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Preface

Though there are many recent additions to graduate-level introductory books
on Bayesian analysis, none has quite our blend of theory, methods, and ap-
plications. We believe a beginning graduate student taking a Bayesian course
or just trying to find out what it means to be a Bayesian ought to have some
familiarity with all three aspects. More specialization can come later.

FEach of us has taught a course like this at Indian Statistical Institute or
Purdue. In fact, at least partly, the book grew out of those courses. We would
also like to refer to the review (Ghosh and Samanta (2002b)) that first made
us think of writing a book. The book contains somewhat more material than
can be covered in a single semester. We have done this intentionally, so that
an instructor has some choice as to what to cover as well as which of the
three aspects to emphasize. Such a choice is essential for the instructor. The
topics include several results or methods that have not appeared in a graduate
text before. In fact, the book can be used also as a second course in Bayesian
analysis if the instructor supplies more details.

Chapter 1 provides a quick review of classical statistical inference. Some
knowledge of this is assumed when we compare different paradigms. Following
this, an introduction to Bayesian inference is given in Chapter 2 emphasizing
the need for the Bayesian approach to statistics. Objective priors and objec-
tive Bayesian analysis are also introduced here. We use the terms objective
and nonsubjective interchangeably. After briefly reviewing an axiomatic de-
velopment of utility and prior, a detailed discussion on Bayesian robustness is
provided in Chapter 3. Chapter 4 is mainly on convergence of posterior quan-
tities and large sample approximations. In Chapter 5, we discuss Bayesian
inference for problems with low-dimensional parameters, specifically objec-
tive priors and objective Bayesian analysis for such problems. This covers
a whole range of possibilities including uniform priors, Jeffreys’ prior, other
invariant objective priors, and reference priors. After this, in Chapter 6 we
discuss some aspects of testing and model selection, treating these two prob-
lems as equivalent. This mostly involves Bayes factors and bounds on these
computed over large classes of priors. Comparison with classical P-value is
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also made whenever appropriate. Bayesian P-value and nonsubjective Bayes
factors such as the intrinsic and fractional Bayes factors are also introduced.

Chapter 7 is on Bayesian computations. Analytic approximation and the
E-M algorithm are covered here, but most of the emphasis is on Markov chain
based Monte Carlo methods including the M-H algorithm and Gibbs sampler,
which are currently the most popular techniques. Follwing this, in Chapter 8
we cover the Bayesian approach to some standard problems in statistics. The
next chapter covers more complex problems, namely, hierarchical Bayesian
(HB) point and interval estimation in high-dimensional problems and para-
metric empirical Bayes (PEB) methods. Superiority of HB and PEB methods
to classical methods and advantages of HB methods over PEB methods are
discussed in detail. Akaike information criterion (AIC), Bayes information
criterion (BIC), and other generalized Bayesian model selection criteria, high-
dimensional testing problems, microarrays, and multiple comparisons are also
covered here. The last chapter consists of three major methodological appli-
cations along with the required methodology.

We have marked those sections that are either very technical or are very
specialized. These may be omitted at first reading, and also they need not be
part of a standard one-semester course.

Several problems have been provided at the end of each chapter. More
problems and other material will be placed at http://www.isical.ac.in/~
tapas/book

Many people have helped — our mentors, both friends and critics, from
whom we have learnt, our family and students at ISI and Purdue, and the
anonymous referees of the book. Special mention must be made of Arijit
Chakrabarti for Sections 9.7 and 9.8, Sudipto Banerjee for Section 10.1, Partha
P. Majumder for Appendix D, and Kajal Dihidar and Avranil Sarkar for help
in several computations. We alone are responsible for our philosophical views,
however tentatively held, as well as presentation.

Thanks to John Kimmel, whose encouragement and support, as well as
advice, were invaluable.

Indian Statistical Institute and Purdue University Jayanta K. Ghosh
Indian Statistical Institute Mohan Delampady
Indian Statistical Institute Tapas Samanta

February 2006



Contents

1 Statistical Preliminaries ........ ... ... ... ... .. ... ... ... ... 1
1.1 Common Models ....... ... i 1
1.1.1 Exponential Families............ ... ... ... ... 4
1.1.2 Location-Scale Families .............. ... ... ... ... 5
1.1.3 Regular Family ....... ... .. .. .. . o L 6
1.2 Likelihood Function ......... ... ... . . i 7
1.3 Sufficient Statistics and Ancillary Statistics .............. ... 9
1.4 Three Basic Problems of Inference in Classical Statistics...... 11
1.4.1 Point Estimates .. ...t i 11
1.4.2 Testing Hypotheses . ........... .. ... ... ... 16
1.4.3 Interval Estimation ........... ... ... ... . ........ 20
1.5 Inference as a Statistical Decision Problem.................. 21
1.6 The Changing Face of Classical Inference . .................. 23
1.7 BXerCISES ottt e 24
2 Bayesian Inference and Decision Theory ................... 29
2.1 Subjective and Frequentist Probability ..................... 29
2.2 Bayesian Inference.......... ... ... .. i 30
2.3 Advantages of Being a Bayesian . .......... ... ... ... ... ... 35
2.4 Paradoxes in Classical Statistics . ...... ... ... i, 37
2.5 FElements of Bayesian Decision Theory ..................... 38
2.6 Improper Priors . ...... ..o e 40
2.7 Common Problems of Bayesian Inference ................... 41
2.7.1 Point Estimates .......... .o i i e 41
2.7.2 Testing . ..ot i e 42
2.7.3 CredibleIntervals ... .. 48
2.7.4 Testing of a Sharp Null Hypothesis Through Credible
Intervals ... ... . .. . 49
2.8 Prediction of a Future Observation ........................ 50
2.9 Examples of Cox and Welch Revisited........... .. .. ..., 51

2.10 Elimination of Nuisance Parameters ....................... 51



X

Contents
2.11 A High-dimensional Example ........... ... .. ... ... ...... 53
2.12 Exchangeability ........ ... . . 54
2.13 Normative and Descriptive Aspects of Bayesian Analysis,
Elicitation of Probability ........ ... .. ... .. ... .. 55
2.14 Objective Priors and Objective Bayesian Analysis ........... 55
2.15 Other Paradigms .......... ... i 57
2.16 Remarks . ... e 57
2.17 EXEICISes . .. oottt e 58
Utility, Prior, and Bayesian Robustness.................... 65
3.1 Utility, Prior, and Rational Preference ..................... 65
3.2 Utilityand Loss .. ..o v 67
3.3 Rationality Axioms Leading to the Bayesian Approach ....... 68
3.4 Coherence .........c.iiiiiiii i e 70
3.5 DBayesian Analysis with Subjective Prior ................. ... 71
3.6 Robustness and Sensitivity ............ ... ... i 72
3.7 Classes of Priors. ........ ..ottt 74
3.71 Conjugate Class .. .......coviuiiiniiineiinneeaon. 74
3.7.2 Neighborhood Class ............ ... oo on. 75
3.73 Density Ratio Class........... ..o, 75
3.8 Posterior Robustness: Measures and Techniques ............. 76
3.8.1 Global Measures of Sensitivity ...................... 76
3.82 Belief Functions . ......... ... .. . i i 81
3.8.3 Interactive Robust Bayesian Analysis ................ 83
3.8.4 Other Global Measures. ............covoiiinnneen... 84
3.8.5 Local Measures of Sensitivity ................ ... ... 84
3.9 Inherently Robust Procedures ................ ... ... ... .. 91
3.10 Loss Robustness. ...t 92
3.11 Model Robustness ..........ccooiiiiiniiiiniiinnnn.. 93
3.12 EXercises .. ..ot 94
Large Sample Methods ............. ... .. ... ... ... ... 99
4.1 Limit of Posterior Distribution ............. ... ... ... ...... 100
4.1.1 Consistency of Posterior Distribution ................ 100
4.1.2 Asymptotic Normality of Posterior Distribution ....... 101
4.2 Asymptotic Expansion of Posterior Distribution ............. 107
4.2.1 Determination of Sample Size in Testing ............. 109
4.3 Laplace Approximation ........... .. ... . i 113
4.3.1 Laplace’'s Method ............. ... .. .. . i, 113
4.3.2 Tierney-Kadane-Kass Refinements................... 115

T ) o 1< < 119



Contents

5 Choice of Priors for Low-dimensional Parameters..........

5.1

6.2

6.3

6.4

6.5
6.6
6.7

6.8

Different Methods of Construction of Objective Priors........
5.1.1 Uniform Distribution and Its Criticisms ..............
5.1.2  Jeffreys Prior as a Uniform Distribution..............
5.1.3 Jeffreys Prior as a Minimizer of Information ..........
5.1.4 Jeffreys Prior as a Probability Matching Prior.........
5.1.5 Conjugate Priors and Mixtures......................
5.1.6 Invariant Objective Priors for Location-Scale Families . .
5.1.7 Left and Right Invariant Priors .....................
5.1.8 Properties of the Right Invariant Prior for
Location-Scale Families .......... ... ... ...,
5.1.9 General Group Families ... ........ ... ... ... ... ....
5.1.10 Reference Priors....... ... ... .. .. . ...
5.1.11 Reference Priors Without Entropy Maximization ......
5.1.12 Objective Priors with Partial Information ............

5.2 Discussion of Objective Priors.......... ... .. oL,
5.3 Exchangeability ....... .. .. . i
5.4 Elicitation of Hyperparameters for Prior....................
5.5 A New Objective Bayes Methodology Using Correlation ... ...
5.6 ExXercises ..........iiiiiii i
6 Hypothesis Testing and Model Selection ...................
6.1 Preliminaries.. ... ... ... .. i

6.1.1 BICRevisited........ ..o,
P-value and Posterior Probability of Hy as Measures of
Evidence Against the Null ........... .. ... .. .. ... .. ..
Bounds on Bayes Factors and Posterior Probabilities.........
6.3.1 Introduction ............ ... i,
6.3.2 Choice of Classes of Priors............. ... .. .. ...
6.3.3 Multiparameter Problems ................ .. ... .....
6.3.4 Invariant Tests......... ...,
6.3.5 Interval Null Hypotheses and One-sided Tests.........
Role of the Choice of an Asymptotic Framework.............
6.4.1 Comparison of Decisions via P-values and Bayes
Factors in Bahadur’s Asymptotics . ..................
6.4.2 Pitman Alternative and Rescaled Priors..............
Bayesian P-value ........ .. .. ..
Robust Bayesian Outlier Detection ............. ... ... ... ..
Nonsubjective Bayes Factors . ........ ..o i,
6.7.1 The Intrinsic Bayes Factor.............. ... ... .....

6.7.2 The Fractional Bayes Factor ........................
6.7.3 Intrinsic Priors. .. ... ... .o i
B XOrCISes oo s



XII

Contents
Bayesian Computations . .................. ... .. .cciiiin... 205
7.1 Analytic Approximation ............ ..ot 207
7.2 The E-M Algorithm ..... .. ... . i i 208
7.3 Monte Carlo Sampling .......... ... i, 211
7.4 Markov Chain Monte Carlo Methods. ...................... 215
7.4.1 Introduction .......... ...t 215
7.4.2 Markov Chains in MCMC .......................... 216
7.4.3 Metropolis-Hastings Algorithm ................... ... 218
7.4.4 Gibbs Sampling .......... .. i i 220
7.4.5 Rao-Blackwellization.................... ... ........ 223
7.4.6 Examples .........o it e 225
7.4.7 Convergence Issues .......... ... ..o it 231
7.5 EXerCISes ..ttt e 233
Some Common Problems in Inference ..................... 239
8.1 Comparing Two Normal Means ........................... 239
8.2 Linear Regression .......... ... . i, 241
8.3 Logit Model, Probit Model, and Logistic Regression.......... 245
8.3.1 The Logit Model .......... ... i 246
8.3.2 TheProbit Model ......... ... ..o i, 251
B4 EXErCiSes ... i viiti it i i e e e e e 252
High-dimensional Problems ... ............................. 255
9.1 Exchangeability, Hierarchical Priors, Approximation to
Posterior for Large p, and MCMC ......................... 256
9.1.1 MCMC and E-M Algorithm ................ ... ... 259
9.2 Parametric Empirical Bayes ............... ... .. ... ... ... 260
9.2.1 PEB and HB Interval Estimates..................... 262
9.3 Linear Models for High-dimensional Parameters ............. 263

9.4 Stein’s Frequentist Approach to a High-dimensional Problem . . 264
9.5 Comparison of High-dimensional and Low-dimensional

Problems .. ..o 268
9.6 High-dimensional Multiple Testing (PEB) .................. 269

9.6.1 Nonparametric Empirical Bayes Multiple Testing ... ... 271

9.6.2 False Discovery Rate (FDR) ........................ 272
9.7 Testing of a High-dimensional Null as a Model Selection

Problem. ... ..o 273
9.8 High-dimensional Estimation and Prediction Based on Model

Selection or Model Averaging .............. ... ... ... 276
9.9 DiSCUSSION .. oottt e 284

910 EXOICISES . o v v it e e 285



Contents

10 Some Applications............ ... . ... . i
10.1 Disease Mapping .. ..ovovvtv vttt
10.2 Bayesian Nonparametric Regression Using Wavelets..........

10.2.1 A Brief Overview of Wavelets .......................
10.2.2 Hierarchical Prior Structure and Posterior
Computations. . ......ovn i
10.3 Estimation of Regression Function Using Dirichlet
Multinomial Allocation............ .. ... .. ... ... ..
10,4 EXOICISES « v vt ottt et e e e

A Common Statistical Densities..............................
A.1 Continuous Models ..........co i,
A2 Discrete Models . .....coviii

s

Birnbaum’s Theorem on Likelihood Principle ..............

Q

Coherence . ............ . e

)

MiCroarray . ...... ..ottt e
Bayes Sufficiency .......... ... .. i
References......... ... i
Author Index ....... .. .

Subject Index ........ .. ..

XIII



1

Statistical Preliminaries

We review briefly some of the background that is common to both classical
statistics and Bayesian analysis. More details are available in Casella and
Berger (1990), Lehmann and Casella (1998), and Bickel and Doksum (2001).
The reader interested in Bayesian analysis can go directly to Chapter 2 after
reading Section 1.1.

1.1 Common Models

A statistician, who has been given some data for analysis, begins by providing
a probabilistic model of the way his data have been generated. Usually the
data can be treated as generated by random sampling or some other random
mechanism. Once a model is chosen, the data are treated as a random vec-
tor X = (X,X5,...,X,). The probability distribution of X is specified by
f{(x|0) which stands for a joint density (or a probability mass function), and 8
is an unknown constant or a vector of unknown constants called a parameter.
The parameter @ may be the unknown mean and variance of a population
from which X is a random sample, e.g., the mean life of an electric bulb or
the probability of doing something, vide Examples 1.1, 1.2, and 1.3 below.
Often the data X are collected to learn about 8, i.e., the modeling precedes
collection of data. The set of possible values of 8, called the parameter space,
is denoted by &, which is usually a p-dimensional Euclidean space R? or some
subset of it, p being a positive integer. Our usual notation for data vector and
parameter vector are X and 8, respectively, but we may use X and @ if there
is no fear of confusion.

Ezample 1.1. (normal distribution). X, X5, ..., X, are heights of n adults (all
males or all females) selected at random from some population. A common
model is that they are independently, normally distributed with mean yx and
variance 02, where —oo < y < oo and ¢2 > 0, i.e., with @ = (u,02),
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o s g m (252°)}

=1

We write this as X;’s are i.i.d. (independently and identically distributed)
N(u,0?).

If one samples both genders the model would be much more complicated
— X,’s would be i.i.d. but the distribution of each X; would be a mixture of
two normals N(ur,0%) and N(up,03,) where F and M refer to females and
males.

Ezample 1.2. (exponential distribution). Suppose a factory is producing some
electric bulbs or electronic components, say, switches. If the data are a random
sample of lifetimes of one kind of items being produced, we may model them
as i.i.d. with common exponential density

1
f(z:10) = ge_z"/o, z; >0,0>0.
Ezample 1.3. (Bernoulli, binomial distribution). Suppose we have n students

in a class with

1 if ith student has passed a test;

X; = .
0 otherwise.

We model X;’s as i.i.d. with the Bernoulli distribution:

f(”“|9):{1—9 if ;=0

which may be written more compactly as 6% (1 — 8) . The parameter 8 is
the probability of passing. The joint probability function of X1, Xa,..., X, is

1—Ii

n

F@l0) =] f(zil0) = H{ezt 1-0)'-=}, 6 €(0,1).

i=1
If Y = Y7 X;, the number of students who pass, then P(Y = y) = (Z) 6Y(1 -
6)"~Y, which is a binomial distribution, denoted B(n, 6).

Ezample 1.4. (binomial distribution with unknown n’s and unknown p). Sup-
pose Y1, Y3, ..., Y, are the number of reported burglaries in a place in k years.
One may model Y;’s as independent B(n;, p), where n; is the number of actual
burglaries (some reported, some not) in ith year and p is the probability that
a burglary is reported. Here 8 is (n,...,nk,p).

Ezample 1.5. (Poisson distribution). Let X;, Xs, ..., X, be the number of ac-
cidents on a given street in n years. X;’s are modeled as i.i.d P(}), i.e., Poisson
with mean A,

Ti

P(X; =x;) = f(zi|A) = exp(—)\))\

L E=01,2,..., A>0
;!
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Ezxample 1.6. (relation between binomial and Poisson). It is known B(n,p)
is well approximated by P(A) if n is large, p is small but np = X is nearly
constant, or, more precisely, n — 00,p — 0 in such a way that np — A. This
is used in modeling distribution of defective items among some particular
products, e.g., bulbs or switches or clothes. Suppose a lot size n is large.
Then the number of defective items, say X, is assumed to have a Poisson
distribution. ’

Closely related to the binomial are three other distributions, namely, geo-
metric, negative binomial, which includes the geometric distribution, and the
multinomial. All three, specially the last, are important.

Ezample 1.7. (geometric). Consider an experiment or trial with two possible
outcomes — success with probability p and failure with probability 1 — p. For
example, one may be trying to hit a bull’s eye with a dart. Let X be the
number of failures in a sequence of independent trials until the first success is
observed. Then

P{X=z}=(1-p)*p, z=0,1,...

This is a discrete analogue of the exponential distribution.

Ezample 1.8. (Negative binomial). In the same setup as above, let & be given
and X be the number of failures until k£ successes are observed. Then

z+k—-1 T

This is the negative binomial distribution. The geometric distribution is a
special case.

Ezample 1.9. (multinomial). Suppose an urn has N balls of & colors, the num-
ber of balls of jth color is N; = Np; where 0 < p; <1, Zlfpj = 1. We take
a random sample of n balls, one by one and with replacement of the drawn
ball before the next draw. Let X; = j if the ith ball drawn is of jth color
and let n; = frequency of balls of the jth color in the sample. Then the joint
probability function of X1, Xo,..., X, is

k
= [1#7",
j=1
and the joint probability function of nq,...,ny is

AT e H

The latter is called a multinomial distribution. We would also refer to the
joint distribution of X’s as multinomial.
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Instead of considering specific models, we introduce now three families of
models that unify many theoretical discussions. In the following X is a k-
dimensional random vector unless it is stated otherwise, and f has the same
connotation as before.

1.1.1 Exponential Families

Consider a family of probability models specified by f(x|8), § € ©. The family
is said to be an exponential family if f(x|@) has the representation

P

f(x]60) = exp{ c(8) + D _t;(x)A;(6) 3 h(z), (1.1)

i=1

where ¢(.), A;(.) depend only on @ and t;(.) depends only on x. Note that
the support of f(x|8), namely, the set of & where f(x|8) > 0, is the same as
the set where A(z) > 0 and hence does not depend on 8. To avoid trivialities,
we assume that the support does not reduce to a single point.

Problem 1 invites you to verify that Examples 1.1 through 1.3 and Exam-
ple 1.5 are exponential families.

It is easy to verify that if X;, i = 1,...,n, are i.i.d. with density f(z|@),
then their joint density is also exponential:

n

] #(x:l6) = exp nc(0)+ZTjAj(o) Hh(mi),

i=1

with Tj = Z?:l tj(:l}i).
There are two convenient reparameterizations. Using new parameters we
may assume A;(@) = 6;. Then

P

f(x|6) = exp{ c(8) + > _t;(@)8; ¢ h(x). (1.2)

=1

The general theory of exponential families, see, e.g., Brown (1986), ensures
one can interchange differentiation and integration. Differentiation once under
the integral sign leads to

0 dc .
In a similar way,
A?log f dlog f Olog f
Eo (aejaej,> = —Eo ( 56, o0, ) : (14)
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In the second parameterization, we set n; = Eg(t;(X)), i.e.,

dc
P ) 1.
1 39_1’] ) D ( 5)

In Problem 3, you are asked to verify for p = 1 that 7; is a one-one function
of 0. A similar argument shows 17 = (m1,...,7,) is a one-one function of 6.

The parameters @ are convenient mathematically, while the usual statisti-
cal parameters are closer to 1. You may wish to calculate n’s and verify this
for Examples 1.1 through 1.3 and Example 1.5.

1.1.2 Location-Scale Families

Definition 1.10. Let X be a real- valued random variable, with density

fama) = 29 (24).

(22

where g 1s also a density function, —oco < pu < 0o, 6 > 0. The parameters p
and o are called location and scale parameters.

With X as above, Z = (X — p)/o has density g. The normal N(u,0?) is a
location-scale family with Z being the standard normal, N(0,1). Example 1.2
is a scale family with g4 = 0, 0 = 0. We can make it a location-scale family if
we set

Lexp (—-=£) for @ > y;
flalp, o) = { 0 otherwise.

but then it ceases to be an exponential family for its range depends on p. The
other examples, namely, Bernoulli, binomial, and Poisson are not location-
scale families.

Ezxample 1.11. Let X have uniform distribution over (6;,62) so that

if 91 <z < 92;
otherwise.

siaie) = { 77

This is also a location-scale family, with a reparameterization, which is not
an exponential family.

Ezxample 1.12. The Cauchy distribution specified by the density

1 o

flzlp,0) = ;m,

—00 < T <0

is a location-scale family that is not exponential. It has several interesting
properties. As |z| — o0, it tends to zero but at a much slower rate than the
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.4

0.2

o v .

-6 -4 -2 0 2 4 6

Fig. 1.1. Densities of Cauchy(0, 1) and normal(0, 2.19).

normal. One can verify that E(|X|") = oo for r =1,2,... under any g, 0. So
Cauchy has no finite moment. However, Figure 1.1 shows remarkable similarity
between the normal and Cauchy, except near the tails. The Cauchy density is
much flatter at the tails than the normal, which means z’s that deviate quite
a bit from p will appear in data from time to time. Such deviations from u
would be unusual under a normal model and so may be treated as outliers by
a data analyst. It provides an important counter-example to the law of large
numbers or central limit theorem when one has infinite moments. It also plays
an important role in robustness studies (see, e.g., Section 3.9).

Finally, many of the attractive statistical properties of the normal arise
from the fact that it is both an exponential and a location-scale family, thereby
inheriting interesting properties of both.

1.1.3 Regular Family

We end this section with a third very general family, defined by what are
called mathematical regularity conditions.

Definition 1.13. A family of densities f(x|@) is said to satisfy Cramer-Rao
type regularity conditions if the support of f(x|@), i.e., the set of & for which
f(x|8) > 0, does not depend on 8, f is k times continuously differentiable with
respect to 8 (with k usually equal to two or three) and one can differentiate
under the integral sign as indicated below for real-valued 6:
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/- {d%logf(wlﬁ)} F(x/6) da

— 00

/_Z d—ef(w|0)dm = %/_Z f(z]0)dx =0, (1.6)

Ey (d% log f(X |0))

and similarly,

B (%logf(Xlﬁ)) -- [ (d%logf(wlé’))zf(wl@) dz.  (17)

— 00

The condition that the support of f(:|8) is free of 8 is required for the
last two relations to hold. The results of Chapter 4 require regularity condi-
tions of this kind. The exponential families satisfy these regularity conditions.
Location-scale families may or may not satisfy, usually the critical assumption
is that relating to the support of f. Thus the Cauchy location-scale family
satisfies these conditions but not the uniform or the exponential density

flzlp,0) = éeXp (—96;“) , T > .

1.2 Likelihood Function

A concept of fundamental importance is the likelihood function. Informally,
for fixed @, the joint density or probability mass function (p.m.f.) f(z|6),
regarded as a function of 8, is called the likelihood function. When we think
of f as the likelihood function we often suppress © and write f as L(8). The
likelihood function is not unique in that for any c¢(x) > 0 that may depend on
x but not on 8, c(x) f(x|@) is also a likelihood function. What is unique are
the likelihood ratios L(82)/L(61), which indicate how plausible is 82, relative
to @1, in the light of the given data @x. In particular, if the ratio is large, we
have a lot of confidence in 85 relative to 81 and the reverse situation holds if
the ratio is small. Of course the threshold for what is large or small isn’t easy
to determine.

It is important to note that the likelihood is a point function. It can provide
information on relative plausibility of two points 81 and 82, but not of two
O-sets, say, two non-degenerate intervals.

If the sample size n is large, usually the likelihood function has a sharp
peak as shown in the following figure. Let the value of @ where the maximum is
attained be denoted as the maximum likelihood estimate (MLE) 8; we define
it formally later. In situations like this, one feels 0 is very plausible as an
estimate of @ relative to any other points outside a small interval around 6.
One would then expect 0 to be a good estimate of the unknown 8, at least
in the sense of being close to it in some way (e.g., of being consistent, i.e,
converging to @ in probability). We discuss these things more carefully below.
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Fig. 1.2. L(6) for the double exponential model when data is normal mixture.

Classical statistics also asserts that under regularity conditions and for large
n, the maximum likelihood estimate minimizes the variance approximately
within certain classes of estimates. Problem 10 provides a counter-example
due to Basu (1988) when regularity conditions do not hold.

Definition 1.14. The mazimum likelihood estimate (MLE) 8 is a value of 6
where the likelihood function L(8) = f(x|0) attains its supremum, i.e.,

sup £ (/) = f(x[6).
Usually, the MLE can be found by solving the likelihood equation

é%logf(m|0):0, i=1,...,p. (1.8)
J

In Problem 4(b), you are asked to show the likelihood function is log-
concave, i.e., its logarithm is a concave function. In this case, if (1.8) has a
solution, it is unique and provides a global maximum. There are well-known
theorems, see, e.g., Rao (1973), which show the existence of a solution of (1.8)
which converges in probability to the unknown true 8 if the dimension is fixed
and Cramer-Rao type regularity conditions hold. If (1.8) has multiple roots,
one has to be careful. A simple solution is to first find a /n-consistent estimate
T,, i.e., an estimate T, such that /n(T, — 8) is bounded in probability. Then
choose a solution that is nearest to T,.
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1.3 Sufficient Statistics and Ancillary Statistics

Given the importance of likelihood function, it is interesting and useful to
know what is the smallest set of statistics 71 (), ..., Tm(x) in terms of which
one can write down the likelihood function. As expected this makes it neces-
sary to introduce sufficient statistics.

Definition 1.15. Let X be distributed with density f(x|0). Then T = T'(X)
= (T1(X), ..., Tm(X)) is sufficient for 8 if the conditional distribution of X
given T is free of 6.

A basic fact for verifying whether T is sufficient is the following factoriza-
tion theorem: T is sufficient for 8 iff f(x[0) = g(T1(x),...,Tm(x), O)h(x).

Using this, you are invited to prove (Problem 20) that the likelihood func-
tion can be written in terms of T iff T is sufficient.

Thus the problem of finding the smallest T in terms of which one can
write down the likelihood function reduces to the problem of finding what are
called minimal sufficient statistics.

Definition 1.16. A sufficient statistic Ty is minimal sufficient (or smallest
among sufficient statistics) if Ty is a function of every sufficient statistic.

Clearly, a one-one function of a minimal sufficient statistic is also mini-
mal sufficient. In spite of the somewhat abstract definition, minimal sufficient
statistics are usually easy to find by inspection. Most examples in this book
would be covered by the following fact (Problem 19).

Fact. Suppose X;,7 = 1,2,...,n are i.i.d. from exponential family. Then
(T; =" t;(X;),j=1,...,p) together form a minimal sufficient statistics
and hence is the smallest set of statistics in terms of which we may write down
the likelihood function.

Using this, you can prove (37 X;, .7 X?) is minimal sufficient for u
and o? if X, Xs,..., X, are i.id. N(u,0?). This in turn implies (X,s? =
—= 37 (X; — X)?) is also minimal sufficient for (11,0?), being a one-one func-
tion of (3°7 X;, Y7 X?). In the same way, X is minimal sufficient for both i.i.d.
B(1,p) and P(X). In Problem 10, one has to show X1y = min(X,, Xa,...,X})
and X,y = max(X1, Xo,...,Xy) are together minimal sufficient for U (4, 26).
A bad case is that of i.i.d. Cauchy(u,o?). It is known (see, e.g., Lehmann
and Casella (1998)) that the minimal sufficient statistic is the set of all order
statistics (X(1y, X(2), ..., X(n)) Where X(1y and X(,,) have been defined earlier
and X,y is the rth X when the X;’s are arranged in ascending order (as-
suming all X;’s are distinct). This is a bad case because the order statistics
together are always sufficient when X;’s are i.i.d., and so if this is the minimal
sufficient statistic, it means the density is so complicated that the likelihood
cannot be expressed in terms of a smaller set of statistics. The advantage
of sufficiency is that we can replace the original data set & by the minimal
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sufficient statistic. Such reduction works well for i.i.d. random variables with
an exponential family of distributions or special examples like U (61, 6,). It
doesn’t work well in other cases including location-scale families.

There are various results in classical statistics that show a sufficient statis-
tic contains all the information about 8 in the data X. At the other end is
a statistic whose distribution does not depend on 8 and so contains no infor-
mation about 6. Such a statistic is called ancillary.

Ancillary statistics are easy to exhibit if Xi,...,X, are ii.d. with a
location-scale family of densities. In fact, for any four integers a, b, ¢, and
d, the ratio

Xy = Xp) _ 2@ —Zp)
Xy =X@ 2~ Z

is ancillary because the right-hand side is expressed in terms of order statistics
of Z;’s where Z; = (X; — p)/o, i = 1,...,n are i.i.d. with a distribution free
of u and o.

There is an interesting technical theorem, due to Basu, which establishes
independence of a sufficient statistic and an ancillary statistic. The result
is useful in many calculations. Before we state Basu’s theorem, we need to
introduce the notion of completeness.

Definition 1.17. A statistic T or its distribution is said to be complete if for
any real valued function ¢(T),

Epp(T(X)) =0V 6 implies (T(X)) =0
(with probability one under all 8).

Suppose T is discrete. The condition then simply means the family of
p.m.f’s fT(t|§) of T is rich enough that there is no non-zero v(t) that is
orthogonal to f7(¢]6) for all 8 in the sense 3, ¥(t) f¥ (¢|6) = 0 for all 6.

Theorem 1.18. (Basu). Suppose T is a complete sufficient statistic and U
is any ancillary statistic. Then T and U are independent for all 6.

Proof. Because T is sufficient, the conditional probability of U being in some
set B given T is free of # and may be written as Pp(U € B|T) = ¢(T).
Since U is ancillary, Eg(¢(T)) = Pe(U € B) = ¢, where ¢ is a constant.
Let ¥(T) = #(T) — c¢. Then Egyp(T) = 0 for all 8, implying ¥(T) = 0 (with
probability one), i.e., Pp(U € B|T) = Po(U € B). O

It can be shown that a complete sufficient statistic is minimal sufficient.
In general, the converse isn’t true. For exponential families, the minimal suf-
ficient statistic (T1,...,T,) = (3] t1(X3), ..., 2.1 tp(X;)) is complete. For
X1, X2, ..., Xy 1dd. U(61,62), (X(1), X(n)) is a complete sufficient statistic.
Here are a couple of applications of Basu’s theorem.
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Ezample 1.19. Suppose X1, Xo,..., X, are i.i.d. N(u,0?). Then X and s? =
—1-3"(X; — X)? are independent. To prove this, treat o? as fixed to start
with and p as the parameter. Then X is complete sufficient and s? is ancillary.
Hence X and s? are independent by Basu’s theorem.

Ezample 1.20. Suppose X1, Xa,...,X, are ii.d U(61,62). Then for any 1 <
r<n,Y = (X4 — X))/ (X@n — X)) is independent of (X(1), X(ny). This
follows because Y is ancillary.

A somewhat different notion of sufficiency appears in Bayesian analysis.
Its usefulness and relation to (classical) sufficiency is discussed in Appendix E.

1.4 Three Basic Problems of Inference in Classical
Statistics

For simplicity, we take p = 1, so 8 is a real-valued parameter. Informally,
inference is an attempt to learn about §. There are three natural things one
may wish to do. One may wish to estimate 8 by a single number. A classical
estimate used in large samples is the MLE 0. Secondly, one may wish to
choose an interval that covers § with high probability. Thirdly, one may test
hypotheses about 6, e.g., test what is called a null hypothesis Hg : § = 0
against a two-sided alternative H; : 6 # 0. More generally, one can test
Hy : 8 = 6y against Hy : 6 # 6y where 6y is a value of some importance. For
example,  is the effect of some new drug on one of the two blood pressures,
or fy is the effect of an alternative drug in the market and one is trying to
test whether the new drug has different effects. If one wants to test whether
the new drug is better then instead of Hy : 8 # g, one may like to consider
one-sided alternatives Hy : 6 < 8g or Hy : 6 > 6.

1.4.1 Point Estimates

In principle, any statistic T(X) is an estimate though the context usually
suggests some special reasonable candidates like sample mean X or sample
median for a population mean like p of N(u,0?). To choose a satisfactory or
optimal estimate one looks at the properties of its distribution. The two most
important quantities associated with a distribution are its mean and variance
or mean and the standard deviation, usually called the standard error of
the estimate. One would usually report a good estimate and estimate of the
standard error. So one judges an estimate T' by its mean E(T'|§) and variance
Var(T|6). If we are trying to estimate 6, we calculate the bias E(T|6) — 6.
One prefers small absolute values of bias, one possibility is to consider only
unbiased estimates of § and so one requires E(T'|6) = §. Problem 17 requires
you to show both X and the sample median are unbiased estimates for y in
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N{u,0?). If the object is to estimate some real-valued function 7(6) of 8, one
would require E(T|6) = 7(0).

For unbiased estimates of 7, Var(T'|0) = E{(T — 7(6))%|0} measures how
dispersed T is around 7(6). The smaller the variance the better, so one may
search for an unbiased estimate that minimizes the variance. Because 6 is not
known, one would have to try to minimize variance for all §. This is a very
strong condition but there is a good theory that applies to several classical
examples. In general, however it would be unrealistic to expect that such an
optimal estimate exists. We will see the same difficulty in other problems
of classical inference. We now summarize the basic theory in a somewhat
informal manner.

Theorem 1.21. Cramer-Rao Inequality (information inequality). Let
T be an unbiased estimate of 7(0). Suppose we can interchange differentiation
and integration to get

GE@o= [ [ 1@y el

" UL L] e
Then,
Var(T|6) > [;;((00);2

where the ' in 7 and f indicates a derivative with respect to 8 and I,,(8) is
Fisher information in x, namely,

1,0)=E { (d% log f(X|0))2‘ 0} .

Proof. Let ¥(X,0) = %log f(X18). The second relation above implies
E(4(X,6)|0) = 0 and then, Var(y(X, 8)|6) = I,(8). The first relation im-
plies

Cov(T, ¥(X,6) | 0) = 7'(9).
It then follows that

[Cov(T, (X, 0)[0)]* _ 7'(6)*

VarlTlO) 2 =ro (X, 0)8) = T(6)

O

If X;,..., X, are i.i.d. f(z|6), then
I.(6) = nl(9)

where I(8) is the Fisher information in a single observation,
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10)=E { (d% log f(X1|(9)>2‘ 9} .

To get a feeling for I,,(8), consider an extreme case where f(z|6) is free
of 8. Clearly, in this case there can be no information about § in X. On the
other hand, if I,,(8) is large, then on an average a small change in 6 leads to a
big change in log f(x|8), i.e., f depends strongly on 8 and one expects there
is a lot that can be learned about 8 and hence 7(8). A large value of I,,(8)
diminishes the lower bound making it plausible that one may be able to get
an unbiased estimate with small variance.

Finally, if the lower bound is attained at all 8 by T, then clearly T is
a uniformly minimum variance unbiased (UMVUE) estimate. We would call
them best unbiased estimates.

A more powerful method of getting best unbiased estimates is via the
Rao-Blackwell theorem.

Theorem 1.22. (Rao-Blackwell). If T is an unbiased estimate of 7(8) and
S is a sufficient statistic, the T' = E(T|S) is also unbiased for 7(8) and

Var(T'|6) < Var(T|0) V6.

Corollary 1.23. If T is complete and sufficient, then T’ as constructed above
1s the best unbiased estimate for 7(9).

Proof. By the property of conditional expectations,
E(T')0) = E{E(T|S) | 6} = E(T16).
(You may want to verify this at least for the discrete case.) Also,
Var(T|8) = E [{(T - T') + (T" — 7(6))}* | §]
=E{(T-T) 160} +E{(T'—7(6))*|6},
because
Cov{T ~T',T ~7(0) |6} = E{(T —TY(T' —7(8) | 6}
=E[E{T" —7(0)(T~1T')| S}6]

= E[(T" - 7(6)E(T - T'|S) | 6]
=0.

The decomposition of Var(T'|6) above shows that it is greater than or equal
to Var(T'|6). O

The theorem implies that in our search for the best unbiased estimate,
we may confine attention to unbiased estimates of 7(8) based on S. However,
under completeness, T” is the only such estimate.
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Ezxample 1.24. Consider a random sample from N (i, 0%), 0% assumed known.

Note that by either of the two previous results, X is the best unbiased estimate
for y1. The best unbiased estimate for u? is X2 — 02/n by the Rao-Blackwell
theorem. You can show it does not attain the Cramer-Rao lower bound. If a
T attains the Cramer-Rao lower bound, it has to be a linear function (with

0= p), .
T(@) = a(6) + b(6) -5 log f(=[6),

i.e., must be /of the form
T(z) = c(8) + d(0)z.
But T, being a statistic, this means
T(x) = c+dz,
where ¢, d are constants.

A similar argument holds for any exponential family. Conversely, suppose
a parametric model f(z|f) allows a statistic T to attain the Cramer-Rao lower
bound. Then,

T(2) = a(8) +b(6) 35 log f(21),

which implies
T(x)—a(f) d
—W— T log f(z|6).

Integrating both sides with respect to 6,
7(@) [(66) do — [ a(6)(6)) " d0 + d() = log 1 (al0)

where d(x) is the constant of integration. If we write A(f) = [(b(F))'db,
c(8) = [ a(9)b(9)~! df and d(x) = log h(z), we get an exponential family.
The Cramer-Rao inequality remains important because it provides infor-
mation about variance of T'. Also, even if a best unbiased estimate can’t be
found, one may be able to find an unbiased estimate with variance close to
the lower bound. A fascinating recent application is Liu and Brown (1992).
An unpleasant feature of the inequality as formulated above is that it
involves conditions on T rather than only conditions on f(x|#). A considerably
more technical version without this drawback may be found in Pitman (1979).
The theory for getting best unbiased estimates breaks down when there
is no complete sufficient statistic. Except for the examples we have already
seen, complete sufficient statistics rarely exist. Even when a complete sufficient
statistic exists, one has to find an unbiased estimate based on the complete
sufficient statistic S. This can be hard. Two heuristic methods work some-
times. One is the method of indicator functions, illustrated in Problem 5.
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The other is to start with a plausible estimate and then make a suitable ad-
justment to make it unbiased. Thus to get an unbiased estimate for u? for
N(u,0?), one would start with X2. We know for sure X? can’t be unbiased
since E(X?|u,0%) = p? + 02?/n. So if 02 is known, we can use X2 — o2?/n. If
02 is unknown, we can use X2 — s?/n, where s = 5_(X; — X)?/(n — 1) is an
unbiased estimate of o2. Note that X2 — s?/n is a function of the complete,
sufficient statistic (X, s?) but may be negative even though u? is a positive
quantity.

For all these reasons, unbiasedness isn’t important in classical statistics
as it used to be. Exceptions are in unbiased estimation of risk (see Berger
and Robert (1990), Lu and Berger (1989a, b)) with various applications and
occasionally in variance estimation, specially in high-dimensional problems.
See Chapter 9 for an application.

We note finally that for relatively small values of p and relatively large
values of n, it is easy to find estimates that are approximately unbiased and
approximately attain the Cramer-Rao lower bound in a somewhat weak sense.
An informal introduction to such results appears below.

Under regularity conditions, it can be shown that

v (6-9)- \/ﬁ%@ (Z d% log f(Xije)) 20

This implies 8 is approximately normal with mean € and variance (nI(8))~!,
which is the Cramer-Rao lower bound when we are estimating 6. Thus 6 is
approximately normal with expectation equal to 8 and variance equal to the
Cramer-Rao lower bound for 7(6) = 6. For a general differentiable 7(6), we
show 7(0) has similar properties. Observe that 7(8) = 7(8) + (8 — 6)7'(6)+
smaller terms, which exhibits T(é) as an approximately linear function of 6.

Hence 7(6) is also approximately normal with

mean = 7(6) + (approximate) mean of (9 - 9) /() = 7(8), and

variance = (7-/(9))2 X approximate variance of (é - 9) = (7'/(9))2—_[1(9)~
n

The last expression is the Cramer-Rao lower bound for 7(6). The method of
approximating 7(6) by a linear function based on Taylor expansion is called
the delta method.

For N(u,0?) and fixed z, let 7(8) = 7(0,2z) = P{X < z|y,0}. An

approximately best unbiased estimate is P{X < zli,6} = #(2-%) where

s/
s'=4/L (X, — X)? and &(.) is the standard normal distribution function.

The exact best unbiased estimate can be obtained by the method of indicator

functions. Let
1 if X5 <z

0 otherwise .

I(X,) = {
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Then I is an unbiased estimate of 7(6), so the best unbiased estimate is
E(I|X,s") = P{X) € z|X,s'}. The explicit form is given in Problem 5.

1.4.2 Testing Hypotheses

We consider only the case of real-valued 6p, the null hypothesis Hy : 8 = 6,
and the two-sided alternative H; : 6 # 6y or, one-sided null and one-sided
alternatives, e.g., Hy : 6 < 6y and H; : 6 > 6. In this formulation, the null
hypothesis represents status quo as in the drug example. It could also mean an
accepted scientific hypothesis, e.g., on the value of the gravitational constant
or velocity of light in some medium. This suggests that one should not reject
the null hypothesis unless there is compelling evidence in the data in favor of
H,. This fact will be used below.

A test is a rule that tells us for each possible data set (under our model
f(x|6)) whether to accept or reject Hy. Let W be the set of &’s for which
a given test rejects Hy and W€ be the set where the test accepts Hy. The
region W called a critical region or rejection region, completely specifies the
test. Sometimes one works with the indicator of W rather than W itself. The
collection of all subsets W in R™ or their indicators correspond to all possible
tests. How does one evaluate them in principle or choose one in some optimal
manner? The error committed by rejecting Hy when Hj is true is called the
error of first kind. Avoiding this is considered to be more important than the
so called second kind of error committed when Hj is accepted even though
H, is true. For any given W,

Probability of error of first kind = Py, (X € W) = Ey, (I(X)),

where I(x) is the indicator of W,

1 ifzeW,;
I(““')—{o if z e We.

Probability of error of second kind = P3(X € W*¢) = 1 — Ey(I(X)), for 6
as in H;. One also defines the power of detecting Hy as 1 — Pp(X € W°) =
Ey(I(X)) for 6 as in H,.

It turns out that in general if one tries to reduce one error probability the
other error probability goes up, so one cannot reduce both simultaneously.
Because probability of error of first kind is more important, one first makes
it small,

Eeo (I(X)) < a, (19)

where a, conventionally .05, .01, etc., is taken to be a small number. Among
all tests satisfying this, one then tries to minimize the probability of commit-
ting error of second kind or equivalently, to maximize the power uniformly for
all # as in H,. You can see the similarity of (1.9) with restriction to unbiased
estimates and the optimization problem subject to (1.9) as the problem of
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minimizing variance among unbiased estimates. The best test is called uni-
formly most powerful (UMP) after Neyman and Pearson who developed this
theory.

It turns out that for exponential families and some special cases like U(0, 8)
or U(6 ~ 1,0+ 1), one can find UMP tests for one-sided alternatives. The
basic tool is the following result about a simple alternative Hy : 6 = 6;.

Lemma 1.25. (Neyman-Pearson). Consider Hy : 8 = 0y versus Hy : 0 =
01. Fir 0 < a<1.

A. Suppose there exists a non-negative k and a test given by the indicator
function Iy such that

1 if f(2]61) > kf(x]60);
Io(z) = {0 z'ff(m|91) < kf(wIOE),

with no restriction on Iy if f(x|h) = kf(x|6)), such that Eg,(IH(X)) = a.
Then
Ey, (IO(X)) = by, (Il(X))

for all indicators I satisfying
By, (I1(X)) < c.

i.e., the test given by Iy is MP among all tests satisfying the previous inequal-
ity.
B. Suppose g is a given integrable function and we want all tests to satisfy

Eo,(I(X)) =« and //I(m)g(m) dx = ¢ (same for all I). (1.10)
Then among all such I, Ey, (I(X)) is mazimum at

Io(@) = { 1 Z:ff($|91) > ki f (x|6o) + k2g(z);
0 if f(z]01) < k1f(x|00) + kag(x),
where k1 and ko are two constants such that Iy satisfies the two constraints
given in (1.10).
C. If Iy exists in A or B and I, is an indicator having the same mazimizing
property as Iy under the same constraints, then Io(x) and I (x) are same

if F(2101) — kf(2l60) # 0, in case of A and f(@l6y) — ks f(2l6g) — kag(x) #

0, in case of B.

Proof. A. By definition of Iy and the fact that 0 < [1(x) < 1 for all I, we
have that

/X {(o(2) — Ii(2)) (f(]61) — kf(2[60))} d > 0, (1.11)

which implies
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/ (o) — (@)} f(x]6y) de > k / o(@)f (lo) da — / I () f ()6o) dee
X
> ka—ka=0.

B. The proof is similar to that of A except that one starts with
[ (10— 1) (5(al6r) ~ ks al0o) ~ kag(a)} o> 0

C. Suppose I is as in A and I) maximizes [, If(x|6,)dx. ie.,

X X

/ Iy f(x]6p) de = ¢, and / I f(x|6p) dx = «.
X X

subjected to

Then,
/X {o — IH{f(2|6y) — kf (@|f)}dz = 0.

But the integrand {Io(x) — I, (x)}{f(x|6:1) — kf(x|fox)} is non-negative for
all . Hence

Io(x) = Ii() if f(x|61) — kf(x|6o) # 0.
This completes the proof. O

Remark 1.26. Part A is called the sufficiency part of the lemma. Part B is a
generalization of A. Part C is a kind of necessary condition for I; to be MP
provided Iy as specified in A or B exists.

If X;’s are i.i.d. N(u,0?), then {z : f(x|01) = kf(z|6y)} has probability
zero. This is usually the case for continuous random variables. Then the MP
test, if it exists, is unique. It fails for some continuous random variables like
X;’s that are i.i.d. U(0,6) and for discrete random variables. In such cases the
MP test need not be unique.

Using A of the lemma we show that for N(u,o?), 02 known, the UMP
test of Hy : p = po for a one-sided alternative, say, H; : p > o is given by

1 £ Z > pup+ 2o-;
Iy = . Sy
01f$</£0+2a—\/——ﬁ,

where z, is such that P{Z > z,} = o with Z ~ N(0,1).
Fix p; > po. Note that f(x|p1)/f(x|po) is an increasing function of z.
Hence for any k in A, there is a constant ¢ such that

f(zlm) > kf(x|uo) if and only if Z > e.
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So the MP test is given by the indicator

1= 1 ifZ > ¢
"Tlo0ifz<e,

where ¢ is such that Eug(lp) = «. It is easy to verify ¢ = ug + z,0/+/n does
have this property. Because this test does not depend on the value of p;, it is
MP for all g1 > po and hence it is UMP for Hy : p > po.

In the same way, one can find the UMP test of H; : u < po and verify that
the test now rejects Hy if T < pog — zo0/+/n. How about Hy : pu < pg versus
Hi : p > po? Here we consider all tests with the property

P, -2(Hy is rejected) < o for all p < po.

Using Problem 6 (or 7), it is easy to verify that the UMP test of Hp : &t = o
versus Hy : i > pg is also UMP when the null is changed to Hy : p < pg.

One consequence of these calculations and the uniqueness of MP tests
(Part C) is that there is no UMP test against two-sided alternatives. Each
of the two UMP tests does well for its H; but very badly at other 8;, e.g.,
the UMP test Iy for Hy : p = po versus H; : g > po obtained above has
Eui(Ip) — 0 as g3 — —oo. To avoid such poor behavior at some 8’s, one
may require that the power cannot be smaller than «. Then Fy,(I) < «, and
Ey(I) > «, 0 # by imply Eyp,(I) = o and Ep(I) has a global and hence a
local minimum at # = 6. Tests of this kind were first considered by Neyman
and Pearson who called them unbiased. There is a similarity with unbiased
estimates that was later pointed out by Lehmann (1986) (see Chapter 1 there).
Because every unbiased I satisfies conditions of Part B with g = f/(x|6y), one
can show that the MP test for any #; # 6, satisfies conditions for I. With a
little more effort, it can be shown that the MP test is in fact

1 ifZ>coo0rT<cy,
Iy = . -
OlfCl<CC<CQ,

for suitable ¢; and c¢y. The given constraints can be satisfied if
o o
clzuo—za/zﬁ and 02:ﬂ0+2a/2ﬁ'

This is the UMP unbiased test.

We have so far discussed how to control «, the probability of error of
first kind and then, subject to this and other constraints, minimize 3(8), the
probability of error of second kind. But how do we bring 5(6) to a level that
is desired? This is usually done by choosing an appropriate sample size n, see
Problem 8.

The general theory for exponential families is similar with T = "7 ¢(z;)
or T'/n taking on the role of . However, the distribution of T' may be discrete,
as in the case of binomial or Poisson. Then it may not be possible to find the
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constants c or ¢y, 2. Try, for example, the case of B(5,p), Ho : p = 3 versus
H :p> %, a = .05. In practice one chooses an @’ < a and as close to « as
possible for which the constants can be found and the lemma applied with o’
instead of a.
A different option of some theoretical interest only is to extend the class
of tests to what are called randomized tests. A randomized test is given by a
function 0 < ¢(x) < 1, which we interpret as the probability of rejecting Hy
given x. By setting ¢ equal to an indicator we get back the non-randomized
tests. With this extension, one can find a UMP test for binomial or Poisson
of the form
1 T >c¢
dpo=4¢ 0 if T <
v if T =g,

where 0 < v < 1 is chosen along with ¢ so that Ep,(¢9) = . Such use
of randomization has some other theoretical advantages. Randomization is
sometimes needed to get a minimax test (i.e., a test that minimizes maximum
probability or error of either kind), vide, Problem 14. Most important of all,
randomization leads to the convexity of the collection of all tests in the sense
that if ¢;(x) and ¢2(x) are two randomized or non-randomized tests, the
convex combination Ag; + (1 — A)¢a, 0 < A < 1, is again a function ¢(z) lying
between 0 and 1 and so it is a randomized test. This leads to convexity of risk
set (Problem 15).

Except for exponential families and a few special examples, UMP tests
don’t exist. However, just as in the case of estimation theory, there are ap-
proximately optimum tests based directly on maximum likelihood estimates
of @ or the likelihood ratio statistic

S ((6o)
suPgeo, f(x10)’

where O is the set specified by H;.

1.4.3 Interval Estimation

A commonly used so called confidence interval for u in N (i, 0%) with o?
known is X =+ z,/50/+/n. This means

P, o {p € confidence interval } = P, {X - Za/Q% <p< X+ za/z—\—;—ﬁ}

=1-q.

In this statement, as in all other areas of classical statistics, p is a constant,
the probability statement is about X. So (1 —«) is the proportion of times the
interval covers u over repetitions of the experiment and data sets. If one has a
data set with X = 3, and asks for the probability that yx lies in 3 + za/za/\/ﬁ,
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the answer isn’t 1 — « but trivially zero or one depending on the value of .
Though the idea of such intervals is quite old, it was Neyman who formalized
them.

For X ~ f(x|f), 6 € R, one calls (6(X),6(X)) a confidence interval with
confidence coefficient 1 — «, if Py {Q(X) <6< B(X)} =1-a.

