�

α31,0
�

s13,0

dn3 − cos
�

α31,0
�

s13,0

de3 + (�δ213,0 − �

δ213,b

)

(9.10)

v�
s

= − cos
�

α12,0 dn1 + sin
�

α21,0 de1 − cos
�

α21,0 dn2 − sin
�

α21,0 de2 + (�s12,0 − �

s12,b

)

(9.11)

The quantities (
�

α0,
�

β0,
�

s0) are computed from the inverse solution. The GLM func-
tions are particularly suitable for this purpose because the inverse solution is non-
iterative. The results of the adjustment of the ellipsoidal network are the adjusted
observations (

�

αa,
�

βa,
�

sa) and the adjusted coordinates

xa = [ · · · ϕi,a λi,a · · · ]T (9.12)

The partial derivatives (9.9) to (9.11) are a result of series expansion and are
therefore approximations and subject to truncation errors. It is of course necessary
that the partial derivatives and the GML functions have the same level of accuracy.
Figure 9.6 shows a test computation for the 4° × 4° test area. We first use the GML
inverse solution to compute (

�

sci,
�

αci) between center Pc(ϕc, λc) and Pi(ϕi, λi ), and
then (

�

sci,d ,
�

αci,d ) between Pc(ϕc + dϕc, λc + dλc) and Pi(ϕi + dϕi, λi + dλi ). The
differentials cause a shift on the ellipsoidal surface of

si,GML =
√(

�

sci − �

sci,d

)2 + (�αci − �

αci,d

)2 �

s2
ci (9.13)

Using the linear forms (9.9) and (9.11) (see also Table B.3), we compute

si,lin =
√

d
�

s2
ci + d

�

α2
ci

�

s2
ci (9.14)

The differences si,GML − si,lin are contoured in Figure 9.6 for the values dϕc =
dλc = dϕi = dλi = 1 m. The straight lines at the center in north-south and east-
west directions are the zero contour lines. The other contour lines increase in steps
of 0.1 mm starting at −0.4 mm in the southeast and southwest corners and ending at
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Figure 9.6 Comparing GML functions minus linearized form. Contour increment is 1/10 mm.

0.4 mm in the northwest and northeast corners. There is an agreement to better than 1
mm within the test area. The shape of the contour lines changes even with the sign of
the differentials (dϕi, dλi ). This figure, therefore, serves only as an example of what
discrepancies to expect for differentials of 1 m. There is a proportional relationship
between the magnitude of the discrepancies and the magnitude of the differentials,
at least for reasonable values of the differentials. For example, differentials of 10 m
cause discrepancies in the range of 4 mm. Since it is easy to establish approximate
coordinates of about 1 m with GPS, we can readily state that GML functions and the
differentials are consistent within 1 mm in the 4° × 4° test area.

9.2 THE CONFORMAL MAPPING MODEL

If the goal is to map the ellipsoid onto a plane in order to display it on the computer
screen or to assemble overlays of spatial data, any unique mapping from the ellipsoid
to the plane may be used. In conformal mapping, we map the ellipsoidal surface con-
formally onto a plane. The conformal property preserves angles. An angle between
two curves, say, two geodesics on the ellipsoid, is defined as the angle between the
tangents on these curves. Therefore, conformal mapping preserves the angle between
the tangents of curves on the ellipsoid and the respective mapped images. The confor-
mal property makes conformal maps useful for computations because the directional
elements between the ellipsoid and the map have a known relationship.

Users who prefer to work with plane mapping coordinates rather than geodetic
latitude and longitude can still use the 3D adjustment procedures developed in Chap-
ter 2. The given mapping coordinates can be transformed to the ellipsoidal and then
used, together with heights, in the 3D geodetic adjustment. The adjusted geodetic
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positions can subsequently be mapped to the conformal plane. A user might not even
be aware that geodetic coordinates had been used in the adjustment.

9.2.1 Reduction of Observations

Figure 9.7 shows the mapping elements (γ, ∆t, ∆s) that link the geodesic observa-
tions (

�

s,
�

α) to the corresponding observables on the mapping plane (d̄, t̄). Note that
�

s is the length of the geodesic on the ellipsoid and not the length of the mapped
geodesic that does not enter any of the equations below. The mapping plane must not
be confused with the local astronomic or geodetic horizon. It is simply the outcome
of mapping the ellipsoidal surface conformally into a plane. One can generate many
such mapping planes for the same ellipsoidal surface area.

In Figure 9.7, the Cartesian coordinate system in the mapping plane is denoted by
(x, y). The points P1(x1, y1) and P2(x2, y2) are the images of corresponding points
on the ellipsoid. Consider for a moment the geodesic that connects the points P1 and
P2 on the ellipsoid. This geodesic can be mapped point by point; the result is the
mapped geodesic as shown in the figure. This image is a smooth but mathematically
complicated curve. The straight line between the images P1 and P2 is the rectilinear
chord. The image of ellipsoidal meridian may or may not be a straight line on the
map. In order to be general, Figure 9.7 shows the tangent on the mapped meridian.
The angle between the y axis and the mapped meridian is the meridian convergence γ;
it is generally counted positive in the counterclockwise sense. Because of conformal
property, the geodetic azimuth of the geodesic is preserved during the mapping and it
must be equal to the angle between the tangents on the mapped meridian and mapped
geodesic as shown. The symbols T̄ and t̄ denote the grid azimuth of the mapped
geodesic and the rectilinear chord, respectively. The small angle ∆t = T̄ − t̄ is
called the arc-to-chord correction. It is related to the grid azimuth t̄ , the meridian
convergence γ, and the azimuth of the geodesic

�

α by

∆t = �

α − γ − t̄ (9.15)

Figure 9.7 Mapping elements.
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There is, of course, no specification in conformal mapping as to the preservation of
the length of the geodesic. Typically, one is not explicitly interested in the length of
the projected geodesic s̄, but needs the length of the rectilinear chord d̄ . The map

distance reduction, ∆s = �

s − d̄ , follows readily from the lengths of the geodesic on
the ellipsoid and the rectilinear chord. The factor

kL = d̄

�

s
(9.16)

is called the line scale factor. It must not be confused with the point scale factor k.
See Equation (C.42).

The angle between rectilinear chords on the map at station i is

δ̄i = t̄i,i+1 − t̄i,i−1 + 2π = T̄i,i+1 − ∆ti,i+1 − (T̄i,i−1 − ∆ti,i−1
)+ 2π (9.17)

The angle between the geodesics on either the ellipsoid or their mapped images is

�

δi = �

αi,i+1 − �

αi,i−1 + 2π = T̄i,i+1 + γi − (T̄i,i−1 + γi

)+ 2π = T̄i,i+1 − T̄i,i−1 + 2π

(9.18)

The difference

∆δi ≡ �

δi − δ̄i = ∆ti,i+1 − ∆ti,i−1 (9.19)

is the angular arc-to-chord reduction. Equations (9.17) to (9.19) do not depend on the
meridian convergence.

Even though the term map distortion has many definitions, one associates a small
∆t and ∆s with small distortions, meaning that the respective reductions in angle
and distance are small and perhaps even negligible. It is important to note that the
mapping elements change in size and sign with the location of the line and with its
orientation. In order to keep ∆t and ∆s small, we limit the area represented in a single
mapping plane in size, thus the need for several mappings to cover large regions of
the globe. In addition, the mapping elements are also functions of elements specified
by the designer of the map, e.g., the factor k0, the location of the central meridian, or
the standard parallel.

