

DIGITAL VLSI SYSTEMS DESIGN

Digital VLSI Systems Design
A Design Manual for Implementation of
Projects on FPGAs and ASICs Using Verilog

By

Dr. S. Ramachandran
Indian Institute of Technology Madras, India

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

© 2007 Springer

Xilinx, Inc. © Xilinx, Inc. 1994-2007. All rights reserved.”
“Figures/Materials based on or adapted from figures and text owned by and are courtesy of

“Figures/Materials based on or adapted from figures and text owned by and are courtesy of

“Figures/Materials based on or adapted from figures and text owned by and are courtesy of
Synplicity Inc. © Synplicity Inc. 2007. All rights reserved.”

“Figures/Materials based on or adapted from figures and text owned by and are courtesy of
XESS, Corp. © XESS, Corp. 1998-2006. All rights reserved.”

Verilog/Matlab codes presented in the book, CD or solution manual shall not be used

chips or for IP cores.

Mentor graphics, Corp. © Mentor graphics, Corp. All rights reserved.”

directly/indirectly for any commercial production, be it for manufacture of integrated circuit

The rights of the editors and the author of the works herein have been asserted by them in
accordance with the Copyright, Designs and Patents Act.

ISBN 978-1-4020-5828-8 (HB)

ISBN 978-1-4020-5829-5 (e-book)

Contents

Preface…………………………………………………………………

Chapter 1

1.1
1.2
1.3
1.4
1.5

1.6

1.7
1.8

Chapter 2

2.2

2.4
2.5
2.6
2.7

2.8

xiii

…as an Example.………………………………...

The Karnaugh MAP Method of Optimization

1.5.1 FPGA Based Design: Video Compression

Introduction to Digital VLSI Systems Design………

Twos Complement Addition/Subtraction………….…..

3

Evolution of VLSI Systems…………………………… 4
Applications of VLSI Systems………………………… 5
Processor Based Systems…………..………………….. 7
Embedded Systems……………………………………. 8
FPGA Based Systems.………………………………… 9

9
Digital System Design Using FPGAs…...………….…. 13
1.6.1 Spartan-3 FPGAs………………………………… 14

Scope of the Book……………………………….…….. 25
1.8.1 Approach……………….…………….………….. 25

Reconfigurable Systems Using FPGAs.....……………. 24

2.1 Numbering Systems…………………………………… 33
35

2.3 Codes……...…………..…..…………………………… 37
2.3.1 Binary and BCD Codes...………..….…………… 37
2.3.2 Gray Code……………………..………………… 39
2.3.3 ASCII Code…..…………………..……………… 40
2.3.4 Error Detection Code……………………............. 41
Boolean Algebra………………………………….……. 43
Boolean Functions Using Minterms and Maxterms....… 44
Logic Gates……………………………………………. 46

of Logic Circuits…………………………………….… 47
Combination Circuits………………………………….. 50
2.8.1 Multiplexers…………….……………………….. 50
2.8.2 Demultiplexers…………………………………... 51

Review of Digital Systems Design…………..……….. 33

vi Contents

2.9
2.10

2.11
2.12

2.14 Setup, Hold, and Propagation Delay Times

2.15

2.16
2.17

Chapter 3 Design of Combinational and Sequential Circuits

3.1
3.2

2.14.1 Estimation of Maximum Clock Frequency

2.15.3 Controlled Three-bit Binary Counter Using

2.15.2 Design of a Three-bit Counter Using

3.2.2 Realization of Majority Logic

3.2.8 A Design Example Using an Adder

2.8.3 Decoders…………………………………….…... 52
2.8.4 Magnitude Comparator………………………….. 53
2.8.5 Adder/Subtractor Circuits……………………….. 55
2.8.6 SSI and MSI Components……………………….. 58
Arithmetic Logic Unit…………………………………. 58
Programmable Logic Devices….……...………………. 59
2.10.1 Read-Only Memory……………………………. 61
2.10.2 Programmable Logic Array (PLA)....………….. 62
2.10.3 Programmable Array Logic (PAL)…………….. 63
Sequential Circuits…………………………………….. 64
Random Access Memory (RAM) …………………….. 72

2.13 Clock Parameters and Skew………………………….... 73

in a Register………………………………………….… 74

for a Sequential Circuit…………….…………... 75
2.14.2 Metastability of Flip-flops…………….……….. 76
Digital System Design Using SSI/MSI Components...... 77
2.15.1 Two-bit Binary Counter Using JK Flip-flops...… 77

 T and D Flip-flops…………………………...…. 80

ROM and Registers….…………………………. 83
Algorithmic State Machine…………….……………… 85
Digital System Design Using ASM Chart and PAL.….. 87
2.17.1 Single Pulser Using ASM Chart………..………. 87
2.17.2 Design of a Vending Machine Using PAL…….. 90

 Using Verilog………………………….….…………. 107

Introduction to Hardware Design Language…………. 107
Design of Combinational Circuits…….……………… 109
3.2.1 Realization of Basic Gates………….………….. 110

and Concatenation…...…………………………. 111
3.2.3 Shift Operations……….………………………... 112
3.2.4 Realization of Multiplexers……………….……. 113
3.2.5 Realization of a Demultiplexer…….…………… 116
3.2.6 Verilog Modeling of a Full Adder……………… 118
3.2.7 Realization of a Magnitude Comparator……….. 120

and a Magnitude Comparator.………………...... 121

Contents vii

3.3

3.4

Chapter 4

4.1
4.2
4.3

Chapter 5

5.1 Separation of Combinational and Sequential

5.2
5.3
5.4
5.5
5.6
5.7

Chapter 6

6.1
6.2
6.3

Chapter 7

7.1

Verilog Modeling of Sequential Circuits…………….. 123
3.3.1 Realization of a D Flip-flop…………………….. 123
3.3.2 Realization of Registers…………….…………... 124
3.3.3 Realization of a Counter………………….…….. 127
3.3.4 Realization of a Non-retriggerable Monoshot….. 128
3.3.5 Verilog Coding of a Shift Register…….……….. 130
3.3.6 Realization of a Parallel to Serial Converter….…132
3.3.7 Realization of a Model State Machine…………. 134
3.3.8 Pattern Sequence Detector………………….…... 137
Coding Organization……………………………...….. 139
3.4.1 Combinational Circuit Design………………...... 141
3.4.2 Sequential Circuit Design………………….….... 147

Writing a Test Bench for the Design………………. 165

Modeling a Test Bench………………….……………. 165
Test Bench for Combinational Circuits…….………… 169
Test Bench for Sequential Circuits….……………….. 174

RTL Coding Guidelines…………………………….. 187

Circuits……………………………………………….. 187
Synchronous Logic…………………………………… 187
Synchronous Flip-flop………………………………... 189
Realization of Time Delays…………………………... 190
Elimination of Glitches Using Synchronous Circuits... 193
Hold Time Violation in Asynchronous Circuits……... 194
RTL Coding Style……………………………………. 195

Simulation of Designs – Modelsim Tool…………… 217

VLSI Design Flow…………………………………… 217
Design Methodology………….……………………… 222
Simulation Using Modelsim………………………….. 225

 6.3.1 Simulation Results of Combinational Circuits…. 230
 6.3.2 Simulation Results of Sequential Circuits…….... 234

Synthesis of Designs – Synplify Tool………………. 255

Synthesis……………...…………………………...….. 255
 7.1.1 Features of Synthesis Tool……………………… 255

6.3.3 Modelsim Command Summary………………... 246

viii Contents

7.3 Viewing Verilog Code as RTL Schematic Circuit

7.4 Optimization Effected in Synopsys Full and Parallel

7.5

7.6 Fixing Compilation Errors in Modelsim and Synplify

7.7

Chapter 8

8.1
8.2
8.3

Chapter 9

9.1

9.1.3 Simulation Results of Dual Address ROM

9.1.4 Synthesis Results for Dual Address ROM

9.1.5 Xilinx P&R Results for Dual Address ROM

9.2
9.2.1 Verilog Code for Single Address ROM

Place and Route and Back Annotation Using Xilinx

9.2.3 Simulation Results of Single Address ROM

9.2.4 Synthesis Results for Single Address ROM

9.2.5 Xilinx P&R Results for Single Address ROM

Performance Comparison of FPGAs of Two Vendors

Place and Route

7.2 Analysis of Design Examples Using Synplify Tool...... 256

Diagrams……………………………………………... 260

Cases…………………………………………………. 274

for a Design…………………………………………... 278

Tools…………………………………………………. 280
Synplify Command Summary……………………….. 283

......…………………..……….. 295

Xilinx Place and Route……... 295
Xilinx Place and Route Tool Command Summary.…… 300

Project Navigator………………………….………….. 301

Design of Memories………….……………………… 319

On-chip Dual Address ROM Design………………… 319
 9.1.1 Verilog Code for Dual Address ROM Design..... 320

9.1.2 Test Bench for Dual Address ROM Design……. 323

Design………………………………………….. 325

Design……..…… 327

Design…………………………………...……... 328
Single Address ROM Design………………………… 329

Design……………………………………...…... 329
9.2.2 Test Bench for Single Address ROM Design….. 331

Design………………………………………...... 332

Design………………………………………..… 334

Design………………………………………..… 335

Contents ix

9.3

9.4

9.4.2 Verilog Code for External RAM Controller

9.4.3 Test Bench for External RAM Controller

9.4.4 Simulation Results for External RAM Controller

9.4.6 Xilinx P&R Results for the External RAM

Chapter 10

10.1
10.2

10.3

Chapter 11 Development of Algorithms and Verification

11.1

9.4.1 Design of an External RAM Controller

11.1.1 Algorithm for Parallel Matrix Multiplication

11.1.2 Verification of DCTQ – IQIDCT Processes with

9.4.5 Synthesis Results for External RAM Controller

On-Chip Dual RAM Design………………………….. 335
9.3.1 Verilog Code for Dual RAM Design…………… 337
9.3.2 Test Bench for the Dual RAM Design………..... 342
9.3.3 Simulation Results of Dual RAM Design……… 345

 9.3.4 Synthesis Results for the Dual RAM Design…... 348
 9.3.5 Xilinx P&R Results for the Dual RAM Design... 350

External Memory Controller Design………………..... 351

 for Video Scalar Application………………….... 351

Design………………………………………...... 352

Design………………………………………..… 357

Design………………………………………….. 359

Design………………………………………….. 362

Controller Design……………...……………….. 364

Arithmetic Circuit Designs…………………………. 371

Digital Pipelining…………………………………….. 371
Partitioning of a Design…………………………......... 374
10.2.1 Partition of Data Width……………………….. 374
10.2.2 Partition of Functionality……………………... 374
Signed Adder Design………………………………… 375
10.3.1 Signed Serial Adder…………………………... 375
10.3.2 Parallel Signed Adder Design………………… 381

10.4 Multiplier Design…………………………………….. 395
10.4.1 Verilog Code for Multiplier Design…………... 398

Using High Level Languages……………………….. 417

2D-Discrete Cosine Transform and Quantization….... 418

 for DCTQ.…………………………………….. 419

Fixed Pruning Level Control Using Matlab….. 421

x Contents

11.2 Automatic Quality Control Scheme for Image

11.2.1 Algorithm for Assessing Image Quality

 Automatic Pruning Level Control Incorporated

11.3

11.3.3 Assessment of Direction of Motion of Image

11.3.5 Results and Discussions of FOSS Motion

 Chapter 12

 12.1

 12.2 Architecture of a Video Encoder Using Automatic

12.3 Architecture for the FOSS Motion Estimation

 Chapter 13

 13.1

13.1.3 Test Bench for the Functional Testing

11.2.3 Results and Discussions for the Fixed

Architecture of Discrete Cosine Transform

13.1.6 Xilinx Place and Route Results for PCI

11.2.2 Verification of DCTQ – IQIDCT Processes with

11.3.2 The Fast One-at-a-time Step Search

11.3.4 Detection of Scene Change……………...…

Fast Motion Estimation Algorithm for Real-Time

Compression……………………………………...….. 431

Dynamically…………………………………... 433

 Using Matlab………….………………………. 435

 and Automatic Pruning Level Controls……..… 447

Video Compression…………………….…………….. 452
11.3.1 Introduction………………………….………... 452

Algorithm……………………………………... 454

Blocks…………………………………….…… 459
459

Estimation Algorithm………………………..... 461

Architectural Design………………………….…….. 473

and Quantization Processor…………..……………… 473

Quality Control Scheme and DCTQ Processor…….… 477
12.2.1 The Automatic Quality Controller……….…… 477

Processor…………………………………………...… 479

Project Design……………….………………………. 487

PCI Bus Arbiter…………………………………….... 487
13.1.1 Design of PCI Arbiter………………………… 490
13.1.2 Verilog Code for PCI Arbiter Design………… 492

 of PCI Arbiter………………………………..... 496
13.1.4 Simulation Results……………………………. 498
13.1.5 Synthesis Results for PCI Arbiter…………….. 500

Arbiter………………………………………… 502

Contents xi

13.2

13.2.9 Verification of Verilog DCTQ – IQIDCT

13.2.11 Implementation of DCTQ/IQIDCT IP

Chapter 14 Hardware Implementations Using FPGA

14.1
14.2
14.3

14.3.1 Verilog Code to Solve the Malfunctioning of

14.4
14.4.1 Verilog RTL Code for Traffic Light

14.5

13.2.2 Sequence of Operations of the Host

 14.5.3 Hardware Requirements for the Real Time

 14.5.4 Detailed Specification of the Real Time

13.2.8 Matlab Codes for Pre-processing

Design of the DCTQ Processor…………….………… 502
13.2.1 Specification of DCTQ Processor…….……... 503

 and the DCTQ Processors…………….…....… 504
13.2.3 Verilog Code for the DCTQ Design……….… 506
13.2.4 Test Bench for the DCTQ Design……….…… 526
13.2.5 Simulation Results for DCTQ Design……….. 531
13.2.6 Synthesis Results for DCTQ Design………..... 536
13.2.7 Place and Route Results for DCTQ Design….. 537

and Post-processing an Image.………….....… 538

Cores………………………………………… 544
13.2.10 Simulation Results…………………………... 545

Cores…………………………………………. 547
 13.2.12 Capabilities of the IP Cores……………….…. 548

and I/O Boards……………………………………..... 555

FPGA Board Features………………………………... 556
Features of Digital Input/Output Board……………… 558
Problem on Some FPGA Boards and Its Solution….... 560

 System Using XC4000 Series FPGA Boards..... 561
Traffic Light Controller Design……………………… 562

Controller………………………………..…… 565
14.4.2 Test Bench for the Traffic Light Controller…... 582
14.4.3 Simulation of Traffic Light Controller……….. 584
14.4.4 Synthesis Results of Traffic Light Controller… 586
14.4.5 Place and Route Results of Traffic Controller... 587
14.4.6 Hardware Setup of Traffic Light Controller….. 589
Real Time Clock Design……………………………... 592
14.5.1 Applications…………………………………... 592
14.5.2 Features……………………………………….. 593

 Clock………………………………………….. 594

 Clock………………………………...………... 597

xii Contents

 14.5.5
 14.5.6
 14.5.7
 14.5.8
 14.5.9

Chapter 15 Projects Suggested for FPGA/ASIC

15.1

 15.1.1
 15.1.2
 15.1.3
 15.1.4
 15.1.5
 15.1.6
 15.1.7
 15.1.8
 15.1.9

15.2
15.3 Issues Involved in the Design of Digital VLSI

15.4

15.4.1 Electrostatic Precipitator Controller –

Detailed Specifications and Basic Architectures for
a Couple of Applications Suggested for FPGA/ASIC

Index...…………………………………………………………………

15.4.2 Architecture of JPEG/H.263/MPEG 1/

References..……………………………………………………………

Simplified Architecture of RTC.…………….. 599
Verilog Code for Real Time Clock…..……… 600
Test Bench for Real Time Clock Design..….... 640
Simulation Results of Real Time Clock...…… 643
Synthesis Results of Real Time Clock…..…... 645

14.5.10 Xilinx P&R Results………………..…….…... 646
14.5.11 Hardware Setup of Real Time Clock………... 648

Implementations……………………………….....… 659

Projects for Implementation………………………….. 659
 Automotive Electronics……………………… 660
 Avionics……………………………………... 661
 Cameras…………………………………….... 662
 Communication Systems…………………….. 662
 Computers and Peripherals…………………... 663
 Control Systems………………………..……. 663
 Image/Video Processing Systems………..….. 664
 Measuring Instruments…………………..…... 665
 Medical Applications……………………..…. 666

15.1.10 Miscellaneous Applications…………………. 667
15.1.11 Music………………………………………… 669
15.1.12 Office Equipments…………………………… 670
15.1.13 Phones……………………………………….. 670
15.1.14 Security Systems…………………………….. 670
15.1.15 Toys and Games……...…………………….... 671
Embedded Systems Design…………………………... 672

Systems……………………………………………..... 673

Implementations…………………………………….... 674

 an Embedded System…………………………. 675

MPEG 2 Codec……………………………...... 682

697
703

Preface

This book deals with actual design applications rather than the technology of
VLSI Systems. This book is written basically for an advanced level course in
Digital VLSI Systems Design using a Hardware Design Language (HDL), Ver-
ilog. This book may be used for teaching undergraduates, graduates, and research
scholars of Electrical, Electronics, Computer Science and Engineering, Embedded
Systems, Measurements and Instrumentation, Applied Electronics, and interdisci-
plinary departments such as Biomedical, Mechanical Engineering, Information
Technology, Physics, etc. This book also serves as a reference design manual for
practicing engineers and researchers. Although this book is written for an ad-
vanced level course, diligent freelance readers, and consultants, especially, those
who do not have a first level exposure of digital logic design, may also start using
this book after a short term course or self-study on digital logic design. In order to
help these readers as well as regular students, the book starts with a good review
of digital systems design, which lays a solid foundation to understand the rest of
this book right up to involved Project Designs unfolded gradually.

Contents of the Book

The book presents new source material and theory as well as synthesis of recent
work with complete Project Designs using industry standard CAD tools and
FPGA boards, enabling the serious readers to design VLSI Systems on their own.
The reader is guided into systematic design step by step starting from a buffer to
full-fledged designs right up to 120,000 gates. At every stage, the reader’s grasp of
the developing subject is challenged so that he or she may stand on his or her own
feet after completing the course. Easy to learn Verilog HDL is made use of to real-
ize the designs. A bird’s eye view on what the reader is going to learn shortly is
shown as follows:

 Introduction to VLSI Systems Design
 Features and architectures of latest FPGAs of leading vendors
 Detailed review of Digital Systems Design
 Introduction to Verilog Design
 Verilog coding of Combinational and Sequential Circuits
 Writing a Test Bench
 RTL Coding Guidelines
 Design Flow for VLSI Systems and Design Methodology
 Simulation using industry standard Modelsim Tool

xiii

xiv Preface

 Synthesis using industry standard Synplify Tool
 Place and Route and Back Annotation using industry standard Xilinx Tool
 Verilog Coding of Memories and Arithmetic Circuits
 Development of Algorithms and Verification using High Level Languages

 such as Matlab
 Architectural Design
 VLSI Systems Design for a couple of projects as examples: PCI Arbiter and

 the Discrete Cosine Transform and Quantization Processor for Video com
 pression applications

 Complete Hardware Implementations using FPGA Board: A Traffic Light
 Controller and a Real Time Clock as examples

 Suggestion of Projects for Implementation on FPGAs/ASICs

Approach

The reader is taken step by step into designing of VLSI Systems using Verilog. To
start with, an overview of VLSI Systems is presented. Features and architectures
of the latest FPGAs of leading vendors are also presented. The design starts right
from implementing a single digital gate to a massive design consuming well over
100,000 gates. Following a review of basic concepts of digital systems design, a
number of design examples are illustrated using conventional digital components
such as Flip-flops, Multiplexers, De-multiplexers, Decoders, ROM, Programable
Array Logic, etc. With these foundations, the reader is introduced to Verilog cod-
ing of the components mentioned earlier as well as designing systems for small
end applications. These designs are tested using Test Benches, also written in Ver-
ilog. All HDL codes the reader wishes to develop for various applications must
conform to Register Transfer Level (RTL) Coding Guidelines, without which no
chip can work satisfactorily. These guidelines are presented at length.

The sequel to the design is to simulate, synthesize, and place and route. Since
our sincere interest lies in making the reader a full-fledged engineer, we use the
same popular development tools used in the Industries and Research Laboratories
such as Modelsim (a simulation tool of Mentor Graphics), Synplify (a synthesis
tool of Synplicity Inc.), and Place and Route and Back Annotation of Xilinx Inc.
Equipped with these powerful tools, the elucidation of design progresses into more
and more complex designs such as Memories and Arithmetic Circuits extending
into VLSI realms.

Complex Project Designs usually need the development of new Algorithms
and Architectures for Optimum realization. These issues, which stimulate creative
thinking and indispensable for researchers, are thoroughly analyzed and solved in
this book. Armed with all the features mentioned earlier, complete Project Designs
are presented. This is followed by hands-on experience in designing systems using
FPGA and Input/Output Boards. Once the path is shown for designing VLSI Sys-
tems systematically, numerous Project Designs are suggested for FPGA/ASIC Im-
plementations.

Preface xv

The book gives complete RTL Compliant Verilog codes for several projects,
which are synthesizable and works on the hardware based on FPGA or ASIC.
Most of the Verilog codes developed in this book can be readily used in new pro-
jects the reader may undertake in his or her study or career. The advantages accruing
out of this strategy are two fold: One, the students are trained to suit industries/R&D
Laboratories and, therefore, industries and other employers need not spend time
and money to train them when they are hired. The other advantage is to provide
in-plant training in industries, etc. based on this book to retrain old (as well as
new) personnel in the new technologies.

Brief Description of the Topics Covered

The following is a brief description of the topics covered in each chapter of this
book:

Chapter 1 presents an introduction to Digital VLSI Systems Design. The evo-
lution of VLSI Systems over the years has been described. This chapter also out-
lines a number of applications for the VLSI Systems, thus motivating the reader to
undertake a serious study of the subject and in turn be a contributor. This chapter
shows how FPGA based system designs score over processor based systems. The
features and architectures of latest FPGAs available in the market are presented.

Chapter 2 provides a detailed review of digital systems design so that the
reader may understand the rest of the book without any difficulty or needing to re-
fer to logic design fundamentals from another book. This chapter starts with the
number systems, design of combinational circuits followed by designs using
Programmable Logic Devices such as ROM and Programmable Array Logic.
Thereafter, it deals with the design of sequential circuits. It shows how to design
systems using the conventional state graphs and ASM Charts. Digital system de-
signs are illustrated with a number of examples.

Chapter 3 presents a brief introduction of the evolution of Hardware Design
Language. Verilog is introduced as a tool for realizing digital systems design. The
advantages of Verilog coding over the traditional schematic circuit diagram ap-
proach are established, especially when the design of VLSI circuits crossing over
50,000 transistors mark is encountered. A number of design examples using Ver-
ilog are illustrated for both combinational and sequential circuits. These examples
cater to the frequently used digital circuits in a system design, especially in indus-
tries. Only the cores of the designs are initially presented to expedite the learning
process. Later on, full-fledged codes are presented so that the reader may simulate,
synthesize and place and route. Register Transfer Level (or Logic) coding, vital
for designing chips that work successfully, is the main emphasis of this design
book and is discussed in a later chapter.

Chapter 4 shows how to write an effective test bench. The basic concept of
a test bench is shown by presenting a simple design and a model test bench for
testing the design exhaustively. For bigger designs, an elaborate test may prove to
be difficult. In such cases, the test may be carried out for a range of inputs cover-
ing minimum, maximum, center, and few other input values applied judiciously.

xvi Preface

In the previous chapter, designs for combinational and sequential circuits were
dealt. Test benches for the same are presented in this chapter. Usually, the test
bench size will be smaller than that of the design. This chapter is especially useful
for verification engineers.
 Chapter 5 deals with the Register Transfer Level Coding Guidelines. Every de-
signer is vitally interested in making his or her design work when implemented as
a hardware, which uses FPGA or ASIC. For successful working of a system, RTL
coding techniques are inevitable. This requires a high degree of discipline or care
while designing such systems. This chapter discusses RTL coding techniques in
depth, which is basically adhering to synchronous design practices. RTL approach
deals with the regulation of data flow, and how the data is processed using register
transfer level as the primary means. Since we deal with a synchronous design, it
should naturally run smoothly through various tools such as simulation, synthesis,
and place and route, which tools are described at length in succeeding chapters.

Chapter 6 presents the VLSI Design flow along with the design methodologies
that may be gainfully employed so that one may become conversant with various
steps involved in designing a product. Several designs were considered in Chapter
3 and their test benches in Chapter 4. This was followed by RTL coding guide-
lines in Chapter 5. The next logical step in the design flow is the simulation, vital
for testing one’s design. All the Verilog designs presented in the third chapter are
analyzed using waveforms in the present chapter. Industry standard Modelsim tool
of Mentor Graphics is employed for the simulation. A command summary of the
Modelsim tool, which serves as a quick reference while using the tool, is also fur-
nished. Even though the functionality of a design is checked using simulation, it
does not test time critical paths or furnish insights into gate delays, unless back
annotated, since simulation does not map a target chip such as an FPGA, where
the design will have to reside ultimately. These features are possible with synthe-
sis tool, which is presented in the next chapter.

Chapter 7 covers the synthesis of designs using Synplify tool, widely used in
industries. The salient features of synthesis are mapping of an FPGA device, logic
optimization, and viewing schematic circuit diagrams of the Verilog code. The
tool creates optimized Verilog file and Electronic Data Information Format
(EDIF) file, which may be used for simulation and vendor specific place and route
respectively. EDIF file is exported to the next tool, the Place and Route tool, for
creating a bit stream of the design. Synplify tool supports all types of FPGAs. In
order to learn and fix compilation errors and simulation errors in Modelsim and
Synplify tools, errors are created deliberately and known correction applied. A
command summary of the Synplify tool is furnished for quick reference while us-
ing the tool.

Chapter 8 covers the Place and Route (P&R) tool of Xilinx, also widely used in
industries. The salient features of Xilinx P&R are the creation of a ‘bit’ file from
EDIF file created by the Synplify tool or from source file directly, specification of
user constraints such as clock speed and FPGA pins, remapping of the target
FPGA device if desired, back annotation and floor planning. The back annotated
file, which reflects the actual gate delays, is simulated again in Modelsim to en-
sure that the design is working correctly at the maximum frequency reported by

Preface xvii

the Place and Route tool. Report file generated by the P&R tool gives the maxi-
mum frequency of operation possible as well as the gate count (chip complexity)
for the design. A command summary of the Xilinx P&R tool is furnished for ready
reference.

Chapter 9 presents the memory design, which is one of the most important as-
pects of a VLSI System Design. This chapter shows the way to design various
types of on-chip ROMs and RAMs, some of them unconventional, in order to
meet the special requirements of a particular application. The size of memory that
could be incorporated on-chip is usually limited by the order of a few tens of Kilo
Bytes with the currently available FPGAs. This limitation is fast changing with the
advances in the technology. In applications, where large memories are called for,
external memories such as the commercially available static RAMs, ROMs, Flash
RAMs, dynamic RAMs, etc. may be used. Towards this end, a controller design
that interfaces with commercially available external memories is presented in this
chapter. However, the access speed of external memory falls by a factor of two
when compared to on-chip memory. On the other hand, on-chip memory increases
the chip area consumed. Therefore, the designer must consider carefully the pros
and cons before making the choice for on-chip memory or external memory in a
system design.

Chapter 10 presents arithmetic circuits such as add/subtract, multiply, etc.
These circuits are computationally intensive and, therefore, conventional methods
are not sufficient for real time implementations on FPGA or ASIC. In order to
speed up the processing considerably, we will have to base our designs on mas-
sively parallel circuits and heavy pipelining. This chapter presents arithmetic cir-
cuit designs such as signed adders and multiplier with a high degree of parallelism
and pipelining for computationally intensive applications such as video compres-
sion.

Chapter 11 deals with the development of algorithms for various projects so
that they are suitable for implementation on FPGAs/ASICs. Complex applications
such as video codecs have involved algorithms at their core, which need to be
adapted or developed depending upon how we wish to implement the system. The
design methodology or strategy would depend upon whether we need to imple-
ment the system using software such as C or by a HDL such as Verilog. The vi-
ability of the project is decided by the successful working of the algorithms or the
design methodology using Matlab or C, which is also discussed at length. While
developing algorithms for hardware implementation, we need to keep the actual
hardware in mind and subsequently, design the architecture. Only then, the algo-
rithm can be converted into an actual working product. This chapter also covers
the verification of concepts and algorithms developed earlier using a high level
language such as Matlab. This must be carried out before taking up the architec-
ture and Verilog design. Designers, in general, have a tendency to bypass this vital
step and get into trouble later on, after completing Verilog codes, at the time of
debugging. This is especially true in large designs, and is worthwhile to take little
more trouble of coding in Matlab or C, preferably in Matlab, to save lots of trou-
ble and time.

xviii Preface

Chapter 12 presents the development of architectural designs. In the last chapter,
development of algorithms were presented and verified for a number of applications
in the field of video processing as examples. These algorithms were developed in
such a way that the applications may be mapped onto an FPGA or an ASIC. The
next logical step is to work out a detailed architecture keeping the actual hardware
such as registers, counters, combination circuits, etc. in mind. In this chapter, the
architectural designs are developed for the same applications that we had under-
taken in the previous chapter.

Chapter 13 presents VLSI System Design examples for two projects, namely,
PCI Arbiter and the Discrete Cosine Transform and Quantization Processor for
Video compression applications. While presenting these designs, emphasis is laid
on systematic design. This comprises identification of a project based on need,
formulating detailed specifications, development of algorithm and verification, or
proving an algorithm or concept using a high level language such as Matlab or C
to establish its feasibility, development of detailed architecture based on actual
hardware components, Verilog RTL coding, simulation, synthesis, place and
route, and back annotation. The methodologies adopted in these designs are to use
highly parallel and heavily pipelined circuits in order to increase the throughput
and to be platform independent, whether an implementation uses an FPGA or an
ASIC. No vendor specific modules are used and, hence, these designs are univer-
sal and can work on any FPGA or ASIC. The design methodologies presented in
this book are equally applicable to other HDLs such as VHDL.

Chapter 14 presents a couple of complete hardware implementations, namely,
a traffic light controller and a real time clock, as examples. These applications are
based on ready made boards available such as an FPGA board and a digital in-
put/output board. The design methodologies adopted in these designs may be ex-
tended to any other Project Design or any other FPGA or ASIC and I/O boards.
These system designs are presented in a systematic manner, starting from detailed
specification. The need for formulating the right type of architecture is emphasized
and designed with actual hardware components in mind. The signal nomenclatures
adopted in the architectures are actually used as it is in realizing their designs in Ver-
ilog conforming to the RTL coding guidelines. Simple test benches are developed
and simulated using Modelsim tool to ensure the correct functioning of the de-
signs. These are followed by running the synthesis tool and the place and route
tool to get the bit stream files. The hardware for each of the designs is subse-
quently setup and the corresponding bit streams downloaded into the FPGA.
Elaborate testing is thereafter conducted on the actual hardware to ensure the cor-
rect working of the systems designed.

Chapter 15 suggests a number of projects for the reader to design and imple-
ment on FPGAs/ASICs, category-wise. Issues involved in Digital VLSI Systems
Design are discussed at length in order to aid the reader to quickly develop prod-
ucts. A brief introduction of embedded systems design is presented. Detailed
specifications and basic architectures for a couple of applications for FPGA/ASIC
implementations are furnished for the reader to make a start and gain hands-on
experience in Digital VLSI Systems Design.

Preface xix

How to Use This Book?

The material in this book has been developed over several years as a result of
teaching students of various disciplines and guiding practicing engineers and stu-
dents in their projects/thesis work. Teaching/training styles vary among countries,
universities, colleges, and industries and may, therefore, be suitably organized. In
the light of imparting VLSI Systems Design to students and engineers of various
disciplines and, research over the years, the following pattern of education is rec-
ommended:

Second Year Under Graduates of Electrical/Electronics/Computer
Engineering

Specializations such as Power systems, Electronics, Communication, Power elec-
tronics, Embedded Systems, Controls, Measurements and Instrumentation, Applied
Electronics, etc. are included in Electrical/Electronic Engineering. Chapter 1 pre-
sents a general view of what VLSI Systems are and Chapter 2 is a review material,
which the students may study independently if they have just completed a first level
digital design course. Optionally, they may be taught Chapter 2, especially if there is
a semester gap after they have completed their first level digital design course.
Thereafter, they may be taught Chapters 3, 4, and 6. Chapter 5, which presents RTL
coding guidelines, may be deferred to the third year.

Third Year Under Graduates of Electrical/Electronics/Computer
Engineering

Chapter 5, and review of Chapter 6 if there is a semester gap after they have com-
pleted their second year course mentioned earlier, may be taught to start with.
Thereafter, they may be taught other tools such as synthesis and place and route
from Chapters 7 and 8 respectively. Finally, Memory designs presented in Chapter
9 may be taught.

Fourth Year Under Graduates of Electrical/Electronics/Computer
Engineering

After a brief review of simulation, synthesis, and place and route tools, Arithmetic
circuits design (Chapter 10) may be taught. A simple Project Design, PCI arbiter,
may be taught from Chapter 13. More involved design such as the DCTQ proces-
sor may be by-passed. Thereafter, hardware designs based on FPGA boards may
be taught from Chapter 14. This may be followed by Chapter 15. Finally, mini
projects may be assigned to students in small groups encouraging team work, yet
clearly defining individual student goals. The second half of a semester may be
used for the mini projects. These projects may be based on FPGA boards, if feasi-
ble. Students may be assessed by asking them to present their progress from time
to time. These presentations may be strategically scheduled as follows:

xx Preface

First week: Detailed specification of the project.
Second week: Algorithmic development, if any, and Hardware Architecture.
Fifth week : Verilog coding of the design and test bench.
Sixth week : Simulation/synthesis/place and route results and
Eighth week : Demonstration, documentation, and final presentation.

Many projects are suggested throughout the book, and many more may be created
by the instructor and the students.

First Year Post-Graduate Students and Ph.D. Scholars of
Electrical/Electronics/Computer Engineering

Chapters 1 and 2 are review materials, which the students may study independ-
ently. Chapters 3 to 5 may be taught in detail, if the students have not covered
these topics in their earlier studies. A quick exposure to three industry standard
tools in Chapters 6 to 8 may be made using command summary of these tools,
leaving the students to gain proficiency with the tools in the laboratory. This may
be followed by Chapters 9 and 10. Chapters 11 and 12 are important for develop-
ing new algorithms and their verification and the design of architecture, especially
for those doing research (MS or Ph.D.). If hard pressed for time, one of the three
applications in these chapters, say, the DCTQ alone need be taught. Thereafter,
Chapters 13 to 15 may be taught. Individual mini projects may be assigned to stu-
dents in the second half of a semester as detailed for the fourth year students earlier.
The above recommendation, although appear to be too crammed for a semester
study, has been actually tested for post-graduates and Ph.D. scholars of Electri-
cal/Electronics engineering. If there is room, the entire book may be taught spread
over two semesters: Chapters 3 to 10 in the first semester and the rest in the sec-
ond semester.

Third Year under Graduates of Information Technology/Computer
Science and Interdisciplinary Departments such as Bio-medical,
Mechanical Engineering, and Post-graduate Students of Physics

Chapters 1 to 4 and Chapter 6 may be taught spread over a semester. The Chapter
5 on RTL coding guidelines may be deferred to the fourth year.

Fourth Year Under Graduates of Information Technology/Computer
Science and Interdisciplinary Departments such as Biomedical,
Mechanical Engineering and Post-graduate Students of Physics

Chapters 5, 9, 10, and all topics of Chapter 11 for developing new algorithms and
their verification may be taught. PCI arbiter design in Chapter 13 and Traffic light
controller design in Chapter 14 may also be taught. Applications from Chapter 15
can be taught finally. Individual mini projects may be assigned to students in the
second half of a semester as detailed for the fourth year electrical engineering stu-
dents earlier.

Preface xxi

Each of the above recommendations is to be taught over a semester.

In-plant Industrial Training

Experience shows that in many industries, R&D laboratories, etc., there are no pe-
riodic and systematic orientation programs or training, either for new recruits or
for existing personnel. As a result, with rapid technological strides, employees do
not come up to the expected level of the employer. The lack of proper and regular
training has also rendered the ‘attrition management’ increasingly difficult. These
problems can be alleviated to a great extent by conducting regular orientation pro-
grams for the new recruits even if they come with experience, and periodical
hands-on training based on this book to retrain old (as well as new) personnel in
the new technologies. Depending upon the level of personnel, the management
can form their own curriculum for orientation programs and training as per the
recommendations made earlier for various categories of students using this book.
Designers may be encouraged to create a library of developed codes in Ver-
ilog/VHDL/Matlab/C with proper documentation on-line so that the on-going
product designs are completed quickly without reinventing the wheel, thus im-
proving the productivity and hence profitability dramatically.

Assignments and Laboratory Work

Merely studying the text would not make the reader an adept in designing VLSI
Systems. On the other hand, one is sure to become proficient if every assignment
given towards the end of every chapter is sincerely solved. These must be supple-
mented by inventing more number of assignments and solving them. Most of the
assignments, especially those presented in the second chapter, are based on indus-
try related problems and placement questions faced by a large number of students
globally. Chapters 3 to 10, 13, and 14 contain a large numbers of illustrated exam-
ples including full-fledged projects, all of which can be used as source materials
for laboratory work. Chapters 6, 7, and 8 respectively present the simulator (Mod-
elsim), synthesis (Synplify), and place and route and back annotation (Xilinx)
tools and may be thoroughly studied before starting their respective laboratory
work. As laboratory assignments, the problems/assignments presented in each of
the Chapters 3 to 15 may be selectively allocated, depending upon the categories
of students as presented earlier.

Verilog and Matlab Source Codes Supplied in CD

All Verilog codes, be they designs or test benches, illustrated in Chapters 3 to 5, 7,
9, 10, 13, and 14 are in their respective folders in the CD provided in the book.
Similarly, the source codes of Matlab illustrated in Chapters 11 and 13 are in dif-
ferent folders. These may be copied in hard disks and tested using the tools. ‘Re-
adme’ files explain the usage of various files. Command summaries for Modelsim,
Synplify and Xilinx tools are also included. Also, a summary of the usage of RTL

xxii Preface

Verilog codes is provided in separate files. Reader’s technical skills may be en-
hanced by going through the PPT: How to make oral/written presentations?

Mini Project and Project Work

Some assignments in Chapters 7, 8, and 11 to 15 are suitable for mini projects for
students of fourth year undergraduate and post-graduate students as recommended
earlier. Over 100 projects are listed in Chapter 15, which may be selected for
FPGA/ASIC implementation by both undergraduate and post-graduate/research
students. Many mini projects may also be carved out of these projects. Many more
mini projects, full-fledged projects and research projects, may be created on simi-
lar lines as illustrated in above mentioned chapters.

Solution Manual

Solution Manual for the assignments presented towards the end of each chapter is
available to teachers from the publishers on a CD or on their website. The solution
manual contains all source codes and reports of solved assignments in the book
and presentations for quick and easy dissemination of the subject.

Acknowledgment

The author is thankful to various industries he has been associated with over dec-
ades and Indian Institute of Technology, Madras for providing excellent resources
and working environment. Heart-felt thanks are due to Prof. S. Srinivasan, IITM,
who has been a great source of inspiration for writing this book. Thanks are also
due to numerous co-designers in industries, undergraduate to research students for
their lively discussions on projects and staff for their timely help in preparing the
manuscript of this book. Special thanks are due to the publishers in bringing out
this book quickly, yet maintaining high quality.

 S. Ramachandran

Chapter 1

Introduction to Digital VLSI Systems Design

The electronics industry has achieved a phenomenal growth over the last few dec-
ades, mainly due to the rapid advances in large scale integration technologies and
system design applications. With the advent of very large scale integration (VLSI)
designs, the number of applications of integrated circuits (ICs) in high-
performance computing, controls, telecommunications, image and video process-
ing, and consumer electronics has been rising at a very fast pace. The current cut-
ting-edge technologies such as high resolution and low bit-rate video and cellular
communications provide the end-users a marvelous amount of applications, proc-
essing power and portability. This trend is expected to grow rapidly, with very
important implications on VLSI design and systems design.

Information technology (IT) focuses on state of the art technologies pertaining
to digital information and communication. The IT sector is the fastest growing in-
dustry in recent times. With the world growing smaller day by day and business
going global, the need for better devices and means for communications becomes
all the more important. One of the most important characteristics of IT is its in-
creasing need for very high processing power and bandwidth in order to handle
real-time applications: video, for example. This has led to the need for faster and
increasingly more efficient products to enable better telecommunications. It is this
ever-growing demand in the modern world that is making many countries invest
heavily in VLSI systems design. Manufacturing VLSI systems on chips is an in-
volved process and comprises a number of activities: VLSI systems design using
electronic design automation (EDA) tools; computer aided design (CAD) in the
manufacture of VLSI chips; foundry activity starting from base wafer to packaged
and tested ICs; and design, development, and manufacture of capital equipments
for producing VLSI chips. All these activities except VLSI systems design using
EDA tools are capital intensive. The latter, however, is knowledge intensive.
Since applications are numerous and growing rapidly, challenging as well as inter-
esting, VLSI system application designers are in greater demand than profession-
als working on chip technology.

Ever-increasing global communications has opened up a brand new vista for
people interested in a career in the information technology and VLSI design in-
cluding embedded systems. The advent of advanced EDA tools gives one the
freedom to innovate and experiment to develop a new product that could be the
next breakthrough in all spheres of research and development. A career in these
sectors will give the reader access to the technical resources to work with and de-
sign better world-class products. As a product developer, the reader will be pro-
viding solutions to international markets and, therefore, technical skills need to be

of the best quality. It requires continuous learning, systematic approach, and sus-
tained efforts to realize one’s dreams. It is both intellectually stimulating and ex-
citing to be part of creating the technology of the future. This book is an earnest
attempt to equip the reader completely for this challenging task and shape him or
her as a highly skilled professional.

The rest of this chapter is organized as follows: In the next section, a brief in-
troduction to the evolution of VLSI systems is presented. This is followed by pre-
senting a short list of growing applications for VLSI systems in order to motivate
the reader towards undertaking product designs seriously. In Sections 1.3 and 1.4,
the advantages as well as limitations are discussed for processor based systems
and embedded systems respectively. Section 1.5 presents field programmable gate
arrays (FPGAs) based designs and their advantages over processor and embedded
controller based designs. It discusses briefly the selection criteria of hardware. It
also discusses in detail various issues involved in one of the latest applications,
namely, video compression. Complete project design for video compression is
presented in later chapters. An introduction to digital system design using FPGAs
is presented in Section 1.6. Following this, detailed descriptions of features and
architectures of various types of popular FPGAs manufactured by leading vendors
are presented so that the readers may select the right type of FPGAs for their ap-
plications.

1.1 Evolution of VLSI Systems

With the advent of discrete semiconductor devices such as bipolar transistors, uni-
junction transistors, field effect transistors, etc., miniaturization started in full-
swing, replacing bulky systems that used vacuum tubes. During 1950s computers
that were made using vacuum tubes occupied an entire floor of a big building.
Vacuum tubes are even now used in high power applications such as radio trans-
mission and HAM radios. Gradually, attempts were made to integrate several
circuits, be it analog or digital, in a single package. These attempts succeeded in
producing both analog and digital ICs, as well as mixed signal ICs. Analog ICs of-
fered operational amplifiers, multipliers, modulators/demodulators, etc., while
digital ICs integrated AND, OR, XOR gates and so on.

Digital ICs are broadly classified according to their circuit complexity meas-
ured in terms of the number of logic gates or transistors in a single package. Chips
falling under the category of small scale integration (SSI) contain up to 10 inde-
pendent gates in a single package. The inputs and outputs of these gates are con-
nected directly to the pins in the package with provision for connections to a
power supply. With the advances in integration technology, more devices having a
complexity of approximately 10 to 100 gates were packed in a single package.
They were called medium scale integration (MSI) devices. Decoders, adders, mul-
tiplexers, de-multiplexers, encoders, comparators are examples of MSIs. Thereaf-
ter, large scale integration (LSI) devices emerged, which integrated between 100
and 1000 gates in a single package. Examples of this category include digital systems

4 Introduction to Digital VLSI Systems Design

such as processors, memory chips, and programmable logic devices. Finally in late
1970s, very large scale integration devices containing thousands of gates within a
single package became a reality. Personal computer chips such as 80186, 80286 of
Intel are examples of this category. Since then, integration has been growing by
leaps and bounds crossing 10 million gates in a single package, going into realms
of ultra large scale integration (ULSI), system level integration (SLI), and system-
on-chip (SOC). FPGAs fall under all the above high-end categories starting from
VLSI. The foregoing classifications are summarized in the following.

Category Date Density (gates)

Single transistor 1959 1 device
Logic gate 1960 1
Small scale integration (SSI) 1964 Up to 10
Medium scale integration (MSI) 1967 10 – 100
Large scale integration (LSI) 1972 100 – 1000
Very large scale integration (VLSI) 1978 1000 – 10000
Ultra large scale integration (ULSI) 1989 10000 and above
SLI/SOC Late 1990s > 10 million

Systems were implemented in all the above categories and are still being im-
plemented using discrete transistors for large power applications and SSIs to
SOCs for progressively larger systems. In the next sub-section, we will see what
applications these systems can be configured for.

1.2 Applications of VLSI Systems

VLSI system applications have become all pervasive in various walks of life like
communications including internet, image and video processing, digital signal
processing, instrumentation, power, automation, automobiles, avionics, robotics,
health and environment, agriculture, defense, games, etc. There is hardly anyone
who does not know what a cell phone is. From MP3 players, camera cell phones
and GSM to Bluetooth and Ipods, everyone wants all the features squeezed into a
single device as small as possible. Some of the ever-growing applications are as
follows:

• Digital cameras

• Digital camcorders

• Digital camera interface

• Digital cinema

• Digital display

1.2 Applications of VLSI Systems 5

• Digital TV and digital cable TV

• Digitizer for analog NTSC/PAL/SECAM cameras

• Display interface

• Mobile phone

• FAX machine

• PDA

• Scanner

• Anti-lock brakes

• Automatic transmission

• Cruise control

• Global positioning system for automobiles

• Electro cardiograph

• Life-support systems

• MRI/CT scan

• LCD projector

• Low-cost computer

• Mobile phone personal computers

• Scan pen and PC notes taker

• Automated baggage clearance system in airports

• Avionic systems

• Flight simulator

• Instrument landing system

• Ship controls

• Driverless shuttle

• Cruise controls

• Traffic controller

• Washing machine

6 Introduction to Digital VLSI Systems Design

• Petrol/diesel dispenser

• Demodulator for satellite communication

• Encryption/decryption

• Network card

• Network switches/routers

• Quadrature amplitude modulator (QAM) and demodulator

• Wireless LAN/WAN

More applications are presented in the final chapter, which may be taken up for
implementation by the readers. They are classified into various categories, such as
automotives, avionics, control system applications, medical applications, and
video processing applications, to name a few. Brief descriptions are also pre-
sented. Curious readers may have a peep into those applications before going over
to the next section.
 VLSI systems can be designed using any of the following: 8/16/32/64 bit gen-
eral-purpose processors, microcontrollers, DSPs, FPGAs, or ASICs depending
upon the applications, throughput, market potential, etc. The advantages and limi-
tations for each of these categories are discussed in the following sections.

1.3 Processor Based Systems

Designers have wide choice of selecting processors, which include general- pur-
pose processors, microcontrollers, application specific instruction processors
(ASIP), reduced instruction set computers (RISC), complex instruction set com-
puters (CISC), digital signal processors (DSP), etc. ASIPs are optimized for spe-
cific class of applications such as telecommunications, digital signal processing,
embedded controls, etc. Each of these processors has an instruction set with a spe-
cific class of applications in mind. Nevertheless, they are all processors executing
instructions sequentially, differing only in performance, processing speed, effec-
tiveness, power, cost, etc. Most of these processors fall under the category of
VLSI. Over the years, a wide variety of systems have been designed with these
processors. These cover an impressive spectrum: data processing systems, data
acquisition systems, programmable logic controllers and numerous industrial con-
trol systems, measuring instruments, image processing systems, etc.

Selection of a processor for an application is not an easy task, especially when
numerous processors are available. The designer is overwhelmed by numerous in-
struction sets. With a change of processor for a new project, the designer is forced
to learn a new instruction set, which is as arduous as learning a new language, if
the designer is not already familiar with the processor. Often, there is great confu-
sion and struggle if instruction sets of processors have conflicting meaning such as

1.3 Processor Based Systems 7

the position of source and destination in an instruction. For example, Intel micro-
processor instructions start with the destination first, followed by the source,
whereas Motorola microprocessor instructions start with the source first, followed
by the destination. Even in the hardware realms, process timings of processors
vary widely. The associated peripheral chips also differ, necessitating major redes-
ign of software/hardware, if processors are changed. All these introduce consider-
able delays in the project. In order to avert disaster, designers try to bend the new
project towards their favorite processor(s). For small performance requirements,
this tactic may serve the intended purpose. However, in time critical applications,
the favorite processor may be a misfit.

Earlier, we discussed about the difficulties a designer undergoes while design-
ing systems using processors, especially when the need arises to unlearn instruc-
tion set of the familiar processor and, instead, learn a new processor assembly lan-
guage instructions. This difficulty may be eliminated if the designer has
knowledge of a high level language such as C or C++. Of course, the designer has
to learn C if he or she has no knowledge of the same. It is a well known fact to de-
signers that C codes generate longer codes than assembly language instructions
do. This, in turn, would lower the processing speed considerably and may prove to
be a bottleneck in real-time applications.

1.4 Embedded Systems

General-purpose processors as well as microcontrollers are popular in embedded
systems due to several good features such as low cost, good performance, etc. If
hardware is already available, the designer needs to concentrate only on software
development and integration of the system. Therefore, for small quantity of end
products, it will be cost-effective as well as reduce the development cycle time
dramatically if the embedded systems are built using bought out populated elec-
tronic cards such as STD/VME bus cards and the like. The designer may write
some part of the programs in C and other parts in assembly language and link
them together. Many tools are available to aid designers in product development –
hardware: troubleshooters, emulators, logic analyzers, and programming units and
software: assemblers, compilers, linkers, and C. These tools are a must if the em-
bedded system designer is to bring out a working product into the market fast. De-
signers must try to achieve the goal of designing complete systems by treating
hardware and software in a unified way. Hardware/software co-design emphasizes
this unified view that enables the co-development of systems using both hardware
and software, especially during synthesis [1, 2].

Processor based embedded systems are quite effective for small and medium-
end applications. For medium to high-end embedded systems design, field pro-
grammable gate arrays (FPGAs) and application specific integrated circuits
(ASICs) are the right choice. In the near future, FPGAs may be expected to be
cost-effective even for small-end applications. The development tools that will
convert ideas into reality of a working system for this category are Verilog/VHDL

8 Introduction to Digital VLSI Systems Design

(hardware design language) compilers, simulation, synthesis and place and route
tools and programmers. In the next section, we will discuss how FPGAs offer
much higher performance than processors including DSPs and those used in em-
bedded systems.

1.5 FPGA Based Systems

A number of software and hardware implementations have been reported for vari-
ous real-time applications such as video codecs. Although software implementa-
tions are easy to realize on general-purpose microprocessors, multiprocessors, mi-
crocontrollers, or digital signal processors, their instruction sets are not well suited
for fast processing of computationally intensive real time processing applications
such as high resolution compression/video scaling of motion pictures, satellite
communication modulator/demodulator, etc. In addition, the instructions are exe-
cuted sequentially, thus slowing down the processing further. For example, one of
the promising digital signal processors, which was used to implement MPEG
based video codec could only process still monochrome images of resolution
512 × 512 pixels at one frame per second instead of the required frame rate of 30.
In contrast to this, the hardware implementations based on FPGAs and ASICs can
exploit pipelining and massively parallel processing resulting in faster and cost-
effective designs.

ASIC designs are suitable if high-volume production is envisaged. However, in
the research and development phase and for rapid prototyping of a new design,
FPGA is the right choice. Further, FPGA implementation is cost-effective for low
volume applications. In a later chapter on project designs, we will show that high
resolution motion pictures of sizes 1600 × 1200 pixels can be processed (actually
compressed) at 30 frames per second using FPGAs. The Verilog code developed
for this application can also be implemented without any modification of the codes
on an ASIC for still higher resolution pictures by over three times in the present
day technology. The following sub-sections discuss briefly video compression ap-
plication using FPGAs as an example.

1.5.1 FPGA Based Design: Video Compression
as an Example

FPGAs offer high performance in terms of processing speed and high chip den-
sity, thus suiting every conceivable application, whether small or high end, yet
remaining cost-effective. An entire VLSI system can be housed in a single FPGA
device. Although many applications are possible, we will discuss the basics of
video compression implementation as an example. Video compression is an ap-
plication that demands high performance and high density. For example, a color
motion picture of high resolution, 1600 × 1200 pixels can be compressed and
transmitted or received over a serial channel at a real time processing speed of 30

1.5 FPGA Based Systems 9

frames/second using an FPGA. Complete project design for this application, in
addition to many other applications, is presented in later chapters. The design
methodology presented for this application is equally applicable for any other ap-
plication. In the following sub-sections, we will briefly discuss the need for video
compression, what standards govern the implementations, various issues involved
in the design, and a review of the evolution of video compression implementations.

Need for Video Compression

Image processing applications such as high definition television, video conferenc-
ing, computer communication, etc. require large storage and high speed channels
for handling huge volumes of data. For instance, one hour of color motion picture
of size 1024 × 768 pixels at 30 frames per second in the raw format will need
about 255 GB of memory and 566 Mbps channel speed for effective communica-
tion. In order to reduce the storage and communication channel bandwidth re-
quirements to manageable levels, data compression techniques are imperative.
Data compression in the order of 20 to 40 is normally feasible depending upon the
actual picture content and techniques adopted for bringing about the compression.

It is of paramount importance that systems designed for applications communi-
cate with one another effectively and also offer connectivity and compatibility
among different services. These requirements are met if these systems are designed
to conform to international standards such as JPEG, H.261, HDTV, and MPEG [3].
The development of standards by the ISO, ITU, etc. for audio, image and video, for
both transmission and storage, has led to worldwide activity in developing hardware
and software systems for a number of diverse applications. Although the standards
implicitly address the basic encoding operations, there is enough freedom and flexi-
bility in choosing the algorithms, the actual implementation, and devices. As such,
the standards do not stifle the research and development activity, the main objective
being maintaining compatibility and interoperability among the systems. The next
sub-section describes briefly various standards available currently for compression
of still image and motion pictures.

Video Compression Standards

JPEG has been recognized as the most popular and efficient coding scheme for
continuous-tone still images. The JPEG compatible fast implementations find ap-
plications in color facsimile, high-quality newspaper wire photos, desktop publish-
ing, graphic arts, medical imaging, digital still cameras, imaging scanners, etc.
Examples of video sequence (motion picture) standards are H.261 for video te-
lephony and video conferencing, MPEG 1 for digital storage media and MPEG 2
for generic coding of moving video and extending to television broadcasting and
communication.

In recent years, additional standards such as JPEG 2000, MPEG 4, and MPEG
7 have also been introduced. The JPEG 2000 standard is intended to complement
and not to replace the JPEG standard. Lossless and lossy coding, progressive by
resolution and quality, high compression efficiency, error resilience, and lossless

10 Introduction to Digital VLSI Systems Design

color transforms are some of its characteristics. The JPEG 2000 standard is based
on discrete wavelet transforms (DWT) and offer higher image quality than is pos-
sible with JPEG for the same compression effected. However, all the above men-
tioned advantages of JPEG 2000 are at the expense of memory size, data access
complexity, and processing time when compared to JPEG. MPEG 4 is an interna-
tional standard that provides core technologies for efficient object-based compres-
sion of multimedia content for transmission, storage, and manipulation. MPEG 4,
Part 10 (also known as H.264) is based on integer transform, derived from discrete
cosine transform used in JPEG, MPEG 1, MPEG 2, H.261 encoders/decoders (co-
decs). MPEG 7 addresses content description technologies for efficient and effec-
tive multimedia retrieval and browsing. Both are essential in developing digital
multimedia broadcast and internet multimedia applications. However, these two
standards, MPEG 4 and MPEG 7, are more complex and only slower implementa-
tions are possible when compared to MPEG 2 and H.264 standards.

The basic operations that bring about image compression, namely, the discrete
cosine transform (DCT), quantization (Q) and variable length coding (VLC) are,
however, common to all the standards from JPEG to MPEG 2 mentioned earlier.
DCT prepares the ground for effective compression. Mapping the image/video
signal into the transform domain by itself does not lead to bit-rate reduction. At
best, the mapping results in energy compaction in the low frequency range of the
transform domain. By cleverly quantizing the coefficients that carry significant in-
formation and at the same time coarsely quantizing or dropping the remaining co-
efficients, the bit rate can be reduced. The resulting quantized DCT coefficients
are Huffman coded in the VLC coder, effecting further compression. The resulting
compressed, serial bit stream output is then sent out to the channel for onward
transmission. Upon receipt of this bit stream, the decoder reconstructs the image
by carrying out the inverse operations such as variable length decoding (VLD, in-
verse quantization (IQ) and inverse discrete cosine transform (IDCT).

Still image processing employs only the DCT, Q, and VLC, exploiting the spa-
tial redundancy. In contrast to this, the motion pictures employ motion estimation
and compensation in addition to DCTQ and VLC, effecting more compression
owing to the exploitation of temporal redundancy.

Issues Involved in Video Compression

There are two basic issues to be addressed in the design of codecs for video appli-
cations: speed of processing and power considerations. With the proliferation of
personal computers in multimedia applications and the evolution of digital net-
works, speed of processing is the most vital need for effective real time communi-
cation such as videoconferencing, point to point audio-visual communication,
digital cable TV, etc. In spite of galloping technological advances, the internet is
pathetically slow to accommodate communication of real time moving pictures,
which finds unlimited scope for applications. The same is also true with most of
the software and hardware implementations of video compression schemes based
on general-purpose or multiprocessor computers and digital signal processors.

1.5 FPGA Based Systems 11

Fortunately, implementations based on FPGAs and ASICs hold much promise for
high speed processing.

Power consumption is one of the most important criteria in evaluating digital
systems, whether portable or not. This stems from a variety of requirements such
as prolonging battery life in portable devices, reducing chip packaging, reduction
of cooling costs, enhanced reliability of the system, environmental considerations,
etc. Increase of clock frequency, operating voltage, or system complexity in-
creases the power consumption drastically. Large power savings are effected by
minimizing these parameters as well as through appropriate architectural and algo-
rithmic trade-offs and functional module-level optimizations. The emergence of
portable computing and communication devices such as laptop/palmtop com-
puters, cellular phones, videophones, etc. is one of the most important factors driv-
ing the need for low power design. For most portable devices, the power con-
sumed in integrated circuits is a significant and increasing portion of the total
system power consumption. Thus, the development of low power VLSI design
methodologies and tools are inevitable.

In general, the video encoder implementation must have high speed perform-
ance, whereas the decoder must have low power characteristics. The emphasis of
the present book is on high speed processing rather than on low power so that high
resolution pictures may be processed, especially at the encoder end.

The color pictures are represented as a luminance, Y, and two color difference
signals, Cb and Cr [3]. The color difference signals are usually sub-sampled with
respect to the luminance by 2:1 in both vertical and horizontal directions. This is
because the sensitivity of the color component of the human eye is less than that
of the luminance component. This sub-sampling of chrominance information leads
to further bit-rate reduction in video compression techniques. Other features such
as quantization reflecting the human visual system can further contribute to the
overall compression. All these features, of course, are accomplished at a price.
The result is that the codec complexity increases and the encoding mechanism be-
comes much more vulnerable to channel noise, requiring sophisticated error detec-
tion and correction techniques. The decoder is much less complex than the en-
coder because most of the decision-making processes are carried out at the
encoder. Also, motion estimation and quantization control need to be implemented
at the encoder end only. This complex encoder, simple decoder scenario is also
appropriate because the decoder can be designed as a mass consumer item.

Evolution of Video Compression Implementations

Various processes such as DCTQ, VLC, motion estimation, etc. will have to keep
pace with each other since they are all concurrent and pipelined processes. These
demand the development of new and faster algorithms. This book presents the
VLSI system design of the core of a video encoder, which involves the develop-
ment of new and faster algorithm that can be effectively implemented on FPGAs
or ASICs. Very few implementations have been reported for a full-fledged video
encoder, especially, that which is capable of high speed processing. Although high
speed processing is the major thrust of the present book, the design methodology

12 Introduction to Digital VLSI Systems Design

adopted is also in conformity with that for low power design. This scheme can be
easily adapted for a low power design by trading-off power with picture size and
system clock frequency.

In the next section, we will present the basic steps involved in the design of
VLSI systems using FPGAs. We will also present details of some of the leading
FPGAs of a couple of vendors.

1.6 Digital System Design Using FPGAs

An FPGA may be viewed as ‘sea-of-gates’ which can be quickly configured to the
desired application right on-the-field. It may also be re-configured at any point of
time to another application, provided the external hardware interface circuitry
doesn’t need any change to suit the new application. Some FPGAs such as Virtex
series FPGAs of Xilinx permit even partial reconfiguration, thereby eminently
suited for real-time applications needing reconfiguration on-the-fly. Like ASICs,
FPGAs can exploit high pipelining and massively parallel circuits, thus outper-
forming processors, microcontrollers and DSPs, yet remaining competitive. For
R&D environment and low volume applications, FPGAs are the right choice.
They are far cheaper and development cycle times are lower than that of ASICs.
Most companies bring out their systems based on FPGAs first and later on switch
to ASICs if the market demands are high. FPGA chip densities range from a few
thousand gates (costing under $5 each piece) to over 10 million gates, accommo-
dating right from small designs to very large designs. FPGAs come with different
flavors in terms of gate counts, speed grades, input/output pins, packages, operat-
ing voltages, etc. However, designers need to watch out for obsolescence. The
reader may get specification and application details of FPGAs from the websites
of vendors listed in the references.

Development tools are available for FPGA based product designs from the re-
spective vendors: simulator for waveform analysis, synthesis for logic optimiza-
tion, and mapping the design on an FPGA, place and route for creating bit stream
of the design and Programmer for programming the bit stream in an EPROM. The
FPGA based digital system design may be realized using the following steps:

1. Formulate the detailed product specification.
2. Develop the detailed hardware architecture.
3. Code the architecture in a hardware design language such as Verilog or

VHDL.
4. Compile and simulate the design and verify the functionality.
5. Synthesize to map on to a target FPGA device and optimize the logic.
6. Run the place and route tool for creating bit stream of the design applica-

tion.
7. Program the bit stream generated in step 6 in a serial EPROM.

1.6 Digital System Design Using FPGAs 13

8. Design and fabricate the printed circuit board to accommodate the FPGA,
the serial EPROM, and other components required for the end applica-
tion.

9. Solder the components and test the populated FPGA board using the de-
velopment system, logic analyzer, pattern generator, etc.

10. Download the application bit stream from the development system or the
on-board serial EPROM and verify the system functionality.

All these design steps are unfolded gradually, chapter by chapter commencing

from Chapter 3. In the next few sub-sections, details of various types of FPGAs
from some of the leading vendors are presented, partly in the text and partly in the
CD, so that the designer may select the right type of FPGA for his application.

1.6.1 Spartan-3 FPGAs

The Spartan-3 family of field programmable gate arrays of Xilinx is specifically
designed to meet the needs of high-volume, cost-sensitive consumer electronic ap-
plications. This series offers FPGA densities ranging from 50,000 gates to 5 mil-
lion gates, as shown in Table 1.1. Spartan-3 FPGAs deliver more functionality and
bandwidth than was previously possible. Because of their low cost, Spartan-3
FPGAs are ideally suited to a wide range of consumer electronics applications:
broadband access, home networking, display/projection, and digital television
equipments, to mention a few. The following are the salient features of Spartan-3
family of FPGAs:

Table 1.1 Summary of Spartan-3 FPGA Attributes (Courtesy of Xilinx Inc.)

Notes:
1. Logic Cell = 4-input Look-Up Table (LUT) plus a “D” flip-flop. “Equiva-

lent Logic Cells” equals “Total CLBs” × 8 Logic Cells/CLB × 1.125 effec-
tiveness.

2. These devices are available in Xilinx automotive versions as described in
DS314: Spartan-3 Automotive XA FPGA Family.

14 Introduction to Digital VLSI Systems Design

3. These devices are available in lower static power versions as described in
DS313: Spartan-3L Low Power FPGA Family.

Features

• Low-cost, high-performance logic solution for high-volume, consumer-oriented
applications

- Densities up to 74,880 logic cells (5 million gates)

• Select IO signaling

- Up to 784 I/O pins
- 622 Mb/s data transfer rate per I/O
- 18 single-ended signal standards
- 8 differential I/O standards
- Signal swing ranging from 1.14 V to 3.45 V
- Double Data Rate (DDR) support
- DDR, SDRAM support up to 333 Mbps

• Logic resources

- Abundant logic cells with shift register capability
- Wide, fast multiplexers
- Fast look-ahead carry logic
- Dedicated 18 × 18 multipliers
- JTAG logic compatible with IEEE 1149.1/1532

• Select RAM hierarchical memory

- Up to 1,872 Kbits of total block RAM
- Up to 520 Kbits of total distributed RAM

• Digital Clock Manager (up to four DCMs)

- Clock skew elimination
- Frequency synthesis
- High resolution phase shifting

• Eight global clock lines and abundant routing

• Fully supported by Xilinx ISE development system

- Synthesis, mapping, placement, and routing

• Low-power Spartan-3L Family and Automotive Spartan-3 XA Family variants

Table 1.2 shows the number of RAM blocks, the data storage capacity, and the
number of columns for each device.

1.6 Digital System Design Using FPGAs 15

Table 1.2 Number of Block RAMs by Device (Courtesy of Xilinx Inc.)

Spartan-3 FPGA Architectural Overview

The Spartan-3 family architecture consists of fundamental programmable func-
tional elements, CLBs, IOBs, block RAMs. They are as follows:

1. CLBs contain RAM-based LUTs to implement logic and storage elements
that can be used as flip-flops or latches. CLBs can be programmed to per-
form a wide variety of logical functions as well as to store data.

3. Block RAM provides data storage in the form of 18-Kbit dual-port blocks.
Multiplier blocks accept two 18-bit binary numbers as inputs and calculate
the product. Digital Clock Manager (DCM) blocks provide self-calibrating,
fully digital solutions for distributing, delaying, multiplying, dividing, and
phase shifting clock signals.

These functional elements are organized as shown in Figure 1.1. A ring of
IOBs surrounds a regular array of CLBs. The XC3S50 has a single column of
block RAM embedded in the array. Those devices ranging from the XC3S200 to
the XC3S2000 have two columns and XC3S4000/5000 devices have four RAM
columns. Each column is made up of several 18-Kbit RAM blocks. The DCMs are
positioned at the ends of the outer block RAM columns. The Spartan-3 family fea-
tures a rich network of traces and switches that interconnect all the functional
elements, transmitting signals among them. Each functional element has an asso-
ciated switch matrix that permits multiple connections to the routing.

2. IOBs control the flow of data between the I/O pins and the internal logic of
the device. Each IOB supports bidirectional data flow and tri-state operation.

16 Introduction to Digital VLSI Systems Design

Note:
The two additional block RAM columns of the XC3S4000 and XC3S5000 devices are
shown with dashed lines. The XC3S50 has only the block RAM column on the far left.

Fig. 1.1 Spartan-3 family architecture (Courtesy of Xilinx Inc.)

Configuration

Spartan-3 FPGAs are programmed by loading configuration data into static memory
cells that collectively control all functional elements and routing resources. Before
powering on the FPGA, configuration data is stored externally in a nonvolatile
memory such as EPROM and Flash PROM. After applying power, the configuration
data is written to the FPGA using any of five different modes: Master Parallel, Slave
Parallel, Master Serial, Slave Serial, and Boundary Scan (JTAG).

Overview of Configurable Logic Blocks

The CLB, the main logic resource for implementing digital circuits, comprises
four interconnected slices, as shown in Figure 1.2. These slices are grouped in
pairs with each pair organized as a column with an independent carry chain. Slices
X0Y0 and X0Y1 make up the column-pair on the left, whereas slices X1Y0 and
X1Y1 make up the column-pair on the right. For each CLB, the term “left-hand”
(or SLICEM) indicates the pair of slices labeled with an even “X” number, such as
X0, and the term “right-hand” (or SLICEL) designates the pair of slices with an
odd “X” number, e.g., X1.

1.6 Digital System Design Using FPGAs 17

Elements within a Slice

All the four slices have the following elements in common: two logic function genera-
tors, two storage elements, wide-function multiplexers, carry logic, and arithmetic
gates, as shown in Figure 1.3. Both the left-hand and right-hand slice pairs use these
elements to provide logic, arithmetic, and ROM functions. Besides these, the left-hand
pair supports two additional functions: storing data using distributed RAM and shifting
data with 16-bit registers. Figure 1.3 is a diagram of the left-hand slice.

The LUT is the main resource for implementing logic functions. Furthermore,
the LUTs in each left-hand slice pair can be configured as distributed RAM or a
16-bit shift register. The function generators located in the upper and lower por-
tions of the slice are referred to as the “G” and “F” respectively. The storage ele-
ment, which is programmable as either a D-type flip-flop or a level-sensitive latch,
provides a means for synchronizing data to a clock signal. The storage elements in
the upper and lower portions of the slice are called FFY and FFX respectively.
Wide-function multiplexers effectively combine LUTs in order to permit more
complex logic operations. Each slice has two of these multiplexers with F5MUX
in the lower portion of the slice and FiMUX in the upper portion. Depending on
the slice, FiMUX takes on the name F6MUX, F7MUX, or F8MUX.

Function Generator

Each of the two LUTs (F and G) in a slice has four logic inputs (A1–A4) and a

Fig. 1.2 Arrangement of slices within the CLB (Courtesy of Xilinx Inc.)

single output (D). This permits any four-variable Boolean logic operation to be

18 Introduction to Digital VLSI Systems Design

Notes:
1. Options to invert signal polarity as well as other options that enable lines

for various functions are not shown.
2. The index i can be 6, 7, or 8 depending on the slice. In this position, the up-

per right-hand slice has an F8MUX, and the upper left-hand slice has an
F7MUX. The lower right-hand and left-hand slice has an F6MUX.

Fig. 1.3 Simplified diagram of the left-hand side SLICEM (Courtesy of Xilinx
Inc.)

1.6 Digital System Design Using FPGAs 19

Note:
All IOB signals communicating with the FPGA’s internal logic have the option of
inverting polarity.

Fig. 1.4 Simplified IOB diagram (Courtesy of Xilinx Inc.)

programmed into them. In addition, wide-function multiplexers can be used to ef-
fectively combine LUTs making logic functions with still more input variables.
The LUTs also can function as ROM that is initialized with data at the time of
configuration. The LUTs can be programmed as distributed RAM, which offers

20 Introduction to Digital VLSI Systems Design

moderate amounts of data buffering anywhere along a data path. One LUT stores
16 bits. A dual-port option combines two LUTs so that memory access is possible
from two independent data lines. A distributed ROM option permits pre-loading
the memory with data during FPGA configuration. It is possible to program each
LUT as a 16-bit shift register, which can be used to delay serial data anywhere
from 1 to 16 clock cycles. The four LUTs of a single CLB can be combined to
produce delays up to 64 clock cycles. The SHIFTIN and SHIFTOUT lines cascade
LUTs to form larger shift registers. It is also possible to combine shift registers
across more than one CLB. The resulting programmable delays can be used to
balance the timing of data pipelines.

Block RAM Overview

Spartan-3 FPGA devices support block RAM, which is organized as configurable,
synchronous 18-Kbit blocks. Block RAM stores relatively large amounts of data
more efficiently than the distributed RAM.

IOB Overview

The input/output block provides a programmable, bidirectional interface between
an I/O pin and the FPGA’s internal logic. A simplified diagram of the IOB’s in-
ternal structure is shown in Figure 1.4. There are three main signal paths within
the IOB: the output path, input path, and tri-state path. Each path has its own pair
of storage elements that can act as either registers or latches.

Storage Element Functions

As shown in Figure 1.4, there are three pairs of storage elements in each IOB, one
pair for each of the three paths. It is possible to configure each of these storage
elements as an edge-triggered D-type flip-flop (FD) or a level-sensitive latch
(LD). The storage-element-pair on either the output path or the three-state path
can be used together with a special multiplexer to produce Double-Data-Rate
(DDR) transmission. This is accomplished by taking data synchronized to the
clock signal’s rising edge and converting them to bits synchronized on both the
rising and the falling edge. The combination of two registers and a multiplexer is
referred to as a Double-Data-Rate D-type flip-flop (FDDR).

The clock line OTCLK1 connects the CK inputs of the upper registers on the
output and three-state paths. Similarly, OTCLK2 connects the CK inputs for the
lower registers on the output and three-state paths. The upper and lower registers
on the input path have independent clock lines: ICLK1 and ICLK2. The enable
line OCE connects the CE inputs of the upper and lower registers on the output
path. Similarly, TCE connects the CE inputs for the register pair on the three-state
path and ICE does the same for the register pair on the input path. The Set/Reset
(SR) line entering the IOB is common to all six registers, as is the Reverse (REV)
line.

1.6 Digital System Design Using FPGAs 21

Within the Spartan-3 family, all devices are pin-compatible by package and are
not pin-compatible with any previous Xilinx FPGA family. When the need for fu-
ture logic resources outgrows the capacity of the Spartan-3 device in current use, a
larger device in the same package can serve as a direct replacement. It is, there-
fore, important to plan for future upgrades at the time of the board’s initial design.

Table 1.3 Xilinx FPGA Product Selector (Continued) (Courtesy of Xilinx Inc.)

22 Introduction to Digital VLSI Systems Design

Table 1.3 provides the FPGA product selection for the Virtex-4 and Spartan-3
series arranged according to logic cells. In Virtex-4 series, the device number
gives the number of logic cells in thousands available in the device and in Spartan-
3, the device number gives the number of gate count in millions. For examples,
Virtex-4 FX140 device has 142,128 numbers of logic cells and Spartan-3 5000 has
5 M gates available in the device. The package number directly gives the number
of pins available in the device. The table also provides other resources such as
I/Os, the number of block RAMs, the number of clocks, the number of multipliers
and so on. For details of XC4000 series and Virtex II Pro series FPGAs, the reader
may refer to Appendix 1 and 2 respectively of the CD.

The Stratix II FPGA family of Altera offers high density and high speed de-
vices. Reader may refer Appendix 3 for a brief write-up of this family of FPGAs.
For one of Actel’s devices, please refer Appendix 4 of the CD.

Table 1.3 Xilinx FPGA Product Selector (Courtesy of Xilinx Inc.)

1.6 Digital System Design Using FPGAs 23

1.7 Reconfigurable Systems Using FPGAs

FPGAs may be reconfigured many times during the normal operation of an appli-
cation, should the need arise. Reconfigurable systems may be classified as having
either static or dynamic reconfigurability. A static reconfiguration refers to having
the ability to reconfigure a system only once before execution, but once pro-
grammed, its configuration remains on the FPGA for the duration of the application.
In contrast to this, the dynamic reconfiguration is defined as the selective updating
of a sub-section of an FPGA’s programmable logic and routing resources, while
the remainder of the device’s programmable resources continues to function with-
out interruption. There are two basic approaches to implement dynamically recon-
figurable applications: full reconfiguration and partial reconfiguration. Systems
designed for full reconfiguration are allocated all FPGA resources in each con-
figuration step, application being partitioned into distinct temporal modules of ap-
proximately equal size. In other words, for one application, entire execution code
will have to be downloaded at one go. This is generally referred to as a coarse
grain configuration. In contrast to this, in the partial reconfiguration, only a small
amount of code known as fine grain configuration needs to be downloaded.

Fig. 1.5 The basic architecture of dynamically reconfigurable video encoder

BIT
STREAM
OUTPUT

DCTQ

FIFO

Video Se-
quence/Image

JPEG
MPEG1/2

H.263
Picture Size

Speed

CONFIGURE
NV RAMs

FPGA

VLC
 and

Serializer

User In-
terface
Logic

24 Introduction to Digital VLSI Systems Design

As an example, a dynamically reconfigurable video encoder may be designed
with the following features.

 It can be configured for JPEG, MPEG-1, MPEG-2, or H.263 as per user re-
quest.

 The user can select the picture size and processing speed, namely, frame
rate.

 It can switch from one application to another dynamically and seamlessly
based on user request without missing a single frame.

A scheme of full or partial reconfiguration for different applications like JPEG,

MPEG 1 / MPEG 2, and H.263 for an encoder is shown in Figure 1.5. At the en-
coder, DCTQ and VLC are used, whereas at the decoder end (not shown in fig-
ure), VLD and IQIDCT modules are used as described in Section 1.5.1. The re-
configuration can be done by downloading the code stream from nonvolatile RAM
at 50 MHz or less using a parallel port at 1 byte per clock cycle. A typical configu-
ration stream size of an FPGA of capacity 300,000 gates is 220,000 bytes. As an
example of reconfiguration, let the user who is currently in video conference mode
in H.263 format request that a particular MPEG 2 video stream be sent over the
serial channel. This can be accomplished dynamically by loading partial MPEG 2
configuration data without disturbing other working circuit and without missing a
single frame of video. Once the MPEG 2 stream is complete, one reverts back to
video conferencing automatically.

Before we windup this chapter, we will see how the rest of this book is organ-
ized.

1.8 Scope of the Book

The main objectives of this book are to present novel algorithms for various projects
such as video compression system, etc. and develop new architectures as examples.
We will code some of the projects in Verilog and finally simulate, synthesize, place
and route using industry-standard tools and implement them on FPGAs to demon-
strate the working of the schemes. The algorithms and functional modules are ef-
ficiently partitioned such that they are suitable for high speed implementation on
FPGAs as well as on ASICs.

1.8.1 Approach

The reader is taken step by step through the complete design of digital VLSI sys-
tems using Verilog. The design methodology, however, can be applied to any
other hardware design languages such as VHDL. The design starts right from im-
plementing a single digital gate to a massive design consuming well over 100,000
gates. Following a review of basic concepts of digital systems design in the next
chapter, a number of design examples are illustrated using conventional digital

1.8 Scope of the Book 25

components such as flip-flops, multiplexers, de-multiplexers, decoders, ROM,
programmable array logic, etc. These designs are still being used in small-end ap-
plications despite being overshadowed by FPGA based designs. With these foun-
dations, the reader is introduced to Verilog coding of the components mentioned
earlier as well as designing systems for small-end applications to start with. These
designs are tested using Test Benches, also written in Verilog. All HDL codes the
reader wishes to develop for various applications must conform to Register Trans-
fer Level (RTL) Coding Guidelines, without which no chip can work satisfacto-
rily. Separate chapters are dedicated to these aspects.

The sequel to the design is to simulate, synthesize and place and route. Since
our sincere interest lies in making the reader a full-fledged engineer, we use the
same popular development tools used in the Industries and Research Laboratories,
such as Modelsim (a simulation tool of Mentor Graphics), Synplify (a synthesis
tool of Synplicity Inc.) and Place and Route and Back Annotation of Xilinx Inc.
Equipped with these powerful tools, the elucidation progresses into more and
more complex designs such as Memories and Arithmetic Circuits extending into
VLSI realms. The concepts, methodologies, etc. delineated in this book may be
applied to other tools as well.

Complex Project Designs usually need the development of new Algorithms
and Architectures for optimum realization. These issues, which stimulate creative
thinking –indispensable for researchers – are thoroughly analyzed and solved in
this book. Armed with all the features mentioned earlier, complete Project Designs
are presented. This is followed by hands on experience in designing systems using
FPGA and input/output boards. Once the path is shown for designing VLSI Sys-
tems systematically, numerous Project Designs are suggested for FPGA/ASIC Im-
plementations.

This book gives complete RTL Compliant Verilog codes for several projects
which are synthesizable and work on the hardware based on FPGA or ASIC. Most
of the Verilog codes developed in this book can be readily used in new projects
the reader may undertake in his study or career. The advantages accruing out of
this strategy are two-fold: One, the students are trained to suit industries/R&D
Laboratories and therefore, industries and other employers need not spend time
and money to train them when they are hired. The other advantage is to provide
in-plant training in industries, etc. based on this book to retrain old (as well as
new) personnel in the new technologies.

__

Summary

A brief introduction to the evolution of VLSI systems and applications were pre-
sented. The merits and limitations of processor based systems and controller based
embedded systems were discussed. This was followed by a presentation of FPGA
based designs and their advantages over processor and embedded controller based
designs. The chapter also discussed in detail various issues involved in one of the

26 Introduction to Digital VLSI Systems Design

latest applications, namely, video compression. An overview of various imple-
mentation schemes for video compression was also discussed.

An introduction to digital system design using FPGAs was presented. Follow-
ing this, detailed descriptions of features and architectures of various types of
popular FPGAs manufactured by leading vendors were presented so that the read-
ers may select the right type of FPGAs for their applications. Before commencing
the design using Verilog in Chapter 3, the reader is urged to brush-up his digital
knowledge, a review of which is presented in the next chapter.
__

Assignments

1.1 A digital camera can store JPEG images of resolution 1600 × 1200 pixels.
Assuming 24 bit true color and an average compression of 10, estimate the
memory requirements for storing a maximum of 200 images in the camera.

1.2 An MPEG 2 video encoder is required to be designed for compressing color
video sequences in XGA format (resolution: 1024 × 768 pixels). The inputs
are applied as luminance (Y) and color (Cb and Cr) components, each of
size 8 bits in 4:2:0 format. In this format, for every four blocks of Y, one
block of Cb and one block of Cr components are processed, 1 pixel compo-
nent after another. A block is of size 8 × 8 pixels. One pixel (abbreviation
for a picture element) consists of 24 bits in true color. In another format,
4:4:4, components Y, Cb, and Cr are four blocks each. Assuming the proc-
essing rate of video as 30 frames per second with a compression of 20, es-
timate the buffer memory (FIFO) required for storing 1 s of the compressed
bit stream in 4:2:0 format, before it is transmitted over a serial channel. The
FIFO is of single bit width.

1.3 Estimate the FIFO size required in assignment 1.2 for storing 1 s of the
compressed bit stream in 4:4:4 format if compression effected is 10.

1.4 Estimate the FIFO size in assignment 1.2 if the video is changed to SVGA
format, whose picture size is 800 × 600 pixels.

1.5 Assuming that each luminance/color component of a pixel is processed
every clock cycle, compute the minimum clock frequency required in an
FPGA implementation to satisfy 30 frames per second in the assignment
1.2. State your assumptions clearly.

1.6 Repeat assignment 1.5 for the SVGA format.
1.7 A digital cable TV transmitter is required to process up to 50 channels at a

picture resolution of 720 × 525 pixels. Each of these channels is time-
multiplexed. The picture is non-interlaced and the frame rate is 30 per sec-
ond. Assuming 4:2:0 format and an average compression of 20, determine
the frequency of operation of the video encoder, which transmits com-
pressed video sequence over the cable. Also estimate the transmission rate
over a serial channel. Make reasonable assumptions.

Assignments 27

1.8 If you were to design the video encoder in assignment 1.7, which of the
hardware, processors to ASIC, will you select for implementation? Justify
your answer. In case compromises can be made in performance, what other
hardware will you choose? Explain.

1.9 A company designed a data acquisition system based on a bought-out
FPGA board few years back and marketed the same successfully. All of a
sudden, the FPGA board vendor discontinued the product and, instead, of-
fered to supply another type of FPGA board. Discuss how you will assess
the suitability of the new board for the application. The company used 64
analog input channels in the data acquisition system spread over a number
of boards, which was self fabricated.

1.10 In the assignment 1.9, the FPGA alone changed to a higher capacity with
the FPGA board and other resources on the board remaining the same.
What will be the repercussions?

1.11 A competitor to the company in the assignment 1.9 made the same product
except that they used FPGA from another vendor. All boards including the
FPGA board were self-fabricated. In this case, the FPGA became obsolete
and another FPGA with a higher chip density and processing speed was
available. How will this competitor fare in comparison to the first manufac-
turer?

1.12 What will be the scenario for both the competitors in assignments 1.9 and
1.11 if they had used an ASIC instead of FPGA?

1.13 An MPEG 1 / MPEG 2 video encoder architecture, which compresses 10-
fold an SVGA motion picture in 4:2:0 format is shown in Figure A1. A
video sequence is applied to a dual redundant RAM 1 block by block. To start
with, one block of Y component of a video frame is completely written into
one of the two 64 × 8 bits RAM in 8 clock cycles. When the second block of

Fig. A1 MPEG video encoder

DCTQ VLC and
Serializer

64 x 9
bits

64 x 9
bits

64 Kb
FIFO

64 x 8
bits

64 x 8
bits

Compressed
bit stream to

serial channel

Video
sequence

Dual RAM 2 Dual RAM 1

Clock 1
100 MHz

Clock 2
200 MHz

Clock 3
100 MHz

Clock 1
100 MHz

28 Introduction to Digital VLSI Systems Design

Y component is written into the other 64 × 8 bits RAM, DCTQ processes
simultaneously producing 64 coefficients, storing the same in one of the
two 64 × 9 bits RAM in “Dual RAM 2”. DCTQ processes one coefficient
every clock cycle. When all the 64 coefficients are stored in the first 64 ×
9 bits RAM, the next module VLC and serializer takes this stored DCTQ
coefficients and generates a compressed single bit stream and stores it in
the 64 K bits First-in-First-Out-Memory (FIFO). The compressed bit
stream is processed by the serializer, one bit every clock cycle in bursts
of 25% duty cycle since VLC processing is usually time consuming. Si-
multaneously, a second block of DCTQ coefficients are stored in the sec-
ond RAM in “Dual RAM 2”. Thus, input memory, DCTQ, Dual RAM 2,
and VLC/serializer can function simultaneously. This is referred to as
pipelining. In essence, four blocks of Y, followed by one block of Cb and
one block of Cr, are processed sequentially. This pattern is repeated until
all the blocks of a frame are processed. Compute the frame rate, i.e., the
number of frames per second with the clocks as shown in the figure. State
your assumptions clearly.

1.14 Explain how you will provide hand shake signals to co-ordinate various
functional modules of the video encoder in assignment 1.13. What is the
maximum picture size that can be processed if the frame rate is fixed at
30 per second? Describe a scheme to regulate the bit stream transmitted
over the serial channel at 100 mega bits per second.
Hint: Hold processing of individual functional modules or bit stuff 0’s in
the FIFO after every 16 lines of a frame.

1.15 A dynamically reconfigurable video encoder is required to be designed
with the following features.

 It can be configured for JPEG, MPEG 1, MPEG 2, or H.263 as per
user request.

 The user can select the picture size and processing speed such as
frame rate.

 It can switch from one application to another dynamically and seam-
lessly based on user request without missing a single frame.

A scheme of full/partial reconfiguration for different applications like
JPEG, MPEG 1 / MPEG 2, and H.263 was shown in Figure 1.16 in the
text. The full/partial reconfiguration can be done by downloading from
nonvolatile RAM at 50 MHz or less using a parallel port at 1 byte per
clock cycle. A typical configuration stream size of an FPGA of capacity
300,000 gates is 220,000 bytes as described in Section 1.7. As an exam-
ple of reconfiguration, let the user who is currently receiving SVGA for-
mat MPEG 2 video stream for surveillance application request that the
present transmission be switched to higher resolution of 1600 × 1200 pix-
els in JPEG format in a seamless manner. This can be accomplished dy-
namically by loading partial JPEG configuration data, which is in the
User Interface Logic and the VLC without disturbing other working cir-
cuits. The switching shall not loose any data. For JPEG/MPEG 1/MPEG

Assignments 29

2 and H. 263, the User Interface Logic are of size 3000 and 2000 gates
respectively, while for VLC they are 12,000 gates and 10,000 gates re-
spectively. DCTQ occupies 120,000 gates, while 64 Kbit output FIFO
occupies 400,000 gates. Compute the full configuration times for each of
the standards as well as time for reconfiguration from SVGA format,
MPEG 2 video to 1600 × 1200 pixels, JPEG format. State your assump-
tions clearly. What are the specific advantages of dynamic reconfigura-
tion when compared to the conventional method of housing all the
functions conforming to the above standards? Justify your answer. Name
a few more applications where the dynamic reconfiguration can be ap-
plied.

30 Introduction to Digital VLSI Systems Design

Chapter 2

Review of Digital Systems Design

In the first chapter, we presented an introduction to digital VLSI systems design
and its applications, which is the main emphasis of this book. We pointed out how
FPGA based systems offer better performance than processor based systems, yet
remaining competitive. We also presented basic architectures and features of some
of the latest FPGAs from a couple of leading vendors so that the reader may select
the right type of FPGA for his or her design. Before we go into depths of Verilog
based design of digital VLSI systems, we need to brush up our knowledge regard-
ing the digital systems design using the conventional components such as gates,
flip-flops, PALs, etc.

In this chapter, we start with the numbering systems followed by twos com-
plement arithmetic and various types of codes that are required in a real system
design. We will also be covering in brief Boolean algebra and derivation of func-
tions using minterms and maxterms and Karnaugh map for optimization of logic
circuits. This will be followed by the design of combinational and sequential cir-
cuits. With these basics, digital system design will be presented using SSI/MSI
components. Algorithmic state machine based approach to design is a better alter-
native to the conventional state graph approach [4, 5]. Designs based on the algo-
rithmic state machine and PAL will also be presented.

2.1 Numbering Systems

Of all the numbering systems, the decimal system is the easiest to comprehend. A
decimal number may be expressed as powers of 10. For example, consider a six
digit decimal number 987,654, which can be represented as
 9 × 100,000 + 8 × 10,000 + 7 × 1,000 + 6 × 100 + 5 × 10 + 4 × 1
or more concisely as
 9 × 105 + 8 × 104 + 7 × 103 + 6 × 102 + 5 × 101 + 4 × 100

decimal number 99.99 can be represented as
9 × 101 + 9 × 100 + 9 ×10–1 + 9 × 10–2

In general, a number may be represented in any numbering system as
d

n–1
bn–1 + d

n–2
bn–2 + ….. + d

1
b1 + d

0
b0 + d

–1
b–1 + d

–2
b–2 + …. + d– n–1 b–n–1 + d– n–2 b–n–2

The numbers are 0, 1, 2 up to 9 since in a decimal system, the base is 10. This rep-
resentation can be easily extended to fractional values as well. For example, the

where d’s are digits and b is the number base. As an example, consider the deci-
mal number 98.76, where d1 and d0 are 9 and 8 respectively, while d –1 and d –2 are
7 and 6 respectively. All other digits are zeros. The number base b is 10.

Digital systems rely heavily on binary numbers for their operations. The coef-
ficients of the binary numbers have two values, 0 and 1. Each coefficient is multi-
plied by powers of 2. As an example, consider the binary number 101010.1010,
whose decimal equivalent is
1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 + 1 × 2–1 + 0 × 2–2 + 1 × 2–3 +
0 × 2–4 = 42.625.
Thus, a binary number can be converted to its decimal equivalent by evaluating
the sum of the powers of 2 of those coefficients whose value is 1. Similarly, a
decimal number can be converted to a binary number by repeated division by 2 for
the integer part and by repeated multiplication by 2 for the part after the decimal
point. As an example, we will convert the decimal number 42.625 back to binary.
To start with, 42 is divided by 2 to get an integer quotient of 21 and a remainder
of 0. The quotient is again divided by 2 to get a new quotient 10 and a remainder
1. This process is continued until the quotient is 0. This is followed by multiply-
ing the fractional part 0.625 by 2 to get 1 as the integer and 0.25 as balance. The
balance is again multiplied by 2 to get 0 as the integer and 0.5 as balance. This
pattern is repeated until the balance is 0. The whole process is as follows:

 Quotient Remainder

42 /2
21 /2 0
10 /2 1
 5 /2 0
 2 /2 1
 1 /2 0
 0 1 101010 = Integer answer

 2 × 0.625
 1 2 × 0.25
 0 2 × 0.5
 1 .0
Fraction = .101
The final answer is got by putting the integer and fraction answers together as
101010.101.

Another popular number representation is the octal system. The following is an
example of octal to decimal conversion:
 (765.4)8 = 7 × 82 + 6 × 81 + 5 × 80 + 4 × 8–1 = (501.5)10

Yet another popular numbering system is the hexadecimal system, used espe-
cially in microprocessor-based designs. Apart from the decimal numbers 0 to 9, the
letters of the alphabet are used to supplement the ten decimal digits since the base of
the number is greater than 10. The letters A, B to F are used for digits 10, 11 to 15
respectively. The following is an example of a hexadecimal number converted to a
decimal number:

34 Review of Digital Systems Design

Table 2.1 Conversion of numbers from one system to another

Decimal
number

(base 10)

Binary
number
(base 2)

Octal
number
(base 8)

Hexadecimal
number

(base 16)

00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

(FEDCBA)16 = 15 × 165 + 14 × 164 + 13 × 163 + 12 × 162 + 11 × 16 + 10 =
(16702650)10
Table 2.1 presents the conversion of numbers from one system to another system,
namely, the decimal, binary, octal, and hexadecimal systems.

2.2 Twos Complement Addition/Subtraction

Twos complement representation is very effective in microprocessor-based
designs. This is also true in FPGA and ASIC based designs. Twos complement of
a binary number may be evaluated by adding one to the ones complement (which
is just performing bit-wise inversion) of the number. For example, the twos com-
plement of the binary number 10011001 may be computed in the following two
steps:
 Binary number : 10011001
 Ones complement : 01100110
 Twos complement : 01100111

A faster way to compute the twos complement is to inspect the binary number
commencing from the least significant bit (lsb) and retaining all least significant
0’s and the first 1 as it is, and by complementing all other higher significant bits.

2.2 Twos Complement Addition/Subtraction 35

 Review of Digital Systems Design

A number in twos complement notation may be identified as a negative number if
the most significant bit (msb) is ‘1’. Otherwise, it is a positive number, whose
decimal equivalent is obtained by adding the decimal weights of all the 1’s in the
number. The decimal magnitude of a negative twos complement number is ob-
tained by taking the twos complement first and then adding the decimal weights of
all the 1’s in the evaluated twos complement. The following examples illustrate
the foregoing statements.

Consider the numbers A = 10011001 and B = 01000111 in twos complement
notation. The msb of A is ‘1’ and, therefore, it is a negative number. The twos
complement is 01100111, as was evaluated earlier. The decimal weights of ‘1’s
commencing from lsb are 1, 2, 4, 32, and 64, which sum up to 103 in decimal no-
tation. Therefore, A equals –103 in decimal system. B is a positive number and the
decimal weights of 1’s are 1, 2, 4, and 64, which sum up to +71 in decimal nota-
tion. In order to become familiar with simple arithmetic using twos complement
notation, we will evaluate the following addition/subtraction operations:

(a) A + B,
(b) A – B,
(c) B – A,
(d) –A – B.

(a) A = 10011001 –103
 B = + 01000111 +71

 A + B = Sum = 11100000 –32

 Twos complement of Sum = 00100000 –32
The addition of A and B is carried out by the conventional way of adding two
unsigned binary numbers. The ‘Sum’ is in twos complement form. ‘1’ in the msb
indicates that it is a negative number. Its magnitude can be obtained by evaluating
the twos complement and by adding together the weights of all ones. In this case,
the only ‘1’ has the weight, 32.
(b) Subtraction can be done by evaluating the twos complement of B first and

then adding it to A, ignoring the final carry. Let us make an attempt at evalu-
ating A – B.

 A = 10011001 –103
 Twos complement of B = 10111001 –71

 A – B = Sum = 01010010 –174
 A = 110011001 –103
 Twos complement of B = 110111001 –71

 A – B = Sum = 101010010 –174

Twos complement of Sum = 010101110 174
The carry generated in Sum is dropped. The msb of ‘Sum’ indicates that the result
is a negative number. The twos complement of Sum gives the magnitude of 174.
Thus, the result –174 is correct. We can extend the sign bit by one bit if we need

36

to add two numbers. If we wish to add more numbers, we need to extend the sign
accordingly.
(c) A = 110011001 –103
 Twos complement of A = 001100111 +103
 B = 01000111 +71

B – A = Sum = 010101110 +174

(d) Twos complement of A = 001100111 +103
 Twos complement of B = 110111001 –71

 –A – B = Sum = 000100000 +32

(c) and (d) are self-explanatory and may be easily verified to be correct.

Just like the twos complement notation, there is another way of representation of
signed numbers, the sign-magnitude notation. In this system, the sign is indicated by
the msb, while the rest of the bits contain the magnitude of a number. In the sign-
magnitude system, addition or subtraction of two numbers follows the rules of ordi-
nary arithmetic. If the signs are the same, then the magnitudes of the two numbers
are added and the result gets the same sign. On the other hand, if the signs are differ-
ent, the smaller magnitude is subtracted from the larger one and the result gets the
sign of the larger magnitude. This requires the comparison of the signs and the mag-
nitudes and then performing either addition or subtraction of the numbers. In con-
trast to this, the addition/subtraction of numbers in the twos complement system
requires only addition and does not require either a comparison or a subtraction.
Therefore, twos complement system will be extensively used in this book, especially
when realizing designs using Verilog.

2.3 Codes

In order to communicate information from one system or sub-system to another,
codes are necessary. Some of the most useful codes are as follows.

2.3.1 Binary and BCD Codes

The common type is the binary code represented by ‘n’ bits. The number of codes
that can be generated is 2n. Another popular code is the binary coded decimal
(BCD), which requires four bits per decimal digit. The BCD is a straight assign-
ment of the binary equivalent for a single decimal digit. The binary and BCD
codes are shown in Table 2.2 for few numbers of decimal numbers. The weights in
the binary and BCD codes of size 4 bits are 8, 4, 2, and 1. Consider the decimal
number 12. The binary code equivalent can be obtained by selecting the decimal

2.3 Codes 37

 Review of Digital Systems Design

weights, which add up to 12 and by assigning code ‘1’ to the selected decimal
weights. ‘0’s are assigned to the non-selected decimal weights. For the decimal
number 12, the relevant decimal weights are 8 and 4 and the non-relevant deci-
mal weights are 2 and 1. Therefore, the binary code is 1100.

The decimal to BCD code conversion is similar to the decimal to binary conver-
sion for decimal numbers from 0 to 9. For greater numbers, four more bits per addi-
tional decimal digit need to be added as shown in Table 2.2. For 12, we need four
additional bits as the msb in order to accommodate ‘1’ in the decimal number 12.
Naturally, we assign 0001 for the most significant digit and 0010 for the least sig-
nificant digit of the BCD number. As another example, we assign the BCD code as
1001 1001 for the decimal number 99. The inverse conversion is obtained by adding
up all decimal weights of 1’s in the case of the binary number. For the BCD number,
all decimal weights of 1’s of a BCD digit are independently added up and concate-
nated. For example, consider the BCD number 1001 1000. All decimal weights of
1’s of the most significant BCD digit add up to 9, while all decimal weights of 1’s of
the least significant BCD digit add up to 8 and, therefore, the decimal number is 98.

Table 2.2 Binary and BCD codes

Decimal
number

Binary code
8421

BCD
code

8421 8421
0 0000 0000 0000
1 0001 0000 0001
2 0010 0000 0010
3 0011 0000 0011
4 0100 0000 0100
5 0101 0000 0101
6 0110 0000 0110
7 0111 0000 0111
8 1000 0000 1000
9 1001 0000 1001

10 1010 0001 0000
11 1011 0001 0001
12 1100 0001 0010
13 1101 0001 0011
14 1110 0001 0100
15 1111 0001 0101

38

2.3.2 Gray Code

Gray codes are used in applications such as an optical shaft encoder to track the
shaft position digitally. As the shaft rotates, the code changes from one to another
in a sequence. If we were to use a binary sequence, there may be changes in more
than one bit positions. For example, consider the binary code changing from 0111
to 1000. It may be noted that all the four bits in the binary code change: msb
changes from ‘0’ to ‘1’, whereas all other bits change from ‘1’ to ‘0’. This may
produce an error during the transition from one number to the next since one bit
may change faster than others. While changing from 0111 to 1000, the intermedi-
ate code will be 1111 (erroneous) if the msb changes before other bits. There are
similar other possibilities. The advantage of the Gray code is that only one bit in
the code changes when going from one sequence to the next. For example, in go-
ing from 0111 to 0101, only the second lsb changes from ‘1’ to ‘0’. Thus, in the
Gray code, only one bit changes in value during any transition between two numbers
as shown in Table 2.3.

Table 2.3 Four-bit Gray code sequence

Gray code sequence Decimal equivalent

0000 0
0001 1
0011 3
0010 2
0110 6
0111 7
0101 5
0100 4
1100 12
1101 13
1111 15
1110 14
1010 10
1011 11
1001 9
1000 8

2.3 Codes 39

 Review of Digital Systems Design

Usually, we need to send alphanumeric information from one system to another, a
keyboard to a computer, for instance. American Standard Code for Information In-
terchange (ASCII) presents the standard code for the alphanumeric characters. It
uses seven bits to code 128 characters as shown in Table 2.4. More characters or
symbols up to 128 are also available as extended ASCII codes. This is shown in
Table 2.5. The code size that includes the standard ASCII and the extended codes
is eight bits.

Table 2.4 ASCII code

2.3.3 ASCII Code

40

2.3.4 Error Detection Code

Data communication from one system to another is done using a serial transmis-
sion channel. Any external noise picked up en route by the serial link may change
some of the bits from 0 to 1 or vice versa. The purpose of an error-detection code

2.3 Codes

Table 2.5 Extended ASCII code

41

 Review of Digital Systems Design

is to detect such bit errors. A parity bit is a binary digit that indicates whether the
number of ‘1’ bits in the preceding data was even or odd. If a single bit is changed
in transmission, the message will change parity and the error can be detected at
this point. The generation of parity bit is useful in detecting errors during the
transmission. This is done in the following manner. An even parity bit is generated
at the transmitter for each message. At the receiver end, the parity of the received
data is computed and checked with the received even parity from the transmitter.
If the parity of the received information is not even, it means that at least one bit
has changed value during the transmission. This method detects any odd combina-
tion of errors in each message that is transmitted. The most common occurrence of
error is the one bit error. However, an even combination of errors goes undetected.
Additional error-detection schemes may be needed to take care of an even combi-
nation of errors. Parity is used in many hardware applications where an operation
can be repeated in case of an error, or where simply detecting the error is useful.
For example, the SCSI bus uses parity to detect transmission errors, and many
microprocessor instruction caches include parity protection.

In a serial data transmission, there are two formats: 7 data bits in one format
and 8 data bits in the other format. In the first format, there are 7 data bits, a start
bit, an even parity bit, and one or two stop bits. Even parity means that the total
number of ‘1’ bits is even. This format accommodates all the seven-bit ASCII
characters in a byte. In the other format, eight bits of data is used instead of seven
bits of data. In a serial communication, parity is generated at the transmitter and
checked by the receiver. An UART (universal asynchronous receiver transmitter)
is an example. Recovery from the error is usually done by retransmitting the data.

Consider an even parity scheme using nine bit codewords. The code comprises
8 data bits followed by a parity bit. The following examples would make the
parity scheme clear:
1. The parity of the data 1111 1110 is odd since there are 7 numbers of ‘1’ bits

in the data. The parity bit will be 1, giving the codeword 1111 1110 1.
2. The parity of the data 1111 1111 is even as there are 8 numbers of ‘1’ bits.

The parity bit is 0, giving the codeword 1111 1111 0.
3. The parity of the data 0000 0000 is even (zero being an even number). The

parity bit is 0, giving the codeword 0000 0000 0.
4. A null or non-existent bitstream also has zero ‘1’ bits and, therefore, it would

get the parity bit 0 in an even parity scheme.
Parity is a setting used in serial port data transmission. Parity is also used to

recover data in redundant array of independent disks. Parity RAM uses parity to
detect memory errors. In telecommunication, a Hamming code is used as an error-
correcting code. Hamming codes can detect single and double-bit errors, and
correct single-bit errors. In contrast to the Hamming codes, the simple parity code
cannot detect errors where two bits are transposed; nor can it help correct the
errors it can find.

42

2.4 Boolean Algebra

Boolean algebra is the algebra of two-valued logic, low or ‘0’ and high or ‘1’. A
Boolean algebra is a set with binary operations ‘+’ for addition and ‘·’ for multi-
plication; a unary operation ‘−’, and elements ‘0’, ‘1’ satisfying the following
laws:
1. Commutative laws for addition and multiplication:

A + B = B + A (for addition)
A · B = B · A (for multiplication)
where A and B are two single bit variables.

2. Associative laws for addition and multiplication:
(A + B) + C = A + (B + C)
A · (B · C) = (A · B) · C
where A, B, and C are single bit variables.

3. Distributive laws both for multiplication over addition and for addition over
multiplication:
A · (B + C) = (A · B) + (A · C)
A + (B · C) = (A + B) · (A + C)

The following laws are also satisfied:
4. (A + B)′ = A′B′
5. (AB) ′ = A′ + B′
6. A + (A · B) = A
7. A · (A + B) = A
8. A + (A′) = 1
9. A · (A′) = 0
where A′ (also referred to as A) is the inverse of A. If A is ‘0’, then A′ is ‘1’ and
vice versa. Sl. nos. 4 and 5 are known as DeMorgan’s theorems. The above laws

Table 2.6 Verification of commutative, associative, and distributive laws

A B C A + B B + A (A + B)
+ C

A +
(B + C)

A +
(B · C)

(A+B)·
(A + C)

A +
(A · B)

A ·
(A + B)

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0 0

0 1 0 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 1 0 0

1 0 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

2.4 Boolean Algebra 43

 Review of Digital Systems Design

may be easily verified by filling the truth table as illustrated for some of them in
Table 2.6. It may be noted that the following rules of additions and multiplications
hold good:

0 · 0 = 0; 0 · 1 = 0; 1 · 0 = 0; 1 · 1 = 1

2.5 Boolean Functions Using Minterms and Maxterms

Minterms and maxterms for three binary variables are shown in Table 2.7, as an
example. On similar lines, these terms can be found for two, four, or more binary
variables. Each variable may appear in either form: A or A′ and so on. There are
eight possible combinations of these variables, namely, A′B′C′, A′B′C right up to
ABC as shown in the fourth column of the table. Each of these terms is called a
‘Minterm’ and are designated symbols: m0, m1, …, m7 respectively. In general, 2n

minterms can be obtained from n variables. The first three columns are arranged
as increasing binary numbers of variables. Each minterm is an ANDed term of the
variables, wherein each variable is primed if the corresponding bit of the binary
number is a ‘0’ and unprimed if the bit is ‘1’. The minterms are the decimal
equivalents of the corresponding binary number of the variables. For example, the
minterm ‘m7’ corresponds to the binary number ABC = 111. Instead of AND
terms, we can also use OR terms as shown in the sixth column. The corresponding
symbols are shown in the seventh column. Each of these terms such as A + B + C,
A + B + C′, etc. is called a ‘Maxterm’, with respective symbols: M0, M1, etc. The
maxterms are the complements of their corresponding minterms. For example, the
minterm m7 is ‘1’ and the maxterm M7 is ‘0’ (complement of m7) corresponding
to the same binary value ABC = 111.

Any Boolean function can be expressed as a sum of minterms or as a product
of maxterms. For example, consider the function F1 formed by the sum of products
of variables A, B, and C, Table 2.8:

Table 2.7 Minterms and maxterms for binary variables

 Minterms Maxterms

A B C Term Symbol Term Symbol
0 0 0 A′B′C′ m0 A + B + C M0
0 0 1 A′B′C m1 A + B + C′ M1
0 1 0 A′BC′ m2 A + B′ + C M2
0 1 1 A′BC m3 A + B′ + C′ M3
1 0 0 AB′C′ m4 A′ + B + C M4
1 0 1 AB′C m5 A′ + B + C′ M5
1 1 0 ABC′ m6 A′ + B′ + C M6
1 1 1 ABC m7 A′ + B′ + C′ M7

0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 1;

44

Table 2.8 Truth table of a function to be realized using minterms

Table 2.9 Truth table of a function to be realized using maxterms

F1 = A′B′C′ + A′BC′ + AB′C′ + ABC′ + ABC = m0 + m2 + m4 + m6 + m7
F1 may also be expressed in a short form as

F1 = Σ (0, 2, 4, 6, 7)
where Σ implies sum (rather OR) of minterms. Let us now consider the function

F2′= (A + B + C′) (A + B′ + C′) (A′ + B + C′) = M1 · M3 · M5
In short, the function may be expressed as follows:
F2′ = Π (1, 3, 5)
The product symbol, Π, denotes the ANDing of maxterms. It may be noted that
the function F2′ is just the complement of F1. The final result is F2, the

A B C F1
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B C F2
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

2.5 Boolean Functions Using Minterms and Maxterms

complement of F2′ and the same as F1 as shown in Table 2.9. Thus, one may use

F2′ formed by active low product of sums of variables A, B, and C:

either the minterms or the maxterms to evaluate a function, whichever is simpler.

45

 Review of Digital Systems Design

2.6 Logic Gates

The symbols and functions of the common types of gates are shown in Figure 2.1.
A and B are the inputs and the outputs are F1 to F8. The reader may easily form
the truth table for these simple gates using the Boolean expressions presented in
the figure.

Fig. 2.1 Symbols and functions of the common types of gates

A
B F3

A
B F4

F2 A

F1 ABuffer

Inverter

AND

OR

F1 = A

F2 = A’

F3 = AB

F4 = A+B

GATE

SYMBOL FUNCTION

A
B

F5

F6

F7

F8

NAND

NOR A
B

A
B

A
B

F5 = (AB)’;

F6 = (A+B)’

F7 = (A^B) = (AB’+A’B)

F8 = (A^B)’ = (AB’+A’B)’ = AB+A’B’

XOR

XNOR

46

Circuits

The Karnaugh map or simply K map is made up of squares with each square rep-
resenting a minterm as shown in Figures 2.2 to 2.4. The signal A is the most sig-
nificant bit. The K map is useful in optimizing a digital circuit as shown in Figures
2.5 to 2.8. The Boolean function may be simplified by circling 16, 8, 4, 2 or one
number of 1’s lying as a clutter, single line or multiple lines, be it in a horizontal
or a vertical straight line. 1’s lying in the first square and the last square in a hori-
zontal or a vertical line can also be circled. However, 1’s lying diagonally cannot
be circled together. They have to be independently circled as shown in Figure 2.6.
The function shown in Figure 2.5 expressed in terms of minterms is F1 = Σ (1, 2, 3).
Two pairs of 1’s, one each in the horizontal and the vertical directions, offer them-
selves as good candidates for circling. Inspecting the horizontal 1’s, we see that
A = 1 and hence the signal ‘A’ finds a place in the final reduced function F1.

Fig. 2.2 K map for two signals A and B

Fig. 2.3 K map for three signals A, B, and C

Fig. 2.4 K map for four signals A, B, C, and D

m0 m1

m2 m3

m0 m1 m3 m2

m4 m5 m7 m6

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

C
AB

1

00 01 11 10

0

AB
00 01 11 10

CD
00

01

11

10

0 1A
B

0

1

2.7 The Karnaugh MAP Method of Optimization of Logic Circ u i ts

2.7 The Karnaugh MAP Method of Optimization of Logic

47

 Review of Digital Systems Design

Fig. 2.5 K map reduction for two signals using minterms

Similarly, observing the vertical 1’s, we get ‘B’. These partial results together
form the final reduced result:

F1 = A + B
Figure 2.6 shows another function F2, which uses three input signals A, B, and

C. Looking at the first row, we can circle the last two 1’s, and first 1 and the last 1
together. These two combinations produce the partial results, AC′ and B′C′
respectively. The last ‘1’ does not have any neighboring 1’s and hence contributes
A′BC to the result. The final result is as follows:

F2 = Σ (0, 2, 3, 5)
F2 = AC′ + B′C′ + A′BC

Finally, we will consider another example of K map reduction for four signals
as shown in Figure 2.7. Instantly, we can spot a cluster of eight 1’s, which we will
circle promptly. This yields ‘B’ as the partial result. Balance four 1’s is at the four
corners of the K map. We may regard the corner squares to be neighbors and
hence circle all of them to make one integral group. This quad 1’s contribute the
Boolean expression B′D′. The final result of function

F3 = Σ (0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15) is:
F3 = B + B′D′ = B + D′

since B′ is redundant as can be inferred from the K map.

Fig. 2.6 K map reduction for three signals using minterms

48

0 0 1

F1 = A + B

0 1A
B

A

B
1 1 1

AC’

A’BC BC’

C
00 01

0

11 10
AB

1

1 0 1 1

0 1 0 0

F3 = B + B′D′ = B + D′

Fig. 2.7 K map reduction for four signals using minterms

In the previous examples, the Boolean functions were expressed as the sum of
products. Similarly, the product of sums form can also be obtained by circling 0’s
and combining them as was done before. The combined maxterm inputs must be
inverted individually and ORed to get a partial result. Finally, these partial results
are ANDed together to form the final result, which is of the ‘product of sums’
form. To make it clear, we will take the same function F3 evaluated previously
using minterms. Consider Figure 2.8, which is the same as Figure 2.7, except that

F4 = B + D’

Fig. 2.8 K map reduction for four signals using maxterms

CD
00 01

00

11

11

10

10AB

B (Horizontal)

01

D’
Vertical

B+D’ for the
four zeros

1 1 1 1
0 1 1 0

0 1 1 0

1 1 1 1

CD
00 01

00

B

11

11

10

10
AB

B’ (Horizontal)

01

D’
(Vertical)

B’D’ for the
four corners

1 1 1 1

0 1 1 0

0 1 1 0

1 1 1 1

maxterms (‘0’ entries) are circled. Looking at horizontal ‘0’ entries, we see that ‘B’ is

2.7 The Karnaugh MAP Method of Optimization of Logic Circ u i ts 49

 Review of Digital Systems Design

a constant ‘0’. Therefore, we get B. Again, scanning circled 0’s vertically, we see
that D = 1 and hence the partial result is D′. Note that the valid maxterm inputs are
inverted individually. ORing the two partial results, we get the final result:

F4 = B + D′
We can verify the result by using minterms for ‘0’ entries, from which we get the
inverted result: F4′ = B′D. Therefore, F4 = (B′D)′ = B + D′ using DeMorgan’s
theorem, thus verifying the result obtained using the maxterms.

K map reduction becomes complicated for five inputs and more and, therefore,
Quine McCluskey methods of optimization are used. Since our main interest is to
develop VLSI systems using Verilog and CAD tools, we will not present this
method. Synthesis tool will take care of this optimization automatically. We will
learn this tool in a later chapter.

2.8 Combination Circuits

Digital systems are of two types: combination and sequential. A combination cir-
cuit comprises logic gates, whose outputs depend upon the present inputs without
regard to previous inputs. A combination circuit realizes a set of Boolean func-
tions directly. Ideally, the response of a combination circuit is instantaneous. In
real practice, however, there is delay owing to propagation of signals through
various gates, which combine them logically. There is no memory involved in a
combination circuit. In contrast to this, a sequential circuit employs memory ele-
ments in addition to logic gates.

The sequential circuits will be covered later on. All gates presented in Section
2.6, multiplexers, demultiplexers, decoders, comparators, half/full adders, etc. are
all combination circuits. These circuits from multiplexers onwards will be
presented in the following sub-sections.

2.8.1 Multiplexers

A multiplexer (MUX) is like a switch, which selects one out of many inputs, and
outputs the selected input signal. The select lines are used for the selection of a
particular input. Figure 2.9 shows a four input MUX as an example. On similar
lines, the reader may work out circuit details of multiplexers with two inputs, eight
inputs, sixteen inputs, etc. The logic circuit can be drawn easily using two invert-
ers to generate active low signals of the select signals, four AND gates combining
the inputs with select signals and an OR gate to get the final result, F. The function
table shows the outputs for various combinations of the select pins. For brevity in
a circuit diagram, we can represent the MUX as a block as shown in Figure 2.9.
Note that S1 is the most significant bit.

50

Fig. 2.9 A four input multiplexer

2.8.2 Demultiplexers

A demultiplexer (DEMUX) is just the inverse of a MUX, which receives a single bit

Fig. 2.10 A four output demultiplexer

S1 S0 F

0 0 I0
0 1 I1
1 0 I2
1 1 I3

b Function table c Block diagram

I3
I2
I1
I0

4 - 1
MUX Inputs F

Select Pins

S1 S0

I0

I1

I2

I3

S1
S0 F

a Logic diagram

S1

S1

S1

S0

S0

S0

S0

S0
S1

S1

a Block Diagram

D3
D2
D1
D0

1 - 4
Demultiplexer

S1

Input

Select Pins

S0

S1 S0 Input

0 0 D0
0 1 D1
1 0 D2
1 1 D3

b Function Table

input, and outputs to one of many output lines as shown in Figure 2.10. As in the

2.8 Combination Circuits 51

 Review of Digital Systems Design

2.8.3 Decoders

A decoder is similar to a demultiplexer. The difference is that in a demultiplexer,
there is only one input, whereas a decoder accepts more than one input. In a decoder,

Fig. 2.11 BCD to decimal decoder

Table 2.10 Truth table of BCD to decimal decoder

Inputs Intermediate outputs
A3 A2 A1 A0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1

D3
D2
D1
D0

BCD to
Decimal
Decoder

A2 BCD
Inputs

A3

A0

A1

D7
D6
D5
D4

D9
D8

Active low
Decimal
Outputs

we have a BCD number, it can be decoded and the corresponding output
an input number is a code and the decoded results are output. For example, if

MUX, the select pins route the input data to the desired output as shown in the

 outputs DEMUX.
function table. S1 is the most significant bit. We can have two, eight and sixteen

52

Fig. 2.12 Logic diagram of BCD to decimal decoder

can be activated. Figure 2.11 shows a BCD to Decimal Decoder, wherein D0 to D9
are outputs after inverting those signals. For instance, the BCD input 0111 (A3 is
the msb) sets D7′ low, while setting all other outputs high. Table 2.10 shows the
truth table for this decoder, where the outputs are shown as D0 to D9 instead of
their inverses. Note that only one out of these ten outputs is activated for a valid
BCD number. The logic for this decoder can be realized using inverters and four
input NAND gates as shown in Figure 2.12. For invalid BCD number, no outputs
are activated. This can be easily verified from the logic diagram. Similarly, other
decoders such as binary to hexadecimal decoder, BCD to seven segment decoder,
etc. can be designed.

2.8.4 Magnitude Comparator

A magnitude comparator is a combinational circuit that compares two numbers, A
and B. The comparison of two numbers determines if one number is less than or
greater than, or equal to the other number. The comparator outputs one of the condi-
tions satisfied A < B, A > B, or A = B, each of which is a single bit. As an example,
consider two four-bit numbers A and B represented as A3 A2 A1 A0 and B3 B2 B1 B0,
where A3 and B3 are the msbs. Since there are only three conditions as mentioned
earlier, it is enough if we evaluate any two of the conditions. We will, therefore
evaluate A < B and A = B. This way, we will reduce the gate count.

We will first evaluate A < B. If the msbs are A3 = 0 and B3 = 1, it means that
A < B and we need not take the trouble of evaluating other bits. This condition
may be expressed as A3′B3. On the other hand, if A3 = B3, then we repeat the

3 2 2 3 2 1 1 3 2 1 0 0 E3 = A3

A3'
D0 = A3'A2' A1' A0' A2'

A1'
A0' A3'

A2'

A1'

A0'

A3'
D1 = A3'A2' A1' A0 A2'

A1'
A0

A3
D9 = A3A2' A1' A0 A2'

A1'
A0

A3

A2

A1

A0

0

1

9

2.8 Combination Circuits

above procedure, in turn, for all the other bits down to the lsbs. These yield expres-
sions E A ′B , E E A ′B , and E E E A ′B for the subsequent bits, where

53

 Review of Digital Systems Design

B3 + A3′ B3′, E2 = A2 B2 + A2′ B2′, and E1 = A1 B1 + A1′ B1′, all of which indicate
the equivalence, namely, A3 = B3, A2 = B2, and A1 = B1. Combining (i.e., ORing)
together all the four partial results, we get the final expression:
 (A < B) = A3′B3 + E3A2′B2 + E3E2A1′B1 + E3E2E1A0′B0
In order to evaluate A = B, we only need to AND together the equality E3 to E0 for
the four bits as follows:
 (A = B) = E3 E2 E1 E0
where E0 = A0 B0 + A0′ B0′ = (A0 = B0). The last condition can be easily obtained

Fig. 2.14 Logic circuit diagram of a four-bit magnitude comparator

u3

E3
u2

E3
E2 u1
E3
E2
u0
E1

u3
(A < B)

E2

E0
E1

E3
(A = B)

E3
A3
B3

E2
A2
B2

E1
A1
B1

E0
A0
B0

A3’
B3

(A = B)
(A < B) (A > B)

u2
A2’
B2

u1
A1’
B1

u0
A0’
B0

A

B

4-bit Magnitude
Comparator

(A < B)

(A = B)

(A > B)

Fig. 2.13 Block diagram of a Four-bit magnitude comparator

54

by just NORing (A < B) and (A = B) as follows:
(A > B) = ((A < B) + (A = B))′

This simply means (A > B) is neither (A < B) nor (A = B). The four-bit
comparator block diagram and the deduced logic circuit diagram are shown in
Figures 2.13 and 2.14 respectively.

2.8.5 Adder/Subtractor Circuits

Arithmetic operations are indispensable in a digital system, be it a processor based
system or an FPGA/ASIC based system, especially for data processing applications.
The basic arithmetic operations are addition and subtraction of two binary numbers,

later chapter on arithmetic circuits.

Half Adder

A half adder performs the addition of two single bits. The truth table of a half
adder is shown in Table 2.11. The carry is not shown since we are interested only
in a single bit result. Inspecting the ‘1’ output entries of the truth table, we get the
Boolean function:

 Sum_HA = A′B + AB′ = A B

Table 2.11 Truth table of a half adder

A B Sum_HA

0 0 0
0 1 1
1 0 1
1 1 0

The XOR gate realization is shown in Figure 2.15.

Fig. 2.15 Logic of a half adder

A
B Sum_HA = A B

2.8 Combination Circuits

single or multiple bits. These operations are performed basically using combi-
national circuits, although they can be sequential circuits as presented in a

55

 Review of Digital Systems Design

Full Adder

A full adder is a combinational circuit that adds three single bit inputs, A, B, and
C. The outputs are carry “C_FA” and the sum “S_FA”. The input “C” represents
the carry in from the previous lower significant bit position, should they exist. The
full adder truth table is shown in Table 2.12.

Table 2.12 Truth table of a full adder

Fig. 2.16 Logic realization of a full adder

The sum and carry outputs are respectively
 S_FA = A B C
 C_FA = AB + BC + CA
The gate realizations are shown in Figure 2.16.

Half Subtractor

A half subtractor is used for subtracting two single bits, borrowing a ‘1’, if
necessary. The truth table of the half subtractor is shown in Table 2.13. The
borrow output is not shown in the truth table.

A B C C_FA S_FA
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A
B S_FA = A B C C

C_FA = AB+BC+CA

A
B

B
C

C
A

56

Table 2.13 Truth table of a half subtractor

The Boolean function for the half subtractor output is as follows:
 S_HS = A′B + AB′ = A B.
It may be noted that the logic for S_HS is the same as that for the output of the
half adder as shown in Figure 2.17.

Fig. 2.17 Logic of a half adder

Full Subtractor

A full subtractor, as the name implies, is a combinational circuit that performs a
subtraction between two single bits with a borrow-in got from a lower significant
stage. In short, the final result is A–B–C. It has three inputs, A, B, and C and two
outputs, B_FS (for borrow-out) and S_FS (for subtracted value). The truth table
for the full subtractor is shown in Table 2.14. The simplified Boolean output func-
tions for the full subtractor are derived using K map and are as follows:
 B_FS = A′B + A′C + BC

S_FS = A′B′C + A′BC′ + ABC + AB′C′
The logic circuit realization is shown (inverters are not shown) in Figure 2.18.

Table 2.14 Truth table of a full subtractor

A B S_HS
0 0 0
0 1 1
1 0 1
1 1 0

A B C B_FS S_FS
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

A
B S_HS = A B

2.8 Combination Circuits 57

 Review of Digital Systems Design

Fig. 2.18 Logic gate realization of a full subtractor

2.8.6 SSI and MSI Components

In the foregoing sections, we have seen the design of a number of gates and cir-
cuits. Gates fall under small scale integrated (SSI) circuits category. Most of the
circuits considered earlier fall under medium scale integrated (MSI) circuits cate-
gory. These components are available in IC packages from a number of vendors
such as Signetics, Texas instruments, etc. Some of these components are multi-
plexers (74LS150 to 74LS153), demultiplexers (74LS138, 74LS139, 74LS153,
74LS154), BCD to decimal decoder/driver (74LS145), BCD to seven segment
decoders/drivers (7445 to 7448), adder (74LS83), comparator (74LS85), etc. Apart
from the combinational circuits, sequential circuits such as flip-flops, counters, etc.
are also available. Using these devices and others, we can design cost-effective digi-
tal systems for small to medium applications. Some of these components are also
used as peripheral devices or interfaces in more complex LSI and VLSI systems.
For larger systems, SSI/MSI devices based designs become very complex to pro-
duce. Programmable logic devices (PLDs) are more suitable for such applications.
We will consider some of these devices in a later section.

2.9 Arithmetic Logic Unit

We have looked at the designs of various gates, adder, and subtractor earlier. Combi-
 ning all these functions into a single medium scale integrated circuit provides logic

S_FS = A’B’C + A’BC’ + ABC + AB’C’

A’
B’

B_FS = A’B + A’C + BC

A’
B
A’
C

B
C

C
A’
B
C’
A
B
C
A
B’
C’

58

Fig. 2.19 ALU logic symbol (Courtesy of Texas Instruments Inc.)

designers a useful tool. One such example is the 74xx181 of Texas Instruments,
whose logic symbol is shown in Figure 2.19. A four-bit select code (S3–S0) and a
mode bit (M) are used to decide the operation to be performed on data inputs as
shown in Table 2.15. The mode and select code can provide up to 32 different
functions as tabulated. As can be seen in the table, the functions are partitioned
into two categories: logic and arithmetic. The arithmetic functions are further
divided into two groups. Consider the logical operations, for which M = 1: when
select = 0000, the four-bit ‘A’ input is complemented bit-wise and output in F. By
changing M to 0, keeping select = 0000, and the carry input high, the output is A
plus 1 (which means increment A). Similarly, other functions can be inferred.

2.10 Programmable Logic Devices

A programmable logic device is an integrated circuit with logic gates partitioned
into an AND array and an OR array [4–6]. These gates are interconnected to
provide sum of products implementation. The un-programmed PLD has all the
connections intact. Programming the device breaks the connections to achieve a
desired logic function. Figure 2.20 shows three types of PLDs. The programmable
read-only memory (PROM/EPROM/Flash ROM) has a fixed AND array and

S0
S1
S2
S3

A0
A1
A2
A3

B0
B1
B2
B3

F0
F1
F2
F3

G
P

A=B
M

C_in

C-out Carry-out

Outputs

For Look-Ahead Carry

B

A

Data
Inputs

Carry Inputs

Function
Controls

ALU

2.10 Programmable Logic Devices

programmable connects for the output OR gates. These devices, hereafter referred to as
ROM for short, implement Boolean functions as sum of minterms. The programmable

59

 Review of Digital Systems Design

Table 2.15 74xx181, ALU function table (Courtesy of Texas Instruments Inc.)

Active high data Selection
M = L: Arithmetic operations

S3 S2 S1 S0

M = H
Logic

functions
Cn′ = H

(no carry)
Cn′ = L

(with carry)

L L L L

F = A F = A F = A plus 1

L L L H

F = A + B F = A + B F = A + B
plus 1

L L H L

F = AB

F = A + B

F = (A + B)
plus 1

L L H H F = 0
F = minus 1

(Twos
complement)

F = zero

L H L L

F = AB

F = A plus AB

F = A plus AB
plus 1

L H L H

F = B

F = (A + B)
plus AB

F = (A + B)
plus AB plus 1

L H H L

F = A B F = A minus B
minus 1 F = A minus B

L H H H

F = AB

F = AB minus 1

F = AB

H L L L

F = A + B F = A plus AB F = A plus AB
plus 1

H L L H

F = A B F = A plus B F = A plus B
plus 1

H L H L F = B

F = (A + B)
plus AB

F = (A + B)
plus AB plus 1

H L H H F = AB F = AB minus 1 F = AB

H H L L F = 1 F = A plus A′ F = A plus A plus 1

H H L H

F = A + B F = (A + B)
plus A

F = (A + B) plus
A plus 1

H H H L F = A + B F = (A + B)
plus A

F = (A +B)
plus A plus 1

H H H H F = A F = A minus 1 F = A

60

Fig. 2.20 Programmable Logic Devices: ROM, PLA, PAL

logic array (PLA) is an IC, where the AND gates as well as OR gates are program-
mable. However, programming PLA is complex. The programmable array logic
(PAL) has a programmable AND array and a fixed OR array. The product terms in
the desired Boolean functions are obtained by programming AND gates. These
ANDed terms are summed using an OR gate to realize the Boolean function. The
PAL is simple to program and, therefore, more popular, especially in industrial
products. In the design using 74 series digital ICs, once the printed circuit is made,
we cannot change the logic, if required. This disadvantage is eliminated by using
PLDs in the design of digital systems since they can be re-programmed to suit the
changed situation, provided the inputs/outputs do not change appreciably. Each of
the three types of PLDs is explained in the following successive sub-sections.

A read-only memory is a storage device that fall under any of the categories, MSI
and VLSI, depending upon its size. The ROM comprises decoders and the OR

Programmable
AND Array

OR
Array

Outputs

Inputs

c Programmable array Logic (PAL)

Programmable
Connects

Outputs Programmable
AND Array

Programmable
OR Array

Inputs

b Programmable Logic array (PLA)

Programmable
Connects

Programmable
Connects

AND
Array

Programmable

OR Array

Outputs Inputs

a Programmable read-only memory (PROM/EPROM/Flash ROM)

Programmable
Connects

2.10 Programmable Logic Devices

2.10.1 Read-Only Memory

61

 Review of Digital Systems Design

gates within a single IC package. A ROM stores binary information, which is pro-
grammed by the designer to form the required interconnection pattern. ROMs are
factory programmed and are not amenable for programming by the user.
Therefore, they are suitable only for bulk production of the product. PROMs are
one-time programmable by the user. If the design requirements change, the old
PROM needs to be dropped and, instead, a new device needs to be programmed
and used. Still better alternative is the EPROM, which can be programmed a
number of times and can be erased by exposing it to UV light. EEPROM and
Flash ROM are electrically programmable and erasable. Flash ROM has become
popular. All these types of ROMs are non-volatile, i.e., once the device is
programmed, the program remains undisturbed even when the power is turned off

lines called the address lines and W output lines, specifying the width of the
device referred to as word in general. A word of 8 bits is called as the byte (B) and
4 bits as the nibble. An address is a binary number that denotes one of the
minterms of N variables. The number of addresses or memory locations possible
with N input variables is 2N. Any word can be accessed by a unique address. Each
bit (b) in a word may be regarded as a Boolean function. Usually, the ROMs come
with large memory sizes such as 4 KB, 8 KB, up to over 512 KB. Therefore,
ROMs are usually overkill for realizing Boolean functions. However, they are
quite cheap and, therefore, may be cost-effective.

Fig. 2.21 Block diagram of ROM

2.10.2 Programmable Logic Array (PLA)

A PLA has programmable interconnects among inputs and outputs arranged as
a matrix as shown in Figure 2.22. These interconnects are in tact initially. The
desired Boolean functions are implemented as sum of products by breaking appro-
priate connections using a programmer. Interconnects are available between all
inputs and their complement values to each of the AND gates. They are also
available between the outputs of the AND gates and the inputs of the OR gates
and also across inverters at the outputs. The size of the PLA is specified by the

Boolean functions and the programmer removes all interconnections, leaving
those marked ‘X’ undisturbed.

The block diagram of a ROM is shown in Figure 2.21. It consists of N input
and on again.

number of inputs/outputs and the number of product terms. As an example, the fig-
ure shows a PLA with 12 inputs and 8 outputs. The designer specifies the

AN-1

 |
A0

W Outputs N inputs 2N x W
ROM

DW-1

 |
D0

62

Fig. 2.22 PLA with twelve inputs and eight outputs

2.10.3 Programmable Array Logic (PAL)

The programmable array logic (PAL) is a device with a programmable AND array
and a fixed OR array. The PAL is easier to program than the PLA and hence more
popular. For simplicity of representation, the un-programmed inputs to each of the
AND gates is shown in Figure 2.23. In the actual circuit, however, the vertical
lines are independently connected to the inputs of the AND gate. The 12 inputs
and 8 outputs PAL, which realizes the same Boolean functions as in Figure 2.22 is
shown in Figure 2.24. As in PLA, the designer specifies the Boolean functions
and the programmer removes all interconnections, leaving those marked ‘X’
undisturbed. The inputs of each of the AND and OR gates is limited in PLA/PAL.
Later on, we will use a commercially available PAL in an application. The output
inverters are different in an actual PAL. PALs are suitable for small and medium
sized applications and are more flexible than TTL based ICs. For medium to large
designs, FPGAs are far more suitable than PALs, which is the main emphasis of
this book.

Fig. 2.23 Graphic Symbol of AND Inputs of PAL

Fig. 2.24 PAL with twelve inputs and eight outputs

2.10 Programmable Logic Devices

A B’ L’ B

F1 = AL’ + A’B

F8 = A’B + B’L

A’ L

X
X

X

X

X

X
X

X

X

X

X

X X X X

A B’ L’ B

F1 = AL’ + A’B

F8 = A’B + B’L

A’ L

X X

XX

X X

X

63

 Review of Digital Systems Design

2.11 Sequential Circuits

In the previous sections, we saw how combinational circuits are modeled. They
can be designed using SSI/MSI gates, ROM, PLA, or PAL. Ideally, the response
of a combinational circuit is immediate with changes of inputs. In reality, the res-
ponse is delayed by the propagation delays of the gates as well as the interconnect
delays. A sequential circuit is, in general, a cluster of combinational circuit con-
nected to a register, which stores the combinational circuit output prevailing at the
time of rising edge (or the falling edge) of a clock. The output of a sequential cir-
cuit is a function of the inputs as well as the state of the stored value in the regis-
ter. The output of a sequential circuit depends on the present inputs as well as on
the past inputs. The register may be a RS flip-flop, a D flip-flop, a JK flip-flop, or
a T flip-flop. These flip-flops will be described in later sub-sections. The sequen-
tial circuits are referred to as synchronous circuits as they work in tandem with the
clock. A block diagram of a sequential circuit is shown in Figure 2.25. It consists of
combinational circuits to which registers are connected, with register outputs fed
back. The storage elements are flip-flops, capable of storing binary information.

RS Flip-flop

The flip-flops are binary cells, each capable of storing one bit of information. A flip-
flop circuit can maintain a binary state ‘0’ or ‘1’ so long as power is applied to the
circuit or until directed by an input signal to change state. A common type of flip-
flop is called a RS flip-flop or a SR latch. The R and S are the two inputs that are
abbreviations for reset and set respectively. Figure 2.26 shows an RS flip-flop circuit
using NOR gates. When S = 1 and R = 0, the flip-flop is set, i.e., Q is set to ‘1’ and
Q′ is reset. Similarly, when S = 0 and R = 1, the flip-flop is reset. The flip-flop is in
store mode for SR = 00 and stores whatever was the previous state as can be seen
from the truth table. It may be noted that SR = 11 is an invalid input since the
corresponding outputs Q and Q′ must be complement of each other instead of ‘0’
each. The RS flip-flop may also be realized by using NAND gates instead of NOR
gates. The logic diagram and its truth table are shown in Figure 2.27. This flip-flop
can be set and reset by applying the inputs SR = 01 and 10 respectively. SR = 11 is
the store mode, while 00 input is invalid. These circuits are asynchronous.

Fig. 2.25 Block diagram of a sequential circuit

Next State Value(s) Combinational
circuits

Register(s)

Outputs Inputs

Clock

64

Fig. 2.26 RS flip-flop circuit using NOR gates

Fig. 2.27 RS flip-flop circuit using NAND gates

Synchronous RS flip-flop can be built by providing a clock input that deter-
mines when the state of the circuit is to be changed. The RS flip-flop with a clock
input in shown in Figure 2.28a. Q(n) and Q(n + 1) stand for the state of the flip-flop
before and after the application of a clock pulse and are referred to as the present
and the next state respectively. As shown in the truth table in Figure 2.28b, for the
inputs S and R and the present state Q(n), the application of a single pulse causes
the flip-flop to go to the next state, Q(n + 1). The last two lines are indeterminate
and should not be allowed. This can be met if SR = 0. The characteristic equation
of the flip-flop is derived from the K map shown in Figure 2.28c. This specifies
the value of the next state as a function of the inputs and the present state. The
clocked RS flip-flop may be represented symbolically as shown in Figure 2.28d.

Q

Q’

S

R

a Logic diagram

 S R Q Q’

 1 0 0 1
 1 1 0 1
 0 1 1 0
 1 1 1 0
 0 0 1 1

 b Truth table

(after S =1, R = 0)

(after S =0, R = 1)

 S R Q Q’

 1 0 1 0
 0 0 1 0
 0 1 0 1
 0 0 0 1
 1 1 0 0

 b Truth table

(after S =1, R = 0)

(after S =0, R = 1)

a Logic Circuit

Q

Q’ S

R

2.11 Sequential Circuits 65

 Review of Digital Systems Design

Fig. 2.28 Clocked RS flip-flop

JK Flip-flop

A negative edge triggered JK flip-flop in master–slave configuration is shown in
Figure 2.29. The 74LS73 is a commercially available negative triggered dual flip-
flop with individual JK inputs. In addition to the J and K inputs, the JK flip-flop has
Clock and direct Reset inputs. Positive pulse triggered JK flip-flops such as 7473
and 74H73 are also available commercially. JK information is loaded into the master
while the Clock is HIGH and transferred to the slave on the HIGH-to-LOW Clock
transition. For these devices the J and K inputs should be stable while the Clock is
HIGH for conventional operation. The J and K inputs must be stable one setup time
prior to the HIGH-to-LOW Clock transition for predictable operation. The Reset
(RD
and the data inputs forcing the Q output LOW and the Q′ output HIGH. The truth
table of JK flip-flop is shown in Table 2.16.

 S R Q(n) Q(n+1)

 0 0 0 0
 0 0 1 1
 0 1 0 0
 0 1 1 0
 1 0 0 1
 1 0 1 1
 1 1 0 Indeterminate
 1 1 1 Indeterminate

b Characteristic Table

S Q

d Symbol

Q’ R

Clk

Q

Q’

Clk

S

R

a Logic Diagram

Q(n+1) = S+R’Q
SR = 0

c Characteristic Equation

R’Q

S SR

0 0 X 1

1 0 X 1

00 01 11 10

1

0

Q

′) is an asynchronous active LOW input. When LOW, it overrides the Clock

66

Fig. 2.29 Clocked JK flip-flop

Table 2.16 Truth table of JK flip-flop

Inputs Outputs
Operating Mode

RD

CP J K Q

Q

Asynchronous Reset (Clear) L X X X L H

Toggle H h h
q q

Load ‘0’ (Reset) H l h L H

Load ‘1’ (Set) H h l H L

Hold ‘no change’ H l l q
q

K Q

Q J

CP

RD

Clk

Q

J

RD

Q

K

2.11 Sequential Circuits 67

 Review of Digital Systems Design

Notes:
H = HIGH voltage level steady state.

h = HIGH voltage level one setup time prior to the HIGH-to-LOWClock
transition.

l = LOW voltage level one setup time prior to the HIGH-to-LOW Clock
transition.

X = Don’t care.
q = Lower case letters indicate the state of the referenced output prior to the

HIGH-to-LOW Clock transition.
 = Positive Clock pulse.

D Flip-flop

The “74LS74” is a dual positive edge triggered D type flip-flop featuring individual
data, clock, set, and reset inputs and complementary Q and Q′ outputs. Set (SD′)
and Reset (RD′) are asynchronous active low inputs and operate independently

Fig. 2.30 D flip-flop

Q

QD

C

R

S

D

Clk

RD Q

Q

SD

L = LOW voltage level steady state.

of the clock input. Information on the data (D) input is transferred to the Q

68

Table 2.17 Truth table of D flip-flop

Inputs Outputs
Operating Mode

SD

RD CP D Q
Q

Asynchronous Set L H X X H L

Asynchronous Reset (Clear) H L X X L H

Undetermined L L X X H H

Load ‘1’ (Set) H H h H L

Load ‘0’ (Reset) H H l L H

H = HIGH voltage level steady state.
L = LOW voltage level steady state.
h = HIGH voltage level one setup time prior to the LOW-to-HIGH Clock

transition.
l = LOW voltage level one setup time prior to the LOW-to-HIGH Clock

transition.
X = Don’t care.

output on the LOW-to-HIGH (rising edge) transition of the clock pulse. The D
inputs must be stable one setup time prior to the LOW-to-HIGH clock transition
for predictable operation. Although the clock input is level sensitive, the positive
transition of the clock pulse between 0.8 V and 2.0 V levels should be equal to or
less than the clock to output delay time for reliable operation. Figure 2.30 shows
the logic diagram and the circuit diagram of a D flip-flop. The truth table of D
flip-flop is presented in Table 2.17.

T Flip-flop

A toggle or T flip-flop is a single input alternative to a JK flip-flop. The T flip-
flop can be realized by using an RS flip-flop and two AND gates to gate the inputs
T and the clock as shown in the logic circuit diagram in Figure 2.31a. As the name
implies, the output can be toggled by setting the T input as shown in the character-
istic table in Figure 2.31b. On the other hand, the next state output Q(n + 1) fol-
lows the previous (state) output Q(n) if T is low. The characteristic equation may
be obtained from K map as shown in Figure 2.31c.

We have covered four types of flip-flops, RS, JK, D, and T, whose symbols are
shown in Figure 2.32. Table 2.18 shows the corresponding characteristics table.
These tables may be re-arranged as what are known as excitation tables shown in
Table 2.19. From these tables, we can get the desired input(s) corresponding to a set
of present state Q(n) and next state Q(n + 1) conditions. This helps in the systematic

 2.11 Sequential Circuits 69

 Review of Digital Systems Design

design of the logic circuit diagram for an application. We will consider a number
of applications using these flip-flops in Section 2.15.

Fig. 2.31 T flip-flop

Fig. 2.32 Symbols for flip-flops

Q

Q’

Clk

T

 T Q(n) Q(n+1)

 0 0 0
 0 1 1
 1 0 1
 1 1 0

b Characteristic Table

a Logic Diagram

1

1

1 0

1

0

Q(n+1) = TQ(n)’+T’Q(n)

c Characteristic Equation

0

0

T
Q(n)

S Q

RS FF

R Q’

J Q

JK FF

K Q’

D Q

D FF

Q’

T Q

T FF

Q’

CLK CLK CLK CLK

70

Table 2.18 Characteristic tables of flip-flops

Table 2.19 Excitation tables of flip-flops

 RS FF

Q(n) Q(n + 1) S R
0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

JK FF

Q(n) Q(n + 1) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

 D FF

Q(n) Q(n + 1) D
0 0 0
0 1 1
1 0 0
1 1 1

T FF

Q(n) Q(n + 1) T
0 0 0
0 1 1
1 0 1
1 1 0

J K Q(n + 1) Condition

0 0 Q(n) No change
0 1 0 Reset
1 0 1 Set
1 1 Q′(n) Complement

JK flip-flop

S R Q(n + 1) Condition

0 0 Q(n) No change
0 1 0 Reset
1 0 1 Set
1 1 ? Unpredictable

RS flip-flop

D Q(n + 1) Condition

0 0 Reset

1 1 Set

D flip-flop

T Q(n + 1) Condition

0 Q(n) No change

1 Q′(n) Complement

T flip-flop

 2.11 Sequential Circuits 71

 Review of Digital Systems Design

Fig. 2.33 N-bit shift register

Shift Registers

A flip-flop is also referred to as a register. A register can be an array of flip-flops
that can store multi-bit binary information. A cascaded register array capable of shift-
ing its stored information is called a shift register. The shift register can be either a
right shift or the left shift type. The output of one flip-flop is connected to the
input of the next flip-flop. All flip-flops have a common clock input that causes
the shift of data from one stage to the next in the chain as shown in Figure 2.33.

2.12 Random Access Memory (RAM)

A RAM is a read-writeable memory and is a collection of storage cells like
registers together with address decoding circuits. RAM cells are organized as 8
bits (or a byte), 16 bits (or a word), and so on per location. Each location can be
accessed for information transfer to or from at random and hence the name
random access memory. The address lines AN–1 – A0 select one particular location.
The RAM is specified by the number of address lines and the number of bits in
each location as shown in Fig. 2.34. Each location is identified by a unique address,
from 0 to 2N–1, where N is the number of address lines. In order to read from or
write into the RAM, the chip select CS must be asserted. The RAM may be
written into with a data applied at the inputs DW–1 – D0 followed by asserting the
write pulse at ‘W’ pin. Similarly, the RAM may be read from a location followed
by asserting the read pulse at ‘R’ pin. The read data manifests at QW–1 – Q0 output
pins. The address must be applied at the address bus AN–1 – A0 prior to a write or a
read. The write/read pulse may be applied only after the address and data inputs
are stable. Many vendors are available to supply a wide variety of RAMs. One
example is presented in Appendix 5 of CD.