The simplest way to generate them is to find what Fisher called a pivotal
quantity, namely, a real valued function T(X,8) of both X and 6 such that
the distribution of T(X, ) does not depend on 6. Suppose then we choose two
numbers ¢; and t2 such that Py {t; < T(X,6) <3} =1 — a. If for each X,
T(X,0) is monotone in 6, say, an increasing function of 8, then we can find
6(X) and (X) such that T(X,8(X)) = t2 and T(X,8(X)) = t;. Clearly
(8 <8<8)ifft; <T <ty and hence 8 < § < § with probability 1 — a.

In the normal example, T(X,u) = X — p, the distribution of which is
N(0,02/n).

Neyman showed one can also derive confidence intervals from tests. We
illustrate this with the normal. For each g, consider the UMPU test

o

. _ e % .
To= 40 ro = Za2m S X S ot Zap2 05
1 otherwise.

(We have taken Iy = 0 at the two boundaries, which have zero probability
anyway.)

We now define a confidence set, say, A(X) C R by,
A(X) = { po such that Hy : = po is accepted by its UMPU test} .

Then P, {A(X) covers ug} = P, {10 is accepted by its UMPU test } = 1—q.

Also A(X) is nothing but the interval X %z, 50/1/n. We have just gotten
the same interval by a different route.

This approach helps in showing many common intervals have the prop-
erty of being shortest, i.e., having smallest expected length of all confidence
intervals obtainable from a family of unbiased tests. This follows from an ap-
plication of a simple but somewhat technical result (vide Ghosh-Pratt identity
in Encyclopedia of Statistics).

1.5 Inference as a Statistical Decision Problem

The three apparently very different inference problems discussed in Section 1.4
can be unified by formulating them as statistical decision problems. This ap-
proach is due to Wald, who not only unified classical inference but proved
basic theorems applying to all inference. A couple of his results are mentioned
below and in Section 2.3. One gains a certain conceptual clarity as well as a



22 1 Statistical Preliminaries

certain broader outlook. However certain special features of each problem, ei-
ther relating to historical context or relating to such consideration as intuitive
appeal or reasonableness, are lost.

A statistical decision problem has a model f(z|0) and a space A of actions
or decisions “a”. A decision rule or decision function is a function §(x) from
the sample space of the data to the action space A, i.e., 6(x) is an action, for
each @. To implement this rule, one simply takes the action §(x) if data are
T.

In estimation A = R and §(x) = T(x) € R is nothing but an estimate
of 6. In testing, the action or decision consists of two elements {“accept Hy”,
“accept H,”}. We may denote these elements as ag and a;. A decision function
has a one-one correspondence with indicator function as follows

1 iff §(x) = aq;
I(‘”):{o 1ff5(z)=ao.

In interval estimation, action space would be the collection of all intervals
[a, b]. Each confidence interval is a decision function.

One of the advantages of the new approach is that it liberated classi-
cal statistics from some historical legacies like unbiasedness and in this way
broadened it. We will discuss this particular point again in the chapter on
hierarchical Bayes analysis.

One more concept is needed to evaluate the performance of a decision
function. Let the loss L(#, a) be a measure of how good the action a is when 6
is the value of the parameter: the smaller the loss better the action a relative
to 6.

In estimation, a commonly used L(6, a) is the squared error loss function.
In testing Hy : 6 = 6y versus H) : 6 # 6p, a commonly used loss is the 0-1
loss, namely,

0 if 6 =6y and a =ag or 6 # 0y and a = ay;
1 otherwise.

L(8,a) = {

In interval estimation there is no commonly used loss function. One choice
would be a suitable penalty for length and failure to cover # by a chosen
interval [a, b], e.g.,

L(H’ {a’ b]) = ClLl(g’ [av b]) + 02(b - a)’
where

1 if 6 € [a, b];
0 otherwise.

AR
To evaluate a decision function é(x), one calculates the average loss
Ey (L(6,5(X)) & R(9,5).

This is a function of 6.
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How would one define an optimal decision function? In estimation, if one
confines attention to unbiased decision functions, then R(6,48) = Var(6(X)|6).
Sometimes one can get a single §o minimizing R(6,d) for all § among all
unbiased 4. Without the restriction to unbiasedness, this is no longer the
case. Similar questions arise in testing and other problems also. Clearly, new
principles are called for. We can introduce a weight function 7 () and minimize
the weighted risk

Rr,5) = / R(6,5)7(6)d6.

A §p minimizing this is called a Bayes rule. This is a problem that we discuss
in Chapter 2. There 7{f) is interpreted as a quantification of prior belief and
is called a prior distribution of . We say &y is a Bayes rule in the limit (or
Bayes in the wide sense, (Wald (1950))), if for a sequence of priors m;,

lim [R(m;,80) — ir;f R(m;,8)] = 0.

12— 00

A somewhat conservative optimization principle is to minimize

sup R(6,9).
6

A decision rule §g is said to be minimax if

sup R(6,dp) = ir;f sup R(6,9).
6 6

A sufficient condition for a rule §y to be minimax is that 8y minimizes R(w, )
for some 7 and has constant risk R(f,d,) = c. Then

sup R(6,8p) = ¢ = R(m,dp)
g

< R(m,9)
< sup R(6,9).
0

This argument is due to Wald (1950). In Problem 16, you are asked to prove
that if a rule &g is Bayes in the limit and has constant risk, then it is minimax.

1.6 The Changing Face of Classical Inference

Because the exact theories of optimal estimates are difficult to apply, atten-
tion has shifted to approximate algorithmic methods, like the EM algorithm,
simulation, and asymptotics. Along with this, there has been much interest
in robust methods that do well under a broad spectrum of models. As an
example, we discuss the method of Bootstrap due to Efron (see Efron (1982)).

We illustrate the method of Bootstrap by showing how to calculate, say,

~

the variance of 7(#) for a given 7. The original sample is (z1,z2,...,2,). We
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sample from this data set n times at random and replacing each chosen item
before the next draw. This produces a pseudo data set that we denote by
(z,z5%,...,2%). We calculate 6* from this pseudo data and then 7(8*). We
repeat this N times (where N is much larger than n) to generate N pseudo

data sets and N pseudo values of T(é) which we denote as 7,75, ..., 7%. The

estimate for E( 0)19) is 7 = IIVT, and an estimate for Var(r(6)[0) is

~ (7 2. There is conmde?z;ble numerical and theoretical evidence that
show the Bootstrap estimates are superior to earlier methods like the delta
method discussed in Section 1.4.

Finally, classical statistics has come up with many new methods for deal-
ing with high-dimensional problems. A couple of them will be discussed in

Chapter 9.

1.7 Exercises

1. Verify that N(u,0?), exponential with f(z|6) = 5e==/%, Bernoulli(p), bi-
nomial B(n, p), and Poisson P()), each constltutes an exponen‘mal family.

2. Verify (1.4).

. Assuming p = 1 in (1.4), show that <1 > 0.

4. (a) Generate data by drawing a sample of size n = 30 from N(u,1) with
¢ = 2. For your data, plot the likelihood function and comment on its
shape and how informative it is about u.

(b) For an exponential family, show that the likelihood function is log

w

concave, i.e., the matrix with (¢, j)th element 2loglL i negative definite.
56,06,

(Hint. The proof is similar to that for Problem 3. By direct calculation

0%log L 8% 0?log L Olog L dlog L
56,00, ~ 6,06, 56:00; o9, 06,

Now use the fact that a variance-covariance matrix is positive definite,
unless the distribution is degenerate).
(c) Let X,,..., X, be iid. with density f(z|6), p =1, in an exponential
family. Show that MLE of n is (1/n) 7, ¢(X,) and hence the MLE 6 £ 6
as n — o0o.

5. Let X, Xs,...,X, beiid N(u,c?), with u, 02 unknown. Let 7(y, 02) =
P{Xl S 0[;},,0’2}.
(a) Calculate 7(f,62), where i, and 62 are the MLE of y and o2.
(b) Show that the best unbiased estimate of 7(u,0?) is

W(X)=E (I{X, <0}|X,5?%) = F(-X/S)
where S? is the sample variance and F is the distribution function of

(X1 - X)/S.
(c) For = 0,02 = 1,n = 36 find the mean squared errors
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E{(r(f1,6%)—7(0,1))2|0,1} and E{(W(X)—7(0,1))?|0,1} approximately
by simulations.

(d) Estimate the mean, variance and the mean squared error of 7(fi, 52)
by (i) delta method, (ii) Bootstrap, and compare with (c).

. Let X4, X,,..., X, be iid. with density (1/0)f((x — n)/o). Show that

for fixed o, P, » {>_7 X; > ¢} is an increasing function of p.

. X1,Xs,. .., X, are said to have a family of densities f(z|6) with monotone

likelihood ratio (MLR) in T'(zx) if there exists a sufficient statistic T'(x)
such that f(x|f2)/f(x|61) is a non-decreasing function of T'(zx) if 6, > 6;.
(a) Verity that exponential families have this property.
(b) If f(x|#) has MLR in T, show that Pp{T(X) > ¢} is non-decreasing
in 6.
Let X;,Xs,..., X, beiid N(p,1). Let 0 <, <1, A>0.
(a) For Hy : p = po versus Hy : > pg, show the smallest sample size n
for which the UMP test has probability of error of first kind equal to o and
probability of error of second kind < 3 for u > po + A is (approximately)
the integer part of ((zo + zﬂ)/A)2 +1
Evaluate n numerically when A = .5, « = .01, 8 = .05.
(b) For Hy : pp = po versus Hy : p # po, show the smallest n such that
UMPU test has probability of error of first kind equal to « and probability
of error of second kind < S for |1 —po| > A is (approximately) the solution
of

D (za/2 — VNA) + & (242 + VnA) =14 5.

Evaluate n numerically when A = 0.5, @ = .01 and 3 = .05.

. Let X3,X2,...,X, beiid U(0,6), 8 > 0. Find the smallest n such that

the UMP test of Hy : 6 = 6y against H; : 8 > 6, has probability of error
of first kind equal to « and probability of error of second kind < g for
6> 01, with 61 > 0.

(Basu (1988, p.1)) Let X3, X2,..., X, be i.id U(6,26), 6 > 0.

(a) What is the likelihood function of 67

(b) What is the minimal sufficient statistic in this problem?

(c¢) Find 6, the MLE of 6.

(d) Let X(l) = min(Xy,...,X,) and T = (49 + X(1y)/5. Show that

)
E ( ) ((9 -6) ) is always less than 1, and further,

E(T-oF) 12

BE((-0p2) 2

Suppose X1, Xa,..., X, are i.i.d N(g,1). A statistician has to test Hy :
i = 0; he selects his alternative depending on data. If X < 0, he tests
against H, : p < 0. If X > 0, his alternative is H; : u > 0.

(a) If the statistician has taken « = .05, what is his real «?

(b) Calculate his power at ;1 = +1 when his nominal o = .05, n = 25. Will
this power be smaller than the power of the UMPU test with o = .057
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Consider n patients who have received a new drug that has reduced
their blood pressure by amounts X1, Xs, ..., X,,. It may be assumed that
X1,Xa,..., X, areiid. N(u,o?) where o2 is assumed known for simplic-
ity. On the other hand, for a standard drug in the market it is known that
the average reduction in blood pressure is pg. The company producing the
new drug claims g = g, i.e., it does what the old drug does (and probably
costing much less). Discuss what should he Hy and H; here. (This is a
problem of bio-equivalence.)

(P-values) The error probabilities of a test do not provide a measure of
the strength of evidence against Hy in a particular data set. The P-values
defined below try to capture that.

Suppose Hy : 8 = 6y and your test is to reject Hy for large values of a
test statistic W(X), say, you reject Hy if W > W,,. Then, when X = =
is observed, the P-value is defined as

P(x) =1~ Fj) (W(z)),

where F@v;/ = distribution function of W under 6.

(a) Show that if F@v;/ is continuous then P(X) has uniform distribution
on (0,1).

(b) Suppose you are not given the value of W but you know P. How will
you decide whether to accept or reject Hy ?

(c) Let X, Xo,...,X, beiid N(u,1). You are testing Hy : 4 = g versus
H, : p # po. Define P-value for the UMPU test. Calculate E, (P) and
E,,(PIP < a).

(a) Let f(z|6s), f(x|6;) and Iy be as in Part A of the Neyman-Pearson
Lemma. The constant k is chosen not from given « but such that

Eg,(Io) =1 — Eg, (Ip).

Then show that Iy is minimax, i.e., Iy minimizes the maximum error
probability,

max(Ey, (Io),1 — Eg,(Iy)) < max(Fg,(I),1 — Es, (I).

(b) Let X, X5,...,X, be iid. N(u,1). Using (a) find the minimax test
of Hy:p=—1versus H; : p = +1.

(a) Let X have density f(z|6) and © = {6j,6:}. The null hypothesis is
Hy : 6 = 6y, the alternative is H; : § = ;. Suppose the error probabilities
of each randomized test ¢ is denoted by (g, 84) and S= the collection of
all points (g, Be). S is called the risk set. Show that S is convex.

(b) Let X be B(2,p), p = 3 (corresponding with Hy) or 1 (corresponding
with Hi). Plot the risk set S as a subset of the unit square.

(Hint. Identify the lower boundary of S as a polygon with vertices corre-
sponding with non-randomized most powerful tests. The upper boundary
connects vertices corresponding with least powerful tests that are similar
to Ip in the N-P lemma but with reverse inequalities.)
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(a) Suppose &g is a decision rule that has constant risk and is Bayes in
the limit (as defined in Section 1.5). Show that &y is minimax.

(b) Consider i.i.d. observations Xj,..., X, from N(y,1). Using a normal
prior distribution for u, show that X is a minimax estimate for x under
squared error loss.

Let X1, Xo,..., X, beiid. N(u,0?). Consider estimating .

(a) Show that both X and the sample median M are unbiased estimators
of .

(b) Further, show that both of them are consistent and asymptotically
normal.

(c) Discuss why you would prefer one over the other.

Let X1, Xo,..., X, beiid. N(u,02),Y1,Ys,...,Y,, beiid. N(n,72) and
let these two samples be independent also. Find the set of minimal suffi-
cient statistics when

(a) —00 < p,m < 00, 02 >0 and 72 > 0.

(b) u=mn, —co < u < 00,2 >0and 72 > 0.

(c) —co < pyn < o0, 02 =12, and o2 > 0.

(d) p=mn, 0% =72 —00 < pu < o0, and 52 > 0.

Suppose X;,7 = 1,2,...,n are i.i.d. from the exponential family with
density (1.2) having full rank, i.e., the parameter space contains a p-
dimensional open rectangle. Then show that (T; = Y0 t;(X;),j =
1,...,p) together form a minimal sufficient statistic.

Refer to the ‘factorization theorem’ in Section 1.3. Show that a statistic
U is sufficient if and only if for every pair 6y, 82, the ratio f(z|02)/f(z|61)
is a function of U(z).
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Bayesian Inference and Decision Theory

This chapter is an introduction to basic concepts and implementation of
Bayesian analysis. We begin with subjective probability as distinct from clas-
sical or objective probability of an uncertain event based on the long run
relative frequency of its occurrence. Subjective probability, along with utility
or loss function, leads to Bayesian inference and decision theory, e.g., estima-
tion, testing, prediction, etc.

Elicitation of subjective probability is relatively easy when the observa-
tions are exchangeable. We discuss exchangeability, its role in Bayesian anal-
ysis, and its importance for science as a whole.

In most cases in practice, quantification of subjective belief or judgment
is not easily available. Tt is then common to choose from among conventional
priors on the basis of some relatively simple subjective judgments about the
problem and the conventional probability model for the data. Such priors are
called objective or noninformative. These priors have been criticized for vari-
ous reasons. For example, they depend on the form of the likelihood function
and usually are improper, i.e., the total probability of the parameter space is
infinity. Here in Chapter 2, we discuss how they are applied; some answers to
the criticisms are given in Chapter 5.

In Section 2.3 of this chapter, there is a brief discussion of the many
advantages of being a Bayesian.

2.1 Subjective and Frequentist Probability

Probability has various connotations. Historically, it has been connected with
both personal evaluation of uncertainty, as in gambling or other decision mak-
ing under uncertainty, and predictions about proportion of occurrence of some
uncertain event. Thus when a person says the probability is half that this par-
ticular coin will turn up a head, then it will usually mean that in many tosses
about half the time it will be a head (a version of the law of large numbers).
But it can also mean that if someone puts this bet on head — if head he wins
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a dollar, if not he loses a dollar — the gamble is fair. The first interpretation is
frequentist, the second subjective. Similarly one can have both interpretations
in mind when a weather forecast says there is a probability of 60% of rain, but
the subjective interpretation matters more. It helps you decide if you will take
an umbrella. Finally, one can think up situations, e.g., election of a particular
candidate or success of a particular student in a particular test, where only
the subjective interpretation is valid.

Some scientists and philosophers, notably Jeffreys and Carnap, have ar-
gued that there may be a third kind of probability that applies to scientific
hypotheses. It may be called objective or conventional or non-subjective in
the sense that it represents a shared belief or shared convention rather than
an expression of one person’s subjective uncertainty.

Fortunately, the probability calculus remains the same, no matter which
kind of probability one uses. A Bayesian takes the view that all unknown
quantities, namely the unknown parameter and the data before observation,
have a probability distribution. For the data, the distribution, given 8, comes
from a model that arises from past experience in handling similar data as well
as subjective judgment. The distribution of @ arises as a quantification of the
Bayesian’s knowledge and belief. If her knowledge and belief are weak, she
may fall back on a common objective distribution in such situations.

Excellent expositions of subjective and objective Bayes approaches are
Savage (1954, 1972), Jeffreys (1961), DeGroot (1970), Box and Tiao (1973),
and Berger (1985a). Important relatively recent additions to the literature are
Bernardo and Smith (1994), O’Hagan (1994), Gelman et al. (1995), Carlin and
Louis (1996), Leonard and Hsu (1999), Robert (2001), and Congdon (2001).

2.2 Bayesian Inference

Informally, to make inference about 8 is to learn about the unknown 6 from
data X, i.e., based on the data, explore which values of @ are probable, what
might be plausible numbers as estimates of different components of @ and the
extent of uncertainty associated with such estimates. In addition to having
a model f(x|@) and a likelihood function, the Bayesian needs a distribution
for 8. The distribution is called a prior distribution or simply a prior be-
cause it quantifies her uncertainty about @ prior to seeing data. The prior
may represent a blending of her subjective belief and knowledge, in which
case it would be a subjective prior. Alternatively, it could be a conventional
prior supposed to represent small or no information. Such a prior is called an
objective prior. We discuss construction of objective priors in Chapter 5 (and
in Section 6.7.3 to some extent). An example of elicitation of subjective prior
is given in Section 5.4.

Given all the above ingredients, the Bayesian calculates the conditional
probability density of 8 given X = @ by Bayes formula
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H(6le) — OVl o)
Jo(0")f(x|6")de’

where m(8) is the prior density function and f(x|8) is the density of X,

interpreted as the conditional density of X given €. The numerator is the

joint density of 8 and X and the denominator is the marginal density of X.

The symbol 8 now represents both a random variable and its value. When the

parameter 6 is discrete, the integral in the denominator of (2.1) is replaced
by a sum.

The conditional density 7(8|x) of 8 given X = x is called the posterior
density, a quantification of our uncertainty about @ in the light of data. The
transition from 7 (0) to w(@|x) is what we have learnt from the data.

A Bayesian can simply report her posterior distribution, or she could report
summary descriptive measures associated with her posterior distribution. For
example, for a real valued parameter 8, she could report the posterior mean

E@|x) = /00 07 (6|x)do

— o0

and the posterior variance
Var (8lz) = E{(0 — E(6]2))?[z}
:/ (8 — E(8|x))*n(0)x)d6

—00
or the posterior standard deviation. Finally, she could use the posterior distri-
bution to answer more structured problems like estimation and testing. In the
case of estimation of 8, one would report the above summary measures. In the
case of testing one would report the posterior odds of the relevant hypotheses.

Ezample 2.1. We illustrate these ideas with an example of inference about p
for normally distributed data (N(u,o?)) with mean p and variance o2. The
data consist of i.i.d. observations X;, Xo,---, X, from this distribution. To
keep the example simple we assume n = 10 and ¢? is known. A mathemat-
ically convenient and reasonably flexible prior distribution for y is a normal
distribution with suitable prior mean and variance, which we denote by n and
72. To fix ideas we take n = 100. The prior variance 72 is a measure of the
strength of our belief in the prior mean n = 100 in the sense that the larger
the value of 72, the less sure we are about our prior guess about 7. Jeffreys
(1961) has suggested we can calibrate 72 by comparing with ¢2. For example,
setting 72 = 02/m would amount to saying information about 7 is about as
strong as the information in m observations in data. Some support for this
interpretation is provided in Chapter 5. By way of illustration, we take m = 1.
With a little algebra (vide Problem 2), the posterior distribution can be shown
to be normal with posterior mean

B(uX) = (gt 5X)/(5+ 5)=@+r105)/11  22)
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and posterior variance

0.2 2

2y /2 2 2
— — = 11 2.3
() /(& 477 =?/ (23)
i.e., in the light of the data, 4 shifts from prior guess n towards a weighted
average of the prior guess about p and X, while the variability reduces from
0% to 0?/11. If the prior information is small, implying large 72 or there are
lots of data, i.e., n is large, the posterior mean is close to the MLE X.

We will see later that we can quantify how much we have learnt from the
data by comparing 7 (u) and 7(u| X). The posterior depends on both the prior
and the data. As data increase the influence of data tends to wash away the
prior. Our second example goes back in principle to Bayes, Laplace, and Karl
Pearson (The Grammar of Science, 1892).

Ezample 2.2. Consider an urn with Np red and N(1 — p) black balls, p is
unknown but N is a known large number. Balls are drawn at random one
by one and with replacement, selection is stopped after n draws. For ¢ =
1,2,...,n, let
X — { 1 if the ith ball drawn is red;
710 otherwise.

Then X,’s are i.i.d B(1,p), i.e., Bernoulli with probability of success p. Let p
have a prior distribution 7(p). We will consider a family of priors for p that
simplifies the calculation of posterior and then consider some commonly used
priors from this family. Let

F(CX + /B) oa—1
r()r@)”

This is called a Beta distribution. (Note that for convenience we take p to as-

sume all values between 0 and 1, rather than only 0,1/N,2/N, etc.) The prior

mean and variance are /(o + 3) and o3/{(c+ B8)%(a+ B+ 1)}, respectively.
By Bayes formula, the posterior density can be written as

n(p) = (l—p)ﬂ_l, 0<p<l;a>0,8>0. (2.4)

m(p|X =z) = C(z)p**" (1 —p)Ptn—7)"1 (2.5)

where r = > | z; = number of red balls, and (C(z))~! is the denominator
in the Bayes formula. A comparison with (2.4) shows the posterior is also a
Beta density with « + r in place of « and 8+ (n — r) for 8 and

Cle)=I(a+pB+n)/{l(a+r)I(B+n—r)}
The posterior mean and variance are

E(ple) = (e +r)/(a+B8+n),
(a+7)B+n—71)
(a+B8+n2(a+B8+n+1)

Var (p|z) = (2.6)
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As indicated earlier, a Bayesian analyst may just report the posterior (2.5),
and the posterior mean and variance, which provide an idea of the center
and dispersion of the posterior distribution. It will not escape one’s attention
that if n is large then the posterior mean is approximately equal to the MLE,
p = r/n and the posterior variance is quite small, so the posterior is concen-
trated around p for large n. We can interpret this as an illustration of a fact
mentioned before when we have lots of data, the data tend to wash away the
influence of the prior.

The posterior mean can be rewritten as a weighted average of the prior
mean and MLE.

(a+p3) @ n r
(a+B+n)(a+F) (a+B+n)n

Once again, the importance of both the prior and the data comes out, the
relative importance of the prior and the data being measured by (a + 3) and
n.

Suppose we want to predict the probability of getting a red ball in a new
(n + 1)-st draw given the above data. This has been called a fundamental
problem of science. It would be natural to use E(p|z), the same estimate as
above. We list below a number of commonly used priors and the corresponding
value of E(p| X1, X2, -+, Xn).

The uniform prior corresponds with & = 8 = 1, with posterior mean equal
to (37 X; +1)/(n+ 2). This was a favorite of Laplace and Bayes but not so
popular anymore. If « = 3 = %, we have the Jeflreys prior with posterior mean
(37 X;+3)/(n+1). This prior is very popular in the case of one-dimensional
f as here. It is also a reference prior due to Bernardo (1979). Reference priors
are very popular. If we take a Beta density with & = 0, 8 = 0, it integrates
to infinity. Such a prior is called improper. If we still use the Bayes formula
to produce a posterior density, the posterior is proper unless r = 0 or n. The
posterior mean is exactly equal to the MLE.

Objective priors are usually improper. To be usable they must have proper
posteriors. It is argued in Chapter 5 that improper priors are best understood
through the posteriors they produce. One might examine whether the poste-
rior seems reasonable.

Suppose we think of the problem as a representation of production of
defective and non-defective items in a factory producing switches, we would
take red to mean defective and black to mean a good switch. In this context,
there would be some prior information available from the engineers. They
may be able to pinpoint the likely value of p, which may be set equal to the
prior mean a/(c+ 3). If one has some knowledge of prior variability also, one
would have two equations from which to determine « and 3. In this particular
context, the Jeffreys prior with a lot of mass at the two end points might be
adequate if the process maintains a high level of quality (small p) except when
it is out of control and has high values of p. The peak of the prior near p =1
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Table 2.1. An Epidemiological Study

Food Eaten
Crabmeat No Crabmeat
Potato Salad|No Potato Salad|Potato Salad|No Potato Salad
Ti1 120 4 22 0
Not Il 80 31 24 23

could reflect frequent occurrence of lack of control or a pessimistic prior belief
to cope with disasters.

It is worth noting that the uniform, Jeffreys prior, and reference priors are
examples of objective priors and that all of them produce a posterior mean
that is very close to the MLE even for small n. Also all of them make better
sense than the MLE in the extreme case when p = 0. In most contexts the
estimate p = 0 is absurd, the objective Bayes estimates move it a little to-
wards p = %, which corresponds with total ignorance in some sense. Such a
movement is called a shrinkage. Agresti and Caffo (2000) and Brown et al.
(2003) have shown that such estimates lead to confidence intervals with closer
agreement between nominal and true coverage probability than the usual con-
fidence intervals based on normal approximation to $ or inversion of tests. In
other words, the Bayesian approach seems to lead to a more reasonable point
estimate as well as a more reliable confidence interval than the common clas-

sical answers based on MLE.

Ezample 2.3. This example illustrates the advantages of a Bayesian interpre-
tation of probability of making a wrong inference for given data as opposed
to classical error probabilities over repetitions. In this epidemiological study
repetitions don’t make sense.

The data in Table 2.1 on food poisoning at an outing are taken from
Bishop et al. (1975) who provide the original source of the study. Altogether
320 people attended the outing, 304 responded to questionnaires.

There was other food also but only two items, potato salad and crabmeat,
attracted suspicion. We focus on the main suspect, namely, potato salad. A
partial Bayesian analysis of this example will be presented later in Chapter 4.

Ezample 2.4. Let X1,X,...,X, be iid N(u,o0?) and assume for simplicity
o? is known. As in Chapter 1, ; may be the expected reduction of blood
pressure due to a new drug. You want to test Hp : u < po versus Hy : p > po,
where p corresponds with a standard drug already in the market.
Let m(u) be the prior. First calculate the posterior density m(u]X). Then
calculate o
| muiX)du = P{ta]X),
-0

and
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/ " r(uX)dp = 1 — P{H|X} = P{H,|X}.

{¢]

One may simply report these numbers or choose one of the two hypotheses if
one of the two probabilities is substantially bigger.

We provide some calculations when the prior for p is N(n, 72). We recall
from Example 2.1 that the posterior for x4 is normal with mean and variance
given by equations (2.2) and (2.3). If follows that

7(1 < ol X) = B(2) and 7(s > ol X) = 1 — (2)
where & is the standard normal distribution function and

o= G+ BX)/(5+ 5)
(Zr2)(Z 4 )

A conventional choice is to make 72 — oo above, which would give the same
result as assuming an improper uniform prior

m(p) =c, —00 < p < 00.
Any of these would lead to

N
2= (uo — X) V2.
o
Suppose we wish to reject if the posterior odds against Hy are 19:1 or more
i.e., if posterior probability of Hj is < .05. Then we reject Hy if
po — X < (~1.64)-=
n

- o
or X > po+ 1.64ﬁ,
which is exactly the same as the classical test for this problem with a = .05.
However if we had wished to test the sharp null hypothesis Hy : p = po
against Hy : p # pg or Hy : po > pg, we have to choose the prior in a different
way since the prior we chose would assign zero probability to Hy. Moreover,
the answers tend to be very different from classical answers as we shall see in
Chapter 6.

2.3 Advantages of Being a Bayesian

The Bayesian approach provides a fairly explicit solution to common problems
of statistical inference (Chapters 2 and 8), new problems of high-dimensional
data analysis that are coming up because of emergence of high-dimensional
data sets (Chapters 9 and 10), as well as complex decision problems of real
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life (Chapter 10). It can handle presence of prior knowledge or partial prior
knowledge, specially constraints like a < 8 < b relatively easily. In some cases,
a subjective prior can be elicited (Chapter 5), and in most other cases one
can choose objective priors. Of course, in all cases one would wish to study to
some extent the robustness of various aspects of the posterior with respect to
modest variation in prior as illustrated in Chapter 3.

In classical decision theory, there are theorems due to Wald that imply
that Bayes rules and their limits together form a complete class, i.e., any
decision rule that is not of this form can be improved by a rule of this form.
In a similar vein and as a sort of converse, Wald (1950) also proved that if a
decision rule is admissible then it must be Bayes or limit of Bayes rules. There
are various senses in which a decision rule é can be a Bayes rule in the limit.

In this book, we stress objective priors, because it still seems difficult to
elicit fully subjective priors, at least in most problems in practice. If a fully
subjective prior is available we would indeed use it. In particular, whatever
subjective input is available ought to be used, specially in high-dimensional
problems.

The Bayesian approach can be deduced from several sets of axioms. One
such set is discussed in Section 3.3. Moreover, the subjective Bayesian ap-
proach is free from certain paradoxes or violation of principles that are asso-
ciated with classical statistics. These unpleasant properties are due to the fact
that classical statistics provides either data dependent measures like P-values
which are not easy to interpret or evaluations like risk functions or confidence
coefficients that are obtained by integrating over the whole sample space and
so may be absurd when a particular data set is in hand. The paradoxes can
be quite dramatic. The objective Bayesian approach is not completely free
from violation of some of these principles. We discuss some of these issues in
Section 5.2.

Bayesians usually accept as a principle that some validation in the real
world is good whenever possible. Occasionally, a proxy for the real world
may be found in conceptual frequentist constructions of possible real world
scenarios and a Bayesian may seek some sort of validation in such cases. By
validation in the real world we mean predictive ability. One may use a baseball
or cricket or soccer player’s performance in the first half of the season to
predict his performance in the second half. For a successful application of
(parametric empirical) Bayes methodology, relative to classical methods, see
Morris (1983) and Ghosh and Meeden (1997). By cross validation, one means
that a part of data is used to make an inference and the other part to validate
it, even if these two parts do not have a connotation of present and future as
in the baseball example of Morris (1983). A validation of Bayesian approach
to model selection is given in Hoeting et al. (1999). Most Bayesian papers on
new methods offer some validation.

It turns out that in objective Bayesian analysis one often has such frequen-
tist validation; see, for example, the concept of probability matching priors
(Subsection 5.1.4). Although this provides some reconciliation between the two
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approaches as far as the decision that is made, only the objective Bayesian
approach has a posterior and hence a data dependent method of evaluating
the performance of the decision.

Finally, basic Bayesian ideas and measures are easy to interpret and hence
easy to communicate.

One may well ask why in spite of all these advantages, an explosive growth
and spread of the Bayesian approach has occurred only recently, in the past
fifteen or so years. A major factor has been the arrival of MCMC (Markov
chain Monte Carlo) in a big way and consequent advances in computation
of posteriors for high-dimensional & and many real-life applications. A classic
paper that ushered in these changes is Gelfand and Smith (1990).

2.4 Paradoxes in Classical Statistics

The evaluation of performance of an inference procedure in classical statistics
is based on expected quantities like bias or variance of an estimate, error
probabilities for a test, and confidence coefficients of a confidence interval.
Such measures are obtained by integrating or summing over the sample space
of all possible data. Hence they do not answer how good the inference is for
a particular data set. The following two examples show how irrelevant the
classical answers can be once the data are in hand.

Ezample 2.5. (Cox (1958)) To estimate p in N(u, 0?), toss a fair coin. Have
a sample of size n = 2 if it is a head and take n = 1000 if it is a tail. An
unbiased estimate of u is X,, = Y. ; X;/n with variance = %{%2 + %} ~ "72.
Suppose it was a tail. Would you believe 02 /4 is a measure of accuracy of the
estimate?

Ezample 2.6. (Welch (1939)) Let X1, X5 be i.i.d. U(6—2%,0+3). Let X£C be
a 95% confidence interval, C' > 0 being suitably chosen. Suppose X; = 2 and
X, = 1. Then we know for sure § = (X;+X3)/2 and hence § € (X —C, X+C).
Should we still claim we have only 95% confidence that the confidence interval
covers 67

One of us (Ghosh) learned of this example from a seminar of D. Basu
at the University of Illinois, Urbana-Champaign, in 1965. Basu pointed out
how paradoxical is the confidence coeflicient in this example. This perspective
doesn’t seem to be stressed in Welch (1939). The example has been discussed
many times, see Lehmann (1986, Chapter 10, Problems 27 and 28), Pratt
(1961), Kiefer (1977), Berger and Wolpert (1988), and Chatterjee and Chat-
topadhyay (1994).

Fisher was aware of this phenomenon and suggested we could make in-
ference conditional on a suitable ancillary statistic. In Cox’s example (Exam-
ple 2.5), it would be appropriate to condition on the sample size and quote the
conditional variance given n = 1000 as a proper measure of accuracy. Note
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that n is ancillary, its distribution is free of 8, so conditioning on it doesn’t
change the likelihood. In Welch’s example (Example 2.6), we could give the
conditional probability of covering 9, conditional on X; — X5 = 1. Note that
X1 — X2 is also an ancillary statistic like n in Cox’s example, it contains no
information about # — so fixing it would not change the likelihood — but its
value, like the value of n, gives us some idea about how much information there
is in the data. You are asked to carry out Fisher’s suggestion in Problem 4.

Suppose you are a classical statistician and faced with this example you are
ready to make conditional inference as recommended by Fisher. Unfortunately,
there is a catch. Classical statistics also recommends that inference be based on
minimal sufficient statistics. These two principles, namely the conditionality
principle (CP) and sufficiency principle (SP) together have a far reaching
implication. Birnbaum (1962) proved that they imply one must then follow
the likelihood principle (LP), which requires that inference be based on the
likelihood alone, ignoring the sample space. A precise statement and proof are
given in Appendix B.

Bayesian analysis satisfies the likelihood principle since the posterior de-
pends on the data only through the likelihood. Most classical inference pro-
cedures violate the likelihood principle.

Closely related to the violation of LP is the stopping rule paradox in
classical inference. There is a hilarious example due to Pratt (Berger, 1985a,
pp- 30-31).

2.5 Elements of Bayesian Decision Theory

We can approach problems of inference in a mathematically more formal way
through statistical decision theory. This would make the problems somewhat
abstract and divorced from the real-life connotations but, on the other hand,
provides a unified conceptual framework for handling very diverse problems.

A classical statistical decision problem, vide Section 1.5, has the following
ingredients. It has as data the observed value of X, the density f(x|@) where
the parameter @ lies in some subset @ (known as the parameter space) of the
p-dimensional Euclidean space RP. It also has a space A of actions or decisions
a and a loss function L(@, a) which is the loss incurred when the parameter
is @ and the action taken is a. The loss function is assumed to be bounded
below so that integrals that appear later are well-defined. Typically, L(8, a)
will be > 0 for all @ and a. We treat actions and decisions as essentially the
same in this framework though in non-statistical decision problems there will
be some conceptual difference between a decision and the action it leads to.
Finally it has a collection of decision functions or rules §(z) that take values
in A. Suppose §(z) = a for given x. Then the statistician who follows this
particular rule §(x) will choose action a given this particular data and incur
the loss L(0, a).
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Both estimation and testing are special cases. Suppose the object is to
estimate 7(8), a real-valued function of 8. Then A =R, L(6,a) = (a—7(6))?
and a decision function §() is an estimate of 7(8). If it is a problem of testing
Hy : 6 = 0 versus Hy : 0 # 0, say, then A = {ap, a1} where a; means the
decision to accept Hj, L(0, a;) = 0 if 6 satisfies H; and L(8,a;) = 1 otherwise.
If I{z) is the indicator of a rejection region for Hp, then the corresponding
d(x) is equal to a; if I(x) =7, 7 =0,1.

We recall also how one evaluates the performance of () in classical statis-
tics through the average loss or risk function

R(0,6) = Eo(L(8,6(X)).

If § is an estimate of 7(0) in an estimation problem, then R(6,d) = Eg(7(6) —
§(X))? is the MSE (mean squared error). If § is the indicator function of an
Hy-rejection region, then R(6,§) is the probability of error of first kind if
6 € Oy and probability of error of second kind if 8 € 6.

For a Bayesian, 0 is a random variable with prior distribution 7(8) before
seeing the data, for example, at the planning stage of an experiment. The
relevant risk at this stage is the so-called preposterior risk

/ R(6,6)7(8)d6 = R(~,d).
e

It depends on § and the prior. On the other hand, after the data are in hand,
the relevant distribution of @ is given by the posterior density 7(6|x) and the
relevant risk is the posterior risk

E(L(0,a)lz) = ¢(z, a).

The posterior risk associated with § is ¥(x, d(x)). So, in principle, there are
two Bayesian decision problems.

A. Given X = z, choose an optimal a, i.e., choose an a to minimize ¥ (x, a).
B. At the planning stage, choose an optimal §(X), denoted as §, and called
the Bayes decision rule or simply the Bayes rule, to minimize R(m,d).

We have the following pleasant fact, which shows in a sense both problems
give the same answer for a given X.

Theorem 2.7. (a) For any ¢,
R(r,d) = E((X,6(X))).
b) Suppose a{x) minimizes Y(x,a), i.e.

Yz, a(x)) = igf Yz, a).

Then the decision function a{x) minimizes R(r,§).
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Proof. (a) Because E(L(8,6(X))|X) = ¥(X,5(X)) by definition of 1, the
result follows by taking expectations on both sides.

(b) Let a(x), as defined in the theorem, be denoted by &. Then, by part (a),
and definition of a(x),

R(m,b0) = E(¥(X, a(X))

E(y(X,6(X)) for any &,
= R(m, )s

IA

so that R(w,dp) = infs R(w, ), as claimed. O

This fact will be used below in the sections on estimation, interval estima-
tion and testing.

2.6 Improper Priors

For point and interval estimates and to some extent in testing, objective priors
are often improper. We have considered an improper prior for u in N(u,0o?)
earlier in Examples 2.1 and 2.4 but somewhat indirectly. Also, one of the
Beta priors in Example 2.2 was improper. We discuss a few basic facts about
improper priors. We follow Berger (1985a).

An improper prior density 7(6) is non-negative for all 8 but

/ 7(6)d(8) = oc.
6

Such an improper prior can be used in the Bayes formula for calculating the
posterior, provided the denominator is finite for all & {or all but a set of x
with zero probability for all 8), i.e.,

/ 7(0) f(x|8)d8 < cc.
6

Then the posterior density 7(8|X = ) is a proper probability density func-
tion and can be used at least in inference problems or the posterior decision
problem where we define and minimize ¥(x, @). However, for improper priors
usually R(w,4) is not used.

The most common improper priors are

m(p) =C, —oo<p<oo,

1
7r2(or)=;, 0 <o <00,

for location and scale parameters. Both the improper priors may be inter-
preted as a sort of limit of the proper priors:
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_[1/@L) if~L<u<L;
(k) = { 0 otherwise,

() = Al f0<1/L <o < L;
L9 = 0 otherwise,

where A = 1/(2log L), in the sense that the posteriors for m; and 72 may be
obtained by making L — oo in m; 1,(6|X). Also, as pointed out by Heath and
Sudderth (1978), the posteriors for 7; are same as the posteriors for suitably
chosen proper but finitely additive priors.

2.7 Common Problems of Bayesian Inference

There are three common problems, as in classical statistics, namely, point
estimation, interval estimation, and testing. We have already seen examples of
point estimates and tests of one-sided hypotheses, so we begin with these two
problems and then turn to interval estimates (credible intervals) and testing
of a sharp null hypothesis. Testing a sharp null hypothesis will be illustrated
with a popular Bayes test for the normal mean due to Jeffreys. We also discuss
prediction and a few other topics related to testing and interval estimation.

Because the differences between Bayesian inference and Bayesian decision
theory is mainly one of nuances, we do not make any sharp distinctions be-
tween the two approaches. So our treatment of these three problems as well
as other problems later includes elements of both — loss functions from deci-
sion theory as well as evidential descriptive measures from inference. A full
Bayesian study of a problem consists of two stages, the planning or prepos-
terior stage followed by posterior Bayesian analysis of data collected. At the
planning stage one would have problems of choosing optimum design and op-
timum sample size. Then the integrated Bayes risk R(w) = infs; R(w, d) plays
a central role.

In this book we concentrate on the posterior Bayes analysis of data.

2.7.1 Point Estimates

For a real valued 8, standard Bayes estimates are the posterior mean or the
posterior median. The posterior mean is the Bayes estimate corresponding
with squared error loss and the posterior median i1s the Bayes estimate for
absolute deviation loss. Along with the posterior mean one reports the poste-
rior variance or its square root, the posterior standard deviation of 8. If one
chooses to work with the posterior median, it would be convenient to report a
couple of other posterior quantiles to give an idea of the posterior variability
of 8. One could report at least the first and third posterior quartiles.

If the posterior is unimodal then the posterior mode is another choice. It is
similar to the MLE of classical statistics. Indeed if the prior is uniform, both
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are identical. Along with the posterior mode one can report a suitable highest
posterior density (HPD) credible interval as a measure of posterior variability.
If the parameter is a vector, common choices for reporting are the posterior
mean vector and the posterior dispersion matrix. Again if the posterior is
unimodal, one can report the posterior mode with a suitable HPD credible
set. Problem 14 illustrates this with a multivariate normal model with known
dispersion matrix and a multivariate normal or uniform prior for the normal
mean vector.

2.7.2 Testing
We want to test
Hy:6 €6y versus Hy : 6 € O,. (2.7)

If ©¢ and @, are of the same dimension as for one-sided null and alternative
hypotheses, it is convenient and easy to choose a prior density that assigns
positive prior probability to @y and @;. One then calculates the posterior
probabilities P{©;|x} as well as the posterior odds ratio (or simply posterior
odds), namely,

P{Oo|z}/P{O1|z}

that most people prefer. One would then find a threshold like 1/9 or 1/19,
etc. to decide what constitutes evidence against Hy. The Bayes rule for 0-1
loss is to choose the hypothesis with higher posterior probability.

There is a conceptual problem with this approach. If the prior is improper,
then the prior probabilities may be undefined — they are, strictly speaking,
undefined in the example with one-sided null and alternatives. Even if the
prior is proper, the prior probabilities assigned to ©;, i.e., P(©;) may not be
carefully chosen and so may not be satisfactory. Surely, if our attitude to Hg
is still as in classical Statistics, namely, that it should not be rejected unless
there is compelling evidence to the contrary, then it would be unreasonable to
assign less prior probability to @y than ©;. In fact an objective or impartial
choice would be to assign equal probabilities. These things can be done better
if we use the following alternative way of specifying the prior.

Let mp and 1 — my be the prior probabilities of @¢ and ©,. Let ¢;(8) be
the prior p.d.f. of 8 under ©;, so that

/ 0:(6)d0 = 1.

i

The prior in the previous approach is nothing but
m(8) = mog0(0)1{0 € O} + (1 — m0)g1(0)1{0 € O,}. (2.8)

We do not require any longer that @ and ©@; are of the same dimension. So
in principle, sharp null hypotheses are also covered. We can now proceed as
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before and report posterior probabilities or posterior odds. To compute these
posterior quantities, note that the marginal density of X under the prior =
can be expressed as

() = /@ f(216)m(6) d6

Il

™ | f(z|0)g90(6) d6 + (1 — mo) A f(x|6)g1(8)d6  (2.9)

and hence the posterior density of 8 given the data X = z as

_ f(=|0)m(6) mof(x60)g0(8)/m(x)  if 8 € O;
mOl2) =y {(1 — 7o) f(2]0)g1(6) /mar(z) i 6 € 0y, 210

It follows then that

0

P (Hofe) = P*(@0fs) = =205 [ f(a10)a0(0) 0

) 0 [, /(2/8)g0(6) dB »

70 Jo, f(210)g0(0) d6 + (1 — mo) [, f(z]6)g1(6) d6

A=70) [ 1(216)9,(6) d6
ﬂ(m) e

) (1 = 7o) f, f(216)1(6) 4B
70 Jo, 1 #16)90(6) 48 + (1 — 7o) [, (216):(6) d6°

One may also report the Bayes factor, which does not depend on mg. The
Bayes factor of Hy relative to Hj is defined as

o, £(/6)g0(6) dO
f@l f(x]0)g1(8)d6°

Clearly, BF1g = 1/BFg;. The posterior odds ratio of Hy relative to Hj is

( o >BF017
1 — 7o

which reduces to BFy; if mg = % Thus, BFp; is an important evidential
measure that is free of mg. The smaller the value of BFjy, the stronger the
evidence against Hy.

Let us consider an example to illustrate some of these measures. It will be

extended to include the well-known Jeffreys’ analysis later.

PT(Hi|z) = P"(O1]z) =

(2.11)

Ezample 2.8. Consider a blood test conducted for determining the sugar level
of a person with diabetes two hours after he had his breakfast. It is of interest
to see if his medication has controlled his blood sugar levels. Assume that
the test result X is N(6, 100}, where # is the true level. In the appropriate
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population (diabetic but under this treatment), 6 is distributed according to
a N(100,900). Then, marginally X is N (100, 1000), and the posterior distri-
bution of # given X = z is normal with

mean = 5 + 7555100 = 0.9 + 10 and variance = 1935300 = 90.

Suppose we want to test Hg : 8 < 130 versus H; : 6 > 130. If the blood test
shows a sugar level of 130, what can be concluded? Note that, given this test
result, the true mean blood sugar level (#) may be assumed to be N(127, 90).

Consequently, we obtain,

130 — 127

V90
P(6 > 130|X = 130) = 0.376. Therefore,

Posterior odds ratio = 0.624/0.376 = 1.66.

P(H<130X =130)= & ( ) = &(.316) = 0.624, and hence

Because mg = P (0 < 130) = ¢(13%190) = &(1), the prior odds ratio is
&(1)/(1 — ®(1)) = .8413/.1587 = 5.3, and thus the Bayes factor turns out to
be 1.66/5.3 = .313.

It can also be noted here that in one-sided testing situations when a contin-
uous prior 7 can be specified readily for the entire parameter space, there is no
need to express it in the form of 7(8) = 7ogo(8)I{0 € Oy} +(1—m0)g1(0)I{6 €
©1}. However, the problem of testing a point null hypothesis turns out to be
quite different as shown below.

Testing a Point Null Hypothesis
The problem is to test
Hy:0=0y versus Hj : 6 # 0. (2.12)

Consider the following examples, which indicate when we need to consider
point nulls and when we need not.

Example 2.9. In a statistical quality control situation, 8 is the size of a unit
and acceptable units are with § € (g — 6,09 + ). Then one would like to test

H05 : Ig-—gol §(5

In this problem the length of the interval, 26, can be explicitly specified. On
the other hand, this is not the case in the following.

Example 2.10. (1) Suppose we want to test the hypothesis,
Hy : Vitamin C has no effect on the common cold.

Clearly this is not meant to be thought of as an exact point null; surely
vitamin C has some effect, though perhaps a very minuscule effect. Thus, in
reality, this is still the case of an interval null hypothesis, with a very small
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unspecified interval. However, it would be better represented as a point null
hypothesis.
(ii) On the other hand, a hypothesis such as

Hy : Astrology cannot predict the future
can perhaps be represented as an exact point null.

Since these issues are important, we summarize the main points below.
If the interval in an interval null hypothesis, along with 7y, go, and g, can
be specified, it is best to treat the problem as an interval null hypothesis
problem and proceed accordingly. However, when the interval around 6 is
small but unspecified, and gq is difficult to specify, it is best to approximate the
interval null by a point null. Conceptually testing a point null is not a different
problem, but there are complications. First of all, it is not possible to use a
continuous prior density because any such prior will necessarily assign prior
probability zero to the null hypothesis. Consequently, the posterior probability
of the null hypothesis will also be zero. Intuitively, this is clear: if the null
hypothesis is a priori impossible, it will remain so a posteriori also. Therefore,
a prior probability of mg > 0 needs to be assigned to the point 6y and the
remaining probability of m; = 1 — mg will be spread over {8 # 6y} using a
density g;. Simply take go to be a point mass at g in (2.8). If the point null
hypothesis approximates an interval null hypothesis, Hy : 6 € (6 — €,6y + €),
then g is the probability assigned to the interval (6p—¢, 8g+€) by a continuous
prior. The complication now is that the prior 7 is of the form

7(8) = moI{6 = B} + (1 - m0)g1 (6)1{6 # 6o} (2.13)

and hence has both discrete and continuous parts. However, (2.9) and (2.10)
yield,

m(z) = mo f(z|6o) + (1 — mo)m1 (), (2.14)

where
ma(z) = /9 , [an@a.

Therefore, from (2.10),

nols) = LT
_ mof(z]60)
mof(z]60) + (1 — mo)mu ()

1—m my(z) 7

I
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It follows then that the posterior odds ratio is given by

7(0o|x) _ o f(z|fo)
1—m(folx) (1 —mo) ma(z)’

and hence the Bayes factor of Hy relative to H; (which is the ratio of the
above posterior odds ratio to the prior odds ratio of mo/(1 — 7)) is

B:mm:B%mw:%%g, (2.16)
Thus, (2.15) can be expressed as
o 1— o -1 r -1
o) = {141 - BRI @) (2.17)

Example 2.11. Suppose X ~ B(n,f) and we want to test Hy : 6 = 6 versus
H; : 0 # 6y, a problem similar to checking whether a given coin is biased
based on n independent tosses (where 8y will be taken to be 0.5). Under the
alternative hypothesis, suppose 8 is distributed as Beta(a, 8). Then m;(x) is

iven b
g y m(z):(n) I'a+pB) I'a+z)I'(B+n—x)
' z) (@B Ta+p+n)
so that
— n T . n—z n (a ﬁ) (a+z)F(ﬁ+n—z)
sinte) = (3)s 00/ () i T o)

=051 =00/ ( (I Iatftn)
F@r@) Iatfin)

= Ta+h) Fa+al@+n-z 00 %"

Hence, we obtain,

)
I'(a+8) I'Na+ax)I' w+n—@)

1—m -1
aol) = {1+ 7 B o)}
I(a+B) I(ata)[(B+n—z) ) '
_ 1y Lo Tr®) — Tetsin)
T 98(1 - 90)”—I

Further discussion on hypothesis testing will be deferred to Chapter 6
where basic aspects of model selection will also be considered.

Jeffreys Test for Normal Mean with Unknown o2

Suppose the data consist of i.i.d. observations X, Xs,..., X, from a normal
N(u,o?) distribution. We want to test Hy : u = uo versus Hy : u # po, where
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1o is some specified number. Without loss of generality, we assume pg = 0.
Note that the parameter o2 is common in the two models corresponding to H
and H, and p occurs only in H,. Also, in this example  and o2 are orthogonal
parameters in the sense that the Fisher information matrix is orthogonal.
In such situations, Jeffreys (1961) suggests using (improper) objective prior
only for the common parameter and using default proper prior for the other
parameter that occurs only in one model. Let us consider the following priors
in our example. We take the prior gg(c) = 1/0 for o under Hy. Under H;, we
take the same prior for o and add a conditional prior for i given o, namely
g1(plo) = %gz(u

0)'

where g2(-) is a p.d.f. An initial natural choice for go is N(0, ¢?). Thus the prior
conditional variance of y is calibrated with respect to o2 as recommended by
Jeffreys. Usually, one takes ¢ = 1.