9.2.2 The Angular Excess

The angular reduction can be readily related to the ellipsoidal angular excess. The
sum of the interior angles of a polygon of rectilinear chords on the map (see Figure
9.8) is

∑
i

δ̄i = (n − 2) × 180◦ (9.20)

The sum of the interior angles of the corresponding polygon on the ellipsoid, consist-
ing of geodesics, is
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Figure 9.8 Angle on the map.

∑
i

�

δi = (n − 2) × 180◦ + ε (9.21)

where ε denotes the ellipsoidal angular excess. It follows from (9.19) to (9.21) that

ε =
∑

i

∆ti,i+1−
∑

i

∆ti,i−1 (9.22)

The angular excess can therefore be computed from either the sum of interior geodesic
angles, Equation (9.22), or Expression (B.65), which uses the Gauss curvature.

9.2.3 Direct and Inverse Solutions on the Map

Having the grid azimuth t̄ and the length of the rectilinear chord d̄, or the angle δ̄

between rectilinear chords, the rules of plane trigonometry apply in a straightforward
manner. In case the geodetic latitude and longitude are given, one can use the mapping
equations to compute the map coordinates first. The direct and inverse solutions are
shown in Figures 9.9 and 9.10, respectively.

The accuracy of the expressions for the transverse Mercator mapping is sampled
in Figure 9.11. First, the geodetic latitudes and longitudes (ϕi, λi ) were mapped to
(xi, yi) and then computed back to the ellipsoid giving (ϕic, λic), using the inverse
mapping functions. The distance (9.3) is plotted. The figure shows the case (λ =
2°, 0° < ϕi < 90°). The discrepancies are symmetric with respect to longitude. In
the region −2° < λi < 2° the discrepancies are even smaller. The maximum values
for λ = 3° or λ = 4° are about 0.4 mm and 3 mm, respectively.

The discrepancies seen in Figure 9.11 are the result of the combined contribution
of truncation errors in the transverse Mercator mapping functions of Tables C.1 and
C.2, as well as Expression (B.42) for the elliptic arc. The Lambert conformal mapping

{
P1 (x1, y1) ⇔ P1 (ϕ1, λ1) , d̄12, t̄12

}

↓{
x2 = x1 + d̄12 sin t̄12

y2 = y1 + d̄12 cos t̄12

}

Figure 9.9 Direct solution on the map.
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{P1 (x1, y1) , P2 (x2, y2)} ⇔ {P1 (ϕ1, λ1) , P2 (ϕ2, λ2)}
↓{

d̄12 = d (x1, y1, x2, y2)

t̄12 = t (x1, y1, x2, y2)

}

Figure 9.10 Inverse solution on the map.

is not affected by truncation errors because the conversion from the isometric latitude
to the geodetic latitude is done iteratively and is only limited by number of significant
digits carried by the computer.

9.2.4 Network Adjustment on the Map

The fact that plane trigonometry can be used makes network adjustments on the con-
formal plane especially attractive. The observed geodesic azimuth, angle, and dis-
tance (

�

α,
�

δ,
�

s) are further corrected by (∆t, ∆δ, ∆s) to obtain the respective observ-
ables on the map. During the adjustment, the current point of expansion, denoted by
the subscript 0 in the expressions below, should be used for computing the reduc-
tions. At any time during the adjustment, one may choose to deal with the geodetic
latitude and longitude or the mapping coordinates, because both sets are related by
the mapping equations. This scheme of reduction is shown in Figure 9.12. It requires
that the GML functions be used to compute the azimuth

�

α12,0.
Just to be sure that there are no misunderstandings about the term plane, let

us review what created the situation that allows us to use plane trigonometry. The
conformal mapping model builds upon the 3D geodetic and 2D ellipsoidal models
as visualized by the transition of parameters {ϕ, λ, h} → {ϕ, λ} → {x, y} and
observables {α, δ, β, s, ∆h, ∆N} → {�

α,
�

δ,
�

s} → {t̄ , δ̄, d̄}. The height parameter and
the vertical observations are not present in the conformal mapping model.

Using again the (2-1-3) subscript notation for angles and standard adjustment
notation otherwise, the mapping observables are

Figure 9.11 Accuracy of direct and inverse mapping for TM.
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{
P1
(
ϕ1,0, λ1,0, x1,0, y1,0

)
, P2
(
ϕ2,0, λ2,0, x2,0, y2,0

)}

↓{
�

s12,0,
�

α12,0, γ1,0, d̄12,0, t̄12,0

}

↓


∆t12,0 = �

α12,0 − γ1,0 − t12,0

∆s12,0 = �

s12,0 − d12,0




Figure 9.12 Reducing observations for plane network adjustments.

t̄12,b = �

α12,b − γ1,0 − ∆t12,0 (9.23)

δ̄213,b = �

δ213,b − ∆t13,0 + ∆t12,0 (9.24)

d̄12,b = �

s12,b − ∆s12,0 (9.25)

The observation equations are

vt̄ = sin t̄12,0

d̄12,0
dy1 − cos t̄12,0

d̄12,0
dx1 − sin t̄12,0

d̄12,0
dy2 + cos t̄12,0

d̄12,0
dx2 + (t̄12,0 − t̄12,b

)
(9.26)

vδ̄ =
(

sin t̄13,0

d̄13,0
− sin t̄12,0

d̄12,0

)
dy1 −

(
cos t̄13,0

d̄13,0
− cos t̄12,0

d̄12,0

)
dx1 + sin t̄12,0

d̄12,0
dy2

− cos t̄12,0

d̄12,0
dx2 − sin t̄13,0

d̄13,0
dy3 + cos t̄13,0

d̄13,0
dx3 + (t̄13,0 − t̄13,b

) (9.27)

vd̄ = − cos t̄12,0 dy1 − sin t̄12,0 dx1 + cos t̄12,0 dy2 + sin t̄12,0 dx2 + (t̄12,0 − t̄12,b

)

(9.28)

The scheme in Figure 9.12 suggests that the reduction elements ∆t and ∆s be com-
puted from the approximate coordinates and that the GML functions be used to com-
pute the geodesic azimuth. The use of the GML type of functions can be avoided if
explicit functions for ∆t and ∆s are available.

9.2.5 The ∆t and ∆s Functions

The literature contains functions that relate ∆t and ∆s explicitly to the geodetic
latitude and longitude or mapping coordinates, i.e.,

∆t = tgeod(ϕ1, λ2, ϕ1, λ2) = tmap(x1, y2, x1, y2) (9.29)

∆s = sgeod(ϕ1, λ2, ϕ1, λ2) = smap(x1, y2, x1, y2) (9.30)
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{
P1
(
ϕ1,0, λ1,0, x1,0, y1,0

)
, P2
(
ϕ2,0, λ2,0, x2,0, y2,0

)}

↓{
d̄12,0, t̄12,0, γ1,0, k1,0, k2,0, km,0, ∆t12,0, ∆s12,0

}

Figure 9.13 Mapping reductions using functions for ∆t and ∆s.

The available functions (tgeod, sgeod) or (tmap, smap) are typically again a result of
series expansions and truncations. The derivation of (9.29) and (9.30) requires at least
as much algebraic work as the derivation of the GML functions and the mapping
equations because the mapped geodesic is involved. These functions are, strictly
speaking, not needed if we use the GML functions as demonstrated above. The
reduction scheme using the explicit functions of ∆t and ∆s is shown in Figure 9.13. It
does not contain the geodesic azimuth

�

α12,0 explicitly. The point scale factor k serves
merely as an auxiliary quantity to express ∆s in a compact form. The subscripts of
k indicate the point of evaluation. In the case of m, k is evaluated at the midpoint
[(ϕ1 + ϕ2)/2, (λ1 + λ2)/2]. See Table 9.5 for a listing of the expressions.