The numbers of locations in a RAM are specified in terms of Kilo (K), Mega
(M), or Giga (G) bytes or words as the case may be. K is equal to 1024 or 210, M is
equal to 1048576 or 220, and G is equal to 230. The access time of a RAM is the
time required to either read or write it.

D0 Q0 D1 Q1 DN-1 QN-1

Clk

 Serial
Input

Serial
Output

72

Fig. 2.34 Block diagram of a RAM

2.13 Clock Parameters and Skew

A typical clock waveform used in a digital system is shown in Figure 2.35. Usually,
a clock waveform used in a system is a square wave. Occasionally, rectangular
waveform may also be used. The time period T is the sum of the on time and off
time. Rise time (tr) and fall time (tf) are measured respectively by the time taken
for the waveform to rise from 10% to 90% and fall from 90% to 10% of the full
amplitude as marked on the waveform. The frequency of the waveform is f = 1/T.
A relative on and off times is defined by the duty cycle (TON/(TON + TOFF)) ×
100%. A square wave has a duty cycle of 50%.

Skew refers to the rising edge (or the falling edge) of a clock arriving at differ-
ent times at register clock inputs in a synchronous sequential circuit that ideally
requires the same arrival time at various registers [7, 8]. Skew results because of
interconnection delays, whether the design is realized using TTL circuits, proces-
sors, FPGAs, or ASICs. This is depicted in Figure 2.36. The figure shows the sys-
tem clock, CLK, distributed to a number of parts of a digital system with the arri-
val delayed by small times. All the clock waveforms, CLOCK, CLOCK 1, ….,
CLOCK N should be occurring at the same time ideally. Owing to different travel
paths, clocks lag behind the original clock. At low clock speeds, skew causes no
problem. At high frequency, close to the maximum clock frequency of operation
for a circuit, skew causes problems since data to be registered arrives late and
hence not likely to be stable. This results in missing the data. This may be mini-
mized if not eliminated by distributing the clock spread in a radial or star like
fashion from the clock source rather than connecting all the clock inputs of the
registers in a cascade. FPGAs and ASICs have this type of clock distributions,
thereby achieving high speeds over 100 MHz. The sequential circuits must meet
certain conditions such as hold time and setup times, which is covered in the next
section.

RAM
 2N x D W

R
AN-1 – A0

QW-1 – Q0

CS

DW-1 – D0

2.13 Clock Parameters and Skew 73

 Review of Digital Systems Design

Fig. 2.35 Clock waveform

Fig. 2.36 Clock skew

2.14 Setup, Hold, and Propagation Delay Times
in a Register

In general, a digital circuit comprises a series of combinational circuit followed by

parameters that need to be taken into account in a flip-flop based design [9]. They
are as follows:

Setup time:

This refers to the time between the availability of a stable data input to a flip-flop
device and the arrival of clock edge.

Hold time:

This refers to the time that the data input must continue to be stable after the
arrival of the clock edge.

tr tf

TON TOFF

T

90 %

50 %

10 %
0 %

100 %

CLOCK

Interconnect
Delay 1

CLK 1

CLK N

CLK

CLK 1

CLK N
Interconnect

Delay N

of the registers. Setup time, hold time, and propagation delay time are important
a register such as a D flip-flop. The system clock is directly fed to the clock inpu t

74

Fig. 2.37 Setup and hold times in a flip-flop

Fig. 2.38 Propagation delay time in a D flip-flop

Figure 2.37 illustrates the setup time (tS) and hold time (tH) with reference to
the rising edge of clock. Instead of the rising edge, the falling edge may also be
used.

Propagation delay:

This is the time between a clock edge (assuming a stable input signal) and the
corresponding output across the register. The common propagation delay times are
that between the clock edge to the Q and Q′ outputs as shown in Figure 2.38. The
time ‘tpLH’ indicates the propagation delay time as the output switches from low to
high, while ‘tpHL’ is the delay corresponding to the output switching from high to
low. For example, tpLH and tpHL for the 74LS74 are 25 ns and 40 ns respectively,
maximum. The longest propagation delay time specified by the manufacturer
should be considered while calculating propagation delay paths.

2.14.1 Estimation of Maximum Clock Frequency
for a Sequential Circuit

In the last section, we defined the setup (tS) and hold (tH) times. The sequential
circuits we design need to satisfy these timings if it should work without any prob-
lem. ‘D’ must be stable during the time interval ‘tS’ before the active clock edge
and for the interval ‘tH’ after the active clock edge, while it can change during
other times. If ‘D’ changes during the forbidden interval, tS and tH, the flip-flop

tS tH

Data must
be stable here

Data can
change here

Clock

Data input Data can
change here

tpLH tpHL

Clock
D Input

Q’ Output
tpHL tpLH

Q Output

2.14 Setup, Hold, and Propagation Delay Times in a Register 75

 Review of Digital Systems Design

may malfunction. Setup time data to clock for high and low are different. Mini-
mum values for tS and tH can be obtained from the vendors’ data sheets.

The maximum clock frequency that can drive a sequential circuit may be
obtained as follows. For a typical digital circuit shown in Figure 2.25, assume that
the maximum propagation delay through the combinational circuit is tCmax. Also
assume tpmax as the maximum propagation delay of the register output reckoned
from the rising edge of clock, which is the maximum of propagation delays: tpLH
and tpHL of the register. Let the clock period be Tclk. When the clock (rising edge)
arrives, the stable data at register input takes tpmax time to manifest at the register’s
output, which is fed back to the input of the combinational circuit. This in turn
takes tCmax time to propagate through the combinational circuit. This value must be
stable for further time of tS before the arrival of the next rising edge of the clock in
order to satisfy the setup time of the register. Thus, the total time between two
successive rising edges of clock must be equal to or less than tpmax + tCmax + tS.
Since Tclk is the time between two successive rising edges of the clock, it follows
that the following expression is satisfied:
 tpmax + tCmax + tS ≤ Tclk
Therefore the maximum clock frequency may be expressed as
 Fmax = 1/ Tclk or

Fmax = 1/(tpmax + tCmax + tS)
For example, if tpLH = 25 ns and tpHL = 40 ns for a D flip-flop, then tpmax is 40 ns.
Further, the setup time of the D flip-flop ‘tS (H)’ is 25 ns. Assuming tCmax = 15 ns
for the combinational circuit, the maximum clock frequency is 1/80 ns or 12.5
MHz. In real practice, the maximum frequency will be still lower since we have to
include interconnection delay times in tpmax as well as in tCmax. Thus, in 74LS
series based designs, we have to be content with operating frequencies in the order
of 10 MHz. Better speeds can be obtained by using 74 S series instead of 74LS
series. In FPGAs, however, we can touch high operating frequencies of over 100
MHz.

We also need to pay attention to the parameter, hold time tH, which is in the
order of 5 ns. A hold-time violation and consequent malfunction of the circuit
would occur if tpmin + tCmin is less than the hold time, where tpmin and tCmin are the
minimum of propagation delays of the register and the combination circuit
respectively. Therefore, hold time is satisfied if: tpmin + tCmin ≥ tH.
For standard flip-flops, tpmin is greater than tH and therefore, there is no danger of
hold-time violation.

2.14.2 Metastability of Flip-flops

A flip-flop has two states ‘0’ and ‘1’ under normal operating conditions. The Q
output can change from a ‘0’ to ‘1’ and vice versa without any problem provided
the flip-flop setup and hold times are met. However, if they are not met, a third
condition known as the metastable state may exist [7]. It is an undefined state with
the voltage level halfway between a logical ‘0’ and a logical ‘1’. This condition
causes problems in the normal operation of a digital system. External inputs to a

76

digital system containing flip-flops often occur asynchronously with respect to
signals within the system including clock. As a result, the setup and hold times
may be violated. Usual solution is to register the asynchronous inputs and feed the
registered inputs to the system flip-flops. Metastable states are to be avoided at
any cost for reliable operation of a system.

2.15 Digital System Design Using SSI/MSI Components

A synchronous sequential circuit is made up of combinational circuits and flip-
flops or registers as shown in Figure 2.39. The circuit design comprises the
selection of any of the flip-flops such as D, JK, or T and then finding a
combinational circuit, which together with the flip-flops produces a circuit that
meets the desired specifications. The number of states required in the design
determines the number of flip-flops in the implementation. The combinational
circuit is derived from the state table, which is akin to the excitation tables of flip-
flops presented earlier in Table 2.19.

Fig. 2.39 Block diagram of a digital system

In the next few sub-sections, we will present the design of digital systems,
which uses one or more of the components: JK, D, T flip-flops, and a ROM.

2.15.1 Two-bit Binary Counter Using JK Flip-flops

To start with, we will design a simple two-bit binary counter using JK flip-flops,
whose state diagram is shown in Figure 2.40. As shown therein, the counter starts
with ‘00’ value and counts up by one every time the clock strikes so long as the
external input ‘I’ is high. After the count value touches ‘11’, it rolls back to ‘00’ and
continues with the same chain of events. At any point of time, when the input goes
low, the count value freezes. Once the input is re-applied, the counting continues
from where it was held previously. Thus we have a counter that can be controlled
by an external input, either to count or to hold. The next step in the design is to

Combination
Circuits Registers

Inputs

Outputs

2.15 Digital System Design Using SSI/MSI Components 77

 Review of Digital Systems Design

use the excitation table of the flip-flop and form what is known as the state table
as shown in Table 2.20.

Since the counter size is two bits, we need just two JK flip-flops for realizing
the counter. Let us label the flip-flop inputs as JA, KA and JB, KB corresponding to
the two flip-flops A and B. As mentioned before, the design boils down to
working out a combinational circuit for the flip-flop inputs. This can be easily
arrived at from the state table, wherein the first three columns are formed using
the external input ‘I’ and the present states ‘A’ and ‘B’ of the two flip-flops. The
last two signals A and B are the non-inverted outputs of the two flip-flops. With
the arrival of the clock, these outputs change to ‘A+’ and ‘B+’ and are referred to
as the next state as shown in the next two columns. The desired flip-flop inputs JA,
KA and JB, KB are tabulated thereafter in the state table. These correspond to the
outputs of the combinational circuits we are working out.

We will fill the state table now using the excitation table for the JK flip-flop
shown in Table 2.19. We shall consider a couple of entries. In the first row entry
of Table 2.20 for the flip-flop A, we have a transition from ‘0’ in the present state
to ‘0’ in the next state. Referring to Table 2.19, we find that for this transition
from 0 to 0, the flip-flop inputs must be J = 0 and K = X. JA and KA are, therefore,
0 and X respectively. Similar explanations hold good for 0 and X entries for the
first row JB and KB. As another example, consider the row I A B = 1 0 1 for the
flip-flop B. The present state and the next state for B are 1 and 0 respectively.
The corresponding flip-flop inputs are JB = X and KB = 1, again obtained from
Table 2.19. All other entries are filled similarly.

Fig. 2.40 State diagram for a controlled counter

 10

00

 01 11

1

1

1

1

0

0

0

INPUT
I = 0

78

Table 2.20 State table for the controlled two-bits binary counter

External
input

Flip-flops,
present state

Flip-flops,
next state

Flip-flops,
inputs

I A B A+ B+ JA KA JB KB

0 0 0 0 0 0 X 0 X
0 0 1 0 1 0 X X 0
0 1 0 1 0 X 0 0 X
0 1 1 1 1 X 0 X 0
1 0 0 0 0 0 X 0 X
1 0 1 1 0 1 X X 1
1 1 0 1 1 X 0 1 X
1 1 1 0 0 X 1 X 1

Fig. 2.41 K maps for JK flip-flops’ inputs

JA = IB

AB

0 0 X X

0 1 X X

X X 0 0

X X 1 0

00 01 11 10

1

0

KA = IB

0 X X 0

0 X X 1

JB = IA

X 0 0 X

X 1 1 X

KB = I

I I

AB

00 01 11 10

00 01 11 10
AB AB

I I 00 01 11 10

1

0 0

0

1 1

 2.15 Digital System Design Using SSI/MSI Components 79

 Review of Digital Systems Design

Fig. 2.42 Logic circuit diagram of the controlled 2-bits binary counter

The information from the state table is transferred into the K maps as shown in
Figure 2.41. The simplified flip-flop inputs derived are as follows:
 JA = IB KA = IB
 JB = IA KB = I
Using the derived flip-flop inputs, the logic diagram is drawn as shown in Figure
2.42. It consists of two flip-flops and two AND gates. In the next sub-section, we
will consider another counter design using T and D flip-flops.

Flip-flops

In the previous sub-section, we considered a controlled counter design using JK
flip-flops. The counter in that example was controlled by an external input. We
will now see how to design a three-bit binary counter, which does not depend
upon any external input. The only input to the circuit is the clock. With e very
rising edge of the clock, the counter advances by one from ‘000’ to ‘111’ and rolls

Fig. 2.43 State diagram of a three-bit binary counter

100

000

010 110

001

101 011

111

J Q

K Q’

J Q

K Q’

CLK

I
B

I
A

A

B

JB

JA / KA

JA

KA

CLK

JB

I = KB

back to ‘000’. We need three flip-flops for realizing the counter. We will design

2.15.2 Design of a Three-bit Counter Using T and D

80

the three-bit counter using T flip-flops first, followed by D flip-flops. The count
sequence is shown in the state diagram, Figure 2.43.

The next state of a counter depends entirely on its present state, and the state
transition occurs at every rising edge of the clock. The state table for the three-bit
counter using T flip-flops as well as D flip-flops is shown in Table 2.21. We use
three flip-flops whose outputs are A, B, and C, which also indicate the present
states. The present and the next states are filled as in the state table. As shown in
the previous design using JK flip-flops, we need to deduce the flip-flop inputs TA,
TB, TC, and DA, DB, DC for various possibilities of the present states as shown in
the state table. Once again, we use the excitation tables shown in Table 2.19 for

+

+

0 to 1 and vice versa), T = 1. Using this information, all the T flip-flop inputs in
the state table can be filled.

It is much simpler to fill the D inputs since they are exactly the same as the
corresponding next states. For example, in the state table, A+ and DA columns are
identical. Similarly, B+ and DB columns and C+ and DC columns are identical. K
maps may be obtained from the state table. Figure 2.44 shows the K maps and
optimized Boolean expressions for the T flip-flop inputs. The logic circuit diagram
drawn using these expressions is shown in Figure 2.45. Similarly, the K maps and
the logic circuit diagram for D flip-flop realization of the three-bit counter are
shown in Figures 2.46 and 2.47 respectively. T flip-flop based design yields much
simpler circuit than the D flip-flop based design. However, D flip-flop based
designs are more popular in industries than JK and T flip-flop based designs.
74LS74 IC houses two numbers of D flip-flops in a single 14-pin package and
may be used together with other gates.

Table 2.21 State table for a three-bit counter using T and D flip-flops

Present state Next state T Flip-flops,
inputs

D Flip-flops, inputs

A B C A+ B+ C+ TA TB TC DA DB DC

0 0 0 0 0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1 1 0 1 0
0 1 0 0 1 1 0 0 1 0 1 1
0 1 1 1 0 0 1 1 1 1 0 0
1 0 0 1 0 1 0 0 1 1 0 1
1 0 1 1 1 0 0 1 1 1 1 0
1 1 0 1 1 1 0 0 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0

 2.15 Digital System Design Using SSI/MSI Components

the T and D flip-flops. From the state table, for AA = 00 and 11, the cor-
responding T input is ‘0’. For AA = 01 and 10 (which indicate the toggling of

81

 Review of Digital Systems Design

Fig. 2.44 K maps for a three-bit binary counter using T flip-flops

Fig. 2.46 K maps for the three-bit binary counter using D flip-flops

T Q

Q’

B
C

B
TA
 CLK

C = TB

T Q

Q’

A

CLK

TA

T Q

Q’

C

CLK

VCC = TC

TA = BC

BC

0 0 1 0

0 0 1 0

00 01 11 10

1

0

TB = C

A
1 1 1 1

1 1 1 1

TC = 1

A
BC

00 01 11 10

1

0

BC

0 1 1 0

0 1 1 0

00 01 11 10

1

0
A

DA = A’BC+AB’+AC’ DB = B’C+BC’ DC = C’

BC

 0 0 1 0

1 1 0 1

00 01 11 10

1

0
A

1 0 0 1

1 0 0 1

A
BC

00 01 11 10

1

0

BC

0 1 0 1

0 1 0 1

00 01 11 10

1

0
A

Fig. 2.45 Logic circuit diagram of the three-bit binary counter using Tflip-
flops

82

2.15.3 Controlled Three-bit Binary Counter Using ROM
and Registers

A digital system comprises a combinational circuit working in tandem with flip-
flops or registers. In the previous sections, we used different kinds of registers,
namely, JK, T, and D. For the combinational circuit part of the design, we used
conventional gates. In lieu of these gates, the ROM can be also be used to
implement the combinational circuit part and the flip-flops for the sequential part.
The number of inputs to the ROM is equal to the number of flip-flops and the

previous design, we considered three bit binary counter without any control. In the
present design, we will add an external input and thereby run the counter in a
controlled manner. If the control input ‘I’ is active, the counter advances by one at
every rising edge of the clock. Otherwise, the flip-flop outputs are cleared and
remain in that state until the external input is active. We will also have an output
‘OUT’ to indicate the active state of the counter.

The number of flip-flops, say D type, required in this design is three with out-
puts A, B, and C, which also indicate the present state. The next states of these
flip-flops are respectively A+, B+, and C+. The state table containing this informa-
tion is shown in Table 2.22. As mentioned before, a ROM can be used to realize
the combinational circuit part of the design. Since we have four inputs I, A, B, and
C for the combinational circuit, it follows that we need a ROM with four address
inputs A3, A2, A1, and A0. The ROM must have three outputs for the three next
states A+, B+, and C+. In addition, it must have one more bit for ‘OUT’ signal.
These ROM data outputs are respectively labeled as D3 D2, D1, and D0. Therefore,
the ROM has four inputs and four outputs and its size is 16 × 4. In the state table,

D Q

Q’ A
C’

B

CLK

DB

D Q

Q’

A

CLK

DA

D Q

Q’

C

CLK

C’ = DC

A’
B DA A’

B’

C’

C

A
B’

B
C

DB

the number of flip-flops and the number of external outputs put together. In the
external inputs in the system. The number of outputs of the ROM is equal to

 2.15 Digital System Design Using SSI/MSI Components

Fig. 2.47 Logic circuit diagram of the three-bit binary counter using D flip-
flops

83

 Review of Digital Systems Design

the input ‘I’ and the present states ‘ABC’ together specify the address of ROM
while the next states ‘A+ B+ C+’ and the ‘OUT’ specify the ROM data outputs.
Since the first eight row entries correspond to I = 0, the next state entries A+ B+ C+

and the output ‘OUT’ are also 0’s. The counter runs only so long as I = 1. There-
fore, the next eight row entries reflect the running value of the counter. The output
‘OUT’ is asserted until the control input ‘I’ is deasserted. The controlled counter
implementation using ROM and registers such as D flip-flops is shown in Figure
2.48. Note that the next-states A+, B+, and C+ in the ROM outputs are connected to
the D inputs of the registers.

Table 2.22 State table for ROM based counter implementation

Fig. 2.48 Digital system design using registers and a ROM

ROM address
 A3 A2 A1 A0

ROM content
 D3 D2 D1 D0

Input Present state Next state
I A B C A+ B+ C+ OUT
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 1 1
1 0 0 1 0 1 0 1
1 0 1 0 0 1 1 1
1 0 1 1 1 0 0 1
1 1 0 0 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 1

A3
A

B16 x 4
ROM

I

OUT

A2

A1

D3

D2

D1

D0

C

CLK

Registers

A0

A

B

C

A

B

C

A+

B+

C+

84

Although counters have been used to illustrate the designs in earlier sections,
any other sequential system can be implemented. In all the above designs using
various flip-flops, ROM, etc., power on reset circuit needs to be added in order to
make a practical working circuit. Later on, in the PAL based design, we shall include
the reset circuit. Before that, we shall learn what algorithmic state machine is.

2.16 Algorithmic State Machine

In the previous designs, we have used state diagrams to aid our design. An Algo-
rithmic State Machine (ASM) serves the same purpose as the state diagram. In the
state diagram approach, usually one input decides the transition from one state to
another. If the numbers of inputs increase, the state diagram becomes very com-
plex. In such cases, an ASM chart is a better alternative. An ASM chart resembles
a flow chart, but it is quite different functionally. It is a convenient way to specify
the hardware sequence of steps and decision paths for an algorithm. The ASM
chart is a representation of a state machine, which is another name for a sequential
circuit. The finite state machine (FSM) is yet another name for the state machine.

Various building blocks of an ASM chart are shown in Figures 2.49 to 2.51
along with examples. Figure 2.49 shows a rectangular state box, which has the
same function as a circle in the state diagram, yet more informative. It provides
not only the state code, but also a name for the state which is easy to track and
troubleshoot. An example furnished in Figure 2.49b makes this clear. Looking at
the code ‘0000’, we can infer that there is a maximum of 16 states and that this
state can be referred to by user-friendly name ‘INITIALIZE’ rather than deal with
binary numbers. In addition, we can include one or more outputs and operations
such as LOAD and Z = 0 respectively. Any other outputs or register signals of the
system are automatically cleared since they do not find a place within the current
state box. They shall, however, find place elsewhere.

The next figure shows the condition box and a conditional output. The input to
the condition box arrives from a state box, whereas its outputs branch off to a
conditional output or a state box. Usually, the conditions are twofold: ‘0’ or ‘1’ or
T (for True) or F (for false), although more than one bit condition may be used.
More elegant solution for multi-bit condition is to daisy chain the individual bit
condition boxes as shown in the example in Figure 2.51. The conditional output or
operation derives its input from a decision box and its output gets connected to the
next state box as shown in Figure 2.50. Figure 2.51 shows a part of an ASM chart
illustrating the use of different blocks. The first state is S0 = 0000, which activates
the shift register ‘SR’ in two ways depending upon the two input signals ‘CS’ (for
chip select) and ‘LD’ (for parallel load). If CS = 0, SR is cleared and with the
arrival of the next clock pulse, the state changes to S1 (0001). Otherwise, if
CS = 1 and LD = 1, SR is preset to AA hexadecimal and the state changes to S2
(0010) at the next clock pulse. On the other hand, if CS = 1 and LD = 0, the state
S0 does not change. Thus, an FSM can be very efficiently represented by an ASM.

2.16 Algorithmic State Machine 85

 Review of Digital Systems Design

Fig. 2.49 State box of an ASM chart

Fig. 2.50 Decision box and conditional output of an ASM chart

Fig. 2.51 An example of combined decision boxes and conditional outputs

Outputs or
Operations

Code State Name

a Format

LOAD,
Z = 0

0000INITIALIZE

b An Example

Condition

To Conditional

From State Box

Outputs
or Operations

From Decision Box

a Decision Box b Conditional Output

SR = 0

CS

0001

1 0

S1

0000S0

LD

1

SR = AA

0

0010S2

0 or F

To Next State Box

1 or T

86

Output or State Box

2.17 Digital System Design Using ASM Chart and PAL

We designed a number of small digital systems using the conventional state dia-
gram, flip-flops and ROM in Section 2.15. These designs become cumbersome for
complex designs. For such designs, it is far better to use ASM charts and PALs,
which we covered in previous sections. A digital system may be viewed as two
building blocks: the control logic and the data processor as shown in Figure 2.52.
The control logic receives external inputs and generates control signals for the
data processor, thus coordinating all the activities in the system. The data proces-
sor performs data processing tasks such as add, subtract, multiply, compare, shift,
logic, etc. and communicates its status to the control logic, which in turn generates
signals for sequencing the operations in the data processor. The data processor
receives one or more data inputs and outputs the processed data. All activities in
the system are synchronized to the system clock. The control sequence and data
processing of a digital system is completely specified by the ASM chart. This will
be made clear by a couple of design examples in the next two sub-sections. To
start with, we will see how to generate a single clean pulse from a push-button
switch using ASM chart. In the next example, we will design a vending machine
that caters to soft drinks.

2.17.1 Single Pulser Using ASM Chart

A push-button switch can be used to turn on a machine or turn it off. When a
push-button switch is pressed, it does not produce a clean contact. Instead, the
contact bounces back, makes contact again only to break the contact again. This
goes on for a while and finally settles down making a firm contact. If this is
directly fed to a digital circuit, multiple pulses will be detected and results in
malfunctioning of the system. For instance, if we wish to advance a digital counter
by one every time the push button is pressed, we will be annoyed to see multiple

External
inputs

Control
Logic

Input
Data

Data
Processor

Control Signals

Processor Status

CLK CLK

Output
Data

Fig. 2.52 Block diagram of a digital system viewed as control and data processors

2.17 Digital System Design Using ASM Chart and PAL 87

 Review of Digital Systems Design

counting taking place for a single push of the button. This problem can be elimi-
nated by connecting the push-button switch to RS flip-flops, which debounce the
switch and provides a clean single pulse. We still have a problem here. Since a
human operator is slow to react and the system clock frequency is high, a single
pressing of the switch, even after debouncing, is likely to be recognized as multi-
ple pressings. We must, therefore, develop a scheme such that the digital system
we design processes a push-button depression only once. The digital circuit for
accomplishing this task may be called a single pulser.

Let us assume that the RS flip-flop debouncer produces logic high when the
push button is pressed and logic low in the un-pressed condition. We need to design
a circuit to sense the depression of the push button and assert an output signal for
one clock pulse duration. The system should not output any other pulse until the
operator has released the push button and asserted again. The debounced push-
button signal (let us call it ‘Deb_PB’) is asynchronous since the switch can be
pressed at any point of time. We can synchronize this asynchronous signal using a
clocked D flip-flop. We shall call this synchronized signal as ‘Synch_PB’ and the
output of the signal pulser circuit as ‘Single_Pulse’. The ‘Synch_PB’ goes high
when the push button is pressed.

Now we are ready to draw the ASM chart. To start with, the system needs to
wait for ‘Synch_PB’ to go high. This can be done by starting with a state (code
‘0’) followed by a decision box, which checks whether ‘Synch_PB’ is high. The
state box can be given an appropriate name such as ‘DETECT’, meaning that it is
a state, where the pressing of the push button is detected. If ‘Synch_PB’ is low,
the FSM must remain in the same state DETECT. On the other hand, if

Fig. 2.53 ASM chart of the single pulser

0

1

Synch_PB

0

1

0

1

Single_Pulse
DELAY

DETECT

Synch_PB

‘Synch_PB’ goes high, the output “Single_Pulse” must also go high so long as the

88

state machine is in DETECT state. This is precisely shown in the ASM chart in
Figure 2.53. The ‘Single_Pulse’ is obviously a conditional output. When the clock
strikes, the state changes to ‘DELAY’, which can be assigned a code ‘1’. Since the
time of transition from ‘0’ state to ‘1’ state is of duration one clock, it follows that
the ‘Single_Pulse’ duration is also one clock period. Once again in the DELAY
state, the ‘Synch_PB’ signal is checked. If ‘Synch_PB’ is high, the FSM remains
in the same state DELAY since this implies that the push button is not yet re-
leased. On the other hand, if “Synch_PB” goes low subsequently, the state reverts
to DETECT looking for fresh switch depression. Note that the debouncing of the
push-button switch cannot be dispensed with since the data synchronizer will
output multiple pulses for a single key press if the push-button switch is directly
connected.

The next step is to draw a state table, which may be referred to as an ASM table
as shown in Table 2.23. The present state, the next state, and the output(s) are
exactly similar to that of state table used in earlier designs. The first two columns
are unique to the ASM chart. In the first column, we enter the state name for easy
identification. The second column known as ‘Qualifier’ indicates all the Boolean
expressions of possible conditions of inputs in a state. The entries of the table may
be directly made from the ASM chart. Let us consider a couple of row entries as
examples. In the ‘DETECT’ state, the second row is filled as follows. In this state,
Synch_PB = 1, therefore the qualifier is indicated as the active high signal,
‘Synch_PB’. The code of the present state is ‘0’ and the next state for this path
is ‘1’. Also, the ‘Single_Pulse’ output is ‘1’. All these are entered in the respective
columns in the second row. As the next example, we will take the third row. Looking
at the ASM chart, the second state name is ‘DELAY’ and its code is ‘1’. In this

Table 2.23 ASM table of single pulser

State name Qualifier Present state Next state Single_Pulse
Detect Synch_PB′ 0 0 0

 Synch_PB 0 1 1
Delay Synch_PB′ 1 0 0

 Synch_PB 1 1 0

Fig. 2.54 Circuit diagram of the single pulser

D Q Deb_PB D

Q’

Synch_PB

Single_Pulse

CLK
CLK

Data Synchronizer State Register

state for one of the conditions, Synch_PB = 0 and, therefore, the qualifier is indicated

 2.17 Digital System Design Using ASM Chart and PAL 89

 Review of Digital Systems Design

as the active low signal: Synch_PB′ in the state table. The output does not get
listed and hence it is filled as ‘0’. On similar lines, other rows of the ASM table
can be filled directly. One must not forget to include any of the conditional
branches.

The qualifier and the present state(s) form the inputs and the next state(s) and
output(s) form the outputs for which we need to deduce the Boolean expressions.
Instead of using K maps, mere inspection of the ASM table reveals the Boolean
expressions of next state(s) and output(s). Let us assume that we use D flip-flop
for the register. Since there are only two states ‘0’ and ‘1’, we need just one D
flip-flop, whose input is the next state. Corresponding to the next state = 1, since
the present states are different being ‘0’ and ‘1’, we drop the present state. How-
ever, the qualifier for these two entries is ‘Synch_PB’. Therefore, the next state or
the D flip-flop input is Synch_PB. The ‘Single_Pulse’ output is ‘1’ only for the
qualifier, ‘Synch_PB’ and the present state = 0 (which means the D flip-flop out-
put Q′). Therefore, Single_Pulse = Synch_PB . Q′, which can be realized using an
AND gate as shown in Figure 2.54. The circuit diagram of the single pulser shows
two D flip-flops, the first one being a data synchronizer, which accepts the de-
bounced push-button switch signal and generates ‘Synch_PB’ signal with the sub-
sequent rising edge of clock, CLK. The second D flip-flop is the state register.

2.17.2 Design of a Vending Machine Using PAL

We will design a PAL based controller for a vending machine, which caters up to
five different types of items such as the canned soft drinks or vegetable drinks.
This can be extended to any number or types of items. For this design, we make
the following assumptions:
1. A separate mechanism that accepts coin and the type of item from the user is

available. This mechanism verifies the correct coin insertion. Otherwise, it
ejects the coin.

2. A push-button type BCD switch selects the desired drink. Valid BCD switch
setting (for s2 s1 s0 outputs) is 0–4. The settings 5, 6, and 7 roll back to 0, 1, and
2 respectively. This setting selects the desired can.
In Section 2.10.3, we presented the PAL, which can realize any Boolean ex-

pression. The commercially available PALs can not only realize combination cir-

of the vending system is shown in Figure 2.55. The controller for the vending ma-
chine is housed in the PAL. As shown in the circuit diagram, the inputs for the
PAL are the system clock (CLK), power-on-reset (RES), three bits (s2–s0) from a
BCD switch, coin accepted (CA) signal from the coin acceptor mechanism, and
outputs RDY′, OS1′–OS5′, and CCA to clear coin accept.

The RES pulse is generated when the system power is applied. At the time of
switching power on, the capacitor is not charged and hence the Schmitt trigger
output RES is high. After about 1.5 s, the capacitor voltage rises to logical high
and the RES output goes low and remains low so long as the power is applied.
Thus the RES pulse is generated, which clears D flip-flops inside PAL. Inner circuit

cuits, but also sequential circuits using D flip-flops. A schematic circuit diagram

90

details will be presented later on. The clock can be realized by using 555 IC. The
clock frequency used is low since we need to activate a solenoid for outputting a
can. A single digit BCD switch is used to select the type of drink by setting a code
using the push buttons + and –. Since the design allows only 5 different types of
can drinks, 0 to 4 setting will be enough. However, we will allow 5–7 setting for
rolling back to 0–2 and 8, 9 setting for 0, 1 respectively. The coin acceptor accepts
coin only if RDY lamp is on. When it accepts the coin, it asserts the coin accept
‘CA’ signal, which is fed to the PAL controller. The controller activates one of the
five output solenoids OS1 to OS5 dispensing the user desired can set in the BCD
switch. Thereafter PAL asserts the CCA signal for the coin acceptor to clear the
CA signal, without which the can dispenser would output multiple cans instead of
a single can. Figure 2.55 also depicts the sequence of getting the desired drink. All
the outputs are active low to suit the PAL outputs.

Figure 2.56 shows the state diagram (also called as the state graph) for the
vending machine. The FSM has one initial state S0 and five different output states
S1 to S5. In S0 state, RDY lamp is activated to indicate that the controller is ready
to dispense the cans. The state machine remains in this state so long as the coin is
not accepted (CA = 0). Once the coin is accepted, the machine checks the user
selected can type (s = 0–9) and the control branches to the corresponding state,
where the relevant solenoid is activated as shown in the state graph. The states are

Usage:

1. Wait for RDY lamp to switch ON.
2. Set BCD switch to the desired value.
3. Insert the correct coin and collect the desired can.

Fig. 2.55 Circuit diagram of vending machine using PAL

To Output Solenoids
of the can dispensing
mechanism

RDY
OS1

OS2
OS3

OS4

OS5

CCA

COIN
ACCEPT

CA

CLEAR

CA

s0

s1
s2

2

1

4
Dec. Weights

2HZ CLK

RES

4

100 K

s2

+ Vcc
+ Vcc

s1 s0

BCD
SWITCH

10 µF

To ready lamp

(4.7 K Typ. for all outputs)

PAL

CONTROLLER

assigned one-hot codes, which have only one ‘1’ entry with the rest being 0’s, in order

 2.17 Digital System Design Using ASM Chart and PAL 91

 Review of Digital Systems Design

to optimize the circuit as will be seen in the chapter on Synthesis. These assign-
ments along with basic control signal definitions are as follows:
 One-hot
State Assignment s = s2 s1 s0 => BCD switch to select the desired item
S0 1 0 0 0 0 0
S1 0 1 0 0 0 0 CA = Coin Accepted
S2 0 0 1 0 0 0 RDY = System is Ready to Accept Coin
S3 0 0 0 1 0 0 RES = Power On Reset Signal
S4 0 0 0 0 1 0 CCA = Clear Coin Accept
S5 0 0 0 0 0 1

The next step is to draw a state table from the state diagram presented earlier.
Since we used one-hot assignment for the six states, we need six registers for the
implementation. The present states and the next states are respectively labeled as
ABCDEF and A+B+C+D+E+F+. We infer the following from the state diagram. The
inputs are CA and s2 s1 s0 and the outputs are RDY, CCA, OS1–OS5. Table 2.24
shows the state table incorporating the above details. We have two blocks of en-
tries; one for the initial state S0 and the other for each of the states from S1 to S5.
For the input CA = 0, without regard to the value set in the BCD switch, the next
state continues to be S0. The RDY output is ‘1’, while other outputs are ‘0’. This
information obtained from the state diagram is entered in the first row of the table.
The next eight rows are filled as follows. Inspecting the state diagram, we need to
cover for the case, CA = 1. There are five possibilities of next states: S1 to S5 cor-
responding to the BCD switch settings s2 s1 s0. The settings s2 s1 s0 = 5–7 are fold
backs as explained earlier and are incorporated in the table. The cases s = 8 and 9
are not explicitly entered since these conditions are inherent in 0 and 1 settings
respectively. It may be noted that all these entries are for the present state, wherein

Fig. 2.56 State graph for vending machine

S0
RDY=1

CA=1
s=1/6/9 S1

OS1=1
CCA=1 S3

OS3=1
CCA=1

S2
OS2=1
CCA=1

S4
OS4=1
CCA=1

S5
OS5=1
CCA=1

CA=1
s=2/7

CA=1
s= s2 s1 s0 = 0/5/8

CA=1
s=3

 CA=1
 s=4

CA=0

92

RDY output alone is high, while all other outputs are 0’s. These details are entered
in the table accordingly.

Coming to the entries for the present state S1, the next state is S0 and the two
outputs to be turned on are CCA and OS1, regardless of CA and ‘s’ settings. Ac-
cordingly, we make these entries for the tenth row. It may be noted that all other
outputs OS2–OS5 are not listed in the state diagram and hence we fill 0’s for these
outputs. Similarly all other present states, S2 to S5 are filled.

Boolean expressions for the next states and outputs may be deduced by mere
inspection of the state table. We shall illustrate a couple of examples. Let us con-
sider the expression for the next state A+. The output is ‘1’ for the condition
ABCDEF = 100000 and CA = 0, from which we get the first term: A B′ C′ D′ E′ F′
CA′ by inverting the corresponding signal for ‘0’ value. For ‘1’ value we retain
the signal as it is. The output is also ‘1’ for each of the present states S1 to S5.
Therefore, we get a second term (B + C + D + E + F). RES′ = CCA. The signal
RES′ is included in order to activate this term only for normal working when the
reset signal is not present. We need one more term RES to force A+ value to ‘1’
when reset is applied. Combining all the three terms, we get the expression for A+.

Table 2.24 State table for the vending machine

Present state Inputs Next state Outputs

 ABCDEF CA s2 s1 s0 A+ B+ C+ D+ E+ F+
R
D
Y

C
C
A

O
S
1

O
S
2

O
S
3

O
S
4

O
S
5

S0 10 00 00 0 x x x

 1 0 0 0

 1 0 0 1

 1 0 1 0

 1 0 1 1

 1 1 0 0

 1 1 0 1

 1 1 1 0

 1 1 1 1

S0 1 0 0 0 0 0

S1 0 1 0 0 0 0

S2 0 0 1 0 0 0

S3 0 0 0 1 0 0

S4 0 0 0 0 1 0

S5 0 0 0 0 0 1

S1 0 1 0 0 0 0

S2 0 0 1 0 0 0

S3 0 0 0 1 0 0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

S1 01 00 00

S2 00 10 00

S3 00 01 00

S4 00 00 10

S5 00 00 01

 x x x x

 x x x x

 x x x x

 x x x x

 x x x x

S0 1 0 0 0 0 0

 1 0 0 0 0 0

 1 0 0 0 0 0

 1 0 0 0 0 0

 1 0 0 0 0 0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

 2.17 Digital System Design Using ASM Chart and PAL 93

 Review of Digital Systems Design

As one more example, let us evaluate B+. This output is ‘1’ for s2 s1 s0 = 000 or s2
s1 s0 = 101 and for G = A B′ C′ D′ E′ F′ . CA . RES′. Combining these, we get the
expression for B+. In a similar manner, we can deduce other next states and out-
puts. All the Boolean expressions for the next states and the outputs are listed in
the following:
A+ = A B′ C′ D′ E′ F′. CA′ + CCA + RES,
B+ = G . (s2′ s1′ s0′ + s2 s1′ s0), where G = A B′ C′ D′ E′ F′ . C A RES′
C+ = G . (s2′ s1′ s0 + s2 s1 s0′)
D+ = G . (s2′ s1 s0′ + s2 s1 s0)
E+ = G . s2′ s1 s0
F+ = G . s2 s1′ s0′
RDY = A . RES′,
OS1 = B . RES′, OS2 = C . RES′, OS3 = D . RES′, OS4 = E . RES′, OS5 = F . RES′,
CCA = (B + C + D + E + F) . RES′

PAL Selection
We need to take stock of the I/O requirements for the design in order to arrive at
the right device of PAL from a manufacturer. In Figure 2.55, we presented the
overall circuit diagram for the vending machine using PAL. We need the follow-
ing I/Os for our PAL implementation:
6 Nos. of Inputs: CLK, RES, CA, s2, s1, s0
6 Nos. of Registered Outputs: RDY, OS1, OS2, OS3, OS4, and OS5
1 No. of Combination Output: CCA

Scanning through the PAL catalog, such as that of Monolithic Memories [10],
we can eliminate all PALs not having register outputs and those that have more or
less I/Os than we require. We then see the following types of PAL suiting our I/O
requirements with certain compromises. They are 16R8, 16R6, 16R4, 16RP8A,
16RP6A, 16RP4A. Of these, 16R6 and 16RP6A are just adequate. Let us select
one of the two, namely, 16R6. It has 10 inputs including a clock input, 6 D flip-
flops (registers) and 2 combination outputs. A blank PAL diagram is presented in
Appendix 6 on CD, which may be used for assignments or mini projects. Studying
the circuit, we see that all outputs are inverted and therefore, we need to generate
active low outputs instead of active high outputs we deduced as Boolean expres-
sions earlier.

Figure 2.57 presents the 16R6 programmed for our application with the active
low outputs. They are pulled high by resistor arrays so that during power on reset
condition, they are in the inactive high state. The CLK input is connected to pin 1
of the IC. Internally, it is connected to the clock inputs of the D flip-flops via a
buffer. The horizontal lines are connected to the AND gates (not shown in the cir-
cuit of the PAL), whereas the vertical lines are connected to I/Os and their in-
verted signals. Thus the horizontal/vertical lines are arranged as a matrix, whose
inter junctions may be programmed. ‘X’ indicates a programmed connection. It
may be noted that all the outputs are connected via inverting tri-state buffers.
Their tri-state control lines are connected to RES′ signal so that during power on
reset condition, these buffers are tri-stated. The reader may verify that the pro-
grammed connections conform to the next states and the outputs derived earlier.

94

Medium 20 Series, 16R6
*
 PAL Logic Diagram (Courtesy: Monolithic Memories)

Fig. 2.57 Realization of the vending machine using PAL

All outputs are pulled high

G G A A B B C C D D E E F F

RES RES CA CA s2 s2 s1 s1 s0 s0

45

37

39

RES

1
2

0

3
4
5
6
7

9
10
11

14

12
13

15
Q

Q

Q

Q

Q

Q

8

56

58
59

62

60
61

63

57

16

18
19

22

20
21

23

17

24

26
27

30

28
29

31

25

32

34
35

38

36

33

40

42
43

46

44

47

41

48

50
51

54

52
53

55

49

15

14

13

12

16

17

18

6

5

7

4

3

2
G

19

A

B

A+

B+

CLK

0 2 1 3 4 6 5 7 8 10 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

8

9

RDY

OS1

CA

OS2

OS3

OS4

OS5

CCA

11

RES
0 2 1 3 4 6 5 7 8 10 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

NC

Q D

Q D

Q D

Q D

Q D

Q D

NC

NC

s0

s1

s2

C C+

D D+

E E+

F F+

×

×

×

× ×× ×

×

××

×

××× ××

×

×

×

×

×

×

× ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

×
××

CCA CCA

×
×

 2.17 Digital System Design Using ASM Chart and PAL 95

 Review of Digital Systems Design

Figure 2.58 presents the timing diagram of the vending machine. RES pulse is
applied for about 1.4 s when the power is switched on, after which the normal
working of the vending machine starts. All the outputs, RDY′, OS1′–OS5′, remain
inactive (high) during the time RES is active since the output tri-state buffers are
disabled by RES. With the arrival of the first clock, the D flip-flops (ABCDEF)
are preset to 100000 since A+ is forced to ‘1’ by RES pulse. Coin accept signal CA
can go high only after RES pulse is withdrawn. After RES is withdrawn, the RDY′
signal goes low since the machine is in S0 (100000) state. Let us assume that the
BCD switch ‘s’ is set to ‘0’. Assuming that the coin is accepted, with the arrival of
the fourth clock pulse, state changes to S1 (010000), thereby deactivating the RDY′
signal and activating the solenoid OS1′ and the clear coin accept CCA. The CCA
signal, in turn, should clear the CA signal. All other outputs remain in the deacti-
vated condition. With the arrival of the next clock pulse, the OS1′ is deactivated.
Timings for other outputs are similar to OS1′.

Fig. 2.58 Basic timing diagram of the vending machine
__

Summary

For the design of digital systems, the pre-requisites are numbering systems, twos
complement arithmetic, and familiarity of various types of codes. Also, one needs
to know the basics of Boolean algebra and derivation of functions using minterms
and maxterms and optimization of logic circuits using Karnaugh maps. These fun-
damentals were presented in this chapter. These were followed by a review of
combinational and sequential circuits such as basic gates, multiplexers, demulti-
plexers, comparators, PLA, PAL, ROM, D/JK/T flip-flops, etc. With the aid of
these basics, designs of small digital systems were presented using SSI/MSI com-
ponents. The algorithmic state machine based approach to design was shown to be

OS1

CLK

RES

RDY

1.4 S

OS2 -

OS5

For S = 0 High

0.5 S

CA

96

a better alternative to the conventional state graph approach. Designs based on the
algorithmic state machine and PAL were also presented. Equipped with these fun-
damentals, the reader should not have any difficulty in understanding the rest of
this book. We commence Verilog designs in the next chapter.
__

Assignments

2.1 Realize a four-bit adder using half adders as the building block.
2.2 There are two ways of converting a two input NAND gate to an inverter.

What are they?
2.3 The output of the circuit shown in Figure A2.1 is equal to

a) 1
b) 0
c) A’B + AB’

 d) (A ⊕ B)’ ⊕ (A ⊕ B)’
 e) None of these

Fig. A2.1

2.4 There are two switches to control the light in a long corridor. You must be

able to turn the light on while entering the corridor from any direction and
turn it off at the other end when you leave. Draw a circuit which satisfies
these conditions. If there are three switches that can turn on and off a light
in a room, how will you wire them?

2.5 Show how NAND gates can be used to build the logic circuit for Y = A + BC′.
2.6 Realize Y = AB + CD using only NAND gates.
2.7 Prove the following Boolean expressions without using truth tables:

i) A′ + AB = A′ + B
ii) A + A′ B = A + B

2.8 Assume that signals A, B, C, D, and D′ are available. Using a single 8 to 1
multiplexer and no other gate, implement the following Boolean function:

 f(A, B, C, D) = B C + A B D′ + A′ C′ D
2.9 A Boolean function is given as sum of products: F = Σm (3, 4, 5, 6), where

A, B, and C are inputs.
a) Implement this function using an 8:1 MUX.
b) What will be the minimized sum of products expression for F?

2.10 A water tank has a float and two electrically operated outlet valves. The
first valve is to be opened if the float reaches a first level and both the
valves are to be opened if the float reaches a higher level. Both the valves
are to be closed and the water pump activated if the water level goes below
the lower level. The pump is switched off when the float touches the higher
level. Assume that sensors can sense the two levels of the float only if the

A
B’

A’
B

Output

Assignments 97

 Review of Digital Systems Design

float is close to the respective levels. Design a control circuit to operate the
two valves and the pump. State your assumptions clearly.

2.11 A ROM is required to be used to implement the Boolean functions given
below:

F1 = ABCD + A′ B′ C′ D′
F2 = (A + B) (A′ + B′ + C)
F3 = Σ 13, 15 + Σd 3, 5
a) What is the minimum size of the ROM required?
b) Determine the data in each location of the ROM.

2.12 A CPU has parallel address and data bus, RD′ and WR′ signals. Two ROMs
of size 4K words each and two RAMs of sizes 16K and 8K words respec-
tively are required to be connected to the CPU. The memories are to be
connected such that they are memory mapped as shown in Figure A2.2.
Assume that the chip select signals are active low.

a) What is the number of lines in the address bus of the CPU?
b) Determine the values of addresses, X, Y, Z, and W as decimal num-

bers.
c) Using a 2–4 decoder and some additional gates, draw a circuit for the

decoding logic.

Fig. A2.2 Memory map addressing

2.13 A code converter is required to be designed to convert a 5421 BCD code to

the normal 8421 BCD code. The input BCD combinations for each digit are
given in Figure A2.3. A block diagram of the converter is also shown
alongside.

a) Draw K maps for outputs, D3, D2, D1, and D0.
b) Obtain minimized expressions for the outputs.

8K RAM

4K ROM

4K ROM

16K RAM

W

Z
Z + 1

Y
Y + 1

X
X + 1

O

16 bits

98

Fig. A2.3 Code converter

2.14 What is the difference between a latch and a register? For the same input,

how would the output look for a latch and for a register?
2.15 Design a divide-by-three sequential circuit with 50% duty cycle. (Hint:

Double the clock frequency).
2.16 Suppose you have a combinational circuit between two registers driven by a

clock. What will you do if the delay of the combinational circuit is greater
than the clock period?

2.17 A circular wheel with half painted white and the other half painted black on
the same side and mounted on the rotating shaft of a motor can be used to
find the direction of rotation of the motor. There are two sensors located
slightly apart facing the surface of the wheel and are asserted for white and
deasserted for black passing before them. Design a circuit to detect the
direction of wheel rotation.

2.18 Design a divide-by-five circuit using a state machine. The clock has 50%
duty cycle and the output waveform need not be symmetrical.

2.19 A synchronous up/down decade counter is required to be designed. The
counter must count up or down in binary, depending on the value of a con-
trol input signal. The counter shall count up for control input = 0. Other-
wise, the counter shall count down. The counter shall wrap around from 9
to 0 while counting up and from 0 to 9 while counting down. During count-
ing up, if the terminal count is reached, an output shall be set. Similarly an-
other output shall be set if the terminal count is reached while counting
down. Draw the state diagram and the state table for this counter. What is
the easiest way to realize the circuit of this counter? Why?

Decimal 5421 BCD Code

 A B C D

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 1 0 0 0
6 1 0 0 1
7 1 0 1 0
8 1 0 1 1
9 1 1 0 0

A
B
C
D

D3 (MSB)
D2
D1
D0

8421
BCD Code

CODE
CONVERTER

5421
BCD Code

Assignments 99

eview of Digital Systems Design

2.20 An FSM is shown in Figure A2.4. How many flip-flops are required if we
are to realize the FSM? What is the purpose of this FSM? Formulate a state
table assuming implementation using D flip-flops.

Fig. A2.4 FSM graph

2.21 Figure A2.5 shows a state machine to detect even or odd numbers of 1’s or 0’s

in a three-bit incoming data. Explain how it detects even or odd sized three-bit
patterns. Draw a state table for the implementation using D flip-flops.

Fig. A2.5 State diagram of an even/odd pattern detector

2.22 Implement the following flip-flops using RS flip-flop:

(i) D flip-flop
(ii) T flip-flop

S0

S1

S7 S4

S5
S3

S2

S6

0/1

1/0

1/0

0/1

1/0

1/0

0/0

1/0

0/0

0/0

1/1

0/0

1/0

0/0
1/0

0/0

S0

S1

S2

S3

S4

S5

S6

1/0

-/0

0/0

-/1

1/0

0/0
1/0

1/0

0/0

1/0

0/0

0/0

(iii) JK flip-flop

100

2.23 Implement the following flip-flops using JK flip-flop:

(i) D flip-flop
(ii) T flip-flop

2.24 Modulo 5 counter may be implemented using any flip-flop. Formulate a
truth table for such a counter using JK, T, and D flip-flops.

2.25 Realize the circuit diagrams for the assignment 2.24.
2.26 The state diagram and the state table for an FSM are shown in Figure A2.6.

Realize the circuit diagram. What is the function of the circuit?

Present State Next State
A B U A B

JA KA JB KB

0 0 0
0 1 0
1 0 0
1 1 0
0 0 1
0 1 1
1 0 1
1 1 1

1 1
0 0
0 1
1 0
0 1
1 0
1 1
0 0

1 ф
0 ф
ф 1
ф 0
0 ф
1 ф
ф 0
ф 1

1 ф
ф 1
1 ф
ф 1
1 ф
ф 1
1 ф
ф 1

Fig. A2.6 State table and FSM

2.27 Modulo 10 Gray code, decade counter sequence shown in Figure A2.7 can

be implemented using EPROM. Draw the state table showing the EPROM
contents clearly. Include a power on reset in the complete circuit diagram of
your design. Realize the design using D flip-flops.

Fig. A2.7 Modulo 10 Gray code decade counter

2.28 Realize the Modulo 10 Gray code decade counter in the assignment 2.27
using a PAL, not necessarily a commercially available one. List the Boo-
lean expressions deduced and show PAL programming clearly.

2.29 A new clocked XY flip-flop is defined with two inputs, X and Y in addition
to the clock input. The flip-flop functions as follows:
If XY = 00, the flip-flop changes state with each clock pulse.
If XY = 01, the flip-flop state Q becomes 1 with the next clock pulse.
If XY = 10, the flip-flop state Q becomes 0 with the next clock pulse.
If XY = 11, no change of state occurs.

a) Write the truth table for the XY flip-flop.
b) Write the excitation table for the XY flip-flop.

0 0

0 1

1 0

1 1
0

0

0

U = 0

U = 1 1

1
1

0 → 1 → 3 → 2 → 6 → 14 → 10 → 11 → 9 → 8

Assignments 101

 Review of Digital Systems Design

c) It is desired to convert a JK flip-flop into the XY flip-flop. Draw a
circuit diagram to show how you will implement the XY flip-flop.

2.30 A clocked sequential circuit has three states A, B, and C and one input X.
As long as the input X is 0, the circuit alternates between the states A and
B. If the input X becomes 1 (either in state A or in state B), the circuit goes
to state C and remains in state C as long as X continues to be 1. The circuit
returns to state A if the input becomes 0 once again and from then onwards
repeats the sequence. Assume that the state assignments are A = 00, B = 01,
and C = 10.

a) Draw the state diagram of the circuit.
b) Present the state table for the circuit.
c) Draw the circuit using D-flip-flops.

2.31 A control unit is required to be designed for a chemical process, where
temperature and pressure are the two parameters to be controlled. The con-
trol is effected by switching on or off a heater and by opening or closing a
valve. The following control rules apply:

i) If temperature and pressure are in the normal range, switch
off the heater and close the valve.

ii) If the temperature is normal and pressure is too high, open
the valve and close it if the pressure is low.

iii) If the temperature is high and the pressure is low, turn off
the heater and close the valve.

iv) If the pressure is normal and the temperature is low, turn on
the heater and, turn it off if the temperature is too high.

v) If the pressure is high and the temperature is low, open the
valve and turn on the heater.

vi) If both temperature and pressure are low or too high, let an
alarm ring.

Design the system to the above specifications.
2.32 A state graph was used for the design of a vending machine controller in

the text. Instead of the state graph, draw an ASM chart. How will the state
table be affected?

2.33 Black jack dealer is a game played by a dealer and one or more players us-
ing cards [8]. In this game, cards are assigned values of 1 for Ace, 2 to 10
for said numbers, and 10 for face cards. An Ace may have the value of 1 or
11 during a play, whichever is advantageous. The dealer picks cards one at
a time, counting Ace as 11, until his score is greater than 16. If the dealer’s
score doesn’t exceed 21, he ‘stands’ (i.e., he wins the round) and his play of
the hand is finished. On the other hand, if the dealer’s score is greater than
21, he is ‘broke’ (i.e., he looses the game). However, the dealer must re-
value an Ace from 11 to 1 to avoid going broke and must continue picking
cards (called ‘hits’) until the count exceeds 16. The goal of this assignment
is to design hardware (H/W) that acts as a ‘dealer’ following the above-
mentioned rules of the game. The H/W must have a provision for inputting
the (Play) card value for which a four-bit binary input is required. One can
either use four independent toggle switches or a thumb wheel switch or a

102

push-button operated switch or a DIP switch. We further need one push-
button switch to signal the H/W that the card value set can be accepted
(Card Ready) for further processing. We need two digits, seven segment
displays for displaying the score, as well as LEDs for indicating the status:
HIT, READY (to play), STAND, and BROKE. This is depicted in Figure
A2.8.

Fig. A2.8 Block diagram of the black jack dealer

Draw a detailed hardware architecture, an ASM chart, a state table and de-
duce the Boolean expressions of outputs and realize the black jack dealer
using 16R4 or 16R6 PAL. You may use any extra gates or D flip-flops if
the PAL resources are not adequate. Draw a detailed circuit diagram. You
may use a block diagram for adder/subtractor.

2.34 A train station has three platforms marked 1 to 3. A train approaching the
station in any of the two directions is to be routed to one of the three plat-
forms. If all the three platforms are empty, then the approaching train is to
be routed to platform 1. On the other hand if it is occupied, the train is to be
routed to platform 2. Only if both platforms 1 and 2 are occupied, the train
is routed to platform 3. A switching control system is required to be de-
signed which will set the appropriate rail track points and turn on signal
lights. Each platform has a sensor which is turned on if a train is in that
platform. If a train approaches a light signal, the corresponding sensor is ac-
tivated. The controls required for departing trains from the platforms may

Hit

Stand

Broke

Score

Card Ready

11

H/W
Dealer

Card value

(Push button)

4
5

LEDs

Seven segment

HIT READY STAND BROKE

CARD READY
10

SCORE

SET CARD VALUE

Assignments 103

 Review of Digital Systems Design

be ignored. What is the easiest way to design? Design the control system
accordingly.

2.35 A bus arbiter is to be designed to control the access to a common bus by
two devices A and B as shown in Figure A2.9. RA and RB are Bus Request
signals from devices A and B respectively and GA and GB are the corre-
sponding Bus Grant signals. When the bus is idle, the arbiter grants it to the
device which has requested it. Once the bus is granted to a device, it stays
with that device as long as the corresponding Bus Request signal is active
and the other device has to wait for the bus to be released, even if it requires
access to the bus in the meantime. When the bus is idle and both the devices
request it simultaneously, device A has the priority to get the bus. Design
the controller and draw a circuit for the implementation.

Fig. A2.9 BUS Arbiter

GA
BUS A

GB
BUS B

RA

RB

BUS Arbiter
(to be designed)

Common BUS

104

Chapter 3

Design of Combinational and Sequential Circuits
Using Verilog

3.1 Introduction to Hardware Design Language

Having had a good review of digital circuit design in the previous chapter, it is
time for us to pick up hardware design language (HDL) coding [11–17]. A digital
system is primarily a combination of combinational and sequential circuits put to-
gether in any mix. To start with, we will be learning the design of simple combi-
national circuits using Verilog followed by more complex circuits. As we progress
further, we will be designing sequential circuits. In Chapter 4, we will see how to
write effective test benches so that we may test the functionality of our design.
This will be followed by RTL coding guidelines, a pre-requisite for successful
working of the hardware that we wish to design. Subsequent three chapters will
give you hands-on experience on various industry standard CAD tools, namely,
the simulation tool, the synthesis tool, the place and route tool, and the back annota-
tion. Later on, you will be learning the design of memories and arithmetic circuits,
development of algorithms and architectures, etc. Thereafter, we will proceed to the
design of digital VLSI systems. The penultimate chapter will give an insight into
the working of the actual hardware using FPGAs. In the final chapter, a number of
projects are suggested for implementation.

Before we go into the coding of combinational circuits, we will review the
evolution of the HDLs. Primarily, HDLs were used in order to speed up design
cycle times. Hitherto, schematic circuit diagrams were used, and they were very
handy for designers who were accustomed to designing systems using discrete
digital ICs such as 74 series TTLs. This approach offers cost effective systems so
long as the design size is small in the order of few thousand gates. However, when
it comes to the design of VLSI circuits involving well over 10,000 gates, the de-
signer will have to struggle with a number of drawing sheets of the size of A1.
The readability suffers while wading through hundreds of drawing sheets. The us-
age of Karnaugh map and Quine McCluskey methods of circuit optimization also
prove to be cumbersome for circuits of such complexity. There are other disadvan-
tages such as very high circuit entry time, time consuming preparation of docu-
ments, etc. These disadvantages manifest in spite of using CAD based schematic
design entry.

The disadvantages in schematic design approach opened up the need for intro-
ducing HDLs in circuit design. The HDL has brought about a revolution in the
realms of digital design. The HDL based design reduces the cycle time dramati-
cally. From experience, we can say that there is a speeding up of design cycle time
for VLSI systems by at least five times. HDL provides very concise representation
of circuits in contrast to the schematic logic circuit diagrams. This is made possi-
ble by using what are called behavioral, RTL, and data flow statements. All these
lead to a very concise description of the digital hardware we design. In contrast to
this, in schematic approach, you have to build circuits gate by gate, and it will take
quite an effort to achieve the same end result. Further, there is no need for Kar-
naugh map and Quine McCluskey methods of optimization in HDL based designs
because synthesis tool is supposed to take up this role automatically.

HDL designs are portable from one vendor platform to another. For example,
let us say that you have developed your HDL design on Altera platform to start
with. Later on, when the occasion demands, you can always migrate to another
platform, say, Xilinx without the need to redesign your codes. HDL based designs
are also technology independent. Few years back, 0.65 µm technology was in
vogue; thereafter 0.5 µm and 0.35 µm came into existence, followed by 0.105 µm
technology. Presently, the fabricators are embarking on 0.0309 µm technology.
All these technological changes will have no effect on these HDL designs so long
as the design is free from technology dependence. That means, whatever you have
designed earlier when the technology was less advanced, the same design will
work precisely in the present day technology, and most assuredly on new tech-
nologies that are yet to emerge in the future. However, you have to be very cau-
tious in wielding the HDL tool in the design, taking care to avoid technology-
dependent delay circuits, and designing only RTL compliant circuits. We will
discuss these issues in depth when we deal with RTL coding guidelines.
 Two most popular HDLs used currently are Verilog and VHDL. Recently, Ca-
dence has come up with a HDL using mixed analog and digital design. They call it
Verilog AMS. You can implement A to D converters, D to A converters, PLLs
and the rest of analog circuits, and you can mix them with digital circuits. It is
needless to emphasize that Verilog and VHDL can be used in circuit design rang-
ing from SSI to VLSI. You may regard 50 transistors or less to be falling in the
SSI category; below 500 as MSIs; below 5000 as LSIs; beyond that as
VLSIs/ULSIs. Roughly, four or five transistors may be regarded as representing a
(two input NAND) gate.
 We will be using Verilog in this book for digital VLSI systems design. Verilog
is a hardware description language developed originally by the Gateway Design
Automation in 1984. Cadence popularized it later on. In 1987, synthesis was in-
troduced by Synopsys, one of the leading vendors in ASIC platform. Verilog has
become an industry standard because of its simplicity: you can quickly learn Ver-
ilog; in fact it is easier than learning VHDL in our experience. It has ‘C’ like
structure and very fast design cycle times. What is meant by C like structure is that
you can use ‘if, else’ statements, ‘case’ statements, etc. The input/output structures
are also more or less similar. Of course, there are small differences, which you
will be learning gradually.

108 Design of Combinational and Sequential Circuits Using Verilog

 Verilog has been very popular in hi-tech areas of USA, in the west coast,
whereas VHDL is popular in the eastern coast. The reason behind this may be that
industries prefer Verilog as a means for faster implementation, whereas institutions
prefer VHDL. It is only a general observation, and there are always exceptions to
this view. You as a designer can start with Verilog first, and having mastered it,
switch over to VHDL later on when the occasion demands. The basic design con-
cepts and methodology dealt in this book are, however, equally applicable to both
Verilog as well as VHDL. Both Verilog and VHDL conform to IEEE standards.
 We have already seen that Verilog is a hardware design language, and is very
much akin to C. However, you should bear in mind that Verilog is a hardware de-
sign tool and not a software design tool, whereas C is clearly a programing lan-
guage, which basically runs sequentially unless you veto it by ‘call’, ‘jump’, and
similar instructions. So also are assembly languages for microprocessors and DSP
processors. Even though Verilog code resembles C program, you have to remem-
ber that they are all coded as concurrent statements. It is exactly the same as a
digital circuit design that makes use of the conventional TTL ICs, etc. working
concurrently. As a matter of fact, the hardware design works several times faster
than the same design implemented in software processed by a computer such as
the Pentium Processor or the Digital Signal Processor.
 Verilog allows different levels of abstraction. One is ‘behavioral’, which we
have mentioned earlier, using ‘if ’, ‘else’ structures; ‘for’, ‘while’ loops, etc. There
is another structure called ‘data flow’ structure, which is basically concerned with
the flow of data from one register to another. We will see quite many examples as
we progress. For those who are used to gate level implementation earlier, they can
continue to use gate level primitives in a limited way. For faster implementations,
you often need extra timing closures, which can be achieved by using gate level
primitives. However, for bigger designs, Register Transfer Level (RTL) coding
practice will have to be adopted, which is the main emphasis of this design book.
RTL conformance is the core of digital design as such. If you violate RTL coding
guidelines, the synthesis tool will promptly reject or report errors or warnings.
This is only to ensure that the final product that you are going to tape out or de-
liver will be really working on the hardware it is meant for.
 Verilog also features switches such as NMOS or PMOS switches [11] in case
you need them for specific application. The problems with the switches are that they
are technology dependent and, therefore, these are not covered in this book. What
will be adopted in this book is the RTL type and occasionally going for data flow
and behavioral types, and on very rare occasions we will use the gate level primi-
tives. All Verilog design codes in this book, unless otherwise specified, will be fully
RTL compliant so that they may readily work on the hardware when implemented.

3.2 Design of Combinational Circuits

Combination circuits can be designed by using either ‘assign’ statements or
‘always’ block statements as described in the following sub-sections.

3.2 Design of Combinational Circuits 109

3.2.1 Realization of Basic Gates

We will start with the design of combinational circuits using simple ‘assign’
statements. It is as simple as the statement ‘assign out = A + B ;’ for evaluating the
sum of A and B and transferring the result to ‘out’. Some of the examples that we
will go forth now are for very primitive gates. In order to speed up your learning,
we will first consider only the core or the main Verilog statements in order to real-
ize the hardware. Later on, when you have mastered these cores, we will garnish
them with other Verilog statements to make a full-fledged code. To start with, we
would like to make a simple buffer. What all you need to do is assign the input,
say, A, to an output, F1. The development tools take care to translate this simple
statement into a real hardware, the buffer. As shown in Figure 3.1, the correspond-
ing Verilog statement for this is:

Fig. 3.1 Basic gates realization in Verilog

A
B F3

A
B F4

F2 A

F1 A Buffer

Inverter

AND

OR

assign F1 = A ;

assign F2 = !A ;

assign F3 = A&B ;

assign F4 = A|B ;

GATE

SYMBOL VERILOG STATEMENT

A
B

F5

F6

F7

F8

NAND

NOR A
B

A
B

A
B

assign F5 = !(A&B) ;

assign F6 = !(A|B) ;

assign F7 = (A^B) ;

assign F8 = !(A^B) ;

XOR

XNOR

110 Design of Combinational and Sequential Circuits Using Verilog

 assign F1 = A ;

 The ‘assign’ word is mandatory in order to assign any statement. The output is
on the left hand side of the ‘=’ symbol. It is almost like a C statement with the ex-
ception that ‘assign’ is a new statement implying a hardware field. Similarly, if
you want an inverter what all you have to do is just replace ‘A’ with ‘!A’. This ex-
clamation mark is an inversion (Not) signal, and this is basically a logical inversion.
You can also use ‘~’ in lieu of ‘!’ even though ‘~’ is primarily used for multi-bit
precision, implying bit wise negation. If you wish to do AND or OR with two in-
puts, what you require is ‘&’ for AND operation and ‘|’ for OR operation. Simi-
larly, whatever gates we have already considered, we can get their inversions as
well. For example, a NAND gate can be derived by complementing (!) the result
after AND operation. For exclusive or (XOR), the symbol is ‘^’. XNOR realiza-
tion is just the inverse of XOR. All the gate realizations we have covered so far
are summarized in Figure 3.1.

3.2.2 Realization of Majority Logic and Concatenation

Now that we have seen how to use assign statements for simple combinational cir-
cuits, we can also implement the same using ‘always’ statement. The always
statement is a block of instructions which you will see later on. First, consider a
simple circuit such as a majority logic shown in Figure 3.2. This is nothing but the
realization of logic: F9 = AB + BC + CA. In order to realize this, you need three
numbers of two input AND gates and one number of three input OR gate. The
next example we are going to see is how to concatenate different signals. For

Fig. 3.2 Circuit diagram of majority logic and concatenation

A
B

F9 = AB+BC+CA B
C

C
A

A
B
C

 { } F10 = { A, B, C }

MSB LSB

CONCATENATION

MAJORITY LOGIC

3.2 Design of Combinational Circuits 111

example, let A, B, and C signals be one bit each. Concatenation is just putting the
signals together as a single multi-bit signal in the order you want it. The concate-
nation symbol is the flower brackets ‘{ }’, and you need to separate the signals re-
quiring concatenation with a comma.

The concatenated result of the three signals A, B, and C is expressed as follows:

F10 = {A, B, C} ;

where A is the MSB. Always, the signal listed left most will be the MSB and, natu-
rally, it follows suit that the right most signal bit is the LSB. For example, if we as-
sume A, B, and C as 1, 0, and 1 respectively, then F10 = 101 after concatenation.
One may be tempted to call ‘signals’ such as A, B, C, etc. as variables. That is be-
cause of our past habit with the C language. Here, in hardware design, you don’t
speak in terms of variables but in terms of signals. For examples, any digital node is
a signal and whatever input/output (I/O) you have in your design is also a signal.

The next two examples we will consider are ‘right shift’ and ‘left shift’. For in-
stances, we will shift by just one bit for ‘right’ and two bits for ‘left’ shift. Let us
say that we have a signal which is three bits wide, namely, F10 we have seen be-
fore. What happens after right shift is shown in Figure 3.3. After the shift, the LSB
is lost and the vacated MSB is forced to a zero. In the case of left shift by two bits,
the two MSB bits are lost, and zeros will occupy the bits that are vacated. The
Verilog code for the four examples covered so far may be combined into one
compact ‘always’ block as shown in the following:

Fig. 3.3 Basics of shift operations

3.2.3 Shift Operations

1 0 1

1 0 0

1 0 1

F10 (not affected)

RIGHT SHIFT
BY 1 BIT

0 1 0

“0”

F10 (not affected)

LEFT
SHIFT

BY 2 BITS
“0”

LSB
LOST

MSBs
LOST

F12

F11

112 Design of Combinational and Sequential Circuits Using Verilog

Verilog_code 3.1

always @ (A or B or C or F10)
 begin
 F9 = (A&B)|(B&C)|(C&A) ; // Realize AB+BC+CA.
 F10 = {A, B, C} ; // Concatenate A, B and
 // C to get 3 bit result.
 F11 = F10 >> 1 ; // Right shift by one bit.
 F12 = F10 << 2 ; // Left shift by two bits.
 end
__

The first code realizes the majority logic, which is F9 = AB + BC + CA. Note
that ‘&’ stands for AND, ‘|’ for OR, and that is how we get AB + BC + CA. A
good practice is to use brackets ‘()’ as shown for the signal F9. They enhance not
only the readability, but also guide the synthesis tool, which aspect we will learn
later on. You would notice that there is an ‘always @’ statement in the code. What
all it means is, whenever the inputs A or B or C or F10 changes, only then the re-
sults are evaluated, and not otherwise. If you have multiple statements, as in the
present case, you need to put a ‘begin’ statement and an ‘end’ statement indicating
that the whole set of statements is a block. In one block, you can put as many
statements as you want. If a statement is complete, you end it up with a semicolon.
If you forget this, the compiler will promptly report error. Although the multiple
statements are written sequentially (one followed by another), in real hardware,
they are put as actual gates as the case may be and, therefore, these statements in a
block may be regarded as ‘concurrent statements’. The same is also true for ‘as-
sign’ statements and also other statements in a complete design.

The next statement is for concatenation, which we have already seen. This is
exactly the same as the one we saw pictorially earlier. Suppose you want signal C
to be the MSB, and A as LSB, instead of the present order, then you need to put C
first, followed by B and A in that order. In addition to this, let us say that you want
to add three zeros to the LSB; all we need to do is to put a comma after A and add
three zeros as follows:

F10 = {C, B, A, 0, 0, 0 } ; or more concisely as F10 = {C, B, A, 3{0}} ;

Note that in the case of shift operations, F11 = F10 >> 1 ; for example, the source
F10 itself is not affected. Also note that we can use any number of bits to shift and
it does the job at one stroke. ‘//’ can be used for writing line comments.

Now, let us go into the coding of a slightly more complex component such as a
multiplexer. A two input MUX, with I0 and I1 as the data inputs and A as the
select input is shown in Figure 3.4. If A = 0, the MUX automatically selects I0;

3.2.4 Realization of Multiplexers

3.2 Design of Combinational Circuits 113

assign mux2 = (A = = 1) ? I1 : I0 ; // mux2 = I1 if A = 1, otherwise mux2 = I0.

Fig. 3.4 Two input MUX using ‘assign’ statement

otherwise it selects I1, and outputs it on to the signal ‘mux2’. In order to write the
code, we need only one assign statement as shown in the figure. ‘A’ is the select
pin of the MUX, which may also be written as (A = = 1) or (A = = 1′b1). In the
last two cases, a comparator is actually put by a synthesis tool, which tool we will
learn in a later chapter. Most designers normally prefer the last option, in general,
since it throws light on the number of bits present in the select signal ‘A’. ‘1’ be-
fore ′b indicates the precision, b stands for binary, and ‘1’ after b represents the
logic high state of the signal ‘A’. Instead of ‘b’, ‘h’ or ‘o’ can also be used for
hexadecimal and octal numbers respectively. ‘?’ is mandatory for representing the
MUX structure. After ‘?’, the higher order input (I1) separated by ‘:’, and fol-
lowed by the lower order input (I0) are written.

We will now see how a four input MUX is coded using nested assign state-
ment. I0, I1, I2, and I3 are the four inputs as shown in Figure 3.5. In order to ac-

assign mux4 = B ? (C ? I3 : I2) : (C ? I1 : I0);
// Note: Avoid using nesting. Instead, use ‘case’ for more than 2 inputs.

Fig. 3.5 Four input MUX using nested assign statements

cess these inputs one at a time, two selector pins B and C are required. ‘B’ is the

I0

I1

A

I0

I1
mux2

I0

I1

C

I0

I1

I0

I1

C

I2

I3

I0

I1

B

MSB

mux4

114 Design of Combinational and Sequential Circuits Using Verilog

MSB. Take due care of the MSB and the LSB. Otherwise, the wrong input will be
accessed. This case is precisely the same as two input MUX which we have used
earlier, except that the inputs and outputs are different. I0, I1 inputs of the last
MUX are derived from the first two MUX outputs. The signal C selects either the
I0 input or the I1 input and outputs to the signal ‘mux4’, provided the signal B is
low. On the other hand, if B is high, mux4 is assigned to the input I2 or I3. It is
better to avoid nesting like this since there are two cascaded MUX delays resulting
in lower speed of operation. A better speed performance can be obtained by using
‘case’ statements. Therefore, we will restrict MUX assign statement only for two
input processing.

We will consider the realization of an eight input MUX in order to illustrate the
use of ‘case’ statement. I0–I7 are the inputs, A, B, and C are the select pins, where
A is the MSB, and mux8 is the final output as shown in Figure 3.6. We will be us-
ing the ‘case’ statement within ‘always’ block in the following code. Always
block will be executed whenever any of the inputs, A–C, I0–I7 change. In the
code, all these inputs listed are separated by ‘or’. Note that this is not a logical
statement but plain English (caution: don’t use ‘|’ or anything other than ‘or’).
Case is checked based on the concatenated value of A, B, and C. {A, B, C} = 000
binary value corresponds to the address of the input, I0, and so on. Each address is
three bits wide and is represented as 3′b inside the case statement. Depending
upon the dynamic value of this address, the signal mux8 is assigned one of the in-
put values from I0 to I7. Since A, B, and C signals may also be don’t cares (x) or
high impedance (z), a ‘default’ statement must also be included as shown. The
statement, ‘case’ must be terminated by a corresponding ‘endcase’ statement.
Within the always block, a ‘begin’ and ‘end’ must be added if multi-statements are
used within the block. The code for the eight input MUX is as follows:

Fig. 3.6 Eight input MUX

mux8

I0

I1

I7

A B C

I0

I1

I7

MSB

3.2 Design of Combinational Circuits 115

Verilog_code 3.2

// Eight input MUX code using ‘always’ and ‘case’ statements.
// Fastest possible hardware implementation.

always @ (A or B or C or I0 or I1 or I2 or I3 or I4 or I5 or I6 or I7)
 begin

case ({A, B, C})
 3'b000: mux8 = I0 ; // Read the input addressed by ABC

 3'b001: mux8 = I1 ; // and output the same to mux8.
 3'b010: mux8 = I2 ;

 3'b011: mux8 = I3 ;
 3'b100: mux8 = I4 ;
 3'b101: mux8 = I5 ;
 3'b110: mux8 = I6 ;
 3'b111: mux8 = I7 ;
 default: mux8 = 0 ; // The value can be I0 or any other.
 endcase

end
__

The case statement described here is very much similar to ‘C code’ except that this
is a hardware design, where the compiled code translates as an eight input MUX.

Next, we will see the design of a DEMUX, which is an exact counter part of MUX
as shown in Figure 3.7. We will feed the output of the eight input MUX (mux8)
we have just now covered, as the input to an eight output DEMUX even though
any other signal may be connected as per needs. The select pins are the same as
that used in the MUX design. Naturally, the outputs of the DEMUX, D0–D7,
must be none other than the inputs of ‘mux8’, i.e., I0–I7. The code for DEMUX is
as follows:
__

Verilog_code 3.3

// DEMUX using ‘always’ and ‘case’ statements.

 always @ (A or B or C or mux8)
 begin
 case ({A, B, C})
 // Read the input into D0, etc., and clear other outputs.
 3'b000: begin D0 = mux8 ; D1 = 0; D2 = 0; D3 = 0;
 D4 = 0; D5 = 0; D6 = 0; D7 = 0; end

3.2.5 Realization of a Demultiplexer

116 Design of Combinational and Sequential Circuits Using Verilog

 3'b001: begin D1 = mux8 ; D0 = 0; D2 = 0; D3 = 0;
 D4 = 0; D5 = 0; D6 = 0; D7 = 0; end
 3'b010: begin D2 = mux8 ; D0 = 0; D1 = 0; D3 = 0;
 D4 = 0; D5 = 0; D6 = 0; D7 = 0; end

3'b011: begin D3 = mux8 ; D0 = 0; D1 = 0; D2 = 0;
 D4 = 0; D5 = 0; D6 = 0; D7 = 0; end

3'b100: begin D4 = mux8 ; D0 = 0; D1 = 0; D2 = 0;
 D3 = 0; D5 = 0; D6 = 0; D7 = 0; end

3'b101: begin D5 = mux8 ; D0 = 0; D1 = 0; D2 = 0;
 D3 = 0; D4 = 0; D6 = 0; D7 = 0; end

3'b110: begin D6 = mux8 ; D0 = 0; D1 = 0; D2 = 0;
 D3 = 0; D4 = 0; D5 = 0; D7 = 0; end
 3'b111: begin D7 = mux8 ; D0 = 0; D1 = 0; D2 = 0;
 D3 = 0; D4 = 0; D5 = 0; D6 = 0; end
 default: begin D0 = 0; D1 = 0; D2 = 0; D3 = 0; D4 = 0;
 D5 = 0; D6 = 0; D7 = 0; end
 endcase
 end
__

This appears to be more complicated than the MUX design since we have multiple
statements within each case. The always block and case statements are used here
as we had done in the MUX design before. Note that the ‘mux8’ is an input.
‘mux8’ input is assigned to the particular DEMUX output depending upon the
ABC select pins. For example, if ABC = 111, mux8 is output to D7. It may be
noted here that the other outputs, viz., D0 through D6 are each assigned low. Al-
though this is done deliberately to every case value in order to enhance the read-

Fig. 3.7 Eight output DEMUX

ability and reliability of the code, this need not be done this way alone. A simpler

mux8

D0

D1

D7

A B C

D0

D1

D7

MSB

3.2 Design of Combinational Circuits 117

way of writing is to insert the following ‘D’ statements between ‘always @ (A or
B or C or mux8) begin’ and ‘case ({A, B, C})’.

D0 = 0 ; D1 = 0; D2 = 0; D3 = 0;
 D4 = 0; D5 = 0; D6 = 0; D7 = 0;
// Common statement for clearing all outputs.
You may then remove all ‘D’ outputs assigned to ‘0’ in every case statement.

3.2.6 Verilog Modeling of a Full Adder

We will consider a full adder and code it in different ways in order to understand
behavioral, data flow and structural realizations of the same. As shown in Figure
3.8, we have three inputs, A, B, and C, where C may be regarded as the carry in.
When the three bits are added, we get a ‘carry out’ and a ‘sum’. The truth table
can be easily filled as follows: In the traditional way, inputs are entered as a binary
progression starting with ‘000’ entry. A faster way to fill inputs A B C are to fill
vertically starting with four ‘0’s followed by four ‘1’s for A; alternately two ‘0’s
and two ‘1’s for B followed by alternately one ‘0’ and one ‘1’ for C. The outputs
can be filled by treating them as two-bit result, adding two numbers first [(A+B)],
followed by adding the result to the last number [(A + B) + C]. As an example, let
us see the addition of the last row, which may be expressed as: (1 + 1) + 1 = (10) +
1 = 11, all in binary notation. Similarly, all rows of the truth table can be filled
fast. By inspecting the truth table, we recognize the outputs, ‘sum’ and ‘carryo’ as
XOR and majority logic of the three inputs respectively. A majority logic is rec-
ognized if there are two or more ‘1’ (logic high) input entries for the correspond-
ing ‘high’ output.

Fig. 3.8 Realization of a full adder

sum

carryo
B

A

C

Carry out

Carry in

FA

TRUTH TABLE

 A B C carryo sum

 0 0 0 0 0
 0 0 1 0 1
 0 1 0 0 1
 0 1 1 1 0
 1 0 0 0 1
 1 0 1 1 0
 1 1 0 1 0
 1 1 1 1 1

sum = (A^B)^C

carryo = AB+BC+CA

118 Design of Combinational and Sequential Circuits Using Verilog

There are three ways of implementations for the full adder. The first one is the
behavioral level of realization expressed by a single ‘assign’ statement:
__

Verilog_code 3.4

assign sum_total = (A + B) + C; // Realize sum, carry being inherent.
__

The parenthesis is generally put in order to make the synthesis tool more effi-
cient in optimization, which aspect will be discussed in RTL coding guidelines.
This type offers the most concise representation of addition, and holds good for
multi-bit precision as well, unlike other two types that will be discussed shortly.
Another type of realizing the full adder is the data flow structure as shown in the
following:
__

Verilog_code 3.5

assign sum = (A^B) ^C ; // Realize sum.
assign carryo = (A&B)|(B&C)|(C&A) ; // Realize carry out, AB + BC + CA.
__

This type was pictorially depicted earlier in Figure 3.8. The above two types
will be very handy while pipelining a design, which we will learn later on. The
third type is the structural realization using primitive gates as shown in Figure 3.9.
This is very close to the schematic circuit diagram representation. Verilog code for
the same is as follows:

Fig. 3.9 Structural level realization of full adder using primitive gates

A
B

B
C

C
A

a1

a2

a3

o1

carryo

A
B

s1

C sum

3.2 Design of Combinational Circuits 119

__

Verilog_code 3.6

xor (s1, A, B) ; // Realize sum = (A^B)^C using gate
xor (sum, s1, C) ; // primitives.
// The first entry ‘sum’ is for output and, the other two are for inputs for all
// primitive gates.
and (a1, A, B) ; // Also compute AB,
and (a2, B, C) ; // BC,
and (a3, C, A) ; // CA
or (o1, a1, a2) ; // and OR them together
or (carryo, o1, a3) ; // to realize carryo = AB + BC + CA.

Note that s1, a1, a2, a3, and o1 are all intermediate output signals. Other gates
that can be used in a structural design are ‘nand’, ‘nor’, ‘xor’, ‘xnor’, ‘buf’, and
‘not’. As far as possible, usage of this approach must be minimized since it leads
to the writing of long codes, and are unwieldy for large designs. However, this
structure can be effectively used for the implementation of tri-state buff-
ers/inverters such as the following:

bufif0 u1 (out, in, sel) ; // out = in if sel = 0, otherwise out is tri-stated
bufif1 u2 (out, in, sel) ; // out = in if sel = 1, otherwise out is tri-stated
notif0 u3 (out, in, sel) ; // out = ! in if sel = 0, otherwise out is tri-stated
notif1 u4 (out, in, sel) ; // out = ! in if sel = 1, otherwise out is tri-stated

where ‘u1’, ‘u2’, etc. stand for the instantiations similar to the convention adopted
in schematic circuit diagrams, ‘out’ for the tri-stated (high impedance, z) output,
‘in’ for the input, and ‘sel’ for chip select.

3.2.7 Realization of a Magnitude Comparator

We will examine the design of a magnitude comparator shown in Figure 3.10. Let
us say, we have two multi-bit precision inputs N1 and N2 and wish to generate
outputs for the following conditions:

(i) N1 greater than N2,
(ii) N1 less than N2,
(iii) N1 equal to N2,
(iv) N1 not equal to N2,
(v) N1 less or equal to N2, and
(vi) N1 greater or equal to N2.

120 Design of Combinational and Sequential Circuits Using Verilog

Verilog code for this example is as follows:

Fig. 3.10 Block diagram of an eight bit magnitude comparator
__

Verilog_code 3.7

// Realization of a magnitude comparator

always @ (N1 or N2)
 begin
 F13 = (N1 > N2) ; // Set output if N1 is greater than N2.
 F14 = (N1 < N2) ; // Set output if N1 is less than N2.
 F15 = (N1 = = N2) ; // Set output if N1 is equal to N2.
 F16 = (N1 != N2) ; // Set output if N1 is not equal to N2.
 F17 = (N1 <= N2) ; // Set output if N1 is less than or equal to N2.
 F18 = (N1 >= N2) ; // Set output if N1 is greater than or equal to N2.
 end
__

The codes are straightforward and self-explanatory. Logical equivalence uses two
equal to symbols as shown. The compiler will report error if only one equal to
symbol is used. When the prescribed condition [(N1 = = N2), for example] is sat-
isfied, a logical high is assigned to the specified output [namely, F15].

3.2.8 A Design Example Using an Adder and a Magnitude
Comparator

Before we wind up the combinational circuit design, let us consider one more de-
sign example using some of the examples we have already covered. As shown in
Figure 3.11, let us say that we wish to compute the sum (SUM[8:0]) of two multi-
bit precision numbers, NUM_1 and NUM_2, and compare with a preset value,

F13 (N1 > N2)

F14

F15

F16

F17

F18

(N1 < N2)

(N1 = N2)

 (N1 != N2)

 (N1 <= N2)

 (N1 >= N2)

N1[7:0]

N2[7:0]

3.2 Design of Combinational Circuits 121

P_V[8:0]. If SUM equals the preset value, the output MATCH is generated; else if
SUM is greater than the preset value, MORE is generated. Otherwise, the signal
LESS is issued. Outputs must be valid only if ‘enable_sum’ is active, otherwise
clear all the outputs.

We will now see how to write the code for this application. Even though we
could have used ‘assign’ statements for this problem, we will use ‘always’ block
since we need output only when there is a change in any of the inputs. The always
block contains the list of all the input signals, namely, enable_sum, NUM_1,
NUM_2, and PRESET_VALUE. In order to compute the sum, we will use the be-
havioral model of a full adder we have seen earlier. Similarly, we will use a MUX
model to generate the final outputs, taking the signal, enable_sum, into account.
Note that the MUX model used here does not use ‘assign’ statement as done be-
fore. This approach facilitates the writing of a very compact code, yet readable as
well as synthesizable. Verilog code is as follows:
__

Verilog_code 3.8

// Verilog code for design example shown in Figure 3.11.

always @ (enable_sum or NUM_1 or NUM_2 or PRESET_VALUE)
begin
 SUM[8:0] = enable_sum ? (NUM_1[7:0] + NUM_2[7:0]) : 9'd0 ;
 // Compute sum if enabled, otherwise output ‘0’.
 MATCH = enable_sum ? (SUM = = PRESET_VALUE) : 1'b0 ;
 // Set output if SUM is equal to

 // PRESET_VALUE, only if enabled.
 MORE = enable_sum ? (SUM > PRESET_VALUE) : 1'b0 ;
 // Set output if SUM is greater than

(NUM_1 + NUM_2) NUM_1[7:0]

NUM_2[7:0] (SUM = P_V)

(SUM < P_V) enable_sum

(SUM > P_V)

P_V => PRESET_VALUE

 P_V[8:0]

SUM[8:0]

MATCH

MORE

LESS

Fig. 3.11 Block diagram of a design example

122 Design of Combinational and Sequential Circuits Using Verilog

// PRESET_VALUE, only if enabled.
 LESS = enable_sum ? (SUM < PRESET_VALUE) : 1'b0 ;
 // Set output if SUM is less than

// PRESET_VALUE, only if enabled.
end
__

The first statement for SUM contains the signal widths as well, so that the read-
ability is enhanced, even though the code will work if precision is not mentioned
explicitly. Statement like (SUM > PRESET_VALUE) returns a ‘1’ if the men-
tioned condition is satisfied, otherwise not. All the four statements are processed
concurrently.

3.3 Verilog Modeling of Sequential Circuits

3.3.1 Realization of a D Flip-flop

We will now see how to model sequential circuits. The simplest of flip-flops is the
D flip-flop shown in Figure 3.12. When a reset signal is applied to the flip-flop,
the output Q is cleared. At the rising edge of the clock, whatever value is present
at the D input is stored in Q. We will use asynchronous, active low for the reset
signal and positive edge for the clock for registering D input of the flip-flop
throughout the book since these are popular practices in industries. Coding this is
quite easy. We will use the ‘always’ block as in the combinational circuits realiza-
tion, but with this difference. As this is a sequential circuit, we specify positive
edge for the clock as ‘posedge clk’ in always statement along with active low reset
signal as ‘negedge reset_n’ since in this type of ‘always’ statement list, only the
edge transitions are allowed. The Verilog code is as follows:

D FF

reset_n

D

clk

Q

Q_n

Fig. 3.12 D flip-flop with reset

3.3 Verilog Modeling of Sequential Circuits 123

Verilog_code 3.9

// Realization of a D flip-flop with a reset control using ‘always’ block.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n = = 1'b0)
 begin
 Q <= 0 ; // Clear register when system is reset.
 Q_n <= 1 ;
 end
 else
 begin
 Q <= D ; // Store or register D input
 Q_n <= !D ; // and its complement.
 end
end

In big systems, the signal ‘reset_n’ may be a master reset, mounted on a control
panel, which will be usually connected via long cable. In the event when the cable
snaps, the reset pin must be pulled to a safe value. This can be easily done if a
pull-up resistor is installed at the reset pin in the PCB housing the sequential cir-
cuits. This requires active low signal for the reset signal. Usually, the term ‘regis-
ter’ is used instead of a flip-flop. In the code for assigning a signal, the symbol
‘<=’ is used. Don’t mistake it for less than or equal to assignment. It is known as a
non-blocking statement, whereas in ‘assign’ statements discussed earlier, we had
used ‘=’ symbol called the blocking statement. In an ‘always’ block, if we use ‘=’
instead of ‘<=’, the compiler tool will complain.

3.3.2 Realization of Registers

We will now see the coding of more complex registers. What you see in Figure 3.13
are two registers: one register output is called pixeloutp_valid: p for previous and the
other is the desired output, ‘pixelout_valid’. This is used in one of the applications
such as video scaling to indicate when an image pixel is valid. As per the applica-
tion, ‘pixelout_valid’ must be delayed by one clock pulse. In order to accomplish
this, we have ‘pixeloutp_valid’, which gets registered in advance by one clock pulse.
The Verilog code for this application is shown in Verilog_code 3.10.

The pixelout data is valid only within a window. The start and end of the win-
dow is determined by the conditions:

set_pixout = (!A)(B)(!C) and reset_pixout = ABC. These conditions are real-
ized using assign statements as shown in the code. There are two ‘always’ blocks:
the first one is the ‘pixeloutp_valid’ register and the second is the ‘pixelout_valid’

__

__

124 Design of Combinational and Sequential Circuits Using Verilog

Fig. 3.13 Realization of registers
__

Verilog_code 3.10

// Realization of registers using ‘always’ block

assign set_pixout = (A = = 1'b0) && (B = = 1'b1) && (C = = 1'b0) ;
 // Pre-compute (not A) and (B) and (not C)
 // which is a condition for setting pixout_valid.
assign reset_pixout = (A = = 1'b1) && (B = = 1'b1) && (C = = 1'b1) ;
 // Pre-check ABC status.
 // ABC = 1 is a condition for resetting pixout_valid.
always @ (posedge clk or negedge reset_n)
begin // First register
 if (reset_n == 1'b0)
 pixeloutp_valid <= 1'b0 ; // Clear register when system is reset.
 else if (hold == 1'b1)
 pixeloutp_valid <= pixeloutp_valid ;
 // Retain the value if the system is in hold.
 else if (set_pixout == 1'b1)
 pixeloutp_valid <= 1'b1 ; // Set or
 else if (reset_pixout == 1'b1)
 pixeloutp_valid <= 1'b0; // reset when the conditions are satisfied.

 else
 pixeloutp_valid <= pixeloutp_valid ; // Otherwise, don’t disturb.
 end

set_pixout
reset_
pixout

reset_n reset_n

pixeloutp_valid

clk

clkhold

pixelout_valid

C

A

set_pixout reset_pixout
B

C

A
B

A, B, and C are inputs

3.3 Verilog Modeling of Sequential Circuits 125

always @ (posedge clk or negedge reset_n)
 begin // Second register
 if (reset_n == 1'b0)
 pixelout_valid <= 1'b0 ;
 // Clear register when system is reset.
 else if (hold == 1'b1)
 pixelout_valid <= pixelout_valid ;
 // Retain the value if the system is in hold.
 else
 pixelout_valid <= pixeloutp_valid ; // Assign previous (clk) value.
 end

register. Both these blocks use ‘if–else if–else’ structure. This structure is used if
priority encoding is required. The top most priority is provided for the asynchro-
nous reset in the first statement using ‘if ’, in which case the register output is
cleared (may be regarded as system initialization). The next in priority is the hold
signal. This is similar to the hold signal in most microprocessors. Whenever a
‘hold’ signal is applied, the previous register content is frozen, so that the process
may resume from where it was suspended when the hold signal was withdrawn.
This is taken care of in the first ‘else if ’ statement. In the next two ‘else if ’ state-
ments, the register is set or reset in that order of priority. This holds good only for
the ‘pixeloutp_valid’ register and not for ‘pixelout_valid’. The last statement
‘else’ is the lowest priority. In this else case, ‘pixeloutp_valid’ is not disturbed,
whereas ‘pixelout_valid’ register receives the ‘pixeloutp_valid’ contents. The lat-
ter statement is responsible for bringing about one clock delay for ‘pixelout_valid’
with respect to the ‘pixeloutp_valid’ register.

It is a good practice to have meaningful comments throughout your code: what
is obvious in a statement, don’t repeat it verbatim. Instead, your comment must be
as far as possible simple English statement narrating a story. Also, give apt names
to signals, modules, and files in your design. In case, you want to give a descrip-
tion running to many lines, you can use /* */ as in ‘C’. Note that each of the ‘if’
or ‘else if’ statements would create a nested two input multiplexer and, thereby,
slowing the system operation. From experience, we suggest that you don’t exceed
four or five such nesting. Smaller the number of nesting, higher will be the speed
of operation. If you have many signal outputs (registers) in one sequential ‘al-
ways’ block, debugging the code will be a frustrating experience. It is, therefore,
highly recommended that one should have only one register in one ‘always’ block
as shown in the code. One register output feeding into another register is known as
the ‘pipelining’. In the present case, pipelining is not the aim. It is only to delay a
signal, say, ‘pixelout_valid’ so as to keep pace with another data signal, namely,
pixel_data (not shown in this design). Pipelining will be covered in depth in the
later chapters.

__

126 Design of Combinational and Sequential Circuits Using Verilog

Fig. 3.14 Realization of a Counter

3.3.3 Realization of a Counter

We will go on to the next example of realizing a counter which is also made up of
flip-flops. It has an asynchronous reset input, reset_n, and an 8-bit counter of
width [7:0] as shown in Figure 3.14. The output is named as ‘cnt_reg’ so that it
may be readily identified as a register. The counter can advance by one at the ris-
ing edge of ‘clk’ so long as the counter is enabled by the signal ‘adv_cnt’ for the
condition: ABC = 1. When the running ‘cnt_reg’ equals 255, the counter is reset
since the signal, ‘res_cnt’, is asserted.

The Verilog code for the counter is as follows: Signals, res_cnt, adv_cnt, and
cnt_next are realized using ‘assign’ statements as shown in the Verilog_code 3.11.
Since cnt_reg is sequential in nature, it is realized in an ‘always @(posedge clk)’
block. The functioning of each statement will be clear by reading the line com-
ments. In order to speed up the operation, the counter is pre-incremented using the
‘assign’ statement, instead of advancing within the always block.
__

Verilog_code 3.11

// Verilog code to realize a counter
assign res_cnt = (cnt_reg = = 255) ; // Condition for resetting the counter.
assign adv_cnt = (A = = 1'b1)&(B = = 1)&(C = = 1) ;
 // Condition for Pre-incrementing the counter.
assign cnt_next = cnt_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)

adv_cnt

reset_n

cnt_reg[7:0]

clk

255 res_cnt adv_cnt C

A
B

A, B, and C are inputs

=
cnt_reg[7:0]

res_cnt

3.3 Verilog Modeling of Sequential Circuits 127

 begin
 if (reset_n == 1'b0)
 cnt_reg <= 8'd0 ; // Initialize when the system is reset.

else if (res_cnt == 1'b1) // Reset if terminal count is reached.
 cnt_reg <= 8'd0 ;
 else if (adv_cnt == 1'b1) // If enabled,
 cnt_reg <= cnt_next ; // advance the counter once.
 else
 cnt_reg <= cnt_reg ; // Otherwise, do not disturb.
 end
__

3.3.4 Realization of a Non-retriggerable Monoshot

We will see how to realize a monoshot that can be used as a timer. Since it is to be
designed as a non-retriggerable monoshot, once it is triggered, future triggers shall
have no effect so long as it is running. In other words, you can trigger it only when
it is not running, i.e., when the output, ‘delay_out’, is not high. The monoshot, as
shown in Fig. 3.15, can be triggered by applying a rising edge signal at the ‘trig-
ger’ input. ‘cntd_reg’ is an 8-bit counter that increments by one at the rising edge
of ‘clk’, provided the timer is running. This counter is reset and the ‘delay_out’
signal goes low once the counter touches the value 255. The monoshot produces
255 clock cycles delay for the preset value, cntd_reg = 255, and for this duration it
turns on the ‘delay_out’ signal. If we want longer delays, we can either cascade
more number of counters or increase the bit precision of the counter. The signal,
reset_n, is the asynchronous reset input, which clears the counter, ‘cntd_reg’, and
the ‘delay_out’ signal when the system is powered on.

Verilog code for this design is as follows:

Fig. 3.15 Block diagram of a non-retriggerable monoshot

Mono
shot

 trigger

reset_n

cntd_reg[7:0]

clk

255 =
cntd_reg[7:0]

delay_out

255 clk
cycles

res_cntd

128 Design of Combinational and Sequential Circuits Using Verilog

__

Verilog_code 3.12

// Verilog code for the non-retriggerable monoshot.

assign res_cntd = (reset_n = = 1'b0) || (cntd_reg = = 255) ;
 // Condition for resetting the counter.

// Change preset value 255 if you need another delay.
assign run_delay = (triggerp = = 0) && (trigger = = 1) ;
 // Detect the positive edge of trigger.
assign cntd_next = cntd_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or posedge res_cntd)
begin
 if (res_cntd == 1) // Initialize when the system is reset
 // or if the terminal count is reached.

// This has the top most priority.
 begin
 cntd_reg <= 8'd0 ;
 delay_out <= 0 ;
 triggerp <= 0 ;
 end
 else if (delay_out = = 1) // This implies the timer is running.

// This has the second priority.
 begin
 cntd_reg <= cntd_next ; // Advance the count by one if
 // the timer is still running.
 triggerp <= trigger ; // Preserve the current state of trigger.
 end
 else if (run_delay = = 1) // This is the rising edge of trigger.

// This has the lowest priority.
 begin
 delay_out <= 1 ; // Start the delay if the positive
 // edge of trigger is detected.
 triggerp <= trigger ; // Preserve the current state of trigger.
 end
 else
 begin
 cntd_reg <= cntd_reg ; // Otherwise, don't disturb.
 delay_out <= delay_out ;
 triggerp <= trigger ; // Preserve the current state of trigger.
 end
end
__

3.3 Verilog Modeling of Sequential Circuits 129

The first assign statement combines ‘reset_n’ signal and the counter value ad-
vancing to 255 to generate the reset signal for the counter. The second statement
detects the positive edge of the trigger input if the present value is high and the
previous value (register ‘triggerp’) is low. Since we have only three registers in
this design, namely, cntd_reg, delay_out, and triggerp, only a single ‘always’
block is used, instead of providing a separate ‘always’ block for each of the three
registers as suggested before. Note that we have used ‘posedge res_cntd’ in the
always block, instead of the usual ‘negedge reset_n’. Follow this argument very
closely. When the running counter, cntd_reg, value is 254 at the rising edge of the
‘clk’, then the statement ‘else if (delay_out = = 1)’ alone is satisfied since the
timer is already running and, therefore, the statement ‘cntd_reg <= cntd_next;’ ad-
vances the cntd_reg to 255. Immediately, the signal ‘res_cntd’ goes high, satisfy-
ing the condition: ‘posedge res_cntd’ in the always block, thus resetting the
cntd_reg as well as the timer output. The above process happens in a flash; as a re-
sult you can notice only a very sharp pulse for the res_cntd signal. In other words,
the count 254 and 255 take place practically at the same time. Thus, the timer
(rather the counter, cntd_reg) starts counting from 0 through 254 only, which ex-
plains why we get a time delay of 255 clock cycles. Later on, when we examine
the waveforms in Chapter 6, we will see that the above discussion is indeed true.

The statement ‘else if (run_delay = = 1)’ detects the rising edge of the trigger
only if the timer is not running, and starts the timer by asserting its output, ‘de-
lay_out’. Note that this statement will not be processed if ‘delay_out’ is already
high since the statement ‘else if (delay_out = = 1)’ has a higher priority. One must
not forget to push the current value of the ‘trigger’ to the previous value of trigger
(triggerp) at every ‘else if ’ or ‘else’ statement block as shown in the code. Other-
wise, the rising edge of trigger may be detected at every rising edge of ‘clk’ and
hamper with the satisfactory working of the timer.

3.3.5 Verilog Coding of a Shift Register

We saw earlier, how to model shift registers using combinational circuit. In the
present treatment, we will use sequential circuit to effect the actual shifting opera-
tion. As shown in Figure 3.16, aa right shift register consists of a register of specific
width, say, 16 bits represented by [15:0], which can be preset with a value,
1010101010101010, for instance, and a shift control to bring about right shifting
of the register at the positive edge of ‘clk’. The register can be cleared asynchro-
nously by the input, ‘reset_n’.

There are two ways of realizing the shift register as shown in the following
codes, Verilog_code 3.13 and 3.14. Both these methods use an ‘assign’ statement
and an ‘always’ block. The two methods differ only in the ‘assign’ statements used
to perform right shift operation in advance. In the first method, ‘data_out1 >> 1’
effects the shifting, which approach is the same as the one we have used in combi-
national circuits earlier. In the alternative approach, we use concatenation:
{1'b0, data_out1[15:1]}.

130 Design of Combinational and Sequential Circuits Using Verilog

It may be noted that after right shift, the MSB of the result is forced to a zero. This
can be done by the first entry, 1'b0. After right shift, data_out1[0] is discarded, and
data_out1[15:1] becomes the new content for the bits [14:0] of the end result.

Therefore, the final result is:
dataout2_next[15:0] = {1'b0,data_out1[15:1]}. This is a straightforward assign-
ment without really involving any shift.

In the always block, any data that is desired is preset whenever the system is
reset by asserting the signal, reset_n. During the normal course of operation, at the
rising edge of ‘clk’, the pre-shifted value is transferred to the final output,
data_out1[15:0] or data_out2[15:0] if ‘shift’ signal is asserted. The shift signal is
asserted synchronously with the clock only when the occasion demands it. Other-
wise, it is de-asserted.

Fig. 3.16 Block diagram of a right shift register
__

Verilog_code 3.13

// Realization of a right shift register using ‘assign’ and ‘always’ block

assign dataout1_next = (data_out1 >> 1) ;
 // Pre-shift right the contents of data_out1
 // register by one bit.
always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 1'b0)
 data_out1 <= 16'b1010_1010_1010_1010 ;
 // Preset when the system is reset.
/* Underscore inserted in between the binary values are to improve the

readability – Compiler accepts the same without complaining. */
else if (shift == 1'b1)

 data_out1 <= dataout1_next ; // Register the shifted contents.
else

 data_out1 <= data_out1 ; // Otherwise, don't shift.
 end
__

 1010101010101010

0101010101010101

data_out1 [15:0]

15 14 1 0 clk

shift

reset_n After shifting
right by 1 bit

Contents before
shifting

“0”

preset

3.3 Verilog Modeling of Sequential Circuits 131

__

Verilog_code 3.14

// Alternate realization of the right shift register

 assign dataout2_next[15:0] = ({1'b0, data_out1[15:1]}) ;
 // Pre-shift right the contents of data_out2
 // register by one bit.

 always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 1'b0)
 data_out2 <= 16'b1010_1010_1010_1010 ;
 // Preset when the system is reset.
 else if (shift == 1'b1)
 data_out2 <= dataout2_next ; // Register the shifted contents.

 else

 data_out2 <= data_out2 ; // Otherwise, don’t shift.
 end
__

3.3.6 Realization of a Parallel to Serial Converter

Often, we need to convert parallel information into serial bits, and vice versa. For
instance, in the computer keyboard, we type a character, and the controller recog-
nizes it as a (parallel) byte of information, converts it into serial bits, and sends it
to the host computer. Let us see how to realize such a parallel to serial converter.
We can use a shift register to accomplish this. We can load a multi-bit precision
data, say, set_data [15:0] into the shift register ‘sr’ at the positive edge of ‘clk’
with ‘load’ control asserted as shown in Figure 3.17. Once the shift register is
loaded, the load input must be withdrawn in order to start the conversion. Depend-
ing upon which bit (LSB or MSB) we need to transmit first, signal ‘rl_n’ must be
held high or low. For example, rl_n is kept low (meaning left shift of register) so
that MSB is sent out first.

The conversion starts when the input ‘shift’ is asserted. Shift and rl_n signals
must be maintained till the conversion is complete. If rl_n is ‘0’, then the MSB is
sent out to ‘data_out’ pin for serial transmission. Otherwise (meaning right shift),
the LSB of the data word is sent out. At what point of time the ‘data_out’ is valid
is indicated by ‘data_valid’ signal. When all the 16 bits are transmitted, one bit
every ‘clk’ cycle, ‘data_valid’ signal is de-asserted and the output ‘eoc’ (abbrevia-
tion for end of conversion) is asserted. Whenever ‘reset_n’ is applied, the module
is initialized. Verilog code for this module is as follows:

132 Design of Combinational and Sequential Circuits Using Verilog

Fig. 3.17 Block diagram of a parallel to serial converter
__

Verilog_code 3.15

// Code for parallel to serial converter

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 begin
 data_out <= 0 ; // Clear when the system is reset.

data_valid <= 0 ;
eoc <= 0 ;

 end
 else if (load == 1)
 begin
 sr <= set_data ; // Preset or clear registers.

cnt_ps_reg <= 16 ;
 data_out <= 0 ;

data_valid <= 0 ;
eoc <= 0 ;

 end
else if ((shift == 1) && (cnt_ps_reg != 0))

 begin
 sr <= rl_n ? (sr >> 1) : (sr << 1) ;

// Register the shifted contents.
 data_out <= rl_n ? sr[0] : sr[15]; // Select LSB or MSB.

rl_n

reset_n

data_out

clk

set_data [15:0]

data_valid

eoc

load

shift

shift = H

No shift = L For left shift, rl_n = L

For right shift, rl_n = H

3.3 Verilog Modeling of Sequential Circuits 133

 cnt_ps_reg <= cnt_ps_reg - 1; // Keep track of the bits to be sent.
 data_valid <= 1 ;

eoc <= 0 ;
 end
 else if ((shift == 1) && (cnt_ps_reg == 0))
 begin
 data_out <= 0 ;
 data_valid <= 0 ;
 eoc <= 1 ;
 end
 else ; // Note that no statement is written.
end
__

The entire design has been realized just by using one sequential always block.

To start with, all the outputs described earlier are cleared when asynchronous reset
input is applied. As a second step, when ‘load’ signal is asserted, input data,
‘set_data [15:0]’, is transferred to the shift register, ‘sr[15:0]’, and the outputs are
cleared. A counter, ‘cnt_ps_reg’, is preset to 16, which keeps track of the number
of bits to be transmitted. In the next step, ‘load’ is withdrawn, and ‘shift is as-
serted. The control branches off to the statement block: else if ((shift = = 1) &&
(cnt_ps_reg != 0)) begin. Inside this statement block, the shift register data is
shifted by one bit right or left, and the ‘data_out’ is transmitted with ‘data_valid’
asserted.

The logic must normally be put outside the always block using ‘assign’ state-
ments for improving the speed of operation, even though it is put inside ‘else if ’
statement in the code. The running counter is decremented by one. It is this branch
which is processed repeatedly at every rising edge of the ‘clk’ till all the bits are
sent out. At this point of time, ‘cnt_ps_reg’ becomes zero. With the arrival of the
next ‘clk’, the last ‘else if ’ statement is satisfied, thus signaling the end of conver-
sion and de-asserting ‘data_valid’ signal. The penultimate statement is ‘else;’,
rather a blank statement since we have nothing more to process. The hardware re-
alized in this design is basically registers, a counter and multiplexers.

3.3.7 Realization of a Model State Machine

A finite state machine (FSM) is one of the most important components in the de-
sign of a sequential circuit. We will consider a model of a typical state machine.
The state diagram of such a model is presented in Figure 3.18. It consists of four
states: S0 through S3. The corresponding binary states are 00 to 11, marked within
each state. Each of these states is identified by a lamp: Z0, Z1, Z2, or Z3. A logi-
cal high (‘1’) turns on a lamp. The state of the machine depends upon two inputs:
In1 and In2. To start with, let us assume that the machine is in state S0. This state
continues so long as In1 = 0. If In1 changes, state changes to S2. From this state,
the machine may switch to either S1 state or S3 state depending upon In2 value.

134 Design of Combinational and Sequential Circuits Using Verilog

In S1 state, there are three possibilities of state change: S1 state is continued for
In1 = 0, In2 = 1, whereas for In1 = 1, In2= 1, the state changes to S3. Instead, if
In2 becomes ‘0’, then it goes back to the S0 state, from where we started. A simi-
lar explanation holds good for the state S3. The Verilog code for the FSM is as
follows:

Fig. 3.18 Model state machine
__

Verilog_code 3.16

// Model for Sequential Machines

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 begin
 Z0 <= 1'b0 ; // Switch off all the
 // lights to start with.
 Z1 <= 1'b0 ;
 Z2 <= 1'b0 ;
 Z3 <= 1'b0 ;
 state <= `S0 ; // Initialize the state when the
 // system is reset.
 end
 else
 case(state)
 S0:
 begin

`

3.3 Verilog Modeling of Sequential Circuits 135

 Z0 <= 1'b1 ; // Switch ON state 00 light and
 Z1 <= 1'b0 ; // switch OFF all other lights.
 Z2 <= 1'b0 ;
 Z3 <= 1'b0 ;
 if (in1 == 1'b0) // If input 1 is not active, continue
 state <= `S0 ; // to remain in the state 00.
 else // However, if input 1 is active,
 state <= `S2 ; // go to the next state.
 end
 `S 2:
 begin
 Z0 <= 1'b0 ; // Switch ON state 10 light and
 Z1 <= 1'b0 ; // switch OFF all other lights.
 Z2 <= 1'b1 ;
 Z3 <= 1'b0 ;
 if (in2 == 1'b0) // If input 2 is not active,
 state <= `S1 ; // go to the state 01.
 else // Otherwise,
 state <= `S3 ; // go to the state 11.
 end
 `S1:
 begin
 Z0 <= 1'b0 ; // Switch ON state 01 light and
 Z1 <= 1'b1 ;
 Z2 <= 1'b0 ; // switch OFF all other lights.
 Z3 <= 1'b0 ;
 if (in2 == 1'b0) // If input 2 is not active,
 state <= `S0 ; // go to the state 00.
 else if (in1 == 1'b1) // If input 1 is active,
 state <= `S3 ; // go to the state 11.
 else
 state <= `S1 ; // Otherwise, remain in the state 01.
 end
 `S3:
 begin
 Z0 <= 1'b0 ; // Switch ON state 11 light and
 Z1 <= 1'b0 ;
 Z2 <= 1'b0 ; // switch OFF all other lights.
 Z3 <= 1'b1 ;
 if (in2 == 1'b0) // If input 2 is not active,
 state <= `S0 ; // go to the state 00.
 else if (in1 == 1'b0) // If input 1 is not active,
 state <= `S1 ; // go to the state 01.
 else
 state <= `S3 ; // Otherwise, remain in the state 11.
 end

136 Design of Combinational and Sequential Circuits Using Verilog

 default: state <= `S0 ; // Otherwise, remain in the state 00.
 endcase
end

The FSM can be conveniently realized by using the ‘always’ block and ‘case’

statements. As in other applications we have considered earlier, system reset
clears all outputs Z0–Z3, and initializes state to S0. Once the reset is withdrawn,
the FSM becomes active going from one state to another as we have seen before.
These states are all covered in the ‘case’ statements. With the arrival of ‘clk’ after
reset is withdrawn, the machine enters ‘S0’ state switching on Z0 lamp. If in1 = 0,
the ‘state’ continues to be in S0, otherwise, it changes to S2 state. These controls
are brought about by ‘if ’, ‘else’ statements. Similar explanations hold good for all
other states: S1 to S3. Towards the end, we also put a default state to take care of
tri-state or don’t care conditions that may occur for the signal, ‘state’.

3.3.8 Pattern Sequence Detector

Next, we will consider the design of a pattern sequence detector. Let us say, we
wish to detect the occurrence of ‘0110’ sequence in a serial bit stream input, ‘in’.
The desired output is as follows for the corresponding input pattern listed as an
example:

Input pattern applied: 11110100110110001101.....................
Output desired: 00000000001001000010.....................

Immediately after every occurrence of the pattern 0110, the output must be one.
This being a sequential circuit, we use an always block active at the positive edge
of clock and as usual, we have a system reset as well. Being a serial sequence detec-
tor, it has only one input and one output. This design is basically an FSM realization.
Therefore, we use similar structure, namely, always block and case statements we
used in the case of the model state machine. The Verilog code for this application
is straightforward and is as follows:
__

Verilog_code 3.17

// Pattern sequence detector

always @ (posedge clk or negedge reset_n)

begin
 if (reset_n == 1'b0)
 begin

__

3.3 Verilog Modeling of Sequential Circuits 137

 out <= 0 ;
 // Switch OFF output to start with.

psd_state <= 0 ; // Initialize the state when the
 // system is reset.

 end
 else

 case (psd_state)
 0: begin
 out <= 0 ; // Switch OFF output.
 psd_state <= in ? 0 : 1 ; // Change the state to ‘1’ if

 // the input is ‘0’.
 // Remain in the state ‘0’ otherwise.
 end
 1: begin // Enter for first occurrence of ‘0’.

out <= 0 ; // Switch OFF output.
psd_state <= in ? 2 : 1 ; // Change the state to ‘2’ if
 // the input is ‘1’.

// Remain in the state ‘1’ otherwise.
 end
 2: begin // Enter for first occurrence of ‘01’.
 out <= 0 ; // Switch OFF output.
 psd_state <= in ? 3 : 1 ; // Change the state to ‘3’ if
 // the input is ‘1’,
 // otherwise change the state to ‘1’.
 end
 3: begin // Enter for first occurrence of ‘011’.
 out <= in ? 0 : 1 ; // Switch ON the output if
 // the input is ‘0110’,
 // otherwise switch it OFF.
 psd_state <= in ? 0 : 1 ; // Change the state to ‘1’ if
 // the input is ‘0’.
 // Otherwise change the state to ‘0’.
 end
 default: psd_state <= 0 ;

 // Remain in the state 0 for invalid states.
 endcase
end
endmodule
__

When the system is reset, the output, ‘out’ and state, ‘psd_state’, are initialized.
In the previous example, we used actual names such as S0, S1, etc. for the states.
We can use even decimal numbers for states, which will be easier to deal with. In
the normal mode of operation when reset is not present, the machine remains in
‘0’ state as long as the input is ‘1’, realized by a MUX statement. If the input

138 Design of Combinational and Sequential Circuits Using Verilog

changes to ‘0’, then the state changes to ‘1’. As long as the input continues to be
‘0’, it remains in the state ‘1’, which is the state to detect the first occurrence of
‘0’ in the input bit stream. When input is ‘1’, the state changes to ‘2’. Similarly,
state ‘2’ entry means first occurrence of ‘01’ in the bit stream. Pattern ‘010’ will
take it back to state ‘1’. On the other hand, input pattern sequence ‘011’ changes
the state to ‘3’. In this state, if input ‘0’ is detected, it means that the desired se-
quence, ‘0110’ has occurred. Therefore, the ‘out’, which was ‘0’ in all other states,
is turned on to ‘1’. Since the last input is ‘0’, state changes to ‘1’ looking for ‘01’
pattern again. On the other hand, if the pattern detected was ‘0111’, the state
changes to ‘0’, a reset condition, which we started to begin with. A default condi-
tion is also accounted for, which takes the machine to a safe ‘0’ state.

3.4 Coding Organization

In the foregoing treatments, we discussed only the core of specific designs for the
combinational and sequential circuits. In order to convert them into working
codes, we need to add some more statements and conform to certain specifica-
tions. Any design, be it combinational or sequential, may be regarded as a block
as shown in Figure 3.19. The design will naturally have a name, say, ‘mod-
ule_name’, inputs and outputs (I/Os) as shown. This is similar to viewing an IC
with I/Os as pins. In Verilog, you can do the same precisely by using statements as
follows. Design is referred to as a ‘module’. This shall be followed by identifying
the design, say, ‘module_name’. Thereafter, list all the I/Os within brackets as
shown. Next, we identify the actual inputs and outputs. For examples:
input reset_n ;
output out_1 ;

blocks) are declared. Examples are:

Fig. 3.19 Structure of a design module

module_name

Inputs Outputs

reset_n

in_2

clk

in_0

out_1

out_2

in_1

signal used in ‘assign’ statements) and registers (any signal used in ‘always’
Declare the inputs and outputs in your design. In the next step, nets or wires (any

3.4 Coding Organization 139

wire F1 ; // in Figure 3.1,
reg mux8 ; // in Figure 3.6 and
reg delay_out ; // in Figure 3.15.

This is followed by Verilog description of your combinational and sequential cir-
cuits design which we covered in detail in Sections 3.2 and 3.3. Finally, you must
signal the end of design by the key word: ‘endmodule’. These are summarized as
follows:

// Coding Organization

module module_name (// List your inputs and outputs here.
 reset_n,
 clk ,
 in_0 ,
 in_1 ,
 in_2 ,
 out_1 ,
 out_2
) ;
// Note: Module statement above has one to one correspondence with
// Figure 3.19.

// Declare the inputs and outputs here as follows.
input reset_n ;
input clk ;
input in_0 ;
input in_1 ;
input in_2 ;
output out_1 ;
output out_2 ;

// Declare the register and wire (or net) as per your design.
// Describe your combinational and sequential circuits.
endmodule // This indicates the end of design.

Each of the designs explained in combinational and sequential circuits earlier
could have been made into independent modules (files). Since there are very many
such modules, each requiring an independent file to house the design, it would be
cumbersome to handle the same while using various tools. Further, you need to
write as many test benches, as there are designs. Each of these will have to be
taken through various tools such as simulation, synthesis, place and route, back
annotation, etc., as we shall see in later chapters. A better alternative to this is to
create just two design files, one for the combinational circuits and the other for the
sequential circuits, thereby lightening our burden. Incidentally, this approach gives
a feel of handling larger and real design applications, which we will cover in depth

140 Design of Combinational and Sequential Circuits Using Verilog

in the last few chapters. You may use any of the standard editors such as Word-
Pad, Vim, Vi, etc. for your Verilog design entry and, being commonplace, will not
be described in this book.

3.4.1 Combinational Circuit Design

All the combinational circuits we have seen before have been put together in a
single file and the same is as follows. All the codes are adequately commented and
self-explanatory. Give proper spacing, indentation, and meaningful names for the
files and signals to enhance the readability of your codes. Note that all I/O signals
are declared as such after declaring the module. All the output signals in ‘assign’
statements are declared as ‘wire’ and the output signals in ‘always’ statements are
declared as ‘reg’. The data width is also declared as appropriate. For examples, N1
input is declared as width, [7:0], and width of ‘reg’ is [2:0] for F10. No width need
be mentioned for single bit signals.
__

Verilog_code 3.18

/* Combinational circuit realization using Verilog codes

The file name of the following code is: comb_ckts.v
‘.v’ is the extension to indicate that the design file is in Verilog.

Note: Verilog is case sensitive. A signal ‘A’ is different from signal ‘a’.

To start with, declare the module you wish to design.
Note that the design file name is the same as the module name, ‘comb_ckts’, even
though different names may be used. This style reduces confusion later on.
*/
/* means multiple line comments like C. */
// means line comment.

module comb_ckts (// Declare the design module and list the

// inputs and outputs (I/O).
 A , // I/O s can be written in any order.
 B ,
 C ,
 I0 ,
 I1 ,
 I2 ,
 I3 ,
 I4 ,
 I5 ,
 I6 ,

3.4 Coding Organization 141

 I7 ,
 N1 ,
 N2 ,
 enable_sum ,
 NUM_1 ,
 NUM_2 ,
 PRESET_VALUE ,
 F1 ,
 F2 ,
 F3 ,
 F4 ,
 F5 ,
 F6 ,
 F7 ,
 F8 ,
 F9 ,
 F10 ,
 F11 , // Note that these I/O s are separated by
 F12 , // commas except the last.
 mux2 ,
 mux4 ,
 mux8 ,
 D0 ,
 D1 ,
 D2 ,
 D3 ,
 D4 ,
 D5 ,
 D6 ,
 D7 ,
 sum_total ,
 sum_df ,
 carryo_df ,
 sum ,
 carryo ,
 F13 ,
 F14 ,
 F15 ,
 F16 ,
 F17 ,
 F18 ,
 SUM ,
 MATCH ,
 MORE ,
 LESS
);

142 Design of Combinational and Sequential Circuits Using Verilog

input A ; // Declare the Inputs and Outputs of the module.
input B ;
input C ;
input I0 ;
input I1 ;
input I2 ;
input I3 ;
input I4 ;
input I5 ;
input I6 ;
input I7 ;
input [7:0] N1 ; // Mention the size of the input -
 // [7] is the MSB
input [7:0] N2 ; // and [0] is the LSB.
input enable_sum ;
input [7:0] NUM_1 ;
input [7:0] NUM_2 ;
input [8:0] PRESET_VALUE ;

output F1 ;
output F2 ;
output F3 ;
output F4 ;
output F5 ;
output F6 ;
output F7 ;
output F8 ;
output F9 ;
output [2:0] F10 ;
output [2:0] F11 ;
output [2:0] F12 ;
output mux2 ;
output mux4 ;
output mux8 ;
output D0 ;
output D1 ;
output D2 ;
output D3 ;
output D4 ;
output D5 ;
output D6 ;
output D7 ;
output [1:0] sum_total ;
output sum_df ;
output carryo_df ;
output sum ;

3.4 Coding Organization 143

output carryo ;
output F13 ;
output F14 ;
output F15 ;
output F16 ;
output F17 ;
output F18 ;
output [8:0] SUM ;
output MATCH ;
output MORE ;
output LESS ;

wire F1 ; // Declare nets (combinational circuit outputs).
wire F2 ; // F1 through F9 are all single bit outputs.
wire F3 ;
wire F4 ;
wire F5 ;
wire F6 ;
wire F7 ;
wire F8 ;

reg F9 ; // Declare registers.
reg [2:0] F10 ; // F10 through F12 are all three bit

// outputs.
reg [2:0] F11 ;
reg [2:0] F12 ;
reg D0 ;
reg D1 ;
reg D2 ;
reg D3 ;
reg D4 ;
reg D5 ;
reg D6 ;
reg D7 ;

wire mux2 ;
wire mux4 ;

reg mux8 ;

wire [1:0] sum_total ;
wire sum_df ;
wire carryo_df ;
wire sum ;
wire carryo ;
wire s1 ;

144 Design of Combinational and Sequential Circuits Using Verilog

wire a1 ;
wire a2 ;
wire a3 ;
wire o1 ;

reg F13 ;
reg F14 ;
reg F15 ;
reg F16 ;
reg F17 ;
reg F18 ;
reg [8:0] SUM ;
reg MATCH ;
reg MORE ;
reg LESS ;

// Combinational circuits using ‘assign’ statements.
assign F1 = A ; // Verilog code for buffer,
assign F2 = !A ; // inverter,
assign F3 = A&B ; // AND,
assign F4 = A|B ; // OR,
assign F5 = !(A&B) ; // NAND,
assign F6 = !(A|B) ; // NOR,
assign F7 = (A^B) ; // XOR, and
assign F8 = !(A^B) ; // XNOR.

// Combinational circuits using ‘always’ statements.
always @ (A or B or C)
// F9 through F12 are computed only if there is change in any of the three
// inputs, A, B, C or F10.
 begin
 F9 = (A&B)|(B&C)|(C&A) ; // Realize AB + BC + CA.
 F10 = {A, B, C} ; // Concatenate A, B and C to get 3 bit result.
 F11 = F10 >> 1 ; // Right shift by one bit.
 F12 = F10 << 2 ; // Left shift by two bits.
 end

// Verilog models for Multiplexers
// Two input MUX using ‘assign’ statement.
assign mux2 = (A == 1) ? I1 : I0 ; // mux2 = I1 if A = 1, otherwise mux2 = I0.

// Four input MUX using ‘assign’ statement, nested.
assign mux4 = B ? (C ? I3 : I2) : (C ? I1 : I0) ;

// Avoid using nesting. Instead, use case for more than 2 inputs.

3.4 Coding Organization 145

// Eight input MUX using ‘always’ and ‘case’ statements.
// Fastest possible hardware implementation.

always @ (A or B or C or I0 or I1 or I2 or I3 or I4 or I5 or I6 or I7)
begin
 case ({A, B, C})
 3'b000: mux8 = I0 ; // Read the input addressed by ABC.
 3'b001: mux8 = I1 ;
 3'b010: mux8 = I2 ;
 3'b011: mux8 = I3 ;
 3'b100: mux8 = I4 ;
 3'b101: mux8 = I5 ;
 3'b110: mux8 = I6 ;
 3'b111: mux8 = I7 ;
 default: mux8 = 0 ;
 endcase
end

// Eight input DEMUX using ‘always’ and ‘case’ statements.
// This is a simple inverse of a MUX.
always @ (A or B or C or mux8)
begin
 case ({A, B, C})
 3'b000: begin D0 = mux8 ; D1 = 0; D2 = 0; D3 = 0; D4 = 0; D5 = 0;

 D6 = 0; D7 = 0; end
 // Read the input into D1, etc., and clear all other outputs.
 3'b001: begin D1 = mux8 ; D0 = 0; D2 = 0; D3 = 0; D4 = 0; D5 = 0;
 D6 = 0; D7 = 0; end
 3'b010: begin D2 = mux8 ; D0 = 0; D1 = 0; D3 = 0; D4 = 0; D5 = 0;
 D6 = 0; D7 = 0; end
 3'b011: begin D3 = mux8 ; D0 = 0; D1 = 0; D2 = 0; D4 = 0; D5 = 0;
 D6 = 0; D7 = 0; end
 3'b100: begin D4 = mux8 ; D0 = 0; D1 = 0; D2 = 0; D3 = 0; D5 = 0;
 D6 = 0; D7 = 0; end
 3'b101: begin D5 = mux8 ; D0 = 0; D1 = 0; D2 = 0; D3 = 0; D4 = 0;
 D6 = 0; D7 = 0; end
 3'b110: begin D6 = mux8 ; D0 = 0; D1 = 0; D2 = 0; D3 = 0; D4 = 0;
 D5 = 0; D7 = 0; end
 3'b111: begin D7 = mux8 ; D0 = 0; D1 = 0; D2 = 0; D3 = 0; D4 = 0;
 D5 = 0; D6 = 0; end
 default: begin D0 = 0; D1 = 0; D2 = 0; D3 = 0; D4 = 0; D5 = 0;
 D6 = 0; D7 = 0; end
 endcase
end

146 Design of Combinational and Sequential Circuits Using Verilog

// Realization of a full adder
// Behavioral level realization
assign sum_total = (A + B) + C ; // Realize sum.

// Data flow level realization
assign sum_df = (A^B) ^C ; // Realize sum.
assign carryo_df = (A&B)|(B&C)|(C&A) ; // Realize carry out, AB + BC + CA.

// Structural level realization
xor (s1, A, B) ; // Realize (A^B) ^C using gate
xor (sum, s1, C) ; // primitives.
and (a1, A, B) ; and (a2, B, C) ; and (a3, C, A) ;
 // Compute AB, BC, and CA
or (o1, a1, a2) ;
or (carryo, o1, a3) ; //Realize carry out.

// Realization of a magnitude comparator
always @ (N1 or N2)
 begin
 F13 = (N1 > N2); // Set output if N1 is greater than N2.
 F14 = (N1 < N2); // Set output if N1 is less than N2.
 F15 = (N1 == N2); // Set output if N1 is equal to N2.
 F16 = (N1 != N2); // Set output if N1 is not equal to N2.
 F17 = (N1 <= N2); // Set output if N1 is less than or equal to N2.
 F18 = (N1 >= N2); // Set output if N1 is greater than or equal to N2.
 end

always @ (enable_sum or NUM_1 or NUM_2 or PRESET_VALUE)
 begin
 SUM[8:0] = enable_sum ? (NUM_1[7:0] + NUM_2[7:0]) : 9'd0 ;
 // Compute sum if enabled, otherwise output 0.
 MATCH = enable_sum ? (SUM == PRESET_VALUE) : 1'b0 ;
 // Set output if SUM is equal to PRESET_VALUE, only if enabled.
 MORE = enable_sum ? (SUM > PRESET_VALUE) : 1'b0 ;
 // Set output if SUM is greater than PRESET_VALUE, only if enabled.
 LESS = enable_sum ? (SUM < PRESET_VALUE) : 1'b0 ;

// Set output if SUM is less than PRESET_VALUE, only if enabled.
 end
endmodule // This indicates the end of design.
__

3.4.2 Sequential Circuit Design

As was done in combinational circuits, all the sequential circuits considered earlier
may be put in a single file as presented in the following. Output signals in ‘always’

3.4 Coding Organization 147

statements are declared as ‘reg’. All other declarations are similar to that described
in combinational circuits.
__

Verilog_code 3.19

/* Sequential circuit realization using Verilog codes
 Note that the design file name is ‘seq_ckts.v’.
*/
`define S0 3'd0 // Define the state of the controller
`define S1 3'd1 // for the model state machine.
`define S2 3'd2
`define S3 3'd3

module seq_ckts (// Declare the design module.
 D , // I/O s can be written in any order.
 Q ,
 Q_n ,
 A ,
 B ,
 C ,
 clk ,
 reset_n,
 hold,
 shift ,
 in1 ,
 in2 ,
 trigger , // Monoshot trigger input.
 pixelout_valid , // Register output.
 cnt_reg ,
 delay_out , // Monoshot trigger output.
 data_out1 , // Shift registers’ outputs.
 data_out2 ,
 set_data , // Inputs and
 load ,
 shift_ps ,
 rl_n ,
 data_out , // outputs of Parallel to
 data_valid ,
 eoc , // serial converter.
 Z0 , // Model state M/C state indicator outputs.
 Z1 ,
 Z2 ,
 Z3 ,
 in , // Pattern detector I/O,
 out // 1 bit each.

148 Design of Combinational and Sequential Circuits Using Verilog

);

input D ; // Declare the Inputs and Outputs of the module.
input A ;
input B ;
input C ;
input clk ;
input reset_n ;
input hold ;
input shift ;
input in1 ;
input in2 ;
input trigger ;
input in ;

output Q ;
output Q_n ;
output pixelout_valid ;
output [7:0] cnt_reg ;
output delay_out ;
output [15:0] data_out1 ;
output [15:0] data_out2 ;
output Z0 ;
output Z1 ;
output Z2 ;
output Z3 ;
output out ;

input [15:0] set_data ; // Inputs and
input load ;
input shift ;
input rl_n ;

output data_out ; // outputs of Parallel to
output data_valid ;
output eoc ; // serial converter.

reg Q ; // Declare registers
reg Q_n ;

wire set_pixout ; // Declare nets (combinational circuit outputs).
wire reset_pixout ;

reg pixeloutp_valid ;
reg pixelout_valid ;

3.4 Coding Organization 149

wire res_cnt ;
wire adv_cnt ;
wire [7:0] cnt_next ;
wire res_cntd ;
wire run_delay ;
wire [7:0] cntd_next ;

reg [7:0] cnt_reg ;
reg [7:0] cntd_reg ;
reg delay_out ;
reg triggerp ;

wire [15:0] dataout1_next ;
wire [15:0] dataout2_next ;

reg [1:0] state ;
reg [15:0] data_out1 ;
reg [15:0] data_out2 ;
reg Z0 ;
reg Z1 ;
reg Z2 ;
reg Z3 ;
reg out ;
reg [1:0] psd_state ;
reg data_out ;
reg data_valid ;
reg eoc ;
reg [15:0] sr ;
reg [4:0] cnt_ps_reg ;

// Realization of a D flip-flop with a reset control using ‘always’ block.
always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 begin
 Q <= 0 ; // Clear register when system is reset.
 Q_n <= 1 ;
 end
 else
 begin
 Q <= D ; // Store or register D input.
 Q_n <= ~D ;
 end
end

150 Design of Combinational and Sequential Circuits Using Verilog

// Realization of registers using ‘always’ block.
assign set_pixout = (A == 1'b0) && (B == 1'b1) && (C == 1'b0);

// Pre-compute (not A) and (not B) and (C).
assign reset_pixout = (A == 1'b1) && (B == 1'b1) && (C == 1'b1) ;

// Pre-compute ABC.
always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 pixeloutp_valid <= 1'b0 ; // Clear register when system is reset.
 else if (hold == 1'b1)
 pixeloutp_valid <= pixeloutp_valid ; // Retain the value if the
 // system is in hold.
 else if (set_pixout == 1'b1)

 pixeloutp_valid <= 1'b1 ; // Set or reset when the
 else if (reset_pixout == 1'b1)
 pixeloutp_valid <= 1'b0 ; // conditions are satisfied.
 else
 pixeloutp_valid <= pixeloutp_valid ; // Otherwise, don t disturb.
end

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 pixelout_valid <= 1'b0 ; // Clear register when
 // system is reset.
 else if (hold == 1'b1)
 pixelout_valid <= pixelout_valid ; // Retain the value if the system is
 // in hold.
 else
 pixelout_valid <= pixeloutp_valid ; // Assign previous (clk) value.
end

// Realization of a counter using ‘always’ block.
assign res_cnt = (cnt_reg == 255) ; // Condition for resetting the
 // counter.
assign adv_cnt = (A == 1'b1)&(B == 1)&(C == 1) ;
 // Condition for Pre-incrementing the counter.
assign cnt_next = cnt_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 cnt_reg <= 8'd0 ; // Initialize when the system is reset.
 else if (res_cnt == 1'b1) // Reset if terminal count is reached.
 cnt_reg <= 8'd0 ;
 else if (adv_cnt == 1'b1)

’

3.4 Coding Organization 151

 cnt_reg <= cnt_next ; // Advance the count by one if the timer is
 // still running.
 else
 cnt_reg <= cnt_reg ; // Otherwise, don’t disturb.
end

// Realization of a non-retriggerable Monoshot delay using a counter.
// This produces 255 clock cycles delay for the preset value, cntd_reg = 255.
// For longer delays, change the cntd_reg width, and its preset value.

assign res_cntd = (reset_n == 1'b0) || (cntd_reg == 255) ;
 // Condition for resetting the counter.
assign run_delay = (triggerp == 0)&&(trigger == 1) ;
 // Detect the positive edge of trigger.
assign cntd_next = cntd_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or posedge res_cntd)
begin
 if (res_cntd == 1) // Initialize when the system is reset
 // or if the terminal count is reached.
 begin
 cntd_reg <= 8'd0 ;
 delay_out <= 0 ;
 triggerp <= 0 ;
 end
 else if (delay_out == 1)
 begin
 cntd_reg <= cntd_next ; // Advance the count by one if
 // the timer is still running
 triggerp <= trigger ;
 end
 else if (run_delay== 1'b1)
 begin
 delay_out <= 1 ; // Start the delay if the positive
 // edge of trigger is detected.
 triggerp <= trigger ; // Preserve the current state of
 end // trigger.
 else
 begin
 cntd_reg <= cntd_reg ; // Otherwise, don’t disturb.
 delay_out <= delay_out ;
 triggerp <= trigger ;
 end
end

152 Design of Combinational and Sequential Circuits Using Verilog

// Realization of a shift register using ‘assign’ statement and ‘always’
// block.
assign dataout1_next = (data_out1 >> 1) ; // Pre-shift right the contents of
 // data_out1 register by one bit.
always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 data_out1 <= 16'b1010_1010_1010_1010 ; // Initialize when the
 // system is reset.
 else if (shift == 1'b1)
 data_out1 <= dataout1_next ; // Register the shifted
 // contents.
 else
 data_out1 <= data_out1 ; // Otherwise, don’t shift.
end

assign dataout2_next[15:0] = ({1'b0, data_out1[15:1]}) ;
 // Pre-shift right the contents of data_out1
 // register by one bit.
always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 data_out2 <= 16'b1010101010101010 ; // Initialize when the
 // system is reset.
 else if (shift == 1'b1)
 data_out2 <= dataout2_next ; // Register the shifted contents.
 else
 data_out2 <= data_out2 ; // Otherwise, don’t shift.
end

// Code for Parallel to serial converter
always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 begin
 data_out <= 0 ; // Clear when the system is reset.
 data_valid <= 0 ;
 eoc <= 0 ;
 end
 else if (load == 1)
 begin
 sr[15:0] <= set_data[15:0] ; // Preset or clear registers.
 cnt_ps_reg <= 16 ;
 data_out <= 0 ;
 data_valid <= 0 ;
 eoc <= 0 ;

3.4 Coding Organization 153

 end
 else if ((shift == 1) && (cnt_ps_reg != 0))
 begin
 sr[15:0] <= rl_n ? (sr[15:0] >> 1) : (sr[15:0] << 1) ;
 // Register the shifted contents.
 data_out <= rl_n ? sr[0] : sr[15]; // Select LSB or MSB.
 cnt_ps_reg[4:0] <= cnt_ps_reg[4:0] - 1 ;

 // Keep track of the bits to be sent.
 data_valid <= 1 ; eoc <= 0 ;
 end
 else if ((shift == 1) && (cnt_ps_reg == 0))
 begin
 data_out <= 0 ;
 data_valid <= 0 ;
 eoc <= 1 ; // End of conversion.
 end
 else ;
 end

// Model for sequential machines
always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 begin
 Z0 <= 1'b0 ; // Switch off all the
 // lights to start with.
 Z1 <= 1'b0 ;
 Z2 <= 1'b0 ;
 Z3 <= 1'b0 ;
 state <= `S0 ; // Initialize the state when the
 // system is reset.
 end
 else
 case(state)
 `S0:
 begin
 Z0 <= 1'b1 ; // Switch ON state 00 light and
 Z1 <= 1'b0 ; // switch OFF all other lights.
 Z2 <= 1'b0 ;
 Z3 <= 1'b0 ;
 if (in1 == 1'b0) // If input 1 is not active, continue
 state <= `S0 ; // to remain in the state 00.
 else // However, if input 1 is active,
 state <= `S2 ; // go to the next state.
 end

154 Design of Combinational and Sequential Circuits Using Verilog

 begin
 Z0 <= 1'b0 ; // Switch ON state 10 light and
 Z1 <= 1'b0 ; // switch OFF all other lights.
 Z2 <= 1'b1 ;
 Z3 <= 1'b0 ;
 if (in2 == 1'b0) // If input 2 is not active,
 state <= `S1 ; // go to the state 01.
 else // Otherwise,
 state <= `S3 ; // go to the state 11.
 end
 `S1:
 begin
 Z0 <= 1'b0 ; // Switch ON state 01 light and
 Z1 <= 1'b1 ;
 Z2 <= 1'b0 ; // switch OFF all other lights.
 Z3 <= 1'b0 ;
 if (in2 == 1'b0) // If input 2 is not active,
 state <= `S0 ; // go to the state 00.
 else if (in1 == 1'b1) // If input 1 is active,
 state <= `S3 ; // go to the state 11.
 else
 state <= `S1 ; // Otherwise, remain in the state 01.
 end
 `S3:
 begin
 Z0 <= 1'b0 ; // Switch ON state 11 light and
 Z1 <= 1'b0 ;
 Z2 <= 1'b0 ; // switch OFF all other lights.
 Z3 <= 1'b1 ;
 if (in2 == 1'b0) // If input 2 is not active,
 state <= `S0 ; // go to the state 00.
 else if (in1 == 1'b0) // If input 1 is not active,
 state <= `S1 ; // go to the state 01.
 else
 state <= `S3 ; // Otherwise, remain in the state 11.
 end
 default: state <= `S0 ; // Otherwise, remain in the state 00.
 endcase
end

// Another design example – Pattern sequence detector
// Pattern to be detected: 0110
// Input pattern applied: 11110100110110001101
// Output desired: 00000000001001000010

always @ (posedge clk or negedge reset_n)

`S2:

3.4 Coding Organization 155

begin
 if (reset_n == 1'b0)
 begin
 out <= 0 ; // Switch OFF output to start with.

psd_state <= 0 ; // Initialize the state when the
 // system is reset.

 end
 else

 case(psd_state)
 0: begin
 out <= 0 ; // Switch OFF output.
 psd_state <= in ? 0 : 1 ; // Change the state to ‘1’ if

 // the input is ‘0’.
 // Remain in the state ‘0’ otherwise.
 end
 1: begin // Enter for first occurrence of ‘0’.

out <= 0 ; // Switch OFF output.
psd_state <= in ? 2 : 1 ; // Change the state to ‘2’ if
 // the input is ‘1’.

// Remain in the state ‘1’ otherwise.
 end
 2: begin // Enter for first occurrence of ‘01’.
 out <= 0 ; // Switch OFF output.
 psd_state <= in ? 3 : 1 ; // Change the state to ‘3’ if
 // the input is ‘1’,
 // otherwise change the state to ‘1’.
 end
 3: begin // Enter for first occurrence of ‘011’.
 out <= in ? 0 : 1 ; // Switch ON the output if
 // the input is ‘0110’,
 // otherwise switch it OFF.
 psd_state <= in ? 0 : 1 ; // Change the state to ‘1’ if
 // the input is ‘0’.
 // Otherwise, change the state to ‘0’.
 end
 default: psd_state <= 0 ; // Otherwise, remain in the state 0.
 endcase
end
endmodule
__

In order to enable the reader to design Verilog based systems faster, a Verilog
quick reference design card is presented in Appendix 7 on the CD.

156 Design of Combinational and Sequential Circuits Using Verilog

__

Summary

A brief introduction of the evolution of hardware design language was presented.
Verilog was introduced as a tool for realizing digital systems design. The advantages
of Verilog coding over the traditional schematic circuit diagram approach were es-
tablished, especially when the design of VLSI circuits crossing over 50,000 transis-
tors mark is encountered. A number of design examples were illustrated for both
combinational and sequential circuits. These examples cater to the frequently used
digital circuits in a system design, especially in industries. Only the cores of the de-
signs were initially presented to expedite the learning process. These modules were
later on integrated into full-fledged codes, ready for testing. These designs are tested
using test benches, which will be covered in depth in the next chapter. Register
Transfer Level coding, vital for designing chips that work successfully, is the main
emphasis of this design book, and is discussed in a later chapter.
__

Assignments

Note: Verilog codes for each of the assignments may be either separately written
or all of them combined into a single design file as had been presented in the book
as per your convenience.

3.1 Can you realize Schmitt trigger and open collector buffers/inverters using

Verilog? If so, explain how. If not, what do you suggest for their imple-
mentation? What are the possible applications for them?

3.2 Tristate buffers can be implemented in Verilog using primitive gates.
Write Verilog codes for circuits in Figure A3.1.

(i) Octal tristate buffers

D0 D1 D2 D3 D4 D5 D6 D7

E I0 I1 I2 I3 I4 I5 I6 I7

Assignments 157

(ii) Octal tristate inverters

(iii) Octal tristate bi-directional buffers

Fig. A3.1 Tristate buffers

Suggest applications for these octal buffers/inverters.

3.3 Parity generator/checker is commonly used to detect errors in high-speed
serial data communication. ‘Even’ parity output, OP, goes high when
an even number of data inputs among I0 through I7 are high. Write a
Verilog code to implement such an even parity generator using primitive
gates.