Jeffreys points out that one would expect the Bayes factor BFp; should
tend to zero if £ — oo and s? = 15 Y (z; — Z)? is bounded. He gives an
argument that implies that unless g; has no finite moments, this will not
happen. In particular, with g» = normal, it can be verified (Problem 12)
directly that BFp; doesn’t tend to zero as above. Jeffreys suggested we should
take g2 to be Cauchy. So the priors recommended by Jeffreys are

1
go(oc) = — under Hy
o
and
( a)—l ( |0)_l__17 under H-
gl :u’7 - a_gl :u’ - 0_0_71_(1 +/,L2/0'2) 1-

One may now find the Bayes factor BFp; using (2.11). Let the joint density
of Xi,...,X, under N(u,o?) model be denoted by f(x1,...,zn|u,c?). Then
BFy, is given by

[ f(@1,. .., 2,10, 0%)go(0)do

BFy = ,
T T @l 02) g1 (p, o) dudo

where go(0) and g1 (i, o) are as given above. The integral in the numerator of
BFy; can be obtained in closed form. However, no closed form is available for
the denominator. To calculate this one can proceed as follows. The Cauchy
density g;(uo) can be written as a Gamma scale mixture of normals

o0
_ O 172 —0%7)2 ( VT —m2/2> d
g) = — € —€ T
a1(klo) /o Van Vin

where 7 is the mixing Gamma variable. Then to calculate the denominator
of BFp;, one can integrate over u and ¢ in closed form. Finally, one has a
one-dimensional integral over 7 left.
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Ezample 2.12. Einstein’s theory of gravitation predicts that light is deflected
by gravitation and specifies the amount of deflection. Einstein predicted that
light of stars would deflect under gravitational pull of the sun on the nearby
stars, but the effect would be visible only during a total solar eclipse when
the deflection can be measured through apparent change in a star’s position.
A famous experiment by a team led by British astrophysicist Eddington, im-
mediately after the First World War (see Gardner, 1997), led to acceptance
of Einstein’s theory. Though many other better designed experiments have
confirmed Einstein’s theory since then, Eddington’s expedition remains his-
torically important. There are four observations, two collected in 1919 in Ed-
dington’s expedition, and two more collected by other groups in 1922 and
1929. The observations are 1 = 1.98,z2 = 1.61,z3 = 1.18, 24 = 2.24 (all in
seconds as measures of angular deflection). Suppose they are normally dis-
tributed around their predicted value p. Then Xi,---, X4 are independent
and identically distributed as N(u,02). Einstein’s prediction is u = 1.75. We
will test Hy : = 1.75 versus Hy : p # 1.75, where o2 is unknown.

If we use the conventional priors of Jeffreys to calculate the Bayes factor
BPFp; in this example, it turns out to be 2.98 (Problem 7). Thus the calcula-
tions with the given data lend some support to Einstein’s prediction. However,
the evidence in the data isn’t very strong. This particular experiment has not
been repeated because of unavoidable experimental errors. There are now
better confirmations of Einstein’s theory, vide Gardner (1997).

2.7.3 Credible Intervals

Bayesian interval estimates for 6 are similar to confidence intervals of classical
inference. They are called credible intervals or sets.

Definition 2.13. For 0 < a < 1, a 100(1 — @)% credible set for 6 is a subset
C C O such that
PCX=z}=1—-q.

Usually C is taken to be an interval. Let  be a continuous random variable,
61,0 be 100a;% and 100(1 — a2)% quantiles with a; + as = a. Let C =
[6D),0)]. Then P(C|X = z) = 1—a. Usually equal tailed intervals are chosen
S0 a1 = ag = a/2.

If 6 is discrete, usually it would be difficult to find an interval with exact
posterior probability 1 — «. There the condition is relaxed to

PCX=z)>1-«a

with the inequality being as close to an equality as possible. In general, one
may use a conservative inequality like this in the continuous case also if exact
posterior probability 1 — « is difficult to attain.

Whereas the (frequentist) confidence statements do not apply to whether
a given interval for a given x covers the “true” 8, this is not the case with
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credible intervals. The credibility 1—« of a credible set does answer a layman’s
question on whether the given set covers the “true” # with probability 1 — a.
This is because in the Bayesian approach, “true” 4 is a random variable with
a data dependent probability distribution, namely, the posterior distribution.

For arbitrary priors, these probabilities will usually not have any frequency
interpretation over repetitions like confidence statements. But for common
objective priors, such statements are usually approximately true because of the
normal approximation to the posterior distribution (see Chapter 4). Moreover,
the approximations are surprisingly accurate for the Jeffreys prior. You are
invited to verify this in Problem 8. Some explanation of this comes from the
discussion of probability matching priors (Chapter 5).

The equal tailed credible interval need not have the smallest size, namely,
length or area or volume whichever is appropriate. For that one needs an HPD
(Highest Posterior Density) interval.

Definition 2.14. Suppose the posterior density for 6 is unimodal. Then the
HPD interval for 8 is the interval

C={6:7(6|X =1zx) >k},
where k is chosen such that
PCIX=2)=1—q.

Ezample 2.15. Consider a normal prior for mean of a normal population with
known variance o2. The posterior is normal with mean and variance given by
equations (2.2) and (2.3). The HPD interval is the same as the equal tailed
interval centered at the posterior mean,

C = posterior mean = 2,3 posterior s.d.

Credible intervals are very easy to calculate unlike confidence intervals,
the construction of which requires pivotal quantities or inversion of a family
of tests (Chapter 1, Section 1.4.3).

For a vector 8, one may consider a HPD credible set, specially if the
posterior is unimodal. Alternatively, one may have credible intervals for each
component. One may also report the probability of simultaneous coverage of
all components.

2.7.4 Testing of a Sharp Null Hypothesis Through Credible
Intervals

Some Bayesians are in favor of testing, say, Hp : 6 = 6y versus Hy : 8§ # 6
by accepting Hy if 8y belongs to a chosen credible set. This is similar to the
relation between confidence intervals and classical testing, except that there
the tests are inverted to get confidence intervals. This must be thought of as
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a very informal way of testing. If one really believes that the sharp null is a
well-formulated theory and deserves to be tested, one would surely want to
attach a posterior probability to it. That is not possible in this approach.

Because the inference based on credible intervals often has good frequency
properties, a test based on them also is similar to a classical test. This is
in sharp contrast with inference based on Bayes factors or posterior odds
(Section 2.7.2 and Chapter 6).

2.8 Prediction of a Future Observation

We have already done this informally earlier. Suppose the data are z1,-- -, z,,
where X1, ..., X, are i.i.d. with density f(z|8), e.g., N(u, 0?) with 02 known.
We want to predict the unobserved X, 1 or set up a predictive credible in-
terval for X, 1.

Prediction by a single number t(zi,---,z,) based on z,---,z, with
squared error loss amounts to considering prediction loss

B{(Xns1 — P10} = B [{(Xn1 = B(Xnps]2)) = (¢~ B(Xnis|2))} |2
= B{(Xnt1 = B(Xn1[@))%[2} + (¢ = B(Xnyao))?

which is minimum at
t= E(Xn+1|:l))

To calculate the predictor we need to calculate the predictive distribution
W(ensile) = [ wansale, 0)r(60]e)
2]

- / f(@ns1/0)m(8]z) d6.
(<]

[e

Let u(8) = / zf(z|@) dz. It can be shown that

— 00

E(Xniale) = E(u6)|2) = [ u(®)m(6la) a0

[e

and hence for the normal problem the predictor is / um(p|x) dp = posterior
—o0
mean of p.
Similarly in Example 2.2, the predictive probability that the next ball is

red is
a+rT

E(X =F = —
(Xn+1l) (plz) atBtn
where r = 3T z;.
A predictive credible interval for X, 1 is (¢, d) where ¢ and d are 100a; %
and 100(1 — a2)% quantiles of the predictive distribution of X,41 given x.
Usually, one takes a1 = ap = /2 as for credible intervals.
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2.9 Examples of Cox and Welch Revisited

In both these problems (see Examples 2.5 and 2.6), the parameter is a location
parameter. A common objective prior is

m(f) = constant , —oo < 8 < o0.

You can verify (Problem 11) that the objective Bayesian answers, namely, pos-
terior variance in Cox’s example and posterior probability in Welch’s example,
agree with the corresponding conditional frequentist answers recommended by
Fisher. This would typically be the case for location and scale parameters.

2.10 Elimination of Nuisance Parameters

In problems of testing and estimation, the main object of interest may be not
the full vector 8 but one of its components. Which component is important will
depend on the context. To fix ideas let 8 = (61, 02) and 8; be the parameter of
importance. The unimportant parameters @, are called nuisance parameters.

Classical statistics has three ways of eliminating nuisance parameters 62
and thus simplifying the problem of inference about 8;. We explain through
three examples.

Ezxample 2.16. Suppose X; and X5 are independent Poisson with mean Aj, As.
You want to test Hg : A} = Ay. We can reparameterize (A1, A2) as 6 = ﬁ,
02 = A1 + A2. Then 6; is the parameter of interest. Under Hy, 6, = %, only
@5 is the unknown parameter. T = X; + X5 is sufficient for A; + A3 and the
conditional distribution of X; given T is binomial(n = T,p = 1/2), which can

be used to construct a conditional test.

Ezxample 2.17. In the second example we use an invariance argument. Consider
a sample from N(u,o?). We want to test Hy : p = 0 against say H, : pu >
0, which can be reformulated as Hy : pu/o = 0 and H; : p/o > 0. Again
reparameterize as (6, = p/0,602 = o). Note that (X,52 = -3 (X, — X)?)
is a sufficient statistic and X /S is invariant under the transformation

Xi—-)CXi, i:1,2,'~,n.

So X/S = Z/S., where Z; = X;/o depends only 6;. The usual t-test is based
on X/S.

Ezample 2.18. In the third method one constructs what is called a profile
likelihood for #; by maximizing the joint likelihood with respect to @2 and
then using it as a sort of likelihood for ;. Thus the profile likelihood is

Ly(6h) = S;IP f(x161,02) = f(|61,02(61))

where 92(6’1) is the MLE of 85 if 4, is given.
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In a full Bayesian approach, a nuisance parameter causes no problem. One
simply integrates it out in the joint posterior. Suppose, however, that one
does not want to do a full Bayesian analysis but rather construct a Bayesian
analogue of profile likelihood, on the basis of which some exploratory Bayesian
analysis for 8; will be done. Once again, this is easy. One uses

L(01) :/f(w|91,02)7r(02|91)d02.

We give an example to indicate that integration makes better sense than
treating the unknown 6, as known and equal to the conditional MLE 85(61).

Ezample 2.19. (due to Neyman and Scott). Let X;1, X;2,i = 1,2,...,n, be
2n independent normal random variables, with X1, X;; being i.i.d. N(u;, 0?).
Here 02 = @, is the parameter of interest and (i1, . .., ptn) = 82 is the nuisance
parameter. One may think of a weighing machine with no bias but some
variability; p; is the weight of ith object, X;1, X;o are two measurements of
the weight of the ¢th object. The profile likelihood is

Lp(02) & sup 0—271 exp < Z X1 — llz (Xz2 - /-1‘1')2})

Hi, i —

—on 1§ z z
e (‘ﬁg{m - X+ (Xa —Xﬂz})’

where X; = (X;1 + X;2)/2. If one maximizes it to get an estimate of 61, it will
be the usual MLE of 2, namely,

It is easy to show (Problem 13) that the estimate is inconsistent; it con-
verges in probability to 02 /2. If one corrects it for its bias by dividing by n, in-
stead of 2n, it becomes consistent. To rectify problems with profile likelihood,
Cox and Reid (1987) have considered an asymptotic conditional likelihood,
which behaves better than profile likelihood.

The simple-minded Bayesian likelihood is

L(o?)
= /0‘2 exp ( Z 24 (Xug — ,uz-)2}) (p|o?) du
x o™ exp ( 252 Z X — X))+ (Xig — Xi)2}) ,

where g = (p1,..., tn) has an improper uniform prior. Maximizing it one
gets a consistent estimate of 2.
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Berger et al. (1999) discuss many such examples with subtle problems of
lack of identifiability of the parameters in the model. For example, if one has
two binomials, B(n;,p;), ¢ = 1,2 where n; is large, p; is small, and n1p; =
ngp2 = A, then both will be well approximated by a Poisson with mean A. So
data would provide a lot of information on A = n;p; but not so on (n;,p;). If
both parameters of binomial, namely, n and p are unknown, then they may
have identifiability problems in this sense.

2.11 A High-dimensional Example

Examples discussed so far have one thing in common — the dimension of
the parameter space is small. We refer to them as low-dimensional. Many of
the new problems we have to solve today have a high-dimensional parameter
space. We refer to them as high-dimensional. One such example appears below.

Ezample 2.20. New biological screening experiments, namely, microarrays,
test simultaneously thousands of genes to identify their functions in a par-
ticular context (say, in producing a particular protein or a particular kind of
tumor). On the basis of the data some genes, usually in hundreds, are consid-
ered “expressed” if they are thought to have this function. They are taken up
for further study by more traditional and time-consuming techniques. Without
going into the fascinating biochemistry behind these experiments, we provide
a statistical formulation.

The data consist of (X;,S;), i = 1,2,...,p where X;, S; are the sample
mean and s.d. based on raw data X;;, X;2,..., X of size r on the ith gene.
For fixed i, X;1,..., X;r are i.i.d. N(u;,02). Further, p; = 0 if the ith gene is
not expressed and p; # 0 if the gene is indeed expressed. Of course, we could
carry out a separate t-test for each i but this ignores some additional infor-
mation that we can get by considering all the genes together in a Bayesian
way. Moreover, a simple-minded testing for each gene separately would in-
crease enormously the number of false discoveries. For example, if one tests
for each ¢ with a = 0.05, then even if no genes are really expressed there
would be Na false rejections of the null hypothesis of “no expression”. We
put a prior on y;’s and 2’s as follows. We assume that (u;,02),i=1,2,...,p
are i.i.d. given certain hyper-parameters. The prior distribution for u;, given
o? is mixture of two normals pN (0, co?) + (1 — p)N(6,co?) and o? are i.i.d.
inverse Gamma. The prior distribution has five (hyper) parameters, namely,
p, ¢, 0 and the shape and scale parameters. If the proportion of genes expected
to be functional can be guessed, we would set p to be equal to this proportion.
We would have to put a (second stage) prior on the remaining four parameters
making this an example of hierarchical priors. A somewhat simpler approach
(empirical Bayes) is to estimate the (hyper) parameters from data. We will
see in Chapter 9 that there is a lot of information about them in the data. In
either case, data about all the genes affect inference about each gene through
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these (hyper) parameters that are common to all the genes. Qur prior is based
on a judgment of exchangeability of (u;,02), i = 1,2,...,p and de Finetti’s
Theorem in Section 2.12.

The inference for each gene is quite simple in the PEB (parametric empir-
ical Bayes) approach. It is more complicated in the hierarchical Bayes setup
but doable. Both are discussed in Chapter 9.

2.12 Exchangeability

One may often be able to judge that a set of parameters (61,...,6,) or a set
of observables like (X1, Xa,...,X,,) are exchangeable, i.e., their joint distri-
bution function is left unaltered if the arguments are permuted. Thus if

P{Xi <z, -, Xn<zp}=P{Xy1 <z, -, Xn <z}

for all n! permutations z;,,...,z;, of z1,...,2,, one says Xq,...,X, are
exchangeable. A simple way of generating exchangeable random variables is
to choose an indexing random parameter n and have the random variables
conditionally i.i.d. given 7. In many cases the converse is also true, as shown
by de Finetti (1974, 1975), and Hewitt and Savage (1955). We only discuss
de Finetti’s theorem.

We say X;,i=1,2,...,n,n+1,..., is a sequence of exchangeable random
variables if ¥n > 1, X;, Xs, ..., X,, are exchangeable.

Theorem 2.21. (de Finetti). Suppose X;’s constitute an exchangeable se-
quence and each X; takes only values 0 or 1. Then, for some 7,

1 n n
P{Xi1=z1,, Xn=2n}= /0 n2aim % (1 — )" i1 ™ dr(n),

Vn, Vxi,...,T, equal to 0 or 1, i.e., given 1, X1,...,X, are conditionally
1.4.d. Bernoulli with parameter n and n has distribution 7.

A Bayesian may interpret this as follows. The subjective judgment of ex-
changeability leads to both a Bernoulli likelihood and the existence of a prior
m. If one has also a prediction rule as in Problem 18, 7 can be specified. Thus
at least in this interpretation the prior and the likelihood have the same logical
status, both arise from a subjective judgment about observables.

Hewitt and Savage (1955) show that even if the random variables take
values in RP, or more generally in a nice measurable space, then a similar
representation as conditionally i.i.d. random variables holds. See Schervish
(1995) for a statement and proof.

In many practical cases, vide Example 2.20, one may perceive certain pa-
rameters 61, ...,8, as exchangeable. Even if the parameters do not form an
infinite sequence, it is convenient to represent them as conditionally i.i.d. given
a hyperparameter. Often as in Example 2.20, the form of w(8|n) is also dic-
tated by operational convenience. We show in Chapter 5 we can check if this
form is validated by the data.
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2.13 Normative and Descriptive Aspects of Bayesian
Analysis, Elicitation of Probability

Do most people faced with uncertainty make a decision as if they were
Bayesian, each with her subjective prior and utility? The answer is generally
No. The Bayesian approach is not claimed to be a description of how people
tend to make a decision. On the other hand Bayesians believe, on the basis
of various sets of rationality axioms and their consequences (as discussed in
Chapter 3), people should act as if they have a prior and utility. The Bayesian
approach is normative rather than descriptive. There have been empirical as
well as philosophical studies of these issues. We refer the interested reader to
Raiffa and Schlaiffer (1961) and French and Rios Insua (2000). We explore
tentatively a couple of issues related to this.

It is an odd fact in our intellectual history that the concept of probability,
which is so fundamental both in daily life and science, was developed only
during the European Renaissance. It is tempting to speculate that our current
inability to behave rationally under uncertainty is related to the late arrival of
probability on the intellectual scene. Most Bayesians hope the situation will
improve with the passage of time and attempts to educate ourselves to act
rationally.

Related to these facts is the inability of most people to express their un-
certainty in terms of a well calibrated probability. Probability is still most
easily calculated in gambling or similar problems where outcomes are equally
likely, in problems like life or medical insurance, where empirical calculations
based on repetitions is possible or under exchangeability. Most examples of
successful elicitation of subjective probability involve exchangeability in some
form. However, there have been some progress in elicitation. Some of these
examples are discussed in Chapter 5 .

These examples and attempts notwithstanding, full elicitation of subjec-
tive probability is still quite rare. Most priors used in practice are at least
partly nonsubjective. They are obtained through some objective, i.e., non-
subjective algorithms. In some sense they are uniform distributions that take
into account what is known, namely some prior moments or quartiles and the
geometry in the parameter space. We discuss objective priors and Bayesian
analysis based on them in the next section.

2.14 Objective Priors and Objective Bayesian Analysis

We refer to the Bayesian analysis based on objective priors as objective
Bayesian analysis. One would expect that as elicitation improves, subjective
Bayesian analysis would be used increasingly in place of objective Bayesian
analysis. All Bayesians agree that wherever prior information is available, one
should try to use a prior reflecting that as far as possible. In fact, one of



56 2 Bayesian Inference and Decision Theory

the attractions of the Bayesian paradigm is that use of prior expert informa-
tion is a possibility. Incorporation of prior expert opinion would strengthen
considerably purely data based analysis in real-life decision problems as well
as problems of statistical inference with small sample size or high or infi-
nite dimensional parameter space. In this approach use of objective Bayesian
analysis has no conflict with the subjectivist approach. It may also have a
legitimate place in subjective Bayesian analysis as a reference point or origin
with which to compare the role and importance of prior information in a par-
ticular Bayesian decision. In a similar spirit, it may also be used to report to
general readers or to a group of Bayesians with different priors.

We discuss in Chapter 3 algorithms for generating common objective priors
such as the Jeffreys or reference or probability matching priors. We also discuss
there common criticisms, such as the fact that these priors are improper and
depend on the experiment, as well as our answers to such criticisms.

In examples with low-dimensional @, objective Bayesian analysis has some
similarities with frequentist answers, as in Examples 2.2 and 2.4, in that the
estimate obtained or hypothesis accepted tends to be very close to what a
frequentist would have done. However, the objective Bayesian has a poste-
rior distribution and a data based evaluation of the error or risk associated
with inference or decision, namely, the posterior variance or posterior error or
posterior risk.

In high-dimensional problems, e.g., Example 2.20, it is common to use
hierarchical priors with objective prior of the above type used at the highest
level of the hierarchy. One then typically uses MCMC without always checking
whether the posteriors are proper — in fact checking mathematically may be
very difficult. Truncation of the prior, with careful variation of the stability of
the posterior provides good numerical insight. However, this is not the only
place where an objective prior is used in the hierarchy. In fact, in Example 2.20,
the prior for (u;,02) arises from a subjective assumption of exchangeability
but the particular form taken is for convenience. This is a non-subjective
choice but, as indicated in Chapter 9, some data based validation is possible.

The objective Bayesian analysis in high-dimensional problems is also close
in spirit to frequentist answers to such problems. Indeed it is a pleasant fact
that, as in low-dimensional problems but for different reasons, the frequentist
answers are almost identical to the Bayesian answers. The frequentist answers
are based on the parametric empirical Bayes (PEB) approach, in which the
parameters in the last stage of hierarchical priors are estimated from data
rather than given an objective prior. As in the low-dimensional case, the
objective Bayesian analysis has some advantages over frequentist analysis.
The PEB approach used by frequentists tends to underestimate the posterior
risk.

Though it is implicit in the above discussion, it is worth pointing out that
Bayesian analysis can be based on an improper prior only if the posterior is
proper. Somewhat surprisingly, the posterior is usually proper when one uses
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the Jeffreys prior or a reference prior, but counter-examples exist; see Ghosh
(1997) and Section 7.4.7.

Because the objective priors are improper, the usual type of preposterior
analysis cannot be made at the planning stage. In particular one cannot com-
pare different designs for an experiment and make an optimal choice. For the
same reason choosing optimal sample size is a problem. It is suggested in
Chapter 6 that a partial solution is to take a few observations, say the min-
imum number of observations needed to make the posterior proper, and use
the proper posterior as a proper prior. The additional data can be used to
update it. For an application of these ideas, see Ghosh et al. (2002). Unfortu-
nately, when all the data have been collected at the stage of formulating the
prior, one would need to modify the above simple procedure.

2.15 Other Paradigms

In earlier sections, we have discussed several aspects of the Bayesian paradigm
and its logical advantages. In this context we have also discussed in some detail
various problems with the classical frequentist approach.

Some of these problems of classical statistics can be resolved, or at least
mitigated by appropriate conditioning. Even though Birnbaum’s theorem
shows extensive conditioning and restriction to minimal sufficiency would lead
to fundamental changes in the classical paradigm and it may be quite awk-
ward to find a suitable conditioning, the idea of conditioning makes it possible
to reconcile a lot of objective Bayesian analysis and classical statistics if suit-
able conditioning is made. At least this makes communication relatively easy
between the paradigms.

There have also been attempts to create a new paradigm of inference based
on sufficiency, conditioning and likelihood. An excellent treatment is available
is Sprott (2000). Some of our reservations are listed in Ghosh (2002).

One should also mention belief functions and upper and lower probabili-
ties of Dempster and Schafer (see Dempster (1967), Shafer (1976) and Shafer
(1987)). Wasserman and Kadane (1990) have shown that under certain ax-
ioms, their approach may be identified with a robust Bayesian point of view.
Problems of foundations of probability and inference remain an active area.

An entirely different popular approach is data analysis. Data analysis
makes few assumptions, it is very innovative and yet easy to communicate,
However, it is rather ad hoc and cannot quite be called a paradigm. If machine
or statistical learning emerges as a new alternative paradigm for learning from
data, then data analysis would find in it the paradigm it currently lacks.

2.16 Remarks

Even though there are several different paradigms, we believe the Bayesian
approach is not only the most logical but also very flexible and easy to com-
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municate. Many innovations in computation have led to wide applicability
as well as wide acceptance from not only statisticians but other scientists.
Within the Bayesian paradigm it is relatively easy to use information as well
as solve real-life decision problems. Also, we can now construct our priors,
with a fair amount of confidence as to what they represent, to what extent
they use subjective prior information and to what extent they are part of an
algorithm to produce a posterior.

The fact that there are no paradoxes or counter-examples suggests the
logical foundations are secure in spite of a rapid, vigorous growth, specially in
the past two decades. The advantage of a strong logical foundation is that it
makes the subject a discipline rather than a collection of methods, like data
analysis. It also allows new problems to be approached systematically and
therefore with relative ease.

Though based on subjective ideas, the paradigm accepts likelihood, and
frequentist validation in the real world as well as consequent calibration of
probabilities, utilities, likelihood based methods.

In other words, it seems to combine many of the conceptual and method-
ological strengths of both classical statistics and data analysis, but is free from
the logical weaknesses of both.

Ultimately, each reader has to make up her own mind but hopefully, even
a reader, not completely convinced of the superiority of Bayesian analysis, will
learn much that would be useful to her in the paradigm of her choice. This
book is offered in a spirit of reconciliation and exploration of paradigms, even
though from a Bayesian point of view. In many ways current mutual interac-
tion between the three paradigms is reminiscent of the periods of similar rapid
growth in the eighteenth, nineteenth, and early twentieth centuries. We have
in mind specially the history of least squares, which began as a data analytic
tool, then got itself a probabilistic model in the hands of Gauss, Laplace, and
others. The associated inferential probabilities were simultaneously subjective
and frequentist. The interested reader may also want to browse through von
Mises (1957).

2.17 Exercises

1. (a) (French (1986)) Three prisoners, A, B, and C, are each held in solitary
confinement. A knows that two of them will be hanged and one will be set
free but he does not know who will go free. Therefore, he reasons that he
has % chance of survival. He asks the guard who will go free, but has no
success there. Being an intelligent person, he comes up with the following
question for the guard:

If two of us must die, then I know that either B or C must die and
possibly both. Therefore, if you tell me the name of one who is to die,
I learn nothing about my own fate; further, because we are kept apart, I
cannot reveal it to them. So tell me the name of one of them who is to
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dre.

The guard likes this logic and tells A that C will be hanged. A now argues
that either he or B will go free, and so now he has % chance of survival.
Is this reasoning correct?

b) There are three chambers, one of which has a prize. The master of cer-
emonies will give the prize to you if you guess the right chamber correctly.
You first make a random guess. Then he shows you one chamber which is
empty. You have an option to stick to your original guess or switch to the
remaining other chamber. (The chamber you guessed first has not been
opened). What should you do?

. Suppose X|u ~ N(u,0?), 02 known and p ~ N(n,72), n and 72 known.
(a) Show that the joint density g(z, 1) of X and p can be written as

1 1 (p—n)?  (z-p)?
9@, p) = m(u) falp) = 5— eXP{—§ [ =t 2
1 . ( (z —n)* )
= X —
2m(72 + 02) P 2(12 +02)
|72 + o2 72 + 02 202  7p z \°
“V 2202 exp{— 27202\ 7'2—{—02(7'—2_’_;) '
(b) From (a) show that the marginal density m(z) of X is

_ 1 exp [ @ =m)”
) = s p(~3irrs )

and the posterior density m(u|z) of p|X ==z is

/12 4 02 2 402 262 z \°
m(ulz) = onr2g2 P {— 27252 (H T 2442 (7'—2 + ﬁ) ’

(¢) What are the posterior mean and posterior s.d. of u given X = z?
(d) Instead of a single observation X as above, consider a random sam-
ple Xj,...,X,. What is the minimal sufficient statistic and what is the
likelihood function for g now? Work out (b) and (c) in this case.

. Let X1,..., X, be iid. N(u,0?), 02 known. Consider testing

Hy : p < pg versus Hy @ p > pg.

(a) Compute the P-value. Compare it with the posterior probability of Hy
when p is assumed to have the uniform prior.

(b) Do the same for a sharp Hy.

. Refer to Welch’s problem, Example 2.6. Follow Fisher’s suggestion and
calculate P{CI covers 8/X; — X5} and verify it agrees with the objective
Bayes solution with improper uniform prior for 6.
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11.

12.

2 Bayesian Inference and Decision Theory

(Berger’s version of Welch’s problem, see Berger (1985b)). Suppose X3
and X, are i.i.d. having the discrete distribution:

X — # — 1/2 with probability 1/2;
"1 6 +1/2 with probability 1/2,

where 6 is an unknown real number.
(a) Show that the set C given by

C— {{(Xl + X2)/2} if X1 # Xo;
(X, -1} if X1 = Xo,

is a 75% confidence set for 6.

(b) Calculate P{C covers §|X, — X2}.

Can the Welch paradox occur if Xy, X5 are i.i.d. N(6,1)?

(Newton versus Einstein). In Example 2.12 calculate the Bayes factor,
BFy, for the given data using Jeffreys prior.

Let X;,..., X, be i.id. Bernoulli(p) (ie., B(1,p)).

(a) Assume p has Jeffreys prior. Construct the 100(1 — @)% HPD credible
interval for p.

(b) Suppose n = 10 and o = 0.05. Calculate the frequentist coverage
probability of the interval in (a) using simulation.

. Consider the same model as in Problem 8. Derive the minimax estimate of

p under the square error loss. Plot and compare the mean square error of
this estimate with that of X for n = 10, 50, 100, and 400. (The minimax
estimate seems to do better at least upto n = 100.)

Let X),...,X, be i.i.d. N(i,a?), 02 known. Suppose p has the N(5, 72)
prior distribution with known 7 and 72.

(a) Construct the 100(1 — @)% HPD credible interval for p.

(b) Construct a 100(1 — )% predictive interval for X, 4,.

(¢) Consider the uniform prior for this problem by letting 72 — oo. Work
out (a) and (b) in this case.

(a) Refer to Example 2.6. Let C(X;, X2) denote the 100(1 — a)% confi-
dence interval for 6. Assume that 6 has Jeffreys prior. Then show that

P{C(Xl,Xz) covers 0|X1 — Xz} = P{G S C(Xl,X2)|X1,X2}.
(b) Recall Example 2.5. Assume that g has Jeffreys prior. Then show that
Var(u|z) = Var(X|n).

Let Xi,...,X, be iid. N(i,02), 02 unknown. Consider Jeffreys test
(Section 2.7.2) for testing Hg : p = po versus H; : p # po. Consider
both the normal and Cauchy priors for x|o? under H,. Suppose X — 00
and s? is bounded. Compute BFp; under both the priors and show that
BFj; converges to zero for Cauchy prior but does not converge to zero for
normal prior.
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(a) Refer to Example 2.19. Show that the usual MLE of o2, namely,
1< . .
o Z {(Xia — X)? + (X — X0)?}
i=1

is inconsistent. Correct it to get a consistent estimate.

(b) Suppose Xji,..., Xy are i.i.d. B(n,p). Both n and p are unknown,
but only n is of interest, so p is a nuisance parameter (see Berger et al.
(1999)). Derive the following likelihoods for n: (i) profile likelihood, (ii)
conditional likelihood, i.e., that obtained from the conditional distribution
of X;’s given their sum (and n), (iii) integrated likelihood with respect to
the uniform prior, and (iv) integrated likelihood with respect to Jeffreys
prior.

(¢c) Suppose the observations are (17, 19, 21, 28, 30). Plot and compare
the different likelihoods in b) above, and comment.

Suppose X |p ~ Np(p, X), ¥ known and p ~ Ny(n,I'), n and I" known.
(a) Show that the above probability structure is equivalent to X = u + €,
€ ~ Np(0,%), p~ Np(n,I'), € and p are independent and X, n, I" are
known.

(b) From (a) show that the joint distribution of X and g is

()~ ((2)-(%775))

(c¢) From (b) and using multivariate normal theory, show that
pX=z~N,(I'E+T) e+ XX +T)'n, I —(Z+1)7'T).

(d) What are the posterior mean and posterior dispersion matrix of p?
Construct a 100(1 — )% HPD credible set for p.

(e) Work out (d) with a uniform prior.

Let X1,..., X, and Y7,...,Y, be independent random samples, respec-
tively, from N(u1,02) and N(pz,0?), where o2 is known. Construct a
100(1 — )% credible interval for (p1 — p2) assuming a uniform prior on
(1115 p2)-

Let Xi,..., X, and Y3,...,Y,, be independent random samples, respec-
tively, from N(u,0?) and N(u,02), where both ¢? and o2 are known.
Construct a 100(1 — )% credible interval for the common mean p as-
suming a uniform prior. Show that the frequentist 100(1 — )% confidence
interval leads to the same answer.

(Behrens-Fisher problem) Let X5,...,X,, and Y3,...,Y, be independent
random samples, respectively, from N(u1,0%) and N(uy,02), where all
the four parameters are unknown, but inference on p; — o is of interest.
To derive a confidence interval for p; — p2 and also test Hy : 1 = po, the
Behrens-Fisher solution is to use the statistic
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X-Y
V2 m + s3/n’

where 57 = Y7, (X — X)/(m — 1) and 83 = S, (Vi — V)?/(n — 1).
(a) Show that

T:

si/m+s3/n  xi

o?/m+oi/n v

approximately, where v can be estimated by

¥

(s3/m + s3/n)”
s1/(m?(m — 1)) + s3/(n*(n — 1))’

(Hint: If we want to approximate the weighted sum, Zle a;V; of indepen-
dent X,z-i, by a x2/v, then a method of moment estimate for v is available,
see Satterwaite (1946) and Welch (1949).)

(b) Using (a), justify that T is approximately distributed like a Student’s
t with © degrees of freedom under Hj.

(¢) Show numerically that the 100(1 — )% confidence interval for p; — pig
derived using T is conservative, i.e., its confidence coefficient will always be
> 1— . (See Robinson (1976). A Bayesian solution to the Behrens-Fisher
problem is discussed in Chapter 8.)

Suppose X1, Xo,...,X, are i.i.d. Bernoulli(p) and the prediction loss is
squared error. Further, suppose that for all n > 1, the Bayes prediction
rule is given by

i):

EXpi1|X1,..., Xp) = ot f+n

’

for some o > 0 and G > 0. Show that this is possible iff the prior on p is
Beta(a, §).

Suppose (N1,. .., Ng) have the multinomial distribution with density

f(n1>"'>nk|p) n1|n2 'Hp

Let p have the Dirichlet prior with density

k

f(Pler) = Hz— Fla: 1;[

(a) Find the posterior distribution of p.
(b) Find the posterior mean vector and the dispersion matrix of p.
(¢c) Construct a 100(1 — «)% HPD credible interval for p; and also for

p1+ P2
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Let p denote the probability of success with a particular drug for some
disease. Consider two different experiments to estimate p. In the first
experiment, n randomly chosen patients are treated with this drug and
let X denote the number of successes. In the other experiment patients are
treated with this drug, one after the other until r successes are observed.
In this experiment, let ¥ denote the total number of patients treated with
this drug.

(a) Construct 100(1 — @)% HPD credible intervals for p under U(0,1) and
Jeffreys prior when X = z is observed.

(b) Construct 100(1 —«)% HPD credible intervals for p under U (0, 1) and
Jeffreys prior when Y = y is observed.

(c) Suppose n = 16, z = 6, r = 6, and y = 16. Now compare (a) and (b)
and comment with reference to LP.

Let Xi,...,X, be iid. N(u,0?), 02 known. Suppose we want to test
Hy : pt = po versus Hy : pu # po. Let mg = P(Hg) = 1/2 and under Hy, let
p ~ N(po,72). Show that, unlike in the case of a one-sided alternative,
P-value and the posterior probability of Hy can be drastically different
here.

Let Xi,..., X, beiid. N(u,0?), where both  and 0? are unknown. Take
the prior 7(i,0?) o< 0~2. Consider testing

Hy:p < po versus Hy @y > po.

Compute the P-value. Compare it with the posterior probability of Hy.
Compute the Bayes factor BFyp;.
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Utility, Prior, and Bayesian Robustness

We begin this chapter with a discussion of rationality axioms for preference
and how one may deduce the existence of a utility and prior. Later we explore
how robust or sensitive is Bayesian analysis to the choice of prior, utility,
and model. In the process, we introduce and examine various quantitative
evaluations of robustness.

3.1 Utility, Prior, and Rational Preference

We have introduced in Chapter 2 problems of estimation and testing as
Bayesian decision problems. We recall the components of a general Bayesian
decision problem.

Let X be the sample space, © the parameter space, f(x|6) the density of X

[1P=))

and 7(6) prior probability density. Moreover, there is a space A of actions “a
[{9=3)

and a loss function L(6, a). The decision maker (DM) chooses “a” to minimize
the posterior risk

wlale) = [ L. a)n(elz) db (3.1)

where 7(6|z) is the posterior density of # given z. Note that given the loss
function and the prior, there is a natural preference ordering a; < az (i.e., a2
is at least as good as ap) iff ¥(az)z) < ¥(a1|z).

There is a long tradition of foundational study dating back to Ramsey
(1926), in which one starts with such a preference relation on A x A satis-
fying certain rational axioms (i.e., axioms modeling rational behavior) like
transitivity. It can then be shown that such a relation can only be induced as
above via a loss function and a prior. i.e., 3L and 7 such that

ap 2 ag iff /L(O,ag)ﬂ'(ﬂ) do < /L(O,al)ﬂ'(ﬂ)dﬁ. (3.2)

In other words, from an objectively verifiable rational preference relation, one
can recover the subjective loss function and prior. If there is no sample data,
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then m would qualify as a subjective prior for the DM. If we have data z, a
likelihood function f(x|#) is given and we are examining a preference relation
given z, then also one can deduce the existence of L and 7 such that

ay Xap iff /L(O,az)w(elx)de < /L(O,al)w(elx)de (3.3)

under appropriate axioms.

In Section 3.2, we explore the elicitation or construction of a loss function
given certain rational preference relations. In the next couple of sections, we
discuss a result that shows we must have a (subjective) prior if our preference
among actions satisfies certain axioms about rational behavior. Together, they
justify (3.2) and throw some light on (3.3). In the remaining sections we
examine different aspects of sensitivity of Bayesian analysis with respect to the
prior. Suppose one thinks of the prior as only an approximate quantification
of prior belief. In principle, one would have a whole family of such priors, all
approximately quantifying one’s prior belief. How much would the Bayesian
analysis change as the prior varies over this class? This is a basic question in
the study of Bayesian robustness.

It turns out that there are some preference relations weaker than those of
Section 3.3 that lead to a situation like what was mentioned above. i.e., one
can show the existence of a class of priors such that

a; < ag iff /L(O, az)m(0)df < /L(O,al)ﬂ(e) dé (3.4)

for all 7 in the given class. This preference relation is only a partial ordering,
i.e., not all pairs a;, a2 can be ordered.

The Bayes rule a(x) minimizing ¢ (a|z) also minimizes the integrated risk
of decision rules é(z),

7'(7r,5)=/9R(9,5)7r(9)d6,

where R(6,6) is the risk of § under 8, namely, [, L(6,5(z))f(x|0) dx. Given
a pair of decision rules, we can define a preference relation

a; <ag ff r(m a2()) <r(ma(l)). (3.5)

One can examine a converse of (3.5) in the same way as we did with (3.2)
through (3.4). One can start with a preference relation that orders decision
rules (rather than actions) and look for rationality axioms which would guar-
antee existence of L and w. For (3.2), (3.3) and (3.5) a good reference is
Schervish (1995) or Ferguson (1967). Classic references are Savage (1954) and
DeGroot (1970); other references are given later. For (3.4) a good reference is
Kadane et al. (1999).

A similar but different approach to subjective probability is via coherence,
due to de Finetti (1972). We take this up in Section 3.4.
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3.2 Utility and Loss

It is tempting to think of the loss function L(f,a) and a utility function
u(f,a) = —L(#,a) as conceptually a mirror image of each other. French and
Rios Insua (2000) point out that there can be important differences that
depend on the context.

In most statistical problems the DM {decision maker) is really trying to
learn from data rather than implement a decision in the real world that has
monetary consequences. For convenience we refer to these as decision problems
of Type 1 and Type 2. In Type 1 problems, i.e., problems without monetary
consequences (see Examples 2.1-2.3) for each # there is usually a correct
decision a(f) that depends on 8, and L(6,a) is a measure of how far “a” is
away from a(f) or a penalty for deviation from a(§). In a problem of estimating
6, the correct decision a(f) is 8 itself. Common losses are (a — 6)2, |a — 4],
etc. In the problem of estimating 7(6), a(6) equals 7(6) and common losses
are (7(8) — a)?, |7(0) — al, etc. In testing a null hypothesis Hy against Hj,
the 0-1 loss assigns no penalty for a correct decision and a unit penalty for
an incorrect decision. In Type 2 problems, there is a similarity with gambles
where one must evaluate the consequence of a risky decision. Historically, in
such contexts one talks of utility rather than loss, even though either could
be used. We consider below an axiomatic approach to existence of a utility for
Type 2 problems but we use the notations for a statistical decision problem
by way of illustration. We follow Ferguson (1967) here as well as in the next
section.

Let P denote the space of all consequences like (8,a). It is customary to
regard them as non-numerical pay-offs. Let P* be the space of all probability
distributions on P that put mass on a finite number of points. The set P*
represents risky decisions with uncertainty quantified by a known element of
P*. Suppose the DM has a preference relation on P*, namely a total order,
i.e., given any pair p;,ps € P*, either p; < py (p2 is preferred) or pa < p;
(py is preferred) or both. Suppose also the preference relation is transitive,
ie., if p; < po and py < p3, then p; < p3. We refer the reader to French and
Rios Insua (2000) for a discussion of how compelling are these conditions. It is
clear that one can embed P as subset of P* by treating each element of P as
a degenerate element of P*. Thus the preference relation is also well-defined
on P. Suppose the relation satisfies axioms H; and Hp.

H; Ifp;, p2 and g € P* and 0 < A < 1, then p; < py if and only if Ap; + (1 —
A)g = Ap2 + (1 — N)g.

Hs If p1, po, p3 are in P* and p; < ps < p3, then there exist numbers
0<A<1,0<pu<1,such that

Aps + (1= A)p1 < p2 < pps + (1 — p)py.

Ferguson (1967) shows that if H; and Hy hold then there exists a utility
u(.) on P* such that p; < po if and only if u(p;) < u{pz), where for p* =
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o Aipi, with Ay > 0and Y12 A; =1, u(p*) is defined to be the average

m

u(p”) = Z Aiu(p;)- (3.6)

i=1

The main idea of the proof, which may also be used for eliciting the utility,
is to start with a pair p} < p3, i.e., p} =< p} but p} # p4. (Here ~ denotes the
equivalence relation that the DM is indifferent between the two elements.)
Consider all p} <X p* < p3. Then by the assumptions H; and Hj, one can
find 0 < A* < 1 such that the DM would be indifferent between p* and
(1—2*)p} +A*ph. One can write \* = u(p*) and verify that p} < p% < p} < p}
iff A3 = u(py) < u(p}) = A} as well as the relation (3.6) above. For p} < p*,
by a similar argument one can find a 0 < p* < 1 such that

p; ~ (1= p*)pt + p*p*

from which one gets

p*~ (1= A)p1 + A'ps,
where A* = 1/u*. Set \* = u(p*) as before. In a similar way, one can find a
A* for p* < p} and set u(p*) = A\*.

In principle, A* can be elicited for each p*. Incidentally, utility is not
unique. It is unique up to a change in origin and scale. Our version is chosen
so that u(p}) =0, u(p3) = 1.

French and Rios Insua (2000) point out that most axiomatic approaches
to the existence of a utility first exhibit a utility on P* and then restrict it
to P, whereas intuitively, one would want to define u(.) first on P and then
extend it to P*. They discuss how this can be done.

3.3 Rationality Axioms Leading to the Bayesian
Approach!

Consider a decision problem with all the ingredients discussed in Section 3.1
except the prior. If the sample space and the action space are finite, then the
number of decision functions (i.e., functions from X" to .A) is finite. In this
case, the decision maker (DM) may be able to order any pair of given decision
functions according to her rational preference of one to the other taking into
account consequences of actions and all inherent uncertainties. Consider a
randomized decision rule defined by

0 = p101 + pada + - + Pily,

where d;,62,...,8; constitute a listing of all the non-randomized decision
functions and (py, pa, . . ., Pk ) i8 a probability vector, i.e., p; > 0 and Zle P =

! Section 3.3 may be omitted at first reading.
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1. The representation means that for each x, the probability distribution §(x)
in the action space is the same as choosing the action §;(z) with probability p;.
Suppose the DM can order any pair of randomized decision functions also in a
rational way and it reduces to her earlier ordering if the randomized decision
functions being compared are in fact non-randomized with one p; equal to
1 and other p;’s equal to zero. Under certain axioms that we explore below,
there exists a prior 7(6) such that §7 < 83, i.e., the DM prefers 7 to é3 if and
only if

r(m,67) =Y _ m(0)Pp(ald})L(6,a <Z 8)Py(al83)L(,a) = r(m,83),

6,a

(( »

where Py(a|é™) is the probability of choosing the action when 6 is the value
of the parameter and §* is used, i.e., using the representation §* = 3. p;d;,

Pp(ald™) = Zpo ZPZ

and I; is the indicator function

o [1 @) =g
Ii(z) { 0 if 6,(z) # a.

We need to work a little to move from here to the starting point of Ferguson
(1967).

As far as the preference is concerned, it is only the risk function of § that
matters. Also ¢ appears in the risk function only through Fy(a|d) which, for
each 4, is a probability distribution on the action space. Somewhat trivially,
for each 6y € ©, one can also think of it as a probability distribution ¢ on the
space P of all (6,a), 8 € ©, a € A such that

| Py (alé) if 6 = 6p;
9(6,0) = { 0 if 6 +#6,.

As in Section 3.2, let the set of probability distributions putting probability
on a finite number of points in P be P*. The DM can think of the choice of a
§ as a somewhat abstract gamble with pay-off (Py(a1|d), Ps(azld),---) if 8 is
true. This pay-off sits on (8,a1),(8,a2) .. .. Let G be the set of all gambles of
this form [p1,...,pm] where p; is a probability distribution on P that is the
pay-off corresponding to the ith point 6; in @ = {61,604, ...,0,,}. Further, let
G* be the set of all probability distributions putting mass on a finite number
of points in G. The DM can embed her § in G and suppose she can extend her
preference relation to G and G*. If axioms H; and Hj of Section 3.2 hold, then
there exists a utility function ug on G* that induces the preference relation
=g on G*. We assume the preference relations < on P* and <4, on G* are
connected as follows vide Ferguson (1967).

A, Ifp, 2pj,i=1,...,m, then [p1,...,pm] =g [P1,...,0),].
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A, If p<p/, then [p,...,p] <4 [p,..., 7]

To proceed further, we need one more assumption, As of Ferguson (1967).
Ifp1,...,pr are elements of P and Ay, ..., Ay are non-negative numbers adding
up to 1, let (A\1p1,..., A\pik) denote the element of P* that chooses pay-off p;
with probability A;, 1 <4 < k. Then Aj is given by

A3 (/\l[plla'"aplm]a"'a/\k[pkla"'apkm])

~g [(/\11711, cee ,/\kpkl), T, (/\1p1m, ceey /\kpkm)] ,

where ~, denotes equivalence under the preference relation on G*.

Then, under these three assumptions, it is shown by Ferguson that < is
induced by a prior () and the loss function L(6, a) as indicated in Section 3.1.

The need to extend the preference relation on the space of decision func-
tions to all pairs of elements of G* is somewhat artificial. It is of course true
that in many practical decision problems the space G* would occur naturally.
For example, even in a statistical problem, if the loss or utility arising from
the combination (#,a) doesn’t depend on 6, then the extension to G* would
be relatively natural. An illuminating and penetrating discussion of various
sets of axioms leading to existence of utility and prior appears in Chapter 2
of French and Rios Insua (2000). They also provide references to a huge
literature and a brief survey.

3.4 Coherence

There is an alternative way of justifying a Bayesian approach to decision
making on the basis of the notion of coherence as modified by Freedman and
Purves (1969) and Heath and Sudderth (1978). Coherence was originally
introduced by de Finetti to show any quantification of uncertainty that does
not satisfy the axioms of a (finitely additive) probability distribution would
lead to sure loss in suitably chosen gambles. This is treated in Appendix C.
To return to coherence in the context of decision making, suppose A stands
for a set in the space of 6 and z values, and A, = {6 : (6,z) € A}. Given
z, the DM’s uncertainty about A is given by g¢(z, A;). An MC (master of
ceremonies) chooses a betting system (A,b), where A is as above and b is a
bounded real valued function of . The DM accepts the gamble with pay-off

Y(0,z) = b(‘r) [IA(QVT) - Q(IaAz)] .

She gets b(z)q(z, A;) or pays b(z)[1 — g(z, A;)] depending on whether 6 lies
in A, or not. The expected pay-off is

BG) = [ 6(6.0)p(ds1p).
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If she accepts k such gambles defined as above by (A(1),b(1)), - - -, (Aw), bx)),
then her expected pay-off is the sum of the k expected pay-offs. She will face

sure loss if .
i f )
in <;E (9)) >0

The idea is that if g reflects her uncertainty about 8, then this combination of
bets is fair and so acceptable to her. However any rational choice of ¢ should
avoid sure loss as defined above. Such a choice is said to be coherent if no
finite combination of acceptable bets can lead to sure loss. The basic result of
Freedman and Purves (1969) and Heath and Sudderth (1978) is that in order
to be coherent, the DM must act like a Bayesian with a (finitely additive) prior
and ¢ must be the resulting posterior. A similar result is proved by Berti et
al. (1991).

3.5 Bayesian Analysis with Subjective Prior

We have already discussed basics of subjective prior Bayesian inference in
Chapter 2. In the following, we shall concentrate on some issues related to
robustness of Bayesian inference. The notations used will be mostly as given
in Chapter 2, but some of those will be recalled and a few additional notations
will be introduced here as needed.

Let A be the sample space and @ be the parameter space. As before,
suppose X has (model) density f(z|) and § has (prior) probability density
(). Then the joint density of (X, 68), forz € X and § € O, is

h(z,8) = f(z|0)m(6).
The marginal density of X corresponding with this joint density is
ma(e) = mialr) = [ f(al6 dn(6).
e
Note that this can be expressed as

ma(z) {f@ (z]0)7(6) d8 if X is continuous,

>of (1:|<9) ( ) if X is discrete.

Often we shall use m(z) for m,(z), especially if the prior = which is being
used is clear from the context. Recall that the posterior density of 8 given z

is given by
Ma,8) _ fz|0)7(6)
mr(z) me(z)

w(f|z) =

The posterior mean and posterior variance with respect to prior m will be
denoted by E™(8|x) and V™ (8|z), respectively. Similarly, the posterior prob-
ability of a set A C @ given « will be denoted by P™(A|z).
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3.6 Robustness and Sensitivity

Intuitively, robustness means lack of sensitivity of the decision or inference to
assumptions in the analysis that may involve a certain degree of uncertainty.
In an inference problem, the assumptions usually involve choice of the model
and prior, whereas in a decision problem there is the additional assumption
involving the choice of the loss or utility function. An analysis to measure
the sensitivity is called sensitivity analysis. Clearly, robustness with respect
to all three of these components is desirable. That is to say that reasonable
variations from the choice used in the analysis for the model, prior, and loss
function do not lead to unreasonable variations in the conclusions arrived
at. We shall not, however, discuss robustness with respect to model and loss
function here in any great detail. Instead, we would like to mention that there
is substantial literature on this and references can be found in sources such
as Berger (1984, 1985a, 1990, 1994), Berger et al. (1996), Kadane (1984),
Leamer (1978), Rios Insua and Ruggeri (2000), and Wasserman (1992).

Because justification from the viewpoint of rational behavior is usually
desired for inferential procedures, we would like to cite the work of Nobel lau-
reate Kahneman on Bayesian robustness here. In his joint paper with Tversky
(see Tversky et al. (1981) and Kahneman et al. (1982)), it was shown in psy-
chological studies that seemingly inconsequential changes in the formulation
of choice problems caused significance shifts of preference. These ‘inconsis-
tencies’ were traced to all the components of decision making. This probably
means that robustness of inference cannot be taken for granted but needs to
be earned.

The following example illustrates why sensitivity to the choice of prior can
be an important consideration.

Exzample 3.1. Suppose we observe X, which follows Poisson(f) distribution.
Further, it is felt a priori that 6 has a continuous distribution with median 2
and upper quartile 4. i.e. P™(§ < 2) = 0.5 = P™(6 > 2) and P™(6 > 4) = 0.25.
If these are the only prior inputs available, the following three are candidates
for such a prior:

(i) my : @ ~ exponential(a) with a = log(2)/2;

(ii) m : log(6) ~ N(log(2), (log(2)/z.25)?); and

(iii) w3 : log(#) ~ Cauchy(log(2), log(2)).