Computing the angular access of a polygon is a convenient way to verify the
accuracy of the ∆t expressions. First, we compute the angular excess of a geodesic
polygon on the ellipsoid using the GML functions. For reasons of convenience, we
choose equally spaced points from a geodesic circle as the vertices of the geodesic
polygon (points on the geodesic circle and the center of the circle are connected
by a geodesic with the same length). The sides of the polygon must, of course, be
geodesics. The latter is automatically achieved since the geodesic angle between the
sides of the polygon is computed from the GML functions. The conformal mappings
are specified by the central meridian and the standard parallel that go through the
center of the circle, as well as taking k0 = 1. The radius of the geodesic circle, i.e.,
the size of the polygon, was varied from zero to the equivalent of about 2°. Figure
9.14 shows the differences in the angular excess for these polygons as computed from
the GML functions and the explicit functions of Table 9.5. The figure shows that the
TM and LC expressions in Table 9.5 are of the same accuracy within the region of
computation and that they agree to about 0.1 arcsec with the GML computation.
Since the angular excess is independent of the specific conformal mapping the lines
in Figure 9.14 coincide, in theory.

TABLE 9.5 Explicit Functions for ∆t and ∆s

TM: ∆t1 = (x2 + 2x1) (y2 − y1)

6k2
0R

2
1

LC: ∆t1 = (2y1 + y2) (x1 − x2)

6k2
0R

2
0

1

kL

≡
�
s

d̄
= 1

6

(
1

k1
+ 4

km

+ 1

k2

)

∆s = �
s (1 − kL)
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Figure 9.14 Accuracy of the ∆t functions.

The accuracy of the expressions for ∆s can be verified similarly. First, we map
the center of the geodesic circle and the polygon vertices using the direct mapping
equations. Next, we compute the map distances d̄i between the mapped center and
mapped polygon points, and form the difference ∆si,dm = �

si − d̄i . The subscript
dm indicates that these values were obtained by using the direct mapping equations.
Next, the values ∆si are computed from the explicit expressions in Table 9.5. Figure
9.15 shows the differences ∆si − ∆si,dm for both TM and LC. The same conformal
mapping specifications have been used as given above, and, again, the radius of the
geodesic circle covers up to 2°. The figure demonstrates millimeter-level agreement
in the range of the test area.

Expressions for ∆t and ∆s that are even more accurate are available in the litera-
ture.

9.2.6 Similarity Revisited

In Appendix C, the conformal property is identified as similarity between infinites-
imally small figures. It is, of course, difficult to interpret such a statement because

Figure 9.15 Accuracy of the ∆s functions.
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Figure 9.16 Similarity transformation of two mapped geodesic circles as a function of
radius.

one typically does not think in terms of infinitesimally small figures. Transforming
two clusters of points that were generated with two different maps can readily expose
the degree of similarity. If the discrepancies exceed a specified limit, then similarity
transformation cannot be used in practice to transform clusters of points between
different maps.

We use n equally spaced points on a geodesic circle on the ellipsoid with its center
at ϕ0 = 45° and central meridian and then map these points with the transverse
Mercator and Lambert conformal mapping functions. We use k0 = 1. These two sets
of map coordinates are input to a least-squares solution that estimates the parameters
of a similarity transformation, i.e., two translations, one scale factor, and one rotation
angle. The least-squares solution also generates residuals vxi

and vyi
for station i,

which we use to compute the station discrepancy di = (v2
xi

+ v2
xi
)1/2. We use the

average of the di as a measure of fit. The radius of the geodesic circle is incremented
from 10 to 100 km for the solutions shown in Figure 9.16. The 1 m average is reached
just beyond the 50 km radius. The shape of this curve and the magnitude of the

Figure 9.17 Similarity transformation of two mapped geodesic circles as a function of
location.
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discrepancies depend on the specifications of the mappings. The figure shows an
optimal situation because the circle is centered at the origin of the Lambert conformal
mapping and at the central meridian of the Mercator mapping. With k0 = 1 the area
around the center of the circle has the least distortion and the similarity model fits
relatively well.

Figure 9.17 shows discrepancies for different locations of the geodesic circle
within the mapping area while the radius remains constant at 10 km. For line 1 (LC),
the standard parallel of the Lambert conformal mapping shifts from 45° to 46° while
the center of the geodesic circle remains at latitude 45°. In the case of line 2 (TM),
the center of the geodesic circle moves from 0° to 1° in longitude while maintaining
a latitude of 45°.
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APPENDIX A

GENERAL BACKGROUND

This appendix provides mathematical material that is handy to have available in a
classroom situation to support key derivations or conclusions of the main chapters.
It begins with a listing of expressions from spherical trigonometry. The rotation
matrices are given along with brief definitions of positive and negative rotations.
The sections on linear algebra, linearization, and statistics contain primary reference
material for the least-squares adjustment given in Chapter 4. The subsection on the
distribution of sums of variables is particularly useful when deriving the distribution
of vTPv.

A.1 SPHERICAL TRIGONOMETRY

The sides of a spherical triangle are defined by great circles. A great circle is an
intersection of the sphere with a plane that passes through the center of the sphere.
It follows from geometric consideration of the special properties of the sphere that
great circles are normal sections and geodesic lines. Figure A.1 shows a spheri-
cal triangle with corners (A, B, C), sides (a, b, c), and angles (α, β, γ). Notice that
the sequence of the elements in the respective triplets is consistent, counterclock-
wise in this case. The sides of the spherical triangle are given in angular units.
In many applications, one of the corners of the spherical triangle represents the
North or South Pole. Documentation of the expressions listed below is readily avail-
able from the mathematical literature. Complete derivations can be found in Sigl
(1977).

340
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A

B

C

a

b
c

α

β
γ

Figure A.1 The spherical triangle.

Law of Sine

sin a

sin α
= sin b

sin β
(A.1)

sin a

sin α
= sin c

sin γ
(A.2)

Law of Cosine for Sides

cos a = cos b cos c + sin b sin c cos α

cos b = cos c cos a + sin c sin a cos β

cos c = cos a cos b + sin a sin b cos γ




(A.3)

Law of Cosine for Angles

cos α = − cos β cos γ + sin β sin γ cos a

cos β = − cos γ cos α + sin γ sin α cos b

cos γ = − cos α cos β + sin α sin β cos c




(A.4)
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Five Argument Formulas

sin a cos β = cos b sin c − sin b cos c cos α

sin b cos γ = cos c sin a − sin c cos a cos β

sin c cos α = cos a sin b − sin a cos b cos γ




(A.5)

sin a cos γ = cos c sin b − sin c cos b cos α

sin b cos α = cos a sin c − sin a cos c cos β

sin c cos β = cos b sin a − sin b cos a cos γ




(A.6)

sin α cos b = cos β sin γ + sin β cos γ cos a

sin β cos c = cos γ sin α + sin γ cos α cos b

sin γ cos a = cos α sin β + sin α cos β cos c




(A.7)

sin α cos c = cos γ sin β + sin γ cos β cos a

sin β cos a = cos α sin γ + sin α cos γ cos b

sin γ cos b = cos β sin α + sin β cos α cos c




(A.8)

Four Argument Formulas

sin α cot β = cot b sin c − cos c cos α

sin α cot γ = cot c sin b − cos b cos α

sin β cot γ = cot c sin a − cos a cos β

sin β cot α = cot a sin c − cos c cos β

sin γ cot α = cot a sin b − cos b cos γ

sin γ cot β = cot b sin a − cos a cos γ




(A.9)