3.4 A minority function is generated if the input signals have less 1’s than
0’s. Realize such a function in Verilog for four inputs using structural
gates.

3.5 Write Verilog codes to realize the following functions:
(i) ∑ (0, 2, 4, 6, 9, 10, 13, 15) + ∑ (3, 5, 7, 11)

D0 D1 D2 D3 D4 D5 D6 D7

E I0 I1 I2 I3 I4 I5 I6 I7

SR
n

B0 B1 B2 B3 B4 B5 B6 B7

CE A0 A1 A2 A3 A4 A5 A6 A7

158 Design of Combinational and Sequential Circuits Using Verilog

 don’t
 cares
(ii) Max terms: ∏(1, 3, 5, 7, 9, 11, 13, 14)
(iii) Min terms: ∑ (0, 10, 40, 70, 100, 127)
(iv) Min terms or Max terms, whichever require less number of codes:
 ∑ (0, 1, 2, 4, 6, 7, 9, 11, 13, 15)

3.6 Write a Verilog code to implement circuit in Figure A3.2 without using
primitive gates.

Fig. A3.2 Combination circuit

3.7 Truth table for an 8-input priority encoder is furnished. Realize the prior-

ity encoder in Verilog. All signals except EO are active high. X is don’t
care (H or L).

Truth table for an 8-input priority encoder

 Inputs Outputs

EI I0 I1 I2 I3 I4 I5 I6 I7 A2 A1 A0 GS E0
L X X X X X X X X L L L L L
H L L L L L L L L L L L L H
H X X X X X X X H H H H H L
H X X X X X X H L H H L H L
H X X X X X H L L H L H H L
H X X X X H L L L H L L H L
H X X X H L L L L L H H H L
H X X H L L L L L L H L H L
H X H L L L L L L L L H H L
H H L L L L L L L L L L H L

3.8 A full adder circuit may be realized using two half adders as shown in the

Figure A3.8.

 For multi-bit precision, this circuit and the expressions in Figure A3.3

may be used.

A
B

C
D

Y

Assignments 159

Fig. A3.3 Carry look-ahead adder

 Carry for 2-bit precision: C2 = hC1 + hS1 C1
 Carry for 3-bit precision: C3 = hC2 + hS2 hC1 + hS2 hS1 C1
 Carry for 4-bit precision: C4 = hC3 + hS3 hC2 + hS3 hS2 hC1

 + hS3 hS2 hS1 hC1
 and so on.
 These are referred to as a look-ahead carry generator. C4 does not have to

wait for C3 and C2 carries to propagate. In fact, C4, C3, and C2 propagate
simultaneously. Implement Verilog code for adding two 4-bit numbers us-
ing the look-ahead carry generator, and compare its performance with the
behavioral implementation illustrated in the text.

3.9 If A = ‘10101010’, what is A&(A >> 2) & (A << 2)? Write a Verilog
code.

3.10 Write Verilog codes to rotate an input, IN[15:0],
a. left by n bits
b. right by n bits.

‘n’ can be either 2 or 4 selected by the user.
3.11 Realize the debouncing circuit shown in Figure A3.4 using Verilog.

Explain how the circuit works.

Fig. A3.4 Push button debouncing circuit

Ai
Bi

Ci+1 = hCi + hsiCi

Ci

hCi

hSi

where hSi = Ai ⊕ Bi , hCi = Ai Bi

Si = hSi ⊕ Ci

V+

V+

4.7K

4.7K

2

1

160 Design of Combinational and Sequential Circuits Using Verilog

3.12 Design a circuit to generate a single ‘clk’ pulse every time the push but-
ton switch shown in Figure A3.5 is pressed. The debounce time of the
switch may be assumed to be 2.5 ms. The ‘clk’ frequency is 50 MHz. In-
clude an asynchronous, active low signal for resetting the circuit. Write a
Verilog code for the design.

Fig. A3.5 Single clock pulse generation

3.13 A 16-bit re-triggerable monoshot is depicted in Figure A3.6. Realize the

complete design in Verilog.

Fig. A3.6 Re-triggerable monoshot

3.14 An asynchronous serial input to parallel converter is shown in Figure

A3.7. The incoming serial data arrives at the input pin, ‘input_data’, D0
bit first and D7 bit last, whereas the converted parallel data appears at the
‘out_data’ pins. The outputs are synchronized to the rising edge of the
system clock, ‘clk’. The validity of the parallel data is signaled by a data
valid signal, ‘out_data_valid’ for a ‘clk’ period duration. Serial to parallel
conversion can be commenced if mark state (active high) goes low at the
‘input_data’ pin. Use one start bit (active low) and one stop bit (active

Push-button
switch

CLK
Single clock pulse V+

V+

Your circuit

Re-
triggerable
Monoshot trigger

reset_n

cntrm_reg[15:0]

clk

1023 =
cntrm_reg[15:0]

delay_out

1023
 clk

cycles

res_cntr

Assignments 161

high) in the incoming serial data. Each bit is of three ‘clk’ periods dura-
tion. Include an ‘error’ flag of single ‘clk’ period duration if the stop bit
is not received. The serial bit stream reception must correct all by itself
with the arrival of mark state. Draw an ASM chart and realize the com-
plete design in Verilog.

Fig. A3.7 Block diagram of an asynchronous serial to parallel converter

3.15 Baud rate (bits/second) is a measure of the communication speed in a

serial channel. What is the baud rate for the design of assignment 3.14?
Explain how standard baud rates such as 300, 600, 1200, 2400, 4800,
9600, etc. up to 614400 can be achieved.

reset_n
out_data [7:0]

clk

input_data

out_data _valid

error

162 Design of Combinational and Sequential Circuits Using Verilog

Chapter 4

Writing a Test Bench for the Design

In the previous chapter, we have seen how to design combinational and sequential
circuits. The question is, how do we test them? We need to apply appropriate
stimulus to the design in order to test it. This can be done by writing another Ver-
ilog code called the ‘Test Bench’. This is written as a separate file, different from
the design file(s). Though not necessary, it is easier for identification if we give
the same name as the top design file, of course, with an extension, ‘_test’ or ‘tb’;
readily revealing itself as a test bench. For example, the test bench name for the
design ‘comb_ckts.v’ can be ‘comb_ckts_test.v’. Note that this is a ‘.v’ file, indi-
cating that it is a Verilog file. Stimulus is nothing but the application of various
permutations and combinations of inputs at various points of time and, looking for
correct results produced by the design. As you are the designer, you know pre-
cisely how a particular circuit functions. Therefore, you can cross check whether it
is functioning as per your design specification or not. The functionality of the de-
sign can be easily tested if we can view waveforms. We will see how to generate
waveforms using simulation in a later chapter. In the present chapter, we will con-
centrate on how to write a test bench [15]. Verification engineers need to develop
expertise in writing effective test benches for designs, even more than the design
engineers.

4.1 Modeling a Test Bench

A model of a test bench is shown in Figure 4.1. The design may comprise of just
one module or several modules depending upon the complexity of the application.
As mentioned earlier, the test bench applies appropriate test pattern to the inputs
of the design under test and checks the outputs of the design so as to verify its
functionality. In order to get a quick grasp of what a test bench is, we will first
consider a very simple design which has one number of two-input AND gate as
shown in Figure 4.2. The truth table is also given alongside. The functionality of
the design can be easily verified using the timing diagram shown in Figure 4.3.
The Verilog code of the AND gate design presented is self-explanatory. Figure 4.4
shows the connection between the test bench and the design. ‘A’ and ‘in’ are the
stimuli generated by the test bench in accordance with the timing diagram shown
in Figure 4.3. Note that the test bench stimuli need not bear the same names as the
corresponding signals of the design. The test bench for the AND gate design is
given in Verilog_code 4.2. It is adequately commented. ‘and_2in.v’ is the design

Fig. 4.1 Model of a test bench

Fig. 4.2 Two-input AND gate with its truth table

Fig. 4.3 Timing diagram of AND gate

Design module

Test bench

Stimulus

Design module

A

B

Y

TRUTH TABLE

 A B Y

 0 0 0
 0 1 0
 1 0 0
 1 1 1

A

B

Y

0

0

0

0

1

0

1

0

0

1

1

1

0 20 40 60

Time in ns

80

166 Writing a Test Bench for the Design

file, which must be included in the test bench, ‘and_2in_test.v’. ‘`include’ is a re-
served word used for the purpose of identifying one of the files included in the test
bench or a design as the case may be. It would be a good practice to just include
the top design in the test bench, while including all other submodules in the top
design. This way, we need only compile the test bench in the simulation tool and
the top design in the synthesis tool, instead of compiling all the modules. We will
learn these tools in Chapter 6 and Chapter 7 respectively. The test bench follows
the timing diagram shown in Figure 4.3 closely. As shown therein, the various
combination of inputs are applied at 20 ns interval. `timescale specifies the time
base along with its resolution. ‘Module’ and ‘endmodule’ have the same meanings
as in the design. In the declaration, module and_2in_test, no inputs/outputs (I/Os)
are listed since the test bench is the top most module. ‘A’ and ‘in’ are the stimuli
we need to apply. Since we need to hold their values for specific time, say, 20 ns,
they are declared as ‘reg’. The design output, ‘Y’ which appears as ‘out’ in the test
__

Verilog_code 4.1

// A sample Verilog design module to explain the use of a test bench

module and_2in (A, B, Y); // Declare the design module.

input A, B ; // Declare the design inputs
output Y ; // and output.
wire Y ; // Declare the output as net.
assign Y = A & B ; // Realize the 2 input AND gate.

endmodule // The end of design.
__

Fig. 4.4 Interconnection of the test bench and the design module

Design module

A

B

Y Test
bench A

in

out

and_2in.vand_2in_test.v

4.1 Modeling a Test Bench 167

__
Verilog_code 4.2

// Test bench for functional checking of two input AND gate design
// This is put in a separate file, ‘and_2in_test.v’

`include ‘and_2in.v’ // This is the design file.
`timescale 1ns/100ps // Time base is in nano seconds and its
 // resolution is in pico seconds.
module and_2in_test ; // Declare the test module.

reg A, in ;

// Declare inputs as registers since we need to hold the values.
wire out ;

// Declare output(s) as wire (meaning net) since we need to
// inter-connect other submodules, should they exist.

and_2in u1(// Call the design module.

// u1 stands for the first instantiation.

 .A(A) , // Connect ports by name.
 .B(in) ,
 .Y(out)
) ;
initial
 begin
 A = 0; in = 0; // Apply stimulus at time 0.

#20 A = 0; in = 1; // Change inputs at time 20 ns,
#20 A = 1; in = 0; // 40 ns, and
#20 A = 1; in = 1; // 60 ns.
#40 // Run for some more time,

 $stop ; // and stop.
 $finish ; // Terminate simulation.
 end
endmodule
__

bench is declared as a ‘wire’ since we may be required to inter-connect other de-
sign modules, should they exist. The next step is to call the design module,
‘and_2in’ ports by name. This way, we have the flexibility of changing the order
of occurrence. Note the order of instantiation. ‘A, B and Y’ I/Os belong to the de-
sign, whereas ‘A, in and out’ are their counterparts in the test bench. The design
can be instantiated as many times as required, every time using a different identity
such as u1, u2, etc. if required. Actual stimuli (A, in) is applied in the ‘initial’
block as shown. The block is identified by a ‘begin’ followed by an ‘end’.

168 Writing a Test Bench for the Design

To start with at ‘0’ time, ‘A’ and ‘in’ are both forced to logical ‘0’ as per the
timing diagram. Every 20 ns, a new test data is applied by using #20 before the
stimulus. The time unit is not mentioned explicitly since it has been already de-
clared using the `timescale. 100 ps, i.e., 0.1ns is the resolution set and, therefore,
we can set a higher precision for time such as #20.5, if required. The time men-
tioned using #20 etc. are cumulative since blocking statements (#20 A = 0, for ex-
ample) are used. At zero time, the design inputs ‘A’ and ‘in’ are 00, at 20 ns they
are 01, at 40 ns they are 10 and at 60 ns they are 11. Before the simulation is
stopped using $stop and $finish, we need some more time, say, 20 or 40 ns after
the input data 11 is applied so as to hold the last input values till it is processed.
There are two ways to verify the correctness of the design output. One way is to
use the simulation tool and display the waveforms and compare it with Figure 4.3
and, the other method is to add more codes such as ‘display’ and ‘monitor’ in the
test bench to check the output, ‘out’ every time the stimulus is applied. Since the
second method is tedious for big designs, we will use the simulation method to
view the outputs at every step. These will be covered in depth in a later chapter on
simulation.

4.2 Test Bench for Combinational Circuits

The test bench that checks the functionality of the combinational circuits is pre-
sented in Verilog_code 4.3. The design file is declared by `include statement. Note
the presence of the single reverse quote. The design file will have to be specified
within double quotes. Otherwise, the Verilog compiler will report errors and not
permit us to proceed with the simulation. You have to specify the file name com-
pletely. If it is in some other directory or folder, you have to give the entire path.
However, it is a good practice to keep all the files of a project in the same direc-
tory and operate from that directory. After declaring the module name
‘comb_ckts_test’, all design inputs are declared as ‘reg’ and outputs as ‘wire’ for
the reasons mentioned earlier. Size of each of the signals used is also reported. For
examples, N1 width is 8 bits [7:0] with bit [7] as the MSB and F10 width is 3 bits
[2:0] with bit [2] as the MSB.

At the next level, the design module, ‘comb_ckts’ is called. Suppose we have a
circuit diagram for an application, making use of several TTL gates such as
74LS00, 74LS245, etc. and, any other ICs. They are identified as U1, U2, and so
on. The same nomenclature may be applied in Verilog code while calling different
modules, such as ‘comb_ckts’, ‘seq_ckts’, etc. Each of these designs or submod-
ules may be called any number of times as per the needs of the application. They
are referred to as instantiation. In the Verilog_code 4.3, u1 is the instantiation of
the design. In this test, we need to call the design only once to check its function-
ality. Multiple instantiations are required only in bigger designs, which will be
covered in the chapter on project design. All the I/Os in the design are listed by
calling the ports by name as we had explained in the model test bench before.
Note that the I/Os are separated by commas except the last. The stimulus to the
design is applied in the ‘initial’ block. Any number of ‘initial’ blocks may be present

4.2 Test Bench for Combinational Circuits 169

in a test bench as per needs. In general, they work concurrently. A, B, and C are
inputs used for various gate realizations using ‘assign’ and ‘always’ statements.
They are also used as the select pins for the MUX/DEMUX realization. It would,
therefore, be convenient if we change their values in steps of one starting from
‘000’. At zero time, we apply ABC = 000, at 20 ns 001 and so on up to 111 at 140
ns. I0 through I7 are used as inputs to the three types of MUX and are cleared to
start with. At 10 ns, 30 ns, etc. apply a pulse of duration 10 ns to I0, I1, etc. in that
order.
__

Verilog_code 4.3

// Test bench for checking combinational circuit realization
// This test bench may be housed in ‘comb_ckts_test.v’ file

`include ‘comb_ckts.v’ // This is the design file.

module comb_ckts_test ; // Declare the test module.

reg A ; // Declare all design inputs as ‘reg’
reg B ; // so that they may hold the values
reg C ; // till they are changed again.
reg I0 ;
reg I1 ;
reg I2 ;
reg I3 ;
reg I4 ;
reg I5 ;
reg I6 ;
reg I7 ;
reg [7:0] N1 ;
reg [7:0] N2 ;
reg enable_sum ;
reg [7:0] NUM_1 ;
reg [7:0] NUM_2 ;
reg [8:0] PRESET_VALUE ;

wire F1 ; // Declare nets (combinational circuit outputs).
wire F2 ; // F1 through F9 are all single bit outputs.
wire F3 ;
wire F4 ;
wire F5 ;
wire F6 ;
wire F7 ;
wire F8 ;
wire F9 ; // Declare as wire.

170 Writing a Test Bench for the Design

wire [2:0] F10 ; // F10 through F12 are all three bit
 // outputs.
wire [2:0] F11 ;
wire [2:0] F12 ;
wire [1:0] sum_total ;
wire sum_df ;
wire carryo_df ;
wire sum ;
wire carryo ;
wire F13 ;
wire F14 ;
wire F15 ;
wire F16 ;
wire F17 ;
wire F18 ;
wire [8:0] SUM ;
wire MATCH ;
wire MORE ;
wire LESS ;

comb_ckts u1(// Instantiate the design module.
 .A(A) , // u1 stands for the first instantiation.
 .B(B) , // Only one instantiation is used in this
 .C(C) , // test bench.
 .I0(I0) , // I/Os are called by name.
 .I1(I1) ,
 .I2(I2) ,
 .I3(I3) ,
 .I4(I4) ,
 .I5(I5) ,
 .I6(I6) ,
 .I7(I7) ,
 .N1(N1) ,
 .N2(N2) ,
 .enable_sum(enable_sum) ,
 .NUM_1(NUM_1) ,
 .NUM_2(NUM_2) ,
 .PRESET_VALUE(PRESET_VALUE) ,
 .F1(F1) ,
 .F2(F2) ,
 .F3(F3) ,
 .F4(F4) ,
 .F5(F5) ,
 .F6(F6) ,
 .F7(F7) ,
 .F8(F8) ,

4.2 Test Bench for Combinational Circuits 171

 .F9(F9) ,
 .F10(F10) ,
 .F11(F11) ,
 .F12(F12) ,
 .mux2(mux2) ,
 .mux4(mux4) ,
 .mux8(mux8) ,
 .D0(D0) ,
 .D1(D1) ,
 .D2(D2) ,
 .D3(D3) ,
 .D4(D4) ,
 .D5(D5) ,
 .D6(D6) ,
 .D7(D7) ,
 .sum_total(sum_total) ,
 .sum_df(sum_df) ,
 .carryo_df(carryo_df) ,
 .sum(sum) ,
 .carryo(carryo) ,
 .F13(F13) ,
 .F14(F14) ,
 .F15(F15) , // Note that these I/Os are
 // separated by commas except the last.
 .F16(F16) ,
 .F17(F17) ,
 .F18(F18) ,
 .SUM(SUM) ,
 .MATCH(MATCH) ,
 .MORE(MORE) ,
 .LESS(LESS)
);

initial
 begin
 A = 1'b0 ; // At time zero, let the inputs be 000 binary.
 B = 1'b0 ;
 C = 1'b0 ;
 I0 = 0 ; I1 = 0 ; I2 = 0 ; I3 = 0 ; I4 = 0 ; I5 = 0 ; I6 = 0 ; I7 = 0 ;
 N1 = 200 ; // Test for the condition, N1 > N2.
 N2 = 199 ;
 NUM_1 = 0 ;
 NUM_2 = 0 ;
 enable_sum = 0 ;
 PRESET_VALUE = 0 ;

172 Writing a Test Bench for the Design

 #10 I0 = 1 ; // At 10 ns, apply a pulse of width 10 ns.

 NUM_1 = 250 ; // Apply inputs to test equality,
 NUM_2 = 250 ; // NUM_1 + NUM_2 = PRESET_VALUE
 enable_sum = 1 ;
 PRESET_VALUE = 500 ;
 #10 A = 1'b0 ; // At time 20 ns, let the inputs be 001.
 B = 1'b0 ;
 C = 1'b1 ;
 I0 = 0 ;
 N1 = 100 ; // Test for the condition, N1 < N2.
 N2 = 199 ;
 NUM_1 = 250 ;
 NUM_2 = 251 ; // NUM_1 + NUM_2 > PRESET_VALUE
 enable_sum = 1 ;
 PRESET_VALUE = 500 ;
 #10 I1 = 1 ; // At 30 ns, apply a pulse of width 10 ns.
 NUM_1 = 255 ;
 NUM_2 = 250 ;
 enable_sum = 0 ;
 PRESET_VALUE = 500 ;
 #10 A = 1'b0 ; // At time 40 ns, let the inputs be 010.
 B = 1'b1 ;
 C = 1'b0 ;
 I1 = 0 ;
 N1 = 255 ; // Test for the condition, N1 = N2.
 N2 = 255 ;
 NUM_1 = 100 ; // NUM_1 + NUM_2 < PRESET_VALUE
 NUM_2 = 255 ;
 enable_sum = 1 ;
 PRESET_VALUE = 500 ;
 #10 I2 = 1 ; // At 50 ns, apply a pulse of width 10 ns.
 #10 A = 1'b0 ; // At time 60 ns, let the inputs be 011.
 B = 1'b1 ;
 C = 1'b1 ;
 I2 = 0 ;
 #10 I3 = 1 ; // At 70 ns, apply a pulse of width 10 ns.
 #10 A = 1'b1 ; // At time 80 ns, let the inputs be 100.
 B = 1'b0 ;
 C = 1'b0 ;
 I3 = 0 ;
 #10 I4 = 1 ; // At 90 ns, apply a pulse of width 10 ns.
 #10 A = 1'b1 ; // At time 100 ns, let the inputs be 101.
 B = 1'b0 ;
 C = 1'b1 ;
 I4 = 0 ;

4.2 Test Bench for Combinational Circuits 173

 #10 I5 = 1 ; I1 = 1 ; // At 110 ns, apply a pulse of width 10 ns.
 #10 A = 1'b1 ; // At time 120 ns, let the inputs be 110.
 B = 1'b1 ;
 C = 1'b0 ;
 I5 = 0 ; I1 = 0 ;
 #10 I6 = 1 ; // At 130 ns, apply a pulse of width 10 ns.
 #10 A = 1'b1 ; // At time 140 ns, let the inputs be 111.
 B = 1'b1 ;
 C = 1'b1 ;
 I6 = 0 ;
 #10 I7 = 1 ; // At 150 ns, apply a pulse of width 10 ns.
 #10 I7 = 0 ;
 #50 // Run for some more time
 $stop ; // and stop.
 end
endmodule
__

N1 and N2 are two numbers we wish to compare. We apply different inputs at
0, 20, and 40 ns so that we may verify the circuit functionality for the conditions:
(i) N1 > N2, (ii) N1 < N2, and (iii) N1 = N2. In the next application, two num-
bers NUM_1 and NUM_2 are summed up and compared with a PRESET_VALUE.
At zero time, enable_sum input is forced to ‘0’. Therefore, all the relevant outputs
will be cleared. At 10, 20, and 40 ns, the enable_sum is made high so that the
summing/comparing process may take place. At 30 ns, enable_sum input is forced
to ‘0’ deliberately to check whether the outputs are cleared again. Towards the end
of the test bench, we add #50 to allow the simulation run for some more time.
$finish has not been used in this example.

4.3 Test Bench for Sequential Circuits

Test bench for checking sequential circuit is similar to that for combinational cir-
cuits discussed in the last section except that stimuli are different. Test bench is
presented in Verilog_code 4.4. As shown in the test bench, the first statement de-
fines a variable called ‘clkperiodby2’ (meaning half time period) so that we may
produce a clock operating at 50 MHz. This is followed by the inclusion of the de-
sign file and declaration of the module. As done before, all design inputs are de-
clared as ‘reg’ to hold the value till it is changed to another value, and all design
outputs are declared as ‘wire’. The design module is invoked thereafter, calling
ports by name. The design is instantiated (u1 refers to the instantiation) only once
as had been done in the case of combinational circuits testing. As done before, we
apply various stimuli at different points of time in ‘initial’ block so that all possi-
ble combinations are checked.

‘reset_n’ is an active low system reset that clears all the flip-flops in the design.
This signal is applied for 20 ns commencing at 20 ns. Normal circuit operation,

174 Writing a Test Bench for the Design

therefore, commences at 40 ns. D flip-flop input is forced to ‘0’ and ‘1’ at 40 and
60 ns respectively so that the flip-flop may be checked for correct functioning. A,
B, and C inputs are used in the register, pixeloutp_valid, and in the counter,
cnt_reg, realization. The register is set for ABC = 010 at 40 ns and reset for ABC
= 111 at 140 ns, whereas the counter is incremented by one for the latter condi-
tion. ABC is advanced by one every 20 ns commencing from 000.
__

Verilog_code 4.4

// Test bench for checking sequential circuit realization

`define clkperiodby2 10 // 10 ns is the half time period (50 MHz clock).
`include ‘seq_ckts.v’ // This is the design file.

module seq_ckts_test ; // Declare the test module.

reg D ; // Declare all inputs as reg.
reg A ;
reg B ;
reg C ;
reg clk ;
reg reset_n ;
reg hold ;
reg shift ;
reg in1 ;
reg in2 ;
reg trigger ;
reg in ;
reg [15:0] set_data ;
reg load ;
reg shift_ps ;
reg rl_n ;

wire pixelout_valid ; // Declare outputs as nets.
wire [7:0] cnt_reg ;
wire delay_out ;
wire [15:0] data_out1 ;
wire [15:0] data_out2 ;
wire Z0 ;
wire Z1 ;
wire Z2 ;
wire Z3 ;
wire out ;
wire data_out ;
wire data_valid ;

4.3 Test Bench for Sequential Circuits 175

wire eoc ;

seq_ckts u1(// Instantiate the design module.
 .D(D) , // u1 stands for the first instantiation.
 .Q(Q) ,
 .Q_n(Q_n) ,
 .A(A) ,
 .B(B) ,
 .C(C) ,
 .clk(clk) ,
 .reset_n(reset_n) ,
 .hold(hold) ,
 .shift(shift) ,
 .in1(in1) ,
 .in2(in2) ,
 .trigger(trigger) ,
 .pixelout_valid(pixelout_valid) ,
 .cnt_reg(cnt_reg) ,
 .delay_out(delay_out) ,
 .data_out1(data_out1) ,
 .data_out2(data_out2) ,
 .set_data(set_data) , // Inputs and
 .load(load) ,
 .shift_ps(shift_ps) ,
 .rl_n(rl_n) ,
 .data_out(data_out) , // outputs of parallel to
 .data_valid(data_valid) ,
 .eoc(eoc) , // serial converter.
 .Z0(Z0) ,
 .Z1(Z1) ,
 .Z2(Z2) ,
 .Z3(Z3) ,
 .in(in) ,
 .out(out)
);
 initial
 begin
 D = 1 ;
 A = 1'b0 ; // At time zero, let the inputs be 000 binary.
 B = 1'b0 ;
 C = 1'b0 ;
 clk = 0 ; // Initialize clk, reset_n and hold.
 reset_n = 1 ;
 trigger = 0 ; // Monoshot input – not applied.
 hold = 0 ;
 shift = 1'b0 ; // Don’t start the shift operation.

176 Writing a Test Bench for the Design

 set_data = 16'hAAAA ;
 load = 1 ; // Load the above data.
 shift_ps = 0 ; // Don’t start the shifting as yet.
 rl_n = 0 ; // Means left shift.
 in1 = 0 ; // Remain in state 00 (S0).
 in2 = 0 ;
 in = 1 ; // Input of Pattern sequence detector.
 #20 D = 0 ;
 A = 1'b0 ; // At time 20 ns, let the inputs be 001.
 B = 1'b0 ;
 C = 1'b1 ;
 reset_n = 0 ; //Apply Reset.
 #20 D = 0 ;
 A = 1'b0 ; // At time 40 ns, let the inputs be 010.
 B = 1'b1 ;
 C = 1'b0 ;
 reset_n = 1 ;
 #20 D = 1 ;
 A = 1'b0 ; // At time 60 ns, let the inputs be 011.
 B = 1'b1 ;
 C = 1'b1 ;

hold = 1 ; // Suspend the Register processing.
 trigger = 1 ; // Apply trigger to monoshot, i.e., start the timer.
 load = 0 ;
 shift_ps = 1 ;
 rl_n = 1 ; // Means right shift by one bit.
 #20 A = 1'b1 ; // At time 80 ns, let the inputs be 100.
 B = 1'b0 ;
 C = 1'b0 ;
 hold = 0 ; // Withdraw the hold, i.e.,

 // allow the process to run.
 #20 A = 1'b1 ; // At time 100 ns, let the inputs be 101.
 B = 1'b0 ;
 C = 1'b1 ;
 trigger = 0 ;
 #20 A = 1'b1 ; // At time 120 ns, let the inputs be 110.
 B = 1'b1 ;
 C = 1'b0 ;
 #20 A = 1'b1 ; // At time 140 ns, let the inputs be 111.
 B = 1'b1 ;
 C = 1'b1 ;
 shift = 1'b1 ; // Start the shift operation for the shift register.
 in1 = 1 ; // Test sequential machine – Go to state 10
 // (S2) from 00 (S0).
 #40 in1 = 0 ; // Go to state 01 (S1).
 in2 = 1 ;

4.3 Test Bench for Sequential Circuits 177

 #40 in1 = 1 ; // Go to state 11 (S3) from state 01 (S1).
 in2 = 1 ;
 #40 in1 = 0 ; // Go back to state 01 (S1).
 in2 = 1 ;
 #40 in1 = 1 ; // Go to state 11 (S3) from state 01 (S1).
 in2 = 1 ;
 trigger = 1 ; // Apply trigger again at 300 ns.
 #40 in1 = 0 ; // Go to state 00 (S0).
 in2 = 0 ;
 #40 in1 = 1 ; // Go to state 10 (S2).
 in2 = 1 ;
 #40 in1 = 1 ; // Go to state 11 (S3).
 in2 = 1 ;
 #40 in1 = 0 ; // Go to state 01 (S1).
 in2 = 1 ;
 #40 in1 = 0 ; // Go to state 00 (S0).
 in2 = 0 ;
 trigger = 0 ; // Withdraw trigger at 500 ns.

// Another design example – Pattern sequence detector
// Pattern to be detected: 0110
// Input pattern applied: 11110100110110001101
// Output desired: 00000000001001000010

#25 in = 1 ; // Apply first input pattern (for ‘psd’)
 // before every positive edge of the clk.

 set_data = 16'h5555 ; // Change data for ‘ps’ at 525 ns.
 load = 1 ;
 shift_ps = 0 ;
 rl_n = 1 ;
 #20 in = 1 ; // Apply input pattern (for ‘psd’)
 load = 0 ;
 shift_ps = 1 ; // and start left shifting at 545 ns.
 rl_n = 0 ;
 #20 in = 1 ; // Continue applying input pattern (for ‘psd’).
 #20 in = 1 ;
 #20 in = 0 ; // 605 ns
 #20 in = 1 ;
 #20 in = 0 ;
 #20 in = 0 ; // 665 ns
 #20 in = 1 ;
 #20 in = 1 ;
 #20 in = 0 ; // 725 ns
 #20 in = 1 ;
 #20 in = 1 ;

178 Writing a Test Bench for the Design

 #20 in = 0 ; // 785 ns
 #20 in = 0 ;
 #20 in = 0 ; // 825 ns
 #20 in = 1 ;
 #20 in = 1 ;
 #20 in = 0 ; // 885 ns
 #20 in = 1 ; // 905 ns
 #200 // Run for some more time
 $stop ; // and stop.
 end

always
 #`clkperiodby2 clk <= !clk ; // Toggle to get a free running clk.

endmodule
__

The ‘trigger’ signal for the non-retriggerable monoshot is applied at 60 ns and
withdrawn at 100 ns. The ‘trigger’ signal is reapplied at 300 ns while the timer is
still running to check whether the non-retriggerable feature is working. The shift
operation of the shift register commences at 140 ns. The data to be shifted is in-
herent in the design and, therefore, the test bench need not apply it. The inputs to
parallel to serial converter are set_data, load, shift_ps and rl_n. They are initial-
ized right at the beginning as mentioned in the comments. However, the shifting
operation commences only at 60 ns. Change data at 525 ns and start left shifting at
545 ns onwards at every rising edge of the ‘clk’. ‘in1’ and ‘in2’ are inputs to in-
fluence the model sequential machine. They are initialized to ‘0’ at the start re-
maining in the ‘state’ at ‘S0’. The sequential machine starts going from one state
to another from 140 ns onwards, depending upon the inputs. Functional testing can
be made comprehensive by applying all possible combinations of stimuli.

Pattern sequence detector is the last application covered in this test bench. The
signal ‘in’ is the only (serial) input to this part of the design. Input pattern is ap-
plied at every positive edge of the ‘clk’ commencing from 525 ns. 200 ns after the
last input is applied, the simulation is stopped. There is no hard and fast rule for
giving this allowance. Anything more than 20 ns will do. The statement #`clkpe-
riodby2 clk <= !clk; within always block means toggle the ‘clk’ every clkpe-
riodby2 ns, so that we may generate a free running clock running at 50 MHz. By
changing ‘clkperiodby2’ value, we can get any other frequency of operation.

In order to help the reader to design Verilog based systems faster, a Verilog
quick reference design card is presented in Appendix 7 of CD. A quick reference
for the test bench is also presented in Appendix 8. In addition, a more detailed
HDL coding guidelines used in industries is presented in Appendix 9.

4.3 Test Bench for Sequential Circuits 179

__

Summary

Test benches are forte of verification engineers. This chapter showed how to write
an effective test bench. The basic concept of a test bench was shown by presenting
a simple design and a model test bench for testing the design exhaustively. For
bigger designs, an elaborate test may prove to be difficult. In such cases, the test
may be carried out for a range of inputs covering minimum, maximum, center, and
few other input values applied judiciously. In the previous chapter, designs for
combinational and sequential circuits were dealt. Test benches for the same were
presented in this chapter. Usually, the test bench size will be smaller than that of
the design. For successful working of a system, RTL coding techniques are inevi-
table. This is covered in the next chapter.
__

Assignments

4.1 In the assignments of Chapter 3, it was suggested that Verilog codes for

each of the assignments might be either separately written or all of them
combined into a single design file. Depending upon the scheme adopted
by you, write independent test benches or an integrated test bench to con-
duct elaborate test on the designs presented in those assignments.

4.2 The following circuits are known as ‘ladder diagrams’ used in Relay
based logic control panel or programmable logic controller (PLC) based
open loop industrial controls. The AC or DC field supply is applied
across L and N lines. In the first circuit, a motor M may be started or
stopped by pressing the appropriate push button switches. Note that an
auxiliary contact of the motor is fed back in parallel to the START but-
ton. When the START button is pressed, the circuit is complete, thus en-
ergizing the motor and subsequently closing the contact M. The circuit is,
therefore, completed even after the START push button is released. You
need to press STOP push button if you want to stop the motor. In addi-
tion to the push button contacts shown, other types of switches are repre-
sented as ---| |--- for normally open and ---|/|--- for normally closed con-
tacts. LS represent limit switches, IN stands for field inputs, CR for
Control relays or Contactors, and SOL for solenoids. You may regard
contacts in series as logical ‘AND’ and parallel contacts as logical ‘OR’.
Write Verilog codes for these circuits. Also write a test bench, which
checks all the possible combinations for the ladder diagrams (see Figure
A4.1).

180 Writing a Test Bench for the Design

(i)

(ii)

(iii)

N START STOP M L

M

SOL 10 N L

SOL 10 LS 50

LS 60 LS 65 LS 70

CR 1 N L LS 20 IN 10

CR 1 LS 30 PILOT
LAMP

Assignments 181

(iv)

(v)

Fig. A4.1 Relay logic ladder diagram

4.3 Write a Verilog code for an 8 bit tri-state buffer using ‘assign’ statement.

When a signal ‘oe_n’ is low, the input A[7:0] must be output to Y[7:0].
Otherwise, the output must be tri-stated. Write a test bench to test the cir-
cuit.

4.4 A company, which is putting a stall in an industrial exhibition, wants you
to design a system, which counts the number of persons who visit the
stall as well as the number of people inside the stall at any point of time.
You may install lights/photo-electric cells or any other sources/sensors
for detecting people entering and leaving the stall. Realize the design us-
ing Verilog. Also write a test bench to test all possible combinations.

CR 100 N L

IN 5

IN 1 IN 2

IN 3 IN 4

CR 101

CR 200 N L

IN 13 IN 14

IN 10 IN 11 IN 12

IN 15

182 Writing a Test Bench for the Design

4.5 Often in certain applications, we need to apply specified set of values.
The best way to apply these is to use ‘initial’ block of statements as
shown in the following example:

 initial
 begin
 test_pattern = 1;
 #20 test_pattern = 0;
 #30 test_pattern = 1;
 #40 test_pattern = 1;
 #50 test_pattern = 0;
 #60 test_pattern = 1;
 end

 Draw a timing diagram for the ‘test_pattern’ signal.
4.6 Another way to apply specified set of values is shown in the following

example:

 initial
 begin
 test_pattern = 1;
 test_pattern = #20 0;
 test_pattern = #30 1;
 test_pattern = #40 1;
 test_pattern = #50 0;
 test_pattern = #60 1;

 end
 Draw a timing diagram for the ‘test_pattern’ signal in this case.
4.7 Yet another way to apply specified set of values is shown in the follow-

ing example:

 initial
 begin
 test_pattern <= 1;
 test_pattern <= #20 0;
 test_pattern <= #50 1;
 test_pattern <= #90 1;
 test_pattern <= #140 0;
 test_pattern <= #200 1;

 end
 Draw a timing diagram for the ‘test_pattern’ signal in this case.
4.8 ‘initial’ block of statements processes only once, whereas ‘always’ block

of statements processes in a repeated manner. The ‘always’ way to apply
specified set of values is shown in the following example:

Assignments 183

 parameter idle = 300;

 initial
 begin

 #1000 $stop;
 end

 always
 begin
 test_pattern <= 10;
 test_pattern <= #20 20;
 test_pattern <= #50 30;
 test_pattern <= #90 40;
 test_pattern <= #140 50;
 test_pattern <= #200 60;
 # idle;
 end
 Draw the waveform for this example.
4.9 Generate a clock signal with different on–off timings, say, TON = 10 ns

and TOFF = 20 ns. Use parameter for on–off timings and ‘always’ block
to realize the same. Can you get a 50% duty cycle for this clock? If so,
how?

4.10 Using a ‘repeat’ loop, a fixed number of clock pulses can be generated.
Code such a clock. Parameterize the ON, OFF times and the fixed num-
ber of clock pulses. Draw the waveform for a 50% duty cycle clock for
ten cycles.

4.11 Many applications demand two or more clocks with phase delays among
them. Generate two clock signals with a phase delay of 5 ns and different
on–off timings, say, TON = 10 ns and TOFF = 20 ns. Use parameter for
phase delay, on–off timings and ‘always’ block to realize the same.

4.12 Write Verilog codes to realize a pattern sequence detector which detects
any of the three sequences 0101, 1010, and 1100. Also write a test bench
for the same.

184 Writing a Test Bench for the Design

Chapter 5

RTL Coding Guidelines

We have so far seen how to model combinational and sequential circuits in Ver-
ilog, which are vital ingredients in any digital VLSI system design. The ultimate
aim of the designer is to finally map the design on an FPGA device or implement
as an ASIC, and this is possible only if you follow certain guidelines. A popular
guideline is known as the RTL Coding Guideline, where RTL stands for Register
Transfer Level, signifying that data transfers in a system take place via registers
[17]. It is basically adhering to synchronous design practices, and it signifies the

chronous design, it should run smoothly through Simulation, Synthesis, and fi-
nally on place and route tools, which we will learn in subsequent chapters. In or-
der to do this, we have to isolate the asynchronous and sequential circuits. The
combinational circuits fall under the category of asynchronous circuits. We have
actually followed the RTL coding style in our designs dealt in an earlier chapter.
Therefore, the codes developed there will run smoothly in all the tools mentioned
above.

5.1 Separation of Combinational and Sequential Circuits

Basically, RTL coding style is describing the circuits in terms of its registers
(REG) and the combinational logic (COMB) between them as shown in Figure
5.1a. Any complex combinational circuit, which usually slows down the system
speed, can be further broken down into simpler circuits (COMB_1, COMB_2,
etc.) of approximately same propagation delay times and sandwiching registers
(REG_1, REG_2, etc.) in between two adjoining combinational circuits to im-
prove the overall processing speed. This is shown in Figure 5.1b. The same pattern
is followed successively to build a system. The interposing registers are referred to
as pipeline registers, which we will discuss in depth later on when we deal with
arithmetic circuits.

5.2 Synchronous Logic

regulation of data flow, and how the data is processed. Since we deal with a syn-

digital circuits. For instance, the common mistake we make in a design is to take a
The RTL coding guidelines primarily consist of ‘DOs’ and ‘DONTs’ for building

Fig. 5.1 RTL coding – separation of combinational and sequential circuits
and pipelining

Fig. 5.2 Asynchronous logic – combinational feedback

combinational output and feed it back to one of its inputs as shown in Figure 5.2.
This is detrimental in making a working chip since asynchronous feedbacks lead
to racing problems and result in unpredictable functioning of the circuit. The rem-
edy for this problem is by breaking the feedback and passing the signal through a
D flip-flop as shown in Figure 5.3. The system clock is connected directly to the
CLK input of the flip-flop. Note that, by doing so, no functionality is changed ex-

cept for a clock cycle delay introduced, which we can always afford to spend.

COMB
REG

CLK

DATA_IN DATA_OUT

a

COMB_1
REG_

COMB_
N REG_N

CLK

DATA_IN DATA_OUT

b

COMBINATIONAL
LOGIC

I
N
P
U
T
S

O
U
T
P
U
T
S•

Eliminate combinational feedback

DON’T

188 RTL Coding Guidelines

Fig. 5.3 Synchronous logic – eliminates racing and glitches

Further, it eliminates racing and glitches, which is normally present in asynchro-
nous circuits. This will result in a system that will work perfectly when mapped
onto a device, whereas the previous circuit will not work at all.

5.3 Synchronous Flip-flop

Another practice a novice designer adopts is to gate the system clock in the man-
ner shown in Figure 5.4. This introduces skew in the clock. A VLSI system usu-
ally has innumerable numbers of registers that are connected to the system clock.
The clock, owing to gate delays and interconnection path delays in the chip, ag-
gravated by gating the clock, arrives at different points of time to each of these
registers resulting in the violation of setup and hold times. The solution is once
again by breaking the gating of the clock and, instead, by introducing a MUX in
the data path as shown in Figure 5.5. Logic must be incorporated in data input in-
stead of gating the clock. When the signal SELECT is asserted, the DATA fed to
the higher order input pin of the MUX is selected and directed to the D input of
the flip-flop, and is registered as DATA OUT at the following system clock edge.
This continues so long as SELECT is active. Since the flip-flop output is also con-
nected to I0 input of the MUX, the last DATA that was registered in the flip-flop
remains stored when SELECT goes low. Thus, the circuit function is precisely the
same as that shown for Figure 5.4, while eliminating the clock skew, since the sys-
tem clock is directly fed without any gate delays. Price we have paid is just a two-
input MUX for getting a reliable operation.

COMBINATIONAL
LOGIC

I
N
P
U
T
S

O
U
T
P
U
T
S•

DO

D Q

CLK SYSTEM CLOCK

5.3 Synchronous Flip-flop 189

Fig. 5.4 Asynchronous logic – gated clock

Fig. 5.5 Synchronous flip-flop – logic incorporated in data input

5.4 Realization of Time Delays

Another design mistake commonly committed is to generate a pulse using gate de-
lays as shown in Figure 5.6. Frequently, we need to create a single pulse when a
push button is pressed or a long durational pulse for a typical application such as a
photographic timer or an industrial timer. The traditional way the designers adopt
is to put N numbers of buffers (or inverters), 1 through N, in order to achieve a de-
lay of N times the propagation delay of each buffer. After buffering, the signal
‘InD’ is inverted and fed to one of the inputs of the AND gate, while the signal
‘In’ is connected to the other input. This produces the desired output, ‘Out’, whose
pulse width is N × tp, where tp is the propagation delay of a buffer. Of course, if the
input ‘In’ is from a push button switch, we need to debounce it before the same is
used. Unfortunately, the buffer gate delays in this circuit are technology depend-
ent. For example, if you had used earlier 0.65 µm technology and produced a de-
lay of 100 nanosecond, then with the new technology, say, 0.09 µm technology,

COMBINATIONAL
LOGIC

I
N
P
U
T
S

O
U
T
P
U
T
S

•

DON’T

Q

CLK No gated clock

D

I0

I1

SELECT

DATA
OUT

DO

D Q

CLK SYSTEM
CLOCK

DATA

190 RTL Coding Guidelines

Fig. 5.6 Delay realized using gates – technology dependent

Fig. 5.7 Synchronous: technology independent single clock delay

the delay might crash to 8 to 10 times lower, which may not be sufficient for the
application for which it was originally intended. The same is also true if you
changed to a faster device without changing the design accordingly. A better way
to produce a single pulse is by using two flip-flops as shown in Figure 5.7.

In

InD

Out
N x t p

DON’T

In

N x tp

1 N InD 2

CLK

Q1

Q2

In

Out

D Q

CLK

In

CLK CLK

Out

Q2

Q1

DO

D Q

CLK

Out

5.4 Realization of Time Delays 191

As shown in Figure 5.7, the input ‘In’ is applied to the D input of the first flip-
flop and, being asynchronous, it may arrive at any point of time. Q1 follows the
input with the arrival of the positive edge of the clock. The Q1 output in turn is
applied to a second flip-flop and is registered promptly at Q2 when the next clock
arrives. Q1 and Q2 outputs are shown to occur slightly delayed from the respec-
tive rising edge of the clock in order to account for the flip-flop propagation de-
lays. The flip-flop outputs are gated to get a pulse, which lasts for a single clock
cycle as can be easily inferred from the timing diagram presented. Since the delay
obtained depends solely on the clock cycle duration, it follows that this circuit is
independent of the technology or the device speed. If we desire to get large tim-
ings of the order of several seconds or beyond, we may use the non-retriggerable
monoshot, which design we had discussed in an earlier chapter.

The non-retriggerable monoshot is based on an 8-bit wide counter, which has
inbuilt time setting as shown in Figure 5.8. For longer duration of delay, the width
can be changed accordingly or more number of counters cascaded. Applying a
pulse of one or more clock cycle duration to the ‘Trigger’ input can start the
monoshot or the timer. Once started, the timer output ‘DELAY’ goes high and
remains as such until the lapse of the set delay, after which the output goes low. It
has system reset and clock as inputs. For a setting of 255, you will get exactly 255
clock cycles as the delay. Once triggered, any further triggers will have no effect
on the timer output. The circuit performance is dependent only on the number of
system clock cycles and not on the technology or the device speed as is the case
with the single clock cycle pulse generation schematic diagram shown in Figure
5.7. Thus, your design investment remains in tact even with the advent of any fu-
ture technology that is yet to come.

Fig. 5.8 Non-retriggerable monoshot – technology independent

CLK

DELAY

SET VALUE

DO

COUNTER

SET VALUE

TRIGGER

SYSTEM RESET
DELAY

TRIGGER

192 RTL Coding Guidelines

5.5 Elimination of Glitches Using Synchronous Circuits

We discussed earlier the occurrence of glitches in digital circuits. A glitch, which
is a narrow pulse, is an uninvited guest, which we would like to eliminate. For ex-
ample, in the circuit shown in Figure 5.9, a glitch is produced at the node D1 when
inputs In0 and In1 are both high. Consider the case when SEL goes from high to
low. SEL* responds by going from low to high after the propagation delay
through the inverter. It is this delay, which is responsible for producing the un-
wanted glitch at D1. If we are to use this signal for further processing (such as a
clock input for a register), it may so happen that the circuit samples at the unde-
sired region of the glitch, thus causing erroneous functioning of the circuit (such
as registering a data or a signal when we do not want it to register). This is true
even if the SEL signal is synchronous to the CLK. The circuit will not malfunction
only if we can eliminate the glitch. This can be easily accomplished by using a D
flip-flop as shown. The flip-flop ensures that the glitch is avoided at the rising
edge of the next CLK. Thus, the flip-flop output ‘Out’ is free from the glitch. SEL
signal must be synchronous to the CLK.

Fig. 5.9 Synchronous circuit – no glitch

Glitch

D Q

CK

SEL* Out

Out

SEL

In1

In0

CLK

In1

SEL

SEL*

D1

D1

CLK

H

H

H

In0

5.5 Elimination of Glitches Using Synchronous Circuits 193

5.6 Hold Time Violation in Asynchronous Circuits

Another mistake a designer usually commits is to use a ripple counter as shown in
Figure 5.10. Q1 output of the first flip-flop is fed to the clock input of the next
flip-flop. This may result in the violation of hold time if D2 is an asynchronous
input. To start with, let us say that D1 and D2 inputs are low. With the arrival of
the positive edge of clock, the flip-flop output Q1 is cleared. Let us further assume
that D1 goes high thereafter. Q1 registers this D1 value (i.e., high) with the arrival
of the subsequent positive edge of clock after a propagation delay ‘tp’ between
CLK and Q1. Since D2 is asynchronous, D2 and Q1 may change simultaneously
as shown in the waveform. When the second flip-flop encounters the rising edge at
its clock input, the data applied at D2 input must be stable at least for the hold
time requirement of the flip-flop, otherwise the hold time is violated.

Looking at the waveform, we observe that before the rising edge of Q1, D2 is
low and stable, thus satisfying the setup time requirements. However, it changes
from low to high exactly when the clock Q1 also changes, thus violating the hold
time. There would have been no violation if D2 had remained low for some more
time greater than the hold time. After all, what you desire to implement is a regis-
ter or a counter basically, which designs were covered in Sections 3.32 and 3.33
and, these implementations actually conform to the RTL coding techniques. In
fact, all the designs presented in this book, unless otherwise mentioned, conform
to the RTL coding style. Using synthesis tool (covered in a later chapter), non-
conformance with RTL coding may be spotted and appropriate corrective action
applied. Therefore, use only synchronous counters and not ripple counters.

Fig. 5.10 _Asynchronous circuits hold time violation

tp

D Q

CLK D Q

CLK

D2

D1
Q1

Q2

CLK

CLK

D1

D2

Q1

Q2

DON’T

194 RTL Coding Guidelines

5.7 RTL Coding Style

In a large design, there may be several modules or sub-modules. It is illegal to nest
modules, i.e., write module within a module. But you may call a module within a
module. For example, the following Verilog code is prohibited, and the compiler
will report error for putting another module such as module_2 within the mod-
ule_1:
__

module module_1 (// List the first module I/Os here)

 // Declare the first module I/Os, wires, and registers.
 // Write the required combination and sequential

// logic for the first module.
 // Calling the module_2 as follows is illegal.

module module_2 (// List second module I/Os here)
 // Declare the second module I/Os, wires, and registers.
 // Write the required combination and sequential

// logic for the second module.
endmodule

endmodule

Instead, the following method of calling the module_2, module_3, etc. within
module_1 is perfectly legal:

module module_1 (// List the first module I/Os here) ;

 // Declare the first module I/Os, wires, and registers.
 // Write the required combination and sequential

// logic for the first module.
module_2 U1 (// List second module I/Os here, calling ports by name) ;
module_3 U2 (// List third module I/Os here, calling ports by name) ;
// Call other modules, if any. U1, U2, etc. are instantiations.
// Note the presence of ‘;’ at the end of each of the statements.

endmodule // This signifies the end of module_1. Note that there is no space

// between ‘end’ and ‘module’.

A model code which follows the RTL coding guidelines, some of which we

have already discussed earlier, is shown in Verilog_code 5.1. We shall call this
module as ‘rtl_coding’ to signify that it describes the RTL coding style. Once you
identify the actual module, then list the inputs and outputs in any order you like,

__

__

__

5.7 RTL Coding Style 195

separated by commas as shown in Verilog_code 5.1. All the inputs and outputs
used in the module are declared as inputs or outputs as the case may be. Outputs
are declared as registers or wires if they occur in ‘always’ blocks and ‘assign’
statements respectively. In Section 5.1, we have seen that the basic RTL coding
style is to break any complex circuit into a series of combination circuits and reg-
isters so that data may flow like a perennial river, thus improving the processing
speed of an implementation. The first circuit described in the code is nothing but
the realization of a D flip-flop, which design we have already seen in Chapter 3.
The purpose here is to show the need to separate out combinational and sequential
circuits. The first part is an ‘always’ block, which is just a combinational circuit
realization you are already familiar with. Whenever the input d1 or d2 changes,
then this combinational block will be processed. After ‘begin:’ statement, we may
declare a ‘COMBINATIONAL_CIRCUIT’ for enhancing the readability. An ex-
clusive or (XOR) of the two inputs, d1 and d2, is assigned to ‘d’ which forms the
D input of the flip-flop.

Another ‘always’ block named ‘SEQUENTIAL_CIRCUIT’, which functions
only at positive edge of the clock, outputs the data ‘d’ to ‘Q’. Also, its comple-
mented value is output to ‘Q_n’. When we look at the schematic circuit diagram
generated by the synthesis tool later on, we will actually find two flip-flops, ‘Q’
and ‘Q_n’, and not just one. The flip-flop ‘Q_n’ can be eliminated by removing
the statement ‘Q_n <= !d ;’ in the sequential circuit if one wishes to reduce the
flip-flop count. In lieu of the flip-flop, we need to use an inverter by using an ‘as-
sign’ statement outside the ‘always’ block:

 assign Q_n = !d ;
Thus, as a designer, you need to experiment and know the limitations of a tool and
then, find out ways and means to circumvent those limitations. Whatever signals
are used in an ‘always’ block, they are declared as registers. ‘Q’ and ‘Q_n’ are
flip-flops, generally called as registers. Segregating the combinational and sequen-
tial circuits thus will facilitate easy reading of the codes and thereby minimize
comment writing. This self-documenting feature is the essence of RTL coding
style.

We have considered ‘if’ statements earlier. We will see some more aspects of
the same next. We are all familiar with a two way switch as shown in Figure 5.11.
The switch is of the type known as the single pole double throw (SPDT). Using
this switch, you can select one of the two signals, A or B, depending upon the
switch position, and deliver it as the ‘OUT’ signal. The digital analogy for this
switch is the MUX. Here, the A and B inputs are precisely the same as in the me-
chanical switch, so also the output. The mechanical control of switching from one
position to another is simulated by a select control, ‘SEL’. A logic ‘0’ at this pin
selects the A input designated as ‘0’ input and directs the same to ‘OUT’. Simi-
larly, SEL = 1 routes the ‘1’ (B) input to the output. In Verilog coding, ‘if’ state-
ment infers the multiplexer. The MUX is a combinational circuit, which can be re-
alized by using an always block as shown in Verilog_code 5.1. If SEL is high,
then B input is sent to the output, ‘out1’. Otherwise, A is selected. All the inputs
(SEL, A and B) that influence the output in an always block need to be listed as
shown in the code.

196 RTL Coding Guidelines

Fig. 5.11 Switch/MUX analogies

In this always block, we have considered all the possibilities, i.e., SEL = 0 as

well as SEL = 1. In the next block, whose output is ‘out2’, let us see what happens
if we omit the ‘else’ statement. When ‘SEL’ goes high, the output ‘out2’ registers
the value ‘A’ and remains latched on to this value even if ‘SEL’ goes low subse-
quently. Latches are, therefore, inferred unless all signals are assigned in all
branches. Figure 5.12 shows the standard latch, where the output, ‘OUT’ follows
the ‘D’ input (A) so long as the clock, ‘SEL’ is high. The moment the ‘SEL’ sig-
nal goes low, the output freezes at the value of ‘A’ prevailing at that moment.
Avoid all latches in your design since they pass on glitches in the circuit.

Next, we will see how to realize a priority encoder using ‘if–elseif’ statements.
Consider four inputs ‘in0’ through ‘in3’, which is required as the desired output,
‘out3’, based on priority determined by three control signals S2 to S0. S2 signifies
the top most priority and S0 the least priority. If more than one such signal is as-
serted, the topmost priority prevailing at the time will determine the final output.
This can be easily realized as shown in the Verilog_code 5.1. The very first state-
ment in the always block, namely,

‘if–elseif’ statement block
Fig. 5.12 Latch is inferred unless all signals are assigned in all branches of an

b

OUT

A

B

0

1

A
OUT

SEL

B

SEL

A

LATCH

D

CLK

OUT

a Two-way Switch MUX

5.7 RTL Coding Style 197

 if (S2 == 1) out3 = in0 ;
takes precedence over other statements that follow and assigns ‘in0’ as the output,
‘out3’, provided S2 is high. In case S2 is not active and S1 is high, then the second
statement:
 else if (S1 == 1) out3 = in1 ;
takes over, forcing ‘in1’ as the output. This is the second priority. On the other
hand, if S1 were not high and S0 high, then the third priority statement comes into
play:
 else if (S0 == 1) out3 = in2 ;
Naturally, ‘in2’ will appear as the output in this case. The last statement:
 else out3 = in3 ;
is processed outputting ‘in3’ only if none of the signals S2–S0 are not asserted. In
summary, whatever you put as the first statement in an always block is automati-
cally assigned the top priority. Subsequent statements will have lower and lower
priority, with the last statement being assigned the least priority. After synthesis,
the Verilog codes for the priority encoder metamorphosises as the circuit shown in
Figure 5.13. As can be seen from the circuit, the longest delay to the output, ‘out3’
is for ‘in3’ input. More the nesting, more is the delay. This delay usually affects
the system speed, especially in sequential circuit realization. Therefore, it would
be advisable to restrict the number of ‘if–elseif–else’ statements to four or five
based on experience. In designs, where this thumb-rule is exceeded, one may ex-
plore the possibility of using ‘case’ statements in lieu of ‘if–else if’ statements.
‘case’ statements must be used if conditions are mutually exclusive.

In the next example, let us see what happens when we use redundant condi-
tions in ‘if–else if–else’ statements listed as follows.
 if (P < Q) out4 = R ;
 else if (P > Q) out4 = S ;
 else if (P == Q) out4 = T ;

Fig. 5.13 Priority encoder

Longest delay to ‘out3’ is for ‘in3’ input

0

1

in0

S0

in1

in3

in2

out3
S1

S2

0

1

0

1

198 RTL Coding Guidelines

Here, the last statement which checks whether P is equal to Q or not is a re-
dundant statement since the first two statements together have already checked
that P is equal to Q. Therefore, this statement may be replaced by the following
statement:
 else out4 = T ;

In the Verilog code, it is shown as a separate circuit whose output is ‘out5’.
Both the circuits use three numbers of two inputs MUX. However, the ‘out5’ cir-
cuit uses only two comparators instead of three used in the case of ‘out4’. This
will become clear when we run the synthesis tool later on.

Before we wind up RTL coding guidelines, let us consider the usage of a cou-
ple of Verilog Directives for ‘case’ statements:

• Synopsys full_case
• Synopsys parallel_case

Full_case indicates that all cases are specified even if they don’t consider all
possibilities. It may be noted that the full_case infers a multiplexer and does not
infer a latch as shown in the Verilog_code 5.1. Do not use default for the Synop-
sys full_case as you do in the normal ‘case’ statements without Verilog Directives.
In the code, one-hot assignment (i.e., only one ‘1’ entry in the signal such as
SELECT = 010) is shown first, followed by regular assignment which is not one-
hot. The following codes infer latches for the outputs since all possible cases are
not specified:
 case (SELECT)

 3’b001: LATCH = A ;
 3’b010: LATCH = B ;
 3’b100: LATCH = C ;
 endcase
Note that in this case, neither Verilog Directive is present nor default specified.

The last but one block, ‘case’, in Verilog_code 5.1 shows the Synopsys paral-
lel_case. It indicates that all cases listed are mutually exclusive to prevent priority-
encoded logic. When SELECT equals AA, the output is assigned ‘001’ value.
Similarly, the output is assigned either ‘010’ value for SELECT = BB or ‘100’ for
SELECT = CC. Three latches are created by the synthesis tool for this block of
codes. These latches may be eliminated and a MUX created instead if Synopsys
parallel_case and full_case directives are combined as shown in the last always
block. The chip area is considerably lower in this case. Therefore, this combina-
tion is a better choice than the parallel_case. The consolidated Verilog code is as
follows.

Verilog_code 5.1
__

/* RTL coding style
 To start with, declare the module you wish to design.
 Note that the design file name is the same as the module name, ‘rtl_coding’.
 .v is the extension to indicate that the design file is in Verilog.

5.7 RTL Coding Style 199

*/
module rtl_coding (// Declare the design module.
 d1 ,
 d2 ,
 clk ,
 Q ,
 Q_n ,
 SEL ,
 A ,
 B ,
 C ,
 out1 ,
 out2 ,
 S2 ,
 S1 ,
 S0 ,
 in0 ,
 in1 ,
 in2 ,
 in3 ,
 out3 ,
 P ,
 QQ ,
 R ,
 S ,
 T ,
 PP ,
 QQQ ,
 RR ,
 SS ,
 TT ,
 out4 ,
 out5 ,
 SELECT ,
 SELECTN ,
 OUT_F_OH ,
 OUT_F ,
 LATCH ,
 AA ,
 BB ,
 CC ,
 OUT_P ,
 OUT_PF // Note the absence of ‘,’ for the last I/O.

);

200 RTL Coding Guidelines

input d1 ; // Declare the Inputs and Outputs of
input d2 ; // the module.
input clk ;
input SEL ;
input A ;
input B ;
input C ;
input S2 ;
input S1 ;
input S0 ;
input in0 ;
input in1 ;
input in2 ;
input in3 ;
input [7:0] P ;
input [7:0] QQ ;
input [7:0] R ;
input [7:0] S ;
input [7:0] T ;
input [7:0] PP ;
input [7:0] QQQ ;
input [7:0] RR ;
input [7:0] SS ;
input [7:0] TT ;
input [2:0] SELECT ;
input [2:0] SELECTN ;
input [2:0] AA ;
input [2:0] BB ;
input [2:0] CC ;

output Q ;
output Q_n ;
output out1 ;
output out2 ;
output out3 ;
output [7:0] out4 ;
output [7:0] out5 ;
output OUT_F_OH ;
output OUT_F ;
output LATCH ;
output [2:0] OUT_P ;
output [2:0] OUT_PF ;

reg d ;
reg Q ;
reg Q_n ;

5.7 RTL Coding Style 201

reg out1 ;
reg out2 ;
reg out3 ;
reg [7:0] out4 ;
reg [7:0] out5 ;
reg OUT_F_OH ;
reg OUT_F ;
reg LATCH ;
reg [2:0] OUT_P ;
reg [2:0] OUT_PF ;

// Separate Combinational and Sequential Circuits.
// Easy to read and self-documenting.

always @ (d1 or d2)
 begin: COMBINATIONAL_CIRCUIT // Realize XOR of the two
 d = d1^d2 ; // inputs whenever they change state.
 end

always @ (posedge clk)
 begin: SEQUENTIAL_CIRCUIT
 Q <= d ; // Q & Q_n are two different
 Q_n <= !d ; // flip-flops.
 end

// IF statement infers multiplexer
always @ (SEL or A or B)
 begin
 if (SEL)
 out1 = B ; // Both possibilities are
 else
 out1 = A ; // taken into account.
 end

// Latches are inferred unless all signals are assigned in all branches
 always @ (SEL or A or B)
 if (SEL)
 out2 = A ; // Second possibility (SEL = 0)
 // is ignored, resulting in the
 // creation of undesirable latch.

// Priority encoders are inferred by IF–ELSE–IF statements
always @ (S2 or S1 or S0 or in0 or in1 or in2 or in3)
 begin
 if (S2 == 1)

202 RTL Coding Guidelines

 out3 = in0; // Top priority.
 else if (S1 == 1)
 out3 = in1; // Second priority.
 else if (S0 == 1)
 out3 = in2; // Third priority.
 else
 out3 = in3; // Lowest priority.
 end

// Redundant conditions must be removed.
// Don’t code in the following manner.
always @ (P or QQ or R or S or T)
begin
 if (P < QQ)

 out4 = R;
 else if (P > QQ)
 out4 = S;
 else if (P == QQ) // This is a redundant condition

 out4 = T; // which may be removed.
 else
 out4 = out4 ;
end

// Instead, do code it this way.
always @ (PP or QQQ or RR or SS or TT)
begin
 if (PP < QQQ)

 out5 = RR ;
 else if (PP > QQQ)

 out5 = SS ;
 else // The redundant statement is removed
 out5 = TT ; // resulting in the reduction of hardware.
end

// CASE statements must be used if conditions are mutually exclusive.
// Verilog Directives
// ‘full_case’ indicates that all cases are specified.
// Infers a multiplexer – does not infer a latch.
 always @ (SELECT or A or B or C)
 begin
 case (SELECT) // synopsys full_case
 3'b001: OUT_F_OH = A ; // One hot assignment –
 3'b010: OUT_F_OH = B ; // do not use default.
 3'b100: OUT_F_OH = C ;
 endcase
 end

5.7 RTL Coding Style 203

 always @ (SELECTN or A or B or C)
 begin
 case (SELECTN) // synopsys full_case
 3'b001: OUT_F = A ; // Not one hot.
 3'b011: OUT_F = B ;
 3'b110: OUT_F = C ;
 endcase
 end

// The following codes infer latches for the outputs since all possible cases are
// not specified. Also, ‘default’ is not specified.
 always @ (SELECT or A or B or C)
 begin
 case (SELECT)
 3'b001: LATCH = A ;
 3'b010: LATCH = B ;
 3'b100: LATCH = C ;
 endcase
 end

// parallel_case prevents priority-encoded logic but infers a latch.
 always @ (SELECT or AA or BB or CC)
 begin
 case (SELECT) // synopsys parallel_case
 AA : OUT_P = 3'b001 ;
 BB : OUT_P = 3'b010 ;
 CC : OUT_P = 3'b100 ;
 endcase
 end

// Combining parallel_case and full_case directives.
// parallel_case directive prevents priority-encoded logic.
// Infers a multiplexer and not a latch due to full_case directive.

 always @ (SELECT or AA or BB or CC)
 begin
 case (SELECT) // synopsys parallel_case full_case
 AA : OUT_PF = 3'b001 ;
 BB : OUT_PF = 3'b010 ;
 CC : OUT_PF = 3'b100 ;
 endcase
 end
endmodule // End of design.
__

204 RTL Coding Guidelines

The test bench for Verilog_code 5.1 is straightforward and self-explanatory,
and is as follows. The test bench may be put in a separate file named
‘rtl_coding_test.v’. The stimulants are applied using the ‘initial’ block as we have
seen before. A block of codes can be repeated a number of times by using the code
‘repeat’. For example, the following codes using ‘repeat(3)’ repeats the same set
of codes embedded within ‘begin’ and ‘end’ three times. The objective here is to
apply three positive going pulses at the input ‘in1’.

 repeat(3)
 begin
 #5 in1 = 0 ; // Apply a positive going input.
 #5 in1 = 1 ;
 #5 in1 = 0 ;
 end

The test bench for testing the rtl_coding design is given in Verilog_code 5.2.
__

Verilog_code 5.2

/* RTL coding style test bench
This test bench is put into a file called ‘rtl_coding_test .v’.
Note that the design file name is ‘rtl_coding.v’.
*/

`define clkperiodby2 10
`include “rtl_coding.v” // This is the design file.

module rtl_coding_test ;

reg clk ;
reg d1 ;
reg d2 ;
reg SEL ;
reg A ;
reg B ;
reg C ;
reg S2 ;
reg S1 ;
reg S0 ;
reg in0 ;
reg in1 ;
reg in2 ;
reg in3 ;
reg [7:0] P ;
reg [7:0] QQ ;

5.7 RTL Coding Style 205

reg [7:0] R ;
reg [7:0] S ;
reg [7:0] T ;
reg [7:0] PP ;
reg [7:0] QQQ ;
reg [7:0] RR ;
reg [7:0] SS ;
reg [7:0] TT ;
reg [2:0] SELECT ;
reg [2:0] SELECTN ;
reg [2:0] AA ;
reg [2:0] BB ;
reg [2:0] CC ;

wire Q ;
wire Q_n ;
wire out1 ;
wire out2 ;
wire out3 ;
wire [7:0] out4 ;
wire [7:0] out5 ;
wire OUT_F_OH ;
wire OUT_F ;
wire LATCH ;
wire [2:0] OUT_P ;
wire [2:0] OUT_PF ;

// Instantiate the rtl_coding design module.

rtl_coding U1(// Declare the design module.
 .d1(d1) , // Call ports by name so that
 .d2(d2) , // I/Os can be written in any order.
 .clk(clk) ,
 .Q(Q) ,
 .Q_n(Q_n) ,
 .SEL(SEL) ,
 .A(A) ,
 .B(B) ,
 .C(C) ,
 .out1(out1) ,
 .out2(out2) ,
 .S2(S2) ,
 .S1(S1) ,
 .S0(S0) ,
 .in0(in0) ,
 .in1(in1) ,

206 RTL Coding Guidelines

 .in2(in2) ,
 .in3(in3) ,
 .out3(out3) ,
 .P(P) ,
 .QQ(QQ) ,
 .R(R) ,
 .S(S) ,
 .T(T) ,
 .PP(PP) ,
 .QQQ(QQQ) ,
 .RR(RR) ,
 .SS(SS) ,
 .TT(TT) ,
 .out4(out4) ,
 .out5(out5) ,
 .SELECT(SELECT) ,
 .SELECTN(SELECTN) ,
 .AA(AA) ,
 .BB(BB) ,
 .CC(CC) ,
 .OUT_F_OH(OUT_F_OH) ,
 .OUT_F(OUT_F) ,
 .LATCH(LATCH) ,
 .OUT_P(OUT_P) ,
 .OUT_PF(OUT_PF)
);

initial
begin
 clk <= 0 ;
#50 d1 <= 0 ; // Apply all possible combination of inputs to
 d2 <= 0 ; // d1 & d2 to test the realization of d = d1 XOR d2
 // and SEQUENTIAL_CIRCUIT, Q = d ; Q_n = NOT d.
#20 d1 <= 0 ;
 d2 <= 1 ;
#20 d1 <= 1 ;
 d2 <= 0 ;
#20 d1 <= 1 ;
 d2 <= 1 ;

// Check whether IF statement infers multiplexer, and
// whether latches are inferred unless all variables are assigned in all branches.
// Also, check CASE statements with Verilog Directives such as
// full_case and parallel_case, independently as well as together.

#20 SEL <= 0 ; // Don’t start the tests right now.

5.7 RTL Coding Style 207

#20 SEL <= 1 ; // Start the tests by applying various
 A <= 0 ; // combinations of inputs.
 B <= 0 ;
 C <= 0 ;
#20 A <= 0 ;
 B <= 0 ;
 C <= 1 ;
 SELECTN <= 3'b001 ;
 SELECT <= 3'b001 ;
 AA <= 3'b001 ;
 BB <= 3'b010 ;
 CC <= 3'b100 ;
#20 A <= 0 ;
 B <= 1 ;
 C <= 0 ;
 SELECT <= 3'b010 ;
 AA <= 3'b001 ;
 BB <= 3'b010 ;
 CC <= 3'b100 ;
#20 A <= 0 ;
 B <= 1 ;
 C <= 1 ;
#20 A <= 1 ;
 B <= 0 ;
 C <= 0 ;
 SELECT <= 3'b100 ;
 AA <= 3'b001 ;
 BB <= 3'b010 ;
 CC <= 3'b100 ;
#20 A <= 1 ;
 B <= 0 ;
 C <= 1 ;
 SELECTN <= 3'b011 ;
#20 A <= 1 ;
 B <= 1 ;
 C <= 0 ;

#20 A <= 1 ;
 B <= 1 ;
 C <= 1 ;
 SELECTN <= 3'b110 ;
#20 C <= 0 ;

// Check whether Priority encoders are inferred by IF–ELSE–IF statements.
 in0 = 0 ; // Initialize inputs.
 in1 = 0 ;

208 RTL Coding Guidelines

 in2 = 0 ;
 in3 = 0 ;
#20 SEL <= 0 ; // Disable the previous tests.
 A <= 0 ;
 B <= 0 ;
 C <= 0 ;
 SELECT <= 3'b010 ;
 AA <= 3'b001 ;
 BB <= 3'b010 ;
 CC <= 3'b100 ;
 S2 <= 1 ; // Priority encoder test starts here.
 S1 <= 1 ;
 S0 <= 1 ;

 repeat(3)
 begin
 #5 in0 = 0 ; // Apply three pulses to input.
 #5 in0 = 1 ;
 #5 in0 = 0 ;
 end

#20 S2 <= 0 ;
 S1 <= 1 ;
 S0 <= 1 ;
 in0 <= 0 ; // Withdraw previous input and

 repeat(3)
 begin
 #5 in1 = 0 ; // apply another input.
 #5 in1 = 1 ;
 #5 in1 = 0 ;
 end

#20 S2 <= 0 ;
 S1 <= 0 ;
 S0 <= 1 ;
 in1 <= 0 ; // Withdraw previous input and

 repeat(3)
 begin

 #5 in2 = 0 ; // apply another input.
 #5 in2 = 1 ;
 #5 in2 = 0 ;
 end

5.7 RTL Coding Style 209

#20 S2 <= 0 ;
 S1 <= 0 ;
 S0 <= 0 ;
 in2 <= 0 ; // Withdraw previous input and

 repeat(3)
 begin
 #5 in3 = 0 ; // apply another input.
 #5 in3 = 1 ;
 #5 in3 = 0 ;
 end

#20 S2 <= 1 ;
 S1 <= 0 ;
 S0 <= 0 ;
 in3 <= 0 ; // Withdraw previous input and

 repeat(3)
 begin
 #5 in0 = 0 ; // apply another input.
 #5 in0 = 1 ;
 #5 in0 = 0 ;
 end

#20 S2 <= 0 ;
 S1 <= 1 ;
 S0 <= 0 ;
 in0 <= 0 ; // Withdraw previous input and

 repeat(3)
 begin
 #5 in1 = 0 ; // apply another input.
 #5 in1 = 1 ;
 #5 in1 = 0 ;
 end

#20 S2 <= 1 ;
 S1 <= 1 ;
 S0 <= 0 ;
 in1 <= 0 ; // Withdraw previous input and

 repeat(3)
 begin
 #5 in0 = 0 ; // apply another input.
 #5 in0 = 1 ;
 #5 in0 = 0 ;

210 RTL Coding Guidelines

 end

#20 S2 <= 1 ;
 S1 <= 0 ;
 S0 <= 1 ;

 repeat(3)
 begin
 #5 in0 = 0 ; // Apply the same input.
 #5 in0 = 1 ;
 #5 in0 = 0 ;
 end

// Check whether a redundant condition increases the gate count.
#20 P <= 249 ;
 QQ <= 250 ;
 R <= 100 ;
 S <= 150 ;
 T <= 200 ;
 PP <= 249 ;
 QQQ <= 250 ;
 RR <= 100 ;
 SS <= 150 ;
 TT <= 200 ;
#20 P <= 255 ;
 QQ <= 250 ;
 PP <= 255 ;
 QQQ <= 250 ;
#20 P <= 250 ;
 QQ <= 250 ;
 PP <= 250 ;
 QQQ <= 250 ;

#1000 $stop ;
end

always
 #`clkperiodby2 clk <= ~clk ; // Toggle to get a free running clk.

endmodule
__

5.7 RTL Coding Style 211

Summary

Every designer is vitally interested in making his or her design work when imple-
mented as a hardware, which uses FPGA or ASIC. This requires a high degree of
discipline or care while designing such systems. The design can work on the chip
only if it conforms to RTL coding guidelines. The present chapter discussed RTL
coding techniques in depth, which is basically adhering to synchronous design
practices. RTL approach deals with the regulation of data flow, and how the data
is processed using register transfer level as the primary means. Since we deal with
a synchronous design, it should naturally run smoothly through various tools such
as simulation, synthesis and place and route, which tools are described at length in
succeeding chapters.
__

Assignments

5.1 Code the following Boolean expressions in terms of registers and combi-
national logic between them such that the code results in the best possible
processing time. Your codes must be RTL compliant.

a.

b.

c. Z = ∑ (0, 1, 5, 9, 10, 15, 19, 21, 25, 29, 30, 35, 37, 39, 40,
 43, 48, 49, 50, 55, 58, 60, 61, 63)

5.2 Write a test bench for the assignment 5.1.
5.3 Will direct implementation of the following expressions yield RTL com-

pliant code? If yes, explain how and write the code. Otherwise, code
them for RTL compliance.

 U = (CNT_1 >= 128) (CNT_5 = 100) + W
 V = (CNT_1 >= 128) (CNT_2 = 100) (CNT_3 = 200) (CNT_4 = 400)

 (CNT_5 = 100)
 W = (CNT_1 = 500) U
5.4 Write a test bench for the RTL compliant design you have written for as-

signment 5.3.
5.5 Write Verilog code for the circuit given in Figure 5.5 in the text and a test

bench for the circuit.
5.6 Code for the circuit given in Figure 5.9 in the text and a test bench for

verifying the circuit functionality.
5.7 A keyboard is used in a computer or in a musical instrument. A key de-

pressed can be recognized if an input port, key_in [3:0], and an output
port, key_out [3:0], are connected in a matrix with a normally open key
connected across the intersection of an input and an output line as shown

X = (A • B) + (A + B) + (C • D) + (C + D)

Y = (A • B) (A + B) (C • D) (C + D)

__

212 RTL Coding Guidelines

in the Figure A5.1. The computer adopts what is known as the ‘two-key
lock out’ system, and the musical instrument adopts the N key roll over
system. In the former system, when more than one key is pressed simul-
taneously, only the last key released will be recognized, whereas in the
latter, all the keys pressed are recognized so long as they are not released.
The keys require 2.5 ms debouncing time. You may adapt the software
debouncing approach used in microprocessor-based designs. Explain
clearly your design methodology using ASM chart and realize the RTL
Verilog code to implement both the systems.

Fig. A5.1 A keyboard matrix

5.8 Realize the Verilog code to multiply an 8-bit input called ‘data’ by a

fixed constant, 11 and 15 respectively in decimal. Write a test bench.
5.9 An intermediate data called ‘dct [11:0]’ needs to be scaled down by 8.

For example, if dct = 1280, then the scaled output called ‘dctq’ is 160.
Write a Verilog code for implementing the scaling and a test bench.

5.10 Evaluate and test the following expressions using Verilog:
a. i1 – i2 + 2 i3 – 2 i4
b. 100 i1,

where i1 to i4 are 8 bit unsigned numbers.

V+

key_in [3:0]

key_out [3:0]

[3]

[3]

4 x 4.7K

[0]

[0]

Assignments 213

Chapter 6

Simulation of Designs – Modelsim Tool

In Chapter 4, we showed how to write test benches so that we may simulate our
designs presented in Chapter 3 as well as any other designs. Prior to starting the
simulation, we will see how the design flows for VLSI circuits. This will be fol-
lowed by a discussion on design methodology that may be adopted for solving
problems effectively. Finally, we will learn the simulation tool and apply it to ver-
ify our designs covered earlier as well as those that will be covered in later chap-
ters.

6.1 VLSI Design Flow

Before taking up the design of a product, we need to assess the demand for the
product based on market research. Having thus identified the product, we have to

Fig. 6.1 Design flow of VLSI circuits (Continued)

formulate what is called preliminary specifications. We need to discuss with pros-

Fig. 6.1 Design flow of VLSI circuits (Continued)

218 Simulation of Designs – Modelsim Tool

Fig. 6.1 Design flow of VLSI circuits

pective users, and gather more inputs as we progress with drawing a detailed
specification as shown in Figure 6.1. We also need to draw a block diagram of the
system we wish to design at this stage. This is an iterative process that needs to be
done with care before we can freeze the specifications. Finalizing the specifica-
tions at this stage is of paramount importance since the design involves the devel-
opment of hardware such as printed circuit board (PCB), integration, testing, etc.;
rework of which is time consuming and costly. Naturally, this calls for timely user
approval of the finalized specifications. The above hardware development cycle
involving PCB, etc. is not shown in Figure 6.1 since our main interest lies in the
development of Verilog codes for FPGA or ASIC implementation.

Once you are done with detailed specification of the system, you may have to
prove new concepts that you have proposed for implementation. For example, you
might have developed a new algorithm or a new architecture, which you are at-
tempting to implement. These are still unproven and, in order to prove their suit-
ability for the design, you need to use higher-level language such as C or Matlab
and test the codes for all possible combinations that you are likely to encounter
later on in the actual hardware when you implement the design. Even standards
can’t be taken for granted and needs to be tested before undertaking time consum-
ing Verilog codes. When you are sure that your concept is working, then it is right
time for you to start the hardware design. However, for simple designs, the above

6.1 VLSI Design Flow 219

step of proving the concept may be bypassed since it can be easily taken care of in
the Verilog coding.

In the next step, the detailed hardware architecture is worked out. We tend to
design the hardware the way we have coded in C or Matlab using behavioral
statements indiscriminately, which is likely to violate RTL coding style. Such de-
signs are generally not synthesizable and, therefore, not conducive to making
working chips. While designing the architecture, you should keep in mind the ac-
tual hardware involved in the design. For examples, you may wish to realize a step
of your algorithm or a functionality using registers, counters, and pipeline data or
control flow registers at strategic points, and so on. The architecture you conceive
for the design must be in terms of these hardwares such as counters, pipeline reg-
isters, controllers, etc., which when coded in Verilog must be RTL compliant as
explained in chapter on RTL coding guidelines. However, test benches need not
be RTL compliant since they are not parts of designs. Once the architecture is
through, start coding different blocks conforming to RTL techniques. Large de-
signs must be broken down into convenient, manageable chunks of small design
modules as per the dictum, ‘divide and conquer’. Where possible, write independ-
ent test benches to check the functionality of these small modules. This way, there
will be less number of problems to sort out when all these modules are integrated
into a large design.

The next step is to compile your test bench as well as the design using Verilog
compiler that is available in simulation or synthesis tool or independent compiler
like NC Verilog of Cadence. The compiler reports syntax errors, miss-spelling,
etc. Fix errors, if any, and recompile them till they are error free. After that, you
can go on to the next stage, simulation, wherein you use the built-in waveform
viewer to analyze the functionality of your design. If you encounter bugs in your
design, you have to fix them; go back to compiler to repeat the previous step.
These steps are iterative in nature. Beginners, especially, have frustrating experi-
ence fixing errors at the incipient stage. Perhaps, the best way to overcome this
hurdle will be to take a known good working code (such as any of the codes de-
veloped in this book), create deliberate errors, study the error reported and thereby
learn to fix them. Once you are through with this exercise, you will be at home
later on. If there are no bugs, you go to the next step known as the synthesis. Mod-
elsim, signal scan are some of the tools used for simulation.

Using a synthesis tool, you can map on to a particular target device if the de-
vice is an FPGA or a vendor technology library if the design is for an ASIC im-
plementation. Synplify and Leonardo Spectrum are some of the synthesis tools for
FPGA platform and DC compiler of Synopsys is for synthesis of ASIC design.
Synopsys tool also has built-in simulation. The main purpose of synthesis is to
perform logic optimization on your design. Once again, you may encounter errors,
which will have to be fixed. In addition to the syntax errors, the tool will report
RTL non-compliance, frequency of operation specified is too high, setup time vio-
lation, etc. If there are errors, you need to compile, simulate, and synthesize again
after applying appropriate corrective action.

In the case of ASIC design flow, you need to branch off to layout from here. In
synthesis, you will get gate level net list. For example, in FPGA realms, the tool

220 Simulation of Designs – Modelsim Tool

will be mapping your design in terms of look up tables (LUTs), MUX, primitive
gates pertaining to a particular type of FPGA, and so on. For FPGA design, an
electronic data information format (EDF) file will be created finally by the synthe-
sis tool, which you can use as input for the next tool called the place and route (P
& R). Here too, if there are errors, you have to go back for compilation, simula-
tion, and synthesis once again till your design is totally free from errors. At this
stage, the types of errors normally encountered are constraints such as speed of
operation, power, and area are not met. Depending upon the errors reported, you
need to correct your code and go back for compilation, etc. or change constraints
and continue the exercise starting from P & R. Place and route is vendor specific.
Xilinx P & R tool is an example. EDF file generated during synthesis will be input
for place and route tool. In addition to clock constraints, desired input/output (I/O)
pins can also be specified by the designer.

The next step is back annotation if all constraints are met. The real gate delays
come into play only after back annotation. Therefore, the maximum safe fre-
quency of operation for a design can be determined only after the back-annotated
code is tested in the simulation producing the correct results. There is a tendency
among the beginners to do simulation without taking the design through synthesis,
place and route, and back annotation and, jumping to conclusion that the design
works at a very high speed of several hundred Mega Hertz. This is a sure way to
indulge in self-deception since one can simulate the design at any desired speed in
the order of GHz and, therefore, is required to be curbed right in the incipient
stage. What are practical on FPGAs are 50 to 100 MHz operation speeds depend-
ing upon the gate delays in the design.

On ASIC platform, depending upon the technology used, one may achieve two
to four times the operating frequency that can be achieved on FPGAs for the same
design. This aspect will be made clear in the later chapters when we actually see
the back-annotated results for some of the designs. If the desired timing is not
achieved after simulation of back annotated design, then one must explore the
possibility of adding more pipelining stages, modify or correct code accordingly
and repeat the tool iteration starting from compilation till the desired timing is
achieved. One may also switch over to faster devices if available. If the desired
timing is not achieved even after a number of iterations, then one must settle down
for the maximum possible frequency of operation and compromise on the specifi-
cations accordingly. When the technology improves, one may hope to get better
performance. If the timing constraint is finally met, FPGA implementation may be
taken up.

The FPGA implementation step requires the populated PCB with the target
FPGA mounted and duly tested to ensure the healthiness of the entire hardware.
Trouble shooting of the hardware may be undertaken using logic analyzer, pattern
generator, and a development system. Usually, when the specifications of the sys-
tem are frozen, the above-mentioned hardware is also developed simultaneously
as far as feasible with the development of Verilog code. This, naturally, requires
an assessment of the right package, size, and speed of the target FPGA beforehand.
For the same type and package of FPGA, it is possible to migrate from smaller ca-
pacity to higher capacity in a limited way without the need to rework the PCB. In

6.1 VLSI Design Flow 221

short, the whole design process is an iterative process; you have to do it again and
again till you get a totally bug free code that will work on your circuit board fi-
nally in accordance with the specifications formulated. After place and route, a bit
stream is generated. This bit stream is meaningful only if timing constraint is met
and needs to be downloaded into the FPGA either from an on-board EPROM or
from the development system using parallel or serial port to configure the FPGA
to your application. If you are an intellectual property (IP) core designer, you need
to supply only the bit stream along with proper documents, and there will be no
need to deliver the actual hardware.

In the case of ASIC design, after running through synthesis using Synopsys,
layout and its verification are carried out using Cadence back-end tool and taping
out the design to the fabricator. As in the case of FPGA design, the PCB is devel-
oped using the fabricated IC and tested, thus completing the ASIC implementa-
tion. In ASIC platform, in addition to clock constraints, you can specify power as
well as chip area as constraints. As mentioned before, the hardware and Verilog
coding may be developed simultaneously. Normally, a team of engineers will be
developing the hardware and another team developing Verilog codes, if the project
size is large. Both the teams need to interact with each other effectively in order to
deliver the final product to the satisfaction of the user.

In Altera FPGA development platform, there is what is called localized para-
metric modules (LPM), whereas in Xilinx they have Logiblox and Coregen mod-
ules. They are tailor made design modules for different applications such as multi-
pliers, filters, etc. Although they are menu driven and speed up the development
cycle, they are all vendor-specific and, therefore, cannot be used if you intend mi-
grating from one FPGA vendor to another or proceed to ASIC implementation.
Therefore, this design book does not use any of the vendor-specific modules. The
approach adopted in this book enables the Verilog codes developed to work on
any FPGA platform as well as on the ASIC platform without the need to change
the codes.

6.2 Design Methodology

Before we start on a particular design, we need a strategy or methodology for de-
signing systems efficiently. For instance, we may be designing a very complex
system requiring the development of long codes. As pointed out before, we need
to break up large designs into smaller modules so that debugging the codes is
made easy. Any design has a top level module, which may call lower level mod-
ules, which in turn may call still lower level modules, and so on. In the examples
we covered earlier, namely, combinational and sequential circuits design, we had
only top level and no lower level modules. However, if we have bigger designs
such as those we will be dealing in the later chapters, it is a good practice to down
size those designs to smaller submodules and further submodules, and so on as per
our system requirements. In this fashion, you can go to any number down below.
Here, the idea is that we need to manage only small modules at a time, while

222 Simulation of Designs – Modelsim Tool

developing the design. There are two approaches basically: Bottom-up design
methodology and top-down design methodology.

Once you have coded and tested the modules of lowest level, you can put them
together to form a higher level and test that higher module. This way, you can
move your design from bottom till you eventually reach the top as shown in Fig-
ure 6.2. For example, let us say that we have a large design called ‘dctq’ which re-
quires a maximum of two levels below the top design, dctq, as shown in Figure
6.3. Lowest level module in this design hierarchy is ‘ram_rc’, which is being
called twice by the module ‘dualram’. In addition to this module, the top design
instantiates multipliers such as ‘mult8ux8s’, adders such as ‘adder12s’ and regis-
ters, ‘dctreg2x8xn’, ROMs such as ‘romc’ and a controller named ‘dctq_controller’.
If none of these modules are already available at the time of commencing our de-
sign, in this methodology, we need to start the design from any of the lowest level
module, ram_rc for instance. Instead of ram_rc, we can start from mult8ux8s or
adder12s or any other module at the same level since these modules do not depend
upon each other. It may be noted that dualram module can be designed only after
ram_rc module is developed and satisfactorily tested and not before. Similarly, the
top design, dctq, can be developed and tested only after all other modules are
completed.

Another approach to the design is the top-down methodology as shown in Fig-
ure 6.4. Of all the modules, the top design is closest to the product specification.
Therefore, in this method, we start the design with the top level module and move
down. This approach is handy if submodules, which you or other design team
members have developed earlier for some other project, are already available to
you. Often, it is necessary that some of these modules be modified to suit the pre-
sent application. At every stage, naturally, you need to develop a test bench to
check the functionality pertaining to that stage of development. This way, when

Fig. 6.2 Bottom-up design methodology

6.2 Design Methodology 223

Fig. 6.3 An example of a design hierarchy

Fig. 6.4 Top-down design methodology

224 Simulation of Designs – Modelsim Tool

you integrate all the modules finally, it is not likely to present problems. We can’t
possibly say which of the two methodologies is the best approach for a design. In
real practice, a mix of both these methodologies is required making use of the
available designs on hand and proceeding on either direction to achieve the de-
sired goal in minimum possible time.

Let us now gain hands on experience with simulation. We will be using ModelSim
[18] for simulating our designs. Update latest versions periodically since there
may be useful new features. A command summary of this tool is presented as a
ready reckoner towards the end of the chapter. To start with, we will take for
simulation the simple design, two-input AND gate, whose test bench was devel-
oped in an earlier chapter.

Creating a Project: Double click on the ModelSim icon (Figure 6.5) on your

desktop to open the simulator. Two windows open as shown in Figures 6.6 and
6.7. To begin with, we need to create a new project, so click on “Jumpstart” fol-
lowed by “Create a Project” in the Welcome window. Another window shown in
Figure 6.8 also opens. You can also create the project by clicking-on “File => New
=> Project” and keying-in ‘and_2input’ in “Project Name” field. Also use “Browse”

Fig. 6.5 Icon of ModelSim simulator

Fig. 6.6 Welcome message of ModelSim

6.3 Simulation Using Modelsim

6.3 Simulation Using Modelsim 225

Fig. 6.7 Opening menu of ModelSim main window

Fig. 6.8 Create (new) project window and add existing file

to select the desired “Project Location” such as ‘D:\ram\verilog_latest\dvlsi_des_
Verilog’, where your design is residing. Making sure that “work” is specified in
“Default Library Name” field, click on “OK”. Another window called “Add items
to the Project” opens. Click on “Add Existing File”. In a new window “Add file to
a Project” that opens, select the desired test bench ‘and_2in_test.v’ using
“Browse”. Next time, if you wish to go straight away to the same project,
‘and_2input’, select “Open Project” in the “Welcome” menu. Click on OK. Click
on “Open Documentation” in the “Welcome” menu if you wish to use the tool
documentation. “Close” the “Welcome” menu window. At the command prompt,
“modelsim>” in the main window (Figure 6.7), you may use the operating system
commands such as ‘pwd’ for printing the working directory, ‘dir’ for displaying
the contents of the current directory, ‘cd’ for changing the directory, etc.

Compilation: The next step is to compile your design. In the main window,
click on “Compile” followed by “Compile” or “Compile All”. A new window
called “Compile Source Files” opens as shown in Figure 6.9. Click on
“and_2in_test” followed by “Compile”. Since we have already included the design
file in the test bench, it is enough if we compile the test bench. The tool will com-
pile the design as well as the test bench in that order automatically. You can
ensure this by clicking on “Compile” => “Compile Summary”. Errors, if any, will

226 Simulation of Designs – Modelsim Tool

Fig. 6.9 Compile window

be reported in the main window. If there are errors, you will have to correct the er-
rors in your code using “Edit Source” in “Compile Source Files” window and re-
run the compiler. Click on “Done” to dismiss the compilation window. In the next
chapter, we will see how to tackle these errors. Finally, when there are no errors
encountered, you can do the simulation.

Simulation: In order to start the simulation of the design, click on “Simulate
=> Start Simulation”. The window named “Start Simulation” shown in Figure
6.10 pops-up. Click on “+” on the left of ‘work’. Click on the desired test bench
followed by “OK” to load the test bench and the design. While loading the design,
errors or warnings may be encountered. If your system time is different from that
of the server, which has the license (for ModelSim SE/PE versions), error will be
reported. The remedy is to set the system time correctly. Warnings such as Mod-
ule ‘and_2in’ do not have a timescale directive in effect, but previous modules
(and_2in_test) do may be ignored. The timescale is mentioned only in the test
bench and not in the design, since synthesis tool will ignore all timescale settings
in the design.

=> Workspace” to view the Workspace in the main window. Make sure that a tick
mark appears to the left of “Workspace”. In this window, click on “View => De-
bug Window => Objects” followed by “View => Debug Window => Wave” to
open the Objects (Signals) and Waveform windows showing the timing diagram
(see Figures 6.11 and 6.12). In “Objects” pane, click on “Add => Wave => Sig-
nals in Design” to display all the signals in the test bench as well as in the design
in the waveform window. ‘A’, ‘in’, and ‘out’ are the signals in the test bench,
whereas their counterparts in the design are ‘A’, ‘B’, and ‘Y’. ‘u1’ is the in-
stance we have used in the test bench to call the design. In order to get the wave
forms, click on the icon marked “Run-all” in the wave window. The source file

Waveform Analysis: The main purpose of simulation is to get the timing dia-
gram so that our design may be tested functionally. In the main menu, click on “View

6.3 Simulation Using Modelsim 227

Fig. 6.10 Simulation window

(test bench) is also opened, which you can close if you do not need it. Click on
“Zoom Full” icon in the “Wave” window to view the entire timing diagram. You
can use “Zoom in” and “Zoom out” to get the display size convenient for analysis.
The simulation result for the two-input AND design is shown in Figure 6.13.
Upon inspection of the displayed waveforms, you will see that the result tallies
with the timing diagram and truth table shown for the design, and_2in, in the
chapter on test bench. It may be noted that design signals A, B, and Y are exactly
the same as the corresponding signals A, in and out of the test bench. You can use
“Restart” to clear the display and “Run-all” (in the main or wave window) to run and
capture the waveform once again, if you wish. You can also use “Run” icon to ad-

Fig. 6.11 Signals window

vance the waveform in small steps, which you can key-in in the “Run Length” field in

228 Simulation of Designs – Modelsim Tool

Fig. 6.12 Wave window

Fig. 6.13 Simulation result of ‘and_2in’ design

the Wave window. Click on “Select Mode” if “Run” keys are not energized in the
wave window.

Let us investigate some more features of the simulation tool. If the waveforms
are displayed in the fashion shown, it will be too crowded for you to view large
designs. Fortunately, we have a way out of this and that is by using the format
menu. In the wave window, click on the first column, signal ‘A’ and, holding the
shift key, click again on the last signal ‘Y’ to highlight all the signals. Click on
“Format” and “Height” to open a window marked “Wave Height”. Enter, say, 55
pixels in “Height” field followed by “OK” and note that the signals are separated

6.3 Simulation Using Modelsim 229

making the display uncluttered, thus enhancing the readability. We can put the
cursor anywhere in the waveform by simply clicking at the desired place on the
waveform display. Exact time co-ordinate of the cursor is displayed. The second
column gives the digital level of the signals prevailing at the cursor position. You
may get a feel of the same by clicking at different points of time. You can change
the order of display of signals if you wish to compare two or more signals. For in-
stance, let us say we wish to relocate the last signal ‘Y’ after the third signal ‘out’.
Click on the signal ‘Y’ and drag it up to the new position in between the signals
‘out’ and ‘A’ and drop it. You can do the relocation of a bunch of signals by high-
lighting them and dropping at the desired location. We will cover more features
when we simulate other designs.

It may be noted that there are no gate delays involved in the present level of
simulation since no vendor specific device is mapped. Gate delays will get re-
flected only after running other tools such as synthesis, place and route, and back
annotation, which will be covered in subsequent chapters.

In the test bench ‘and_2in_test.v’ (see Verilog_code 4.2) for functional check-
ing of the design ‘and_2in.v’, we applied stimulus as follows:
 A = 0; in = 0; // Apply stimulus at time 0.

#20 A = 0; in = 1; // Change inputs at time 20 ns,
#20 A = 1; in = 0; // 40 ns, and
#20 A = 1; in = 1; // 60 ns.

Although the statement #20 is cumulative, the readability is poor, especially
for long codes. We have to keep track of the actual time by proper commenting as
shown. A better way to code is as follows:
 A <= 0; in <= 0; // Apply stimulus at time 0.
 A <= #20 0; in <= #20 1; // Change inputs at time 20 ns,
 A <= #40 1; in <= #40 0; //40 ns, and
 A <= #60 1; in <= #60 1; //60 ns.

Note that “=” sign is replaced by “<=” sign needing two key strokes instead of
one. You have to pay a further price by adding the timing statement for every in-
put. For long codes, this is not convenient. Therefore, the designer must use his
discretion to use one of the two methods effectively.

The timescale resolution specified in the test bench is 100 ps, i.e., 0.1 ns. For
time setting of 20.35, for example, the tool will round it off to the next higher
value, 20.4.

6.3.1 Simulation Results of Combinational Circuits

‘comb_ckts.v’. Just as we had created a project for two-input AND gate earlier,
we need to create a new project for combination circuits as explained before. This
is followed by compilation and loading of the test bench ‘comb_ckts_test.v’. In-
voke the waveform and run the simulation. Results are shown in figures starting

bench in Chapter 4. We will now see the simulation results for the design,
We have seen the design of combinational circuits in Chapter 3 and its test

230 Simulation of Designs – Modelsim Tool

from Figure 6.14. From now onwards, the waveforms will be shown with white
background instead of black shown earlier. This is only to enhance the readability.
Rearrange the waveforms to facilitate easy analysis. The realization of basic gates
is shown in Figure 3.1, where signals A and B are the inputs and F1 through F8
are the outputs. The output F1 is a buffered output of A and, therefore, the wave-
forms for these signals are the same as seen in the figure. Similarly, F2 is the in-
verse of A for all input data. F3 being the AND operation of the two inputs A and
B, it is high only for A = B = 1. F4 is A OR B and hence it is ‘0’ only for A = B =
0. F5 and F6 are just the inverses of F3 and F4 respectively being ‘Not AND’ and
‘Not OR’. F7 is exclusive OR of A and B. Therefore, it is high only for A not
equal to B. F8 is XNOR (denoting equivalence) and hence it is the inverse of F7.

F9 depicts the majority logic among the three inputs A, B, and C. This means
that the output is logic ‘1’ if two or more ones are present among the inputs. This
may be easily verified by inspecting the waveforms shown in Figure 6.15. F10 is
concatenation of the three inputs A, B, and C in that order progressing in binary
starting from 000 and changing every 20 ns. F11 and F12 are respectively F10
right shifted by one bit and left shifted by two bits as can be easily verified from
the figure.

A, B, and C are the select pins used for MUX. Figure 3.4 in Chapter 3 showed
a two-input MUX with A used as the select signal. I0 appears at the output mux2
if A = 0. Otherwise, mux2 output is the same as I1. This can be verified by in-
specting Figure 6.16. In Figure 3.5, a four-input MUX was shown. I0 through I3
are routed to its output, mux4, depending upon the select signals B and C. For BC =00,

Fig. 6.14 Simulation result of ‘comb_ckts’ design – basic logic gates

6.3 Simulation Using Modelsim 231

I0 is selected and so on as is seen in Figure 6.16. Eight-input MUX shown in Figure
3.6 can also be verified in a similar fashion. An easier way to verify it is by combin-
ing it with the eight-output DEMUX. Thereby, the DEMUX is also functionally
verified. It may be noted that the select pins for the MUX and DEMUX are the
same. Since the mux8 output of the eight-input MUX is connected to the input of the
DEMUX, it follows that its outputs D0 to D7 are precisely the same as I0 to I7 input
signals of the MUX. This is indeed true as is revealed from Figure 6.16.

Next in line in the combinational circuits design is the full adder. In Section
3.26, we considered three different ways of implementation for the same. In all
these cases, the inputs are A, B, and C. C may be regarded as the carry in and the
others as the two input bits needing to be added. The first one is the behavioral

Fig. 6.15 Simulation result of ‘comb_ckts’ design – concatenation and shift
operations

Fig. 6.16 Simulation result of ‘comb_ckts’ design – MUX and DEMUX

level of realization, wherein the output is sum_total [1:0], higher order bit [1]
being the carry out and bit [0], the sum. The result tallies with the truth table

outputs are ‘sum_df’ and ‘carryo_df’ (‘df’ standing for data flow) and, the last is the
given in Figure 3.8. The second realization is the data flow structure whose

232 Simulation of Designs – Modelsim Tool

The next part of the design is a magnitude comparator shown in Figure 3.10.
The simulation results for the same are shown in Figure 6.18. Two numbers, N1
and N2, are compared, and outputs F13 through F18 are set accordingly as shown
in Figure 3.10. In the waveform, select N1 and N2 and click on “Format => Radix
=> Unsigned” to view them as unsigned decimal numbers. This way, it will be
convenient to make the comparison faster. F13 to F15 outputs are straightforward.
They reflect the three conditions N1 > N2, N1 < N2, and N1 = N2 respectively.
Note that F15 and F16 waveforms are inverses of each other since the first one

Fig. 6.17 Simulation result of ‘comb_ckts’ design – full adder

Fig. 6.18 Simulation result of ‘comb_ckts’ design – magnitude comparator

structural realization using primitive gates with the corresponding outputs ‘sum’
and ‘carryo’. The sum and carry outputs of the three types must be the same and
can be easily seen from the waveforms shown in Figure 6.17. Visually comparing
the waveforms sum_total [1], carryo_df, and carryo reveals that they are exactly
the same. So is the case with signals sum_total [0], sum_df, and sum. These sig-
nals may be relocated one below the other to make the comparison still easier.
You can move from one transition to another, be it positive or negative transition.
For instance, select or highlight signal ‘C’ by clicking on the signal on the simula-
tor waveform and clicking on “Find previous transition” or “Find next transition”
as per your need. This will be very handy while analyzing sequential circuits.

6.3 Simulation Using Modelsim 233

Fig. 6.19 Simulation result of ‘comb_ckts’ design – an example

looks for equality and the other for inequality. Similarly, F14 (N1 < N2) and F18
(N1 >= N2) are inverses of each other. So is the case with F13 (N1 > N2) and F17
(N1 <= N2). Looking this way, analysis will be easier and faster.

A simple design example using a magnitude comparator was shown in Figure
3.11. The simulation results for that application are shown in Figure 6.19. As
shown therein, all the outputs are cleared so long as the signal enable_sum is not
active. The SUM is computed only for data applied at 10 ns, 20 ns, and 40 ns. For
the first set of data, the SUM is 500, which is the same as the PRESET_VALUE
and, therefore, the signal MATCH is activated. For the next set of data, the SUM
is 501 and, being greater than the PRESET_VALUE, MORE is turned on this
time. Similarly, for the last set of data, the SUM is 355 and the signal LESS is
switched on. Of the three discrete signals, only one signal among them is turned
on at one time.

6.3.2 Simulation Results of Sequential Circuits

In Sections 3.3 and 4.3, we considered the design and its test bench respectively
for the sequential circuits. We will discuss the results for the same. Figure 6.20
shows the simulation result of a D flip-flop with reset, a block diagram of which
was shown in Figure 3.12. A low pulse at the reset_n pin clears the Q output and
presets the Q_n output. A positive edge of ‘clk’ signal at 30 ns has no effect on the
flip-flop since the asynchronous input, reset_n, is still asserted. When the ‘clk’
strikes again at 50 ns, the ‘D’ input is (presently logic ‘0’) assigned to Q output.
Similarly, with the rising edge of ‘clk’ the next time, the Q output is set since D
input is high now. Q_n is simply the inverse of Q at all times.

In Figure 3.13, we saw the realization of registers. Simulation results for the
same are shown in Figure 6.21. ‘pixelout_valid’ is just the delayed output of ‘‘pix-
eloutp_valid’ register by a clock period. To start with, both registers are cleared
with the arrival of reset_n pulse. Subsequently, when ABC is forced to 010
(set_pixout = 1), the first register ‘pixeloutp_valid’ is set at the following rising
edge of ‘clk’ signal. Since the ‘hold’ signal is applied for 20 ns commencing from
60 ns, the register ‘pixelout_valid’ is not set at 70 ns with the rising edge of ‘clk’,
but only with the subsequent clock when ‘hold’ is withdrawn. This ‘hold effect’

234 Simulation of Designs – Modelsim Tool

Fig. 6.20 Simulation result of sequential circuits – D flip-flop with reset

Fig. 6.21 Simulation result of sequential circuits – Realization of registers

can be easily inferred by observing the delay of one clock period between the
negative edges of the two registers, ‘pixeloutp_valid’ and ‘pixelout_valid’, when
‘hold’ is not asserted. When hold was asserted, the delay between the positive
edges of the two registers was two clock periods. ‘pixeloutp_valid’ goes low with
the following rising edge of ‘clk’ (at 150 ns) after ‘reset_pixout’ goes high (ABC
= 111).

Figure 3.14 depicts the realization of a counter and Figure 6.22 its simulation
results. A low pulse at ‘reset_n’ pin clears the counter, ‘cnt_reg’. The counting
starts only at the positive edge of ‘clk’ (@ 150 ns) following ABC = 111, i.e.,
when ‘adv_cnt’ goes high. Of course, the signal ‘res_cnt’ must remain low for
counting to take place. It may be noted that ‘cnt_next’ is an advance increment of

6.3 Simulation Using Modelsim 235

‘cnt_reg’ since that signal is realized as a combinational circuit (using ‘assign’
statement). The counting takes place at every rising edge of the ‘clk’. In the wave-
form, both the ‘cnt’ signals have been mapped as ‘unsigned’ decimal numbers in-
stead of mapping it as binary numbers. The second figure gives the waveform of
the same running counter towards the end of one cycle. When ‘cnt_reg’ is 255, the
signal ‘res_cnt’, which is a combinational circuit, goes high and, with the arrival
of the following positive edge of ‘clk’, the ‘cnt_reg’ is cleared. ‘cnt_next’ being
advance count of ‘cnt_reg’, it is always ahead by one count value. Since the signal
‘adv_cnt’ continues to be asserted, the counter repeats the counting non-stop.
From the two figures, it may be noted that count ‘0’ starts at 130 ns and the count
‘255’ ends at 5250 ns, thus taking 256 clock cycles to complete one round of
counting.

We will now consider the simulation of non-retriggerable monoshot we de-
signed in Section 3.3.4. The test bench for the same was discussed in Section 4.3.
Figure 6.23 shows the simulation results of the non-retriggerable monoshot. The
monoshot is based on the operation of an 8-bit counter, ‘cntd_reg’. To start with,
applying a negative going pulse at the pin ‘reset_n’ clears this counter. Applying
an asynchronous positive going pulse of duration one clock period minimum to
the ‘trigger’ input will enable the counter. The rising edge of ‘trigger’ is derived
from the signals ‘triggerp’ (meaning previous value of trigger input and is syn-
chronous to the clock) and ‘run_delay’. The last signal is detected as high only at

Fig. 6.22 Simulation result of sequential circuits – Realization of a counter
(Continued)

236 Simulation of Designs – Modelsim Tool

Fig. 6.22 Simulation result of sequential circuits – Realization of a counter

Fig. 6.23 Simulation result of sequential circuits – realization of a non-retrig-
gerable monoshot (Continued)

(70 ns) the rising edge of the ‘clk’. Immediately, the counter is enabled and the
timer output, ‘delay_out’, goes high. ‘cntd_next’ is the advance increment counter
of ‘cntd_reg’. The counter updates its value every rising edge of the ‘clk’ until the
end of set delay, namely, 255 cycles. The ‘trigger’ is applied again at 300 ns to see
whether the timer is not triggered. Inspection of the first waveform reveals that
this is true since ‘cntd_reg’ continues to run and is not cleared at 310 ns. Also,
there is no change in the output, ‘delay_out’ at this point of time. Towards the end

6.3 Simulation Using Modelsim 237

of timing (at 5170 ns), the signal ‘cntd_next’ is 255 and register ‘cntd_reg’ is 254.
At this point of time, ‘clk’ signal rises high, advancing ‘cntd_reg’ to 255 since
‘delay_out’ is still high. This in turn makes the signal, ‘res_cntd’ go high. Since
the signal going high is also reckoned as the positive edge, the ‘always’ block in
the design processes the very first (if) block, which clears the counter, ‘cntd_reg’
as well as the timer output, ‘delay_out’. All these activities take place in a very
short time as is revealed by a narrow pulse for the signal, ‘res_cntd’ at 5170 ns.

In Section 3.3.5, we considered two ways of implementing a shift register, one
by using the conventional shift register symbol, “>>” and the other by using con-
catenation. Both these methods used the simple “assign” statements to produce the
same results.

The block diagram of a 16-bit right shift register was shown as an example in
Figure 3.16. ‘data_out1’ and ‘data_out2’ are the shift registers used in the two
methods. Actual shift right operations are carried out in advance by using combi-
national circuits, whose outputs are ‘dataout1_next’ and ‘dataout2_next’ respec-
tively. A negative pulse applied to the ‘reset_n’ presets the shift registers
‘data_out1’ and ‘data_out2’ to 1010_1010_1010_1010 as shown in Figure 6.24.
‘dataout1_next’ and ‘dataout2_next’ exhibit the single bit right shift effected in
anticipation. However, no shift operations take place until the signal ‘shift’ is as-
serted at 140 ns in the shift registers ‘data_out1’ and ‘data_out2’. At the following
rising edge of ‘clk’ (@ 150 ns), the contents of shift register is right shifted to
0101_0101_0101_0101. It may be noted that ‘0’ fills the vacated MSB bit and the
LSB ‘0’ gets dropped in the process. Concurrently, ‘dataout1_next’ and
‘dataout2_next’ are pre-right shifted to 0010_1010_1010_1010. This is shown in
the second sequence of Figure 6.24. This trend of right shifting by one bit every
‘clk’ cycle continues until 450 ns when all the 16 bits are shifted. Hereafter, the

Fig. 6.23 Simulation result of sequential circuits – realization of a non-retrig-
gerable monoshot

238 Simulation of Designs – Modelsim Tool

Fig. 6.24 Simulation result of sequential circuits – realization of shift register
(Continued)

Fig. 6.24 Simulation result of sequential circuits – realization of shift register
(Continued)

shift registers will be stuck at 0000_0000_0000_0000 since the new vacated bits
continue to be zeros.

The next design we saw in Section 3.36 was a parallel to serial converter and
whose block diagram was shown in Figure 3.17. Figure 6.25 shows the simulation
results for the same. With the application of the reset pulse, all the outputs,
data_out, data_valid, and eoc are switched off. The shift register, sr, is pre-loaded
with a pattern, say, 1010_1010_1010_1010 when the ‘load’ signal is applied. The
data is actually input from the signal, set_data [15:0]. This takes effect at 50 ns
with the rising edge of ‘clk’ after the reset pulse is withdrawn. We don’t need to
mind that ‘load’ has already taken effect at 10 ns before the reset pulse is applied.

6.3 Simulation Using Modelsim 239

Fig. 6.24 Simulation result of sequential circuits – realization of shift register

Fig. 6.25 Simulation result of sequential circuits – realization of parallel to se-
rial converter (Continued)

An internal counter, ‘cnt_ps_reg’, that keeps track of the number of bits remaining
to be sent over a serial channel output (data_out) is also preset with the total num-
ber of bits, say, 16, to be transmitted. The aim of this design is to transmit a bit
stream out from a parallel word acquired from the input, set_data. The first bit in
the stream will be either the MSB or the LSB of the parallel information, depend-
ing upon the type of shift implemented. For the transmission of MSB first, left
shift needs to be done, whereas for the LSB first, right shift will have to be done.
This is taken care of by the signal, rl_n. For a right shift, it is high. Otherwise, it is
low. To start with, let us say that we want to transmit the LSB first in order to ef-
fect the parallel to serial conversion. This requires that we set ‘rl_n’ signal high.

240 Simulation of Designs – Modelsim Tool

Fig. 6.25 Simulation result of sequential circuits – realization of parallel to se-
rial converter (Continued)

Fig. 6.25 Simulation result of sequential circuits – realization of parallel to se-
rial converter (Continued)

Actual shift operation starts only if the signal ‘shift_ps’ is set high and ‘load’ low
at 60 ns. With the arrival of the ‘clk’ at 70 ns, ‘sr’ is right shifted to
0101_0101_0101_0101, transmitting the LSB (logic ‘0’) onto the output pin,
‘data_out’ with ‘data_valid’ signal asserted. Since the first bit is transmitted now,
the counter, ‘cnt_ps_reg’ is decremented by one to a value 15, which implies that
we need to transmit 15 more bits.

6.3 Simulation Using Modelsim 241

These operations of right shifting, outputting, and updating the counter take
place every 20 ns till all the 16 bits of the parallel word are transmitted. Note that
the vacated bits of the shift register, sr, are filled with zeros. It may also be noted
from the sequence of waveforms presented that the ‘data_out’ goes low and high
alternately till all the bits are transmitted at 390 ns. When this happens, the
‘data_valid’ signal is withdrawn and the end of conversion signal ‘eoc’ goes high
to indicate that all the 16 bits are sent out to the serial channel. All along, the
counter ‘cnt_ps_reg’ went on counting down by one every time the positive edge
of the clock arrived. When the counter touched the value “0”, the ‘data_out’ re-
ceived the last (MSB) bit of the set_data, 1010_1010_1010_1010 at 370 ns. Note
that ‘sr’ held the value 0000_0000_0000_0001 during the interval between 350 ns
and 370 ns; LSB of ‘sr’ at this point of time is nothing other than the MSB of the
‘set_data’. Since the signal ‘shift_ps’ is still kept active, the right shift continues to
take place, transmitting out logic ‘0’. However, the ‘data_valid’ signal is with-
drawn, signaling the end of conversion.

So far, we have seen the simulation results for right shift operation. We will
now see the same for left shift operation. This time, a different data,
00101_0101_0101_0101 is loaded in to the shift register, sr, through the input
‘set_data’ and by asserting the ‘load’ signal at 525 ns. Also, the signal ‘shift_ps’ is
deasserted for obvious reasons. However, ‘set_data’ appears at ‘sr’ register only at
the following ‘clk’ edge at 530 ns. The counter ‘cnt_ps_reg’ is also initialized to
16 as was done before. The signal ‘eoc’ is also cleared. Since we need left shift
operation this time, the input ‘rl_n’ is made low. The signal ‘shift_ps’ is asserted
while ‘load’ is deasserted. The ‘sr’ register contents are shifted left; one bit every
‘clk’ pulse, commencing from 550 ns. The vacated bit on the LSB of ‘sr’ is filled
with zero. Note that the first transmitted bit out of ‘data_out’ is the MSB, namely,

Fig. 6.25 Simulation result of sequential circuits – realization of parallel to se-
rial converter (Continued)

‘0’. The signal ‘data_valid’ goes high, and ‘cnt_ps_reg’ counts down every clock

242 Simulation of Designs – Modelsim Tool

cycle. Towards the end, the ‘data_out’ receives the LSB of the ‘set_data’, namely,
‘1’ at 850 ns. With the arrival of the next clock pulse at 870 ns, the ‘data_valid’
goes low and ‘eoc’ goes high since all the 16 bits of parallel data are transmitted
with the MSB as the first outgoing bit.

A model state machine was pictorially depicted in Figure 3.18. The Verilog de-
sign and its test bench were presented in Verilog_code 3.16 and Verilog_code 4.4
respectively. At 0 ns, the input ‘in1’ was forced to ‘0’ in the test bench. Following
this, the ‘clk’ arrives at 10 ns. Towards the end of the design, the statement “de-
fault: state <= `S0 ;” takes effect and hence the ‘state’ is initialized to S0 state.
The circuit starts functioning only after the application of the ‘reset’ pulse when
all the ‘Z’ outputs are cleared and the ‘state’ remains in ‘S0’ as shown in the simu-
lation waveform, Figure 6.26. So long as reset pulse continues to be active, that
long the Z0 output remains cleared although the ‘state’ continues to be in ‘S0’ as
can be inferred from the design. The output Z0 goes high only with the arrival of
the rising edge of ‘clk’ at 50 ns since reset pulse is with drawn only after 40 ns. At
140 ns, the input ‘in1’ is applied and is sensed with the arrival of the positive edge
of ‘clk’ when the ‘state’ changes to S2 (10). Since this state is recognized only at
the next rising edge of clock at 170 ns, the Z0 output continues to be high till the
next clock strikes.

In S2 state, the input ‘in2’ is ‘0’ and hence the output Z2 is turned on, while
the output Z0 is turned off. The next state is S1 as can be seen in the waveform
and crosschecked from the state graph presented in Chapter 3. When the next
clock arrives at 190 ns, Z1 is turned on and Z2 is turned off since the input ‘in2’ is
asserted in the meanwhile, thus forcing the machine to remain in the S1 state. This
continues until in1, in2 are made 1,1 and subsequently recognized at 230 ns. The

Fig. 6.25 Simulation result of sequential circuits – realization of parallel to se-
rial converter

next state is the S3 state. With the arrival of the next clock, the output Z3 is turned

6.3 Simulation Using Modelsim 243

on and all other outputs are cleared since the state machine is now in S3 state. At
260 ns, prior to the arrival of the positive clock edge, in1, in2 are set to 0,1. When
the clock arrives, the machine state changes to S1 as can be seen both from the
state graph and the timing diagram. Similarly, in S1 (01) state, which is recog-
nized at 290 ns, the output Z1 is switched on while switching off all other outputs.
The input is again changed to in1 = 1 (in2 continues to remain at ‘1’) at 300 ns.
The rising edge of clock at next transition is S0 since ‘in2’ is forced to ‘0’.

Fig. 6.26 Simulation result of sequential circuits – realization of a model state
machine (Continued)

Fig. 6.26 Simulation result of sequential circuits – realization of a model state
machine

244 Simulation of Designs – Modelsim Tool

We have so far checked all transition paths except for the paths S2 to S3 and
S1 to S0. S0 to S2 transition is effected by making in1 = 1. Similarly, forcing in2
to ‘1’, the transition from S2 to S3 takes place. The inputs in1 in2 = 0 1 causes the
transition from S3 to S1. In S1 state, when in2 = 0 and the clock arrives, the ma-
chine state changes to S0. In each of the states, one of the appropriate Z outputs is
turned on.

Figure 6.27 presents the simulation results of a pattern sequence (0110) detec-
tor, whose design and test bench were presented in Verilog_code 3.17 and Ver-
ilog_code 4.4 respectively. An active low pulse applied at ‘reset_n’ pin clears the
output register ‘out’ as well as the ‘psd_state’, where psd stands for ppattern se-
quence detector. Initially, starting from 525 ns, the input ‘in’ is held high since the
first serial pattern we need to detect is ‘0’ (MSB) in the sequence 0110. This cor-
responds to the application of ‘1111’ pattern using the test bench. By inspecting
the test bench and the waveforms, we observe the following:
Input pattern applied: 11110100110110001101.....................
Output: 00000000001001000010.....................
It may be noted that input pattern is applied regularly every 20 ns, commencing
from 525 ns, with the last data ‘1’ applied at 905 ns. The first ‘0110’ pattern oc-
curs in the time range: 665 ns–725 ns, while the second and third patterns occur in
the ranges: 725 ns–785 ns and 825 ns–885 ns respectively. A mere glance at the
input patterns in the waveform will be sufficient to spot out the desired pattern se-
quence, 0110, easily. The output ‘out’ goes high at the following rising edge of
‘clk’ for a clock cycle duration after the desired pattern sequence is encountered.
A close examination reveals that the machine states change in accordance with the
design presented in Verilog_code 3.17.

The simulation tool may be quickly learnt from a summary of the commands
listed in the following.

Fig. 6.27 Simulation result of sequential circuits – realization of a pattern se-
quence (0110) detector (Continued)

6.3 Simulation Using Modelsim 245

Fig. 6.27 Simulation result of sequential circuits – realization of a pattern se-
quence (0110) detector (Continued)

Fig. 6.27 Simulation result of sequential circuits – realization of a pattern se-
quence (0110) detector

6.3.3 Modelsim Command Summary

Double click on icon on your desktop. Main Modelsim window and
Welcome to Modelsim window open.

1. Click on “Jumpstart” followed by “Create a Project” in the Welcome window.

Another window also opens. You can also create the project by clicking-on
“File => New => Project” and keying-in ‘and_2input’ (as an example) in
“Project Name” field. Also use “Browse” to select the desired “Project Loca-
tion” such as ‘D:\ram\verilog_latest\dvlsi_des_Verilog’, where your design is
residing. Making sure that “work” is specified in “Default Library Name”
field, click on “OK”. Another window called “Add items to the Project”

246 Simulation of Designs – Modelsim Tool

opens. Click on “Add Existing File”. In a new window “Add file to a Project”
that opens, select the desired test bench such as ‘and_2in_test.v’ using
“Browse”.

 Note: Next time, if you wish to go straight away to the same project,
‘and_2input’, select “Open Project” in the “Welcome” menu. Click on OK.
Click on “Open Documentation” in the “Welcome” menu if you wish to use
the tool documentation. “Close” the “Welcome” menu window.

2. At the command prompt, “modelsim>” in the main window, you may use the
operating system commands such as ‘pwd’ for printing the working directory,
‘dir’ for displaying the contents of the current directory, ‘cd’ for changing the
directory, etc.

3. Compilation: In the main window, click on “Compile” followed by “Com-
pile”. A new window called “Compile Source Files” opens. Click on the de-
sign file (for e.g., and_2in_test) followed by “Compile”. If there are errors,
you will have to correct the errors in your code using “Edit Source” in “Com-
pile Source Files” window and rerun the compiler. Click on “Done” to dis-
miss the compilation window.

4. Simulation: Click on “Simulate => Start Simulation”. The window named
“Start Simulation” pops-up. Click on “+” on the left of ‘work’. Click on the
desired test bench followed by “OK” to load the test bench and the design.
Fix errors, if any.

5. Waveform Analysis: In the main menu, click on “View => Workspace” to
view the Workspace in the main window. Make sure that a tick mark appears
to the left of “Workspace”. In this window, click on “View => Debug Win-
dow => Objects” followed by “View => Debug Window => Wave” to open
the Objects (Signals) and Waveform windows showing the timing diagram. In
“Objects” pane, click on “Add => Wave => Signals in Design” to display all
the signals in the test bench as well as in the design in the waveform window.
In order to get the waveforms, click on the icon marked “Run-all” in the wave
window. The source file (test bench) is also opened, which you can close if
you do not need it.

6. Click on “Zoom Full” icon in the “Wave” window to view the entire timing
diagram. You can use “Zoom in” and “Zoom out” to get the display size con-
venient for analysis. You can use “Restart” to clear the display and “Run-all”
(in the main or wave window) to run and capture the waveform once again, if
you wish. You can also use “Run” icon to advance the waveform in small
steps, which you can key-in in the “Run Length” field in the Wave window.
Click on “Select Mode” if “Run” keys are not energized in the wave window.

7. We can put the cursor anywhere in the waveform by simply clicking at the
desired place on the waveform display. Exact time co-ordinate of the cursor is
displayed. The second column gives the digital level of the signals prevailing
at the cursor position. You may get a feel of the same by clicking at different
points of time. You can change the order of display of signals if you wish to
compare two or more signals. For instance, let us say we wish to relocate the
last signal ‘Y’ after the third signal ‘out’. Click on the signal ‘Y’ and drag it
up to the new position in between the signals ‘out’ and ‘A’ and drop it.

6.3 Simulation Using Modelsim 247

8. You can also use “Cut” or “Copy” (one or more signals) and “Paste” it (all in
“Edit” menu) at the desired place. You can also use “Edit => Find” for locat-
ing the desired signal.

9. Place signals, for example, reset_n, clk, D, Q, and Q_n one below another.
Highlight all these signals by clicking on first signal followed by “Shift +
Clicking” on the last signal. Click on “Format => Height”. Wave height win-
dow opens. Key in 50 followed by clicking on “Apply” and “OK”. All the se-
lected signals are spaced by 50 pixels. Height of the waveforms, however,
remains the same.

10. Click on “Format => Radix => Binary or decimal or hexadecimal or octal as
per your requirement. All selected signals are set to the desired number sys-
tem.

11. Use , arrows and to move the waveform along the time axis. Analyze
the waveforms (timing diagram) to check the functionality. Click the two blue
arrows on the wave window to move the cursor from one signal edge to an-
other, left or right after highlighting the signal and clicking inside the wave-
form to get the cursor.

12. To save the waveform format, click on Floppy disc symbol or “File => Save
Format”, and in the opened window, type “ur_design.do” and click “Save”.

13. This completes one session. To exit the ModelSim, click on “File => Quit” or
X and “Yes”.

14. If you want to use Modelsim again to resume the same project, double click

on icon on your desktop and “Open a Project” as explained in Sl. no.
1. NOTE. Load the test bench as described in 4.

15. In the prompt field, type “do ur_design.do” and enter, the waveform we saved
in 13. The desired waveform with the previously set format is retrieved. Click
on “Run-all” and continue functional testing of other parts.

__

Summary

VLSI Design flow was presented along with the design methodology so that one
may become conversant with various steps involved in designing a product. Sev-
eral designs were considered in Chapter 3 and their test benches in the following
chapter. This was followed by RTL coding guidelines in Chapter 5. The next logi-
cal step in the design flow is the simulation, vital for testing one’s design. All the
Verilog designs presented in the third chapter were analyzed using waveforms in
the present chapter. Industry standard Modelsim tool of Mentor Graphics was em-
ployed for the simulation. A command summary of the Modelsim tool, which
serves as a quick reference while using the tool, was furnished. Although the func-
tionality of a design is checked using simulation, it does not test time critical paths
or furnish insights into gate delays, unless back annotated, since simulation does

248 Simulation of Designs – Modelsim Tool

not map a target chip such as an FPGA, where the design will have to reside ulti-
mately. These features are possible with synthesis tool, which is presented in the
next chapter.
__

Assignments

6.1 For the assignments 4.1 to 4.12 of Chapter 4 and 5.1 to 5.10 of Chapter 5,
run the simulation tool to establish the working of the designs and the test
benches considered.

6.2 Write RTL compliant Verilog code to generate random numbers in the fol-
lowing ranges:
(i) 0 to 511
(ii) 0 to 1 with a resolution of 0.001
(iii) –100 to +100.

 Test your designs.
6.3 Realize the circuit shown in Figure A6.1 using Verilog. Include a signal for

clearing the flip-flop. What type of circuit is this? Test it.

Fig. A.6.1 Sequential circuit

6.4 A presettable BCD/Decade, Up/Down counter is shown in Figure A6.2. For

up counting, up_dn = 1, otherwise, it is down counting. It can be changed
only if chip enable, ce, is low or ‘clk’ is not rising. ‘ce’ is active high.
LOAD (asynchronous, active high) presets the input D3–D0 into the Q3–
Q0 flip-flops. Counting takes place at the rising edge of clk if ‘ce’ is high.
Terminal count (TC) is normally low and goes high when the counter
reaches ‘0’ in the count down mode or reaches ‘9’ in the count up mode.
Realize the presettable decade counter using Verilog and test it.

0

1

clk

D Q

sel

q

Assignments 249

Fig. A6.2 Presettable BCD counter

6.5 A modulo 10 Gray code decade counter sequence is as follows:
 0 => 1 => 3 => 2 => 6 => 14 => 10 => 11 => 9 => 8

Fig. A6.3 Gray code decade counter

Realize the Verilog code for the counter shown in Figure A6.3 and test it.

6.6 The following signals (Figure A6.4) are required to be generated for operat-
ing a stepper motor. Design a circuit using Verilog, which fulfils the above
requirements. Also write a test bench and simulate to ensure the correct
working of the design.

Fig. A6.4 Stepper motor timing

5ms
(TYP.)

5ms
(TYP.

φ1

φ2

φ3

φ4

D3-D0

BCD COUNTER

Q3-Q0

 up_dn

ce

clk

LOAD

TC

250 Simulation of Designs – Modelsim Tool

6.7 Timers are used in various applications such as industrial process timing,
machine tool controls, heating controls (ovens, refrigerators, etc.), photog-
raphy, injection molding, motor/press controls, etc. Timers are primarily of
three types:
(i) On delay timers: Time delay is initiated by switching on a contact as

shown in Figure A6.5(i). The output is energized at the end of the set
time delay. The timer resets if the contact is switched off prematurely.

(ii) Off delay timers: Closing of the control contact energizes the output.
Opening of the contact initiates the time delay, at the end of which the
output is de-energized as shown in Figure A6.5(ii). If the control con-
tact is re-closed during the time delay, the timer resets but the output
remains energized.

(iii) Interval delay timers: Closing of the control contact energizes the
output and initiates the time delay, at the end of which the output is de-
energized as shown in Figure A6.5(iii). The contact may be open if re-
quired soon after the output goes high. One can use this type of timer
for photography by providing a normally open push button switch for
the control contact.

Design the three types of timers using Verilog for timing in the range: 0 to
999.9 s. Note that all switches must be debounced. Write a test bench and
test them by simulation.

 (i) On delay timer (ii) Off delay timer

(iii) Interval delay timer

Fig. A6.5 Waveforms of timers

Control
contact

Output

Time
delay

Control
contact

Output

Time
delay

Control
contact

Output

Time delay

Assignments 251

6.8 A beeping sound alarm is required to be generated as shown in Figure A6.6
for one of the applications called ‘Alarm Annunciator’. Assuming 50%
duty cycle, write Verilog code for the same and simulate to show the work-
ing of the same.

Fig. A6.6 Beeping sound alarm

6.9 A boiler plant for power generation has several processes for monitoring

the temperature and pressure using appropriate sensors. Whenever the tem-
perature and pressure are both high or both low for each of the processes
for 10 seconds or more, an output is switched on and a common alarm is
also sounded. The audio alarm may be silenced if acknowledged. The out-
puts and the alarm are cleared automatically if normal operation is restored.
Assuming four such processes, write a Verilog code for realizing an inte-
grated controller for this application. Simulate to prove the soundness of the
design.

6.10 A zig-zag counter is required to be designed for use in assigning variable
length codes in a MPEG-4, Part 10 or H.264 based video codec. The num-
bers within the squares shown in the accompanying figure, Figure A6.7,
represent the counter states and the arrows show the zig-zag sequence (0, 1,
4, 8, 5, …. 15) the counter will have to sequence through. A “START” sig-
nal allows the counter to sequence. When the end count of 15 is attained,
the zig-zag counter freezes at 15. Whenever the “START” signal is deas-
serted, the counter is reset and remains in “0” state. Design such a counter
using Verilog RTL and test your design.

Fig. A6.7 Zig-zag counter

T = 0.5 Sec.

1 milli second

0 1 3

7 5

15 13 12

4

2

6

14

8 9 10 11

252 Simulation of Designs – Modelsim Tool

Chapter 7

Synthesis of Designs – Synplify Tool

In the previous chapter, we learnt the design flow of VLSI circuits. This was fol-
lowed by a discussion on design methodology for solving problems effectively.
We gained hands on experience on the simulation tool and verified our designs
presented earlier. Designs are meaningful only if they are mapped on to a target
chip such as an FPGA. The present chapter deals with a synthesis tool, which not
only maps the HDL design on an FPGA but also brings about an efficient optimi-
zation of logic, thus conserving a substantial number of gates.

7.1 Synthesis

Synplify Pro 8.5, 7.1 and 7.7.1 tools of Synplicity Inc. [19] are used for synthesis
in this book since it is a popular tool, especially in industries. Synplify supports
FPGA devices of all vendors. The next sub-section highlights the features of this
tool.

7.1.1 Features of Synthesis Tool

The Synplify tool accomplishes the following tasks in a nut-shell:
• Mapping of device

i. Vendor
ii. Type of device

iii. Actual device – required capacity and package
iv. Speed

• Compilation of the HDL design
• Logic optimization
• View of schematic circuit diagram

i. RTL (Register Transfer Level) view
ii. Technology view

• Creates optimized Verilog file for simulation
• Generates EDIF (Electronic Data Information Format) file ready

for vendor specific place and route
Xilinx, Altera, and Actel are some of the leading FPGA vendors. Each of these
vendors has a range of devices in terms of FPGA type, chip capacity, type of
package, and speed grade. The Synplify tool is completely menu driven and the

above selections may be made using drop-down menu. The drudgery involved in
Karnaugh map or Quine McCluskey types of reductions are conspicuous by their
absence while using this tool. The tool brings about the logic optimization auto-
matically when the designer runs his design, thus relieving a heavy burden from
the designer’s shoulders. Designers, therefore, need not stretch too much on man-
ual optimization of the HDL codes. Designers, on the other hand, need to optimize
complex algorithms before developing the code. As an example of this kind, the
reader may refer to algorithmic reduction of discrete cosine transform and quanti-
zation presented in Chapters 11 and 12.

Often, designers would like to see how their HDL designs are shaping in terms
of circuitry. The synthesis tool provides the RTL view of schematic circuit diagrams
just by a mouse click. Clicking on a part of the circuit diagram, the corresponding
HDL code is displayed. If the designer wants to view more detailed circuit diagram
displays involving primitives used in the targeted FPGA, one need only click on the
technology view. Propagation delays may also be viewed. Once the synthesis tool
is run, an “.edf” file is created for the design, which is used as the input in the
place and route tool for creating the “.bit” file. We will be learning the place and
route tool in the next chapter. In the synthesis tool, optimized Verilog file is also
generated if that option is chosen. This file can be run on the simulation tool to
verify that the functionality of the design is still preserved after optimization. It
must be remembered that synthesis can be run only on the design and not on the
test bench. In the next section, we will learn synthesis of designs using the Syn-
plify tool.

7.2 Analysis of Design Examples Using Synplify Tool

The synthesis tool may be opened by double clicking on the Synplify icon on the
desktop:

The opened main window is shown in Figure 7.1. To start with, a new project
must be opened. In order to open a new project, click on “File => New”. A new
window opens as shown in Figure 7.2. Click on the project file. As an example,
we will synthesize the combination circuits we developed in Chapter 3. Type
“comb_ckts” in the “file name” field and also type the desired “file location”,
where you wish the new project to reside. Click OK and the new project window
opens. Click on “New Implementation” button. “Options for implementation win-
dow” opens as shown in Figure 7.3. In that window, click on the “Device” button
to select the desired FPGA device. Select “Xilinx Virtex” in “technology” field,
“XCV800” in “part” field, “-4” in “speed” field and “HQ240” in “package” field.
This selects the Xilinx Virtex series FPGA, XCV800-4 as the target device. Click

256 Synthesis of Designs – Synplify Tool

Fig. 7.1 Synplify main window

Fig. 7.2 Create new project file

7.2 Analysis of Design Examples Using Synplify Tool 257

Fig. 7.3 New implementation window

Fig. 7.4 Implementation option

258 Synthesis of Designs – Synplify Tool

Fig. 7.5 Add design files

“OK”. You can change to any other vendor device according to your needs such
as the capacity and the speed subsequently by clicking on “Implementation Op-
tions”. Implementation options can be chosen from the drop-down menu. The op-
tions are to be found in the “technology field”. In the Options for implementation
window, click on “Implementation Results” and select “EDIF” in “Results For-
mat” field as shown in Figure 7.4. This outputs the synthesized codes in EDIF
format. If the design is “comb_ckts.v”, then the synthesized output will appear as
“comb_ckts.edf”. In “Optional Output Files”, tick “Write Vendor Constraint File”
if it is not already ticked. Click on “OK”.

The next step is to add all the files in a design. To add a file, click on the “Add
File” button in the main window. A window named “Select Files to Add to Pro-
ject” opens as shown in Figure 7.5, displaying all the available files, and we need
to select the desired file from the list. The file may be with the “.v” or “.vhd” ex-
tension depending upon the HDL we use in our design. After selecting the desired
file, they will be displayed in the window along with the entire path, where it re-
sides. Click on “Add” and “OK”. A design usually consists of several files in a hier-
archy. In that case, we have to “Add” all of them one after another. In the current
design of the “comb_ckts” or the “seq_ckts” that we have designed, we have only
one file for the design. We can also select all the files and click “Add all” and
click on “OK”. A better option is to make sure that all the sub-modules of your
design are included in the Top Design and add only the top design.

The maximum frequency of operation desired for our design may be specified
in the field marked “Frequency (MHz)” in the main window. Click on the “Run”
button on the top of the window to start the synthesis. To start with, the synthesis

7.2 Analysis of Design Examples Using Synplify Tool 259

tool compiles the design and displays syntax and semantic errors, if any. If no er-
rors are encountered, the tool starts mapping the design on to the target we se-
lected earlier. The completion of synthesis will be indicated by a “Done” display.
Fix errors, if any, and repeat running the tool till the design is free of all errors.
Non-conformance of RTL coding will also be reported. Look at the error/warning
messages and do the needful. Click on “View Log” button on the left to view the
Log or report file for errors, warning messages, etc. If everything goes well, the
tool generates the “.edf” file, which can be exported to the next tool, Xilinx place
and route, which is presented in the next chapter.

In a later section, we will see how to tackle compiler errors. If you desire to get
Verilog source file after optimization (called “comb_ckts.vm”), tick “Write
Mapped Verilog Net list” in “Implementation Options -> Implementation Results”
window, and click “OK” and run the synthesis again. You can use this file in
Modelsim simulator to check the functionality again to make sure that the synthe-
sis tool has optimized correctly. This step is, however, not mandatory.

7.3 Viewing Verilog Code as RTL Schematic Circuit
Diagrams

Click on “⊕” button on the top to view the RTL schematic circuit diagram of the
design. Use zoom features “1”, “+”, “–“, “F” to zoom in or out. For instance, for
100% zoom in, click on 1 and click again on the schematic to zoom. Use
arrows to advance from one drawing sheet to another if more than one sheet is
present. Study the circuit diagram(s) to make sure that all the functionalities you
have designed are in tact. If you wish to see the Verilog code corresponding to a
part of the circuit diagram, double click on the circuit. Click on button on the
top to view the Technology schematic circuit diagram of the design. This shows
all the primitive cells used in the target FPGA. Use features such as zoom and ad-
vance from one sheet to another. Use arrows to push or pop hierarchy.
Study the circuit diagram to make sure that all the functionalities we have de-
signed are in order. Click on to see cumulative critical paths and slack time
respectively on the circuit. A command summary of the Synplify tool is presented
towards the end of this chapter. We will now analyze the designs we presented in
previous chapters.

In Chapter 4, we presented a very simple design, a two-input AND gate. We
will run the Synplify tool for this design first. Subsequently, we will see the syn-
thesis results for the other designs, “comb_ckts”, “seq_ckts”, and “rtl_coding”.
Synplify Pro 7.7.1 or 8.5 has been used for synthesis of these designs with
XC3S200 FT256-4 as the target FPGA. The log report generated for the AND de-
sign by running the Synplify tool is as follows:
@I: “D:\ram\book\dvlsi_sys_verilog\and_2in.v”
Verilog syntax check successful!
Selecting top level module and_2in

or

,

260 Synthesis of Designs – Synplify Tool

Synthesizing module and_2in
Writing Analyst data base D:\ram\book\dvlsi_sys_verilog\rev_3\and_2in.srm
Writing EDIF Netlist and constraint files
START OF TIMING REPORT #####
Top view: and_2in
Requested Frequency: 100.0 MHz
Wire load mode: top
Paths requested: 5
Constraint File(s):
Performance Summary :
Resource Usage Report for and_2in
Mapping to part: xc3s200ft256-4
I/O primitives: 3
IBUF 2 uses
OBUF 1 use
I/O Register bits: 0
Register bits not including I/Os: 0 (0%)
Mapping Summary:
Total LUTs: 1 (0%)
Mapper successful!

The RTL view and the technology view of the AND gate are shown in Figures 7.6
and 7.7 respectively. EDIF file created by the tool is “and_2in.edf” as can be seen

Fig. 7.6 RTL view of two-input “AND” gate

 7.3 Viewing Verilog Code as RTL Schematic Circuit Diagrams 261

Fig. 7.7 Technology view of two-input “AND” gate

in Figure 7.6. The number of input buffers and output buffer used in the design are
respectively 2 and 1 as revealed in the technology view. This is tallying with the
log report presented earlier. The number of look-up table (LUT) consumed by this
design is one.

We will now consider the next design, namely, “comb_ckts”. Synplify log
report for the same is as follows:
@I:: “D:\RAM\book\Verilog_Ch_3\comb_ckts.v”
Verilog syntax check successful!
Selecting top level module comb_ckts
Synthesizing module comb_ckts
Top view: comb_ckts
Requested Frequency: 100.0 MHz
Wire load mode: top
Paths requested: 5
Resource Usage Report for comb_ckts
Mapping to part: xc3s200ft256-4
Cell usage:
GND 1 use
MULT_AND 8 uses
MUXCY 4 uses
MUXCY_L 38 uses
MUXF5 1 use
XORCY 8 uses
I/O primitives: 106
IBUF 53 uses
OBUF 53 uses
I/O Register bits: 0
Register bits not including I/Os: 0 (0%)
Mapping Summary:
Total LUTs: 80 (2%)

262 Synthesis of Designs – Synplify Tool

The report gives primitive cells used in the design. All the combinational cir-
cuits we designed in Chapter 3 consume only 80 LUTs. Figure 7.8 shows the RTL
view of the design. As seen in the RTL view, function “F1” is the buffered signal
of “A”. Similarly, RTL views of all other gate realizations F2 to F8 may be veri-
fied with our design. F9 is the result of behavioral type full adder output, and the
signal sum_total [1], which is none other than the carry. F10 is the concatenated
signals {A, B, C}. F11 and F12 are right shift of F10 by 1 and left shift by 2 res-
pectively. F13 to F18 are the magnitude comparator outputs, whose inputs are N1
and N2. The multiplexer outputs for 2 inputs, 4 inputs, and 8 inputs are “mux2”,
“mux4”, and “mux8” derived from select pins A, B C and A B C respectively. In-
puts are respectively I0, I1, I0–I3, and I0–I7. The “mux8” is fed as the input of the
8 output DEMUX, whose outputs are D0-D7, the same as the inputs I0–I7. Fi-
nally, a design example using full adder and a magnitude comparator may be veri-
fied. In this example, the sum (SUM [8:0]) of two multi-bit precision numbers,
NUM_1 and NUM_2, is compared with a preset value, P_V [8:0]. If SUM equals
the preset value, the output MATCH is generated; else if SUM is greater than the
preset value, MORE is generated. Otherwise, the signal LESS is generated. Out-
puts are valid only if “enable_sum” is active, otherwise all the outputs are cleared.
The three signals: MATCH, MORE, and LESS are not presented. Reader may run
the tool and browse through the RTL view in order to find these signals.

Details for Synplify log report for “seq_ckts” are as follows. The tool issues
warning signals. The reader should cross-check with the design to heed the warn-
ing and take corrective action or to ignore the warning. For example, the synthesis

 7.3 Viewing Verilog Code as RTL Schematic Circuit Diagrams

Fig. 7.8 RTL view of “comb_ckts” design (Continued)

 263

Fig. 7.8 RTL view of “comb_ckts” design (Continued)

tool warns us to check whether we forgot set/reset assignment for the signals, sr
[15:0] and cnt_ps_reg [4:0]. If you recall the “seq_ckts” design we learnt in chap-

used a 16-bit shift register “sr” and a counter “cnt_ps_reg”. In the Verilog code,
for the reset condition, i.e., reset_n = 0, we have not initialized these two signals
since we are interested only in presetting the desired values to “set_data” and 16 res-
pectively, which is being done if “load” signal is asserted. Therefore, we can afford to

ter 3, we designed a circuit for parallel to serial conversion, in which we have

264 Synthesis of Designs – Synplify Tool

Fig. 7.8 RTL view of “comb_ckts” design (Continued)

 7.3 Viewing Verilog Code as RTL Schematic Circuit Diagrams 265

ignore this warning. The tool also provides information and notes. It reports that it
has recognized state machines, counters, etc. In the warning, @W: BN132, it has
optimized the circuit by removing the sequential instance data_out1 [15:0] be-
cause it is equivalent to instance data_out2 [15:0]. These two are equivalent since
we coded the same shift register in two different ways. The tool generates EDIF
file “seq_ckts.edf”, which is input to the place and route tool in order to create a
bit stream.

We requested a frequency of operation of 100.0 MHz for the design, whereas
the synthesis has yielded a faster clock of 147.5 MHz. The requested and the re-
ported frequencies are 10 ns and 6.781 ns respectively in terms of time periods.
The difference known as the slack time is 3.219 ns. The slack time must be posi-
tive. Otherwise, the device cannot meet the requested frequency of operation. The
tool provides elaborate timing reports such as slack time for every signal in the design.