Then (i) under 71, 6|z ~ Gamma(a + 1,z + 1), so that the posterior mean is
(a+1)/(@ +1);

(ii) under m,, if we let v = log(#), and 7 = log(2)/z.25 = log(2)/0.675, we
obtain

E™(6|lz) = E™(exp(7)|z)
_ Jooo exp(—€") exp(y(z + 1)) exp(—(v — log(2))?/(272)) dvy
= exp(—e") exp(vz) exp(— (v — log(2))2/(272)) dy

and (iii) under w3, again if let v = log(#), we get
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Table 3.1. Posterior Means under 71, 72, and 73

T
0 1 2 3 4 5 10 15 20 50
7r

1 749 1.485 2.228 2.971 3.713 4.456 8.169 11.882 15.595 37.874
72 .950 1.480 2.106 2.806 3.559 4.353 8.660 13.241 17.945 47.017
w3 761 1.562 2.094 2.633 3.250 3.980 8.867 14.067 19.178 49.402

E™ (0}z) = E™ (exp(y)|»)
-1
22, exp(—e”) exp(y(z + 1)) {1 v (%(32()2))2] »

- —1
S exp(—em) explya) [1+ (PoB2 2|  dy

To see if the choice of prior matters, simply examine the posterior means
under the three different priors in Table 3.1.

For small or moderate x (z < 10), there is robustness: the choice of prior
does not seem to matter too much. For large values of x, the choice does
matter. The inference that a conjugate prior obtains then is quite different
from what a heavier tailed prior would obtain. It is now clear that there are
situations where it does matter what prior one chooses from a class of priors,
each of which is considered reasonable given the available prior information.

The above example indicates that there is no escape from investigating
prior robustness formally. How does one then reconcile this with the single
prior Bayesian argument? It is certainly true that if one has a utility/loss
function and a prior distribution there are compelling reasons for a Bayesian
analysis using these. However, this assumes the existence of these two enti-
ties, and so it is of interest to know if one can justify the Bayesian viewpoint
for statistics without this assumption. Various axiomatic systems for statis-
tics can be developed (see Fishburn (1981)) involving a preference ordering
for statistical procedures together with a set of axioms that any ‘coherent’
preference ordering must satisfy. Justification for the Bayesian approach then
follows from the fact that any rational or coherent preference ordering cor-
responds to a Bayesian preference ordering (see Berger (1985a)). This means
that there must be a loss function and a prior distribution such that this ax-
iom system is compatible with the Bayesian approach corresponding to these.
However, even then there are no compelling reasons to be a die-hard single
prior Bayesian. The reason is that it is impractical to arrive at a total prefer-
ence ordering. If we stop short of this and we are only able to come up with
a partial preference ordering (see Seidenfeld et al. (1995) and Kadane et al.
(1999)), the result will be a Bayesian analysis (again) using a class of prior
distributions (and a class of utilities). This is the philosophical justification for
a “robust Bayesian” as noted in Berger’s book (Berger (1985a)). One could,
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of course, argue that a second stage of prior on the class I" of possible priors
is the natural solution to arrive at a single prior, but it is not clear how to
arrive at this second stage prior.

3.7 Classes of Priors

There is a vast literature on how to choose a class, I" of priors to model prior

uncertainty appropriately. The goals (see Berger (1994)) are clearly

(i) to ensure that as many ‘reasonable’ priors as possible are included,

(ii) to try to eliminate ‘unreasonable’ priors,

(iii) to ensure that I does not require prior information which is difficult to

elicit, and

(iv) to be able to compute measures of robustness without much difficulty.
As can be seen, (i) is needed to ensure robustness and (ii) to ensure that

one does not erroneously conclude lack of robustness. The above mentioned are

competing goals and hence can only be given weights which are appropriate in

the given context. The following example from Berger (1994) is illuminating.

Ezample 3.2. Suppose 8 is a real-valued parameter, prior beliefs about which
indicate that it should have a continuous prior distribution, symmetric about
0 and having the third quartile, 3, between 1 and 2. Consider, then

I ={N(0,7%),2.19 < 7% < 8.76} and

I'; = { symmetric priors with 1 < Q3 <2 }.

Even though I can be appropriate in some cases, it will mostly be consid-
ered “rather small” because it contains only sharp-tailed distributions. On
the other hand, I'; will typically be “too large,” containing priors, shapes of
some of which will be considered unreasonable. Starting with I'; and imposing
reasonable constraints such as unimodality on the priors can lead to sensible
classes such as

I's = { unimodal symmetric priors with 1 < Q3 <2 } D I.
It will be seen that computing measures of robustness is not very difficult for
any of these three classes.
3.7.1 Conjugate Class

The class consisting of conjugate priors (discussed in some detail in Chapter
5) is one of the easiest classes of priors to work with. If X ~ N(8,02) with
known o2, the conjugate priors for § are the normal priors N(u,72). So one
could consider

Ie={Nu, 1), m <pu<pp, i <T? <73}

for some specified values of y1, pa, 72, and 72. The advantage with the con-
jugate class is that posterior quantities can be calculated in closed form
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(for natural conjugate priors). In the above case, if 8 ~ N(u,72), then
01X =z ~ N(u*(w)ﬁ ), where p*(z) = (r2/(7% + 0®))z + (0% / (7 + 0%))
and §2 = 7202/(7% + 0?). Minimizing and maximizing posterior quantities
then becomes an easy task (see Leamer (1978), Leamer (1982), and Polasek
(1985)). The crucial drawback of the conjugate class is that it is usually “too
small” to provide robustness. Further, tails of these prior densities are similar
to those of the likelihood function, and hence prior moments greatly influence
posterior inferences. Thus, even when the data is in conflict with the specified
prior information the conjugate priors used can have very pronounced effect
(which may be undesirable if data is to be trusted more). Details on this can
be found in Berger (1984, 1985a, 1994). It must be added here that mixtures
of conjugate priors, on the other hand, can provide robust inferences. In par-
ticular, the Student’s ¢ prior, which is a scale mixture of normals, having flat
tails can be a good choice in some cases. We discuss some of these details later
(see Section 3.9).

3.7.2 Neighborhood Class

If 7y is a single elicited prior, then uncertainty in this elicitation can be mod-
eled using the class

I'y = {7 which are in the neighborhood of mg} .

A natural and well studied class is the e-contamination class,

Ii={r:m7=(1-¢m +eq,q€Q},

e reflecting the uncertainty in 79 and @ specifying the contaminations. Some
choices for @) are, all distributions g, all unimodal distributions with mode g,
and all unimodal symmetric distributions with mode 65. The e-contamination
class with appropriate choice of @) can provide good robustness as we will see
later.

3.7.3 Density Ratio Class

Assuming the existence of densities for all the priors in the class, the density
ratio class is defined as

I'pr={r:L(8) < an(d

)
L) _ =9 _ U®) /
{ 0 ) (0 16 for all 8,0 } , (3.7)

for specified non-negative functions L and U (see DeRobertis and Hartigan
(1981)). If we take L =1 and U = ¢, then we get

U(8) for some a > 0}
<

<
)
)

-1 m(6) ’
= . < < .
Ipr {Tf' c _F(el)_cforaHH,H}
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Some other classes have also been studied. For example, the sub-sigma field
class is obtained by defining the prior on a sub-sigma field of sets. See Berger
(1990) for details and references. Because many distributions are determined
by their moments, once the distributional form is specified, sometimes bounds
are specified on their moments to arrive at a class of priors (see Berger (1990)).

3.8 Posterior Robustness: Measures and Techniques

Measures of sensitivity are needed to examine the robustness of inference
procedures (or decisions) when a class I' of priors are under consideration. In
recent years two types of these measures have been studied. Global measures
of sensitivity such as the range of posterior quantities and local measures
such as the derivatives (in a sense to be made clear later) of these quantities.
Attempts have also been made to derive robust priors and robust procedures
using these measures.

3.8.1 Global Measures of Sensitivity

Ezample 3.3. Suppose X1, X2,-..,X, are iid. N(6,02), with 0% known and
let I" be all N(0,72), 72 > 0, priors for §. Then the variation in the poste-
rior mean is simply (inf,259 E(0|Z),sup,250 E(6|T)). Because, for fixed 72,
E(0|z) = (%2/(7% + 0%))Z, this range can easily be seen to be (0,%) or (Z,0)
according as T > 0 or T < 0. If T is small in magnitude, this range will be
small. Thus the robustness of the procedure of using posterior mean as the
Bayes estimate of € will depend crucially on the magnitude of the observed
value of 7.

As can be seen from the above example, a natural global measure of sensi-
tivity of the Bayesian quantity to the choice of prior is the range of this quan-
tity as the prior varies in the class of priors of interest. Further, as explained
in Berger (1990), typically there are three categories of Bayesian quantities of
interest.

(i) Linear functionals of the prior: p(m) = [ h(8) 7(d6), where h is a given
function.

If h is taken to be the likelihood function [, we get an important linear func-
tional, the marginal density of data, i.e., m(7) = [ 1(6) w(df).

(ii) Ratio of linear functionals of the prior: p(7) = ﬁ Jo h(0)L(8) 7(dB) for
some given function h.

If we take h(8) = 8, p(r) is the posterior mean. For h(8) = I(0), the indica-
tor function of the set C, we get the posterior probability of C.

(iii) Ratio of nonlinear functionals: p(n) = ﬁ Jo 18, ¢(m))I(8) m(d) for
some given h. For h(8, (7)) = (8 — u(r))?, where p(n) is the posterior mean,
we get p(m) = the posterior variance.

Note that extreme values of linear functionals of the prior as it varies in a
class I' are easy to compute if the extreme points of I" can be identified.
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Example 3.4. Suppose X ~ N(f,0?), with 02 known and the class I" of inter-
est is

I'sy = { all symmetric unimodal distributions with mode 6y} .

Then ¢ denoting the standard normal density, m(r) = [ L1¢(Z=2)7(6) df.
Note that any unimodal symmetric (about 8y) density 7 is a mixture of
uniform densities symmetric about #y. Thus the extreme points of I'sy are

U(6p — 7,60 + ) distributions. Therefore,

1 ot -9
Wé%EUm(ﬁ):iggg G0 O’¢( o ) dé
T e e T
1 [t 1 r—49
2, =,
:igg%{45(9”;*“’)—45(90_;_”5)}. (3.9)

In empirical Bayes problems (to be discussed later), for example, maxi-
mization of the above kind is needed to select a prior. This is called Type IT
maximum likelihood (see Good (1965)).

To study ratio-linear functionals the following results from Sivaganesan
and Berger (1989) are useful.

Lemma 3.5. Suppose Cp is a set of probability measures on the real line
given by Cp = {1y : t € T}, T C R%, and let C be the convex hull of Cr.
Fyrther suppose hy and hy are real-valued functions defined on R such that
[ |h1(z)|dF(z) < oo for all F € C, and K + ha(z) > 0 for all z for some
constant K. Then, for any k,

k:+fh1(a:) dF(a:) ~ sup k+ [ hy(z)v(d)
E}gé K+ th dF (x) teT K + [ ho(z)ve(dz)’ (3.10)
. k+fh1 dF(z) . k+fh1 2)vy(dz)
FGC K+ fh2 (33) - tlgif“ K+ fh2($)Vt(da:)' (3.11)

Proof. Because [ hy(x)dF(z) = [ hy(z) [, vi(dx)p(dt), for some probability
measure g on T, using Fubini’s theorem,

K+ / hi(z) dF (z) = / (k + by () /T vi(da)p(dt)

= [ ([ te m@pmtae) ) uta
:/ [(If((;i};;;;) ’jﬁ;) (K + ha(z )Vt(da:)} u(dt)
)

= <§1€lT ff((zk(i};;(a;) V:t CZ: (K + / ha(z) dF (z ))
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Therefore,

k+ [ hi(z) dF(z) <s f(k + hi(x))ve(dw)
sup .
rec K + [ hp(z) dF () teT f (K + ha(z))vi(dz)

However, because C D Cr,

wup KIS M@ AE@) | (kb))
rec K+ [ho(z)dF(z) ~ ter [(K + ho(z))vi(dz)

Hence the proof for the supremum, and the proof for the infimum is along the
same lines. 0O

Theorem 3.6. Consider the class I'sy of all symmetric unimodal prior dis-
tributions with mode 6y. Then it follows that

L [T 9(6) £ (216) db

sup E™(g(6)|x) = sup 22T . (3.12)
nelsy r>0 1 oiojr (.’E| )

1 9 +r
ne€lsu >0 2—17_ 000_1_ f(.’E|0) do

Proof. Note that E™(g()|z) = 9(?)(.;?;9;:(;;9)’ where f(z]0) is the density

of the data z. Now Lemma 3.5 can be applied by recalling that any unimodal
symmetric distribution is a mixture of symmetric uniform distributions. 0O

Example 3.7. Suppose X |0 ~ N(6,0?) and robustness of the posterior mean
with respect to I'sy is of interest. Then, range of posterior mean over this
class can be easily computed using Theorem 3.6. We thus obtain,

Oo+r ¢ r—
= PO
sup E™(6|z) = 21 f";ﬁ:j G5 z ) d
m€lsu r>0 b1 © (ET)
ot sup (0 Bp—r—2x :::) (0 bo+r—=x :::)
>0 ¢(9 +r :::) (09~r :::)
B0+ o (= o
T . 900 i 0 o d0
élll‘f E™(8|z) =r>0 1 e =
T sU foo—r 0¢ T)do

(09—1' :::) _¢(99+r—z)
=z + inf ——2 o .
r>0¢(_ou)_45(_o?)

Ezample 3.8. Suppose X |6 ~ N(6,0?) and it is of interest to test Hy : 6 < 6y
versus H; : 6 > 6. Again, suppose that I'sy is the class of priors to be
considered and robustness of this class is to be examined. Because
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P™(Ho|z) = P™(6 < 6o|z)
f_ T(— 00,00 (0) f(2|6) dm (6)
1% f(z|6) dn(9) ’

we can apply Theorem 3.6 here as well. We get,

1 b0 1 ,rz—0

37 Jo,—r 2 P(%5) d9
sup P™(Hglz) = sup o
ncl'sy r>0 = f0900+T ;-Qb z H)dg
a(e) - (i)

0 §(ftresy  g(fa=resy;

[

and similarly,

@ 9()7.’13 . @ 90—7‘7.’13
inf P™(Hplz) = mf 5 ) ( - _) .
nElsy r>0 p(Lotr=2) _ p(Lor-z)

It can be seen that the above bounds are, respectively, 0.5 and «, where
o =@(2L0), the P-value.

We shall now consider the density-ratio class that was mentioned earlier
in (3.7) and is given by

I'pr ={m: L(6) < ar(f) < U(H) for some o > 0},

for specified non-negative functions L and U. For « € [ pg and any real-valued
m-integrable function A on the parameter space O, let w(h) = f@ h(8)n(de
Further, let h = h™ — h~ be the usual decomposition of h into its positive
and negative parts, i.e., At (u) = max{h(z),0} and A~ (u) = max{—h(z),0}.
Then we have the following theorem (see DeRobertis and Hartigan (1981)).

Theorem 3.9. For U-integrable functions hy and ho, with hy positive a.s.
with respect to all m € I'pg,

7T(h1)

WEIII}‘DR ﬂ(hg)

18 the unique solution \ of

U(hy — Aha) ™ + L(hy — Ahg)* =0, (3.14)

3

(h1)
sup
n€lpr 7T( 2)

18 the unique solution A of
U(hy — Mhg)" + L(hy — Mhy)™ = 0. (3.15)

Proof. Let Ag = infrep, WE;;% c1 =infrer,, m(he) and ¢y = SUD ey, W(h2)-
Then 0 < ¢1 < ¢ < o0, and |Ag| < 0. Because U(hy — Ahg)™ + L(hy —
Aho)t = infrer,, m(hy — Mh2) for any A, note that Ao > X if and only
if U(hy — Ah2)™ + L(hy — Mh2)t > 0. However, Ao > ) if and only if
U(hy — Ahg)™ + L(hy — Ahg)t > 0. A similar argument for the supremum. O
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Ezample 3.10. Suppose X ~ N(#,0?), with o2 known. Consider the class I'pg
with L being the Lebesgue measure and U = kL, k > 1. Because the posterior

e [0f(zl6)dn(6) _ n(8f(z]9))
[Fi) () (/)

in the notation of Theorem 3.9, we have that inf,cp,, E™(6|z) is the unique
solution A of

A e}
k/_w(G—A)f(z|0)d0+[\ (6 — N f(z|6)d8 = 0, (3.16)

and similarly, sup,¢r, . £7(6|z) is the unique solution X of
A oo
/ (0 — \) F(z|6) db + k/ (0 — ) f(2]6) d6 = 0. (3.17)
—o0 A

Noting that f(z|f) = L¢(2=2) = %q&(ngm), and letting A\; be the minimum
and A, the maximum, the above equations may be rewritten as

[ R | = 3
[ R | R N )
Now let k(ﬁc’;@) =+v. Then Ay =z4+ 0. Put \g=z— 0, or ’\G_I =—1.

Then we see from the second equation above that

R e R ]
Y Y Y
= (k=1) [ Fo(-]) + o(~7]
Y Y Y
= (k-1 [-F1-2() +9(]
= (k-1 oD +o(| - (k-1
=0,

implying that once A is obtained, say A2 = z 4 o, the solution for A; is
simply z —o . Table 3.2 tabulates v = (k) for various values of k. What one

Table 3.2. Values of (k) for Some Values of k

k112515 2 | 3 | 4] 5 |10

7(k)|0|0.089|0.162|0.276|0.436|0.549|0.636|0.901
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can easily see from this table is that, if, for example, the prior density ratio
between two parameter points is sure to be between 0.5 and 2, the posterior
mean is sure to be within 0.276 standard deviation of z, and if instead the
ratio is certain to be between 0.1 and 10, the range is certain to be no more
than 1 s.d. either side.

3.8.2 Belief Functions

An entirely different approach to global Bayesian robustness is available, and
this is through belief functions and plausibility functions. This originated with
the introduction of upper and lower probabilities by Dempster (1967, 1968)
but further evolved in various directions as can be seen from Shafer (1976,
1979), Wasserman (1990), Wasserman and Kadane (1990), and Walley (1991).
The terminology of infinitely alternating Choquet capacity is also used in the
literature. Imprecise probability is a generic term used in this context, which
includes fuzzy logic as well as upper and lower previsions.

Recall that robust Bayesian inference uses a class of plausible prior proba-
bility measures. It turns out that associated with a belief function is a convex
set, of probability measures, of which the belief function is a lower bound, and
the plausibility function an upper bound. Thus a belief function and a plausi-
bility function can naturally be used to construct a class of prior probability
distributions. Some specific details are given below skipping technical details
and some generality.

Suppose the parameter space © is a Euclidcan space and D is a convex,
compact subset of a Euclidean space. Let p be a probability measure on D
and T be a map taking points in D to nonempty closed subsets of ©. Then
for each A C ©, define

A, ={de D:T(d) C A},and
A*={deD:T(d)NA+¢}.

Define Bel and Pl on © by
Bel(A) = p(A,) and PI(A) = u(AY). (3.20)

Then Bel is called a belief function and Pl, a plausibility function with source
(D, 4, T). Note that 0 < Bel(A) < PI(A) £ 1, Bel(A) = 1 — PI(A®) for any
A, and Bel(0) = Pl(O) = 1, Bel(¢) = Pl(¢) = 0. The above definition may
be given the following meaning. If evidence comes from a random draw from
D, then Bel(A) may be interpreted to be the probability that this evidence
implies A is true, whereas PI(A) can be thought of as the probability that
this evidence is consistent with A being true. It can be checked that Bel is
a probability measure iff Bel(A) = PI(A) for all A, or equivalently, T'(d) is
almost surely a singleton set.
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Ezample 3.11. Suppose it is known that the true value of  lies in a fixed set
Oy CO.Set T(d) =6 foralld € D. Then Bel(A) = 1if Oy C A; Bel(A) =0
otherwise.

Ezample 3.12. Suppose P is a probability measure on @. Then P is also a
belief function with source (&, P,T), where T(0) = {0}.

A probability measure P is said to be compatible with Bel and Pl if for
each A, Bel(A) < P(A) < PI(A). Let C be the set of all probability measures
compatible with Bel and Pl. Then C # ¢ and for each A,

Bel(A) = inf P(A) and Pl(A) = sup P(A).
pec PecC

This indicates that we can use Bel and Pl to construct prior envelopes. In
particular, if Bel and Pl arise from any available partial prior information,
then the set of compatible probability measures, C, is exactly the class of prior
distributions that a robust Bayesian analysis requires (compare with (3.4)).

Let h : © — R be any bounded, measurable function. Define its upper
and lower expectations by

E*(h) = }s)lépé Ep(h) and E.(h)= }1:%% Ep(h), (3.21)

where Ep(h) = [g h(0) P(df). If we let

h*(d) = sup h(#) and h.(d) = inf h(0),
(@)= sup (0) and hu(d) = inf A(6)

then it can be shown that

E*(h) = / h*(uw) u(du) and E.(h) = / ho(u) p(du). (3.22)
D D
Details on these may be found in Wasserman (1990). Based on these ideas,
some new techniques for Bayesian robustness measures can be derived when
the prior envelopes arise from belief functions.

Suppose Bel is a belief function on © with source (D, 11, T) and C is the
class of all prior probability measures compatible with Bel. Let L(0) = f(z|6)
be the likelihood function of 6 given the data x, and let L4(0) = L(0)14(6),
where I 4 is the indicator function of A C @. Then we have the following result
and its application from Wasserman (1990).

Theorem 3.13. If L(0) is bounded and A C O, then

. _ E.(La) _ Eu((La)+)
wbr(Al) = e T B @A) E (La)s) + B (L%.)’ (323)
supm(Alz) = E*(L4) = Eu(L3) . (3.29)

nec ~ E*(La) + Eu(Lac)  Eu(Ly) + Eu((Lac)s)
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Ezxample 3.14. Consider the class of e-contamination priors:
C={r:m=(1—¢€)m +€q,q9 € Q},

where @ is the class of all probability measures on 6. This neighborhood class
C corresponds to the belief function with source (D, u,T), where D = 8U{do},
p=(1—¢e)ny+ b, and

[{d) iEdeo;
T(d)_{ O ifd= d.

Here ¢ is a point mass on dg and 7{, is a probability measure on D giving zero
probability to dy and is identical to mg on D — {do}. Then from Theorem 3.13
above,

€) [, L(0)mo(dh) + esupge 4 L(6)
i‘ég m(Alz) = €) fo L(0)7o(d) + e supge 4 L(6)’ (3.25)
. _ 1 — 6)f L( 7T0 d9
%Iéfc m(Alz) = (1—e¢ f@ 9)7‘(’0?(19) + e supgeae L(9) (3:26)

It may be noted that this is a different proof for the same result of Berger and
Berliner (1986).

3.8.3 Interactive Robust Bayesian Analysis

Following Berger (1994), an interactive scheme for robust Bayesian analysis
can be suggested according to the diagram Figure 3.1. The point to note is
that, if lack of robustness is evident, then the class I' of priors obtained from
initial prior inputs has to be shrunk using further prior elicitation. Details on
such an approach for shrinking a large quantile class of priors is described in
Liseo et al. (1996).

Initial Prior Inputs| —» Inference —> |Sensitivity Analysis

7\

Not Robust Robust

A

Further Prior Inputs

Fig. 3.1. Interactive robust Bayesian scheme.
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3.8.4 Other Global Measures

As seen earlier, interpretation of the size of the range of posterior quantities
needs to be done within the given context. However, some efforts have been
made to derive certain generic measures also. Ruggeri and Sivaganesan (2000)
suggest a scaled version of the range for this purpose. Suppose 7 is a baseline
prior, and let the sensitivity of the posterior mean of a target quantity ~(8) to
deviations from g be of interest. Let I" be a class of plausible priors « on 6.
Assume the following notation of p™(z) = E™(h(8)|z), p°(z) = E™ (h(6)|z),
and V™ (z) denoting the posterior variance of h(f) under prior m. Then the
relative sensitivity, denoted by R, is defined as

(p"(z) — P°(z)*

o) (3.27)

R.(z) =

The motivation for considering R, is that the posterior variance V™ is a
measure of accuracy in estimation of h(6), and hence if the squared distance of
p™ (z) from p®(z) relative to this is not too large, robustness can be expected.
The following example which is essentially from Ruggeri and Sivaganesan
(2000) illustrates this idea.

Ezample 3.15. Let X have the N(#,1) distribution, and under =g, let 8 be
N(0,2). Consider the class I of all N(0,72) priors with 1 < 72 < 10. Consider
sensitivity of posterior inferences about h(8) = 6 when z > 0 is observed.
Because the posterior distribution (under the prior N(0,72)) of 6 given z is
normal with mean 72z/(7% + 1) and variance 72/(72 + 1), note that

2

T 2 T2 -2 21‘2
pr(z) = p°(z) = <TT+—1 - g) z and fr(2) = £()r—2(r—2)+—1)‘

It can then be easily checked that the range of p™(z) — p°(z) is 82/33 and
sup R (z) = 6.422/99. Thus, robustness can be expected when the observation
z lies in the range 0 < z < 4, but certainly not when z = 10.

3.8.5 Local Measures of Sensitivity

As can be noted from the previous section, unless the class I' of possible
priors is a ‘nice’ parametric class, or a class whose set of extreme points is
easy to work with, computational complexity of global measures of robustness
is high. Furthermore, this ‘global’ approach can become quite unfeasible for
very complicated models. If, for example, X ~ Py, and 8 is p-dimensional,
p > 1, then the range of posterior mean of #; may well depend on prior
inputs on ; for j # ¢ also. If such is the case, global measures of robustness
will involve computing ranges of posterior quantities of general functions g(6)
over classes of joint prior distributions of 6.

The alternative, which has attracted a lot of attention in recent years, is
that of trying to study the effects of small perturbations to the prior. This is
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called local sensitivity. In this approach also, one may either study the sen-
sitivity of the entire posterior distribution or that of some specified posterior
quantity. Let us first consider the former as in Gustafson and Wasserman
(1995). A different set of notations as given below are needed in this section.
Let 7 be a prior probability measure and let 7* denote its corresponding pos-
terior probability measure given the data z, i.e., 7%(d€) = f(z|6)7(d8)/m(x)
where m(x) = [, f(x|6)7(df) is the marginal density of the data. Let P be
the set of all probability measures on the probability space (6, B). A distance
function d : P — P is needed to quantify changes in prior and posterior mea-
sures. Let v, be a perturbation of 7 in the direction of a measure v. Then the
local sensitivity of P in the direction of v can be defined (see Gustafson and
Wasserman (1995)) by

d x xT
s(m,v;2) = lim 7(71- el

im (3.28)

Two different types of perturbations v, have been considered. The linear
perturbation is defined as v, = (1—e€)m+ev, and the geometric perturbation as
dve o (2£)°dm. (See Gelfand and Dey (1991) for details.) The local sensitivity
s(m,v; x) is simply the rate at which the perturbed posterior 1% tends to the
‘initial’ posterior 7n* relative to the change in the prior. As a measure of overall
sensitivity of a class I' of priors one may take

s(m, I';x) = sup s(m, v; x).
vel
There are many possible choices for d, the distance measure.
(i) drv(m,v) = sup s |T(A) — v(A)|, the total variation distance. In this
case s(m,v; z) for linear perturbations turns out to be the norm of the Fréchet
derivative. To see this one needs to start with the Gateaux differential of the

posterior. To define the Gateaux differential, let 6 = 7w — v, |}d|| = drv (7, v)
and define T': P — P by T(mw) = n%. The Gateaux differential of T is then

. T dTV(TrI;Vg) _ m,,(:n) z .z
Tﬂ'((S) = lelﬁJl c = mﬂ(m) dTv(Tl' ,V ),
because
vi = (1—-Xr" + A7, (3.29)

where A = A(e) = em,(2)/{(1 — e)m~(z) + em,(z)}. Also, simply note that
drv(n®,v?) = Me)dry (m®,v™). Further, if the likelihood function f(z|6) is
bounded (in 6), then T (4) is a linear map on signed measures such that

T(m +8) = T(n) + T(8) + o(]|6]]), as ||d]| — 0,

uniformly over all signed measures § with mass 0 (see Diaconis and Freedman
(1986)). Note then that
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. ap Tl T, ||
s(m, I z) = 5i“p" T

(ii) dg(m,v) = [ ¢ ( ) v(6), where ¢ is a smooth convex function with
bounded first and second derlvatlves near 1 and such that ¢(1) = 0. This is
the ¢-divergence measure of distance. (See Csiszér (1978), Goel (1983) and
Goel (1986).) Several well-known divergence measures are special cases of ¢-
divergence measure for different convex functions. Listed in Table 3.3 are some
such ¢ functions and the corresponding divergence measures obtained thereof.
(See Rao (1982) for applications of many of these measures in statistics.)

Consider first the e-contamination class of priors (or linear perturbations),
and note that

) d(m®, v¥)
s(m,vyx) = 161%1 A

Because dy (P, Q) = [ ¢ dQ, both dy (7, ve) and dy (7%, v¥) converge to 0
¢ (4 S\ Ve

as € — 0. In fact, we shall see that, $d¢ (m,ve) and d—€d¢( ,vF) also converge
to 0 as € = 0, so that on applying the L Hospital rule, we obtain

d I I
s(m,v;z) = 1613)1 ;—;G;V—))—
— lim d¢(ﬂ' VI)
€0 El L gy (m, ve)

d
— lim E_M_ (3.30)

0 Lody(m,ve)

The following theorem then follows from Theorem 3.1 of Dey and Birmiwal
(1994).

Table 3.3. ¢ Functions and the Corresponding Divergence Measures

o(x) |Divergence Measure

xlog(x) Kullback-Leibler
— log(x) Directed divergence
(z — 1) log(x) |J-divergence
i(vz—1)° |Hellinger distance or Kolmogorov’s measure of distance
1— %, 0 < a < 1|Generalized Bhattacharya measure

(x—1)2 Chi-squared divergence or Kagan’s measure of distance

E\”E /\;B, X # 0, —1|Power-weighted divergence
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Theorem 3.16. Suppose that f l:((:)) df < oo. Then

Ve (56)

s(muvyz) = ) (3.31)
v(0
V- (53)
where Vy(h(9)) = [ h*(8) dq(8) ~ (h(8) dq(6))”.
Proof. In view of (3.30) above, it is enough to establish that
d2 = . o I/(e)
St )emo = " (Ve (L) (3.32)

Recall from (3.29) that v¥ = h(e)n® + (1 — h(e))v®, where h(e) = (1 —
eymz(x)/my () = (1 — e)m(2)/{(1 — e)ymr(z) + em,(z)}. Now let v =
Ye(8,x) = v¥(0)/7%(0), and note that

h(e)m(8) + (1 — h(e))v*(6)

)
- 28
Therefore,
dy-a- ;jggggh@
My, (x)(—mﬂ(x)) —(1- e)mﬂ(x)(—mﬂ(x) + my (x)) _ Vw(e)
= 2, (@) -5
_ (—emi(z) — ma(@)my, () — (1 — ema(z)my(z) (1- Vm(e))
m? (z) ()
and hence
Flemn = - g 2
_ my(x) o v(0)
 ma(x) (1 ﬂz(ﬂ))
and similarly,
P m@) () —ma@) A (6)
g2l =7 m2(2) SO
Now because
o) = [o( 25 ) @) as
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and because ¢ is a smooth function with bounded first and second derivatives
near 1, applying the dominated convergence theorem (DCT), one obtains,

L agln,v) = [ #00) yn*(0) db, anc
Selo(m D)o =~ ) [1- LD 0) a9
=0.

Further, noting that dijgdq;(w’”,uf) = 4 f(j)’(fye)%’wr’c (8) df, and applying
DCT once again, one obtains,

a2 = [(00) Ly +6 ) (r?}*(0) 0, and
o)l = ' 2By [ - E Dm0y an,
because
/ (j—:zvlezo) 7*(6) 6 = —zm”(x)(m:;é”(”i)_ M (@) / (1- ;zggiw(e)) do
=0.
Further noting that
(). o
_ m:(x) / V(6) f(z|6 b (3.34)
- Z:g; (3.35)
we get
=i fo- Zpes
- |G - R e) ~ow
-GS Rt i) O
_ /(% - Z:Ei;)zwz(ﬁ) d6

which concludes the proof. O
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We consider next geometric perturbations. The following theorem then
follows from Theorem 3.2 of Dey and Birmiwal (1994).

Theorem 3.17. Suppose that
. (0)\ 2
(i) [(log wgoi) 7(0) df < oo, and
(i) [(log V(o)) (:Eg;)ew(é‘) df < oo for some € > 0. Then

Ve (log 453 )

s(mvix) = : (3.36)
v(8)
Vi (log 7r(0))
Proof. As before in Theorem 3.16, it is enough to establish that
d2 " V(G)
el T LIy 1 -1 v\ .
d€2d¢(ﬂ- 5V€)|€AO ¢ ( )V7r (Og 7_(_(9)> s (3 37)

proving the desired result. 0O

Applications of these results are similar to those of a related simpler ap-
proach as shown below. The other approach to local sensitivity analysis is
simply to look at variation of the curvature of ¢-divergence as discussed in
Dey and Birmiwal (1994) and Delampady and Dey (1994). This turns out to
be much easier also as shown below. Consider the class I" of e-contamination
priors,

Fez{w:w:(l—e)wo—i-eq q€Q}.
Then the curvature C(q) defined by C(q) = %, f¢(;;((00‘|2)))7ro(9|x) dé, under
general regularity conditions has the form Clq)=¢ ! (D)Vzo (2 (:0(89))) as seen
previously. Similarly, if we consider the class

Fg:{w:w:c(e)wé ‘q° qGQ}

then we have that C(q) = ¢”(1)V7r0(.|z) (log :0((0))) Variation of these quanti-

ties over many parametric and nonparametric classes can be easily computed.
The following example is from Dey and Birmiwal (1994).

Ezxample 3.18. Consider X|8 ~ N,(8,I) and the class of I’y where under mp,
0 ~ N(po,Xo) and Q = {q: 0|q ~ Np(pro,kX0), k1 <k < ka}, with k; <1<
ks. Then the posterior distribution of 8 given x under 7 is

Np (20([ —+ 20)_1}( + (I + 20)_1[_L0, 20([ + 20)_1) ,

and hence

Ve (18 55

(k_ 1>2 —1\2 I -3
= | ——— ) {2trace( + Ty ")? +4(x — po)' To(I + Xp) >(x — o)} .

k
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It can then be shown that C(g) attains its minimum at ¥ = 1 and maximum
at k1 or kg. The extent of robustness will of course depend on the data x,
smaller values of C(g¢) indicating robustness.

Let Qus be the class of unimodal spherically symmetric densities ¢ such
that maxg ¢(6) < h for some specified h > 0. Consider

F={r:m=(1-€m+eqq€Qus}.

(See Sivaganesan (1989) for details on this class.) Then, under certain reason-
able conditions (see Delampady and Dey (1994)),

sup C(q)

nell

o q(6)
=@ (W) 582 Veutio (7, 5)

1"

_ 9 (1) f(z|6)
B M (%) V(f)uzpl/h{ S(r) mo(0)

1 2
@ - | /S | falo) ] L (3.38)

where S(r) is a sphere of radius r centered at 0 and V' (r) denotes its volume.
The following example illustrates the use of this result.

Ezample 8.19. Let X |6 ~ N(6,1), and under mg, & ~ N(0,72), 72 > 1. Then
My, is the density of N(0,72 + 1). Upper bounds for C(q) (denoted by C*)
calculated using (3.38) are listed in Table 3.4 for selected values of 7 and z.
The extremely large values of C* corresponding with 7 = 1.1 and z = 3,4
indicate that these data are not compatible with 7. However, the same data
are compatible with 7y if 7 has a larger value, say 2.0. Some kind of calibration,
however, is needed to precisely establish what magnitudes of curvature can
be considered extreme.

Table 3.4. Bounds on Curvature for Different Values of 7 and z
T IwIC *

909.3
2.08225 x10%
1.06395 x10®

1.1

Ao AW R W

1.5({2]1.0918
13.7237
454.3244

2.013|1.1186
7.0946
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Before we conclude this discussion, it should be mentioned that there is a
large amount of literature on gamma minimax estimation, which is a frequen-
tist approach to Bayesian robustness. The idea here is to look for the minimax
estimator, but the class of priors considered (for minimaxity) being the one
identified for Bayesian robustness consideration. Let us take a very brief look.

Recall that for any decision rule §, its frequentist risk function is given
by R(#,8) = EL(6,5(X)), where L is the loss function and the expectation
is with respect to the distribution of X|4. If 7 is any prior distribution on
6, the Bayes risk of § with respect to 7 is 7(m,8) = E"R(#,4). The decision
rule d., which minimizes the Bayes risk (m, d), is the Bayes rule with respect
to m. Under the minimax principle, the optimal decision rule § (minimax
rule) is that which minimizes the maximum of the frequentist risk R(8,J).
Equivalently, 6% minimizes the maximum of the Bayes risk r(r,§) over the
class of all priors w. Under the gamma minimax principle, if 7 is constrained
to lie in a class I', the optimal rule 9 (gamma-minimax rule) minimizes
SUperr(m,d).

Even though there are many attractive results in this topic, we will not be
discussing them. Extensive discussion can be found in Berger (1984, 1985a),
and further material in Ickstadt (1992) and Vidakovic (2000).

3.9 Inherently Robust Procedures

It is natural to look for priors and the resulting Bayesian procedures that are
inherently robust. Adopting this approach will eliminate the need for checking
robustness at the end by building robustness into the analysis at the beginning
itself. Further, practitioners can demand “default” Bayesian procedures with
built-in robustness that do not require specific sensitivity analyses requiring
sophisticated tools.

Accurmnulated evidence indicates that priors with flatter tails than those of
the likelihood tend to be more robust than easier choices such as conjugate
priors. Literature here includes Dawid (1973), Box and Tiao (1973), Berger
(1984, 1985a), O’Hagan (1988, 1990), Angers and Berger (1991), Fan and
Berger (1992), and Geweke (1999). The following example from Berger (1994)
illustrates some of these ideas.

Ezample 3.20. Let X1, ..., X, be a random sample from a measurement error
model, so that X; =0 +¢;,7=1,...,n where ¢; are the measurement errors.
€;'s can then be reasonably assumed to be i.i.d. having a symmetric unimodal
distribution with mean 0 and unknown variance o2. The location parameter §
is of inferential interest with the prior information that it is symmetric about
0 and has quartiles of 1, whereas ¢? is a nuisance parameter with little prior
information.

The simple “standard” analysis would assume that X;|§,¢? are i.i.d.
N(6,0?) and 7(0,0?) « Zm1(f) where under 71, the prior distribution of
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# is N(0,2.19). (This may be contrasted with Jeffreys analysis discussed in
Section 2.7.2.) This conjugate prior analysis suffers from nonrobustness as
mentioned previously.

Instead, assume that X;|0, 02 are i.i.d. t4(8,0?%), and likewise assume that
under 7, the prior distribution of  is Cauchy(0, 1). This analysis would
achieve certain robustness lacking in the previous approach. Any outliers in the
data will be adequately handled by the Student’s ¢ model, and further, if the
prior and the data are in conflict, the prior information will be mostly ignored.
There are certain computational issues to be addressed here. The “standard”
analysis is very easy whereas the robust approach is computationally intensive.
However, the MCMC techniques that will be discussed later in the context of
hierarchical Bayesian analysis can handle these problems.

O’Hagan (1990) and Angers (2000) discuss some of these issues formally
using concepts that they call credence and p-credence that compare the tail
behavior of the posterior distribution with that of heavy tailed distributions
such as Student’s ¢ and exponential power density.

Further discussion of robust priors and robust procedures will be deferred
to Chapters 4 and 5 where we shall consider default and reference priors that
are improper priors.

3.10 Loss Robustness

Given the same decision problem, it is possible that different decision makers
have different assessments for the consequences of their actions and hence
may have different loss functions. In such a situation, it may be necessary to
evaluate the sensitivity of Bayesian procedures to the choice of loss.

Ezample 3.21. Suppose X is Poisson(#) and # has the prior distribution of
exponential with mean 1. Suppose £ = 0 is observed. Then the posterior dis-
tribution of @ is exponential with mean 1/2. Therefore, the Bayes estimator
of # under squared error loss is 1/2 which is the posterior mean, whereas
the Bayes estimator under absolute error loss is 0.3465, the posterior median.
These are clearly different, and this difference may have some significant im-
pact depending on the use to which the estimator is being put.

It is possible to provide a Bayesian approach to the study of loss robustness
exactly as we have done for the prior distribution. In particular, if a class of
loss functions is available, range of posterior expected losses can be computed
and examined as was done in Dey et al. (1998) and Dey and Micheas (2000).
There are also other approaches, such as that of computing non-dominated
alternatives, which is outlined in Martin et al. (1998).
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3.11 Model Robustness

The model for the observables is the most important component of statistical
inference, and hence imprecisions in the specification of the model that can
lead to inaccurate inferences must be viewed with great concern. There has
been a lot of work in classical statistics in this regard, but most of that only
addresses the problem of influence of outliers with respect to a specified target
model. In principle, Bayesian approach to model robustness need not be any
different from that for prior robustness or loss robustness. However, the prob-
lem gets complicated because the mapping of likelihood function to posterior
density is not ratio-linear, and hence different techniques need to be employed
to assess the sensitivity. If only a finite set of models need to be considered,
the problem is a simple one and one simply needs to check the inferences
obtained under the different models for the given data. It needs to be kept
in mind that, even in this case, different models may be based on different
parameters with different interpretations, and hence the specification of prior
distributions may be a complicated problem. The following example which
illustrates some of the possibilities is similar to Example 1 of Shyamalkumar
(2000). (See Pericchi and Pérez (1994) and Berger et al. (2000) also.)

Ezxample 3.22. Suppose the quantity of inferential interest is 8, the median
of the model. Model uncertainty is represented by considering the set of two

models,
M ={N(6,1), Cauchy(#,0.675)},

where 0.675 above is the scale parameter of the Cauchy distribution. In other
words, X is either N{6,1) or Cauchy(#,0.675). Since 6 is the median of the
model in either case, it is not difficult to specify its prior distribution. Suppose
the prior 7 lies in the class I" of N(0,72), 1 < 72 < 10. The range of posterior
means are as shown in Table 3.5.

As can be seen, model robustness is also dependent on the observed z,
just like prior or loss robustness. In many situations, this robustness will be
absent, and there is no solution other than providing further input on model
refinements.

Model robustness does have a long history even though the material is not
very extensive. Box and Tiao (1962) have considered this problem in a simple
setup. Lavine (1991) and Ferndndez et al. (2001) have used a nonparamet-
ric class of models, and Bayarri and Berger (1998b) have studied robustness
in selection models. These can be considered global robustness approaches
as compared with the approach of local robustness adopted by Cuevas and
Sanz {1988), Sivaganesan {1993), and Dey et al. (1996). Extrema of func-
tional derivative of the posterior quantities are studied by these authors. This
is similar to the local robustness approach for prior distributions. Some of the
frequentist approaches such as Huber (1964, 1981) are also somewhat relevant.
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Table 3.5. Range of Posterior Means for Different Models
=2 =4 =26
Likelihood|inf E(8|z)|sup E(0|z)|inf E(8|z)|sup E(f|z)|inf E(f|z)|sup E(0|z)
Normal 1.000 1.818 2.000 3.636 3.000 5.455
Cauchy 0.914 1.689 0.621 3.228 0.362 4.433

3.12 Exercises

1.

(St. Petersburg paradox). Suppose you are invited to play the follow-
ing game. A fair coin is tossed repeatedly until it comes up heads. The
reward will be 2™ (in some unit of currency) if it takes n tosses until a
head first appears. How much would you be willing to pay to play this
game? Show that the expected monetary return is oo, but few would be
willing to pay very much to play the game.

. Consider a lottery where it costs $1 to buy a ticket. If you win the lottery

you get $1000. If the probability of winning the lottery is 0.0001, decide
what you should do under each of the following utility functions, u(z), =
being the monetary gain:

(a) u(z) = z; (b) u(z) =log. (.3 + z); (c) u(z) = exp(1 + z/100).

. A mango grower owns three orchards. Orchard I yields 50% of his total

produce, II provides 30% and III provides the rest. Even though they are
all of a single variety, 2% of the mangoes from I, 1% each from II and III
are excessively sour tasting.

(a) What is the probability that a mango randomly selected from the total
produce is excessively sour?

(b) What is the probability that a randomly selected mango that is found
to be excessively sour came from orchard II7

(c) Consider a box of 100 mangoes all of which came from a single orchard,
but we don’t know which one. A mango is selected randomly from this
box and is found to be sour. What is the probability that a second mango
randomly selected from the remaining 99 is also sour?

. Show that the Student’s ¢ density can be expressed as a scale mixture of

normal densities.

. Refer to Example 3.1. Suppose that the prior for # has median 1, and

upper quartile 2. Consider the priors,

(i) @ ~ exponential, (ii) log(f) ~ normal and (iii) log(d) ~ Cauchy.

(a) Determine the hyperparameters of the three priors.

(b) Plot the posterior mean E™(6|z) for the three priors when z lies in
the range, 0 < z < 50.

Let X;, X, - -, X,, be arandom sample from Poisson(#), where estimation
of 8 is of interest.

(a) Derive the range of posterior means when the prior lies in the class of
Gamma distributions with prior mean 6.
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(b) Compute the range of posterior means if the prior density is known
only to be a continuous non-increasing function.

. Let X1, X5,..., X, be iid. N(8,0%), 0% known. Consider the following

class of conjugate priors for 8: I" = {N(O,Tz),f2 > 0}.

(a) Find the range of posterior means.

(b) Find the range of posterior variances.

{¢) Suppose Z > 0. Plot the range of 95% HPD credible intervals.

(d) Suppose 02 = 10 and n = 10. Further, suppose that an Z of large
magnitude is observed. If, now, a N(0, 1) prior is assumed (in which case
prior mean is far from the sample mean but prior variance and sample
variance are equal) show that the posterior mean and also the credible
interval will show substantial shrinkage. Comment on this phenomenon of
the prior not allowing the data to have more influence when the data and
prior are in conflict. What would happen if instead a Cauchy(0, 1) prior
were to be used?

Let X6 ~ N(6,1) and let I'syy denote the class of unimodal priors which
are symmetric about 0.

(a) Plot {infrcrs, m(x),sup,e e, m(x)} for 0 <z < 10.

(b) Plot {infrcrs, E™(0|z),5uprepe, E™(0]z)} for 0 <z < 10.

. Let X, Xo,---, Xy, be i.i.d. with density

f(z]0) =exp(—(z—8)), z >0,

where —o0 < # < oo. Consider the class of unimodal prior distributions
on # which are symmetric about 0. Compute the range of posterior means
and that of the posterior probability that § > 0, for n = 5 and x =
(0.1828,0.0288, 0.2355,1.6038, 0.4584).

Suppose X1, X2, .., X, are i.i.d. N(6,02), where € needs to be estimated,
but ¢? which is also unknown is a nuisance parameter. Let Z denote the
sample mean and s2_, = Y7 | (x; — £)?/(n — 1), the sample variance.
(a) Show that under the prior m(6, 02) o (¢2)71, the posterior distribution

of 4 is given by
V(b — I)

Sp—1

~tn_1.
(b) Using (a), justify the standard confidence interval

I=x tn_l(a/2)sn_1/\/ﬁ

as an HPD Bayesian credible interval of coefficient 100(1 — «)%, where
tn—1{/2) is the t,_; quantile of order (1 — «/2).

(c) If instead, o2 ~ N(u,co?) and 7(o?) o (02)71, for specified p and
¢, what is the HPD Bayesian credible interval of coefficient 100(1 — )%
(d) In (c) above, suppose ¢ = 5 and p is not specified, but is known to
lie in the interval 0 < p < 3, n =9, Z =0 and s,_1 = 1. Investigate the



96

11.

12.

13.
14.

15.
16.

17.

3 Utility, Prior, and Bayesian Robustness

robustness of the credible interval given in (b) by computing the range of
its posterior probability.

(e) Consider independent priors: 8 ~ N(u,72), 7(0?) o (02?)7L, where
0<p<3and5 <72 <10. Conduct a robustness study as in (d) now.

Let N
zr-1 if A > 0;
pa(z) = ) X
limy_,0 =5— = log(z) if A =0,

and consider the following family of probability densities introduced by
Albert et al. (1991):

70l 6, ¢, X) = k(c, \)y/pexp {—gm (1 + M) } , (3.39)

where k(c, A) is the normalizing constant, —oo < p < 00, ¢ > 0, ¢ > 1,
A>0.

{(a) Show that 7 is unimodal symmetric about p.

(b) Show that the family of densities defined by (3.39) contains many
location-scale families.

(c) Show that normal densities are included in this family.

{(d) Show that Student’s t is a special case of this density when A = 0.
(e) Show that (3.39) behaves like the double exponential when A = 1/2.
(f) For 0 < A < 1, show that the density in (3.39) is a scale mixture of
normal densities.

Suppose X |0 ~ N(8,0?), with 8 being the parameter of interest. Explain
how the family of prior densities given by (3.39) can be used to study the
robustness of the posterior inferences in this case. In particular, explain
what values of A are expected to provide robustness over a large range of
values of X = .

Refer to the definition of belief function, Equation (3.20). Show that Bel
is a probability measure iff Bel(.) = PI(.).

Show that any probability measure is also a belief function.

Refer to Example 3.14. Prove (3.25) and (3.26).

Refer to Example 3.14 again. Let X | ~ N(f,1) and let my denote N (0, 72)
with 72 = 2. Take € = 0.2 and suppose z = 3.5 is observed.

(a) Construct the 95% HPD credible interval for 8 under .

(b) Compute (3.25) and (3.26) for the interval in (a) now, and check
whether robustness is present when the e-contamination class of priors is
considered.

(Dey and Birmiwal (1994)) Let X = (Xi,..., Xk) have a multinomial
distribution with probability mass function,

- k
P(Xy =z, -+, Xy = zk|p) = I—Ikn! oy Hf:ﬂ??, with n = )i, #; and
i=1""

0<p; <1, Zle p; = 1. Suppose under 7, p has the Dirichlet distribu-
tion D(ax) with density
mo(p) = _kr(% ie 1pf’"1, with oy = Zle o; where o; > 0. Now

[I_, reo
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consider the e-contamination class of priors with @ = {D(sa),s > 1}.
Derive the extreme values of the curvature C(g).






4

Large Sample Methods

In order to make Bayesian inference about the parameter 8, given a model
f(x8), one needs to choose an appropriate prior distribution for 8. Given the
data @, the prior distribution is used to find the posterior distribution and var-
ious posterior summary measures, depending on the problem. Thus exact or
approximate computation of the posterior is a major problem for a Bayesian.
Under certain regularity conditions, the posterior can be approximated by
a normal distribution with the maximum likelihood estimate (MLE) as the
mean and inverse of the observed Fisher information matrix as the dispersion
matrix, if the sample size is large. If more accuracy is needed, one may use the
Kass-Kadane-Tierney or Edgeworth type refinements. Alternatively, one may
sample from the approximate posterior and take resort to importance sam-
pling. Posterior normality has an important philosophical implication, which
we discuss below.

How the posterior inference is influenced by a particular prior depends on
the relative magnitude of the amount of information in the data, which for
1.i.d. observations may be measured by the sample size n or nI(8) or observed
Fisher information I, (defined in Section 4.1.2), and the amount, of informa-
tion in the prior, which is discussed in Chapter 5. As the sample size grows,
the influence of the prior distribution diminishes. Thus for large samples, a
precise mathematical specification of prior distribution is not necessary. In
most cases of low-dimensional parameter space, the situation is like this. A
Bayesian would refer to it as washing away of the prior by the data. There are
several mathematical results embodying this phenomenon of which posterior
normality is the most well-known.

This chapter deals with posterior normality and some of its refinements.
We begin with a discussion on limiting behavior of posterior distribution in
Section 4.1. A sketch of proof of asymptotic normality of posterior is given
in this section. A more accurate posterior approximation based on Laplace’s
asymptotic method and its refinements by Tierney, Kass, and Kadane are
the subjects of Section 4.3. A refinement of posterior normality is discussed
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in Section 4.2 where an asymptotic expansion of the posterior distribution
with a leading normal term is outlined. Throughout this chapter, we consider
only the case with a finite dimensional parameter. Also, 8 is assumed to be a
“continuous” parameter with a prior density function.