Gauss (Delambre, Mollweide) Formulas—not all permutations listed

sin
α

2
sin

b + c

2
= sin

a

2
cos

β − γ

2
(A.10)

sin
α

2
cos

b + c

2
= cos

a

2
cos

β + γ

2
(A.11)

cos
α

2
sin

b − c

2
= sin

a

2
sin

β − γ

2
(A.12)

cos
α

2
cos

b − c

2
= cos

a

2
sin

β + γ

2
(A.13)
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Napier Analogies—not all permutations listed

tan
a + b

2
= tan

c

2

cos
α − β

2

cos
α + β

2

(A.14a)

tan
a − b

2
= tan

c

2

sin
α − β

2

sin
α + β

2

(A.14b)

tan
α + β

2
= cot

γ

2

cos
a − b

2

cos
a + b

2

(A.15a)

tan
α − β

2
= cot

γ

2

sin
a − b

2

sin
a + b

2

(A.15b)

Half Angle Formulas

s = (a + b + c)/2 (A.16)

k =
√

sin(s − a) sin(s − b) sin(s − c)

sin s
(A.17)

tan
α

2
= k

sin(s − a)
(A.18)

tan
β

2
= k

sin(s − b)
(A.19)

tan
γ

2
= k

sin(s − c)
(A.20)

Half Side Formulas

σ = (α + β + γ)/2 (A.21)

k′ =
√

cos(σ − α) cos(σ − β) cos(σ − γ)

− cos σ
(A.22)
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tan
a

2
= cos(σ − α)

k′ (A.23)

tan
b

2
= cos(σ − β)

k′ (A.24)

tan
c

2
= cos(σ − γ)

k′ (A.25)

L’Huilier-Serret Formulas

M =

√√√√√√
tan

s − a

2
· tan

s − b

2
· tan

s − c

2

tan
s

2

(A.26)

tan
ε

4
= M · tan

s

2
(A.27)

tan
(α

2
− ε

4

)
= M · cot

s − a

2
(A.28)

tan

(
β

2
− ε

4

)
= M · cot

s − b

2
(A.29)

tan
(γ

2
− ε

4

)
= M · cot

s − c

2
(A.30)

The symbol ε denotes the spherical angular excess. The area of spherical triangle can
be expressed as

∆ = ε r2 (A.31)

where r denotes the radius of the sphere.

A.2 ROTATION MATRICES

Rotations between coordinate systems are very conveniently expressed in terms of
rotation matrices. The rotation matrices

R1(θ) =



1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 (A.32)
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R2(θ) =



cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 (A.33)

R3(θ) =



cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 (A.34)

describe rotations by the angle θ of a right-handed coordinate system around the first,
second, and third axes, respectively. The rotation angle is positive for a counterclock-
wise rotation, as viewed from the positive end of the axis about which the rotation
takes place. The result of successive rotations depends on the specific sequence of
the individual rotations. An exception to this rule is differentially small rotations for
which the sequence of rotations does not matter.

A.3 LINEAR ALGEBRA

Surveying computations rest heavily upon concepts from linear algebra. In general,
there is a nonlinear mathematical relationship between the observations and other
quantities, such as coordinates, height, area, and volume. Seldom is there a natu-
ral linear relation between observations as there is in spirit leveling. Least-squares
adjustment and statistical treatment require that nonlinear mathematical relations be
linearized; i.e., the nonlinear relationship is replaced by a linear relationship. Possible
errors caused by neglecting the nonlinear portion are eliminated through appropri-
ate iteration. The result of linearization is a set of linear equations that is subject to
further analysis, thus the need to know the elements of linear algebra. The use of
linear algebra in the derivation and analysis of surveying measurements fortunately
does not require the memorization of all possible proofs and theorems. Strang and
Borre (1997) is a very useful reference that emphasizes linear algebra as it applies
to geodesy and GPS. This appendix merely summarizes some elements from linear
algebra for the sake of completeness.

A.3.1 Determinants and Matrix Inverse

Let the elements of a matrix A be denoted by aij , where the subscript i denotes the
row and j the column. A u × u square matrix A has a uniquely defined determinant,
denoted by |A|, and said to be of order u. The determinant of a 1 × 1 matrix equals
the matrix element. The determinant of A is expressed as a function of determinants
of submatrices of size (u − 1) × (u − 1), (u − 2) × (u − 2), etc. until the size 2
or 1 is reached. The determinant is conveniently expressed in terms of minors and
cofactors.
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The minor can be computed for each element of the matrix. It is equal to the
determinant after the respective row and column have been deleted. For example,
the minor for i = 1 and j = 2 is

m12 =

∣∣∣∣∣∣∣∣∣∣

a21 a23 · · · a2u

a31 a33 · · · a3u

...
... · · · ...

au1 au3 · · · auu

∣∣∣∣∣∣∣∣∣∣
(A.35)

The cofactor cij is equal to plus or minus the minor, depending on the subscripts i

and j ,

cij = (−1)i+j mij (A.36)

The determinant of A can now be expressed as

|A| =
u∑

j=1

akj ckj (A.37)

The subscript k is fixed in (A.37) but can be any value between 1 and u; i.e., the deter-
minant can be computed based on the minors for any one of the u rows or columns.
Of course, the determinant (A.35) can be expressed as a function of determinants of
matrixes of size (u − 2) × (u − 2), etc.

Determinants have many useful properties. For example, the rank of a matrix
equals the order of the largest nonsingular square submatrix, i.e., the largest order
for a nonzero determinant that can be found. The determinant is zero and the matrix
is singular if the columns or rows of A are linearly dependent. The inverse of the
square matrix can be expressed as

A−1 = 1

|A|CT (A.38)

where C is the cofactor matrix consisting of the elements cij given in (A.36). The
product of the matrix and its inverse equals the identity matrix, i.e., AA−1 = I and
A−1A = I. These simple relations do not hold for generalized matrix inverses that
can be computed for singular or even rectangular matrices. Information on gener-
alized inverses is available in the standard mathematical literature. The inverse of a
nonsingular square matrix A, B, C, follows the simple rules

(ABC)−1 = C−1B−1A−1 (A.39)

Computation techniques for inverting nonsingular square matrices abound in lin-
ear algebra textbooks. In many cases the matrices to be inverted show a definite pat-
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tern and are often sparsely populated. When solving large systems of equations, it
might be necessary to take advantage of these patterns in order to reduce the com-
putation load (George and Liu, 1981). Very useful subroutines are available in the
public domain, e.g., Milbert (1984). Some applications might produce ill-conditioned
(numerically near-singular) matrices that require special attention.

A.3.2 Eigenvalues and Eigenvectors

Let A denote a u × u matrix and x be a u × 1 vector. If x fulfills the equation

A x = λ x (A.40)

it is called an eigenvector, and the scalar λ is the corresponding eigenvalue. Equation
(A.40) can be rewritten as

(A − λI) x = o (A.41)

If x0 denotes a solution of (A.41) and α is a scalar, then αx0 is also a solution. It follows
that (A.41) provides only the direction of the eigenvector. There exists a nontrivial
solution for x if the determinant is zero; i.e.,

|A − λI| = 0 (A.42)

This is the characteristic equation. It is a polynomial of the uth order in λ, providing u

solutions λi, with i = 1, · · · , u. Some of the eigenvalues can be zero, equal (multiple
solution), or even complex. Equation (A.41) provides an eigenvector xi for each
eigenvalue λi.