Fig. 7.8 RTL view of “comb_ckts” design

266 Synthesis of Designs – Synplify Tool

Studying these, we can identify the long path delays and introduce pipeline regis-
ters in-between and, hence, speed up the system if we wish to do so. Thereafter,
the tool reports various primitive cells used in the FPGA. The number of LUTs
consumed by the “seq_ckts” design is just 78 (approximately 2% of 200,000
gates). A sample RTL view (Figure 7.9) only is presented since the whole RTL
view of the design is unreadable (owing to low resolution provided by the tool)
and the zoomed-in version exceeds the page width of this book. The reader may,
therefore, run his or her code and browse the RTL view in order to check the de-
sign thoroughly. One can see the state graphs of a design using the “FSM Viewer”
by right clicking on state machine of RTL view and clicking on “View FSM”.
These are shown for “state” and psd_state” of the “seq_ckts” design in Figures
7.10 and 7.11. The log report for “seq_ckts” is as follows:

Log report of “seq_ckts.v”
$ Start of Compile
@I::“D:\RAM\book\dvlsi_sys_verilog\seq_ckts.v’”
Verilog syntax check successful!
Selecting top level module seq_ckts
Synthesizing module seq_ckts
@W: CL112
“D:\RAM\book\dvlsi_sys_verilog\seq_ckts.v”:382:0:382:5|Feedback mux created
for signal sr[15:0]. Did you forget the set/reset assignment for this signal?
@W: CL112
“D:\RAM\book\dvlsi_sys_verilog\seq_ckts.v”:382:0:382:5|Feedback mux created
for signal cnt_ps_reg[4:0]. Did you forget the set/reset assignment for this signal?
@N: CL201 :“D:\RAM\book\dvlsi_sys_verilog\seq_ckts.v”:543:0:543:5|Trying to
extract state machine for register psd_state
Extracted state machine for register psd_state
State machine has 4 reachable states with original encodings of:
 00
 01
 10
 11
@N: CL201 :“D:\RAM\book\dvlsi_sys_verilog\seq_ckts.v”:434:0:434:5|Trying to
extract state machine for register state
Extracted state machine for register state
State machine has 4 reachable states with original encodings of:
 00
 01
 10
 11
@W: BN132 : d:\ram\book\dvlsi_sys_verilog\seq_ckts.v :354:0:354:5|Removing
sequential instance data_out1[15:0], because it is equivalent to instance
data_out2[15:0]
Encoding state machine work.seq_ckts(verilog)-psd_state[3:0]
original code -> new code
 00 -> 00

 7.3 Viewing Verilog Code as RTL Schematic Circuit Diagrams

“ ”

267

 01 -> 01
 10 -> 10
 11 -> 11
Encoding state machine work.seq_ckts(verilog)-state[3:0]
original code -> new code
 00 -> 00
 01 -> 01
 10 -> 10
 11 -> 11
@N:“d:\ram\book\dvlsi_sys_verilog\seq_ckts.v”:382:0:382:5|Found counter in
view:work.seq_ckts(verilog) inst cnt_ps_reg[4:0]
@N: “d:\ram\book\dvlsi_sys_verilog\seq_ckts.v”:282:0:282:5|Found counter in
view:work.seq_ckts(verilog) inst cnt_reg[7:0]
@N: “d:\ram\book\dvlsi_sys_verilog\seq_ckts.v”:309:0:309:5|Found counter in
view:work.seq_ckts(verilog) inst cntd_reg[7:0]
Writing EDIF Netlist and constraint files
Found clock seq_ckts|clk with period 10.00ns

START OF TIMING REPORT #####
Top view: seq_ckts
Requested Frequency: 100.0 MHz
Wire load mode: top
Paths requested: 5
Performance Summary

Worst slack in design: 3.219
 Requested Estimated Requested Estimated Clock
Starting Clock Frequency Frequency Period Period Slack

seq_ckts|clk 100.0 MHz 147.5 MHz 10.000 6.781 3.219

Detailed Report for Clock: seq_ckts|clk
Starting Points with Worst Slack

 Starting Arrival
 Reference
Instance clock Type Pin Net Time Slack
--
cnt_ps_reg[2] seq_ckts|clk FDRE Q cnt_ps_reg[2] 0.720 3.219
cnt_ps_reg[3] seq_ckts|clk FDRE Q cnt_ps_reg[3] 0.720 3.219
cnt_reg[0] seq_ckts|clk FDCE Q cnt_reg_c[0] 0.720 3.546
cnt_reg[1] seq_ckts|clk FDCE Q cnt_reg_c[1] 0.720 3.546
cnt_reg[2] seq_ckts|clk FDCE Q cnt_reg_c[2] 0.720 3.546
cnt_reg[3] seq_ckts|clk FDCE Q cnt_reg_c[3] 0.720 3.546
cnt_reg[6] seq_ckts|clk FDCE Q cnt_reg_c[6] 0.720 3.546
cnt_reg[7] seq_ckts|clk FDCE Q cnt_reg_c[7] 0.720 3.546

268 Synthesis of Designs – Synplify Tool

cnt_ps_reg[0] seq_ckts|clk FDRE Q cnt_ps_reg[0] 0.720 3.938
cnt_ps_reg[1] seq_ckts|clk FDRE Q cnt_ps_reg[1] 0.720 3.938
--
Ending Points with Worst Slack

 Starting Required
 Reference
Instance clock Type Pin Net Time Slack
--
sr[0] seq_ckts|clk FDE CE N_106_i 9.398 3.219
sr[1] seq_ckts|clk FDE CE N_106_i 9.398 3.219
sr[2] seq_ckts|clk FDE CE N_106_i 9.398 3.219
sr[3] seq_ckts|clk FDE CE N_106_i 9.398 3.219
sr[4] seq_ckts|clk FDE CE N_106_i 9.398 3.219
sr[5] seq_ckts|clk FDE CE N_106_i 9.398 3.219
sr[6] seq_ckts|clk FDE CE N_106_i 9.398 3.219
sr[7] seq_ckts|clk FDE CE N_106_i 9.398 3.219
sr[8] seq_ckts|clk FDE CE N_106_i 9.398 3.219
sr[9] seq_ckts|clk FDE CE N_106_i 9.398 3.219
--
Worst Path Information

Path information for path number 1:
 Requested Period: 10.000
 - Setup time: 0.602
 = Required time: 9.398
 - Propagation time: 6.179
 = Slack (critical) : 3.219
Number of logic level(s): 4

Resource Usage Report for seq_ckts
Mapping to part: xc3s200ft256-4
Cell usage:
FDC 11 uses
FDCE 30 uses
FDE 16 uses
FDP 1 use
FDPE 8 uses
FDRE 4 uses
FDSE 1 use
GND 1 use
MUXCY_L 18 uses
VCC 1 use
XORCY 21 uses
I/O primitives: 82
IBUF 30 uses

 7.3 Viewing Verilog Code as RTL Schematic Circuit Diagrams 269

OBUF 52 uses
BUFGP 1 use
I/O Register bits: 2
Register bits not including I/Os: 69 (1%)
Global Clock Buffers: 1 of 8 (12%)
Mapping Summary:
Total LUTs: 78 (2%)

Fig. 7.9 A sample RTL view of the “seq_ckts.v” design

Synplify log report for “rtl_coding” design presented in Chapter 5 is as fol-
lows: The tool issues warning signals such as “Latch generated from always block
for signal OUT_P[2:0], probably caused by a missing assignment in an if or case
stmt”. This is true since we deliberately created a latch as we mentioned in the
comment of the code:
// parallel_case prevents priority-encoded logic but infers a latch.
This does not conform to RTL coding style and should not be used. The way out
of this problem is by combining parallel_case and full_case directives as shown in
the “OUT_PF” signal towards the end of “rtl_coding” design. More details of
these “synopsys cases” will be presented in Section 7.3. Similarly, the reader will
have to ponder over other warnings to look for potential problems and fix prob-

lems, if any. The EDIF file generated for this design is “rtl_coding.edf”. The

270 Synthesis of Designs – Synplify Tool

Fig. 7.10 FSM view of “state” used in the “seq_ckts.v” design

Fig. 7.11 FSM view of “psd_state” used in the “seq_ckts.v” design

 7.3 Viewing Verilog Code as RTL Schematic Circuit Diagrams 271

number of LUTs reported for this design is 79. The formation of latches can be
visually seen in the RTL view presented in Figure 7.12.

Log report of the “rtl_coding.v” design

@I::“D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”
@N:“D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”:295:31:295:39|Read
full_case directive
@N:“D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”:309:32:309:40|Read
full_case directive
@N: “D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”:342:31:342:43|Read
parallel_case directive
@N: “D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”:361:31:361:43|Read
parallel_case directive
@N:“D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”:361:45:361:53|Read
full_case directive
Verilog syntax check successful!

File D:\ram\book\dvlsi_sys_verilog\rtl_coding.v changed - recompiling
Selecting top level module rtl_coding
Synthesizing module rtl_coding

@W: CL118 : “D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”:342:2:342:5|Latch
generated from always block for signal OUT_P[2:0], probably caused by a miss-
ing assignment in an if or case stmt
@W: CL118 : “D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”:326:2:326:5|Latch
generated from always block for signal LATCH, probably caused by a missing as-
signment in an if or case stmt
@W: CL118 : “D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”:220:2:220:3|Latch
generated from always block for signal out2, probably caused by a missing as-
signment in an if or case stmt
@W: “D:\RAM\book\dvlsi_sys_verilog\rtl_coding.v”:112:23:112:29|Input port bit
<0> of SELECTN[2:0] is unused

Writing EDIF Netlist and constraint files
Found clock rtl_coding|clk with period 10.00ns
Found clock rtl_coding|SEL with period 10.00ns

un1_OUT_F_OH7_n appears to be a clock source which was not identified. As-
suming default frequency.

START OF TIMING REPORT #####[
Top view: rtl_coding
Requested Frequency: 100.0 MHz
Wire load mode: top

@W: d:\ram\book\dvlsi_sys_verilog\rtl_coding.v :1:1:329:16|Net ”“

272 Synthesis of Designs – Synplify Tool

Paths requested: 5
Resource Usage Report for rtl_coding

Mapping to part: xc3s200ft256-4
Cell usage:
FD 2 uses
GND 1 use
LD 1 use
LDCP 3 uses
LD_1 1 use
MUXCY 2 uses
MUXCY_L 14 uses
MUXF5 1 use

I/O primitives: 137
IBUF 106 uses
IBUFG 1 use
OBUF 30 uses
BUFG 1 use
BUFGP 1 use
I/O Register bits: 2
Register bits not including I/Os: 0 (0%)
Global Clock Buffers: 2 of 8 (25%)

Mapping Summary:
Total LUTs: 79 (2%)

 7.3 Viewing Verilog Code as RTL Schematic Circuit Diagrams

Fig. 7.12 RTL view of the “rtl_coding.v” design (Continued)

273

7.4 Optimization Effected in Synopsys Full and Parallel
Cases

So far, we have been discussing RTL coding guidelines for Synopsys full case,
Synopsys parallel case, etc. Next we will consider each of these files independ-
ently and see how optimization really works for the Synopsys full and parallel
cases. First consider the source code for the full case. The coding is very simple as
presented in Verilog_code_7.1. Here, we have three inputs a, b, and c and a select
pin, “sel”, producing a single output, “out”. This is a “case” implementation.

Verilog_code_7.1
__

module case_full (sel, a, b, c, out) ;

input [2:0] sel ;
input [2:0] a ;
input [2:0] b ;
input [2:0] c ;
output [2:0] out ;

reg [2:0] out ;

always @ (sel or a or b or c)

begin
case (sel) //synopsys full_case

 3'b001 : out = a ;

Fig. 7.12 RTL view of the “rtl_coding.v” design

274 Synthesis of Designs – Synplify Tool

 3'b010 : out = b ;
 3'b100 : out = c ; // Infers a MUX
// default : out = 0 ;

endcase
end

endmodule
__

Verilog_code_7.2

module case_nofull (sel, a, b, c, out) ;

input [2:0] sel ;
input [2:0] a ;
input [2:0] b ;
input [2:0] c ;
output [2:0] out ;

reg [2:0] out ;

always @ (sel or a or b or c)

begin
case (sel)

 3'b001 : out = a ;
 3'b010 : out = b ;
 3'b100 : out = c ; // Infers a latch
// default : out = 0 ;

endcase
end

endmodule
__

Fig. 7.13 RTL view of the “synopsys full_case”

 7.4 Optimization Effected in Synopsys Full and Parallel Cases 275

Fig. 7.14 RTL view of the “synopsys nofull_case”

It should be noted here that “//synopsis full_case” is a reserved phrase. Don’t mis-
take “//” for a regular comment. This code simply outputs the input values a, b,
and c depending upon the select pin, which has one hot assignment. In order to
study the effect of the above key phrase, remove the phrase as shown in Ver-
ilog_code_7.2. Run the two codes in Synplify to get the RTL views as shown in
Figures 7.13 and 7.14. Comparing the two figures, we clearly see that we can re-
duce chip complexity substantially to the tune of four gates, and a latch which is
taboo during chip implementation, if we use the special phrase, //synopsys
full_case.

Similarly, we can have a parallel case and a no parallel case as shown in Ver-
ilog_code_7.3 and 7.4 respectively. In the parallel case, the key phrase is
//synopsys parallel_case as shown in Verilog_code_7.3. Note that this is dropped
in no parallel case. Depending upon the value of “sel” signal, the output, “out” is
“001” (for sel = a) or “010” (for sel = b) or “100” (for sel = c), all being one-hot
assignments. “parallel_case” means no priority, whereas in the no “parallel_case”,
priority takes effect as can be seen in the RTL views presented in Figure 7.15 and
7.16 respectively. As in full case, the parallel case offers more optimized circuit.

Verilog_code_7.3
__

module case_parallel (sel, a, b, c, out) ;

input [2:0] sel ;
input [2:0] a ;
input [2:0] b ;

276 Synthesis of Designs – Synplify Tool

input [2:0] c ;
output [2:0] out ;

reg [2:0] out ;

always @ (sel or a or b or c)

begin
case (sel) //synopsys parallel_case

 // parallel_case means no priority.
 a : out = 3'b001 ;
 b : out = 3'b010 ;
 c : out = 3'b100 ;
// default : out = 3'b000 ;

endcase
end

endmodule
__

Verilog_code_7.4
__

module case_noparallel (sel, a, b, c, out) ;

input [2:0] sel ;
input [2:0] a ;
input [2:0] b ;
input [2:0] c ;
output [2:0] out ;

reg [2:0] out ;

always @ (sel or a or b or c)

begin
case (sel)

 // No parallel_case means priority is present.
 a : out = 3'b001 ;
 b : out = 3'b010 ;
 c : out = 3'b100 ;
// default : out = 3'b000 ;

endcase
end

endmodule
__

 7.4 Optimization Effected in Synopsys Full and Parallel Cases 277

Fig. 7.15 RTL view of the “synopsys parallel_case”

Fig. 7.16 RTL view of the “synopsys noparallel_case”

7.5 Performance Comparison of FPGAs of Two Vendors
for a Design

By changing the target FPGAs and running the Synplify tool, we can assess the
suitability of an FPGA for our application. We will run the tool for our design,
“seq_ckts”, using XCV100EPQ240-8 FPGA of Xilinx and EPF10K100ARC240-1
EPLD of Altera, both of the same capacity and speed. Performance summary of
these devices are as follows. The Xilinx device is faster (100 MHz) than the

278 Synthesis of Designs – Synplify Tool

Altera’s (76 MHz) device, while the design size is more or less the same. How-
ever, we need to complete the entire design of a project before we can make a
comparison in order to arrive at the suitability of a device for our project.

Performance Summary for Xilinx’ FPGA, XCV100EPQ240-8

Starting
Clock

Requested
Frequency

Estimated
Frequency

Requested

Period

Estimated

Period

Slack

clk

System

100.0 MHz

100.0 MHz

100.1 MHz

105.6 MHz

10.000

10.000

9.985

9.467

0.015

0.533

Resource Usage Report for seq_ckts
Mapping to part: xcv100epq240-8
Cell usage:

FDC 11 uses
MUXCY_L 17 uses
XORCY 20 uses
FDCE 30 uses
FDE 21 uses
FDP 1 use
FDPE 8 uses
GND 1 use
VCC 1 use

I/O primitives:
IBUF 30 uses
OBUF 52 uses
BUFGP 1 use

I/O Register bits: 12
Register bits not including I/Os: 59 (2%)
Global Clock Buffers: 1 of 4 (25%)

Mapping Summary:
Total LUTs: 77 (3%)

Performance Summary of Altera’s FPGA, EPF10K100ARC240-1

Design view:work.seq_ckts (Verilog)
Selecting part epf10k100arc240-1

Total LUTs: 116 of 4992 (2%)

 7.5 Performance Comparison of FPGAs of Two Vendors for a Design 279

Logic resources: 116 LCs of 4992 (2%)
Number of Nets: 262
Number of Inputs: 771
Register bits: 70 (59 using enable)
EABs: 0 (0% of 12)
I/O cells: 83

Starting
Clock

Requested
Frequency

Estimated
Frequency

Requested
Period

Estimated
Period

Slack

clk

System

100.0 MHz

100.0 MHz

75.9 MHz

128.7 MHz

10.000

10.000

13.167

7.767

–3.167*

2.233

* Negative slack time implies, the device cannot meet 100 MHz operation

Details:

Cells in logic mode: 69
Cells in arith mode: 8
Cells in cascade mode: 6
Cells in counter mode: 13
DFFs with no input combinational logic: 20 (uses cell for routing)
LUTs driving both DFF and logic: 17

7.6 Fixing Compilation Errors in Modelsim and Synplify
Tools

Beginners are usually confronted with compilation errors while running the simu-
lation tool or the synthesis tool. Even proficient designers often get perplexed
while fixing the problems, especially when the tools do not throw light on the
problem. Much of these irritants may be mitigated if we systematically learn how
to fix these problems step by step. This can be done by deliberately injecting er-
rors in an already working source file such as any of the Verilog code files pre-
sented in this book. In this section, we will precisely do this to expose the types of
common errors we commit. This exercise would by no means be an exhaustive
coverage of errors. Based on this experience, the reader can devise his or her own
ingenious ways of creating errors and thereby learn to fix them.

All the Verilog codes developed in this book are available in a CD. These files
may be copied into a convenient folder for normal working with the tools. In order
to learn fixing compilation errors, make a copy of the desired files in a different

280 Synthesis of Designs – Synplify Tool

working directory, say, “Compiler_errors”. This will avoid the original disk files
from getting corrupted. We will first make one error, study the compiler report
and record the error message and restore the original file. We can then experiment
with the next error. While experimenting with compiler errors, we will use Syn-
plify for synthesis and Modelsim for simulator. Each of these errors, enclosed
within double quotes: “ ”, is dealt point-wise as follows:

1. As an example, we will take the design file, “seq_ckts.v”, presented in Chap-

ter 3 and create deliberate errors. One of the most common errors is using
“ ‘ ” instead of “ ` ”. Let us change the very first character of the first state-
ment accordingly, leaving other parts untouched:
define S0 3'd0 // Define the state of the controller

as
‘define S0 3'd0 // Define the state of the controller
Save the design file and run the test bench in the Modelsim. As the design file
is included in the test bench, the tool will compile the design file also. The
following is the compiling error report by Modelsim:

MODULE PRIMITIVE (*
ERROR: seq_ckts.v(10): Illegal digit for specified base in numeric constant
WARNING[10]: seq_ckts.v(445): Macro `S0 is undefined
ERROR: seq_ckts.v(445): near “;”: expecting: IDENT
WARNING[10]: seq_ckts.v(452): Macro `S0 is undefined
ERROR: seq_ckts.v(452): near “:”: expecting: “;”
WARNING[10]: seq_ckts.v(462): Macro `S0 is undefined
WARNING[10]: seq_ckts.v(498): Macro `S0 is undefined
WARNING[10]: seq_ckts.v(518): Macro `S0 is undefined
WARNING[10]: seq_ckts.v(530): Macro `S0 is undefined

The error occurs in line 11 as reported and pin-points to:
 near “ d”. Double clicking on the error report opens the source file, highlight-
ing the error. This naturally results in further errors wherever “S0” is used.
There is a difference in running the Modelsim and Synplify tools. In Synplify,
the test bench has no role to play and hence, we will run only the design file,
“seq_ckts.v”. In the case of Synplify, the errors are recorded in the log file.
We observe that the same syntax error is reported by Synplify tool. Before we
experiment with the next error, we will restore the working file at every step.

2. Miss-spelling of the file name: In the module declaration, the “seq_ckts” may

be miss-spelt as “seq_cktss”:
module seq_cktss(// Declare the design module.
When we compile with this error in Modelsim, we do not get any error. This
error may be caught at the time of loading the design. Modelsim reports: In-
stantiation of the given file name failed. This is because we have changed the

‘

‘

 7.6 Fixing Compilation Errors in Modelsim and Synplify Tools

ERROR: seq_ckts.v(11): near “ d”: expecting: MACROMODULE

`

281

3. We will next make the mistake of putting a “comma” at the end of last port in

the listing within the module declaration:
out,

Modelsim reports: Too few port connections.
Loading work.seq_ckts_test
Loading work.seq_ckts
** Warning: (vsim-3017) D:/ram/book/Verilog_Ch_3/seq_ckts_test.v(109):
[TFMPC] - Too few port connections. Expected 32, found 31.
Region: /seq_ckts_test/u1

4. Change the name of the signal, say “clk” to “clock” as follows:

input clock ;

Modelsim reports “clk” is undefined as follows:

-- Compiling module seq_ckts
ERROR: seq_ckts.v(214): Undefined variable: clk
ERROR: seq_ckts.v(601): Identifier must be declared with a port mode:

clk
-- Compiling module seq_ckts_test

In Synplify, it reports: signal clock is missing from port list. Double clicking
on the report opens the same line, input clock;

5. Remove a semicolon in the next input declaration as follows:

input reset_n

Modelsim report is as follows:
-- Compiling module seq_ckts
ERROR: seq_ckts.v(69): near “input”: expecting: “;”

Line 69 is the next statement, input hold; which is not recognized because of
the missing semicolon.
Synplify tool reports: expecting delimiter or semicolon. Double clicking on
the report opens the same line 69.

6. So far, we have been dealing with only single bit precision signals. We will

now try multi-bit signals. Let us change the output specification of “cnt_reg
[7:0]” as in the following two statements:
output cnt_reg ;

file name by miss-spelling. In later versions of Modelsim, even this is not
reported. The Synplify Tool accepts the miss-spelling.

The tool was obviously expecting more ports to be listed. The Synplify tool
accepts the comma. Restore the original file.

282 Synthesis of Designs – Synplify Tool

reg [6:0] cnt_reg ;

Loading work.seq_ckts_test
Loading work.seq_ckts
** Warning: (vsim-3015) D:/ram/book/Verilog_Ch_3/seq_ckts_test.v(109):
[PCDPC] - Port size does not match connection size (port ‘cnt_reg’).

All the errors we created so far were in the design file. Now let us create a couple
of errors in the test bench to get a different feel.

1. Let us change the declaration of the input stimulant from “reg” to “wire” as

follows:
wire D ; // Declare all inputs as reg.

Modelsim reports of illegal reference to net (meaning wire).
ERROR: D:/ram/book/Verilog_Ch_3/seq_ckts_test.v(116): Illegal reference
to net: D
ERROR: D:/ram/book/Verilog_Ch_3/seq_ckts_test.v(138): Illegal reference
to net: D
ERROR: D:/ram/book/Verilog_Ch_3/seq_ckts_test.v(146): Illegal reference
to net: D
ERROR: D:/ram/book/Verilog_Ch_3/seq_ckts_test.v(153): Illegal reference
to net: D
However, in the case of Synplify, the test bench is not relevant.

2. One of the most common errors is forgetting to key-in “endmodule”. Model-
sim reports:
ERROR: D:/ram/book/Verilog_Ch_3/seq_ckts_test.v(1): near “EOF”:syntax
error
Double clicking on the report, it points to the top of the module rather than
the end.

On similar lines, the reader may create various types of errors, one at a time, and
gradually learn to fix each of these problems.

7.7 Synplify Command Summary

A summary of the Synplify tool commands is presented in the following to be
used as a ready reckoner.

1. Double click on icon on your desktop. Synplify window opens.

 7.7 Synplify Command Summary

The Modelsim and Synplify compilers are silent. They don’t report anything
wrong. But Modelsim tracks the error while loading (or simulating) the design:

283

2. Click on “File => New” to open a new project. A “New” window opens.
Click on Project File. Type comb_ckts in “File Name” field and also type the
desired “File Location” or browse and select, where you wish the new project
to reside. Click on “OK”. The project window opens.

3. Click on “New Implementation”. “Add New Implementation” window opens.
In that window, click on “Device”. Select “Xilinx Virtex” in “Technology”
field, “XCV800” in “Part” field, “-4” in “Speed” field, and HQ240 in “Pack-
age” field. You can change to any other vendor device according to your spe-
cific needs using “Impl Options”. Click on “OK”.

4. Click on “Add File” menu on the left. A “Select Files to Add to Project” win-
dow opens. Click on the desired design; say “comb_ckts” listed in the win-
dow. Also, click on “Add” button on the right to include the design file. The
selected file is displayed. Click “OK”. In this manner, add all the files in your
design. While adding files, add starting from the lowest level of files going up
to the top design file. Alternatively, make sure that all the sub-modules of
your design are included in the Top Design and add only the top design. This
is a better option.
CAUTION:
Never use the test bench for synthesis. Only your design is valid.

5. Set the desired operating frequency using the “Frequency (MHz)” menu on
the left. Click on “Auto Constrain” to maximize speed.

6. Click on the “Run” button on the top of the window to start the synthesis.
“Compiling” followed by the “Mapping” (of your design) will be displayed
on the window. The completion of synthesis will be indicated by a “Done”
display. Fix errors, if any, and repeat 6. Also, look at the warning messages
and do the needful.

Note:
Tick “Write Mapped Verilog Net list” in “Implementation Options => Im-
plementation Results” window, and click “OK” before running the Synthesis,
if you desire to get Verilog source file after optimization. You can use this file
in Modelsim simulator to check the functionality again to make sure that the
Synthesis tool has optimized correctly. When the synthesis is run, an “.edf”
file is automatically created, which must be used in the place and route tool
such as the Xilinx P&R tool in order to create a “.bit” file.

7. Click on “View Log” button on the left to view the Log or report file for er-
rors, warning messages, etc.

8. Click on “ ⊕ ” button on the top to view the RTL schematic circuit diagram
of the design. Use zoom features “1”, “+”, “–”, “F” to zoom in or out. For in-
stance, for 100% zoom in, click on 1 and click again on the schematic to
zoom. Use , arrows to advance from one sheet to another. Study the
circuit diagram to make sure that all the functionalities you have designed are
in tact.

9. Click on button on the top to view the Technology schematic circuit dia-
gram of the design. Use features such as zoom and advance from one sheet to
another as in 8. Use or to push or pop hierarchy. Study the circuit dia-

284 Synthesis of Designs – Synplify Tool

gram to make sure that all the functionalities you have designed are in order.
Click on to see cumulative critical paths and slack time (in ns) respec-
tively on the circuit.

10. Click on Options => Xilinx => Start ISE Project Navigator to open the Xil-
inx Place and Route Tool.

__

Summary

This chapter covered the synthesis of designs using Synplify tool, widely used
in industries. The salient features of synthesis are mapping of an FPGA device,
logic optimization, and viewing schematic circuit diagrams of the Verilog code.
The tool creates optimized Verilog file and Electronic Data Information Format
(EDIF) file, which may be used for simulation using Modelsim and to run vendor
specific place and route tool such as Xilinx P&R respectively. Synplify tool
supports all types of FPGAs. Errors were created deliberately and correction
applied in order to learn and fix compiling and simulation errors in Modelsim and
Synplify tools. A command summary of the Synplify tool was furnished for quick
reference while using the tool. EDIF file is exported to the next tool, the place and
route tool, for creating a bit stream of the design. Bit stream is downloaded into
FPGAs for configuring it for the desired application. These features are shown in
later chapters. The place and route tool is presented in the next chapter.

Assignments

7.1 For the design assignments 3.2 to 3.14 in Chapter 3, run the synthesis tool
to establish the RTL conformance of the designs. Present the RTL views
and important synthesis results.

7.2 For the design assignments 4.2, 4.4, and 4.12 in Chapter 4, run the synthesis
tool to establish the RTL conformance of the designs and present the im-
portant synthesis results.

7.3 For the assignments 4.9 to 4.11 in Chapter 4, run the synthesis tool and dis-
cuss your observation.

7.4 For the test bench in assignment 4.12 in Chapter 4, run the synthesis tool
and record your observation. What is your inference?

7.5 In Synopsys full and parallel cases in the text (Verilog_code_7.1 to Ver-
ilog_code_7.4), “default” statements were commented. Uncomment these
and run the Synplify tool. Discuss your observation with the aid of RTL
views.

7.6 In the text, it was shown that fixing of compiler errors can be made easy if
deliberate errors were created and the corresponding tool reports were ana-

Assignments 285

lyzed. Create some more errors and run Modelsim and Synplify tools and
discuss your observations.

7.7 Design a controller for an elevator in a two-story building using the ASM
chart shown in Figure A7.1. The controller must respond to call push-
button switches on each floor (FS1 and FS2) and floor-select push-button
switches (LFS1 and LFS2) within the car. When the car lands on the floors
of the building, signals are generated from the limit switches LS1 and LS2.
The door should open when the car lands on the floors and close after a de-
lay. The controller should also generate control signals to move the car
“Up” and “Down” as shown in Figure A7.1. An output signal “Door” opens
the door when the lift arrives at one of the floors. A limit switch
“Door_closed” is closed when the door is completely shut. The lift is in the
ground floor with the door closed to start with. All switches are debounced.
State your assumptions clearly. Code the design in Verilog and run the syn-
thesis, and discuss the results.

Fig. A7.1a Controller specifications of an elevator (Continued)

LS1

LS2

LFS2
LFS1

Door_closed

Door

FS1

FS2

Up
Down

Lift

TD

Door Closed

TIN

TIME
 DELAY

Door Open

TIMER TIN TD

Motor

286 Synthesis of Designs – Synplify Tool

Fig. A7.1b ASM chart of the elevator controller (Continued)

START

FS1

Door

FS2

Up

LS2

LFS2

F

T

F

T S2
Door being closed.

F

T

F

T

S3

S1

S0

A

T
F

Lift going up, Door
closed.

F

T

Open the Door.

Lift in the ground
floor with the Door

closed.

ASM Chart

FS2

Assignments 287

Door_closed

Fig. A7.1b ASM chart of the elevator controller

S8

TIN

TD

Door

T

F

Door_closed

S5

F

T

S4

Door is being closed.
After the lapse of delay.

Lift stops in 1st floor
=> Start timer Open the

Door

S7

FS1

LFS1

F

T

S6 F

T

Down

LS1
F

T

Lift goes down.

TIN

TD

Door
Lift stops in the Ground

floor. Start timer.

T

F S9

T
Door_closed START

Open the
door

Door being closed.

F

Comments
A

288 Synthesis of Designs – Synplify Tool

7.8 The state graph of a pattern sequence detector is shown in Figure A7.2. In
this detector, the output becomes “1” and remains as “1” thereafter when at
least two 0’s and at least two 1’s have occurred as inputs regardless of the
order of occurrence. Code it in Verilog and present the RTL view and im-
portant parameters of the synthesis results.

Fig. A7.2 Pattern sequence detector

7.9 Design a combination lock using an ASM chart. The following sequence is

used for the operation of the lock:
A binary code of fixed length is used to open the lock. Each bit of the bi-
nary code is set by the use of a switch and entered serially by pressing a
READ switch. After entering the required bits, an OPEN switch is pressed.
The lock opens if the code matches with the predetermined code. An
ERROR indication is on when the code entered is wrong or the user tries to
enter data other than the fixed length of bits. The lock can be realized using
an “M” bit shift register and a comparator as shown. Combination lock size

S0

1/0

S5S1

S2 S6

S3 S7

S4

1/0
1/0

1/0

1/0

1/0

0/1

0/0

0/0

0/0

0/0

0/0

0/0

1/1

-/1

Assignments 289

is “M” bits fixed length. Basic architecture of the combination lock is
shown in Figure A7.3. Write Verilog code and present the RTL view and
important parameters of the synthesis results.

Fig. A7.3 Serial combination lock

7.10 Design a controller for a vending machine, which dispenses up to ten differ-

ent types of items such as canned sweet drinks, fruit/vegetable drinks, bis-
cuits, chocolates, chips, peanuts, etc. A separate mechanism that accepts
coins from the user may be assumed. It verifies the insertion of correct coin.
Otherwise, it ejects the coin. A 4-bit push-button BCD switch serves as the
input selection for the type of drinks/snacks the user desires.

……..

COMPARATOR

……..

MATCH
(A=B)

CLEAR LSHIFT
IN

‘M’ bit lock code

V+

‘M’ bit shift register

A

B

MATCH

CONTROL

CIRCUIT

LSHIFT

CLEAR

(CNT = M)

RESET

READ

OPEN

ERROR OPEN_LOCK

Bit

290 Synthesis of Designs – Synplify Tool

Sequence of operation:
1. Wait for RDY lamp to switch ON.
2. Set BCD switch to the desired item.
3. Insert the correct coin and collect the desired can/snack.

A schematic circuit diagram of the vending system is shown in Figure A7.4.
Develop an ASM chart and realize the vending machine controller using
Verilog. Your code must be RTL compliant. Present the RTL view and im-
portant parameters of the synthesis results.

Fig. A7.4 Vending machine controller

RDY

OS1

OS2

OS9

OS10

CCA

COIN
ACCEPTOR

CA

CLEAR

CA

S0
S1
S2

1
2
4

Weights

CLK

reset_n

5

+ Vcc

BCD SWITCH

Select item

To Output solenoids
of the item dispensing
mechanism

To ready
lamp

(Typ. for all outputs)

CONTROLLER
8

S3 S2 S1 S0

S3

Insert
Coin

*

*

Assignments 291

Chapter 8

Place and Route

In the previous chapters, we learnt how to simulate and synthesize our designs us-
ing Modelsim and Synplify tools respectively. Synplify produces an “.edf” output
file of our design, which is input to the next tool called the place and route. This
tool generates “.bit” file that may be downloaded into FPGA mounted on a printed
circuit board designed and fabricated as per the system requirements of our de-
sign. We will be using Xilinx place and route tool [20] in order to realize our de-
signs on FPGAs.

8.1 Xilinx Place and Route

There are two versions in the Xilinx place and route tool: one is the design man-
ager, which is an older version the user may have and the other is the navigator.
Both these tools may be invoked from the Synplify tool or by clicking project
navigator icon on the desktop. In the recent versions, we do not get the design
manager but only the project navigator. We will, therefore, learn both the tools,
which serve the same purpose of generating “.bit” files. We will first learn the de-
sign manager for clear understanding of the tool. For the present treatment, we
will assume that our design is “seq_ckts.v”, from which the Synplify tool created
the corresponding EDIF file, “seq_ckts.edf ”. In the Synplify “options” menu, go
to Xilinx, where we have three options:

Design manager
Project navigator
Floor planner

Click on the “Design Manager” to open the Xilinx window as shown in Figure
8.1. Another window called new version also opens along with the main window.
The input for the Xilinx P&R tool is the “.edf” file of our design. Since we have
opened it from the Synplify window, it has automatically taken the relevant file,
“seq_ckts.edf ”. The tool has created a separate version and revision for the design
in order to avoid overwriting inadvertently. Instead of this, we can also create a
new version/revision or new design, should we so desire. The FPGA device we se-
lected in Synplify tool is automatically mapped by the place and route tool. We
can change to any other device if we wish to do so before running the place and
route tool.

Choose “Custom” in “constraints file” column using the drop down menu. An-
other window called “constraints file” opens as shown in Figure 8.2. Using browse

Fig. 8.1 Xilinx design manager window

Fig. 8.2 Constraints file window

296 Place and Route

Fig. 8. 3 Xilinx flow engine

Fig. 8.4 Clock constraints window

button, select the relevant “seq_ckts.ucf” file. Click on open and “OK” twice. In
order to start the implementation of the place and route, click on the dark arrow
on the top left. A window called Xilinx flow engine opens as shown in Figure 8.3.
The progress of translation, mapping, place and routing, and configuration are dis-
played in this window. The implementation details may be viewed by clicking on

8.1 Xilinx Place and Route 297

the view log file and reports file after the place and route is completed. An output
file called “seq_ckts.bit” is created.

The clock speed and FPGA pins can be changed by the designer. In order to
change these constraints, click on Tools => constraints editor. A new window
opens as shown in Figure 8.4. Click on Global to view “clk”. For a change of
clock frequency from 100 MHz to 50 MHz, replace 5 (half clock period time in
ns) in period column with 10 and enter. For change of pins, click on ports. Xilinx
FPGA pin constraints window appears as shown in Figure 8.5. Location column
lists all the pins of signals in the design. Double click on the selected location.
Another window opens as shown. Enter the new pin assignment and click on Ok if
you wish to change the pin number for the desired signal. Save the constraints file
as “seq_ckts.ucf ” file. You may view the “.ucf ” file using a standard text editor
to see the new changes take effect.

You can open the floor plan, i.e., layout of the design by clicking on Tools =>
Floorplanner in the main menu shown in Figure 8.1. The floor plan is shown in
Figure 8.6. It shows the placement of various components (primitive cells) of our
design and the pin connections. If we wish to change the component locations and
pin connections, we can do so towards the end of a project. Use help to change the
placement, if required. It may be noted that if you change any of the constraints or
the floor plan, you will have to run the place and route as well as the back annota-
tion again.

Fig. 8.5 Xilinx FPGA pin constraints window

298 Place and Route

Fig. 8. 6 Xilinx floor plan

We can view the log files by clicking on Utilities => report browser menu.

Towards the end of the log file, we can see that the tool has created
“seq_ckts.ncd” file for use in the back annotation process. It may be noted that the
timing report of Xilinx P&R tool gives more accurate results than the synthesis
timing report, which we got earlier using Synplify tool. The P&R tool also reports
errors, if any, timing details, the maximum frequency of operation, the gate count,
etc.

The above treatment of using the tool is summarized in the next section. These
are covered in steps starting from 1 to 4. The next two steps, 5 and 6, are for gen-
erating back annotated file, “seq_ckts_banno.v, which are self-explanatory. The
back annotated file must be simulated using Modelsim in order to make sure that
our design is still working at the maximum frequency of operation reported by the
P&R tool. These are covered in steps 7 to 9. It may be noted that after back anno-
tation, the actual gate delays take effect. “Vlog” is a command in the ModelSim
tool in order to compile the test bench, which includes the back annotated design
file, along with the primitive cell library (such as LUTs, MUX, etc.) used in the
FPGA. Make sure that the three files mentioned in step 7 are present in the current
working directory in ModelSim. Check it by using the “dir” command. When you
execute the “Vlog” command, it compiles the test bench, the back annotated de-
sign file and the relevant library modules.

The next step 10 is to create a new work directory and load the back annotated
design. The waveforms of the back annotated design can be viewed by following
step 11. Analyze these waveforms as we had done before in Chapter 6 and make

8.1 Xilinx Place and Route 299

sure that the functionality of our design is intact. It may be noted that the new
waveforms reflect the actual gate delays, being the result of back annotation.

8.2 Xilinx Place and Route Tool Command Summary

The command summary of place and route and back annotation is presented below
for quick reference while using the tool. As an illustration, “seq_ckts” has been
shown as the design file in this summary. This needs to be changed to reflect your
actual design while running the tool.

Place and Route

1. In Synplify main window, click on options => Xilinx => start design
manager. Xilinx design manager window opens. “seq_ckts.edf” created
by synthesis is automatically taken as the input file by the design man-
ager. Also another window called new version opens. Choose “Custom”
in “constraints file” column and another window called “constraints file”
opens. Using browse, select the relevant (seq_ckts.ucf) file. Click on
open and “Ok” twice. If everything is ok in the Xilinx design manager,
then the revision number, say, rev1 will be displayed.

2. Click on the dark arrow on the top left to start the implementation of the
place and route. After it is completed, click on the view log file and re-
ports file to get the implementation details. If you are done, click OK to
dismiss the implement status window. An output file called
“seq_ckts.bit” is created. This file is downloaded into the FPGA housed
on the target circuit board while checking your design on the hardware
later on. This file is what is supplied by the IP core developer along with
the documentation.

3. To change the constraints such as clock speed and pins, click on Tools =>
constraints editor. A new window opens. Click on Global to view “clk”.
For change of clock from 100 MHz to 50 MHz, replace 5 in period col-
umn with 10 and enter. For change of pins, click on ports and in location
column corresponding to the desired signal in the design. Double click on
the selected location. Another window opens. Enter the new pin assign-
ment and click on OK. Save the constraints file with an extension,
“.ucf ”. You may view the “.ucf ” file to see the new changes take effect.

4. Click on tools => Floorplanner to open the floor plan or layout of the de-
sign. Use help to change the placement, if required.

Note: If you change any of the constraints or the floor plan, you will have to
run the place and route as well as the back annotation again.

300 Place and Route

 Back Annotation

5. Open a DOS command window and move to the directory where your
Xilinx P&R files are located. In the DOS prompt, key in the following
command and execute to convert “.ngd” file to “.nga” file. Make sure that
the “.ncd” and the “.pcf ” files of the design are present in the current
working directory. The command is:
ngdanno –o seq_ckts.nga –p seq_ckts.pcf seq_ckts.ncd

6. Convert the “.nga” file into back annotated “.v” file by executing the
command:
ngd2ver seq_ckts.nga seq_ckts_banno.v
“seq_ckts.sdf ” file is also created. “seq_ckts_banno.v” is the back anno-
tated file of our original design, “seq_ckts.v”.

7. Preferably, make a new directory and copy all the annotated files,
“seq_ckts_banno.v”, “seq_ckts.sdf” and the test bench, “seq_ckts_test.v”,
into the same.

8. Edit “seq_ckts_banno.v” file and comment out two statements as follows
and save it:

Wire GSR ; // mglbl. GSR;
Wire GTS ; // mglbl. GTS;

 Also in the test bench, change
` include seq_ckts.v

 to
` include seq_ckts_banno.v

9. In ModelSim, compile the Xilinx library and back annotated files by the
command:
vlog –y C:/Xilinx/Verilog/src/simprims+libext+. v seq_ckts_test.v

10. Create a new work directory and load the work file using the command:
vsim work.seq_ckts_test
When we execute this command, we can see the list of all the modules
included in the test bench.

11. Use View => wave to get the waveform for analysis. Use View => Sig-
nals to open the signals window, in which click on “Add” and “Wave”
and “Signals in Design” and, click on “Run-All” to study the displayed
waveforms. Note that the new waveforms reflect the actual gate delays,
being the result of back annotation. Make sure that all circuit functional-
ities of our design are preserved.

8.3 Place and Route and Back Annotation Using Xilinx
Project Navigator

The project navigator tool of Xilinx ISE 6.1i/7.1i/8.2i serves the same purpose as
the design manager. The project navigator can be opened either from Synplify tool
as described earlier or by double clicking on the icon:

8.3 Place and Route and Back Annotation Using Xilinx Project Navigator 301

on the desktop. The navigator main window is shown in Figure 8.7. Within the
main window, two more windows, “Sources in Project” and “Processes for
Source”, also open. In case they don’t open, click on “View => Project Work-
space” in the main menu. Various choices such as synthesis, implementation, pro-
gramming (bit) file, etc. are shown in project work space in the two figures of 8.7.
If these choices are not shown, click on “Project => Toggle Paths” to make other
options visible. A step by step procedure for using this tool is presented as com-
mand summary.

The first step is for invoking the tool. The design can be implemented by fol-
lowing the second step. Look into errors and warnings, if any, and take the reme-
dial action as you had done while using the Xilinx design manager earlier. Step 3
describes the method of generating the bit stream for configuring an FPGA. Floor

planning is a process of choosing the best grouping and connectivity of logic in a

Fig. 8.7 Xilinx project navigator (Continued)

302 Place and Route

design. It is also the process of manually placing blocks of logic in an FPGA,
where the goal is to increase density, routability, or performance. Refer help facil-
ity for using this feature. Steps 4 to 9 cover the back annotation of “yourdesign”.
Substitute “yourdesign” with the actual design file name, “seq_ckts”, for example.
While executing step 9, select the frequency of operation so that it is less than or
equal to the maximum frequency of operation reported in step 2. Otherwise, the
results will not be correct and, in Modelsim, the tell-tale signals are usually “Hold
time” or “Setup time” violation. The command summary of project navigator fol-
lows.

Fig. 8.7 Xilinx project navigator

8.3 Place and Route and Back Annotation Using Xilinx Project Navigator 303

Command Summary of Xilinx Project Navigator ISE 6.1i/7.1i

1. Double click on Project Navigator.lnk icon on the desktop to open the navigator
window. Inside the navigator, click on “File => New Project”. This opens a
new window called by the same name, New Project. In that window, type
the desired “Project name”, select the “Project Location”, i.e., the folder
where you want to locate the Xilinx project and “Top-level Module Type”
as “EDIF”. Click on “Next” followed by selecting the desired “Input De-
sign” (the .edf file generated by the Synplify tool) and the “Constraints file”
(.ucf file containing the FPGA pin connections, which you have keyed in
for the project that you are executing now). Click on “Next”. This opens
another window reporting the device selected (in Synplify tool) and “EDIF”
opted. Make sure to mention “Modelsim” for Simulator selection and click
on “Finish” in “New Project Information window”. The device, “.edf ” and
“.ucf ” files selected are listed in “Sources in Project” window in the main
Navigator. Click on the “.edf ” file. In the window marked “Processes for
Source”, various options for implementation, back annotation and creation
of bit stream (.bit) files appear.

2. Double click on the “Implement Design” on the “Processes for Source”
window to start the implementation of the place and route. After it is com-
pleted, i.e., after tick mark appears, double click on “Map Report” to open
the implementation details on the “Log Files” window on the right. It re-
ports the gate count, number of slices/LUTs used in the project, etc. Also
look into errors/warnings and do the needful. Double click on the “Text-
based Post Place & Route Static Timing Report” under “Place & Route” for
viewing the “Maximum frequency” of operation.

3. In order to create the bit stream file, double click on “Generate Program-
ming File”. After it is completed, double click on “Programming File Gen-
eration Report” to cross-check that the design output file with “.bit” exten-
sion is created. This is the file down loaded into the FPGA housed on the
target circuit board while checking your design on the hardware later on. If
security of your design is required, right click on “Generate Programming
File => Properties”, which opens the window named “Process Properties”.
Click on “Read back Options”. In the drop down menu of “Security –
Value”, select “Disable Read back and Reconfiguration”.

Back annotation

4. In the navigator, right click on “Post Place & Route Simulation Model” fol-

lowed by “Properties”, which opens a window called “Process Properties”.
Under “General Simulation Model Properties”, select “Modelsim_Verilog”
in “Value” field opposite “Simulation Model Target”. Click on “OK”. Dou-

design_timesim.v, yourdesign_timesim.sdf files. These are the back anno-
ble click on “Post Place & Route Simulation Model” to generate your

304 Place and Route

tated files, which you need to simulate again in order to check whether your
design is working at the maximum frequency reported in Sl. No. 2 or not.

In case you have ISE6.1 version or ISE7.1 version of the navigator,
right click on “Generate Post Place & Route Simulation Model” to open the
window “Process Properties/Simulation Model Properties”. Select “Model-
Sim SE (Verilog)” in “Value” field opposite “Simulation Model Target”.
Click on “OK”. Double click on “Generate Post Place & Route Simulation
Model” to generate yourdesign_timesim.v and yourdesign_timesim.sdf
back annotated files. Watch out for changes from version to version and
apply accordingly.

5. Copy yourdesign_timesim.v, yourdesign_timesim.sdf and c:/Xilinx/verilog/
src/glbl.v into the folder where your design files are residing. In the test
bench, change `include “yourdesign.v” to `include “yourdesign_timesim.v”
and `define clkperiodby2 10 to change the operating frequency equal to or
less than the maximum frequency reported in Sl. No. 2. The operating fre-
quency may be obtained by computing: (500/ clkperiodby2) MHz. Change
10 accordingly in the statement:
`define clkperiodby2 10.

6. Open Modelsim, File => New Project. Enter the Project Name and Loca-
tion of Project.

7. Click on Design => Compile. Select the files yourdesign_test.v and glbl.v.
Click on “Default Options” in the “Compile HDL Source Files” dialog box
followed by “Verilog” option. Also, click on the button “Library Search…”
and specify the library directory as

 C:/Xilinx/verilog/src/simprims. Click on “Open”.
 Then click on the button “Extension…” and select “.v”. Click on “OK” and

then Compile. Click on “Done”.
8. Click on Design => Load Design or Simulate as the case may be. Click on

“glbl” and then click on “Add”. Do the same for “yourdesign_test”. Then
click on “Load”.

9. Open the waveform, run simulation and analyze the timing diagrams as you
have done before to ensure that your design is working perfectly.

Notes:

1. If you change any of the constraints or the floor plan, you will have to run

the place and route, back annotation, and bit stream generation again.
Whenever you change the design file or the constraint file, run the Synplify
and then the navigator tools again. In order to run “Implement Design” etc.
again, right click on the same and click “Rerun” or “Rerun All”.

2. Double click on “Floor Plan Design” in Implement Design/Translate to re-
locate pins, components, etc., if you wish to improve the timing. Seek help
if you wish to learn more about these features.

3. Synthesis, place and route results and back annotated waveforms are pre-
sented for various designs from Chapter 9 onwards.

8.3 Place and Route and Back Annotation Using Xilinx Project Navigator 305

If you desire to start with source file, instead of EDF file, the first two steps will
be as follows:
1. Creation of new project is the same as done before. After the project is created,

click on “Project => Add Source”. Another window named “Add Existing
Sources” opens. In that window, choose the desired HDL source file, say,
“traffic_controller.v”. In order to include user constraints file, click on “Project
=> Add Source” again. In the window “Add Existing Sources” that opens, se-
lect the desired UCF file, say, “tc_12seq_rt.ucf ”. UCF may be created by us-
ing any standard text editor such as the word pad, “Vi” etc. The above features
are shown in Figure 8.8. The “.ucf ” can be displayed as shown in the figure by
double clicking on “Edit Constraints (Text)” in the “Processes for Source”
window.
Note: If the same .v or .ucf file is selected again, the tool reports error. To
come out of this error, click on “Project => Cleanup Projects File”. Also, if
pins specified in “.ucf ” file does not agree with the device selected, then the
tool reports error. Therefore, select the device/pins correctly.

2. The design can be synthesized by double clicking on “Synthesize – XST”. Af-
ter the synthesis is complete, it is ticked along with “View Synthesis Report”
and “Check Syntax”. Double click on “View Synthesis Report”, which opens
the said report on the right. Browsing it, we get the following details:
1. Synthesis options summary
2. HDL compilation
3. HDL analysis
4. HDL synthesis

4.1 HDL synthesis report
5. Advanced HDL synthesis
6. Low level synthesis
7. Final report

7.1 Device utilization summary
7.2 Timing report

In synthesis options summary, the target device used, say, xcv800-4-hq240,
and whether the design conforms to RTL (RTL Output : Yes) are reported. The
device utilization summary reports as follows:

Selected device : v800hq240-4
Number of slices: 139 out of 9408 1%
Number of slice Flip Flops: 81 out of 18816 0%
Number of 4 input LUTs: 252 out of 18816 1%
Number of bonded IOBs: 18 out of 170 10%
Number of GCLKs: 1 out of 4 25%

Under timing report, a timing summary presents the maximum frequency of
operation possible with the selected FPGA device. For example, for the design
“traffic_controller”, which will be presented in the penultimate chapter, the fol-
lowing is the timing summary reported by the tool.

306 Place and Route

Timing Summary :

Speed grade: –4 minimum period: 15.629 ns (maximum frequency: 63.984 MHz)

Minimum input arrival time before clock: 12.196 ns
Maximum output required time after clock: 8.938 ns
Maximum combinational path delay: No path found

Double clicking on “View RTL Schematic” under the menu “Synthesize –
XST”, a block diagram of the design is displayed in a new window called “Xilinx
ECS”. The RTL circuit diagram of the design is displayed by double clicking on
the block diagram.

Note: Other steps from 2 to 9 are the same as that presented in Command sum-
mary of Xilinx project navigator.

Fig. 8.8 Xilinx project navigator – Addition of “.v” and “.ucf” files

8.3 Place and Route and Back Annotation Using Xilinx Project Navigator 307

Command Summary of Xilinx Project Navigator ISE 8.2i

1. Double click on icon on the desk top to open the navigator window.
Inside the navigator, click on “File => New Project”. This opens a new win-
dow called by the name, “New Project Wizard”. In that window, type the de-
sired “Project name”, select the “Project Location”, i.e., the folder where you
want to locate the Xilinx project and “Top-level Source Type” as “EDIF”.
Click on “Next” followed by selecting the desired “Input Design” (the .edf
file generated by the Synplify tool) and the “Constraints file” (.ucf file con-
taining the FPGA pin connections, which you have keyed in for the project
that you are executing now). Click on “Next”. This opens another window re-
porting the device (properties) selected (in Synplify tool) and “EDIF” opted.
You may change the device if you wish. Make sure to mention “Modelsim
XE or SE” as the case may be for “Simulator” selection and click on “Finish”
in “New Project Summary” window. The device “.edf ” and “.ucf ” files se-
lected are listed in “Sources for Synthesis/Implementation” window in the
main navigator. Click on the “.edf ” file. In the window marked “Processes”,
various options for implementation, back annotation, and creation of bit
stream (.bit) files appear.

2. Double click on the “Implement Design” to start the implementation of the
place and route. After it is completed, i.e., after tick marks appear, double
click on “Map Report” to open the implementation details on the “Log Files”
window on the right. You can also get similar information by double-clicking
on “View Design Summary” in “Processes” window. It reports the gate count,
number of slices/LUTs used in the project, etc. Also look into errors/warnings
and do the needful. Click on the “Design Overview/Timing Constraints” un-
der “FPGA Design Summary” for viewing the “Maximum clock period” (and
hence frequency) of operation.

3. In order to create the bit stream file, double click on “Generate Program File”.
After it is completed, double click on “Programming File Generation Report”
to cross-check that the design output file with “.bit” extension is created. This
is the file down loaded into the FPGA housed on the target circuit board while
checking your design on the hardware later on. If security of your design is
required, right click on “Generate Program File => Properties”, which opens
the window named “Process Properties”. Click on “Read back Options”. In
the drop down menu of “Readback Options – Value”, select “Disable Read
back and Reconfiguration”.

Xilinx project navigator ISE 8.2i window is shown in Figure 8.9. Other features
are similar to ISE 7.1i.

308 Place and Route

__

Summary

This chapter covered the place and route tool of Xilinx, widely used in industries.
The salient features of Xilinx P&R tool are creation of “.bit” file from EDIF file
created by the Synplify tool, change of specification of user constraints such as
clock speed and FPGA pins, remapping of the target FPGA device if desired, back
annotation and floor planning. The back annotated file is simulated again in Mod-
elsim to ensure that the design is working correctly at the maximum frequency re-
ported by the place and route tool. Report file generated by the P&R tool gives the
maximum frequency of operation possible as well as the gate count (chip com-
plexity) for the design. Command summaries of the Xilinx P&R design manager
tool and navigator tools were furnished as a ready reckoner. With the three indus-
try standard tools we have learnt so far, namely, the simulation using Modelsim,
synthesis using Synplify, and place and route using Xilinx, we are well equipped
to undertake Digital VLSI Systems design, be it based on FPGA or ASIC. To start
with, we will learn how to design memories in the next chapter.
__

 Summary

Fig. 8.9 Xilinx project navigator – ISE 8.2i

 309

Assignments

8.1 For the design assignments 3.2 to 3.14 in Chapter 3, run the Xilinx tool and
present the results.

8.2 For the design assignments 4.2, 4.4, and 4.12 in Chapter 4, run the Xilinx tool
and present the results.

8.3 In the assignment 7.7, you were asked to design a lift controller. Run the Xil-
inx tool and present the results for the same.

8.4 In the assignment 7.8, you were asked to design a pattern sequence detector.
Run the Xilinx tool and present the results of that design.

8.5 In the assignment 7.9, you were asked to design a combination lock. Run the
Xilinx tool and present the results for the same.

8.6 In the assignment 7.10, you were asked to design a controller for a vending
machine and present the synthesis results. Similarly, run the Xilinx tool and
present the results.

8.7 Design a simple microprocessor, whose specifications are given in Figure
A8.1. The address and data bus widths are eight bits each. Apart from an ac-
cumulator, A, there is one other register, B, to manipulate data processing.
An asynchronous power on reset, reset_n, resets the processor. “CLK” is the
system clock, “RD” and “WR” are the active high read and write pulses re-
spectively issued out of the microprocessor. The instruction set is shown in
Figure A8.1b. In the instruction MOV A, B; B is the source and A is the des-
tination as per INTEL format. The instruction set is followed by the ASM
chart in A8.1c. The basic read/write timing diagram is shown in Figure
A8.1d. Implement the design in Verilog and present the Synplify and Xilinx
results.

a A simple microprocessor architecture

8 bit µp

A7 – A0
(ADDR)

D7 – D0
(DATA)

RD

WR

reset_n

A8

B8

Accumulator

Registers

CLK

Fig. A8.1 A simple microprocessor (Continued)

310 Place and Route

b Instruction set

0 MOV A, B

1 MOV B, A

2 MVI A, #data

3 LDA addr

4 STA addr

5 AND A, B

6 OR A, B

7 NOT A

8 XOR A, B

9 ADD A, B

10 SUB A, B

11 JMP addr addr

data

addr

addr

12 JZ addr addr

Bit-wise logic

A<= A+B

A<=A-B

Store A into
memory

Load A from
memory

Op Code

1st Byte 2nd Byte

Instruction

 Assignments

Fig. A8.1 A simple microprocessor (Continued)

 311

Fig. A8.1 A simple microprocessor (Continued)

 0
Addr = 0

RD
OP_CODE <= D

A = B
Addr = Addr+1 OP_CODE=0

T

F

OP_CODE=1
T

F

Addr=Addr+1OP_CODE=2
T

F

Addr= Addr+1 OP_CODE=3
T

F

Addr=Addr+1 OP_CODE=4
T

F

A=A&B OP_CODE=5
T

F

A=A|B OP_CODE=6
T

F

RD
A=D

RD
Addr=D

Addr = Addr+1

WR
D = A

 S

Z=1
T

A=0

Z=0

F

Y X

 1

 2

6

 3

4
5

8 7

10

11

MOV A, B

MOV B, A

LDA addr

STA addr

RD
Addr=D

B = A
Addr = Addr+1

RD
A=D

E

9

c ASM Chart

312 Place and Route

c ASM Chart

Fig. A8.1 A simple microprocessor (Continued)

A=~A OP_CODE=7
T

F

Y X

A=A^B OP_CODE=8
T

F

A=A+B OP_CODE=9
T

F

A=A-B OP_CODE=10
T

F

Addr=Addr+1 OP_CODE=11
T

F

Addr=Addr+1 OP_CODE=12
T

F

RD
Addr=D

S

E Z=1

T

F

Other Instructions

12

JMP addr JZ addr

 Assignments 313

d Basic Timing Diagram

8.8 Car seat belts are life savers and are compulsory in many countries. However,

people often forget to wear the same while traveling in the car. Assume that
sensors are available to detect if a person is seated in the car. Appropriate
signal conditioner generates logic high if a sensor senses a person is seated.
For a five seater car, there are five such sensors. Each of the five seat belts
generates logic high only if that particular seat belt is fastened. If the ignition
is turned on, a piezo-electric sound alarm is triggered (of course, audible in-
side the car only) and LEDs corresponding to the persons who have not fas-
tened their seat belts flash at 0.5 Hz on the dash board. Once all the seat belts
are fastened, all the audio-visual alarms turn off automatically. Draw a block
diagram of the system with above features identifying all inputs/outputs
clearly. State your assumptions with proper justification. Write a Verilog
code to realize such an alarm system and report your synthesis and Xilinx re-
sults.

8.9 An unmanned level crossing of a rail track and a road needs to be protected
by a system. At the approach of a train, the traffic lights at the junction must
turn from green to red, and a bell must ring when the train is 5 miles away
from the junction. The railway gates must close automatically when the same
train is 4 miles from the junction. Trains may approach from either direction
on different tracks. Red traffic lights are different for the two directions,
whereas the green light and the bell are common. Inductive proximity
switches buried under each of the rail tracks at 5 miles and 4 miles from ei-
ther side of the junction sense the train above and send logic high signal to
the controller at the junction. The red lights change back to green, bell
switches off and gates open when the end of the train is 5 miles or more away
from the junction. Clearly state your assumptions and describe your design.
Realize the controller using Verilog and present your synthesis and Xilinx re-
sults. Also present the RTL view.

Fig. A8.1 A simple microprocessor

314 Place and Route

Op. code

clk

reset_n

A7-A0
(Addr)

D7-D0

RD (or WR)

0

8.10 Draw an ASM chart for the traffic light controller shown in Figure A8.2. The
timing starts if a signal, STRT_TMR, is asserted for a clock period. When the
timing is complete, an output, TIME_OVER, is set. This is timed for 25 s or
5 s depending upon another input, T25_5N. If it is high, it is 25 s; otherwise
5 s. The 5 s timing is for delaying the switching on of green lights. Assume
that the timer is available. MG and MR are main road green and red lights,
whereas SG and SR are side road green and red lights respectively. There are
inductive sensors buried under the side roads to sense traffic in the side roads.
SENSOR is high if there is any vehicle on the side road. Only straight traffic
and right turns are allowed. No free right. Once the main traffic is allowed, it
must persist at least for 25 s. Realize the traffic light controller using Verilog
and present your synthesis and Xilinx results.

Fig. A8.2 Traffic light controller with sensors

SENSOR

M
A
I
N

R
O
A
D

MR
MG

SR

SG

SG

SR

S I D E R O A D

MG
MR

SENSOR

 Assignments 315

Chapter 9

Design of Memories

Memory design is one of the challenging areas, where we need to take extreme
care while designing systems for ASIC and FPGA implementations. We know that
there are basically two types of memories: ROM and RAM. The organization of
the memory would depend upon a particular application. The conventional memo-
ries that we use either have single address and single data output for ROM or
separate read and write addresses and data bus for a dual port RAM. In real time
systems such as video processing systems, these conventional memories may not
be of help since the typical applications often demand access to two memory loca-
tions simultaneously, write word-wise and read column-wise, etc. These require-
ments call for tailor made memory design solutions for these applications. These
application-specific requirements, arising mainly due to the need for efficient im-
plementation of computationally intensive algorithms, are addressed in this chapter.

9.1 On-chip Dual Address ROM Design

Consider an application, where the system ROM is required to supply two differ-
ent data concurrently. This need can be fulfilled if the ROM is designed to have
dual address and dual data output. The application further needs synchronous and
pipelined operation in order to achieve fast processing speeds. Therefore, we need
a clock input. Two addresses are provided so that we may fetch two locations con-
currently. The number of bits in the address bus will decide the number of loca-
tions in the ROM. Let us say that we provide 3 bits for the address and, therefore,
the ROM contains eight locations. Further, let us take data width as 64 bits. The
data that will be read from the ROM table are ‘dout1’ and ‘dout2’ corresponding
to the addresses, ‘addr1’ and ‘addr2’ respectively as shown in Figure 9.1. It should
be noted that the ROM content is only a single block of 8 × 64 bits even though
two addresses are involved in the design. This requirement arises in one of the de-
sign applications, Discrete Cosine Transform and Quantization (DCTQ) processor
used in JPEG, MPEG 1, MPEG 2, H.263 based still image/video compression co-
decs. We will cover this design application in depth in a later chapter. Other de-
signs we will consider subsequently are single address ROM, dual redundant
RAM, etc. These designs will also be used in the same application mentioned ear-
lier. Let us see how the present dual address ROM design flows.

Fig. 9.1 On-chip dual address ROM design

In DCTQ application mentioned earlier, we need to compute cosine transform
coefficients from a block of data and cosine terms (C) and its transpose (CT). This
can be realized by using two separate, single addressed ROMs for storing cosine
values and the transpose of the cosine values. A better way in terms of chip area
will be a single ROM with dual address since C and CT contents are precisely the
same. The transpose can be accessed by using the address ‘addr2’, while C can be
accessed by using ‘addr1’. Since the DCTQ computation requires both C and CT
simultaneously for processing different steps of the DCT algorithm, we need the
dual address. It may be noted that this is not a conventional approach of realizing a
ROM, which uses single address. The ROM requirements may be summarized as
follows with minor modification:

• The ROM stores the cosine terms 2 × C instead of C in order to improve
accuracy.

• Two-stage pipelining for 2 × C matrix of cosine terms to keep pace with dual
RAM used in the DCTQ design.

• ROM size is 8 × 64 bits. Two locations, each of size 64 bits, can be accessed
and output to the data bus, ‘dout1’ and ‘dout2’ simultaneously using the two
addresses, ‘addr1’ and ‘addr2’ respectively.

Since we store twice the value of the required cosine terms in the ROM with a
view to improve the accuracy of computation, we should not forget to divide the
final DCTQ coefficients by two. In order to match the speed of dual RAM, also
used in the DCTQ design, which outputs the block of data delayed by two clock
cycles, we introduce two-stage pipelining in the dual ROM design.

9.1.1 Verilog Code for Dual Address ROM Design

The Verilog code can be realized either by using the register array, ‘reg mem’
or by the ‘case’ statements. We will use the ‘case’ statements in ‘always’ block as
shown in the Verilog code_9.1 since double address is easy to handle in the case
statement approach. To begin with, adequate explanation of how the ROM is or-
ganized is furnished as comments. This is followed by declaring the module,

romc
(romc1)

clk

 T
2C

addr1 [2:0] dout1 [63:0]
2C

dout2 [63:0] addr2 [2:0]

320 Design of Memories

namely ‘romc’, listing and identifying the inputs and outputs of the design.
‘dout1_next’ and ‘dout2_next’ are declared as ‘reg’ since they appear as outputs in
‘always’ blocks. ‘dout1_reg1’ and ‘dout2_reg1’ are outputs in the first stage of pipe-
line. Similarly, ‘dout1’ and ‘dout2’ are outputs in the second stage of pipeline. ‘loc0’
through ‘loc7’ ROM data are realized using ‘assign’ statements and hence declared
as ‘wire’. The maximum value of signed data in an 8-bit fixed point representation is
E7 H close to the maximum of FF H, which explains why we have multiplied C by
two instead of any other integer. The next two are ‘always’ blocks using ‘case’
statements with ‘addr1’ and ‘addr2’ respectively to read one out of the eight loca-
tions. ‘dout1_next’ and ‘dout2_next’ are the outputs accessed using the dual address.
These outputs are delayed by two clock cycles after the addresses are applied by the
two pipeline stages. It may appear that ‘assign’ statements are redundant since the
ROM table could be directly put into the case blocks. But that would have meant
duplicating the same ROM data needing more data entry. Of course, we pay a small
price in terms of additional combinational circuits using ‘assign’ statements. More
details will be provided in the DCTQ design in the chapter on design applications.

Verilog_code_9.1

/* ROMC Design.
This code is put into a file named “romc.v”.
This is the code for a ROM that stores the cosine, 2 × C or 2 × CT matrix.

Design incorporates two pipelining stages in order to keep pace with Dual RAM
used in the DCTQ design. ROM size is 8 × 64 bits. Two locations can be accessed
and output to the data bus, ‘dout1’ and ‘dout2’ simultaneously using the two ad-
dresses, ‘addr1’ and ‘addr2’ respectively. Each location stores eight numbers of
cosine terms. Thus, in eight such locations, a total of 64 terms are stored.
*/

module romc (clk,

addr1,
addr2,
dout1,
dout2

);

input clk ; // Declare I/Os.
 input [2:0] addr1 ;
 input [2:0] addr2 ;
 output [63:0] dout1;
 output [63:0] dout2;

 reg [63:0] dout1_next ;// This is the next value that will
 // be loaded into dout1_reg1.

9.1 On-chip Dual Address ROM Design 321

 reg [63:0] dout2_next ;
 reg [63:0] dout1_reg1 ; // First pipeline registers.
 reg [63:0] dout2_reg1 ;
 reg [63:0] dout1; // Second pipeline registers,
 reg [63:0] dout2; // i.e., final outputs.

 wire [63:0] loc0 ; // ROM data declared as nets.
 wire [63:0] loc1 ;
 wire [63:0] loc2 ;
 wire [63:0] loc3 ;
 wire [63:0] loc4 ;
 wire [63:0] loc5 ;
 wire [63:0] loc6 ;
 wire [63:0] loc7 ;

//2 × C or 2 × CT ROM table organized as 8 × 64 bits.
 assign loc0 = 64'h5B5B5B5B5B5B5B5B ; // ROM data -
 assign loc1 = 64'h7E6A4719E7B99682 ; // eight numbers
 assign loc2 = 64'h7631CF8A8ACF3176 ; // of 8 bits data
 assign loc3 = 64'h6AE782B9477E1996 ; // per location.
 assign loc4 = 64'h5BA5A55B5BA5A55B ;
 assign loc5 = 64'h4782196A96E77EB9 ;
 assign loc6 = 64'h318A76CFCF768A31 ;
 assign loc7 = 64'h19B96A827E9647E7 ;

always @ (loc0 or loc1 or loc2 or loc3 or loc4 or loc5 or loc6 or loc7 or
 addr1 or addr2)
begin
 case (addr1) // Addressed data is accessed whenever there is a change
 // in any of the inputs in the always statement.
 // addr1 serves as the address to read C matrix data.

 3'b000 : dout1_next = loc0 ;
 3'b001 : dout1_next = loc1 ;
 3'b010 : dout1_next = loc2 ;
 3'b011 : dout1_next = loc3 ;
 3'b100 : dout1_next = loc4 ;
 3'b101 : dout1_next = loc5 ;
 3'b110 : dout1_next = loc6 ;
 3'b111 : dout1_next = loc7 ;
 default : dout1_next = loc0 ;

 endcase
 case(addr2) // addr1 serves as the address to read C matrix data.

 3'b000 : dout2_next = loc0 ;
 3'b001 : dout2_next = loc1 ;
 3'b010 : dout2_next = loc2 ;
 3'b011 : dout2_next = loc3 ;

322 Design of Memories

 3'b100 : dout2_next = loc4 ;
 3'b101 : dout2_next = loc5 ;
 3'b110 : dout2_next = loc6 ;
 3'b111 : dout2_next = loc7 ;
 default : dout2_next = loc0 ;

endcase
end

always @ (posedge clk) // First pipeline stage
begin

 dout1_reg1 <= dout1_next ; // Pipeline registers.
 dout2_reg1 <= dout2_next ;

end

always @ (posedge clk) // Second pipeline
begin

 dout1 <= dout1_reg1 ; // Data outputs read using addr1
 dout2 <= dout2_reg1 ; // and addr2 respectively.

end
endmodule

The ROM we have designed can be tested by writing a test bench as follows.
Since the ROM permits fast access, we shall have a clock running at 100 MHz
frequency indicated by 5 (ns) for clock period by two in the Verilog_code 9.2. We
will use the back annotated ‘.v’ file obtained using Xilinx Place and Route tool to
get a feel of the access time of the ROM. In this test bench, we change the two ad-
dresses ‘addr1’ and ‘addr2’ every 10 ns. since the frequency of operation is 100
MHz. The module is declared as ‘romc_test’. The ROM outputs are declared as
‘wire’, while the clock and address inputs as ‘reg’ in the test bench. This is fol-
lowed by calling the design ‘romc’. Stimulants are applied in the ‘initial’ block.
The clock goes high after 5 ns. Therefore, we apply the first set of address inputs
at 7 ns in order to avoid the rising edge of the clock. Subsequently, we apply the ad-
dress inputs every 10 ns. The ROM contents are read for all combinations of
addresses in the range 0 to 7. Different addresses applied to ‘addr1’ and ‘addr2’ are
deliberate. Towards the end, we toggle the ‘clk’ to obtain 100 MHz operation.
__

Verilog_code_9.2

/* Test bench for ROMC Design. Put this in a file named “romc_test.v”.

`define clkperiodby2 5 // Required to generate 100 MHz clock.

9.1.2 Test Bench for Dual Address ROM Design

9.1 On-chip Dual Address ROM Design 323

`include ‘romc_banno.v’ // Design file is romc.v and back annotated file is
 // romc_banno.v

module romc_test (dout1,
 dout2
);

output [63:0] dout1;
output [63:0] dout2;

 reg clk ;
 reg [2:0] addr1 ;
 reg [2:0] addr2 ;

romc romc1(
 .clk(clk),

 .addr1(addr1),
 .addr2(addr2),
 .dout1(dout1),

.dout2(dout2)
);
initial
begin

 clk = 1'b0 ;
// Read the ROM contents for all combinations of addresses.

 #7 addr1 = 3'b000 ;
 addr2 = 3'b111 ;
 #10 addr1 = 3'b001 ;
 addr2 = 3'b110 ;
 #10 addr1 = 3'b010 ;
 addr2 = 3'b101 ;
 #10 addr1 = 3'b011 ;
 addr2 = 3'b100 ;
 #10 addr1 = 3'b100 ;
 addr2 = 3'b011 ;
 #10 addr1 = 3'b101 ;
 addr2 = 3'b010 ;
 #10 addr1 = 3'b110 ;
 addr2 = 3'b001 ;
 #10 addr1 = 3'b111 ;
 addr2 = 3'b000 ;
 #40 // Run for some more time

 $stop ; // before stopping the simulation.
end

324 Design of Memories

always
 #`clkperiodby2 clk <= ~clk ; // Generate 100 MHz clock.
endmodule
__

The simulation results are shown in Figure 9.2 to Figure 9.4. Note that we have
used back annotated file obtained after running the synthesis and place and route
tools, and hence the gate delays must be revealed in the waveforms. Close exami-
nation of the timing diagram in Figure 9.2 reveals that the address changes occur
after a delay of about 2 ns, reckoned from the rising edge of ‘clk’ signal. The data
outputs appear faster than the corresponding addresses as can be seen in Figures
9.3 and 9.4, where the waveforms are zoomed closer than that in Figure 9.2. Let us
examine the data output by ROM. For instance, in Figure 9.2, the data read out
from ROM at 37 ns is 5b5b5b5b5b5b5b5b as shown in the figure. This is in con-
formity with the design given in Verilog_code_9.1, where the ROM content is
‘loc0’ in ‘assign’ statement for the address, ‘addr1’. The simulation tool reports
the data in lower case although we have used upper case in our design file. The
first address, addr1 = 0, is applied at 7 ns in the test bench, Verilog_code_9.2. This
just misses the rising edge of the ‘clk’ signal occurring at 5 ns. This address is,
therefore, recognized at the following positive edge of ‘clk’ at 15 ns. Since the

Fig. 9.2 Waveform of simulated ‘romc’ design

ROM incorporates two stages of pipelining, which implies two clock delays, the

9.1.3 Simulation Results of Dual Address ROM Design

9.1 On-chip Dual Address ROM Design 325

Fig. 9.3 Waveform of simulated ‘romc’ design

Fig. 9.4 Waveform of simulated ‘romc’ design

data corresponding to address ‘0’ appears after a delay of 20 ns at 35 ns. Similarly,
the ‘dout2’ for addr2 = 7 at 35 ns is 19B96A827E9647E7. The cursor, however, is
shown at 37 ns in Figure 9.2. Other results may be similarly verified.

326 Design of Memories

9.1.4 Synthesis Results for Dual Address ROM Design

The synthesis results of Synplify tool is as follows. We have mapped onto a
device, which we will probably use for the design of DCTQ later. From now on-
wards, for all the designs pertaining to the DCTQ such as the dual RAM, arithme-
tic circuit designs, etc., we will use the very same device with the highest speed
available presently. The device type is XCV600 EHQ 240-8. It is a 240-pin pack-
age and Virtex-E series FPGA of Xilinx. The maximum estimated frequency of
operation reported by the tool is very high, about 160 MHz. However, this is only
an approximate estimate and we need to take only the place and route tool report
to be close to the actual. The synthesis report gives the flip-flop usage, the number
of input and output buffers used and the total number of LUTs for the ROM de-
sign. If mapping is successful, the report asserts to that effect. The reader may
view the RTL and technology view to see how the circuit looks. Double clicking
on the circuit opens the corresponding Verilog code of our design.

Performance summary
Worst slack in design: 13.771

Starting Clock Requested Frequency Estimated
Frequency

clk 50.0 MHz 160.5 MHz

Requested
Period

Estimated Period

Slack

Clock Type

20.000

6.229

13.771

Inferred

Resource usage report for romc
Mapping to part: xcv600ehq240-8
Cell usage:

FDS 38 uses
FDR 8 uses
FDRS 26 uses
FD 142 uses
GND 1 use
VCC 1 use

I/O primitives:
IBUF 6 uses
OBUF 128 uses

9.1 On-chip Dual Address ROM Design 327

BUFGP 1 use

I/O register bits: 110
Register bits not including I/Os: 104 (0%)
Global clock buffers: 1 of 4 (25%)
Mapping summary:
Total LUTs: 68 (0%)

9.1.5 Xilinx P&R Results for Dual Address ROM Design

The Xilinx place and route tool reports the number of slices and 4 input LUTs.
The total equivalent gate count for the design is about 2100. The frequency of op-
eration has come down after running the place and route to 138 MHz. However,
the frequency report for overall project design only counts finally. The tool also
creates a bit stream output (romc.bit) required to configure the FPGA mounted on
a functional circuit board.

Xilinx P&R report:
map -p xcv600e-8-hq240 -o map.ncd romc.ngd romc.pcf
Using target part “v600ehq240-8”.
Removing unused or disabled logic. . .
Running cover. . .
Writing file map.ngm. . .
Running directed packing. . .
Running delay-based packing. . .
Running related packing...
Writing design file ‘map.ncd’. . .
Design summary:
 Number of errors: 0
 Number of warnings: 0
 Number of slices: 86 out of 6,912 1%
 Number of slices containing
 unrelated logic: 0 out of 86 0%
 Number of slice flip-flops: 104 out of 13,824 1%
 Number of 4 input LUTs: 68 out of 13,824 1%
 Number of bonded IOBs: 134 out of 158 84%
 IOB flip-flops: 110
 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
Total equivalent gate count for design: 2,120
Additional JTAG gate count for IOBs: 6,480
Timing summary:
Minimum period: 7.226 ns
 (maximum frequency: 138.389 MHz)

328 Design of Memories

 Minimum input arrival time before clock: 8.726 ns
 Minimum output required time after clock: 9.873 ns
Saving bit stream in “romc.bit”.

9.2 Single Address ROM Design

6

• The ROM stores the inverse of the quantization values (8 bits, unsigned).
• It is organized as 8 × 64 bits, and can be read byte-wise.

9.2.1 Verilog Code for Single Address ROM Design

‘romq’ is declared as the module at the beginning and the inputs/outputs listed.
This is followed by declaring the I/Os, registers, and wires as shown in the code.
Locations ‘loc0’ to ‘loc7’ are assigned the ROM data, each of size 64 bits. In the
‘always’ block that follows, these locations are assigned to the memory, ‘mem [0]’
to ‘mem [7]’. The next ‘always’ block separates the 64 bits data in the ‘mem’ as
bytes. MSB of ‘mem [a]’, i.e., ‘mem_data [63:56]’, is assigned as the LSB byte,

Fig. 9.5 Single address ROM design

‘data_byte’ is registered as ‘d’.

romq
(romq1)

clk

a [5:0] d [7:0]

‘byte_data [0]’. Similar explanation holds good for other bytes. Finally, the

We will cover the design of another type of ROM used in DCTQ application as
shown in Figure 9.5. This ROM, with single address and single data output, is used to
store inverse quantization values. In quantization process, we need to divide the DCT
coefficients by the corresponding quantization values. However, division can also
be implemented as multiplication if we take the inverse of the quantization values.
We therefore, store the inverse of the quantization values in the ROM. The data table
is arranged as eight locations of size, 64 bits. While reading the ROM, only one byte
is retrieved at a time. Thus, this implementation is different from the conventional
design storing byte-wise. Since it is read as 64 × 8 bits, i.e., 2 × 8 bits, we need 6
bits of address. The ROM specification may be summarized as follows:

9.2 Single Address ROM Design 329

Verilog_code_9.3
__

/* ROMQ Design.
 This code can be put in a file named ‘romq.v’.

This ROM stores the inverse of quantization values (8 bits, unsigned).
Although organized as 8 × 64 bits, it is byte-addressed (64 × 8 bits) while
reading.

*/
module romq (clk, a, d);

 input clk; // Declare I/Os.
 input [5:0] a; // This is the 6-bit address and
 output [7:0] d; // data output of ROM.

 reg [7:0] d; // Declare as the register.
 wire [7:0] d_next ; // Declare as the wire.

 reg [63:0] mem [7:0] ; // ROM organized as 8x64

reg [7:0] byte_data [7:0] ; // bits, but read byte-by-byte.

wire [63:0] mem_data ; // Declare ‘assign’ outputs as wire.
wire [63:0] loc0 ;
wire [63:0] loc1 ;

 wire [63:0] loc2 ;
 wire [63:0] loc3 ;
 wire [63:0] loc4 ;
 wire [63:0] loc5 ;
 wire [63:0] loc6 ;
 wire [63:0] loc7 ;

 assign loc0 = 64'hFF806C5D4F4C473C ;
 assign loc1 = 64'h80805D554C473C37 ;
 assign loc2 = 64'h6C5D4F4C473C3C36 ;
 assign loc3 = 64'h5D5D4F4C473C3733 ;
 assign loc4 = 64'h5D4F4C47403B332B ;
 assign loc5 = 64'h4F4C47403B332B23 ;
 assign loc6 = 64'h4F4C473C362D251E ;
 assign loc7 = 64'h4C473B362D251E19 ;

always @ (loc0 or loc1 or loc2 or loc3 or loc4 or loc5 or loc6 or loc7)
begin
 // Bytes from each row is accessed in a raster scan order (MSB first, etc).
 mem [0] = loc0 ;
 mem [1] = loc1 ;

330 Design of Memories

 mem [2] = loc2 ;
 mem [3] = loc3 ;
 mem [4] = loc4 ;
 mem [5] = loc5 ;
 mem [6] = loc6 ;
 mem [7] = loc7 ;
end

always @ (mem_data)
begin
byte_data [0] = mem_data [63:56] ; // MSB is assigned as
byte_data [1] = mem_data [55:48] ; // LSB.
byte_data [2] = mem_data [47:40] ;
byte_data [3] = mem_data [39:32] ;
byte_data [4] = mem_data [31:24] ;
byte_data [5] = mem_data [23:16] ;
byte_data [6] = mem_data [15:8] ;
byte_data [7] = mem_data [7:0] ; // LSB is assigned as MSB.
end
assign mem_data = mem [a[5:3]] ; // Get 64 bits data.
assign d_next = byte_data [a[2:0]] ; // Get byte data.

always @ (posedge clk)
 d <= d_next ; // Register byte data.
endmodule
__

9.2.2 Test Bench for Single Address ROM Design

The test bench for single address ROM design is housed in a file named
‘romq_test.v’ and is described in Verilog_code_9.4. The first statement on defini-
tion specifies the half period of clock in ns, which corresponds to an operational
frequency of 100 MHz. File ‘include’ specifies the back annotated source file so
that we may incorporate the actual gate delays in simulation. ‘romq_test’ is de-
clared as the module with ‘d’ as the 8-bit output. Inputs, ‘clk’ and ‘a’ are declared
as ‘reg’ in the test bench. Address is of size 6 bits for accessing 64 locations, each
of width 8 bits. The next statement invokes the design, ‘romq’ calling I/Os by
name. ‘count’ stands for a counter and is of type integer, which is used in ‘for’
loop subsequently. The next group of statements is placed in the ‘initial’ block.
‘clk’ is cleared at 0 ns and the initial address ‘a’ is applied at 7 ns. The statement
‘a = count’ is the only statement in the ‘for’ loop, which changes the address ‘a’
every 10 ns. The address advances in steps of 1 starting from 0 right up to 63. The
statement in ‘always’ block, clk <= ~clk, is for generating a 100 MHz clock.

9.2 Single Address ROM Design 331

Verilog_code_9.4
__

// Test Bench for ROMQ Design. Place this in a file named ‘romq_test.v’.

`define clkperiodby2 5 // Specify the frequency of operation as 100 MHz.
`include “romq_banno.v” // Use the back annotated version of

// romq.v for testing the design.
module romq_test (d); // The test module is declared.

output [7:0] d ; // So also the output.

reg clk ; // The inputs are declared as
reg [5:0] a ; // ‘reg’ in a test bench.

romq romq1(.clk(clk), // romq1 is an instantiation of

.a(a), // the design, romq.
 .d(d) / / The ports are called by name.
) ;
integer count ; // count is an integer variable.

initial
begin

 clk = 1'b0 ; // Initialize the clock and
#7 a = 0 ; // address.
for (count = 0; count < 64; count = count+1) // count = 0–63.

#10 a = count ; // Apply new address
 // every 10 ns a = 0–63.
#200 // Stop after some time.
$stop ;
end

always
 #`clkperiodby2 clk <= ~clk ; // Generate 100 MHz clock.

endmodule
__

9.2.3 Simulation Results of Single Address ROM Design

The simulation results of single address ROM design are shown in Figures 9.6 and
9.7. As in the previous design, we have used back annotated file. From the design
presented in Verilog_code_9.3, we see that the first seven bytes of the ROM are
FF, 80, 6C, 5D, 4F, 4C, 47. This is easily verified by inspecting ‘d’ waveform in

332 Design of Memories

Fig. 9.6 Simulation results of back annotated ‘ROMQ’ Design at the begin-
ning

Fig. 9.7 Simulation results of back annotated ‘ROMQ’ towards the end

Figure 9.6. Since we have used the back annotated design file, the address ‘a’ is
delayed by 2 ns, while data ‘d’ is delayed by 11 ns with reference to the rising
edge of the ‘clk’. It may be noted that ‘a’ is delayed by a ‘clk’ cycle with reference
to ‘count’, since we have used #10 in the statement: #10 a = count in the test
bench, Verilog_code_9.4. Similarly, Figure 9.7 presents the ROM contents of last

9.2 Single Address ROM Design 333

eight locations: 4C, 47, 3B, 36, 2D, 25, 1E, 19. The gate delays in these cases are
nearly the same as in the first seven data. The reader may simulate the code and
verify the correctness of other data, not shown.

9.2.4 Synthesis Results for Single Address ROM Design

The Synplify report of single address ROM design is as follows. The tool creates
‘romq.edf ’ file, which is input into Xilinx P&R tool to generate the bit stream that
is required for downloading into FPGA. Although the requested frequency is high,
the estimated frequency is even higher. The device used is the same as in the pre-
vious design. The design consumes just 37 LUTs and a few other gates and flip-
flops.

START TIMING REPORT #####
Top view: romq
Slew propagation mode: worst
Paths requested: 5
Worst slack in design: 1.874

Starting
Clock

Requested Frequency

Estimated
Frequency

clk

100.0 MHz

123.1 MHz

Requested
Period

Estimated

Period

Slack

10.000

8.126

1.874

Mapping to part: xcv600ehq240-8
Cell usage:

FDR 1 use
MUXF5 11 uses
MUXF6 4 uses
FD 7 uses

I/O primitives:
IBUF 6 uses
OBUF 8 uses

334 Design of Memories

BUFGP 1 use

I/O register bits: 8
Global clock buffers: 1 of 4 (25%)
Total LUTs: 37 (0%)

9.2.5 Xilinx P&R Results for Single Address ROM Design

The place and route for the design is presented as follows. Number of 4 input
LUTs reported by this tool is 35, and is more accurate than the Synplify tool. The
tool also reports the gate count for the design as 319, which information cannot be
had in the Synplify tool. Also, the frequency reported is much higher than that re-
ported by the Synplify tool. The P&R tool creates ‘romq.bit’ file.
Design summary:
Using target part ‘v600ehq240-8’.
 Number of slices: 18 out of 6,912 1%
 Number of slices containing
 unrelated logic: 0 out of 18
 Number of 4 input LUTs: 35 out of 13,824 1%
 Number of bonded IOBs: 14 out of 158 8%
 IOB flip-flops: 8

 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
Total equivalent gate count for design: 319
Additional JTAG gate count for IOBs: 720
Timing summary:
 Minimum input arrival time before clock: 6.568 ns (152 MHz)
 Minimum output required time after clock: 5.633 ns
Saving bit stream in ‘romq.bit’.

9.3 On-chip Dual RAM Design

We were looking into the design of ROMs earlier. Now, we will see the design of
RAMs, which falls in the VLSI category, as the chip area in the design will be
much more than the equivalent of 50,000 transistors. The requirement of dual
RAM with a particular memory organization as presented in this section arises
from the needs of the design application, DCTQ, which we mentioned in the ROM
designs earlier. The dual RAM consists of two RAMs, each of which stores the
image information. This information will be written from a host computer such as
a PC into one of the RAMs through peripheral connect interface (PCI) bus. Ini-
tially, one of the double memory buffers, RAM 1, is filled and once it is full, the
image information is written to the second RAM. While the second memory,
RAM 2, is being written into, the RAM 1 will be read concurrently to process the

9.3 On-chip Dual RAM Design 335

DCTQ coefficients. The design requirement arises from these concurrent opera-
tions of acquiring image data and DCTQ computations. An important feature in
this design is that the data is written at the rate of 64 bits per clock cycle. The data
transfer is through the PCI interface with 64 bits data bus. In order to process
DCTQ, we need to write a block of image data consisting of 64 pixels. We will,
therefore, need eight clock cycles to write a block of information since we can
write eight bytes per cycle. One pixel data size is one byte for monochrome and
three bytes for color image or picture. This design is for processing monochrome
picture or color motion picture.

The pin diagram of the dual RAM is shown in Figure 9.8. The validity of the
input data signals, ‘di [63:0]’ is signaled by ‘din_valid’. Also, the validity of each
of the 8 bits in the 64 bit data bus is indicated by the ‘be [7:0]’ pin referred to as
the byte enable signal. In order to write a pixel block, we need only 3 bits address,
wa [2:0], corresponding to eight locations, each location being 64 bits in width.
Data is written at the positive edge of ‘pci_clk’ signal.

The signal, ‘rnw’, meaning read negative (low) and write positive (high), is
used to configure one of the RAMs in write mode while the other RAM block is
configured in the read mode. That is how we achieve concurrent processing of
both writing and reading of the double buffer. It should be noted that RAM 1 and
RAM 2 are dual RAMs of size 8 × 64 bits each. If RAM 2 is in read only mode,
then RAM 2 is automatically configured to the write only mode and vice versa.
The RAM is written row-wise and read column-wise. This is due to the complex-
ity of the DCT algorithm, which is discussed at length in later chapters on the de-
velopment of algorithms and design of architectures. ‘ra [2:0]’ is the read address
to process DCTQ reckoned at the rising edge of ‘clk’ signal. The column-wise
data read appears at the output, ‘do [63:0]’. It may be noted that the design does
not include a data out valid signal since this is kept track in a controller design
which will be discussed in a later chapter on design applications.

Fig. 9.8 On-chip dual RAM design

dualram
(dualram1) do [63:0]

clk

be [7:0]

wa [2:0]

di [63:0]

ra [2:0]

pci_clk

rnw

din_valid

336 Design of Memories

9.3.1 Verilog Code for Dual RAM Design

The RTL code of dual RAM design is presented in Verilog_code_9.5. Two
RAMs, ram1 and ram2, comprise the dual RAM. The control input signal, rnw,
configures the two RAMs in write only mode and read only mode alternately. For
instance, a ‘high’ configures ram1 in write mode and ram2 in read mode and vice
versa. Once configured, the RAM in write mode gets all the eight locations writ-
ten. Each location is of size 64 bits. The data is written row-wise. While reading a
ROM, it is done column-wise. This arises owing to the order of computation of
DCT mentioned earlier. The include statement identifies the single RAM design.
This is followed by the declaration of the dualram module and the listing of I/Os
along with their identification. The ‘wire’ and ‘reg’ signals are also identified. The
dual RAMs, ram1 and ram2, are instantiated by invoking the ‘ram_rc’ module
twice. The ‘switch_bank’ signal, which is the inverted signal of ‘rnw’, configures
ram2 in read mode if rnw is high and in write mode if it is low. Naturally, rnw
configures ram1 in write mode for rnw = 1 and in read mode for rnw = 0. The
RAM data output ‘do2 or ‘do1’ is registered after a clock cycle delay at the posi-
tive edge of ‘clk_sys’. This delay is purposely introduced to keep pace with
‘romc’ design discussed in an earlier section. It may be noted that both ‘dualram’
and ‘ramc’ designs are used in the DCTQ design.

Verilog_code_9.5
__

/*
This is the RTL code for Dual RAM Design.
Place this in a file named “dualram.v”.
ram1 and ram2 are the dual RAMs, 8 × 64 bits each.
If ram1 is in read only mode, then ram2 is automatically configured to the write
only mode, and vice versa.
The RAM is written row-wise and read column-wise.
*/
`include “ram_rc.v” // This is the individual RAM
 // code file.
module dualram (// Declare the module and

 clk, // I/O ports.
 pci_clk,

 rnw,
 be,
 ra,
 wa,
 di,
 din_valid,
 do

) ;

9.3 On-chip Dual RAM Design 337

 input clk ; // System clock.
 input pci_clk ; // PCI clock for inputting data, di
 // synchronously.
 input rnw ; // Sets one RAM in write only mode

 // and the other RAM in read only mode.
 input din_valid ; // Data in (di) valid.
 input [7:0] be ; // Byte enable.
 input [2:0] ra, wa ; // Read/write address.
 input [63:0] di ; // Data input and
 output [63:0] do ; // Data output of dual RAM.

 wire switch_bank; // Declare net outputs.
 wire [63:0] do1 ;
 wire [63:0] do2 ;
 wire [63:0] do_next ;

 reg [63:0] do; // Declare registered outputs.

reg rnw_delay ;

assign switch_bank = ~rnw; // Configure ram1/ram2 for read and write

// mode respectively to start with.

ram_rc ram1 (.clk(clk), // Instantiate the first RAM.

// ‘rc’ stands for write row-wise and
.pci_clk(pci_clk), // read column-wise.

 .rnw(rnw), // If rnw =1, ram1 is configured for
 .be(be), // write mode. Otherwise, read mode.

 .ra(ra),
 .wa(wa),
 .di(di),
 .din_valid(din_valid),
 .do(do1)

) ;

ram_rc ram2(.clk(clk), // Instantiate the second RAM.

 .pci_clk(pci_clk),
 .rnw(switch_bank), // If rnw =1, ram2 is configured for

.be(be), // read mode. Otherwise, write mode.
 .ra(ra),
 .wa(wa),
 .di(di),
 .din_valid(din_valid),
 .do(do2)
) ;

assign do_next = (rnw_delay) ? do2 : do1 ; // Read ram2 or ram1.

338 Design of Memories

always @ (posedge clk)
begin

rnw_delay <= rnw ; // Delay the rnw signal by one clock.
 do <= do_next ; // Register the selected RAM output.
end
endmodule
__

The dual RAM design we covered earlier included the individual RAM design

file. This design is presented in Verilog_code_9.6. The design module is called
‘ram_rc’. All I/Os are declared as inputs or outputs as the case may be. This is fol-
lowed by identification of various signals used in the design as ‘wire’ or ‘reg’. The
statement ‘reg [63:0] mem [7:0] ;’ refers to a register array arranged as 8 × 64 bits,
which serves as a ROM of width 64 bits and eight locations. The signal ‘addr’ in
the first ‘assign’ statement uses the read or write address of the RAM. It is inter-
preted in accordance with the signal ‘rnw’. If it is high, it is write address. Other-
wise, it is read address. In the second ‘assign’ statement, the content of location
addressed by ‘addr’ is temporarily stored in ‘mem_data [63:0]’, and is used in the
last ‘always’ block. The next eight ‘assign’ statements store each of the eight loca-
tions so that individual byte data may be extracted and read column-wise as shown
in the ‘always’ statement using ‘case’ statement. For instance, for addr = 0, the
‘column’ extracts the MSBs [63:56] of each of the eight locations ‘loc0’ to ‘loc7’
and concatenates, i.e., arranges them in that order.

The ‘always @ (posedge pci_clk)’ block is primarily used to write data into the
RAM only if be7 = 1, and so on. This condition is satisfied only if be[7] = 0 and
rnw = 1 and din_valid =1 using eight ‘assign’ statements before the always block
mentioned earlier. The MSB data of ‘mem [addr]’ is assigned either ‘di[63:56]’ or
‘mem_data[63:56]’ for ‘be7’ value equal to ‘1’ or ‘0’. Similar explanation holds
good for all other bytes. The 64 bit value is obtained by putting all the eight bytes
together by concatenation. The statement ‘assign do_next = (rnw) ? do : column ;’
reads column-wise data from RAM if rnw = 0. Otherwise, the original content
‘do’ is not disturbed. The last ‘always @ (posedge clk)’ block registers the output
‘do’ using ‘do_next’ as its input.

Verilog_code_9.6
__

// This is the individual RAM design.
// Place this in a file named ‘ram_rc.v’.
// This is a single block RAM, called twice by ‘dualram.v’
// RAM size: eight locations of width 64 bits.
// Writing is done by row addressing, and reading by column addressing.

module ram_rc (clk, // Declare the module and list

 pci_clk, // I/Os.
 rnw,

9.3 On-chip Dual RAM Design 339

 be,
 ra,
 wa,
 di,
 din_valid,
 do

) ;

 input clk ; // Declare I/Os.
 input pci_clk ;
 input rnw ;
 input din_valid ;
 input [7:0] be ;
 input [2:0] ra ;
 input [2:0] wa ;
 input [63:0] di ;
 output [63:0] do ;

 reg [63:0] do ; // Declare registered outputs.

 wire [63:0] mem_data ; // Declare all wire signals.
 wire [63:0] do_next ;
 wire [2:0] addr ;
 wire 63:0] loc0 ;
 wire [63:0] loc1 ;
 wire [63:0] loc2 ;
 wire [63:0] loc3 ;
 wire [63:0] loc4 ;
 wire [63:0] loc5 ;
 wire [63:0] loc6 ;
 wire [63:0] loc7 ;
 wire be0 ;
 wire be1 ;
 wire be2 ;
 wire be3 ;
 wire be4 ;
 wire be5 ;
 wire be6 ;
 wire be7 ;

 reg [63:0] column ;
 reg [63:0] mem [7:0] ;// Declare register array, 8×64 bits.

assign addr = (rnw) ? wa : ra ; // Get write address (rnw = 1) or read address.
assign mem_data = mem [addr] ; // Fetch the memory content.

340 Design of Memories

 assign loc0 = mem [0] ; // Intermediate store for memory.
 assign loc1 = mem [1] ;
 assign loc2 = mem [2] ;
 assign loc3 = mem [3] ;
 assign loc4 = mem [4] ;
 assign loc5 = mem [5] ;
 assign loc6 = mem [6] ;
 assign loc7 = mem [7] ;

always @ (addr or loc0 or loc1 or loc2 or loc3 or loc4 or loc5 or loc6 or loc7)
begin
case (addr) // Read the RAM column-wise.
3'b000:
column = {loc0[63:56], loc1[63:56], loc2[63:56], loc3[63:56], loc4[63:56],
 loc5[63:56], loc6[63:56], loc7[63:56]} ;
3'b001:
column = {loc0[55:48], loc1[55:48], loc2[55:48], loc3[55:48], loc4[55:48],
 loc5[55:48], loc6[55:48], loc7[55:48]} ;
3'b010:
column = {loc0[47:40], loc1[47:40], loc2[47:40], loc3[47:40], loc4[47:40],
 loc5[47:40], loc6[47:40], loc7[47:40]} ;
3'b011:
column = {loc0[39:32], loc1[39:32], loc2[39:32], loc3[39:32], loc4[39:32],
 loc5[39:32], loc6[39:32], loc7[39:32]} ;
3'b100:
column = {loc0[31:24], loc1[31:24], loc2[31:24], loc3[31:24], loc4[31:24],
 loc5[31:24], loc6[31:24], loc7[31:24]} ;
3'b101:
column = {loc0[23:16], loc1[23:16], loc2[23:16], loc3[23:16], loc4[23:16],
 loc5[23:16], loc6[23:16], loc7[23:16]} ;
3'b110:
column = {loc0[15:8], loc1[15:8], loc2[15:8], loc3[15:8], loc4[15:8],
 loc5[15:8], loc6[15:8], loc7[15:8]} ;
3'b111:
column = {loc0[7:0], loc1[7:0], loc2[7:0], loc3[7:0], loc4[7:0], loc5[7:0],
 loc6[7:0], loc7[7:0]} ;
default :
column = {loc0[7:0], loc1[7:0], loc2[7:0], loc3[7:0], loc4[7:0], loc5[7:0],
 loc6[7:0], loc7[7:0]} ;
endcase
end

assign be7 = (!be[7]) & rnw & din_valid ;

// Enable write only if be7 = 1, and so on.
assign be6 = (!be[6]) & rnw & din_valid ;
assign be5 = (!be[5]) & rnw & din_valid ;

9.3 On-chip Dual RAM Design 341

assign be4 = (!be[4]) & rnw & din_valid ;
assign be3 = (!be[3]) & rnw & din_valid ;
assign be2 = (!be[2]) & rnw & din_valid ;
assign be1 = (!be[1]) & rnw & din_valid ;
assign be0 = (!be[0]) & rnw & din_valid ;

always @ (posedge pci_clk)
begin // Write into RAM only if be7 = 1, and so on.
 // Otherwise, don’t disturb the RAM contents.
 mem [addr] <= { ((be7) ? di[63:56] : mem_data[63:56]),

 ((be6) ? di[55:48] : mem_data[55:48]),
 ((be5) ? di[47:40] : mem_data[47:40]),
 ((be4) ? di[39:32] : mem_data[39:32]),
 ((be3) ? di[31:24] : mem_data[31:24]),
 ((be2) ? di[23:16] : mem_data[23:16]),
 ((be1) ? di[15:8] : mem_data[15:8]),
 ((be0) ? di[7:0] : mem_data[7:0])

 } ;
end

assign do_next = (rnw) ? do : column ;
 // Read column-wise from RAM only if rnw = 0.
 // Otherwise, don’t disturb.
always @ (posedge clk)

 do <= do_next ; // Register the output.
endmodule
__

9.3.2 Test Bench for the Dual RAM Design

The following is the test bench to verify the functionality of the dual RAM. We
include the back annotated file and examine only the output ‘do’. As usual, we
will operate at 50 MHz. We have two clock signals: one is the ‘pci_clk’ for writing
image data into the RAM and the other one is the system clock, ‘clk’, for reading
the data from RAM. As shown in the Verilog_code_9.7, the two define statements
give the half period for the two clocks. All the inputs are declared as registers and
the dual RAM design is instantiated, calling ports by name. The signal ‘rnw’ decides
whether a RAM is in read mode or in write mode. The stimulants are applied in the
‘initial’ block. To start with, various signals are initialized at zero time. The first
block of data is written into RAM 1, 64 bits at a time corresponding to one row of a
block of image. Each row of data is applied with different ‘wa’ and is written every
20 ns since the frequency of operation is 50 MHz. The data for the write address ‘wa
= 1’ is applied at 17 ns in order to avoid changing data at the rising edge of
‘pci_clk’. Thereafter, the signal ‘rnw’ is toggled and the above process of writing is
repeated for RAM 2. Simultaneously, RAM 1 which was written earlier is read

342 Design of Memories

back by applying progressively increasing read addresses ‘ra’ every 20 ns. Simi-
larly, two more blocks are written followed by reading it back to verify whether
the dual RAMs are working properly. While reading the fourth block, no further
block is written. The last two ‘always’ blocks are used to run the two clocks in the
design. The test may be repeated for ‘din_valid = 0’ and ‘be [7] = 1’ and so on up
to ‘be [0] = 1’. For these conditions, the concerned RAM must be inhibited from
writing.

Verilog_code_9.7
__

// This is the test bench for dual RAM design.
// Place it in a file named ‘dualram_test.v’.

`define clkperiodby2 10
`define clkby2 10
`include “dualram.v” // This is the design file.

module dualram_test (do // Declare the module.

) ;

 output [63:0] do ; // Declare the output.

 reg clk ; // Declare the input signals.
 reg pci_clk ;
 reg rnw ;
 reg din_valid ;
 reg [7:0] be ;
 reg [2:0] ra, wa ;
 reg [63:0] di ;

dualram u1 (// Invoke the design

 .clk(clk), // calling ports by name.
 .pci_clk(pci_clk),
 .rnw(rnw),
 .be(be),
 .ra(ra),
 .wa(wa),
 .di(di),
 .din_valid(din_valid),
 .do(do)

);
initial // Apply stimulants.
begin
 clk = 1'b0 ;
 pci_clk = 1'b0 ;

9.3 On-chip Dual RAM Design 343

 rnw = 1'b0 ;
 din_valid = 1'b1 ; // Change to 1'b0 if write is to be inhibited.
 be = 8'h00; // Change “0” to “1” if byte write is to
 // be inhibited.
 wa = 3'd0; di = 64'h0 ;
 #17 wa = 3'd1; di = 64'h123456789abcdef0 ;

 // Write first block of data into ram1.
 #20 wa = 3'd2; di = 64'h7E6A4719E7B99682 ;
 #20 wa = 3'd3; di = 64'h7631CF8A8ACF3176 ;
 #20 wa = 3'd4; di = 64'h6AE782B9477E1996 ;
 #20 wa = 3'd5; di = 64'h5BA5A55B5BA5A55B ;
 #20 wa = 3'd6; di = 64'h4782196A96E77EB9 ;
 #20 wa = 3'd7; di = 64'h318A76CFCF768A31 ;
 #80 rnw = 1'b1 ; // Switch the roles of the RAM banks.
 ra = 3'd0; wa = 3'd0; di = 64'h5BA5A55B5BA5A55B ;

 // Write second block of data into ram2.
 // Simultaneously read from ram1.

 #20 ra = 3'd1; wa = 3'd1; di = 64'h4782196A96E77EB9 ;
 #20 ra = 3'd2; wa = 3'd2; di = 64'h318A76CFCF768A31 ;
 #20 ra = 3'd3; wa = 3'd3; di = 64'h19B96A827E9647E7 ;
 #20 ra = 3'd4; wa = 3'd4; di = 64'h7E6A4719E7B99682 ;
 #20 ra = 3'd5; wa = 3'd5; di = 64'h7631CF8A8ACF3176 ;
 #20 ra = 3'd6; wa = 3'd6; di = 64'h6AE782B9477E1996 ;
 #20 ra = 3'd7; wa = 3'd7; di = 64'h5BA5A55B5BA5A55B ;
 #80 rnw = 1'b0 ; ra = 3'd0; wa = 3'd0; di = 64'haa5500ff0055aaff ;

 // Write third block of data into ram1
// and simultaneously read from ram2.

 #20 ra = 3'd1; wa = 3'd1; di = 64'h4782196A96E77EB9 ;
 #20 ra = 3'd2; wa = 3'd2; di = 64'h318A76CFCF768A31 ;
 #20 ra = 3'd3; wa = 3'd3; di = 64'h19B96A827E9647E7 ;
 #20 ra = 3'd4; wa = 3'd4; di = 64'h7E6A4719E7B99682 ;
 #20 ra = 3'd5; wa = 3'd5; di = 64'h7631CF8A8ACF3176 ;
 #20 ra = 3'd6; wa = 3'd6; di = 64'h6AE782B9477E1996 ;
 #20 ra = 3'd7; wa = 3'd7; di = 4'h5BA5A55B5BA5A55B ;
 #80 rnw = 1'b1 ; ra = 'd0; wa = 3'd0; di = 64'h0;

// Switch the roles of the RAM banks again.
// Write fourth block of data into ram2 and

 // simultaneously read from ram1.
 #20 ra = 3'd1; wa = 3'd1; di = 64'h123456789abcdef0;
 #20 ra = 3'd2; wa = 3'd2; di = 64'h7E6A4719E7B99682 ;
 #20 ra = 3'd3; wa = 3'd3; di = 64'h7631CF8A8ACF3176 ;
 #20 ra = 3'd4; wa = 3'd4; di = 64'h6AE782B9477E1996 ;
 #20 ra = 3'd5; wa = 3'd5; di = 64'h5BA5A55B5BA5A55B ;
 #20 ra = 3'd6; wa = 3'd6; di = 64'h4782196A96E77EB9 ;
 #20 ra = 3'd7; wa = 3'd7; di = 64'h318A76CFCF768A31 ;
 #80 rnw = 0 ; ra = 3'd0; // Read fourth block of data from ram2.

344 Design of Memories

 #20 ra = 3'd1;
 #20 ra = 3'd2;
 #20 ra = 3'd3;
 #20 ra = 3'd4;
 #20 ra = 3'd5;
 #20 ra = 3'd6;
 #20 ra = 3'd7;
#100
$stop ; // Stop testing after a while.
end

// Run the clocks.
always
 #`clkperiodby2 clk <= ~clk ;

always
 #`clkby2 pci_clk <= ~pci_clk ;

endmodule
// din_valid and “be [7]” to “be [0]” checked for all combinations – OK.
__

9.3.3 Simulation Results of Dual RAM Design

64’h0000000000000000, 64’h123456789abcdef0, 64’h7E6A4719E7B99682, and
64’h7631CF8A8ACF 3176. Inspecting the row marked ‘di’ in Figure 9.9, we find
that the data are tallying with those mentioned above. These correspond to the
write addresses 0 through 3. It may be noted that the byte enable, be = 00 H and
di_valid is active. The signal ‘rnw’ is low configuring RAM 1 in write only mode.
Since the read address ‘ra’ was not applied for the first block of data, the output
‘do’ is in don’t care state. It may be recalled from the design that writing into the
selected RAM takes place at the positive edge of ‘pci_clk’ and reading at the posi-
tive edge of ‘clk’. Similarly, the reader may verify that data writes for wa = 4 to 7
shown in Figure 9.10 are precisely the same as that in the test bench.

The reading back of the RAM is column-wise as shown in the row marked
‘do’ in Figures 9.11 and 9.12. The second block of data written is
64’h5BA5A55B5BA5A55B at location 0, etc. commencing from 217 ns. The sig-
nal ‘rnw’ is changed to ‘high’ at 217 ns, thus configuring the first RAM already
written to read mode and the second RAM to write mode. The read address, ra =
0, is applied at the same time. It may be noted that the first location data is
00127E766A5B4731 H since it is designed to be read column-wise. This data is

The dual RAM design and its test bench were presented in Verilog_code_
9.5/9.6 and Verilog_code_9.7 respectively. The simulation results of the design
are shown in Figure 9.9 to Figure 9.14. In the test bench, we applied the write
address at 0 ns, 17 ns, 37 ns, etc. The corresponding 64-bit data written was

9.3 On-chip Dual RAM Design 345

the same as the first column of the first block of data written in the test bench. The
data appears at 250 ns although the address was established at 217 ns. This is ow-
ing to two ‘clk’ delays, one each in the individual RAM design ‘ram_rc’ and the
other in the top design ‘dualram’. The corresponding two rising edges of the ‘clk’
occur at 230 ns and 250 ns. The first data appears after a latency of 33 ns after the
read address is applied. However, subsequent data appear at the ‘clk’ rate of 20 ns.

Fig. 9.9 Simulation results of dual RAM design – writing of first block

Fig. 9.10 Simulation results of dual RAM design – writing of first block

This advantage accrues from pipelining the design. Similarly, the writing of the

346 Design of Memories

the second and the third blocks and concurrent reading of first and second blocks
respectively may be verified by comparing waveforms shown in Figures 9.13 and
9.14 and the corresponding data listed in the test bench.

Fig. 9.11 Simulation results of dual RAM design – writing of second block and
concurrent reading of first block

Fig. 9.12 Simulation results of dual RAM design – writing of second block and
concurrent reading of first block

9.3 On-chip Dual RAM Design 347

Fig. 9.13 Simulation results of dual RAM design – writing of third block and
concurrent reading of second block

Fig. 9.14 Simulation results of dual RAM design – writing of third block and

9.3.4 Synthesis Results for the Dual RAM Design

The Synplify results of dual RAM design are as follows. From the Synplify results
tabulated, the estimated clock frequencies for writing and reading are 124 MHz
and 160 MHz respectively. However, the frequency of operation reported by Xilinx

concurrent reading of second block

348 Design of Memories

place and route is more accurate and is presented in the next section. One hundred
and twenty eight numbers of single port RAMs (RAM16X1S) have been used for
the design.
Synthesis results:
@I::“D:\user\ram\verilog_latest\dvlsi_des_verilog\dualram.v”
@I:“D:\user\ram\verilog_latest\dvlsi_des_verilog\dualram.v”:“D:\user\ram\verilo
g_latest\dvlsi_des_verilog\ram_rc.v”
Verilog syntax check successful!
START TIMING REPORT #####
Top view: dualram
Slew propagation mode: worst
Paths requested: 5
Constraint file(s):
@N| This timing report estimates place and route data. Please look at the place
and route timing report for final timing.
@N| Clock constraints cover all FF-to-FF, FF-to-output, input-to-FF, and input-to-
output paths associated with a particular clock.
Performance summary
Worst slack in design: 1.185

Starting Clock Requested Frequency Estimated Frequency
clk

pci_clk
100.0 MHz
100.0 MHz

159.8 MHz
123.9 MHz

Requested Period Estimated Period Slack
clk : 10.000
pci_clk : 10.000

6.260
8.074

3.740
1.926

Mapping to part: xcv600ehq240-8
Cell usage:

VCC 3 uses
GND 3 uses
MUXF5 256 uses
MUXF6 128 uses
FDE 1152 uses
FD 65 uses
BUF 12 uses

I/O primitives:
IBUF 80 uses
OBUF_F_24 64 uses
BUFGP 2 uses

I/O register bits: 64
Register bits not including I/Os: 1152 (8%)
RAM/ROM usage summary
Single port rams (RAM16×1S): 128
Global clock buffers: 2 of 4 (50%)

9.3 On-chip Dual RAM Design 349

Total LUTs: 925 (6%)

Fig. 9.15 RTL view of dual RAM design reported by Synplify tool

9.3.5 Xilinx P&R Results for the Dual RAM Design

The place and route tool report presented in this section reports the same numbers
(128) of 16 × 1 RAMs as was reported in the report of synthesis tool earlier. In
earlier designs such as ROMs, we have seen gate count equivalents of up to about
2000. In the present design of dual RAM, we can see a big leap in the total count
of (32,114) gates. This clearly falls under the VLSI category. Maximum frequency
reported by this tool is 99 MHz. However, what counts is the frequency report by
place and route tool for the overall design such as the DCTQ (and not a part of
design), which will be covered in chapter on design applications.
Design summary:
 Number of slices: 928 out of 6,912 13%
 Number of slice flip-flops: 1,152 out of 13,824 8%
 Total number of 4 input LUTs: 935 out of 13,824 6%
 Number used as 16 × 1 RAMs: 128
 Number of bonded IOBs: 144 out of 158 91%
 IOB flip-flops: 65

The RTL view of the design reported by the Synplify tool is shown in Figure 9.15.

350 Design of Memories

 Number of GCLKs: 2 out of 4 50%
 Number of GCLKIOBs: 2 out of 4 50%
Total equivalent gate count for design: 32,114
Additional JTAG gate count for IOBs: 7,008
Minimum period: 10.095 ns
 (Maximum frequency: 99.059 MHz)

9.4 External Memory Controller Design

We have so far seen the designs of on-chip memories, ROMs and RAMs. If an
application such as video scaling, demands a large memory, it is better to locate
these memories external to an FPGA since on-chip memories in the order of 32
KB and above slows down the system speed considerably. The FPGA size can
also be scaled down accordingly if the memory is located external to FPGA. This
scheme is viable since fast RAMs of the order of 10 ns access times are available
commercially. Refer Appendix 5 on CD for one of the suitable RAMs. Depending
upon the actual application requirement, the designer can add more number of
these devices. Now we will see how to interface FPGA/ASIC with the external
RAMs.

9.4.1 Design of an External RAM Controller for Video
Scalar Application

The block diagram of a controller required for an application, video scalar,
which interfaces with an external RAM is shown in Figure 9.16. We wish to have
a synchronous design; therefore a system clock ‘clk_out’ is used. The controller
design has reset (active low) and hold pins as in a microprocessor based design. In
addition to these signals, we have an enable pin, ‘endram’, for the external RAM.
We also have a chip enable (ce_n), a write enable (wr_n), and a read enable

Fig. 9.16 External RAM controller

extmem
(u1)

clk_out

hold

addr [15:0]

reset_n

endram

rwn

wr_n

ce_n

oe_n

(oe_n), all of which are active low signals. There is also a signal ‘rwn’ to configure the

9.4 External Memory Controller Design 351

external RAM in write mode or in read mode. An address bus of 16 bits is pro-
vided so that we may access an external RAM of size 64 KB whether we write or
read, one location at a time or a block of locations as a burst. A low at the pin
‘rwn’ sets the RAM in write mode, while a high sets it in read mode.

9.4.2 Verilog Code for External RAM Controller Design

Verilog_code_9.8 presents the RTL code for External RAM Controller used in
Video Scalar application. First, we define the maximum address, ‘drpixaddr’, in
the external RAM and then declare the module name and list all the inputs/outputs
that we saw in the block diagram earlier. This is followed by the declaration of all
the I/Os. All the signals used in the design are declared as ‘wire’ or ‘reg’ as the
case may be. Also, we need the read address (drraddr) and write address (drwaddr)
separately for the controller although externally one ‘addr’ bus is adequate. A high
on ‘rwn’ implies that the ‘addr’ is the read address. Otherwise, it is ‘drwaddr’.

The first assign statement ‘res_addr’ resets the address bus, ‘addr’ when maxi-
mum address is encountered. Using external RAM, we will not be able to achieve
higher speed than the on-chip RAM. We need to scale it down by a factor of two
as explained later. For example, if we have a system clock of 100 MHz, we can
access the external RAM only at 50 MHz rate. In order to do this, we have count-
ers separately for write (wr_cnt) as well as read (rd_cnt). These counters are en-
abled by signals ‘enwr_cnt’ and ‘enrd_cnt’ respectively. The write/read counters
are only toggling flip-flops. They are configured as counters so that by increasing
their widths, slower external RAM may be used as per the application require-
ment. The first sequential always block realizes the ‘rwn’ signal. This signal is ini-
tialized at the start and can be held if a ‘hold’ signal is asserted. When all the
RAM locations are accessed in a burst, ‘rwn’ signal is toggled so that the RAM
may be configured to read mode from write mode, for instance. The 1 bit counter
‘wr_cnt’ is changed every falling edge of ‘clk_out’ signal. The write pulse ‘wr_n’
for RAM is generated only if the write counter is enabled, i.e., enwr_cnt = 1.
Otherwise, the write pulse is disabled.

The RAM write address ‘drwaddr’ is advanced, if enabled by the signal ‘en-
waddr’. It is reset when the terminal count is reached, indicated by the setting of
the signal ‘res_waddr’. The read counter, ‘rd_cnt’, function is similar to that of the
write counter, ‘wr_cnt’, described earlier. Similarly, the RAM read address
(drraddr) signal function is very much akin to the write address ‘drwaddr’. Read
signal for RAM, ‘oe_n’ is generated at the negative edge of ‘clk_out’ only if
enrd_cnt = 1. Write address, drwaddr, is output as ‘addr’ if rwn = 0. Otherwise,
the read address, drraddr, is output using ‘assign’ statement. The external RAM is
selected by activating the chip enable signal, ce_n (active low), if the address is
within range. Otherwise, it is disabled. This is shown as the last ‘assign’ state-
ment. The write/read addresses and their counters may also be combined into a
single address and a counter. The code can be easily modified for accessing dual
or multiple external RAMs.

352 Design of Memories

Verilog_code_9.8
__

// This is the design of an external RAM controller for a video scalar. Put this
// code in a file named ‘extmem.v’.
`define max_drpixaddr 65535 // This is the last address of RAM.

module extmem (clk_out, // Clock signal.
 reset_n, // Reset input.
 hold, // Signal to hold processing.
 addr, // Address input.
 endram, // Enable RAM signal.
 rwn, // Read/write select signal.
 ce_n, // Chip enable,
 wr_n, // write and
 oe_n // output enable or read signal.
);

input clk_out ; // Declare inputs and
input reset_n ;
input hold ;
input endram ;
output [15:0] addr ; // outputs of the design.
output rwn ;
output ce_n ;
output wr_n ;
output oe_n ;

wire [15:0] addr ; // Declare signals used in
wire ce_n ; // ‘assign’ statements as ‘wire’.

reg rwn ; // Declare signals in ‘always’
reg wr_n ; // block as ‘reg’.
reg oe_n ;
reg [15:0] drwaddr ; // Write and
reg [15:0] drraddr ; // read address.

wire [15:0] drwaddr_next ; // Pre-advance write and
wire [15:0] drraddr_next ; // read address.
wire enwaddr ;
wire enwr_cnt ;
wire enraddr ;
wire wr_cnt_next ;
wire res_addr ;
wire res_waddr ;

reg wr_cnt ;

9.4 External Memory Controller Design 353

wire enrd_cnt ;
wire rd_cnt_next ;

reg rd_cnt ;

wire res_raddr ;

assign res_addr = (addr == `max_drpixaddr)&
 ((wr_cnt == 1'b1)|(rd_cnt == 1'b1))& (ce_n == 1'b0) ;

// Reset address when maximum address is encountered.

always @ (posedge clk_out or negedge reset_n)
begin

 if (reset_n == 1'b0)
 rwn <= 1'b0 ; // rwn = 1 for read.
 // Otherwise, write.

 else if (hold == 1'b1)
 rwn <= rwn ;
 else if (res_addr == 1'b1)
 rwn <= !rwn ; // Change write to read
 // mode or vice versa.
 else
 rwn <= rwn ;

end

assign enwr_cnt = (endram == 1'b1)&(rwn == 1'b0)&(ce_n == 1'b0) ;
 // Condition for write counter.
always @ (negedge clk_out or negedge reset_n)
begin // Write signal for RAM,
 // effective at the falling edge.

 if (reset_n == 1'b0)
 wr_n <= 1'b1 ; // Initialize.

else if (hold == 1'b1)
 wr_n <= wr_n ; // Hold the write pulse.

else if (enwr_cnt == 1'b1)
 wr_n <= !wr_n ; // Generate RAM write pulse,
 // if enabled.

else
 wr_n <= 1'b1 ; // Otherwise, disable write pulse.
end

assign wr_cnt_next = wr_cnt + 1 ; // Pre-advance the write counter.

always @ (posedge clk_out or negedge reset_n)

354 Design of Memories

begin
if (reset_n == 1'b0)

 wr_cnt <= 1'b0 ;
// Counter to slow down RAM write by a factor of two.

else if (hold == 1'b1)
 wr_cnt <= wr_cnt ;

else if (wr_cnt == 1'b1)
 wr_cnt <= 1'b0 ; // Reset for maximum count.

else if (enwr_cnt == 1'b1)
 wr_cnt <= wr_cnt_next; // Advance the write counter.

else
 wr_cnt <= wr_cnt ; // Otherwise, don’t disturb.
end

assign drwaddr_next = drwaddr + 1 ; // Pre-advance the write address.
assign enwaddr = (endram == 1'b1)& (rwn == 1'b0)&(wr_cnt == 1'b1)
 &(ce_n == 1'b0) ;
assign res_waddr = (drwaddr == max_drpixaddr)&(wr_cnt == 1'b1)
 &(ce_n == 1'b0) ;

// Conditions for enabling and resetting write address.
always @ (posedge clk_out or negedge reset_n)
begin // Write address, drwaddr, for RAM.

if (reset_n == 1'b0)
 drwaddr <= 16'd0 ;

else if (hold == 1'b1)
 drwaddr <= drwaddr ;

else if (res_waddr == 1'b1) // Reset when the terminal count is reached.
drwaddr <= 16'd0 ;

else if (enwaddr == 1'b1)
 drwaddr <= drwaddr_next ;

 // RAM write address is incremented, if enabled.
else

 drwaddr <= drwaddr ; // Otherwise don’t disturb.
end

assign rd_cnt_next = rd_cnt + 1 ; // Pre-advance read counter.
assign enrd_cnt = (endram == 1'b1)&(rwn == 1'b1)&(ce_n == 1'b0) ;

// Condition for enabling the read counter.
always @ (posedge clk_out or negedge reset_n)
begin

if (reset_n == 1'b0)
 rd_cnt <= 1'b0 ;

// Counter to slow down RAM read by a factor of two.
else if (hold == 1'b1)

 rd_cnt <= rd_cnt ;
else if (rd_cnt == 1'b1)

9.4 External Memory Controller Design 355

 rd_cnt <= 1'b0 ; // Reset read counter.
else if (enrd_cnt == 1'b1)

 rd_cnt <= rd_cnt_next ; // Advance the read counter.
else

 rd_cnt <= rd_cnt ;
end

assign drraddr_next = drraddr + 1 ; // Pre-advance the read address.
assign enraddr = (endram == 1'b1)&(rwn == 1'b1)&(rd_cnt == 1'b1)&
 (ce_n == 1'b0) ;
assign res_raddr = (drwaddr ==`max_drpixaddr)&(rd_cnt == 1'b1)&
 (ce_n == 1'b0) ;

// Conditions for enabling and resetting read address.
always @ (posedge clk_out or negedge reset_n)
begin // Read address for RAM.

 if (reset_n == 1'b0)
 drraddr <= 16'd0 ;
 else if (hold == 1'b1)
 drraddr <= drraddr ;
 else if (res_raddr == 1'b1)
 drraddr <= 16'd0 ;

// Reset when the terminal count is reached.
 else if (enraddr == 1'b1)

drraddr <= drraddr_next ; // Increment the RAM address.
 else
 drraddr <= drraddr ;

end

always @ (negedge clk_out or negedge reset_n)
begin // Read signal for RAM.

 if (reset_n == 1'b0)
 oe_n <= 1'b1 ;
 else if (hold == 1'b1)
 oe_n <= oe_n ;
 else if (enrd_cnt == 1'b1)

oe_n <= !oe_n ; // RAM read signal.
 else

oe_n <= 1'b1 ; // Otherwise, disable read pulse.
end

assign addr = (rwn == 1'b0) ? drwaddr : drraddr ;

// Write address is output if rwn = 0. Otherwise, read address is output.
assign ce_n = (addr <= `max_drpixaddr) ? 1'b0 : 1'b1 ;

// Select RAM if the address is within range. Otherwise, disable.
endmodule
__

356 Design of Memories

9.4.3 Test Bench for External RAM Controller Design

Now, we will look into the coding of the test bench for the external RAM control-
ler. As usual, we will have a 100 MHz clock operation, and so we define the clock
period by two as 5 ns. We have included the design file, ‘extmem.v’ in its back
annotated form. The test bench simulates the external RAM of size 64 K × 24 bits.
Data width is 24 bits in order to accommodate three color (RGB) pixel informa-
tion required for video scalar application. We have 65,536 locations in the RAM,
and each location takes two-clock cycles for either a read or a write operation. The
test is conceived as a Go–No Go test, that is, whether the test has passed or failed
since a large number of locations are involved in the test.

The design is called by addressing ports by name. The test inputs are applied in
the ‘initial’ block. After the specified time, the test bench will automatically stop
processing. The signal ‘rwn’ is 0 for the write mode. Otherwise, it is in read mode.
Initially, we write the same data in all the locations. Thereafter, change the ‘rwn’
signal and start reading in order to check whether the data is in tact. While check-
ing the contents of memory locations, it may so happen that some of the data are
corrupted. These are indicated by setting an error flag. If no error is encountered
during the test, we display the message ‘External RAM Test PASS’. On the other
hand, if any error is encountered, we display a failure message. If error is encoun-
tered in any location except the last, the error flag is set. The ‘data’ read from the
external RAM is obtained by the last ‘assign’ statement. The test bench is pre-
sented in Verilog_code_9.9.

Verilog_code_9.9
__

// The test bench for external RAM controller is named ‘extmem_test.v’

`define clkperiodby2 5 // Program the clock to run at 100 MHz.
`define max_drpixaddr 65535 // This is the last location of the external RAM.
`define test_data 24'h555555

// Change this data to ‘aaaaaa’, ‘000000’ and ‘ffffff ’ in turn and
// run the test again.

`include “extmem_banno.v” // This is the external memory controller
// design after back annotation.

module extmem_test (// Declare the test module and list the
 addr, // the outputs.
 ce_n,
 wr_n,

 oe_n
) ;

output [15:0] addr ; // Declare the outputs.
output ce_n ;
output wr_n ;
output oe_n ;

9.4 External Memory Controller Design 357

reg clk_out ; // Declare the inputs as registers

wire [15:0] addr ; // and combinational circuit signals
wire ce_n ; // as wires.
wire wr_n ;
wire oe_n ;

reg reset_n ;
reg hold ;
reg endram ;
reg error ;

wire [23:0] data ;

 // Data width is 24 bits to accommodate three color (RGB) pixel information.

reg [23:0] mem [`max_drpixaddr:0] ;

 // Simulate external RAM, 64 K × 24 bits.

extmem u1 (// Invoke the design and call ports by name.
 .clk_out(clk_out),

 .reset_n(reset_n),
 .hold(hold),
 .addr(addr),
 .endram(endram),

.rwn(rwn) ,

.ce_n(ce_n),
 .wr_n(wr_n),
 .oe_n(oe_n)
);
initial
begin

 clk_out = 1'b0 ; // Initialize all input signals.
 reset_n = 1'b1 ;
 hold = 1'b0 ; // Repeat the test by asserting hold.
 endram = 1'b0 ;
#10 reset_n = 1'b0 ;
#30 reset_n = 1'b1 ;
#16 endram = 1'b1 ;
#2800000 // Run long enough to test all the 64 K locations.

 $stop ;
end

always @ (rwn or addr)
begin

if (rwn == 0)

358 Design of Memories

 mem [addr] <= `test_data ;
// Write the same data into all locations of the external RAM.

 // Note that the design automatically takes care to advance the
 // address.

else ; // Otherwise, don’t disturb.
end

always @ (addr)
// Read data from the external RAM and check with the written data for all
// locations.
 case ({(rwn == 1), (mem [addr] == `test_data),

 (addr == `max_drpixaddr)})
 3'b111: // This state corresponds to checking the last location.

begin
 if (error == 0)

// If no error is encountered, the design passes the test.
 $display (“External RAM test: PASS”) ;
 else

 // If error is encountered, then the test fails.
 begin

 $display (“External RAM test: FAIL”) ;
 error <= 0 ;
 end
 end
 3'b101:
 $display (“External RAM test: FAIL => Last address @ %d”, addr) ;
 3'b100: error <= 1 ;

// If error is encountered in any location except the last,
 // the error flag is set.
 default: ; // Take care of other possibilities.
 endcase
assign data = mem [addr] ; // Get the data.

always
 #`clkperiodby2 clk_out <= ~clk_out ; // Run the clock continuously.

endmodule
__

9.4.4 Simulation Results for External RAM Controller
Design

The simulation results for the external RAM controller design are shown in
Figures 9.17 to 9.20. The first figure shows the back annotated design loaded

9.4 External Memory Controller Design 359

(identified by FPGA primitive components such as LUT4, INV, BUF, etc.) and a
Go–No Go result. The display, External RAM test: PASS, indicates that the exter-
nal RAM has passed the test. This implies that all the 65,536 locations, each of
size 24 bits, are successfully written and read back.

We are justified in running the simulation at 100 MHz as can be seen from the
waveforms displayed in Figure 9.18. The memory access is at 50 MHz. This
means that we can use a standard RAM of access time of about 10 ns available in
the market. The rwn signal is low at the time of writing as can be seen in the fig-
ure. The data to be written, 555555 H, appears in signal ‘data’ as a result of the
two statements, mem [addr] <= `test_data and assign data = mem [addr], present
in the test bench. It should be noted that the address is changing once every two
clock cycles at the rising edge. The waveform shows the writing through the ad-
dress range 0 to 5. Also, the active high enable external RAM (endram) and the
active low chip select (ce_n) are activated and the write pulse is applied com-
mencing from the zero address after the address stabilizes.

The write signal, wr_n, goes low only after about 7 ns from falling edge of
‘clk_out’ signal although as per the design it should have occurred at the negative
edge of ‘clk_out’. This is clearly due to the actual gate delays in the FPGA since
we have used the back annotated design in the simulation. This fact can be veri-
fied by running the simulation by including the design source file, ‘extmem.v’, in
the test bench in lieu of the back annotated file, ‘extmem_banno.v’. The reader
may also attempt running the simulation with back annotated design at a much

Fig. 9.17 Simulation results for external RAM controller design – Go–No Go
test

higher frequency than 100 MHz to see whether the design works or not. The write

360 Design of Memories

Fig. 9.18 Simulation results of external RAM controller design – commence-
ment of data writes

Fig. 9.19 Simulation results of external RAM controller design – data writes
of last few locations and commencement of read back

9.4 External Memory Controller Design 361

counter, wr_cnt, appears as an inverted signal of the write signal, wr_n, since only
1-bit is used for wr_cnt.

Figure 9.19 shows the data writes for the last few locations of the external
RAM. After writing the last address location, the signal rwn is toggled to config-
ure the external RAM in read mode. Hereafter, the ‘addr’ reflects the read address.
The ‘data’ read from the RAM is the same as that we wrote earlier. Also, note that
‘wr_n’ and ‘wr_cnt’ cease to be active and instead, the read pulse, oe_n, and the
read counter, rd_cnt, are active for addr = 0 to 4. Data reads towards the last few
locations are shown in Figure 9.20. This verifies the correct working of our
design.

9.4.5 Synthesis Results for External RAM Controller
Design

The Synplify results are as follows. The maximum operating frequency reported is
138.3 MHz and the number of LUTs consumed by the design is just 55. RTL view
of the external RAM controller design as reported by Synplify tool is shown in
Figure 9.21. Run the tool to read the signals clearly.

Fig. 9.20 Simulation results of external RAM controller design – data reads
towards the last few locations

362 Design of Memories

Fig. 9.21 RTL view of external RAM controller design

Performance summary:
Worst slack in design: 1.315

Starting Clock Requested Frequency Estimated Frequency
clk 100.0 MHz 138.3 MHz

Requested Period Estimated Period Slack
10.000 7.233 2.767

Resource usage report for extmem
Mapping to part: xcv600ehq240-8
Cell usage:
MUXCY_L 28 uses
XORCY 30 uses
FDCE 32 uses
FDPE_1 2 uses
FDC 2 uses
GND 1 use
I/O primitives:
IBUF 5 uses
OBUF 18 uses
BUFGP 1 use
I/O register bits: 0
Register bits not including I/Os: 36 (0%)
Global clock buffers: 1 of 4 (25%)
Total LUTs: 55 (0%)

9.4 External Memory Controller Design 363

9.4.6 Xilinx P&R Results for the External RAM Controller
Design

The total equivalent gate count for the design is 600 and the operating frequency is
100 MHz. The place and route tool report is as follows:
Target Device: xv600e
Target Package: hq240
Target Speed: –8
Design summary:
 Number of slices: 30 out of 6,912
 Number of slice flip-flops: 36 out of 13,824
 Total number of 4 input LUTs: 53 out of 13,824
 Number used as 16 × 1 RAMs: 128
 Number of bonded IOBs: 23 out of 158
 IOB flip-flops: 65
 Number of GCLKs: 1 out of 4
 Number of GCLKIOBs: 1 out of 4
Total equivalent gate count for design: 600
Additional JTAG gate count for IOBs: 1152
__

Summary

Memory design is one of the most important aspects of a VLSI system design.
This chapter showed the way to design various types of on-chip ROMs and
RAMs, some of them unconventional, in order to meet the special requirements of
a particular application. The size of memory that could be incorporated on-chip is
usually limited by the order of a few tens of Kilo Bytes with the currently avail-
able FPGAs. This limitation is fast changing with the advances in the technology.
In applications, where large memories are called for, external memories such as
the commercially available RAMs, ROMs, Flash RAMs, etc. may be used. To-
wards this end, a controller design that interfaces with an external memory was
presented in the text. However, the access speed of external memory falls by a
factor of two when compared to on-chip memory. On the other hand, on-chip
memory increases the chip area consumed. Therefore, the designer must consider
carefully the pros and cons before making the choice for on-chip or external
memory in a system design. Another important design in a system is the arithmetic
circuit design, which is presented in the next chapter.

364 Design of Memories

Assignments

9.1 A ROM can be used to multiply two binary numbers by splitting the ad-

dress lines to accommodate the two numbers. Implement using Verilog
such a multiplier for multiplying two signed numbers, each of size 4 bits.
Verify your results by simulation. Will this be an efficient implementation
if used for two 8-bit, unsigned numbers? Discuss.

9.2 A simple squaring circuit may be designed using ROM. Implement such a
circuit using Verilog for squaring numbers up to 15 if unsigned, and –8 to
+7 if signed. Use a single ROM of minimum possible size. Verify your
results by simulation.

9.3 Implement in Verilog a ROM based square root circuit for unsigned num-
bers in the range 0 to 15. Provide three digits after decimal point. Write a
test bench and verify your results.

9.4 Realize a circuit using Verilog to compute the cube of a BCD number. Pro-
vide an error flag and clear the result if the input number exceeds its range.
Write a test bench and present your simulation results.

9.5 Single address ROM shown in the text is organized as 8 × 64 bits but ac-
cessed byte-wise. Redesign the same with 64 locations, each of size 8 bits.
The ROM is read as a byte at one time. Verify your design.

9.6 ROM can be tested by finding out the ‘check sum’ or ‘signature’ for the
specified address range. The signature can be either 1 byte or two bytes in
width. It is obtained by adding the succeeding locations (bytes) at a time,
ignoring the carry every time. In this manner all the bytes are added up (ac-
cumulated) to get a single byte check sum. In the case of double byte check
sum, addition is carried out on a word by word basis, ignoring the carry
generated at every addition. A word consists of two bytes, with lower order
address as the MSB. The final check sum in this case will naturally be a
double byte. The check sum, expressed in hexadecimal, provides a very
convenient, ‘Go–No Go’ test. This also serves the purpose of identifying
the ‘Program’ or ‘Data’ stored in a ROM. Write a Verilog code to imple-
ment the computation of the single byte as well as the double byte check
sums for a ROM of size 64 KB organized as bytes. The address range must
be user specified.

 Example:

 Address range: 2000 H to 2007 H.

 Assignments 365

Address ROM data

2000 H
2001 H
2002 H
2003 H
2004 H
2005 H
2006 H
2007 H

11110000
01111000
00111100
00011110
00001111
10000111
11000011
11100001

 Single byte check sum for the above example is ‘FC H’, and the double-

byte signature is ‘FFFE H’.
9.7 A test pattern generator is required to be designed with the following speci-

fications:
a. Accept specified number of 16 bit data inputs by the user. A

maximum of 64 such numbers can be specified.
b. Output 16 bit pattern starting from the first user specified data.
c. Delay by user specified time, say, 10 ms or 100 ms.
d. Output the next 16 bit pattern specified by the user.
e. If all the user specified patterns are output start a fresh cycle

from Step a. Otherwise, repeat from Step c.
Draw an elaborate specification and realize the Verilog design of the pat-
tern generator and test it.

9.8 RAMs can be tested for soft errors in the following way called the Ramp
Test. This test is conducted at one location. To start with, ‘0’s are written
into all the data bits in a byte and read back to make sure that the read data
is in tact. The data is incremented by ‘1’ and the above process is repeated
until the maximum possible data (255 decimal for a byte based test) is en-
countered. The user specifies the address location for which the ramp test is
conducted. Write and test the Verilog code to accomplish this test. The re-
sult must be indicated by pass or fail.

9.9 RAMs can also be tested using what is called the Walk Test. This test is
also conducted at one byte location. The user specifies the address location
as well as one byte data to start the test. Write the user specified data in to
the address location of the RAM under test, and check the RAM back to en-
sure that the written data is correctly read back. At the second step, rotate
the data in the RAM right by 1 bit and check the written data is correct.
Continue this test till all the data bits are covered. Realize this design and
write a test bench in Verilog to test the same for a RAM organized as bytes.
Assuming the specified data is 11110000 at RAM location 1000 H, for ex-
ample, the test has to walk through the following data pattern:

366 Design of Memories

RAM data @ 1000 H

 11110000
 01111000
 00111100
 00011110
 00001111
 10000111
 11000011
 11100001

9.10 A sequential system can be implemented using a ROM and D flip-flops.

The ROM can be used to implement the combinational circuit part of the
system, while the flip-flops serve as the registers. The number of inputs to
the ROM is equal to the sum of the number of flip-flops and the number of
external inputs. The number of outputs of the ROM is equal to the sum of
the number of flip-flops and the number of external outputs. Such a ROM
based system is shown in Figure A9.1a. The ROM truth table is identical to
the state table with ‘present state’ and ‘inputs’ specifying the address of
ROM and ‘next state’ and ‘outputs’ specifying the ROM outputs. The next-
state values must be connected from the ROM outputs to the register inputs.
Realize the Verilog RTL for a programable counter, whose state diagram is
shown in Figure A9.1b. With power on reset, the counter must be cleared.
For in1 = 0 and in2 = 0, the counter functions as an Up counter, while it
functions as a Down counter for in1 = 1 and in2 = 0. It can also count in
steps of two when ‘in2’ is high. An output is set when the counter touches
the last count in every mode. Write a test bench and test your design.

CLK

CLK
0 Q0

1 Q1

2
3

D2 Q2 ROM

in
out

D1 Q1

a

 Assignments 367

Fig. A9.1 (a) A sequential system using a ROM and D flip-flops. (b) State
graph of Programable sequence counter

in1 = 0
in2 = 0

in1 = 1
in2 = 0

in2 = 1

100

000

110 010

111

011 101

001

b

368 Design of Memories

Chapter 10

Arithmetic Circuit Designs

One of the most important categories of circuits that we need to design for FPGA
or ASIC implementation is the arithmetic circuits. Basic arithmetic circuits are
add, subtract, multiply, divide; unsigned or signed. All these circuits are computa-
tionally intensive and, therefore, conventional methods are not sufficient. We will
have to base our designs on what is popularly known as pipelining in order to
speed up the processing. The throughput is substantially improved by building a
high degree of parallelism in our designs, of course at the cost of additional chip
area. The arithmetic circuits presented in this chapter basically stems from specific
applications such as DCTQ, which design will be presented in a later chapter. We
will cover fixed-point arithmetic and not floating point arithmetic in our designs.
This is because fixed-point arithmetic is simple and takes minimum chip area.

In the traditional approach, processes such as add, subtract, multiply, etc., are
treated as a single process, which may take considerable amount of time for proc-

such as a multiplier takes 100 ns for processing as shown in Figure 10.1. If we are
to adopt the traditional method of processing for computationally intensive appli-
cations like video compression, video scaling, etc., we will have to make large
compromise on the specifications such as picture resolution, frame rate, etc. In
most cases, real time operations are severely hampered if implemented in the tra-
ditional way. For example, a high resolution color picture of size 1600 × 1200 pix-
els in the traditional way can be processed only at about 3 frames per second, thus
falling far short of 30 frames per second prescribed in the standards such as
MPEG 2 for motion picture compression. This means that we need to speed up
processing ten-fold, unfortunately using the same speed grade of FPGA for want
of another. Fortunately, adopting high pipeline and massively parallel circuit
approach in our design makes this feasible in seemingly impossible task. This
approach has more advantages than disadvantages. The method of pipelining is
explained in the next section.

10.1 Digital Pipelining

Consider a pipe carrying oil or water from one place to another. In order to bring
about this, we need a motor to pump the liquid. This process will naturally have
some delay before the liquid is available for use at the end of the pipe. This delay
may be referred to as latency. Once the pipeline is full, the vital liquid is available

essing when configured on an FPGA or an ASIC. Suppose that one of the processes

to the consumer continuously like a perennial river. This analogy of pipelining

lining, we have data or control signals, etc., flowing through registers that may be
regarded as pipes and the system clock as the driving motor. Thus, the data, etc.,
are carried from one part of a circuit to another via a series of registers which are
clocked. Data flows from one register into another whenever the clock strikes. En-
route, the data may undergo any type of process such as add, subtract, multiply,
compare, etc. By this means, any complex algorithm can be solved, often with
spectacular speed-up of processing time.

Pipelined approach is basically dividing an entire process into small and
roughly equal time consuming sub-processes such that the total processing time of
these sub-processes equals the total processing time of the entire process. For ex-
ample, Figure 10.1a shows the traditional approach of processing an operation
such as a multiplier in about 100 ns. In the pipelined approach, we divide this
process into ten sub-processes, each of approximately 10 ns processing time. After
each sub-process, we add a register with a clock signal. As shown in the figure,
the input data is applied to Proc. 1, which process is completed, say in 10 ns. The
result of this sub-process is registered in Reg. 1 at the positive edge of the clock.
This is subjected to a sequel Proc. 2 followed by registering in Reg. 2. This is re-
peated up to Proc. 10, registering the desired final result in Reg. 10. Thus, the data
flows in a digital pipeline from input to the final output, traveling from Reg. 1 to
Reg. 10 successively, and undergoing various processes on the way. Since the data
will have to travel through ten registers, we will have to wait for ten clock pulses

Fig. 10.1 (a) Traditional approach. (b) Pipelined approach

Throughput
100 MHz

Process
Input Data Throughput

10 MHz
clk

Proc. 1
<10 ns

Input
Data Reg.