We apply these results for determination of sample size in Section 4.2.1.

4.1 Limit of Posterior Distribution

In this section, we discuss the limiting behavior of posterior distributions as
the sample size n — oo. The limiting results can be used as approximations if
n is sufficiently large. They may be used also as a form of frequentist validation
of Bayesian analysis. We begin with a discussion of posterior consistency in
Section 4.1.1. Asymptotic normality of posterior distribution is the subject of
Section 4.1.2.

4.1.1 Consistency of Posterior Distribution

Suppose a data sequence is generated as i.i.d. random variables with density
f(x]fy). Would a Bayesian analyzing this data with his prior n(6) be able
to learn about 63?7 Our prior knowledge about 8 is updated into the poste-
rior as we learn more from the data. Ideally, the updated knowledge about
6, represented by its posterior distribution, should become more and more
concentrated near 6, as the sample size increases. This asymptotic property
is known as consistency of the posterior distribution at fy. Let Xp,..., X,
be the observations at the nth stage, abbreviated as X, having a density
flx, | 8), 0 € © C RP. Let n(8) be a prior density, 7{0 | X,) the poste-
rior density as defined in (2.1), and II{. | X,) the corresponding posterior
distribution.

Definition. The sequence of posterior distributions II(. | X)) is said to be
consistent at some 8y € O, if for every neighborhood U of 8o, II{U | X,) — 1
as n — oo with probability one with respect to the distribution under 6.

The idea goes back to Laplace, who had shown the following. If X;,..., X,
are i.i.d. Bernoulli with Py(X; = 1) = 0 and () is a prior density that is
continuous and positive on (0,1), then the posterior is consistent at all 8y in
{0,1). von Mises (1957) calls this the second fundamental law of large num-
bers; the first being Bernoulli’s weak law of large numbers. Need for posterior
consistency has been stressed by Freedman {1963, 1965) and Diaconis and
Freedman (1986).

From the definition of convergence in distribution, it follows that consis-
tency of II(. | X,) at 6, is equivalent to the fact that IT(. | X,) converges
to the distribution degenerate at 8y with probability one under 8.

Consistency of posterior distribution holds in the general case with a finite
dimensional parameter under mild conditions. For general results see, for ex-
ample, Ghosh and Ramamoorthi (2003). For a real parameter 6, consistency
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at gy can be proved by showing E(8 | X,,) — 6y and Var(d | X,) — 0 with
probability one under 6y. This follows from an application of Chebyshev’s
inequality.

Ezample 4.1. Let X1, X, .., X, beiid. Bernoulli observations with Pp(X; =
1) = 6. Consider a Beta («, 8) prior density for 8. The posterior density of §
given X1, Xo,..., Xy, is then a Beta (3" | X; +a, n— 3 1 | X; + () density
with

_ S Xt
n+a+p3 "’

L Xt a)(n =30 Xi+6)
Var(8 | X1,...,Xn) = (aif-ﬁ+n)2(a+ﬁ+ln+1) ‘

E(f]X.,...,Xn)

As %ZLI X; — 0y with Py ,-probability 1 by the law of large numbers, it
follows that E(@ | X1,...,X,) — 6g and Var(8 | X1,...,X,) — 0 with
probability one under 6y. Therefore, in view of the result mentioned in the
previous paragraph, the posterior distribution of 8 is consistent.

An important result related to consistency is the robustness of the poste-
rior inference with respect to choice of prior. Let X, ..., X,, be i.i.d. observa-
tions. Let 7; and w5 be two prior densities which are positive and continuous
at 8y, an interior point of @, such that the corresponding posterior distri-
butions ITy(. | X,,) and I3(. | X,) are both consistent at 8. Then with
probability one under 8¢

/ | (0] Xp) —m2(0] Xy,)|d0 —0
e

or equivalently,
Stiplﬂx(A | X0) — (A | Xn)| — 0.

Thus, two different choices of the prior distribution lead to approximately the
same posterior distribution. A proof of this result is available in Ghosh et al.
(1994) and Ghosh and Ramamoorthi (2003).

4.1.2 Asymptotic Normality of Posterior Distribution

Large sample Bayesian methods are primarily based on normal approximation
to the posterior distribution of 8. As the sample size n increases, the poste-
rior distribution approaches normality under certain regularity conditions and
hence can be well approximated by an appropriate normal distribution if n is
sufficiently large. When n is large, the posterior distribution becomes highly
concentrated in a small neighborhood of the posterior mode. Suppose that the
notations are as in Section 4.1.1, and 8,, denotes the posterior mode. Under
suitable regularity conditions, a Taylor expansion of log (6 | X,) at 8, gives



102 4 Large Sample Methods

log7(0 | X,) =logn(8, | X))+ (60— 6,) 880 log7(8 | X»)lg
56 -8.T.0-8,)+
log 7(8r | X.n) %(e—én)’in(e-én) (4.1)

where I, is a p X p matrix defined as

2

0t

and may be called generalized observed Fisher information matrix. The term
involving the first derivative is zero as the derivative is zero at the mode 8,,.
Also, under suitable conditions the terms involving third and higher order
derivatives can be shown to be asymptotically negligible as 8 is essentially
close to 8,,. Because the first term in (4.1) is free of 8, 7(8|X ), as a function
of 8, is approximately represented as a density proportional to

expl—3 (0 — 8. Tn(6 - 8]

which is a N, (85,1, 1) density (with p being the dimension of 8).

As the posterior distribution becomes highly concentrated in a small neigh-
borhood of the posterior mode 8,, where the prior density m(6) is nearly
constant, the posterior density 7(6 | X,) is essentially the same as the like-
lihood f(X, | @). Therefore, in the above heuristics, we can replace 8, by
the maximum likelihood estimate (MLE) 8,, and I, by the observed Fisher
information matrix

2

0t
S |
so that the posterior distribution of 8 is approximately N,(8,,1,, ).
The dispersion matrix of the approximating normal distribution may also
be taken to be the expected Fisher information matrix I(8) evaluated at 8,
where I(8) is a matrix defined as

2

16) = Bo (- g 081 (X 10))

Thus we have the following result.

Result. Suppose that X, X»,..., X, are i.i.d. observations, abbreviated as
X, having a density f(z, | 8), 8 € © C RP. Let w(8) be a prior density and

7(0 | X,) the posterior density as defined in (2.1). Let 8,, be the posterior
mode, 8, the MLE and I, I, and I (8) be the different forms of Fisher
information matrix defined above. Then under suitable regularity conditions,
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for large n, the posterior distribution of 8 can be approximated by any one of
- e aA A1 ~ ~
the normal distributions N,(6,,1I,, 1) or Ny(0,,1,7) or Ny(0,,171(8,)).

In particular, under suitable regularity conditions, the posterior distribu-
tion of j;/2(0 —8,), given X,,, converges to Ny (0,1) with probability one
under the true model for the data, where I denotes the identity matrix of
order p. This is comparable with the result from classical statistical theory
that the repeated sampling distribution of I ;/2(0 — én) given @ also converges
to Np(0,I).

For a comment on the accuracy of the different normal approximations
stated in the above result and an example, see Berger (1985a, Sec. 4.7.8).

We formally state a theorem below giving a set of regularity conditions
under which asymptotic normality of posterior distribution holds.

Posterior normality, in some form, was first observed by Laplace in 1774
and later by Bernstein (1917) and von Mises (1931). More recent contributors
in this area include Le Cam (1953, 1958, 1986), Bickel and Yahav (1969),
Walker (1969), Chao (1970), Borwanker et al. (1971), and Chen (1985). Ghosal
(1997, 1999, 2000) considered cases where the number of parameters increases.
A general approach that also works for nonregular problems is presented in
Ghosh et al. (1994) and Ghosal et al. (1995).

We present below a version of a theorem that appears in Ghosh and Ra-
mamoorthi (2003). For simplicity, we consider the case with a real parameter
# and i.i.d. observations X;i,...,X,.

Let X1, Xo,...,X, be ii.d observations with a common distribution P,
possessing a density f(z|6) where § € ©, an open subset of R. We fix 6y € O,
which may be regarded as the “true value” of the parameter as the prob-
ability statements are all made under 6y. Let [(8,z) = log f(z|6), L.(0) =
S (8, X;), the log-likelihood, and for a function , let h(¥) denote the ith
derivative of h. We assume the following regularity conditions on the density
f(zlf).

(A1) The set {z : f(z|f) > 0} is the same for all 6 € O.

(A2) 1(0,z) is thrice differentiable with respect to 6 in a neighborhood
(8o — 6,89 + &) of 6. The expectations Egol(l)(GO,Xl) and Fg,1®) (6, X;)
are both finite and

sup 13 0,z) < M(z) and Eg. M(X1) < 00. (4.2
0
g€ (80—08,00+6)

(A3) Interchange of the order of integration with respect to Py, and differen-
tiation at 6y is justified, so that

Epol™ (B9, X1) = 0, Epyl'? (6o, X1) = —Eo, (1) (60, X1))*.
Also, the Fisher information number per unit observation I(y) =

B, (1M (6y, X1))? is positive.
(A4) For any § > 0, with Py -probability one
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1
sup —(Ln(8) — L,(00)) < —e
|6—80|>8 T

for some € > 0 and for all sufficiently large n.

Remark: Suppose there exists a strongly consistent sequence of estimators 6,,
of §. This means for all 8y € ©, 8, — 6y with FPy,-probability one. Then by
the arguments given in Ghosh (1983), a strongly consistent solution 6,, of the
likelihood equation Lg)(O) = 0 exists, i.e., there exists a sequence of statistics
6,, such that with Py, -probability one 6,, satisfies the likelihood equation for
sufficiently large n and 6, — 6.

Theorem 4.2. Suppose assumptions (A1) — (A4) hold and 6, is a strongly
consistent solution of the likelihood equation. Then for any prior density w(0)
which is continuous and positive at g,

I(6
lim / |[mr () X1y ooy Xn) — ( O)e_%t21(00)| dt=0 (4.3)
n—oe fpo vV 2

with Py,-probability one, where 7}, (t|X1,...,Xy) is the posterior density of
t=+mn(6— 0,) given X1,..., Xn.
Also under the same assumptions, (4.3) holds with I1(68y) replaced by I, =
—11@(8,).

n
A sketch of proof. We only present a sketch of proof. Interested readers may
obtain a detailed complete proof from this sketch.

The proof consists of essentially two steps. It is first shown that the tails
of the posterior distribution are negligible. Then in the remaining part, the
log-likelihood function is expanded by Taylor’s theorem up to terms involving
third derivative. The linear term in the expansion vanishes, the quadratic term
is proportional to logarithm of a normal density, and the remainder term is
negligible under assumption (4.2) on the third derivative.

Because 7, (0| X1,..., X,) x Hf(Xi|0)7r(0), the posterior density of t =
i=1
V(6 — 6,,) can be written as
Tt X1, Xn) = C7 (00 + t/v/n) exp[Lo (0 +t/v/n) — Lu(6n)]  (4.4)

where C,, — / (6 + t//R) explLn (B + £/ V/R) — Ln(6)] dt.

R
Most of the statements made below hold with Fy,-probability one but we will
omit the phrase “with Py,-probability one”.
Let

gn(t) = 7(6n +t/vV/7) exp|Ln (bn +t/v/7) — L (6)] — m(6)e~ 2% 160,

We first note that in order to prove (4.3), it is enough to show
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[ 01— . (4.5)

If (4.5) holds, C,, — w(60)\/2m/I(6y) and therefore, the integral in (4.3),
which is dominated by

1,2 1(6 1,2
¢ [ Nontoldt+ [ 10 m(pe 1o [T s 4
R R i

also goes to zero.
To show (4.5), we break R into two regions A; = {t : |t| > o4/} and
Ag = {t : |t| < do+/n} for some suitably chosen small positive number §y and
show for ¢ = 1, 2.

/ \gn(8)] dt — 0. (4.6)
A

To show (4.6) for i = 1, we note that

/ lgn(t)] di
Ay

S/ 70 + /1) exp[Ln (B, + t//1) — Ly (6 )]dt+/ 7 (60)e 3100 gy,
Ay A

It is easy to see that the second integral goes to zero. For the first integral,
we note that by assumption (A4), for t € Aq,

[ 0O +1/3/1) = Lu(6n)] < —c

for all sufficiently large n. It follows that (4.6) holds for i = 1.
To show (4.6) for i = 2, we use the dominated convergence theorem.

Expanding in Taylor series and noting that L( )(9 ) = 0 we have for large n,

N 1,2
—+ %) — Ln(Gn) = —§t21n + Rn(t) (47)

where R, (t) = %(t/\/ﬁ)BLf) (¢) and @, lies between 6, and 6, + t//n.

By assumption (A2), for each t, R,,(t) — 0 and I, — I(6y) and therefore,
gn(t) = 0. For suitably chosen dg, for any t € A,

|R.()] < 5t2 ZM —tZI

for sufficiently large n so that from (4.7),

exp[Ln(én + t/\/ﬁ) - Ln(én)] < 6“%7521" < 6“%7521(00).
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Therefore, for suitably chosen small dg, |g.(¢)| is dominated by an integrable
function on the set Aa. Thus(4.6) holds for ¢ = 2. This completes the proof of
(4.3). The second part of the theorem follows as I,, — I(6p). O

Remark. We assume in the proof above that m(8) is a proper probability
density. However, Theorem 4.2 holds even if 7 is improper, if there is an ng
such that the posterior distribution of 6 given (z1,z2,...,Zn,) is proper for
a.e. (T1,Z2,...,%ngy)-

The following theorem states that in the regular case with a large sample, a
Bayes estimate is approximately the same as the maximum likelihood estimate
0. If we consider the squared error loss the Bayes estimate for 0 is given by

the posterior mean 6}, = / O, (0| X1, ..., Xn)db.
6

Theorem 4.3. In addition to the assumptions of Theorem 4.2, assume that

that prior density w(0) has a finite expectation. Then /n(6) — 6,) — 0 with
Py, -probability one.

Proof. Proceeding as in the proof of Theorem 4.2 and using the assumption
of finite expectation for =, (4.3) can be strengthened to

/ It |72 (8] X1, -, Xn) — Vj?>e—%t2l(90)|dt 0
R s

with Py, -probability one. This implies
I(6o) _142;
tni (X, ., X)) dt & | 1Y 2lem 3t (0) g — g,
[ mx, . X [ 2

Now 6% = E(0|Xi,...,X,) = E(, + t/\/n|X,,...,X,) and therefore,
ﬁ(a;-é,g:/ b (H X1, .., X)) dt = 0. O
R

Theorems 4.2 and 4.3 and their variants can be used to make inference
about 8 for large samples. We have seen in Chapter 2 how our inference can
be based on the posterior distribution. If the sample size is sufficiently large,
for a wide variety of priors we can replace the posterior distribution by the

approximating normal distribution having mean 6, and dispersion T ,_l ' or
(nl,)~! which do not depend on the prior. Theorem 4.3 tells that in the
problem of estimating a real parameter with squared error loss, the Bayes
estimate is approximately the same as the MLE f,,. Indeed, Theorem 4.3
can be extended to show that this is also true for a wide variety of loss
functions. Also the moments and quantiles of the posterior distribution can
be approximated by the corresponding measures of the approximating normal
distribution. We consider an example at the end of Section 4.3 to illustrate the
use of asymptotic posterior normality in the problems of interval estimation
and testing.



4.2 Asymptotic Expansion of Posterior Distribution 107
4.2 Asymptotic Expansion of Posterior Distribution

Consider the setup of Theorem 4.2. Let
F(u) = IL,({V/nI}Y*(6 - 6,) < u}|X1,...,Xn)

be the posterior distribution function of \/ﬁf,ll/ (6 — ,,). Then under certain
regularity assumptions, F,,(u) is approximately equal to ®(u), where & is
the standard normal distribution function. Theorem 4.2 states that under
assumptions (A1)-(A4) on the density f(x|8), for any prior density 7 () which
is continuous and positive at g,

lim sup{F,(u) — ®(u)] =0 a.s. Py,. (4.8)

n—oo u
Recall that this is proved essentially in two steps. It is first shown that the tails
of the posterior distribution are negligible. Then in the remaining part, the
log-likelihood function is expanded by Taylor’s theorem up to terms involving
third derivative. The linear term in the expansion vanishes, the quadratic
term is proportional to logarithm of a normal density, and the remainder
term is negligible under assumption (4.2) on the third derivative. Suppose
now that (8, x) = log f(x|0) is (k + 3) times continuously differentiable and
7(0) is (k+1) times continuously differentiable at 6y with 7(6p) > 0. Then the
subsequent higher order terms in the Taylor expansion provide a refinement of
the posterior normality result stated in Theorem 4.2 or in (4.8) above. Under
conditions similar to (4.2) for the derivatives of I(6, x) of order 3,4,...,k+3,
and some more conditions on f(z|f), Johnson (1970) proved the following
rigorous and precise version of a refinement due to Lindley (1961).

k
sup |F (u) — B(u) — p(u) ¥ _ ¥ (u; X1, ..., Xp)n /2] < Mpn=*+D/2 (4.9)
u j:1

eventually with Py, -probability one for some M) > 0, depending on k, where
¢(u) is the standard normal density and each ¢;(u; X1,...,X,) is a polyno-
mial in u having coeflicients bounded in X;,...,X,.

Under the same assumptions one can obtain a similar result involving the
1, distance between the posterior density and an approximation.

The case k = 0 corresponds to that considered in Section (4.1.2) as (4.9)
becomes

sup |F,(u) — (u)| < Mon™Y/2. (4.10)
u

Another (uniform) version of the above result, as stated in Ghosh et al. (1982)
is as follows. Let ©; be a bounded open interval whose closure 8, is properly
contained in @ and the prior 7 be positive on @;. Then, as stated in Ghosh et
al. (1982), for r > 0, (4.9) holds with Pp,-probability 1 — O(n™"), uniformly
in 6y € ©1 under certain regularity conditions (depending on r) which are
stronger than those of Johnson (1970).
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For a formal argument showing how the terms in the asymptotic expansion
given in (4.9) are calculated, see Johnson (1970) and Ghosh et al. (1982). For
example, if we want to obtain an approximation of the posterior distribution
upto an error of order o(n™!), we take k = 2 and proceed as follows. This is
taken from Ghosh (1994).

Let t = \/n(6 — 6,,) and a; = }ldiigi(o) lg>1 > 1, so that ap = —I,. The

posterior density of ¢ is given by (4.4) and by Taylor expansion

N N 1
(0 + /) = 1(6p)[1 + n~ V21 ™' (6 )+ n_1t27r (? )]+o(n_1)
w(6n) 2 7(6r)
and
5 Lo L 12,3 L 14 -1
Ln (6, +t/ /) — (9)=§ta2+6n ta3+ﬁn t*ay +o(n™h).
Therefore,
7(0r +1/v/n) exp[Ln(0r + t/v/7) = Ln(6n)]
= 7(6,,) explagt?/2]
X [1 +07 Y20 (4 X0, .., Xn) + 0 tan(t; Xl,...,Xn)] +o(n™1),
where
1 7' (0n)
(X1, X)) = =88 LA
al(t7X17 ] ) 6 as +tﬂ_(0n)
. i 4 i 6,2 l 27r”(én)
ag(t; X1,...,X,) = 24t ag + 72t as + 2t ﬂ'n(én)
Lyt )
6 7(6n)

The normalizer C), also has a similar expansion that can be obtained by
integrating the above. The posterior density of ¢ is then expressed as

T (XL, Xn) = (27r)—1/2f1/2e—t2/2

X 1+Zn_7/2 (t; X1,..., Xn)| +o(n™h),

where 1 (t;, X1,..., Xpn) = §t%as + t= ((on) and
1 1 1,776, 1, (6
t-X,,,.,X :—t4 —t6 t2 An __t4 An
Y2(¢; X1 n) = ggttast o 3+2 7r(9n)+6 afr(n)
as 15 , 1 "6y | 1 s7'(Bn)

L S - a®—
8aZ 7245 ° 2a2 1(d,) 203 =(é,)
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Transforming to s = f,l/ 2t, we get the expansion for the posterior density of
\/ﬁf,l/2(«9 —8,), and integrating it from —oo to u, we get the terms in (4.9).
The above expansion for posterior density also gives an expansion for the
posterior mean:

/
E0|X1,...,X,) =0, + 017" (@ +Z (19")> +o(n~3/2).
2 7(n)
Similar expansions can also be obtained for other moments and quantiles.
For more details and discussion see Johnson (1970), Ghosh et al. (1982), and
Ghosh (1994). Ghosh et al. (1982) and Ghosh (1994) also obtain expansions
of Bayes estimate and Bayes risk. These expansions are rather delicate in
the sense that the terms in the expansion can tend to infinity, see, e.g., the
discussion in Ghosh et al. (1982).

The expansions agree with those obtained by Tierney and Kadane (1986)
(see Section 4.3) up to o(n~?). Although the Tierney-Kadane approximation is
more convenient for numerical calculations, the expansions obtained in Ghosh
et al. (1982) and Ghosh (1994) are more suitable for theoretical applications.

A Bayesian would want to prove an expansion like (4.9) under the marginal
distribution of X71,..., X, derived from the joint distribution of X’s and 6.
There are certain technical difficulties in proving this from (4.9). Such a result
will hold if the prior 7(8) is supported on a bounded interval and behaves
smoothly at the boundary points in the sense that w(#) and (d*/d8%)w(6),
i=1,2,...,k are zero at the boundary points. A rather technical proof is given
in Ghosh et al. (1982). See also in this context Bickel and Ghosh (1990).
For the uniform prior on a bounded interval, there can be no asymptotic
expansion of the integrated Bayes risk (with squared error loss) of the form
a0+ % + % + o(n™2) (Ghosh et al. (1982)).

4.2.1 Determination of Sample Size in Testing

In this subsection, we consider certain testing problems and find asymptotic
approximations to the corresponding (minimum) Bayes risks. These approx-
imations can be used to determine sample sizes required to achieve given
bounds for Bayes risks.

We first consider the case with a real parameter 8 € 6, an open interval
in R, and the problem of testing

Hy : 0 <8y versus Hy : 0 > 6

for some specified value 8. Let X7, ... X, bei.i.d. observations with a common
density f(z|0) involving the parameter 8. Let 7(8) be a prior density over &
and 7(f|x) be the corresponding posterior. Set

Ro(w) = P((g > (90|$) = /9 . 7T((9|J:)d(9,

Ry(x) = 1 — Ry(x).
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As mentioned in Section 2.7.2, the Bayes rule for the usual 0 — 1 loss (see
Section 2.5) is to choose Hy if Ro(X) < R;(X) or equivalently R;(X) > 3
and to choose H; otherwise. The (minimum) Bayes risk is then given by

r(n) = Py[R1(X) > 1/2|7(6)d8 + Py[Ry(X) < 1/2]%(8)d6.
6>6, 6<6o
(4.11)
By Theorem 2.7 an alternative expression for the Bayes risk is given by
r(x) = Elmin{Ro(X), R (X)}] (412)

where the expectation is with respect to the marginal distribution of X.

Suppose |6 —8g| > § where § is chosen suitably. For each such 8, 6, is close
to 6 with large probability and hence Ién — 8| > 4. Intuitively, for such b, it
will be relatively easy to choose the correct hypothesis. This suggests most of
the contribution to the right hand side of (4.11) comes from 8 close to 8y, i.e.,
from |6 — 6y| < §. A formal argument that we skip shows

r(r) = / Py[Ry(X) > 1/2]m(6)d8
80<8<8p+0n
+ / Po[Ri(X) < 1/2m(6)d8 + o(n™Y),  (4.13)
B0—8, <6<60

if 8,, = ¢v/logn/+/n with c sufficiently large. You are invited to verify this for
the N(6,1) model in Problem 7.
An approximation to the first integral of (4.13) can be obtained as follows.

By the result on normal approximation to posterior stated in the paragraph
following (4.10),

Ry(X) = PIVAY2(8 - 6,) < Vall/?(8 — 6,)] X]
can be approximated by @[\/ﬁf}/z(ﬂo — én)] Hence
Py[Ry(X) > 1/2] = Po[®(v/nl}/*(80 — 6,)) > 1/2]

= Py[v/nI}?(6, — 0) < —/nI}/?(0 — 6,)]
~ &[—/nI'?(8)(6 — 6o)).

Indeed, using appropriate uniform versions of the results on asymptotic ex-
pansions of posterior distribution (as stated above) and sampling distribution

of \/T_Lf,ll/z(én — ) given 8 (see, e.g., Ghosh (1994)), one obtains
PylR1(X) > 1/2] = [—/nI'/?(6)(6 — 6o)] + o(n™"/?)

uniformly in € belonging to bounded intervals contained in &. Thus

/ Po[Ry(X) > 1/2]n(6) d6
00 <8<B80+6n

= / ¢[_\/T_LII/2(0)(9 — 00)]7r(0) do + O(n—l/2)'
00<0<bo+6n
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With similar approximation for the second integral of (4.13), we have
r(r) = / B[—/RI2(6)(0 — 6)]7(0) 6
B0 <0<bo+,,
+ / ®[\/nI'?(8)(8 — 8y)]7(6) dI + o(n~Y/?)
00—8r<0<bp

L s - i
”\/ﬁ/o<t<c\/@¢[ tI'?(00 4+ t//n)]m (6o +t/\/n) dt

L 1/2 n)|mw n o(n~1/2
+\/ﬁ _C\/@<t<0¢[t1 (6o + t//n)|m(00 + t/v/n) dt + of ).

If we assume 7(8) and I(6) have bounded derivatives in some neighborhoods
of 8y, the above reduces to

i _ m(6o) [ 712 M 0 1/2 oln=1/2
() = \/ﬁ/o P20 e+ T2 /_oqu(u (80)) dt + o(n~/2)
_ 27(60)C +o(n=12), (4.14)

vnlI(by)

where C = [*[1 — ®(u)]du ~ 0.3989423.

From (4.14) it follows that if one wants to have Bayes risk at most equal to
some specified ry then the required sample size ny with which one can achieve
this (approximately) is given by

402(71'(90))2

o= r$1(6o)

(4.15)
In the same way we can handle, say, a two-parameter problem with pa-
rameter 6 = (61, 6,). Suppose §; and 2 are comparable and the quantity of
interest is n = 8, — 6.
The problem is to test
Ho:n<mno

for some specified 7. Let 7(0) be the joint prior density of 61, 8, and p(n)
be the marginal prior density of n. Let I, be the observed Fisher information
matrix as defined in the first part of Subsection 4.1.2. Then a normal approxi-

PO
mation to the posterior distribution of 8 is N(8,, I, "), vide Subsection 4.1.2.

This implies that a normal approximation to the posterior of 7 is given by
N(an — 6, ’Un) with

oo =1, + 1, 21,

where j: denotes the (i, j)th element of j,:l Note that (nv,)~/2 — b(@) =
[I'1(8) + I?2(0) — 2I'2(6)]~ /2 under @ where I*(8) denotes the (i, 7)th ele-
ment of 171(0), I(0) being the expected Fisher information matrix per unit
observation.
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Let n*() and n*(n|B3) be respectively the marginal prior density of § =
01+ 65 and conditional prior density of 5 given 3 and a(7, 8) be b(8) expressed
in terms of  and (. Then by arguments similar to those used above, an
approximation to the Bayes risk for this problem is

)~ o [ 7l { [T~ #atm sl < (31a

_ E 71JK(”?OI/B) *

where C is as in (4.14).

It would be a matter of taste whether one would use simulation or asymp-
totic approximation. In any case, each method can confirm the accuracy of
the other. Advantage of asymptotics is that we get an overview quickly. In
specific cases, simulation may be a more efficient alternative, and asymptotics
can be used to confirm calculation.

Ezample 4.4. Let the observations X,,..., X, be i.i.d. B(1,0),0 <6 <1, and
suppose we want to test Hy : 8§ < 1/2 versus H; : § > 1/2.
If we consider the uniform prior 7(6) =1 on (0,1), we have

_ _ I'(n+2) ! e
Ro(X) = Ro(T) = IT+0)I(n—T+1) /1/2 67 (16" de

which is a function of T = Y. | X;, and the marginal distribution of T is
uniform over {0,1,...,n}. Then from (4.12) the Bayes risk is given by

1

r(n) = 1 ;min{Ro(t), 1 - Ro(t)}.

Here I1(8) = [6(1 — 6)]~! and the approximation suggested in (4.14) is

* —ioo——uu
T(W)_\/r_z/o [1—&(u)]du.

Table 4.1 gives the exact values of Bayes risk 7(r) and its approximation
r*(m) for different values of n. If one wants to have Bayes risk at most equal
to ro = 0.04, from the approximate formula (4.15), the required sample size
n is at least 100 while the exact expression for () yields n > 99.

The above calculations are relevant in the planning stage, when there are
no data. If we have a sample of size n and want to control the posterior Bayes
risk by drawing m additional observations, we can follow a similar procedure
replacing the prior by the posterior from the first stage of data. Ideally, the
first-stage sample would be a pilot sample of relatively small size, and the
bulk of the data would come from the second stage. In this case, we may even
allow an improper noninformative prior for one-sided alternatives.
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Table 4.1. The Exact Values of Bayes Risk r(7) and Its Approximation r* () for
Example 4.4.

n 10 20 30 40 50 60 70 8 90 100 150 200 250

r{m) 1.1230 .0881 .0722 .0627 .0561 .0513 .0475 .0445 .0419 .0398 .0325 .0282 .0252

r*(m)|.1262 .0892 .0728 .0631 .0564 .0515 .0477 .0446 .0421 .0399 .0326 .0282 .0252

4.3 Laplace Approximation

Bayesian analysis requires evaluation of integrals of the form
[ s(@)1xi0)7(6) do

where f(x|0) is the likelihood function, (@) is the prior density, and ¢(8)
is some function of 8. For example, with ¢g(8) = 1 we have the integrated
likelihood required for calculation of Bayes factor in testing or model selection.
Various other characteristics of posterior and predictive distribution may also
be expressed in terms of such integrals. Laplace’s method (see Laplace (1774))
is a technique for approximating integrals when the integrand has a sharp
maximum.

4.3.1 Laplace’s Method

Let us consider an integral of the form

I :/ q(6)e™™®) 4o

— o0

where g and h are smooth functions of # with A having a unique maximum
at §. In applications, nh(f) may be the log-likelihood function or logarithm
of the unnormalized posterior density f(x|6)7(6), and 6 may be the MLE
or posterior mode. The idea is that if A has a unique sharp maximum at 8,
then most contribution to the integral I comes from the integral over a small
neighborhood (6 — 6,8 + &) of . We study the behavior of I as n — co. As
n — oo, we have )

0+4

I~T = / q(6)e™™ @ dg.

6-5
Here I ~ I} means I/I; — 1. Laplace’s method involves Taylor series expan-
sion of ¢ and h about é, which gives

646
I~ /é_:: [Q(é) +(0-0)q(0) + %(9 —0)%¢"(6) + smaller terms}

X exp [nh(é) +nk' ()0 —6) + gh”(é)(@ — )% + smaller terms}
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6+5

~ e Oq@) [ [0 0 B)ath) + 50 - 07" 6)/aCO)]

X exp [gh”(é)(a - 9)2] d8.

Assuming that ¢ = —h” (9) is positive and using a change of variable t =
Vne(8 — 6), we have
2
[~ enhl@)g( / [ 6)/a(6) + L-q(6 qé]e_tz/zdt
\/—— q(6)/4(0) (6)/4(0)
~ nh() YT V 2“ )
2ncq
— enh(®) VT V 2“ 6) [1+0(m™)].

In general, for the case with a p-dimensional parameter 8,
I = e ® (270)P/272/2 Get (A, (6)) " 2q(0)(1 + O(n™Y)) (4.16)
where Ap(0) denotes the Hessian of —h, i.e.,
52
Ap(6) = <—Wh(0))pxp.

Ezample 4.5. (Sterling’s approzimation to n!) Note that n! can be written as
a gamma integral

oo oo
nl=I(n+1)= / e Tz™dr = / enllogz—z/n) go.
0 0

One can use the Laplace method described above to approximate n! as (Prob-
lem 9)
n! ~ ntt/2e—m /2.

The Bayesian Information Criterion (BIC)

Consider a model with likelihood f(x|@) and prior 7(8). Equation (4.16), with
q = 7w and nh(0) equal to the log-likelihood, yields an approximation to the
integrated likelihood that can be used to find an approximation to the Bayes
factor defined in (2.11). Schwarz (1978) proposed a criterion, known as the
BIC, based on (4.16) ignoring the terms that stay bounded as the sample size
n — oo. The criterion given by

BIC = log f(x|0) — (p/2)logn

serves as an approximation to the logarithm of the integrated likelihood of
the model and is free from the choice of prior.
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Connection Between Laplace Approximation and Posterior
Normality

Posterior normality discussed in Section 4.1.2 and Laplace approximation are
closely connected. The proof of posterior normality is essentially an applica-
tion of Laplace approximation with a rigorous handling of the error term. We
illustrate this below by re-deriving posterior normality by an application of
Laplace approximation.

Let X1, Xa,...,X, be iid. observations with a density f(z|6) and 6 be
the MLE of §. We will find an approximation to the posterior distribution of
t = /n(6 — 6) using Laplace’s method. Let w(8) be the posterior density and
II(-|2) denote the posterior distribution. Then for a > 0,

O(-a<t<alx) =0 —-a/vn<8<8+a/ynlz)

where

b+a/\/n
Jn = / O (9)db, I, = / e (9) db,
b—a/vn

and k() = 1 L(6) = 1 Y log f(X,]6).

As obtained above o
I, ~ O (0)V2r [\/ne,

with ¢ = —h”(8) which is observed Fisher information per unit observation.
Using Laplace’s method for J,, we have

. [ora/vm A
Jp ~ et / [7(8) + (6 — 8)7' (f) + smaller terms]
6—a/ /i

X exp {—nc(& — 9)2/2} db
. (b+a/ym .
~ e"h(e)ﬂ(H)/ exp {-nc(0 - 0)2/2} dé
b—a/v/n

G
n —a

Thus, for a > 0,

ﬁ ‘ et /2 gt
V2r J_a
= P(—a < Z < a) where Z ~ N(0,c™1).

I(—a<t<alx) ~

4.3.2 Tierney-Kadane-Kass Refinements

Suppose
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m 9(6 Xl9 ( )d9

is the Bayesian quantity of interest where g, f , and 7 are smooth functions of
0. If we express (4.17) as

(4.17)

f g nh(O) de

E"r(g( fe"h(o) 40

with h(0) = Llog{f(x|@)7(0)} and apply the Laplace approximation (4.16)
to both the numerator and denominator (with ¢ equal to g and 1), we obtain
a first-order approximation

E"(9(0)x) = 9(8) {1+ O(n™")}

(here 6 denotes the posterior mode). This has been derived by Tierney and
Kadane (1986), Kass et al. (1988), and Tierney et al. (1989).

Suppose now that g in (4.17) is positive, and let nh(@) = log f(x|0) +
log (), nh*(@) = nh(0) + log g(8) = nh(@) + G(0), say. Now apply (4.16)
to both the numerator and denominator of (4.17) with ¢ equal to 1. Then,
letting @ denote the mode of h*, ¥ = A7Y(6), £ = A;1(6%), Tierney and
Kadane (1986) obtain the surprisingly accurate approximation

| Z*|1/2 exp (nh*(é*))

ET(g(0)|x) =
(5(6)x) | 2|1/2 exp (nh(é))

{1+0(n"?)}. (4.18)

It is shown below how the approximation (4.18) is obtained in Tierney and
Kadane (1986) for the case with a real parameter.

Let 02 = —1/R"(0), 02 = —1/h*"(8*). Also let hy = hy(f) and h} =
h;;(é*) where ¢ (6) = (d/d6)*+(8) for any function ¥(6). Note that under the
usual regularity conditions a,0*, h, b}, are all of order O(1).

Consider first the denominator of (4.17), which can be written as

nh(8) Jg _ 5 _ " p_ 4y2
/ ™) gg / exp [nh(@) 50— 07+ Rn(o)]
= e"h(é)\/27ran_l/2/exp(Rn(O))qS(O; 6,02 /n)do
where ¢(6;6,02/n) is the N(6,02/n) density for 6 and
Ry, = nh(6) — nh(f) + — (6 — §)?

2 2
(60— 6)*
4!

1
:-6-(0—0) Tlh3+ Tlh4+

Using the expansion of €” at zero and the expressions for moments of a normal
distribution, we can obtain an approximation of order O(n~") for any r > 1.
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Retaining terms upto the 6-th derivative hg in the expansion of R,,, Tierney
and Kadane (1986) obtain

/e””(‘” 8 = O/ 2ron=1/2 (1 + 24 n% + O(n—3)) (4.19)
n
where 1 5
et 67,2
= —og°h
a= 8 hy + 240 3
1 35 7 35 385
b= — 6h 8h o 8h h o 10h2h 12h4.
457 "ot ggq 7 Mat g7 ahs ¥ g0 sha ¥ s 0T

We have an exactly similar approximation for the numerator of (4.17) with ¢
and Ay replaced by ¢* and h). We then have

E™(g(8)]x)
(1+ <+ 5 +0(n )
(1+2+5%+0(n?)

- % exp{n(h*(6*) — h(6))) (1 n “*n’ o zbala—a) O(n—3)> .

n2

= %* exp{n(h*(§*) — h(6))}

Now note that

7

0=n*(6%)
= 1'(6%) + (1/n)G'(6*)
= (0) + (6" = )R () + (1/n)C'(9) + (1/n) (6" = 6)G" (6)
= (0"~ O) (") + (1/m)G"(8)) + (1/n)C" (9)

which implies §* — § = O(n™1). This, together with the fact that hi(6) =
hi(8) + (1/n)Gx(6), implies a* — a and b* — b are both of order O(n™1). It
then follows that

ET(g(9)x) = *exp{n(h*(f?*) —n(@)} (1+0(n7?).

Ezxample 4.6. We consider the data in Table 2.1 presented in Example 2.3.
This is a set of data on food poisoning and we focus on the main suspect,
namely, potato salad. Separately for Crabmeat and No Crabmeat, we wish to
test the null hypothesis that there is no association between potato salad and
illness.

Let p; be the probability of being ill given that potato salad is taken and
p2 be the same given no potato salad. If X; denotes the number of people
falling ill out of a total of n; people taking potato salad and Xs denotes the
same out of a total of ny people taking no potato salad, then X; and X, may
be modeled as independent binomial variables with X; following B(n;, p;),
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i = 1,2. The test for no association between potato salad and illness is then
equivalent to testing Hy : p; = po.

We first carry out the test through credible intervals for p; —p2 as described
in Section 2.7.4. In order to obtain an exact Bayes test we have to choose prior
densities for p; and p,. We have seen in Example 2.2 that the choice of a Beta
prior for a binomial proportion simplifies the calculation of posterior. If we
consider a Beta («;, §8;) prior for p;, 1 = 1,2, the posterior density of § = p; —p2
can be obtained as

(0] X1, X2) x

1
/ (0 _+_p2)X1+a1—1(1 -6 —pz)"l_xl+ﬂ1_1p§2+°‘2”l(1 —pz)"rxﬁﬂ?_l dp2
0

which can only be numerically calculated for a given 8. Because the sample
size here is sufficiently large, we will, however, find an approximation to the
posterior distribution using asymptotic posterior normality. This does not
involve specification of the prior distributions. One can easily calculate the
Fisher information matrix I,, and show that the approximate distribution of
6 = (p1 — p2) is N(a, b?) where

a =Py — P2, 0> = p1(1 — p1)/m1 + P2 (1 — p2)/n2, pr = X1/m1, P2 = X2/ma.
A 100(1 — @)% HPD cedible interval for 6 is then
a—bzy2 <0 <a+bzy

where 2,/ is the 100(1 — «/2)% quantile of N(0,1).

For the case with crabmeat, X; = 120, n; = 200, X» = 4, np = 35. The
99% HPD credible interval turns out to be (0.337, 0.635). For the case with
no crabmeat, X; = 22, n; = 46, X = 0, ny = 23 and the 99% HPD credible
interval is (0.307, 0.650). In both the cases, the hypothesized value (0) of 6
falls well outside the credible intervals implying strong evidence against the
null hypothesis of no association.

We can calculate the significance level P by finding the 100(1 — P)%
credible interval that has the value 0 of null hypothesis on its boundary.
More directly this will be the usual P-value corresponding with the observed
x? with one d.f. We consider only the case with crabmeat. The other case
can be handled similarly. The logarithm of the ratio of the maximized likeli-
hoods under Hy and H) is obtained as log A = —15.4891. Therefore P-value
= P(x? > 30.9782) ~ 0

We now look at the same problem through the Bayes factor (BF). In order
to compute the BF, we may use the Beta prior as mentioned above. However,
because there is no consensus prior for this problem, we use the Schwarz BIC
(Section 4.3.1) to approximate the BF. For the case with crabmeat, the BF
arising from BIC is given by BF;, = 2.8754 x 1075. This implies that with
equal prior probabilities for Hy and Hj, the posterior probability of Hy is
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[1+ 1/BFg]~! = 2.8754 x 1075. This is very small but not as small as the
P-value. In any case, both the approaches indicate strong evidence in favor of
potato salad being the cause of food poisoning.

4.4 Exercises

1.

2.

o

With Poisson likelihood and Gamma prior for the Poisson parameter 6,
show that the posterior is consistent at any 6y > 0.

Let X1,..., X, be iid. observations with a common density f(z|0), 8 €
© = {61,0,,...,0;}. Consider a prior (m,m2,...,mg) , with m; > 0 for
all 4, Y m; = 1. Suppose the distribution corresponding to f(z|6;), ¢ =
1,...,k are all distinct. Show that the posterior is consistent at each 6;.
(Hint: Express the posterior in terms of

Zp = (1/n) 3271 log(f(X;10,)/f(X;510:)),r =1,...k.)

. Show that asymptotic posterior normality (as stated in Theorem 4.2) im-

plies posterior consistency at 6.

Verify Condition (A4) (see Theorem 4.2) for the N(6,1) example.
Obtain Laplace approximation to the integrated likelihood from (4.5).
Consider N(u,1) likelihood. Generate data of size 30 from N{(0,1). Con-
sider the following priors for p : (1) N(0,2) (ii) N(1,2) (iii) U(-3,3). For
each of these priors find P(—0.5 < u < 0.5) and P(—0.2 < p < 0.6) using
(a) exact calculation (b) normal approximation.

Do the same thing with data generated from N(1,1).

Let X1,...,Xn beiid. N(6,1) and the prior distribution of § be N(0, 72).
Consider the problem of testing Hp : 8 < 0 versus Hy : 8 > 0.

(a) Show that the Bayes risk r(7) given by (4.11) reduces to

r(n) = 2/9>0 P(—/nb)m(6)dh

where 7(.) denotes the N (0, 72) density for 6.

(b)Verify (4.13) in this case.

Find numerically the exact posterior density of § = p; —p2 in Example 4.6
with independent uniform priors for p; and ps. Compare this with the
normal approximation to the posterior.

Using the idea of Laplace method for approximating integrals, find the
following approximation for n! (see Example 4.5)

nl ~ nt1/2e= /28






5

Choice of Priors for Low-dimensional
Parameters

Given data, a Bayesian will need a likelihood function p(x|8) and a prior
(). For many standard problems, the likelihood is known either from past
experience or by convention. To drive the Bayesian engine, one would still
need an appropriate prior. In this chapter, we consider only low-dimensional
parameters. Admittedly, low dimension is not easy to define, but we expect
the dimension d to be much smaller than the sample size n to qualify as low.
In most of the examples in this chapter, d = 1 or 2 and is rarely bigger than
5.

Ideally, one wants to choose a prior or a class of priors reflecting one’s
prior knowledge and belief about the unknown parameters or about different
hypotheses. This is a subjective choice. If one has a class of priors, it would
be necessary to study robustness of various aspects of the resulting Bayesian
inference. Choice of subjective priors, usually called elicitation of priors, is still
rather difficult. For some systematic methods of elicitation, see Kadane et al.
(1980), Garthwaite and Dickey (1988, 1992). A recent review is Garthwaite
et al. (2005).

Empirical studies have shown experience and maturity help a person in
quantifying uncertainty about an event in the form of a probability. However,
assigning a fully specified probability distribution to an unknown parameter
is difficult even when the parameter has a physical meaning like length or
breadth of some article. In such cases, it may be realistic to expect elicita-
tion of prior mean and variance or some other prior quantities but not a full
specification of the distribution. Hopefully, the situation will improve with
practice, but it is hard to believe that a fully specified prior distribution will
be available in all but very simple situations.

It is much more common to choose and use what are called objective priors.
When very little prior information is available, objective priors are also called
noninformative priors. The older terminology of noninformative priors is no
longer in favor among objective Bayesians because a complete lack of infor-
mation is hard to define. However, it is indeed possible to construct objective
priors with low information in the sense of Bernardo’s information measure or
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non-Euclidean geometry. These priors are not unique but, as indicated for the
Bernoulli example (Example 2.2) in Chapter 2, for even a small sample size
the posteriors arising from them are very close to each other. All these priors
are constructed through well-defined algorithms. If some prior information is
available, in some cases one can modify these algorithms.

The objective priors are typically improper but have proper posteriors.
They are suitable for estimation problems and also for testing problems where
both null and alternative hypotheses have the same dimension. The objective
priors need to be suitably modified for sharp null hypotheses — the subject
of Chapter 6.

Most of this chapter (Sections 5.1, 5.2, and 5.5) is about different principles
and methods of construction of objective priors (Section 5.1) and common
criticisms and answers (Section 5.2). Subjective priors appear very naturally
when the decision maker judges his data to be exchangeable. We deal with
this in Section 5.3. An example of elicitation of a different kind is given in
Section 5.4.

5.1 Different Methods of Construction of Objective
Priors

Because this section is rather long, we provide an overview here.
How can we construct objective priors under general regularity conditions?
We may do one of the following things.

1. Define a uniform distribution that takes into account the geometry of the
parameter space.

2. Minimize a suitable measure of information in the prior.

3. Choose a prior with some form of frequentist ideas because a prior with
little information should lead to inference that is similar to frequentist
inference.

To fully define these methods, we have to specify the geometry in (1), the
measure of information in (2) and the frequentist ideas that are to be used
in (3). This will be done in Subsections 5.1.2, 5.1.3, and 5.1.4. In Subsection
5.1.1, we discuss why the usual uniform prior 7(#) = ¢ has come in for a lot of
criticism. Indeed, these criticisms help one understand the motivation behind
(1) and (2). It is a striking fact that both (1) and (2) lead to the Jeffreys
prior, namely,

m(8) = [det(I;;(6))]*/?

where (I,;()) is the Fisher information matrix. In the one-dimensional case,
(3) also leads to the Jeffreys prior.

We have noted in Chapter 1 that many common statistical models possess
additional structure. Some are exponential families of distributions, some are
location-scale families, or more generally families invariant under a group of
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transformations. Normals belong to both classes. For each of these special
classes, there is a different choice of objective priors discussed in Subsections
5.1.5 and 5.1.6. The objective priors for exponential families come from the
class of conjugate priors. In the case of location-scale families with scale pa-
rameter o, the common objective prior is the so-called right invariant Haar
measure

1
™ (1“9 U) = -
o
and the Jeffreys prior turns out to be the left invariant Haar measure

1
7T2(,u, U) =3

o
(see Subsection 5.1.7 for definitions). Jeffreys had noted this and expressed his
preference for the former. As we discuss later, there are several strong reasons
for preferring m; to m.

To avoid some of the problems with the Jeffreys prior, Bernardo (1979)
and Berger and Bernardo (1989) had suggested an important modification of
the Jeffreys prior that we take up in Subsection 5.1.10. These priors are called
reference priors. In the location-scale case, the reference prior is the right
invariant Haar measure. They are considerably more difficult to find than the
Jeffreys prior but explicit formulas are now available for many examples, vide
Berger et al. (2006). A comprehensive overview and catalogue of objective
priors, up to date as of 1995, is available in Kass and Wasserman (1996). A
brief introduction is Ghosh and Mukerjee (1992).

5.1.1 Uniform Distribution and Its Criticisms

The first objective prior ever to be used is the uniform distribution over a
bounded interval. A common argument, based on “ignorance”, seems to have
been that if we know nothing about 8, why should we attach more density to
one point than another? The argument given by Bayes, who was the first to
use the uniform as an objective prior, is a variation on this. It is indicated in
Problem 1. A second argument is that the uniform maximizes the Shannon
entropy. The uniform was also used a lot by Laplace who seems to have arrived
at a Bayesian point of view, independently of Bayes, but his argument seems
to have been based on subjective argument that in his problems the uniform
was appropriate.

The principle of ignorance has been criticized by Keynes, Fisher, and many
others. Essentially, the criticism is based on an invariance argument. Let n =
1(6) be a one-to-one function of 8. If we know nothing about 8, then we know
nothing about 7 also. So the principle of ignorance applied to n will imply our
prior for n is uniform (on %(8)) just as it had led to a uniform prior for 6.
But this leads to a contradiction. To see this suppose ¢ is differentiable and
p(n) = c on ¥(O). Then the prior p*(#) for 9 is
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p*(8) = p(m)¥'(0)] = cly’(9)]

which is not a constant in general.

This argument also leads to an invariance principle. Suppose we have an
algorithm that produces noninformative priors for both 6 and 7, then these
priors p*(#) and p(7) should be connected by the equation

p*(0) = p(m)¥' ()] (5.1)

i.e., a noninformative prior should be invariant under one-to-one differentiable
transformations.

The second argument in favor of the uniform, based on Shannon entropy, is
also flawed. Shannon (1948) derives a measure of entropy in the finite discrete
case from certain natural axioms. His entropy is

H(p)= - Zpi log p;
=1

which is maximized by the discrete uniform, ie., at p = (,---,1). En-
tropy is a measure of the amount of uncertainty about the outcome of the
experiment. A prior that maximizes this will maximize uncertainty, so it is a
noninformative prior. Because such a prior should minimize information, we
take negative of entropy as information. This usage differs from Shannon’s
identification of information and entropy.

Shannon’s entropy is a natural measure in the discrete case and the discrete
uniform appears to be the right noninformative prior. The continuous case is

an entirely different matter. Shannon himself pointed out that for a density p

H@z—/mm@muMz

is unsatisfactory, clearly it is not derived from axioms, it is not invariant under
one-one transformations, and, as pointed out by Bernardo, it depends on the
measure u{z)dz with respect to which the density p(z) is taken. Note also that
the measure is not non-negative. Just take p(z) = 1 and take p(z) = uniform
on [0,c]. Then H(p) > 0 if and only if ¢ > 1, which seems quite arbitrary.

Finally, if the density is taken with respect to p(z)dz, then it is easy to
verify that the density is p/u and

1) = - [ (10625 ) 20 o

is maximized at p = p, i.e., the entropy is maximum at the arbitrary pu.
For all these reasons, we do not think H(p) is the right entropy to maxi-
mize. A different entropy, also due to Shannon, is explored in Subsection 5.1.3.
However, H(p) serves a useful purpose when we have partial information.
For details, see Subsection 5.1.12.
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5.1.2 Jeffreys Prior as a Uniform Distribution

This section is based on Section 8.2.1 of Ghosh and Ramamoorthi (2003). We
show in this section that if we construct a uniform distribution taking into ac-
count the topology, it automatically satisfies the invariance requirement (5.1).
Moreover, this uniform distribution is the Jeffreys prior. Problem 2 shows one
can construct many other priors that satisfy the invariance requirement. Of
course, they are not the uniform distribution in the sense of this section. Being
an invariant uniform distribution is more important than just being invariant.
Suppose © = R¢ and I(8) = (I,;(8)) is the d x d Fisher information matrix.
We assume I(8) is positive definite for all 8. Rao (1987) had proposed the
Riemannian metric p related to I{@) by

p(6,0 +d0) = "I, ;(6)df; do;(1 + o(1)).

It is known, vide Cencov (1982), that this is the unique Riemannian metric
that transforms suitably under one-one differentiable transformations on 6.
Notice that in general @ does not inherit the usual Euclidean metric that goes
with the (improper) uniform distribution over R¢.

Fix a 8y and let ¥{0) be a smooth one-to-one transformation such that
the information matrix

Ologp dlogp
1/) =
! [Ed) ( ov; O,

is the identity matrix I at ¥o = (6p). This implies the local geometry
in the t-space around g is Euclidean and hence dis is a suitable uniform
distribution there. If we now lift this back to the 8-space by using the Jacobian
of transformation and the simple fact

(J35]) 0 (33

we get the Jeffreys prior in the 8-space,

7
> =% =],

00;
O;

dap = {det }_1 d6 = {det[I; ;(8)]}3d8.