For a symmetric matrix, all eigenvalues are real. Although the characteristic equa-
tion might have multiple solutions, the number of zero eigenvalues is equal to the
rank defect of the matrix. The eigenvectors are mutually orthogonal,

xT
i xj = 0 (A.43)

For positive-definite matrices all eigenvalues are positive. Let the normalized eigen-
vectors xi/ ‖xi‖ be denoted ei ; we can combine the normalized eigenvectors into a
matrix,

E = [e1 e2 · · · eu] (A.44)

The matrix E is an orthonormal matrix for which

ET = E−1 (A.45)

holds.
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A.3.3 Diagonalization

Consider again a u × u matrix A and the respective matrix E that consists of the
normalized eigenvectors. The product of these two matrices is

AE = [Ae1 Ae2 · · · Aeu]

= [λ1e1 λ2e2 · · · λueu]

= E Λ

(A.46)

where Λ is a diagonal matrix with λi as elements at the diagonal. Multiplying this
equation by ET from the left and making use of Equation (A.45), one gets

ETAE = Λ (A.47)

Taking the inverse of both sides by applying the rule (A.39) and using (A.45) gives

ETA−1E = Λ−1 (A.48)

Equation (A.47) simply states that if a matrix A is premultiplied by ET and postmulti-
plied by E, where the columns of E are the normalized eigenvectors, then the product
is a diagonal matrix whose diagonal elements are the eigenvalues of A. Equation
(A.47) is further modified by

Λ−1/2ETAEΛ−1/2 = I (A.49)

Defining the matrix D as

D ≡ EΛ−1/2 (A.50)

then

DTAD = I (A.51)

If the u×u matrix A is positive-semidefinite with rank R(A) = r < u, an equation
similar to (A.47) can be found. Consider the matrix

E = [uFr uGu−r

]
(A.52)

where the column of F consists of the normalized eigenvectors that pertain to the r

nonzero eigenvalues. The submatrix G consists of u − r eigenvectors that pertain to
the u− r zero eigenvalues. The columns of F and G span the column and null space,
respectively, of the matrix A. Because of Equation (A.40) it follows that

A G = O (A.53)

Applying Equations (A.52) and (A.53) gives



LINEAR ALGEBRA 349

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[34

Lin

—
0.6
——
No

PgE

[34

ETAE =
[

FT

GT

]
A [F G] =

[
FTAF O

O O

]
=
[

Λ O

O O

]
(A.54)

The submatrix contains the r nonzero eigenvalues. If

D = (FΛ−1/2 � G) (A.55)

it follows that

DTAD =
[

I O

O O

]
(A.56)

where the symbol I denotes an r × r identity matrix.

A.3.4 Quadratic Forms

Let A denote a u × u matrix and x be a u × 1 vector. Then

v = xTAx (A.57)

is a quadratic form. The matrix A is called positive semidefinite if for all x

xTAx ≥ 0 (A.58)

and positive definite if for all x

xTAx > 0 (A.59)

The following are some of the properties that are valid for a positive definite matrix A:

1. R(A) = u (full rank).

2. aii > 0 for all i.

3. The inverse A−1 is positive definite.

4. Let B be an n × u matrix with rank u < n. Then the matrix BTAB is positive
definite. If R(B) = r < u, then BTAB is positive semidefinite.

5. Let D be a q × q matrix formed by deleting u − p rows and the corresponding
u − p columns of A. Then D is positive definite.

A necessary and sufficient condition for a symmetric matrix to be positive definite is
that the principal minor determinants be positive; i.e.,

a11 > 0,

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ > 0, . . . , |A| > 0 (A.60)

or that all eigenvalues are real and positive.
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If A is positive definite, then (A.57) is the equation of a u-dimensional ellipsoid
expressed in a Cartesian coordinate system (x). The center of the ellipsoid is at x = o.
Transforming (rotating) the coordinate system (x)

x = E y (A.61)

expresses the quadratic form in the (y) coordinate system,

yTETAEy = v (A.62)

Since the matrix E consists of normalized eigenvectors we can use (A.47) to obtain
the simple expressions

v = yTΛ y

= y2
1 λ1 + y2

2 λ2 + · · · + y2
u λu

(A.63)

This expression can be written as

y2
1

v/λ1
+ y2

2

v/λ2
+ · · · + y2

u

v/λu

= 1 (A.64)

This is the equation for the u-dimensional ellipsoid in the principal axes form; i.e.,
the coordinate system (y) coincides with the principal axes of the hyperellipsoid, and
the lengths of the principal axes are proportional to the reciprocal of the square root
of the eigenvalues. All eigenvalues are positive because the matrix A is positive def-
inite. Equation (A.61) determines the orientation between the (x) and (y) coordinate
systems. If A has a rank defect, the dimension of the hyperellipsoid is R(A) = r < u.

Let the vectors x and y be of dimension u × 1 and let the u × u matrix A contain
constants. Consider the quadratic form

w = xTA y = yTAT x (A.65)

Because (A.65) is a 1 × 1 matrix, the expression can be transposed. This fact is used
frequently to simplify expressions when deriving least-squares solutions. The total
differential dw is

dw = ∂w

∂x
dx + ∂w

∂y
dy (A.66)

The vectors dx and dy contain the differentials of the components of x and y, respec-
tively. From (A.66) and (A.65) it follows that

dw = yTATdx + xTA dy (A.67)

If the matrix A is symmetric, then the total differential of
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φ = xTA x (A.68)

is, according to (A.67),

dφ = 2xTA dx (A.69)

The gradient of φ with respect to x is

∂φ

∂x
≡
[

∂φ

∂x1
· · · ∂φ

∂xu

]T

= 2 A x (A.70)

Equation (A.70) can be readily verified by computing the partial derivatives ∂φ/∂xt

at the t th component,

∂xTA x
∂xt

= ∂

∂xi




k∑
j=1

k∑
i=1

xixjaij




=
k∑

j=1

xjatj +
k∑

i=1

xiait = 2
k∑

j=1

xjatj

= [2Ax]t

(A.71)

because A is symmetric.
Equation (A.70) is the foundation for deriving least-squares solutions, which re-

quires locating the stationary point (minimum) for a quadratic function. The proce-
dure is to take the partial derivatives with respect to all variables and equate them
to zero. While the details of the least-squares derivations are given in Chapter 4, the
following example serves to demonstrate the principle of minimization using matrix
notation.

Let B denote an n × u rectangular matrix with n > u, � is an n × 1 vector, and
P an n × n symmetric weight matrix that can include the special case P = I. The
elements of B, �, and P are constants. The least-squares solution of

v = B x + � (A.72)

requires φ(x) ≡ vTPv = min. First, we compute the gradient (column vector)

∂vTPv
∂x

= ∂

∂x

[
(Bx + �)T P (Bx + �)

]

= ∂

∂x

(
2�T PBx + xT BT PBx + �T P�

)

= 2BT PBx + 2BT P�

(A.73)

and equate it to zero,
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∂vTPv
∂x

= o (A.74)

to assure that the least-squares solution for x, denoted by x̂,

x̂ = − (BT PB
)−1

BT P� (A.75)

at least represents a stationary point of φ(x). In Chapter 4 we verify that indeed a
minimum has also been achieved.