1
Proc. 10
<10 ns

Reg.
10

clk clk

b

a

<100 ns

may be effectively applied to flow of data in a digital system. In this digital pipe-

372 Arithmetic Circuit Designs

Time (ns) Input Reg. 1 Reg. 2 Reg. 10

0 Data1

10 Data2 Proc.1_1

20 Data3 Proc.1_2 Proc.2_1

100 Data11 Proc.1_10 Proc.2_9 Proc.10_1

110 Data12 Proc.1_11 Proc.2_10 Proc.10_2

190 Data20 Proc.1_19 Proc.2_18 Proc.10_10

Latency: 100 ns.

Fig. 10.2 Processing order of pipelining

for the output to manifest at Reg. 10. This delay is referred to as the latency. If
each clock pulse takes 10 ns to arrive, then the output is available after 100 ns,
which is the same as in the traditional method. Once the pipeline is full, we get a
stream of processed results every 10 ns. Thus, the advantage in pipelining is that
we can have a throughput of (and also a clock of) 100 MHz instead of 10 MHz in
the traditional approach. That means ten-fold processing speed when compared to
the traditional method. However, we need to apply the input(s) every 10 ns, the
same as the output rate. The foregoing treatment of pipelining is shown in Figure
10.2, which is self-explanatory. It may be noted that Proc.10_1, Proc.10_2, up to
Proc.10_10 are the results corresponding to the inputs Data1, Data2 up to Data10.
The effect of pipelining may be summarized as follows:

• Throughput increases considerably
• Latency comes into effect
• Chip area increases marginally

10.1 Digital Pipelining 373

In order to incorporate pipelining in the design, we need to break a sequence of opera-
tions or a complex algorithm into convenient small steps in terms of the following:

• Partition of data width
• Partition of functionality

The following sub-sections discuss the methodology of partitioning.

10.2.1 Partition of Data Width

Let us consider a process of adding two 16-bit numbers. This will be a time consum-
ing process if addition is carried out on 16 bits since bit-wise carry out generated
need to propagate through all the 16 bits. A better way of doing this is to bifurcate it
into two 8-bit numbers and add only 8 bits at a time. That will be faster than adding
16 bits at one go. This can be effectively carried out by introducing pipelining. The
LSBs of the two numbers are added first and stored in a pipeline register along with
the generated carry at the rising edge of the system clock. In the next rising edge of
the clock, MSBs of the two numbers are added along with the carry generated while
adding the LSBs. In this fashion, we can divide and conquer the entire data width,
no matter how wide it is. There are no hard and fast rules for this division of width.
One has to experiment with it and choose the best possible bifurcation applicable for
a particular application. We will illustrate the partitioning of data width by an exam-
ple, a signed adder with the following specifications:

1. Eight signed input numbers, each of width 12 bits
2. Sum of these numbers are required

Conventional approach of addition/subtraction uses all the 12 bits together.
Since full adders are used for implementation, the result is delayed owing to the
propagation of carry rippling through all the 12 bits. Even the usage of ‘carry look
ahead’ circuit does not help in speeding up the computation since a large number
of gates and inputs are required in this case. The answer for this problem is to di-
vide the data widths into smaller and equal chunks, and introduce pipelining. In
the data width partitioning approach, all sub-blocks do the same function, namely
addition. Before we take this problem for Verilog implementation, we will also
see what partitioning of functionality is in the next section.

10.2.2 Partition of Functionality

Functionality is any process such as addition, subtraction, multiplication, or divi-
sion. We need to group similar functions such as multiplication together. Also, the
functional block is divided into smaller sub-blocks, if this is feasible. In this type
of partitioning, each sub-block does a different function, in general. This can be
clearly understood by considering an example. Let us say, we wish to compute a

10.2 Partitioning of a Design

374 Arithmetic Circuit Designs

sum of products: a1*b1 + a2*b2 + a3*b3 + a4*b4, where a1, b1, etc., are each of
size 16 bits. We can group multiplication functions, a1*b1, a2*b2, and a3*b3 to-
gether and do all these computations simultaneously and register the partial prod-
ucts. Similarly in the subsequent pipeline stage, we can perform additions A =
(a1*b1 + a2*b2) and B = (a3*b3 + a4*b4) concurrently. In a next pipeline stage,
the final addition, result = A + B, which is the desired sum of products, is per-
formed. It may be noted that products such as a1*b1, etc., can be broken down
into smaller sub-blocks, namely, shift operations and additions as illustrated in
multiplier design in a later section. In the signed adder example cited earlier, LSBs
(7 bits) of the eight numbers are added concurrently followed by the addition of
MSBs (5 bits along with carry from LSB addition) in subsequent pipeline stages.
This example is simpler than the sum of products example.

We will take the signed adder example cited in the previous sections, wherein
eight signed 12-bit numbers are added together. This can be realized in two differ-
ent ways:

• Feeding each input serially or sequentially
• Feeding inputs concurrently

In a serial adder realization, we apply the eight inputs one after another serially
at the positive edge of the clock. In contrast to this, in parallel adder, all the eight
inputs are applied simultaneously. If chip area is of great concern, we go for the
serial adder. However, for high speed processing, concurrent adder is preferred.

twos complement. We are going to add eight numbers, n0 to n7, of width 12 bits
each and, all of them are fed through a single input, n[11:0]. The accumulated re-

Fig. 10.3 Serial signed adder design

10.3 Signed Adder Design

10.3.1 Signed Serial Adder

We may regard the add/subtract circuit as a simple adder if the numbers are in

sult will be available in a register, sum [14:0], as shown in Figure 10.3. Note that

n [11:0]
(n0 – n7)

+/-
sum [14:0]

clk

sum [14:0]

enable

sum_valid

10.3 Signed Adder Design 375

the output is fed back as one of the two inputs of the serial adder as it is an accu-
mulator. Since the input is of size 12 bits, the output should be of size 15 bits. The
difference of 3 bits between the input and output sizes is owing to the number of
inputs being 23. The validity of the output is announced by a signal “sum_valid”.
All these transactions take place only when the “enable” is high. Although this is a
pipelined approach, we are going to use only a single register, the accumulator.

Pipelined Serial Adder Design

The code for addition of eight, 12 bit, twos complement numbers is shown in Ver-
ilog Code_10.1. The inputs are fed serially at pins marked “n”. The design module
is declared as “serial_adder12s”, listing all the inputs/outputs. The inputs are the
system clock, enable, and n. The sum and result are the outputs. The signal,
sum_valid, goes high when the added sum is valid. The “result” is the same as the
“sum” except for the difference that the added result is prolonged at the “result”
output till it is overwritten by a new result. A 3-bit counter, cnt [2:0], keeps track
of the number of inputs accumulated. The first assign statement computes the
“sum” in advance (sum_next [14:0]) if “enable” is high. Otherwise, it is cleared.
Note that the sum is sign extended by 3 bits since the result is 3 bits more than the
input number(s). Also, note carefully the number of flower brackets used. Other-
wise, compiler tool will complain. The counter, cnt, is pre-advanced if enabled.
The sum is valid after inputting the eighth number. An advanced valid signal,
sum_val, is switched on only when “cnt” equals 7. The first “always” block regis-
ters the advance sum computed earlier when the clock strikes. Also, the “cnt” is
incremented, every time an input is accumulated. The “sum_valid” is set high if
all the eight input numbers are exhausted. The last “always” block registers the
“result” whatever was in “sum” if “sum_valid” is active. Otherwise, the result is
not disturbed.

Verilog Code_10.1
__

// Place the design in a file named “serial_adder12s.v”.

module serial_adder12s (clk,
 enable,
 n,
 sum,
 sum_valid,

 result
) ;
input clk ;
input enable ;
input [11:0] n ;
output [14:0] sum ;
output sum_valid ;

376 Arithmetic Circuit Designs

output [14:0] result ;
 // Prolong the result till it is overwritten by a new result.

wire [14:0] sum_next ; // Declare nets in the design.
wire [2:0] cnt_next ;
wire sum_val ;

reg [14:0] sum;
reg [2:0] cnt ;
reg sum_valid ;
reg [14:0] result ;

assign sum_next [14:0] = enable ? ({{3{n[11]}}, n[11:0]} + sum[14:0]) : 0 ;

// Sign extend & accumulate.
assign cnt_next [2:0] = enable ? (cnt + 1) : 0 ;

// Pre-advance the counter.
assign sum_val = (cnt == 7) ? 1 : 0 ; // Pre-determine the validity of the sum.

always @ (posedge clk) // Pipeline – Register the sum.
begin
 sum [14:0] <= sum_next [14:0] ; // Register the sum.
 cnt [2:0] <= cnt_next [2:0] ; // Advance the count.
 sum_valid <= sum_val ; // Register the signal.
end

always @ (posedge clk)

// Prolong the result till it is overwritten by the new result.
result[14:0] <= sum_valid ? sum[14:0] : result[14:0] ;

// Register the sum.
endmodule
__

Test Bench for Signed Serial Adder Design

The functional verification of serial adder design can be carried out by writing a
test bench as shown in Verilog Code_10.2. The simulation is carried out at 50
MHz by defining half clock period as 10 ns. The design included in the test bench
is “serial_adder12s.v”. The test bench module is declared as “serial_adder12s_test”
and only the required outputs are listed. All the inputs are declared as usual as
“reg”. This is followed by calling the design, serial_adder12s, and ports by name.
In the “initial” block, we apply two sets of eight inputs sequentially, each spaced
by 20 ns. Enable is de-asserted for one clock cycle before applying the second set
of inputs so that the accumulated “sum” is cleared.

10.3 Signed Adder Design 377

Verilog Code_10.2
__

// Place the following test bench in a file named “serial_adder12s_test.v”.
`define clkperiodby2 10
`include “serial_adder12s.v”

module serial_adder12s_test (sum,

 sum_valid,
 result

);

output [14:0] sum;
output sum_valid ;
output [14:0] result;

reg clk ;
reg enable ;
reg [11:0] n ;

serial_adder12s u1(.clk(clk),

 .enable(enable),
 .n(n),
 .sum(sum),
 .sum_valid(sum_valid),
 .result(result)

);
initial
begin
 clk = 0 ;

// Apply first set of inputs sequentially every 20 ns.

n = 12'h0 ; // n0 @ 0 ns.
enable = 0 ;

 #20 enable = 1 ;
 #17 n = 12'hfff ; // n1 @ 37 ns.
 #20 n = 12'h7ff ; // n2 @ 57 ns, etc.
 #20 n = 12'h800 ;
 #20 n = 12'h001 ;
 #20 n = 12'h001 ;
 #20 n = 12'h7ff ;
 #20 n = 12'haaa ; // n7 @ 157 ns.
 #20 n = 12'h0 ;
 enable = 0 ;

// Disable before applying the next set of inputs
 // so that the accumulated “sum” is cleared.

378 Arithmetic Circuit Designs

 #20 enable = 1 ; // Apply the next set of inputs.
n = 100 ; // n0

 #20 n = 200 ;
 #20 n = 300 ;
 #20 n = 400 ;
 #20 n = 500 ;
 #20 n = 100 ;
 #20 n = 200 ;
 #20 n = 247 ; // n7
 #20 enable = 0 ;
 #100

 $stop ;
end

always
 #`clkperiodby2 clk <= ~clk ; // Run the clock at 50 MHz.
endmodule
__

Simulation Results for Serial Adder Design

The Modelsim results for the serial adder design are shown in Figure 10.4. From the

waveforms, it is seen that the clock period is 20 ns since we specified 50 MHz for the

Fig. 10.4 Timing diagram of serial adder – first set of inputs (Continued)

10.3 Signed Adder Design 379

“clk” signal in the test bench. The adder “enable” signal goes high at 20 ns and
goes low at 177 ns, during which interval eight inputs, one every clock cycle, are
applied at the input “n”. Note that the data FFF H or –1 in decimal is applied at 37
ns. The result is accumulated as “sum”. The first two input numbers, n0 and n1,
are 0 and –1 adding up to –1 registered at the rising edge of “clk” at 50 ns. The
next data 2047 applied at 57 ns changes the accumulated result to 2046 at 70 ns.
Finally, the last input number n7 = –1366 produces the sum 681 at 170 ns. Simul-
taneously, the signal “sum_valid” goes high for a clock cycle. The accumulated
sum is available as “result” at the rising edge of the clock at 190 ns and remains at
this value till the next result overwrites this at 370 ns as shown in Figure 10.4.
Similarly, the addition of the next set of numbers may be verified.

Synthesis Results for Serial Adder Design

The Synplify results are tabulated in the following. The frequency of operation re-
ported for XCV 600 device of Xilinx is 138 MHz. The design consumes just 18
numbers of 4 input LUTs.
Maximum frequency of operation: 138 MHz.
Mapping to part: xcv600ehq240-8
Cell usage:

MUXCY_L 14 uses
XORCY 14 uses

Fig. 10.4 Timing diagram of serial adder design – second set of inputs

380 Arithmetic Circuit Designs

FDR 19 uses
FDE 15 uses
GND 1 use

I/O primitives:
IBUF 13 uses
OBUF 31 uses
BUFGP 1 use

I/O Register bits: 15
Register bits not including I/Os: 19 (0%)
Global Clock Buffers: 1 of 4 (25%)
Total LUTs: 18 (0%)

Place and Route Results

The Xilinx P&R results for serial adder design is as follows. The design consumes
very little hardware, namely, 11 slices or 464 gates. The maximum frequency of
operation reported by Xilinx navigator is 174 MHz, higher than that reported by
the Synplify tool. However, this must be used only as a rough guidance since the
maximum frequency of operation goes down when a complete system design is
routed.

Design Summary:
 Number of errors: 0
 Number of warnings: 0

 11 out of 6,912 1%

 unrelated logic: 0 out of 11 0%
 19 out of 13,824 1%
 18 out of 13,824 1%

 Number of bonded IOBs: 44 out of 158 27%
 15

 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
Total equivalent gate count for design: 464
Additional JTAG gate count for IOBs: 2,160
Maximum frequency: 174.307MHz

In the serial adder design, we added eight numbers, n0 to n7, and we got a sum
whose size is 3 bits more than the input. The last bit is the sign bit. The design was
pipelined and partitioned for the data width as well as the functionality. It is also
true for the parallel adder design considered in this section. The block diagram for
this design is shown in Figure 10.5. We have three stages of pipelining and five

 Number of slices:
 Number of slices containing

 Number of slice flip flops:
 Number of four input LUTs:

 IOB flip flops:

pipelined registers in this design. It may be mentioned that the last “sum”

10.3.2 Parallel Signed Adder Design

10.3 Signed Adder Design 381

Fig. 10. 5 Parallel signed adder design

is not registered. Before we consider the design, let us see how to evaluate twos
complement quickly. It can be done in just two steps as follows.

Let us say that we have an eight bit data 11110000, whose twos complement is re-
quired. This can be evaluated as follows. We may have to sign extend the number
by 1 bit, i.e., duplicate the MSB, if we wish to add another number as shown. In
the first step (other than sign extension), we scan the number from LSB till we en-
counter the first “1” and retain all the bits from LSB up to “1”. In this example, we
retain 10000. In the second and final step, we invert all other bits (1111) to get the
desired result, 000010000. Once you get used to this, you will be able to compute
the twos complement at one shot. When we add two numbers, the result will be 1
bit more than the precision of each number. Hence, we need to extend the sign bit
of each number by one.

Step
1 10000 Retain first 1 from LSB, followed by 0s.
2 000010000 Invert other bits.

• Sign can be extended by any number of bits without affecting the actual

value.
• Sign extend means duplicate MSB ([8]<=[7]).

Twos Complement Evaluation (Shortcut)

adder12s

n0 [11:0]

n1 [11:0]

n2 [11:0]

n3 [11:0]

n4 [11:0]

n5 [11:0]

n6 [11:0]

n7 [11:0]

sum [14:0]

clk

[8].……...[0]

111110000 Sign extended data.

382 Arithmetic Circuit Designs

• Without the sign extension, the MSB [7] will be mistaken as a negative
number for high positive values such as +254.

111111111 –1 111111111 –1
111111111 –1 000000001 +1
_________ __ _________ __

111111110 –2 000000000 0
_________ __ _________ __

Ignore Carry generated

001111111 +127 110000000 –128
001111111 +127 110000000 –128
_________ _____ _________ ____

011111110 +254 100000000 –256
_________ _____ ___________ ____

Several examples are shown for the addition of two, twos complement num-

bers. Addition must be carried out in the same way we add two unsigned binary
numbers, ignoring the carry generated.

Pipelined Design of Parallel Twos Complement Adder

The parallel signed adder shown in Figure 10.5 has a simple algorithm. This was
evolved for use in the DCTQ application, where speed of processing has the top
most priority, and the method is shown in Figure 10.6. The signed addition can be
realized with seven two input adders and five pipeline stages. In the first stage, we

lined registers internally. The clock input is marked as (1), (2), etc., and corre-
spond to internal pipeline registers. We will add the LSBs at the first clock pulse
(1) and the MSBs at the next clock pulse (2) along with the carry generated at the
LSB. In the second stage, we will add the four outputs, each of size 13 bits, gener-
ated at the first stage. Two numbers of two input adders are used at this stage.
LSBs and MSBs are added with the arrival of the clock pulse (3) and clock pulse
(4) respectively. In the third stage, with the arrival of the clock pulse (5), we will
add the LSBs of the two inputs of size, 14 bits. Subsequently, the MSBs are added
along with carry generated while adding the LSBs to produce 15 bits final result.

Extend
Sign

numbers. They work concurrently, thereby speeding up the process. They have pipe-
have four numbers of 12 bits, twos complement adders to add all the eight

10.3 Signed Adder Design 383

Verilog Code for the Parallel Signed Adder Design

Now, let us consider the Verilog code for this parallel, signed adder design. We
will see how to add eight 12 bit, twos complement numbers n0 to n7 with 5 pipe-
line stages registered at positive clock. The result “sum” is a 15 bits in twos com-
plement and the output is not registered. We have to first declare the module with
the appropriate module name and declare the input clk, the input numbers n0 to n7
and the output sum. During the course of actual arithmetic operations, we will en-
counter many intermediate signals. Some of them may be used in assign state-
ments and they are declared as wire along with their width. We also have some
numbers, which are not used in the computation, but propagated at a particular
stage. For example, the msb addition is not calculated at the beginning and so they
have to be registered and propagated for use later on when it is required. The msb
and lsb for the next stage are also declared as registers. This completes the “reg”,
“wire” declarations.

In the first stage, we add two numbers at a time, say, n0 and n1 and we add only
the lsbs of the two numbers. Parallel to this, we add the others numbers n2 and n3,
n4 and n5, and n6 and n7. This is same as that of using four adders concurrently and
the results are stored using the assign statements. We add only the lsbs and register

Fig. 10. 6 Pipelined design partition of parallel adder

n1 [11:0]

n2 [11:0]

n3 [11:0]

n4 [11:0]

n5 [11:0]

n7 [11:0]

n6 [11:0]

+

sum [14:0]

First stage Second stage Third stage

+

+

+

n0 [11:0]

+

+

+

clk (5)

Register

clk (1) clk (2)

LSB
Register

clk (3) clk (4)

LSB
Register

LSB MSB MSB

384 Arithmetic Circuit Designs

need to register it separately and propagate it through and use when the next clock
arrives. Before the next clock arrives, we also preserve the sum. We have four
sum results at this stage. Before we add the msbs, the sign should be extended.
The msb 11 is the sign bit. The sign bit is first copied to another signal and then
concatenated with the original value. This is done for both n0 and n1 and then
added. We should also add the carry resulting from the msb addition. Since this is
a time consuming operation, we preserve the results before the next clock pulse ar-
rives. In the next clock, we preserve the entire msb sum in registers for use in the
subsequent stages. We should also continue to preserve the lsb sum, as we need it
for the final results. This completes the first stage of computation.

In the second stage, we add the 4-lsb sums we got in the first stage in two steps
s00, s01 and s02, s03. The carry resulting here will be added with the msb later on.
At the third clock pulse, the msbs are registered to continue addition later on. So
we preserve the msbs and the lsb sum found at this stage. After the clock 4 edge
rises, the added msbs of the second stage and carry generated in lsb addition are
stored. At this stage, we have two msb and lsb sums.

At clk (5) rising edge, msbs and lsbs are registered to continue addition of msb.
At the third stage, the two msbs are added and concatenated with LSB result to get
the final result, 15 bits sum. This completes the design of the parallel signed
adder.

Verilog Code_10.3
__

/* Verilog Code for Signed Adder Design

// Adds eight numbers, n0 to n7, each of size 12 bits in 2’s complement.
// Has five pipeline stages registered at positive edge of clock.
// Result, sum, is in 15 bits, 2’s complement form (not registered).

module adder12s (clk,

 n0,
n1,
n2,
n3,
n4,
n5,
n6,
n7,

 sum

) ;

input clk ;
input [11:0] n0 ;

when the first clock arrives. Since we are not adding the msbs at this stage, we

10.3 Signed Adder Design 385

input [11:0] n1 ;
input [11:0] n2 ;
input [11:0] n3 ;
input [11:0] n4 ;
input [11:0] n5 ;
input [11:0] n6 ;
input [11:0] n7 ;
output [14:0] sum ;

wire [7:0] s00_lsb ;
wire [7:0] s01_lsb ;
wire [7:0] s02_lsb ;
wire [7:0] s03_lsb ;
wire [5:0] s00_msb ;
wire [5:0] s01_msb ;
wire [5:0] s02_msb ;
wire [5:0] s03_msb ;
wire [7:0] s10_lsb ;
wire [7:0] s11_lsb ;
wire [6:0] s10_msb ;
wire [6:0] s11_msb ;
wire [7:0] s20_lsb ;

reg [11:7] n0_reg1 ;
reg [11:7] n1_reg1 ;
reg [11:7] n2_reg1 ;
reg [11:7] n3_reg1 ;
reg [11:7] n4_reg1 ;
reg [11:7] n5_reg1 ;
reg [11:7] n6_reg1 ;
reg [11:7] n7_reg1 ;
reg [7:0] s00_lsbreg1 ;
reg [7:0] s01_lsbreg1 ;
reg [7:0] s02_lsbreg1 ;
reg [7:0] s03_lsbreg1 ;
reg [5:0] s00_msbreg2 ;
reg [5:0] s01_msbreg2 ;
reg [5:0] s02_msbreg2 ;
reg [5:0] s03_msbreg2 ;
reg [6:0] s00_lsbreg2 ;
reg [6:0] s01_lsbreg2 ;
reg [6:0] s02_lsbreg2 ;
reg [6:0] s03_lsbreg2 ;
reg [7:0] s10_lsbreg3 ;
reg [7:0] s11_lsbreg3 ;
reg [5:0] s00_msbreg3 ;

386 Arithmetic Circuit Designs

reg [5:0] s01_msbreg3 ;
reg [5:0] s02_msbreg3 ;
reg [5:0] s03_msbreg3 ;
reg [6:0] s10_lsbreg4 ;
reg [6:0] s11_lsbreg4 ;
reg [6:0] s10_msbreg4 ;
reg [6:0] s11_msbreg4 ;
reg [6:0] s10_msbreg5 ;
reg [6:0] s11_msbreg5 ;
reg s20_lsbreg5cy ;
reg [6:0] s20_lsbreg5 ;

// First Stage Addition
assign s00_lsb[7:0] = n0[6:0]+n1[6:0] ;

// Add lsb first - s00_lsb[7] is the carry
assign s01_lsb[7:0] = n2[6:0]+n3[6:0] ;
// n0-n7 lsb need not be registered since addition is already carried out here.
assign s02_lsb[7:0] = n4[6:0]+n5[6:0] ;
assign s03_lsb[7:0] = n6[6:0]+n7[6:0] ;

always @ (posedge clk)

// Pipeline 1: clk (1). Register msb to continue
// addition of msb.

begin
 n0_reg1[11:7] <= n0[11:7] ;
 // Preserve all inputs for msb addition during the clk(2).
 n1_reg1[11:7] <= n1[11:7] ;

 n2_reg1[11:7] <= n2[11:7] ;
 n3_reg1[11:7] <= n3[11:7] ;
 n4_reg1[11:7] <= n4[11:7] ;
 n5_reg1[11:7] <= n5[11:7] ;
 n6_reg1[11:7] <= n6[11:7] ;
 n7_reg1[11:7] <= n7[11:7] ;

 s00_lsbreg1[7:0] <= s00_lsb[7:0] ;
// Preserve all lsb sum. s00_lsbreg1[7] is the registered carry from lsb addition.
 s01_lsbreg1[7:0] <= s01_lsb[7:0] ;

 s02_lsbreg1[7:0] <= s02_lsb[7:0] ;
 s03_lsbreg1[7:0] <= s03_lsb[7:0] ;

end
// Sign extended & msb added with carry.

assign s00_msb[5:0] = {n0_reg1[11], n0_reg1[11:7]}+
 {n1_reg1[11], n1_reg1[11:7]}+s00_lsbreg1[7];

//s00_msb[6] is ignored.
assign s01_msb[5:0] = {n2_reg1[11], n2_reg1[11:7]}+
 {n3_reg1[11], n3_reg1[11:7]}+s01_lsbreg1[7];

10.3 Signed Adder Design 387

assign s02_msb[5:0] = {n4_reg1[11], n4_reg1[11:7]}+
 {n5_reg1[11], n5_reg1[11:7]}+s02_lsbreg1[7];
assign s03_msb[5:0] = {n6_reg1[11], n6_reg1[11:7]}+
 {n7_reg1[11], n7_reg1[11:7]}+s03_lsbreg1[7];

always @ (posedge clk)
// Pipeline 2: clk (2). Register msb to continue addition of msb.
begin

 s00_msbreg2[5:0] <= s00_msb[5:0] ; // Preserve all msb sum.
 s01_msbreg2[5:0] <= s01_msb[5:0] ;
 s02_msbreg2[5:0] <= s02_msb[5:0] ;
 s03_msbreg2[5:0] <= s03_msb[5:0] ;
 s00_lsbreg2[6:0] <= s00_lsbreg1[6:0] ; // Preserve all lsb sum.
 s01_lsbreg2[6:0] <= s01_lsbreg1[6:0] ;
 s02_lsbreg2[6:0] <= s02_lsbreg1[6:0] ;
 s03_lsbreg2[6:0] <= s03_lsbreg1[6:0] ;

end

// Second Stage Addition
assign s10_lsb[7:0] = s00_lsbreg2[6:0]+s01_lsbreg2[6:0] ;
 //Add lsb first : s10_lsb[7] is the carry.

assign s11_lsb[7:0] = s02_lsbreg2[6:0] +s03_lsbreg2[6:0] ;
 //s00, s01 lsbs need not be registered
 //since addition is already carried out here.
always @ (posedge clk)

// Pipeline 3: clk (3). Register msb to continue addition of msb.
begin

 s10_lsbreg3[7:0] <= s10_lsb[7:0] ; // Preserve all lsb sum.
 s11_lsbreg3[7:0] <= s11_lsb[7:0] ;
 s00_msbreg3[5:0] <= s00_msbreg2[5:0]

 // Preserve all msb sum.
 s01_msbreg3[5:0] <= s01_msbreg2[5:0] ;
 s02_msbreg3[5:0] <= s02_msbreg2[5:0] ;
 s03_msbreg3[5:0] <= s03_msbreg2[5:0] ;

end

assign s10_msb[6:0] = {s00_msbreg3[5],
 s00_msbreg3[5:0]}+{s01_msbreg3[5],
 s01_msbreg3[5:0]}+s10_lsbreg3[7] ;

// Add MSB of second stage with sign extension and carry in from LSB.
// s10_msb[7] is ignored.

assign s11_msb[6:0] = {s02_msbreg3[5], s02_msbreg3[5:0]}+
 {s03_msbreg3[5], s03_msbreg3[5:0]}+

 s11_lsbreg3[7] ;
always @ (posedge clk)

388 Arithmetic Circuit Designs

// Pipeline 4: clk (4). Register msb to continue addition of msb.
begin

 s10_lsbreg4[6:0] <= s10_lsbreg3[6:0] ; // Preserve all lsb sum.
 s11_lsbreg4[6:0] <= s11_lsbreg3[6:0] ;
 s10_msbreg4[6:0] <= s10_msb[6:0] ; // Preserve all msb sum.
 s11_msbreg4[6:0] <= s11_msb[6:0] ;

end

// Third Stage Addition
assign s20_lsb[7:0] = s10_lsbreg4[6:0]+ s11_lsbreg4[6:0] ;

 //Add lsb first : s20_lsb[7] is the carry.
always @ (posedge clk)
// Pipeline 5: clk (5). Register msb to continue addition of msb.
begin

 s10_msbreg5[6:0] <= s10_msbreg4[6:0]; //Preserve all msb sum.
 s11_msbreg5[6:0] <= s11_msbreg4[6:0] ;
 s20_lsbreg5cy <= s20_lsb[7]; // Preserve all lsb sum.
 s20_lsbreg5[6:0] <= s20_lsb[6:0];

end
// Add third stage MSB results and concatenate
// with LSB result to get the final result.
assign sum[14:0] = {({s10_msbreg5[6], s10_msbreg5[6:0]}+
 {s11_msbreg5[6], s11_msbreg5[6:0]}+
 s20_lsbreg5cy), s20_lsbreg5[6:0]};
endmodule
__

Test Bench for Parallel Signed Adder

As usual, we will use 50 MHz clock and, therefore, we define a clock period by 2
as 10 ns. We will use the back annotated design file and declare the test module as
“adder12s_test”. The final sum is not registered. It takes 5 clock cycles to produce
the final result. However, if we want to register the sum, then we need one more
clock cycle to produce the result. To start with, we declare the output, “sum” and
all the inputs n0 to n7 and the clock as “reg”. We then invoke the actual design
“adder12s” and instantiate it as “u1”. Using “initial block”, different sets of input
numbers n0 to n7 are applied every 20 ns except for the second set of inputs,
which is applied at 17 ns. Finally, we invert the clock signal to create a free run-
ning clock. This ends the test module. Verilog_code_10.4 presents the test bench,
which may be put in a file named “adder12s_test.v”.

Verilog_Code_10.4
__

// Test Bench for Parallel Adder/Subtractor Design

10.3 Signed Adder Design 389

`define clkperiodby2 10 // Frequency of operation is 50 MHz.
`include “adder12s_banno.v” // Use back annotated source code.

module adder12s_test(sum // Declare the test bench.
);
output [14:0] sum;

reg clk ;
reg [11:0] n0 ;
reg [11:0] n1 ;
reg [11:0] n2 ;
reg [11:0] n3 ;
reg [11:0] n4 ;
reg [11:0] n5 ;
reg [11:0] n6 ;
reg [11:0] n7 ;

adder12s u1(.clk(clk), // Call the adder design.

 .n0(n0),
 .n1(n1),
 .n2(n2),
 .n3(n3),
 .n4(n4),
 .n5(n5),
 .n6(n6),
 .n7(n7),
 .sum(sum)

);
initial
begin
 clk = 1'b0 ; // Initialize the clock.

 n0 = 12'h0 ; // Apply the first set of inputs.
 n1 = 12'h0 ;
 n2 = 12'h0 ;
 n3 = 12'h0 ;
 n4 = 12'h0 ;
 n5 = 12'h0 ;
 n6 = 12'h0 ;
 n7 = 12'h0 ;

 #17 n0 = 12'hfff ; // Apply the second set of inputs.
 n1 = 12'hfff ;
 n2 = 12'hfff ;
 n3 = 12'hfff ;
 n4 = 12'hfff ;
 n5 = 12'hfff ;
 n6 = 12'hfff ;

390 Arithmetic Circuit Designs

 n7 = 12'hfff ;
#20 n0 = 12'h7ff ; // Apply the third set of inputs.

 n1 = 12'h7ff ;
 n2 = 12'h7ff ;
 n3 = 12'h7ff ;
 n4 = 12'h7ff ;
 n5 = 12'h7ff ;
 n6 = 12'h7ff ;
 n7 = 12'h7ff ;

#20 n0 = 12'h800 ; // Apply the fourth set of inputs.
 n1 = 12'h800 ;
 n2 = 12'h800 ;
 n3 = 12'h800 ;
 n4 = 12'h800 ;
 n5 = 12'h800 ;
 n6 = 12'h800 ;
 n7 = 12'h800 ;

 #20 n0 = 12'h001 ; // Apply the fifth set of inputs.
 n1 = 12'h001 ;
 n2 = 12'h001 ;
 n3 = 12'h001 ;
 n4 = 12'h001 ;
 n5 = 12'h001 ;
 n6 = 12'h001 ;
 n7 = 12'h001 ;

 #20 n0 = 12'h001 ; // Apply the sixth set of inputs.
 n1 = 12'hfff ;
 n2 = 12'h001 ;
 n3 = 12'hfff ;
 n4 = 12'h001 ;
 n5 = 12'hfff ;
 n6 = 12'h001 ;
 n7 = 12'hfff ;

 #20 n0 = 12'h7ff ; // Apply the seventh set of inputs.
 n1 = 12'h7ff ;
 n2 = 12'h7ff ;
 n3 = 12'h7ff ;
 n4 = 12'h801 ;
 n5 = 12'h801 ;
 n6 = 12'h801 ;
 n7 = 12'h801 ;

 #20 n0 = 12'haaa ; // Apply the eighth set of inputs.
 n1 = 12'h555 ;
 n2 = 12'haaa ;
 n3 = 12'h555 ;
 n4 = 12'haaa ;

10.3 Signed Adder Design 391

 n5 = 12'h555 ;
 n6 = 12'haaa ;
 n7 = 12'h555 ;

 #20 n0 = 12'h0 ; // Apply one more set of inputs.
 n1 = 12'h0 ;
 n2 = 12'h0 ;
 n3 = 12'h0 ;
 n4 = 12'h0 ;
 n5 = 12'h0 ;
 n6 = 12'h0 ;
 n7 = 12'h0 ;

 #400 // Wait for some time before stopping.
 $stop ;
end

always
 #`clkperiodby2 clk <= ~clk ; // Toggle the clock.
endmodule
__

Simulation Results of Parallel Signed Adder

The Modelsim results are shown in Figure 10.7. As seen in the waveforms, nine sets

of input numbers, n0 to n7, are 8 × 0; 8 × –1; 8 × 2047; 8 × –2048; 8 × 1; 4 × 1-1 × 4;

Fig. 10.7 Simulation result of back annotated design, adder12s (Continued)

392 Arithmetic Circuit Designs

4 × 2047–2047 × 4; 4 × 1365 – 1366 × 4 and 8 × 0 resulting in the “sum” of 0; –8;
16376; –16384; 8; 0; 0; –4 and 0. This proves that the addition is working prop-
erly. The first result “0” occurs at 100 ns, five clock cycles after the first set of in-
puts are applied. Note that the gate delays are about 10 ns since we have used the
back annotated file for simulation.

Synthesis Results of the Parallel Signed Adder

The Synplify results for the parallel signed adder design are as follows. The
maximum clock frequency reported by the synthesis tool is 112 MHz. As in other
designs we have covered so far, we map onto the xcv600ehq240-8 device. The
number of LUTs consumed by the design is 95.
Performance Summary
Resource Usage Report for adder12s
Mapping to part: xcv600ehq240-8
Cell usage:

MUXCY_L 81 uses
XORCY 88 uses
MUXCY 7 uses
FD 214 uses
GND 1 use

Fig. 10.7 Simulation result of back annotated design, adder12s

10.3 Signed Adder Design 393

I/O Primitives:
IBUF 96 uses
OBUF 15 uses
BUFGP 1 use

I/O Register bits: 47
Register bits not including I/Os: 167 (1%)
Global Clock Buffers: 1 of 4 (25%)
Total LUTs: 95 (0%)
Worst slack in design: 1.136

Starting Clock Requested Frequency Estimated Frequency
clk 100.0 MHz 112.8 MHz

Requested

Period
Estimated

 Period Slack Clock
Type

10.000 8.864 1.136 inferred

Place and Route Results

the gate count and the maximum frequency of operation for our design. The gate
count reported by the tool is about 2800 for the parallel, signed adder that adds eight,
twos complement numbers, each of size: 12 bits. Surprisingly, Xilinx reports a
higher frequency of operation, about 152 MHz for this design. The tool generates the
bit stream “adder12s.bit”, which is used for downloading onto the target FPGA.
Design Summary:
 Number of errors: 0
 Number of warnings: 0
 Number of slices: 97 out of 6,912 1%
 Number of slices containing
 unrelated logic: 0 out of 97 0%
 Number of slice flip flops: 167 out of 13,824 1%
 Number of four input LUTs: 95 out of 13,824 1%
 Number of bonded IOBs: 111 out of 158 70%
 IOB flip flops: 47
 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
Total equivalent gate count for design: 2,810
Additional JTAG gate count for IOBs: 5,376

Timing Summary:
Design statistics:
 Minimum period: 6.563 ns (maximum frequency: 152.369 MHz)

The Xilinx place and route results are as follows. We are primarily interested in

394 Arithmetic Circuit Designs

 Minimum input arrival time before clock: 4.259 ns
 Minimum output required time after clock: 11.083 ns
Saving bit stream in “adder12s.bit”.

Comparison of Serial and Parallel Adders with Eight Numbers
of Inputs

each of width, 12 bits, where the MSB is the sign bit. They are basically adder
cum subtractor since they perform signed addition. The output width is 15 bits.
The performance of these two types of designs, which serve the same purpose of
adding eight signed numbers are presented in Table 10.1. The parallel adder is
nine times faster than the serial adder and may be used if speed of processing is of
top most concern as it is in real time applications such as the DCTQ. However, if
the chip area is vital and the speed of processing is adequate for the application,
then the serial adder is a better choice. The chip area requirement for serial adder
is about six times less than the parallel adder. Also, the Verilog code is shorter.

Type of Adder Serial Parallel

No. of i/p clk cycles 8 1

No. of o/p clk cycles 9 1

Gate count 464 2,810

JTAG gate 2,160 5,376

Maximum frequency of operation
in MHz

 174 152

10.4 Multiplier Design

This is a new algorithm developed for the sake of implementing DCTQ on the
FPGA or as an ASIC with an eye on achieving as high a throughput as possible.
The DCTQ and other video processing applications demand very high through-
puts. There is need to process very high-resolution motion pictures such as 1024 ×
768 pixels or higher at a real time frame rate of 30 frames per second. High proc-
essing speeds can be achieved only by heavy pipelining and massively parallel
circuits. It should be mentioned that FPGA/ASIC based designs incorporate mas-
sively parallel circuits and are highly pipelined when compared to microproces-

The serial and parallel adders we designed earlier, add eight numbers of inputs,

sors and DSPs. The multiplier design presented here incorporates a high degree of

Table 10.1 Comparison of performance of eight inputs serial and parallel
adders

10.4 Multiplier Design 395

Fig. 10.8 Multiplier block

parallel circuits and a pipelining of eight levels. The multiplier, shown in Figure
10.8, performs a multiplication of two signed numbers n0 and n1, one of 11 bits
and the other of 8 bits, as an example. The result is of size 19 bits in twos com-
plement. The multiplication is done primarily on magnitudes of the two numbers,
and, therefore, we will first separate out the sign and the magnitude and process
only the magnitude. The sign can be dealt separately by using an exclusive or gate.
On similar lines, the reader can develop HDL codes for any other size of the mul-
tiplicand and the multiplier, be it signed or unsigned. Before we go into the details
of the algorithm, let us take an example.

Example:
Consider the evaluation of products of two signed numbers:

1023 × –128 = – 130944
 The twos complement representation of the above product is as follows:
01111111111 × 10000000 = 1000000000010000000
Stripping the signs of the numbers, we have:

 n1 (magnitude) × n2 (magnitude)
 01111111111 × 10000000

 00000000000 P1
 00000000000 P2
 00000000000 P3
 00000000000 P4
 00000000000 P5
 00000000000 P6
 00000000000 P7
 01111111111 P8

 011111111110000000 (magnitude)

The example mentioned earlier shows exactly the same way we multiply
manually. The multiplier algorithm reflects the same pattern as the hand comput-
ing and is represented pictorially in Figure 10.9. We have used data partitioning

mult11sx8s

clk

n1 [10:0]

n2 [7:0]
result [18:0]

8 pipeline
stages

396 Arithmetic Circuit Designs

and functionality partitioning in the design. This is once again in three stages as in
the adder design we saw before, and the basic functionality in the multiplier is
only addition. Extra operation we need to perform is left shifting by 1 bit, 2 bits,
and 4 bits in the first, second, and third stage respectively. In the example we con-
sidered earlier, P1 through P8 are the partial products generated by hand comput-
ing. In the first stage, we will add four sets of two numbers at one stroke, and we
will get four partial products S11 to S14. Note that we add P1 and P2 after left
shifting P2 by 1 bit. Similarly, we add other pairs P3/P4, P5/P6, and P7/P8 in the
first stage, all of them concurrently. Also internally, there are many pipelined reg-
isters. For example, two registers are hidden in the first stage and that is the reason
why the clock is fed for each stage. The clock signal is marked clk (1), clk (2),
etc., corresponding to pipeline registers shown in different stages. These are the
reasons why we said before that FPGA/ASIC designs have massively parallel and
highly pipelined circuits that offer high speed performance not feasible with DSPs.

The partial products, P1 to P8, are obtained by bit-wise “anding” the multipli-
cand and the multiplier corresponding to the respective bits of the multiplier. For

Fig. 10. 9 Pipelined multiplier design

P6

P5

P4

P1

P7

+
+

LS 2 b

+
LS 4 b

result[18:0]

clk (4) clk (5)
LSB MSB

Pipeline
Registers

clk (6)

First stage Second stage Third stage

LS 1 b

S 1 4

S 1 3

S 1 2

S 11

 clk (8)

S 2 1

S 2 2

S 3 1

LS 1 b

LS 1 b

LS 1 bP8

P3

P2

+

+

+
+

LS 2 b

clk (3)
LSB MSB

clk (1)

Pipeline
Registers

Pipeline
Registers

LSB MSB Sign LSB
clk (2)

n1 n2

10.4 Multiplier Design 397

instances, P1 = n1 [10:0] & {11{n2[0]}}, and P8 = n1 [10:0] & {11{n2[7]}}. The
first clock, clk (1), will register all the “anded” P1 to P8. With the arrival of the
second clock, clk (2), all the added LSBs of P1/P2 to P7/P8 pairs are registered.
With the arrival of the third clk (3), the MSBs are added. In the second stage, S11
and S12 are added, simultaneously carrying out the addition of S13 and S14, for
the LSBs at clk (4) and MSBs at clk (5). Two adders are used in this stage. It may
be noted that at this stage, S12 and S14 are used for addition only after effecting
left shift by 2 bits since P3/P4 pair is 2 bits shifted left when compared to the pair
P1/P2 as is revealed by close observation of the example shown earlier.

In the third stage, S21 and S22 are added after shifting S22 by 4 bits left since
P5 is offset from P1 by 4 bits, the LSB first and the MSB second at the rising edge
of clk (6) and clk (7) respectively as we have done for the earlier stages. The final
“result” manifests as 19 bits at clk (8) since the number of bits of the multiplicand
and the multiplier put together is 19 bits. The last stage has three pipeline registers
and hence three clock connections are shown in this stage for the LSB, MSB addi-
tions and sign insertion for the final result. In Verilog coding, shifting is very easy
and can be done in the same clock cycle as the addition. Thus, the whole multi-
plier has reduced to just unsigned adders and, therefore, the algorithm turns out to
be very straightforward and simple. We need not be concerned about using many
pipeline registers since registers occupy only small chip area, and the pipeline de-
lays are just a one-time affair and will not affect the processing speed as we had
seen before in the adder design. By following a similar design methodology, even
a very complicated algorithm can be easily broken down and pipelined. Higher the
pipelining higher will be the throughput, i.e., higher the system clock rate and
hence the response will be faster.

10.4.1 Verilog Code for Multiplier Design

quired. Since it is easier to perform the multiplication, if the numbers involved are
unsigned, we will remove the signs temporarily while developing the code. We will
apply the algorithm only on the magnitude and finally evaluate and combine the re-
sult with the sign. In the inputs, n1 and n2, 11th and 8th bits (msbs) are respectively
the sign bits. In DCTQ application, for which we are developing the code for multi-
plier, we need to multiply a partial product of size 11 bits with a 8-bits “cosine”
term, both of which are in twos complement. These two inputs require a multiplier
with the above specification. The “cosine” values are stored in a dual address ROM,
“romc”, the design of which we discussed earlier in Section 9.1. The result is in twos
complement. The multiplier module has eight pipelined stages and the input is not
registered. In all the arithmetic calculations that we have seen so far, we have used
only fixed-point arithmetic and not floating point arithmetic, as floating point
arithmetic is more complex and will take more chip area.

The Verilog code for the pipelined multiplier design is presented in Ver-
ilog_Code_10.5. We start the code by declaring the design module, “mult11s ×
8s” and the inputs/outputs. This is followed by declaring all the output signals in

We have two signed numbers n1 (11 bit) and n2 (8 bit), whose product is re-

398 Arithmetic Circuit Designs

“assign” statements as “wire” and all output signals of “always” blocks as “reg”.
The first two “always” blocks compute the magnitudes of the two numbers, n1 and
n2. The statement that assigns “n1orn2z” is to check whether n1 or n2 is zero so
that we may assign the final “result” as zero. Next, we will see how to get the par-
tial products p1 through p8. To get the partial products of the two numbers, we
check whether the bit 0 of n2, which is the multiplier, is 1 or 0. If it is 0, then the
partial product p1 is 0, otherwise it is the same as n1. In order to accomplish this,
we perform bit-wise logical “and” of the two numbers n1 and bit 0 of n2 and as-
sign to p1 using ‘assign’ statements. Similarly, assignments for other products p2
through p8 are carried out.

At the positive edge of the clock, clk (1), we will save p1 to p8 in pipeline reg-
isters for use in the next clock. We also preserve the sign bits of n1 and n2 and
whether the result is 0 or not. Using “assign” statements, we compute the lsb
sums, s11a, s12a, s13a, and s14a for the partial product pairs p1 and p2, etc. In the
next clock, clk (2), we store the lsb partial sums in the pipelined registers, which
we have already evaluated. These results will be used in the subsequent clock
pulse only. Until then, they have to be propagated. We also store and propagate
the unprocessed msb, the zero bits, sign bits, and the zero status indicators. All

with the carry got from lsb addition. Then the msbs and lsbs are concatenated. In
the final result of the first stage, we will concatenate the msb sum, the lsb sum,
and the least significant bit. We will have four such outputs in the first stage.

In the next clock, clk (3), the first stage results, s11 to s14, as well as the sign
and the zero result are stored for further processing. Before the arrival of the next
clock pulse, using assign statements, we calculate the second stage sum of the
lsbs, shifting it by 2 bits. At the positive edge of the clock, clk (4), we will store
the lsbs computed and propagate all the results not yet processed. Then the msb,
lsb, and the last 2 bits are concatenated as the final result of the second stage. In
the next clock, clk (5), the fifth pipelined stage, the second stage results as well as
the sign and the zero result are stored for further processing. Before the next clock
pulse, we calculate the third stage sum of the lsbs after shifting by four bits. At the
positive edge of the clock, clk (6), we will propagate all the results not yet proc-
essed. Then we concatenate the msb, lsb and the last 2 bits as the final result of the
present stage in clk (7). In the last clock, clk (8), we perform exclusive or of the
sign bits of n1 and n2 to compute the sign bit of the final result, which we ignored
in the first stage. To get the final result, result [18:0], of the multiplier, we set the
sign bit along with the result and we register the output to suit the requirement of
the DCTQ application. While writing this code, we haven’t strained much to write
an optimized code. For instance, instead of propagating the two sign bits of n1 and
n2, we could have evaluated the sign bit right at the start and propagated just the
sign of the final result. However, we shall delegate the optimization work to the
synthesis tool.

these pipeline registers will occupy more chip area. Although, manual optimization

the optimization. In the following “assign” statements, we will add the msb along
can be done to overcome this, we will leave the task to the synthesis tool to do

10.4 Multiplier Design 399

Verilog_Code_10.5
__
/* Verilog Code for Two Input Multiplier

Place this code in a file named “mult11s × 8s.v”.
Signed multiplication of two numbers, n1 (11-bit) and n2 (8-bit).
Inputs are not registered.
Result is in twos complement.
This module has eight pipeline stages to increase the speed of processing.
*/

module mult11s × 8s (clk, // Declare the design module and

 n1,
 n2,
 result

) ;
input clk ;
input [10:0] n1 ;
input [7:0] n2 ;
output [18:0] result ;

wire n1orn2z ; // Declare combinational
wire [10:0] p1 ; // circuit signals.
wire [10:0] p2 ;
wire [10:0] p3 ;
wire [10:0] p4 ;
wire [10:0] p5 ;
wire [10:0] p6 ;
wire [10:0] p7 ;
wire [10:0] p8 ;
wire [6:0] s11a ;
wire [6:0] s12a ;
wire [6:0] s13a ;
wire [6:0] s14a ;
wire [5:0] s11b ;
wire [5:0] s12b ;
wire [5:0] s13b ;
wire [5:0] s14b ;
wire [12:0] s11 ;
wire [12:0] s12 ;
wire [12:0] s13 ;
wire [12:0] s14 ;
wire [7:0] s21a ;
wire [7:0] s22a ;
wire [6:0] s21b ;
wire [6:0] s22b ;

// The inputs/outputs.

400 Arithmetic Circuit Designs

wire [14:0] s21 ;
wire [14:0] s22 ;
wire [8:0] s31a ;
wire [7:0] s31b ;
wire [17:0] s31 ;
wire res_sign ;
wire [18:0] res ;

reg [10:0] n1_mag ; // Declare all registers.
reg [7:0] n2_mag ;
reg [10:0] p1_reg1 ;
reg [10:0] p2_reg1 ;
reg [10:0] p3_reg1 ;
reg [10:0] p4_reg1 ;
reg [10:0] p5_reg1 ;
reg [10:0] p6_reg1 ;
reg [10:0] p7_reg1 ;
reg [10:0] p8_reg1 ;
reg [6:0] s11a_reg2 ;
reg [6:0] s12a_reg2 ;
reg [6:0] s13a_reg2 ;
reg [6:0] s14a_reg2 ;
reg n1_reg1;
reg n1_reg2;
reg n1_reg3;
reg n1_reg4;
reg n1_reg5;
reg n1_reg6;
reg n1_reg7;
reg n2_reg1;
reg n2_reg2;
reg n2_reg3;
reg n2_reg4;
reg n2_reg5;
reg n2_reg6;
reg n2_reg7;
reg n1orn2z_reg1 ;
reg n1orn2z_reg2 ;
reg n1orn2z_reg3 ;
reg n1orn2z_reg4 ;
reg n1orn2z_reg5 ;
reg n1orn2z_reg6 ;
reg n1orn2z_reg7 ;
reg [10:0] p1_reg2 ;
reg [10:0] p2_reg2 ;
reg [10:0] p3_reg2 ;

10.4 Multiplier Design 401

reg [10:0] p4_reg2 ;
reg [10:0] p5_reg2 ;
reg [10:0] p6_reg2 ;
reg [10:0] p7_reg2 ;
reg [10:0] p8_reg2 ;
reg [12:0] s11_reg3 ;
reg [12:0] s12_reg3 ;
reg [12:0] s13_reg3 ;
reg [12:0] s14_reg3 ;
reg [12:0] s11_reg4 ;
reg [12:0] s12_reg4 ;
reg [12:0] s13_reg4 ;
reg [12:0] s14_reg4 ;
reg [7:0] s21a_reg4 ;
reg [7:0] s22a_reg4 ;
reg [14:0] s21_reg5 ;
reg [14:0] s22_reg5 ;
reg [14:0] s21_reg6 ;
reg [14:0] s22_reg6 ;
reg [8:0] s31a_reg6 ;
reg [17:0] s31_reg7 ;
reg [18:0] result ;

always @(n1)
begin

if(n1[10] == 1'b0)
n1_mag = n1[10:0] ;

else
n1_mag = ~n1[10:0] + 1 ; // Evaluate twos complement.

end

always @(n2)
begin

if(n2[7] == 1'b0)
n2_mag = n2[7:0] ;

else
n2_mag = ~n2[7:0] + 1 ; // Evaluate twos complement.

end

assign n1orn2z = ((n1 == 11'b0)||(n2 == 7'b0)) ?1'b1:1'b0 ;

 // If n1 or n2 is zero, make final result +0.
assign p1 = n1_mag[10:0] & {11{n2_mag[0]}};

// Compute the partial products. Multiply n1 by n2 bit '0', etc.
assign p2 = n1_mag[10:0] & {11{n2_mag[1]}} ;
assign p3 = n1_mag[10:0] & {11{n2_mag[2]}} ;
assign p4 = n1_mag[10:0] & {11{n2_mag[3]}} ;

402 Arithmetic Circuit Designs

assign p5 = n1_mag[10:0] & {11{n2_mag[4]}} ;
assign p6 = n1_mag[10:0] & {11{n2_mag[5]}} ;
assign p7 = n1_mag[10:0] & {11{n2_mag[6]}} ;
assign p8 = n1_mag[10:0] & {11{n2_mag[7]}} ;

always @ (posedge clk) // These are the first pipeline registers at clk (1) stage.
begin

p1_reg1 <= p1 ;
p2_reg1 <= p2 ;
p3_reg1 <= p3 ;
p4_reg1 <= p4 ;
p5_reg1 <= p5 ;
p6_reg1 <= p6 ;
p7_reg1 <= p7 ;
p8_reg1 <= p8 ;
n1_reg1 <= n1[10] ; // Preserve sign bits and the status
n2_reg1 <= n2[7] ;
n1orn2z_reg1 <= n1orn2z ; // whether result is zero or not

end

//p1_reg1, etc. means p1, etc. are registered at positive edge of clk (1), clk (2), etc.

assign s11a[6:0] = p1_reg1[6:1] + p2_reg1[5:0] ;
 // LSBs are added here after left shifting
 // p1_reg1 by one bit.
assign s12a[6:0] = p3_reg1[6:1] + p4_reg1[5:0] ;
assign s13a[6:0] = p5_reg1[6:1] + p6_reg1[5:0] ;

assign s14a[6:0] = p7_reg1[6:1] + p8_reg1[5:0] ;

 // Note: the left shifts are taken care of
 // for p1, p3, p5 and p7.

 // p1_reg1[0], etc. will be processed at the clk (2).
 // s11a[6], etc. are the carry bits.
always @ (posedge clk) // These are the second pipeline registers @ clk (2).
begin

s11a_reg2 <= s11a ; // Store LSB partial sums.
s12a_reg2 <= s12a ;
s13a_reg2 <= s13a ;
s14a_reg2 <= s14a ;
p1_reg2[10:7] <= p1_reg1[10:7] ; // Store MSB of partial products.
p2_reg2[10:6] <= p2_reg1[10:6] ;
p3_reg2[10:7] <= p3_reg1[10:7] ;
p4_reg2[10:6] <= p4_reg1[10:6] ;
p5_reg2[10:7] <= p5_reg1[10:7] ;
p6_reg2[10:6] <= p6_reg1[10:6] ;
p7_reg2[10:7] <= p7_reg1[10:7] ;

10.4 Multiplier Design 403

p8_reg2[10:6] <= p8_reg1[10:6] ;
p1_reg2[0] <= p1_reg1[0] ; // Store '0' th bit since
p3_reg2[0] <= p3_reg1[0] ; //it is not yet processed.
p5_reg2[0] <= p5_reg1[0] ;
p7_reg2[0] <= p7_reg1[0] ;
n1_reg2 <= n1_reg1 ; // Also store sign bits and zero status.
n2_reg2 <= n2_reg1 ;
n1orn2z_reg2 <= n1orn2z_reg1 ;

end

// MSB is added here along with carry.
assign s11b[5:0] = {1'b0, p1_reg2[10:7]} + p2_reg2[10:6] + s11a_reg2[6] ;
assign s12b[5:0] = {1'b0, p3_reg2[10:7]} + p4_reg2[10:6] + s12a_reg2[6] ;
assign s13b[5:0] = {1'b0, p5_reg2[10:7]} + p6_reg2[10:6] + s13a_reg2[6] ;
assign s14b[5:0] = {1'b0, p7_reg2[10:7]} + p8_reg2[10:6] + s14a_reg2[6] ;
 // MSBs & LSBs are concatenated here.
assign s11[12:0] = {s11b, s11a_reg2[5:0], p1_reg2[0]} ;
 // Concatenate MSB, LSB, '0' th bit respectively.
assign s12[12:0] = {s12b, s12a_reg2[5:0], p3_reg2[0]} ;
assign s13[12:0] = {s13b, s13a_reg2[5:0], p5_reg2[0]} ;
assign s14[12:0] = {s14b, s14a_reg2[5:0], p7_reg2[0]} ;

always @ (posedge clk)
 // These are the third pipeline registers @ clk (3). First stage results.
begin

s11_reg3 <= s11; // Store for further processing.
s12_reg3 <= s12;
s13_reg3 <= s13;
s14_reg3 <= s14;
n1_reg3 <= n1_reg2;
n2_reg3 <= n2_reg2;
n1orn2z_reg3 <= n1orn2z_reg2;

end

assign s21a[7:0] = s11_reg3[8:2] + s12_reg3[6:0] ; // s21a[7] is the carry.
assign s22a[7:0] = s13_reg3[8:2] + s14_reg3[6:0] ; // LSB sum, 2nd stage.

always @ (posedge clk) // These are the fourth pipeline registers @ clk (4).
begin

s11_reg4[12:9] <= s11_reg3[12:9] ; // Store bits not yet processed.
s11_reg4[1:0] <= s11_reg3[1:0] ;
s12_reg4[12:7] <= s12_reg3[12:7] ;
s13_reg4[12:9] <= s13_reg3[12:9] ;
s13_reg4[1:0] <= s13_reg3[1:0] ;
s14_reg4[12:7] <= s14_reg3[12:7] ;
s21a_reg4 <= s21a ;

404 Arithmetic Circuit Designs

 // Store LSB, second stage partial sums.
s22a_reg4 <= s22a ;
n1_reg4 <= n1_reg3 ;
n2_reg4 <= n2_reg3 ;
n1orn2z_reg4 <= n1orn2z_reg3 ;

end

// Add second stage MSBs with carry.
assign s21b[6:0] = {2'b0, s11_reg4[12:9]} +s12_reg4[12:7] + s21a_reg4[7];
assign s22b[6:0] = {2'b0, s13_reg4[12:9]} +s14_reg4[12:7] + s22a_reg4[7];
assign s21[14:0] = {s21b[5:0], s21a_reg4[6:0], s11_reg4[1:0]} ;
 // {MSB, LSB, [1:0]}

// Result will never effect s21b[6], which is always 0.
assign s22[14:0] = {s22b[5:0], s22a_reg4[6:0], s13_reg4[1:0]} ;

always @ (posedge clk) // These are the fifth pipeline registers @ clk (5).
begin

s21_reg5 <= s21 ; // Store for further processing.
s22_reg5 <= s22 ;
n1_reg5 <= n1_reg4 ;
n2_reg5 <= n2_reg4 ;
n1orn2z_reg5 <= n1orn2z_reg4 ;

end

assign s31a[8:0] = s21_reg5[11:4] + s22_reg5[7:0] ;
 // Third stage LSB is computed here.
always @ (posedge clk) // These are the sixth pipeline registers @ clk (6).
begin

s21_reg6 [14:12] <= s21_reg5[14:12] ; // Preserve MSBs.
s22_reg6 [14:8] <= s22_reg5[14:8] ;
s21_reg6 [3:0] <= s21_reg5[3:0] ;
s31a_reg6 <= s31a ; //Third stage LSB is registered here.
n1_reg6 <= n1_reg5 ;
n2_reg6 <= n2_reg5 ;
n1orn2z_reg6<= n1orn2z_reg5 ;

end

assign s31b[7:0] = {4'b0, s21_reg6[14:12]} + s22_reg6[14:8] + s31a_reg6[8] ;
 // Third stage MSB is computed
here.
assign s31[17:0] = {s31b[5:0], s31a_reg6[7:0], s21_reg6[3:0]} ;

 // Put MSB, LSB and [3:0] bits together.
// Note that the third stage result will never effect s31b[6:5], which is always 0.

always @ (posedge clk) // These are the seventh pipeline registers @ clk (7).
begin

10.4 Multiplier Design 405

n1_reg7 <= n1_reg6 ; // Store intermediate results.
n2_reg7 <= n2_reg6 ;
s31_reg7 <= s31 ;
n1orn2z_reg7 <= n1orn2z_reg6 ;

end

assign res_sign = n1_reg7^n2_reg7 ; // “1” means a -ve no.
assign res[18:0] = (res_sign) ? {1'b1, (~s31_reg7 + 1'b1)}:{1'b0, s31_reg7} ;

always @ (posedge clk) // This is the eighth pipeline register registered @ clk (8).
begin

if (n1orn2z_reg7 == 1'b1)
result[18:0] <= 19'b0 ;

else
result[18:0] <= res ; // This is the final result (product of two

 // numbers) in twos complement form.
end
endmodule
__

Test Bench for the Multiplier Design

As usual, we define clkperiodby2 as 10 ns so that we may run the simulation at 50
MHz. We include the back annotated source file, “mult11s × 8s_banno.v”, in the
test bench to check that the design works at the maximum frequency of operation
for the target FPGA. In order to run at the maximum frequency of operation re-
ported by P&R tool, the “clkperiodby2” will have to be changed suitably. After
including the design, we declare the test bench module “mult11s × 8s_test” and its
inputs/output. This is followed by invoking the design module “mult11s × 8s”,
calling ports by name. Using initial block, we will apply different pairs of test pat-
terns as inputs, once every 20 ns. We stagger the data and clock by a few nanosec-
onds so that we may apply the clock only after the data stabilizes. Initially, we
force the clock and the two numbers n1 and n2 to zero, and later on for every 20
ns, we change the data. Before ending the test module, we will toggle the clock as
usual. The Verilog code for the test bench follows:

Verilog_Code_10.6
__

// Place this test bench in a file named “mult11s × 8s_test.v”.

`define clkperiodby2 10 // Simulate at 50 MHz.
`include “mult11s × 8s_banno.v” // Back annotated design file.

module mult11s × 8s_test (result // Declare the test bench,
);

406 Arithmetic Circuit Designs

output [18:0] result ; // output and

reg clk ; // input stimulants.
reg [10:0] n1 ;
reg [7:0] n2 ;

mult11s × 8s u1(.clk(clk), // Invoke the design.
 .n1(n1),
 .n2(n2),
 .result(result)

);
initial
 begin // Apply several sets of inputs.

 clk = 1'b0 ;
 n1 = 11'h0 ;

 n2 = 8'h0 ;
 #17 n1 = 11'h555 ; // Not that the inputs are applied
 n2 = 8'h55; // before the rising edge of “clk”.
 #20 n1 = 11'h2aa ;

 n2 = 8'haa;
 #20 n1 = 11'h7ff ;
 n2 = 8'h80;
 #20 n1 = 11'h555 ;
 n2 = 8'hff;
 #20 n1 = 11'h7ff ;
 n2 = 8'h81;
 #20 n1 = 11'h555 ;
 n2 = 8'h81;
 #20 n1 = 11'h2aa ;
 n2 = 8'h81;
 #20 n1 = 11'h7ff ;
 n2 = 8'h00;
 #20 n1 = 11'h7ff ;
 n2 = 8'h7f;
 #20 n1 = 11'h000 ;
 n2 = 8'hff;
 #20 n1 = 11'h000 ;
 n2 = 8'h7f;

 #400
 $stop ;
end

always
 #`clkperiodby2 clk <= ~clk ;
endmodule
__

10.4 Multiplier Design 407

Simulation Results of the Multiplier Design

The Modelsim results of the multiplier are shown in Figure 10.10. As seen in the
waveform, the clock rises at intervals of 20 ns starting from 10 ns. The inputs are
shown in both decimal number formats as well as in hex formats so that we may
correlate the results with the test bench. Input pairs applied are respectively 0, 0;
–683, 85; 682, –86; –1, –128; –683, –1; –1, –127; –683, –127; 682, –127; –1, 0; –1,
127; 0, –1 and 0, 127. The multiplied results are respectively 0; –58055; –58652;
128; 683; 127; 86741; –86614; 0; –127; 0 and 0. The calculator on your computer
may be used to verify the hex to decimal conversion as well as the results. It may be
noted that the second pair of inputs is applied at 17 ns, 13 ns before the clock strikes.
Thus, the inputs are stable when the clock arrives. The first output arrives at 155.6 ns
since there are eight pipeline registers and gate delays in the data path. The subse-
quent results appear periodically at 20 ns interval. If, instead of back annotated de-
sign, we had used the actual design source, the first result would have manifested at
the eighth clock pulse, i.e., at 150 ns. Clearly, the associated gate delays are 5.6 ns.

Synthesis Results of Multiplier Design

The Synplify results for the signed multiplier are as follows. The report reveals
whatever signals are optimized. For example, it reports that the signal “s14a_reg2[6]”

is always 0. Therefore, we need not spend too much time on optimizing while

×Fig. 10.10 Simulation results of the multiplier design “mult11s 8s” (Continued)

408 Arithmetic Circuit Designs

Fig. 10.10 Simulation results of the multiplier design “mult11s × 8s”

10.4 Multiplier Design 409

developing code for any application. The maximum frequency of operation is 125
MHz and number of LUTs is 181.
Synplify Report
Synthesizing module mult11s × 8s
@N:“D:\user\ram\verilog_latest\dvlsi_des_verilog\mult11s × 8s.v”:346:0:346:5|Found
seqShift n1orn2z, depth=7, width=1
@N:“D:\user\ram\verilog_latest\dvlsi_des_verilog\mult11s × 8s.v”:346:0:346:5|Found
seqShift n1, depth=6, width=1
@N:“D:\user\ram\verilog_latest\dvlsi_des_verilog\mult11s × 8s.v”:346:0:346:5|Found
seqShift n2, depth=6, width=1
@W:“D:\user\ram\verilog_latest\dvlsi_des_verilog\mult11s× 8s.v”:202:0:202:5|Register
bit s14a_reg2[6] is always 0, optimizing ...
@END
Performance Summary
Worst slack in design: 12.009

Starting Clock Requested Frequency Estimated Frequency
clk 50.0 MHz 125.1 MHz

Requested Period Estimated Period Slack Clock Type

20.000 7.991 12.009 Inferred

Resource Usage Report for mult11s × 8s
Mapping to part: xcv600ehq240-8
Cell usage:

MUXCY_L 100 uses
XORCY 109 uses
MUXCY 9 uses
FDR 105 uses
FD 209 uses
GND 1 use
VCC 1 use

I/O primitives:
IBUF 19 uses
OBUF 19 uses
BUFGP 1 use

SRL primitives:
SRL16 9 uses

I/O Register bits: 22
Register bits not including I/Os: 292 (2%)
Global Clock Buffers: 1 of 4 (25%)
Total LUTs: 181 (1%)

410 Arithmetic Circuit Designs

Place and Route Results of Multiplier Design

The Xilinx place and route results are as follows. From the report listed below, the
number of slices consumed is seen to be 201, and the total gate count for the de-
sign is 5,284. The maximum frequency of operation is 82 MHz although the Syn-
plify tool has reported much higher frequency. Anyway, what matters is the
maximum frequency of operation for the entire application such as DCTQ. The bit
stream is saved as “mult11s × 8s.bit”.
Design Summary:
 Number of errors: 0
 Number of warnings: 0
 Number of slices: 201 out of 6,912 2%
 Number of slices containing
 unrelated logic: 0 out of 201 0%
 Number of slice flip flops: 292 out of 13,824 2%
 Total Number 4 input LUTs: 178 out of 3,824 1%
 Number used as LUTs: 161
 Number used as a route-thru: 8
 Number used as shift registers: 9
 Number of bonded IOBs: 38 out of 158 24%
 IOB flip flops: 22
 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
Total equivalent gate count for design: 5,284
Additional JTAG gate count for IOBs: 1,872
Timing summary:

Minimum period: 12.132 ns (maximum frequency: 82.427 MHz)
Minimum input arrival time before clock: 10.150 ns
Minimum output required time after clock: 5.617 ns

Saving bit stream in “mult11s × 8s.bit”.
__

Summary

Arithmetic circuits such as add, subtract, multiply, etc., are computationally in-
tensive and, therefore, conventional methods are not sufficient for real time imple-
mentations on FPGA or ASIC. In order to speed up the processing considerably, we
will have to base our designs on massively parallel circuits and heavy pipelining.
This chapter presented arithmetic circuit designs such as signed adders and multi-
plier with a high degree of parallelism and pipelining for computationally intensive
applications such as video compression. The next chapter shows the importance of
developing algorithms so that they may be effectively implemented on an FPGA
or as an ASIC.
__

Summary 411

Assignments

10.1 Code and test a design for adding two signed numbers of width 16 bits
each in three different manner:

 Analyze and use the optimum number of pipeline stages in order to get
the best possible speed of implementation. Which of these three designs
yields the best performance in terms of speed/chip area?

10.2 Write a Verilog code for subtracting two 12-bit numbers in twos com-
plement. Pipeline your design. Test your design.

10.3 Code and test your design for adding eight signed numbers, each of width
14 bits on similar lines as the 12 bits signed adder design shown in the
text. Name the adder design as “adder14sr.v” for use in DCTQ applica-
tion. Use six stages of pipelining. The final output “sum” must be regis-
tered.

10.4 Code and test a design for adding eight signed numbers, each of width 12
bits on similar lines as the 12 bits signed parallel adder design shown in
the text. Name the adder design as “adder12sr.v” for use in IQIDCT ap-
plication. Use six stages of pipelining. The final output “sum” must be
registered.

10.5 Code and test a design for adding eight signed numbers, each of width 14
bits on similar lines as the 14 bits signed adder design shown in the as-
signment 10.3. Name the adder design as “adder14s.v” for use in
IQIDCT Processor application. Use five stages of pipelining. The final
output “sum” must not be registered.

10.6 Write Verilog codes for multiplying two numbers for the following speci-
fications:
(i) n1 is unsigned 8 bit, and n2 is signed 8 bit.
(ii) n1 is signed 12 bit, and n2 is unsigned 8 bit.

 Use the multiplier algorithm presented in the text. Design each of the
above with eight pipeline stages to increase the speed. Inputs are not reg-
istered. Both these designs are required for use in DCTQ application.
Give apt names. Test your codes.

10.7 Write Verilog code for multiplying two numbers for the following speci-
fication:
(i) “n1” is signed 9 bit, and “n2” is unsigned 8 bit.
(ii) “n1” is signed 12 bit, and “n2” is signed 8 bit.

 Use the multiplier algorithm presented in the text. Design with eight
pipeline stages to increase the speed. Inputs are not registered. These de-
signs are required for use in IQIDCT application. Give apt names. Test
your codes.

10.8 Another new algorithm can be developed for multiplier based on decimal
weights of a multiplier or for that matter a multiplicand. For example,

(i) Add all the 16 bits at a time without any pipelining.
(ii) Add only 8 bits at every pipeline stage.

(iii) Repeat (ii) for 4 bits.

412 Arithmetic Circuit Designs

consider two unsigned 4-bit numbers, n1[3:0] and n2[3:0]. The multi-
plied result may be simply expressed as follows:

 Result = (if n2[3] = 1 then 8 (n1[3:0]); else 0) +
 (if n2[2] = 1 then 4 (n1[3:0]); else 0) +
 (if n2[1] = 1 then 2 (n1[3:0]); else 0) +
 (if n2[0] = 1 then (n1[3:0]); else 0)
 Develop this algorithm so that it may be easily coded in Verilog and

prove its working for two examples:
1. 1111 × 1111
2. 1111 × 1010

10.9 Write RTL Verilog code for multiplying two unsigned 4-bit numbers for
the new algorithm you have developed for the assignment 10.8.

10.10 Write a test bench for the Verilog code developed by you for the assign-
ment 10.9 and present the waveform to prove its working.

10.11 Write RTL Verilog code for multiplying two unsigned 8-bit numbers af-
ter modifying the new algorithm you have developed for the assignment
10.8. Incorporate four stages of pipelining.

10.12 Write a test bench for the Verilog code developed by you for the assign-
ment 10.11 and present the waveform to prove its working.

10.13 Modify the algorithm of the assignment 10.11 to multiply two 8-bit num-
bers, one of them being unsigned and the other signed in twos comple-
ment. Code it in Verilog with five pipeline stages. Compare the synthesis
and Xilinx P&R results with that of the corresponding design you have
solved for the assignment 10.6 (i).

10.14 Write a test bench for the Verilog code developed by you for the assign-
ment 10.13 and present the waveform to prove its working.

10.15 In the assignment 10.13, change the number of pipeline stages from five
to one and test it. Compare the synthesis and Xilinx P&R results with that
design.

10.16 Write a test bench for the Verilog code developed by you for the assign-
ment 10.15, if necessary, and present the waveform to prove its working.

10.17 A multiplier and accumulator (MAC) is useful in digital signal process-
ing applications, where a sum of products is required. Develop the RTL
Verilog code for a MAC using the 8- bit multiplier you have designed in
the assignment 10.13. Present the synthesis and Xilinx P&R results.

10.18 Write a test bench for the MAC you have designed for the assignment
10.17. Establish its working by presenting the simulated waveform(s).

Assignments 413

Chapter 11

Development of Algorithms and Verification
Using High Level Languages

Simple applications such as a traffic light controller, etc., may be directly coded
without a need for an algorithm. However, more complex applications such as
video codecs, demodulators, etc., have involved algorithms at their core, which
need to be adapted or developed depending upon how we wish to implement the
system. The design methodology or strategy would depend upon whether we need
to implement the system using software such as C or by a HDL such as Verilog.
While developing algorithms for hardware implementation, we need to keep the
actual hardware such as registers, counters, combination circuits, etc., in mind
and, subsequently, design the architecture. Only then, we will be in a position to
meet stringent specifications when the algorithm is converted into an actual work-
ing product. This is especially true for computationally intensive applications such
as the discrete cosine transform (DCT), modulation/demodulation, etc., where we
need to process the algorithms at real time rates. For instance, in video codecs
conforming to MPEG 2 standards, the computationally intensive DCT algorithm
needs to be computed at the rate of one coefficient per clock cycle running at the
rate of 100 MHz or more if we are to meet the real time processing rate of 30
frames per second for a color picture of size: 1024 × 768 pixels or higher.

In this chapter, we will learn how to develop algorithms and verify using a
high level language such as Matlab for various applications such as DCTQ, auto-
matic quality control while speeding up processing of DCT, and a block matching
algorithm for motion estimation in a motion picture. Although C codes have been
developed for verifying the motion estimation algorithm, they are not presented in
this book as the codes run into over 80 pages. Prior to designing architectures
based on actual hardware components, we need to check whether the concepts and
algorithms we have developed are really working. This is a vital step which should
not be bypassed for medium to large designs, where the developments of algo-
rithms are involved. Otherwise, rest of the processes such as the development of
architectures, Verilog coding, simulation, synthesis, place and route, hardware de-

chain of processes starting from the algorithms. Handy tools for verifying the de-
veloped algorithms or concepts are evidently one of the high level languages such
as Matlab and C. This chapter presents the verification of algorithms and concepts
using Matlab. Matlab is generally more preferable since it has many built-in func-
tions and hence codes are much shorter than the C codes and, therefore, they are
close to the algorithms, thus serving as a standard reference for us to verify our
Verilog codes later on. These algorithms will be converted into architectures that

velopment, etc., will go waste or the designers may end up in reworking the entire

can be coded in HDL. Detailed RTL compliant Verilog codes will be presented for
DCT and Quantization (DCTQ), as one of the examples of project design in a later
chapter.

11.1 2D-Discrete Cosine Transform and Quantization

The discrete cosine transform closely approximates the Karhunen Loeve Trans-
form (KLT) [21], which is known to be optimal in the sense of de-correlating the
data and maximizing the energy packed into the lowest order coefficients. How-
ever, unlike the KLT, the DCT involves much less computational complexity in
implementation, and is, therefore, preferred in image and video compression work.
A comprehensive treatment of DCT algorithms and applications can be found in
reference [22]. The DCT, which exploits the spatial redundancy to prepare the
ground for effective compression, has played a key role in video data compression
standards such as JPEG [23], MPEG 1 [24], MPEG 2 [25], and H.26X [26]

Over the years, considerable amount of research work have been carried out in
proposing new algorithms for the DCT [27–31] and implementing them on gen-
eral-purpose computers, DSPs, and ASICs. Direct 2-D approach [32] results in
less parallelism, whereas separable row–column 1-D approach [33, 34] yields a
faster algorithm. The authors of reference [34] have implemented 8 × 8 DCT by
software on Pentium operating at 200 MHz. The fast algorithms [35–39] with
minimum numbers of multiplication are often realized by flexible software appro-
aches on the DSPs [40–43]. The speed requirement can be met by a high-speed
DSP but it still needs to pay high hardware cost due to its inherent complexity of
multipliers.

sion conforming to JPEG standard. In order to meet the real-time requirements,
DCT and IDCT implementations use efficient and dedicated hardware [46–54]. In
the architecture proposed in reference [46], all the multipliers are replaced by
ROMs, and the number of ROMs required is large. For example, for an 8 × 8
DCT, more than 40 ROMs of size 1 K × 10 bits are required. Furthermore, a very
stringent utilization of VLSI technology is required for the design to meet the re-
quired speed criteria. Reference [55] presents direct mapping of fast cosine trans-
form (FCT) algorithm using SIMD architecture. That implementation uses a large
number of switching networks and processing elements to achieve real time
speeds. The authors of reference [38] have implemented 2D-DCT using only 6-bit
precision for cosine coefficients. With increase in precision, the processing speed
decreases drastically.

A linear, highly pipelined, parallel algorithm and architecture have been pro-
posed and implemented by the author [56, 57] for 2D-DCT and Quantization on
FPGAs. This architecture eliminates or minimizes the limitations cited in the ear-
lier references. The scheme is further improved and incorporates dual-redundant
input image memory, 45 stages of pipelining, and an optimized controller design
yielding a throughput of one coefficient per clock cycle at 100 MHz. The use of
dual input memory eliminates the input loading time of the host processor. The

ICs have been fabricated [44, 45] for still image compression and decompres-

418 Development of Algorithms and Verification Using High Level Languages

following section describes this DCTQ algorithm for fast implementation on an
FPGA or an ASIC.

11.1.1 Algorithm for Parallel Matrix Multiplication
for DCTQ

DCT is an orthogonal transform consisting of a set of vectors that are sampled cosine
functions [22]. 2D-DCT of a block of size 8 × 8 pixels of an image is defined as

 (11.1)
where f(x, y) is the pixel intensity and

c(u) = c(v) = 1/√2 for u = v = 0 and
 = 1 for u, v = 1 to 7.

The DCT can be expressed conveniently in a matrix form:
DCT = C X CT (11.2)
where X is the input image matrix, C the cosine coefficient matrix, and CT, its
transpose with constants (1/2)c(u) and (1/2)c(v) absorbed in C and CT matrices re-
spectively. For a clearer understanding, the DCT may be expressed in an expanded
form:

=

DCT =

c00 c01 c07

c10 c11 c17

c70 c71 c77

x00 x01 x07

x10 x11 x17

x70 x71 x77

c00 c10 c70

c01 c11 c71

c07 c17 c77

c00 c10 c70

c01 c11 c71

c07 c17 c77

p00 p01 p07

p10 p11 p17

p70 p71 p77

())∑
=

∑
=

⎥⎦
⎤

=
7

0x 16
 vπ 1 2y

7

 0y 16
 uπ12xcosyx,f (v) c (u) c

4

1
(u,v) DCT ⎥ ⎦

⎤ + + ()
⎣
⎡

⎣
⎡cos(

11.1 2D-Discrete Cosine Transform and Quantization 419

 (11.3)

where

 (11.4)

The two-stage matrix multiplication shown in Eq. 11.3 can be implemented by

parallel architecture, wherein eight partial products, which are the row vectors of
CX generated in the first stage, are fed to the second stage. Subsequently, multi-
plying row vector of CX by the CT matrix generates eight DCT coefficients, corre-
sponding to a row of C X CT. While computing the (i + 1)th partial products of
CX, the ith row DCT coefficients can also be computed simultaneously since the
ith partial products of CX are already available. Application of DCT on an 8 × 8
pixel block, thus, generates 64 coefficients in a raster scan order.

Quantized outputs can be obtained by dividing each of the 64 DCT coefficients
by the corresponding quantization table values given in the standards [25] as per
the expression:
DCTQ (u,v) = DCT (u,v) / q (u,v); u, v = 0 to 7 (11.5)

These stages can be pipelined in such a way that one DCTQ output can be gener-
ated every clock cycle. Pipelining is detailed in the next chapter on the design of
architecture. Similarly, inverse quantization can be computed by multiplying each
of the 64 DCTQ coefficients by the corresponding quantization table values as per
the expression:

DCT (u,v) = DCTQ (u,v) × q (u,v); u, v = 0 to 7 (11.6)

The image can be reconstructed from the DCT (u,v) by evaluating the (inverse
DCT) product of the matrix:

IDCT = CT (DCT) C (11.7)

The algorithm for the evaluation of IQIDCT is similar to that of DCTQ and, there-
fore, not presented here.

ji
p
jk

c x
ik

∑
i = 0

7

=

c p
0i 1i

i=0
∑

7

⎢
⎢
⎢
⎢
⎢
⎡ c p

0i 0i
i=0
∑

7
cp

1i 0i

i=0
∑

7

i=0
∑

7
cp

7i 0i

i=0
∑

7
cp

1i 1i i=0
∑

7
cp

7i 1i

i=0
∑

7
c p

0i 7i
i=0
∑

7
cp

1i 7i i=0
∑

7
cp

7i 7i

⎥

⎥

⎥
⎥

⎦

⎥

=

420 Development of Algorithms and Verification Using High Level Languages

11.1.2 Verification of DCTQ–IQIDCT Processes with
Fixed Pruning Level Control Using Matlab

Pruning levels indicate the stage at which the computation of DCT coefficients is
stopped owing to insignificant contribution of subsequent coefficients towards the
quality of the image. Pruning level (PL) simply relates to the number of DCT co-
efficients that is processed in every block of image. Details of pruning levels will
be explained in Section 11.2. We will now develop Matlab codes to verify the
DCTQ–IQIDCT algorithms incorporating a fixed pruning level that can be user
selected. Matlab_code_11.1 shows the top level (main) DCTQ–IQIDCT code that
is menu driven. It is named, ‘fixedplcmain.m’ to mean it is based on fixed pruning
level control. This code is capable of processing any number of video frames of
any size. To start with, the user enters the video disk file name such as ‘car’, fol-
lowed by the starting and ending frame numbers as well as the pruning level up to
which the DCTQ is to be processed. If the user enters 14 for PL input, then all the
64 coefficients in every block of a frame is processed. This, naturally, offers the
highest possible quality of the reconstructed image. On the other extreme, a PL
value of “0” processes only the DC coefficients, resulting in the least possible
(may be, browse) quality. Intermediate qualities may be obtained by processing

At the beginning of the code, two ‘if ’ loops are used to check the pruning level
category, inferred by a variable, k: –7 to –2; –1, to 6, and 14. The next set of in-
structions is a ‘for’ loop to process frame after frame, commencing from the start
frame (f2) desired by the user. The end frame is in f3. The variable, ‘frameno’,
gives the current frame number being processed. The current frame is read into ‘i’.
The cosine matrix ‘c’ is an 8 × 8 matrix with coefficients having a high resolution
so that the Matlab reconstructed image may serve as a reference for verifying the
Verilog simulated image output. The quantization matrix ‘q’ is as per the MPEG-
1/MPEG-2 standards.

Next, the DCTQ, IQIDCT, and the compression are computed followed by the
image quality using the statement:

i4 = 10*log 10(((255^2)*m*n)/(sum(sum((i–i2).^2))));
where ‘i2’ is the reconstructed image. The original ‘i’ and the reconstructed ‘i2’ im-
ages are displayed using ‘imshow’ function of Matlab. The reconstructed image is also
saved as a disk file using the Matlab function, ‘imwrite’. The above process is repeated
(using a variable called ‘counter’) for all other frames as input by the user. The recon-
structed image (i3) in TIFF format can also be displayed using any standard software
such as Paintshop, XnView, Irfan View, etc. A number of Matlab statements are pres-
ently commented and the reader may uncomment them if required.

Matlab_code_11.1

% Main program for the computation of DCTQ–IQIDCT
% File: fixedplcmain.m
% Incorporates Fixed Pruning Level Control.

up to other pruning levels.

11.1 2D-Discrete Cosine Transform and Quantization 421

% Compression effected is expressed as bits per pixel and quality as PSNR
% in dB.
% Accepts input video frames of any size.
global exectime % Declare execution time for use

% in other modules.
f1=input(‘Enter the “.tif ” image file : ’); % For example: ‘car’
f2=input(‘Enter the start frame no. : ’);
f3=input(‘Enter the end frame no. : ’);
% INPUT PRUNING LEVEL : 14 means highest possible quality, i.e.,
% processes all the 64 coefficients in a block. ‘0’ for processing DC coefficients
% alone.

P = input(‘Enter pruning level (0–14) : ’);
if p < 14
 if p > 7
 k = (p–6)*(–1); % p range : 8–13, k range: –2 to –7
 elseif p <= 7 % p range : 0–7
 k = 6–p; % k range: 6 to –1
 end
elseif p >= 14 % p = k = 14
 k = p;
end

counter = 1 ; % Initialize variables.
Psnr = []; % Image quality in dB.

Bitspp = []; % Compression.
Frame = [];
for frameno = f 2:1: f3
frameno = num2str(frameno); % Change to string format.
Fidopen = cat(2,f1,frameno,‘.tif’); % Video frames must be in TIFF format.
i = double(imread(fidopen)); % Read the video frame.
Exectime = 0;
% C matrix:
c = [0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 ;
 0.4904 0.4158 0.2778 0.0976 –0.0976 –0.2778 –0.4158 –0.4904 ;
 0.4620 0.1914 –0.1914 –0.4620 –0.4620 –0.1914 0.1914 0.4620 ;
 0.4156 –0.0976 –0.4904 –0.2778 0.2778 0.4904 0.0976 –0.4158 ;
 0.3536 –0.3536 –0.3536 0.3536 0.3536 –0.3536 –0.3536 0.3536 ;
 0.2778 –0.4904 0.0976 0.4156 –0.4158 –0.0976 0.4904 –0.2778 ;
 0.1914 –0.4620 0.4620 –0.1914 –0.1914 0.4620 –0.4620 0.1914 ;
 0.0976 –0.2778 0.4156 –0.4904 0.4904 –0.4158 0.2778 –0.0976];
% Quantization matrix:
q = [8 16 19 22 26 27 29 34 ;
 16 16 22 24 27 29 34 37 ;
 19 22 26 27 29 34 34 38 ;

422 Development of Algorithms and Verification Using High Level Languages

 22 22 26 27 29 34 37 40 ;
 22 26 27 29 32 35 40 48 ;
 26 27 29 32 35 40 48 58 ;
 26 27 29 34 38 46 56 69 ;
 27 29 35 38 46 56 69 83];
 [m,n] = size(i); % Get the picture size.
% Calculate DCTQ & IQIDCT
 i2 = blkproc(i,[8 8],‘fixedplc’,c,q,k);

% Processes the image ‘i’ by applying the function ‘fixedplc’ to each distinct
% 8 by 8 block of A, with cosine, quantization matrices passed on as
% parameters. “i2” is the reconstructed image after applying DCTQ_IQIDCT.

% Calculate the compression expressed as bits per pixel
dci2 = blkproc(i,[8 8], ‘fplc’,c,q,k);
% Computes the DC coefficients of each 8 × 8 pixel block of the input image.
DCB = dcbits(dci2); % Compute the number of DC bits.
aci2 = blkproc(i,[8 8], ‘countac’,c,q,k);
% Computes the AC coefficients of each 8 × 8 pixel block of the input image.
ACB = sum(sum(aci2)); % Compute the number of AC bits in an image
BITS = DCB + ACB; % and the total number of compressed bits.
BPP = BITS/(m*n); % Calculate the compression effected
 % in terms of bits per pixel.
% Calculate Quality (PSNR in dB)
i4 = 10*log10(((255^2)*m*n)/(sum(sum((i–i2).^2))));
% clc
% disp(‘AC BITS’)
% disp(ACB)
disp(‘PSNR value (in dB) is : ’)
disp(i4)
disp(‘BITS PER PIXEL : ’)
disp(BPP)
% Display the original and the reconstructed frames.
i5 = uint8(i); figure,imshow(i5),title(‘ORIGINAL IMAGE’)
i3 = uint8(i2); figure,imshow(i3),title(‘RECONSTRUCTED IMAGE’)
 [d] = sprintf(‘%2.4f %2.4f’,i4,BPP);
psnr(counter) = i4;
bitspp(counter) = BPP;
frame(counter) = (str2num(frameno));
counter = counter + 1;
e = ‘r’;
imwrite(i3,(cat(2,e,f1,frameno,’.tif ’))); % Save the reconstructed frame.
end % for frameno = loop
% plot(frame,psnr),title(‘PSNR Vs FRAME NO.’)
% figure,plot(frame,bitspp),title(‘BITS PER PIXEL Vs FRAME NO.’)
__

11.1 2D-Discrete Cosine Transform and Quantization 423

In the main program, the code, ‘fixedplc’ was called in order to compute the
DCTQ–IQIDCT processes. This code is presented in Matlab_code_11.1.1. The
DCTQ is computed on an image input matrix ‘x’ pruning it at a given fixed level
‘p’ by the simple expression: (c*x*c′)./q, where c′ is the transpose of ‘c’. The
DCTQ is pruned by calling the pruning function ‘prune’, which is presented in
Matlab_code_11.1.2. Finally, the reconstructed image is got by applying the
IQIDCT process, c′*(y.*q)*c.

Matlab_code_11.1.1
__

% File: “fixedplc.m”

function y = fixedplc(x,c,q,k) % Declare the function.
% Compute DCTQ on an image input block matrix ‘x’ pruning it at a given
% fixed level p.
y = (fix((c*x*c’)./q)); % Compute DCTQ.
If k<14
 y = prune(y,k); % Call the pruning function to prune DCTQ.
end
y = fix(c’*(y.*q)*c); % Compute IQIDCT to reconstruct the frame.
__

The Matlab code for the pruning DCTQ is presented in Matlab_code_11.1.2.

The Matlab function, zeros(8,8) creates an 8 × 8 matrix of zeros. All other Matlab
functions such as ‘fliplr’, ‘spdiags’ and ‘full’ along with ‘zeros’ are manipulations
used to retain all DCTQ coefficients of an image block lying on the diagonal PL,
i.e., ‘k’ and left of the diagonal, while clearing all other coefficients on the right
hand side of the diagonal.

Matlab_code_11.1.2
__

% Pruning
% File: prune.m
function y = prune(y,k) % Declare the pruning function.
B = zeros(8,8); % Make all elements zeros.
Y = fliplr(y);
% FLIPLR(y) returns y with row preserved and columns flipped
% in the left/right direction.
 for j=k:-1:-8
 y2 = spdiags(b,j,y);
% y2 = SPDIAGS(b,j,y) replaces the diagonals of ‘y’ specified by ‘j’ with
% the columns of ‘b’. The output is sparse. Sparse form is obtained by
% squeezing out any zero elements.
 y = full(y2);

424 Development of Algorithms and Verification Using High Level Languages

% y = full(y2) converts a sparse matrix y2 to full storage
% organization. If y2 is a full matrix, it is left unchanged.
 end
y = fliplr(y); % Flipped again.
__

The Matlab code for getting the DC coefficient in the DCTQ output of a block
of image is presented in Matlab_code_11.1.3. The very first coefficient of the ‘y’
block matrix is the DC coefficient.

Matlab_code_11.1.3
__

% File: fplc.m
function dccoeff = fplc(x, c, q, k) % Declare the DC coefficient function.
% Obtain the DC coefficient of an 8 × 8 pixel block after computing DCTQ
% on input matrix ‘x’, pruned at a given fixed level, p.
y = (fix((c*x*c’)./q));
dccoeff = y(1,1); % Returns only the DC coefficient of a block.
__

Matlab_code_11.1.4 gives the function code for computing the number of bits

in DC coefficients after applying variable length coding (VLC) scheme, which is
the last module in a video encoder. VLC brings about compression by assigning
minimum size of variable length codes for the DCTQ coefficients. The reader may
refer the VLC scheme of MPEG 1/MPEG 2 standards to get a complete picture.
The first ‘for’ loop is for computing DC coefficients difference between two adja-
cent blocks, whereas the second ‘for’ loop is for computing the corresponding
variable code from the differential DC size and VLC and additional code tables
given in the standards.

Matlab_code_11.1.4
__

% “dcbits.m file”
function dcb = dcbits(dci2) % Declare the function.
% This counts the number of bits in DC coefficients after applying VLC
% scheme on a block of DCTQ coefficients.
[u,v] = size(dci2); % Gets the size.
dci2 = dci2’;
dci5 = reshape(dci2,1,u*v); % Returns the u × v matrix, whose

dci4 = [];
dci4(1) = dci5(1); % First block DC coefficient is taken as it is,
 for i=1: ((u*v)-1) % –1 is applied since dci4(1) is already got.

 % elements are taken column-wise from dci2.

11.1 2D-Discrete Cosine Transform and Quantization 425

 first = dci5(i);
 second = dci5(i+1);
 diff = second-first; % Subsequent DC coefficients are
 dci4(i+1) = diff; % taken as the difference.

 end
% disp(dci4)
bits = 0;
 for i=1: (u*v)
 ii = abs(dci4(i)); % Drop the sign of the DC coefficients difference.
 if ii<2 ;
 bits = bits+3; % Includes differential dc + additional code.
 elseif ii<4 ;
 bits = bits+4;
 elseif ii<8 ;
 bits = bits+6;
 elseif ii<16 ;
 bits = bits+7;

elseif ii<32 ;
 bits = bits+9;

 elseif ii<64 ;
 bits = bits+11;

 elseif ii<128;
 bits = bits+13;

 elseif ii<256;
 bits = bits+15;

 end
end
disp(‘DC BITS:’)
disp(bits)
dcb = bits;
__

The function ‘countac.m file’ computes DCTQ coefficients in a block applying

pruning and calls the function ‘acbits’ that counts the number of bits in AC coeffi-
cients. This is shown in Matlab_code_11.1.5.

Matlab_code_11.1.5
__

% “countac.m file”
function accoeff = countac(x,c,q,k)
% This function computes DCTQ coefficients in a block applying pruning and
% calls the function “acbits” that counts the number of bits in AC coefficients.
y = (fix((c*x*c’)./q));
 if k < 14

426 Development of Algorithms and Verification Using High Level Languages

 y = prune1(y,k);
 end
accoeff = acbits(y);
__

Matlab_code_11.1.6 is a function to compute the number of bits in all the AC
coefficients of a block in the VLC coding scheme. Two arrays called ‘runlength’
(RL) and ‘level’ (which means the value of DCTQ coefficients in a block) are re-
quired. The first ‘for’ loop is for computing the runlength in a block. DCTQ of a
block is processed in a zig-zag order for computing the VLC. The number of zeros
preceding a non-zero coefficient in the zig-zag order is known as the runlength.
The first ‘for’ loop sequences through 1 to ‘L’ in steps of 1 or L to 1 in steps of –1,
where L is the number of coefficients in a diagonal of a matrix block. The run
length is computed here. The last ‘for’ loop, for x = 1:1:len, accumulates the ac-
tual number of bits in all the AC coefficients in a block. This function does not
compute the actual variable length codes, but only the number of bits in all the AC
coefficients, for we are interested only in assessing the compression effected. The
reader is urged to study the AC VLC code table of MPEG 1/MPEG 2 to convince
himself or herself the correct working of the Matlab codes presented in this
section.

Matlab_code_11.1.6
__

% “ acbits.m file ”
function acb = acbits(y)
% This computes the number of bits in AC coefficients in VLC coding scheme.
% Two arrays called ‘RL’ (runlength) & ‘level’ (value of coefficients) are
% calculated.
y = fliplr(y);
runlength = 0;
r = 1;
RL = [];
level = [];
for j=6:–1:–7 % Topmost diagonal is the DC coefficient and hence skip it.
 y3 = diag(y,j); % Select elements of a diagonal.
 L = length(y3);
 k = abs(j);
 if k == 6 | k == 4 | k == 2 | k == 0;

 a = 1;
b = L;
c = 1;

 else
 a = L;
 b = 1;
 c = -1;

11.1 2D-Discrete Cosine Transform and Quantization 427

 end
 for h = a : c : b % 1 to ‘L’ in steps of 1 or L to 1 in steps of –1.
 check = y3(h);
 if check == 0; % If the AC coefficient is “0”,
 runlength = runlength + 1; % advance the counter.
 else level(r) = check;
 RL(r) = runlength;

 r = r + 1;
 runlength = 0;
 end % Done for this coefficient.
 end % Process the next coefficient in diagonal (for ‘h’ loop).
end % Process the next coefficient in diagonal (for ‘j’ loop).
%RL
%level
% Based on the two arrays ‘RL’ and ‘level’, the number of bits
% (for encoding AC coefficients) are counted.
len = length(RL);
acbit = 0;
if runlength~=63; % 63 means all AC coefficients are 0.
 for x=1:1:len
 level(x) = abs(level(x));
 k = 0;
 if RL(x)==0 & level(x)<41
 if level(x) < 2 ;
 acbit = acbit + 3 ;
 elseif level(x) < 3 ;
 acbit = acbit + 5 ;
 elseif level(x) < 4 ;
 acbit = acbit + 6 ;
 elseif level(x) < 5 ;
 acbit = acbit + 8 ;
 elseif level(x) < 7 ;
 acbit = acbit + 9 ;
 elseif level(x) < 8 ;
 acbit = acbit + 11 ;
 elseif level(x) < 12 ;
 acbit = acbit + 13 ;
 elseif level(x) < 16 ;
 acbit = acbit + 14 ;
 elseif level(x) < 32 ;

 acbit = acbit + 15 ;
 elseif level(x) < 41 ;
 acbit = acbit + 16 ;
 end
 elseif RL(x)==1 & level(x)<19

428 Development of Algorithms and Verification Using High Level Languages

 if level(x) < 2 ;
 acbit = acbit + 4 ;
 elseif level(x) < 3 ;
 acbit = acbit + 7 ;
 elseif level(x) < 4 ;
 acbit = acbit + 9 ;
 elseif level(x) < 5 ;
 acbit = acbit + 11 ;
 elseif level(x) < 6 ;
 acbit = acbit + 13 ;
 elseif level(x) < 8 ;
 acbit = acbit + 14 ;
 elseif level(x) < 15 ;
 acbit = acbit + 16 ;
 elseif level(x) < 19 ;
 acbit = acbit + 17 ;
 end
 elseif RL(x)==2 & level(x)<6
 if level(x) == 1 ;
 acbit = acbit + 5 ;
 elseif level(x) == 2 ;
 acbit = acbit + 8 ;
 elseif level(x) == 3 ;
 acbit = acbit + 11 ;
 elseif level(x) == 4 ;
 acbit = acbit + 13 ;
 elseif level(x) == 5 ;
 acbit = acbit + 14 ;
 end
 elseif RL(x)==3 & level(x)<5
 if level(x) == 1 ;
 acbit = acbit + 6 ;
 elseif level(x) == 2 ;
 acbit = acbit + 9 ;
 elseif level(x) == 3 ;
 acbit = acbit + 13 ;
 elseif level(x) == 4 ;
 acbit = acbit + 14 ;
 end
 elseif RL(x)==4 & level(x)<4
 if level(x) == 1 ;
 acbit = acbit + 6 ;
 elseif level(x) == 2 ;
 acbit = acbit + 11 ;
 elseif level(x) == 3 ;
 acbit = acbit + 13 ;

11.1 2D-Discrete Cosine Transform and Quantization 429

 end
 elseif RL(x)==5 & level(x)<4
 if level(x) == 1 ;
 acbit = acbit + 7 ;
 elseif level(x) == 2 ;
 acbit = acbit + 11 ;
 elseif level(x) == 3 ;
 acbit = acbit + 14 ;
 end
 elseif RL(x)==6 & level(x)<4
 if level(x) == 1 ;
 acbit = acbit + 7 ;
 elseif level(x) == 2 ;
 acbit = acbit + 13 ;
 elseif level(x) == 3 ;
 acbit = acbit + 17 ;
 end
 elseif RL(x)==7 & level(x)<3

 if level(x) == 1 ;
 acbit = acbit + 7 ;

 elseif level(x) == 2 ;
 acbit = acbit + 13 ;
 end
 elseif RL(x)< 10 & level(x)<3
 if level(x) == 1 ;
 acbit = acbit + 8 ;
 elseif level(x) == 2 ;
 acbit = acbit + 13 ;
 end
 elseif RL(x)==10 & level(x)<3
 if level(x) == 1 ;
 acbit = acbit + 9 ;
 elseif level(x) == 2 ;
 acbit = acbit + 14 ;
 end
 elseif RL(x)< 14 & level(x)<3
 if level(x) == 1 ;
 acbit = acbit + 9 ;
 elseif level(x) == 2 ;
 acbit = acbit + 17 ;
 end
 elseif RL(x)< 17 & level(x)<3
 if level(x) == 1 ;
 acbit = acbit + 11 ;
 elseif level(x) == 2 ;
 acbit = acbit + 17 ;

430 Development of Algorithms and Verification Using High Level Languages

 end
 elseif RL(x)< 22 & RL(x)>=17 ;
 acbit = acbit + 13 ;
 elseif RL(x)< 27 & RL(x)>=22 ;
 acbit = acbit + 14 ;
 elseif RL(x)< 32 & RL(x)>=27 ;
 acbit = acbit + 17 ;
 else
 k = 1;
 end
 if k == 1
 if level(x)< 128 ;

 acbit = acbit + 20;
% Extra bits required when ESCAPE is encountered.

 elseif level(x)>128;
 acbit = acbit + 28;
 end
 end % End of calculation of bits for level(x); proceed to level(x+1).
 %disp(acbit)
 end % End of calculation for all elements in ‘level’.
end % End for runlength~=63 loop.
acbit = acbit + 2 ; % EOB (end of block) indication bits.
acb = acbit;
%disp(acb)
__

11.2 Automatic Quality Control Scheme for Image
Compression

mentation of DCT in Section 11.1.1. A new algorithm for assessing image quality
on the fly [58] using a concept called pruning will be presented in this section. As
a result of applying this algorithm, the processing speed of DCTQ can be doubled
when compared to the implementation speed of the DCTQ without pruning. This
can also speed up the next pipeline module called the variable length coder (VLC)
of a video encoder. The algorithm can be used for effecting rate control, i.e., main-
taining a constant bit rate while a compressed bit stream is transmitted over a
serial channel. This algorithm can be used for both hardware and software imple-
mentations.
 DCT applied on an 8 × 8 pixel block of image results in the generation of 64
coefficients in the raster scan order, assuming it to be arranged as an 8 × 8 matrix
as shown in Figure 11.1. The first coefficient is known as DC coefficient, whereas
other coefficients are known as AC coefficients. The diagonals, numbered from 0
to 14 from top-left to bottom-right in that order, are referred to as pruning levels

A parallel matrix multiplication algorithm has been presented for a fast imple-

11.2 Automatic Quality Control Scheme for Image Compression 431

(PL) and indicate the stage at which computation of DCT coefficients is stopped
owing to insignificant contribution of subsequent coefficients towards the quality
of the image. Quantized DCT coefficients beyond pruning levels of about two are
zero for most of the image blocks. Therefore, computation time is wasted in proc-
essing beyond these pruning levels. This problem is solved in the present method
by computing the sum of energy of AC coefficients lying on every diagonal com-
mencing from PL1 up to PL14. At each step, the computed energy is compared
with threshold energy. If it is less than the threshold energy, the computation for
the current image block is immediately terminated, and the processing for the next
block commences, thus speeding the processing by over two times when com-
pared to conventional approaches of computing up to PL14. More details are pre-
sented in Section 11.2.1.
Pruning has been applied to the Fast Fourier Transform (FFT) for applications
such as filtering, transformation of zero-padded sequence, etc. Examples of the
applications of the pruned FFT are found in references [59, 60]. Pruned DCT algo-
rithms have been proposed in reference [61] and applied to fast image compres-
sion in references [62] and [63]. In order to reduce the processing time of still
pictures, adaptive pruning techniques [64, 65] were introduced at the DCT stage
itself. These methods, however, are not suitable for implementation on FPGAs
both from the quality and exacting speed considerations encountered in motion
pictures. The scheme presented [58] here considerably reduces these limitations
by evaluating the image quality dynamically as DCT coefficients are being com-
puted. The processing for the current image block is stopped as soon as the desired
quality is met, thus speeding up the system considerably, while retaining the qual-
ity of the picture.

Fig. 11.1 Pruning levels in an image block

DCT Coefficients

PL 1 2 8

16 10

64 5857

9

…

…

…

0

1

7 14

: : : :

432 Development of Algorithms and Verification Using High Level Languages

11.2.1 Algorithm for Assessing Image Quality
Dynamically

In transform coding, a signal is mapped from one domain, usually spatial or
temporal, into the transform domain. The signal can be one-dimensional or multi-
dimensional. DCT is an orthogonal transform consisting of a set of vectors that are
sampled cosine functions. The mapping is, therefore, unique and reversible. In this
case, the energy is preserved in the transform domain, and the signal can be recov-
ered completely by the inverse transform. Since the DCT transform is orthogonal,
implementing the inverse transform is essentially the same as implementing the
forward transform. Therefore, the properties such as fast algorithm and recursive
structure are preserved in the inverse transform. In fact, the hardware, e.g., a VLSI
chip, designed for the forward transform can be used with minor modifications for
implementing the inverse transform. In image and video coding standards such as
JPEG, MPEG, H.263, etc., 2D-DCT is the primary factor in achieving compres-
sion.

In order to achieve a regular and efficient method of implementation of DCT, a
parallel matrix multiplication algorithm has been presented earlier. In general,
from a visual perception viewpoint, the low frequency coefficients are much more
sensitive than the high frequency coefficients. The energy is invariant to orthogo-
nal transformation. The sum of the squares of all the DCT coefficients or the spa-
tial data values is the energy of the block, i.e.,

∑
=

7

0u
∑
=

7

0v
 (DCTu,v)2 = ∑

=

7

0n
∑
=

7

0m
 (xn,m)2, u, v, n, m = 0–7 (11.8)

Quantized DCT coefficients

 157 0 0 0 0 0 0 0
 -1 -1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

b

 1260 -1 -12 -5 2 -2 -3 1
 -23 -18 -6 -3 -3 0 0 -1
 -11 -9 -2 2 0 -1 -1 0
 -7 -2 0 2 1 0 0 0
 -1 -1 2 2 0 -1 1 1
 2 0 2 0 -1 2 1 -1
 -1 0 0 -2 -1 2 1 -1
 -3 2 -4 -2 2 1 -1 0

a

Fig. 11.2 A representative sample image block: (a) DCT coefficients; (b)

11.2 Automatic Quality Control Scheme for Image Compression 433

Fig. 11.3 Algorithm for the computation of energy (quality) of an image

A sample 8 × 8 DCT coefficient block is shown in Figure 11.2 a. Quantized
DCT coefficients beyond pruning levels of about two are zero for most of the im-
age blocks as shown in Figure 11.2b for the same block of DCT coefficients.
Therefore, as mentioned before, the computation time is wasted in processing be-
yond these pruning levels which is the case in all the earlier methods cited includ-
ing the parallel algorithm presented in Section 11.1.1. This problem is solved by
computing the sum of energy of AC coefficients lying on every diagonal com-
mencing from PL1 up to PL14 shown in Figure 11.1.

Energy has a direct bearing on the quality of the image. PL0 is not taken into
account for the energy computation since considerable amount of energy is packed
in the DC coefficient and, therefore, needs to be processed without fail. At each
step, the computed energy is compared with threshold energy, eTHR. If it is less
than eTHR, the computation for the current image block is immediately terminated,
and the processing for the next block commences, thus speeding the processing by
over two times when compared to conventional approaches of computing up to
PL14. The algorithm for this method is shown in Figure 11.3.

Applying this method for the DCT coefficients cited in the example, it is seen
that the energies of the DCT coefficients for PL1 to PL3 are 530, 589, and 191
units respectively while those for PL4 to PL14 are each less than 23 units. By ap-
plying the energy threshold of 200 units, the final pruning level for this image
block is evident to be two, as can also be readily verified from Figure 11.2b. With
a few exceptions, exactly similar results were obtained for a large number of im-
age blocks for a number of images that have been experimented. Therefore, the
energy threshold of 200 units has been made as the default value, although the
user can change the same. The image quality obtained by this method is quite
good and is very close to that obtained by processing up to the full quality level of
PL14 as presented in Section 1.1. This method of applying threshold energy has
been arrived at after conducting exhaustive experiments with a number of images.

1. ePL1 = (DCT2)2 + (DCT9)2 ;
if ePL1 < eTHR , PLN = 0 & go to step 15 ;
else

2. ePL2 = (DCT3)2 + (DCT10)2 + (DCT17)2 ;
if ePL2 < eTHR , PLN=1 & go to step 15 ;
else

13. ePL13 = (DCT56)2 + (DCT63)2 ;

if ePL13 < eTHR , PLN = 13 ;
else

14. PLN = 14;
15. Stop current block & start processing the next image block.

434 Development of Algorithms and Verification Using High Level Languages

11.2.2 Verification of DCTQ–IQIDCT Processes with
Automatic Pruning Level Control Incorporated
Using Matlab

In the previous section, the automatic pruning level control algorithm was pre-
sented. We will now develop Matlab codes to verify the DCTQ–IQIDCT incorpo-
rating the automatic pruning level algorithm, in which the threshold of energy, that
determines the quality of the image processed as well as the processing speed, is
user selected.

Matlab_code_11.2.1 shows the top level (main) DCTQ–IQIDCT code that is
menu driven. It is named, ‘autoplcmain.m’ to mean that it is based on automatic
pruning level control method to meet the desired quality of the image. This code is
capable of processing any number of video frames. The input file, the starting and
the ending frame numbers as well as the energy threshold are user selected to start
with. The first ‘for’ loop processes many video files depending upon the setting,
‘manyframes’. The second ‘for’ loop:

processes all the frames commencing from the start frame number to the end
frame number. These are followed by the C and Q matrices. Calculation of DCTQ,
IQIDCT, compression (bits per pixel), and quality (PSNR) are similar to the fixed
PL method presented in the previous section except that ‘ethreshold’ is extra in
“i2”. Reconstructed image is in “i2” after applying auto PL, while “i” matrix con-
tains the original image, both of which are displayed using the Matlab function,
‘imshow’. The average pruning level and execution time are also computed and
displayed. This is followed by displaying the original (i5) and the reconstructed
image (i3) after applying the auto PL method using the Matlab command, ‘im-
show’. Using ‘imwrite’, the reconstructed image is also saved as a disk file. The
PSNR, the bits per pixel, average pruning level, and execution times are computed
and plotted for a number of frames. There are numerous commented codes such as
processing only the desired blocks in a frame, graph plots of variables, etc. These
may be selectively uncommented to activate these commands, if the reader wishes
to study their behavior.

Matlab_code_11.2.1
__

% Main program for the computation of DCTQ–IQIDCT using
% Automatic Pruning Level Control

% File: autoplcmain.m

% Incorporates Automatic Pruning Level Control.
% Compression effected is expressed as bits per pixel and quality (PSNR)
% in dB.
% Accepts input video frames of any size.
global k exectime c3 % Declare variables for use

for frameno = f 2:1:f3

“ ”

11.2 Automatic Quality Control Scheme for Image Compression 435

global dci3 acbit avgpl bno % in other modules.
% Main Program for DCT (i/p an image file of any size).
% This includes Auto PLC / bpp / psnr.
manyframes = 2; % Input (‘enter the number of types of files’).
counter = 0;
noframes = [];
counter2 = 0;
psnr = [];
bitspp = [];
avgpln = [];
etime = [];
frame = [];
for iii=1:1:manyframes
 f1 = input(‘Enter the “tif” image file : ’);
 f2 = input(‘Enter the start frame no. : ’);
 f3 = input(‘Enter the end frame no. : ’);
 ethreshold = input(‘Enter energy threshold : ’);
 countfig = 0;
 for frameno=f2:1:f3
 counter2 = counter2 + 1;
 countfig = countfig + 1;
 frame(counter2) = frameno;
 frameno = num2str(frameno);
 fidopen = cat(2,f1,frameno,’.tif’);
 % im = fread(fid,[str2num(f3),inf]);
 % rawim = im’;
 % imshow(uint8(rawim));
 % imsize = size(rawim)
 i = double(imread(fidopen));
 k = 0;
 exectime = 0;
 c3 = 0;
 dci3 = [];
 acbit = 0;
 avgpl = 0;
 bno = 0;
 %imshow(i)
% C matrix :
c = [0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 ;
 0.4904 0.4158 0.2778 0.0976 –0.0976 –0.2778 –0.4158 –0.4904 ;
 0.4620 0.1914 –0.1914 –0.4620 –0.4620 –0.1914 0.1914 0.4620 ;
 0.4156 –0.0976 –0.4904 –0.2778 0.2778 0.4904 0.0976 –0.4158 ;
 0.3536 –0.3536 –0.3536 0.3536 0.3536 –0.3536 –0.3536 0.3536 ;
 0.2778 –0.4904 0.0976 0.4156 –0.4158 –0.0976 0.4904 –0.2778 ;
 0.1914 –0.4620 0.4620 –0.1914 –0.1914 0.4620 –0.4620 0.1914 ;
 0.0976 –0.2778 0.4156 –0.4904 0.4904 –0.4158 0.2778 –0.0976];

436 Development of Algorithms and Verification Using High Level Languages

% Quantization matrix : As per MPEG 1/MPEG 2 standards.
 q =[8 16 19 22 26 27 29 34 ;
 16 16 22 24 27 29 34 37;
 19 22 26 27 29 34 34 38;
 22 22 26 27 29 34 37 40;
 22 26 27 29 32 35 40 48;
 26 27 29 32 35 40 48 58;
 26 27 29 34 38 46 56 69;
 27 29 35 38 46 56 69 83];
 [m,n] = size(i);
 m1 = m/8;
 n1 = n/8;
 blocks1 = m1*n1;

% [Q1] = sprintf(‘Total nos. of blocks of 8x8 pixels
% in image are %d’,blocks1);

 % disp(Q1)
 % x = input(‘Enter the start block no : ’);
 % a = input(‘Enter the end block no : ’);
 % ethreshold = input(‘Enter energy threshold : ’);
 % Find starting pixel location.
 % if x<= n1
 % x1 = (x*8)–7; y1 = 1;
 % elseif x>n1 & ((floor(x/n1))*n1) == x
 % x1 = ((8*n1)–7);y1 = ((floor(x/n1))*8)–7;
 % elseif x>n1

% x1 = ((x–((floor(x/n1))*n1))*8)–7;
% y1 = (floor(x/n1)*8)+1;

 % end
 % Find ending pixel location.
 % if a<= n1
 % x2 = (a*8);

% y2 = 8;
 % elseif a>n1 & ((floor(a/n1))*n1) == a
 % x2 = (8*n1);

% y2 = (floor(a/n1))*8;
 % else
 % x2 = ((a-((floor(a/n1))*n1))*8);

% y2 = (floor(a/n1)+1)*8;

 % end
 % i = i(y1:y2,x1:x2);

% [m,n] = size(i);

% Calculation of DCTQ & IQIDCT
 i2 = blkproc(i,[8 8], ‘autoeplc’,c,q,ethreshold);

11.2 Automatic Quality Control Scheme for Image Compression 437

% ‘autoplc’ is a called function.
 % “i2” is the reconstructed image after applying Auto PLC.

% Calculation of BITS/PIXEL
 DCB = dcbitsauto(dci3);
 % ACB = sum(sum(aci2));
 BITS = DCB + acbit;
 BPP = BITS/(m*n);
 %disp(‘AC BITS:’)
 %disp(acbit)

% Calculation of PSNR
 i4 = 10*log10(((255^2)*m*n)/(sum(sum((i-i2).^2))));
 % disp(‘ PSNR value is :- ’)
 % disp(i4)
 % disp(‘ BITS PER PIXEL :- ’)
 % disp(BPP)
 % exectime = (exectime);
 % disp(‘AVG PLN :’)
 AVGPL = avgpl/bno; % Compute the average PL.
 % disp(AVGPL)
 % disp(‘EXECUTION TIME :-’)
 % disp(exectime)
 [d] = sprintf(‘%2.4f %2.4f %2.4f %i’,i4,BPP,AVGPL, exectime);
 cfig = num2str(counter);
 psnr(counter2) = i4;
 bitspp(counter2) = BPP;
 avgpln(counter2) = AVGPL;
 etime(counter2) = exectime;
 i5 = uint8(i);figure,imshow(i5),title(‘ORIGINAL IMAGE’)
 i3 = uint8(i2);figure,imshow(i3),title(‘RECONSTRUCTED IMAGE’)
 e = ‘r’;
 imwrite(i3,(cat(2,e,f1,frameno,’.tif’)));
 end % for frameno = loop
 counter = counter + 1;
 noframes(counter) = countfig;
 end % for iii= loop
psnr1 = psnr(1:noframes(1));
psnr2 = psnr((noframes(1)+ 1):noframes(1)+ noframes(2)));
bitspp1 = bitspp(1:noframes(1));
bitspp2 = bitspp((noframes(1)+ 1):noframes(1)+ noframes(2)));
avgpln1 = avgpln(1:noframes(1));
avgpln2 = avgpln((noframes(1)+ 1):noframes(1)+ noframes(2)));
etime1 = etime(1:noframes(1));
etime2 = etime((noframes(1)+ 1):noframes(1)+ noframes(2)));
frame1 = frame(1:noframes(1));

438 Development of Algorithms and Verification Using High Level Languages

frame2 = frame((noframes(1)+ 1):noframes(1)+ noframes(2)));
etime1 = etime1/1000000; % Converts the execution times to ms from ns.
etime2 = etime2/1000000;
ae1 = (sum(etime1))/(length(etime1));
ae2 = (sum(etime2))/(length(etime2));
ap1 = (sum(psnr1))/(length(psnr1));
ap2 = (sum(psnr2))/(length(psnr2));
ab1 = (sum(bitspp1))/(length(bitspp1));
ab2 = (sum(bitspp2))/(length(bitspp2));
av1 = (sum(avgpln1))/(length(avgpln1));
av2 = (sum(avgpln2))/(length(avgpln2));
disp(‘AVG PSNR1 value is :- ’)
disp(ap1)
disp(‘AVG PSNR2 value is :- ’)
disp(ap2)
disp(‘AVG BITS PER PIXEL1 :- ’)
disp(ab1)
disp(‘AVG BITS PER PIXEL2 :- ’)
disp(ab2)
disp(‘AVG PLN1 :’)
disp(av1)
disp(‘AVG PLN2 :’)
disp(av2)
disp(‘AVG EXECUTION TIME1 IN ms :’)
disp(ae1)
disp(‘AVG EXECUTION TIME2 IN ms :’)
disp(ae2)

%figure,plot(frame1,psnr1),xlabel(‘frame number’),ylabel(‘PSNR’);
%figure,plot(frame2,psnr2),xlabel(‘frame number’),ylabel(‘PSNR’);
%figure,plot(frame1,bitspp1),xlabel(‘frame number’),ylabel(‘bits per pixel’);
%figure,plot(frame2,bitspp);xlabel(‘frame number’),ylabel(‘bits per pixel’);
%figure,plot(frame1,avgpln1),xlabel(‘frame number’),ylabel(‘average pruning
% level’);

% figure,plot(frame2,avgpln2);xlabel(‘frame number’),ylabel(‘average pruning
% level’);
%figure,plot(frame1,etime1),xlabel(‘frame number’),ylabel(‘execution time, ms’);
%figure,plot(frame2,etime2)xlabel(‘frame number’),ylabel(‘execution time, ms’);
% subplot(8,1,1);plot(frame1,psnr1),title(‘PSNR Vs FRAME NO.’);
% subplot(8,1,3);plot(frame1,bitspp1),title(‘BITS PER PIXEL Vs FRAME NO.’);
% subplot(8,1,5);plot(frame1,avgpln1),title(‘AVG PLN Vs FRAME NO.’);
% subplot(8,1,7);plot(frame1,etime1),title(‘EXECUTION TIME(in ms)
% Vs FRAME NO.’);
%subplot(8,1,2);plot(frame2,psnr2);
%subplot(8,1,4);plot(frame2,bitspp2);

11.2 Automatic Quality Control Scheme for Image Compression 439

%subplot(8,1,6);plot(frame2,avgpln2);
%subplot(8,1,8);plot(frame2,etime2);
%subplot(4,2,1);plot(frame1,psnr1),title(‘PSNR Vs FRAME NO.’);
%subplot(4,2,2);plot(frame1,bitspp1),title(‘BITS PER PIXEL Vs FRAME NO.’);
%subplot(4,2,5);plot(frame1,avgpln1),title(‘AVG PLN Vs FRAME NO.’);
%subplot(4,2,6);plot(frame1,etime1),title(‘EXECUTION TIME(m s) Vs
% FRAME NO.’);
%subplot(4,2,3);plot(frame2,psnr2);
%subplot(4,2,4);plot(frame2,bitspp2);
%subplot(4,2,7);plot(frame2,avgpln2);
%subplot(4,2,8);plot(frame2,etime2);
subplot(2,2,1);plot(frame1,psnr1),xlabel(‘a’),ylabel(‘PSNR’);
subplot(2,2,3);plot(frame1,bitspp1),xlabel(‘c’),ylabel(‘bits per pixel’);
subplot(2,2,2);plot(frame2,psnr2),xlabel(‘b’);
subplot(2,2,4);plot(frame2,bitspp2),xlabel(‘d’);
figure,subplot(2,2,1);plot(frame1,avgpln1),xlabel(‘a’),ylabel(‘average pl’);
subplot(2,2,3);plot(frame1,etime1),xlabel(‘c’),ylabel(‘execution time, ms’);
subplot(2,2,2);plot(frame2,avgpln2),xlabel(‘b’);
subplot(2,2,4);plot(frame2,etime2),xlabel(‘d’);
%SUBPLOT(‘position’,[.1 .08 .385 .15]);plot(frame1,etime1),xlabel(‘g’),
% ylabel(‘exec.Time, ms’);set(gca,’FontSize’,8);
%SUBPLOT(‘position’,[.1 .31 .385 .15]);plot(frame1,avgpln1),
% xlabel(‘e’),ylabel(‘avg. pl’);set(gca,’FontSize’,8);
%SUBPLOT(‘position’,[.1 .54 .385 .15]);plot(frame1,bitspp1),
% xlabel(‘c’),ylabel(‘bits per pixel’);set(gca,’FontSize’,8);
%SUBPLOT(‘position’,[.1 .77 .385 .15]);plot(frame1,psnr1),

 xlabel(‘a’),ylabel(‘PSNR, dB’);set(gca,’FontSize’,8);
%SUBPLOT(‘position’,[.565 .77 .385 .15]);plot(frame2,psnr2),
% xlabel(‘b’);set(gca,’FontSize’,8);
%SUBPLOT(‘position’,[.565 .54 .385 .15]);plot(frame2,bitspp2),
% xlabel(‘d’);set(gca,’FontSize’,8);
%SUBPLOT(‘position’,[.565 .31 .385 .15]);plot(frame2,avgpln2),
% xlabel(‘f’);set(gca,’FontSize’,8);
%SUBPLOT(‘position’,[.565 .08 .385 .15]);plot(frame2,etime2),
% xlabel(‘h’);set(gca,’FontSize’,8);
__

The Matlab_code_11.2.1.1 presents the function called by the main program

presented earlier, which brings about the automatic pruning level control based on
the algorithm developed in the previous chapter. This requires the energy thresh-
old, ‘ethreshold’, selected by the user as a parameter to be passed by the calling
function. The processing time is computed as presented in Table 11.1 in Section
11.2.3. More details are presented in the next section. This code is profusely
commented for the reader to understand easily. The rest of the codes are similar to
Matlab_code_11.1.6 (acbits.m) presented earlier for computing the number of AC
bits in a block.

440 Development of Algorithms and Verification Using High Level Languages

Matlab_code_11.2.1.1
__

% File: “autoeplc.m”

function yp = autoeplc(x,c,q,ethreshold)
global exectime % Declare the variables used by other modules.
global c3 k
global dci3
global acbit avgpl bno
bno = bno + 1;
c3 = c3 + 1;
yyy = (c*x*c’); % Compute the DCT on a block.
qqq = q; % Get the quantization matrix.
dci3(c3) = fix(yyy(1,1)/qqq(1,1)); % Compute the quantized DC coefficient.
y = fix(yyy);
pln = [];
k = [];
pl = [];
y = fliplr(y); % Flip left to right to access
q = fliplr(q); % the leading diagonals.
ch = 1;
for m=6:–1:–7 % Select the diagonals except DC
 % coefficient diagonal.
 v1 = sum((diag(y,m)).^2); % Compute the energy of the AC diagonal
 % as per the Auto PLC algorithm.
 if v1<ethreshold & ch==1 % If the energy is less than the threshold,
 pln = m ; % return the pruning level number.
 ch = 0;
 elseif v1>=ethreshold; % Otherwise, clear v1 for a fresh
 v1 = 0; % computation.
 end
end
k = pln;
y = y./q; % Compute the DCTQ of the block.
b = zeros(8,8); % Clear all elements.
 for j=k:–1:–7 % PL number to the last diagonal.
 y2 = spdiags(b,j,y); % Replaces the diagonals of DCTQ specified by j
 % with the columns of b.
 y = full(y2); % Fill all elements of DCTQ matrix from
 % PL number to the last diagonal with zeros.
 end
 if k>=0 ;
 pl = 7 – k – 1; % Pruning level = 0 to 6.
 elseif k<0 ;

11.2 Automatic Quality Control Scheme for Image Compression 441

 pl = 7 + abs(k) – 1; % Pruning level = 7 to 13.
 else
 pl = 14 ;
 end
pl;
avgpl = avgpl+pl;
 if pl>7 ; % Compute execution time – refer Table 11.1.
 % pl = 8 to 14.
 exectime1 = 3040 + (40)*(pl–7);
 else
 exectime1 = 800 + pl*320; % pl = 0 to 7.
end
exectime = exectime + exectime1;
%dci3(c3)= fix(yyy(1,1)/qqq(1,1));
% acbits here
runlength = 0;
r = 1;
RL = [];
level = [];
for j=6:-1:-7
 y3 = diag(y,j);
 L = length(y3);
 k = abs(j);
 if k==6 | k==4 | k==2 | k==0;
 a = 1;
 b = L;
 c1 = 1;
 else
 a = L;
 b = 1;
 c1 = -1;
 end
 for h=a:c1:b % 1 to ‘L’ in steps of 1 or L to 1 in steps of -1.
 check = fix(abs(y3(h)));
 if check==0; % If the AC coefficient is “0”,
 runlength = runlength + 1;
 else level(r) = check;
 RL(r) = runlength;
 r = r + 1;
 runlength = 0;
 end
 end
end
len = length(RL);
%level
%RL

442 Development of Algorithms and Verification Using High Level Languages

if runlength~=63; % 63 means all AC coefficients are 0.
for z=1:1:len
 level(z) = round(abs(level(z)));
 k = 0;
 if RL(z) ==0 & level(z)<41 & level(z)>0
 if level(z) < 2 ;
 acbit = acbit + 3 ;
 elseif level(z) < 3 ;
 acbit = acbit + 5 ;
 elseif level(z) < 4 ;
 acbit = acbit + 6 ;
 elseif level(z) < 5 ;
 acbit = acbit + 8 ;
 elseif level(z) < 7 ;
 acbit = acbit + 9 ;
 elseif level(z) < 8 ;
 acbit = acbit + 11 ;
 elseif level(z) < 12 ;
 acbit = acbit + 13 ;
 elseif level(z) < 16 ;
 acbit = acbit + 14 ;
 elseif level(z) < 32 ;
 acbit = acbit + 15 ;
 elseif level(z) < 41 ;
 acbit = acbit + 16 ;
 end
 elseif RL(z) ==1 & level(z)<19 & level(z)>0
 if level(z) < 2 ;
 acbit = acbit + 4 ;
 elseif level(z) < 3 ;
 acbit = acbit + 7 ;
 elseif level(z) < 4 ;
 acbit = acbit + 9 ;
 elseif level(z) < 5 ;
 acbit = acbit + 11 ;
 elseif level(z) < 6 ;
 acbit = acbit + 13 ;
 elseif level(z) < 8 ;
 acbit = acbit + 14 ;
 elseif level(z) < 15 ;
 acbit = acbit + 16 ;
 elseif level(z) < 19 ;
 acbit = acbit + 17 ;
 end
 elseif RL(z)==2 & level(z)<6 & level(z)>0
 if level(z) == 1 ;

11.2 Automatic Quality Control Scheme for Image Compression 443

 acbit = acbit + 5 ;
 elseif level(z) == 2 ;
 acbit = acbit + 8 ;
 elseif level(z) == 3 ;
 acbit = acbit + 11 ;
 elseif level(z) == 4 ;
 acbit = acbit + 13 ;
 elseif level(z) == 5 ;
 acbit = acbit + 14 ;
 end
 elseif RL(z)==3 & level(z)<5 & level(z)>0
 if level(z) == 1 ;
 acbit = acbit + 6 ;
 elseif level(z) == 2 ;
 acbit = acbit + 9 ;
 elseif level(z) == 3 ;
 acbit = acbit + 13 ;
 elseif level(z) == 4 ;
 acbit = acbit + 14 ;
 end
 elseif RL(z)==4 & level(z)<4 & level(z)>0
 if level(z) == 1 ;
 acbit = acbit + 6 ;
 elseif level(z) == 2 ;
 acbit = acbit + 11 ;
 elseif level(z) == 3 ;
 acbit = acbit + 13 ;
 end
 elseif RL(z)==5 & level(z)<4 & level(z)>0
 if level(z) == 1 ;
 acbit = acbit + 7 ;
 elseif level(z) == 2 ;
 acbit = acbit + 11 ;
 elseif level(z) == 3 ;
 acbit = acbit + 14 ;
 end
 elseif RL(z)==6 & level(z)<4 & level(z)>0
 if level(z) == 1 ;
 acbit = acbit + 7 ;
 elseif level(z) == 2 ;
 acbit = acbit + 13 ;
 elseif level(z) == 3 ;
 acbit = acbit + 17 ;
 end
 elseif RL(z)==7 & level(z)<3 & level(z)>0
 if level(z) == 1 ;

444 Development of Algorithms and Verification Using High Level Languages

 acbit = acbit + 7 ;
 elseif level(z) == 2 ;
 acbit = acbit + 13 ;
 end
 elseif RL(z)< 10 & level(z)<3 & level(z)>0
 if level(z) == 1 ;
 acbit = acbit + 8 ;
 elseif level(z) == 2 ;
 acbit = acbit + 13 ;
 end
 elseif RL(z)==10 & level(z)<3 & level(z)>0
 if level(z) == 1 ;
 acbit = acbit + 9 ;
 elseif level(z) == 2 ;
 acbit = acbit + 14 ;
 end
 elseif RL(z)< 14 & level(z)<3 & level(z)>0
 if level(z) == 1 ;
 acbit = acbit + 9 ;
 elseif level(z) == 2 ;
 acbit = acbit + 17 ;
 end
 elseif RL(z)< 17 & level(z)<3 & level(z)>0
 if level(z) == 1 ;
 acbit = acbit + 11 ;
 elseif level(z) == 2 ;
 acbit = acbit + 17 ;
 end
 elseif RL(z)< 22 & RL(z)>=17 ;
 acbit = acbit + 13 ;
 elseif RL(z)< 27 & RL(z)>=22 ;
 acbit = acbit + 14 ;
 elseif RL(z)< 32 & RL(z)>=27 ;
 acbit = acbit + 17 ;
 else k=1;
 end
 if k==1
 if level(z)< 128 & level(z)>0 ;

acbit = acbit + 20; % Extra bits required when ESCAPE is
 % encountered.

 elseif level(z)>128 & level(z)>0;
 acbit = acbit + 28;
 end
 end % End of calculation of bits for level(x); proceed to level(z+1).
end % End of calculation of for all elements in ‘level’.
end % End if runlength~=63 loop.

11.2 Automatic Quality Control Scheme for Image Compression 445

acbit = acbit + 2 ; % EOB indication bits.
y = fix(fliplr(y));
q = fliplr(q);
s = y.*q;
y = s;
yp = fix(c’*y*c); % Compute IQIDCT, i.e., reconstruct the image.
y = yp;
__

Matlab_code_11.2.1.2 presents the computation of the number of DC coeffi-

cients and is similar to the Matlab_code_11.1.4 presented earlier for the computa-
tion of the corresponding DC coefficients in the fixed pruning control.

Matlab_code_11.2.1.2
__

% File: “dcbitsauto.m”

function dcb = dcbitsauto(dci3) % Declare the function.
% This counts the number of bits in DC coefficients after applying VLC
% scheme on a block of DCTQ coefficients.
 [u,v] = size(dci3); % Get the size .
dci2 = dci3’;
dci5 = reshape(dci2,1,u*v); % Returns the u x v matrix, whose
 % elements are taken columnwise from dci2.
dci4 = [];
dci4(1) = dci5(1); % First block DC coefficient is taken as it is,
for i=1: ((u*v)–1) % –1 is applied since dci4(1) is already got.
 first = dci5(i);
 second = dci5(i + 1);
 diff = second – first; % Subsequent DC coefficients are
 dci4(i + 1) = diff; % taken as the difference.
end
%disp(dci4)
bits = 0;
for i=1: (u*v)
 ii = abs(dci4(i)); % Drop the sign of the DC coefficients difference.
 if ii<2 ;
 bits = bits + 3; % Includes differential dc + additional code.
 elseif ii<4 ;
 bits = bits + 4;
 elseif ii<8 ;
 bits = bits + 6;
 elseif ii<16 ;
 bits = bits + 7;
 elseif ii<32 ;

446 Development of Algorithms and Verification Using High Level Languages

 bits = bits + 9;
 elseif ii<64 ;
 bits = bits + 11;
 elseif ii<128;
 bits = bits + 13;
 elseif ii<256;
 bits = bits + 15;
 end
end
disp(‘DC BITS: ‘)
disp(bits)
dcb = bits;
__

Table 11.1 shows the processing time of DCTQ for various pruning levels [58].
It may be noted that these timings are different from the DCTQ timings, which
will be presented in Chapter 13, which does not have either the fixed or auto prun-
ing level control. In the present treatment, the frequency of operation is assumed
to be 25 MHz. DCTQ coefficients are processed in a raster scan order, left to right
and top to bottom, assuming that they are arranged as an 8 × 8 matrix. The number
of coefficients processed for the pruning levels from 0 to 14 is shown in Table
11.1. The processing time of DCTQ is 800 ns for PL0 because the first DC coefficient
is issued at the 20th clock cycle owing to high pipelining inherent in the design. The
processing times for subsequent pruning levels are given by the expression:

tT = tPL(N–1) + [CPL(N) – CPL(N–1)] × 40 ns,

where tT is the total processing time for the current pruning level N, tPL(N-1) is the
processing time of the previous pruning level, CPL(N) and CPL(N-1) are the number of
DCTQ coefficients processed for the current and the previous pruning lev-
els respectively. One coefficient is generated in every clock cycle with a time pe-
riod of 40 ns. From the table, it is clear that the execution times for DCTQ increases
steeply for every additional pruning level up to level 7 and thereafter only gradually.
Further, there is no appreciable improvement of visual quality for pruning levels be-
yond 2 or 3 for most of the images. Therefore, by terminating the computation of
DCTQ at that level, where good quality of image is already obtained, the processing
speed can be stepped up. The savings in DCTQ computation, thus obtained, are also
extended to VLC processing.

The encoder can be operated in two different modes – the fixed pruning level
mode and the automatic pruning level mode. The DCTQ computation for an 8 × 8
pixel block of image requires 800 ns for a PL of 0. Hence, it is capable of process-
ing monochrome images of size 1600 × 1200 pixels at the rate of 40 frames per

and Automatic Pruning Level Controls
11.2.3 Results and Discussions for the Fixed

11.2 Automatic Quality Control Scheme for Image Compression 447

second. However, the picture quality for PL0 will be the lowest and can be used
only for fast browsing of images in which one is not interested.

By conducting experiments on various images, it is found that image quality is
acceptable for a PL of 3 or 4, for which image sizes of up to 1200 × 1024 pixels for

Table 11.1 Processing time of DCTQ for various pruning levels

Pruning level Number of DCTQ coeffi-
cients processed

DCTQ processing
time in ns

0 1 800
1 9 1120
2 17 1440
3 25 1760
4 33 2080
5 41 2400
6 49 2720
7 57 3040
8 58 3080
9 59 3120

10 60 3160
11 61 3200
12 62 3240
13 63 3280
14 64 3320

monochrome and 1024 × 768 pixels for color can be processed at 25 frames per
second. For color images in 4:2:0 format, 4 blocks of Y and 2 blocks of Cb and Cr
will have to be processed for every macroblock of the picture. This is 50% more
execution time than that for the monochrome pictures, which needs processing of
only 4 blocks per macroblock. Therefore, the maximum size of color image that
can be processed will be only 67% of the size of the monochrome picture. Nor-
mally, about 130 bits of header information are required to be processed per
frame, which requires 2920 ns for execution in the present design. If DCTQ is
processed as slices of row blocks, then this overhead goes up to 300 µs. These
values are small fractions when compared to the processing speed of 40 ms for a
full frame at 25 frames per second and, therefore, does not affect the overall exe-
cution time. The above results are applicable for user programed fixed pruning
levels. Higher frame rate of 30 is possible with the improved DCTQ implementa-
tion presented in Chapter 13.

448 Development of Algorithms and Verification Using High Level Languages

Fig. 11.4 (a/b) PSNR (c/d) bits per pixel (e/f) average PL (g/h) execution time
per frame plots for Car and Rugby image sequences respectively using auto-
matic pruning level control

The automatic, quality controlled encoder has been presented in Matlab and
verified. The results for automatic pruning level control are portrayed graphically
in Figure 11.4. In this figure, the picture quality obtained as PSNR, the compres-
sion effected by the scheme in terms of bits per pixel (bpp), the average pruning
level attained, and finally the execution time achieved are presented for various
frames for two image sequences, Car and Rugby. The quality of the image is com-
puted by the expression:

PSNR = 10 log10 [(2552 × M × N) / ∑
=

M

j 0
∑
=

N

k 0

(i j k – i j k)2],

where M × N is the picture size in pixels, i j k and i′ j k are pixel intensities of the
original and the reconstructed image frames respectively. Similar results were ob-
tained for other images such as table tennis, Susie, etc., though not presented here.

50 100
2.5

3

3.5

av
g.

 p
l

50 100
1.4

1.6

1.8

2

ex
ec

. t
im

e,
 m

s

0 5 10
3

3.5

4

0 5 10
9

9.5

10

10.5

50 100
30

32

34

P
S

N
R

, d
B

50 100
0

0.5

1

bi
ts

 p
er

 p
ix

el
 0 5 10

29.5

30

30.5

0 5 10
0

0.5

1

g h

a b

c

e f

d

′

11.2 Automatic Quality Control Scheme for Image Compression 449

From these graphs, the following points may be inferred: Picture quality is good
with PSNR of 30 dB and a maximum variation of only 1 dB. Compression is
fairly constant around 0.45 bits per pixel giving a compression ratio of 18:1. Av-
erage PL per frame is between 3 and 5 for all the images tested even though qual-
ity achieved is quite close to the full quality level of PL14. Average PL and execu-
tion time graph patterns are almost identical since they are mutually proportional.

Energy threshold is user programable in the range between 0 and 4095 since it
determines the end results. For example, the threshold zero gives full quality at
PL14 for each of the blocks, but execution time doubles when compared to the
automatic PL control at 200 units of energy threshold. This figure can be used as a
default value for most of the pictures, in general, to yield good quality. Table 11.2
presents the overall average for all the frames for images with three different pic-
ture sizes. It may be noted that picture quality got for auto PL control is closer to
full quality level of PL14 than that obtained for the fixed PL for all the images.
Further, the execution speed attained using auto PL is about two times faster than
that for the fixed PL of 14. Extrapolating the average execution times to a standard
picture size, we can conclude that the auto PL controlled encoder is capable of
processing 1024 × 768 pixels size of images at 42 frames per second for mono-
chrome and 28 frames per second for color on the average.

Figures 11.5 and 11.6 show samples of the original and the reconstructed
frames obtained for monochrome images using both fixed and automatic PL con-
trol modes. Processed color images using automatic PL control, though not shown,
also exhibit similar results.

Table 11.2 Average quality, compression, pruning level, execution times, and
speed up ratios obtained for various images using fixed as well as automatic
PL-based quality controls

Car 51–100

(256 × 256 pixels)

Rugby 0–9

(688 × 480 pixels)

TT 0–15

(720 × 480 pixels)

Per frame
Fixed

PL
Auto
PL

Fixed
PL

Auto
PL

Fixed
PL

Auto
PL

Avg.
PSNR in

dB
27.4 32.1 31.5 27.3 33.1 30.0 26.9 29.0 28.1

Avg. bits
per pixel 0.33 0.48 0.45 0.39 0.53 0.46 0.4 0.55 0.46

Avg. PLN 3 14 3.12 4 14 3.60 5 14 4.70

Avg. exec.
Time, ms 1.80 3.40 1.70 10.7 17.1 9.97 13.0 17.9 10.6

Speed up
ratio 1.9 1 2 1.6 1 1.7 1.4 1 1.7

450 Development of Algorithms and Verification Using High Level Languages

Car 70 image by automatic PL-based quality control method for eTHR = 200
units. PSNR = 31.3 dB, Average PLN = 3.30, execution time = 1.75 ms/F and
bpp = 0.475, speed up factor = 1.94. (c) Reconstructed Car 70 image by fixed
PL-based quality control method for FPLN = 3. PSNR = 27.3 dB and bpp =
0.346. (d) Original Eiffeltp 0 image, size: 520 × 732 pixels. (e) Reconstructed
Eiffeltp 0 image by automatic PL-based quality control method for eTHR = 200
units. PSNR = 35.1 dB, Average PLN = 1.83, execution time = 8.2 ms/F and bpp
= 0.276, speed up factor = 2.43. (f) Reconstructed Eiffeltp 0 image by fixed PL-
based quality control method for FPLN = 2. PSNR = 32.5 dB and bpp = 0.223

Fig. 11.5 (a) Original Car 70 image, size: 256 × 256 pixels. (b) Reconstructed

11.2 Automatic Quality Control Scheme for Image Compression 451

tanic image by auto quality method. (c) Original Titlis/Switzerland image (908
× 600 pixels). (d) Reconstructed Titlis/Switzerland image by auto quality
method

11.3 Fast Motion Estimation Algorithm for Real-Time
Video Compression

11.3.1 Introduction

In multimedia applications, the key requirements are speed of processing and
compression of image without sacrificing the quality. In order to process motion
pictures with high resolution, one needs a highly efficient motion estimation algo-
rithm in terms of processing speed. Several block matching algorithms are avail-
able in the literature. Full search algorithm [66–69] is a straightforward scheme,
which requires a large number of searches for finding a correct match for the
image block being processed. This scheme requires (2w + 1)2 number of search
points, where w is the maximum pixel displacement, which is usually taken as 8.
One-dimensional full search [70] is another method that requires (4w + 3) number

Fig. 11.6 (a) Original Titanic image (352 × 288 pixels). (b) Reconstructed Ti-

452 Development of Algorithms and Verification Using High Level Languages

2
search points, is faster than the two methods mentioned earlier.

There are scores of other fast algorithms available, references [72–83] to name
a few. Even faster is the one-at-a-time step search (OSS) algorithm [84] requiring
only (2w + 3) number of search points. In this section, a novel, fast one-at-a-time
step search (FOSS) algorithm proposed by the authors [85] is presented. In this
method, the maximum number of search points is (2w + 1). Although this number
is close to that of the OSS method, the FOSS is faster by up to 40% than the OSS
method when the motion of image blocks is small of the order of 1 or 2 pixels,
which is usually the case in most of the commonly encountered video frame
sequences. The speed up distribution for various motions is covered in detail in
Section 11.3.2.

A number of software and hardware implementations [86–89] have been re-
ported for some of the motion estimation algorithms described earlier. Although
software implementations are easy to realize on general-purpose microprocessors
or digital signal processors, their instruction sets are not well suited for fast proc-
essing of high-resolution moving pictures. In addition, the instructions are exe-
cuted sequentially, thus slowing down the processing further. In contrast to this,
the hardware implementations based on FPGAs and ASICs can exploit pipelined
and massively parallel processing, resulting in faster and cost effective motion
estimation implementation.