A similar method is given in Hartigan (1983, pp. 48, 49). Ghosal et al. {1997)
present an alternative construction where one takes a compact subset of the
parameter space and approximates this by a finite set of points in the so-called
Hellinger metric

1

r o) = | [ - w2 e
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where py and pg: are the densities of Py and Fy. One then puts a discrete
uniform distribution on the approximating finite set of points and lets the de-
gree of approximation tend to zero. Then the corresponding discrete uniforms
converge weakly to the Jeffreys distribution. The Jeffreys prior was introduced
in Jeffreys (1946).

5.1.3 Jeffreys Prior as a Minimizer of Information

As in Subsection 5.1.1, let the Shannon entropy associated with a random
variable or vector Z be denoted by

H(Z) = H(p) = —Ep(logp(2))

where p is the density (probability function) of Z. Let X = (X3, Xs,..., X,)
have density or probability function p(x|@) where 6 has prior density p(8).
We assume X1, Xs,...,X, are i.i.d. and conditions for asymptotic normal-
ity of posterior p(8|x) hold. We have argued earlier that H(p) is not a good
measure of entropy and —H(p) not a good measure of information if p is a
density. Using an idea of Lindley (1956) in the context of design of experi-
ments, Bernardo (1979) suggested that a Kullback-Leibler divergence between
prior and posterior, namely,

= log pw";”’) p(0)z)d0' | p(z|0)dx s p(6)do (5.2)
o Ux lJe p(6")

is a better measure of entropy and —J a better measure of information in the
prior. To get a feeling for this, notice that if the prior is nearly degenerate, at
say some 8, so will be the posterior. This would imply J is nearly zero. On the
other hand, if p(6) is rather diffuse, p(@|x) will differ a lot from p(8), at least
for moderate or large n, because p(8|x) would be quite peaked. In fact, p(6|x)
would be approximately normal with mean 8 and variance of the order O(2).

1
The substantial difference between prior and posterior would be reflected nby
a large value of J. To sum up J is small when p is nearly degenerate and large
when p is diffuse, i.e., J captures how diffuse is the prior. It therefore makes
sense to maximize J with respect to the prior.

Bernardo suggested one should not work with the sample size n of the given
data and maximize the J for this n. For one thing, this would be technically
forbidding in most cases and, more importantly, the functional J is expected
to be a nice function of the prior only asymptotically. We show below how
asymptotic maximization is to be done. Berger et al. (1989) have justified
to some extent the need to maximize asymptotically. They show that if one
maximizes for fixed n, maximization may lead to a discrete prior with finitely
many jumps — a far cry from a diffuse prior. We also note in passing that the
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measure J is a functional depending on the prior but in the given context of
a particular experiment with i.i.d. observations having density p(z|@). This is
a major difference from the Shannon entropy and suggests information in a
prior is a relative concept, relative to a particular experiment.

We now return to the question of asymptotic maximization. Fix an in-
creasing sequence of compact d-dimensional rectangles K; whose union is R¢.
For a fixed K;, we consider only priors p; supported on K;, and let n — oo.
We assume posterior normality holds in the Kullback-Leibler sense, i.e.,

pOIX)N _ o o PO _
ﬁ(@IX)) N nl—mo /KZ Eo {1 g (0] X) }pz(o) dé =0 (5.3)

where p is the approximating d-dimensional normal distribution N (é, I-! (9) /n).
For sufficient conditions see Clarke and Barron (1990) and Ibragimov and
Has’minskii (1981).

In view of (5.3), it is enough to consider

i) = [ {[ | 1oe {22 ot do'} p(216) do |} i(6) do.

Using appropriate results on normal approximation to posterior distribution,
it can be shown that

i) = [ {1 e {2505 }ido12) do'} p(216) do | :(6) 40+ 0,(1)

= {—g log(2n) — g + CEllogn} +/ | log(det I(0))épi(0) de

-—>00

lim F <log

3

— /K (log p;(6))pi(0) dO + 0,(1). (5.4)

Here we have used the well-known fact about the exponent of a multivariate
normal that

1 d

/_5(0’ _ é)t(l_l(é)/n)_l(o’ _ é)ﬁz(0,|$) 40’ — _5.

Hence by (5.3) and (5.4), we may write

J(p;) = {—g log(2m) — g + CEllogn} + / log {@;Ei[((g)ﬂ}piw) dé + o, (1).

Thus apart from a constant and a negligible o, (1) term, J is the functional

i

/K‘ log[ci(det([(@)))l/Z/pi(0)]pi(0) dé — log ¢;

where ¢; is a normalizing constant such that ¢;[det(] (0))]1/ 2 is a probability
density on K;. The functional is maximized by taking
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c /2 on K-
pi(6) :{ Z[det(IO(e))] 2 e?sevfr{}ie,zre. (5:5)

Thus for every K;, the (normalized) Jeffreys prior p;(#) maximizes Bernardo’s
entropy. In a very weak sense, the p; () of (5.5) converge to p(8) = [det(I(8))]*/2,
namely, for any two fixed Borel sets B; and B, contained in K, for some i,,

\ Jp,i(0)d8 [y p(6)d6
imoo [ pi(0)d0 [, p(6)do

The convergence based on (5.6) is very weak. Berger and Bernardo (1992,
Equation 2.2.5) suggest convergence based on a metric that compares the
posterior of the proper priors over compact sets B; and the limiting improper
prior (whether Jeffreys or reference or other). Examples show lack of conver-
gence in this sense may lead to severe inadmissibility and other problems with
inference based on the limiting improper prior. However, checking this kind of
convergence is technically difficult in general and not attempted in this book.

We end this section with a discussion of the measure of entropy or infor-
mation. In the literature, it is often associated with Shannon’s missing infor-
mation. Shannon (1948) introduced this measure in the context of a noisy
channel. Any channel has a source that produces (say, per second) messages
X with p.m.f. px(z) and entropy

pr ) log px (z).

(5.6)

A channel will have an output Y (per second) with entropy

Zpy )log py (¥).

If the channel is noiseless, then H(Y) = H(X).
If the channel is noisy, Y given X is still random. Let p(z,y) denote their
joint p.m.f. The joint entropy is

H(X,Y) == p(z,y)logp(z,y).

z,y

Following Shannon, let p,(y) = P{Y = y|X = =} and consider the conditional
entropy of Y given X namely,

Hx(Y) == p(z,y)logp.(y).
z,y
Clearly, H(X,Y) = H(X)+ Hx(Y) and similarly H(X,Y) = H(Y)+ Hy(X).
Hy (X) is called the equivocation or average ambiguity about input X given
only output Y. It is the information about input X that is received given the
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output Y. By Theorem 10 of Shannon (1948), it is the amount of additional
information that must be supplied per unit time at the receiving end to correct
the received message.

Thus Hy(X) is the missing information. So amount of information pro-
duced in the channel (per unit time) is

H(X) - Hy(X)
which may be shown to be non-negative by Shannon’s basic results
HX)+HY)> HX,Y)=H(Y)+ Hy(X).

In statistical problems, we take X to be 6 and Y to be the observation vector
X. Then H(0) — Hx (0) is the same measure as before, namely

E(logpg)(g)()).

The maximum of
H(X) - Hy(X)

with respect to the source, i.e., with respect to p(z) is what Shannon calls the
capacity of the channel. Over compact rectangles, the Jeffreys prior is this
maximizing distribution for the statistical channel.

It is worth pointing out that the Jeffreys prior is a special case of the
reference priors of Bernardo (1979).

Another point of interest is that as n — oo, most of Bernardo’s information
is contained in the constant term of the asymptotic decomposition. This would
suggest that for moderately large n, choice of prior is not important.

The measure of information used by Bernardo was introduced earlier in
Bayesian design of experiments by Lindley (1956). There p(6) is fixed but the
observable X is not fixed, and the object is to choose a design, ie., X, to
minimize the information. Minimization is for the given sample size n, not
asymptotic as in Bernardo (1979).

5.1.4 Jeffreys Prior as a Probability Matching Prior

One would expect an objective prior with low information to provide inference
similar to that based on the uniform prior for § in N(6,1).

In the case of N(6,1) with a uniform prior for 8, the posterior distribu-
tion of the pivotal quantity § — X, given X, is identical with the frequentist
distribution of § — X, given 6. In the general case we will not get exactly the
same distribution but only up to O,(n™1). A precise definition of a probability
matching prior for a single parameter is given below.

Let X1, Xa,..., X, be i.id. p(z|f), 6 € © C R. Assume regularity condi-
tions needed for expansion of the posterior with the normal N(6, (rnI(§))™1)



130 5 Choice of Priors for Low-dimensional Parameters

as the leading term. For 0 < a < 1, choose 6,(X) depending on the prior
p(6) such that
P{H<0,(X)|X}=1-a+0,(n1). (5.7)

It can be verified that 6,(X) = 6 + Op(1/4/n). We say p(8) is probability
matching (to first order), if

Pp{0<6,(X)}=1-a+0n™) (5.8)
(uniformly on compact sets of ). In the normal case with p(€) = constant,
0a(X) =X+ zo/V/n

where P{Z > zo} = o, Z ~ N(0,1).

We have matched posterior probability and frequentist probability up to
O,(n™'). Why one chooses this particular order may be explained as follows.
For any prior p(@) satisfying some regularity conditions, the two probabilities
mentioned above agree up to O(n"%), so O(n™2) is too weak. On the other
hand, if we strengthen O(n~!) to, say, O(n~ %), in general no prior would be
probability matching. So O(n™!) is just right.

It is instructive to view probability matching in a slightly different but
equivalent way. Instead of working with 6, (X) one may choose to work with
the approximate quantile 6 + z /+/n and require

P{0 <0+ z,/v/n|X} = Po{0 < 6 + 24/v/n} + Op(n™ ) (5.9)

under € (uniformly on compact sets of 8).

Each of these two probabilities has an expansion starting with (1 — «) and
having terms decreasing in powers of n~z. So for probability matching, we
must have the same next term in the expansion.

In principle one would have to expand the probabilities and set the two
second terms equal, leading to

d(1(6)) 7/ up 1 dp(6)

—S =) (5.10)

The left-hand side comes from the frequentist probability, the right-hand side
from the posterior probability (taking into account the limits of random quan-
tities under #). There are many common terms in both probabilities that can-
cel and hence do not need to be calculated. A convenient way of deriving
this is through what is called a Bayesian route to frequentist calculations or
a shrinkage argument. For details see Ghosh (1994, Chapter 9) or Ghosh and
Mukerjee (1992) , or Datta and Mukerjee (2004).

If one tried to match probabilities upto O(n~3/2), one would have to match
the next terms in the expansion also. This would lead to two differential
equations in the prior and in general they will not have a common solution.

Clearly, the unique solution to (5.10) is the Jeffreys prior
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p(0) < VI(0).

Equation (5.10) may not hold if 6 has a discrete lattice distribution. Suppose
X has a discrete distribution. Then the case where 4 has a lattice distribu-
tion causes the biggest problem in carrying through the previous theory. But
the Jeffreys prior may be approximately probability matching in some sense,
Ghosh (1994), Rousseau (2000), Brown et al. (2001, 2002).

If d > 1, in general there is no multivariate probability matching prior
(even for the continuous case), vide Ghosh and Mukerjee (1993), Datta (1996).
It is proved in Datta (1996) that the Jeffreys prior continues to play an im-
portant role.

We consider the special case d = 2 by way of illustration. For more details,
see Datta and Mukerjee (2004).

Let 8 = (64, 6;) and suppose we want to match posterior probability of 6;
and a corresponding frequentist probability through the following equations.

P{0; < 0, o(X)| X} =1—a+O0,(n?), (5.11)

P{6; <6, 4(X)]61,62} =1 —a+0n™1). (5.12)

Here 6, (X)) is the (approximate) 100(1—a)- quantile of 8;. If 5 is orthogonal
to #; in the sense that the off-diagonal element I12(€) of the information
matrix is zero, then the probability matching prior is

0) = \/111(0)y(62)

where 1(6;) is an arbitrary function of 6.

For a general multiparameter model with a one-dimensional parameter
of interest #; and nuisance parameters 65, ...,0,, the probability matching
equation is given by

d
Zai{ I]l 111) 1/2}:0 (5.13)

where I-1(6) = (I¥). This is obtained by equating the coefficient of n~'/2
in the expansion of the left-hand side of (5.12) to zero; details are given, for
example, in Datta and Mukerjee (2004).

Ezample 5.1. Consider the location-scale model

plelina) = 27 (F51),

a

—00 < pu < 00, 0 > 0, where f(-) is a probability density. Let §; = p and
6, = o, ie., u is the parameter of interest. It is easy to verify that /1 o o2
for j = 1,2 and hence in view of (5.13) the prior
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1
p(,u, U) X ;

is probability matching. Similarly, one can also verify that the same prior is
probability matching when o is the parameter of interest.

Example 5.2. We now consider a bivariate normal model with means p;, uo,
variances 02,03, and correlation coefficient p, all the parameters being un-
known. Suppose the parameter of interest is the regression coefficient pos/o;.
We reparameterize as

61 = pozfor, By=02(1—p%), O3=0% Oi=m, 65=ps

which is an orthogonal parameterization in the sense that I;;(8) = 0 for
2 < j <5 Then IY(8) =0 for 2 < j <5,1'1(8) = I;'(8) = 62/65, and the
probability matching equation (5.13) reduces to

0 —1/2
a6, \P p(0)I;; "} =0,

ie.,
9 1/2y _
8—91{10(9)(92/93) }=0.
Hence the probability matching prior is given by
p(6) = P(6z, ..., 605)(83/62)"*

where 1(fs,...,0s) is an arbitrary smooth function of (6s,...,65).
One can also verify that a prior of the form

10*(#17#2701»027 )‘{0102( 2)t}_1

with reference to the original parameterization is probability matching if and
only if ¢t = %s + 1 (vide Datta and Mukerjee, 2004, pp. 28, 29).

5.1.5 Conjugate Priors and Mixtures

Let X1,...,X, be ii.d. with a one-parameter exponential density
p(z}0) = exp{A(6) + 6¢(z) + h(z)}-
We recall from Chapter 1 that 7= "7 ¥(X;) is a minimal sufficient statistic

and Eg(¥(X;1)) = —A'(9). The hkehhood is

exp{nA(6) + 6T} exp{z h(X;

To construct a conjugate prior, i.e., a prior leading to posteriors of the same
form, start with a so-called noninformative, possibly improper density u(6).
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We will choose g to be the uniform or the Jeffreys prior density. Then define
a prior density
p(6) = cemAC 03 (g) (5.14)

where ¢ is the normalizing constant,

c= |:/ emA(G)JerM(e)de
o

-1

if the integral is finite, and arbitrary if p(6) is an improper prior. The constants
m and s are hyperparameters of the prior. They have to be chosen so that the
posterior is proper, i.e.,

/e(m+n)A(0)+0(s+T)ﬂ(9)d9< .
o

In this case, the posterior is
p(9|m) _ Cle(m+n)A(0)+0(s+T)M(e), (5'15)

i.e., the posterior is of the same form as the prior. Only the hyperparameters
are different.

In other words, the family of priors p(6) (vide (5.14)) is closed with respect
to the formation of posterior. The form of the posterior allows us to interpret
the hyperparameters in the prior. Assume initially the prior was p. Take m
to be a positive integer and think of a hypothetical sample of size m, with
hypothetical data z1, . .., z/, such that }_1" ¥(z}) = s. The prior is the same as
a posterior with p as prior and s as hypothetical data based on a sample of size
m. This suggests m is a precision parameter. We expect that larger the m, the
stronger is our faith in such quantities as the prior mean. The hyperparameter
s/m has a simple interpretation as a prior guess about Ey(v) = —A’(6), which
is usually an important parametric function.

To prove the statement about s/m, we need to assume p(6) = constant,
i.e., ¢ is the uniform distribution. We also assume all the integrals appearing
below are finite.

Let © = (a,b), where ¢ may be —oo, b may be oo. Integrating by parts

b
E[-A'(0)] =c / (—A'(9))emAO+0s 49

a

A(D b
= —cem o eeslb —|—ci/ emAO0) e g
m @ m J,
s
_ 5 (5.16)
m
if emA0)+0s — 0 at § = a, b, which is often true if @ is the natural parameter

space. Diaconis and Ylvisaker (1979) have shown that (5.16) characterizes the
prior.
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A similar calculation with the posterior, vide Problem 3, shows the poste-
rior mean of ~A’(9) is

m S n

E(-A(9)X) = (—A'(9)).- (5.17)

m—}—na m+n

i.e., the posterior mean is a weighted mean of the prior guess s/m and the MLE
—A (é) = T/n and the weights are proportional to the precision parameter m
and the sample size n.

If i1 is the Jeffreys distribution, the right-hand side of (5.16), i.e., 8/m may

be interpreted as

E (-A’(@)/M-AN(@)) /E (1/\/Tf(9)) .

i.e., s/m is a ratio of two prior guesses — a less compelling interpretation
than for y = uniform.

Somewhat trivially p itself, whether uniform or Jeffreys, is a conjugate
prior corresponding to m = 0,s = 0. Also, in special cases like the binomial
and normal, the Jeffreys prior is a conjugate prior with 1 = uniform. We
do not know of any general relation connecting the Jeffreys prior and the
conjugate priors with u = uniform.

Conjugate priors, specially with u = uniform, were very popular because
the posterior is easy to calculate, the hyperparameters are easy to interpret
and hence elicit and the Bayes estimate for Fg(¢(X)) has a nice interpretation.
All these facts generalize to the case of multiparameter exponential family of
distribution

d
p(]6) = exp{A(6) + > _0:4i(x) + h(z)}.

The conjugate prior now takes the form

da
p(8) = exp{mA(0) + ) _ fis:}1(6)

where y = uniform or Jeffreys, m is the precision parameter and s;/m may be
interpreted as the prior guess for Eg(1;(X)) if 1 = uniform. Once again the
hyperparameters are easy to elicit. Also the Bayes estimate for Fg(1);(X)) is
a weighted mean of the prior guess and the MLE.

It has been known for some time that all these alternative properties can
also be a problem. First of all, note that having a single precision parameter
even for the multiparameter case limits the flexibility of conjugate priors;
one cannot represent complex prior belief. The representation of the Bayes
estimate as a weighted mean can be an embarrassment if there is serious
conflict between prior guess and MLE. For example, what should one do if
the prior guess is 10 and MLE is 100 or vice versa? In such cases, one should
usually give greater weight to data unless the prior belief is based on reliable
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expert opinion, in which case greater weight would be given to prior guess.
In any case, a simple weighted mean seems ridiculous. A related fact is that
a conjugate prior usually has a sharp tail, whereas prior knowledge about the
tail of a prior is rarely strong.

A cure for these problems is to take a mixture of conjugate priors by
putting a prior on the hyperparameters. The class of mixtures is quite rich
and given any prior, one can in principle construct a mixture of conjugate
priors that approximates it. A general result of this sort is proved in Dalal
and Hall (1980). A simple heuristic argument is given below.

Given any prior one can approximate it by a discrete probability dis-
tribution (p1,...,pr) over a finite set of points, say (n1,---,m) where
n; = FE,(¥1(X), - ,%a(X)). This may be considered as a mixture over
k degenerate distributions of which the jth puts all the probability on n;.
By choosing m sufficiently small and taking the prior guess equal to 7, one
can approximate the k degenerate distributions by &£ conjugate priors. Finally,
mix them by assigning weight p; to the jth conjugate prior.

Of course the simplest applications would be to multimodal priors. The
posterior for a mixture of conjugate priors can often be calculated numerically
by MCMC (Markov chain Monte Carlo) method. See Chapter 7 for examples.

As an example of a mixture we consider the Cauchy prior used in Jeffreys
test for normal mean p with unknown variance o2, described in Section 2.7.2.
The conjugate prior for u given o2 is normal and the Cauchy prior used here
is a scale mixture of normals N(0,77!) where 7 is a mixing Gamma variable.
This mixture has heavier tail than the normal and use of such prior means the
inference is influenced more by the data than the prior. It is expected that,
in general, mixtures of conjugate priors will have this property, but we have
not seen any investigation in the literature.

5.1.6 Invariant Objective Priors for Location-Scale Families

Let 8 = (p,0),—c0 < p < 00,0 > 0 and

p(z]f) = %f <x — “) (5.18)

a

where f(z) is a probability density on R. Let I, , be the 2 x 2 Fisher infor-
mation matrix. Then easy calculation shows

1
I,u,o' = “O'EIO,I

which implies the Jeffreys prior is proportional to 1/02. We show in Sec-
tion 5.1.7 that this prior corresponds with the left invariant Haar measure
and

1
pa(p,0) = —
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corresponds to the right invariant Haar measure. See Dawid (Encyclopedia of
Statistics) for other relevant definitions of invariance and their implications.
We discuss some desirable properties of p2 in Subsection 5.1.8.

5.1.7 Left and Right Invariant Priors

We now derive objective priors for location-scale families making use of in-
variance. Consider the linear transformations

JapT =a+ bz, —00 < a < o0,b>0.

Then
9c,d-abp-T =c+d{a+bx) =c+ ad+ dbzx.

We may express this symbolically as g¢ d.9a,6 = ge,f Where e = c+ad, f = db
specify the multiplication rule. Let G = {gq,5; —00 < a < 00,b > 0}. Then G
is a group.

It is convenient to represent g, by the vector (a,b) and rewrite the mul-
tiplication rule as

(¢,d).(a,b) = (e, f). (5.19)

Then we may identify R X R* with G and use both notations freely. We give
R x RT its usual topological or geometric structure. The general theory of
(locally compact) groups (see, e.g., Halmos (1950, 1974) or Nachbin (1965))
shows there are two measures u; and pe on G such that y; is left invariant,
ie, forall g€ Gand A CG,

p(gA) = p1(A)

and po is right invariant, i.e., for all g and A,
pz(Ag) = p2(A)

where gA = {999’ € A}, Ag = {g'9: 9’ € A}.

The measures p; and po are said to be the left invariant and right invari-
ant Haar measures. They are unique up to multiplicative constants. We now
proceed to determine them explicitly.

Suppose we assume uy has a density fo, i.e., denoting points in R x R*

by (ai1,az)

p2(A) Z/ fa(ay, az) day dag (5.20)
A
and assume f, is a continuous function. With g = (b1, b2) and (c1,c2) =
(al,az).(bl,bz) with
c1 = a1 + azby, ¢z = azby, (5.21)

one may evaluate pz(Ag) in several ways, e.g.,
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w2 (Ag) :/ h(c1, ) der deg (5.22)
Ag
where
h(ci,c2) = falar,a2)(J)™! (5.23)
with o )
C1,C2 1 b1
J=—== = by.
6((11 s 112) ( 0 b2 2
Also, by definition of fo
n2(Ag) = | fa(er, c2) der dea. (5.24)
Ag

Because (5.22) and (5.24) hold for all A and f2 is continuous, we must have

fa(er,e2) = k(e c2), (5.25)

. 1
1.e., f2(cl702) = f2(a17a2)g7

for all (a;,as),(b1,b2) € R x RT. Set a; = 0, az = 1. Then fo(by,be) =
fg(o, 1)—})1;, i.e.,
1
fa(b1,b2) = constant b (5.26)
2
It is easy to verify that us defined by (5.20) is right invariant if f is as in
(5.26). One has merely to verify (5.25) and then (5.22).
Proceeding in the same way, one can show that the left invariant Haar
measure has density
1
f1(b1,b2) = ok
2
We have now to lift these measures to the (u,o)-space. To do this, we first
define an isomorphic group of transformations on the parameter space. Each
transformation g, = a + bz on the sample space induces a transformation
Ja.p defined by
ga,b(:“’? (7) = (a + bu, ba)a

i.e., the right-hand side gives the location and scale of the distribution of g, X
where X has density (5.18). The transformation g, 5 — g, 5 is an isomorphism,
ie.,

(Gap) ™" = (903)
and if

Ya,b-9ec,d = Ge,§
then

ga,b'gc,d = ge,f’
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In view of this, we may write g,, ,, also as (a1,a2) and define the group mul-
tiplication by (5.19) or (5.21). Consequently, left and right invariant measures
for g are the same as before and

1

w2 dbidby,

du1{b1,b2) = constant

1
dpo(by,ba) = constant b—dbldbg.
1

We now lift these measures on to the {u,o)-space by setting up a canonical
transformation

(#,0) =7,,,(0,1)

that converts a single fixed point in the parameter space into an arbitrary
point {u, ). Because (0,1) is fixed, we can think of the above relation as
setting up a one-to-one transformation between (u,0) and g,, , = (¢, 0). Be-
cause this is essentially an identity transformation from (p, o) into a group of
transformations, given any u* on the space of g’s we define v on @ = R x R+
as

v(A) = p* {(1,0); 9p,0 € A} = u*(A).
Thus )
dni{p,0) = dpua(p,0) = —5 dudo
and )
dva(n,0) = duz(p,0) = — dudo

are the left and right invariant priors for (u, o).

5.1.8 Properties of the Right Invariant Prior for Location-Scale
Families

The right invariant prior density

1
pr(,U«, U) = ;
has many attractive properties. We list some of them below. These properties
do not hold in general for the left invariant prior

1
pl(,u'? U) = ;

Heath and Sudderth (1978, 1989) show that inference based on the posterior
corresponding with p, is coherent in a sense defined by them. Similar proper-
ties have been shown by Eaton and Sudderth (1998, 2004). Dawid et al. (1973)
show that the posterior corresponding to p, is free from the marginalization
paradox. It is free from the marginalization paradox if the group is amenable.
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Dawid (Encyclopedia of Statistics) also provides counter-examples in case the
group is not amenable. Amenability is a technical condition that is also called
the Hunt-Stein condition that is needed to prove theorems relating invariance
to minimaxity in classical statistics, vide Bondar and Milnes (1981). Datta
and Ghosh (1996) show p, is probability matching in a certain strong sense.

A famous classical theorem due to Hunt and Stein, vide Lehmann (1986),
or Kiefer (1957), implies that under certain invariance assumptions (that in-
clude amenability of the underlying group), the Bayes solution is minimax
as well as best among equivariant rules, see also Berger (1985a). We con-
sider a couple of applications. Suppose we have two location-scale families
o fi((x — n)/o), i = 0,1. For example, fy; may be standard normal i.e.,
N(0,1) and f; may be standard Cauchy, i.e.,

1 1
T)=-—-:.
hi@) w1+ 2
The observations Xi, Xs,..., X, are ii.d. with density belonging to one of
these two families. One has to decide which is true.
Consider the Bayes rule which accepts f; if

ST [ A )] Sdudo
ST [0 fo(X52)] Ldpdo

If ¢ is chosen such that the Type 1 and Type 2 error probabilities are the same,
then this is a minimax test, i.e., it minimizes the maximum error probability
among all tests, where the maximum is over i = 0,1 and (4,0) € R x R™.

Suppose we consider the estimation problem of a location parameter with
a squared error loss. Let Xy, Xo,..., X, be iid. ~ fo(x — 6). Here p, = p; =
constant. The corresponding Bayes estimate is

SO OITY f(X; — 0) db
Jo I F(X5 — 6) df

which is both minimax and best among equivariant estimators, i.e., it mini-
mizes R(0,T(X)) = Eo(T(X) — §)? among all T satisfying

BF > c.

T(z1+a,...,2n+a)=T(x1,...,7,) + a, a € R.

A similar result for scale families is explored in Problem 4.

5.1.9 General Group Families

There are interesting statistical problems that are left invariant by groups
of transformations other than the location-scale transformations discussed in
the preceding subsections. It is of interest then to consider invariant Haar
measures for such general groups also. An example follows.
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Example 5.3. Suppose X ~ N,(0,I). It is desired to test
Hy:0 =0 versus H; : 8 # 0.

This testing problem is invariant under the group Go of all orthogonal trans-
formations; i.e., if H is an orthogonal matrix of order p, then gyX = HX ~
N,(HO,I), so that gy@ = HO. Also, gy0 = 0. Further discussion of this
example as well as treatment of invariant tests is taken up in Chapter 6. Dis-
cussion on statistical applications involving general groups can be found in
sources such as Eaton (1983, 1989), Farrell (1985), and Muirhead (1982).

5.1.10 Reference Priors

In statistical problems that are left invariant by a group of nice transforma-
tions, the Jeffreys prior turns out to be the left invariant prior, vide Datta and
Ghosh (1996). But for reasons outlined in Subsection 5.1.8, one would prefer
the right invariant prior. In all the examples that we have seen, an interesting
modification of the Jeffreys prior, introduced in Bernardo (1979) and further
refined in Berger and Bernardo (1989, 1992a and 1992b), leads to the right
invariant prior. These priors are called reference priors after Bernardo (1979).
A reference prior is simply an objective prior constructed in a particular way,
but the term reference prior could, in principle, be applied to any objective
prior because any objective prior is taken as some sort of objective or conven-
tional standard, i.e., a reference point with which one may compare subjective
priors to calibrate them.

As pointed out by Bernardo (1979), suitably chosen reference priors can
be appropriate in high-dimensional problems also. We discuss this in a later
chapter.

Our presentation in this section is based on Ghosh (1994, Chapter 9) and
Ghosh and Ramamoorthi (2003, Chapter 1).

If we consider all the parameters of equal importance, we maximize the
entropy of Subsection 5.1.3. This leads to the Jeffreys prior. To avoid this,
one assumes parameters as having different importance. We consider first the
case of d = 2 parameters, namely, (61, 62), where we have an ordering of the
parameters in order of importance. Thus #; is supposed to be more important
than 6. For example, suppose we are considering a random sample from
N(u,0?). If our primary interest is in u, we would take 6, = u,0; = o2. If
our primary interest is in o2, then 8, = 02,0, = p. If our primary interest is
in pu/o, we take 6; = p/o and 6 = p or o or any other function such that
(61, 6>) is a one-to-one sufficiently smooth function of (i, o).

For fixed 6,, the conditional density p(62]6:) is one dimensional. Bernardo
(1979) recommends setting this equal to the conditional Jeffreys prior

c(01)v/ 122(0).

Having fixed this, the marginal p(6,) is chosen by maximizing



5.1 Different Methods of Construction of Objective Priors 141
01| X1,..., X
E (logp( 1| 1 ’ n))
p(61)

in an asymptotic sense as explained below.

Fix an increasing sequence of closed and bounded, i.e., compact rectangles
K1; x Ky; whose union is 6. Let p;(62]6:1) be the conditional Jeffreys prior,
restricted to Ky; and p;(61) a prior supported on K1;. As mentioned before,

pi(02]61) = ci(61)v/122(0)

where ¢;(6;) is a normalizing constant such that

/ pi(92|91)d92 = 1.
Ko;
Then p;(61,802) = p;(01)pi(62|61) on K1; x Ko; and we consider

J(pi(61), X) = E {log%}

- = et ] -2 [ )

= T80, %) = [ (8T 0:(60161), Xty

where for fixed 61, J(p;(02}61), X) is the Lindley-Bernardo functional
(0261, X)}
J=FE<log —F——F—=
{ & pi(02101)

with p;(62]61) being regarded as a conditional prior for 8, for fixed 6.

Applying the asymptotic normal approximation to the first term on the
right-hand side as well as the second term on the right-hand side, as in Sub-
section 5.1.3,

J(pi(61), X)
- { | n@)osiden(z(6))yhde -
K1 x Ka; KX Ka;

[ w8 [ pul6a) log VI2a(8) ~ lowpu(8a16n)] dbadty
Kis Ka;

pi(0) log Pz‘(g)d‘)}

det(1(8))

T02(0) } df,db,

=K, + Pi(91)/ Pi(92|91)10g{
Ko

Ky
- / pi(61) log pi(61)db:
Ky

BRE
=K ; ; 1
n + . p1(91) /K% p1(92|91) og {IU(B) } d92d91

‘/ pi(61) log p;(61)do1 (5.27)
Ky
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where K, is a constant depending on n. Let 1;(6;) be the geometric mean of
(I'1(8))~2 with respect to p;(62]61). Then (5.27) can be written as

| i(61)
KTL + K., pl(el) log pz(el)

dé

which is maximized if

pi(61) = ci;(61) on Ky,
=0 outside.

The product X
pi(0) = s (61)ci(61)[122(0)]2

is the reference prior on K;; x Ko;. If we can write this as

pi(0) = d; A(641,62) on Ky; x Ky,
=0 elsewhere

then the reference prior on © may be taken as proportional to A(6,862).

Clearly, the reference prior depends on the choice of (61, 62) and the com-
pact sets K1;, Ko;. The normalization on K;; x K»; first appeared in Berger
and Bernardo (1989). If an improper objective prior is used for fixed n, one
might run into paradoxes of the kind exhibited by Fraser et al. (1985). See in
this connection Berger and Bernardo (1992a). Recently there has been some
change in the definition of reference prior, but we understand the final results
are similar (Berger et al. (2006)).

The above procedure is based on Ghosh and Mukerjee (1992) and Ghosh
(1994). Algebraically it is more convenient to work with [I(8)]™! as in Berger
and Bernardo (1992b). We illustrate their method for d = 3, the general case
is handled in the same way.

First note the following two facts.

A. Suppose 0,,60,,...,6; follow multivariate normal with dispersion matrix
X. Then the conditional distribution of 8; given 61,65, ..., 60;_1 is normal with
variance equal to the reciprocal of the (j, j)-th element of X!,

B. Following the notations of Berger and Bernardo (1992b), let S = [I(8)]~!
where 1(8) is the d x d Fisher information matrix and S; be the j x j principal
submatrix of S. Let H; = Sj_1 and h; be the (j,)-th element of H;. Then
by A, the asymptotic variance of 8, given 6,,6,,...,60;_1 is (h;)~!/n. To get
some feeling for h;, note that for arbitrary d, j = d, h; = I44 and for arbitrary
d,j=1, h =1/I'1,

We now provide a new asymptotic formula for Lindley-Bernardo informa-
tion measure, namely,

p(9j|917- .. ,9‘7‘_17X))
E{lo
( g p(9j|913"'59j~1)
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= E(log(N(6;(01,.-,0;-1),h; (8)/n))) — E(logp:(65161, .. .,6;-1))
(where 9}(91, ...,05_1) is the MLE for 8; given 8;,...,60;_; and
p; is a prior supported on a compact rectangle Kj; X Ko; X ... x Kg;.)

¥;i(01,...,6;)
:Kn+E / 1 J J 99 "“’9-_ de
{ K; ngi(9j|91,...,9j_1)p( ;161 i—1)db;

Jt

+0,(1) (5.28)

where K, is a constant depending on n and
1
’l/) (91, . ,9 ) = eXp {/ 5 10gh]'(0)p(9j+1, ces 79d|91) . . .,9j)d9j+1 A d&d}}

is the geometric mean of h;/z(e) with respect to p(6;4+1,...,04/61,...,0;).
The proof of (5.28) parallels the proof of (5.4). It follows that asymptoti-
cally (5.28) is maximized if we set

p(9j|91, - ,9];1) = 02(91, .. .,9]‘_1)1/}]'(91, - ,9]') on K]'i
=0 elsewhere . (5.29)

If the dimension exceeds 2, say d = 3, we merely start with a compact
rectangle Kj; x Ko; x Ks; and set p;(03]01,62) = ¢;{61,62)+/I33(8) on Ks;.
Then we first determine p;{62|61) and then p;(6;) by applying (5.29) twice.
Thus,

pi(602101) = ci(01)p2(01,02) on Ky
pi(01) = cip1(61) on Ky;.

One can also verify that the formulas obtained for d = 2 can be rederived in
this way. A couple of examples follow.

Ezample 5.4. Let X1, X5,..., X, be iid. normal with mean #; and variance
01, with #; being the parameter of interest. Here

5 0
1(0) = (ﬁf _) y 122(0) = b—l? 1'1(8) = 263.

Thus p;(62]61) = ¢; on Ka; where ¢! = volume of Ky;, and therefore,

1);(61) = exp {/Kz s log;(\/_e1 )d&z} \/_01.

pi(01,02) = di(1/6,)

for some constant d; and the reference prior is taken as

We then have
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1
p(61,62) e
1
This is the right invariant Haar measure unlike the Jeffreys prior which is left
invariant (see Subsection 5.1.7).

Ezxample 5.5. (Berger and Bernardo, 1992b) Let (X1, X5, X3) follow a multi-
nomial distribution with parameters (n;6;, 62, 83), i.e., (X1, X3, X3) has den-
sity

p(z1,%2,23]01,02,03)
n!
= 0%10%20%3 (1 — §, — @, — B, F1— %2~ %3
zlzlagl(n—z; —zg —xg)! L 2 0 ( 1 — 02 —63) ,

3 3
2;20,i=1,23 Y z;<n, 6;>0i=123» 6;<L
1 1

Here the information matrix is
I(O) = nDiag{Ol_l,Hz_l,Ogl} + n(l — 01 — 02 - 03)_113,

where Diag {a;, a3, a3} denotes the diagonal matrix with diagonal elements
a1, a9, a3 and 13 denotes the 3 x 3 matrix with all elements equal to one. Hence

1 1
S(6) = ;Diag {61,02,63} — ;00'
and for j =1,2,3
S;(8) = -l—Diag {61,...,6;} — l0[]-]0f].]
n n
with 8(; = (61,...,6;),
H;(8) = nDiag {67 ",... ,0]-_1} +n(l—6,—---—86;)"'1,

and
h](O) = 17,0]_1(1 - 01 — j_l)(l el 01 — = 0]‘)_1.

Note that h;(8) depends only on 6,,6,,...,6; so that

¥;(61,...,6;) = h/%(6).

2

Here we need not restrict to compact rectangles as all the distributions in-
volved have finite mass. As suggested above for the general case, the reference
prior can now be obtained as

p(63)61,65) = w1051 — 6, — 6, —65)7V /2 0<b3<1—6,— 6,
p(0206)) = 716,12 (1— 6, — 6,)7Y2, 0< By <1-6,
p(6:) = 7710721 —6))72, 0< 6 <1,
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ie.,
p(8) = w3072 (1~ 0,)"1/26; /2 (1— 0, — 6,) /205 /% (1— 6, — 6, — 63)~1/2,
0:>0,i=1,2,3, 356, < 1.

As remarked by Berger and Bernardo (1992b), inferences about 6; based
on the above prior depend only on z; and not on the frequencies of other cells.
This is not the case with standard noninformative priors such as Jeffreys prior.
See in this context Berger and Bernardo (1992b, Section 3.4).

5.1.11 Reference Priors Without Entropy Maximization

Construction of reference priors involves two interesting ideas. The first is
the new measure of information in a prior obtained by comparing it with the
posterior. The second idea is the step by step algorithm based on arranging
the parameters in ascending order of importance. The first throws light on
why an objective prior would depend on the model for the likelihood. But
it is the step by step algorithm that seems to help more in removing the
problems associated with the Jeffreys prior. We explore below what kind of
priors would emerge if we follow only part of the Berger-Bernardo algorithm
(of Berger and Bernardo (1992a)).

We illustrate with two (one-dimensional) parameters 6; and 6, of which
01 is supposed to be more important. This would be interpreted as meaning
that the marginal prior for §; is more important than the marginal prior for
3. Then the prior is to be written as p(61)p(62161), with

p(02101) o /I22(8)

and p(6,) is to be determined suitably.
Suppose, we determine p(#;) from the probability matching conditions

P{el < el,a(X)lX} =l-a+ Op(n_l)’ (530)
/P{(91 < 0, o (X)161,02}p(05]61)d05 = 1 — a+ O(n~Y).  (5.31)

Here (5.30) defines the Bayesian quantile 6, ,, of 81, which depends on data X
and (5.31) requires that the posterior probability on the left-hand side of (5.30)
matches the frequentist probability averaged out with respect to p(62/6:).
Under the assumption that 8; and 6, are orthogonal, i.e., I15(0) = I21(8) =0,
one gets (Ghosh (1994))

-1
pi(61) = constant ( / Iﬁl/Z(B)p(Oziel)dGZ) (5.32)
Ko

where Kq; X Ky; is a sequence of increasing bounded rectangles whose union
is ©1 x O;. This equation shows the marginal of ; is a (normalized) harmonic
mean of /111 which equals the harmonic mean of 1/v/ I
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What about a choice of p;(8;) equal to the geometric or arithmetic mean?
The Berger-Bernardo reference prior is the geometric mean. The marginal
prior is the arithmetic mean if we follow the approach of taking weak limits
of suitable discrete uniforms, vide Ghosal et al. (1997). In many interesting
cases involving invariance, for example, in the case of location-scale families,
all three approaches lead to the right invariant Haar measures as the joint
prior.

5.1.12 Objective Priors with Partial Information

Suppose we have chosen our favorite so-called noninformative prior, say py.
How can we utilize available prior information on a few moments of 87 Let
p be an arbitrary prior satisfying the following constraints based on available
information

/ 5;(0)p(0)d0 = A;, F=1,2,... k. (5.33)
e

If g;(8) = 63 .‘.HZ;", we have the usual moments of 8. We fix increasing
compact rectangles K; with union equal to @ and among priors p; supported
on K; and satisfying (5.33), minimize the Kullback-Leibler number

K(pi,po) = /KZ p:(9) log ;);((2 de.

The minimizing prior is

k
p; (0) = constant X exp {Z A;9;(0) } po(89)

1

where );’s are hyperparameters to be chosen so as to satisfy (5.33). This can
be proved by noting that for all priors p; satisfying (5.33),

pi(6)log ii Ez; dé + K (p;,p;)

K(pi, po) Z/

K
= constant + Z XjA; + K(pi, p7)

which is minimized at p; = p}.

If instead of moments we know values of some quantiles for (a one-
dimensional) 8 or more generally the prior probabilities a; of some disjoint
subsets B; of O, then it may be assumed UB; = © and one would use the
prior given by

. Po(AN B;)
pi(A) =Y 0,0l 20
’ z]: 7 po(By)
Sun and Berger (1998) have shown how reference priors can be constructed
when partial information is available.
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5.2 Discussion of Objective Priors

This section is based on Ghosh and Samanta (2002b). We begin by listing
some of the common criticisms of objective priors. We refer to them below as
“noninformative priors”.

1. Noninformative priors do not exist. How can one define them?

2. Objective Bayesian analysis is ad hoc and hence no better than the ad
hoc paradigms subjective Bayesian analysis tries to replace.

3. One should try to use prior information rather than waste time trying to
find noninformative priors.

4. There are too many noninformative priors for a problem. Which one is to
be used?

5. Nomninformative priors are typically improper. Improper priors do not
make sense as quantification of belief. For example, consider the uniform
distribution on the real line. Let L be any large positive number. Then
P{~L<0<L}/P{6 ¢ (—L,L)} =0 for all L but for a sufficiently large
L, depending on the problem, we would be pretty sure that —L < 6 < L.

6. If & has uniform distribution because of lack of information, then this
should also be true for any smooth one-to-one function n = g(6).

7. Why should a noninformative prior depend on the model of the data?

8. What are the impacts of 7 on coherence and the likelihood principle?

We make a couple of general comments first before replying to each of
these criticisms. The purpose of introducing an objective prior is to produce a
posterior that depends more on the data than the objective prior. One way of
checking this would be to compare the posteriors for different objective priors
as in Example 2.2 of Chapter 2. The objective prior is only the means for pro-
ducing the posterior. Moreover, objective Bayesian analysis agrees that it is
impossible to define a noninformative prior on an unbounded parameter space
because maximum entropy need not be finite. This is the reason that increas-
ing bounded sets were used in the construction. One thinks of the objective
priors as consensus priors with low information — at least in those cases where
no prior information is available. In all other cases, the choice of an objective
prior should depend on available prior information (Subsection 5.1.12). We
now turn to the criticisms individually.

Points 1 and 2 are taken care of in the general comments. Point 3 is well
taken, we do believe that elicitation of prior information is very important and
any chosen prior should be consistent with what we know. A modest attempt
towards this is made in Subsection 5.1.12. However, we feel it would rarely
be the case that a prior would be fully elicited, only a few salient points or
aspects with visible practical consequences can be ascertained, but subjected
to this knowledge the construction of the prior would still be along the lines
of Subsection 5.1.12 even though in general no explicit solution will exist.

As to point 4, we have already addressed this issue in the general com-
ments. Even though there is no unique objective prior, the posteriors will
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usually be very similar even with a modest amount of data. Where this is not
the case, one would have to undertake a robustness analysis restricted to the
class of chosen objective priors. This seems eminently doable.

Even though usually objective priors are improper, we only work with
them when the posterior is proper. Once again we urge the reader to go over
the general comments. We would only add that many improper objective
priors lead to same posteriors as coherent, proper, finitely additive priors.
This is somewhat technical, but the interested reader can consult Heath and
Sudderth (1978, 1989).

Point 6 is well taken care of by Jeffreys prior. Also in a given problem not
all one-to-one transformations are allowed. For example, if the coordinates of
0 are in a decreasing order of importance, then we need only consider i =
(M, ...,na) such that n; is a one-to-one continuously differentiable function
of #;. There are invariance theorems for reference and probability matching
priors in such cases, Datta and Ghosh (1996).

We have discussed Point 7 earlier in the context of the entropy of Bernardo
and Lindley. This measure depends on the experiment through the model of
likelihood. Generally information in a prior cannot be defined except in the
context of an experiment. Hence it is natural that a low-information prior
will not be the same for all experiments. Because a model is a mathemati-
cal description of an experiment, a low-information prior will depend on the
model.

We now turn to the last point. Coherence in the sense of Heath and Sud-
derth (1978) is defined in the context of a model. Hence the fact that an
objective prior depends on a model will not automatically lead to incoher-
ence. However, care will be needed. As we have noted earlier, a right Haar
prior for location-scale families ensures coherent inference but in general a left
Haar prior will not.

The impact on likelihood principle is more tricky. The likelihood principle
in its strict sense is violated because the prior and hence the posterior depends
on the experiment through the form of the likelihood function. However, for
a fixed experiment, decision based on the posterior and the corresponding
posterior risk depend only on the likelihood function. We pursue this a bit
more below.

Inference based on objective priors does violate the stopping rule prin-
ciple, which is closely related to the likelihood principle. In particular, in
Example 1.2 of Carlin and Louis (1996), originally suggested by Lindley and
Phillips (1976), one would get different answers according to a binomial or a
negative binomial model. This example is discussed in Chapter 6.

To sum up we do seem to have good answers to most of the criticisms but
have to live with some violations of the likelihood and stopping rule principles.
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5.3 Exchangeability

A sequence of real valued random variables {X;} is exchangeable if for all n,
all distinct suffixes {#1,%2,...,7,} and all By, By,...,B, C R,

P{X;, € B,X;, €By,...X;, € By} =P{X, € B;,Xy€ By,...,X, € Bp}.

In many cases, a statistician will be ready to assume exchangeability as a
matter of subjective judgment.

Consider now the special case where each X; assumes only the values 0 and
1. A famous theorem of de Finetti then shows that the subjective judgment
of exchangeability leads to both a model for the likelihood and a prior.

Theorem 5.6. (de Finetti) If X;’s are exchangeable and assume only val-
ues 0 and 1, then there exists a distribution I on (0,1) such that the joint
distribution of X1, ..., X, can be represented as

1 n
P(X)==a),..., X, =x,) = / [6=(1—6)==dmo).
0 1=1

This means X;’s can be thought of as i.i.d. B(1, 8) variables, given 8, where 8
has the distribution II. For a proof of this theorem and other results of this
kind, see, for example, Bernardo and Smith (1994, Chapter 4).

The prior distribution IT can be determined in principle from the joint
distribution of all the X,’s, but one would not know the joint distribution of
all the X;’s. If one wants to actually elicit 11, one could ask oneself what is
one’s subjective predictive probability P{X;,; = 1|X1, Xo,..., X;}. Suppose
the subjective predictive probability is (a + > X;)/(a+ 3 + i) where & > 0,
£ > 0. Then the prior for 8 is the Beta distribution with hyperparameters «
and (. Nonparametric elicitations of this kind are considered in Fortini et al.
(2000).

5.4 Elicitation of Hyperparameters for Prior

Although a full prior is not easy to elicit, one may be able to elicit hyperpa-
rameters in an assumed model for a prior. We discuss this problem somewhat
informally in the context of two examples, a univariate normal and a bivariate
normal likelihood.

Suppose X1, Xa, ..., X, are i.i.d. N(u,0?) and we assume a normal prior
for u given ¢? and an inverse gamma prior for o2. How do we choose the
hyperparameters? We think of a scenario where a statistician is helping a
subject matter expert to articulate his judgment.

Let p(u|o?) be normal with mean 7 and variance c?02 where c is a constant.
The hyperparameter 7 is a prior guess for the mean of X. The statistician has
to make it clear that what is involved is not a guess about p but a guess about
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the mean of u. So the expert has to think of the mean p itself as uncertain
and subject to change.

Assuming that the expert can come up with a number for 7, one may try
to elicit a value for ¢ in two different ways. If the expert can assign a range of
variation for p (given o) and is pretty sure n will be in this range, one may
equate this to 1 &+ 3co, n would be at the center of the range and distance of
upper or lower limit from the center would be 3co. To check consistency, one
would like to elicit the range for several values of o and see if one gets nearly
the same c. In the second method for eliciting ¢, one notes that ¢? determines
the amount of shrinking of X to the prior guess 7 in the posterior mean

55X+ Z2n _ nX +n/c
it n+1/e

c2o?

E(ulX) =

(vide Example 2.1 of Section 2.2).

Thus if ¢ = 1/n, X and 7 have equal weights. If ¢ = 5/n, the weight of
n diminishes to one fifth of the weight for X. In most problems one would not
have stronger prior belief.

We now discuss elicitation of hyperparameters for the inverse Gamma prior
for o2 given by

(0= =2 L -1/6"
P T T(a)pe (o) '

The prior guess for 2 is [3(a — 1)]7!. This is likely to be more difficult to
elicit than the prior guess n about p. The shape parameter a can be elicited
by deciding how much to shrink the Bayes estimate of 0 towards the prior
guess [B(a — 1)]7!. Note that the Bayes estimate has the representation

a—1 1 N (n—1)/2 &2 n(X —n)?
a—1+n/28(a—-1) a—1+n/2 (2a +n—2)(1 +nc?)’

E(o*X) =

where (n — 1)s? = 3°(X; — X)2. In order to avoid dependence on X one may
want to do the elicitation based on

a—1 1 N (n—1)/2 §2
a-1+n-1)/28a-1) a-1+(Mn-1)/2

E(0?|s?) = .
The elicitation of prior for p and o, specially the means and variances of
priors, may be based on examining related similar past data.

We turn now to i.i.d. bivariate normal data (X;,Y;),i =1,2,...,n. There
are now five parameters, (ux,0%), (ky,0%) and the correlation coefficient p.
Also E(Y|X = z) = B + iz, Var(Y|X = z) = 02, where 02 = 02.(1 — p?),
B = poy [ox, Bo = py — (poy [ox)ix.

One could reparameterize in various ways. We adopt a parameterization
that is appropriate when prediction of Y given X is a primary concern. We
consider (ux,0%) as parameters for the marginal distribution of X, which may
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be handled as in the univariate case. We then consider the three parameters
(2, Bo, B1) of the conditional distribution of Y given X = .

The joint density may be written as a product of the marginal density of
X, namely N{ux,0%) and the conditional density of Y given X = x, namely
N(By + B1z,%). The full likelihood is

n

(zi — px)?

1 1 1
H[omr oo - oo = -

Tt is convenient to rewrite fo + B1z; as o + v1{z; — T), with vy = 81, v =
Bo + 71 T. Suppose we think of z;’s to be fixed. We concentrate on the second
factor to find its conjugate prior. The conditional likelihood given the z;’s is

SIEIE

[ﬁ} eXP{_% > o= (zi—1))*~ TZ(%—WO)Q — 5,2 (N -71)%}

where 4o = §, 71 = Z(yz — Y@ — T)/Sza, and sz = D (70 — E)Q-

Clearly, the conjugate prior for o2 is an inverse Gamma and the conjugate
priors for g and «y; are independent normals whose parameters may be elicited
along the same lines as those for the univariate normal except that more care
is needed. The statistician could fix several values of z and invite the expert
to guess the corresponding values of y. A straight line through the scatter plot
will yield a prior guess on the linear relation between z and y. The slope of
this line may be taken as the prior mean for 8; and the intercept as the prior
mean for Gy. These would provide prior means for vy, y1 (for the given values
of z;’s in the present data). The prior variances can be determined by fixing
how much shrinkage towards a prior mean is desired.

Suppose that the prior distribution of ¢ has the density

plo?) = 1 #6—1/(&72)_

I'(a)b? (o2)e+!

Given o2, the prior distributions for vy and ~; are taken to be independent
normals N (g, c2o?) and N(u1, cio?) respectively.