A.3.5 Matrix Partitioning

Consider the following partitioning of the nonsingular square matrix N,

N =
[

N11 N12

N21 N22

]
(A.76)

where N11 and N22 are square matrices, although not necessarily of the same size.
Let’s denote the inverse matrix by Q and partition it accordingly; i.e.,

Q = N−1 =
[

Q11 Q12

Q21 Q22

]
(A.77)

so that the sizes of N11 and Q11, N12 and Q12, etc., are respectively the same. Equa-
tions (A.76) and (A.77) imply the following four relations:

N11Q11 + N12Q21 = I (A.78)

N11Q12 + N12Q22 = O (A.79)

N21Q11 + N22Q21 = O (A.80)

N21Q12 + N22Q22 = I (A.81)

The solutions for the submatrices Qij are carried out according to the standard rules
for solving a system of linear equations, with the restriction that the inverse is de-
fined only for square submatrices. Multiplying (A.78) from the left by N21N−1

11 and
subtracting the product from (A.80) gives

Q21 = − (N22 − N21N−1
11 N12

)−1
N21N−1

11 (A.82)

Multiplying (A.79) from the left by N21N−1
11 and subtracting the product from (A.81)

gives

Q22 = (N22 − N21N−1
11 N12

)−1
(A.83)



LINEAR ALGEBRA 353

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[35

Lin

—
0.2
——
No

PgE

[35

Substituting (A.83) in (A.79) gives

Q12 = −N−1
11 N12

(
N22 − N21N−1

11 N12

)−1
(A.84)

Substituting (A.82) in (A.78) gives

Q11 = N−1
11 + N−1

11 N12

(
N22 − N21N−1

11 N12

)−1
N21N−1

11 (A.85)

An alternative solution for (Q11,Q12,Q21,Q22) is readily obtained. Multiplying (A.80)
from the left by N12N−1

22 and subtracting the product from (A.78) gives

Q11 = (N11 − N12N−1
22 N21

)−1
(A.86)

Substituting (A.86) in (A.80) gives

Q21 = −N−1
22 N21

(
N11 − N12N−1

22 N21

)−1
(A.87)

Premultiplying (A.81) by N12N−1
22 and subtracting (A.79) gives

Q12 = − (N11 − N12N−1
22 N21

)−1
N12N−1

22 (A.88)

Substituting (A.88) in (A.81) gives

Q22 = N−1
22 + N−1

22 N21

(
N11 − N12N−1

22 N21

)−1
N12N−1

22 (A.89)

Usually the above partitioning technique is used to reduce the size of large matri-
ces that must be inverted or to derive alternative expressions. Because these matrix
identities are frequently used, and because they look somewhat puzzling unless one
is aware of the simple solutions given above, they are summarized here again to be
able to view them at a glance;

(
N11 − N12N−1

22 N21

)−1 = N−1
11 + N−1

11 N12

(
N22 − N21N−1

11 N12

)−1
N21N−1

11 (A.90)

N−1
11 N12

(
N22 − N21N−1

11 N12

)−1 = (N11 − N12N−1
22 N21

)−1
N12N−1

22 (A.91)

(
N22 − N21N−1

11 N12

)−1
N21N−1

11 = N−1
22 N21

(
N11 − N12N−1

22 N21

)−1
(A.92)

(
N22 − N21N−1

11 N12

)−1 = N−1
22 + N−1

22 N21

(
N11 − N12N−1

22 N21

)−1
N12N−1

22 (A.93)

A.3.6 Cholesky Factor

For positive definite matrices the square root method, also known as the Cholesky
method, is an efficient way to solve systems of equations and to invert the matrix.
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Because N is positive definite, it is written as the product of a lower triangular matrix
L and an upper triangular matrix LT:

N = LLT (A.94)

It is readily seen that if E is an orthonormal matrix having the property (A.45) then
the new matrix B = LE is also a Cholesky factor because BBT = LEETLT = LLT.

The lower and upper triangular matrices have several useful properties. For ex-
ample, the eigenvalues of a triangular matrix equal the diagonal elements, and the
determinant of the triangular matrix equals the product of the diagonal elements. Be-
cause the determinant of a matrix product is equal to the product of the determinants
of the factors, it follows that N is singular if one of the diagonal elements of L is
zero. This fact can be used advantageously during the computation of L to eliminate
parameters that cause a singularity.

The Cholesky algorithm provides the instruction for computing the lower triangu-
lar matrix L. The elements of L are

ljk =




√√√√njj −
j−1∑
m=1

l2
jm for k = j

1

lkk

(
njk −

k−1∑
m=1

ljmlkm

)
for k < j

0 for k > j

(A.95)

where 1 ≤ j ≤ u and 1 ≤ k ≤ u. The Cholesky algorithm preserves the pattern of
leading zeros in the rows and columns of N, as can be readily verified. For example,
if the first x elements in row y of N are zero, then the first x elements in row y of
L are also zero. Taking advantage of this fact speeds up the computation of L for a
large system that exhibits significant patterns of leading zeros. The algorithm (A.95)
begins with the element l11. Subsequently, the columns (or rows) can be computed
sequentially from 1 to u, whereby previously computed columns (or rows) remain
unchanged while the next one is computed.

The inverse of the submatrix Q22—see (A.77)—can be conveniently expressed as
a function of the submatrix L22. Using L,

L =
[

L11 O

L21 L22

]
(A.96)

to express N in terms of submatrices,

N =

L11LT

11 L11LT
21

L21LT
11 L21LT

21 + L22LT
22


 (A.97)
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and applying (A.83) readily gives

Q−1
22 = L22LT

22 (A.98)

Depending on the application one might group the parameters such that (A.98) can
be used directly, i.e., the needed inverse is a simple function of the Cholesky factors
that had been computed previously.

The diagonal elements of L are not necessarily unity. Consider a new matrix G
with elements taken from L such that gjk = ljk/ ljj and a new diagonal matrix D such
that djj = l2

jj ; then

L = G
√

D (A.99)

N = LLT = GDGT (A.100)

Because N is a positive definite matrix, the diagonal elements of G are +1.
The unknown x can be solved without explicitly inverting the matrix. Assume that

we must solve the system of equations

Nx = u (A.101)

The first step in the solution of (A.101) is to substitute (A.94) for N and premultiply
with L−1 to obtain the triangular equations

LTx = L−1u (A.102)

Denoting the right-hand side of (A.102) by cu and multiplying by L, we can write

LTx = cu (A.103)

L cu = u (A.104)

We solve cu from (A.104) starting with the first element. Using L and cu, the solution
of (A.103) yields the parameters x, starting with the last element.

In least-squares, the auxiliary quantity

l = −cT
ucu = − (L−1u

)T (
L−1u

) = −uTN−1u (A.105)

is useful for computing vTPv (see Table 4.1) to assess the quality of the adjustment.
The Cholesky algorithm provides l from cu without explicitly using the inverses of
N and L.

Computing the inverse requires a much bigger computational effort than merely
solving the system of equations. The first step is to make u solutions of the type
(A.104) to obtain the columns of C,

LC = I (A.106)
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where I is the u×u identity matrix. This is followed by u solutions of the type (A.103),
using the columns of C for cu, to obtain the respective u columns of the inverse of N.

The Cholesky factor L can be used directly to compute uncorrelated observations.
From (A.94) it follows that premultiplying N with L−1 and postmultiplying it with
the transpose gives the identity matrix. Therefore, the Cholesky factor L can be used
in ways similar to the matrix D in (A.51). A frequent application is the decorrelation
of observations. In this case the inverse L−1 is not required explicitly. For example, if
we let L now denote the Cholesky factor of the covariance matrix of the observations
Σ�b

, then the transformation (4.235) can be written as

L−1v = L−1Ax + L−1� (A.107)

Denoting the transformed observations by a bar, we get

v̄ = Āx + �̄ (A.108)

L �̄ = � (A.109)

L Āα = Aα (A.110)

The matrix Ā and the vector �̄ can be computed directly with L using (A.110)
and (A.109), respectively. The subscript α in (A.110) indicates the column. Upon
completion of the adjustment the residuals follow from

L v̄ = v (A.111)

It is at times advantageous to work with decorrelated observations. Examples are
horizontal angle observations or even GPS vectors. Decorrelated observations can
be added one at a time to the adjustment, whereas correlated observations should be
added by sets. See also Section 4.10.6 for a discussion of decorrelated redundancy
numbers.