Fig. 11.7 Basic principle of motion estimation

of search points. Hierarchical method [71], which requires (1 + 8 log w) number of

11.3 Fast Motion Estimation Algorithm for Real-Time Video Compression 453

11.3.2 The Fast One-at-a-time Step Search Algorithm

The basic principle involved in motion estimation is depicted in Figure 11.7.
The current frame of the image is processed macroblock (MB) by macroblock.
The macroblock (j,k) currently being processed is identified in the previous frame
and a search window surrounding it is defined for conducting the search. A mini-
mum sum of absolute pixel intensity differences (Ad) is required to be met in order
to locate the shifted macroblock. Ad is defined as

Ad(x,y) =∑
=

15

0j
∑
=

15

0k
| i j k – i′ (j + x)(k + y) | ; –8 ≤ x, y ≤ 8, (11.9)

where i j k is the pixel intensity in the macroblock processed in the current frame,
i'(j + x)(k + y), its corresponding intensity in the search window of the previous frame,
and (x,y), referred to as the motion vector, is the shift undergone by the macro-
block. For the sake of convenience, the computation of one Ad is referred to as a
search point.

Fig. 11.8 Processing order for up/right direction in the FOSS method

in previous frame
Search window

Up/Right (U/R) direction

Top left corner
pixel in a MB

H

A

B

C

D E F G

454 Development of Algorithms and Verification Using High Level Languages

Ad(x, y +Up) < Min
YES

NO

UP1

Up = Up+1

Min = A

d
(x, y +Up)

y = y+Up-1

R/L1

U/R DIRECTION

Min = Ad(x,y)
Up = Dn = 1

YES

NO

Min = Ad(x, y +Up)

UP1

Ad(x, y -Dn) < Min

NO
YES

Min = Ad(x, y -Dn)

DN1 R/L1

Ad(x, y +Up) < Min

Fig. 11.9 FOSS algorithm for motion estimation for U/R direction (Continued)

11.3 Fast Motion Estimation Algorithm for Real-Time Video Compression 455

Ad(x, y -Dn) < Min
YES

NO

DN1

Dn = Dn+1

Min = Ad(x, y -Dn)

y = y-Dn+1

R/L1

Rt = Lt = 1

YES

NO

Min = Ad(x+Rt, y)

RT1

Ad(x-Lt, y) < Min

NO
YES

Min = Ad(x-Lt, y)

LT1 END

Ad(x+Rt, y) < Min

Fig. 11.9 FOSS algorithm for motion estimation for U/R direction (Continued)

456 Development of Algorithms and Verification Using High Level Languages

Ad(x+Rt, y) < Min
YES

NO

Rt = Rt+1

Min = Ad(x+Rt, y)

END

Ad(x-Lt, y) < Min
YES

NO

LT1

Lt = Lt+1

Min = Ad(x-Lt, y)

x = x-Lt+1

x = x+Rt-1

RT1

END

Completion of ME

Min = Min. of Ad(x, y)
Motion vector = (x,y) END

Fig. 11.9 FOSS algorithm for motion estimation for U/R direction

11.3 Fast Motion Estimation Algorithm for Real-Time Video Compression 457

The fast one-at-a-time step search (FOSS) method for one of the directions,
up/right (U/R), is indicated in Figure 11.8. For example, macroblocks A to H are
within the search window in the previous frame, where A is the origin of the mac-
roblock being currently processed. A to H are the origins (top-left) of macro blocks,
each of size, 16 × 16 pixels. Ad computed for one of these A to H macroblocks
would be minimum if the image block has shifted to that particular position. For
instance, let G be the final shifted position of the image block. In order to locate
G, we need to move first in the vertical (up) direction and compute Ad for A and
B. If B yields lower Ad of the two, then Ad is computed for C. If Ad for B is still
the lowest, the same procedure is repeated in the horizontal (right) direction from
D until we arrive at the absolute minimum value for Ad at G. In the example de-
scribed above, the first moves in the vertical and horizontal directions were up and
right respectively. We will designate this combination as the U/R direction. There
are seven other possible combinations of directions, namely, right/up, up/left,
left/up, down/left, left/down, down/right, and right/down that yield different num-
bers of search points depending on the actual motion encountered in the picture
frame being processed currently. Based on the procedure outlined, detailed steps
are presented for the FOSS algorithm for motion estimation for one of the eight di-
rections, U/R in Figure 11.9.

The algorithms for all other directions are similar to that of the U/R direction.
There is no scope for the algorithm to get caught in local minima or missing motion
since only the actual error is coded and ultimately reconstructed. This can be veri-
fied by visual inspection of the reconstructed image and compression actually
achieved, and compared with other algorithms such as the OSS algorithm as
shown in the next section.

The theoretical number of search points per macroblock for the FOSS method
as against the OSS method for various shifted image blocks can be readily com-
puted from the respective algorithms and are presented in Table 11.3. It may be
noted that the maximum speed advantage of 40% results for a shift of image block
by 1 pixel diagonally in any of the four directions and a minimum of 9% for the
maximum shift of 8 pixels either horizontally or vertically. The number of search
points per macroblock for the FOSS method is always lower than that for the OSS
method, the difference between the two methods being one search point for hori-
zontal or vertical directions of motion and two search points for all other direc-
tions. Of course, there is no speed advantage if no motion is involved. Similarly,
the reader may compute the number of search points for motion of 3 pixels to 7
pixels. As a matter of fact, the speed up factor will change from macroblock to
macroblock, depending upon the actual motion encountered, and when averaged
over a number of frames, it may be anywhere from 9% to 40% for a video seq-
uence. However, in order to derive the maximum speed advantage, one needs to
assess the direction of motion of objects on the fly. In the next section, a scheme
for detecting the direction of motion is presented.

458 Development of Algorithms and Verification Using High Level Languages

11.3.3 Assessment of Direction of Motion of Image
Blocks

The method of finding the direction of motion of image blocks in a picture is as
follows. This assessment is made only for the first P frame after the I frame in
every group of pictures (GOP), which can be user defined. In the present scheme,
a GOP consists of only an I frame followed by P frames and does not contain B
frames. An I frame is the reconstructed picture frame by processing IQIDCT
without involving any motion estimation, whereas a P frame is the reconstructed
picture after motion estimation such as the FOSS motion estimation described ear-
lier. Since the computation of motion estimation is a time consuming process, mo-
tion estimation for all the eight directions as explained in the FOSS algorithm is
carried out only for representative samples of five macroblocks. The total number
of search points for all the five macroblocks for each of the eight directions is
computed first. The direction for which the total number of search points is a
minimum is reckoned as the optimum direction of motion of image blocks in the
proposed method. The optimum direction, thus found, is applied to all the P
frames in the current GOP. These macroblocks are located at (M/4, N/4), (3M/4,
N/4), (M/2, N/2), (M/4, 3N/4), and (3M/4, 3N/4) co-ordinates as shown in Fig-
ure11.10, where M × N is the picture size in pixels.

The processing time overhead involved in motion estimation for these macro-
blocks is under 0.4% of the overall processing time for the entire GOP of 10
frames. The placement of macroblocks has been arrived at after conducting elabo-
rate experiments on a number of images, trying various locations and numbers of
samples in a frame. This placement yielded the minimum number of search points
of all the combinations tried out for various images of sizes of up to 720 × 480
pixels. Beyond this picture size, if required, one can use nine macroblocks instead
of five yielding marginally better performance.

11.3.4 Detection of Scene Change

The FOSS algorithm is robust and can adapt seamlessly even in the event of a
radical scene change. The algorithm detects scene changes by keeping track of the
total number of search points for every frame and comparing it with that for the
previous frame. If the total number of search points for the current frame exceeds
that for the previous frame by more than 25%, a scene change is deemed to have
occurred. This figure of 25% has been arrived at after testing with a number of
images. In such an event, the frame following the scene change frame is taken as
the reference frame for a fresh group of pictures. Quality of the picture does not
degrade for the scene change frame since only the actual error is processed and
appropriate correction effected. Also, no motion of image blocks is lost track of
owing to the same reason. However, compression falls only for the scene change
frame, and normalcy is restored immediately with succeeding frame.

11.3 Fast Motion Estimation Algorithm for Real-Time Video Compression 459

macroblock for the FOSS method over the OSS method

Number of search
points in a MB by Shift in image block

position

 FOSS

method
OSS

method

Speed up
factor for

FOSS
method

1 pixel diagonally

2 pixels diagonally

8 pixels diagonally

1 pixel horizontally or vertically

2 pixels horizontally or vertically

8 pixels horizontally or vertically

No motion

5

7

17

5

6

11

5

7

9

19

6

7

12

5

1.40

1.29

1.12

1.20

1.17

1.09

1.00

Fig. 11.10 Assessment of the direction of motion of objects for sample macro-
blocks in the second (P) frame of a GOP being processed

1 2

5

3

4

MB
(16 x16
pixels)

 Second frame (P) in a GOP: IPP…P

 N/4

TYP.
M/4

M

N

N/4

M/4

Table 11.3 The number of search points and the speed up factors in a

460 Development of Algorithms and Verification Using High Level Languages

11.3.5 Results and Discussions of FOSS Motion
Estimation Algorithm

The FOSS algorithm for all the eight directions coded in C, although not presented
since it runs to over 75 pages, is successfully tested using a number of images of
different sizes. Before we go into these details, let us see how this algorithm fares
with the block matching algorithms of other researchers. Table 11.4 presents the
relative speeds of various algorithms including the FOSS algorithm we developed.
The FOSS algorithm is faster than other algorithms as can be seen from the table.
The next best algorithm in terms of processing speed is the OSS algorithm. The
savings effected in computations in the FOSS method compared to the OSS
method are given in Table 11.5. It is clear from the table that, irrespective of the
direction chosen initially and applied to all the frames of a group of picture
(GOP), the FOSS method tracks the shifted image block faster than the OSS
method. The direction for which the number of search points is minimum is se-
lected as the optimum direction of motion for each image sequence.

Table 11.4 Comparison of speeds of various algorithms with FOSS algorithm

Algorithm
Number of search

points per mac-
roblock

Speed factor

Full search [68] 289 1.0

One-dimensional full search [70] 35 8.3

Hierarchical search [71] 25 11.6

Three-step search [90] 33 8.8

New three-step search [77] 31 9.3

Four-step search [80] 27 10.7

Center-biased diamond search [82] 25 11.6

Normalized partial distortion search [91] 22 13.1

Minima-bound area search [83] 36 8.0
Fast BMME [81] 35 to 66 8.2 to 4.4

Alternating subsampling search [76] 74 3.9

One-at-a-time step search (OSS) [84] 7 to 19 41.3 to 15.2

FOSS [85] 5 to 17 57.8 to 17.0

11.3 Fast Motion Estimation Algorithm for Real-Time Video Compression 461

Table 11.5 Savings effected in the number of search points for various direc-
tions

Percentage savings effected in number of
search points of a GOP

FOSS method over OSS method

Direction

Image
sequence

L/U R/U R/D L/D U/L U/R D/R D/L
Rugby 10.8 11.1 11.3 10.6 14.8 15.3 15.0 14.7
Table
tennis 12.6 12.4 12.1 12.2 13.5 13.6 13.3 13.4

Plots for the number of search points versus the frame number are presented

for one of the video sequences, viz., the Car in Figure 11.11 for both the FOSS
and OSS methods. The first frame is an I frame and all others are P frames. As
can be seen from the plots, the number of search points in the FOSS method is
lower compared to that in OSS method for all the frames. Similar results have
been obtained for all the video sequences tested, although not presented here.

The quality measure, the peak signal-to-noise ratio (PSNR) and the compression
effected in bits per pixel for one of the video sequences, Car, are presented in Fig-
ures 11.12 and 11.13 respectively. These results show that the FOSS method offers
marginally better performance in terms of the quality of the reconstructed image or

Fig. 11.11 The number of search points versus the frame number for the Car
sequence for the FOSS and the OSS methods

on the compression effected. The PSNR and bits per pixel averaged over all the

462 Development of Algorithms and Verification Using High Level Languages

Fig. 11.12 The image quality versus the frame number for the Car sequence
for the FOSS and the OSS methods

frames are 33.9 dB and 0.536 respectively for the FOSS method, whereas for the
OSS method they are 33.5 dB and 0.54 respectively. This indicates that the FOSS
method does not compromise on the quality of the reconstructed image and in ef-
fecting compression, while improving the speed of execution. Similar results,
though not presented here, have been obtained for other video sequences as well.

The total number of search points for various directions for the five sample
macroblocks in a frame as explained earlier is given in Table 11.6. The optimum
directions of motion found by the FOSS algorithm for various image sequences
are also presented. In case there are more than one minima, the first occurrence
from the left is taken as the optimum direction. For instance, the Rugby sequence

sequence for the FOSS and the OSS methods
Fig. 11.13 The compression effected versus the frame number for the Car

11.3 Fast Motion Estimation Algorithm for Real-Time Video Compression 463

yields a minimum of 35 search points for two directions D/R and D/L and, there-
fore, D/R is recognized as the optimum direction in this case. Table 11.7 presents
the speed up ratios for the FOSS method over the OSS method for various image
sequences. The overhead time required for detecting the direction of motion is in-
cluded in the total number of search points found by the FOSS method. The pro-
posed algorithm preserves the visual quality of the picture as can be seen from
Figure 11.14, which presents the original and the reconstructed images using the
FOSS method, for one of the video frames.

Two video sequences, namely, the ‘bmw_tram’ and the ‘Car_susie’ were
tested for the scene change. Table 11.8 presents the speed up ratios for the FOSS
method over the OSS method for the two video sequences. In spite of a sudden
scene change, there is not only a speed advantage in the FOSS method, but recon-
struction of a good quality image is also possible as is evident from Figure 11.15.
The FOSS algorithm is, therefore, flexible enough to accommodate scene changes,
while preserving the speed advantage as well as the quality of the processed image
over the OSS method.

Table 11.6 The total number of search points for various directions for five
sample macroblocks and optimum directions of motion found by the FOSS
algorithm

method

Image sequence
Frame

numbers
Avg. search

points per MB
Speed up

ratio

Rugby
Image size: 480 × 688 pixels 0–9 8.1 1.146

TT
Image size: 480 × 720 pixels 0–15 7.0 1.134

bmw
Image size: 352 × 288 pixels 90–110 8.1 1.114

Number of search points

Direction
Image

L/U R/U R/D L/D U/L U/R D/R D/L
Optimum
direction

found

Rugby 1 42 39 39 41 37 37 35 35 D/R
TT 1 29 30 29 28 25 25 29 29 U/L

Bmw
161

45 45 47 47 38 41 43 40 U/L

Table 11.7 The speed up ratio in a GOP for the FOSS method over the OSS

464 Development of Algorithms and Verification Using High Level Languages

Original bmw image (frame number: 91, picture size: 352 × 288 pixels) (b)
Reconstructed bmw image by the FOSS method (PSNR: 35.6 dB)

Table 11.8 The speed up ratio for the FOSS method over the OSS method for
video sequences with scene changes

Image sequence Frame

numbers
Scene

change at
Avg. search

points per MB
Speed up

ratio
bmw_tram
Image size: 352 × 288
pixels
Dir.: R/U

90–110
170–180

170
Tram 7.9 1.096

Car_susie
Image size: 256 × 256
pixels
Dir.: U/R

51–70
0–19

0
Susie 5.3 1.090

Fig. 11.15 Simulation image with scene change from Car to Susie (a) Original
Susie image (frame number: 0, picture size: 256 × 256 pixels). (b) Recon-
structed Susie image by the FOSS method (PSNR: 35.9 dB)

Fig. 11.14 Simulation image using FOSS motion estimation algorithm. (a)

11.3 Fast Motion Estimation Algorithm for Real-Time Video Compression 465

__

Summary

their core, which need to be adapted or developed depending upon how we wish to
implement the system. This chapter dealt with the development of algorithms for
these applications so that they are suitable for implementation on FPGAs/ASICs.
Before going for the architectural and Verilog designs, it is of paramount impor-
tance to code them in a high level language such as Matlab or C and test them to
ascertain their feasibility. The following algorithms and their verifications using
Matlab were presented.

A parallel algorithm for the computation of DCTQ for achieving high through-
put was presented. This was followed by a novel, automatic, pruning level-based
quality control scheme. By incorporating dynamic control based on assessing the
quality of a picture on-the-fly, more than twofold speed advantage was demon-
strated over the conventional approach of processing without pruning and without
sacrificing the quality. The processing power of the video encoder can be further
enhanced, at the cost of additional hardware, by designing a reconfigurable video
encoder system that caters to a wide variety of applications conforming to JPEG,
MPEG, and H.263 standards.

 A new, fast, one step search method for motion estimation in video frame
sequences along with automatic assessment of direction of motion of image blocks
was also presented. The simulation results show that this method is faster than the
OSS method without compromising either on the quality of picture or the com-
pression effected. Although the present implementation is for processing only I
and P frames, the algorithm can be easily extended to cover B frames as well.

While developing algorithms for hardware implementation, we need to keep
the actual hardware such as registers, counters, combination circuits, etc. in mind,
and subsequently design the architecture. Only then, we will be in a position to
meet stringent specifications when the algorithm is converted into an actual work-
ing product. The next in the chain of developments is the hardware architectural
design, which is presented in the next chapter.
__

Assignments

11.1 In Matlab_code_11.1 presented in the text, the cosine matrix, C, was pre-
sented without details. Show how these values were arrived at. You may
refer the DCT algorithm presented in this chapter and also the MPEG 2
standard.

11.2 A parallel algorithm was presented in the text for the discrete cosine
transform and quantization, which operations are required for effecting
compression of an image. The DCTQ processor is used in encoder, be it

Complex applications such as video codecs, etc. have involved algorithms at

466 Development of Algorithms and Verification Using High Level Languages

for still image compression conforming to JPEG standard or for video
compression conforming to MPEG standards. On similar lines to the al-
gorithm developed in the text for DCTQ, inverse quantization can be
computed by multiplying each of the 64 DCTQ coefficients by the corre-
sponding quantization table values as per the expression:

 DCT (u,v) = DCTQ (u,v) x q (u,v); u, v = 0 to 7.
 The image can be reconstructed from the DCT (u,v) by evaluating the

(inverse DCT) product of the matrices as follows:
 IDCT = CT (DCT) C
 Develop the algorithm for the evaluation of IQIDCT on similar lines to

that of DCTQ, bearing in mind that the throughput of FPGA/ASIC im-
plementation must match the DCTQ throughput, namely, one recon-
structed pixel per system clock.

11.3 A new algorithm for assessing image quality on the fly using a concept
called pruning was presented in the text. As a result of applying the algo-
rithm, the processing speed of DCTQ can be increased by over 150%
when compared to the implementation speed of the DCTQ without prun-
ing. The sum of the squares of all the DCT coefficients or the spatial data
values, (xn,m), is the energy of the block, i.e.,

 ∑
=

7

0u
∑
=

7

0v
 (DCTu,v)2 = ∑

=

7

0n
∑
=

7

0m
 (xn,m)2, u, v, n, m = 0–7

 This algorithm was based on computing the sum of energy of AC coeffi-
cients lying on every diagonal commencing from PL1 up to PL14 shown
in Figure 11.1. This algorithm used DCT for the computation of energy.
Instead of the DCT, apply DCTQ in the algorithm. Work out details with
the representative sample image block provided in the text and check the
feasibility of its implementation as an MPEG encoder.

11.4 The algorithm for assessing image quality presented in the text can also
speed up the next pipeline module called the variable length coder (VLC)
of a video encoder. Discuss how this can be done. Details of VLC can be
found in the last chapter.

11.5 The algorithm for assessing image quality presented in the text can be
used for effecting rate control, i.e., maintain a constant bit rate while a
compressed bit stream is transmitted over a serial channel. This algorithm
can be used for both hardware and software implementations. There are
three possible ways to bring about rate control. Discuss how these can be
brought about.

11.6 In the text, it was mentioned that the execution speed that can be
achieved using auto PL is about two times than that for the fixed PL of
14. Extrapolating the average execution times to a standard picture size,
we can conclude that the auto PL controlled encoder is capable of proc-
essing 1024 × 768 pixels size of images at 42 frames per second for
monochrome and 28 frames per second for color in 4:2:0 format on the
average. Work out these details to verify the above statements. Also,
work out the frame rates for other formats such as 4:2:2 and 4:4:4.

Assignments 467

11.7 Full search block matching algorithm used in motion estimation of a
video sequence is a straightforward scheme, which requires a large num-
ber of searches for finding a correct match for the image block being
processed. This scheme requires (2w + 1)2 number of search points,
where w is the maximum pixel displacement, which is usually taken as 8.
Derive this number of search points.

11.8 A much faster algorithm than Full search block matching algorithm is the
one-at-a-time step search (OSS) algorithm requiring only (2w + 3) num-
ber of search points. Discuss how this may be derived.

11.9 In the text, a novel, fast one-at-a-time step search (FOSS) algorithm was
presented. In this method, the maximum number of search points is (2w +
1). How was this arrived at?

11.10 The theoretical number of search points per macroblock for the FOSS
method as against the OSS method for various shifted image blocks were
presented in Table 11.3. The maximum speed advantage of 40% results
for a shift of image block by 1 pixel diagonally in any of the four direc-
tions and a minimum of 9% for the maximum shift of 8 pixels either hori-
zontally or vertically. Explain how these results were obtained. Similarly,
compute the number of search points for motion of 3 pixels to 7 pixels.

11.11 There are eight possible combinations of directions, namely, up/right
(U/R), right/up, up/left, left/up, down/left, left/down, down/right, and
right/down that yield different numbers of search points depending upon
the actual motion encountered in a picture frame. Detailed steps were
presented for the FOSS algorithm for motion estimation for one of the
eight directions, U/R in Figure 11.9. Draw flow charts for any other
direction other than the U/R and R/U directions.

11.12 In color image/video processing applications, a popular format is the Y,
Cb, Cr format governed by the following expressions:

 Y = 0.299 R + 0.587 G + 0.114 B

 Cb = –0.169 R – 0.331 G + 0.500 B

 Cr = 0.500 R – 0.419 G – 0.081 B

 where R, G, and B are the picture element (pixel) values of three
fundamental colors: red, green, and blue. Each of these color components
is of size, 8 bits. Develop an apt algorithm without using multipliers for

coefficients up in the above expressions by 128, retain only integers,
replace multiplication operations by addition of relevant decimal weights
as was suggested in the assignment 10.8 in Chapter 10 and, finally, scale
down the result by 128.

11.13 Write a Verilog RTL code for the algorithm you have developed for the
assignment 11.12. Retain only 9 bits precision for each of the compo-
nents, Y, Cb, and Cr. Apply multi-pipeline stages in your design.

to an FPGA/ASIC. Suggest the right pipeline stages. Hint: Scale the
the computation of Y, Cb, Cr so that it may be efficiently mapped on

468 Development of Algorithms and Verification Using High Level Languages

11.14 Write a test bench for the Verilog code you have designed for effecting
the color format conversion from R, G, B to Y, Cb, Cr. Demonstrate the
working of your design by presenting the simulation waveforms. For an
alternative test bench, see the assignment 11.17.

11.15 On similar lines to the algorithm you have developed for the assignment
11.12, develop the algorithm for the inverse format conversion from Y,
Cb, Cr to R, G, B.

11.16 Write a Verilog RTL code for the algorithm you have developed for the
assignment 11.15. Retain the 9 bits precision for each of the components,
Y, Cb, and Cr. The R, G, B outputs are each 8 bits. Apply multi-pipeline
stages in your design.

11.17 Write a test bench for the Verilog code you have developed for effecting
the conversion from Y, Cb, Cr to R, G, B. Alternatively, you can write an
integrated test bench for testing the two color format conversions at one
shot. Demonstrate the working of your designs by presenting the simula-
tion waveforms.

11.18 Develop a simple algorithm for converting three digit BCD number to a
binary number.

11.19 Write a Verilog RTL code for the algorithm you have developed for the
assignment 11.18. Use pipelining if necessary.

11.20 Write a test bench for testing the BCD to binary conversion. Demonstrate
the working of your design by presenting the simulation waveforms.

Assignments 469

Chapter 12

Architectural Design

In the previous chapter, we learnt how to develop algorithms for a number of ap-
plications and verify the same in the field of video processing as examples. These
algorithms were developed in such a way that the applications may be mapped
onto an FPGA or an ASIC. The next logical step is to work out a detailed architec-
ture keeping the actual hardware in mind. In the present chapter, we will consider
the architectures for the same applications that we had undertaken in the previous
chapter. Verilog coding and results of implementations for a couple of applica-
tions will be presented in detail in the chapter on project design.

Detailed architecture of DCTQ as implemented on an FPGA is shown in Figure
12.1. As shown therein, one row (8 pixels) of an image block (8 × 8 pixels) is in-
put via the data bus, ‘di[63:0]’. ‘di[7:0]’ receives the first pixel and ‘di[63:56]’,
the last pixel in the row. A pixel is of size 8 bits, unsigned for each of the color
components, Y, Cb, and Cr. ‘be[7:0]’ is the input data byte enable signal. ‘be[0]’
selects di[7:0] and so on. ‘wa[2:0]’ furnishes the row address of an image block,
where ‘wa[0]’ is the first row. Eight rows need to be written for inputting a block
of image. ‘pci_clk’ is the image input synchronous clock. ‘di[63:0]’ is written into
the core with ‘wa[2:0]’ serving as the address synchronous to positive edge of this
clock. ‘din_valid’ input signals when the input data, ‘di[63:0]’ is valid. Active
high at ‘start’ commences and maintains the DCTQ processing. If de-asserted and
re-applied, latency will come into effect once again.

DCTQ processing can be frozen by the host, which inputs image data, or the
variable length coder (VLC) processor, which is a subsequent process to effect
image compression by asserting a ‘hold’ signal. De-asserting hold resumes the
processing without any latency coming into play again. This signal together with
the corresponding signals in VLC processor provides a convenient handshake for
the two processors to work concurrently. ‘clk’ is the DCTQ system clock, which
can be the same as the ‘pci_clk’. ‘ready’ signal indicates that the DCTQ core is
ready to accept an image input block. DCTQ output in twos complement is issued
out of ‘dctq[8:0]’ pins, valid at the positive edge of ‘clk’. ‘addr[63:0]’ is the
DCTQ coefficient address. ‘addr[0]’ is the DC coefficient address and all other
addresses are for AC coefficients. ‘dctq_valid’ signal indicates the validity of

12.1 Architecture of Discrete Cosine Transform
and Quantization Processor

DCTQ coefficient and its address. The DCTQ processor can be reset at any point
of time by asserting the asynchronous, active low signal, ‘reset_n’.

The module designated ‘dualram’ contains RAM storage for two image blocks.
When one block of RAM is written into, the DCTQ processing takes place concur-
rently by reading from the other block of RAM. One complete block can be writ-
ten in eight ‘pci_clk’ cycles, whereas reading for processing of DCTQ takes 64
‘clk’ cycles. The writing time is much faster than the reading time, thus freeing the
host computer to other domestic chores in addition to fetching the image input pe-
riodically. ‘cnt1_reg [2:0]’ generated by the ‘dctq_controller’ serves as the read
address for getting the ‘dualram’ content. The signal ‘rnw’ selects the appropriate
RAM bank. While reading, the RAM is accessed column-wise, since in the com-
putation of C*X of the DCT algorithm we need to multiply a row of C matrix with
the column of X (image input) matrix as explained in Chapter 11 on the develop-
ment of algorithms. Eight multipliers, mult8ux8s, accomplish this, where X is the
unsigned input and C is the signed cosine term for evaluating the DCT. The result-
ing products (result1–result8) are summed in the next module, ‘adder12s’. Each of
the inputs of this adder is of size, 12 bits. The result, ‘sum1’ is stored in
dctreg2x8xn registers, which contains eight numbers of 11-bit registers, qr0–qr7.
These registers store one row of partial products of CX in eight ‘clk’ cycles and
will be preserved for the next eight ‘clk’ cycles so that (CX) * CT may be com-
puted. ‘cnt2_reg [2:0]’ selects one of the eight registers at a time.

In the second stage multiplication, eight numbers of 11 × 8 bit precision multi-
plier, mult11sx8s, is made use of to generate res1-res8. These are summed using
14-bit precision, ‘adder14sr’ module, to get the DCT of precision, 12 bits. The final
stage divides the DCT output by the corresponding quantization value, as per
MPEG 2 standard, to get the desired DCTQ output of precision, 9 bits. The divi-
sion has been replaced by a 12 × 8 bit multiplier, mult12sx8s, taking the inverse of
the quantization value, qout, as one of the inputs. The bit precisions for various
stages of processing have been arrived at after conducting a number of experi-
ments on several video sequences and by the computation of PSNR value, a popu-
lar measure of the reconstructed image quality, defined in Chapter 11. A PSNR
value of 30 dB or more is generally reckoned as good quality images. This crite-
rion has been adopted for arriving at the requisite precision.

The cosine matrix C and its transpose CT are stored in on-chip read only mem-
ory, ‘romc’, and their values are retrieved for processing simultaneously by ac-
cessing C and CT matrices using ‘cnt1_reg [5:3]’ and ‘cnt3_reg [2:0]’ respectively
as addresses generated by the controller. Similarly, the inverse quantization values
stored in ‘romq’ module are accessed using ‘cnt4_reg [5:0]’ as the address. Vari-
ous time-bound activities of DCTQ processor are finely orchestrated by the
‘dctq_controller’. Actual input/output pins of the processor are shown in bold in
order to easily distinguish them from intermediate signals. The algorithms for the
multipliers and adders used in the design have been developed in order to speed up
the computation by introducing high level of pipelining. These designs were cov-
ered in depth in the chapter on arithmetic circuits. The adders: ‘adder12s’ and ‘ad-
der14sr’ compute the sum of eight, 12 bits, twos complement numbers and have

474 Architectural Design

Fig. 12.1 Architecture of DCTQ processor (Continued)

 cnt1_reg[2:0]

result1
-

result8
adder12s

(adder12s1)

sum1

clk

dctreg2x8xn
(dctreg1)

qr0-qr7

clk encnt2

cnt2_reg [2:0]

dualram
(dualram1)

di[63:0]

be[7:0]

pci_clk

wa[2:0]

din_valid

rnw

mult8ux8s
(U11-U18)

clk

do[63:0]
X

C

ra[2:0]

result1
-

result8

clk

romc

(romc1)

C

clk

 T
C

addr1

addr2

cnt1_reg [5:3]

cnt3_reg [2:0]

d1

d2

12.1 Architecture of Discrete Cosine Transform and Quantization Processor 475

Fig. 12.1 Architecture of DCTQ processor

five and six pipeline stages respectively. Similarly, the multipliers: ‘mult11sx8s’
and ‘mult12sx8s’ have eight pipeline stages and ‘mult8ux8s’ has seven pipeline
stages. ‘dualram’, ‘romc’, and ‘romq’ have two stages each. Therefore, the total
number of pipeline stages in the entire DCTQ processor is 44 and hence the la-
tency is 45 ‘clk’ cycles. DCTQ is issued from 46th ‘clk’ pulse onwards, one coef-
ficient every ‘clk’ cycle. This latency is applicable only for the very first block
and not for subsequent blocks. In other words, the processing time is 64 clock
cycles per block of image once the pipeline is full. It is also true for the inverse
processor: IQIDCT, although not presented in this book. The Verilog code for the
DCTQ design is presented in the next chapter.

qr0-qr7

 T
C

romq
(romq1)

cnt4_reg [5:0] qout

clk

res1
-

res8 clk

mult11sx8s
(U21-U28)

adder14sr
(adder14sr1)

dct [11:0]

clk

mult12sx8s
(U31)

qout

dctq[8:0]

clk

dctq_controller
(dctq_control1)

cnt2_reg [2:0]

cnt1_reg [5:0]

cnt3_reg [2:0]

cnt4_reg [5:0]

addr [5:0]

dctq_valid

clk

start

hold

ready

encnt2

reset_n

rnw

476 Architectural Design

12.2 Architecture of a Video Encoder Using Automatic
Quality Control Scheme and DCTQ Processor

The basic architecture of a video encoder for processing Intra (I) frames is depicted
in Figure 12.2. The image to be processed is input block by block, by a host com-
puter such as a Pentium Processor, into the DCTQ processor, where the discrete
cosine transform is performed followed by quantization. The optimum pruning
level PLN up to which the DCTQ is to be computed is processed in the automatic
quality controller circuit. The algorithm for this method was presented in the chap-
ter on the development of algorithms. The computed PLN, which is communi-
cated to both DCTQ and VLC processors, changes dynamically from block to
block depending upon the picture content and energy (which has a direct bearing
on quality) computed. The resulting quantized coefficients are applied to the next
stage, VLC, where they are assigned variable length codes and buffered by FIFO
before they are sent out onto a serial channel as a bit stream. The color informa-
tion Y, Cb, and Cr are input once per macroblock. The energy threshold eTHR,
which is a measure of image quality is user programmable. The encoder is also
capable of processing up to a fixed pruning level.

12.2.1 The Automatic Quality Controller

The automatic quality controller is shown in Figure 12.3. It basically consists
of a squaring circuit to evaluate (DCT)2, adders/registers to accumulate 14 energy
levels, ePL1 through ePL14, registered comparators, and a controller to evaluate dif-
ferent steps of the algorithm given in the previous chapter. Although the system
clock is not shown in the figure, all the blocks are connected to the clock. There
are two modes of operations possible: fixed pruning level up to which the process-
ing is required and automatic control of pruning level in order to get the desired
quality level. The DCT coefficients generated in a raster scan order together with
its address ‘DCTCA’ are input to the controller one by one. Since squaring and
additions are time consuming operations, they are pipelined using signals, ‘WS1’,
‘WS2’, and ‘WA’, derived from the DCTQ processor.

When the DC coefficient is processed, the DCTQ controller issues ‘RESET’
signal to clear all the 14 ePL registers. While the subsequent AC coefficients are
processed, the DCTQ processor generates write signals, ‘WePL1’ through ‘WePL14’
to store energies at various levels from 1 to 14. The comparator compares the ac-
cumulated energy for every pruning level with the threshold energy programmed
and if the accumulated energy is less than the threshold energy, then the controller
outputs the pruning level number PLN as presented in the previous chapter. Both
DCTQ and VLC processors process the quantized DCT coefficients only up to this
PLN level and not beyond, thus speeding up the entire system without compromis-
ing on the image quality. The pulse ‘PLNV’ signals the validity of the ‘PLN’. The
signals: ‘DCTCA’, ‘WS1’, ‘WS2’, ‘WA’, and ‘RESET’ were not shown in the DCTQ

12.2 Architecture of a Video Encoder 477

based control

Fig. 12.3 The Automatic quality controller

DCTQ

VLC AND

FIFO

AUTOMATIC PRUNING LEVEL

BASED QUALITY CONTROLLER

IMAGE
INPUT

HOST BUS

eTHR /PL

COLOR

COMPRESSED
BIT STREAM

OUTPUT

Fig. 12.2 The Basic architecture of the video encoder using pruning level

ePL1

RESET

SQUARING
(8x8 bit

MULTIPLY)

ADD

REG.

(DCT)2

ePL2 ePL14

………….

WePL1 WePL14

WS1 WS2

WA WA WA

COMPARATORS
+

CONTROLLER

PLNV
(TO

DCTQ/VLC)

ADD

(DCT)2

ADD

(DCT)2

REG. REG.

WePL2 ePL2

ePL
1

e
PL14

PLN

DCTCA RESET

(DCT)2

eTHR /PL
(FROM
HOST)

DCT
(FROM DCTQ
PROCESSOR)

(FROM
DCTQ)

478 Architectural Design

architecture presented earlier in order to keep the treatment simple. See Chapter
15 for details of VLC processor.

12.3 Architecture for the FOSS Motion Estimation
Processor

Figure 12.4 shows the architecture for the FOSS motion estimation processor. It
consists of a motion estimation controller, which contains the circuit for executing
the FOSS algorithm presented in the previous chapter, a dual redundant current
MB RAM, a module for evaluating Ad and external RAMs to hold the processed I
and P frames. To start with, the host processor communicates the picture size, the
luminance or the color information and the macroblock number to be processed to
the motion estimation (ME) controller. After ensuring that the EDATA signal is

Fig. 12.4 Architecture of the FOSS motion estimation processor

set, the host writes the image macroblock information into one of the two current

EDATA

EOME

DUAL
CURRENT

MB
RAM

MOTION ESTIMATOR
 CONTROLLER

ME
SYSTEM

BUS

RESET

START HOST BUS

SKIP

PREVIOUS
(I/P)

FRAME
(EXTERNAL

RAM)

HOST
BUS

Ad(x,y)

16
BYTES

16
BYTES

Ad
16

BITS

DVALID

ERROR BUS

FROM/TO
HOST

PROCESSOR ME
SYSTEM

BUS

READY

INPUT IMAGE

MOTION VECTOR/

CLOCK

12.3 Architecture for the FOSS Motion Estimation Processor 479

macroblock RAMs. When the ME controller is ready to begin the motion estima-
tion processing, the READY signal is set, receiving which the host asserts START
signal, thus initiating the processing. EDATA signal is immediately asserted so
that the host can enter the next image input concurrently with the processing of
motion estimation.

Before processing the P frame, the I frame is processed by the DCTQ proces-
sor followed by the pipelined inverse quantization and inverse DCT by the
IQIDCT processor. The processed I frame is stored in the external RAM desig-
nated as the previous frame RAM and serves as the reference frame for carrying
out the motion estimation. The ME controller contains the FOSS algorithm in the
form of a sequential circuit, executing each step of the algorithm as explained in
Chapter 11. The minimum value of Ad is stored in an internal 16-bit register. The
motion vector variables x and y are cleared at the start of motion estimation for
every macroblock. Ad is computed using the Ad(x,y) module. This is cleared be-
fore starting every Ad computation. The controller converts the x, y variables into
appropriate addresses for the current macroblock and the previous frame RAMs.
At one time, one row of a macroblock containing 16 pixels of data is fetched, each
from the current and the previous frame RAMs and the sum of absolute differ-
ences for all these 16 pixel pairs is computed and accumulated. The controller
takes 16 clock cycles to accumulate the sum for 16 rows of the macroblock. Since
these computations are time consuming, they are pipelined with an inherent la-
tency of 6 clock cycles. As a result, one Ad computation takes 22 clock cycles for
execution.

The motion estimation is completed in about 30 clock cycles per Ad compu-
tation, considering the internal steps involved in the algorithm as explained in
the previous chapter. For a macroblock, a maximum of eight numbers of Ad
computations are required as can be seen from the results presented in the previ-
ous chapter. When the motion estimation for one macroblock is completed, the
motion vector followed by the row-wise intensity errors are output at MOTION
VECTOR/ERROR pins for use as inputs for the subsequent DCTQ, Inverse
Quantization and Inverse DCT processing, thus reconstructing the error. The
MOTION VECTOR and ERROR codes are generated in a sequential order for Y
and color components Cb and Cr as per the MPEG 2 format. The corresponding
motion-compensated sum of row-wise intensity of previous macroblock and the
reconstructed error are written into the previous frame RAM to form the P
frame. This P frame serves as the previous frame for processing the next frame
of a group of pictures (GOP). These operations require 25 clock cycles each for
execution of one luminance and two color components. As a result, the total
execution time for motion estimation and compensation per macroblock is
around 315 clock cycles for a true color picture in 4:4:4 format. This can come
down for other formats such as 4:2:2 and 4:2:0.

Motion estimation is applied only on the luminance part, Y. A synchronous
signal DVALID is asserted for writing the MOTION VECTOR/ERROR. If no
motion is detected (motion vectors, x = y = 0), SKIP signal is issued. End of mo-
tion estimation signal EOME is generated after completing the motion estimation

480 Architectural Design

for the current macroblock. This process is repeated for all the macroblocks in the
frame.
__

Summary

This chapter presented the development of architectural designs. In the last chapter,
we learnt how to develop algorithms for a number of applications in the field of
video processing as examples and verified the same. These algorithms were
developed in such a way that the applications may be mapped onto an FPGA or an
ASIC. The next logical step is to work out a detailed architecture keeping the
actual hardware in mind. In this chapter, the architectural designs were developed
for the same applications that we had undertaken in the previous chapter. The next
chapter presents a very detailed description of project design and complete
Verilog codes, test benches and results for a couple of applications.

Assignments

12.1 Detailed architecture of DCTQ processor as implemented on an FPGA was
presented in Figure 12.1. On similar lines, design and describe a detailed

Fig. A12.1 Block diagram of IQIDCT

architecture of IQIDCT Processor such that one pixel may be processed
every clock cycle. Use the algorithm of IQIDCT you have developed for
the assignment 2 in Chapter 11. Block diagram of IQIDCT is shown in
Figure A12.1. The signal descriptions are as follows.

idct_valid

IQIDCT

reset_n

dctq[8:0]

addr_dctq[5:0]

clk

dctq_valid

hold

addr[5:0]

idct[7:0]

Assignments 481

Signal description

Signal
Input/
Output Description

reset_n Input Asynchronous, active low.
dctq[8:0] Input Quantized DCT input.
addr_dctq[5:0]

Input This furnishes the ‘dctq’ address of an image
block. ‘addr_dctq[0]’ is the first (DC) coefficient.
‘dctq’ and its address are valid at positive edge of
‘clk’. The coefficients are issued out in a raster
scan order.

dctq_valid Input This input signals when the input data, ‘dctq[8:0]’,
is valid.

hold

Input IQIDCT processing can be kept on hold by this
signal. De-asserting this signal resumes the proc-
essing without any latency coming into play.

clk Input System clock.
idct[7:0] Output IDCT output (unsigned), valid at positive edge of

‘clk’.
addr[5:0]

Output IDCT address. ‘addr[0]’ is the first reconstructed
pixel and ‘addr[63]’ is the last pixel value in a
block of image.

idct_valid Output This signal indicates the validity of IDCT and its
address.

Note: All signals excepting reset_n are active high.

12.2 In the assignment 11.5, you were required to discuss the method of effect-

ing rate control, i.e., maintain a constant bit rate while a compressed bit
stream is transmitted over a serial channel. Design basic hardware architec-
tures for the two schemes you propose and describe the same, bringing out
their salient features.

12.3 Design basic hardware architecture for the Full search block matching algo-
rithm used in motion estimation of a video sequence and describe the same,
bringing out its salient features. Compare it with the FOSS architecture pre-
sented in the text.

12.4 A much faster algorithm than Full search block matching algorithm is the
one-at-a-time step search (OSS) algorithm. Design and describe the hard-
ware architecture for this algorithm. Compare it with the FOSS architecture
presented in the text.

12.5 Programmable Logic Controller (PLC) is a digital equipment which is used
in a number of industries/plants for bringing in automation. It consists of a
processor which solves user programmed logic fetched from user memory.
Each instruction is arranged as a 16-bit word in a typical PLC. MSB 5 bits
of the memory word contain the instruction operation code and the balance

482 Architectural Design

– a parameter, which can be an input/output (I/O) number, a Timer/Counter
number or set time/count value, etc. Brief Specifications of the PLC is as
follows:

128 Discrete inputs (parameter: 0–127)
128 Discrete outputs (parameter: 128–255)
256 Discrete flags (parameter: 256–512)

 64 Programmable timers/counters (parameter: 0–63 for number and
 0–2047 for timing/count value)
 2K words user instruction memory (instruction pointer/parameter: 0–
 2047)

20 PLC instructions

 The following is the instruction set along with its function, where IP is the
 instruction pointer and SP is the stack pointer.

Instruction Parameter Operation

NOP No operation
READ 0 to 511 RR <= (I/O)
NOT RR <= !RR
AND 0 to 511 RR <= RR & (I/O)
OR 0 to 511 RR <= RR | (I/O)
XOR 0 to 511 RR <= RR ^ (I/O)
STO 256–511 (Parameter) <= RR
JMP 0 to 2047 IP <= Parameter
JMPC 0 to 2047 IP <= Parameter if RR = 1
JSR 0 to 2047 IP <= Parameter;

SP <= Parameter + 1
RET IP <= SP
STRTC 0 to 63 Start Timer/Counter if RR = 1
TT Set time base as 0.1 Sec.
TS Set time base as 1 Sec.
TON 0–2047 Switch on the ON delay timer
TOF 0–2047 Switch on the OFF delay timer
UC 0–2047 Up Counter Set Value
DC 0–2047 Down Counter Set Value
TCEN Enable Timer/Counter if RR = 1
STC 256–511 Output T/C Result

RR is a single bit accumulator called result register, JMP is an uncondi-
tional jump, JMPC is a conditional jump (if RR = 1), JSR is an uncondi-
tional subroutine and RET is a return instruction used by JSR instruction.
No nesting of subroutines is permitted. Design the architecture of this PLC
and describe them in detail. Note that the Timer/Counter routine and PLC

Assignments 483

instruction execution must take place concurrently. How will you debounce
inputs (parameter = 0 to 127)? State your assumptions clearly.

12.6 Suggest more PLC instructions for different applications. Explain their op-
erations.

12.7 In order to enter user programs for the PLC mentioned in the assignment
12.5, we need to design a programming unit. Describe how such a unit may
be designed. Work out the basic architecture and describe the same.

12.8 Arithmetic Logic Units (ALU) are used for realizing arithmetic functions
such as addition, subtraction and logic functions such as AND, OR, com-
plement, NAND, NOR, EX-OR, EX-NOR, increment, decrement, etc.
74xx181 of Texas Instruments, whose logic symbol is shown in Figure
A12.2. A 4-bit select code (S3–S0) and a mode bit (M) are used to decide
the operation to be performed on data inputs. For more details, refer Chap-
ter 2. Develop architecture for this ALU so that it may be implemented
using a HDL.

Fig. A12.2 ALU logic symbol (Courtesy of Texas Instruments Inc.)

S0
S1
S2
S3

A0
A1
A2
A3

B0
B1
B2
B3

F0
F1
F2
F3

G
P

A=B
M

C_in

C-out Carry-out

Outputs

For Look-Ahead Carry

B

A

Data In-
puts

Carry Inputs

Function
Controls

ALU

484 Architectural Design

Chapter 13

Project Design

Most challenging design applications involve the development of moderate to
complex algorithms and hardware architectures that configure these algorithms ef-
ficiently. In Chapter 11, we learnt how to develop algorithms for a number of pro-
jects, namely, the discrete cosine transform and quantization, the automatic quality
control system based on pruning level control and the fast one at a time step
search for motion estimation for image/video compression systems. The next logi-
cal step is to check the concepts involved in the algorithm without worrying about
the hardware that is required for implementation. Once the concepts are proven to
be correct by coding and testing in a high level language such as the Matlab or C,
as presented in Chapter 11, one can confidently embark on more involved design
of architecture with actual hardware in mind. These architectural design aspects
were elaborated in Chapter 12.

The sequel to architecture is to code the design using a HDL such as Verilog or
VHDL. This chapter presents a couple of applications, namely, PCI Bus Arbiter
and DCTQ as examples, using Verilog. The reader may develop codes for other
applications such as Video encoder with automatic quality control and motion
estimation presented in the previous chapters on similar lines as shown in the
following sections. Before we take up the involved DCTQ design, we will start
with a simple application, namely, a PCI Bus Arbiter, which uses ASM chart to
aid in the design. For simple design applications, one need not develop any algo-
rithm as it is mandatory for involved designs.

13.1 PCI Bus Arbiter

In a multiprocessor environment, several processors share the same system bus
such as a PCI bus. A system based on multiprocessors can work in a coordinated
manner only if bus arbitration is in force. The PCI Bus Arbiter design we are go-
ing to cover is for arbitrating four processors, some of which can be configured as
the masters and others as targets. As an illustration, we will consider an applica-
tion such as a video compression system for bus arbitration, although the design
can be modified or extended to any other multiprocessor application and bus.
Sharing the PCI bus are four masters, namely:

• Video Grabber, which will input a raw video data. It can be NTSC, PAL or
SECAM sequence or may be in XGA, SVGA or in any other format. Any
color motion picture can be processed, say, at 30 frames per second or 25
frames per second. Using the PCI, we can input the raw data into the Video
Codec.

• Video Codec brings about the compression and reconstruction. We have an
encoder and a decoder in the Codec, which brings about respectively the
compression and decompression. This has to be designed in Verilog and
implemented on either FPGA or ASIC.

• Fire Wire is a serial bus, which can be connected up to 64K nodes. It serial-
izes the compressed data and broadcasts the compressed bit stream. Con-
currently, it can receive a compressed bit stream from external source and
send it to the decoder in Video Codec for effecting decompression.

• CPU (PC), which configures and coordinates the system activities via a
north bridge.

Fig. 13.1 PCI_bus arbiter for video codec (Continued)

MPEG
Stream

3.2 Gbps
Max. data size:

16 KB

FIFO

Video
Grabber

Video in

FIFO

Video
Codec

(FPGA/
ASIC

Design)

FIFO

Fire
Wire
IEEE
1394b

CPU
(Host)

Main
Memory

North
Bridge

AGP

Video
Display

PCI BUS

488 Project Design

Fig. 13.1 PCI_bus arbiter for video codec

All the masters have built-in FIFO memory connected to the PCI bus in order
to buffer data and maintain the frame rate. The PCI Bus Arbiter for the applica-
tion, Video Codec, is shown in Figure 13.1. If we want to communicate the raw
video data to the Codec in order to compress it, we make a request to the bus arbi-
trator, which grants the request as per a priority protocol among different masters.
We divide the four processors into two groups, Video Grabber and Codec in the
high priority group and the Fire Wire and the CPU in the second group. Among
these, the Video Grabber and the Fire Wire has the highest priority in each group.
We can compress the data in the Codec and send it through the PCI bus to the Fire
Wire to serialize and transmit it over the channel. Likewise, compressed data can
be obtained from any other system and serial to parallel conversion done in the
Fire Wire and decompressed in the Codec and display through an interface called
advanced graphics port (AGP) in the PC. As far as Fire Wire is concerned, its
throughput is very high and, therefore, it can easily handle the MPEG 2, the fastest
stream of the MPEG group (MPEG 1, MPEG 2, MPEG 4) or still picture JPEG
and JPEG 2000 or any upcoming standards. The maximum data that the Fire Wire
can handle at a time is 16 KB. The CPU and the main memory are connected to
the PCI bus via the north bridge. These are all the standard PCI architecture. So is
the case with AGP and the Display.

VG VC FW CPU

FIFO

Video
Grabber

FIFO

Video
Codec

(FPGA/
ASIC

Design)

FIFO

Fire
Wire

CPU
(Host)

PCI
Arbiter

REQ2 REQ1

GNT2

GNT3 REQ0 GNT1

REQ3 GNT0

Video
in

13.1 PCI Bus Arbiter 489

Table 13.1 Projected Processing Time for Video Codec Application

13.1.1 Design of PCI Arbiter

The four masters mentioned earlier request the arbiter before using the PCI bus by
asserting the signals REQ0 through REQ3. The arbiter looks into the priority as-
signed for each request and asserts one of the grant signals, GNT0 through GNT3.
The order in which the masters would receive access to the PCI bus is as follows:

1. Video Grabber (VG)
2. Video Codec (VC)
3. Fire Wire (FW)
4. Video Grabber
5. Video Codec
6. CPU (Host)

After the CPU accesses the PCI bus, the priority sequence repeats from step 1. The
Video Grabber VG and Codec VC access the bus more frequently than the Fire
Wire and the host processor since the raw data and compression/decompression
have to be processed immediately and are time consuming operations as can be
seen from Table 13.1.

The Verilog coding for the design will be easier if an ASM chart is drawn.
Accordingly, we present the chart in Figure 13.2. Initially, the arbiter will be in a
wait state. We use decimal values for the state representation as it is easy to code
in Verilog. In the wait state, the arbiter will check for the REQ signal as per their
priority order one after another. If a request is true, the arbiter will enable the grant
signal GNT to that device. On the other hand, if the request is not made, the arbi-
ter will check the next priority device request and so on. In wait state “0”, for in-
stance, if REQ0 to REQ3 are asserted simultaneously, then the arbiter grants the
signal GNT0 in the next state “1” since the Video Grabber VG gets the top most
priority for using the PCI bus. If none of the masters make any request for the use
of bus, the arbiter continues to remain in the same wait state. In the VG state (1), if
REQ0 is still asserted, the arbiter continues in the same state.

Transaction between Processing time

VG => VC (Raw data)
VC => FW (Compressed data)
FW => VC (Compressed data)
VC => AGP (Display Monitor)

(Reconstructed video data)

9.6 ms
1.0 ms
1.0 ms
9.6 ms

Total processing time 21.2 ms

Frame period 33.3 ms

490 Project Design

Fig. 13.2 ASM chart for PCI arbiter design (Continued)

FW
‘3’

CPU
‘4’

REQ0 REQ1 REQ2 REQ3
F F F

T T T

VC
‘2’

REQ0 REQ1 REQ2 REQ3
F

T

F F

T T T

VC
‘2’

FW
‘3’

CPU
‘4’

GNT0

VG

VG

1

F

VG
‘1’

T

WAIT

F

0

VC

GNT1

REQ1 REQ2 REQ3
F F F

T T

FW
‘3’

CPU
‘4’

VC

2

VG
‘1’

T

GNT2
FW

REQ2 REQ0 REQ1 REQ3
F F F

T T T

VG
‘1’

CPU
‘4’

3

F

VG
‘1’

T

VC
‘2’

13.1 PCI Bus Arbiter 491

Fig. 13.2 ASM chart for PCI arbiter design

When the Video Grabber has relinquished the use of bus, the next priority
Video Codec VC gets the chance to use the bus by granting the GNT1 signal. FW
or the host CPU gets its chance only if other higher priority masters have not
grabbed the bus. In the state “1”, if VC, FW or CPU have not availed the chance,
the token passes to VG again. Here, we have given chance to CPU since the VG
has just relinquished the use of bus. In accordance with the priority we have as-
signed as per step 2, the Video Codec gets the chance to use the bus if REQ1 is as-
serted in the state “2” or in the earlier states. In this state, the arbiter issues GNT1
to VC. When VC is done with the use of bus, the token passes to Fire Wire or
CPU or VG. In FW state “3”, the arbiter grants GNT2 so long as the REQ2 is as-
serted by FW. After it completes the use of bus, the token passes to VG, VC, CPU
or again to VG in that order. The last priority is the CPU and is serviced in the
state “4”. The arbiter grants the signal GNT3 if REQ3 is asserted. Once the CPU
completes the use of PCI bus, the token passes to VG.

13.1.2 Verilog Code for PCI Arbiter Design

The PCI arbiter design code is presented in Verilog_code_13.1. The design module
is named “pci_arbiter”. After declaring the design module, the inputs/outputs are
identified. The arbiter design is a simple FSM and is realized using the case state-
ment. All the conditional states of the request and grant signals are coded in the
same order as the ASM chart and are self-explanatory. The states of the ASM chart
are identified by the signal, “arbiter_state”, in the code. Priority is automatically as-
signed since we have used “if–else if–else” structure in the code.

CPU

GNT3

REQ3
F

CPU

4

T
VG
‘1’

492 Project Design

Verilog_code_13.1
__

module pci_arbiter (// Declare the design module.
 clk, // List I/Os.
 reset_n,
 REQ0,
 REQ1,
 REQ2,
 REQ3,
 GNT0,
 GNT1,
 GNT2,

 GNT3
) ;

input clk ; // Declare the inputs
input reset_n ; // and outputs of the
input REQ0 ; // module.
input REQ1 ;
input REQ2 ;
input REQ3 ;
output GNT0 ;
output GNT1 ;
output GNT2 ;
output GNT3 ;

reg GNT0 ; // Declare outputs as registers.
reg GNT1 ;
reg GNT2 ;
reg GNT3 ;
reg [2:0] arbiter_state ; // State declaration.

always @ (posedge clk or negedge reset_n)

begin
 if (reset_n == 0)
 begin
 // Switch OFF all grant signals to start with.

 GNT0 <= 0 ;
 GNT1 <= 0 ;
 GNT2 <= 0 ;
 GNT3 <= 0 ;

 arbiter_state <= 0 ;
// Initialize the state when the system is reset.

 end

13.1 PCI Bus Arbiter 493

 else
 case (arbiter_state)
 0:
 begin // Wait state.
 // Switch OFF all grants signals.
 GNT0 <= 0 ;
 GNT1 <= 0 ;
 GNT2 <= 0 ;
 GNT3 <= 0 ;

 if (REQ0 == 1)
// If Video Grabber request is asserted,
// go to the Video Grabber state “1”.

 arbiter_state <= 1 ;
// Otherwise, go to the Video Codec, state “2”.

 else if (REQ1 == 1)
 arbiter_state <= 2 ;

// Otherwise, go to the Fire Wire, state “3”.
 else if (REQ2 == 1)
 arbiter_state <= 3 ;

// Otherwise, go to the Host (CPU), state “4”.
 else if (REQ3 == 1)
 arbiter_state <= 4 ;

// Otherwise, go to the WAIT, state “0”.
 else
 arbiter_state <= 0 ;
 end
 1: begin // Switch OFF all grant signals
 // except that of Video Grabber.

 GNT0 <= 1 ;
 GNT1 <= 0 ;
 GNT2 <= 0 ;
 GNT3 <= 0 ;

 if (REQ0 == 1)
 // If Video Grabber request is still asserted,
 // remain in the Video Grabber state “1”.
 arbiter_state <= 1 ;
// Otherwise, go to the Video Codec, state “2”.

 else if (REQ1 == 1)
 arbiter_state <= 2 ;

 // Otherwise, go to the Fire Wire, state “3”.
 else if (REQ2 == 1)
 arbiter_state <= 3 ;

 // Otherwise, go to the Host (CPU), state “4”.
 else if (REQ3 == 1)
 arbiter_state <= 4 ;

 // Otherwise, go to the VG, state “1”.

494 Project Design

 else
 arbiter_state <= 1 ;
 end
 2: begin // Switch OFF all grant signals

 // except that of Video Codec.
 GNT0 <= 0 ;

 GNT1 <= 1 ;
 GNT2 <= 0 ;
 GNT3 <= 0 ;

if (REQ1 == 1)
// If Video Codec request is still asserted, remain in the Video Codec state “2”.

 arbiter_state <= 2 ;
 // Otherwise, go to the Fire Wire state “3”.

 else if (REQ2 == 1)
 arbiter_state <= 3 ;

// Otherwise, go to the CPU state “4”.
 else if (REQ3 == 1)
 arbiter_state <= 4 ;

// Otherwise, go to the VG state “1”.
 else
 arbiter_state <= 1 ;
 end
 3: begin // Switch OFF all grant signals except Fire Wire.

 GNT0 <= 0 ;
 GNT1 <= 0 ;
 GNT2 <= 1 ;
 GNT3 <= 0 ;

if (REQ2 == 1)
// If Fire Wire request is still asserted, remain in the Fire Wire state “3”.

 arbiter_state <= 3 ;
 // Otherwise, go to the Video Grabber, state “1”.

 else if (REQ0 == 1)
 arbiter_state <= 1 ;

// Otherwise, go to the Video Codec, state “2”.
 else if (REQ1 == 1)
 arbiter_state <= 2 ;

// Otherwise, go to the Host (CPU), state “4”.
 else if (REQ3 == 1)
 arbiter_state <= 4 ;

// Otherwise, go to the VG state “1”.
 else
 arbiter_state <= 1 ;
 end

4: begin // Switch OFF all grant signals except
 // that for the Host.

 GNT0 <= 0 ;

13.1 PCI Bus Arbiter 495

 GNT1 <= 0 ;
 GNT2 <= 0 ;
 GNT3 <= 1 ;

if (REQ3 == 1)
// If CPU request is still asserted, remain in the CPU state “4”.

 arbiter_state <= 4 ;
// Otherwise, go to the VG state “1”.

 else
 arbiter_state <= 1 ;
 end
 default: arbiter_state <= 0 ;

 // Otherwise, remain in the WAIT state.
 endcase
end
endmodule
__

13.1.3 Test Bench for the Functional Testing of PCI
Arbiter

Verilog _code_13.2 presents the test bench for the PCI arbiter design presented in
Verilog _code_13.1. As usual, we will run the simulation at 50 MHz. The back
annotated design, “pci_arbiter_banno.v”, is included and is followed by declaring
the test bench as “pci_arbiter_test”. All the test bench stimulus are declared as
“reg”. It may be noted that the grant signals are declared as nets or wires in order
to interconnect the output signals wherever necessary. Next, we shall instantiate
the design of the arbiter. The inputs and outputs can be in any order, calling ports
by name. When we initialize, the timing is zero and, initially, let us make all the
bus requests active. Also initialize the clock and the active low reset signals. The
reset signal is applied at 60 ns for 20 ns, after which the normal working of the ar-
biter commences. We can clear the request signals at regular intervals in order to
study the corresponding effect of the output waveforms during simulation.

Verilog _code_13.2
__

`define clkperiodby2 10 // 10 ns is the half time period (50 MHz).
`include “pci_arbiter_banno.v” // This is the back annotated design file.

module pci_arbiter_test ; // Declare the test module.

reg REQ0 ; // Declare all inputs of
reg REQ1 ; // the design as registers.
reg REQ2 ;
reg REQ3 ;

496 Project Design

reg clk ;
reg reset_n ; // Declare Bus Grant outputs as nets.

wire GNT0 ;
wire GNT1 ;
wire GNT2 ;
wire GNT3 ;

pci_arbiter u1(// Instantiate the design module, calling ports by name.
 .REQ0(REQ0) , // Inputs.
 .REQ1(REQ1) ,
 .REQ2(REQ2) ,
 .REQ3(REQ3) ,
 .GNT0(GNT0) , // Outputs.

 .GNT1(GNT1) ,
 .GNT2(GNT2) ,
 .GNT3(GNT3) ,
 .clk(clk) , // Inputs.
 .reset_n(reset_n)
);
initial
 begin
 REQ0 = 1 ; // At time zero, let the request inputs

 REQ1 = 1 ; // be active.
 REQ2 = 1 ;
 REQ3 = 1 ;
 clk = 0 ; // Initialize clk, and reset_n.
 reset_n = 1 ;
 #60 reset_n = 0 ; // At 60 ns, apply reset.
 #20 reset_n = 1 ; // At 80 ns, let the reset be withdrawn.
 #400 REQ0 = 0 ; // At time 480 ns, let the request input be 0.
 #80 REQ1 = 0 ; // At time 560 ns, let the request input be 0.
 #80 REQ2 = 0 ; // At time 640 ns, let the request input be 0.

#160 REQ0 = 1 ; // At time 800 ns, let the request input be
 // asserted again.

#200 REQ3 = 0 ; // At time 1000 ns, let the request input be 0.

 #1200 // Run long enough to complete the test
 $stop ; // and stop.

 end
always

 #`clkperiodby2 clk <= !clk ; // Toggle to get a free running clk.

endmodule
__

13.1 PCI Bus Arbiter 497

13.1.4 Simulation Results

The back annotated design has been used to run the simulation using Modelsim.
The simulated results for the PCI arbiter are shown in Figures 13.3.1 to 13.3.4. In-
specting the waveform of reset_n, we see that the active low reset is applied at 60
ns and withdrawn at 80 ns, which is in agreement with the test bench we wrote be-
fore. At 0 ns, all the request signals from REQ0 to REQ3 are asserted. Although in
the design, reset is applied at 60 ns, the grant outputs, GNT0 to GNT3, and the
“arbiter_state” are cleared only after gate delays of about 5 ns. The first rising
edge of the “clk”, after the reset is withdrawn, occurs at 90 ns. After a delay of
about 2 ns, the state changes to “1”. When the “clk” strikes again at 110 ns,
GNT0 is asserted at about 115 ns owing to gate delays. This is because REQ0 is
the highest priority although all other requests are also asserted.

In state “1”, the REQ0 is withdrawn at 480 ns. In state “2”, VC request, REQ1,
is recognized and its grant signal GNT1 is asserted at 515.4 ns, simultaneously
withdrawing the VG grant signal. The gate delays are marked at the time axis as
can be seen clearly in Figure 13.3.2. It may be observed in the figures that arbiter
states are different from what we have keyed in in the design. This is because the
synthesis tool has changed their assignments. The grant signals GNT2 and GNT3
are respectively asserted in states 4 (corresponds to 3 of the design) and 8 (corre-
sponds to 4 of the design). Carrying out the waveform analysis in the foresaid
manner, the reader can easily correlate the waveforms and the design.

Fig. 13.3.1 Simulation results of back annotated PCI arbiter (Continued)

498 Project Design

Fig. 13.3.2 and 13.3.3 Simulation results of back annotated PCI arbiter (Con-
tinued)

13.1 PCI Bus Arbiter 499

Fig. 13.3.4 Simulation results of back annotated PCI arbiter

13.1.5 Synthesis Results for PCI Arbiter

The Synplify results are as follows. The reader is urged to examine closely the
state machine assignments made by the synthesis tool. Irrespective of what we
have specified, the tool has recognized arbiter state machine as one hot machine
and assigned the respective states after optimization. It reports a frequency of 242
MHz although we have requested only 50 MHz. This is because we have selected
the device with highest speed in Xilinx Virtex E series and lowest capacity and
package in the series. It is also due to the fact that the design is predominantly reg-
isters. It has taken just 10 LUTs, and is well optimized. The reader can click on
the “RTL View” button in the Synplify tool to see the schematic circuit design of
the design.
Synplify log report :
@I::“D:\user\ram\verilog_latest\dvlsi_des_verilog\pci_arbiter.v”
Verilog syntax check successful!
Selecting top-level module pci_arbiter
Synthesizing module pci_arbiter
@N:“D:\user\ram\verilog_latest\dvlsi_des_verilog\pci_arbiter.v”:53:0:53:5
|Trying to extract state machine for register arbiter_state
Extracted state machine for register arbiter_state
State machine has 5 reachable states with original encodings of:

500 Project Design

 000
 001
 010
 011
 100
@END

Encoding state machine work.pci_arbiter (verilog)-
arbiter_state_h.arbiter_state[4:0]

Worst slack in design: 15.864 (ns)

Starting
clock

Requested
frequency

Estimated
frequency

Requested
period

Estimated
period

Slack

Clk

50.0 MHz

241.8 MHz

20.000

4.136

15.864

Resource usage report for pci_arbiter

Mapping to part: xcv50ecs144-8

Cell usage:

FDC 8 uses
FDP 1 use

I/O primitives:
IBUF 5 uses
OBUF 4 uses
BUFGP 1 use

I/O register bits: 4

Register bits not including I/Os: 5 (0%)
Global Clock Buffers: 1 of 4 (25%)
Total LUTs: 10 (0%)

Original code -> New code

000 -> 00000
001 -> 00001
010 -> 00010
011 -> 00100
100 -> 01000

13.1 PCI Bus Arbiter 501

The Xilinx P&R tool also gives a good result as summarized in the following report.
It shows the number of gates used for the design as 132. The frequency reported is
(294 MHz) higher than that reported by the Synplify tool. But this frequency infor-
mation may be misleading because this is not the total design. The total design is
when we design the entire Video Codec and map all modules on a single chip or
multiple chips. In that case, one may expect the frequency to drop somewhere be-
tween 50 to 100 MHz for the Virtex E series FPGAs. However, it is advisable to run
the P&R tool to part of a design such as the present design since each of the design
parts contribute towards the overall processing speed. If each of the submodules of a
design is taken due care of, then the overall design will take care of itself. It is; there-
fore, better to get the best possible processing speed for smaller design modules in-
dividually. The adage that prevention is better than cure is equally valid in the
realms of digital designs. The tool generates the bit stream, which can be used to
download into the mapped FPGA.
Design Summary:
 Number of slices: 6 out of 768 1%
 Number of slices containing
 unrelated logic: 0 out of 6 0%
 Number of slice flip flops: 5 out of 1,536 1%
 Number of four input LUTs: 10 out of 1,536 1%
 Number of bonded IOBs: 9 out of 94 9%
 IOB flip flops: 4
 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
 Total equivalent gate count for design: 132
 Additional JTAG gate count for IOBs: 480
Device, speed: xcv50e,-8 (PRELIMINARY 1.65 2001-12-19)
Timing Summary:
 Minimum period: 3.401ns (maximum frequency: 294.031MHz)
 Minimum input arrival time before clock: 2.671 ns
 Minimum output required time after clock: 5.419 ns
Saving bit stream in “pci_arbiter.bit”.

13.2 Design of the DCTQ Processor

We need to have an overall bird’s eye view before we design any system. If we
wish to design a chip for an application such as a video compression system using
the DCTQ, we must first define the application clearly. For instance, the applica-
tion is to receive a burst of image/video data and apply a transform such as the
DCT followed by quantization in order to effect compression on a picture. We
may view the DCTQ processor as a black box with inputs and outputs defined to
suit the application requirements. Based on the emerging details, we formulate the

13.1.6 Xilinx Place and Route Results for PCI Arbiter

502 Project Design

specifications. Now, let us examine the specification of the DCTQ design. To start
with, we will see what signals are required to communicate the pixel information
of a picture. For example, we can use a host processor such as the personnel com-
puter in order to communicate the pixel data. Since we need a very high through-
put, especially for compressing high resolution pictures, we can think of using a
parallel bus such as a PCI bus, which we have already discussed in the design of
PCI Bus Arbiter.

In an earlier chapter, we developed an algorithm for processing DCTQ, which re-
quires the application of an image data in 8 × 8 pixel blocks. Any block of image
can be input as one row of a block, i.e., 8 pixels at a time. A 64-bit PCI bus will be
handy here since a block of data can be input in just 8 clock cycles. It may be re-
called that the DCTQ takes 64 clock cycles for processing one block of image.
This aspect was detailed in a previous chapter on architectural design. Assuming
that PCI bus clock, “pci_clk”, and the DCTQ clock, “clk”, are the same, the host
has plenty of free time (56 clock cycles) to attend to other processing cores such
as getting image related information from a Video Grabber card, send data to dis-
play, etc. Since we have established that we need 64 bits of data input, let us label
this data bus as “di[63:0]”. Further, we need a signal to identify which bytes in
“di” are enabled. “be[7:0]” serves this purpose since the data bus is 8 bytes wide.
Also, we need 3 bits of write address, “wa[2:0]”, so that we may write eight rows
of a block of data. All these activities must be synchronous to the clock signal,
“pci_clk”. Further, we need to tell the DCTQ engine when the data input, “di”, is
valid. Let us designate such a signal as “din_valid”. If we have a hardware core
such as the DCTQ, we need to reset it at any point of time. We have an asynchro-
nous, active low signal, “reset_n” for the same. Once we have these signals, we
can communicate the image information from the host processor or any other
processor such as a Video Grabber, which we have discussed earlier. Consolidat-
ing all that we have discussed so far, we can draw a block diagram for the DCTQ
processor as shown in Figure 13.4.

The DCTQ processing can be commenced by asserting the “start” signal. We
can suspend the processing by activating the “hold” pin. Before we input image
data, we need to check whether the DCTQ is “ready” to receive the input. The
output “dctq” is of width, 9 bits to comply with the MPEG 1/MPEG 2 standards.
The validity of this output is indicated by the signal, “dctq_valid”. The
coefficients are identified by an address signal, “addr[5:0]”. Address “0” means
the DCTQ output is the DC coefficient, while other addresses are for the AC coef-
ficients. The address width is 6 bits since there are 64 coefficients for a block of

After we have written one block of information, we can start the DCTQ proc-
ess. While this DCTQ process is going on, we can input the next block of image

concurrently. As there are 64 coefficients for a block, the DCTQ processor is so

13.2.1 Specification of DCTQ Processor

image. Table 13.2 presents the signal descriptions of the DCTQ processor.

13.2 Design of the DCTQ Processor 503

Fig. 13.4 Block diagram of DCTQ processor

designed that coefficients are issued, one every clock cycle, as described in the
chapter on architecture. Thereby, we will require 64 clock cycles for processing
one block of DCTQ, while we need only 8 clock pulses in order to input a block of
raw image. This way, the burden of the host processor, which inputs the image, is
relieved. The DCTQ is really a time consuming operation, which takes 2N3 num-
ber of computations per block, where N is 8 for an 8 × 8 pixel block. Multiplica-
tions and additions are involved in matrix manipulations as was shown in the
chapter on algorithms.

The DCTQ output is 9 bits wide and in twos complement form as per the re-
quirements of JPEG and MPEG standards. All the specifications must conform to
the standards in order to maintain a healthy communication between the product
being designed and compatible products of other vendors. Having formulated the
standards-compliant specifications, we can very well design the DCTQ processor
now.

13.2.2 Sequence of Operations of the Host and the DCTQ
Processors

Before we take the Verilog coding of DCTQ, let us see how the DCTQ processor
communicates with a host processor. The step-by-step operation sequence of the
host and the DCTQ processors are as follows:

dctq_valid

addr[5:0]

dctq[8:0]

DCTQ

reset_n

di[63:0]

be[7:0]

pci_clk

wa[2:0]

clk

din_valid
start

hold

ready

504 Project Design

Table 13.2 DCTQ Core Signal Description

Signal
Input/
Output Description

reset_n Input Asynchronous, active low.
di[63:0] Input One row (8 pixels) of an image block (8 × 8 pix-

els) is input. di[7:0] is the first pixel and di[63:56]
is the last in the row. A pixel is of size 8 bits, un-
signed.

be[7:0]

Input Byte enable signal. Active low be[0] selects
di[7:0] and so on.

wa[2:0]

Input This furnishes the row address of an image block.
wa[0] is the first row.

pci_clk

Input Image input synchronous clock. di[63:0] is written
into the core, wa[2:0] serving as the address syn-
chronous to positive edge of this clock.

din_valid Input This input signals when the input data, di[63:0] is
valid.

start

Input Active high starts and maintains the DCTQ proc-
essing. If de-asserted and re-applied, latency will
come into effect again.

hold

Input DCTQ processing can be kept on hold. De-
asserting resumes the processing without any la-
tency coming into play.

clk Input DCTQ system clock.
ready

Output This signal indicates that the core is ready to ac-
cept image input block.

dctq[8:0] Output DCTQ output in twos complement, valid at posi-
tive edge of “clk”.

addr[5:0]

Output DCTQ coefficient address. “addr[0]” is the DC co-
efficient.

dctq_valid Output This signal indicates the validity of DCTQ coeffi-
cient and its address.

Note: All signals excepting “reset_n” and “be” are active high.

By Host:

1. Assert “reset_n” signal to initialize the DCTQ core.
2. Write an 8 × 8 pixel block of image data (64 bytes) into one block of the

64-byte Dual RAM in the DCTQ processor, 8 bytes at a time, via the data
bus “di[63:0]” after ascertaining that “ready” signal is set by the DCTQ
processor. All the “be” bits may be simultaneously asserted (PCI compati-
ble with “pci_clk” as clock). Also assert “din_valid” signal while inputting
the image data.

13.2 Design of the DCTQ Processor 505

3. Issue “start” signal to begin DCTQ processing. The start signal must be
continuously asserted for continuous processing without latency. If “start”
is withdrawn and re-applied, the latency comes into play once again for the
first block.

4. If the “ready” signal is set now, write the next block of image data into an-
other block of 64-byte Dual RAM in the DCTQ engine. Otherwise wait.

Notes:
1. Repeat step 4 for processing subsequent blocks in succession.
2. The host asserts “reset_n” signal once at the beginning of processing nor-

mally. However, it may apply “reset_n” at any point of time for terminating
the processing.

By DCTQ Core:

1. If “reset_n” is active, initialize all the internal registers and terminate the
current DCTQ processing. Select one RAM bank for the host to write the
image block. One bank is in read-only mode for DCTQ processing, while
the other bank is in write-only mode for the host to write the image block
concurrently. Set the “ready” signal.

2. If “start” is asserted, begin processing. Otherwise, wait. Assert “ready” sig-
nal for the host to write into the other RAM bank concurrently. Compute
DCTQ. The DCTQ coefficients are issued at dctq[8:0] pins, valid at the
positive edge of “clk” with “dctq_valid” signal asserted after a latency of
45 clk cycles. “dctq_valid” signal is continuously asserted as long as the
processing continues without a break. “addr[5:0]” is valid when the DCTQ
is valid. DCTQ is issued every “clk” cycle from 46 th “clk” cycle onwards.
64 coefficients are issued per image block. This implies that one image
block is processed in 64 clk cycles. The first coefficient (addr[5:0] = 0) is
called the DC coefficient and the other 63 are known as AC coefficients.

Note:
1. Step 2 is continuously processed as long as “start” is kept asserted and

“re set_n” or “hold” is not active.

13.2.3 Verilog Code for the DCTQ Design

In the chapter on architectural design, we presented the architecture for the DCTQ
processor. Various blocks therein reflect the corresponding Verilog modules,
which we are presently in the process of coding in this section. In the chapter on
simulation, we presented a model for a design hierarchy. The same is pre-
sented again in Figure 13.5 in order to show all the Verilog modules of DCTQ
processor, wherein the top design module is “dctq”. This module, in turn, calls
various submodules as depicted in Figure 13.5. In the chapter on memories, we
presented the designs of “dualram”, “ram_rc”, “romc” and “romq”. Similarly, we
presented the designs of “adder12s” and “mult11sx8s” in the chapter on arithmetic
circuit designs. The following designs: “adder14sr”, “mult8ux8s”, and “mult12sx8u”
were left as assignments in the chapter on arithmetic circuits. Therefore, these designs

506 Project Design

Fig. 13. 5 Verilog design modules of DCTQ processor

will not be presented in this book. The remaining Verilog modules, namely, the
“dctq”, “dctreg2x8xn”, and “dctq_controller”, will be presented in this section.

We will see how to code the top design module, “dctq”. Verilog _code_13.3
presents the “dctq” module. The design file is named “dctq.v”. We identify all the
submodules in the design using the “include” statements. This is followed by the
declaration of “dctq”. 2D-DCT is a two-stage multiplication of three 8 × 8 matri-
ces: C, X, and CT. The algorithm and architecture of DCTQ were presented in ear-
lier chapters. Input X of DCT is a block (8 × 8 pixels) of image information. DCT
produces 64 coefficients per block. The first coefficient is called the DC coeffi-
cient, and others are known as AC coefficients. The resulting DCT is divided by
the corresponding quantization value stored in a 64B ROM, “romq.v”. The DCTQ
coefficients are identified by the address, “addr”, and are issued keeping in step
with the corresponding “dctq” coefficients. Valid range for the DCTQ address is 0
to 63. This address will prove to be handy in the design of subsequent module,
variable length coder (VLC). Detailed specifications and basic architecture for
VLC will be presented in the last chapter.

It is a good design practice not to include any logic in the main design, which
is referred to as the top module. We merely call all the submodules in the top de-
sign. Any logic required at the top design can be pushed into one or more of the
existing submodules or a new module created exclusively for this purpose. Each
of the submodules may be viewed as a block of circuits for accomplishing certain
functionalities. Naturally, these modules need to be interconnected to form the final

13.2 Design of the DCTQ Processor 507

application. Signals of one submodule may be connected to one or more submod-
ules by declaring them as “wire” as shown in Verilog_code_13.3. For example,
“cnt1_reg[2:0]” signals issued out of “dctq_controller” module is connected to
the read address input “ra” of the “dualram” module and, therefore, the signal
“cnt1_reg[2:0] is declared as “wire”. The same argument holds good for other
signals.

The design closely follows the DCTQ architecture, which was presented in an
earlier chapter. The reader may, therefore, refer the architecture quite frequently in
order to get a feel of the design flowering gradually. Special attention may be be-
stowed on the handshake signals among various modules. The DCTQ code starts
with a good deal of comments explaining what the module deals with. In fact, one
must include apt comments throughout the design so that other designers may
readily understand what we have written and thereby use them in their own de-
signs, where applicable. Also, good comments at a high level will be highly bene-
ficial for the customers or users of your design. Being the top design module, we
identify all the modules used in the design by using “include” statements. Next,
we identify the top design module “dctq” and its inputs/outputs. This is followed
by declaring “wire” as explained earlier.

Next, we invoke all the modules of the design, calling ports by name. The first
module is the “dualram”, which design was presented in the chapter on memories.
Dual RAM is used to read image input block by block (8 × 8 pixels). This is the X
matrix in the algorithm. The signal “rnw”, derived from the “dctq_controller” is to
configure one set of RAM in the “dualram” in “read-only” mode, while the other
set of RAM is automatically configured in “write-only” mode. The next module is
a ROM, “romc”, storing 2C and 2CT. Two times C/CT are used in order to improve
the accuracy. Later on, we will divide the final result by two in order to get the
correct value for DCTQ. C and CT are accessed simultaneously. Both require row
accesses for the computation of DCT. “addr1” and “addr2” inputs are once again
derived from the counters in “dctq_controller” module. They are respectively
“cnt1_reg[5:3]” and “cnt3_reg[2:0]”. “addr1” and “addr2” are for fetching C and
CT matrices. “do” is the image input, “X” and “d1” is the C output. “do” is un-
signed, while “d1” is in twos complement. C is used in the first stage multiplica-
tion, u11–u18, while CT is used in the second stage multiplication, u21–u28.

CX is computed using eight multipliers, “mult8ux8s”. “result” are the products
of C and X and are in twos complement. These results correspond to one row of
cosine coefficients (in 8 × 8 matrix) and one column of X (also of size 8 × 8). Par-
tial products of CX (result1 to result8) are added by the next module, “adder12s”
in order to get 12 bits of result. Excess bits are discarded since the chip area will
be less and the quality of reconstructed image does not suffer much. The added
result is stored in partial product registers, p0–p7, using the next module,
“dctreg2x8xn”. Only 11-bit signed (integer) is retained after dropping 3 bits after
decimal point. It may be recalled that C was actually taken as 2C in the ROM and
hence, 1 more bit is dropped. Similarly for CT. “cnt2_reg[2:0]” is used as the ad-
dress pointer for “p0” to “p7”. This counter and its enable signal, “encnt2”, are
generated by the controller.

508 Project Design

In the second stage, we take the partial products, p0–p7, and multiply them
with the corresponding column elements of CT, as presented in the algorithm and
architecture, to produce independent multiplied results indicated as “res1” through
“res8”, each of precision, 19 bits. The eight multipliers, “mult11sx8s”, of this
stage are u21 to u28. Note that the bit precision has increased. “d2” is the CT out-
put, fed as one of the inputs to these multipliers. These results, “res1” through
“res8” are added together using the module, “adder14sr”. Note that we retain only
the most significant 14 bits for each input of this adder. The added result, natu-
rally, is 3 bits more. Once again, we truncate the result and retain only 12 bits.
This is the DCT output. 12 bits precision for DCT complies with the standards.

The precision required at various stages can be arrived at based on the quality
of the reconstructed image. We will, however, have high precision computation
for DCTQ and reconstruction in Matlab in order to serve as a standard reference
for verifying the performance of hardware coded in Verilog. The Matlab codes for
this application were presented in a previous chapter on verification of algorithms
using high level languages. If the hardware result is close to the Matlab result, say,
within 0.5 dB, then we accept the precisions as such at various stages of the
DCTQ computation.

Next process is the quantization, in which each of the 64 DCT coefficients is
divided by a corresponding quantization value such as 8, 16, etc. In the present de-
sign, the default values recommended in the standards is adopted. Instead of using
a divider, we can use a multiplier, taking inverse quantization values instead of
quantization values. We multiply the inverse quantization values by 16 so that
precision of the resulting values increases. Later on, the final result can be divided
by 16 to get the correct value for the DCTQ. 16/Quantization value, “qout” is
fetched from a ROM, “romq” as shown in the code. The address for this ROM is
fed from a 6-bit counter, “cnt4_reg” generated by the “dctq_controller”. The final
stage is a multiplier, “mult12sx8u” u31 to multiply the “dct” (12 bits in twos com-
plement) and “qout” (unsigned) to get the final output, DCTQ. The result, which is
20 bits is divided by 16 by dropping 4 bits. The 16-bit DCTQ obtained as a result
is further truncated in order to get a 9-bit integer. The 9-bit DCTQ, “dctq[8:0]” in
twos complement, conforms to the image/video standards, JPEG/MPEG-1/MPEG-
2 standards, etc. “dctq_valid” is asserted whenever DCTQ is valid and “addr” pro-
vides the address of the DCTQ coefficient. “addr” is 0 for the DC coefficient, and
1 to 63 for AC coefficients.

Verilog_code_13.3
__

/* DCTQ RTL Code

This is the top-level design module for the computation of DCTQ. The design file
is “dctq.v”. DCTQ prepares the ground for effective compression of data, espe-
cially that from images, be it still or motion pictures (also referred to as Video).

2D-DCT is a simple two-stage multiplication of three 8 × 8 matrices: C, X, and CT.

13.2 Design of the DCTQ Processor 509

 Input of DCT is a block (8 × 8 pixels) of image information.
 DCT produces 64 coefficients

- The first coefficient is referred to as the DC coefficient,
 while others are known as AC coefficients.

 The resulting DCT is divided by the corresponding quantization value stored
 in 64B ROM, “romq.v”.
 “addr” is the address of the issued DCTQ coefficient. Valid range: 0–63.
 See the DCTQ document for details of signals used.
*/

`include “dualram.v” // These files are the submodules
`include “adder12s.v” // used in the design.
`include “adder14sr.v”
`include “dctreg2x8xn.v”
`include “mult8ux8s.v”
`include “mult11sx8s.v”
`include “mult12sx8u.v”
`include “romc.v”
`include “romq.v”
`include “dctq_controller.v”

 module dctq (// Declare the design module

 pci_clk, // and its inputs/outputs.
 clk,
 reset_n,
 start,
 di,
 din_valid,
 wa,
 be,
 hold,
 ready,
 dctq,
 dctq_valid,
 addr

);
input pci_clk ;
input clk ;
input reset_n ;
input start ;
input din_valid ;
input hold ;
input [63:0] di ;
input [2:0] wa ;
input [7:0] be ;

510 Project Design

output ready ;
output [8:0] dctq ;
output dctq_valid ;
output [5:0] addr ;

wire ready ; // Declare the nets of the design.
wire [8:0] dctq ;
wire dctq_valid ;
wire [5:0] addr ;
wire rnw ;
wire encnt2 ;
wire [15:0] result1 ;
wire [15:0] result2 ;
wire [15:0] result3 ;
wire [15:0] result4 ;
wire [15:0] result5 ;
wire [15:0] result6 ;
wire [15:0] result7 ;
wire [15:0] result8 ;
wire [14:0] sum1 ;
wire [11:0] dct ;
wire [63:0] do ;
wire [63:0] d1 ;
wire [63:0] d2 ;
wire [10:0] qr0 ;
wire [10:0] qr1 ;
wire [10:0] qr2 ;
wire [10:0] qr3 ;
wire [10:0] qr4 ;
wire [10:0] qr5 ;
wire [10:0] qr6 ;
wire [10:0] qr7 ;
wire [18:0] res1 ;
wire [18:0] res2 ;
wire [18:0] res3 ;
wire [18:0] res4 ;
wire [18:0] res5 ;
wire [18:0] res6 ;
wire [18:0] res7 ;
wire [18:0] res8 ;

 wire [5:0] cnt1_reg ;
wire [2:0] cnt2_reg ;
wire [2:0] cnt3_reg ;
wire [5:0] cnt4_reg ;
wire [7:0] qout ;

13.2 Design of the DCTQ Processor 511

// Dual RAM to read image input block (8 × 8 pixels) by block.
// This is the X matrix in the algorithm.

 .pci_clk(pci_clk),
 .rnw(rnw),
 .be(be),
 .ra(cnt1_reg[2:0]),
 .wa(wa),
 .di(di),
 .din_valid(din_valid),
 .do(do)

);
// Dual RAM has two pipeline registers, one after “ram_rc.v” and the other at
// the output of dualram.v.
/*
The following module is a ROM storing 2C and 2CT (two times C/CT in order to
improve the accuracy). C and CT are accessed simultaneously. Both require row
accesses for the computation of DCT.
*/
romc romc1 (.clk(clk),

 .addr1(cnt1_reg[5:3]),
 .addr2(cnt3_reg[2:0]),
 .dout1(d1),
 .dout2(d2)

) ;
/*
 ROM (romc.v) also has two pipeline registers, to keep pace with “dualram”.
“addr1” and “addr2” are for fetching C and CT matrices. C is used in the first stage
multiplication, u11–u18, while CT is used in second stage multiplication, u21–u28.
CX is computed using the following eight multipliers. “do” is the image input,
“X” and “d1”, is the C input. “do” is unsigned, while “d1” is in twos complement.
“result” is in twos complement.
*/

mult8ux8s u11(.clk(clk),

 .n1(do[63:56]),
 .n2(d1[63:56]),
 .result(result1) //16-bit signed

) ;
mult8ux8s u12(.clk(clk),

 .n1(do[55:48]),
 .n2(d1[55:48]),
 .result(result2) //16-bit signed

) ;

dualram dualram1 (.clk(clk),

512 Project Design

mult8ux8s u13(.clk(clk),
 .n1(do[47:40]),
 .n2(d1[47:40]),
 .result(result3) //16-bit signed

) ;
mult8ux8s u14(.clk(clk),

 .n1(do[39:32]),
 .n2(d1[39:32]),
 .result(result4) //16-bit signed

) ;
mult8ux8s u15(.clk(clk),

 .n1(do[31:24]),
 .n2(d1[31:24]),
 .result(result5) //16-bit signed

) ;
mult8ux8s u16(.clk(clk),

 .n1(do[23:16]),
 .n2(d1[23:16]),
 .result(result6) //16-bit signed

) ;
mult8ux8s u17(.clk(clk),

 .n1(do[15:8]),
 .n2(d1[15:8]),
 .result(result7) //16-bit signed

) ;

mult8ux8s u18(.clk(clk),

 .n1(do[7:0]),
 .n2(d1[7:0]),
 .result(result8) //16-bit signed

) ;
// Partial products of CX are added here.
adder12s adder12s1(
 .clk(clk),
 .n0(result1[15:4]), // 12-bit signed Ex.: (156).0010
 .n1(result2[15:4]), // Five pipeline stages – output
 // not registered
 .n2(result3[15:4]), // since it is registered in the
 // following dctreg1.
 .n3(result4[15:4]),
 .n4(result5[15:4]),
 .n5(result6[15:4]),
 .n6(result7[15:4]),
 .n7(result8[15:4]),
 .sum(sum1)

) ;

13.2 Design of the DCTQ Processor 513

 // Three stage addition means 3 bits more.
// Therefore, sum1[14:0] is 15-bit signed.

dctreg2x8xn #(11) dctreg1(// Partial product registers, p0–p7.
 .clk(clk),
 .din(sum1[14:4]),

// 11-bit signed (integer) – dropping 3 bits after decimal point.
// C was actually taken as 2C in the ROM and

 // hence 1 more bit is dropped. Similarly for CT.
 .wa(cnt2_reg[2:0]),
 .enreg(encnt2),
 .qr0(qr0), // This is “p0”,
 .qr1(qr1), // “p1”, etc.
 .qr2(qr2),
 .qr3(qr3),
 .qr4(qr4),
 .qr5(qr5),
 .qr6(qr6),
 .qr7(qr7) // “p7”, 11-bit signed

);
mult11sx8s u21(.clk(clk),
 .n1(qr0),

// 11-bit signed – Partial sum of product, “p0” of CX
 .n2(d2[63:56]), // 8-bit signed CT
 .result(res1) // 19-bit signed, [18:0]
) ;
mult11sx8s u22(.clk(clk),
 .n1(qr1), // 11-bit signed – Partial sum of product of CX
 .n2(d2[55:48]),
 .result(res2)

) ;
mult11sx8s u23(.clk(clk),
 .n1(qr2), // 11-bit signed – Partial sum of product of CX
 .n2(d2[47:40]),
 .result(res3)
) ;
mult11sx8s u24(.clk(clk),
 .n1(qr3), // 11-bit signed – Partial sum of product of CX
 .n2(d2[39:32]),
 .result (res4)
) ;
mult11sx8s u25(.clk(clk),
 .n1(qr4), // 11-bit signed – Partial sum of product of CX
 .n2(d2[31:24]),
 .result(res5)
) ;

514 Project Design

mult11sx8s u26(.clk(clk),
 .n1(qr5), // 11-bit signed – Partial sum of product of CX
 .n2(d2[23:16]),
 .result(res6)
) ;
mult11sx8s u27(.clk(clk),
 .n1(qr6), // 11-bit signed – Partial sum of product of CX
 .n2(d2[15:8]),
 .result(res7)
) ;
mult11sx8s u28(.clk(clk),
 .n1(qr7), // 11-bit signed – Partial sum of product, CX
 .n2(d2[7:0]), // 8-bit signed
 .result(res8) // 19-bit signed
) ;
// Above multiplied results are added as follows:
adder14sr adder14sr1(.clk(clk),
 .n0(res1[18:5]), // 14-bit signed
 .n1(res2[18:5]),
 .n2(res3[18:5]),
 .n3(res4[18:5]),
 .n4(res5[18:5]),
 .n5(res6[18:5]),
 .n6(res7[18:5]),
 .n7(res8[18:5]),
 .dct(dct[11:0])

 // 12-bit signed, [11:0] – This is the DCT output.
) ;
// This module (adder14sr.v) has six pipeline stages – output is registered.

// Quantization stage – 64B ROM, decimal point before msbs of the
// quantization values.
romq romq1 (// 16/Quantization value is fetched from ROM.

.clk(clk),
 .a(cnt4_reg),
 .d(qout)
);
mult12sx8u u31 (.clk(clk),
 .n1(dct[11:0]),
 .n2(qout),
 .dctq(dctq)

);
/*
16/quantization value is multiplied with the DCT output above to get the final
9-bit DCTQ output.

13.2 Design of the DCTQ Processor 515

“n1” is DCT, signed, 12 bits integer.
“n2” is unsigned, 8 bits, decimal point before msb.
“dctq[8:0]” conforms to JPEG/MPEG-1/MPEG-2 standards, etc.
“dctq_valid” is asserted whenever DCTQ is valid and “addr” provides the address
of the DCTQ coefficient.
addr = 0 for the DC coefficient, addr = 1 to 63 for AC coefficients.
*/

// Following is the DCTQ Controller.
dctq_controller dctq_control1 (.clk(clk),
 .reset_n(reset_n),
 .start(start),
 .hold(hold),
 .ready(ready),
 .rnw(rnw),
 .dctq_valid(dctq_valid),
 .encnt2(encnt2),
 .cnt1_reg(cnt1_reg),
 .cnt2_reg(cnt2_reg),
 .cnt3_reg(cnt3_reg),
 .cnt4_reg(cnt4_reg),
 .addr(addr) // This is essentially cnt5_reg[5:0].
);
endmodule
__

Code for Partial Products, p0–p7, of CX Matrix

Verilog _code_13.4 presents the “dctreg2x8xn” module. This code is put in a file
named “dctreg2x8xn.v”. A set of eight numbers of 11-bit registers qr0 to qr7 are
used to store the partial products of p0–p7 of CX. As usual, in the module declara-
tion, we list all the inputs and outputs. “din” is the input of this module to receive
partial products, which appear sequentially starting from p0. Every clock, a new
data in the order, p0, p1, …, p7, will come into “din”, which will have to be stored
in the registers qr0 to qr7 in the same order. The partial products p0, p1, …, p7 are
respectively addressed by the signal “wa” as 0, 1, …, 7. These are stored only
when the enable signal “enreg” is set. The “controller” module takes care to acti-
vate these signals “wa” and “enreg” at the appropriate time.

As in “C” language, the Verilog permits declaring a variable as a parameter.
We can assign different values to the parameter and use the variable elsewhere in
the code. In the present code, the “WIDTH” of partial product registers is declared
as 11 (bits). The “always” block is used to store the partial products at the positive
edge of the clock, “clk”. In this block, we simply assign the “din” value to the ap-
propriate registers depending upon the write address, “wa”. The address itself is
one of the inputs. All these are processed only if the enable signal is high. These
partial products must be stable until the end of next clock pulse. The reader may

516 Project Design

wonder, why extra registers, q0 through q6 are used. The explanation for this is as
follows. With the arrival of the first clock, p0 (appearing at “din” pin) is stored
in “q0” register. In subsequent six clocks, p1 to p6 are stored in “q1” to “q6”
registers.

With the arrival of the eighth clock, the values in q0 to q6 are transferred to the
registers qr0 to qr6. Simultaneously, the last partial product, p7, is also stored into
“qr7”. When the ninth clock arrives, “q0” will be overwritten by a new data. Simi-
larly, other registers “q1” to “q6” will be overwritten in subsequent clocks. But we
need the partial products p0–p7 to be stable for 8 clock cycles in order to compute
the multiplications of p0–p7 with all the eight columns of CT, without which DCT
cannot be computed. This problem can be solved if we provide extra registers,
“q0” to “q6”. Although “q1” to “q6” registers are overwritten, the registers qr0 to
qr7 will be stable for 9th to 16th clock cycles. They will be overwritten only with
the arrival of sixteenth clock pulse.

Verilog _code_13.4
__
/*
Place this code in a file named “dctreg2x8xn.v”.
A set of eight 11-bit registers (qr0–qr7) to store the partial products, p0–p7, of CX
is created in this module.
*/

module dctreg2x8xn (clk,

wa, // Pointer to p0–p7.
din,
enreg,
qr0,
qr1,
qr2,
qr3,
qr4,
qr5,
qr6,
qr7
);

parameter WIDTH = 11 ; // Change this for any other size.

output [(WIDTH-1):0] qr0;
output [(WIDTH-1):0] qr1;
output [(WIDTH-1):0] qr2;
output [(WIDTH-1):0] qr3;
output [(WIDTH-1):0] qr4;
output [(WIDTH-1):0] qr5;
output [(WIDTH-1):0] qr6;
output [(WIDTH-1):0] qr7;

13.2 Design of the DCTQ Processor 517

input [(WIDTH-1):0] din;
input [2:0] wa;
input enreg,
input clk;

reg [(WIDTH-1):0] qr0;
reg [(WIDTH-1):0] qr1;
reg [(WIDTH-1):0] qr2;
reg [(WIDTH-1):0] qr3;
reg [(WIDTH-1):0] qr4;
reg [(WIDTH-1):0] qr5;
reg [(WIDTH-1):0] qr6;
reg [(WIDTH-1):0] qr7;

reg [(WIDTH-1):0] q0;
reg [(WIDTH-1):0] q1;
reg [(WIDTH-1):0] q2;
reg [(WIDTH-1):0] q3;
reg [(WIDTH-1):0] q4;
reg [(WIDTH-1):0] q5;
reg [(WIDTH-1):0] q6;

always @ (posedge clk)
begin

if (enreg)
begin

case (wa)
3'b000: q0 <= din; // Register “p0” in clk(1)
3'b001: q1 <= din; // Register “p1” in clk(2),
3'b010: q2 <= din; // etc.
3'b011: q3 <= din;
3'b100: q4 <= din;
3'b101: q5 <= din;
3'b110: q6 <= din; // Register “p6” in clk(7)
3'b111:
 begin
 qr0 <= q0; // Register “p0–p7” in
 qr1 <= q1; // clk(8).
 qr2 <= q2;
 qr3 <= q3;
 qr4 <= q4;
 qr5 <= q5;
 qr6 <= q6;
 qr7 <= din;

 end
endcase

518 Project Design

end
 end
endmodule
__

DCTQ Controller Code

assign encnt1_next = ((start_reg1 == 1'b1)&&(cnt1_reg == 0)) ? 1'b1 : 1'b0;
assign discnt1_next = ((start_reg1 == 1'b0)&&(cnt1_reg == 6'd63)) ? 1'b1:1'b0;
When the “start_reg1”, which is derived from the “start” input of the top design
“dctq”, is high and the cnt1_reg is 0, then the first counter is enabled. This condi-
tion occurs right at the beginning when the user asserts the “start” signal (after
reset signal is withdrawn) to commence the DCTQ computation. When the
start_reg1 is low (signifying that the input “start” is withdrawn to terminate the
DCTQ processing) and cnt1_reg is 63, that is, when the DCTQ engine completes
processing the last coefficient of a block, then the counter “cnt1_reg” is disabled.

It is always a good practice to have only one signal in one “always” block. This
practice is in vogue in industries. If we mix a number of signals in one always
block, we are likely to end up in a mess. Only on rare occasions, we may have two
or three closely related signals in an always block. Note that all the “always”
sequential blocks have their respective signals initialized when system reset (re-
set_n) is applied, and the signals’ value are frozen so long as “hold” signal is as-
serted. The enable signals, “encnt2” to “encnt5”, are activated when the first
counter “cnt1_reg” is respectively 14, 20, 35, and 44 in order to allow the counters
“cnt2_reg” to “addr” to start running at the appropriate time. As described earlier,
“discnt1_next” disables all the enable signals, “encnt1” to “encnt5”. The enable
signals are followed by “always” blocks for counters “cnt2_reg” to “addr”, which
are self-explanatory. “cnt1_reg” to “cnt4_reg” serve as the read addresses for the
modules, “dualram”, “romc”, “dctreg2x8xn” and “romq”, and “addr” serves as the
address of the DCTQ coefficients as was described earlier in the top design,
“dctq”.

We will now see how the “rnw” signal works. This signal is for configuring
one block (64B) of RAM in the “dualram” module in write-only mode and the
other block of RAM in read-only mode. In the “rnw” always block, toggle “rnw”

The controller is the last module in the DCTQ design, named “dctq_controller” as
presented in Verilog_code_13.5. Put the module in a file called “dctq_controller.v”.
This module generates all the control and handshake signals required for various
other modules for effective computation of DCTQ coefficients. We have five count-
ers, “cnt1_reg” to “cnt4_reg” and “addr” in the controller design. We need pre-
incremented signals for these counters in order to increase the processing speed of
the DCTQ Processor, and they are realized in the first five “assign” statements.
The first four counters are the pipeline registers and counter “addr” serves as the
address of the DCTQ coefficients. Each of the five counters mentioned earlier has
enable signals. These signals, “encnt1” to “encnt5” are realized by five “always”
sequential blocks. The following two statements are for generating the advanced
enable and disable signals respectively for the first counter:

13.2 Design of the DCTQ Processor 519

after the first block of RAM is written, which is kept track of by signals,
“swrnw1” and “cnt_0 = 1”. “cnt_0” is cleared if “swrnw1” is asserted. Also, tog-
gle “rnw” after every DCTQ block is processed. This is based on “swrnw2”. The
next always block is the “ready” block, which informs the host processor that the
DCTQ processor is ready to accept image input block. This signal reacts within 2
clock cycles (owing to cnt1_reg = 1 after a block of DCTQ is processed).

The next always block is the DCTQ valid signal, “dctq_valid”. It is de-asserted
when the system reset or hold signal is asserted. When the “cnt1_reg” is 44, then
the DCTQ valid is set, and another signal, “dctq_prev signal” is also set. This sig-
nal keeps track of where the processing stopped after the hold signal was asserted.
In order to continue from where DCTQ processing stopped earlier, the hold signal
is de-asserted. This can be understood by studying the “dctq_valid” block care-
fully. The last always block is for the “start_reg1” signal, which we considered
earlier. When the “start” input is asserted and “cnt1_reg” is ‘0’, then “start_reg1”
will be set with the following clock pulse. If the “start” input is withdrawn and
“cnt1_reg” is 62, then “start_reg1” is reset. This completes the controller module.

The DCTQ design has a total of 17 multipliers, two adders, Dual RAM, two
ROMs, etc. and, all of them work concurrently with fresh data being input at every
clock cycle. Once the pipeline (45 depth) is full, the DCTQ coefficients are issued
one every clock cycle without a break. Two sets of eight multipliers and two ad-
ders work in parallel, thus providing a high throughput. Hence the design becomes
massively parallel and highly pipelined, which features make it ably suited for im-

Verilog _code_13.5
__

// Place this code in a file named “dctq_controller.v” file.
// This submodule generates all the control and handshake signals required for
// effective computation of DCTQ coefficients.

module dctq_controller (// Declare the submodule

 clk, // and I/Os.
 reset_n,

 start,
 hold,
 ready,
 rnw,
 dctq_valid,
 encnt2,
 cnt1_reg,

cnt2_reg,
cnt3_reg,

 cnt4_reg,
 addr

);

plementation on an FPGA or as an ASIC.

520 Project Design

input clk ;
input reset_n ;
input start ;
input hold ;
output ready ;
output rnw ;
output dctq_valid ;
output encnt2 ;
output [5:0] cnt1_reg ;
output [2:0] cnt2_reg ;
output [2:0] cnt3_reg ;
output [5:0] cnt4_reg ;
output [5:0] addr ;

reg ready ;
reg rnw ;
reg dctq_valid ;
reg dctq_valid_prev ;
reg start_reg1 ;
reg cnt_0 ;
reg [5:0] cnt1_reg ;
reg [2:0] cnt2_reg ;
reg [2:0] cnt3_reg ;
reg [5:0] cnt4_reg ;
reg [5:0] addr ;
reg encnt1 ;
reg encnt2 ;
reg encnt3 ;
reg encnt4 ;
reg encnt5 ;

wire start_next1 ;
wire encnt1_next ;
wire discnt1_next;
wire swrnw1 ;
wire swrnw2 ;
wire swon_ready ;
wire [5:0] cnt1_next ;
wire [2:0] cnt2_next ;
wire [2:0] cnt3_next ;
wire [5:0] cnt4_next ;
wire [5:0] cnt5_next ;

assign cnt1_next = cnt1_reg + 1 ; // Increment counters in advance.
assign cnt2_next = cnt2_reg + 1 ;
assign cnt3_next = cnt3_reg + 1 ;

13.2 Design of the DCTQ Processor 521

assign cnt4_next = cnt4_reg + 1 ;
assign cnt5_next = addr + 1 ;
assign encnt1_next = ((start_reg1 == 1'b1)&&(cnt1_reg == 0)) ? 1'b1 : 1'b0 ;
assign discnt1_next = ((start_reg1 == 1'b0)&&(cnt1_reg == 6'd63)) ? 1'b1:1'b0 ;
 // Conditions for enabling/disabling counter, “cnt1_reg”.
always @ (posedge clk or negedge reset_n)

begin // Generate enable for cnt1.
 if (reset_n == 1'b0)
 encnt1 <= 1'b0 ;
 else if (hold == 1'b1)
 encnt1 <= encnt1 ;
 else if (encnt1_next == 1'b1)

 encnt1 <= 1'b1 ;
else if (discnt1_next == 1'b1)

 encnt1 <= 1'b0 ;
else

 encnt1 <= encnt1 ;
 end

always @ (posedge clk or negedge reset_n)
begin // Generate enable for cnt2.

 if (reset_n == 1'b0)
 encnt2 <= 1'b0 ;

 else if (hold == 1'b1)
 encnt2 <= encnt2 ;

 else if (discnt1_next == 1'b1)
 encnt2 <= 1'b0 ;

 else if (cnt1_reg == 6'd14)
 // cnt2 is enabled when cnt1_reg = 14 dec.

 encnt2 <= 1'b1 ;
 else

 encnt2 <= encnt2 ;
end

always @ (posedge clk or negedge reset_n)
begin // Generate enable for cnt3.
 if (reset_n == 1'b0)
 encnt3 <= 1'b0 ;

 else if (hold == 1'b1)
 encnt3 <= encnt3 ;

 else if (discnt1_next == 1'b1)
 encnt3 <= 1'b0 ;

 else if (cnt1_reg == 6'd20)
 // cnt3 is enabled when cnt1_reg = 20 dec

 // since ROM CT has two pipeline stages.
 encnt3 <= 1'b1 ;

 else

522 Project Design

 encnt3 <= encnt3 ;
end

always @ (posedge clk or negedge reset_n)
begin // Generate enable for cnt4.

 if (reset_n == 1'b0)
 encnt4 <= 1'b0 ;

 else if (hold == 1'b1)
 encnt4 <= encnt4 ;

 else if (discnt1_next == 1'b1)
 encnt4 <= 1'b0 ;

 else if (cnt1_reg == 6'd35)
// cnt4 is enabled when cnt1_reg = 35 dec.

 encnt4 <= 1'b1 ;
 else

 encnt4 <= encnt4 ;
end

always @ (posedge clk or negedge reset_n)
begin // Generate enable for cnt5.

 if (reset_n == 1'b0)
 encnt5 <= 1'b0 ;

 else if (hold == 1'b1)
 encnt5 <= encnt5 ;

 else if (discnt1_next == 1'b1)
 encnt5 <= 1'b0 ;

 else if (cnt1_reg == 6'd44)
 // cnt5 is enabled when cnt1_reg = 44 dec.

 encnt5 <= 1'b1 ;
 else

 encnt5 <= encnt5 ;
end

always @ (posedge clk or negedge reset_n)

begin // Realize cnt1.
 if (reset_n == 1'b0)

 cnt1_reg <= 6'd00 ;
 else if (hold == 1'b1)
 cnt1_reg <= cnt1_reg ;
 else if (encnt1 == 1'b1)

 cnt1_reg <= cnt1_next ;
 else

 cnt1_reg <= cnt1_reg ;
end

always @ (posedge clk or negedge reset_n)
begin // Realize cnt2.

13.2 Design of the DCTQ Processor 523

 if (reset_n == 1'b0)
 cnt2_reg <= 6'd00 ;

 else if (hold == 1'b1)
 cnt2_reg <= cnt2_reg ;

 else if (encnt2 == 1'b1)
 cnt2_reg <= cnt2_next ;

 else
 cnt2_reg <= cnt2_reg ;
end

always @ (posedge clk or negedge reset_n)
begin // Realize cnt3.
 if (reset_n == 1'b0)
 cnt3_reg <= 6'd00 ;

else if (hold == 1'b1)
 cnt3_reg <= cnt3_reg ;

else if (encnt3 == 1'b1)
 cnt3_reg <= cnt3_next ;

else
 cnt3_reg <= cnt3_reg ;
end

always @ (posedge clk or negedge reset_n)
begin // Realize cnt4.

 if (reset_n == 1'b0)
 cnt4_reg <= 6'd00 ;

 else if (hold == 1'b1)
 cnt4_reg <= cnt4_reg ;

 else if (encnt4 == 1'b1)
 cnt4_reg <= cnt4_next ;

 else
 cnt4_reg <= cnt4_reg ;
end

always @ (posedge clk or negedge reset_n)
begin // Realize “cnt5” or “addr”.

 if (reset_n == 1'b0)
 addr <= 6'd00 ;

 else if (hold == 1'b1)
 addr <= addr ;

 else if (encnt5 == 1'b1)
 addr <= cnt5_next ;

 else
 addr <= addr ;
end

assign swrnw1 = ((start_reg1 == 1'b1)&&(cnt1_reg == 0)&&(cnt_0 == 1'b1))
? 1'b1 : 1'b0 ;

524 Project Design

assign swrnw2 = ((start_reg1 == 1'b1)&&(cnt1_reg == 63)) ?1'b1 : 1'b0 ;

always @ (posedge clk or negedge reset_n)

begin
 if (reset_n == 1'b0)
 begin

 cnt_0 <= 1'b1 ;
 rnw <= 1'b1 ;
 end
 else if (hold == 1'b1)
 rnw <= rnw ;
 else if (swrnw1)
 begin

 cnt_0 <= 1'b0 ;
 rnw <= !rnw ; // Toggle after the first
 // block of RAM is written.

 end
 else if (swrnw2)

 rnw <= !rnw ; // Toggle after every DCTQ
 // block is processed.

 else
 rnw <= rnw ;

end

assign swon_ready = ((start_reg1 == 1'b1)&&(cnt1_reg ==6'd01)) ? 1'b1 : 1'b0 ;

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 ready <= 1'b1;
 else if (hold == 1'b1)
 ready <= ready ;
 else if (swon_ready)
 ready <= 1'b1;
 else
 ready <= !start_reg1 ;

end
always @ (posedge clk or negedge reset_n)

begin
 if (reset_n == 1'b0)
 begin
 dctq_valid_prev <= 1'b0 ;
 dctq_valid <= 1'b0 ;
 end
 else if (hold == 1'b1) // Asserting hold clears
 begin

13.2 Design of the DCTQ Processor 525

 dctq_valid <= 1'b0 ; // valid signal.
 end
 else if (cnt1_reg == 6'd44) // DCTQ is valid from cnt1_reg = 44
 // onwards.
 begin
 dctq_valid <= 1'b1 ;
 dctq_valid_prev <= 1'b1 ;
 end
 else if (hold == 1'b0)
 dctq_valid <= dctq_valid_prev ;
 else
 dctq_valid <= dctq_valid ;

end

assign start_next1 = (start == 1'b1)&&(cnt1_reg == 0) ;

always @ (posedge clk or negedge reset_n)
begin

if (reset_n == 1'b0)
 start_reg1 <= 1'b0 ;
else if (hold == 1'b1)
 start_reg1 <= start_reg1 ;
else if (start_next1)
 start_reg1 <= 1'b1 ;
else if ((start == 1'b0)&&(cnt1_reg == 6'd62))
 start_reg1 <= 1'b0 ;
else
 start_reg1 <= start_reg1 ;
end

endmodule
__

13.2.4 Test Bench for the DCTQ Design

Verilog_code_13.6 presents the test bench for the DCTQ Design. As usual, we will
run the simulation at 100 MHz and, therefore, we have a “clock period divided by
two” variable assigned the value of 5 ns. We define a variable “NUM_BLKS” as
1024 in order to indicate the number of blocks in a picture such as “Lena” of size,
256 × 256 pixels. We also include the design module, “dctq”. The test bench is
declared as “dctq_test”. All inputs are declared as “Reg” and outputs as “wire”.
We declare “i”, the current number of blocks processed and “fp1”, the handle of
the output file as integers. The following statement defines the register buffer to
accommodate an image or one frame of a video sequence:

reg [63:0] mem [8191:0] ;
The explanation of this statement is offered in the comments of the test bench.

526 Project Design

Next, we invoke the design, “dctq”, calling ports in the design by name. This is
followed by an “initial” block. The statement, $readmemh (“lena.txt”, mem);
reads the disk file of the image, “lena.txt”, in hex format into the buffer named
“mem”, which was described earlier. In a later section, we will see how to get an
image text file such as “lena.txt” using Matlab. We also identify the output disk
file, “dctq.txt”, which will contain the DCTQ output after running the test bench
of the design in the simulator. After initializing various signals, we apply the reset
followed by the start data input (start_din) signal. After running the simulation for
a specified time, the DCTQ output file is closed and processing stopped. By that
time, the simulation would have processed one frame or an image. The next two
always statements are for running the two clocks.

The always block, after the two assign statements, is processed only when any
of the inputs listed therein changes and not otherwise. With the arrival of
“pci_clk” after “start_din” is set and the running counter “i”, which keeps track of
the number of blocks of image remaining to be processed, is not “0”, then the data
input valid signal “din_valid” is asserted, the write address “wa” is initialized to
point to the first row of an image block and read them into “di” input of the “dctq”
design. “wa” is also incremented to address the next row of the image block. The
above process is repeated seven more times to complete writing a whole image
block in 8 clock cycles. With the arrival of the next clock, “din_valid” is de-
asserted and waits for DCTQ Processor to be “ready”. When the next clock ar-
rives, “start” signal is asserted for the DCTQ engine to commence the processing
and the block counter “i” is decremented. Since “i” has changed, control reverts
back to start of the “always” block to repeat the above process till all the blocks
are processed. When the last block is processed, “i” reduces to “0” and the control
branches to wait for the “eobcnt_reg” to equal the `NUM_BLKS. When this con-
dition is met, the DCTQ output file “dctq.txt” is closed and the process stops.

“stopproc” signal indicates the condition that the last block is already proc-
essed, and the next sequential block senses this condition to disable writing of the
DCTQ output file. The end of block “eob” is sensed when the DCTQ address,
“addr”, is 63, meaning that it has processed all the 64 coefficients in a block. This
is processed in a sequential block for “eob”. The next sequential block is a simple
counter, “eobcnt_reg”, to advance the same whenever a block (eob = 1) is proc-
essed. This completes the test bench module.

Verilog_code_13.6
__

// This is the test bench for the DCTQ Design. Input image is “lena.txt”.
// Change it for processing a different image.
// dctq.txt is the DCTQ output of the image, lena.txt.
// File name: “dctq_test.v”.
`define clkperiodby2 5 // Both clocks clk & pci_clk operate at 100 MHz.
`define pci_clkperiodby2 5
`define NUM_BLKS 1024 // Defines number of blocks in a frame. A 256 × 256

 // pixel picture contains 1024 blocks.

13.2 Design of the DCTQ Processor 527

// Change this for a different image size.
`include “dctq.v” // Design module.

module dctq_test ; // Declare the test bench and inputs.

reg pci_clk ;
reg clk ;
reg reset_n ;
reg start ;
reg [63:0] di ;
reg din_valid ;
reg [2:0] wa ;
reg [7:0] be ;
reg hold ;

wire ready ;
wire [8:0] dctq ; // DCTQ output.
wire dctq_valid ;
wire [5:0] addr ;
wire stopproc ;
reg eob ;
wire [10:0] eobcnt_next ;
reg [10:0] eobcnt_reg ;
reg start_din ;

// Change the above two “eobcnt” statements for a different image size,
// sufficient to accommodate the total number of blocks in a frame.
integer i ; // Keeps track of the current number of blocks processed.
integer fp1 ; // Points the DCTQ output file.

reg [63:0] mem [8191:0] ; // Buffer to accommodate one frame.
reg [12:0] mem_addr ; // 13 bits address to accommodate

 // up to 8191.
// reg [63:0] contains one row (8 pixels) of an image block – eight such rows make
// one block; 1024 such blocks mean 8192 rows. Change mem [8191:0] and
// reg[12:0] for a different image size.

dctq dctq1(// Invoke DCTQ design module to get the DCTQ output.

 .pci_clk(pci_clk),
 .clk(clk),
 .reset_n(reset_n),
 .start(start),
 .di(di),
 .din_valid(din_valid),
 .wa(wa),
 .be(be),
 .hold(hold),

528 Project Design

 .ready(ready),
 .dctq(dctq),
 .dctq_valid(dctq_valid),
 .addr(addr)

) ;
initial
begin
 $readmemh (“lena.txt”, mem) ;

// “mem” receives the input image frame, lena.txt.
 // Change the name for a different image frame.

 fp1 = $fopen (“dctq.txt”) ;
 // dctq.txt is the DCTQ output of the image frame, lena.txt.

 pci_clk = 0 ;
 clk = 0 ;
 reset_n = 1 ;
 start = 0 ;
 di = 0 ;
 din_valid = 0 ;
 wa = 0 ;
 be = 8'h00 ; // Enable bytes to be written.
 hold = 0 ;
 mem_addr = 0 ;
 start_din = 1'b0 ;

 i = `NUM_BLKS ; // i = 1024
 #20 reset_n = 1'b0 ;
 #40 reset_n = 1'b1 ;

 start_din = 1'b1;
 #700000 // Run long enough to process the entire frame.
 $fclose(fp1) ; // Close the output file and

 $stop ; // stop the simulation.
end

always

 #`clkperiodby2 clk <= ~clk ; // Run the two clocks.
always

 #`pci_clkperiodby2 pci_clk <= ~pci_clk ;

always @ (start_din or i or clk or pci_clk or reset_n or wa or mem_addr)
begin

if (start_din == 1'b1)
 begin
 @(posedge pci_clk)

if(i != 0) // Image block counter.
 begin

@(posedge pci_clk) ;
#1 ;

13.2 Design of the DCTQ Processor 529

din_valid = 1 ;
 wa = 0 ;
 di = mem[mem_addr] ; // Inputs first row of an
 // image block.
 mem_addr = mem_addr + 1 ;
 end

 repeat(7)
 begin
 @(posedge pci_clk) ;
 #1 ;
 din_valid = 1 ;
 wa = wa + 1 ;
 di = mem[mem_addr] ; // Inputs second to eight rows
 // of the image block.
 mem_addr = mem_addr + 1 ;
 end
 @(posedge pci_clk) ;
 #1 ;
 din_valid = 0 ;
 wait (ready) ; // Wait for ready to go high.
 @(posedge clk) ;
 #1 start = 1'b1 ; // Start the DCTQ process after
 // inputting the image block and
 // when ready signal is high.
 i = i –1 ; //Address the next image block.
 end
 else
 begin

 wait(eobcnt_reg==`NUM_BLKS);
// Completion of all the image blocks.

 $fclose(fp1) ;
 $stop ;

 end

end

assign stopproc =((eobcnt_reg==`NUM_BLKS-1)&&(eob== 'b1)) ? 1'b1 : 1'b0 ;
 // Condition to stop DCTQ processing.
always @ (posedge clk)
begin

 if(dctq_valid == 1'b1)
 begin
 if (stopproc == 1'b0) // Means, the process has not stopped.

$fdisplay(fp1,“%h”, dctq) ;
// DCTQ coefficients are written into

530 Project Design

// the “dctq” output file every time the DCTQ is
// valid. Don’t write into “dctq.txt” file when
// all the coefficients are already written.

 end
end

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 eob <= 1'b0 ;

 else if (addr == 6'd63)
 eob <= 1'b1 ; // End of block is issued
 // when the last coefficient of
 // a block is processed.

 else
 eob <= 1'b0 ;

end

assign eobcnt_next = eobcnt_reg + 1 ; // Count the number of blocks
 // processed.
always @ (posedge clk or negedge reset_n)

begin
 if (reset_n == 1'b0)

 eobcnt_reg <= 0 ;
 else if (eob == 1'b1)

 eobcnt_reg <= eobcnt_next ;
end

endmodule
__

13.2.5 Simulation Results for DCTQ Design

The simulation results of DCTQ design are presented in Figures 13.6.1 to 13.6.7.
Observing Figure 13.6.1, we see that the first block of data is applied soon after
the reset is withdrawn. The “di” input is of width 8 bytes and changes at every
positive edge of “pci_clk”. So also the corresponding write address, “wa”. Thus in
eight clock pulses, one block of image data is written. Note that during the appli-
cation of this input, “din_valid” signal is asserted. “be” signals are active (low) in
order to write all the 8 bytes in a row of image. Soon after one block of image is
applied, the “start” signal is asserted to commence the DCTQ operation. At 215
ns, the “rnw” toggles and the next block of data is written into a second set of “du-
alram”. This is a concurrent operation to the DCTQ operation. All the counters are
cleared when “reset_n” pulse is applied. The counter, “cnt1_reg”, starts operation
immediately after “rnw” goes low.

13.2 Design of the DCTQ Processor 531

Fig. 13.6.1 and 13.6.2 Simulation results of DCTQ (Continued)

532 Project Design

Fig. 13.6.3 and 13.6.4 Simulation results of DCTQ (Continued)

13.2 Design of the DCTQ Processor 533

Fig. 13.6.5 and 13.6.6 Simulation results of DCTQ (Continued)

534 Project Design

Fig. 13.6.7 Simulation results of DCTQ

Figure 13.6.2 shows that the counters “cnt2_reg” and “cnt3_reg” start working
when “cnt1_reg” becomes 14 and 20 respectively, effective at the positive edge of
“clk”. Note that “rnw” continues to be low since the DCTQ for the first block of
data is not yet computed. Similarly, “cnt4_reg” and “addr” start working when
“cnt1_reg” becomes 35 and 44 respectively, effective at the positive edge of “clk”
as can be seen in Figure 13.6.3. The first DCTQ coefficient (DC) “158” is out-
put at the rising edge of “clk” when “cnt1_reg” is 44. Simultaneously, the
“dctq_valid” signal goes high. The coefficient address is provided by “addr” sig-
nal. The latency is, therefore, 45 “clk” cycles. Note that the DCTQ is issued one
coefficient per “clk” cycle thereafter, without any break.

Figure 13.6.4 shows that all AC coefficients are “0”, which is not coded in the
next functional module, “VLC”, of the video encoder, thus bringing about good
deal of compression. When “cnt1_reg” (which serves as the read address of “dual-
ram” module) is 63, it resets and toggles the “rnw” signal immediately, thus read-
ing the second block of image data without any break. Note the continuing pro-
gress of other counters including the DCTQ address counter, all of which, except
“addr”, serve as address pointers for various modules of the DCTQ engine. This
reminds us of a perfectly synchronized orchestra, where every musician maintains
perfect harmony with other performers. Evidently, counter based design proves
invaluable in a “controller” of a system, which acts like the “music conductor” in
an orchestra performance. Incidentally, the counter based design takes the least
possible chip area. When “cnt1_reg” is “1”, the DCTQ processor asserts the
“ready” signal and the host processor sends in the next (third) block of image data.

13.2 Design of the DCTQ Processor 535

Thus, the host processor has plenty of spare time to attend to other domestic
chores.

Figure 13.6.5 shows the first DC coefficient “155” of the second image block
and is output at the rising edge of “clk” again when “cnt1_reg” is 44. Note that
“dctq_valid” signal is continuously asserted and the “addr” smoothly transits from
“63” (first block of DCTQ) to “0” (second block of DCTQ) and continues without
any break. This is true for every block right up to the end of the image/frame as
shown in the next two figures. Figure 13.6.6 shows the DCTQ result of the last
block in an image or a frame. The DC coefficient of the last block is “75” corre-
sponding to the “addr” of “0”. You can see non-zero AC coefficients of “8” and
“2” corresponding to the addresses, “1” and “9” respectively. Majority of AC co-
efficients are zero. More the zeros, more is the compression. In Figure 13.6.7, we
can see that all the DCTQ coefficients are zero. The very last coefficient is issued
at 656025 ns signaled by the “stopproc” generated in the test bench, while the first
coefficient of an image/frame started at 665 ns (refer Figure 13.6.3). This confirms
that every DCTQ coefficient is processed in a “clk” cycle.

13.2.6 Synthesis Results for DCTQ Design

The device we have mapped is XCV600EHQ240-8, the same device we used for
various modules presented in earlier chapters. The frequency of operation reported
is around 100 MHz. The number of 16 × 1 RAMs consumed in the design is 128
and the number of LUTs is 3728, which is around 25% of the total capacity. Syn-
plify generates “dctq.edf” output, which is input to the P & R tool. The Synplify
results are as follows.

Worst slack in design: 9.829

Clock
starting

Requested
frequency

Estimated
frequency

Requested
period Estimated period

clk 50.0 MHz 98.3 MHz 20.000 10.171

pci_clk 50.0 MHz 101.1 MHz 20.000 9.890

Resource usage report for dctq
Mapping to part: xcv600ehq240-8
Cell usage:

VCC 21 uses
GND 23 uses
MUXCY_L 1616 uses
XORCY 1706 uses
FDCE 33 uses
FDP 3 uses

536 Project Design

FDPE 2 uses
FDC 7 uses
MUXCY 168 uses
FDR 1459 uses
FD 3805 uses
MUXF5 266 uses
MUXF6 131 uses
FDE 1317 uses
FDS 38 uses
FDRS 26 uses

I/O primitives:
IBUF 79 uses
OBUF 17 uses
BUFGP 2 uses

SRL primitives:
SRL16 144 uses

I/O Register bits: 11
Register bits not including I/Os: 6679 (48%)

RAM/ROM usage summary
Single Port Rams (RAM16X1S): 128
Global Clock Buffers: 2 of 4 (50%)
Total LUTs: 3728 (26%)

13.2.7 Place and Route Results for DCTQ Design

The Xilinx place and route results are as follows. In Xilinx P & R, we will get
more optimized results. The input for Xilinx P & R tool is the “dctq.edf” that was
generated by Synplify tool. It lists the slices, etc. The reader may note that the
number of LUTs have come down to 3247. The number of gates consumed by the
design is around 120,000 and maximum frequency of operation over 100 MHz.

“D:\USER\RAM\VERILOG_LATEST\DVLSI_DES_VERILOG\dctq_iqidct\rev_
1\dctq.edf ”
Using target part “v600ehq240-8”.
Design Summary:

Number of errors: 0
Number of warnings: 0
Number of slices: 4,410 out of 6,912 63%
Number of slices containing
 unrelated logic: 0 out of 4,410 0%
Number of slice flip flops: 6,677 out of 13,824 48%
Total number of four input LUTs: 3, 676 out of 13,824 26%
Number used as LUTs: 3,247
Number used as a route-thru: 157
Number used as 16 × 1 RAMs: 128

13.2 Design of the DCTQ Processor 537

Number used as shift registers 144
Number of bonded IOBs: 96 out of 158 60%
IOB flip flops: 11
Number of GCLKs: 2 out of 4 50%
Number of GCLKIOBs: 2 out of 4 50%
Total equivalent gate count for design: 119,451
Additional JTAG gate count for IOBs: 4,704

Timing summary:
 Minimum period: 9.766 ns (Maximum frequency: 102.396 MHz)
 Minimum input arrival time before clock: 12.156 ns
 Minimum output required time after clock: 8.911 ns

13.2.8 Matlab Codes for Pre-processing
and Post-processing an Image

An image or a frame of a video sequence is in raw format and is organized as a
contiguous location of bytes (see Figure 13.7a) if it is a monochrome image.
These appear in raster scan order, i.e., the same way we read a text: left to right;
top to bottom (Figure 13.7b) when displayed. But we need an image in the block
format (c) since the DCTQ processing is based on block, consisting of 8 pixels
from eight different lines as depicted in Figure 13.7c for 256 × 256 pixels image,
as an example. This format conversion from raster scan order to block order is
presented in Matlab_code_13.1. This is put into a file named “read_image.m”.
The first statement is a function call for reading an image. The file name, number
of rows, number of columns and the block size are specified, an example of which
is shown in the following commented (%) statement. The input file and the output
file are specified in the variables, file_in and file_out. “fp1” and “fp2” are handles

Fig. 13.7 (a) Contiguous raw image. (b) An image. (c) Block (8 × 8 pixels)

a b c

Pixel Number

1

256

2

257

65536

First
Line

1 2

257

1

257

1793 1800

258

256

512

65536

264

538 Project Design

for the same, identifying the files as read-only or writeable types as shown. The
input file, which is in raster scan order is read into the variable called “blks”. This
is in a 1-D vector form. The image read function is then called in order to organize
it as blocks. Refer “imageread.m” file for further details. The three “for” loops ex-
tract the data from an image or a frame block after block in “oneblk(i,j)” variable.
Finally, call the function “mem” to write the block into the output file. “k” is the
block counter. For example, if “lena.raw” is the input file, then processing this
Matlab code produces an output file, “lena.txt” in block order.

Matlab_code_13.1
__

% This is the top module to read an image file in raw format.
% Put this in a file named “read_image.m”.

function read_image (filename, rows, cols, blksize) ;
% Execute “read_image (‘lena’, 256,256,8)” for reading the input image, Lena.
file_in = [filename,‘.raw’]; % Specify the input image file in raw format.
file_out = [filename,‘.txt’]; % Output image file in block (text) format.

fp1 = fopen(file_in,‘r’) ;
fp2 = fopen(file_out,‘w’);
image = fscanf(fp1,‘%c’) ;

 % Read the input file which is in raster scan order.
blks = imageread(image, rows, cols, blksize) ; % 1-D vector.

% Call the image read function to organize it into blocks. Refer “imageread.m”
% file for details.

blkn = [];
n = 1 ; % Number of pixels counter.
for k = 1:1024, % 1024 blocks in an image frame.

 for i = 1:8, % Process one block along height after

 for j = 1:8, % processing along width first.

 oneblk(i,j) = blks(n) ; % Rearrange it as one block at a time.
 n = n + 1 ; % Advance the pixel counter.

 end
 end

 mem(oneblk,0,fp2) ;
% Call this function to write the block into the output file. “0” for
% writing row-wise or “1” for column-wise writing. “fp2” is the output
% image file in text format.

 end
fclose(‘all’) ;
__

13.2 Design of the DCTQ Processor 539

The function, “imageread.m”, presented in Matlab_code_13.2, is for reading
the image frame block by block from left to right and top to bottom. This function
is called by “read_image.m” module presented in Matlab_code_13.1. This func-
tion comprises four “for” loops with the outer loop, “i”, which selects succeeding
block rows. One block row consists of eight lines (8 × 256 pixels) of the image as
shown in Figure 13.7b. The next loop “j” covers all blocks (numbering 32) in a
block row. The next two inner loops are for processing a block. “k” is for row ad-
dressing pixels and “l” is for column addressing pixels within a block. “x” is the
output of this submodule, which is a 1-D vector.

Matlab_code_13.2
__

% Function “imageread.m” to read the image frame block by block from left to
% right and top to bottom. This function is called by “read_image.m” module.

function [x] = imageread(image, rows, cols, size)
x = [];

for i = 0 : size*cols : rows*cols - size*cols ,
 % Ex.: 0:(8*256):(256*256-8*256) select succeeding block rows.
 for j = i + 1 : size : I + cols-size + 1,

 % Ex.: 1:8:249 – this covers all blocks in a row.
 % j is the starting element of a block => size = 8 for an 8 × 8 pixels block.

 for k = 0 : 1 : size-1,
 % 0:1:7 => Block processing – row address within a block.

 for m = 0 : 1 : size-1, % 0:1:7 – column address within a block.
 x = [x , image(j + k*cols + m)]; % 1-D vector, appended.

 % (249 + 7 × 256 + 7 = 8 × 256) for the last pixel, as an example. In order to process
 % the next row of a block, we will have to skip 8*256 pixels.

 end
 end
 end
end

__

Matlab_code_13.3 presents the function “mem.m” which is used to write 8 × 8
pixels image block as a hex ASCII string. This function is called by
“read_image.m” module. This generates an output file of an image, “lena.txt” for
instance, arranged in block order is to be used as input by Modelsim for process-
ing DCTQ. “for” loops involving “i” and “j” fetch each pixel (in “num”), convert
the pixel value in decimal into hex format (temp) and append it into the final 1-D
output file “lena.txt”, for example.

Matlab_code_13.3
__
% Function (mem.m) to write 8x8 pixels image block as a hex ASCII string.

540 Project Design

% This function is called by “read_image.m” module.
% The output file is to be used by Modelsim for processing DCTQ.

function mem (blk8, col, fp) ;

% col is ‘0’ for writing row-wise or “1” for column-wise writing.
for i = 1:8,

hexstr = [] ;
for j = 1:8,

if (col == 1)
 num = blk8(j,i) ; % Select column-wise writing.
else
 num = blk8(i,j) ; % Otherwise, select row-wise writing.
end

 temp = dec2hex(num, 2); % Character string – 2 digits.
 hexstr = [hexstr,temp] ; % Append into the final 1-D output.

 end
fprintf(fp,'%s\n',hexstr) ; % Write into the output file, each pixel in a new line.
end
%fclose(fp) ;
__

The DCTQ design (actually its test bench, “dctq_test.v”) is run in Modelsim
with “lena.txt” as an input generated by executing the above Matlab codes. The
simulation output, “dctq.txt” is taken as the input for the inverse design (IQIDCT)
of DCTQ design and simulation run to get a reconstructed image output, which is
in block format. This output needs to be converted into raster scan order or “raw”
format. Matlab_code_13.4 presents the function “write_image.m”, which takes the
reconstructed image output (produced by IQIDCT Verilog design in Modelsim)
and converts the block format into raw format for display using “showim.m” file.
It may be noted that IQIDCT Verilog design is not presented in this book and,
therefore, the reader is expected to design the same before proceeding any further.
However, “showim.m” Matlab code is presented in this section.

“file_in” is a variable that points to the “iqidct.txt” file produced by the
IQIDCT design in simulator environment and “file_out” is the output file in the
raw format. “iqidct.txt” is read into a vector named “blks” in decimal block format
and the function “imagewrite.m” is called to finally store row-wise (raster scan
order) into the output file. The function “imagewrite.m” is similar to the function
“imageread.m” presented in Matlab_code_13.2 except that writing is carried out
instead of reading. This is presented in Matlab_code_13.5.

Matlab_code_13.4
__

% This code (write_image.m) takes the reconstructed image output (produced
% by Modelsim and converts the block format into raw format for display using
% “showim.m” file.

13.2 Design of the DCTQ Processor 541

function [image] = write_image(filename,rows,cols,blksize)
file_in = [filename,‘.txt’] ;
file_out = [filename,‘.raw’] ;
fp1 = fopen(file_in,‘r’) ;
fp2 = fopen(file_out,‘w’);
blks = fscanf(fp1,‘%d’);

image = imagewrite(blks,rows,cols,blksize); % Call function “imagewrite.m”.
fprintf(fp2,'%c',image) ; % Store row-wise into the output file.
fclose('all');
__

Matlab_code_13.5
__

% This function (imagewrite.m) returns a vector that can be directly written
% into an image file. This is similar to “imageread.m” file.
function [image] = imagewrite(blks,rows,cols,size)

n = 1 ;
for i = 0 : size*cols : rows*cols - size*cols ,
 % Ex.: 0:(8*256):(256*256-8*256).

 % Select succeeding block rows.
 for j = i+1 : size : i+cols-size+1 % j is the starting element of a block.
 % 1:8:249 covers all blocks in a row.
 for k = 0 : 1 : size-1 % 0:1:7 => Block processing
 % Row address within a block.
 for m = 0 : 1 : size-1 % 0:1:7 – column address within a block.

 image(j + k*cols + m) = blks(n); % 1-D vector, appended.
 n = n + 1;
 end

 end

 end

end
__

Running the Matlab_code_13.6, we can display an image, be it original or re-

constructed. “file1” and “file2” are two such files. “file1” is read as characters into
a variable, “im1”. The first two “for” loops get the original stored image (im1)
pixel by pixel, convert it into 8-bit unsigned integers and is stored in “image(i,j)”.
“n” keeps track of the number of pixels processed in the loops. Similarly, next two
“for” loops get the reconstructed image (im2) pixel by pixel, convert it into 8-bit
unsigned integers and is stored in “recon(i,j)”. “figure(1)” identifies the first fig-
ure we are about to display. The statement: title(“Original Image”); displays the ti-
tle, “Original image”. This is followed by displaying the actual original image,

542 Project Design

which was processed and stored in “image”. Similar explanation holds good for
displaying the reconstructed image.

Matlab_code_13.6
__

% This module (show_image.m) displays both the original and the
% reconstructed images.
% Run “psnr.m” file for the PSNR computation to get the image quality.

function showim(file1, file2);
%file1 = ‘lena.raw’;
%file2 = ‘iqidct.raw’;
fp1 = fopen(file1,‘r’);
im1 = fscanf(fp1,‘%c’);
n = 1;
for i = 1:256,
 for j = 1:256,
 image(i,j) = uint8(double(im1(n)));

 % Convert it into 8-bit unsigned integers.
 n = n + 1;
 end

 end

fp2 = fopen(file2,‘r’);
im2 = fscanf(fp2,‘%c’);
n = 1;
for i = 1:256,
 for j = 1:256,
 recon(i,j) = uint8(double(im2(n)));
 n = n + 1;
 end
end
figure(1) ;
title(“Original Image”); % Display the original image.
imshow(image,256);
figure(2);
title(“Reconstructed Image”); % Display the reconstructed image.
imshow(recon,256);
fclose(“all”);

__

Although visual comparison of the original and the reconstructed image can
reveal unto us how the quality of the latter image is, it is always better to have a
quantitative measure of the quality of the reconstructed image with reference to
the original image. A popular expression for such a measure is “PSNR” and is as

13.2 Design of the DCTQ Processor 543

follows. The double summation is computed for 1 to M and 1 to N corresponding
to the two dimensions of the image. M and N are respectively the width and the
height of the image.
PSNR = 10*log10{((2552) × M × N)/(ΣΣ ((orig-recon)2)} (13.1)
(orig-recon) is the pixel-wise error. To start with, the original image and the re-
constructed image are read in TIFF format. If they are in raw format, they can be
changed to TIFF format using softwares such as Paintshop, XnView, etc. After
converting the read files into double precision, obtain the size of the image, m and
n. The next statement for “PSNR” is the core of this Matlab code. “.” after the er-
ror, (orig-recon), implies element by element computation. Typical PSNR values
are presented for an image. Normally, a very good quality, indistinguishable from
the original image yields a PSNR value of 35 dB or higher, whereas a PSNR value
of 30 dB or higher is reckoned as a good quality image. Reconstructed image with
a PSNR value of 25 dB or lower is taken as a poor quality image. The Matlab code

Matlab_code_13.7
__

% Computation of image quality (PSNR).
% “psnr.m” file.
clear
x = imread(‘./lena.tif’); % Read the original image file in TIFF format.
y = imread(‘./iqidct.tif’); % Read the Verilog reconstructed image file.

 % Change iq_idct to idct to read the Verilog DCT–IDCT output.
orig = double(x); % Convert to double precision.
recon = double(y);
[m,n]=size(orig); % Get the size of the image.
psnr = 10*log10(((255^2)*m*n)/(sum(sum((orig-recon).^2)))) % Compute PSNR

% (orig-recon). => dot means element by element computation.
% For Lena image, Verilog dct–idct PSNR = 38.9 dB, and Verilog dctq–iqidct
% PSNR = 29.4 dB. Matlab dctq–iqidct PSNR = 29.9 dB. Compression
% expressed as bits per pixel = 0.6514 for Lena image. Compression effected in
% this case is 12.28.
__

13.2.9 Verification of Verilog DCTQ – IQIDCT Cores

While the DCTQ design was presented in the book, the IQIDCT core is left as an
assignment to the reader. The following steps verify the functioning of the DCTQ
and the IQIDCT Cores:
1. Invoke Matlab and run the following file for reading an image disk file,

“lena.raw”, for example:
 read_image(‘lena’, 256, 256, 8)

for the PSNR computation is presented in Matlab_code_13.7.

544 Project Design

 Execution of this file creates another disk output file, “lena.txt”, which is in
block format and, can be input into a simulator such as Modelsim for DCTQ
computation.

2. Invoke Modelsim.
 Compile DCTQ test bench using the command:
 vlog dctq_test.v
 Load design using the command:
 vsim work.dctq_test
 Make sure that all the relevant source files of this design are in the same

folder. Invoke the waveform and signals (select all) from View menu and
“run all” command. The DCTQ output “dctq.txt” is created as a disk file in
about 5 minutes.

3. In Modelsim, compile IQIDCT test bench using the command:
 vlog iqidct_test.v
 Load design using the command:
 vsim work.iqidct_test
 Make sure that all the relevant source files of this design are in the same

folder. Invoke the waveform and signals (select all) from View menu and
“run all” command. “dctq.txt” file created in step 2 is taken as the input and
the IQIDCT output is created as a disk file “iqidct.txt” in about 5 min. This is
in block order.

4. Invoke Matlab and run the following file for reading the “iqidct.txt” disk file
created in step 3:

 write_image(‘iqidct’, 256, 256, 8)
 Execution of this file creates another disk output file, “iqidct.raw”, which is in

raster scan order and can be input into the following file for displaying the re-
constructed image as well as the original “lena.raw” images.

 show_image(“lena.raw”, “iqidct.raw”)
5. Run “psnr.m” file to compute the image quality (PSNR) between the origi-

nal image file (say, “lena.tif ”) and the Verilog reconstructed image file,
“iqidct.tif ”. You can use software such as “XnView” (http://www.tucows.com/
preview/290806.html) to effect conversion from “raw” to “tif” format, resiz-
ing, cropping and so on. Similarly, the DCT–IDCT cores (subsets of DCTQ–
IQIDCT cores) can be verified.

13.2.10 Simulation Results

Figure 13.8 shows the final results along with the original image, Lena. The origi-
nal image is shown in Figure 13.8a and the reconstructed images are shown in b to
d. The DCTQ–IQIDCT coded in Matlab as presented in chapter on verification of
algorithms and concepts yielded the result shown in Figure 13.8b (PSNR : 29.9

dB). The corresponding result of the DCTQ–IQIDCT cores coded in Verilog is shown

13.2 Design of the DCTQ Processor 545

Fig. 13.8 Reconstructed Image, Lena. (a) Original Lena, 256 × 256 pixels. (b)
Reconstructed by (DCTQ–IQIDCT) Matlab (29.9 dB). (c) Verilog (DCT–IDCT)
(38.9 dB). (d) Reconstructed by (DCTQ–IQIDCT) Verilog (29.4 dB)

in Figure 13.8 d. Note that the PSNR value of 29.4 dB is very close to the Matlab
result, which serves as a standard reference since the code is short and the preci-
sion high when compared to the Verilog codes. The reason for lower PSNR value
is due to the loss introduced by quantization and inverse quantization. This can be
easily cross checked by observing the result of simulating DCT–IDCT Verilog
codes, which yields a very high PSNR value of about 39 dB as shown in Figure
13.8c. It may be noted that there are no blocking artifacts in this case in spite of
the fact that there are no correlations among neighboring blocks. In fact, this re-
constructed image is indistinguishable from the original image. This also proves
that the precision we have adopted at various stages of Verilog coding of DCTQ
as well as IQIDCT are perfectly alright. Of course, there is little room for increas-
ing the bit precision for the “romq” module, which stores the inverse quantization
value. Such increase can only improve the PSNR value from 29.4 dB to less than

546 Project Design

29.9 dB. Since this improvement will not make any discernible change visually,
attempts were not made to code to such precisions.

Close inspection of reconstructed images, shown in Figure 13.8b and d, reveals
the blocking artifacts, which are typical characteristics of DCT based transform.
This is owing to the fact that the DCT/IDCT are block based transforms and,
therefore, there are no correlations between adjacent blocks. This is accentuated
by the loss introduced by quantization and inverse quantization. The blocking arti-
facts can be minimized by applying filter on pixels across the border of adjacent
blocks. A number of research papers are available [92–97] to minimize the blocking
artifacts. The reader may undertake developing new algorithms and implementation
on FPGA/ASIC without affecting the high processing speed we have already
achieved.

The upcoming standard, MPEG 4, Part 10 (also called H.264), based on integer
transform derived from DCT, recommends the deblocking filters and offers prom-
ise of better quality of reconstructed image. Similarly, JPEG 2000 and Motion
JPEG 2K standards, based on the discrete wavelet transform (DWT), may offer
better quality. However, they are computationally intensive and chip area is very
high. Memory store requirements are also very high. The blocking artifacts are
only minimized and not eliminated in toto in any of these transform based codecs.
The reader may make an attempt to implement the H.264 based codecs, wherein
the design methodology and part of Verilog codes presented for the DCTQ design
may be made use of.