The marginal posterior distributions of ¢ and ~y; with these priors are
Student’s ¢ with posterior means given by

-2

n C,
E(volz,y) = o + —2 5.34
(70| y) n+06270 n+cagﬂo ( )
—2
and E(v |z, y) = 2T+ L . 5.35
) Seo e 2T St 2t (5.35)

As indicated above, these expressions may be used to elicit the values of ¢
and ¢;. For elicitation of the shape parameter a of the prior distribution of
0? we may use similar representation of E(c?|x,y). Note that the statistics

S? =3 (yi — Yo — Y1(z: — T))?, 7o and +; are jointly sufficient for (¢2,v0,71)-
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Table 5.1. Data on Water Flow (in 100 Cubic Feet per Second) at Two Points
(Libby and Newgate) in January During 1931-43 in Kootenai River (Ezekiel and
Fox, 1959)

Year 1931 32 33 34 35 36 37 38 39 40 41 42 43
Newgate(y) 19.7 18.0 26.1 44.9 26.1 19.9 15.7 27.6 24.9 23.4 23.1 31.3 23.8
Libby(z) 27.1 20.9 33.4 77.6 37.0 21.6 17.6 35.1 32.6 26.0 27.6 38.7 27.8

As in the univariate normal case considered above we do the elicitation based

on
a—1 1 (n/2) —1 52

(n/2)+a—2ba—1) (n/2)+a—2
where 62 = §?/(n — 2) is the classical estimate of 2. We illustrate with an
example.

E(c?5%) = (5.36)

Ezample 5.7. Consider the bivariate data of Table 5.1 (Ezekiel and Fox, 1959).
This relates to water flow in Kootenai River at two points, Newgate (British
Columbia, Canada) and Libby (Montana, USA). A dam was being planned
on the river at Newgate, B.C., where it crossed the Canadian border. The
question was how the flow at Newgate could be estimated from that at Libby.

Consider the above setup for this set of bivariate data. Calculations yield
z = 32.5385, Spz = 2693.1510, 49 = 24.9615, 41 = 0.4748 and 62 = 3.186 so
that the classical (least squares) regression line is

y = 24.9615 + 0.4748(z — Z),
ie., y=9.5122 + 0.4748z.

Suppose now that we have similar past data D for a number of years, say, the
previous decade, for which the fitted regression line is given by

y = 10.3254 + 0.4809z

with an estimate of error variance (c2) 3.9363. We don’t present this set of
“historical data” here, but a scatter plot is shown in Figure 5.1. As suggested
above, we may take the prior means for 8y, 81 and ¢2 to be 10.3254, 0.4809,
and 3.9363, respectively. We, however, take these to be 10.0, 0.5, and 4.0
as these are considered only as prior guesses. This gives yg = 10+ 0.5 =
26.2693 and p; = 0.5. Given that the historical data set D was obtained
in the immediate past (before 1931), we have considerable faith in our prior
guess, and as indicated above, we set the weights for the prior means ug, u1,
and 1/(b(a— 1)) of v, 71, and o2 in (5.34), (5.35), and (5.36) equal to 1/6 so
that the ratio of the weights for the prior estimate and the classical estimate
is 1 : 5 in each case. Thus we set
Co 2 e _ a—1 1

n+c’ Sewtel (m/2)+a-2 6
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which yields, with n = 13 and S, = 2693.151 for the current data, 00_2 = 2.6,
cl”2 = 538.63, and a = 2.1. If, however, the data set D was older, we would
attach less weight (less than 1/6) to the prior means. Our prior guess for o2 is
1/(b(a — 1)). Equating this to 4.0 we get b = 0.2273. Now from (5.34)-(5.36)
we obtain the Bayes estimates of yg,7; and o? as 25.1795, 0.4790 and 3.3219
respectively. The estimated regression line is

y = 25.1795 4 0.4790(z — ),
ie., y=9.5936+ 0.4790z.

The scatter plots for the current Kootenal data of Table 5.1 and the histor-
ical data D as well as the classical and Bayesian regression line estimates
derived above are shown in Figure 5.1. The symbols “.” for current and “-”
for historical data are used here. The continuous line stands for the Bayesian
regression line based on the current data and the prior, and the broken line
represents the classical regression line based on the current data. The Bayesian
line seems somewhat more representative of the whole data set than the clas-
sical regression line, which is based on the current data only. If one fits a
classical regression line to the whole data set, it will attach equal importance
to the current and the historical data; it is a choice between all or nothing.
The Bayesian method has the power to handle both current data and other
available information in a flexible way.

The 95% HPD credible intervals for o and <; based on the poste-
rior ¢-distributions are respectively (21.4881, 28.8708) and (0.2225, 0.7355),
which are comparable with the classical 95% confidence intervals — (23.8719,
26.0511) for o and (0.3991, 0.5505) for ;. Note that, as expected, the
Bayesian intervals are more conservative than the classical ones, the Bayesian
providing for the possible additional variation in the parameters. If one uses
the objective prior p(vyp,71,0?) o 1/02, the objective Bayes solutions would
agree with the classical estimates and confidence intervals.

All of the above would be inapplicable if 2 and y have the same footing and
the object is estimation of the parameters in the model rather than prediction
of unobserved y’s for given z’s. In this case, one would write the bivariate
normal likelihood

i=1 TOXxOy
1 i — px)? i — by )? i — i —
xexpd— (z 2ux) N (y ;Ly) _Qp(:v px) (W =)\
2(1 — p?) o% g% ox oy

The conjugate prior is a product of a bivariate normal and an inverse-Wishart
distribution. Notice that we have discussed elicitation of hyperparameters for
a conjugate prior for several parameters. Instead of substituting these elicited
values in the conjugate prior, we could treat the hyperparameters as having
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Fig. 5.1. Scatter plots and regression lines for the Kootenai River data.

a prior distribution over a set of values around the elicited numbers. The
prior distribution for the hyperparameters could be a uniform distribution on
the set of values around the elicited numbers. This would be a hierarchical
prior. An alternative would be to use several conjugate priors with different
hyperparameter values from the set around the elicited numbers and check
for robustness.

Elicitation of hyperparameters of a conjugate prior for a linear model is
treated in Kadane et al. (1980), Garthwaite and Dickey (1988, 1992), etc.
A recent review is Garthwaite et al. (2005). Garthwaite and Dickey (1988)
observe that the prior variance-covariance matrix of the regression coefficients,
specially the off-diagonal elements of the matrix, are the most difficult to elicit.
We have assumed the off-diagonal elements are zero, a common simplifying
assumption, and determined the diagonal elements by eliciting how much
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shrinkage towards the prior is sought in the Bayes estimates of the means of
the regression coeflicients. Garthwaite and Dickey (1988) indicate an indirect
way of eliciting the variance-covariance matrix.

5.5 A New Objective Bayes Methodology Using
Correlation

As we have already seen, there are many approaches for deriving objective,
reference priors and also for conducting default Bayesian analysis. One such
approach that relies on some new developments is discussed here. Using the
Pearson correlation coefficient in a rather different way, DasGupta et al. (2000)
and Delampady et al. (2001) show that some of its properties can lead to
substantial developments in Bayesian statistics.

Suppose X is distributed with density f(z|6) and 6 has a prior «. Let the
joint probability distribution of X and € under the prior m be denoted by P.
We can then consider the Pearson correlation coeflicient p,, between two func-
tions g1 (X, #) and g2(X, 8) under this probability distribution P. An objective
prior in the spirit of reference prior can then be derived by maximizing the cor-
relation between two post-data summaries about the parameter 6, namely the
posterior density and the likelihood function. Given a class I' of priors, Delam-
pady et al. (2001) show that the prior 7 that maximizes p,{f(x|0), 7(0|z)}
is the one with the least Fisher information I(r) = E™{ < log7()}? in the
class I'. Actually, Delampady et al. (2001) note that it is very difficult to
work with the exact correlation coefficient p, { f(z|#), 7(6|x)} and hence they
maximize an appropriate large sample approximation by assuming that the
likelihood function and the prior density are sufficiently smooth. The following
example is from Delampady et al. (2001).

Ezample 5.8. Consider a location parameter 6 with |8] < 1. Assume that
f and 7 are sufficiently smooth. Then the prior density which achieves the
minimum Fisher information in the class of priors compactly supported on
[—1,1] is what is desired. Bickel (1981) and Huber (1974) show that this prior

() = {COSz(ﬂ'e/Q), if 18] < 1;

is
0, otherwise.

Thus, the Bickel prior is the default prior under the correlation criterion. The
variational result that obtains this prior as the one achieving the minimum
Fisher information was rediscovered by Ghosh and Bhattacharya in 1983 (see
Ghosh (1994); a proof of this interesting result is also given there).

In addition to the above problem, it is also possible to identify a robust
estimate of 8 using this approach. Suppose 7 is a reference prior, and I is
a class of plausible priors. m may or may not belong to I'. Let §, be the
Bayes estimate of 8 with respect to prior v € I'. To choose an optimal Bayes
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Table 5.2. Values of §;(X) and 6, (X) for Various X =z

z0 .5 1 15 2 3 5 8 10 15
8-(z)|0 .349 .687 1.002 1.284 1.735 2.197 2.216 2.065 1.645
8,(z)|0 .348 .683 .993 1.267 1.685 1.976 1.60 1.15 .481

estimate, maximize (over v € I') the correlation coeflicient p,(6,4,) between
@ and 4,. Note that p, is calculated under P, and in this joint distribution
@ follows the reference prior 7. Again, by maximizing an appropriate large
sample approximation g, (6,d,) (assuming that the likelihood function and
the prior density are sufficiently smooth), Delampady et al. (2001) obtain
the following theorem.

Theorem 5.9. The estimate 8,(X) mazimizing p.(0,6,) is Bayes with re-
spect to the prior density

v(8) = crr(6) exp {—% 72(6 — u)2} , (5.37)

where p, 7 are arbitrary and ¢ is a normalizing constant.

The interesting aspect of this reference prior v is evident from the fact that
it is simply a product of the initial reference prior = and a Gaussian factor.
This may be interpreted as v being the posterior density when one begins
with a flat prior 7 and it is revised with an observation 8 from the Gaussian
distribution to pull in its tails. Consider the following example again from
Delampady et al. (2001).

Ezample 5.10. Consider the reference prior density m(8) oc (1 + 62/3)72,
density of the Student’s t3 prior, a flat prior. Suppose that the family I
contains only symmetric priors and so v(8) is of the form v(8) = c¢(1 +
62/3)"2exp {—62/(272)}. Let X ~ Cauchy(6, ), with known o and having

density )
Flaif) = — {1+ (‘”;0)2}

Some selected values are reported in Table 5.2 for ¢ = 0.2. For small and
moderate values of z, §; and 4, behave similarly, whereas for large values, 4,
results in much more shrinkage than d,. This is only expected because the
penultimate v has normal tails, whereas the reference 7 has flat tails.

5.6 Exercises

1. Let X ~ B(n,p). Choose a prior on p such that the marginal distribution
of X is uniform on {0,1,...,n}.
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. (Schervish (1995, p.121)). Let h be a function of (z, 8) that is differentiable

in 6. Define a prior
p*(6) = [Vare ((8/06)h(X, 0))]'/%.

(a) Show that p*(8#) satisfies the invariance condition (5.1).

(b) Choose a suitable h such that p*(8) is the Jeffreys prior.

Prove (5.16) and generalize it to the multiparameter case.

(Lehmann and Casela (1998)) For a scale family, show that there is an
equivariant estimate of o* that minimizes E(T — o*)2/02*. Display the
estimate as the ratio of two integrals and interpret as a Bayes estimate.
Consider a multinomial distribution.

(a) Show that the Dirichlet distribution is a conjugate prior.

(b) Identify the precision parameter for the Dirichlet prior distribution.
(c) Let the precision parameter go to zero and identify the limiting prior
and posterior. Suggest why the limiting posterior, but not the limiting
prior, is used in objective Bayesian analysis.

Find the Jeffreys prior for the multinomial model.

Find the Jeffreys prior for the multivariate normal model with unknown
mean vector and dispersion matrix.

. {a) Examine why the Jeffreys prior may not be appropriate if the param-

eter is not identifiable over the full parameter space.

(b) Show with an example that the Jeffreys prior may not have a proper
posterior. (Hint. Try the following mixture: X = 0 with probability 1/2
and is N{u, 1) with probability 1/2.)

(c) Suggest a heuristic reason as to why the posterior is often proper if we
use a Jeffreys prior.

. Bernardo has recently proposed the use of min{ K (fo, f1), K(f1, fo)}, in-

stead of K(fo, f1), as the criterion to maximize at each stage of reference
prior. Examine the consequence of this change for the examples of refer-
ence priors discussed in this chapter.

Given (u,0?), let Xi,...,X, be iid. N(u,0?) and consider the prior
7(p, 02) o< 1/02. Verify that

P{X - ta/2,n—ls/\/5 <p< X + ta/Z,nfls/\/ELu'v 02}
= P{X - ta/2,n—ls/\/5 < © < X + ta/Z,n—ls/\/ELXl? .. 7Xn}
=1-aq,
where X is the sample mean, s? = > (X; — X)?/(n — 1), and t,/9 is the
upper «/2 point of t,_1, 0 < a < 1.
Given 0 < 8 < 1, let X;,...,X,, be iid. B(1,8). Consider the Jeffreys

prior for #. Find by simulation the frequentist coverage of 8 by the two-

tailed 95% credible interval for 8 = %, i, %, %, %. Do the same for the usual
frequentist interval 6+ 20,025\/9(1 — é)/n where § = > X /n.

Derive (5.32) from an appropriate probability matching equation.






6

Hypothesis Testing and Model Selection

For Bayesians, model selection and model criticism are extremely important
inference problems. Sometimes these tend to become much more complicated
than estimation problems. In this chapter, some of these issues will be dis-
cussed in detail. However, all models and hypotheses considered here are low-
dimeunsional because high-dimensional models need a different approach. The
Bayesian solutions will be compared and contrasted with the corresponding
procedures of classical statistics whenever appropriate. Some of the discussion
in this chapter is technical and it will not be used in the rest of the book. Those
sections that are very technical (or otherwise can be omitted at first reading)
are indicated appropriately. These include Sections 6.3.4, 6.4, 6.5, and 6.7.
In Sections 6.2 and 6.3, we compare frequentist and Bayesian approaches to
hypothesis testing. We do the same in an asymptotic framework in Section
6.4. Recently developed methodologies such as the Bayesian P-value and some
non-subjective Bayes factors are discussed in Sections 6.5 and 6.7.

6.1 Preliminaries

First, let us recall some notation from Chapter 2 and also let us introduce
some specific notation for the discussion that follows.

Suppose X having density f(z|0) is observed, with 8 being an unknown el-
ement of the parameter space @. Suppose that we are interested in comparing
two models My and M7, which are given by

My : X has density f(z|@) where 8 € Oy;
M; : X has density f(z|@) where 8 € ©;. (6.1)

For i = 0,1 let g;(8) be the prior density of 6, conditional on M; being the
true model. Then, to compare models My and M7 on the basis of a random
sample x = (z1,...,%,) one would use the Bayes factor
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Boi(x) = ngg (6.2)

where
m(X) = /6 f(x|0)g:(8)d0, i=0,1. (6.3)

We also use the notation BFp; for the Bayes factor. Recall from Chapter 2
that the Bayes factor is the ratio of posterior odds ratio of the hypotheses to
the corresponding prior odds ratio. Therefore, if the prior probabilities of the
hypotheses, mp = P™(My) = P™(6y) and m; = P™(M;) = P"(61) =1—m,
are specified, then as in (2.17),

1—71'0

P(My|z) = {1 + Bo_ll(z)}_l . (6.4)

o
Thus, if conditional prior densities gg and g; can be specified, one should sim-
ply use the Bayes factor By; for model selection. If, further 7y is also specified,
the posterior odds ratio of My to M; can also be utilized. However, these com-
putations may not always be easy to perform, even when the required prior
ingredients are fully specified. A possible solution is the use of BIC as an
approximation to a Bayes factor. We study this in Subsection 6.1.1. The situ-
ation can get much worse when the task of specifying these prior inputs itself
becomes a difficult problem as in the following problem.

Ezample 6.1. Consider the problem that is usually called nonparametric re-
gression. Independent responses y; are observed along with covariates x;,
i=1,...,n. The model of interest is

¥y =g(z)+e,i=1,...,n, (6.5)

where ¢; are i.i.d. N(0,0?) errors with unknown error variance o2. The func-
tion g is called the regression function. In linear regression, g is a priori as-
sumed to be linear in a set of finite regression coeflicients. In general, g can be
assumed to be fully unknown also. Now, if model selection involves choosing
g from two different fully nonparametric classes of regression functions, this
becomes a very difficult problem. Computation of Bayes factor or posterior
odds ratio is then a formidable task. Various simplifications including reduc-
ing g to be semi-parametric have been studied. In such cases, some of these
problems can be handled.

Consider a different model checking problem now, that of testing for nor-
mality. This is a very common problem encountered in frequentist inference,
because much of the inferential methodology is based on the normality as-
sumption. Simple or multiple linear regression, ANOVA, and many other tech-
niques routinely use this assumption. In its simplest form, the problem can
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be stated as checking whether a given random sample X3, X»,..., X,, arose
from a population having the normal distribution. In the setup given above
in (6.1), we may write it as

My : X is N(u,0?) with arbitrary g and o2 > 0;
M : X does not have the normal distribution. (6.6)

However, this looks quite different from (6.1) above, because M; does not
constitute a parametric alternative. Hence it is not clear how to use Bayes
factors or posterior odds ratios here for model checking. The difficulty with
this model checking problem is clear: one is only interested in My and not in
M.

This problem is addressed in Section 6.3 of Gelman et al. (1995). See
also Section 9.9. We use the posterior predictive distribution of replicated
future data to assess whether the predictions show systematic differences.
In practice, replicated data will not be available, so cross-validation of some
form has to be used, as discussed in Section 9.9. Gelman et al. (1995) have
not used cross-validation and their P-values have come in for some criticism
(see Section 6.5).

The object of model checking is not to decide whether the model is true or
false but to check whether the model provides plausible approximation to the
data. It is clear that we have to use posterior predictive values and Bayesian
P-values of some sort, but consensus on details does not seem to have emerged
yet. It remains an important problem.

6.1.1 BIC Revisited

Under appropriate regularity conditions on f, go, and g;, the Bayes factor
given in (6.2) can be approximated using the Laplace approximation or the
saddle point approximation. Let us change notation and express (6.3) as fol-
lows:

m;(x) = /f(x]Bi)gi(Bi)dBi,i:O,l. (6.7)

where 8; is the p;-dimensional vector of parameters under M;, assumed to be
independent of n (the dimension of the observation vector x). Let 8; be the
posterior mode of 8;, i = 0,1. Assume 6, is an interior point of 6;. Then,
expanding the logarithm of the integrand in (6.7) around 8; using a second-
order Taylor series approximation, we obtain

log (£(x16:)9:(6)) ~ log (F(x16:)9:(8:)) — 5 (0.~ 8:) 15 (0:-8.),

where HE- is the corresponding negative Hessian. Applying this approximation
to (6.7) yields,
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~ ~ 1 SO’ ~
mi(x) = f(x0:)g:(6:) /exp {—5 (ei - 01’) Hy (Gi - 91)} do;
= f(X|5i)gi(5i)(27r)""/2IHg_lIl/z- (6.8)

2log Bp; is a commonly used evidential measure to compare the support pro-
vided by the data x for My relative to M;. Under the above approximation

we have,
2log(Bo1) =~ 2log (f(x_|90)) + 2log (M)

f(x|51) 91(61)
H
+(po — p1) log(27) 4 log | H5_11|

A variation of this approximation is also commonly used, where instead of the
posterior mode 8;, the maximum likelihood estimate 8; is employed. Then,
instead of (6.8), one obtains

ma(x) = f(x[0:)9:(8:)(2m)P /2| H* |2, (6.9)

Here Hy; is the observed Fisher information matrix evaluated at the maximum
likelihood estimator. If the observations are ii.d. we have that H; =nH 3,
where H 5 is the observed Fisher information matrix obtained from a single

N
observation. In this case,

ma(x) = f(x|6:)g:(8:)(2m)"/*n /2 H=L /2,

)

and hence

2log(Bo1) =~ 2log (f(x|30)) +2log (90(00)

f(x[61) 9(61)
log — + 1 s 6.10
=(po —p1) og2—7;+ og "L (6.10)
1,61
An approximation to (6.10) correct to O(1) is
|6
2log(Bo1) =~ 2log (f( |A0)) — (po — p1) logn. (6.11)
f(x[61)

This is the approximate Bayes factor based on the Bayesian information crite-
rion (BIC) due to Schwarz (1978). The term (po — p1) logn can be considered
a penalty for using a more complex model.
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A related criterion is

f(x@)) — 2(po — 6.12
g<f(xwl)) (Po — p1) (6.12)

which is based on the Akaike information criterion (AIC), namely,
AIC = 2log f(x]6) — 2p

for a model f(x|@). The penalty for using a complex model is not as drastic
as that in BIC.

A Bayesian interpretation of AIC for high-dimensional prediction problems
is presented in Chapter 9. Problem 16 of Chapter 9 invites you to explore if
AIC is suitable for low-dimensional testing problems.

6.2 P-value and Posterior Probability of Hy as Measures
of Evidence Against the Null

One particular tool from classical statistics that is very widely used in applied
sciences for model checking or hypothesis testing is the P-value. It also hap-
pens to be one of the concepts that is highly misunderstood and misused. The
basic idea behind R.A. Fisher’s (see Fisher (1973)) original (1925) definition
of P-value given below did have a great deal of appeal: It is the probability
under a (simple) null hypothesis of obtaining a value of a test statistic that is
at least as extreme as that observed in the sample data.
Suppose that it is desired to test

Hy: 0 = 6y versus Hy : 6 # 6, (6.13)

and that a classical significance test is available and is based on a test statistic
T(X), large values of which are deemed to provide evidence against the null
hypothesis. If data X = z is observed, with corresponding t = T'(xz), the
P-value then is

o = Po, (I(X) = T(a)).

Ezample 6.2. Suppose we observe Xi,...,X,, ii.d. from N(8,0?), where o2
is known. Then X is sufficient for # and it has the N(§,0%/n) distribu-
tion. Noting that T = T(X) = |/n (X —6p) /|, is a natural test statis-
tic to test (6.13), one obtains the usual P-value as o = 2[1 — &(¢)], where
t = |v/n(Z—6y) /o] and & is the standard normal cumulative distribution

function.

Fisher meant P-value to be used informally as a measure of degree of
surprise in the data relative to Hg. This use of P-value as a post-experimental
or conditional measure of statistical evidence seems to have some intuitive
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justification. From a Bayesian point of view, various objections have been
raised by Edwards et al. (1963), Berger and Sellke (1987), and Berger and
Delampady (1987), against use of P-values as measures of evidence against
Hy. A recent review is Ghosh et al. (2005).

To a Bayesian the posterior probability of Hy summarizes the evidence
against Hy. In many of the common cases of testing, the P-value is smaller
than the posterior probability by an order of magnitude. The reason for this
is that the P-value ignores the likelihood of the data under the alternative
and takes into account not only the observed deviation of the data from the
null hypothesis as measured by the test statistic but also more significant
deviations. In view of these facts, one may wish to see if P-values can be
calibrated in terms of bounds for posterior probabilities over natural classes of
priors. It appears that calibration takes the form of a search for an alternative
measure of evidence based on posterior that may be acceptable to a non-
Bayesian. In this connection, note that there is an interesting discussion of
the admissibility of P-value as a measure of evidence in Hwang et al. (1992).

6.3 Bounds on Bayes Factors and Posterior Probabilities

6.3.1 Introduction

We begin with an example where P-values and the posterior probabilities are
very different.

Ezample 6.3. We observe X ~ N(,02/n), with known o2. Upon using T' =
|vn (X — 6p) /o| as the test statistic to test (6.13), recall that the P-value
comes out to be a = 2[1 — &(t)], where t = |/n(Z —8y) /o| and P is the
standard normal cumulative distribution function. On the set {6 # 6y}, let 8
have the density (g1) of N(u,72). Then, we have,

Bo1 = \/mem{—1 [M —02]},

2 (1+p?

where p = o/(y/nt) and n = (6p — ) /7. Now, if we choose u = 6y, 7 = ¢ and
mo = 1/2, we get,

- {4 )

(1+p?)

For various values of ¢t and n, the different measures of evidence, a =
P-value, B = Bayes factor, and P = P(Hp|z) are displayed in Table 6.1 as
shown in Berger and Delampady (1987). It may be noted that the posterior
probability of Hy varies between 4 and 50 times the corresponding P-value
which is an indication of how different these two measures of evidence can be.



6.3 Bounds on Bayes Factors and Posterior Probabilities 165

Table 6.1. Normal Example: Measures of Evidence

n
1 5 10 20 50 100

t o B PPB PB Pl B Pl B P BP
1.645/.10 |.72 .42).79 .44].89 .47]1.27 .56]1.86 .65/2.57 .72
1.960|.05 [.54 .35(.49 .33|.59 .37, .72 .42{1.08 .52|1.50 .60
2.576|.01 .27 .21).15 .13|.16 .14| .19 .16| .28 .22} .37 .27
3.2911.001|.10 .09/.03 .03].02 .02| .03 .03| .03 .03| .05 .05

6.3.2 Choice of Classes of Priors

Clearly, there are irreconcilable differences between the classical P-value and
the corresponding Bayesian measures of evidence in the above example. How-
ever, one may argue that the differences are perhaps due to the choice of 7y
or g1 that cannot claim to be really ‘objective.” The choice of 7y = 1/2 may
not be crucial because the Bayes factor, B, which does not need this, seems
to be providing the same conclusion, but the choice of g; does have substan-
tial effect. To counter this argument, let us consider lower bounds on B and
P over wide classes of prior densities. What is surprising is that even these
lower bounds that are based on priors ‘least favorable’ to Hy are typically an
order of magnitude larger than the corresponding P-values for precise null hy-
potheses. The other motivation for looking at bounds over classes of priors is
that they correspond with robust Bayesian answers that are more compelling
when an objective choice for a single prior does not exist. Thus, in the case
of precise null hypotheses, if G is the class of all plausible conditional prior
densities g; under Hy, we are then lead to the consideration of the following

bounds.
f(z|6o)

B = inf By, = 14
B = S0 = S maa) .
where mg(z) = [y, f(2]6)g(0)db, and
1—-m -t
P(Hy|G,z) = inf P(Hylz) = |1+ °B(G,z)”"| . (6.15)
geCG 0

This brings us back to the question of choice of the class G as in Chapter 3,
where the robust Bayesian approach has been discussed. As explained there,
robustness considerations force us to consider classes that are neither too
large nor too small. Choosing the class G4 = {all densities} certainly is very
extreme because it allows densities that are severely biased towards H;. Quite
often, the class Gy = {all natural conjugate densities with mean 6y} is an
interesting class to consider. However, this turns out to be inadequate for
robustness considerations. The following class

Gus = {all densities symmetric about 6y and non-increasing in |6 — 65|}
(6.16)
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which strikes a balance between these two extremes seems to be a good choice.
Because we are comparing various measures of evidence, it is informative to
examine the lower bounds for each of these classes. In particular, we can
gather the magnitudes of the differences between these measures across the
classes. To simplify proofs of some of the results given below, we restate a
result indicated in Section 3.8.1.

Lemma 6.4. Suppose Cr is a set of prior probability measures on RP given
by Cr ={v;:t €T}, T C R, and let C be the convex hull of Cr. Then

sup/ f(z|6) dn (0 —sup/ f(z|8) dve (6 (6.17)
TEC

Proof. Because C D Cr, LHS > RHS in (6.17). However, as [ f(z|6) dr(6) =
[ f(z6) [ ve(d6)p(dt), for some probability measure p on T, using Fubini’s

theorem,
[ stato)antey = [ sale) [ aveioautt

- [ ([ scorante )dw)

< SUP/ f(z0) dve (0

teT
Therefore,
sup/ f(z]6)dn(8) < sup/ f(z|8) dve (6
TeC teT
yielding the other inequality also. O

The following results are from Berger and Sellke (1987) and Edwards et
al. (1963).

Theorem 6.5. Let é(a:) be the maximum likelihood estimate of 8 for the ob-
served value of . Then

f(z]6o)
B(Ga,z) = —————, 6.18
BlGaz) f(z]6(z)) (618
P(Hy|Ga,z) = 1+1;0”°,B<GA,z>‘1 . (6.19)

In view of Lemma 6.4, the proof of this result is quite elementary, once it
is noted that the extreme points of G4 are point masses.

Theorem 6.6. Let Us be the class of all uniform distributions symmetric
about 6y. Then

B(Gus,z) = B(Us, z), (6.20)
B<H0|GU571:) = B(HOV/{Sal') (621)
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Proof. Simply note that any unimodal symmetric distribution is a mixture of
symmetric uniforms, and apply Lemma 6.4 again. O

Because B(Us,z) = f(x|60)/supgeyys mg(z), computation of

sup mg(x) = sup /f z|f)g
g€Us g€Us

is required to employ Theorem 6.6. Also, it may be noted that as far as ro-
bustness is considered, using the class Gy g of all symmetric unimodal priors
is the same as using the class Ug of all symmetric uniform priors. It is per-
haps reasonable to assume that many of these uniform priors are somewhat
biased against Hy, and hence we should consider unimodal symmetric prior
distributions that are smoother. One possibility is scale mixtures of normal
distributions having mean 6. This class is substantially larger than just the
class of normals centered at 6y; it includes Cauchy, all Student’s ¢ and so on.
To obtain the lower bounds, however, it is enough to consider

Gnor = { all normal distributions with mean 6y},
in view of Lemma 6.4.

Ezxample 6.7. Let us continue with Example 6.3. We have the following results
from Berger and Sellke (1987) and Edwards et al. (1963).

(i) B(Ga,z) = exp(4~) because the MLE of 6 is z; hence

(i) P(Ho|Ga,e) = [L+ 122 exp()] .

(iii) If t < 1, B(Gus, ) = 1 and P(Hy|Gys,z) = mp. This is because in
this case, the unimodal symmetric distribution that maximizes mgy(z) is the
degenerate distribution that puts all its mass at 8.

(iv) If t > 1, the g € Gyg that maximizes my(z) is non-degenerate and from
Theorem 6.6 and Example 3.4,

20 |
SUPy>0 %{@(u —t) —P(—(u+ t))}
(v) Ift <1, B(Gnor,z) = 1, and P(Hp|Gnor, z) = mp. If ¢ > 1,

(t*—1)

2 )

For various values of ¢, the different measures of evidence, @ = P-value, B =
lower bound on Bayes factor, and P = lower bound on P(Hy|x) are displayed
in Table 6.2. 7y has been chosen to be 0.5.

What we note is that the differences between P-values and the correspond-
ing Bayesian measures of evidence remain irreconcilable even when the lower
bounds on such measures are considered. In other words, even the least possi-
ble Bayes factor and posterior probability of Hy are substantially larger than
the corresponding P-value. This is so, even for the choice G 4, which is rather
astonishing (see Edwards et al. (1963)).

B(Gys,x) =

B(GNO’I‘7 :L') = texp(—
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Table 6.2. Normal Example: Lower Bounds on Measures of Evidence

Ga Gus GNor

t «a B P |B P B P
1.645|.10 [.258 .205 [.639 .390(.701 .412
1.960{.05 |.146 .128 |.408 .290(.473 .321
2.576{.01 {.036 .035 {.122 .109(.153 .133
3.2911.001|.0044 .0044}.018 .018|.024 .0235

6.3.3 Multiparameter Problems

It is not the case that the discrepancies between P-values and lower bounds on
Bayes factor or posterior probability of Hy are present only for tests of precise
null hypotheses in single parameter problems. This phenomenon is much more
prevalent. We shall present below some simple multiparameter problems where
similar discrepancies have been discovered. The following result on testing a
p-variate normal mean vector is from Delampady (1986).

Ezample 6.8. Suppose X ~ Np(0,I), where X = (X, X,,...,X,) and 0 =
(01,02,...,6p). It is desired to test

Hy: 0 =6° versus H, : 0 # 6°,
where 8° = (69,6,...,67) is a specified vector. The classical test statistic is
T(X) = IX — 0%,
which has a Xf, distribution under Hg. Thus the P-value of the data x is
o= P > T()).

Consider the class Gy sp of unimodal spherically symmetric (about 8°) prior
distributions for @, the natural generalization Gyg. This will consist of den-
sities g(0) of the form g(@) = h((@ — 0°)’(8 — °)), where h is non-increasing.
Noting that any unimodal spherically symmetric distribution is a mixture of
uniforms on symmetric spheres, and applying Lemma 6.4, we obtain

1

sup my(x) zsup——/ f(x|0)de,
9€Gusp k>0 V (k) Jijg-e0ji<k

where V (k) is the volume of a sphere of radius k, and f(x|@) is the N,(0,I)
density. Therefore, we have that,

exp(—3|/x — 6°]%)

SUPg o v_(lk7 f“e—eougk exp(—3||x — 6|2)d6

B(Gysp,z) =

Using this result, numerical values were computed for different dimen-
sions, p and different P-values, «. In Table 6.3 we present these values where
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Table 6.3. Multivariate Normal Example: Lower Bounds on Measures of Evidence

a=.001la=01|a=.05|a=.10
B P B P| B P|B P
.018 .018].122 .109.409 .290.639 .390
.014 .014(.098 .089|.348 .258].570 .363
1012 .012(.090 .083|.326 .246/.540 .351
.011 .0111.085 .078/.314 .239/.523 .344
51.010 .0101.082 .076|.307 .235|.513 .339
10{.009 .009/.078 .072(.293 .226].491 .329
151.009 .009].075 .070].288 .223[.483 .326
201.009 .009|.074 .069].284 .2211.478 .324
301.009 .009{.074 .069{.281 .219|.473 .321
40].009 .009}.073 .068/.279 .218/.471 .320
00(.009 .009|.073 .068(.279 .2181.468 .319

W N s

B denotes B(Gysp,z) and P denotes P(Hy|Gysp,z) for my = 0.5. As can
be readily seen, the lower bounds remain substantially larger than the corre-
sponding P-values in all dimensions.

Note that spherical symmetry is not the only generalization of symme-
try from one dimension to higher dimensions. Very different answers can be
obtained if, for example, elliptical symmetry is used instead. Suppose we con-
sider densities of the form g(8) = 1/|Q[k((8 — 8°)'Q(8 — 6°)), where Q is an
arbitrary positive definite matrix and h is non-increasing. Then the following
result, which is informally stated in Delampady and Berger (1990), obtains.
For the sake of simplicity, let us take 8° = 0.

Theorem 6.9. Let f(x|0) be a multivariate, multiparameter density. Con-
sider the class of elliptically symmetric unimodal prior densities

Gues = {g :g(0) = |Q|%h(0'Q0), h non-increasing, @ positive definite }
(6.22)
Then

sup mgy(x) = sup {sup —1—/" 1<k F(xIQ %) du} . (6.23)

9€Gurs Q>0 | k>0 (k)

where V (k) is the volume of a sphere of radius k, and Q > 0 denotes that Q
is positive definite.

Proof. Note that

sup mgy(x) = sup /f(x[ﬂ)g(ﬂ)dﬂ

9€Gugs 9€Gugs

sup / F(x/0)h(0'Q0)|Q|* db
h,Q
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= Zu;()) {s%p/f(le_%u)h(u’u) du} (6.24)

1 _1
—zl;%{i‘;%vmﬁunskﬂxl‘? “>d“}’

because the maximization of the inside integral over non-increasing h in (6.24)
is the same as maximization of that integral over the class of unimodal spher-
ically symmetric densities, and hence Lemma 6.4 applies. O

Consider the above result in the context of Example 6.8. The lower bounds
on the Bayes factor as well as the posterior probability of the null hypothesis
will be substantially lower if we use the class Gy gg rather than Gygp. This is
immediate from (6.23), because the lower bounds over Gygp correspond with
the maximum in (6.23) with @ = I. The result also questions the suitability
of Gy gs for these lower bounds in view of the fact that the lower bounds will
correspond with prior densities that are extremely biased towards H,.

Many other esoteric classes of prior densities have also been considered
by some for deriving lower bounds. In particular, generalization of symme-
try from the single-parameter case to the multiparameter case has been ex-
amined. DasGupta and Delampady (1990) consider several subclasses of the
symmetric star-unimodal densities. Some of these are mixtures of uniform
distributions on £, (for p = 1,2,00), class of distributions with components
that are independent symmetric unimodal distributions and a certain subclass
of one-symmetric distributions. Note that mixtures of uniform distributions
on L4 balls are simply unimodal spherically symmetric distributions, whereas
mixtures of uniform distributions on £; balls contain distributions whose com-
ponents are i.i.d. exponential distributions. Uniform distributions on hyper-
cubes form a subclass of mixtures of uniforms on L., balls. Also considered
there is the larger subclass consisting of distributions whose components are
identical symmetric unimodal distributions. Another class of one-symmetric
distributions considered there is of interest because it contains distributions
whose components are i.i.d. Cauchy. Even though studies such as these are
important from robustness considerations, we feel that they do not necessarily
add to our understanding of possible interpretation of P-values from a robust
Bayesian point of view. However, interested readers will find that Dharmad-
hikari and Joag-Dev (1988) is a good source for multivariate unimodality, and
Fang et al. (1990) is a good reference for multivariate symmetry for material
related to the classes mentioned above.

We have noted earlier that computation of Bayes factor and posterior
probability is difficult when parametric alternatives are not available. Many
frequentist statisticians claim that P-values are valuable when there are no
alternatives explicitly specified, as is common with tests of fit. We consider
this issue here for a particularly common test of fit, the chi-squared test of
goodness of fit. It will be observed that alternatives do exist implicitly, and
hence Bayes factors and posterior probabilities can indeed be computed. The
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following results from Delampady and Berger (1990) once again point out the
discrepancies between P-values and Bayesian measures of evidence.

Ezxample 6.10. Let n = (n1,na,...,ng) be a sample of fixed size N = Zle Ny
from a k-cell multinomial distribution with unknown cell probabilities p =
(p1,p2,---,pr) and density (mass) function

f(njp) = Hz o zHlp

Consider testing
Hy :p =p° versus H; : p # p°,

where p® = (p?,p3,...,p?) is a specified interior point of the k-dimensional
simplex. Instead of focusing on the exact multinomial setup, the most popular
approach is to use the chi-squared approximation. Here the test statistic of

interest is
k

(ni — NpP)?
Ty = —
; Np)

which has the asymptotic distribution (as N — o0o) of x2_, under Hy. To
compare P-values so obtained with the corresponding robust Bayesian mea-
sures of evidence, the following are two natural classes of prior distributions
to consider.
(i) The conjugate class G¢ of Dirichlet priors with density

k

ros. | a) _1
g(p) = L= 20) H e
H’L:l i=1

where «; > 0 satisfy

1
_k“~'(alaa2a .- 'aak)l = Eg(p) = pO.

(ii) Consider the following transform of (py,pa2,...,pk-1)":

0 0 0
Pr—p1 P2—D Pk—1 — Pp_
u=u(p):< L Z ..., kl)
D1 D2 DPr—1

/

(T ) (v BT

The justification (see Delampady and Berger (1990)) for using such a trans-
form is that its range is R*~! unlike that of p and its likelihood function is
more symmetric and closer to a multivariate normal. Now let

G{rgp = {unimodal ¢g*(u) that are spherically symmetric about 0},
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and consider the class of prior densities g obtained by transforming back to
the original parameter:

Crus = {g<p> _ g (u(p)) 2P 1} -

op

Delampady and Berger (1990) show that as N — oo, the lower bounds on
Bayes factors over G¢ and Gryg converge to those corresponding with the
multivariate normal testing problem (chi-squared test) in Example 6.8, thus
proving that irreconcilability of P-values and Bayesian measures of evidence
is present in goodness of fit problems as well.

Additional discussion of the multinomial testing problem with mixture of
conjugate priors can be found in Good (1965, 1967, 1975). Edwards et al.
(1963) discuss the possibility of finding lower bounds on Bayes factors over
the conjugate class of priors for the binomial problem. Extensive discussion
of the binomial problem and further references can be found in Berger and
Delampady (1987).

6.3.4 Invariant Tests!

A natural generalization of the symmetry assumption (on the prior distribu-
tion) is invariance under a group of transformations. Such a generalization
and many examples can be found in Delampady (1989a). A couple of those
examples will be discussed below to show the flavor of the results. The gen-
eral results that utilize sophisticated mathematical arguments will be skipped,
and instead interested readers are referred to the source indicated above. For a
good discussion on invariance of statistical decision rules, see Berger (1985a).
Recall that the random observable X takes values in a space X and has
density (mass) function f(x|@). The unknown parameter is @ € @ C R", for
some positive integer n. It is desired to test Hy : 8 € Oy versus H; : 0 € 0.
We assume the following in addition.
(i) There is a group G (of transformations) acting on X" that induces a group
G (of transformations acting) on ©. These two groups are isomorphic (see
Section 5.1.7) and elements of G will be denoted by g, those of G by §.
(ii) f(gx|gf@) = f(x|@)k(g) for a suitable continuous map & (from G to (0, 00)).
(111) g6y = By, gO) = O, gO = 6.
In this context, the following concept of a maximal invariant is needed.

Definition. When a group G of transformations acts on a space X, a function
T(x) on X is said to be invariant (with respect to G) if T'(g(x)) = T'(x) for
all x € X and g € G. A function T'(z) is maximal invariant (with respect to
G) if it is invariant and further

T(x1) = T(x2) implies x; = g(x2) for some g € G.

! Section 6.3.4 may be omitted at first reading.
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This means that G divides X into orbits where invariant functions are
constant. A maximal invariant assigns different values to different orbits.

Now from (i), we have that the action of G and G induce maximal invariants
t(X) on X and 7(6) on O, respectively.

Remark 6.11. The family of densities f(x|@) is said to be invariant under G if
(ii) is satisfied. The testing problem Hy : 8 € ©q versus H; : 6 € O is said to
be invariant under G if in addition (iii) is also satisfied.

Example 6.12. Consider Example 6.8 again and suppose X ~ N,(8,I). It is
desired to test
Hy:0 =0 versus H; : 8 #0.

This testing problem is invariant under the group Go of all orthogonal trans-
formations; i.e., if H is an orthogonal matrix of order p, then ggX = HX ~
N,(H6,I), so that gy6 = HO. Further,

£(x[8) = (2m) /% exp(~ 1 (x - 6 (x ~ 6)), and

F(grx/g18) = (2m) /% exp(~ 3 (Hx ~ HO) (Hx ~ HO))

1
= (2m) " exp(—5 (x ~ 0)'(x - 9))
= f(x16),
so that (ii) is satisfied. Also, gz0 = 0, and (iii) too is satisfied.

Example 6.13. Let X1, X2, -+, X, be a random sample from N (0,02) with
both ¢ and ¢ unknown. The problem is to test the hypothesis Hy : 6§ = 0
against Hi : 6 # 0. A sufficient statistic for (6,0)isx = (X, 9), X = 37 Xi/n
and S = [37(X; - X)Q/n]lm. Then

f(x|8,0) = Ko™ 2 exp(—n [(X — 6)? + S?] /(20?)),
where K is a constant. Also,
X={(z8):2€R,s>0}, and O = {(6,0):0 € R,0 > 0}.

The problem is invariant under the group G = {g. = ¢ : ¢ > 0}, where the
action of g. is given by g.(z) = ¢(Z,s) = (cZ,cs). Note that f(g.z|8,0) =
c2f(x|8,0).

A number of technical conditions in addition to the assumptions (i)—(iii)
yield a very useful representation for the density of the maximal invariant
statistic t(X). Note that this density, ¢(t(x)|n(0)), depends on the parameter
8 only through the maximal invariant in the parameter space, ().
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The technique involved in the derivation of these results uses an averaging
over a relevant group. The general method of this kind of averaging is due
to Stein (1956), but because there are a number of mathematical problems
to overcome, various different approaches were discovered as can be seen in
Wijsman (1967, 1985, 1986), Andersson (1982), Andersson et al. (1983), and
Farrell (1985). For further details, see Eaton (1989), Kariya and Sinha (1989),
and Wijsman (1990). The specific conditions and proofs of these results can
be found in the above references. In particular, the groups considered here are
amenable groups as presented in detail in Bondar and Milnes (1981). See also
Delampady (1989a). The orthogonal group, and the group of location-scale
transformations are amenable. The multiplicative group of non-singular p x p
linear transformations is not.

Let us return to the issue of comparison of P-values and lower bounds
on Bayes factors and posterior probabilities (of hypotheses) in this setup.
We note that it is necessary to reduce the problem by using invariance for
any meaningful comparison because the classical test statistic and hence the
computation of P-value are already based on this. Therefore, the natural class
of priors to be used for this comparison is the class G of G-invariant priors;
i.e., those priors 7 that satisfy
(iv) m(A) = n(Ag).

Theorem 6.14. If G is a group of transformations satisfying certain reqular-
ity conditions (see Delampady (1989a)),

inf t(x
melgo/gq( (%)|m)

sup ¢ (t(x)|n2)’
M2€01/G

B(Gr,z) = (6.25)

where ©/G denotes the space of marimal invariants on the parameter space.

Corollary 6.15. If ©/G = {0}, then under the same conditions as in The-

orem 6.14,
B(Gra)— 400
= {sup,cq,g g (t(x)In)}

Ezxample 6.16. (Example 6.12, continued.) Consider the class of all priors that
are invariant under orthogonal transformations, and note that this class is
simply the class of all spherically symmetric distributions. Now, application
of Corollary 6.15 yields,

g (¢(x)0)
g (¢(x)[9)’

where g(t|n) is the density of a noncentral x2 random variable with p degrees
of freedom and non-centrality parameter n, and 7 is the maximum likelihood
estimate of n from data ¢(x). For selected values of p the lower bounds, B and
P (for mg = 0.5) are tabulated against their P-values in Table 6.4.

E(Gh 1‘) =
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Table 6.4. Invariant Test for Normal Means

a = 0.01
B P

a = 0.05
B P

.0749 .0697
.0745 .0693
.0737 .0686
.0734 .0684

w3

D =
(==

.2913 .2256
.2903 .2250
.2842 2213
.2821 .2200
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Notice that the lower bounds on the posterior probabilities of the null
hypothesis are anywhere from 4 to 7 times as large as the corresponding
P-values, indicating that there is a vast discrepancy between P-values and
posterior probabilities. This is the same phenomenon as what was seen in
Table 6.3. What is, however, interesting is that the class of priors considered
here is larger and contains the one considered there, but the magnitude of the
discrepancy is about the same.

Ezample 6.17. (Example 6.13, continued.) In the normal example with un-
known variance, we have the maximal invariants t(x) = Z/s and n(6,0) = 6/0.
If we define,

d
Gr={r:dn(0,0) = hy (n)dn—;, hi is any density for n},

we obtain,

a(#(x)|0)

q (t(x)|n)’

where ¢(t|n) is the density of a noncentral Student’s ¢ random variable with n—
1 degrees of freedom, and non-centrality parameter 7, and 7 is the maximum
likelihood estimate of 7. The fact that all the necessary conditions (which are
needed to apply the relevant results) are satisfied is shown in Andersson (1982)
and Wijsman (1967). For selected values of the lower bounds are tabulated
along with the P-values in Table 6.5.

For small values of n, the lower bounds in Table 6.5 are comparable with
the corresponding P-values, whereas as n gets large the differences between
these lower bounds and the P-values get larger. See also in this connection
Section 6.4.

B(Gl’x) =

There is substantial literature on Bayesian testing of a point null. Among
these are Jeffreys (1957, 1961), Good (1950, 1958, 1965, 1967, 1983, 1985,
1986), Lindley (1957, 1961, 1965, 1977), Raiffa and Schlaiffer (1961), Ed-
wards et al. (1963), Hildreth (1963), Smith (1965), Zellner (1971, 1984), Dickey
(1971, 1973, 1974, 1980), Lempers (1971), Rubin (1971), Leamer (1978), Smith
and Spiegelhalter (1980), Zellner and Siow (1980), and Diamond and Forrester
(1983). Related work can also be found in Pratt (1965), DeGroot (1973),
Dempster (1973), Dickey (1977), Bernardo (1980), Hill (1982), Shafer (1982),
and Berger (1986).
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Table 6.5. Test for Normal Mean, Variance Unknown

6 Hypothesis Testing and Model Selection

a = 0.01

a = 0.05

a = 0.10

B P

B P

B P

[Eg—
oo © N3

32

.0117 .0116
.0137 .0135
.0212 .0208
.0290 .0282
.0327 .0317

.0506 .0482
.0941 .0860
.1245 .1107
.1301 .1151
.1380 .1213

.0939 .0858
2114 1745
.2309 .1876
2375 .1919
.2478 .1986

Invariance and Minimaxity

Our focus has been on deriving bounds on Bayes factors for invariant testing
problems. There is, however, a large literature on other aspects of invariant
tests. For example, if the group under consideration satisfies the technical
condition of amenability and hence the Hunt-Stein theorem is valid, then the
minimax invariant test is minimax among all tests. We do not discuss these
results here. For details on this and other related results we would like to refer
the interested readers to Berger (1985a), Kiefer (1957, 1966), and Lehmann
(1986).

6.3.5 Interval Null Hypotheses and One-sided Tests

Closely related to a sharp null hypothesis Hy : § = 6y is an interval null
hypothesis Hy : |§ —6p| < €. Dickey (1976) and Berger and Delampady (1987)
show that the conflict between P-values and posterior probabilities remains if
e is sufficiently small. The precise order of magnitude of small ¢ depends on
the sample size n.

One may also ask similar questions of possible conflict between P-values
and posterior probabilities for one-sided null, say, Hy : 6 < 6y versus H; :
6 > 6g. In the case of # = mean of a normal, and the usual uniform prior,
direct calculation shows the P-value equals posterior probability. On the other
hand, Casella and Berger (1987) show in general the two are not the same and
the P-value may be smaller or greater depending on the family of densities
in the model. Incidentally, the ambiguity of an improper prior discussed in
Section 6.7 does not apply to one-sided nulls. In this case the Bayes factor
remains invariant if the improper prior is multiplied by an arbitray constant.

6.4 Role of the Choice of an Asymptotic Framework?

This section is based on Ghosh et al. (2005). Suppose X,..., X, are i.i.d.
N(0,0?), 0% known, and consider the problem of testing Hg : § = 6, versus

2 Section 6.4 may be omitted at first reading.
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H, : 8 # 6. If instead of taking a lower bound as in the previous sections, we
take a fixed prior density g;(€) under H; but let n go to oo, then the conflict
between P-values and posterior probabilities is further enhanced. Historically
this phenomenon was noted earlier than the conflict with the lower bound,
vide Jeffreys (1961) and Lindley (1957).

Let g; be a uniform prior density over some interval (6y — a, 6y + a) con-
taining 8y. The posterior probability of Hg given X = (X,,..., X,,) is

P(Hy|X) = mg exp[—n(X — 60)?/(20%)]/ K,
where mg is the specified prior probability of Hg and

7 2 2 1—mg (%9 2 2
K = mgexp[—n(X — 00)°/(20%)] + ——/9 exp[—n(X — 6)*/(20%)]d8.

2a o—a

Suppose X is such that X = 8y + z,0/+/n where z, is the 100(1 — @)%
quantile of N (0,1). Then X is significant at level . Also, for sufficiently large
n, X is well within (6y — a, 8y +a) because X — 6, tends to zero as n increases.
This leads to

Oo+a B
/9 exp[-n(X — 8)?/(202)|d8 = o+/(27/n)

0o—a

and hence

P(Ho| X) = mpexp(—22/2)/[mo exp(—22/2) + (12—67020\/ (27 /n)].
Thus P(Hg|X) — 1 as n — oo whereas the P-value is equal to « for all n.
This is known as the Jeffreys-Lindley paradox. It may be noted that the same
phenomenon would arise with any flat enough prior in place of uniform.

Indeed, P-values cannot be compared across sample sizes or across exper-
iments, see Lindley (1957), Ghosh et al. (2005). Even a frequentist tends to
agree that the conventional values of the significance level « like &« = 0.05 or
0.01 are too large for large sample sizes. This point is further discussed below.

The Jeffreys-Lindley paradox shows that for inference about 8, P-values
and Bayes factors may provide contradictory evidence and hence can lead
to opposite decisions. Once again, as mentioned in Section 6.3, the evidence
against Hy contained in P-values seems unrealistically high. We argue in this
section that part of this conflict arises from the fact that different types of
asymptotics are being used for the Bayes factors and the P-values. We begin
with a quick review of the two relevant asymptotic frameworks in classical
statistics for testing a sharp null hypothesis.