A.4 LINEARIZATION

Observations are often related by nonlinear functions of unknown parameters. The
adjustment algorithm uses a linear functional relationship between the observations
and the parameters and uses iterations to account for the nonlinearity. To perform an
adjustment, one must therefore linearize these relationships. Expanding the functions
in a Taylor series and retaining only the linear terms accomplishes this. Consider the
nonlinear function

y = f (x) (A.112)

which has one variable x. The Taylor series expansion of this function is
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y = f (xo) + ∂y

∂x

∣∣∣∣x0

dx + 1

2!

∂2y

∂x2

∣∣∣∣x0

dx2 + · · · (A.113)

The linear portion is given by the first two terms

ȳ = f (xo) + ∂y

∂x

∣∣∣∣x0

dx (A.114)

The derivative is evaluated at the point of expansion x0. At the point of expansion,
the linearized and the nonlinear functions are tangent. They separate by

ε = y − ȳ (A.115)

as x departs from the expansion point x0. The linear form (A.114) is a sufficiently
accurate approximation of the nonlinear relation (A.112) only in the vicinity of the
point of expansion.

The expansion of a two-variable function

z = f (x, y) (A.116)

is

z = f (x0, y0) + ∂z

∂x

∣∣∣∣x0,y0

dx + ∂z

∂y

∣∣∣∣x0,y0

dy + · · · (A.117)

The point of expansion is P(x = x0,y = y0). The linearized form

z̄ = f (x0, y0) + ∂z

∂x

∣∣∣∣x0,y0

dx + ∂z

∂y

∣∣∣∣x0,y0

dy (A.118)

represents the tangent plane on the surface (A.116) at the expansion point. A gener-
alization for the expansion of multivariable functions is readily seen. If n functions
are related to u variables as in

y = f(x) =




f1(x)

f2(x)

...

fn(x)




=




f1(x1, x2, · · · , xu)

f2(x1, x2, · · · , xu)

...

fn(x1, x2, · · · , xu)




(A.119)

the linearized form is

ȳ = f(x0) + ∂f
∂x

∣∣∣∣x0

dx (A.120)

where
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∂f
∂x

= nGu =




∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xu

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xu

...
... · · · ...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xu




(A.121)

The point of expansion is P(x = x0). Every component of y is differentiated with
respect to every variable. Thus, the matrix G has as many columns as there are
parameters, and as many rows as there are components in y. The components of f(x0)

are equal to the respective functions evaluated at x0.

A.5 STATISTICS

Brief explanations are given on one-dimensional distributions and hypothesis testing.
The material of this appendix can be found in the standard literature on statistics. The
expressions for the noncentral distribution are given, e.g., in Koch (1988).

A.5.1 One-Dimensional Distributions

The chi-square density function is given by

f (x) =



1

2r/2 Γ(r/2)
x(r/2)−1e−x/2 x > 0

0 elsewhere

(A.122)

The symbol r denotes a positive integer and is called the degree of freedom. The
mean, i.e., the expected value, equals r , and the variance equals 2r . The degree of
freedom is sufficient to describe completely the chi-square distribution. The symbol
Γ denotes the well-known gamma function, which is dealt with in books on advanced
calculus and can be written as

Γ(g) = (g − 1)! (A.123)

Γ

(
g + 1

2

)
=

√
π

22g

Γ(2g)

Γ(g)
(A.124)

for positive integer g. Examples of the chi-square distribution for small degrees of
freedom are given in Figure A.2. The probability that the random variable x̃ is less
than wα is
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Figure A.2 Chi-square distribution of various degrees of freedom.

P(x̃ < wα) =
∫ wα

0
f (x) dx = 1 − α (A.125)

Equation (A.125) implies that to the right of wα there is the probability α; integrating
from wα to infinity gives α. If x̃ has a chi-square distribution, then this is expressed
by the notation x̃ ∼ χ2

r .
The distribution (A.122) is more precisely called the central chi-square distribu-

tion. The noncentral chi-square is a generalization of this distribution. The density
function does not have a simple closed form; it consists of an infinite sum of terms.
If x̃ has a noncentral chi-square distribution, this is expressed by x̃ ∼ χ2

r,λ
where λ

denotes the noncentrality parameter. The mean is

E(x̃) = r + λ (A.126)

as opposed to just r for the central chi-square distribution.
The density function of the normal distribution is

f (x) = 1

σ
√

2π
e−(x−µ)2/2σ2 −∞ < x < ∞ (A.127)

where µ and σ2 denote the mean and the variance. The notation x̃ ∼ n(µ, σ2) is usu-
ally used. The two parameters µ and σ completely describe the normal distribution.
See Figure A.3. The normal distribution has the following characteristics:

1. The distribution is symmetric about the mean.

2. The maximum density is at the mean.

3. For small variances, the maximum density is larger and the slopes are steeper
than in the case of large variances.

4. The inflection points are at x = µ ± σ.

If x̃ ∼ n(µ, σ2), then the transformed variable
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Figure A.3 Normal density function.

w̃ = x̃ − µ

σ
∼ n(0, 1) (A.128)

has a normal distribution with zero mean and unit variance. The random variable w̃

is said to have a standardized normal distribution. The density function for w̃ is

f (w) = 1√
2π

e−w2/2 −∞ < w < ∞ (A.129)

The probability that the random variable x̃ is less than wα is

P (x̃ < wα) =
∫ wα

0
f (w) dw (A.130)

Table A.1 lists selected values that are frequently quoted. For a normal distribution,
in about 68% of all cases the observations fall within one standard deviation from
the mean, and only every 370th observation deviates from the mean by more than 3σ.
Therefore, the 3σ value is sometimes taken as the limit to what is regarded as random
error. Any larger deviation from the mean is usually considered a blunder. Statisti-
cally, large errors cannot be avoided, but their occurrence is unlikely. The 3σ criteria
is not necessarily applicable in least-squares adjustments because the pertinent ran-
dom variables have multivariate distributions and are correlated, thus reflecting the
geometry of the adjustment. Further details are given in Sections 4.10 and 4.11.

Assume that w̃ ∼ n(0, 1) and ṽ ∼ χ2
r are two stochastically independent random

variables with unit normal and chi-square distribution, respectively; then the random
variable

TABLE A.1 Selected Values from the Normal Distribution

x σ 2σ 3σ 0.674σ 1.645σ 1.960σ

N(x) − N(−x) 0.6827 0.9544 0.9973 0.5 0.90 0.95
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t̃ = w̃√
ṽ/r

(A.131)

has a t distribution with r degrees of freedom. The distribution function is

f (tr ) = Γ [(r + 1)/2]√
πr Γ(r/2)

[
1 + t2

r

]−(r+1)/2

−∞ < t < ∞ (A.132)

The density function (A.132) is symmetric with respect to t = 0. See Figure A.4.
Furthermore, if r = ∞ then the t distribution is identical to the standardized normal
distribution; i.e.,

t∞ = n(0, 1) (A.133)

The density in the vicinity of the mean (zero) is smaller than for the unit normal
distribution, whereas the reverse is true at the extremities of the distribution. The t

distribution converges rapidly toward the normal distribution. If the random variable
w̃ ∼ n(δ, 1) is normal distributed with unit variance but with a nonzero mean, then
the function (A.131) has a noncentral t distribution with r degrees of freedom and a
noncentrality parameter δ.