13.2.11 Implementation of DCTQ/IQIDCT IP Cores

The implementation of DCTQ Processor, which design we presented earlier, is
summarized in Table 13.3. In addition to the Xilinx place and route tool we used,
the Synopsys Design Manager (for ASIC implementation) was also run with
TSMC Vendor Library for 0.13 µm technology. The ASIC implementation is
nearly 2.7 times faster than the FPGA implementation and consumes only about
57% of the gate count. The ASIC tool reports only in terms of chip area and,
therefore, the gate count is extrapolated by getting the chip area for a two input
NAND gate on Synopsys platform. This has been done with the intention of get-
ting an idea of the gate count in ASIC relative to FPGA implementation. Similar
results were obtained for other IP Cores: IQIDCT, DCT, and IDCT and is pre-
sented in Table 13.4. It takes about one and half hour for each core to complete the
synthesis with the Synopsys tool. By increasing the frequency of operation, say, to
300 MHz or more, the synthesis takes even more time.

Higher speeds of implementation can be obtained by using higher technology
that would be available in future. The Verilog codes presented in this book can be
readily used without any change, no matter what the technology is. Therefore, stay
tuned to the latest technology. It may be noted that the development costs for

ASIC based designs are very high when compared to FPGA based designs. For IP

13.2 Design of the DCTQ Processor 547

Table 13.3 Implementation of DCTQ

ASIC/
FPGA Vendor Technology/

Device
Logic
Gates

Performance
(Mega Sam-
ples/Sec.)*

ASIC TSMC 0.13 µm 68,000 270

FPGA Xilinx Virtex-E 120,000 102

Table 13.4 Implementations of IQIDCT, DCT, and IDCT

Design ASIC/ FPGA Logic Gates Performance
(Mega Samples/Sec.)*

ASIC 80,000 270
IQIDCT

FPGA 114,000 81

ASIC 64,500 270
DCT

FPGA 115,000 102

ASIC 77,500 270
IDCT

FPGA 110,000 103

*Operating frequency in MHz

Core development, R&D activity and low quantity of market demand, the FPGA
implementation is the right choice and for bulk requirements, ASIC is the best
choice in terms of cost as well as manufacturing and marketing lead time. We
need to work out the development time required and overhead costs involved in
order to arrive at the viable quantities for the FPGA and ASIC implementations.
Even if the market demands are seemingly high, manufacturers, as a rule, start the
development on FPGA platform, release few chips or systems to assess the per-
formance as well as the real market potential before embarking on the develop-
ment of ambitious ASIC products.

13.2.12 Capabilities of the IP Cores

For processing a motion picture at a real time rate of 30 frames/second, each of the
processors, DCTQ, VLC with rate control, VLD, and IQIDCT need to execute one

548 Project Design

picture frame in 33.33 ms or less. Therefore, the maximum picture size that can be
processed will be as follows:

M × N < 105 × (f/3),
where M and N are picture width and height in pixels respectively, and f is the
worst case frequency of operation of the cores in MHz.

The above expression is valid for both monochrome and 24 bits true color pic-
tures, assuming that all the three-color components, Y, Cb, and Cr are processed
concurrently. The latter case demands three times the chip area than the former.
Presently, full color processing is not covered by the MPEG 2 standards. What is
covered in the standards is four blocks and two blocks respectively for Y and
Cb/Cr color components processed sequentially, one after another. It is known as
4:2:0 format, offering the highest possible compression. Full coding of this type of
video encoder conforming to MPEG 2 standards developed by the author, yielded
a compression of 20 for a tennis video sequence in QCIF format. Chip area, how-
ever, will remain the same as that for monochrome pictures in accordance with the
tables already presented. In this case, the maximum picture size that can be proc-
essed will be as follows.

M × N < 105 × (2f/9)
The standard also permits other formats such as 4:2:2 and 4:2:1, with reduced

compression. Table 13.5 presents the maximum picture size that can be processed
using the Cores listed in Tables 13.3 and 13.4. A conservative 80 MHz is taken as
the frequency of operation for FPGA and 270 MHz for ASIC implementation
in order to arrive at the maximum picture size that can be processed at 30
frames/second. Trading off the picture size, one can multiplex many channels to
implement a cable digital TV. Assuming a picture size of 640 × 480 pixels, one
can have 20 channels or more with the 0.09 µm technology. In order to make this
idea a reality, one must add the audio compression core based on modified DCT
or filters. Interested readers may work on this project.

Table 13.5 Maximum Picture Size that can be Processed using the Cores

ASIC/
FPGA

Frequency of Opera-
tion (MHz)

Maximum
Picture Size in

Pixels *
Type

FPGA 80 1600 × 1600 Monochrome/ Full color

FPGA 80 1600 × 1100 4:2:0 format (color)

ASIC 270 2900 × 2900 Monochrome/ Full color

ASIC 270 2300 × 2300 4:2:0 format (color)

* Standard sizes of pictures are 1600 × 1200, 1024 × 768 (XGA), 800 × 600 pixels
 (SVGA), etc.

13.2 Design of the DCTQ Processor 549

__

Summary

VLSI System Design examples were presented for a couple of projects, namely,
PCI Arbiter, the Discrete Cosine Transform and Quantization Processor for Video
compression applications. While presenting these designs, emphasis were on sys-
tematic design. The systematic design comprises identification of a project based
on need, formulating detailed specifications, verifying or proving an algorithm or
concept using a high level language such as Matlab or C to establish its feasibility,
development of detailed architecture based on actual hardware components, Ver-
ilog RTL coding, simulation, synthesis, place and route and back annotation. The
design methodologies adopted in these designs are building highly parallel, heav-
ily pipelined circuits in order to increase the throughput and, platform independ-
ent, be it FPGA or ASIC implementation. No vendor specific modules are used
and hence these designs are universal and can work on any FPGA or ASIC. The
design methodologies presented in this book are equally applicable to other HDLs
such as VHDL. In the next chapter, a couple of design applications based on ac-
tual FPGA and input/output boards will be presented so that the serious reader
may have hands on experience in product development.
__

Assignments

13.1 In the PCI arbiter design presented, add a 4-bit counter to monitor the bus
activity after a master is granted the bus. If the master fails to avail the bus
within 16 clock cycles, withdraw its grant, and allocate the grant to the next
priority master that is waiting.

13.2 To the PCI arbiter design, add a 16-bit counter that keeps track of the
maximum allocated time elapsed (which is different for different masters)
since the time a master is granted the use of bus. After the elapse of time
programmed for the master using the bus currently, withdraw the grant after
2 clock cycles of warning and, allocate the bus to the next priority master
that is waiting.

13.3 Video Codec (actually the decoder) to the AGP (display monitor) commu-
nication is not incorporated in the arbiter design. Include the same into your
PCI arbiter design.

13.4 Amend the ASM chart, the design and the test bench to incorporate all the
above changes. The test bench described earlier is by no means exhaustive.
Therefore, include more possible combination of inputs to test the design.

13.5 Run the simulation of DCTQ design and explain why these events take
place in the waveforms.
a. In Figure 13.6.1, “ready” signal goes low/high at 215 ns/235 ns. Why?
b. Why is the second block of image data applied so early?

550 Project Design

c. Why does “cnt1_reg” start its operation when “rnw” goes low?
13.6 In the section on capabilities of the IP Cores for the DCTQ design and the

like, it was mentioned that the maximum picture size that can be processed
is governed by the expression:

 M × N < 105 × (2f/9)
 Derive this expression. Will it be valid, if audio is added to the video

transmission? State your assumptions clearly.
13.7 In the assignment 1 of Chapter 12, you were asked to design the architec-

ture of IQIDCT Processor. The block diagram of IQIDCT was presented in
Figure A12.1 along with the description of signals. Write Verilog design
codes for the IQIDCT Processor on similar lines to the DCTQ design pre-
sented in the text.

13.8 Write a test bench for IQIDCT Processor you have coded in response to the
assignment A13.7 and run all the three tools: simulation, synthesis, and
place and route and report the results of your design.

13.9 Write the step-by-step operation sequence of the host/IQIDCT processors.

 Assignments 551

Chapter 14

Hardware Implementations Using FPGA
and I/O Boards

In the previous chapter, we have been discussing the design applications using
FPGA, namely, the PCI Arbiter, Discrete Cosine Transform and Quantization
Processor for video compression application. The next step is to design a printed
circuit board, which will house the target FPGA and other necessary components
that make up the system, populate and test the board using oscilloscope, logic ana-
lyzer, etc. When the FPGA board is ready, we need to download the bit stream
generated by the place and route tool for the particular application. The frequency
of operation reported by the place and route tool is to be taken into account when
we actually design the system. The maximum frequency reported by the place and
route tool shall not be exceeded on the FPGA board. The hardware development
work for the applications we have covered in the previous chapter are quite in-
volved and, therefore, a couple of simpler design applications, namely, a traffic
light controller and a real time clock will be presented as examples in this chapter.

board and a digital input/output board.
There are many vendors for the populated and tested FPGA boards: XESS,

Avnet, Nu Horizons, Digilent Inc. [98–101], Xilinx [20], to name a few. The
FPGA boards from these vendors have many features that can be used readily in
our development work. In general, you may use any board available with you
since the Verilog code we are going to develop for the applications mentioned ear-
lier are platform independent. However, you need to be careful to choose a board
that provides at least 50 input/output pins that can be connected to an external in-
put/output card, if your application demands these, as is the case with the applica-
tions that we are going to cover in detail. We will be using XSV800 board of
XESS Corporation. You can get the details of the board from the vendor’s web-
site, www.xess.com. In case this board is not available, you can get other boards
such as XSA-200 (Spartan-2 FPGA, 200 K gates, 72 free I/O pins), XSA-3S 1000
(Spartan-3 FPGA, 1 M gates, 65 free I/O pins), XSB-300E (Spartan-2E FPGA, 300 K
gates, 75 free I/O pins). Similar boards such as XCS3S200 of Digilent Inc. are
also available. Check the availability of the boards in case you want to procure
them.

These applications will be based on ready made boards available such as an FPGA

The XSV800 board of XESS has two programable logic chips; one is a Xilinx
Virtex FPGA for downloading the application that we develop and the other is
a complex programable logic device (CPLD), XC95108, for board configuration
and other house-keeping activities. The XSV800 board is based on Xilinx Virtex
FPGA device, XCV800 as shown in Figure 14.1. The salient features of the board
are as follows:

• Xilinx Virtex XCV50 (50 K gates) to XCV 800 (800 K gates) into which
our application bit stream can be downloaded.

Fig. 14.1 XSV800 board (Courtesy of XESS Corporation)

14.1 FPGA Board Features

556 Hardware Implementations Using FPGA and I/O Boards

• Xilinx CPLD, XC95108, is used to manage the configuration of the
Virtex FPGA.

• 100 MHz Programable Clock for FPGA and CPLD.
• It has 16 M bit Flash RAM (non-volatile), which can store multiple con-

figurations or general purpose data for FPGA.
• Two independent 512 K × 16 SRAM banks to store data and used by the

FPGA.
• Two expansion headers interface connected to 76 I/O ports of the FPGA.
• Four push buttons and one eight position DIP switch connected to FPGA

and CPLD.
• Two seven-segment LEDs and one bar graph LED connected to FPGA

and CPLD.
• Parallel/serial ports connected to CPLD.
• Cable interface for downloading and read back of the FPGA configura-

tion.
• Video decoder to accept NTSC/PAL/SECAM signals.
• RAMDAC with 256 entry, 24-bit color map used by the FPGA to output

video to a VGA monitor.
• Stereo codec, 0–50 KHz, 20-bit resolution.
• Ethernet PHY to access a LAN at 100 Mbps.
• Mouse/Keyboard port.
• USB port with bandwidths up to 12 Mbps.
• Power requirement: 9 V/1.5 A power supply.

The onboard parallel port can be connected to the LPT 1 or LPT 2 port of the
host processor, namely, the Pentium PC. In addition to this, we have a serial port
that can be connected to RS232 serial link of the PC and can be used for any ap-
plication needing it. There is an 8-bit DIP switch, which can be used for any of the
applications like setting a timer value or any other engineering parameter required
for the particular application. We also have 2 digits, seven-segment LEDs. In ad-
dition to this, we have a 10 LED bar display, which can be used for displaying his-
tograms. We have XCV800 FPGA board, capable of holding about 900,000 gates,
which means that we can house a huge circuitry in a single FPGA chip. Our appli-
cation is going to reside right in the FPGA. We will download a “.bit” file via the
parallel port. For example, if the application is going to be a traffic light control-
ler, we will generate the “traffic_controller.bit” using Xilinx place and route. This
particular bit stream will be downloaded via the parallel port. In order to download
bit streams, we need to install XESS software supplied along with the FPGA
board.

Besides a 16 M bit Flash RAM, the board has 2 MB of static RAM. They are
arranged as two pairs of 512K × 16 bits. Further, the board has expansion connec-
tors, which is used either for accessing external memory or external inputs/outputs.
In the case of using an external memory, care should be taken to disable the chip
enable signal of internal memory. In the two examples we are going to consider,

14.1 FPGA Board Features 557

we will be connecting these expansion connectors to an external input/output
board. The next section describes the digital input/output board.

This board consists of forty eight digital inputs/outputs with a maximum of 32 in-
puts and balance can be outputs. Alternatively, all the 48 I/Os can be outputs con-
nected to six numbers of seven-segment LEDs. The board features are summa-
rized as follows:

• 48 inputs/outputs – user selected.
• 4 push button inputs, H/W debounced.
• 8, 4-bit binary switches.
• 8 BCD switches.
• 6 seven-segment LEDs.
• 16 discrete LEDs.
• Single supply operation.

The digital input/output board is shown in Figure 14.2. As shown in the figure,
PB1–PB4 are four push button switches that can be selected by installing jumpers
on the left of X1 to X4. Installing all the four jumpers on right, the push button

Fig. 14.2 Digital input/output board

DIGITAL INPUT/OUTPUT CARD

L
E

D
16

J1

U1 U2

X1 X2 X3 X4
SW1 SW2 SW3 SW4

SW5 SW6 SW7 SW8

SW9 SW10 SW11 SW12

SW13 SW14 SW15 SW16

J2

U3

U4

U5

U6

U7

U8

U9

U10

U11

U12

U13

U14

7S1 7S2 7S3 7S4 7S5 7S6

L
E

D
1

L
E

D
2

L
E

D
3

L
E

D
4

L
E

D
5

L
E

D
6

L
E

D
7

L
E

D
8

L
E

D
9

L
E

D
10

L
E

D
11

L
E

D
12

L
E

D
13

L
E

D
14

L
E

D
15

5 V GND

PB1-PB4

Binary
Switches

BCD Switches

74LS05

74LS00

1

1 50

 HRS MTS SECS

switches are deselected, while selecting SW1/SW5. The push button switches are

14.2 Features of Digital Input/Output Board

558 Hardware Implementations Using FPGA and I/O Boards

Fig. 14.3 Interface circuits used in the digital input/output board

a

b
c

d

f
e

g

dp

d Seven segment LED

Input
R

74LS05

a

e Typ. Driving Ckt.
 (Common Anode)

Vcc

Vcc

‘0’ => 1111
‘9’ => 0110

Q

Q
Q

Q PB1

a Typical Push Button Debouncing Circuit

+5V

+5V

1 2 3 4

RESISTOR ARRAY

To I/O pins

b Binary Switch c BCD Switch

CLOSED=‘0’
OPEN= ‘1’

8 4 2 1

RESISTOR ARRAY

To I/O pins

ON = ‘0’
OFF = ‘1’

14.2 Features of Digital Input/Output Board 559

debounced using 74LS00 as shown in Figure 14.3a. SW1–SW4 and SW9–SW12
are 4-bit binary switches, while SW5–SW8 and SW13–SW16 are BCD switches.
SW1/SW5, SW2/SW6, SW3/SW7, SW4/SW8, SW9/SW13, SW10/SW14,
SW11/SW15, SW12/SW16 pairs of switches are each connected in parallel. As a
result, if SW1 is in OFF position, then SW5 can be used. Conversely, if SW5 is in
“0” position, SW1 can be used. Similarly other pairs. Figures 14.3b and c show
the wired binary and BCD switches pulled high by resistor arrays. In a BCD
switch, for switch position “0”, all the four internal contacts will be off and hence
it will read 1111. For “9”, it will read 0110. Similar explanation holds good for
other “digit” settings of the BCD switch. We can use either the push button switch
or the DIP switch for the binary setting or the BCD switch for the decimal setting
depending upon the needs of an application.

A seven-segment LED display is shown in Figure 14.3d. Seven-segment
LEDs, 7S1-7S6, are driven by open collector inverters, 74LS05 as shown in Fig-
ure 14.3e. The inputs of these inverters are connected to a 50 pin header and the
power supply (+5 V) is connected to pin1 and supply ground to pin2. The seven-
segment LED, 7S1, segments a to g and decimal point are connected respectively
to pins 3 to 10. All other displays are connected from pin 11 onwards in the same
order as 7S1. In addition to this, discrete LEDs, 16 in number, are connected in
parallel to the seven segment displays 7S5 and 7S6 respectively. All the switches
(32 bits) are connected to pin 3 onwards, starting from SW1 msb down to SW12
lsb (pin 34). All the pins of the header, with the exception of first two pins, are
pulled high by onboard resistor arrays. All the LEDs and switches are socketed so
that the user may install what are actually needed for a particular application. One
more I/O board can also be connected to utilize all the 76 I/Os available in the
FPGA board via the expansion headers, apart from a number of I/Os onboard the
FPGA board. Therefore, there are plenty of I/Os available for more number of ap-
plications that the reader may want to design, in addition to catering to the two
applications we are going to discuss in detail.

FPGA boards using XC4000 series FPGAs malfunction (goes completely out of
control) if input switches are connected directly to their I/O pins. This can be

Fig. 14.4 Typical on-chip tri-state buffer

FPGA pin configured as input and con-
nected to a DIP switch

a b

enable

solved by using on-chip (FPGA) tri-state buffers as shown in Figure 14.4 for a typical

14.3 Problem on Some FPGA Boards and Its Solution

560 Hardware Implementations Using FPGA and I/O Boards

buffer. Although external buffers such as 74LS244 or 74LS240 can be used, on-
chip buffers are more cost-effective. In the case of external buffers, the enable pin
and pin “b” must be connected to separate FPGA pins, while “a” is connected to
the DIP switch. During FPGA configuration, the “enable” goes low, thus isolating
the DIP switch and the FPGA pin.

14.3.1 Verilog Code to Solve the Malfunctioning
of System Using XC4000 Series FPGA Boards

The code for overcoming the malfunction mentioned above is presented in Veri-
log_code_14.1. The width of input switches is parameterized by the variable,
“WIDTH”. Typical sizes can be 4 or 8, although any other size can be used as per
needs of the application. The signal “a” is connected to the FPGA pin, which in
turn is connected to a DIP switch, whereas the buffered signal “b” is used for fur-
ther processing within the FPGA. At the configuration time, the enable signal “en”
is not activated, thus tri-stating the buffer and, therefore, isolating the external
switch, which is the cause of malfunctioning of the board. After the configuration
is over, the two “assign” statements in the present code helps to set the “en” signal
and thereby connect the switches to the FPGA pins gracefully, thus preventing the
malfunction. You need to embed these simple codes in your application codes to
overcome the problem mentioned. The XSV800 board does not have this problem
and, therefore, these codes are not required for the same.

Verilog_code_14.1
__

// Tri-state input buffers to correct the malfunctioning of an FPGA based board,
// where FPGA pins configured as inputs are connected directly to switches.
Parameter WIDTH 4 ;

module inbuf_fpga (a,
 en,
 b

) ;
input [(WIDTH-1):0] a ;
output en ;
output [(WIDTH-1):0] b ;

wire en ;
wire [(WIDTH-1):0] b;

assign en = 1 ;
assign b = en ? a : 0 ;

endmodule
__

14.3 Problem on Some FPGA Boards and Its Solution 561

We will consider two examples of design applications implemented on FPGA
board and digital I/O board starting from the next section. The first example is the
traffic light controller. This was developed after observing one of the busiest traf-
fic junctions in a Metropolitan city. This application will be followed by the next
application, the real time clock.

A traffic junction with a main road and two side roads is shown in Figure 14.5.
The traffic flows in all possible directions. The straight traffic on the main road
is timed for 45 s and 25 s for all other traffic. Yellow lights are activated for 5 s.
The traffic allows free right. For convenience of identifying, the main road is
bifurcated as “Main Road 1” and “Main Road 2”. Similarly, the side roads are
named “Side Road 1” and “Side Road 2”. Other notations employed in the design
are indicated in the figure.

The traffic sequences through 12 states, S0 to S11, primarily. There is one
more state, “S12”, where blinking of yellow lights is processed. Initially in S0
state, there will be green signal for the straight traffic on main roads in both the di-
rections and the other two cross roads have red signals. In the second sequence S1,
both the green lights changes to yellow. In the next sequence S2, the straight main
road traffic is blocked and the left turn is allowed from Main Road 1 to the Side
Road 2. In S3 state, the green signal changes to yellow for the left turn from main
road to side road. In S4 state, the Main Road 2 traffic is allowed to turn left on the
Side Road 1. In S5 state, the green signal changes to yellow for the left turn from
Main Road 2 to Side Road 1. In S6 state, the two side roads are given green sig-
nals to move straight in both the directions. In S7 state, the green changes to yel-
low. In S8 state, the Side Road 1 traffic is allowed to turn left onto the Main Road

Fig. 14.5 Notation used for the traffic lights control

1. In S9 state, the green signal changes to yellow. In S10 state, the Side Road 2

14.4 Traffic Light Controller Design

562 Hardware Implementations Using FPGA and I/O Boards

Main Road 2

M Main
S Side
G Green
R Red
Y Yellow
LT Left

Main Road 1

Side Road 2

Side Road 1

Fig. 14.6.1 Traffic lights control sequence (Continued)

14.4 Traffic Light Controller Design 563

 S0 (45 S)

M
G

1

SR2

SR1
M

G
2

 S1 (5 S)

M
Y

1

SR2

SR1

M
Y

2

M
 L

T
1

 S2 (25 S)

M
R

1

SR2

SR1

M
R

2
M

L
T

2

 S4

M
R

1

SR2

SR1

M
R

2

M
Y

2

 S5

M
R

1

SY2

SY1

M
R

2

M
Y

1

 S3

M
R

1

SR2

SR1

M
R

2
M

Y
2

Fig. 14.6.2 Traffic lights control sequence (Continued)

564 Hardware Implementations Using FPGA and I/O Boards

 S6 (25 S)

M
R

1

SG2

SG1
M

R
2

 S7

M
R

1

SY2

SY1

M
R

2

SLT1

 S8

M
R

1

SR2

SR1

M
R

2 SY2

SY1

 S9

M
R

1

SR2

SR1
M

R
2

SLT2

 S10

M
R

1

SR2

SR1

M
R

2 SY2

 S11

M
Y

1

SR2

SR1

M
Y

2

Fig. 14.6.3 Traffic lights control sequence

traffic turns left onto the Main Road 2. In S11 state, the green signal changes to
yellow for the left turn from the Side Road 2. Beyond the traffic hours, when a
blink input is switched on, the traffic controller enters the S12 state and all the yel-
low lights start flashing at the rate of 1 Hz. Normal operation is restored from
“S0” state onwards when the blink input is switched off.

14.4.1 Verilog RTL Code for Traffic Light Controller

The code for this design is presented in Verilog_code_14.2. The design file is
“traffic_controller.v” and the test bench is “traffic_controller_test.v”. This is basi-
cally an FSM (state machine) realization. Each of the states is indicated from S0 to
S12. The timing for the main road traffic is assumed to be 45 s. For the side road,
it is 25 s. Yellow lights will be on for 5 s when they are switched on. Beyond nor-
mal traffic hours, all yellow lights flash at 1 Hz. We need 45 s, 25 s, 5 s, and 0.5 s
timers for this application, which can be realized using counters. We also need a
time base for keeping track of passing time. Therefore, a “time_base” is defined as
22'd4999999, suitable for a 50 MHz operation resulting in a convenient time base
of 0.1 s. However for simulation, we shall change this parameter to 9. Similarly,
we have load values, “load_cnt2” to “load_cnt5”, of 449 for 45 s, 49 for 5 s, 249
for 25 s, and 4 for 0.5 s. These timings can be changed to suit any other field re-
quirements. After the above definitions, the design module is declared, identifying
all the I/Os. All of them are single bits and, therefore, width is not specified. All
the wires and registers in the design are also declared.

14.4 Traffic Light Controller Design 565

 S12
Y Blinking (Rate : 1 Hz)

M
Y

1

SY2

SY1

M
Y

2

“cnt1_reg” is a free-running counter to provide the time base of 0.1 s for timers 1
thru’ 4. The first “always” sequential block processes the “cnt1_reg” counter at the
positive edge of clock. When the reset is applied or when “cnt1_reg” reaches the
“time_base”, the counter is reset. Otherwise, we will assign the pre-incremented
value of the counter. Similar are the workings of all other counters “cnt2_reg” to
“cnt5_reg” except that these counters commence working only when the respective
timer is started using the signal, “start_timer_1” = 1, for instance.

The traffic lights’ state machine starts at the next “always” sequential block,
realized using “case” statements. To start with, when power on reset is applied and
the first “clk” arrives, we switch off all the lamps and the timers, and the “state” is
initialized to “S0”. With the arrival of the next clock pulse, the FSM enters the
“S0” state, wherein the “blink” input is checked. If it is set, then the controller
skips all other states and enters “S12” state in the following clock pulse. Other-
wise, the “S0” state is processed. In this state, we will start the timer 1 and remain
in the same “S0” state, turning on main road green (MG1, MG2) and side road red
(SR1, SR2) lights. When the set time has elapsed, then the timer is reset and the
controller goes to the next state, “S1”. A similar explanation holds good for all
other states. The reader may refer to Figures 14.6.1 to 14.6.3, and check the Ver-
ilog codes for all other states. Finally in the blink mode, we just toggle all the yel-
low lamps every 0.5 s. If the blink control is switched off, then the controller
would go to the first state and repeat the normal sequence thereafter. The blink
input is checked in every state.

Verilog_code_14.2
__

/* Verilog RTL Code for Traffic Light Controller

This is the top design module.
Design file: traffic_controller.v
This controls the traffic lights of a four-road junction.
The timing for the main road traffic is assumed to be 45 s. For the side road, it is
25 s. Yellow lights will be on for 5 s when they are switched on.
Beyond normal traffic hours, all yellow lights flash at 1 Hz.
See traffic light controller document file for specifications.
Test bench for this design is traffic_controller_test.v.
*/
// Define the states of the controller.

`define S0 4'd0
`define S1 4'd1
`define S2 4'd2
`define S3 4'd3
`define S4 4'd4
`define S5 4'd5
`define S6 4'd6
`define S7 4'd7

566 Hardware Implementations Using FPGA and I/O Boards

`define S8 4'd8
`define S9 4'd9
`define S10 4'd10
`define S11 4'd11
`define S12 4'd12
`define time_base 22'd4999999

/*
For 50 MHz operation, the time base is 0.1 s. Use 22'd9 for simulation purposes.

*/
`define load_cnt2 9'd449

 // This is the Timer 1 count value in units of 0.1 s providing 45 s delay.
`define load_cnt3 6'd49

 // This is the Timer 2 count value in units of 0.1 s providing 5 s delay.
`define load_cnt4 8'd249

 // This is the Timer 3 count value in units of 0.1 s providing 25 s delay.
`define load_cnt5 8'd4

 // This is the Timer 4 count value in units of 0.1 s providing 0.5 s delay.
 // Change these if you desire different timings.

module traffic_controller (clk,

reset_n,
MR1, // Main Red 1

 MR2, // Main Red 2
 MY1, // Main Yellow 1
 MY2, // Main Yellow 2
 MG1, // Main Green 1
 MG2, // Main Green 2
 MLT1, // Main Left 1
 MLT2, // Main Left 2
 SR1, // Side Red 1
 SR2, // Side Red 2
 SY1, // Side Yellow 1
 SY2, // Side Yellow 2
 SG1, // Side Green 1
 SG2, // Side Green 2
 SLT1, // Side Left 1
 SLT2, // Side Left 2

blink
);

// Declare inputs/outputs.
input clk ;
input reset_n ;
input blink ;
output MG1 ; // Traffic lights, main green,
output MG2 ; // etc. are declared as outputs.
output MY1 ;

14.4 Traffic Light Controller Design 567

output MY2 ;
output MR1 ;
output MR2 ;
output MLT1 ; //Outputs for Main road left turn.
output MLT2 ;
output SR1 ;
output SR2 ;
output SY1 ;
output SY2 ;
output SG1 ;
output SG2 ;
output SLT1 ; //Outputs for Side road left turn.
output SLT2 ;

// Declare nets (combinational circuit outputs).
wire adv_cnt2 ;
wire adv_cnt3 ;
wire adv_cnt4 ;
wire adv_cnt5 ;
wire res_cnt2 ;
wire res_cnt3 ;
wire res_cnt4 ;
wire res_cnt5 ;
wire [21:0] cnt1_next ;
wire [8:0] cnt2_next ;
wire [5:0] cnt3_next ;
wire [7:0] cnt4_next ;
wire [7:0] cnt5_next ;

// Declare registered signals.
reg [21:0] cnt1_reg ;
reg [8:0] cnt2_reg ;
reg [5:0] cnt3_reg ;
reg [7:0] cnt4_reg ;
reg [7:0] cnt5_reg ;
reg start_timer_1 ;
reg start_timer_2 ;
reg start_timer_3 ;
reg [3:0] state ;
reg MR1 ;
reg MR2 ;
reg MY1 ;
reg MY2 ;
reg MG1 ;
reg MG2 ;
reg MLT1 ;

568 Hardware Implementations Using FPGA and I/O Boards

reg MLT2 ;
reg SR1 ;
reg SR2 ;
reg SY1 ;
reg SY2 ;
reg SG1 ;
reg SG2 ;
reg SLT1 ;
reg SLT2 ;

// Timer implementation
/*

cnt1_reg is a free-running counter to provide the time base of 0.1 s for
timers 1 thru’ 4.

*/
assign cnt1_next = cnt1_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 cnt1_reg <= 22'd0 ; // Initialize when the system is reset.

else if (cnt1_reg == `time_base)
 cnt1_reg <= 22'd0 ; // Reset if terminal count is reached.

 else
cnt1_reg <= cnt1_next ; // Otherwise, advance the count once.

end
/*

This is the Timer 1, programmed for 45 s in order to facilitate the smooth run-
ning of the main road traffic.

*/
assign adv_cnt2 = (start_timer_1 == 1'b1) &(cnt1_reg == `time_base) ;

// Condition for Pre-incrementing the counter.
assign res_cnt2 = (cnt1_reg == `time_base)&(cnt2_reg == `load_cnt2) ;
 // Condition for resetting the counter.
assign cnt2_next = cnt2_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin

if (reset_n == 1'b0)
 cnt2_reg <= 9'd0 ; // Initialize when the system is reset.

else if (res_cnt2 == 1'b1)
 cnt2_reg <= 9'd0 ; // Reset if terminal count is reached.

else if (adv_cnt2 == 1'b1)

14.4 Traffic Light Controller Design 569

cnt2_reg <= cnt2_next ;
// 45 s timer – advance the count once if
// the timer is still running.

 else
 cnt2_reg <= cnt2_reg ; // Otherwise, don’t disturb.

end
/*
 This is the Timer 2, programed for 5 s (activating yellow lights) for the
 smooth transition while switching from one traffic to another.
*/
assign adv_cnt3 = (start_timer_2 == 1'b1)&(cnt1_reg == `time_base) ;
 // Condition for Pre-incrementing the counter.
assign res_cnt3 = (cnt1_reg == `time_base)&(cnt3_reg == `load_cnt3) ;

// Condition for resetting the counter.
assign cnt3_next = cnt3_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)

cnt3_reg <= 6'd0 ; // Initialize when the system is reset.
 else if (res_cnt3 == 1'b1)
 cnt3_reg <= 6'd0 ; // Reset if terminal count is reached.
 else if (adv_cnt3 == 1'b1)
 cnt3_reg <= cnt3_next ;
 // 5 s timer – advance the count once if the timer is still running.
 else
 cnt3_reg <= cnt3_reg ; // Otherwise, don’t disturb.

end
// This is the Timer 3, programed for 25 s delay, used for //

the side road traffic.
assign adv_cnt4 = (start_timer_3 == 1'b1)&(cnt1_reg == `time_base) ;

// Condition for Pre-incrementing the counter.
assign res_cnt4 = (cnt1_reg == `time_base)&(cnt4_reg == `load_cnt4) ;

// Condition for resetting the counter.
assign cnt4_next = cnt4_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)

cnt4_reg <= 8'd0 ; // Initialize when the system is reset.
else if (res_cnt4 == 1'b1)

cnt4_reg <= 8'd0 ; // Reset if terminal count is reached.
else if (adv_cnt4 == 1'b1)

cnt4_reg <= cnt4_next ;
 // 25 s timer – advance the count once if the timer is still running.

 else

570 Hardware Implementations Using FPGA and I/O Boards

cnt4_reg <= cnt4_reg ; // Otherwise, don’t disturb.
end

// This is the Timer 4, programed for 0.5 s delay, used for blinking of all
// the yellow lights after the normal traffic hours.
assign adv_cnt5 = (blink == 1’b1)&(cnt1_reg == `time_base) ;

// Condition for Pre-incrementing the counter.
assign res_cnt5 = (cnt1_reg == `time_base)&(cnt5_reg == `load_cnt5) ;

// Condition for resetting the counter.
assign cnt5_next = cnt5_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)

cnt5_reg <= 8'd0 ; // Initialize when the system is reset.
else if (res_cnt5 == 1'b1)

cnt5_reg <= 8'd0 ; // Reset if terminal count is reached.
else if (adv_cnt5 == 1'b1)

cnt5_reg <= cnt5_next ;
// Advance the count once if the timer is still running.

else
cnt5_reg <= cnt5_reg ; // Otherwise, don’t disturb.

end
// Traffic lights state machine
always @ (posedge clk or negedge reset_n)

begin
if (reset_n == 1'b0)

 begin // Switch OFF all lights to start with.
 MR1 <= 1'b0 ;
 MR2 <= 1'b0 ;
 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;
 MY1 <= 1'b0 ;
 MY2 <= 1'b0 ;
 MLT1 <= 1'b0 ;
 MLT2 <= 1'b0 ;
 SR1 <= 1'b0 ;
 SR2 <= 1'b0 ;
 SY1 <= 1'b0;
 SY2 <= 1'b0;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 SLT2 <= 1'b0 ;

// Also, switch OFF the timers.
 start_timer_1 <= 1'b0 ;

 start_timer_2 <= 1'b0 ;

14.4 Traffic Light Controller Design 571

 start_timer_3 <= 1'b0 ;
 state <= `S0 ;

end // Initialize the state when the system is reset.
 else

 case (state)
 `S0:
 if (blink == 1'b1)
 state <= `S12 ; // Change to the blink state.
 else

 begin
MG1 <= 1'b1 ; // Switch ON main
MG2 <= 1'b1 ; // green lights and

 SR1 <= 1'b1 ; // side red lights.
 SR2 <= 1'b1 ;

 // Switch OFF all other lights not wanted.
MR1 <= 1'b0 ;
MR2 <= 1'b0 ;
MY1 <= 1'b0 ;

 MY2 <= 1'b0 ;
MLT1 <= 1'b0;
MLT2 <= 1'b0;
SY1 <= 1'b0 ;
SY2 <= 1'b0 ;
SG1 <= 1'b0 ;
SG2 <= 1'b0 ;
SLT1 <= 1'b0 ;
SLT2 <= 1'b0 ;

 if (res_cnt2 == 1'b1)
 // This corresponds to 45 s timing of timer 1.

 begin
 start_timer_1 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S1 ; // Change the state.
 end
 else
 begin

 start_timer_1 <= 1'b1; // Otherwise, let it run.
 state <= `S0 ;

// Remain in the same state until the terminal count is reached.
 end
 end
 `S1:

if (blink == 1'b1)
 state <= `S12 ; //Change to the blink state.
else

572 Hardware Implementations Using FPGA and I/O Boards

 begin
// Switch ON main yellow lights and side red lights.

MY1 <= 1'b1 ;
MY2 <= 1'b1 ;

 SR1 <= 1'b1 ;
 SR2 <= 1'b1 ;

 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;
 MR1 <= 1'b0 ;
 MR2 <= 1'b0 ;

MLT1 <= 1'b0 ;
MLT2 <= 1'b0 ;
SY1 <= 1'b0 ;

 SY2 <= 1'b0 ;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 SLT2 <= 1'b0 ;

 if (res_cnt3 == 1'b1)
 // This corresponds to 5 s timing of timer 2.

 begin
 start_timer_2 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S2 ; // Change the state.

 end
 else
 begin

 start_timer_2 <= 1'b1 ; // Otherwise, let it run.
 state <= `S1 ;

 // Remain in the same state until the terminal count is reached.
 end
 end
 `S2:

 if (blink == 1'b1)
 state <= `S12 ; // Change to the blink state.
 else

 begin // Switch ON main red lights, main road1 right,
 // main road1 left and side red lights

MR1 <= 1'b1 ;
 MR2 <= 1'b1 ;
 MLT1 <= 1'b1 ;
 SR1 <= 1'b1 ;
 SR2 <= 1'b1 ;

 // Switch OFF all other lights not wanted.
 MY1 <= 1'b0 ;
 MY2 <= 1'b0 ;

14.4 Traffic Light Controller Design 573

 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;
 MLT2 <= 1'b0 ;
 SY1 <= 1'b0 ;
 SY2 <= 1'b0 ;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 SLT2 <= 1'b0 ;
if (res_cnt4 == 1'b1)
 // This corresponds to 25 s timing of timer 3.

 begin
 start_timer_3 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S3 ; // Change the state.
 end
 else
 begin
 start_timer_3 <= 1'b1 ;

 // Otherwise, let it run.
 state <= `S2 ;

 // Remain in the same state until the terminal count is reached.
 end
 end
`S3:

 if (blink == 1'b1)
 state <= `S12 ; // Change to the blink state.
 else

 begin
 // Switch ON main red, main road1 yellow light and side red lights.

 MR1 <= 1'b1 ;
 MR2 <= 1'b1 ;

MY1 <= 1'b1 ;
 MY2 <= 1'b1 ;

SR1 <= 1'b1 ;
 SR2 <= 1'b1 ;

// Switch OFF all other lights not wanted.
MG1 <= 1'b0 ;

 MG2 <= 1'b0 ;
 MLT1 <= 1'b0 ;

 MLT2 <= 1'b0 ;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SY1 <= 1'b0 ;
 SY2 <= 1'b0 ;
 SLT1 <= 1'b0 ;

574 Hardware Implementations Using FPGA and I/O Boards

 SLT2 <= 1'b0 ;
 if (res_cnt3 == 1'b1)
 // This corresponds to 5 s timing of timer 2.
 begin
 start_timer_2 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S4 ; // Change the state.
 end
 else
 begin

start_timer_2 <= 1'b1 ; // Otherwise, let it run.
 state <= ̀ S3 ;

// Remain in the same state until the terminal count is reached.
 end

 end
 `S4:
 if (blink == 1'b1)
 state <= `S12 ; // Change to the blink state.
 else
 begin

 // Main red lights continue to be ON. Switch ON Main road 2 left,
 // and also side red lights.

 MR1 <= 1'b1 ;
 MR2 <= 1'b1 ;

 MLT2 <= 1'b1 ;
 SR1 <= 1'b1 ;

SR2 <= 1'b1 ;
 // Switch OFF all other lights not wanted.

 MY1 <= 1'b0 ;
MY2 <= 1'b0 ;

 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;
 MLT1 <= 1'b0 ;
 SY1 <= 1'b0 ;
 SY2 <= 1'b0 ;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;

 SLT2 <= 1'b0 ;
 if (res_cnt4 == 1'b1)

 // This corresponds to 25 s timing of timer 3.
 begin
 start_timer_3 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S5 ;

// Change the state.

14.4 Traffic Light Controller Design 575

 end
 else
 begin
 start_timer_3 <= 1'b1 ; // Otherwise, let it run.
 state <= ̀ S4 ;

 // Remain in the same state until the terminal count is reached.
 end
 end

`S5:
 if (blink == 1'b1)

 state <= `S12 ; // Change to the blink state.
 else
 begin
 // Switch ON main red lights, MY2, and side yellow lights.

 MR1 <= 1'b1 ;
 MR2 <= 1'b1 ;
 MY2 <= 1'b1 ;

 SY1 <= 1'b1 ;
 SY2 <= 1'b1 ;

// Switch OFF all other lights not wanted.
 MY1 <= 1'b0 ;
 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;
 MLT1 <= 1'b0 ;
 MLT2 <= 1'b0 ;
 SR1 <= 1'b0 ;
 SR2 <= 1'b0 ;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 SLT2 <= 1'b0 ;
 if (res_cnt3 == 1'b1)

 // This corresponds to 5 s timing of timer 2.
 begin
 start_timer_2 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S6 ; // Change the state.
 end
 else
 begin

 start_timer_2 <= 1'b1 ; // Otherwise, let it run.
 state <= ̀ S5 ;

 // Remain in the same state until the terminal count is reached.
 end

 end

576 Hardware Implementations Using FPGA and I/O Boards

`S6:
 if (blink == 1'b1)
 state <= `S12 ; // Change to the blink state.

else
 begin
 // Switch ON main red lights and side green lights.
 MR1 <= 1'b1 ;
 MR2 <= 1'b1 ;

 SG1 <= 1'b1 ;
SG2 <= 1'b1 ;

 // Switch OFF all other lights not wanted.
 MY1 <= 1'b0 ;
 MY2 <= 1'b0 ;
 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;

MLT1 <= 1'b0 ;
MLT2 <= 1'b0 ;
SR1 <= 1'b0 ;
 SR2 <= 1'b0 ;
SY1 <= 1'b0 ;

 SY2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 SLT2 <= 1'b0 ;
 if (res_cnt2 == 1'b1)

 // This corresponds to 45 s timing of timer 1.
 begin
 start_timer_1 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S7 ; // Change the state.

 end
 else
 begin
 start_timer_1 <= 1'b1 ; // Otherwise, let it run.
 state <= `S6 ;

 // Remain in the same state until the terminal count is reached.
 end

 end
`S7:

if (blink == 1'b1)
 state <= `S12 ; // Change to the blink state.
 else
 begin // Let Main roads red be ON,

MR1 <= 1'b1 ;
 MR2 <= 1'b1 ; // side roads yellow ON and

SY1 <= 1'b1 ;
 SY2 <= 1'b1 ;

14.4 Traffic Light Controller Design 577

MY1 <= 1'b0 ; // switch OFF all unwanted
MY2 <= 1'b0 ; // lights.
MG1 <= 1'b0 ;
MG2 <= 1'b0 ;
MLT1 <= 1'b0 ;

 MLT2 <= 1'b0 ;
 SR1 <= 1'b0 ;

SR2 <= 1'b0 ;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 SLT2 <= 1'b0 ;

 if (res_cnt3 == 1'b1)
 // This corresponds to 5 s timing of timer 2.

 begin
 start_timer_2 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S8 ;

 // Change the state to the eighth sequence.
 end
 else
 begin
 start_timer_2 <= 1'b1 ; // Otherwise, let it run.
 state <= `S7 ;

 // Remain in the same state until the terminal count is reached.
 end
 end
`S8:
 if (blink == 1'b1)
 state <= `S12 ; // Change to the blink state.
 else
 begin
 MR1 <= 1'b1 ;

MR2 <= 1'b1 ; // Let Main roads red be ON and
SR1 <= 1'b1 ;

 SR2 <= 1'b1 ; // switch ON side roads red.
 SLT1 <= 1'b1 ; // Also switch ON side road1 left.

MY1 <= 1'b0 ; // Switch OFF all unwanted lights.
 MY2 <= 1'b0 ;
 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;

MLT1 <= 1'b0 ;
 MLT2 <= 1'b0 ;
 SY1 <= 1'b0 ;
 SY2 <= 1'b0 ;
 SG1 <= 1'b0 ;

578 Hardware Implementations Using FPGA and I/O Boards

 SG2 <= 1'b0 ;
 SLT2 <= 1'b0 ;
 if (res_cnt4 == 1'b1)

 // This corresponds to 10 s timing of timer 3.
 begin
 start_timer_3 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S9 ; // Change the state.
 end
 else
 begin
 start_timer_3 <= 1'b1 ; // Otherwise, let it run.
 state <= `S8 ;

 // Remain in the same state until the terminal count is reached.
 end
 end
`S9:

 if (blink == 1'b1)
 state <= `S12 ; // Change to the blink state.
 else
 begin
 MR1 <= 1'b1 ;

 MR2 <= 1'b1 ; // Retain Main roads red and
SR1 <= 1'b1 ;

 SR2 <= 1'b1 ; // switch ON side roads red.
 SY2 <= 1'b1 ;
 SY1 <= 1'b1 ; // Switch ON side roads yellow.

 // Switch OFF all unwanted lights.
MY1 <= 1'b0 ;

 MY2 <= 1'b0 ;
MG1 <= 1'b0 ;

 MG2 <= 1'b0 ;
 MLT1 <= 1'b0 ;
 MLT2 <= 1'b0 ;
 SY1 <= 1'b0 ;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 SLT2 <= 1'b0 ;
 if (res_cnt3 == 1'b1)

 // This corresponds to 5 s timing of timer 2.
 begin
 start_timer_2 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S10 ;

 // Change the state to the first sequence.

14.4 Traffic Light Controller Design 579

 end
 else
 begin
 start_timer_2 <= 1'b1 ; // Otherwise, let it run.
 state <= ̀ S9 ;

 // Remain in the same state until the terminal count is reached.
 end
 end

`S10:
if (blink == 1'b1)

 state <= `S12 ; // Change to the blink state.
 else
 begin

MR1 <= 1'b1 ; // Retain Main roads red and
MR2 <= 1'b1 ; // switch ON side roads red.
SR1 <= 1'b1 ;
SR2 <= 1'b1 ; // Switch ON side road 2 left.
SLT2 <= 1'b1 ; //Switch OFF all other lights.
MY1 <= 1'b0 ;
MY2 <= 1'b0 ;

 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;

 MLT1 <= 1'b0 ;
 MLT2 <= 1'b0 ;
 SY1 <= 1'b0 ;
 SY2 <= 1'b0 ;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 if (res_cnt4 == 1'b1)

 // This corresponds to 10 s timing of timer 3.
 begin
 start_timer_3 <= 1'b0 ;

 // Stop the timer if the terminal count is reached.
 state <= `S11 ; // Change the state.
 end
 else
 begin
 start_timer_3 <= 1'b1 ; // Otherwise, let it run.
 state <= `S10 ;

 // Remain in the same state until the terminal count is reached.
 end

 end
 `S11:
 if (blink == 1'b1)
 state <= `S12 ; // Change to the blink state.

580 Hardware Implementations Using FPGA and I/O Boards

 else
 begin

MY1 <= 1'b1 ; // Switch ON Main roads yellow,
MY2 <= 1'b1 ; // side roads red, SY2 and
SR1 <= 1'b1 ;
SR2 <= 1'b1 ;

 SY2 <= 1'b1 ;
 SY1 <= 1'b0 ; // all other lights OFF.
 MR1 <= 1'b0 ;
 MR2 <= 1'b0 ;
 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;
 MLT1 <= 1'b0 ;
 MLT2 <= 1'b0 ;
 SG1 <= 1'b0 ;
 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 SLT2 <= 1'b0 ;
 if (res_cnt3 == 1'b1)

 // This corresponds to 5 s timing of timer 2.
 begin
 start_timer_2 <= 0 ;

 // Stop the timer if the terminal count is reached.
state <= S0 ;
 // Change the state to the first sequence.

 end
 else
 begin
 start_timer_2 <= 1'b1 ; // Otherwise, let it run.
 state <= ̀ S11 ;

 // Remain in the same state until the terminal count is reached.
 end
 end
 `S12:
 if (blink == 1'b1)
 begin
 begin
 MR1 <= 1'b0 ; // Switch OFF all lights
 MR2 <= 1'b0 ; // except yellow.
 MG1 <= 1'b0 ;
 MG2 <= 1'b0 ;
 MLT1 <= 1'b0 ;
 MLT2 <= 1'b0 ;
 SR1 <= 1'b0 ;
 SR2 <= 1'b0 ;
 SG1 <= 1'b0 ;

14.4 Traffic Light Controller Design 581

 SG2 <= 1'b0 ;
 SLT1 <= 1'b0 ;
 SLT2 <= 1'b0 ;
 end

 if ((cnt1_reg == `time_base)&&(cnt5_reg == `load_cnt5))
begin // Blink all yellow lights.

 SY1 <= ~SY1 ;
 SY2 <= ~SY2 ;
 MY1 <= ~MY1 ;
 MY2 <= ~MY2 ;

 state <= `S12 ;
 // Remain in the same state until the terminal count is reached.

 end
 else

 state <= `S12 ;
 end

 else
 state <= `S0 ; // Change the state to the first sequence.
 default: state <= `S0 ;
 endcase
 end
endmodule
__

14.4.2 Test Bench for the Traffic Light Controller

fic_controller_test” and the inputs as registers. This is followed by instantiating
the design, “traffic_controller”. To start with, we initialize all the inputs before
the normal operation starts. Once the reset pulse is applied and withdrawn, the
traffic light controller starts sequencing starting from “S0” state. We will allow
it to run long enough to capture one full sequence or more. After it runs for
about 300,000 ns, we apply the blink control for about 50,000 ns. During this
period, all the yellow lights will flash at a rate of 1 Hz. After this period, the
normal traffic lights operation is resumed.

Verilog_code_14.3
__
/* Test Bench for Traffic Light Controller
Put this in a file named, “traffic_controller_test.v” */
`define clkperiodby2 10 // 10 ns is the half time period –

// Frequency of operation: 50 MHz.

ency of operation is set at 50 MHz. The test bench is declared as “traf-
include the design file, “traffic_controller.v” in the test bench. The frequ-
Verilog_code_14.3 presents the test bench of the traffic light controller. We

582 Hardware Implementations Using FPGA and I/O Boards

`include “traffic_controller.v” // This is the design file.
`timescale 1ns/100ps
module traffic_controller_test ;
reg clk ; // Declare input signals.
reg reset_n ;
reg blink ;
traffic_controller tc1(// Instantiate the traffic controller design module.
 .clk(clk),
 .reset_n(reset_n),
 .MG1(MG1),
 .MG2(MG2),
 .SR1(SR1),
 .SR2(SR2),
 .MY1(MY1),
 .MY2(MY2),
 .MR1(MR1),
 .MR2(MR2),
 .SG1(SG1),
 .SG2(SG2),
 .SY1(SY1),
 .SY2(SY2),
 .MLT1(MLT1),
 .MLT2(MLT2),
 .SLT1(SLT1),
 .SLT2(SLT2),
 .blink(blink)
);
initial
begin
 clk = 1’b0 ; // Initialize input signals.
 reset_n = 1’b1 ;
 blink = 0 ;
 #20 reset_n = 1’b0 ; // Pulse low.
 #20 reset_n = 1’b1 ;

 // Run long enough to capture one full sequence or more.
 #600000 blink = 1 ; // Blink all yellow lights.
 #50000 blink = 0 ; // Resume normal traffic lights operation
 #50000
 $stop ; // and stop.

end

always

 #`clkperiodby2 clk <= !clk ; // Toggle to get a free running clock.

endmodule
__

14.4 Traffic Light Controller Design 583

The simulation results are shown in Figures 14.7.1 to 14.7.3. Looking at the first
waveform, we see that the reset is applied at 20 ns and withdrawn at 40 ns, after
which time the normal sequence commences. With the application of the reset
pulse, the FSM state is initialized to “S0” state. The traffic lights are, however,
turned on only with the arrival of the first clock pulse after the reset is withdrawn.
Accordingly, MG1, MG2, SR1, and SR2 lights are turned on at 50 ns with the ris-
ing edge of the “clk” signal. Figure 14.7.2 shows the results of all other states,
“S1” to “S11”. The lights that are turned on for various states as per the wave-
forms are as follows:
S1 MY1, MY2, SR1, and SR2
S2 MR1, MR2, SR1, SR2, and MLT1
S3 MR1, MR2, MY1, MY2, SR1, and SR2
S4 MR1, MR2, SR1, SR2, and MLT2
S5 MR1, MR2, MY2, SY1, and SY2
S6 MR1, MR2, SG1, and SG2
S7 MR1, MR2, SY1, and SY2
S8 MR1, MR2, SR1, SR2, and SLT1
S9 MR1, MR2, SR1, SR2, SY1, and SY2
S10 MR1, MR2, SR1, SR2, and SLT2
S11 MY1, MY2, SR1, SR2, and SY2

Fig. 14.7.1 Simulation results of traffic light controller (Continued)

14.4.3 Simulation of Traffic Light Controller

584 Hardware Implementations Using FPGA and I/O Boards

Fig. 14.7.2 and 14.7.3 Simulation results of traffic light controller

14.4 Traffic Light Controller Design 585

Figure 14.7.3 shows the flashing of all yellow lights, MY1, MY2, SY1, and SY2
during 300 to 350 µs when blink input is switched on while the controller was ser-
vicing the “S10” sequence. With the arrival of the next “clk” pulse, the state
changes to “S12”. The reader may verify that the waveforms are exactly as per the
sequence diagrams presented in Figures 14.6.1 to 14.6.3. After the blink control is
switched off, normal operation commences from state, “S0”, as can be seen from
Figure 14.7.3.

We have mapped the design on the device XCV800HQ240-4 since we are going
to use the FPGA board with this particular device mounted. If you are using any
other FPGA board, you will have to run the synthesis and place and route tools
mapping the right type of device used in your board. The Synplify results of the
traffic controller design is as follows. It may be noted that the tool has changed the
FSM states assigned in straight binary into one hot assignments. The total number
of LUTs used in the design is just 134. In real systems, however, we will be using
the lowest possible capacity of FPGA, say, XCV50 or less depending upon the
gate count of the design. The maximum frequency of operation reported is 75
MHz. The Synplify tool generates the “traffic_controller.edf” file for use in the
P&R tool.
Synplify Results:
@I::“D:\RAM\book\Traffic_controller_seq12\Traffic_controller_Right\traffic_con-
troller.v”
Extracted state machine for register state
State machine has 13 reachable states with original encodings of:
 0000
 0001
 0010
 0011
 0100
 0101
 0110
 0111
 1000
 1001
 1010
 1011
 1100
@END
Encoding state machine work.traffic_controller(verilog)-state[12:0]
original code -> new code
 0000 -> 0000000000001
 0001 -> 0000000000010
 0010 -> 0000000000100

14.4.4 Synthesis Results of Traffic Light Controller

586 Hardware Implementations Using FPGA and I/O Boards

 0011 -> 0000000001000
 0100 -> 0000000010000
 0101 -> 0000000100000
 0110 -> 0000001000000
 0111 -> 0000010000000
 1000 -> 0000100000000
 1001 -> 0001000000000
 1010 -> 0010000000000
 1011 -> 0100000000000
 1100 -> 1000000000000

Worst slack in design: 6.693

Clock
Starting

Requested
Frequency

Estimated
Frequency

Requested
Period

Estimated
Period

clk 50.0 MHz 75.1 MHz 20.000 13.307

Resource Usage Report for traffic_controller
Mapping to part: xcv800hq240-4
Cell usage:
FDC 65 uses
FDCE 15 uses
FDP 1 use
GND 1 use
MUXCY_L 48 uses
VCC 1 use
XORCY 53 uses
I/O primitives: 18
IBUF 2 uses
OBUF 16 uses
BUFGP 1 use
I/O Register bits: 0
Register bits not including I/Os: 81 (0%)
Global Clock Buffers: 1 of 4 (25%)
Total LUTs: 134 (0%)

14.4.5 Place and Route Results of Traffic Controller

The “traffic_controller.edf ” file generated by the synthesis tool is input into the
Xilinx place and route tool for creating the bit stream. The “traffic_controller.ucf”
file, explained in the next sub-section, is also used while running the P&R tool.
The Xilinx P&R tool report is as follows. The gate count of the design is 1437.
The maximum frequency of operation reported is 60 MHz (16.672 ns).

14.4 Traffic Light Controller Design 587

Command Line: C:/Xilinx/bin/nt/map.exe -intstyle ise -p xcv800-hq240-4 -cm
area -pr b -k 4 -c 100 -tx off -o traffic_controller_map.ncd
traffic_controller.ngd traffic_controller.pcf
Target Device: xv800
Target Package: hq240
Target Speed: -4
Logic Utilization:
 Number of slice flip flops: 81 out of 18,816 1%

 81 out of 18,816 1%
Logic Distribution:
 Number of occupied slices: 79 out of 9,408 1%
 Number of slices containing only related logic: 79 out of 79 100%
 Number of slices containing unrelated logic: 0 out of 79 0%
Total number four input LUTs: 134 out of 18,816 1%
 Number used as logic: 81
 Number used as a route-thru: 53
 Number of bonded IOBs: 18 out of 166 10%
 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
Total equivalent gate count for design: 1,437
Additional JTAG gate count for IOBs: 912

User Constraint File for Traffic Light Controller

The place and route tool of Xilinx assigns default pin numbers to the design sig-
nals if no user constraint file, “.ucf ”, is specified while running the tool. However,
the user can assign them as per actual hardware connections by specifying the de-
sired pin configuration in a “.ucf ” file. This should be a separate file, say, “traf-
fic_controller.ucf ” and located, preferably, in the same folder where the “traf-
fic_controller.edf ” is located. The FPGA pins to be included are as follows. They
have to be declared as NET, specifying the signals and their corresponding pins.

User Constraint File, “traffic_controller.ucf”

NET “clk” LOC = P89 ;
NET “blink” LOC = P108 ;
NET “reset_n” LOC = P188 ;
NET “MR1” LOC = P94 ;
NET “MR2” LOC = P223;
NET “MY1” LOC = P224;
NET “MY2” LOC = P228;
NET “MG1” LOC = P93;
NET “MG2” LOC = P229;
NET “MLT1” LOC = P230;

 Number of four input LUTs:

588 Hardware Implementations Using FPGA and I/O Boards

NET “MLT2” LOC = P231;
NET “SR1” LOC = P87;
NET “SR2” LOC = P232;
NET “SY1” LOC = P234;
NET “SY2” LOC = P235;
NET “SG1” LOC = P86;
NET “SG2” LOC = P236;
NET “SLT1” LOC = P237;
NET “SLT2” LOC = P222;
__

14.4.6 Hardware Setup of Traffic Light Controller

Figure 14.8.1 shows the capture of one of the live demo sequences (S8) display of
the traffic light controller. The 16 lamps on the display board are connected to
LED1 to LED16 of the digital I/O board, which we discussed in an earlier section.
Figure 14.8.2 shows the hardware setup of the traffic light controller. The demo
setup comprises the computer (PC), the FPGA board, the digital I/O board, the
traffic display board, and power supplies. The power supplies deliver 9 V DC, 1.5
A for the FPGA board and 5 V DC, 1A to the digital I/O board. As shown in Fig-
ure 14.8.2, the LEDs in the display board are connected to the digital I/O board,
whose I/Os in turn are connected to the expansion headers of the FPGA board.
Actual connections established were presented in the user constraint file, “traf-
fic_controller.ucf ”. The close-up views of the FPGA and the digital I/O boards
are shown in Figures 14.8.3 and 14.8.4 respectively. The downloading of the bit
stream is shown in Figure 14.8.5. The last push button switch, PB4, on the digital
I/O board is used as system reset and is enabled by installing the jumper X4 on the
left hand side. Make sure that the jumper X1 is installed on the right hand side and
the BCD switch SW5 (refer Figure 14.8.2) is in “0” position in order to use the bi-
nary switch SW1, first bit position from left, as the “Blink” control. Note that the
“ON” position switches off the blink. For normal sequence, this switch must be in
the ON position and for blinking of yellow lights, it must be in the OFF position
(which corresponds to a logical high as explained in an earlier section).

In the demo setup described earlier, only single LED displays were used for the
traffic lights. However, in the actual traffic lights, we need to use a group of LEDs
in lieu of single LED. Rest of the hardware we have developed would work with-
out any changes. Conventional traffic bulb signals may be replaced with a group
of discrete LEDs. These offer brighter illumination and consume less power. Also,
the life of LEDs are much longer (over 10 years). In the conventional traffic sig-
nals, once the bulbs get fused, it is a major problem for road users. Everyday, the
police spend a lot of time changing bulbs at various signal points. In the discrete
LED displays, there are about 200 small LEDs and not all of them get fused at the

14.4 Traffic Light Controller Design 589

Fig. 14.8.1 Traffic light display board of the demo setup

Fig. 14.8.2 Hardware setup for the traffic light controller

590 Hardware Implementations Using FPGA and I/O Boards

Fig. 14.8.3 Close-up view of the FPGA board

Fig. 14.8.4 Close-up view of the digital input/output board

14.4 Traffic Light Controller Design 591

Fig. 14.8.5 Down loading of traffic light controller bit stream

same time. Moreover, even if a batch of them got fused, the signal would be still
visible from a distance. Maintaining a plug-in, modular display design, replace-
ment of LED display boards will be quick and economical in the long run.

14.5 Real Time Clock Design

This is another design example suitable for implementation on the FPGA board
and digital I/O board we have used in the earlier design. This design is more in-
volved than the traffic controller design. The I/O board needs to be populated with
all the six, seven-segment LEDs for the real time clock application. It has many
applications and features as presented in the following sub-sections.

14.5.1 Applications

The following lists the applications for the real time clock (RTC). The first appli-
cation is to display the real time on 24 h basis. The RTC can display in hours,
minutes, and seconds. It has a counter which can be configured as an up counter or
a down counter. We can use the same as a stopwatch, an industrial timer or a pho-
tographic timer. We can also use the RTC with three different alarm settings for
time-bound medical treatment, as an example:

 • Real time display
• Stop watch
• Industrial timer

592 Hardware Implementations Using FPGA and I/O Boards

• Photographic timer
• Medical application using three alarm settings

The main features of the real time clock are as follows:
• 24-h clock

 Hrs/mts/secs push button settings
• Stopwatch

 Up counter
 Down counter
 Count setting by push buttons
 Timer out if the running counter matches the set time

• Three independent alarms
 Alarm settings by push buttons
 Common audio alarm

We will be designing a 24-h clock, which can be easily converted to accom-
modate a 12-h clock as well. In this system, hours, minutes, and seconds can be
set by push buttons. We need three independent push button switches to set them.
We have a stopwatch, which can count up or down, and we can set this count by
using the same push button switches once again. There is also a “timer out”, which
is a single bit signal. It will be turned on when the running counter matches the set
time. For example, in firing a rocket, we can use a down counter (or an up counter,
whichever is preferred), which counts from a preset value. The current time re-
maining over is indicated in the display. When the display touches “00 00 00”, the
rocket is fired. When this happens, an audio alarm is also activated for 30 s. We
can also use the real time counter in up counting mode. Once started, the counting
commences from “00 00 00” progressing upwards. When it touches the set value,
it stops, simultaneously sounding the alarm. We will also include three independ-
ent alarms that can be set using DIP switches and the alarm settings by push but-
tons.

When we design a system, the layout of the product is very important. From
the perspective of a user, the outer look and ease of operation of the product mat-
ters a lot, in addition to correct and reliable functioning. It may be noted that the
present hardware setup is only for the R&D phase to prove our design. Once the
design is completed and is working satisfactorily, a compact hardware will have to
be fabricated retaining only those components that are absolutely required for the
particular application. For instance, the entire real time clock can be mapped on a
single ASIC and having a small LCD for display and miniature switches for op-
eration, looking very much like a wrist watch or a small table top equipment. In
the case of a wrist watch, all switches can be push buttons. We can configure the
FPGA/digital I/O boards for any number of applications subject to the limitations
of the hardware on the boards available with us. Depending upon the actual needs,
the Verilog code may require modifications. So also the user constraints file.

14.5.2 Features

14.5 Real Time Clock Design 593

Therefore, before we start coding, it is better to make sure which hardware we
need ultimately. For the present implementation, we will use the same hardware
we used for the earlier design.

We will use the same hardware we used for the traffic light controller application,
namely, the XSV 800 FPGA board and the digital input/output card for the real
time clock application. If you have different boards, you may amend the design,
Verilog codes and “.ucf ” file accordingly to suit the specific boards you have. The
design methodology and most of the Verilog codes presented in this section will
hold good for any other board. If I/O board is not available, you may try to fab-
ricate it yourselves using the hardware details presented earlier. We need six
numbers of seven-segment LEDs for displaying hours, minutes, and seconds.
Therefore, we will install the same in the sockets on the digital I/O card. Figure
14.9.1 depicts the real time clock front fascia that is desirable. However, we need
to remain content with the controls and displays spread over the two boards. With
the exception of seven-segment LED displays, buzzer and Alarm ON/OFF switch,
all other controls and display for “Timer” output (the bar LED display) are available

Fig. 14.9.1 Real time clock front fascia desired

REAL TIME CLOCK

SET

RUN TIME DOWN OFF READ

SET SW UP ON SET

ALARM

AL1 AL2 AL3 RESET

BUZZER

SET/READ START/STOP

TIMER
OUT

14.5.3 Hardware Requirements for the Real Time Clock

594 Hardware Implementations Using FPGA and I/O Boards

Fig. 14.9.2 Real time clock controls on FPGA board

on the FPGA board. This “Timer” output LED is switched on after the set timing
is complete. The seven-segment LED displays are housed in the digital I/O card,
while the buzzer and alarm ON/OFF switch are located externally.

Figure 14.9.2 presents the changed scenario to suit the FPGA board available.
It shows the real time clock controls on FPGA board as well as those that are ex-
ternal to it shown on the left hand side. The usage of various controls and displays
are as follows:

• DIP switch marked 1 to 8 in that order

clock or stop watch
 “2”: TIME/SW for configuring the equipment in the time or stop

watch mode

down counter mode
 “4”: ALARM READ/SET for reading either what is set or set-

ting what alarm time is required
 “5” to “7”: AL1 to AL3 for setting (top position) or reading

(bottom position) what is set by the corresponding switch
 “8”: RESET for resetting or disabling the set alarms

• ALARM ON/OFF for switching on or off the sound alarm
• Push button switches marked 4 to 1 in that order

 “SW4” to “SW2” for setting HRS/MTS/SECS respectively

OFF

FPGA CARD

RUN TIME DOWN READ

SET SW UP

ALARM

AL1 AL2 AL3 RESET

SET/READ

 HRS MTS SECS

SET

START/STOP

DIP
SWITCH ALARM

ON

 SW4 SW3 SW2 SW1

8 1 2 3 4 5 6 7

PB
SWITCHES

BUZZER

TIMER
OUT

“1”: SET/RUN for setting the time or stop watch/running the

“3”: DOWN/UP for configuring the equipment in the up or

14.5 Real Time Clock Design 595

 “SW1” for starting or stopping a timer
• LED for indicating the timer output
• Buzzer for sounding a beeping alarm.

In order to set the time, DIP switch 1 must be in SET position and switch 2 in

TIME position. Using the push button switches, SW4 to SW2, we can set the de-
sired time and the set time can be seen on the seven-segment LED displays. Every
time a push button is pressed, the corresponding display advances by one. By
pressing the button continuously for more than 2 s, the displays advance fast.
Similarly, the desired stop watch timing can be set if switch 2 is in SW position.
Additionally, switch 3 needs to be in UP position or DOWN position, depending
upon how we want the timer to run – counting up or counting down. It may be
noted that the design has only one built-in timer and, therefore, we can set either
the up counter or the down counter and not both. The real time or up/down timer
can start running by flipping the switch 1 to RUN position. Once started, the real
time continues to run in the background even if the system is in SET Stop Watch
or Alarm modes. While setting Stop Watch or Alarms, make sure that you don’t
inadvertently flip the DIP switch 1 to SET mode from the RUN mode. This will
immediately stop the running real time, which is not desirable. The right way to
set the Stop Watch or Alarms is to flip DIP switch 2 to “SW” position from
“TIME” position first and later flip the DIP switch 1 to SET mode from the RUN
mode. In short, ensure that the system is in SW mode (DIP switch 2) before you
switch to SET (DIP switch 1) mode. To remove this problem, in real dedicated
equipment, you can use a thumbwheel switch, preferably a press +/– button.

In SET Stop Watch mode, you can reuse SW4 to SW2 to set the
HRS/MTS/SECS just as you did for the real time. This setting holds good for UP
or DOWN counting timer depending upon the DIP switch 2 setting. The push but-
ton switch SW1 (START/STOP) is used to start a timer or stop the running timer,
be it UP or DOWN. This switch toggles between the two functions, start and stop.
If the running timer is in UP mode, the display advances every second from “00
00 00” until it reaches the set time. At this moment, the display freezes at the set
point turning on the “TIMER” output LED and sounds the beeping alarm in the
buzzer for 30 s. On the other hand, if the timer is in DOWN mode, the display
decrements every second from the set time value until it reaches “00 00 00”. Here
too, the display freezes although at zero, turning on the “TIMER” output LED and
sounds the beeping alarm in the buzzer for 30 s. The “TIMER” output may be op-
tionally connected to a relay, a contactor or a solid state relay to fire a rocket,
switch on an equipment, a heater, or any other device as per user application. The
timer can be started or stopped at any point of time. If it is stopped, the display
freezes at the current running time. If START is pressed once again, it continues
from where it stopped previously. This feature will be convenient if this timer is
used in a dark room for developing photographs and the user wants to hold the
processing temporarily.

There are three alarms, AL1 to AL3, available in the present design and can be
extended to more numbers by adding Verilog codes similar to that shown for the
three alarms. These alarms can be set by DIP switch 4 in SET position, followed

596 Hardware Implementations Using FPGA and I/O Boards

by flipping one of the switches, 5 to 7, to SET position (Up), one at a time. In this
mode of alarm setting, you can reuse SW4 to SW2 to set the HRS/MTS/SECS just
as you did for the real time or the stop watch. You can read back the alarm setting
by flipping the DIP switch 4 to READ position. If all the alarm switches 5 to 7 are
in UP position, then AL1 alone will be displayed. AL1 has the top most priority
and AL3 has the least priority while reading. Therefore, in order to read AL3, you
will have to switch down the other priority alarms AL1 and AL2. The DIP switch
8, RESET, is used (in Up position) to clear all the alarm settings. All the three
alarms can be disabled (OFF position) by a switch external to the FPGA board.
This only switches off the beeping alarm for real time, and not its setting or stop
watch/timer functioning.

In the previous section, we defined the problem, identified possible applications
and formulated its features. This was followed by more details such as how the
front fascia must look like, and take stock of what hardware we have on hand in
order to develop the product based on these hardware. Once the product design is
proven, we may take up building the minimum possible hardware, be it industrial
model mounted on a control panel, a table top model, or a mobile model. The last
model needs power reduction techniques in the design and its implementation in
order to consume least possible power, that is typical of any battery operated de-
vice. Before we start coding this application in Verilog, we need to formulate the

Fig. 14.10 Block diagram of real time clock

 RTC

beep

timer_out

irun_setn
reset_n

 itime_stopwn

ihrs
idown_upn

clk

display2 [7:0]

imts
isecs

istart_stopn
ialarm_off_onn

ialarm1
ialarm_read_setn

ialarm2
ialarm3

display1 [7:0]

display4 [7:0]

display3 [7:0]

display6 [7:0]

display5 [7:0]

detailed specification. While coding in Verilog, we will use the same nomenclature

14.5.4 Detailed Specification of the Real Time Clock

14.5 Real Time Clock Design 597

Table 14.1 Signal Description of Real Time Clock

Signal Input/Output Description

clk Input System clock
reset_n Input Asynchronous, active low sys. reset
irun_setn Input RUN/SET mode switch
itime_stopwn Input TIME/STOP WATCH mode switch
idown_upn Input UP/DOWN mode switch
ihrs Input Push button switch for setting “hrs”
imts Input Push button switch for setting “mts”
isecs Input Push button switch for setting “secs”
istart_stopn Input Start/Stop push button switch
ialarm_off_onn Input Sound alarm ON/OFF switch (common to

all the three alarms)
ialarm_read_setn Input This switch enables reading or setting of

the alarms
ialarm1 Input Alarm SET or READ/OFF switch for

Alarm 1
ialarm2 Input Alarm SET or READ/OFF switch for

Alarm 2
ialarm3 Input Alarm SET or READ/OFF switch for

Alarm 3
display1 Output Seven segment, right decimal point LED

display for HRS (MSD)
display2 Output Seven segment, right decimal point LED

display for HRS (LSD)
display3 Output Seven segment, right decimal point LED

display for MTS (MSD)
display4 Output Seven segment, right decimal point LED

display for MTS (LSD)
display5 Output Seven segment, right decimal point LED

display for SECS (MSD)
display6 Output Seven segment, right decimal point LED

display for SECS (LSD)
beep Output Beep alarm
timer_out Output This is switched on when the set time ex-

pires in up or down counter mode

Note:

set, the highest priority alarm will alone be actually read and the others are ignored.
Alarm 1 has the highest priority and Alarm 3 has the lowest priority.

Only one of the three alarms is set or read at one time. If more than one is

598 Hardware Implementations Using FPGA and I/O Boards

for various signals as shown in the block diagram of the real time clock in Figure
14.10. Various signals used in the design are presented in Table 14.1. Except for
the system clock, “clk”, the input signals have one to one correspondence with the
switches presented in the front fascia earlier. For examples, “reset_n” signal is the
same as “RESET” on the front fascia, “irun_setn” is the same as the “SET/RUN”
switch, and “ihrs”, “imts”, “isecs” are inputs corresponding to “HRS”, “MTS”,
and “SECS” push button switches. In these signals, “I” denotes “input” and “n”
denotes negative, rather meaning an active low signal. For example, the single bit
input signal, “itime_stopwn” indicates that the system is in “Time” mode or in
“Stop Watch” mode if its digital value is “High” and “Low” respectively. If “ia-
larm1” to “ialarm3” signals are high (UP position), then the corresponding alarms
can be set or read. If a switch is in DOWN position, the corresponding alarm can
neither be set, nor read. The outputs of the RTC Core are “display1” to “display6”
to drive the “HRS MTS SECS” display, “beep” for sounding the buzzer and
“time_out” for switching on a LED/Relay output after the set time has expired.

The simplified architecture of the real time clock is shown in Figure 14.11. All the
input signals are exactly as shown in the block diagram in Figure 14.10. So also

Fig. 14.11 Simplified architecture of real time clock

are the two outputs, “beep” and “timer_out”. Instead of display1 to display6,

14.5.5 Simplified Architecture of RTC

 ialarm_read_setn

RTC

cnt2_reg[3:0]
cnt1 reg[3:0]

cnt3 reg[3:0]

clk
reset_n

cnt5_reg[3:0]
cnt4 reg[3:0]

cnt6 reg[3:0]

cnt8_reg[3:0]
cnt7 reg[3:0]

cnt9 reg[3:0]

cnt11_reg[3:0]
cnt10 reg[3:0]

cnt12 reg[3:0]

irun_setn
itime_stopwn

ihr
 idown_upn

imt
isecs

istart_stopn
 ialarm_off_onn

ialarm1
ialarm2
ialarm3

display_time/
display_stopw

display_time/
display_stopw

timer_out
beep

display1
-

display6

14.5 Real Time Clock Design 599

we have two pairs of outputs, cnt1 to cnt6 and cnt7 to cnt12. The counters, “cnt1
to cnt6”, are the cores of running real time and the counters, “cnt7 to cnt12” are
for running stop watch counter/timer. While using a stop watch, we should not
disturb the smooth running of the real time. In other words, both the real time and
the stop watch must run concurrently. This will be possible only if two pairs of
counters are used, instead of one set. The counters, “cnt1 (MSD), cnt2” and “cnt7
(MSD), cnt8” are for display of ‘HRS’; the counters, “cnt3 (MSD), cnt4” and
“cnt9 (MSD), cnt10” are for display of ‘MTS’; and the counters, “cnt5 (MSD),
cnt6” and “cnt11 (MSD), cnt12” are for display of “SECS”. When the system is in
“TIME” mode, “cnt1 to cnt6” contents are output to the seven-segment LED dis-
plays via “display1–display6”, whereas in the “SW” mode, the counters “cnt7 to
cnt12” are displayed. This is done by a MUX as shown in the figure, whose inputs
are selected by the control, “display_time/display_stopw”.

Verilog_code_14.4 presents the code of the real time design, “rtc_alarm.v”. The
test bench for this design is “rtc_alarm_test.v” and will be presented in a later sec-
tion. As presented in earlier sections, this design of a real time clock is for display-
ing time as well as to serve as a stopwatch or a timer. Timing range is 00 00 00 to
23 59 59 (HRS MTS SECS). Up to three different sound alarms can be set. In the
stopwatch mode, it can count either Up or Down. More detailed specifications
were furnished in earlier sections. The design has a sub-module, “display_rom.v”,
which is included in the design. The sub-module is required for converting a BCD
number to a seven segment code.

We define a time base, “dms_base”, as 1999 in order to derive a time base of 0.1
ms “d” stands for deci, meaning 0.1. If we divide 20 million (corresponding to a
running clock of frequency 20 MHz) by 2000, we get 10,000 Hz, i.e., a time period
of 0.1 ms. We divide by 2000 because the “dms_base” value of 1999 is used to run a
counter, “cntdms_reg”, which cycles through 0 to 1999. For simulation purposes, we
will change 13'd1999 to 13'd9 to expedite simulation time. Otherwise, it will be im-
possible for us to get the simulated results. We are no longer dealing with small
numbers but almost astronomical numbers. We need another definition for decisec-
ond, which requires 24-bit counter. We, therefore, define a decisecond time base,
“ds_base” as 1999999, also derived from the clock frequency of 20 MHz. This
needs to be fine tuned to get an accurate real time display since crystal oscillator
may not generate 20 MHz exactly if there is no provision for hardware tuning. In the
FPGA board used, we fine tuned “ds_base” to 2003340 for improving the accuracy.
This was obtained after conducting a number of trials running the real time on hard-
ware. This parameter also needs to be changed from 23'd2003340 to 23'd9 for simu-
lation purposes. In addition to these time base settings, we need 1 s and 3 m time
bases, “time_base” and “debounce_time” respectively. The latter is used for de-
bouncing switches.

14.5.6 Verilog Code for Real Time Clock

600 Hardware Implementations Using FPGA and I/O Boards

We now declare the design module, “rtc_alarm”, listing all inputs/outputs. This
is followed by declarations of I/Os, nets, and registers in the design. The I/Os are
precisely the same as presented in previous sections. Remember that all the com-
binational signals assigned are “wire” and registers (in sequential always blocks)
are “reg”. These signals will be made clear at the appropriate time when we dis-
cuss the codes using them.

The real time clock implementation starts with the coding of counters, whose
time base values were discussed earlier. These counters are “cntdms_reg”,
“cntds_reg”, “cntb_reg”, and “deb_cnt_reg”, and are reset with power on/system
reset conditions or when the respective running counter equals the corresponding
time base mentioned earlier. Otherwise, these counters are advanced by one at the
rising edge of the “clk” if the set conditions are satisfied. The first two counters
are free of conditions, while “cntb_reg” and “deb_cnt_reg” have the following
conditions, “tbsec” and “dmsec” respectively:
tbsec = (cntb_reg == `time_base)&(cntds_reg == `ds_base), which means time
base in seconds and
dmsec = (deb_cnt_reg == `debounce_time)&(cntdms_reg == `dms_base), which
gives the debounce time of 3 ms.
In all the cases of increments/decrements or presets, we use the “assign” state-
ments to realize these in advance, exactly the same way we did in other designs.

The next sequential block is for reading all the input switches such as
RUN/SET (signal “irun_setn”), TIME/SW (signal “itime_stopwn”), etc., where
“n” implies that particular signal is low. For example, if RUN/SET is in SET
mode, then irun_setn is low. At the start, before debouncing, all the inputs are
registered. This is the first input sampling, preparing for debouncing next. After 3
ms, all these inputs are debounced. The method of debouncing switches depends
upon whether the signal is active high or active low. For examples, the RUN/SET
DIP switch and HRS push button switch are debounced differently, the first by
“AND” gate and the second by “NOR” gate as per the following condition:
run_setn <= irun_setn && rrun_setn ;
hrs <= !(ihrs || rhrs) ;
Similarly, other switches.

“cnt1_reg” is the Time watch’s most significant HOUR digit. This is reset or
advanced only in the RUN and TIME mode of operation, which can be detected
by the signal, “run_time”, realized using the statement:
assign run_time = (run_setn == 1)&(time_stopwn == 1) ;
Similarly, other modes are identified by a number of “assign” statements that fol-
low the above statement. The next three assign statements after the above state-
ment sense when the HRS/MTS/SECS push buttons are pressed or sense 0.1 s
clock tick if the push buttons are kept pressed for 2 s or more. The signal, “hrs_d”,
etc. goes high only after 2 s of ON delay. The condition for resetting the
“cnt1_reg” counter is “cnt1 - cnt6” = 23 59 59 in TIME RUN mode or “cnt1–
cnt2” = 23 in HRS TIME SET mode. Similarly, “cnt1–cnt2” = 09 or 19, “cnt3–
cnt6” = 59 59 in TIME RUN mode or “cnt–cnt2” = 09 or 19 in HRS TIME SET
mode are the conditions for advancing this counter. The next sequential block is

14.5 Real Time Clock Design 601

the realization of “cnt1_reg” counter. The above treatment holds good for all
other counters, “cnt2_reg” to “cnt6_reg”.

Code for stop watch implementation is presented next. Run and stop watch
DOWN mode is coded first. Counters, “cnt7_reg” to “cnt12_reg”, are used to hold
the running value of stopwatch, where “cnt7” is HRS (MSD) and so on, as is the
case with “cnt1” to “cnt6”. “cnt7_reg” is the stop watch’s most significant HOUR
digit. This is reset or advanced only in the RUN and STOP WATCH mode of op-
eration. For presetting in down counting mode, “cnt7_reg” to “cnt12_reg” are
used, whereas for up counting, “term_count_reg1” to “term_count_reg6” are used
for presetting the user desired terminal values. “cnt7_reg” to “cnt12_reg” are the
running counters for both up and down counting. Reset, advance (for up counter),
decrement (for down counter) and preset signals for these counters are generated
by “assign” statements and are self-explanatory. Reset, advance conditions and
counter realizations for “term_count_reg1” to “term_count_reg6” are similar to
other counters we have covered already. The signal, “timer out”, is set when the
terminal count for Up or Down is reached. For the up counter, the preset values
are contained in “term_count_reg1” to “term_count_reg6”. The terminal count for
down counter is “00 00 00”.

When “timer out” is set, the buzzer is activated using the signal,
“timer_out_alarm” and the “timer_out_alarm_counter”. This signal is high for 30
s after the terminal count is reached, i.e., when the “timer_out” is set. The signal,
“start_stopn”, is the debounced status of START/STOP push button switch and
“start_stopn_reg” stores the detected depression of the push button switch. This
signal toggles between START and STOP using the same push button switch. The
next three sequential blocks are for “hrs2s_reg”, “mts2s_reg” and “secs2s_reg”, to
generate 2 s delays when the respective push button switches marked HRS, MTS,
and SECS are pressed. The set display advances by one with every key depres-
sion. If setting needs to be advanced fast automatically, then the push button
switches are depressed and held for more than 2 s. When the desired setting closes
in, the button may be pressed repeatedly a few times till the display shows what is
required. These codes are self-explanatory since they are profusely commented.

Next group of codes present the alarm implementation, wherein
“temp_alarm_reg1” to “temp_alarm_reg6” are a set of 4-bit temporary registers,
which hold the alarm time when it is being set. The conditions for advancing,
resetting the alarm settings are similar to the counters described earlier. So also is
the case for the functioning of the counters, “temp_alarm_reg1” to
“temp_alarm_reg6”. “set_alarm1” is a signal which indicates that Alarm 1 is being
set. When this signal is high, the contents of “temp_alarm_reg1”, etc. are copied
into “alarm1_reg1” and so on. Similarly, for the other two alarms, Alarm 2 and
Alarm 3. These are realized by simple sequential blocks. Alarm 1 has the top most
priority while reading. “read_alarm_reg” is a 2-bit register, which stores the num-
ber of the alarm to be read. If no alarm is on, it stores “0”. If more than one alarm
is on, the one displayed is the top priority alarm. Alarm 1 has the top most priority
while reading. Alarm 3 is the least priority. The next combinational “always”
block accomplishes this feat.

602 Hardware Implementations Using FPGA and I/O Boards

The next sequential block displays real time or stopwatch or alarm on the
seven-segment LEDs. The registers, “data1” to “data6”, derive their input data
from “cnt1_reg” to “cnt6_reg” if the signal, “display_time”, is asserted or from
“term_count_reg1” to “term_count_reg6” if “display_stopw” is asserted while
counting “Up” or from “cnt7_reg” to “cnt12_reg” if the signal, “display_stopw” is
asserted while counting “Down”. Otherwise, if “set_alarm = 1”, which indicates
that alarm is set, then “temp_alarm_reg1” to temp_alarm_reg6 will be written into
“data1” to “data6”. On the other hand, if “display_alarm = 1”, which means dis-
play the Alarm set via “data1” to “data6”, then “alarm1_reg1” to “alarm1_reg6” or
“alarm2_reg1” to “alarm2_reg6” or “alarm3_reg1” to “alarm3_reg6” are dis-
played, depending upon the value of “read_alarm_reg” described earlier.

The next three sequential blocks are for running a 30 s timer to sound the audio
alarm corresponding to the three alarms, Alarm 1, Alarm 2, and Alarm 3 if
the corresponding set points are reached by the real time clock. For example,
“alarm1_30sec_delay” is a single bit which becomes “1” when “alarm1_match =
1”. It stays high for 30 s and then goes low. alarm1_30_sec is a counter which
counts till 30. It counts so long as alarm1_30sec_delay is high. It is incremented
every 1 s, i.e., when “tbsec = 1”. The reader is urged to figure this out from the
codes presented.

The signal, “ring” indicates that one or more alarms is/are active. “beep” is the
signal (square wave) which is actually output to the speaker if ring is high.
“beep_counter” counts till 2 (means 0.2 s). When it is 2, “beep” signal is toggled
repeatedly producing 2.5 Hz beeping tone if alarm OFF/ON switch is in the ON
position. Otherwise, the sound alarm is OFF.

Before we wind up the description of the Verilog code for the real time clock,
we need to call the “display_rom” module, which converts the BCD code to seven
segment code for eventual display on the LED. This is called six times corre-
sponding to six numbers of seven segment displays. The inputs to these displays
are the registers, “data1” to “data6”, which was described earlier. “display1” (HRS
_ MSD) through “display6” (SECS _ LSD) are the final outputs of the real time
clock, which drives the seven-segment LED displays. It may be noted that all
decimal points are turned off.

Verilog_code_14.4
__
/*
 Verilog RTL Code for Real Time Clock

Design is “rtc_alarm.v”.
Test bench for this design is “rtc_alarm_test.v”.
This is the design for a real time clock to display time as well as function as a
stopwatch. In the latter mode, it can count Up or Down. Up to three different
sound alarms can be set. Timing range: 00 00 00 to 23 59 59 (HRS MTS SECS).
For more details, see specification sheet.
*/

14.5 Real Time Clock Design 603

`include “display_rom.v” // Sub-module for converting a BCD number
 // to drive seven segment LED outputs.
`define dms_base 13'd1999

// For 20 MHz operation, the time base is 0.1 ms.
 // Change 13'd1999 to 13'd9 for simulation purposes.
`define ds_base 23'd2003340

// For 20 MHz operation, the time base is 0.1 s for 23'd1999999
// setting. Fine tuned to 23'd2003340 for improving the accuracy.
// Change 23'd2003340 to 23'd9 for simulation purposes.

`define time_base 4'd9 // This is the 1 s time base.
`define debounce_time 5'd29 // Switch debounce time is 3 ms.

module rtc_alarm (

 clk,
 reset_n,
 irun_setn, // “i” stands for input.
 itime_stopwn,
 idown_upn,
 ihrs,
 imts,
 isecs,
 istart_stopn,
 ialarm_off_onn,

// “0” switches ON alarm, otherwise OFF.
 ialarm_read_setn, // “0” is set mode, otherwise read.
 ialarm1, // “0” sets or reads the

 ialarm2, // corresponding alarm.
 ialarm3, // Otherwise, off.
 display1, // seven-segment LED outputs –
 display2, // display1 (MSD), 2 are HRS,
 display3, // display3 (MSD), 4 are MTS,
 display4, // display5 (MSD), 6 are SECS.
 display5,
 display6,
 beep, // Beeping alarm => use a piezo-electric buzzer.
 timer_out // Signals when the set time is over.
);
input clk ; // Declare inputs/outputs.
input reset_n ; // Asynchronous, active low.
input irun_setn ; // RUN/SET mode switch.
input itime_stopwn ; // TIME/STOP WATCH mode switch.
input idown_upn ; // UP/DOWN mode switch.
input ihrs ; // Push button switches for setting “hrs”,
input imts ; // “mts” and
input isecs ; // “secs”.
input istart_stopn ; // Start/Stop PB.

604 Hardware Implementations Using FPGA and I/O Boards

input ialarm_off_onn; // Sound alarm ON/OFF switch
 // (common to all the three alarms).
input ialarm_read_setn; // This switch enables reading
 // or setting of the alarms.
input ialarm1; // Alarm SET or READ/OFF switch for Alarm 1,
input ialarm2; // Alarm 2 and
input ialarm3; // Alarm 3.
/*
Note: Only one of the three alarms can be read at one time. If more than one is
attempted to be read, the highest priority alarm alone will be actually read, and
others are ignored. Alarm 1 is the highest priority and Alarm 3 is the lowest.
*/
output [7:0] display1 ;
output [7:0] display2 ;
output [7:0] display3 ;
output [7:0] display4 ;
output [7:0] display5 ;
output [7:0] display6 ;
output beep;
output timer_out;

wire [7:0] display1 ; // Declare outputs as nets
 // (combinational circuit outputs).
wire [7:0] display2 ;
wire [7:0] display3 ;
wire [7:0] display4 ;
wire [7:0] display5 ;
wire [7:0] display6 ;
wire [12:0] cntdms_next ; // Declare other combinational

 // circuit signals as nets.
wire [22:0] cntds_next ;
wire [3:0] cntb_next ;
wire [4:0] deb_cnt_next ;
wire dmsec ;
wire tbsec ;
wire run_time ;
wire set_time ;
wire set_stopw ;
wire run_stopw;
wire adv_hrs ;
wire adv_mts ;
wire adv_secs ;
wire adv_hrs_time ;
wire adv_hrs_sw ;
wire adv_mts_time ;
wire adv_mts_sw ;

14.5 Real Time Clock Design 605

wire adv_secs_time ;
wire adv_secs_sw ;
wire res_cnt1 ;
wire res_cnt2 ;
wire res_cnt3 ;
wire res_cnt4 ;
wire res_cnt5 ;
wire res_cnt6 ;
wire res_cnt7 ;
wire res_cnt8_sw ;
wire res_cnt8_set ;
wire res_cnt9 ;
wire res_cnt10 ;
wire res_cnt11 ;
wire res_cnt12 ;
wire pres_cnt8 ;

 // Signal to indicate preset condition for the counter.
wire pres_cnt9 ;
wire pres_cnt10 ;
wire pres_cnt11 ;
wire pres_cnt12 ;
wire adv_cnt1 ;
wire adv_cnt2 ;
wire adv_cnt3 ;
wire adv_cnt4 ;
wire adv_cnt5 ;
wire adv_cnt6 ;
wire adv_cnt7 ;
wire adv_cnt8 ;
wire adv_cnt8_set ;
wire adv_cnt8_sw ;
wire adv_cnt9 ;
wire adv_cnt10 ;
wire adv_cnt11 ;
wire adv_cnt12 ;
wire [3:0] cnt1_next ;
wire [3:0] cnt2_next ;
wire [3:0] cnt3_next ;
wire [3:0] cnt4_next ;
wire [3:0] cnt5_next ;
wire [3:0] cnt6_next ;
wire [3:0] cnt7_next ;
wire [3:0] cnt8_next ;
wire [3:0] cnt9_next ;
wire [3:0] cnt10_next ;
wire [3:0] cnt11_next ;

606 Hardware Implementations Using FPGA and I/O Boards

wire [3:0] cnt12_next ;
wire rsd ; // RUN, STOPWATCH, DOWN mode.
wire rsd_cnt8_res ;
wire cnt8_res ;
wire decr_cnt7 ; // Signal to indicate decrement
 // condition for the stopwatch counter.
wire decr_cnt8 ;
wire decr_cnt9 ;
wire decr_cnt10 ;
wire decr_cnt11 ;
wire decr_cnt12 ;
wire [3:0] cnt7_nextd ; // “d” stands for decrement.
wire [3:0] cnt8_nextd ;
wire [3:0] cnt9_nextd ;
wire [3:0] cnt10_nextd ;
wire [3:0] cnt11_nextd ;
wire [3:0] cnt12_nextd ;
wire [4:0] hrs2s_next ;
wire [4:0] mts2s_next ;
wire [4:0] secs2s_next ;

reg [3:0] data1 ; // Declare registers.
reg [3:0] data2 ;
reg [3:0] data3 ;
reg [3:0] data4 ;
reg [3:0] data5 ;
reg [3:0] data6 ;
reg [12:0] cntdms_reg ;
reg [22:0] cntds_reg ;
reg [3:0] cntb_reg ;
reg [4:0] deb_cnt_reg ;
reg rrun_setn ; // “ r” for registered values of
 // RUN/SET switch, etc.
reg rtime_stopwn ;
reg rdown_upn ;
reg rhrs ;
reg rmts ;
reg rsecs ;
reg rstart_stopn ;
reg ralarm_off_onn;
reg ralarm1;
reg ralarm2;
reg ralarm3;
reg run_setn ;
reg time_stopwn ;
reg down_upn ;

14.5 Real Time Clock Design 607

reg hrs ;
reg mts ;
reg secs ;
reg start_stopn ;
reg alarm_off_onn;
reg alarm_read_setn;
reg alarm1;
reg alarm2;
reg alarm3;
reg [3:0] cnt1_reg ; // cnt1 cnt2 cnt3 cnt4 cnt5 cnt6
 // stores running time in
reg [3:0] cnt2_reg ; // HRS MTS SECS
reg [3:0] cnt3_reg ;
reg [3:0] cnt4_reg ;
reg [3:0] cnt5_reg ;
reg [3:0] cnt6_reg ; // cnt7 cnt8 cnt9 cnt10 cnt11 cnt12
 // stores the time count (counter) in
 // HRS MTS SECS
reg [3:0] cnt7_reg ;
reg [3:0] cnt8_reg ;
reg [3:0] cnt9_reg ;
reg [3:0] cnt10_reg ;
reg [3:0] cnt11_reg ;
reg [3:0] cnt12_reg ;
reg start_stopn_reg ;

 // START/STOP mode register => start_stopn_reg = 1 means
 // START, otherwise STOP.

reg start_stopnp_reg ; // Previous value of start/stop.
reg hrsp_reg ; // Previous value of HRS PB.
reg hrs_d ; // ON delay output of HRS PB.
reg [4:0] hrs2s_reg ;
 // Counter to keep track of 2 s ON delay.
reg mtsp_reg ; // Similar signals for MTS and
reg mts_d ;
reg [4:0] mts2s_reg ;
reg secsp_reg ; // SECS.
reg secs_d ;
reg [4:0] secs2s_reg ;
wire adv_res_cnt2 ;

 // “adv”, “res” mean advance and reset counter respectively.
wire res_cnt2_time ;
wire res_cnt2_set ;
reg [3:0] temp_alarm_reg1 ;

 // Individual alarms are set via temporary registers.
reg [3:0] temp_alarm_reg2 ;
reg [3:0] temp_alarm_reg3 ;

608 Hardware Implementations Using FPGA and I/O Boards

reg [3:0] temp_alarm_reg4 ;
reg [3:0] temp_alarm_reg5 ;
reg [3:0] temp_alarm_reg6 ;
wire [3:0] temp_alarm_reg1_next ;
wire [3:0] temp_alarm_reg2_next ;
wire [3:0] temp_alarm_reg3_next ;
wire [3:0] temp_alarm_reg4_next ;
wire [3:0] temp_alarm_reg5_next ;
wire [3:0] temp_alarm_reg6_next ;
wire adv_temp_alarm_reg1 ;
wire adv_temp_alarm_reg2 ;
wire adv_temp_alarm_reg3 ;
wire adv_temp_alarm_reg4 ;
wire adv_temp_alarm_reg5 ;
wire adv_temp_alarm_reg6 ;
wire res_temp_alarm_reg1 ;
wire res_temp_alarm_reg2 ;
wire res_temp_alarm_reg3 ;
wire res_temp_alarm_reg4 ;
wire res_temp_alarm_reg5 ;
wire res_temp_alarm_reg6 ;
reg [3:0] alarm1_reg1 ; // Alarm set registers
reg [3:0] alarm1_reg2 ;
reg [3:0] alarm1_reg3 ;
reg [3:0] alarm1_reg4 ;
reg [3:0] alarm1_reg5 ;
reg [3:0] alarm1_reg6 ;
reg [3:0] alarm2_reg1 ;
reg [3:0] alarm2_reg2 ;
reg [3:0] alarm2_reg3 ;
reg [3:0] alarm2_reg4 ;
reg [3:0] alarm2_reg5 ;
reg [3:0] alarm2_reg6 ;
reg [3:0] alarm3_reg1 ;
reg [3:0] alarm3_reg2 ;
reg [3:0] alarm3_reg3 ;
reg [3:0] alarm3_reg4 ;
reg [3:0] alarm3_reg5 ;
reg [3:0] alarm3_reg6 ;
wire adv_hrs_temp_alarm ;
wire adv_mts_temp_alarm ;
wire adv_secs_temp_alarm ;
wire set_alarm ;
reg ralarm_read_setn ;
wire set_alarm1 ;
wire set_alarm2 ;

14.5 Real Time Clock Design 609

wire set_alarm3 ;
reg [1:0] read_alarm_reg ; // “0” – No alarm display,
 // “1” – Alarm1 display, etc.
wire display_time ;
wire display_stopw ;
wire display_alarm ;
reg [4:0] alarm1_30sec_counter ;
reg alarm1_30sec_delay ; // 30 s alarm1 timer
 // output, active high.
wire alarm1_match ; // Goes high when the run time
 // matches the alarm1 set point.
wire [4:0] alarm1_30sec_counter_next ;
wire adv_alarm1_30sec_counter ;
reg [4:0] alarm2_30sec_counter ;
reg alarm2_30sec_delay ;
wire alarm2_match ;
wire [4:0] alarm2_30sec_counter_next ;
wire adv_alarm2_30sec_counter ;
reg [4:0] alarm3_30sec_counter ;
reg alarm3_30sec_delay ;
wire alarm3_match ;
wire [4:0] alarm3_30sec_counter_next ;
wire adv_alarm3_30sec_counter ;
reg beep ; // Generates square pulse for beeping
wire ring ; // of a buzzer if this signal is active.
reg [2:0] beep_counter ;
 // Counter for generating square pulse and its
wire [2:0] beep_counter_next ; // advanced counter.
reg [3:0] term_count_reg1; // For use with up counter.
reg [3:0] term_count_reg2 ;
reg [3:0] term_count_reg3 ;
reg [3:0] term_count_reg4 ;
reg [3:0] term_count_reg5 ;
reg [3:0] term_count_reg6 ;
wire [3:0] term_count_reg1_next ;
wire [3:0] term_count_reg2_next ;
wire [3:0] term_count_reg3_next ;
wire [3:0] term_count_reg4_next ;
wire [3:0] term_count_reg5_next ;
wire [3:0] term_count_reg6_next ;
wire adv_term_count_reg1;
wire res_term_count_reg1;
wire adv_term_count_reg2 ;
wire res_term_count_reg2 ;
wire adv_term_count_reg3 ;
wire res_term_count_reg3 ;

610 Hardware Implementations Using FPGA and I/O Boards

wire adv_term_count_reg4 ;
wire res_term_count_reg4 ;
wire adv_term_count_reg5 ;
wire res_term_count_reg5 ;
wire adv_term_count_reg6 ;
wire res_term_count_reg6 ;
wire adv_hrs_tcr ; // “tcr” means terminal count register.
wire adv_mts_tcr ; // Applicable while setting.
wire adv_secs_tcr ;
wire term_count_reached_up ;
wire term_count_reached_down ;
reg [4:0] timer_out_alarm_counter ;
 // 30 s counter for audio alarm.
wire [4:0] timer_out_alarm_counter_next ;
wire timer_out_alarm;

// Real time clock implementation
// cntdms_reg is a free-running counter to provide the time base of 0.1 ms.
assign cntdms_next = cntdms_reg + 1 ; // Pre-increment the 0.1 ms counter.

always @ (posedge clk or negedge reset_n)
begin

if (reset_n == 1'b0)
 cntdms_reg <= 13'd0 ; // Initialize when the system is reset.
 else if (cntdms_reg == `dms_base) // Also reset if terminal count is
 cntdms_reg <= 13'd0 ; // reached. Otherwise,
 else
 cntdms_reg <= cntdms_next ; // advance the count once.
end

// cntds_reg is a free-running counter to provide the time base of
// decisecond (0.1 s) for the time watch or the stopwatch.
assign cntds_next = cntds_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)

 cntds_reg <= 23'd0 ; // Initialize when the system is reset.
 else if (cntds_reg == `ds_base) // Also reset if terminal count is

cntds_reg <= 23'd0 ; // reached.
 else

 cntds_reg <= cntds_next ; // Otherwise, advance the count once.
end

assign tbsec = (cntb_reg == `time_base)&(cntds_reg == `ds_base) ;

 // Time base in seconds.

14.5 Real Time Clock Design 611

assign cntb_next = cntb_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cntb_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (tbsec == 1)
 cntb_reg <= 4'd0 ; // Reset if terminal count (1 s) is reached.
 else if (cntds_reg == `ds_base)
 cntb_reg <= cntb_next ; // Advance the count once every 0.1 s.
 else ; // Otherwise, ignore.

end

assign dmsec = (deb_cnt_reg == `debounce_time)&(cntdms_reg == `dms_base) ;
 // Debounce time in milli seconds.
assign deb_cnt_next = deb_cnt_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 deb_cnt_reg <= 5'd0 ; // Initialize when the system is reset.
 else if (dmsec == 1)
 deb_cnt_reg <= 5'd0 ; // Reset after 3 ms delay.
 else if (cntdms_reg == `dms_base)
 deb_cnt_reg <= deb_cnt_next ; // Advance the count
 // once every 0.1 ms.
 else ; // Otherwise, ignore.

end

always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 1'b0)
 begin
 rrun_setn <= 1 ; // Initialize when the system is reset.

rtime_stopwn <= 1 ; // “r” stands for register or store.
 rdown_upn <= 0 ;
 rhrs <= 0 ;
 rmts <= 0 ;
 rsecs <= 0 ;
 rstart_stopn <= 0 ;
 ralarm_off_onn <= 1 ;
 ralarm_read_setn <= 1 ;
 ralarm1 <= 1 ;
 ralarm2 <= 1 ;
 ralarm3 <= 1 ;
 run_setn <= 1 ;

612 Hardware Implementations Using FPGA and I/O Boards

time_stopwn <= 1 ;
 down_upn <= 0 ;
 hrs <= 0 ;
 mts <= 0 ;
 secs <= 0 ;
 start_stopn <= 0 ;
 alarm_off_onn <= 1 ;
 alarm_read_setn <= 1 ;
 alarm1 <= 1 ;
 alarm2 <= 1 ;
 alarm3 <= 1 ;
 end
 else if ((deb_cnt_reg == 0)&&(cntdms_reg == 0))
 // At the start before debouncing.
 begin
 rrun_setn <= irun_setn ; // Read the status of all inputs.
 rtime_stopwn <= itime_stopwn ;
 rdown_upn <= idown_upn ;
 rhrs <= ihrs ;
 rmts <= imts ;
 rsecs <= isecs ;
 rstart_stopn <= istart_stopn ; // istart_stopn = 0 means
 ralarm_off_onn <= ialarm_off_onn; // button pressed.
 ralarm_read_setn <= ialarm_read_setn;
 ralarm1 <= ialarm1;
 ralarm2 <= ialarm2;
 ralarm3 <= ialarm3;
 end
 else if ((deb_cnt_reg == `debounce_time)&&
 (cntdms_reg == `dms_base))
 begin
 run_setn <= irun_setn && rrun_setn ;

 // Read the status of all inputs and debounce.
 time_stopwn <= itime_stopwn && rtime_stopwn ;
 down_upn <= idown_upn && rdown_upn ;
 hrs <= !(ihrs || rhrs) ;
 mts <= !(imts || rmts) ;
 secs <= !(isecs || rsecs) ;
 start_stopn <= !(istart_stopn || rstart_stopn) ;

 // start_stopn == 1 means button pressed.
 alarm_off_onn <= (ialarm_off_onn && ralarm_off_onn) ;
 alarm_read_setn <= (ialarm_read_setn && ralarm_read_setn) ;
 alarm1 <= !(ialarm1 || ralarm1);
 alarm2 <= !(ialarm2 || ralarm2);
 alarm3 <= !(ialarm3 || ralarm3);
 end

14.5 Real Time Clock Design 613

 else ; // Otherwise, ignore.
end

 // cnt1_reg is the Time watch’s most significant HOUR digit. This is reset or
 // advanced only in the RUN and TIME mode of operation.
assign run_time = (run_setn == 1)&(time_stopwn == 1) ;
 // These signals identify RUN TIME,
assign set_time = (run_setn == 0)&(time_stopwn == 1)&(set_alarm == 0) ;
 // SET TIME &
assign set_stopw = (run_setn == 0)&(time_stopwn == 0)&(set_alarm == 0) ;
 // SET STOPWATCH modes respectively.
 // Note that if alarm is being set, we can’t set time or stop watch.
assign run_stopw = (run_setn == 1)&(time_stopwn == 0) ;
 // Run stopwatch mode.
assign set_alarm = (alarm_read_setn == 0)&(set_stopw == 1);

 // Set or Read alarm in set stopwatch mode.
/*
The following three statements sense when the HRS/MTS/SECS push buttons are
pressed or sense 0.1 s clock tick if the push buttons are kept pressed for 2 s or
more. hrs_d etc. goes high only after 2 s ON delay.
*/
assign adv_hrs = ((hrs == 1)&(hrsp_reg == 0))|
 ((hrs_d == 1)&(cntds_reg == `ds_base)) ;

 // Advance every 0.1 s after 2 s delay.
assign adv_mts = ((mts == 1)&(mtsp_reg == 0))|
 ((mts_d == 1)&(cntds_reg == `ds_base)) ;
assign adv_secs = ((secs == 1)&(secsp_reg == 0))|
 ((secs_d == 1)&(cntds_reg == `ds_base)) ;
assign adv_hrs_time = (adv_hrs == 1)&(set_time == 1) ;
assign adv_hrs_sw = (adv_hrs == 1)&(set_stopw == 1)&(down_upn == 1) ;
assign adv_hrs_tcr = (adv_hrs == 1)&(set_stopw == 1)&(down_upn == 0) ;

// tcr => terminal count reg. Up count mode.
assign adv_mts_time = (adv_mts == 1)&(set_time == 1) ;
assign adv_mts_sw = (adv_mts == 1)&(set_stopw == 1)&(down_upn == 1) ;
assign adv_mts_tcr = (adv_mts == 1)&(set_stopw == 1)&(down_upn == 0) ;
assign adv_secs_time = (adv_secs == 1)&(set_time == 1) ;
assign adv_secs_sw = (adv_secs == 1)&(set_stopw == 1) (down_upn == 1) ;
assign adv_secs_tcr = (adv_secs == 1)&(set_stopw == 1)&(down_upn == 0) ;
assign adv_hrs_temp_alarm = (adv_hrs == 1)&(set_alarm == 1) ;
assign adv_mts_temp_alarm = (adv_mts == 1)&(set_alarm == 1) ;
assign adv_secs_temp_alarm = (adv_secs == 1)&(set_alarm == 1) ;
assign display_alarm = ((alarm1 == 1)|(alarm2 == 1)|
 (alarm3 == 1))&(alarm_read_setn == 1) ;
assign display_time = (time_stopwn == 1)&(display_alarm == 0)&
 (set_alarm == 0) ;
assign display_stopw = (time_stopwn == 0)&(display_alarm == 0)&

614 Hardware Implementations Using FPGA and I/O Boards

 (set_alarm == 0) ;
// Only one of the three displays: Alarm/Time/Stopwatch is possible at one time.
assign res_cnt1 = ((set_time != 1)&(tbsec == 1)&(cnt1_reg == 2)&
 (cnt2_reg == 3)&(cnt3_reg == 5)&(cnt4_reg == 9)&
 (cnt5_reg == 5)&(cnt6_reg == 9))|((adv_hrs_time == 1)&

 (cnt1_reg == 2)&(cnt2_reg == 3)) ;
// cnt1 - cnt6 = 23 59 59 in TIME RUN mode
// or cnt1 - cnt2 = 23 in HRS TIME SET mode is the
// condition for resetting this counter.

assign adv_cnt1 = ((set_time != 1)&(tbsec == 1)&(cnt1_reg < 2)&
 (cnt2_reg == 9)&(cnt3_reg == 5)&(cnt4_reg == 9)&

(cnt5_reg == 5)&(cnt6_reg == 9))|((adv_hrs_time== 1)
 &(cnt1_reg < 2)&(cnt2_reg == 9)) ;

// cnt1 - cnt2 = 09 or 19, cnt3 - cnt6 = 59 59 in TIME RUN mode or
// cnt1 - cnt2 = 09 or 19 in HRS TIME SET mode is the condition for
// advancing this counter.

assign cnt1_next = cnt1_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt1_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt1 == 1'b1) // Reset if terminal count is reached.
 cnt1_reg <= 4'd0 ;
 else if (adv_cnt1 == 1'b1)
 cnt1_reg <= cnt1_next ; // Advance the count once if the
 // time watch is still running.
 else ; // Otherwise, don’t disturb.

end

// cnt2_reg is the Time watch’s least significant HOUR digit. This is
// reset or advanced only in the RUN mode of operation.

assign adv_res_cnt2 = (set_time != 1)&(tbsec == 1)&(cnt3_reg == 5)&
 (cnt4_reg == 9)&(cnt5_reg == 5)&(cnt6_reg == 9) ;
assign res_cnt2_time = (adv_res_cnt2 == 1) & ((cnt1_reg < 2)&
 (cnt2_reg == 9) | ((cnt1_reg == 2)&(cnt2_reg == 3))) ;
assign res_cnt2_set = (adv_hrs_time == 1)&((cnt1_reg < 2)&
 (cnt2_reg == 9) | (cnt1_reg == 2)&(cnt2_reg == 3)) ;
assign res_cnt2 = res_cnt2_time | res_cnt2_set ;
 // cnt1 cnt2 = 23 or 09 or 19 and cnt3 - cnt6 = 59 59
 // are the conditions for resetting this counter.
assign adv_cnt2 = (adv_res_cnt2 == 1)|(adv_hrs_time == 1) ;

// Other conditions are implied since res_cnt2 has a higher priority than
// adv_cnt2. cnt1 cnt2 = 00 to 18 (except 09) or 20 to 22 & cnt3 - cnt6 =
// 59 59 are the conditions for pre-incrementing this counter.

assign cnt2_next = cnt2_reg + 1 ; // Pre-increment the counter.

14.5 Real Time Clock Design 615

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt2_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt2 == 1'b1) // Reset if terminal count is reached.
 cnt2_reg <= 4'd0 ;
 else if (adv_cnt2 == 1'b1)
 cnt2_reg <= cnt2_next ; // Advance the count once if the
 // time watch is still running.
 else ; // Otherwise, don’t disturb.

end

 // cnt3_reg is the Time watch’s most significant MINUTES digit. This is reset
 // or advanced only in the RUN and TIME mode of operation every 1 s.
assign res_cnt3 = ((set_time != 1)&(tbsec == 1)&(cnt3_reg == 5)&
 (cnt4_reg == 9)&(cnt5_reg == 5)&(cnt6_reg == 9))|
 ((adv_mts_time == 1)&(cnt3_reg == 5)&(cnt4_reg == 9)) ;
 // cnt3 - cnt6 = 59 59 are the conditions for resetting this counter.
assign adv_cnt3 = ((set_time != 1)&(tbsec == 1)&(cnt3_reg < 5)&
 (cnt4_reg == 9)&(cnt5_reg == 5)&(cnt6_reg == 9))|
 ((adv_mts_time == 1)&(cnt3_reg < 5)&(cnt4_reg == 9)) ;
 // cnt3 = 0-4 and cnt4 - cnt6 = 9 59 are the conditions
 // for pre-incrementing this counter.
assign cnt3_next = cnt3_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt3_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt3 == 1'b1) // Reset if terminal count is reached.
 cnt3_reg <= 4'd0 ;
 else if (adv_cnt3 == 1'b1)
 cnt3_reg <= cnt3_next ; // Advance the count once if the
 // time watch is still running.
 else ; // Otherwise, don’t disturb.

end

 // cnt4_reg is the Time watch’s least significant MINUTES digit. This is reset
 // or advanced only in the RUN and TIME mode of operation every 1 s.
assign res_cnt4 = ((set_time != 1)&(tbsec == 1)&(cnt4_reg == 9)&
 (cnt5_reg == 5)&(cnt6_reg == 9)) |((adv_mts_time == 1)&
 (cnt4_reg == 9)) ;
 // cnt4 - cnt6 = 9 59 are the conditions for resetting this counter.
assign adv_cnt4 =((set_time != 1) &(tbsec == 1)&(cnt4_reg < 9)&
 (cnt5_reg == 5)&(cnt6_reg == 9)) |
 ((adv_mts_time == 1)&(cnt4_reg < 9)) ;

616 Hardware Implementations Using FPGA and I/O Boards

 // cnt4 = 0 to 8 & cnt5 - cnt6 = 59 are the
 // conditions for pre-incrementing this counter.
assign cnt4_next = cnt4_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt4_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt4 == 1'b1) // Reset if terminal count is reached.
 cnt4_reg <= 4'd0 ;
 else if (adv_cnt4 == 1'b1)
 cnt4_reg <= cnt4_next ; // Advance the count once if the
 // time watch is still running.
 else ; // Otherwise, don’t disturb.

end

 // cnt5_reg is the Time watch’s most significant SECONDS digit. This is reset
 // or advanced only in the RUN and TIME mode of operation every 1 s.
assign res_cnt5 = ((set_time != 1)&(tbsec == 1)&(cnt5_reg == 5)
 &(cnt6_reg == 9))|((adv_secs_time ==1)&

 (cnt5_reg == 5)&(cnt6_reg == 9)) ;
 // cnt5 - cnt6 = 59 are the conditions for resetting this counter.
assign adv_cnt5 = ((set_time != 1) &(tbsec == 1)&(cnt5_reg < 5)&
 (cnt6_reg == 9))|((adv_secs_time == 1)&(cnt5_reg < 5)&
 (cnt6_reg == 9)) ;

 // cnt5 = 0 to 4 & cnt6 = 9 are the conditions for pre-incrementing this counter.
assign cnt5_next = cnt5_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt5_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt5 == 1'b1) // Reset if terminal count is reached.
 cnt5_reg <= 4'd0 ;
 else if (adv_cnt5 == 1'b1)
 cnt5_reg <= cnt5_next ; // Advance the count once if the
 // time watch is still running.
 else ; // Otherwise, don’t disturb.

end

// cnt6_reg is the Time watch’s least significant SECONDS digit. This is reset
// or advanced only in the RUN and TIME mode of operation every 1 s.
assign res_cnt6 = ((set_time != 1'b1)&(tbsec == 1'b1)&(cnt6_reg == 9))|

 ((adv_secs_time == 1)&(cnt6_reg == 9)) ;
 // cnt6 = 9 is the condition for resetting this counter.

14.5 Real Time Clock Design 617

assign adv_cnt6 = ((set_time != 1'b1)&(tbsec == 1'b1)&
 (cnt6_reg < 9))|((adv_secs_time == 1)&(cnt6_reg < 9)) ;

// cnt6 = 0 to 8 are the conditions for pre-incrementing this counter.
assign cnt6_next = cnt6_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt6_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt6 == 1'b1) // Reset if terminal count is reached.
 cnt6_reg <= 4'd0 ;
 else if (adv_cnt6 == 1'b1)
 cnt6_reg <= cnt6_next ; // Advance the count once if the
 // time watch is still running.
 else ; // Otherwise, don’t disturb.

end
// Stop watch implementation
// RUN, STOP WATCH mode
assign term_count_reached_up = (set_stopw != 1)&(down_upn == 0)&

 (start_stopn_reg == 1)&(cnt7_reg == term_count_reg1)&
 (cnt8_reg == term_count_reg2)&(cnt9_reg == term_count_reg3)&
 (cnt10_reg == term_count_reg4)&(cnt11_reg == term_count_reg5)&

 (cnt12_reg == term_count_reg6) ;
assign term_count_reached_down = rsd&(cnt7_reg == 0)&(cnt8_reg == 0)&
 (cnt9_reg == 0)&(cnt10_reg == 0)&(cnt11_reg == 0)&(cnt12_reg == 0) ;
assign timer_out = (term_count_reached_up == 1)|
 (term_count_reached_down == 1) ;
assign rsd = (set_stopw != 1)&(down_upn == 1)&(start_stopn_reg == 1) ;
 // “rsd” means run stopwatch in down counter mode.

// start_stopn_reg = 1 means START, otherwise STOP.

// cnt7_reg is the Stop watch’s most significant HOUR digit. This is reset or
// advanced only in the RUN and STOP WATCH mode of operation. For Down
// counting, cnt7_reg to cnt12_reg are used, whereas for Up counting,
// term_count_reg1 to term_count_reg6 are used for presetting. cnt7_reg to
// cnt12_reg are the Running counters for both UP & Down counting.
assign res_cnt7 = (((set_stopw == 1)&(down_upn == 0))|
 ((adv_hrs_sw == 1)&(cnt7_reg == 2)&(cnt8_reg == 3)));
 // Counter must be reset in SET UP mode. cnt7 – cnt8 = 23 are the

// conditions for resetting the counter in SET DOWN COUNTER mode.
assign adv_cnt7 = ((set_stopw != 1)&(down_upn == 1'b0)&
 (term_count_reached_up == 0)&(tbsec == 1)&(cnt7_reg < 2)&
 (cnt8_reg == 9)&(cnt9_reg == 5)&(cnt10_reg == 9)&

 (cnt11_reg == 5)&(cnt12_reg == 9)&(start_stopn_reg == 1'b1)) |
 ((adv_hrs_sw == 1)&(cnt7_reg < 2)&(cnt8_reg == 9)) ;

 // cnt7 - cnt12 = 09 59 59 or 19 59 59 are the

618 Hardware Implementations Using FPGA and I/O Boards

 // conditions for pre-incrementing the counter.
assign cnt7_next = cnt7_reg + 1 ; // Pre-increment the counter.
assign decr_cnt7 = rsd&(cnt8_reg == 0)&(cnt9_reg == 0)&(cnt10_reg == 0)&

(cnt11_reg == 0)&cnt12_reg == 0)&(cnt7_reg > 0)&
 (cnt7_reg <= 2)&(tbsec == 1) ;
assign cnt7_nextd = cnt7_reg – 1 ; // Pre-decrement the counter.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt7_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt7 == 1'b1) // Reset if terminal count is reached.
 cnt7_reg <= 4'd0 ;
 else if (adv_cnt7 == 1'b1)
 cnt7_reg <= cnt7_next ; // Advance the count once if the
 // time watch is still running.
 else if (decr_cnt7 == 1'b1)
 cnt7_reg <= cnt7_nextd ; // Decrement the count once if
 // the stop watch is still running.

 else ; // Otherwise, don’t disturb.
end

// cnt8_reg is the Stop watch’s least significant HOUR digit. This is reset or
// advanced/decremented only in the RUN and STOPWATCH mode of operation.
assign rsd_cnt8_res = rsd&((cnt7_reg > 2)|((cnt7_reg == 2)&
 (cnt8_reg > 3))|((cnt7_reg < 2)&(cnt8_reg > 9))) ;
 // These are illegal values.
assign res_cnt8_set = ((adv_hrs_sw == 1)&(cnt7_reg < 2)&(cnt8_reg == 9))|
 ((adv_hrs_sw == 1)&(cnt7_reg == 2)&(cnt8_reg == 3)) ;
assign res_cnt8_sw = (set_stopw != 1)&(down_upn == 1'b0)&
 (term_count_reached_up == 0)&(tbsec == 1)&
 (((cnt7_reg == 2)&(cnt8_reg == 3))|
 ((cnt7_reg < 2)&(cnt8_reg == 9)))&(cnt9_reg == 5)&
 (cnt10_reg == 9)&(cnt11_reg == 5)&(cnt12_reg == 9) ;

// cnt7 cnt8 = 23 or 09 or 19 and cnt9 - cnt12 = 59 59
 // are the conditions for resetting this counter.
assign cnt8_res = (rsd_cnt8_res | res_cnt8_sw | res_cnt8_set) |
 ((set_stopw == 1)&(down_upn == 0)) ;
assign adv_cnt8_set = ((adv_hrs_sw == 1)&(cnt7_reg < 2)&(cnt8_reg < 9))|

 ((adv_hrs_sw == 1)&(cnt7_reg == 2)&(cnt8_reg < 3)) ;
assign adv_cnt8_sw = (set_stopw != 1)&(down_upn == 1'b0)&
 (term_count_reached_up == 0)&(tbsec == 1)&
 (((cnt7_reg < 2)&(cnt8_reg < 9))|((cnt7_reg == 2)&
 (cnt8_reg < 3)))&(cnt9_reg == 5) & (cnt10_reg == 9) &
 (cnt11_reg == 5)&(cnt12_reg == 9)&(start_stopn_reg == 1'b1) ;
assign adv_cnt8 = adv_cnt8_set | adv_cnt8_sw ;

14.5 Real Time Clock Design 619

 // cnt7 cnt8 = 00 to 18 or 20 to 22 & cnt9-cnt12 = 59 59
 // are the conditions for pre-incrementing this counter.
assign cnt8_next = cnt8_reg + 1 ; // Pre-increment the counter.
assign decr_cnt8 = rsd&(cnt9_reg == 0)&(cnt10_reg == 0)&
 (cnt11_reg == 0)&(cnt12_reg == 0)&(((cnt7_reg == 0)&
 (cnt8_reg > 0)&(cnt8_reg <= 9))|((cnt7_reg == 1)&
 (cnt8_reg > 0)&(cnt8_reg <= 9))|((cnt7_reg == 2)&
 (cnt8_reg > 0)&(cnt8_reg <= 3))) & (tbsec == 1) ;
// Decrement if cnt7 cnt8 = 01-09 or 11-19 or 21-23 & cnt9-cnt12 = 00 00.
assign cnt8_nextd = cnt8_reg – 1 ; // Pre-decrement the counter.
assign pres_cnt8 = rsd&(tbsec == 1)&(cnt8_reg == 0)&
 (cnt9_reg == 0)&(cnt10_reg == 0)&(cnt11_reg == 0)&

 (cnt12_reg == 0)&(cnt7_reg > 0)&(cnt7_reg <= 2) ;
 // Preset if cnt7-cnt12 = 10 00 00 or 20 00 00.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)

 cnt8_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (cnt8_res == 1'b1) // Reset if terminal count is reached.
 cnt8_reg <= 4'd0 ;
 else if (adv_cnt8 == 1'b1)
 cnt8_reg <= cnt8_next ; // Advance the count once if the
 // stop watch is still running.
 else if (decr_cnt8 == 1'b1)
 cnt8_reg <= cnt8_nextd ; // Decrement the count once if the
 // stop watch is still running.
 else if (pres_cnt8 == 1'b1) // Preset if count down terminal
 cnt8_reg <= 4'd9 ; // count is reached.
 else ; // Otherwise, don’t disturb.

end

// cnt9_reg is the Stop watch’s most significant MINUTES digit. This is reset or
// advanced only in the RUN and STOP WATCH mode of operation every 1 s.
assign res_cnt9 = ((set_stopw != 1)&(down_upn == 1'b0)&
 (term_count_reached_up == 0)&(tbsec ==1)&(cnt9_reg == 5)&
 (cnt10_reg == 9)&(cnt11_reg == 5)&(cnt12_reg == 9)&
 (start_stopn_reg == 1))|((adv_mts_sw ==1)&(cnt9_reg ==5)&
 (cnt10_reg == 9))|((set_stopw == 1)&(down_upn == 0)) ;
 // cnt9 - cnt12 = 59 59 are the conditions for resetting this counter.
assign adv_cnt9 = ((set_stopw != 1)&(down_upn == 1'b0)&
 (term_count_reached_up == 0)&(tbsec == 1)&(cnt9_reg < 5)&
 (cnt10_reg == 9)&(cnt11_reg == 5)&(cnt12_reg == 9)&
 (start_stopn_reg ==1'b1))| ((adv_mts_sw ==1)&(cnt9_reg <5)&
 (cnt10_reg == 9)) ;
 // cnt9 = 0-4 and cnt10 - cnt12 = 9 59 are the

620 Hardware Implementations Using FPGA and I/O Boards

 // conditions for pre-incrementing this counter.
assign cnt9_next = cnt9_reg + 1 ; // Pre-increment the counter.
assign decr_cnt9 = rsd&(cnt10_reg == 0)&(cnt11_reg == 0)&(cnt12_reg == 0)
 &(cnt9_reg > 0)&(cnt9_reg <= 5)&(tbsec == 1) ;

 // For cnt9 = 1-5 and cnt10-cnt12 = 0 00.

assign cnt9_nextd = cnt9_reg – 1 ; // Pre-decrement the counter.
assign pres_cnt9 = rsd&(tbsec == 1)&(cnt9_reg == 0)&
 (cnt10_reg == 0)&(cnt11_reg == 0)&
 (cnt12_reg == 0)&((cnt7_reg != 0)|(cnt8_reg != 0)) ;
 // For cnt7 or cnt8 not equal to “0” and cnt9-cnt12 = 00 00.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt9_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt9 == 1'b1) // Reset if terminal count is reached.
 cnt9_reg <= 4'd0 ;
 else if (adv_cnt9 == 1'b1)
 cnt9_reg <= cnt9_next ; // Advance the count once if the

 // stop watch is still running.
 else if (decr_cnt9 == 1'b1)
 cnt9_reg <= cnt9_nextd ; // Decrement the count once if the
 // stop watch is still running.
 else if (pres_cnt9 == 1'b1) // Preset if count down terminal
 // count is reached.
 cnt9_reg <= 4'd5 ;
 else ; // Otherwise, don’t disturb.

end
/*
cnt10_reg is the Stop watch’s least significant MINUTES digit. This is reset or
advanced only in the RUN and STOP WATCH mode of operation every 1 s.
*/
assign res_cnt10 = ((set_stopw != 1)&(down_upn == 1'b0)&

 (term_count_reached_up == 0)&(tbsec == 1)&(cnt10_reg == 9)&
 (cnt11_reg == 5)&(cnt12_reg == 9)&(start_stopn_reg == 1))|

 ((adv_mts_sw == 1)&(cnt10_reg == 9))|((set_stopw == 1)&
 (down_upn == 0)) ;
 // cnt10 - cnt12 = 9 59 are the conditions for resetting this counter.
assign adv_cnt10 = ((set_stopw != 1)&(down_upn == 1'b0)&
 (term_count_reached_up == 0)&(tbsec == 1)&(cnt10_reg < 9)&
 (cnt11_reg == 5)&(cnt12_reg == 9)&(start_stopn_reg == 1'b1))|
 ((adv_mts_sw == 1)&(cnt10_reg < 9)) ;
 // cnt10 = 0 to 8 & cnt11 – cnt12 = 59 are the
 // conditions for pre-incrementing this counter.
assign cnt10_next = cnt10_reg + 1 ; // Pre-increment the counter.

14.5 Real Time Clock Design 621

assign decr_cnt10 = rsd&(cnt11_reg == 0)&(cnt12_reg == 0)&
 (cnt10_reg > 0)&(cnt10_reg <= 9)&(tbsec == 1) ;

 // Decrement cnt10 if cnt10 = 1-9 and cnt11 - cnt12 = 00.
assign cnt10_nextd = cnt10_reg – 1 ; // Pre-decrement the counter.
assign pres_cnt10 = rsd&(tbsec == 1)&(cnt10_reg == 0)&
 (cnt11_reg == 0)&(cnt12_reg == 0)&
 ((cnt9_reg != 0)|(cnt8_reg != 0)|(cnt7_reg != 0)) ;

 // Preset cnt10 to 9 only if cnt7-cnt9 not equal to 00 0
 // and cnt10-cnt12 = 0 00.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt10_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt10 == 1'b1) // Reset if terminal count is reached.
 cnt10_reg <= 4'd0 ;
 else if (adv_cnt10 == 1'b1)
 cnt10_reg <= cnt10_next ; // Advance the count once if the
 // stop watch is still running.
 else if (decr_cnt10 == 1'b1)
 cnt10_reg <= cnt10_nextd ; // Decrement the count once if

 // the stop watch is still running.
 else if (pres_cnt10 == 1'b1) // Preset if count down terminal
 // count is reached.
 cnt10_reg <= 4'd9 ;
 else ; // Otherwise, don’t disturb.

end

// cnt11_reg is the Stop watch’s most significant SECONDS digit. This is reset
// or advanced only in the RUN and STOP WATCH mode of operation every 1 s.
assign res_cnt11 = ((set_stopw != 1)&(down_upn == 1'b0)&
 (term_count_reached_up == 0)&(tbsec == 1)&

(cnt11_reg == 5)&(cnt12_reg == 9)&(start_stopn_reg == 1))|
((adv_secs_sw == 1)&(cnt11_reg == 5)&(cnt12_reg == 9))|

 ((set_stopw == 1)&(down_upn == 0)) ;
 // cnt11 - cnt12 = 59 are the conditions for resetting this counter.

assign adv_cnt11 = ((set_stopw != 1)&(down_upn == 1'b0)&
 (term_count_reached_up == 0)&(tbsec == 1)&

(cnt11_reg < 5)&(cnt12_reg == 9)&(start_stopn_reg == 1'b1))|
 ((adv_secs_sw == 1)&(cnt11_reg < 5)&(cnt12_reg == 9)) ;

// cnt11 = 0 to 4 & cnt12 = 9 are the conditions for pre-incrementing this counter.
assign cnt11_next = cnt11_reg + 1 ; // Pre-increment the counter.
assign decr_cnt11 = rsd&(cnt12_reg == 0)&(cnt11_reg > 0)&
 (cnt11_reg <= 5)&(tbsec == 1) ;
 // For cnt11 = 1–5.

622 Hardware Implementations Using FPGA and I/O Boards

assign cnt11_nextd = cnt11_reg – 1 ; // Pre-decrement the counter.
assign pres_cnt11 = rsd&(tbsec == 1) & (cnt11_reg == 0)&
 (cnt12_reg == 0)&((cnt10_reg != 0)|(cnt9_reg != 0)|
 (cnt8_reg != 0)|(cnt7_reg != 0)) ;
 // Preset cnt11 to 5 only if cnt7–cnt10 not
 // equal to 00 00 and cnt11–cnt12 = 00.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt11_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt11 == 1'b1) // Reset if terminal count is reached.
 cnt11_reg <= 4'd0 ;
 else if (adv_cnt11 == 1'b1)
 cnt11_reg <= cnt11_next ; // Advance the count once if the
 // stop watch is still running.
 else if (decr_cnt11 == 1'b1)
 cnt11_reg <= cnt11_nextd ; // Decrement the count once if
 // the stop watch is still running.
 else if (pres_cnt11 == 1'b1) // Preset if count down terminal
 // count is reached.
 cnt11_reg <= 4'd5 ;
 else ; // Otherwise, don’t disturb.

end
/*
cnt12_reg is the Stop watch’s least significant SECONDS digit. This is reset or
advanced every 1 s only in the RUN and STOP WATCH mode of operation.
*/
assign res_cnt12 = ((set_stopw != 1)&(down_upn == 1'b0)&
 (term_count_reached_up == 0)&(tbsec == 1)&
 (cnt12_reg == 9)&(start_stopn_reg == 1))|
 ((adv_secs_sw == 1)&(cnt12_reg == 9))|
 ((set_stopw == 1)&(down_upn == 0)) ;
 // cnt12 = 9 is the condition for resetting this counter.
assign adv_cnt12 = ((set_stopw != 1)&(down_upn == 1'b0)&

 (term_count_reached_up == 0)&(tbsec == 1)&
 (cnt12_reg < 9)&(start_stopn_reg == 1'b1))|

 ((adv_secs_sw == 1)&(cnt12_reg < 9));
 // cnt12 = 0 to 8 are the conditions for pre-incrementing this counter.
assign cnt12_next = cnt12_reg + 1 ; // Pre-increment the counter.
assign decr_cnt12 = rsd&(cnt12_reg > 0)&(cnt12_reg <= 9)&(tbsec == 1) ;
 // Decrement cnt12 every second if cnt12 = 1–9.
assign cnt12_nextd = cnt12_reg – 1 ; // Pre-decrement the counter.
assign pres_cnt12 = rsd & (tbsec == 1)&(cnt12_reg == 0)&
 ((cnt11_reg != 0)|(cnt10_reg != 0)|(cnt9_reg != 0)|
 (cnt8_reg != 0)|(cnt7_reg != 0)) ;

14.5 Real Time Clock Design 623

 // Preset cnt12 to 9 only if cnt7-cnt11 not equal to 00 00 0 and cnt12 = 0.

always @ (posedge clk or negedge reset_n)
begin

 if (reset_n == 1'b0)
 cnt12_reg <= 4'd0 ; // Initialize when the system is reset.
 else if (res_cnt12 == 1'b1) // Reset if count up terminal count
 cnt12_reg <= 4'd0 ; // is reached.
 else if (adv_cnt12 == 1'b1) // Advance the count once if the
 cnt12_reg <= cnt12_next ; // stop watch is still running.
 else if (decr_cnt12 == 1'b1)
 cnt12_reg <= cnt12_nextd ; // Decrement the count once if
 // the stop watch is still running.
 else if (pres_cnt12 == 1'b1) // Preset if count down terminal
 cnt12_reg <= 4'd9 ; // count is reached.
 else ; // Otherwise, don’t disturb.

end

assign res_term_count_reg1 = (adv_hrs_tcr == 1)&(term_count_reg1 == 2)&
 (term_count_reg2 == 3) ;
 // Reset Terminal count register for Up counter.

assign adv_term_count_reg1 = (adv_hrs_tcr == 1)&(term_count_reg1 < 2)&
 (term_count_reg2 == 9) ;

assign term_count_reg1_next = term_count_reg1 + 1;

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 term_count_reg1 <= 0 ;
 else if (res_term_count_reg1 == 1)
 term_count_reg1 <= 0 ;
 else if (adv_term_count_reg1 == 1)
 term_count_reg1 <= term_count_reg1_next ;
 else ;
end

assign res_term_count_reg2 = (adv_hrs_tcr == 1)&
 (((term_count_reg1 == 2)&(term_count_reg2 == 3))
 ((term_count_reg1 < 2)&(term_count_reg2 == 9))) ;
assign adv_term_count_reg2 = (adv_hrs_tcr == 1)&
 (((term_count_reg1 < 2)&(term_count_reg2 < 9))|
 ((term_count_reg1 == 2)&(term_count_reg2 < 3))) ;
assign term_count_reg2_next = term_count_reg2 + 1;

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 term_count_reg2 <= 0 ;

624 Hardware Implementations Using FPGA and I/O Boards

 else if (res_term_count_reg2 == 1)
 term_count_reg2 <= 0 ;
 else if (adv_term_count_reg2 == 1)
 term_count_reg2 <= term_count_reg2_next ;
 else ;
end

assign res_term_count_reg3 = (adv_mts_tcr == 1)&(term_count_reg3 == 5)&

 (term_count_reg4 == 9) ;
assign adv_term_count_reg3 = (adv_mts_tcr == 1)&(term_count_reg3 < 5)&

 (term_count_reg4 == 9) ;
assign term_count_reg3_next = term_count_reg3 + 1;

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 term_count_reg3 <= 0 ;
 else if (res_term_count_reg3 == 1)
 term_count_reg3 <= 0 ;
 else if (adv_term_count_reg3 == 1)
 term_count_reg3 <= term_count_reg3_next ;
 else ;
end

assign res_term_count_reg4 = (adv_mts_tcr == 1)&(term_count_reg4 == 9) ;
assign adv_term_count_reg4 = (adv_mts_tcr == 1)&(term_count_reg4 < 9) ;
assign term_count_reg4_next = term_count_reg4 + 1;

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 term_count_reg4 <= 0 ;
 else if (res_term_count_reg4 == 1)
 term_count_reg4 <= 0 ;
 else if (adv_term_count_reg4 == 1)
 term_count_reg4 <= term_count_reg4_next ;
 else ;
end

assign res_term_count_reg5 = (adv_secs_tcr == 1)&(term_count_reg5 == 5)&
 (term_count_reg6 == 9) ;
assign adv_term_count_reg5 = (adv_secs_tcr == 1)&(term_count_reg5 < 5)&
 (term_count_reg6 == 9) ;
assign term_count_reg5_next = term_count_reg5 + 1 ;

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)

14.5 Real Time Clock Design 625

 term_count_reg5 <= 0 ;
 else if (res_term_count_reg5 == 1)
 term_count_reg5 <= 0 ;
 else if (adv_term_count_reg5 == 1)
 term_count_reg5 <= term_count_reg5_next ;
 else ;
end

assign res_term_count_reg6 = (adv_secs_tcr == 1)&(term_count_reg6 == 9) ;
assign adv_term_count_reg6 = (adv_secs_tcr == 1)&(term_count_reg6 < 9) ;
assign term_count_reg6_next = term_count_reg6 + 1 ;

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 term_count_reg6 <= 0 ;
 else if (res_term_count_reg6 == 1)
 term_count_reg6 <= 0 ;
 else if (adv_term_count_reg6 == 1)
 term_count_reg6 <= term_count_reg6_next ;
 else ;
end

// Timer out is set when the terminal count (Up/Down) is reached.
assign timer_out_alarm_counter_next = timer_out_alarm_counter + 1 ;

// 30 s audio alarm counter.
assign timer_out_alarm = (timer_out)&(timer_out_alarm_counter != 31) ;
 // This signal is high for 30 s after terminal count
 // is reached, i.e., timer_out =1.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 timer_out_alarm_counter <= 0 ;
 else if (timer_out == 0)
 timer_out_alarm_counter <= 0 ;
 else if ((timer_out == 1)&(timer_out_alarm_counter != 31)&
 (tbsec == 1))

 timer_out_alarm_counter <= timer_out_alarm_counter_next ;
 else ;
end

always @ (posedge clk or negedge reset_n)
begin

if (reset_n == 1'b0)
 begin
 start_stopn_reg <= 1'b0 ; // Initialize to STOP mode
 // when the system is reset.

626 Hardware Implementations Using FPGA and I/O Boards

 // This stores the start/stop value.
 start_stopnp_reg <= 1'b0 // Previous start/stop value.
 end

else if (set_stopw == 1)
 start_stopn_reg <= 0;
 else if ((start_stopn == 1'b1)&&(start_stopnp_reg == 0)&&
 (run_stopw == 1))
 // start_stopn is the debounced START/STOP

 // PB input. Look for rising edge (Depression of the
 // push button switch).
 begin

 start_stopn_reg <= !start_stopn_reg ;
 // Toggle between START & STOP.

 start_stopnp_reg <= start_stopn ;
 // Preserve as the previous start/stop value.

 end
 else
 start_stopnp_reg <= start_stopn ;
 // Preserve as the previous start/stop value.
end

assign hrs2s_next = hrs2s_reg + 1 ; // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 begin // Initialize when the system is reset.
 hrsp_reg <= 0 ; // Initialize previous “hrs” value
 hrs_d <= 0 ; // and clear ON delay output.
 hrs2s_reg <= 0 ; // Clear 2 s counter.
 end
 else if (hrs == 0) // If “hrs” PB is released,
 begin
 hrs_d <= 0 ; // clear ON delay output.
 hrsp_reg <= hrs ; // Preserve as the previous “hrs” value.
 // “hrs” is the HRS PB input.

 hrs2s_reg <= 0 ; // Clear 2 s counter.
 end
 else if (hrs2s_reg == 20) // After 2 s delay (or greater),
 begin
 hrs_d <= 1 ; // switch ON delay output.
 hrsp_reg <= hrs ; // Preserve as the previous “hrs” value.
 // “hrs” is the HRS PB input.

// Note: hrs2s_reg is not reset here. It is reset when
// HRS PB is released as above.

 end

14.5 Real Time Clock Design 627

 else if ((cntds_reg == `ds_base)&(hrs == 1))
 begin

 hrs2s_reg <= hrs2s_next ;
// Advance the count once every 0.1 s.

 // so long as “HRS” PB is kept pressed.
 // Otherwise, ignore.
 hrs_d <= 0 ; // Clear ON delay output.
 hrsp_reg <= hrs ; // Preserve as the previous “hrs” value.
 end // “hrs” is the HRS PB input.
 else hrsp_reg <= hrs ; // Preserve as the previous “hrs” value.
 // “hrs” is the HRS PB input.
end

assign mts2s_next = mts2s_reg + 1 ; // Pre-increment the counter.
always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 begin // Initialize when the system is reset.

 mtsp_reg <= 1'b0 ; // Initialize previous “mts” value
 mts_d <= 0 ; // and clear ON delay output.
 mts2s_reg <= 0 ; // Clear 2 s counter.
 end
 else if (mts == 0) // If MTS PB is released,
 begin
 mts_d <= 0 ; // clear ON delay output and
 mtsp_reg <= mts ; // preserve the previous “mts” value.
 // “mts” is the MTS PB input.
 mts2s_reg <= 0 ; // Clear 2 s counter.
 end
 else if (mts2s_reg == 20) // After 2 s delay or greater,
 begin
 mts_d <= 1 ; // switch ON delay output.
 mtsp_reg <= mts ; // Preserve the previous “mts” value.
 // “mts” is the MTS PB input.
// Note: mts2s_reg is not reset here. It is reset when MTS PB is released as above.
 end
 else if ((cntds_reg == `ds_base)&(mts == 1)) // Advance the count once
 begin // every 0.1 sec. so long as “MTS” PB is kept pressed.

 mts2s_reg <= mts2s_next ; // Otherwise, ignore.
 mts_d <= 0 ; // Clear ON delay output.
 mtsp_reg <= mts ; // Preserve the previous “mts” value.
 end // “mts” is the MTS PB input.
 else mtsp_reg <= mts ; // Preserve the previous “mts” value.
 // “mts” is the MTS PB input.
end
assign secs2s_next = secs2s_reg + 1 ; // Pre-increment the counter.

628 Hardware Implementations Using FPGA and I/O Boards

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 1'b0)
 begin // Initialize when the system is reset.
 secsp_reg <= 1'b0 ; // Initialize previous “secs.” value
 secs_d <= 0 ; // and clear ON delay output.
 secs2s_reg <= 0 ; // Clear 2 s counter.
 end
 else if (secs == 0) // If secs. PB is released,
 begin
 secs_d <= 0 ; // Clear ON delay output.
 secsp_reg <= secs ; // Preserve the previous “secs” value.
 // “secs” is the SECS PB input.
 secs2s_reg <= 0 ; // Clear 2 s counter.
 end
 else if (secs2s_reg == 20) // After 2 s delay or greater,
 begin
 secs_d <= 1 ; // switch ON delay output.
 secsp_reg <= secs ; // Preserve the previous secs. value.
 // secs is the SECS PB input.
//Note: secs2s_reg is not reset here. It is reset when SECS PB is released asabove.
 end
 else if ((cntds_reg == `ds_base)&(secs == 1))
 begin

 secs2s_reg <= secs2s_next ; // Advance the count once
 // every 0.1 sec. so long as “SECS” PB is kept pressed. Otherwise, ignore.
 secs_d <= 0 ; // Clear ON delay output.
 secsp_reg <= secs ; // Preserve the previous “secs” value.
 end // “secs” is the SECS PB input.
 else secsp_reg <= secs ; // Preserve the previous 'secs' value.
 // “secs” is the SECS PB input.
end
// Alarm implementation
// temp_alarm_reg1 to 6 are a set of 4-bit temporary registers which hold the
// alarm time when it is being set.
assign adv_temp_alarm_reg1 = (adv_hrs_temp_alarm == 1)&
 (temp_alarm_reg1 < 2)&(temp_alarm_reg2 == 9) ;
 // Means 09 or 19
assign res_temp_alarm_reg1 = (adv_hrs_temp_alarm == 1)&
 (temp_alarm_reg1 == 2)&(temp_alarm_reg2 == 3) ;
assign temp_alarm_reg1_next = temp_alarm_reg1 + 1 ;
 // Common alarm setting counter, one each for the 6 digits display.
always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)

14.5 Real Time Clock Design 629

 temp_alarm_reg1 <= 0 ;
 else if (res_temp_alarm_reg1 == 1)
 temp_alarm_reg1 <= 0 ;
 else if (adv_temp_alarm_reg1 == 1)
 temp_alarm_reg1 <= temp_alarm_reg1_next;
 else ;
 end

assign adv_temp_alarm_reg2 = (adv_hrs_temp_alarm == 1)&
 (((temp_alarm_reg1 < 2)&(temp_alarm_reg2 < 9))|
 ((temp_alarm_reg1 == 2)&(temp_alarm_reg2 < 3))) ;

 // Advance for 00-18 (except 09) & 20-22.
assign res_temp_alarm_reg2 = (adv_hrs_temp_alarm == 1)&
 (((temp_alarm_reg1 < 2)&(temp_alarm_reg2 == 9))|

 ((temp_alarm_reg1 == 2)&(temp_alarm_reg2 == 3))) ;
 // Reset for 09, 19 & 23.
assign temp_alarm_reg2_next = temp_alarm_reg2 + 1 ;

always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 temp_alarm_reg2 <= 0 ;
 else if (res_temp_alarm_reg2 == 1)
 temp_alarm_reg2 <= 0 ;
 else if (adv_temp_alarm_reg2 == 1)
 temp_alarm_reg2 <= temp_alarm_reg2_next ;
 else ;
 end

assign adv_temp_alarm_reg3 = (adv_mts_temp_alarm == 1)&
 (temp_alarm_reg3 < 5)&(temp_alarm_reg4 == 9) ;
 // Advance for 09, 19, 29, 39, 49.
assign res_temp_alarm_reg3 = (adv_mts_temp_alarm == 1)&
 (temp_alarm_reg3 == 5)&(temp_alarm_reg4 == 9) ;
 // Reset for 59.
assign temp_alarm_reg3_next = temp_alarm_reg3 + 1 ;
always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 temp_alarm_reg3 <= 0 ;
 else if (res_temp_alarm_reg3 == 1)
 temp_alarm_reg3 <= 0 ;
 else if (adv_temp_alarm_reg3 == 1)
 temp_alarm_reg3 <= temp_alarm_reg3_next ;
 else ;
 end
assign adv_temp_alarm_reg4 = (adv_mts_temp_alarm == 1)&

630 Hardware Implementations Using FPGA and I/O Boards

 (temp_alarm_reg4 < 9) ; // Advance for 0–8.
assign res_temp_alarm_reg4 = (adv_mts_temp_alarm == 1)&
 (temp_alarm_reg4 == 9) ; // Reset for 9.
assign temp_alarm_reg4_next = temp_alarm_reg4 + 1 ;

always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 temp_alarm_reg4 <= 0 ;
 else if (res_temp_alarm_reg4 == 1)
 temp_alarm_reg4 <= 0 ;
 else if (adv_temp_alarm_reg4 == 1)
 temp_alarm_reg4 <= temp_alarm_reg4_next ;
 else ;
 end

assign adv_temp_alarm_reg5 = (adv_secs_temp_alarm == 1)&
 (temp_alarm_reg5 < 5)&(temp_alarm_reg6 == 9) ;
 // Advance for 09, 19, 29, 39, 49.
assign res_temp_alarm_reg5 = (adv_secs_temp_alarm == 1)&
 (temp_alarm_reg5 == 5)&(temp_alarm_reg6 == 9) ;
 // Reset for 59.
assign temp_alarm_reg5_next = temp_alarm_reg5 + 1 ;

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 temp_alarm_reg5 <= 0 ;
 else if (res_temp_alarm_reg5 == 1)
 temp_alarm_reg5 <= 0 ;
 else if (adv_temp_alarm_reg5 == 1)
 temp_alarm_reg5 <= temp_alarm_reg5_next ;
 else ;
end

assign adv_temp_alarm_reg6 = (adv_secs_temp_alarm == 1)&
 (temp_alarm_reg6 < 9) ;

 // Advance for 0–8.
assign res_temp_alarm_reg6 = (adv_secs_temp_alarm == 1)&
 (temp_alarm_reg6 == 9) ;
 // Reset for 9.
assign temp_alarm_reg6_next = temp_alarm_reg6 + 1 ;

always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)

14.5 Real Time Clock Design 631

 temp_alarm_reg6 <= 0 ;
 else if (res_temp_alarm_reg6 == 1)
 temp_alarm_reg6 <= 0 ;
 else if (adv_temp_alarm_reg6 == 1)
 temp_alarm_reg6 <= temp_alarm_reg6_next ;
 else ;
 end

// set_alarm1 is a signal which indicates that alarm1 is being set. When this
// signal is 1, the contents of temp_alarm_reg 1, etc. are copied into
// alarm1_reg1 and so on.
assign set_alarm1 = (set_alarm == 1)&(alarm1 == 1) ;
 // Set stop watch and Alarm Read/Set in set mode with Alarm1 set.
always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 begin
 alarm1_reg1 <= 0 ;
 alarm1_reg2 <= 0 ;
 alarm1_reg3 <= 0 ;
 alarm1_reg4 <= 0 ;
 alarm1_reg5 <= 0 ;
 alarm1_reg6 <= 0 ;
 end
 else if (set_alarm1 == 1)
 begin
 alarm1_reg1 <= temp_alarm_reg1 ;

 // Copy alarm setting from common set register
 // into the particular Alarm register.
 alarm1_reg2 <= temp_alarm_reg2 ;
 alarm1_reg3 <= temp_alarm_reg3 ;
 alarm1_reg4 <= temp_alarm_reg4 ;
 alarm1_reg5 <= temp_alarm_reg5 ;
 alarm1_reg6 <= temp_alarm_reg6 ;
 end
 else ;
end

assign set_alarm2 = (set_alarm == 1)&(alarm2 == 1) ;
always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 begin
 alarm2_reg1 <= 0 ;
 alarm2_reg2 <= 0 ;
 alarm2_reg3 <= 0 ;

632 Hardware Implementations Using FPGA and I/O Boards

 alarm2_reg4 <= 0 ;
 alarm2_reg5 <= 0 ;
 alarm2_reg6 <= 0 ;
 end
 else if (set_alarm2 == 1)
 begin
 alarm2_reg1 <= temp_alarm_reg1 ;
 alarm2_reg2 <= temp_alarm_reg2 ;
 alarm2_reg3 <= temp_alarm_reg3 ;
 alarm2_reg4 <= temp_alarm_reg4 ;
 alarm2_reg5 <= temp_alarm_reg5 ;
 alarm2_reg6 <= temp_alarm_reg6 ;
 end
 else ;
 end

assign set_alarm3 = (set_alarm == 1)&(alarm3 == 1) ;
always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 begin
 alarm3_reg1 <= 0 ;
 alarm3_reg2 <= 0 ;
 alarm3_reg3 <= 0 ;
 alarm3_reg4 <= 0 ;
 alarm3_reg5 <= 0 ;
 alarm3_reg6 <= 0 ;
 end
 else if (set_alarm3 == 1)
 begin
 alarm3_reg1 <= temp_alarm_reg1 ;
 alarm3_reg2 <= temp_alarm_reg2 ;
 alarm3_reg3 <= temp_alarm_reg3 ;
 alarm3_reg4 <= temp_alarm_reg4 ;
 alarm3_reg5 <= temp_alarm_reg5 ;
 alarm3_reg6 <= temp_alarm_reg6 ;
 end
 else ;
 end

always @ (alarm1 or alarm2 or alarm3 or reset_n)
 begin
 if (reset_n == 0)
 read_alarm_reg <= 0 ;

 // “read_alarm_reg” is a 2 bit register which stores the number
 // of the alarm to be read. If no alarm is on, it stores “0”.

14.5 Real Time Clock Design 633

 else if (alarm1 == 1)
 // If more than one alarm is on, the one displayed (read) is
 // the top priority alarm. alarm1 is the top most priority.
 read_alarm_reg <= 1 ;
 else if (alarm2 == 1)
 read_alarm_reg <= 2 ;
 else if (alarm3 == 1)
 read_alarm_reg <= 3 ; // Least priority.
 else
 read_alarm_reg <= 0 ;
 end

// Display real time or stopwatch or alarm on the seven-segment LEDs.
always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 begin
 data1 <= 0 ;
 data2 <= 0 ;
 data3 <= 0 ;
 data4 <= 0 ;
 data5 <= 0 ;
 data6 <= 0 ;
 end
 else if (display_time == 1) // Display the Time.
 begin
 data1 <= cnt1_reg ;
 data2 <= cnt2_reg ;
 data3 <= cnt3_reg ;
 data4 <= cnt4_reg ;
 data5 <= cnt5_reg ;
 data6 <= cnt6_reg ;
 end
 else if (display_stopw == 1) // Display the Stopwatch.
 begin
 if ((set_stopw == 1)&(down_upn == 0))
 begin
 data1 <= term_count_reg1 ;
 data2 <= term_count_reg2 ;
 data3 <= term_count_reg3 ;
 data4 <= term_count_reg4 ;
 data5 <= term_count_reg5 ;
 data6 <= term_count_reg6 ;
 end
 else

begin

634 Hardware Implementations Using FPGA and I/O Boards

 data1 <= cnt7_reg ;
 data2 <= cnt8_reg ;
 data3 <= cnt9_reg ;

 data4 <= cnt10_reg ;
 data5 <= cnt11_reg ;

 data6 <= cnt12_reg ;
 end

 end
 else if (set_alarm == 1)

// Indicates that alarm is set and, therefore, temp_alarm_reg1 –
// temp_alarm_reg6 will be displayed.

 begin
data1 <= temp_alarm_reg1 ;

 data2 <= temp_alarm_reg2 ;
 data3 <= temp_alarm_reg3 ;
 data4 <= temp_alarm_reg4 ;
 data5 <= temp_alarm_reg5 ;
 data6 <= temp_alarm_reg6 ;

 end
 else if (display_alarm == 1) // Display the Alarm set.
 begin
 case (read_alarm_reg)
 1: // Display the Alarm 1.
 begin
 data1 <= alarm1_reg1 ;
 data2 <= alarm1_reg2 ;
 data3 <= alarm1_reg3 ;
 data4 <= alarm1_reg4 ;
 data5 <= alarm1_reg5 ;
 data6 <= alarm1_reg6 ;
 end
 2: // Display the Alarm 2.
 begin
 data1 <= alarm2_reg1 ;
 data2 <= alarm2_reg2 ;
 data3 <= alarm2_reg3 ;
 data4 <= alarm2_reg4 ;
 data5 <= alarm2_reg5 ;
 data6 <= alarm2_reg6 ;
 end
 3: // Display the Alarm 3.
 begin
 data1 <= alarm3_reg1 ;
 data2 <= alarm3_reg2 ;
 data3 <= alarm3_reg3 ;
 data4 <= alarm3_reg4 ;

14.5 Real Time Clock Design 635

 data5 <= alarm3_reg5 ;
 data6 <= alarm3_reg6;
 end
 default: ;
 endcase
 end
 else ;
 end

assign alarm1_match = (alarm1_reg1 == cnt1_reg)& (alarm1_reg2 == cnt2_reg)&
 (alarm1_reg3 == cnt3_reg)&(alarm1_reg4 == cnt4_reg)&
 (alarm1_reg5 == cnt5_reg)&(alarm1_reg6 == cnt6_reg) ;

// Set if present time = alarm1 set time.
// alarm1_30sec_delay is a bit which becomes “1” when alarm1_match = 1. It
// stays high for 30 s and then goes low. alarm1_30_sec is a counter which
// counts till 30. It counts so long as alarm1_30sec_delay is high. It is
// incremented every 1 s, i.e., when tbsec = 1.
assign adv_alarm1_30sec_counter = (tbsec == 1)&(alarm1_30sec_delay == 1) ;
assign alarm1_30sec_counter_next = alarm1_30sec_counter + 1 ;

always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 begin
 alarm1_30sec_counter <= 0 ;
 alarm1_30sec_delay <= 0 ;
 end
 else if (alarm1_match == 1)

// When the present running time equals the
// Alarm 1 set time, turn the 30 s delay ON

 alarm1_30sec_delay <= 1 ;
 else if (alarm1_30sec_counter == 5'd30)

// and turn it Off when the delay is complete.
 begin // Also reset the counter.
 alarm1_30sec_counter <= 0 ;
 alarm1_30sec_delay <= 0 ;
 end
 else if (adv_alarm1_30sec_counter == 1)
 alarm1_30sec_counter <= alarm1_30sec_counter_next ;
 else ;
 end

 // Alarm 2, Alarm 3 delays and counters work similar to that of Alarm 1.
assign alarm2_match = (alarm2_reg1==cnt1_reg)&(alarm2_reg2 == cnt2_reg)&

 (alarm2_reg3==cnt3_reg)&(alarm2_reg4 == cnt4_reg)&
 (alarm2_reg5== cnt5_reg)&(alarm2_reg6 == cnt6_reg) ;

636 Hardware Implementations Using FPGA and I/O Boards

 // Set if present time = alarm 2 time.
assign adv_alarm2_30sec_counter = (tbsec == 1)&(alarm2_30sec_delay == 1) ;
assign alarm2_30sec_counter_next = alarm2_30sec_counter + 1 ;
always @ (posedge clk or negedge reset_n)
 begin

 if (reset_n == 0)
 begin
 alarm2_30sec_counter <= 0 ;
 alarm2_30sec_delay <= 0 ;
 end
 else if (alarm2_match == 1)
 alarm2_30sec_delay <= 1 ;
 else if (alarm2_30sec_counter == 5'd30)
 begin // 30 s complete.
 alarm2_30sec_counter <= 0 ;
 alarm2_30sec_delay <= 0 ;
 end
 else if (adv_alarm2_30sec_counter == 1)
 alarm2_30sec_counter <= alarm2_30sec_counter_next ;
 else ;
 end

assign alarm3_match =(alarm3_reg1==cnt1_reg)&(alarm3_reg2 == cnt2_reg)&
 (alarm3_reg3==cnt3_reg)&(alarm3_reg4 == cnt4_reg)&
 (alarm3_reg5==cnt5_reg)&(alarm3_reg6 == cnt6_reg) ;
 // Present time = alarm3 time.
assign adv_alarm3_30sec_counter = (tbsec == 1)&(alarm3_30sec_delay == 1) ;
assign alarm3_30sec_counter_next = alarm3_30sec_counter + 1 ;

always @ (posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 begin
 alarm3_30sec_counter <= 0 ;
 alarm3_30sec_delay <= 0 ;
 end
 else if (alarm3_match == 1)
 alarm3_30sec_delay <= 1 ;
 else if (alarm3_30sec_counter == 5'd30) // 30 s complete.
 begin
 alarm3_30sec_counter <= 0 ;
 alarm3_30sec_delay <= 0 ;
 end
 else if (adv_alarm3_30sec_counter == 1)
 alarm3_30sec_counter <= alarm3_30sec_counter_next ;
 else ;

14.5 Real Time Clock Design 637

 end
/*
“ring” is a signal that indicates that one or more alarms is/are active. “beep” is the
signal (square wave) which is actually output to the speaker if ring is high.
“beep_counter” counts till 2 (means 0.2 s). When it is 2, beep is toggled repeat-
edly producing 2.5 Hz beeping tone if alarm OFF/ON switch is in ON position.
Otherwise, the sound alarm is OFF.
*/
assign ring = ((alarm1_30sec_delay == 1)|(alarm2_30sec_delay == 1)|
 (alarm3_30sec_delay == 1))|(timer_out_alarm == 1) ;
/*
“timer_out_alarm” signal is high for 30 s (to sound the audio alarm) after the ter-
minal count, Up or Down, is reached, i.e., timer_out =1.
*/
assign beep_counter_next = beep_counter + 1 ;

always @ (posedge clk or negedge reset_n)
begin
 if (reset_n == 0)
 begin
 beep_counter <= 0 ;
 beep <= 0 ;
 end
 else if (ring == 0) // This means no alarm is active.
 begin
 beep_counter <= 0 ;
 beep <= 0 ;
 end
 else if (beep_counter == 2)
 begin
 beep <= (~beep)&((alarm_off_onn == 0)|
 (timer_out_alarm == 1)) ;

// Toggle if alarm switch is in ON position or if
// “timer_out_alarm” is high.

 beep_counter <= 0 ;
 end
 else if ((ring == 1)&(cntds_reg == `ds_base))
 beep_counter <= beep_counter_next ;

else ;
end

// Call the BCD to seven-segment display conversion ROM.
// Turn off all display decimal points.
display_rom disp1 (.addr(data1),
 .dec_pt(1'b0),
 .out(display1)

638 Hardware Implementations Using FPGA and I/O Boards

) ;
display_rom disp2 (.addr(data2),
 .dec_pt(1'b0),
 .out(display2)
) ;
display_rom disp3 (.addr(data3),
 .dec_pt(1'b0),
 .out(display3)
) ;
display_rom disp4 (.addr(data4),
 .dec_pt(1'b0),
 .out(display4)
) ;
display_rom disp5 (.addr(data5),
 .dec_pt(1'b0),
 .out(display5)
) ;
display_rom disp6 (.addr(data6),
 .dec_pt(1'b0),
 .out(display6)
) ;
endmodule
__

We have used a display ROM sub-module for converting a BCD number to a

seven-segment LED display code. This ROM stores the seven segment display
values including a right decimal point. Logic 1 lights the LED configured in the
common anode mode. Put this sub-module in a separate file called “dis-
play_rom.v”. The code for “display_rom” is presented in Verilog_code_14.4.1.
This module has two inputs named, “addr” and “dec_pt” and an output, “out”. The
BCD number, say, any one of “data1” to “data6”, that needs to be converted is in-
put into “addr”. The seven segments and decimal point are : a b c d e f g dp, where
“a” is the msb and decimal point, “dp”, is the lsb. The Verilog code for display
ROM is a simple realization using “case” statements in “always” block. For ex-
ample, the statement:

 9 : out = {7'b1111_011, dec_pt} ;
means if “addr”, i.e., BCD input number, is “9”, then the display output, “out”, is
1111 0110. Note that the segments “e” and “dp” are both off for a display of “9”.

Verilog_code_14.4.1
__
/*
 display_rom
“display_rom.v” is the sub-module for converting a BCD number to seven-
segment LED display code. This ROM stores the seven segment display values
including a right decimal point.

14.5 Real Time Clock Design 639

Logic “1” lights the LED configured in common anode mode.
*/
module display_rom (addr, dec_pt, out) ;
input [3:0] addr ; // 0000 displays “0”, 1001 displays “9” & so on.
input dec_pt ; // Input logic “1” if you wish to turn it on.
output [7:0] out ; // Segments: a b c d e f g dp, where “a” is the

 // msb and decimal point, “dp”, is the lsb.
 // “a” is the top segment, “b” is the next segment
 // clockwise and “g” is the center segment.
reg [7:0] out ;

always @ (addr or dec_pt)
begin
 case (addr)
 0 : out = {7'b1111_110, dec_pt} ;

// dec_pt = 1 turns ON the decimal point.
 1 : out = {7'b0110_000, dec_pt} ; // Order: abcd_efg_dp
 2 : out = {7'b1101_101, dec_pt} ;
 3 : out = {7'b1111_001, dec_pt} ;
 4 : out = {7'b0110_011, dec_pt} ;
 5 : out = {7'b1011_011, dec_pt} ;
 6 : out = {7'b1011_111, dec_pt} ;
 7 : out = {7'b1110_000, dec_pt} ;
 8 : out = {7'b1111_111, dec_pt} ;
 9 : out = {7'b1111_011, dec_pt} ;
 default : out = 8'b0 ; // Blank the display for illegal values.
 endcase
end
endmodule
__

14.5.7 Test Bench for Real Time Clock Design

time since other tests are going to be conducted on the actual hardware. The test-
ing of other modes can be done on your own, if you wish. To start with, we need
to declare the timescale. Let us say that we need to run simulation at 1GHz, for
which we need high precision. Therefore, we will have the time base as 100 ps
and the accuracy as 10 ps. We also have a clkperiodby2 declared as 5. The basic
unit is 100 ps and hence this value of 5 denotes 500 ps each for the ON time and
OFF time. This sums up to 1000 ps or 1ns time period. This means that the fre-
quency is 1 GHz. Then we include the actual design, “rtc_alarm.v” and declare the
module for the test bench. This is followed by the declaration of the inputs in the test

This test is not going to be elaborate. We shall only test the running of the real

640 Hardware Implementations Using FPGA and I/O Boards

bench. As usual, we have used “reg” for the inputs in the test bench and wire for the
outputs. Note that this is different from what we have been using in the design.

Next step is to instantiate the “rtc_alarm” design module. Here, we call all
ports by name. Thereafter, we shall apply stimulants in the initial block. Various
inputs like “clk”, etc. are initialized and the system is reset. After 100 units of
time, i.e., 10 ns, the reset is withdrawn to start the normal functioning of real time
clock. The RUN, TIME mode is also selected so that the real time clock may run
from “00 00 00” onwards. It will be cumbersome to test time/alarm settings, etc.,
while simulating. Therefore, we will defer elaborate testing until setting up the
Demo unit with FPGA and digital I/O boards. The simulation is allowed to run for
10 ms so as to get one complete 24 h cycle of real time starting from zero. In the
next “always” statement, we toggle “clk” every 0.5 ns to get a free running clock.

Verilog_Code_14.5
__

// Test Bench for Real Time Clock Design
`timescale 100ps/10ps
`define clkperiodby2 5 // Run at 1 GHz for simulation.
`include “rtc_alarm.v” // This is the design file.

module rtc_alarm_test ;

reg clk ;
reg reset_n ;
reg irun_setn ; // RUN/SET mode switch.
reg itime_stopwn ; // TIME/STOP WATCH mode switch.
reg idown_upn ; // UP/DOWN mode switch.
reg ihrs ; // Push button switches for setting “hrs”,
reg imts ; // “mts”
reg isecs ; // “secs” and
reg istart_stopn ; // “Start/Stop” .
reg ialarm_read_setn;
reg ialarm_off_onn;
reg ialarm1;
reg ialarm2;
reg ialarm3;
wire [7:0] display1 ;
wire [7:0] display2 ;
wire [7:0] display3 ;
wire [7:0] display4 ;
wire [7:0] display5 ;
wire [7:0] display6 ;
wire beep ;
wire timer_out ;

This ends the test bench, which is as follows.

14.5 Real Time Clock Design 641

// Instantiate the “rtc_alarm” design module.
 rtc_alarm u1 (.clk(clk),
 .reset_n(reset_n),
 .irun_setn(irun_setn),
 .itime_stopwn(itime_stopwn),
 .idown_upn(idown_upn),
 .ihrs(ihrs),
 .imts(imts),
 .isecs(isecs),
 .istart_stopn(istart_stopn),
 .ialarm_read_setn(ialarm_read_setn),
 .ialarm_off_onn(ialarm_off_onn),
 .ialarm1(ialarm1),
 .ialarm2(ialarm2),
 .ialarm3(ialarm3),

.display1(display1), // seven-segment LED outputs –
 .display2(display2), // display1 (MSD), 2 are HRS,

 .display3(display3), // display3 (MSD), 4 are MTS,
 .display4(display4),

 .display5(display5), // display5 (MSD), 6 are SECS.
 .display6(display6),

 .beep(beep),
 .timer_out(timer_out)

) ;
initial
 begin

 clk <= 0 ;
 reset_n <= 0 ;

 irun_setn <= 0 ; // SET
 itime_stopwn <= 0 ; // STOPWATCH
 idown_upn <= 0 ; // UP count mode.
 ihrs <= 1 ;
 imts <= 1 ;
 isecs <= 1 ;
 istart_stopn <= 1 ; // istart_stopn = 1 means that

 // START/STOP button is pressed.
 ialarm_read_setn <= 1 ; // Don’t set alarm mode.
 ialarm_off_onn <= 1 ;
 ialarm1 <= 1 ;
 ialarm2 <= 1 ;
 ialarm3 <= 1 ;
#100
 reset_n <= 1 ;
 irun_setn <= 1 ; // RUN
 itime_stopwn <= 1 ; // TIME mode.

642 Hardware Implementations Using FPGA and I/O Boards

#100000000 $stop ; // Stop after 10 ms.
end
always

 #`clkperiodby2 clk <= ~clk ; // Toggle to get a free running clock.
endmodule
__

The simulation results are presented in Figures 14.12.1 to 14.12.3. From Figure
14.12.1, we see that reset is withdrawn, RUN/SET switch is set to RUN position
and TIME/SW switch is set to TIME position at 10 ns, conforming to the condi-
tions set in the test bench. Note that the running time counters, “cnt1_reg” to
“cnt6_reg”, are cleared when reset is applied at the beginning. The six digit seven
segment LED display outputs, “display1” to “display6”, which correspond to the
counters, “cnt1_reg” to “cnt6_reg” are also cleared (segments “g” and “dp” are
off) when reset is applied. Figure 14.12.2 shows one complete 24 h cycle. The real
time is progressing systematically from “00 00 00” to “23 59 59” and raps round
to “00 00 00” to repeat the time. This can be observed in the running time count-
ers, “cnt1_reg” to “cnt6_reg”. Note the one to one correspondence between
“cnt1_reg” to “cnt6_reg” and “display1” to “display6”. Figure 14.12.3 shows the
zoomed in view, centered around midnight, real time.

Fig. 14.12.1 Simulation results of real time clock (Continued)

14.5.8 Simulation Results of Real Time Clock

14.5 Real Time Clock Design 643

Fig. 14.12.2 and 14.12.3 Simulation results of real time clock

644 Hardware Implementations Using FPGA and I/O Boards

14.5.9 Synthesis Results of Real Time Clock

Synplify results are summarized in this section. The device used is XCV800hq240-
4. During simulation, we have deliberately chosen an impractical frequency of op-
eration of 1 GHz. Modelsim permits up to 2.5 GHz. Even in previous chapters, these
details were discussed. As discussed before, simulation can be run at any GHz, but
after place and route, the frequency of operation will reduce drastically. For exam-
ple, in the present real time clock design, it has come down to 42.1 MHz as per Syn-
plify tool. Even the synthesis will not reveal the actual frequency of operation. Only
after place and route, we will get the true picture. Of course, it would be enough if
we run at 20 MHz. A positive “Slack” reported by the tool means that there is more
free time available so that we can improve the speed of the design by introducing
additional pipeline stages. Watch out for negative slack time. Guard against it. The
tool reports the primitives that we have used in the FPGA. The total number of
LUTs consumed by the design is 681. “rtc_alarm.edf” file is finally created by the
synplify tool, which needs to be exported to the Xilinx Place & Route tool for the
creation of bit file.

Synplify Report

Worst slack in design: 26.244

Clock
Starting

Requested
Frequency

Estimated
Frequency

Requested
Period

Estimated
Period

clk 20.0 MHz 42.1 MHz 50.000 23.756

Mapping to part: xcv800hq240-4
Cell usage:
MUXCY_L 78 uses
MULT_AND 12 uses
XORCY 87 uses
MUXF5 20 uses
FDCE 114 uses
FDC 159 uses
FDPE 14 uses
GND 1 use
I/O primitives:
IBUF 13 uses
OBUF 50 uses
BUFGP 1 use
I/O Register bits: 12
Register bits not including I/Os: 275 (1%)
Global Clock Buffers: 1 of 4 (25%)
Total LUTs: 681 (3%)

14.5 Real Time Clock Design 645

14.5.10 Xilinx P&R Results

The input for this tool is the “rtc_alarm.edf ” file created by the synthesis tool. The
number of LUTs reported by this tool is 675, whereas synthesis tool reported 681.
The place and route tool gives the exact number. The total gate count for the de-
sign is 6721. The maximum frequency of operation is also reduced to about 39
MHz. Therefore, the system can work at 20 MHz without any problem.

User Constraint File for Real Time Clock

While running the place and route tool, we must have a separate file named user
constraint file, “.ucf ”, which lists all the signals in the design as well as the exact
pin numbers of the signals. Put the following constraints in a separate file and
name it as “rtc.ucf ”. Place it in the same folder, where the “rtc_alarm.edf ” is lo-
cated. This is not mandatory, but preferable. It may be noted that the “.edf” file
was created using the Synplify tool. We will declare the inputs and outputs as
“NET” and assign the pins as per the actual connections in the Demo setup, which
we will describe in the next section. The bussed outputs such as the six numbers of
seven segment displays will have to be allotted pins, bit-wise. The user constraint
file, “rtc.ucf ”, is as follows:
__

NET “clk” LOC = P89 ;

NET “reset_n” LOC = P140 ;
NET “irun_setn” LOC = P161 ;
NET “itime_stopwn” LOC = P159 ;
NET “idown_upn” LOC = P155 ;
NET “ihrs” LOC = P185 ;
NET “imts” LOC = P176 ;
NET “isecs” LOC = P175 ;
NET “istart_stopn” LOC = P174 ;
NET “ialarm_read_setn” LOC = P153 ;
NET “ialarm_off_onn” LOC = P53 ;

NET “ialarm1” LOC = P149 ;
NET “ialarm2” LOC = P146 ;
NET “ialarm3” LOC = P142 ;

NET “display1[7]” LOC = P108 ;
NET “display1[6]” LOC = P188 ;
NET “display1[5]” LOC = P189 ;
NET “display1[4]” LOC = P191 ;
NET “display1[3]” LOC = P107 ;
NET “display1[2]” LOC = P192 ;
NET “display1[1]” LOC = P193 ;

646 Hardware Implementations Using FPGA and I/O Boards

NET “display1[0]” LOC = P194;

NET “display2[7]” LOC = P103;
NET “display2[6]” LOC = P195;
NET “display2[5]” LOC = P199;
NET “display2[4]” LOC = P200;
NET “display2[3]” LOC = P102;
NET “display2[2]” LOC = P101;
NET “display2[1]” LOC = P202;
NET “display2[0]” LOC = P203;

NET “display3[7]” LOC = P100;
NET “display3[6]” LOC = P205;
NET “display3[5]” LOC = P206;
NET “display3[4]” LOC = P207;
NET “display3[3]” LOC = P99;
NET “display3[2]” LOC = P208;
NET “display3[1]” LOC = P209;
NET “display3[0]” LOC = P215;

NET “display4[7]” LOC = P97;
NET “display4[6]” LOC = P216;
NET “display4[5]” LOC = P217;
NET “display4[4]” LOC = P218;
NET “display4[3]” LOC = P96;
NET “display4[2]” LOC = P220;
NET “display4[1]” LOC = P221;
NET “display4[0]” LOC = P222;

NET “display5[7]” LOC = P94;
NET “display5[6]” LOC = P223;
NET “display5[5]” LOC = P224;
NET “display5[4]” LOC = P228;
NET “display5[3]” LOC = P93;
NET “display5[2]” LOC = P229;
NET “display5[1]” LOC = P230;
NET “display5[0]” LOC = P231;

NET “display6[7]” LOC = P87;
NET “display6[6]” LOC = P232;
NET “display6[5]” LOC = P234;
NET “display6[4]” LOC = P235;
NET “display6[3]” LOC = P86;
NET “display6[2]” LOC = P236;
NET “display6[1]” LOC = P237;
NET “display6[0]” LOC = P238;

14.5 Real Time Clock Design 647

NET “beep” LOC = P109;
NET “timer_out” LOC = P162;

__

You may need to change these pin assignments if you are using any other
FPGA or I/O board for realizing the real time clock. The Xilinx P&R tool creates
a bit file, “rtc_alarm.bit”, which is used for downloading into the FPGA. The P&R
report is as follows:

Target Device : xv800
Target Package : hq240
Target Speed : –4
Logic Utilization:
 Number of slice flip flops: 275 out of 18,816 1%
 Number of four input LUTs: 641 out of 18,816 3%
 Number of occupied slice: 398 out of 9,408 4%
 Number of slice containing only related logic: 398 out of 398 100%
 Number of slices containing unrelated logic: 0 out of 398 0%
Total number 4 input LUTs: 675 out of 18,816 3%
 Number used as logic: 641
 Number used as a route-thru: 34
 Number of bonded IOBs: 63 out of 166 37%
IOB flip flops: 12

 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 6,721
Additional JTAG gate count for IOBs: 3,072
Timing summary:
Minimum period: 25.194 ns (maximum frequency: 39.692 MHz)
Minimum input required time before clock: 6.604 ns
Minimum output required time after clock: 25.551 ns
Saving bit stream in “rtc_alarm.bit”
__

14.5.11 Hardware Setup of Real Time Clock

The hardware setup for this design is basically the same as that used in the traffic
light controller design except that this design does not have the traffic light display
board. Further, we need all the six numbers of seven-segment LED displays
mounted on the digital input/output board. Accordingly, we have met these hard-
ware requirements, and the overall setup for the real time clock is shown in Figure
14.13. As shown therein, the two expansion headers on the FPGA board are con-
nected to the digital I/O board using a flat cable. The FPGA board is also con-
nected to a parallel port of a PC. One of the output ports of the FPGA is connected

648 Hardware Implementations Using FPGA and I/O Boards

to a piezoelectric buzzer to sound the audio alarm. The FPGA board is connected
to a DC power supply, 8.5 V. It consumes only 0.71 A as can be seen on the right
side of the figure. The I/O board is powered by another supply, 5V DC, placed be-
hind the two boards. Since the display on the I/O board is not clearly visible in the
figure, a zoomed version is also shown below the setup. The snapshot shows the
working of the real time clock in the RUN TIME mode. Various input/output sig-
nals used in the design are connected as per the pin definition in the user con-
straint file presented in the previous section.

Fig. 14.13 Hardware setup for the real time clock

Fig. 14.14 Downloading the bit stream into the FPGA

14.5 Real Time Clock Design 649

Figure 14.14 shows the downloading of the bit stream, “rtc_alarm.bit” into the
FPGA. It may be recalled that this bit stream was generated using the Xilinx P&R
tool, also presented in the previous section. Testing the real time working takes 24

tion, “ds_base”, declared at the beginning of the design, “Verilog_code_14.4”. By
decreasing it 60-fold, we can advance the minutes display every second. Similarly,
by decreasing it further by 60 times, we can advance the hours display every sec-
ond. Thus, the entire real time test can be carried out in about 3 min. time, instead

streams are “rtc_alarm_mts_fast.bit” and “rtc_alarm_hrs_fast.bit” respectively for
advancing minutes and hours display fast. These two bit streams are downloaded
into the FPGA in turn for fast display to complete the test as mentioned earlier.
Other modes such as time and alarm settings, stop watch settings and functioning
of the three alarms, and Up and Down counter/timer were also checked and found
to work satisfactorily. These tests are left as exercise for the readers.
__

Summary

troller and a real time clock were presented as examples in this chapter. These ap-
plications were based on ready made boards available such as an FPGA board and
a digital input/output board. The design methodology adopted in these designs
may be extended to any other project design or any other FPGA and I/O boards.
These system designs were presented in a systematic manner, starting from de-
tailed specification. The need for formulating the right type of architecture was
emphasized and designed with actual hardware components in mind. The signal
nomenclature adopted in the architectures were actually used as it is in realizing
their designs in Verilog conforming to the RTL coding guidelines. Simple test
benches were developed and simulated using Modelsim tool to ensure the correct
functioning of the designs. This was followed by running the synthesis tool and
the place and route tool in order to get the timing details and the bit stream files.
The hardware for each of the designs was subsequently set up and the bit streams
downloaded into the FPGA. Elaborate testing of the hardware were thereafter
conducted to ensure the correct working of the systems designed. In the next chap-
ter, a number of projects will be suggested for implementation.

__

A couple of complete hardware implementations, namely, a traffic light con-

hours in the normal time mode. The testing can be expedited by reducing the defini-

of 24 hours in the normal mode. However, we need to run the synthesis and P&R
tools two more times to get these bit stream files. This has been done and the two bit

650 Hardware Implementations Using FPGA and I/O Boards

Assignments

14.1 A traffic light controller design for right flowing traffic was presented in
the text. Redesign for left flowing traffic as is in vogue in eastern countries.

14.2 The traffic light controller design covered in the text does not have “Pedes-
trian crossing”. Include the same and redesign for right or left flowing traf-
fic. Do not use push button switch requests for the same. Make it automatic.
Run all the three tools, Modelsim, Synplify, and Xilinx P&R and demon-
strate the working of the design on the hardware depending upon the avail-
ability.

14.3 Design a traffic light controller for a T junction with free right. Assume
right side flowing traffic and the side road approach to be from bottom. Run
all the three tools: Modelsim, Synplify, and Xilinx P&R and demonstrate
the working of the design on the hardware if feasible.

14.4 It is desirable to have large seven segment displays for displaying time re-
maining at every approach road of a four road traffic junction covered in
the text. This will show the road users how much time is remaining for the
current traffic to stop or for resuming it. Each of these displays may be
formed using discrete LEDs as shown in Figure A14.1. Each digit will be a
seven segment display with a decimal point in the same way a normal seven

Fig. A14.1 Large seven-segment LED Display

a

b

c

d

f

e

g

dp

a

g

d

e
c

dp

f b

Assignments 651

Fig. A14.2 Typical driving circuit for individual segment of a large display

segment display looks like, also shown alongside. A typical interface circuit
that drives these large displays is shown in Figure A14.2. In this circuit, the
driver is an open collector, Darlington pair inverter using the ULN2003
chip. The input to this inverter is an FPGA output. The ULN2003 can work
up to 50 V and sink 500 mA current. Each segment is realized by connect-
ing individual LEDs in series. Do you envisage any problem connecting
them the way it is shown? If so, amend the circuit to improve the product
design and explain the amendments. Select suitable supply voltage and re-
sistors. Provide the same sequences and timings we provided earlier in the
text. Note that the timing for the straight flowing traffic on the main road is
45 s, 5 s for yellow lights, and 25 s for all other traffic. Formulate an
optimum scheme and incorporate it in the traffic light controller designed
before for the right flowing traffic. You need only simulate the Verilog
code. No demo is required.

14.5 Modify the Verilog code of real time clock presented in the text to display
the timing range of 00 00 00 to 11 59 59 (HRS MTS SECS) instead of the
24 hours range, retaining other features already designed. Simulate the
amended design. Discuss how you will amend the design if both 24 and 12
hours ranges are to be included in the same clock. You may use another in-
put and an output available in the expansion connector of the FPGA board
for this purpose. No code need be developed.

14.6 Discuss how you will change the present design to accommodate additional
displays for YEAR, MONTH, and DAY (2 digits each) using the existing

FPGA
Output

R

ULN2003

a

V+

Vcc

652 Hardware Implementations Using FPGA and I/O Boards

LEDs. There is no need to write codes. Just discuss the design methodol-
ogy. Will these displays present any problems? If so, how will you solve
them?

14.7 If we are to use the timer designed in the text for applications demanding
timing in milliseconds in addition to hours, minutes, and seconds, then we
need to modify the existing design. Use appropriate numbers of additional
inputs/outputs and provide user presetting to include this feature in your de-
sign change. The display shall be in the range: 0 to 999.999 s. The timing
must commence when the user presses the START push button switch, si-
multaneously turning on the output, “TIMER OUT”. After the lapse of the
set delay, the output is turned off and the beeping audio alarm sounds for 30 s.
Use a separate switch, preferably a push button switch, for presetting (or
clearing) the timer before restarting by pressing START push button. The
digital timer may be stopped or resumed at any point of time as was done in
the design presented before. What are the potential problems in this aspect
of the design? How will you solve any problem that may be encountered?
Discuss how you will go about the design. No Verilog code need be devel-
oped.

14.8 Lots of power is being wasted in offices, banks, factories, institutions, espe-
cially during lunchtime etc., which can be easily avoided by installing a real
time clock such as that we have designed in the text, of course, needing
quite many changes. Include in your design change four outputs for switch-
ing on or off four different electrical circuits that power lights, fans, air
conditioners, machineries, etc. as per the following schedule as an example:

Switch ON at Switch OFF at
DAY

 HRS MTS SECS HRS MTS SECS

Monday
thru’

Friday

8
13

00
00

00
00

12
17

00
00

00
00

 You must facilitate the user to program for any day of the week, any time

and up to two different time settings each for switching on and switching
off lights, etc., an example of which is shown in the table. Each of the
power loads must be individually programed. Provide additional switches
for overriding the automatic control to switch on any of the four circuits
when the occasion demands. Present your detailed specification, design
methodology, architecture and an algorithm to aid in the design. No Verilog
code is necessary.

14.9 Design a controller that switches on lights, air conditioner(s), and other
power points in a mini-concert hall as the first person enters the hall and
switches off the lights and other devices as the last person leaves it. The

Assignments 653

concert hall has four entry/exit doors equipped with infra red sensors. Only
one person can enter or leave through a door at a time. Realize the RTL
Verilog design and test it.

14.10 A soft drink bottling plant that requires automation is shown in the Figure
A14.3. Empty bottle container dispenses one bottle whenever the solenoid
SOL1 is operated for 1 s. When the container has only small number of bot-
tles left, the sensor BL sends logic high signal. Similarly, SOL2 operates
for 5 s to fill soft drink into the bottle when its presence is sensed by the
sensor S1, and cap sealer fixes the cap in the filled bottle by operating the
solenoid SOL3 for 2 s when its arrival is sensed by S2. The sensors DL and

Fig. A14.3 Bottling plant

CL generate high signals when the respective items are in short supply.

654 Hardware Implementations Using FPGA and I/O Boards

In the next position, the arrival of the capped bottle is sensed using S3. The
sensor S4 inspects the filled level of the bottle and generates logic high if
the level is acceptable, in which case the bottle proceeds to the next stage.
Otherwise, ARM1 is activated for 2 s to grab the bottle and put it into a va-
cant slot in a crate designated as “REJECT”. The accepted filled bottle
sensed by S5 is grabbed by the ARM2 (also activated for 2 seconds) and
placed in the crate below marked “PASS”. S6 and S7 sense the presence or
absence of the respective crates. These crates are manually handled. When
they are full (each capable of accommodating up to 32 bottles), a HOOTER
in the control panel is sounded continuously and, REJECT FULL or PASS
FULL lamp is turned on as the case may be, and the operator replaces the
filled crate by empty ones. The HOOTER generates a beeping sound if any
of the sensors BL, DL, or CL is activated; turning on the appropriate
lamp(s): BOTTLE LOW, DRINK LOW, or CAP LOW, as the case may be.
The bottles are transported by conveyor belts driven by the motors M1, M2,
and M3, which may be switched on or off as is appropriate. The total num-
ber of “REJECTED” or “PASSED” bottles are indicated by using electro-
magnetic counters as shown. They preserve their values even during a
power failure. They may be reset at any point of time using the respective
push button. Draw a detailed specification and the architecture so that the
controller design may be realized using Verilog RTL. You may add any
other devices or features to make the design more perfect. State your as-
sumptions clearly.

Assignments 655

Chapter 15

Projects Suggested for FPGA/ASIC
Implementations

We have seen how to design VLSI systems using Verilog in the previous chapters.
Complete system designs were presented for some projects, such as PCI Arbiter
and Discrete Cosine Transform and Quantization Processor for Video compres-
sion applications. The design complexities were up to about 120,000 gates
mapped on FPGAs. We have also implemented a couple of designs as examples,
using FPGA and digital input/output boards. These are Traffic Light Controller
and a Real Time Clock. All the codes developed work readily on any FPGA or as
an ASIC. In this chapter, a number of applications are suggested for you to design
on FPGA/ASIC.

The design methodologies and Verilog codes presented for a number of project
designs in the earlier chapters may be readily applied to the new projects. Some of
the codes may need modifications to suit the particular application. This design
approach reduces the development cycle time considerably. If it may be sug-
gested, it would be a good idea to put various commonly used Verilog modules
such as the adders, multipliers, etc., and other modules you and other design team
members may develop in a library folder for ready access by all others. However,
extreme care must be taken while including comments in the codes, be it Verilog
or higher level languages such as Matlab, C and, in the preparation of documents
for users, without which the design will be useless. Also, do not forget to include
aptly commented test benches. In this connection, mention may be made that there
are few websites [102] catering to this need. You may contribute as well as
download Verilog/VHDL codes for some applications along with documentation.

15.1 Projects for Implementation

We have presented a number of applications in this section and classified them
into various categories. These categories, by no means exhaustive, are automo-
tives, avionics, control system applications, medical applications, and video proc-
essing applications, to name a few. Brief descriptions are also presented for some
of the applications. The reader may gather more ideas and information from web-
sites, magazines, journals, conference papers, books, newspapers, TV shows, etc.;
above all use fertile imagination before undertaking any serious design. All these
systems need lots of intelligence embedded in the chips being designed. Some of
the applications mentioned here are already available as embedded systems,

implemented probably with 8051 family of microcontrollers or any other proces-
sors such as 8085, 6800, 68000, Arm processors, DSP processors, etc.

15.1.1 Automotive Electronics

some of the applications falling in this category are as follows: We can design in-
telligent controller for anti-lock braking system, also called ABS. This is already
in vogue in many countries. When the road is slippery and if you jam or apply
brake continuously, then your vehicle is sure to skid and go out of control. With a
gentle and effective pumping action on the brake, skidding can be eliminated. But
manual application on the spur of the moment will not be effective since the road
conditions are not known. Even professional drivers cannot stop as quickly with-
out ABS as an average driver can with ABS. Hence, we need a controller that will
monitor the road conditions and intelligently apply the brakes intermittently at the
right time.

Next, we have automatic transmission. This will dispense with the application
of the gear manually. Once we start the engine and engage the gear system, nor-
mally there is no need for manual changing of gear till we reach the destination.
Even high flyovers can be negotiated easily. Cruise control maintains a constant
speed of the vehicle at the press of a button, thereby freeing the right foot for the
brake instead of the gas pedal. These are realized by embedded systems gathering
enough intelligence of the road conditions and the weather conditions. Then we
have curbside check in system that issues a ticket for parking vehicles.

Older cars that came with hydraulic power steering were powered by hydraulic
pumps mounted on the engine running off the engine’s crankshaft. This consumes
a part of the power produced by the engine. The latest development, the electronic
power steering (EPS), is powered by the battery and does not draw any power
from the engine. Thus, all the power produced by the engine is used to propel the
car rather than run the power steering pump. Wind resistance and rolling friction
stretch a car’s engine and its efficiency the most and prove a drag on the car’s fuel
efficiency. The electronic power steering involves the use of an electric motor and
related electronics for providing directional control to the car. EPS systems draw
power directly from the car’s battery and are not dependent on the engine for
doing their job. This directly translates into an improvement in fuel efficiency.

EPS systems are more dynamic than the traditional hydraulic power steering
and capable of finer inputs for varying the time and amount of power assistance
being offered. This means that EPS offers higher assistance during low speed
travel or during a parking situation. On the other hand, EPS decreases the level of
assistance as speed builds up, a feature that gives the driver firmer control over the
car at all times. This also means that the electric motor does not draw power from
the battery when there is no demand for assistance, such as during straight line
travel. In contrast, hydraulic systems require the fluid to be kept at a constant pres-
sure and hence suck up power from the engine, even when the car is idling.

The first group suggested is the automotive electronics. Brief descriptions of

660 Projects Suggested for FPGA/ASIC Implementations

Apart from the electric motor, the two other components of an EPS system are
the control module and the torque sensor. All these components fit together on one
compact unit, installed just below the upper steering column. The electric motor
set to the side of the column transfers power through a reduction and worm gear.
The torque sensor detects right or left direction and the crank speed or extent of
torque that the driver applies to the steering wheel and transmits the data to the
control module, which in turn decides the level of aid required. It also powers the
motor to turn the wheels either to the right or to the left by reversing the applied
voltage to the electric power unit. EPS systems are much more efficient than hy-
draulic counterpart even though they draw a bit of power from the engine indi-
rectly as the alternator has to work overtime to compensate for the battery power
spent by the electric motor.

Real time monitoring system for cars and vehicles shows close-quarter dangers
that a driver might miss while driving. A nice road and a big fast car/truck blend
well together. However, hazardous points of driving are the packed traffic, blind
spots at the immediate sides and rear of the vehicle, and painful parking maneu-
vers. Vehicle manufacturers are working at eliminating these dangers. These prob-
lems can be completely solved by designing a video processing system that offers
an integrated display of the roof-top view of the vehicle on the dashboard, clearly
showing the surroundings to decide whether overtaking another vehicle or a lane
change can be safely undertaken. This system is also helpful while parking and rever-
sing out of tight spots. This system requires front, rear, and side mounted cameras
to take care of the blind spots surrounding the vehicle. The projects described ear-
lier in this category and more projects included in the following list may be
undertaken for FPGA/ASIC implementation:

• Anti-lock brakes
• Automatic transmission
• Cruise control
• Digital speed measurement of passing vehicles on roads
• Electronic power steering
• Global positioning system for automobiles
• Real time monitoring system for cars and vehicles
• Vehicle parking check in systems
• Wireless remote control for automobile AC/door/lights/alarm control

15.1.2 Avionics

aircrafts, which can measure and record digitally the parameters like latitude, lon-
gitude, altitude, inside/outside temperatures, wind speed, cabin pressure, oxygen
level, identify flying objects around the flying aircraft, etc. In the airports, we see
lots of baggage moving to and fro. Often, passengers have trouble in locating their
baggage, especially at the destination airport. A control system which receives
these baggages and routes to a particular announced baggage collection place

The next category we will consider is the avionic systems. They are systems in

15.1 Projects for Implementation 661

• Automated baggage clearance system in airports
• Avionic systems

 Digital altitude meter of aircraft
 Wind pressure display of aircraft
 External temperature and pressure display of aircraft

• Flight simulator
• Instrument landing system (air navigation in airports – landing)
• Unmanned aircraft control

15.1.3 Cameras

focus all by itself, the camcorders used as a video camera in the digital domain
rather than analog domain, and the digital cameras that can record short duration
compressed video sequence as per MPEG 2 or MPEG 4, Part 10 formats. These
are as follows:

• Auto-focus cameras
• Digital camcorders
• Digital cameras

15.1.4 Communication Systems

or wireless, is susceptible to noise and, therefore, requires error correction codes.
Further, the data needs to be secure, which can be accomplished by designing en-
cryption and decryption hardware using FPGAs or ASICs. The following list gives
some of the communication systems that may be designed by the reader:

• Demodulator for satellite communication
• Encryption/decryption
• Error correction codes
• Modulator for satellite communication
• Network card
• Network switches/routers
• Quadrature amplitude modulator (QAM) and demodulator
• Radar imagery system
• Submarine detector
• Wireless LAN/WAN

In the next category, we have cameras such as auto-focus cameras, which will

Any communication system which sends data over a serial channel be it wired

using a sequence of conveyor belts may be designed, saving lots of trouble for
passengers. Displays at strategic points starting from the passenger arrival
points must guide the passengers to the place where the passenger may collect
his/her baggage without any anxiety. The list of projects for this category is as
follows:

662 Projects Suggested for FPGA/ASIC Implementations

15.1.5 Computers and Peripherals

Low cost computer is a low cost PC costing under $200, which is Linux-based or
Windows-based. However, windows operating system based PC may cost more
than the Linux-based machine, unless the windows operating system prices are
slashed to compete with the Linux counterpart. In order to make this project
viable, an open source for manufacturing such low cost PCs will have to be cre-
ated on the net, the idea being that prices of PCs should come down benefiting
people. The PC may have a one GHZ processor, 128 MB RAM, 40 GB hard disk,
15-in. color monitor, 52X optical drive, a keyboard, and a mouse. The low cost PC
shall support applications such as word processing, spreadsheet, presentation, web
browsing, email clients, and audio–video playback, etc.

Scan pen and PC notes taker costing under $200 captures printed text at the
stroke of a pen. It is useful for researchers, journalists, doctors, lawyers, and stu-
dents. It can store data up to 1000 pages of text, which can be edited and stored as
separate files. It captures handwriting from any paper and enables direct
downloading into MS Office. It is useful for creating and saving sketches, hand-
written notes, and memos in any language without requiring much knowledge of a
PC. It also can send email in our handwriting and language. The above project de-
signs along with one more are listed in the following:

• Low cost computer
• Mobile phone personal computers
• Scan pen and PC notes taker

15.1.6 Control Systems

First one in the control system category is the alarm annunciator. As the name im-
plies, abnormal activities in industrial plants need to be announced by monitoring
various engineering parameters such as low pressure, high temperature, low fuel,
etc. The industries may be a power plant, a cement plant, a sugar plant, and so on.
You would have seen huge control panels (at least in the TV) in various plants such
as thermal and nuclear plants, which have several flashing lamps on the top of the
control panels. They are annunciators. These equipments come with various flavors
of ‘sequences’, well over 50, designed by a number of manufacturers around the
globe. Most of these are based on microcontrollers. Therefore, it would be a good
idea to design these equipments using FPGAs/ASICs. The market for this product is
huge and hence ASIC based design will be viable. In addition to the above applica-
tions, many other applications for project design are listed:

• Alarm annunciator
• Ash level controller for Electrostatic precipitator
• Automatic packaging/sealing machines
• Electrostatic precipitator communication controller
• Data acquisition system
• Electrostatic precipitator (EP) controller

15.1 Projects for Implementation 663

• Injection molding machine control
• Lift controller
• Medicine blend control machine
• Programable logic controllers
• PIC
• Quality control system
• Rapper controller
• Remote control for air conditioners
• Robot controller
• SCADA
• Simulator for EP controller
• Temperature controllers
• Machine vision
• Smart scales
• Unmanned railway line crossing
• Vending machines

15.1.7 Image/Video Processing Systems

Many interesting project designs are available for FPGA/ASIC implementation as
listed towards the end of this section. We will discuss some of these projects.
Digital cinema is a new technology that is poised to create a digital revolution. It
enables the projection of movies simultaneously across several theaters using sat-
ellite communication. Currently, producers are unable to release new films in
many centers due to the high variable cost of film prints. This is where the digital
cinema comes in handy for the producers, distributors, and exhibitors. Inciden-
tally, this gives a new lease of life to old theaters, crying for renovation. Once the
renovated theaters are equipped with adequate facilities, screening of digital cin-
ema will become a reality. The negative may be changed to HD 5 format and
encrypted and put on a centralized server. It will then be up-linked to satellite. The
theater concerned will receive the signals, which in turn will go into a local server,
decrypted and then on to a digital projector for screening.

A major advantage of digital cinema would be the elimination of piracy. The
theaters have very little expense in terms of print cost, film transportation, or other
related charges. A single film can be viewed in hundreds of theaters simultane-
ously. Digital cinema systems, in another embodiment, will offer theater managers
the facility to choose a movie from a catalog of films and download any film from
anywhere through broadband internet and satellite. It will provide for transparency
as distributors can login to the internet and monitor which film of his is playing in
which theater and at what time. Digital cinema also supports MPEG 2 format.
MPEG 4, Part 10 format may also be included.

Detailed specification for a new digital cinema format has been released by the
Digital Cinema Initiative, a forum which represents Hollywood studios: Disney,
Fox, Paramount, Sony pictures entertainment (erstwhile Columbia), Universal and

664 Projects Suggested for FPGA/ASIC Implementations

Warner, which have dominated the world’s English language cinema since the
dawn of the movies. The full technical document can be downloaded from the
website:
http://www.dcimovies.com/DCI_Digital_Cinema_System_Spec_v1.pdf.
This document is a single standard for the entire process of making and showing
films digitally, namely, mastering, compression, encryption, transport, storage,
playback, and projection. The picture sizes can be 2048 × 1080 pixels known as
‘2K’ format or 4096 × 2160 pixels (‘4K’ format).

Mobile film making is the making of a short video backed by a brief descrip-
tion of a favorite icon such as an old shop house in an alley that holds many
memories, a vintage car, or even a childhood experience. Image and video proc-
essing systems that may be realized as FPGA or ASIC are listed in the following:

• Conversion of black and white movies to color motion pictures
• Digital camera interface
• Digital cinema
• Digital TV and digital cable TV
• Digitizer for analog NTSC/PAL/SECAM cameras
• Display interface
• H.264 codec
• JPEG codec
• JPEG 2000 codec
• Motion JPEG 2000 codec
• MPEG 1 codec
• MPEG 2 codec
• MPEG 4 codec
• MPEG 4, Part 10 or H.264 advance video coding (AVC) codec
• Object segmentation system
• Teleconferencing systems
• TV set-top boxes
• TV tuner card
• Video conference codec
• Video grabber card
• Video karaoke
• Videophone
• Video scalar
• Video spotlighting effect and other special effects creation system
• Video watermarking

15.1.8 Measuring Instruments

tems, be they analog or digital systems. These instruments may be used for testing a
finished product or for calibration of test equipments in quality control departments.

High precision measuring instruments are indispensable while developing sys-

15.1 Projects for Implementation 665

For example, a digital high voltage tester of capacity 100 KV can be used in the
quality control of a transformer cubicle used in power stations. This equipment,
used by control panel manufacturers, helps in finding the breakdown voltage bet-
ween copper bus bars mounted on insulators and the cubicle. Another equipment
the reader can design is a 3 GHz (or more) digital frequency meter that can
measure frequencies of an oscillator and thereby carry out factory setting, say
for instance, setting a real time clock quickly, whose design was presented in the
previous chapter of this book.

Virtual instrumentation places the personal computer at the epicenter of the
task and exploits graphical programing aids such that even a novice can drag and
drop ready-made instrument panels which can look like the real multimeter, spec-
trum analyzer, or waveform generator. The virtual creation of measuring system
ranges from the simple digital voltage, current meter to the most complex multi-
sensor data acquisition system. Other creative directions of the virtual instrumen-
tation have taken it to the embedded systems developer and the virtual electrical
engineering laboratory. Standard and classical experiments on DC machines and
transformers, analog and digital circuits, etc. can be virtually performed on the PC,
complete with variable running speed, operation amplifiers, gates, flip-flops,
counters, stunningly realistic meters and controls. Some of the measuring instru-
ments suggested for implementation are listed in the following:

• Digital high voltage tester
• 3 GHz Digital frequency meter
• Digital LCR meter
• Digital megohmmeter
• Six digit digital multimeter
• Digital Ph meter
• Digital oscilloscope
• Embedded systems
• Virtual instrumentation using PC

15.1.9 Medical Applications

High blood pressure increases the chance of getting heart disease and kidney dis-
ease and consequent stroke. It can also result in blindness. High pressure is espe-
cially dangerous because it often has no warning signs or symptoms. Regardless
of race, age, or gender, anyone can develop high blood pressure. It is estimated
that one in every four American adults has high blood pressure. More or less, the
same is true around the world. Once high blood pressure develops, it usually lasts
a lifetime. Blood pressure is the force of blood against the walls of arteries. The
pressure rises and falls during the day. If we exercise or just walk, the pressure in-
creases even if we are normal. However, when blood pressure stays elevated over
a time, it is called high blood pressure.

The medical term for high blood pressure is hypertension. A blood pressure
level of 140/90 mm Hg or higher is reckoned as high. If it is within the range of

666 Projects Suggested for FPGA/ASIC Implementations

120/80 mm Hg and 139/89 mm Hg, then it means that one is likely to develop
high blood pressure. The first number is called the systolic pressure and the sec-
ond number is called the diastolic pressure. The systolic pressure is the force of
blood in the arteries as the heartbeats, whereas the diastolic pressure is the force of
blood in the arteries as the heart relaxes in between beats. Causes of high blood
pressure may be due to narrowing of the arteries, a greater than normal volume of
blood, heart beating faster or more forcefully than a normal beating, etc. You can
prevent and control high blood pressure. The applications that may be developed
are listed below along with others in the medical applications category:

• Digital acupressure
• Digital blood glucose meter
• Digital blood pressure and heart rate monitor
• Electrocardiograph
• Life-support systems
• MRI/CT scan

o Doppler
o Echo
o Mamogram
o Ultrasound

15.1.10 Miscellaneous Applications

A number of project designs for implementation are listed in this category. Some
of these projects are discussed in the following. An electronic voting machine
(EVM) consists of two inter-connected units: the control unit and the ballot box.
The control unit is operated by the presiding electoral officer. The names and
symbols of all the candidates are displayed on the top of the ballot box. There is a
push button besides each name. Each machine can accommodate up to 16 names.
If there are more candidates, then another machine is linked to the first unit. When
a voter enters the booth where the voting machine is kept, the presiding electoral
officer presses a button marked ‘Ballot’ on his control unit. A LED marked ‘Busy’
comes on in the control unit and one marked ‘Ready’ glows on the ballot unit.
‘Ready’ LED remains on till the vote is cast. When the voter presses the push but-
ton adjoining the candidate’s name of his choice, a red LED switches on besides
the candidate’s name and a loud beeping alarm sounds, indicating that the voter
has cast his/her vote. Once all the votes are polled, the presiding electoral officer
closes a key operated switch marked ‘Close’, after which the machine automati-
cally stops registering any votes.

An EVM is fast, with a capacity for five votes a minute. This eliminates the
cost of printing ballot papers and is tamper proof. Even an illiterate voter can use
it. Counting and declaration of results are quick, which means that manpower re-
quirement is drastically cut. A single magnesium battery in the control unit powers
all the linked ballot units. The machine even prevents malpractices like vote du-
plication. If a voter were to press more than one button at the same time, no vote is
cast. On the other hand, if buttons are pressed one after another, the EVM detects

15.1 Projects for Implementation 667

which was pressed first and registers it as the only vote. The memory lasts five
years even when the machine is switched off and not in use, and so it comes handy
if a result is disputed much after the poll is over.

Futuristic capsule simulator is one of the entertainment systems, which offers
the excitement of spectacular fantasy worlds in one of its kind outdoor simulator.

A pedometer is a pager like device, worn on the waist to record the number of
steps a person takes in a day. It translates that into the distance covered and tells
how many calories the person has burned. This is a simple tool for athletes, jog-
gers, health buffs, and people out to lose weight. The pedometer works by sensing
the up and down movements of the hip and thereby counting the steps. Before
that, a user needs to record the length of steps he or she takes with a measuring
tape. Once that is done, the user has to key in the person’s weight, and then, the
user is ready to go. This may be regarded as a motivating tool to remind us to walk
more and be active and is an excellent recorder for tracking our activity level
throughout the day. An average person walks about 6000 steps a day, and we need
to hit 10000 if we need to loose weight. One can wear it all day, everyday and re-
cord the total number of steps one takes or just wear it whenever one takes walk or
go for a workout. Using it also helps one set and reach daily targets, since one can
sneak in 10 min or more of walking at every opportunity, whether it is taking the
dog out for a run or just taking the stairs instead of the elevator. The pedometer
may gain new lease of life marketed by government officials, fast food outlets,
gyms, potato chip companies, etc.

A satellite view search service allows users to zoom in on any spot on earth for
a dramatic satellite eye view in three-dimension. Drawing on a huge library
resource of satellite imagery, merged with cartographic information from the
ground, the application provides resolutions down to one meter or less. The appli-
cation works on PCs that include a 3D graphics board with resolutions of 1024 ×
768 pixels or 800 × 600 pixels. Many global locations are book marked and click-
ing on this spins the globe and zooms down to the desired place clearly identifying
all the details. Pan and tilt controls allow one to rotate the view so that the build-
ings can be seen in sharp 3D. Entering the latitude and longitude of any place on
earth sends the application zooming to that spot at one meter or less resolution. In
such areas, the user can search for motels, gas stations, bus stations, etc. The
application also provides for higher resolution of graphics and links the applica-
tion to a global position system (GPS) position locater, if the user has one.

A treadmill is a type of fitness equipment used in gymnasiums. It is attached
with a 3 HP motor that gives a speed between 1 to 12 miles per hour with five
speed profiles and five intensity levels. To increase the intensity of training, the
treadmill has an electric inclination system. The treadmill is designed with an
integrated double fan, extra wide, and long shock absorbing running track with
auto-safety key and hand rail bottoms for comfortable and safe training. Heart
rate control, body fat control, system, telemetric pulse control, and contact pulse
measurement system are a value addition to the equipment. The equipment may be
designed with LCD display and the sequence of speed, inclination, and timings
can be user programed. This equipment comes with six challenging programs

668 Projects Suggested for FPGA/ASIC Implementations

targeted at runners and walkers, with a provision to make more programs by the
users. The list belonging to this category of applications follows:

• Automatic teller machines
• Automatic toll systems
• Digital lockers
• Digital petrol/diesel dispenser
• Dishwashers
• Dryers
• Electronic card readers
• Electronic voting machine
• Fault location in cables
• Futuristic capsule simulator
• Hearing aids
• Intelligent cane to lead the blind/deaf persons
• Leather area measurement equipment
• Non-destructive test of ceramic bricks using ultrasonic sound
• Non-destructive test of dams/buildings using ultrasonic sound
• On-board navigation
• Point-of-sale systems
• Pedometer
• Satellite view search
• Smart ovens
• Speech recognizers
• Treadmill with heart meter for gym.
• Universal PROM/PAL/FPGA programer
• Virtual reality system
• Xpendable bathy thermograph

15.1.11 Music

task, can be used to replace the original old voices by the current singer’s voices
while retaining the original orchestra instruments. On the other hand, the original
voices can be recast in new orchestrated music. These are useful for professionals,
amateur musicians, and audio karaoke. The following lists some of the musical
equipments:

• Digital filter for separation of human voices from orchestrated music
• Digital voice/music recorder cum digital camera
• Special effects generators for audio:

o Bathroom effect
o Cave effect
o Echo fade in/fade out effect

• Synthesizer or music keyboard

Separation of human voices from orchestrated music, a challenging design

15.1 Projects for Implementation 669

15.1.12 Office Equipments

recorder cum player useful for secretary in an office. FAX, Scanner, Copier, and
Printer can be integrated into one machine, designed as a single ASIC. Personal
digital assistant is a mobile unit to store telephone/cell numbers, addresses, email
addresses, and other details of persons. It can be connected to a PC using USB
port for downloading or uploading the information:

• Digital dictaphone
• FAX/scanner/copier/printer four-in-one machine
• Personal digital assistant (PDA)

15.1.13 Phones

mixed signal HDL such as the AMS CAD of Cadence, one can design a single
chip cell phone, bringing down the cost. Accordingly, the base stations can also be
designed. Low resolution, low frame rate videophone/video conferencing based on
H.264 can be attempted on the cell phone. A short list of the phone based equip-
ments is as follows:

• Cell phone, single chip
• Low resolution, low frame rate videophone/video conferencing

based on H.264 on the cell phone
• Multi-channel TV reception on cell phone
• FM radio on cell phone
• Cell phone base station
• Satellite phone
• Telephone exchange

15.1.14 Security Systems

ture, or other personal characteristics to a template of minutia points or other per-
sonal characteristics. Rather than use passwords, biometric devices identify people
by behavior or physical characteristics like fingerprints. Notable features of these
minutia points are loop in a fingerprint or the position of an eye. These points are
converted to a numeric string by an algorithm and stored as templates. These tem-
plates can be dangerous if stolen. Altering biometric images enhances security,
keeping hackers at bay. Researchers may develop ways to alter images in a de-
fined, repeatable way so that hackers who managed to crack a biometric database
would be able to steal only the distortion and not the original image. This is done
by distorting the image before it is scanned by a biometric reader, and the template
of the distorted image is stored in a database. Thereafter, when the same person

Some of the office equipments are as follows. Digital dictaphone is a digital

Systems known as biometrics reduce an image such as a fingerprint, facial fea-

Cell phones are currently distributed on two ASICs, analog and digital. Using

670 Projects Suggested for FPGA/ASIC Implementations

uses the biometric reader, once again the original image is distorted and trans-
formed, creating a match with the database. It may be noted that the original im-
age is not stored anywhere. That means, even if hackers get the altered biometric,
it would be of little use as long as organizations maintained their own formulas for
transforming images before scanning.

Home security systems primarily have passive infrared motion detector, which
detects infrared radiations from an intruder. It then triggers an alarm loud enough
to alert the occupants of the house/office and even neighbors. The system consists
of a control panel and communicatively coupled to various sensors installed in a
house/office/bank and a remote control with which the system can be armed or
disarmed. Apart from triggering an alarm, the system can be programed to call a
pre-set telephone numbers in case of a break-in. The sensors, normally attached to
the doors and windows and connected to the control panel (wired or wireless), set
off an alarm immediately after they detect a movement when the intruder tries to
force open the doors and windows. The client’s control panel can also communi-
cate round-the-clock with a central monitoring police station. Optionally, the sys-
tem can have a closed circuit TV. Some of the security systems are as follows:

• Biometrics such as fingerprint identifiers
• Fire alarm system
• Home security systems
• Surveillance camera control system
• Theft tracking system
• Tsunami warning system

15.1.15 Toys and Games

worldwide, with a large untapped market in the east. Games such as car racing,
star wars, boxing, asteroids, space traveling, etc. demand faster processors than
what exists currently. ASIC based video games are better alternatives than the PC
processors, especially in terms of processing speed and price. Game development
is a multi-disciplinary field demanding diverse skills such as drawing, art design,
painting, graphic designing, 3D graphics, story narration, screen writing, direction,
etc. with a strong knowledge of digital video technology, HDL, computer pro-
graming using C++, physics, mathematics, etc. Video games require a plethora of
hardware such as the sound cards, graphic cards, 3D graphic accelerators, joy-
sticks, remote controls, CD drives, etc. These applications are listed as follows:

• Electronic toys
• Portable video games
• Toy robots
• Video game consoles

And the list goes on and on, limited only by one’s imagination.

Video games command an ever increasing huge market of over $20 billion

15.1 Projects for Implementation 671

15.2 Embedded Systems Design

Computing systems have proliferated everywhere, so much so that we are condi-
tioned to think only in terms of personal computers on our desktops, laptop com-
puters, main frame computers, servers, etc. However, there is another class of
computing or controlling system that is far more common. Yes, you guessed it
right – the embedded systems/controllers. Again, when we speak of controllers,
what pop up in our mind are the programable logic controllers (PLC) or the pro-
gramable controllers that have invaded every conceivable industrial application.
There is also a general impression among system designers that embedded sys-
tems mean only a microcontroller. Against this background, a formal definition
for an embedded system is indeed hard to make.

In the recent years, there has been a spurt in embedded systems reported for
wide variety of applications, which make use of microprocessors, microcontrol-
lers, and DSPs right from 4 bits to 32 bits on one hand to FPGA/ASIC on the
other. These applications include digital cameras, automobile automation, avion-
ics, ATMs, cell phones, electronic toys/games, medical equipments, defense
equipments, industrial controllers, etc. We have discussed a number of them in the
previous section. If one scrutinizes these systems closely, one would infer that
they have certain common features such as executing a single program repeatedly,
having to meet tight constraints, i.e., they are characterized by low cost, low
power, small, fast, etc., and continually reacting to changes in the system’s envi-
ronment and computing certain results in real time without delay. So long as these
criteria are satisfied to the extent feasible, we may not have any objection to defin-
ing an embedded system as a system that is designed to perform only a dedicated
application, no matter what processor is used.

An embedded system performs a dedicated function. For instance, a digital
camera that can do only one function, namely, capture an image, bring about com-
pression, store them, and upload the captured still images to a computer; nothing
more, nothing less may be regarded as an embedded system. This embedded
application is best realized as an ASIC since it finds a huge market. As another
example, we may take the implementation of electrostatic precipitator controller
used in thermal power plant for the disposal of ash. This controller is based on In-
tel’s 8085 microprocessor by many leading vendors, rather than going for 8051
family microcontroller that came later. This may also be realized using FPGA and
subsequently as an ASIC as it has good market potential and can compete with the
existing versions. A detailed specification and architecture of this application for
FPGA and ASIC implementation will be presented in Section 15.4. Most embed-
ded systems need to be designed with built-in real time clock and/or watch dog
timers. These designs were presented in earlier chapters.

Design metric is a measurable feature of a system’s implementation. Common
metrics are the functionality implemented, ease of handling the system, the proc-
essing time or throughput of the system, sale price of each system, non-recurring
engineering (NRE) cost, the physical size of the system, the amount of power con-
sumed by the system, and flexibility, i.e., the ability to change the functionality of

672 Projects Suggested for FPGA/ASIC Implementations

the system without incurring heavy NRE cost. Optimizing design metrics is a key
challenge that needs to be addressed while designing an embedded system.

Microprocessors are used in a variety of applications, small to medium-sized in
complexity. 8085, 8086, and 68000 processors are some of the earliest general
purpose microprocessors used in embedded system applications. Likewise, digital
signal processors (DSP) such as TMS320C6X (Texas), ADSP 21020 (Analog
Devices), DSP32C (Lucent) are used for specialized applications involving mul-
tiply-accumulator (MAC) operations and are generally costlier than micropro-

(Motorola), PIC 16F84 microcontroller (Microchip Technology Inc., USA) are
popular for small-end applications. For medium to high-end embedded systems
design, FPGAs/ASICs are the right choice. In the near future, FPGAs may be ex-
pected to be cost effective even for small end applications and can outperform the
above mentioned processors.

15.3 Issues Involved in the Design of Digital VLSI
Systems

Any product is saleable only if it is cost effective and competitive. These require-
ments can be met if we build the system with minimum of hardware: both on-chip
resources and the external hardware, and conform to optimum specification. If the
system design is based on FPGA and requires a large memory in the order of 16
KB or more, the system is cost effective only if the memory is located external to
the FPGA. This may mean a reduction of throughput since the external memory
design is slower than the on-chip memory by about two times as was shown in the
chapter on design of memories. As the technology is changing rapidly, the limit of
on-chip memory of 16 KB can be jacked up if found cost effective. In ASIC im-
plementation, it may be advantageous to integrate the memory with the ASIC and
bring it out as a system-on-chip (SOC). This requires vendor library for memory
while using the ASIC (front end and back end) development tools such as the
Synopsys, Magma, and Cadence. Of course, we can go in for ASIC implementa-
tion only if there is a huge assured market and a promise of recurring demand.
Otherwise, FPGA implementation is cost effective. Similarly, the system must
have a requisite number of external hardware such as integrated circuits; passive
and active components such as connectors, cables, resistors, capacitors, switches,
relays; transistors, drivers, zener diodes, etc. with the right specifications, nothing
more, nothing less as required by the particular application.

By minimizing the hardware, the system cost is kept low, consumes less
power, development cycle as well as the production times are low, reliability high
and the system is compact. User controls and displays must be simple and con-
veniently placed and the system must be designed with aesthetics in mind.
Specification must be met completely without making any compromise. Other-
wise, credibility is lost. Likewise, over indulgence of specification must be cur-
tailed since it corrodes the profitability. Codes must be optimized in order to
minimize the chip area and hence reduce the cost.

cessor-based products. Microcontrollers such as 8051, 89C52 (Atmel), 68HC811

15.3 Issues Involved in the Design of Digital VLSI Systems 673

Before coding in HDL, the design concepts and algorithms developed must be
tested in higher languages such as Matlab or C. Their end results can also serve as
references for verifying the outputs of HDL codes. Development of HDL codes
must be undertaken only if Matlab or C simulation is satisfactory. If not, one must
look into the possibility of compromising on the specifications and get user con-
currence before proceeding further. HDL codes, be it Verilog or VHDL, must con-
form to RTL coding guidelines discussed at length in Chapter 5, without which
FPGA or ASIC implementation cannot work. Serious designers, be they practicing
engineers or students working on their projects, need to use the right tools such as
Modelsim, Synplify, and Place and Route which allow large designs without any
restriction, besides being easy to learn and handle subsequently. It may be noted
that free downloads may have restrictions of about 750 lines, while most VLSI
system designs are above 1500 lines. The Verilog/VHDL codes developed must,
in general, be technology independent, device as well as vendor independent so
that we are free to use any device: FPGA or ASIC. This way, we have the flexibil-
ity of migrating from one FPGA to another FPGA or ASIC when the occasion
demands without needing to recode.

Once the coding is completed, printed circuit board (PCB) which houses the
target FPGA will have to be fabricated. Usually, this is time consuming and
development costs incurred are high. A better alternative to the PCB development
and testing of the assembled board is to buy suitable, populated, pre-tested FPGA
and input/output boards. Once the system is proven, one can take up the PCB
development work, if the demand is high. Similarly, one can start with the FPGA
implementations for small to moderate demands and graduate to ASIC implemen-
tations later on for bulk production.

The following summarizes the strategy we have already adopted in designing
VLSI systems in this book:

• An efficient application involves designing with minimum of internal and
external hardware in addition to developing optimized codes.

• Complex algorithms and concepts must be verified for establishing via-
bility using high level languages such as Matlab or C.

• HDL code must conform to RTL coding guidelines.
• Right tools must be used to minimize the development cycle time.
• System development can be dramatically expedited if based on bought

out, populated electronic cards.

We will formulate detailed specifications and develop basic architectures for a
couple of applications, which the reader may take up for implementation subse-
quently:

15.4 Detailed Specifications and Basic Architectures

for FPGA/ASIC Implementations
for a Couple of Applications Suggested

674 Projects Suggested for FPGA/ASIC Implementations

• Electrostatic precipitator controller
• JPEG/H.263/MPEG codec

System

Electrostatic precipitator controllers are used in fly ash disposal in a thermal
power plant. Several tons of fly ash are generated, disposal of which is quite cum-
bersome. For example, a 210 MW thermal power plant generates about 4000 ton-
nes of ash everyday. If released in the air, the entire township will be covered by
ash. Water stream cannot directly wash the ash away – passage will get clogged in
a short time. The solution is to apply a high DC voltage in the order of 80 KV in
the EP, a large chamber with electrodes all over, where the fly ash is blown in
from a boiler. Ash gets attracted to negative electrode and hence tamed. Activating
special hammers frees the ash, which is promptly washed away by a water stream
at the bottom of the electrostatic precipitator and finally disposed of in huge ash
ponds situated about 5 miles away from the power house. The special hammers
need to be activated in a specific sequence in order to dislodge the ash from the
electrode. These hammers are, however, controlled by another controller called
Rapper controller. The DC high voltage is generated by firing a couple of thyris-
tors configured as full-wave rectifiers. The firing circuits for these thyristors are
based on pulse transformers housed in a control panel in which the EP controller
unit is mounted. A small capacity transformer (30 VA), together with opto-
isolated transistors identify the zero crossover and AC positive/negative swings in
order to generate firing triggers for the thyristors at appropriate time. The trans-
former is also used to supply power to the EP controller unit.

Front fascia of electrostatic precipitator controller, made of membrane key pad,
is shown in Figure 15.1. All the LED displays seen through front fascia are
mounted on a FPGA board. LEDs N1 to N7 announce the status of the EP such as
high voltage transformer high temperature, coolant top/bottom float level, EP con-
troller unit supply under voltage, thyristors overload/high voltage transformer very
high temperature, when voltage peak is reached and the mode ‘REMOTE’ or
‘LOCAL’ respectively. Based on these annunciations, the operator may take cor-
rective actions. DS1 to DS4 are seven segment displays used to display the mode
in which the EP may be configured, EP voltage, current, etc. DS1 displays the
mode the EP is set. Function modes are as follows:

 – Precipitator Current E Precipitator Voltage
H Sparks Per Min. Bl Peak & Valley Voltage
0 Im Limit 5 Uv Limit
1 Is Limit 6 Charge Ratio
2 S Control 7 Pulse Current Limit
3 T Control 8 Loop Gain
4 Slopes After Spark 9 Addresses
P Base charge Set L Base Charging Current

15.4 Detailed Specifications and Basic Architectures

15.4.1 Electrostatic Precipitator Controller – an Embedded

675

7-SEG. LEDs

Is LIMIT
P11

ACCUM. SPARKS

LOCAL

DISPLAY
SELECT

T/O RESET
N10

N12

ON/OFF
PEAK
MODE

HT
ON/OFF

N9
N11

001000

ADDR. P10 – P7

P6 - P1

DS4 DS3 DS2 DS1 N8

TR. TEMP.

BUCH. TOP
BUCH. BOTTOM

UNDER VOLTAGE
TH. OL/TR. TEMP. VERY HIGH

V-PEAK REACHED
 REMOTE

N1
N2
N3
N4
N5
N6
N7

REMOTE

‘Bl’ stands for blank space. When the EP controller is switched on, the display is
‘0% –’ in DS2, N8 (LED on) and DS1 respectively. Up/Down DISPLAY
SELECT keys may be used for changing the modes as listed earlier. Various set-
tings in different modes are tabulated in Table 15.1. Mode ‘1’ is set only after set-
ting all other modes. For normal operation, the EP controller is set to ‘–’.

ON/OFF’ switch. The LED N11 lights up and the DS4–DS2 display increases
from 0 to 100 and remains at 100. The display increase may be expedited by
pressing the ‘T/O’ key. The calibration of the system is as follows: Set the unit to
Uv (meaning under voltage of power supply of the EP controller unit) limit mode
(5) and adjust ‘Is’ potmeter on the front fascia so that the EP current is 0.75 A.
Switch to the current mode ‘–’ and adjust the potmeter P3 in I/O board to display
75 for the precipitator current of 0.75 A. Similarly, adjust potmeter P6 in I/O
board to read 75 in ‘E’ mode for the precipitator voltage of 75 KV. P8 is adjusted
till continuous counting takes place in the six digit electromagnetic counter and set
it to slightly lesser value when the counting just stops. This counter advances by
one every time a spark occurs in the electrostatic precipitator.

Fig. 15.1 Front panel of electrostatic precipitator controller

The DC high voltage of the precipitator may be switched on by pressing ‘HT

676 Projects Suggested for FPGA/ASIC Implementations

Table 15.1 Mode settings of the EP controller

Set mode in
DS1

using Up/Down
DISPLAY
SELECT

Adjust potmeter
(as shown in

DS1) on FPGA
board

Set value
displayed in

DS4-DS2

Check full range
of potmeter

setting in
DS4-DS2

– Nil Nil Not Applicable
E Nil Nil Not Applicable
H Nil Nil Not Applicable
0 0 100 0–104
2 2 5 0–25
3 3 20 0–109
4 4 30 0–99
5 5 10 0–104
6 6 1 0–31
7 7 200 0–209
8 8 20 0–99
9 9 Address in

BCD switches
(DS3–DS2)

P P 10 0–49
1 Is limit 75 0–100

L/Blank Nil Nil Not applicable

to fluctuations in the flue gas flowing in the EP chamber. Peak and valley and
voltage peak reached by the precipitator are required to be monitored. In the ‘Peak
& Valley Voltage’ mode, the display DS4–DS3 shows alternately the peak and
valley high voltage of the EP every 3 s. The HT voltage may be switched off by
pressing ‘HT ON/OFF’ switch again when not required. Various potmeters and
components mentioned in the foregoing description will be explained while
describing the I/O and FPGA boards. Two digit BCD switches mounted on the
FPGA board identify the EP controller unit. Up to 100 such controllers may be
networked using serial interface circuit in the FPGA board. In the ‘REMOTE’
mode, only the Up/Down DISPLAY SELECT keys would be working, whereas in
the ‘LOCAL’ mode all the keys would work.

Industrial Input/Output Board

ings are shown in Figure 15.2. Input/output board is shown in Figure 15.3. As
shown in the figure, the I/O board houses signal conditioning of various analog
and digital signals from the field such as sensing positive and negative AC swings,
EP high voltage, EP current, sample and hold circuit to measure EP high voltage

Occasionally, high voltage sparks occur in the electrostatic precipitator owing

Input/output connections and LED indicators and their partial signal condition-

15.4 Detailed Specifications and Basic Architectures 677

peak, watch dog timer to restart the system automatically in the event of system
getting stuck and spark sensing circuit, all of which are primarily conditioned by
OP. Amps. EP high voltage is measured by sensing the current while the EP cur-
rent is measured by sensing the voltage as shown in Figure 15.2. These are fol-
lowed by two stage differential amplifiers with P6 and P3 potmeters for adjusting
the gain of the EP high voltage and the current respectively. These analog signals
are fed to a 16 channel, 8 bit ADC such as ADC0816 housed in the FPGA board.
+12/–12 V supply healthiness check is also fed as one of the inputs to the ADC.
All the I/Os are connected to the J3 connector.

Safety line, Contactor ON information, Buch bottom/top floats, HV trans-
former temperature high indication, thyristors overload or HV transformer tem-
perature very high indication, and Alarm reset are potentially free contact inputs,
signal conditioned by opto-isolators (such as CNY17-2) with 2500 V isolation.
The resulting digital signals are connected to FPGA input pins. Serial input and
output are connected to FPGA I/O pins via a relay and a couple of opto-isolators.
HT OFF, HT ON, Warning, Tripped conditions are output using four sets of line
drivers followed by one change over (1 C/O) relays. Also, a couple of SCR trig-
gers (positive and negative) derived from FPGA are output via two numbers of 1
C/O relays.

Figure 15.2 Input/Output Connections

Fig. 15.2 Rear panel of electrostatic precipitator controller

678 Projects Suggested for FPGA/ASIC Implementations

Fig. 15.3 Industrial input/output board (Continued)

PB0

OPTO
ISOLAT

OR

N06

PB1

N05

PB2

N04

PB3

N03

PB4

N02

PB6

N01

OPTO
ISOLATOR

PB7

N18

AC INPUTS
(POTENTIALLY FREE

CONTACTS)

OPTO
ISOLAT

OR

OPTO
ISOLAT

OR

OPTO
ISOLAT

OR

OPTO
ISOLAT

OR

OPTO
ISOLAT

OR

I14

I15

I0

I1

DC
POWER
SUPPLY

+5V +12V -12V

RESET
+ WDT
CKT.

RESET*
CHECK
SUPPLY

-12V

+12V

I12

AC IN
AC +/-
CYCLE

OPTO ISO.
CKT.

REF1

REF2

AC +ve
AC -ve

(CYCLE)

EP
Current
(P3 Pot)

EP

Voltage
(P6 Pot)

SAMPLE
&

HOLD

S/H TRIGGER

15.4 Detailed Specifications and Basic Architectures 679

FPGA Board to be Designed

ASIC as shown in Figure 15.4. Pulses AC +ve and AC –ve, signaling the positive
and negative AC power swings, generated in the I/O card are fed as inputs to the
device. RESET* derived from the system reset and the watch dog timer in the I/O
card is connected to an input. TRIGGER is an output pulse generated by the
FPGA/ASIC once every scan time of the EP controller, which triggers the watch
dog timer. In the rare event of the controller loosing control owing to severe noise
conditions, etc., the trigger pulse will not be generated. This in turn would reset
the system and recover the normal system operation again, thus preventing system
crash. Self-recovery is one of the most important characteristics in embedded sys-
tems.

Fig. 15.3 Industrial input/output board

Electrostatic precipitator processor may be realized using a single FPGA or an

FIELD
CONNECTIONS

DRIVER

DRIVER
+ OPTO

 ISOLATOR

DRIVER
+ OPTO

ISOLATOR

THYRISTOR
 FIRING
CARD

PC4

PC3

PC2

PC1

PC0

PC5

N16

N15

N14

N13

N12

N11

RELAY
K4

RELAY
K5

RELAY
K3

RELAY
K2

DRIVER

DRIVER

DRIVER

680 Projects Suggested for FPGA/ASIC Implementations

Fig. 15.4 FPGA board of the electrostatic precipitator controller

The sampled output of I14 is fed to I15 input of an ADC 816 mounted on the
FPGA/ASIC board. I1 senses the integrated EP high voltage, whereas I14 senses
the dynamically changing high voltage to measure the peak or valley of the EP
high voltage. I0 input of the ADC is the EP current measured by the I/O card. I2 to
I11 and I13 are connected to potmeters P1 to P11 respectively shown in the front
fascia. The FPGA/ASIC generates a 4-bit address, A[3:0], for the ADC to select
one of the 16 analog channels I0 to I15 at a time. This address can be registered by
applying ‘ALE’ signal. The analog to digital conversion can be initiated by assert-
ing the ‘START’ signal. Once the conversion is complete, the ADC will assert
‘EOC’ signal. Subsequently, the FPGA/ASIC reads the converted digital channel
information via D[7:0] with ‘OE’ asserted. The FPGA/ASIC also generates a low
frequency clock, CLO, for the ADC operation.

The six key pad shown on the front fascia are connected to input ports PA[5:2]
and the LOCAL/REMOTE switch to PA0. A SPARK SENSOR circuit derived
from the EP current and comprising an analog comparator and a register indicates
when the sparking takes place in the electrostatic precipitator through PA1 port.

S/H output signal is asserted whenever the sample and hold is to be processed.

ADDRES
 (TWO BCD
 SWITCHES)

PA 7 – PA2, PA0

CLO

RESET

ADC
816

I0

ALE

OE

CLO

DS4 DS1
7-SEG. LEDS

EOC

CLKIN

POTMETERS
P1-P11

I2-I11, I13

TXD RXD

(TO N1 – N12
LEDS)

PC5 – PC0

PB 7 – PB0

KEY
BOARD

PA[7 : 2]

I0

SPARK SENSOR

(EP Current)

PA1

TO SPARK
COUNTER

TRIGGER

AC -ve

AC +ve

S/H

N17

001000

D[7:0]

A[3:0]

I15

LOCAL/REMOTE
Switch PA0

CLK

A[3:0]

D[7:0]

FPGA/ASIC

START

15.4 Detailed Specifications and Basic Architectures 681

DS4 to DS1 are seven segment LEDs shown in the front fascia and are connected
to output ports of the FPGA/ASIC. TXD and RXD are the transmit and the receive
serial data signals respectively connected to a serial network after conditioning the
signals using CNY17-2 opto-isolators. PB7 to PB0 are field inputs derived from
the I/O card. PC5 to PC0 are outputs from the FPGA/ASIC to drive four relays in
the I/O card and the thyristors firing card. N1 to N12 are discrete LEDs shown in
the front fascia driven by the output port. Another digital output advances a non-
resettable six digit electromagnetic counter once every time a spark is sensed.
Each EP controller unit has a unique identity by setting an ‘ADDRESS’ using two
BCD switches. The address range is 00 to 99.

15.4.2 Architecture of JPEG/H.263/MPEG 1/MPEG 2
Codec

Video compression finds wide use in applications such as education, industries,
medicine, defense, training, entertainment, sports, multimedia, desktop publishing,
videophone, video conferencing, digital cameras, digital TV, digital cinema, and
so on. Raw video sequences demand large storage and huge transmission channel
bandwidth requirements. For example, the storage capacity required for 2 hours of
raw, color motion picture of size 1024 × 768 pixels is 396 GB. Speed requirement
for real time transmission of a video sequence of this size at 30 frames per second
over a serial channel is 540 Mbps. Compression is, therefore, inevitable for stor-
age and transmission of images. With a probable compression of 20 for a color
motion picture in 4:2:0 format, the memory and channel speed requirements come
down to manageable levels of 20 GB and 27 Mbps respectively.

High demand for these products has led to the development of various image
compression techniques. Image compression methods aim at reduction in the
amount of data without appreciable loss in the image quality. Design must con-
form to standards so that systems developed by different industries worldwide can
communicate with one another. Connectivity and compatibility among different
services such as videophone, video conference, MPEG 1/MPEG 2/MPEG 4 co-
decs are important. Standards deal with only the basic services, providing
room for innovation and entrepreneurship. Several standards are available for
image/video sequences:
 JPEG, JPEG 2000 for still images
 MPEG 1, MPEG 2, MPEG 4, H.264, MPEG 7 for motion pictures
 Multimedia hyper-media expert’s group (MHEG)
 HDTV
 H.261/H.263 for videophone and video conferencing

Functional modules used in standards are as follows:
 JPEG: For still picture compression – DCT/Q/Huffman coding and

their inverses
 JPEG 2000 is also for still picture compression but uses discrete

wavelet transform (DWT) – DWT, Q, bit plane coding (BPC),

682 Projects Suggested for FPGA/ASIC Implementations

binary arithmetic coding (BAC), rate control, bit stream assembly
and their inverses

 H.261/H.263: For videophone/conferencing – low bit rate (p X 64
Kbps, p = 1–30)

 MPEG 1: Audio-visual codec for digital storage – transmission
rate: up to 1.5 Mbps

 MPEG 2: Consumer electronics/Telecommunications/
Broadcasting – transmission rate: 2 to 100 Mbps

 MPEG 4 Part 10 also known as H.264 Advance Video Coding for
mobile and broadcasting.

DCTQ/VLC and their inverses, rate control, motion estimation, and compensation
are involved in H.261/H.263/MPEG 1/MPEG 2. DCTQ and IQIDCT are common
to all the above standards listed except JPEG 2000 and H.264. The basic opera-
tions that bring about image compression are the DCTQ and the VLC. Still image
or I frame processing employs the DCTQ and VLC, exploiting the spatial re-
dundancy. The motion picture processing employs motion estimation and com-
pensation in addition to DCTQ and VLC, effecting more compression owing to
the exploitation of temporal redundancy.

The basic building blocks of codecs for still image compression, conforming to
JPEG standards, videophone/video conference conforming to H.261/H.263 stan-
dards, and motion pictures conforming to MPEG 1/MPEG 2 standards are

15.4 Detailed Specifications and Basic Architectures

DCTQ/IQIDCT and variable length coder/decoder. In earlier chapters, we presented

Fig. 15.5 Basic architecture of JPEG/ H.261/H.263/MPEG codec

 683

Fig. 15.6 Basic architecture of image/video encoder

the development of algorithm, architecture, and Verilog design of DCTQ. Since
IQIDCT is just the inverse of DCTQ design, the design was left as an exercise for
the reader. The codec for the applications mentioned earlier can be completely de-
signed if the reader implements VLC and VLD in addition to IQIDCT modules.
With these modules, the motion pictures can be processed as intra (I) frames.
Those who wish to effect more compression may include the FOSS motion estima-
tion design presented in earlier chapters or any other block matching algorithms for
processing predicted (P) or bi-directionally predicted (B) frames. Detailed specifica-
tion for VLC is presented in this section so that the reader may design the system
without any difficulty. The reader may refer to the relevant standards [23–26] and
technical papers [103, 104] before commencing the development.

Fig. 15.7 Basic architecture of image/video decoder

684 Projects Suggested for FPGA/ASIC Implementations

The basic architecture of JPEG/H.263/MPEG codec is shown in Figure 15.5.
The input image or a video sequence is applied to the DCTQ processor block-by-
block resulting in quantized DCT coefficients. This is followed by the variable
length coder, which assigns minimum of variable length codes, thus bringing
about compression. This is at the encoder end. At the decoder end, the inverse op-
erations take place, namely the variable length decoding, inverse quantization, and
the inverse DCT. A typical compression is about 20 for a color picture in 4:2:0
format and 10 for a monochrome picture such as Lena as shown in the figure. A
good quality picture can be obtained as indicated by the PSNR value of about 30
dB. The basic architectures of the video encoder and the decoder are shown in
Figures 15.6 and 15.7 respectively. In addition to the modules described earlier,
the encoder and the decoder modules have the encoder controller and the decoder
controller respectively.

Figure 15.8 depicts the basic architecture of the implemented MPEG 2 encoder
[104], capable of processing I frames. The image or the video sequence to be com-
pressed is input block by block, by a host computer such as the Pentium, into the
DCTQ processor, where the discrete cosine transform is performed followed by
quantization. The input can be applied after ascertaining that READY is set. When
the DCTQ processor is ready to receive the image input data, the host asserts
START signal to commence the processing. The resulting quantized coefficients
from DCTQ process are applied to the next stage, VLC, where they are assigned
variable length codes and buffered by FIFO before they are sent out onto a serial
channel as a compressed bit stream. After ensuring that VRDY is set, VSTRT may
be asserted to initiate the VLC processing. EOCV indicates the completion of the
process. Prior to processing the variable length codes, the header information is
processed by VLC processor by writing the same into the on-chip header RAM af-
ter ensuring HRDY is set. The processing starts when the host asserts SENDH
signal. The color information, Y, Cb, and Cr are input once for each macroblock.

Fig. 15.8 Basic architecture of the implemented MPEG 2 encoder

INPUT
IMAGE
BLOCK

$

DCTQ
VLC
 AND
FIFO

BIT
STREAM
OUTPUT

$ HOLD

$ READY

$ START

$ EOCQ

$ FROM/TO HOST $ EOCV

HEADER/
COLOR INFO.

$

$ SENDH

$ HRDY

$ VSTRT

$ VRDY

15.4 Detailed Specifications and Basic Architectures 685

On similar lines, the MPEG 2 decoder can be implemented. Details of VLC design
carried out earlier are available in reference [103]. The following section describes
the VLC architecture.

Variable Length Coder

were presented in Chapters 11 to 13. A video encoder that can process intra (I)
frames can be developed by integrating the DCTQ processor and a variable length
coder (VLC). In the following sections, architecture of a VLC featuring header in-
formation and color processing are covered.

 Park and Prasanna [105] have proposed a simple and area efficient VLSI ar-
chitecture for Huffman coding [106] that conforms to MPEG 1 standard. The
throughput achieved with that architecture is 40 Mbps. The design implemented
therein was for 8-bit symbols only, and not for a full-fledged Huffman coding
whose symbol sizes can go right up to 16 bits for the DC coefficient and up to 28
bits for AC coefficients. The design is not capable of processing either the header
or color information that is vital for a total working system. Being a VLSI imple-
mentation, design changes to add these features or any other modifications will be
practically impossible to achieve. Naturally, this calls for a redesign.

Chang et al. [107] have proposed architecture for VLC encoder based on PLAs
which meets the JPEG standards only. Further, the design packs the VLC code
into a 24-bit constant parallel output, which eventually requires a host processor to
convert the parallel information into a serial bit stream before it is sent out to the
channel. As a result, the host is likely to be over burdened. Likewise, Chang and
Messerschmitt [108], Lin and Messerschmitt [109], Hashermian [110], and Hsieh
and Kim [111] have implemented concurrent VLC decoders. Saito [112] has im-
plemented a real time VLC processor as a VLSI. Jeong and Jo [113] have pre-
sented an adaptive Huffman coder.

In the architecture [103] of VLC processor, the limitations cited earlier are
eliminated. A cost effective, commercially available FPGA with a quick design
and implementation cycle time and capable of fast design changes or modifica-
tions is made use of, unlike the implementation in Park and Prasanna [105]. The
design is capable of throughputs of 50 Mbps with a 50 MHz single-phase clock
and about 20:1 compression ratio on the average. The FPGA implementation
meets MPEG 2 standard. The host processor is not burdened as in the case of the
implementation of Chang et al. [107] since the implementation directly outputs the
bit stream onto the channel without the need to use the host. Further, it is easy to
integrate this design with the design of the DCTQ processor presented in an earlier
chapter. The two processes, namely, the DCTQ and the VLC, can be pipelined.

A new, parallel algorithm, architecture and Verilog code for DCTQ processor

686 Projects Suggested for FPGA/ASIC Implementations

Architecture of the VLC

pression of an image or a video sequence. The next processing module is the VLC,

Fig. 15.9 Processing order of variable length code

DCTQ processor presented in earlier chapters prepares the ground for com-

Fig. 15.10 Architecture of VLC

DCTQ coefficients –
processed in raster scan order

2 8

16 10

64 58 57

9

………

.

.

.

.

1

………

.

.

.

.

.

.

.

.

VLC processed in
Zig-zag order

………

HEADER
INFORMATION

SERIAL
CONVERTER

VARIABLE
LENGTH
CODE

GENERATOR

FIFO MUX

VLC
CONTROLLER

WITH
RATE CONTROL

COMPRESSED
BIT STREAM

OUTPUT

HOST
 BUS *

DCTQ
COEFFICIENTS

SENDH *

HRDY *

* SIGNALS FROM/TO HOST

15.4 Detailed Specifications and Basic Architectures 687

which assigns variable length codes to the DCTQ coefficients and transmits com-
pressed bit stream over a serial channel. The DCTQ processor processes the
DCTQ coefficients in a raster scan order, whereas the VLC processes them in a
zig-zag order as shown in Figure 15.9. The basic architecture of the proposed
VLC coder is shown in Figure 15.10. It essentially consists of circuitry to process
header information from the host processor and to generate variable length codes
from the quantized DCT coefficients, a MUX to select one of the above, a First-
in–First-out (FIFO) stack to buffer the VLC output bit stream and a controller to
coordinate all the sequential activities. Rate control embedded in the VLC control-
ler maintains a constant bit rate transmission on the serial channel.

The header information containing the picture size, etc. is written by the host
processor into the header RAM. A maximum of 240 bits of header information
can be written into it at a time although only 129 bits per frame is required nor-
mally. The valid number of bits in the header information is also written into the
header processor. The host processor can write into the header RAM only after en-
suring that HRDY is set. After the host processor asserts SENDH signal, the
header serial output RAM converter reads the header, byte-by-byte, using its in-
ternal counter to address the RAM. It converts the parallel information into a se-
rial data and sends it to a MUX for onward transmission to the output FIFO.

After processing the header information, the variable length codes are gener-
ated from the quantized DCT coefficients that are input into one of the dual-
redundant RAMs in the variable length code generator. RAM address is provided
by the DCTQ processor. The addresses and read/write pulses required for the in-
dividual RAMs are generated or coordinated by the VLC controller. The DCTQ
processor issues the end of conversion signal when it has filled all the 64 coeffi-
cients into one RAM and the same is used to start the VLC process as well. While
the VLC is being processed using coefficients from one RAM bank, the DCTQ is
also simultaneously processed, filling the other bank of RAM with the quantized
DCT coefficients. Before commencing the VLC processing, the host processor
must write into the VLC generator whether luminance (Y) or chrominance (Cb or
Cr) is to be processed.

The VLC controller communicates to the VLC generator whether the DC (first
RAM location) or an AC (subsequent bytes of the RAM) coefficient is being
processed. The VLC generator converts each of these coefficients, read in a zig-
zag sequence, into appropriate variable length codes as per JPEG/MPEG standards
and sends it to the MUX as a bit stream output. After processing the DC coeffi-
cient, the same is preserved in the designated previous block registers Y, Cb, or Cr
for use while processing the next block of picture. The MUX selects either the
header information or the VLC bit stream using a signal issued by the VLC con-
troller. The MUX output is fed into the next stage, the 16 Kb or higher sized
FIFO, which serves as a buffer storage, before transmitting over the serial channel.

A serial output of 50 to 100 Mbps may be achieved by initiating transmission
when the FIFO is about 90% full and suspending it when the content of FIFO
reaches about 80% of its capacity. These limits are, however, user programable
and must be experimented with actual video sequence before finalizing these
set points. Rate control is incorporated in order to maintain a constant bit stream.

688 Projects Suggested for FPGA/ASIC Implementations

The VLC and the DCTQ functional modules process concurrently and have ade-
quate interlock signals between themselves. As a result, no processing of image
data will be missed. While the VLC processes image block n, the DCTQ processes
(n + 1)th block. Usually, the VLC is slower than the DCTQ. Reading and writing
of FIFO take place simultaneously. The VLC controller issues the end of conver-
sion signal when the coding of the current image block is complete. If VLC is
coded efficiently, it is possible to process a color motion picture of size 1024 ×
768 pixels in 4:2:0 format at 30 frames per second using FPGA. A higher picture
size, possibly, 1600 × 1200 pixels can be processed in ASIC implementation.

Header Serial Output Converter

Figure 15.11. After making sure that HRDY is set, the SENDH signal can be as-
serted by the host to start the conversion. The controller addresses the header
RAM using HRA[4:0] and loads the byte data into the shift register at the rising
edge of CLK using the data bus, HRD[7:0] and by asserting the LD signal. An in-
ternal 4-bit counter in the controller keeps track of the number of bits to be shifted
while signal LD is disabled. HRA[4:0] is incremented and the process is repeated
till the entire header information in the RAM is converted into serial bits and
sent out of the shift register. The total number of bits of the header infor-

BIT

STREAM
OUTPUT

FROM HEADER RAM, 30 x 8 bits

HRD[7:0]

HRA[4:0]

CONTROLLER

HRDY CLK * SENDH

HEADER
LEFT
SHIFT

REGISTER

NO. OF BITS

LD

CLK

LD

* HA[4:0]

* FROM HOST

mation to be processed is supplied by the host. Usually, about 130 bits of header

in RAM to a serial output and a controller to regulate various events as depicted in
This unit consists of a left shift register to convert parallel header information

Fig. 15.11 Header serial output converter

15.4 Detailed Specifications and Basic Architectures 689

information is transmitted per picture frame. HA[4:0] address is used by the host
while writing into the header RAM and is disabled during the serial bit conver-
sion.

VLC Generator

a 2-bit register, C[1:0], containing the luminance or chrominance information
written by the host, three 9-bit registers to store Y, Cb, and Cr DC coefficients of
the previous block using the data bus, Q[8:0], a 9-bit sign-magnitude subtract
circuit to get the differential DC coefficient between that of the current and the
previous blocks, DC and AC VLC coders which output the variable length codes
serially, a MUX to select either the DC or the AC codes, and a controller to regu-
late the control sequence. Which of the components: Y, Cb, or Cr is to be proc-
essed is loaded by the host before processing every macroblock.

A zig-zag counter built into the controller addresses the RAM to read the
DC/AC coefficients. After processing the current DC coefficient, it is stored in

one of the three previous block registers using the write signal, WR. Bit output

A simplified diagram of VLC generator is shown in Figure 15.12. It consists of

Fig. 15.12 VLC generator

CURRENT DCTQ
COEFFICIENT

LUMINANCE (Y) /
CHROMINANCE

(Cb / Cr)
REGISTER

* D[1:0]

WR

SUBTRACT

DIFFERENTIAL
DC

DC VLC CODER

MUX

 DC AC
AC VLC CODER

BIT STREAM
OUTPUT

DC/AC

CLK
CONTROLLER + DUAL RAM

DCTQ[8:0]

DC/ACWR C[1:0] Q[8:0]

PREVIOUS BLOCK
DC COEFFICIENT
REGISTERS / MUX

Y/ Cb / Cr OUTPUT

Q[8:0]

Q[8:0]

C[1:0] DIFFERENTIAL DC

690 Projects Suggested for FPGA/ASIC Implementations

from the MUX is issued once every clock cycle. The controller generates appro-
priate write signals, not shown in the figure, for registering the pipeline registers
inside the DC and AC VLC coders.

The DCTQ or VLC, whichever process is slow, determines the overall pro-
cessing time of the system since they are pipelined. It is possible to process
monochrome images of size 1600 × 1200 pixels at the rate of 30 frames per sec-
ond depending upon the device selected. For color images in 4:2:0 format, 50%
more execution time is required than that for the monochrome picture. As a result,
the maximum size of color image that can be processed will only be 67% of the
size of the monochrome picture. Header processing, whose execution time is
about 3000 ns is a parallel process to DCTQ and is negligible when compared to
the VLC processing time of 33 ms per frame.

Oral and written presentations are very important for researchers, students, and
practicing engineers. Guidelines for these presentations and a sample presentation
are included in the CD. In addition, the reader is urged to develop skills in writing
technical papers by studying the existing papers in the literature. A number of
them can be found in the references listed in the book and in numerous websites.

__

Summary

ASIC. These applications were arranged into various categories for the conven-
ience of designers. Brief descriptions were presented for some of these projects.
An introduction to embedded systems design was presented. Various issues in-
volved in the design of Digital VLSI Systems were discussed. These were fol-
lowed by the presentation of detailed specifications and architectures for a couple
of projects so that the reader may straightaway start working on these projects to
gain hands on experience in designing projects.
__

Assignments

15.1 A number of projects were suggested for FPGA/ASIC implementation in
the text. Suggest some more projects for implementation for each of the fol-
lowing areas of applications:

 Automotive electronics
 Avionics
 Communication
 Computer products
 Control engineering
 Video processing

Numerous project designs were suggested for implementation on FPGA or

Assignments 691

 Medical applications
 Miscellaneous applications
 Music
 Office equipments
 Phones
 Security systems
15.2 For each of the categories of applications you have suggested for the as-

signment 15.1, write a brief description.
15.3 A driver less shuttle, a light rail car, which plies between two airports at a

distance of 2 miles, is to be controlled automatically. When it is waiting for
the passengers at one of the stations, the two entrance/exit doors of the car
must remain open. So also the corresponding doors at the station. After the
car comes to a halt at a station, the car doors as well as the station doors
open. In each of the stations, a push button is installed for use by the pas-
senger(s) to request service of the car which is waiting for passengers at the
other station, and has radio linked switches to detect the requests. The car
leaves a station after 10 min of arrival, provided there is at least one pas-
senger in the car at the time of departure. At the appointed time of depar-
ture, if there is no passenger in the car and, if a service request from the
other station is pending, all the doors of the car and the station close, and
the car departs to the other station without passengers. However, if there is
no request pending, the car waits for the passengers with doors shut. When
a passenger arrives, the passenger is allowed to get in and the car departs.
At the time of closing, if any passenger arrives, the doors open for 5 s and
close again, provided the car is not full. The entry to the car or exit from the
car can be made through any of the two doors. Each of the two doors allows
only one person at a time. The car can carry a maximum of 25 passengers.
Draw a detailed specification of the controller and design the architecture
so that the design may be coded in Verilog/VHDL RTL. State your assump-
tions clearly.

15.4 An alarm annunciator is a watch dog for keeping the process variables in a
plant under unceasing surveillance. Usually the annunciators are mounted
on the top of control panels. They keep the control engineer posted with
abnormal variations in process parameters by providing visual and audible
alarms, so that timely corrective action can be taken. The inputs to the
alarm annunciator are potentially free, normally open (NO), or normally
closed (NC) contacts. These contacts are required to be debounced. A wide
variety of sequences are available depending upon the types of applications.
A choice of automatic reset, manual reset, ring back, etc. are available.
Three such sequences are shown in Figure A15.1. Special sequences can
also be tailor-made. The visual indications are provided (to enhance the
reliability) by dual-redundant, 24V, 60 mA lamps mounted on windows
covered by translucent acrylic sheets. Legends are engraved on them to
announce the alarm conditions prevalent at any time. Typical legends are
boiler pressure high, main transformer temperature high, oil tank level low,
turbine generator vibration high, excitation circuit failure, nuclear activity

692 Projects Suggested for FPGA/ASIC Implementations

high, etc., depending upon the needs of industry/plant. Typical number of
windows are (expandable) 4, 8, 16, 32, etc., each servicing one control con-
tact to monitor one plant variable. Push buttons are provided in the equip-
ment so that the alarm may be acknowledged, reset, or tested. The visual
alarms are also accompanied by audio alarms, which may be an electronic
horn, whose timings of operations are shown in the figure.

Auto-alarm sequences

Sequence Normal Abnormal ACK Reset Window Audio 1
● Off Off
 ● Flashing On
 ● On Off
● Flashing On
● ● On Off
 ● Off Off

AA1

 ● Flashing On
● Off Off
 ● Flashing On
 ● On Off
● Off Off
● On Off
 ● Off Off

AA2

 ● On Off

Ring back sequence

Audio alarm State Window
Audio 1 Audio 2

Normal Off Off Off
Abnormal Fast flashing (2 Hz) On On

Acknowledge Steady On Off Off
Normal again Slow flashing (1/2 Hz) Off On

Reset Off Off Off
Normal before Ack. Fast flashing (2 Hz) On Off

Acknowledge Slow flashing (1/2 Hz) Off On
Reset Off Off Off

Fig. A15.1 Alarm annunciator (Continued)

 Assignments 693

Fig. A15.1 Alarm annunciator

Debounce time of the contacts must be capable of being programed from
2 ms to 10 ms. Provide only one debounce time program control for all
the points. Develop a detailed architecture for the annunciator such that
RTL Verilog code may be implemented for 16 points or windows.

15.5 A music synthesizer is required to be designed. The output of the synthe-
sizer is one of the musical instrument voices, whose waveform for one
complete cycle is given in Figure A15.2a as an example. The waveform of
an instrument voice can be manually digitized or captured using a real syn-
thesizer for a finite time and stored in a ROM. The number of samples
assumed or arrived at after experimentation must be adequate for getting
good quality music. The output of the ROM must be in twos complement
in order to accommodate both positive as well as the negative swings of the
voice. This output is fed to a digital to analog converter such as DAC1000
of National Semiconductors in bipolar mode, which accepts offset binary
(MSB of twos complement inverted) input, followed by a power amplifier
and a speaker system (PA) to produce the music. PA may be assumed to be
available. The key board of the synthesizer is shown in Figure A15.2b. So
long as a key is pressed, the ROM must output complete cycles of the digi-
tal voice at a frequency which is marked in the keyboard diagram and the
table in Figure A15.2c. If more than one key is pressed, then the highest
frequency of the keys pressed is to be recognized. Develop a detailed RTL
compliant architecture for the music synthesizer. Explain how you can
reconfigure the entire keyboard one octave higher or lower at the flick of
two push button switches. No Verilog code need be written.

a Note C at 523 Hz

Fig. A15.2 Music Synthesizer (Continued)

T = 0.5 Sec. 2 milli sec.
(TYP.)

T = 0.25 Sec. 1/2 milli sec.
(TYP.)

Audio 2

Audio 1

694 Projects Suggested for FPGA/ASIC Implementations

b Synthesizer Keyboard

Note Frequency
(Hz)

Note Frequency
(Hz)

Note Frequency
(Hz)

C 523 D# 660 F# 831
 C# 554 E 698 G 880
D 587 F 740 G# 933
A 622 A# 784 B 988

The ratios of frequencies of same notes in Octave 2, Octave 3 and Octave 4 are
1:2:4.

c Frequencies of musical notes

Fig. A15.2 Music Synthesizer

G#
F# D#

C#

C D E F G A

A#

B C C B

Octave 2 Octave 3 Octave 4

Assignments 695

References

 [1] Frank Vahid and Tony Givargis, Embedded System Design–A Unified Hard-

ware/Software Introduction, John Wiley and Sons, Inc., MA, 2002.
 [2] Raj Kamal, Embedded Systems – Architecture, Programming and Design, Tata

McGraw Hill, New Delhi, 2003.
 [3] K. R. Rao and J.J. Hwang, Techniques and Standards for Image, Video and Audio

Coding, Prentice Hall, Englewood Cliffs, NJ, 1996.
 [4] M. Morris Mano, Digital Design, Prentice Hall, NJ, 2002.
 [5] M. Morris Mano and C.R. Kime, Logic and Computer Design Fundamentals, Pren-

tice Hall, NJ, 2000.
 [6] Parag K. Lala, Digital System Design Using Programmable Logic Devices, Prentice

Hall, NJ, 1990.
 [7] J.F. Wakerly, Digital Design: Principles and Practices, Prentice Hall, NJ, 2000.
 [8] Franklin P. Prosser and David E. Winkel, The Art of Digital Design, Prentice Hall,

1987.
 [9] Charles H. Roth, Jr, Digital Systems Design Using VHDL, PWS Publishing Com-

pany, Boston, MA, 1998.
 [10] PAL Programmable Array Logic Handbook, Monolithic Memories, Santa Clara, CA.
 [11] Samir Palnitkar, Verilog HDL – A Guide to Digital Design and Synthesis, Prentice

Hall, 2004.
 [12] Michael D. Ciletti, Advanced Digital Design with the Verilog HDL, Prentice Hall,

2003.
 [13] Michael John Sebastian Smith, Application-Specific Integrated Circuits, Addison-

Wesley, 2000.
 [14] D.E. Thomas and P.R. Moorby, The Verilog Hardware Description Language,

Kluwer Academic Publishers, Boston, 1998.
 [15] J. Bhaskar, A Verilog HDL Primer, Star Galaxy Publishing, PA, 1998.
 [16] J. Bhaskar, Verilog HDL Synthesis, Star Galaxy Publishing, PA, 2001.
 [17] Bob Zeidman, Verilog Designer’s Library, Prentice Hall, 1999.
 [18] Mentor Graphics, Wilsonville, OR, www.model.com.
 [19] Synplicity, Inc., Sunnyvale, CA, http://www.synplicity.com.
 [20] Xilinx Inc., San Jose, CA, www.xilinx.com.
 [21] N. Ahmed, T. Natarajan and K.R. Rao, Discrete cosine transform, IEEE Trans.

Comput., C-23, pp. 90–93, 1974.
 [22] K.R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Appli-

cations, Academic Press, New York, NY, 1990.
 [23] ISO/IEC JTC1 10918-1-ITU-T Rec. T.81, Information technology – Digital com-

pression and coding of continuous-tone still images: Requirements and guidelines,
1994.

 [24] ISO/IEC 11172 Information Technology: Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbit/s, Part 2: Video, 1993.

 [25] ISO/IEC MPEG 2 standards for generic coding of moving pictures: Part 2, Video,
1998.

 [26] ISO/IEC 13818-2-ITU-T Rec. H.262 & H263, Generic coding of moving pictures
and associated audio information: Video, 1995.

 [27] B.G. Lee, A new algorithm to compute the discrete cosine transform, IEEE Trans.
Acoust., Speech and Signal Proc., ASSP-32, pp. 1243–1245, 1984.

 [28] B.G. Lee, Input and output index mappings for a prime-factor-decomposed compu-
tation of discrete cosine transform, IEEE Trans. Acoust., Speech and Signal Proc.,
ASSP-37, pp. 237–244, 1989.

 [29] A.N. Skodras, and A.G. Constantinides, Efficient input-reordering algorithms for
fast DCT, Electron. Lett., 27, pp. 1973–1975, 1991.

 [30] P. Lee and F.Y. Huang, An efficient prime-factor algorithm for the discrete cosine
transform and its hardware implementations, IEEE Trans. Signal Process., 42, pp.
1996–2005, 1994.

 [31] C.L. Wang and C.Y. Chen, High throughput VLSI architectures for the 1-D and 2-D
discrete cosine transforms, IEEE Trans. Circuits Syst. Video Technol., 5, pp. 31–40,
1995.

 [32] Yung-Pin Lee, Thou-Ho Chen, Liang-Gee Chen, Mei-Juan Chen and Chung-Wei
Ku, A cost-effective architecture for 8 × 8 2-D DCT/IDCT using direct method,
IEEE Trans. Circuits Syst. Video Technol., 7, 1997.

 [33] Yukihiro ARAI, Takeshi AGUI and Masayuki NAKAJIMA, A fast DCT-SQ
scheme for images, Trans. IEICE, E71, pp. 1095–1097, 1997.

 [34] Yi-Shin Tung, Chia-Chiang Ho and Ja-Lung Wu, MMX-based DCT and MC Algo-
rithms for real-time pure software MPEG decoding, IEEE Computer Society Cir-
cuits and Systems, Signal Processing, 1, Florence, Italy, pp. 357–362, 1999.

 [35] H.S. Hou, A fast recursive algorithm for computing the discrete cosine transform,
IEEE Trans. Acoustics, Speech: Signal Proc., ASSP-35, pp. 1455–1461, 1987.

 [36] C. Loeffler, A. Ligtenberg and G.S. Moschytz, Practical fast 1-D DCT algorithms
with 11 multiplications, Proceedings of IEEE ICASSP, 2, pp. 988–991, 1989.

 [37] N.I. Cho and S.U. Lee, DCT algorithms and VLSI implementations, IEEE Trans.
Acoust., Speech and Signal Process., ASSP-38, pp. 121–127, 1990.

 [38] N.I. Cho and S.U. Lee, Fast algorithm and implementation of 2-D discrete cosine
transform, IEEE Trans. Circuits Syst., 38, pp. 297–305, 1991.

 [39] Y.P. Lee, T.H. Chen, L.G. Chen, M.J. Chen and C.W. Ku, A cost-effective architec-
ture for 8 × 8 2D-DCT/IDCT using direct method, IEEE Trans. Circuits Syst. Video
Technol., 7, pp. 459–467, 1997.

 [40] M. Yoshida, H. Ohtomo and I. Kuroda, A new generation 16-bit general purpose
programmable DSP and its video rate application, IEEE Workshop on VLSI Signal
Processing, pp. 93–101, 1993.

 [41] I. Kuroda, Processor architecture driven algorithm optimization for fast 2-D DCT,
IEEE Workshop on VLSI Signal Processing, VIII, pp. 481–490, 1995.

 [42] J. Golston, Single-chip H. 324 video conferencing, IEEE Micro., 16, pp. 21–33,
1996.

 [43] W. Houl, An 8 × 8 Discrete cosine transform implementation on the TMS320C25 or
TMS320C30, Texas Instruments, Application Rep. SPRA 115, 1997.

 [44] M. Nakagawa, DCT-based still image compression ICs with bit-rate control, IEEE
Trans. Consum. Electron., 38, pp. 711–717, 1992.

 [45] K. Ogawa, A single chip compression/decompression LSI based on JPEG, IEEE
Trans. Consum. Electron., 38, pp. 703–710, 1992.

 [46] M.T. Sun, T.C. Chen and A.M. Gottlieb, VLSI implementation of a 16 × 16 Dis-
crete Cosine Transform, IEEE Trans. Circuits Syst., 36, pp. 610–617, 1989.

 698 References

 [47] C.T. Chiu and K.J.R. Liu, Real-time parallel and fully-pipelined two-dimensional
DCT lattice structures with application to HDTV systems, IEEE Trans. CSVT, 2,
pp. 25–37, 1992.

 [48] C.T. Chiu and K.J.R. Liu, Parallel implementation of transform based DCT filter
bank for video communications, IEEE International Conference on Consumer Elec-
tronics, Chicago, II, pp. 152–153, 1994.

 [49] N. Subramani and T. Ogunfunmi, VLSI design and implementation of a DCT chip
for video compression using synthesis tools, 37th Midwest Symp. Circuits and Sys-
tems, Lafayette, LA, 1994.

 [50] P. Pirsch, N. Demassieux and W. Gehrke, VLSI architectures for video and audio
coding – A survey, Proceedings of IEEE, 83, pp. 220–246, 1995.

 [51] C. Chen, T. Chang and C. Jen, The IDCT processor on the adder-based distributed
arithmetic, Proceedings of Symp. VLSI Circuits, pp. 36–37, 1996.

 [52] C.Y. Hung and P. Landman, Compact inverse discrete cosine transform circuit for
MPEG video decoding, Proceedings of IEEE Workshop Signal Processing Systems,
pp. 364–373, 1997.

 [53] T. Xanthopoulos and A. Chandrakasan, A low-power IDCT macrocell for MPEG2
MP@ ML exploiting data distribution properties for minimal activity, Proceedings
of Symposium VLSI Circuits, pp. 38–39, 1998.

 [54] Tian-Sheuan Chang, Chin-Sheng Kung and Chein-Wei Jen, A simple processor core
design for DCT/IDCT, IEEE Trans. Circuits Syst. Video Technol., 10, pp. 439–447,
2000.

 [55] C.M. Wu and A. Chiou, A SIMD systolic architecture and VLSI chip for the two-
dimensional DCT and IDCT, IEEE Trans. Consum. Electron. 39, pp. 859–869,
1993.

 [56] D.V.R. Murthy, S. Ramachandran and S. Srinivasan, Parallel implementation of 2D-
discrete cosine transform using EPLDs, International Conference on VLSI Design,
Goa, January, 1999.

 [57] S. Ramachandran, S. Srinivasan and R. Chen, EPLD-based Architecture of Real
Time 2D-Discrete Cosine Transform and Quantization for Image Compression,
IEEE International Symposium on Circuits and Systems (ISCAS ‘99), Orlando,
Florida, May–June 1999.

 [58] S. Ramachandran and S. Srinivasan, A novel, automatic quality control scheme for
real time image transmission, VLSI DESIGN J., USA, 14(4), pp. 329–335, 2002.

 [59] J.D. Markel, FFT pruning, IEEE Trans. Audio, Electroacoust., AU-19, pp. 305–311,
1971.

 [60] K. Nagai, Pruning the decimation in time FFT algorithm with frequency shift, IEEE
Trans. Acoust., Speech and Signal Proc., ASSP-34, pp. 1008–1010, 1986.

 [61] Z. Wang, Pruning the fast discrete cosine transform, IEEE Trans. Commun., COM-
39, pp. 640–643, 1991.

 [62] A.N. Skodras, Fast discrete cosine transform pruning, IEEE Trans. Signal Proc., 42,
pp. 1833–1836, 1994.

 [63] N.P. Walmsley, A.N. Skodras and T.M. Curtis, A fast picture compression tech-
nique, IEEE Trans. Consum. Electron., CE-40, pp. 11–19, 1994.

 [64] S.R. Rangarajan and S. Srinivasan, Fast image compression by adaptive pruning,
Proceedings of the Conference on Signal Processing, Communications and Net-
working, Indian Institute of Science, Bangalore, India, 1997.

 [65] S. Venkatesh, Design and implementation of an efficient progressive image trans-
mission system using pruning algorithms and a parallel architecture, Thesis work
for the degree of Master of Science (by research), Department of Electrical Engi-
neering, Indian Institute of Technology, Madras, 1998.

References 699

 [66] L.D. Vos and Stegherr, Parameterized VLSI architectures for the full-search block-
matching algorithm, IEEE Trans. Circuits Syst. Video Technol., 36, pp. 1309–1316,
1989.

 [67] L.D. Vos, M. Stegherr and T.G. Noll, VLSI architectures for the full search block
matching algorithm, ICASSP’89, Glasgow, Scotland, pp. 1687–1690, 1989.

 [68] S. Chang, J.H. Hwang and C.W. Jen, Scalable array architecture design for full
search block matching , IEEE Trans. CSVT, 5, pp. 332–343, 1995.

 [69] S.C. Cheng and H.M. Hang, A comparison of block matching algorithms mapped to
systolic array implementation, IEEE Trans. Circuits Syst. Video Technol., 7, pp.
741–757, 1997.

 [70] M.J. Chen, L.G. Chen and T.D. Chieuh, One-dimensional full search motion esti-
mation algorithm for video coding, IEEE Trans. Circuits Syst. Video Technol., 4,
pp. 504–509, 1994.

 [71] H.M. Jong, L.G. Chen and T.D. Chiueh, Parallel architectures for three step hierar-
chical search block matching algorithm, IEEE Trans. Circuits Syst. Video Technol.,
4, pp. 407–417, 1994.

 [72] A. Puri, H.M. Hang and D.L. Schilling, An efficient block matching algorithm for
motion-compensated coding, Proc. IEEE Int. Conf. Acoust., Speech and Signal
Proc., pp. 1063–1066, 1987.

 [73] M. Ghanbari, The cross-search algorithm for motion estimation, IEEE Trans. Com-
mun., 38, pp. 950–953, 1990.

 [74] E. Chan and S. Panchanathan, Motion estimation architecture for video compres-
sion, IEEE Trans. Consum. Electron., 39, pp. 292–297, 1993.

 [75] L.W. Lee, J.F. Wang, J.Y. Lee and J.D. Shie, Dynamic search window adjustment
and interlaced search for block-matching algorithm, IEEE Trans. Circuits Syst.
Video Technol., 3, pp. 85–87, 1993.

 [76] B. Liu and A. Zaccarin, New fast algorithms for the estimation of block motion vec-
tors, IEEE Trans. Circuits Syst. Video Technol., 3, 1993.

 [77] R. Li, B. Zeng and M.L. Liou, A new three-step search algorithm for block motion
estimation, IEEE Trans. Circuits Syst. Video Technol., 4, pp. 438–442, 1994.

 [78] W. Li and E. Salari, Successive estimation algorithm for motion estimation, IEEE
Trans. Signal Proc., 4, pp. 105–107, 1995.

 [79] K.M. Nam, A fast hierarchical motion vector estimation algorithm using mean
pyramid, IEEE Trans. CSVT, 5, pp. 344–351, 1995.

 [80] L.M. Po and W.C. Ma, A novel four-step search algorithm for fast block motion
estimation, IEEE Trans. Circuits Syst. Video Technol., 6, pp. 313–317, 1996.

 [81] Zhongli He and Ming L. Liou, A high performance fast search algorithm for block
matching estimation, IEEE Trans. Circuits Syst. Video Technol., 7, pp. 826–828,
1997.

 [82] J.Y. Tham, S. Ranganath, M. Ranganath and A.A. Kassim, A novel unrestricted
center-biased diamond search algorithm for block motion estimation, IEEE Trans.
Circuits Syst. Video Technol., 8, pp. 369–377, 1998.

 [83] Vassilios Christopoulos and Jan Cornelis, A center-based adaptive search algorithm
for block motion estimation, IEEE Trans. Circuits Syst. Video Technol., 10, pp.
423–426, 2000.

 [84] R. Srinivasan and K. R. Rao, Predictive coding based on efficient motion estima-
tion, IEEE Trans. Commun., COM-33, pp. 888–896, 1985.

 [85] S. Ramachandran and S. Srinivasan, FPGA implementation of a novel, fast motion
estimation algorithm for real-time video compression, ACM International Sympo-
sium on Field-Programmable Gate Arrays, Monterey, California, February, 2001.

700 References

 [86] K.M. Yang and D.J. Le Gall, Hardware design of a motion video decoder for 1–1.5
Mbps rate applications, Signal Proc.: Image Commun., 2, pp. 117–126, 1990.

 [87] Y. Kim, C. Rim and B. Min, A block matching algorithm with 16:1 sub-sampling
and its hardware design, IEEE International Symposium on Circuits and Systems, 1,
Seattle, WA, pp. 613–616, 1995.

 [88] T.N.R. Rajesh, Optimization of fast search block matching motion estimation al-
gorithms and their VLSI implementation, Thesis work for the degree of Master of
Science (by research), Department of Electrical Engineering, Indian Institute of
Technology, Madras, 1999.

 [89] Yi-Shin Tung, Chia-Chiang Ho and Ja-Lung Wu, MMX-based DCT and MC Algo-
rithms for real-time pure software MPEG decoding, IEEE Computer Society Cir-
cuits and Systems, Signal Processing, 1, Florence, Italy, pp. 357–362, 1999.

 [90] T. Koga, K. Llinuma, A. Hirano, Y. Llinuma and T. Ishiguro, Motion-compensated
interframe coding for video conferencing, Proceedings of NTC 81, New Orleans,
LA, C9.6.1–C9.6.5, 1981.

 [91] Chok-Kwan Cheung and Lai-Man Po, Normalized partial distortion search algo-
rithm for block motion estimation, IEEE Trans. Circuits Syst. Video Technol., 10,
pp. 417–422, 2000.

 [92] G. Lakhani, Improved Equations for JPEG’s Blocking Artifacts Reduction Ap-
proach, IEEE Trans. Circuits Syst. Video Technol., 7(6), pp. 930–934, December
1997.

 [93] R. Rosenholtz and A. Zakhor, Iterative procedures for reductions of blocking effects
in transform image coding, IEEE Trans. Circuits Syst. Video Technol., 2, pp. 91–
95, Mar. 1992.

 [94] Y.Q. Zhang, R.L. Pickholtz and M.H. Loew, A new approach to reduce the block-
ing effect of transform coding, IEEE Trans. Commun., 41, pp. 299–302, February
1993.

 [95] Y. Yang, N.P. Galatsanos and A.K. Katsaggelos, Iterative projection algorithm for
removing the blocking artifacts of block-DCT compressed images, IEEE Conf.
Acoustics, Speech and Signal Processing, pp. 408–412, 1993.

 [96] Zhen Li and Edward J. Delp, Block artifact reduction using a transform-domain
Markov random field model, IEEE Trans. Circuits Syst. Video Technol., 15(12), pp.
1583–1593, December 2005.

 [97] Y. Yang, N.P. Galatsanos and A.K. Katsaggelos, Regularized reconstruction to re-
duce blocking artifacts of block discrete cosine transform compressed images, IEEE
Trans. Circuits Syst. Video Technol., 3, pp. 421–432, December 1993.

 [98] XESS Corp., Raleigh, NC, www.xess.com.
 [99] Avnet Inc., Phoenix, AZ, www.avnet.com.
 [100] Nu Horizons Electronics Corp., Melville, NY, http://www.nuhorizons.com
 [101] Digilent Inc., Pullman, WA, http://www.digilentinc.com/
 [102] Open cores, http://www.opencores.org
 [103] S. Ramachandran and S. Srinivasan, Design and implementation of an EPLD-based

variable length coder for real time image compression applications. IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), Geneva, Switzerland, May,
2000.

 [104] S. Ramachandran and S. Srinivasan, A fast, FPGA-based MPEG-2 video encoder
with a novel automatic quality control scheme, Elsevier, J. Microprocessors Micro-
systems, UK, 25, pp. 449–457, 2002.

 [105] H. Park and V.K. Prasanna, Area efficient VLSI architectures for Huffman coding,
IEEE Trans. on Circuits Syst. Video Technol., 40, pp. 568–575, 1993.

References 701

 [106] D.A. Huffman, A method for the construction of minimum-redundancy codes, Pro-
ceedings of IRE 40, 1952.

 [107] H.C. Chang, L.G. Chen Y.C. Chang and S.C. Huang, A VLSI architecture design of
VLC encoder for high data rate video/image coding, IEEE International Symposium
on Circuits and Systems, Orlando, Florida, pp. iv 398–401, 1999.

 [108] S.F. Chang and D.G. Messerschmitt, Designing high throughput VLC decoder part-1
concurrent VLSI architectures, IEEE Trans. Circuits Syst. Video Technol., 2, pp.
187–196, 1992.

 [109] H.D. Lin and D.G. Messerschmitt, Designing high throughput VLC decoder part-2
concurrent VLSI architectures, IEEE Trans. Circuits Syst. Video Technol., 2, pp.
197–206, 1992.

 [110] R. Hashermian, Design and hardware implementation of a memory efficient
Huffman decoding, IEEE Trans. Consum. Electron., 40, pp. 345–352, 1994.

 [111] C.T. Hsieh and S.P. Kim, A concurrent memory-efficient VLC decoder for MPEG
applications, IEEE Trans. Consum. Electron., 42, pp. 439–445, 1996.

 [112] R. Saito, VLSI implementation of a variable-length coding processor for real time
video, Proceedings of IEEE Workshop on Visual Signal Processing and Communi-
cation, Hsinchu, Taiwan, ROC, pp. 87–90, 1991.

 [113] J. Jeong and J.M. Jo, Adaptive Huffman coding of 2-D DCT coefficients for image
sequence compression, Signal Proc.: Image Commun., 7, pp. 1–11, 1995.

702 References

Index

0

A

Algorithmic State Machine (ASM),

application specific instruction

automatic pruning level control

B

C

0.105 micron technology, 108

A to D converters, 108

AC coefficients, 432

adder, 5
AGP, 489
Alarm Annunciator, 664

33, 87
algorithms, 11, 28, 417, 675
Altera, 26, 280
always block, 112

processors, 8
architecture, 28, 473, 487, 599, 689
Arithmetic Logic Unit, 60
ASCII Code, 40
ASIC, 8
ASM chart, 487
assemblers, 9
assign statements, 110
Auto-focus cameras, 662

algorithm, 435
Automatic Quality Control, 431
automatic transmission, 660
automotive, 8, 659, 660
avionic, 7, 659
Avnet, 555

back annotation, 29, 299
bandwidth, 3
behavioral, 109, 119
binary coded decimal (BCD), 38
binary counter, 79
binary numbers, 34
Biometrics, 672
bit stream, 13, 15, 16, 305, 328, 329,

336, 432, 589
bit-rate, 12
bits per pixel, 452
block matching algorithm, 417, 453
Block RAMs, 17
Bluetooth, 6
Bottom-up design, 223
Boundary Scan, 19
bus arbitration, 487

case statement, 115

cellular communications, 3
characteristic equation, 67
characteristics table, 71
CLB, 18
clock speed, 299
Clock transition, 68
coarse grain configuration, 27
Coding Organization, 139
combination, 51

cell phone, 6, 671

comparator, 5

ABS, 660

Compilation, 15, 227, 255

Actel, 23

complex instruction set computers,

D

Demodulator for satellite

disadvantages in schematic design,

Discrete Cosine Transform (DCT),

E

Electrostatic precipitator (EP)

error detection and correction

F

compilation errors, 282
compilers, 9
complex algorithm, 372

8
compression, 10, 450
computationally intensive, 371
computer aided design, 3

CAD, 3
Concatenation, 111
concurrent processing, 337
configuration, 19, 297
constant bit rate, 431
constraints, 299
constraints file, 296
control system, 659
controller, 359, 362
controller design, 352
counter, 60, 80, 82, 127
critical paths, 261

D flip-flop, 123
D to A converters, 108
data acquisition systems, 8
data flow, 18, 109
data flow structure, 119
data processing systems, 8
DC coefficient, 432
DCT coefficients, 421, 432
DCTQ, 28, 473, 503
DCTQ algorithm, 419
debounce, 560
decoder, 5, 53
demo set-up, 589

communication, 7, 663
demultiplexer, 5, 53, 116
Design Manager, 295
design methodology, 14, 29, 222
development cycle, 219
development cycle time, 659
development system, 16
Digilent Inc., 555
digital cable TV, 13

Digital cinema systems, 665
Digital Clock Manager, 18
digital signal processors, 8

DSP, 8
Digital System Design, 79

108

12, 417, 418, 487
Discrete Wavelet Transforms, 12
Distributed RAM, 20
downloading, 16, 592, 652
Dual Address ROM Design, 325
dual RAM, 336, 337, 346, 349, 351
dual-port, 18
duty cycle, 75

EDIF, 221, 256, 272
EDIF file, 267
Electro cardiograph, 7
electronic design automation, 3

EDA, 3

controller, 664, 676
embedded systems, 4, 9, 660, 667,

673
emulators, 9
encoder, 5
Encryption/decryption, 7, 663
EPLD, 280
EPROM, 19
EPS, 660
Error correction codes, 663

techniques, 14
Error Detection Code, 42
even parity, 43
excitation tables, 71
external RAM, 352, 358, 361

fall time, 74
falling edge, 65

704 Index

fast one-at-a-time step search

FOSS motion estimation processor,

G

H

I

Inverse Discrete Cosine Transform

J

K

Karhunen Loeve Transform (KLT),

(FOSS) algorithm, 453
FFT, 432
Field programable gate arrays, 4

FPGA, 4
fine grain configuration, 27
finite state machine (FSM), 135
Fire wire, 488
fixed pruning level control, 421
fixed-point arithmetic, 371
Flash PROM, 19
Flash RAM, 557
Flight simulator, 662
flip-flop, 33

D, 66
JK, 66
RS, 66
T, 66

floating point arithmetic, 371
floor plan, 299
Floor Planner, 295

479
FPGA based Systems, 10
FPGA boards, 555
FPGA/ASIC Implementations, 659
frequency of operation, 260
FSM Viewer, 268
full adder, 57, 118
full reconfiguration, 27
full subtractor, 59
full_case, 271

gate count, 15, 329, 365, 413
gates, 33, 47
glitches, 193
Global positioning system, 7, 661
Gray codes, 39
GSM, 6

H.261, 11
H.263, 28
H.264, 12, 548, 684

H.264 codec, 666
half adder, 56
half subtractor, 58
Hamming code, 43
hardware architecture, 15
hardware design language, 10, 107
hardware setup, 649
Hardware/software co-design, 9
HDTV, 11
header information, 689
hexadecimal, 34
high resolution motion pictures, 10
hold time, 75, 76, 194
human visual system, 14

IEEE standards, 109
image block, 432
implementations, 11
Informtion Technology, 3

IT, 3
injecting errors, 282
Instrument landing system, 7, 662
integrated circuits, 3

IC, 3
intellectual property, 222

(IDCT), 13
Inverse Quantization (IQ), 13
IOB, 18
Ipods, 6
IQIDCT, 28
ISO, 11
ITU, 11

JPEG, 11
JPEG 2000, 12, 684
JPEG 2000 codec, 666
JTAG, 19

418
Karnaugh map, 33, 48, 256

Index 705

L

M

N

O

P

peripheral connect interface (PCI)

LAN/WAN, 8
large scale integration, 5

LSI, 5
latch, 199, 271
latency, 374
levels of abstraction, 109
library, 659
linkers, 9
logic analyzer, 9, 16
logic optimization, 15
low power design, 13
luminance, 14
LUT, 18, 232, 268

Machine vision, 664
magnitude comparator, 55, 121
Majority Logic, 111
mapping, 255, 297
master-slave configuration, 68
Matlab, 219, 417, 435, 675
maxterm, 33, 46
medical, 659
medium scale integrated circuits, 60
medium scale integration, 5

MSI, 5
Mentor Graphics, 29
Metastability of Flip-flops, 78
microcontrollers, 8
minterm, 33, 45
mixed signal, 4
Modelsim, 29, 217, 225
motion estimation, 14, 417
motion estimation algorithm, 453
MP3 players, 6
MPEG, 10, 11
MPEG 1, 12
MPEG 2, 12, 684
MPEG 2 codec, 666
MPEG 4, 12
MPEG 4, Part 10, 12
MPEG 7, 12
MRI/CT scan, 7
multimedia applications, 13

multiplexer, 5, 52, 114
Multiplier, 18
Multiplier Design, 397

Network switches/routers, 7
next state, 67
Non-retriggerable Monoshot, 128
nonvolatile memory, 19
north bridge, 488

Nu Horizons, 555

octal, 34
one-hot, 199
ones complement, 35
optical shaft encoder, 39
optimization, 13, 255, 276
orthogonal transform, 433

packages, 15
PAL, 33
parallel processing, 10
Parallel Signed Adder Design, 382
Parallel to Serial Converter, 133
parallel_case, 271
parallelism, 371
partial reconfiguration, 27
Partition, 37

Data Width, 374
Functionality, 375

pattern generator, 16
pattern sequence detector, 137
PCI bus arbiter, 487
PDA, 6

bus, 336
pipelining, 10, 321, 371, 374, 382
place and route, 15, 295, 297, 328,

335, 351, 365
place and route results, 395, 413, 538
place and route tools, 10

NTSC/PAL/SECAM, 6, 666

706 Index

Q

R

Random Access Memory (RAM),

S

populated electronic cards, 675
Post-processing an Image, 539
power considerations, 13
Power consumption, 13
Pre-processing, 539
present state, 67
primitive gates, 119
priority encoder, 198
Programable Array Logic, 29, 65
Programable Logic Array, 64
Programable Logic Controllers, 8,

664
Programable Logic Devices, 5, 61
Programer, 9, 10, 15
project design, 4
Project Navigator, 295, 302
Projects suggested, 659
Propagation delay, 77, 256
Pruning level, 421
Pruning Level Based Control, 478
PSNR, 450, 463

Quadrature amplitude modulator, 7,
663

quality (PSNR), 435
Quantization (Q), 12, 487
Quantized DCT coefficients, 432
Quine McCluskey, 51, 256

74
rapid prototyping, 10
Rapper controller, 664
rate control, 431
raw format, 11
raw video data, 489
Read-Only Memory, 63

Reconfigurable, 27
reconfiguration, 15
reconstructed image, 450
reduced instruction set computers, 8
Register Transfer Level, 187

registers, 125
Report, 305
report file, 260
Reset, 70
rise time, 75
rising edge, 65
Robot controller, 664
RTL, 255
RTL Coding, 195
RTL coding guidelines, 29, 187, 675
RTL coding style, 187
RTL view, 256, 262, 263, 268, 351,

363

SCADA, 664
schematic circuit diagram, 255
sea-of-gates, 15
Security, 305
sequential, 50
serial channel, 11, 432
serial EPROM, 16
Set, 70
setup time, 75, 76
Shift Operations, 112
shift register, 20, 74, 131
Signed Adder, 375
Signed Serial Adder, 375
sign-magnitude notation, 37
Simulation, 15, 217, 225, 227
simulation results, 325, 333, 346,

361, 532, 584, 653
skew, 75
slack time, 261, 267
slices, 20, 336, 413
small scale integrated circuits, 60
small scale integration, 5

SSI, 5
source file, 316
Spartan-3, 16, 26
spatial, 433
Specification, 15, 597
speed grades, 15
speed of processing, 13
standard reference, 418
Standards, 12

real-time applications, 3

Index 707

T

U

universal asynchronous receiver

unmanned railway line crossing,

V

Variable Length Decoding (VLD),

video data compression standards,

W

state graph, 33
static or dynamic reconfigurability, 27
STD/VME bus cards, 9
still images, 12
stimuli, 165
Stratix II FPGA, 26
structural realization, 119
sub-sampling of chrominance, 14
Surveillance, 672
SVGA, 488
synchronous circuits, 66
synchronous design practices, 187
Synopsys full case, 199, 275
Synopsys parallel case, 199, 275
Synplicity Inc., 29
Synplify, 29, 255, 285
Synplify log report, 271
Synplify results, 349, 363, 395, 410,

537, 586
synthesis, 10, 255, 327
synthesizable, 29
system level integration, 5

SLI, 5

SOC, 5

Technology view, 255
temporal, 433
test bench, 29, 165, 323, 343, 358,

527
threshold energy, 432, 434
throughput, 371, 374
timer, 128
timing diagram, 165, 303
toggle, 71
top-down design, 223
Toy robots, 672
transform coding, 433
translation, 297
tri-state, 18
tri-state buffers/inverters, 120
troubleshooters, 9
Tsunami warning system, 672
twos complement, 33, 35, 383

ultra large scale integration, 5
ULSI, 5

unary, 44

transmitter, 43
unmanned aircraft control, 662

665
user constraint file, 588

Variable Length Coding (VLC), 12,
28, 688

13, 28
vending machine, 93, 665
vendor-specific modules, 222
verification, 16, 417
Verilog, 10, 15
very large scale integration, 3

VLSI, 3
VHDL, 10
video codecs, 10, 417, 488
Video Compression, 11
video conferencing, 12

418
Video game consoles, 672
Video Grabber, 488
video processing, 3, 659, 661
video scaling, 10
video telephony, 12
Virtex II Pro series FPGAs, 26
Virtex series, 15, 257
Virtex-4, 26
Virtex-E, 327
VLSI Design Flow, 217

wafer, 3
waveform analysis, 15
Wireless remote control, 662

system-on-chip, 5, 674

708 Index

X

XC4000, 26
XESS, 555

XGA, 488
Xilinx, 15, 29, 280, 555

Index 709

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