Consider two stochastically independent random variables, ũ ∼ χ2
r1

and ṽ ∼ χ2
r2

,
distributed with r1 and r2 degrees of freedom, respectively; then the random variable

F̃ = ũ/r1

ṽ/r2
(A.134)

has the density function

f (Fr1,r2) = Γ [(r1 + r2)/2] (r1/r2)
r1/2

Γ(r1/2) Γ(r2/2)

F (r1/2)−1

(1 + r1F/r2)
(r1+r2)/2

0 < F < ∞ (A.135)

Figure A.4 The probability density function of the t distribution.



362 GENERAL BACKGROUND

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[36

Lin

—
0.4
——
Lon

PgE

[36

Figure A.5 The F distribution.

This is the F distribution with r1 and r2 degrees of freedom. The mean, or the expected
value, is

E(Fr1,r2) = r2

r2 − 2
(A.136)

for r2 > 2. Care should always be taken to identify the degrees of freedom properly
since the density function is not symmetric in these variables. See Figure A.5. The
following relationship holds:

Fr1,r2,α = 1

Fr2,r1,1−α

(A.137)

The F distribution is related to the chi-square and the t distributions as follows:

χ2
r

r
∼ Fr,∞ (A.138)

t2
r ∼ F1,r (A.139)

If ũ ∼ χ2
r1,λ

has a noncentral chi-square distribution with r1 degrees of freedom
and a noncentrality parameter λ, then the function F in (A.134) has a noncentral F

distribution with r1 and r2 degrees of freedom and noncentrality parameter λ. The
mean for the noncentral distribution is

E(Fr1,r2,λ) = r2

r2 − 2

(
1 + λ

r1

)
(A.140)

A.5.2 Distribution of Sums of Variables

The following functions of random variables are required in the derivation of distri-
butions of key random variables in least-squares estimation.
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Assume that (x̃1, x̃2, · · · , x̃n) are n stochastically independent variables, each hav-
ing a normal distribution, with different means µi and variances σ2

i . Then the linear
function

ỹ = k1x̃1 + k2x̃2 + · · · + knx̃n (A.141)

is distributed as

ỹ ∼ n

(
n∑
i

kiµi ,

n∑
i

k2
i σ

2
i

)
(A.142)

If the random variable w̃ has a standardized normal distribution, i.e., w̃ ∼ (0, 1),
then the square of the standardized normal distribution

ṽ = w̃2 ∼ χ2
1 (A.143)

has a chi-square distribution with one degree of freedom.
Assume that (x̃1, x̃2, · · · , x̃n) are n stochastically independent random variables,

each having a chi-square distribution. The degrees of freedom ri can differ. Then the
random variable

ỹ = x̃1 + x̃2 + · · · + x̃n (A.144)

is distributed

ỹ ∼ χ2
Σri

(A.145)

The degree of freedom equals the sum of the individual degrees of freedom.
Assume (x̃1, x̃2, · · · , x̃n) are n stochastically independent random variables, each

having a normal distribution. The means are nonzero. Then

ỹ ∼
∑

w̃2 =
n∑(

x̃i − µi

σi

)2

∼ χ2
n (A.146)

Assume that (x̃1, x̃2, · · · , x̃n) are n stochastically independent normal random
variables with different means µi and variances σ2

i . Then the sum of squares

ỹ =
∑

x̃2
i ∼ χ2

n,λ (A.147)

has a noncentral chi-square distribution. The degree of freedom is n and the noncen-
trality parameter is

λ =
∑ µ2

i

σ2
i

(A.148)
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A.5.3 Hypothesis Tests

A hypothesis is a statement about the parameters of a distribution. A test of a hypoth-
esis is a rule that, based on the sample values, leads to a decision to accept or reject the
null hypothesis. A test statistic is computed from the sample values (the observations)
and from the specifications of the null hypothesis. If the test statistic falls within a
critical region, the null hypothesis is rejected. For example, ṽT Pṽ is a test statistic
having a chi-square distribution. The computed test statistic is vTPv. The specifica-
tion of the zero hypothesis could be that the a posteriori variance of unit weight has
a certain numerical value that, in turn, specifies the variance-covariance matrix of
the observations (which is a parameter of the multivariate normal distribution of the
observations).

Because the sample statistic is computed from sample values (observations), the
computed value may fall inside the critical region even though the null hypothesis
H0 is true. There is a probability α that this can happen. One speaks of a type-I error
if the hypothesis H0 is rejected although it is true; the probability of a type-I error
is α, which, incidentally, is also the significance level of the test. However, there
is a probability that the sample statistics fall in the critical region when H0 is false
(and hence H1 is true). That probability is denoted by 1 − β in Figure A.6. If the
sample statistic does not fall in the critical region, but the alternative hypothesis H1

is true, one would mistakenly accept H0 and commit a type-II error. The probability
of committing a type-II error is β.

Figure A.6 displays the probability density functions of the test statistics under
the specifications of the null hypothesis H0 and the alternative hypothesis H1. The
figure also shows the critical region for which the null hypothesis is rejected, and

Figure A.6 Example of probability distributions of test statistics and critical region.
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the alternative hypothesis is accepted if the computed sample statistics t falls in that
region. Thus, reject H0 if

t > tα (A.149)

The shape and location of the density function of the test statistics under the
alternative hypothesis depend on the specifications of the alternative hypothesis.
Thus, the probability of a type-II error, β, depends on the specifications of H1. A
desirable approach in statistical testing would be to minimize the probability of
both types of errors. However, this is not practical, because all distributions of the
alternative hypotheses, which, in general, are of the noncentral type, would have to
be computed. Figure A.6 shows that the probability β increases as α decreases. A
common procedure is to fix the probability of a type-I error to, say, α = 0.05, and
not compute β.

The rule (A.149) is a one-tail test in the upper end of the distribution. Depending
on the situation, it might be desirable to employ a two-tail test. In that case the null
hypothesis is rejected if

| t | > tα/2 (A.150)

and the distribution H0 is symmetric. It is rejected if

t > tα/2 (A.151)

t < t1−α/2 (A.152)

and the distribution is not symmetric. The critical regions are at both tails of the
distribution, with each tail covering a probability area of α/2.

However, much effort has gone into research as to how the magnitude of β can
be controlled (Baarda, 1968). After all, committing a type-II error implies accepting
the null hypothesis even though the alternative hypothesis is true. For example, it
could mean that it has been concluded that no deformation took place even though
actual deformations occurred. Such an error could be costly in many respects. In
Section 4.10.2 some consideration is given to the type-II error in regards to blunder
detection and internal and external reliability, again based on Baarda’s work. Section
7.8.3 considers type-II errors in regard to ambiguity fixing.

The goodness-of-fit test is a simple and useful example of statistical testing. As-
sume we wish to test a series of observations to determine whether they come from a
certain population with a specified distribution. We subdivide the observation series
into n bins. Let ni denote the number of observations in bin i. The subdivision should
be such that ni ≥ 5. Compute for each bin the expected number di of observations
based on the hypothetical distribution. It can be shown that

χ2 =
n∑

i=1

(ni − di)
2

di

(A.153)
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is distributed approximately as χ2
n−1. The zero hypothesis states that the sample is

from the specified distribution. Reject H0 at a 100α% significance level if

χ2 > χ2
n−1,α (A.154)

This test could be used to verify that normalized residuals belong to n(0, 1).
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