The standard asymptotics of classical statistics is based on what are called
Pitman alternatives, namely, 6,, = 6y + d/+/n at a distance of O(1/y/n) from
the null. The Pitman alternatives are also called contiguous in the very general
asymptotic theory developed by Le Cam (vide Roussas (1972), Le Cam and
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Yang (2000), Hajek and Sidék (1967)). The log-likelihood ratio of a contiguous
alternative with respect to the null is stochastically bounded as n — co. On
the other hand, for a fixed alternative, the log-likelihood ratio tends to —oo
(under the null) or oo (under the fixed alternative). If the probability of Type
1 error is 0 < o < 1, then the behavior of the likelihood ratio has the following
implication. The probability of Type 2 error will converge to 0 < 3 < 1 under
a contiguous alternative 8, and to zero if 8 is a fixed alternative. This means
the fixed alternatives are relatively easy to detect. So in this framework it is
assumed that the alternatives of importance are the contiguous alternatives.
Let us call this theory Pitman type asymptotics.

There are several other frameworks in classical statistics of which Ba-
hadur’s (Bahadur, 1971; Serfling, 1980, pp. 332-341) has been studied most.
We focus on Bahadur’s approach. In Bahadur’s theory, the alternatives of im-
portance are fixed and do not depend on n. Given a test statistic, Bahadur
evaluates its performance at a fixed alternative by the limit (in probability or
a.s.) of 1 (log P-value) when the alternative is true.

Which of these two asymptotics is appropriate in a given situation should
depend on which alternatives are important, fixed alternatives or Pitman al-
ternatives 6y + d/+/n that approach the null hypothesis at a certain rate.
This in turn depends on how the sample size n is chosen. If n is chosen to
ensure a Type 2 error bounded away from @ and 1 (like o), then Pitman al-
ternatives seem appropriate. If n is chosen to be quite large, depending on
available resources but not on alternatives, then Bahadur’s approach would
be reasonable.

6.4.1 Comparison of Decisions via P-values and Bayes Factors in
Bahadur’s Asymptotics

In this subsection, we essentially follow Bahadur’s approach for both P-values
and Bayes factors. A Pitman type asymptotics is used for both in the next
subsection. We first show that if the P-value is sufficiently small, as small as
it is typically in Bahadur’s theory, By; will tend to zero, calling for rejection
of Hy, i.e., the evidence in the P-value points in the same direction as that
in the Bayes factor or posterior probability, removing the sense of paradox
in the result of Jeffreys and Lindley. One could, therefore, argue that the P-
values or the significance level o assumed in the Jeffreys-Lindley example are
not small enough. The asymptotic framework chosen is not appropriate when
contiguous alternatives are not singled out as alternatives of importance.

We now verify the claim about the limit of Bg;. Without loss of generality,
take 8y = 0,02 = 1. First note that

= 1
log By, = —gXZ + 2 logn + R, (6.26)

where ]
R, = —logn(X|H,) — 3 log(27) + o(1)
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provided the prior g;(6) is a continuous function of 8 and is positive at all 6.
If we omit R,, from the right-hand side of (6.26), we have Schwarz’s (1978)
approximation to the Bayes factor via BIC (Section 4.3).

The logarithm of P-value (p) corresponding to observed X is

log p = log2[1 — #(v/n | X [)] = ~ZX*(1 +o(1)

by standard approximation to a normal tail (vide Feller (1973, p. 175) or
Bahadur (1971, p. 1)). Thus L logp — —62/2 and by (6.26), log By; — —oo.
This result is true as long as | X| > ¢(logn/n)/2, ¢ > /2. Such deviations are
called moderate deviations, vide Rubin and Sethuraman (1965). Of course,
even for such P-values, p ~ (Bg1/n) so that P-values are smaller by an order
of magnitude. The conflict in measuring evidence remains but the decisions
are the same.

Ghosh et al. (2005) also pursue the comparison of the three measures of
evidence based on the likelihood ratio, the P-value based on the likelihood
ratio test, and the Bayes factor By; under general regularity conditions.

6.4.2 Pitman Alternative and Rescaled Priors

We consider once again the problem of testing Hy : 6 = 0 versus Hy : 6 # 0
on the basis of a random sample from N(6,1). Suppose that the Pitman
alternatives are the most important ones and the prior g;(8) under H; puts
most of the mass on Pitman alternatives. One such prior is N(0,4/n). Then

BOI = \/6+ lexp {—g ((S—(*S——:[) X2} .

If the P-value is close to zero, /n|X| is large and therefore, By, is also close
to zero, i.e., for these priors there is no paradox. The two measures are of the
same order but the result of Berger and Sellke (1987) for symmetric unimodal
priors still implies that P-value is smaller than the Bayes factor.

6.5 Bayesian P-value®

Even though valid Bayesian quantities such as Bayes factor and posterior
probability of hypotheses are in principle the correct tools to measure the
evidence for or against hypotheses, they are quite often, and especially in
many practical situations, very difficult to compute. This is because either the
alternatives are only very vaguely specified, vide (6.6), or very complicated.
Also, in some cases one may not wish to compare two or more models but
check how a model fits the data. Bayesian P-values have been proposed to
deal with such problems.

% Section 6.5 may be omitted at first reading.
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Let My be a target model, and departure from this model be of interest.
If, under this model X has density f(z|n), n € £, then for a Bayesian with
prior m on 1, mx(z) = [ f ¢ f(zIn)w(n) dn, the prior predictive distribution is the
actual predictive dlstrlbutlon of X Therefore, if a model departure statistic
T(X) is available, then one can define the prior predictive P-value (or tail area
under the predictive distribution) as

= P™ (T(X) > T(zobs)| Mo)

where zops is the observed value of X (see Box (1980)). Although it is true
that this is a valid Bayesian quantity for model checking and it is useful in
situations such as the ones described in Exercise 13 or Exercise 14, it does
face the criticism that it may be influenced to a large extent by the prior «
as can be seen in the following example.

Ezample 6.18. Let X1,X5,---, X, be a random sample from N (9, 02) with
both 6 and o2 unknown. It is of interest to detect discrepancy in the mean of
the model with the target model being M : # = 0. Note that T = /nX (ac-
tually its absolute value) is the natural model departure statistic for checking
this.

(a) Case 1. It is felt a priori that o2 is known, or equivalently, we choose
the prior on o2, which puts all its mass at some known constant o2. Then
under My, there are no unknown parameters and hence the prior predictive
P-value is simply 2(1 — $(v/n|Zobs|/00)), where Zops is the observed value of
X. This can highly overestimate the evidence against My if 62 happens to
underestimate the actual model variance.

(b) Case 2. Consider the usual non-informative prior on o

Then,
/ fx (xlo?)n(0?) dor

i do?
—-n/2 2Y
o /0 exp(— g “

n —n/2
=1

which is an improper density, thus completely disallowing computation of the
prior predictive P-value.

(c) Case 3. Consider an inverse Gamma prior [ G(l/ B) with the following
density for 02: n(0?%|v, B) = F[z:) (02)~ D) exp(— ) for 02 > 0, where v and
3 are specified positive constants. Because T'|0? ~ N (0,0?), under this prior
the predictive density of T is then,

/ fr(tlo®)n(o? Iy, ) do

2: 71(0?) x 1/02.
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Table 6.6. Normal Example: Prior Predictive P-values

S5 5 5101 1 112 2 2 5 5 5
S 1 2¢5 1 2¢.5 1 2 .5 1 2
p[.300 .398 .506.109 .189 .300{.017 .050 .122{.0001 .001 .011

™R

2
t_))(0_2)—(u+1+1/2) do?

©° 1
oc/o exp(—;(ﬂ—k 5

o (2ﬂ + t2)—(2u+1)/2.

If 2v is an integer, under this predictive distribution,

T
—— ~tg.
VB

Thus we obtain,
= P™ (|X] > [Zobs|| Mo)

m T \/_|w0b5|
= pP™m~ M,
(1 o)

=2<1—B4!§%§5>,

where Fy, is the c.d.f. of ta,. For v/nZps = 1.96 and various values of v and
3, the corresponding values of the prior predictive P-values are displayed in
Table 6.6.

Further, note that p —» 1 as 8 — oo for any fixed v > 0. Thus it is clear
that the prior predictive P-value, in this example, depends crucially on the
values of v and 5.

What can be readily seen in this example is that if the prior 7 used is a poor
choice, even an excellent model can come under suspicion upon employing the
prior predictive P-value. Further, as indicated above, non-informative priors
that are improper (thus making m, improper too) will not allow computing
such a tail area, a further undesirable feature. To rectify these problems,
Gutman (1967), Rubin (1984), Meng {1994), and Gelman et al. (1996) suggest
modifications by replacing 7 in m, by 7(n|Zobs):

m*(z|zops) = /gf(wln)ﬂ(nlwobs)dn, and
p* — Pm*(.[zobs) (T(X) 2 T(wobs)) .

This is called the posterior predictive P-value. This removes some of the
difficulties cited above. However, this version of Bayesian P-value has come
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under severe criticism also. Bayarri and Berger (1998a) note that these mod-
ified quantities are not really Bayesian. To see this, they observe that there is
“double use” of data in the above modifications: first to convert (a possibly
improper) m(n) into a proper 7(n|zbs), and then again in computing the tail
area of T'(X) corresponding with T'(zyps). Furthermore, for large sample sizes,
the posterior distribution of 7 will essentially concentrate at 7, the MLE of
7, so that m*(z|zeps) will essentially equal f(z|h), a non-Bayesian object. In
other words, the criticism is that, for large sample sizes the posterior predic-
tive P-value will not achieve anything more than rediscovering the classical
approach. Let us consider Example 6.18 again.

Ezxample 6.19. (Example 6.18, continued.) Let us consider the non-informative
prior 7(0?) ox 1/0?% again. Then, as before, because T|o? ~ N(0,0?), and

1 & .
7T(0'2]xobs) x exp(—ﬁ fo)(aJ) 241
=1

n . _ _n
x exp(— ooy (B2 + 55,)) (03) THH,

the posterior predictive distribution of T is
oo
My (| Xobs) = / fr(tlo®)m(o?|Xops ) do?
0

* av-1/2 t2 2\—n/2 n o, _q 5 .\ do?
x A (%) eXP(—ﬁ)(U) exp(_ﬁ(xobs+sobs))?

= -2 2 211, (n+1)/2 dv
o8 exp(_v{n(xobs + Sobs) +1 })’U 7
0
- 1 2 —(n+1)/2
o —— .
n i'gbs + sgbs

Therefore, we see that, under the posterior predictive distribution,
T

\% a_:obs + Sobs

Thus we obtain the posterior predictive P-value to be

~tn.

p= me(‘|xobs) (]X] > ll_:obsHMO)
— Pm‘"('lxabs) (] _ T ] > \/ﬁ]i'obs] ]MO)
xr

2 2 - 72 2
obs + Sobs \/xobs + Sobs

— o (1 py( el
. Vi'obs+sobs ’

where F, is the distribution function of t,. This definition of a Bayesian
P-value doesn’t seem satisfactory. Let |Zops] — o0. Note that then p —
2(1 — F,(y/n)). Actually, p decreases to this lower bound as |Zzps| = oo.
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Table 6.7. Values of p, =2 (1 — Fn(\/ﬁ))

n| 1 2 3 4 5 6 T 8 9 10
Pn|.500 .293 .182 .116 .076 .050 .033 .022 .015 .010

Values of this lower bound for different n are shown in Table 6.7. Note
that these values have no serious relationship with the observations and hence
cannot be really used for model checking. Bayarri and Berger (1998a) attribute
this behavior to the ‘double’ use of the data, namely, the use of Z in computing
both the posterior distribution and the tail area probability of the posterior
predictive distribution.

In an effort to combine the desirable features of the prior predictive P-value
and the posterior predictive P-value and eliminate the undesirable features,
Bayarri and Berger (see Bayarri and Berger (1998a)) introduce the conditional
predictive P-value. This quantity is based on the prior predictive distribution
m, but is more heavily influenced by the model than the prior. Further, non-
informative priors can be used, and there is no double use of the data. The
steps are as follows: An appropriate statistic U(X), not involving the model
departure statistic T{X), is identified, the conditional predictive distribution
m(t|u) is derived, and the conditional predictive P-value is defined as

e = PCIb) (T(X) > T(2ops)) s

where uops = U(zops). The following example is from Bayarri and Berger
(1998a).

Ezample 6.20. (Example 6.18, continued.) T = /nX is the model depar-
ture statistic for checking discrepancy of the mean in the normal model.
Let U(X) = s* = £ 3" (X; — X)?. Note that nU|o? ~ o%x2_;. Consider
7(0?) x 1/0? again. Then 7(0?|U = 52%) x (02)(»=1/2+1 exp(—ns?/(20?)) is
the density of inverse Gamma, and hence the conditional predictive density

of T given s2,, is

oQ
ma(tlst) = [ frltloNn(o?ls,) do’
0
< 2 1/2 1)/2
x [0 R exp(= ) (08 expl =)

* 2 21\,,n/2 dv
x exp(—v{nss,, +t“})v g
0

Thus, under the conditional predictive distribution,
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n—1T
~ tn—la
N Sobs

and hence we obtain the conditional predictive P-value to be

Pe = Pm(~|3§bs) (|X‘| > |fz'obs|M0)
be _
_ pmllsd.) ( =4 \/mﬂw())
Sobs

Sobs

—9 (1 _F_, (Wﬁﬁozﬂ)) .

Sobs

We have thus found a Bayesian interpretation for the classical P-value from
the usual ¢-test. It is worth noting that s2,, was used to produce the posterior
distribution to eliminate o2, and that Z.;, was then used to compute the tail
area, probability. It is also to be noted that in this example, it was easy to
find U(X), which eliminates 0 upon conditioning, and that the conditional
predictive distribution is a standard one. In general, however, even though
this procedure seems satisfactory from a Bayesian point of view, there are
problems related to identifying suitable U(X) and also computing tail areas
from (quite often intractable) m(t|ugps).

Another possibility is the partial posterior predictive P-value (see Bayarri
and Berger (1998a) again) defined as follows:

p" =P O (T(X) 2 T(2obs)),

where the predictive density m* is obtained using a partial posterior density
7m* that does not use the information contained in t,ps = T'(Zops) and is given
by

m(t) = [ fr(tlnye () dn
with the partial posterior 7* defined as

o (77) (8 fX|T(:L‘obs |tobsa 77)71-(77)

fx (:L'obs|77)
= fT(tobs|77) ﬂ-(n)'

Consider Example 6.18 again with 7m(02?) o 1/0%. Note that because X; are
i.i.d. N(0,0?) under My,
—n n o _
Fx(Xobs|o?) o (%) 77/ exp(— 55 (Tops + Sabs))
_ (e n
o f (Banelo?)(0) " 2 exp(— oy,
so that
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_ e n
Fx1% (Xobs|Bobs, %) o (07) (=12 exp(—5—5s Sobs)-

Therefore,
*( 2 2y —(n—1)/2+1 no2
7 (07) oc (o)~ (nm /24 eXP(~ 55 Sobs)>

and is the same as 7(02|s%,,), which was used to obtain the conditional predic-
tive density earlier. Thus, in this example, the partial predictive P-value is the
same as the conditional predictive P-value. Because this alternative version
p* does not require the choice of the statistic U, it appears this method may
be used for any suitable goodness-of-fit test statistic T. However, we have not
seen such work.

6.6 Robust Bayesian Outlier Detection

Because a Bayes factor is a weighted likelihood ratio, it can also be used for
checking whether an observation should be considered an outlier with respect
to a certain target model relative to an alternative model. One such approach
is as follows. Recall the model selection set-up as given in (6.1). X having
density f(z|f) is observed, and it is of interest to compare two models My
and M; given by

My : X has density f(z
My : X has density f(z

1) where 6 € Oq;

{6) where 6 € O;.

For i = 1,2, g;(f) is the prior density of 6, conditional on M; being the
true model. To compare My and M; on the basis of a random sample x =
(21,...,z,) the Bayes factor is given by

mo(x)
Boy(x) = 10\
01(x) %)
where m;(x f@ (x|6)g:(6)dP for ¢ = 1,2. To measure the effect on the

Bayes factor of observation x4 one could use the quantity

kq = log (%) , (6.27)

where B(x_g4) is the Bayes factor excluding observation z4. If k5 < 0, then
when observation x4 is deleted there is an increase of evidence for M. Conse-
quently, observation x4 itself favors model M;. The extent to which x4 favors
M, determines whether it can be considered an outlier under model M. Sim-
ilarly, a positive value for k, implies that x4 favors M,. Pettit and Young
(1990) discuss how k4 can be effectively used to detect outliers when the prior
is non-informative. The same analysis can be done with informative priors
also. This assumes that the conditional prior densities go and ¢; can be fully
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specified. However, we take the robust Bayesian point of view that only cer-
tain broad features of these densities, such as symmetry and unimodality, can
be specified, and hence we can only state that gy or g; belongs to a certain
class of densities as determined by the features specified. Because kq, derived
from the Bayes factor, is the Bayesian quantity of inferential interest here,
upper and lower bounds on k; over classes of prior densities are required.

We shall illustrate this approach with a precise null hypothesis. Then we
have the problem of comparing

My : 0 =0y versus M, : 6 # 6y

using a random sample from a population with density f{z|6). Under M,
suppose 6 has the prior density g, g € I'. The Bayes factors with all the
observations and without the dth observation, respectively, are

L fe)
BB = 1 Hxlo)9(8) a6
F0x_alfo)
By(x_q) = Toeon F_alB)g(6) 0

Because f(x|0) = f(zq|6)f(x—_4|0), we get
— (x160)  Jora, £ (x-al0)g(6) df
ka,g = log [f(x_d|90 fo;eoo (x]6)g(0) do
fo;eo f(x|6)g(6) do
fo;eoo x_q4|0)g(0)do |

Now note that to find the extreme values of kg 4, it is enough to find the
extreme values of

= log f(z4|6o) - (6.28)

Jos0, F(x10)9(6) ;lf) (6.29)

o fo;eao f(z_ql0)g(0) db
over the set I'. Further, this optimization problem can be rewritten as follows:

Joso, f(2al0)f(z_410)g(6) dO

sup hq,g = sup
06 0T geG Jope, S (@ _alf)g(6)df

= sup f(zal0)g™(6) df, (6.30)

g €G* Jo#£0,
zq|0) flz_4|9)g(0) do

inf hy, = inf fo;eoo al0) f(z_416)9(0)
9ec 9€G fo;eoo (z_ql0)g(6) do

= inf f(z4l6)g™(0)do, (6.31)

g*reG* 06,
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where
I 9(0) f(z_40)
¢ = {9 O = e du’geG}'

Equations (6.30) and (6.31) indicate how optimization of ratio of integrals
can be transformed to optimization of integrals themselves. Consider the case
where I' is the class A of all prior densities on the set {6 : 8 # 6y}. Then we
have the following result.

Theorem 6.21. If f(z_416) > 0 for each 8 # 6,

sup hq g = sup f(zql0), and (6.32)
QGA 0#—‘90

inf = i . .
inf hag = jof f (zalf) (6.33)

Proof. From (6.30) and (6.31) above,

sup hq,y = sup f(zal0)g™(0) d0,
geA gr€A* J9A£0,

where
9(0)f(z_419)
Torn 9 @_gluyau’? € A} '

Now note that extreme points of A* are point masses. Proof for the infimum
is similar.

AY = {g* 1g7(0) =

The corresponding extreme values of kg are

sup kq,q = log f(zalfo) — log inf f(z4l6), (6.34)
geEA 0#60
inf kg4 = log f(zal60) — log sup f(z4|6). (6.35)
geA 0400

Ezample 6.22. Suppose we have a sample of size n from N (6, 0?) with known
a?. Then, from (6.34) and (6.35),

1

sup kg, = — sup [(zq— 6)% — (zq — 0p)?
Sup Ka.g 202#5:[(11 )? = (xa — 60)°]
= oo, and
. 1 2 2
inf kag = 55 jof [(za = 0)° = (@ — 60)°]
(zd — 60)*

202

It can be readily seen from the above bounds on k4 that no observation,
however large in magnitude, will be considered an outlier here. This is because
A is too large a class of prior densities.
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Instead, consider the class G of all N (6, 72) priors with 72 > 72 > 0. Note
that 72 close to 0 will make M, indistinguishable from Mj, and hence it is
necessary to consider 72 bounded away from 0. Then for g € G

- fo;eoo f(zal0)f(z_4|0)9(0) db
e T E@_10)9(0) d

= f(zal0)g™(6) db,
660

where g* is the density of N(m,§?) with

9 (n-1)1%2 _ o?
= T = —————TF g+ ——————bp,
m=mz_q7) (n—1)72+02w d+(n—-1)‘rz+02 0
2.2
52 = 52 n___T9
(2-a:7) (n—1)r2 + 02

Note, therefore, that hyy = hgg(z4) is just the density of N(m,o? + 6%)
evaluated at z4. Thus,

2

_ T _
hag = (@m0t gy )
__n-1nr® o a2 0,)2
(@4 ~ Goprrer-d ~ Gmnrrer %)

xexp | — 952(1 —
1+ m7e7)

For each x4, one just needs to graphically examine the extremes of the ex-
pression above as a function of 72 to determine if that particular observation
should be considered an outlier. Delampady (1999) discusses these results and
also results for some larger nonparametric classes of prior densities.

6.7 Nonsubjective Bayes Factors*

Consider two models My and M; for data X with density f;(x|0;) under
model M;, 8; being an unknown parameter of dimension p;,i = 0,1. Given
prior specifications g;(@;) for parameter 8, the Bayes factor of M; to M) is

obtained as
mi(z) _ [ f1(x01)91(61)d6,
mo(x) [ fo(x|00)go(00)dby

Here m;(x) is the marginal density of X under M;, 1 = 0,1. When subjective
specification of prior distributions is not possible, which is frequently the
case, one would look for automatic method that uses standard noninformative
priors.

Bio = (6.36)

* Section 6.7 may be omitted at first reading.
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There are, however, difficulties with (6.36) for noninformative priors that
are typically improper. If g; are improper, these are defined only up to arbi-
trary multiplicative constants ¢;; ¢;g; has as much validity as g;. This implies
that (¢1/co)Big has as much validity as Bjg. Thus the Bayes factor is de-
termined only up to an arbitrary multiplicative constant. This indeterminacy,
noted by Jeffreys (1961), has been the main motivation of new objective meth-
ods. We shall confine mainly to the nested case where fy and fi are of the
same functional form and f5(x|0g) is the same as fi(x]@;) with some of the
co-ordinates of 8; specified. However, the methods described below can also
be used for non-nested models.

It may be mentioned here that use of diffuse (flat) proper prior does not
provide a good solution to the problem. Also, truncation of noninformative
priors leads to a large penalty for the more complex model. An example fol-
lows.

Ezample 6.28. (Testing normal mean with known variance.) Suppose we ob-
serve X = (X1,...,X,). Under My, X; are i.i.d. N(0,1) and under M;, X;
are i.id. N(6,1), 8 € R is the unknown mean. With the uniform noninforma-
tive prior gi¥ () = ¢ for # under M;, the Bayes factor of M; to My is given
by

BN = V2ren? exp[nX?/2].

If one uses a uniform prior over —K < 8 < K, then for large K, the new
Bayes factor B is approximately 1/(2Kc) times BJY,. Thus for large K, one
is heavily biased against M;. This is reminiscent of the phenomenon observed
by Lindley (1957). A similar conclusion is obtained if one uses a diffuse proper
prior such as a normal prior N (0, 72), with variance 72 large. The correspond-
ing Bayes factor is

BROTI _ (13,2 | 1)~ 1/2 oy 1 nt? nX?
2n7t2+1

which is approximately (n72)~1/2 exp[nX?/2] for large values of n72 and hence
can be made arbitrarily small by choosing a large value of 72. Also BT g
highly non-robust with respect to the choice of 72, and this non-robustness
plays the same role as indeterminacy. The expressions for BfY, and BIP™
clearly indicate similar behavior of these Bayes factors and the similar roles

of v2me and (72 4 1/n)~1/2.

A solution to the above problem with improper priors is to use part of the
data as a training sample. The data are divided into two parts, X = (X1, X5).
The first part X; is used as a training sample to obtain proper posterior
distributions for the parameters (given X;) starting from the noninformative

priors 8
_ fi(X116:)g:(6:) .
9:(0: %) = [ fi(X116.)g:(6:) d0;° e=01
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These proper posteriors are then used as priors to compute the Bayes factor
with the remainder of the data (X5). This conditional Bayes factor, condi-
tioned on X1, can be expressed as

[ f1(X2]01)91(81|X 1)d6;

[ £o(X2180)90(80] X 1)d8

_ mu(X) [ fo(X1]60)g0(80)do
mo(X) [ f1(X1]61)g1(81)d6:

mO(Xl)

Bio(X1)

= Byo (6.37)

where m;(X) is the marginal density of X; under M;,i =0, 1. Note that if
the priors ¢;g;, i = 0,1, are used to compute B1o(X ), the arbitrary constant
multiplier ¢; /co of Big is cancelled by (co/c1) of mo(X1)/m1(X 1) so that the
indeterminacy of the Bayes factor is removed in (6.37).

A part of the data, X ;, may be used as a training sample as described
above if the corresponding posteriors g;(8;|X 1), ¢ = 0,1 are proper or, equiv-
alently, the marginal densities m;(X ;) of X; under M;,i = 0,1 are finite.
One would naturally use minimal amount of data as such a training sample
leaving most part of the data for model comparison. As in Berger and Peric-
chi (1996a), a training sample X; may be called proper if 0 < m;(X;) < oo,
i = 0,1 and minimal if it is proper and no subset of it is proper.

Ezxample 6.24. (Testing normal mean with known variance.) Consider the
setup of Example 6.23 and the uniform noninformative prior ¢;(#) = 1 for

@ under M;. The minizmal training samples are subsamples of size 1 with
mo(X;) = (1/v2n)e=%i/2 and m, (X;) = 1.

Ezample 6.25. (‘Testing normal mean with variance unknown.) Let X =
(X1,...,Xn).

My : Xy,..., X, are iid. N(0,02),

M : X1,..., X, are iid. N(u,o?).

Consider the noninformative priors go(og) = 1/00 under My and g;(¢, 01) =
1/01. Here m;(X;) = oo for a single observation X; and a minimal training
sample consists of two distinct observations X;, X; and for such a training
sample (X;, X;),

1 1
m and ml(Xl',Xj) P T (638)

6.7.1 The Intrinsic Bayes Factor

As described above, a solution to the problem with improper priors is ob-
tained using a conditional Bayes factor B;o(X1), conditioned on a training
sample X,. However, this conditional Bayes factor depends on the choice of
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the training sample X ;. Let X (I), [ = 1,2,... L be the list of all possible
minimal training samples. Berger and Pericchi (1996a) suggest considering
all these minimal training samples and taking average of the corresponding
L conditional Bayes factors B1o(X (1))’s to obtain what is called the intrinsic
Bayes factor (IBF). For example, taking an arithmetic average leads to the
arithmetric intrinsic Bayes factor (AIBF)

_ g Ly~ mo(X()
AIBFy = Bl ; (X (D) (6.39)

and the geometric average gives the geometric intrinsic Bayes factor (GIBF)

_ mo(X (1)
GIBF;y, = By, (H ml(X(l))) , (6.40)

the sum and product in (6.39) and (6.40) being taken over the L possible
training samples X(I),l=1,..., L.

Berger and Pericchi (1996a) also suggest using trimmed averages or the
median (complete trimming) of the conditional Bayes factors when taking an
average of all of them does not seem reasonable (e.g., when the conditional
Bayes factors vary much). AIBF and GIBF have good properties but are af-
fected by outliers. If the sample size is very small, using a part of the sample
as a training sample may be impractical, and Berger and Pericchi (1996a)
recomnmend using expected intrinsic Bayes factors that replace the averages
in (6.39) and (6.40) by their expectations, evaluated at the MLE under the
more commplex model M;. For more details, see Berger and Pericchi (1996a).
Situations in which the IBF reduces simply to the Bayes factor Byg with re-
spect to the noninformative priors are given in Berger et al. (1998). The AIBF
is justified by the possibility of its correspondence with actual Bayes factors
with respect to “reasonable” priors at least asymptotically. Berger and Peric-
chi (1996a, 2001) have argued that these priors, known as “intrinsic” priors,
may be considered to be natural “default” priors for the testing problems.
The intrinsic priors are discussed here in Subsection 6.7.3.

6.7.2 The Fractional Bayes Factor

O’Hagan (1994, 1995) proposes a solution using a fractional part of the full
likelihood in place of using parts of the sample as training samples and av-
eraging over them. The resulting “partial” Bayes factor, called the fractional
Bayes factor (FBF), is given by

ml(X, b)

FBF|y =
T me(X,b)

where b is a fraction and
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ffi(X|9i)9i(9z‘) do;
J1f:i(X10;)]bg:(0:)d6;

Note that FBF)q can also be written as

bix
FBFg= By ZQEX;
where
mé(X) = /[fi(X|9i)]bgi(9i)d9i, i=0,1. (6.41)

To make FBF comparable with the IBF, one may take b = m/n where m
is the size of a minimal training sample as defined above and n is the total
sample size. O’'Hagan also recommends other choices of b, e.g., b = /n/n or
logn/n.

We now illustrate through a number of examples.

Ezample 6.26. (Testing normal mean with known variance.) Consider the
setup of Example 6.23. The Bayes factor with the noninformative prior
g1(0) = 1 was obtained as

Bio = V2rn Y2 exp[nX?/2] = V2rn~? A0
where \)q is the likelihood ratio statistic. Bayes factor conditioned on X is
Bio(X;) = Biomo(X:)/mi(X;i) = Bio(1/v2r) exp(—X7/2).
Thus
n n
AIBF g =n"! Z Bio(X;) = n %2 exp(nX?/2) Z exp(—X2/2),
i=1 i=1

GIBFyo =n""?exp[nX?/2~ (1/2n) ) X7].

The median IBF (MIBF) is obtained as the median of the set of values
BIO(Xi)a 1= 1, 2, e, N
The FBF with a fraction o < b < 1is

FBFyo = b"/? exp[n(1 — b)X?/2]
=n"Y2exp[(n - 1)X?/2], ifb=1/n.

Ezxample 6.27. (Testing normal mean with variance unknown.) Consider the
setup of Example 6.25. For the standard noninformative priors considered in
this example, we have
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resh  (mxn

T
B 0= — X 2 — P
VRt TR Eo -0
1 1X; — X,
AIBFyg = Big X —r S s
(%) 19.;9 (X7 + X7)

r(zt) Seoxz 1 2
FBE, = 2 i=1 i ithd= 2.
0T ArE) " {Z?zl(Xi —X)ZJ o n

Ezample 6.28. (normal linear model.) This example is from Berger and Peric-
chi (1996b, 2001). Berger and Pericchi determined the IBF for linear models
for both the nested and non-nested case. We consider here only the nested
case. Suppose for the data Y (n x 1) we consider the linear models

M;:Y = X;8; + €, € ~ N,(0,071,), i=0,1

where B; = (Bi1, B2, - -, Bip,)’ and ¢ are unknown parameters, and X, is an
n X p; known design matrix of rank p; < n. Consider priors of the form

9i(Bi, 05) = Ji‘(lﬂi), g > —1.

Here ¢; = 0 gives the reference prior of Berger and Bernardo (1992a), and
g; = p; corresponds with the Jeffreys prior. For the nested case, when My is
nested in M;, Berger and Pericchi (1996b) consider a modified Jeffreys prior
for which ¢o = 0 and g1 = p1 — po. The integrated likelihoods m,(Y") with
these priors can be obtained as

ma(Y) = C2/2aP 2D ((n — py + )/2) | XX /2 Ry (ropeta)/?

where C' is a constant not depending on i, and R, is the residual sum of
squares under M;, i = 0,1. The Bayes factor By with the modified Jeffreys
prior is then given by

/ 1/2 (n—po)/2
B = (gﬁ)(prpo)/zw <R0> )

— 6.42
XX, 72 \ R, (6.42)

Also, one can see that a minimal training sample Y (1) in this case is a sample
of size m = p1 +1 such that for the corresponding design matrices X ;(I) (under
M;), X:(1)X (1), i = 0,1 are nonsingular. The ratio mo(Y (1))/m1(Y (1)) can
be obtained from the expression of Big by inverting it and replacing n, Xy,
X1, Ry, and Ry by m, X(l), X1(I), Ro(l), and R;(l), respectively, where
R;(1) is the residual sum of squares corresponding to (Y (1)) under M;, i = 0, 1.
Thus the conditional Bayes factor B1o(Y (1)), conditioned on Y (1) is given by

Bio(Y (1))
_ EBX—O’lf (]_%9> (n—po)/2 ’Xll(l)Xl(l)ll/z <R1(1)>(P1“P0+1)/2
[, 2 A X)X o] o) :
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One may now find an average of these conditional Bayes factors to find an
IBF. For example, an arithmetic mean of B1o(Y({))’s for all possible minimal
training samples Y'(I)’s gives the AIBF, and a median gives the median IBF.

In case of fractional Bayes factor, one obtains that (see, for example, Berger
and Pericchi, 2001, page 152), with m?(X) as defined in (6.41),

mg(X) N b (P1—p0)/2 IXIIXlll/z & (m—po)/2
172 \ Ry

mh(X) — \27 | X5X|

with b = m/n and hence
FBFjy = bP1=P)/2(Ry /R ) (n~™)/2
See also O’Hagan (1995) in this context.

For more examples, see Berger and Pericchi (1996a, 1996b, 2001) and
O’Hagan (1995).

Several other methods have been proposed as solutions to the problem with
noninformative priors. Smith and Spiegelhalter (1980) and Spiegelhalter and
Smith (1982) propose the imaginary minimal sample device; see also Ghosh
and Samanta (2002b) for a generalization. Berger and Pericchi (2001) present
comparison of four methods including the IBF and FBF with illustration
through a number of examples. Ghosh and Samanta (2002b) discuss a unified
derivation of some of the methods that shows that in some qualitative and
conceptual sense, these methods are close to each other.

6.7.3 Intrinsic Priors

Given a default Bayes factor such as the IBF or FBF, a natural question is
whether it corresponds with an actual Bayes factor based on some priors at
least approximately. If such priors exist, they are called intrinsic priors. A de-
fault Bayes factor such as IBF can then be calculated as an actual Bayes factor
using the intrinsic prior, and one need not consider all possible training sam-
ples and average over them. A “reasonable” intrinsic prior that corresponds
to a naturally developed good default Bayes factor may be considered with be
a natural default prior for the given testing or model selection problem. On
the other hand, a particular default Bayesian method may be evaluated on
the basis of the corresponding intrinsic prior depending on how “reasonable”
the intrinsic prior is. Berger and Pericchi (1996a) describe how one can obtain
intrinsic priors using an asymptotic argument. We begin with an example.

Ezample 6.29. (Example 6.26, continued.) Suppose that for some proper prior
m(#) under model M,
BF[, =2 AIBF, (6.43)
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where BFJ, denotes the Bayes factor based on a prior w(6) under M;. Using
Laplace approximation (Section 4.3) to the integrated likelihood under M,
we have

IR

f(X16) =122 o=

_— 6)v/2r(det I)~1/2

fxip=0)" OV

where 6 is the MLE of 6 under My, and I is the observed Fisher information
number. Thus using the expression for the AIBF in this example, and noting
that I = 1, (6.43) can be expressed as

BFY{,

7(0) = (1/V2r)= Zexp —X2/2).

z_l
As the RHS converges to (1/v/2m)Eg(e *1/2) = (1/\/27r)(1/\/§)e_92/4 with
probability one under any 6, this suggests the intrinsic prior

m(9) = exp(—62/4)

1
V212
which is a N(0,2) density. One can easily verify that

BFIWO/AIBFlO -1

with probability one under any 8, i.e., the AIBF is approximately the same
as the Bayes factor with an N(0,2) prior for § under M.

If one considers the FBF, one can directly show that the FBF, with fraction
b, is exactly equal to the Bayes factor with a N (0, (b~ — 1)/n) prior.

Let us now consider the general case. Let B1g be the Bayes factor of M; to
My with noninformative priors g;(0;) for 8; under M;, i = 0,1. We illustrate
below with the AIBF. Treatment for the other IBFs and FBF will be similar.
Recall that

mo(
ml(

M=

AIBF10 = Bl()B()l where B(n = l
L =1
Suppose for some priors m; under M;, i = 0,1, AT BF}, is approximately equal
to the Bayes factor based on 7y and 7y, denoted BFjg(mg,1). Using Laplace
approximation (Section 4.3) to both the numerator and denominator of Big
(see 6.36), AIBIyo can be shown to be approximately equal to

F1(X161)g1(81) (27 /n)P1/2| [ 71/
fo(X160)g0(Bo) (2 /n)wo/2|Io|~1/2

Bot (6.44)

where n denotes the sample size, p; is the dimension of 6;, 0, is the MLE of
0;, and I; is the observed Fisher information matrix under M;, ¢ = 0,1. The
same approximation applied to BFyo(m, m), yields the approximation
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f1(X|“A)1)7f1(‘?1)(27T/n)p1/2|1:1|_1/2
Fo(X|80)mo(B0) (27 /n)po/2|Io|=1/2

(6.45)

to BFio(mo, 7). We assume that conditions for the Laplace approximation
hold for the given models.
To find the intrinsic priors, we equate (6.44) with (6.45) and this yields

Wl(?l)go(?o) ~
m0(60)g1(61)

Berger and Pericchi (1996a) obtain the intrinsic prior determining equations
by taking limits on both sides of (6.46) under M, and M;. Assume that, as
n — 0o,

under Ml, él — 01, éo — a(01), and BOl Ed B{(Bl),

under Mo, éo — 00, él — b(eo), and BOl — 36(00)
The equations obtained by Berger and Pericchi (1996a) are

Bo1. (6.46)

71(01)g0(a(01)) _ o« 71(5(60))90(60)
— =22 22 = BY(0,) and ———"——% = Bj(6o). 6.47
a:(O)mo(a(@) ) G b8y ~ O (64D
When M is nested in M;, Berger and Pericchi suggested the solution
70(60) = go(6o), m1(61) = g1(61)B1(61). (6.48)

However, this may not be the unique solution to (6.47). See also Dmochowski
(1994) in this context.

Ezample 6.30. (Example 6.27, continued.) A solution to the intrinsic prior
determining equations suggested by Berger and Pericchi (see (6.48)) is

1 1
mo(o0) = —UO, w1 (u,01) = . Bl (u,01) (6.49)
1

where

. X1 — Xy
B} (,01) = B, Bor (X, Xa) and Boa(Xi, X2) = Ze——s.

Note that Bo; (X1, X2) can be expressed as

Z? 2

By (X1, X2) = ————
01( b 2) (Zl+Zg)7r01

where Z; = (X1 — X3)%/(20%) ~ x? and Z, = (X1 + X2)?/(20?) ~ noncentral
x? with d.f. = 1 and noncentrality parameter A\ = 2u2?/02. Also, Z; and Z,
are independent. Using the representation of a noncentral x? density as an
(infinite) weighted sum of central x? densities, we have
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zZP N e (A2) VA4
E|l—" | = M2 E 1 50
[Z1+ZJ D e 7! Z1+ W, (6.50)

3=0
where W; ~ x? +2; and is independent of Z;. We then have

e 2 (A2
T/To1 Z 3G +3)

=0

Bi(p,01) = A= 2u%/0?

and the intrinsic priors are given by
(00) = e ( )= e (ulo1)
mo(og) = m(p,01) = —mi(pulo
0l%0 70’ 14, 01 o1 1{¢4]01

. 1 - 74
with (o) =~ exp(—p?/of) > = :

It is to be noted that [*°_ 1 (ulo1)du = 1.

Ezample 6.51. (Testing normal mean with variance unknown.) This is from
Berger and Pericchi (1996a). Consider the setup of Example 6.25 with the
same prior go under My but in place of the standard noninformative prior
g1(u,01) = 1/, use the Jeffreys prior gf(u,01) = 1/02. In this case, a mini-
mal training sample consists of two distinct observations X;, X; for which

1 1

m()( 7y J) 27T(X22+XJ2) and ml( ¢ J) ﬁ(Xi_Xj)2

Proceeding as in the previous example, noting that

mo(X1,Xa) A

mi1(X1,X2) V(21 + Z2)

where Z; and Z; are as above, and using (6.50), the intrinsic priors are ob-
tained as

1 1 1 1-exp(—u?/o?
mo(00) = —, m(p,01) = —m(pjor) = — ol /o)

oo o1 o1 2v/m(p?/o1)

Here 71 (p|oy) is a proper prior, very close to the Cauchy (0,01) prior for u,
which was suggested by Jeffreys (1961) as a default proper prior for u (given
o1); see Subsection 2.7.2.

Ezample 6.82. Consider a negative binomial experiment; Bernoulli trials, each
having probability 6 of success, are independently performed until a total of n
successes is accumulated. On the basis of the outcome of this experiment we
want to test the null hypothesis Hg : 6 = % against the alternative Hy : 6 # %
We consider this problem as choosing between the two models My : 8 = %
and My =6 € (0,1).



198 6 Hypothesis Testing and Model Selection

The data may be looked upon as n observations Xi,...,X, where X;
denotes number of failures before the first success, and for i = 2,---,n, X;
denotes number of failures between (¢ — 1)th success and ith success. The
random variables X, ..., X,, are i.i.d. with a common geometric distribution
with probability mass function

PX;,=2)=6°(1-0), 2=0,1,2,...
The likelihood function is
f(X1,..., X,10) = 65=1%(1 — 9)™.
We consider the Jeffreys prior
g(@) =6"Y2(1-6)"1, 0<6<1

which is improper. The Bayes factor with this prior is
1
Bio = 22X1'+"/ oL X:=1/2(1 — g)"~1dg.
0

Minimal training samples are of size 1, and the AIBF is given by

2X; +1

AIBFl() = BIO X —Z—Qm

i=1
Let

(1-9).

2X1+2 2 +2
z=0

Then the intrinsic prior is
1 oo
—p-1/2(1 _ ;-1 R* 1 —zpz—1/2
w(f) =6""7%(1-8)" B*( =1 5: (2z + 1)2776% /=,

Simplification yields
7(6) = (6712 +6Y/2/2)(2 — 6) 2

We now consider a simple example from Lindley and Phillips (1976), also
presented in Carlin and Louis (1996, Chapter 1). In 12 independent tosses
of a coin, one observes 9 heads and 3 tails, the last toss yielding a tail. It
is shown that one gets different results according to a binomial or a negative
binomial likelihood. Let us consider the problem of testing the null hypothesis
Hy : 8 = 1/2 against the alternative H; : 8 # 1/2 where 6 denotes the
probability of head in a trial. If a binomial model is assumed, the random
observable X is the number of heads observed in a fixed number of 12 tosses.
One rejects Hy for large values of the statistic | X — 6|, and the corresponding
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P-value is 0.150. On the other hand, if a negative binomial model is assumed,
the random observable X is the number of heads before the third trial appears.
Note that expected value of X under Hy is 3. Suppose one rejects Hy for large
values of | X — 3|. Then the corresponding P-value is 0.0325. Thus with the
usual 5% Type 1 error level, the two model assumptions lead to different
decisions. Let us now use a Bayes test for this problem. For the binomial
model, the Jeffreys prior is proportional to §~/2(1 — 8)~'/2, which can be
normalized to get a proper prior. For the negative binomial model, the data
can be treated as three i.i.d. geometrically distributed random variables, as
described above. The Bayes factor under the binomial model (with Jeffreys
prior) and the Bayes factor under the negative binomial model (with the
intrinsic prior) are respectively 1.079 and 1.424. They are different as were
the P-values of classical statistics, but unlike the P-values, the Bayes factors
are quite close.

6.8 Exercises

1. Assume a sharp null and continuity of the null distribution of the test
statistic.
(a) Calculate Fg,(P-value) and FEg,(P-value|P-value < «), where 0 <
« < 1 is the Type 1 error probability.
(b) In view of your answer to (a), do you think 2(P-value) is a better
measure of evidence against Hy than P-value?

2. Suppose X ~ N{6,1) and consider the two hypothesis testing problems:

Hy:0=-1 versus H, :0=1;
Hj:8=1 versus Hj : 0= —1.

Find the Bayes factor of Hy relative to H; and that of H{ relative to Hy
if (a) z = 0 is observed, and (b) z = 1 is observed. Compute the classical
P-value in both cases.

3. Refer to Example 6.3. Take 7 = 20, but keep the other parameter val-
ues unchanged. Compute Bp; for the same values of £ and n as used in
Table 6.1.

4. Suppose X ~ N(8,1) and consider testing

Hy:8=0 versus H; : 6 #0.

For three different values of z, x = 0,1, 2, compute the upper and lower
bounds on Bayes factors when the prior on 8 under the alternative hy-
pothesis lies in

(a) I'y = {all prior distributions on R},

(b) I';v = {N(0,72),72 > 0},

(¢c) I's = {all symmetric (about 0) prior distributions on R},
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(d) I'sy = {all unimodal priors on R, symmetric about 0}.
Compute the classical P-value for each z value. What is the implication
of I'v CI'sy CI's CILx?

5. Let X ~ B(m,#), and let it be of interest to test

1 1
H0:0=§ versus H1:07é§.

If m = 10 and observed data is x = 8, compute the upper and lower
bounds on Bayes factors when the prior on € under the alternative hy-
pothesis lies in
(a) I'a = {all prior distributions on (0, 1)},
(b) I's = {Beta(a, &), @ > 0},
(c) I's = {all symmetric (about 1) priors on (0,1)},
(d) I'sy = {all unimodal priors on (0, 1), symmetric about }.
Compute the classical P-value also.

6. Refer to Example 6.7.

(a) Show that B(G4,z) = exp(—%), P(Hy|Ga,z) = [1-{-1_7:(1 exp(%)]_l.
(b) Show that, if t <1, B(Gyg,z) =1, and P(Hy|Gys,z) = mp.
(c) Show that, if t <1, B(GNor,z) = 1, and P(Ho|Gnor,z) = mo. If t > 1,
B(Gnor,z) = texp(—(t?2 — 1)/2).

7. Suppose X|@ has the t,(3,8, I,) distribution with density

?

—(3+p)/2
f(x|8) x (1 + %(x -8)(x- 9))

and it is of interest to test Hy : 8 = 0 versus H; : 8 # 0. Show that this
testing problem is invariant under the group of all orthogonal transforma-
tions.
8. Refer to Example 6.13. Show that the testing problem mentioned there is
invariant under the group of scale transformations.
9. In Example 6.16, find the maximal invariants in the sample space and the
parameter space.
10. In Example 6.17, find the maximal invariants in the sample space and the
parameter space.
11. Let X6 ~ N(6,1) and consider testing

Hy: |6 — 6] < 0.1 versus Hy : |6 — 6] > 0.1.

Suppose z = Gy + 1.97 is observed.
(a) Compute the P-value.
(b) Compute By; and P(Hy|z) under the two priors, N (6o, 72), with 72 =
(0.148)2 and U(fg — 1,64 + 1).
12. Let X|p ~ Binomial(10, p). Consider the two models:

1 1
MO:pziversulezp;aéé.



13.

14.
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Under M, consider the following three priors for p: (i) U(0,1), (ii)
Beta(10, 10), and (iii) Beta(100, 10). If four observations, z = 0, 3, 5,
7, and 10 are available, compute kg given in Equation (6.27) for each ob-
servation, and for each of the priors and check which of the observations
may be considered outliers under M.

(Box (1980)) Let X1, X3, -+, X, be a random sample from N (6, ?) with
both # and o2 unknown. It is of interest to detect discrepancy in the
variance of the model with the target model being

My :0? =08, and  ~ N(u,72%),

where p and 72 are specified.

(a) Show that the predictive distribution of (X, Xa,---,X,,) under My is
multivariate normal with covariance matrix 021, + 7211’ and E(X;) = p,
fori=12,...,n.

(b) Show that under this predictive distribution,

n(X —p)® 2
nr? + ok Xn

(¢) Derive and justify the prior predictive P-value based on the model
departure statistic 7(X). Apply this to data, x = (8,5,4,7), and 03 = 1,
p=0,12=2

(c) What is the classical P-value for testing Hy : 02 = o2 in this problem?
(Box (1980)) Suppose that under the target model, for i = 1,2,...,n,

yilﬁ[)’g’az = 50 + x;9 + €€~ N(O302) 11d3

Bolo? ~ N{pg,co?),8|0% ~ Ny(0g,0%T),

o2 ~ inverse Gamma(a, ),

where ¢, po, 89, I', « and v are specified. Assume the standard linear
regression model notation of y = 871+ X 8+¢, and suppose that X’'1 = 0.
Further assume that, given o2, conditionally 8y, 8 and € are independent.
Also, let By and € be the least squares estimates of fy and 8, respectively,
and RSS = (y — B0l — X0)'(y — 5ol — X8).
(a) Show that under the target model, conditionally on o2, the predictive
density of y is proportional to

(02) 72 exp( — okr (ol 4RSS

10— ) (X' X)L+ T8 - 90))).

(b) Prove that the predictive distribution of y under the target model is
a multivariate ¢. R
(c) Show that the joint predictive density of (RSS, 6) is proportional to
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o~ - —(n+a—1)/2
{27+RSS+ @—0,)(X'X)" '+ 1)@ - 00)} :

(d) Derive the prior predictive distribution of

(6 —00)(X'X)"* +T1)~1(8 — 6,)
2y + RSS

T(y) = :
(e) Using an appropriately scaled T(y) as the model departure statistic
derive the prior predictive P-value.

15. Consider the same linear regression set-up as in Exercise 14, but let the
target model now be

My : 0 =0,8|0% ~ N(uo,co?),a? ~ inverse Gamma(c, ).
Assuming v to be close to 0, use
_0x'Xx0
~ RSS

as the model departure statistic to derive the prior predictive P-value.
Compare it with the classical P-value for testing Hy : 8 = 0.
16. Consider the same problem as in Exercise 15, but let the target model be
1

My : 0 =0,53]|0° ~ N(uo,co?),m(0?) prl

T(y)

Using T'(y) = 6 X'X9 as the model departure statistic and RSS as the
conditioning statistic, derive the conditional predictive P-value. Compute
the partial predictive P-value using the same model departure statistic.
Compare these with the classical P-value for testing Hg : 8 = 0.

17. Let X, Xa,---, X, be i.i.d. with density

f(z|A,0) = dexp(—A(z — 6)),z > 6,

where A > 0 and —00 < 6 < 00 are both unknown. Let the target model
be

1
My :0=0,m(}) x 3

Suppose the smallest order statistic, T' = X,y is considered a suitable
model departure statistic for this problem.
(a) Show that T'|A ~ exponential(nA) under M.
(b) Show that A|x,ps ~ Gamma(n, nZ.ps) under M.
(c) Show that
n"l‘:)lbs
(t+ Zops)” L

(d) Compute the posterior predictive P-value.
(e) Show that as t,,s —> 00, the posterior predictive P-value does not
necessarily approach 0. (Note that tops < Zops — 00 also.)

m(t|Xops) =



18.

19.

20.

21.

22.
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(Contingency table) Casella and Berger (1990) present the following two-
way table, which is the outcome of a famous medical experiment conducted
by Joseph Lister. Lister performed 75 amputations with and without using
carbolic acid.

Patient|Carbolic Acid Used?
Lived? |Yes No

Yes |34 19

No 6 16

Test for association of patient mortality with the use of carbolic acid on
the basis of the above data using (a) BIC and (b) the classical likelihood
ratio test. Discuss the different probabilistic interpretations underlying
the two tests.

On the basis of the data on food poisoning presented in Table 2.1, you
have to test whether potato salad was the cause. (Do this separately for
Crab-meat and No Crab-meat).

(a) Formulate this as a problem of testing a sharp null against the alter-
native that the null is false.

(b) Test the sharp null using BIC.

(c) Test the same null using the classical likelihood ratio test.

(d) Discuss whether the notions of classical Type 1 and Type 2 error
probabilities make sense here.

Using the BIC analyze the data of Problem 19 to explore whether crab-
meat also contributed to food poisoning.

(Goodness of fit test). Feller (1973) presents the following data on bomb-
ing of London during World War II. The entire area of South London
is divided into 576 small regions of equal area and the number (njy) of
regions with exactly k bomb hits are recorded.

o
]
—
3]
w
B~

5 and above
nx|229{211|93135(7 1

Test the null hypothesis that bombing was at random rather than the
general belief that special targets were being bombed.

(Hint: Under Hy use the Poisson model, under the alternative use the full
multinomial model with 5 parameters and use BIC.)

(Hald’s regression data). We present below a small set of data on heat
evolved during the hardening of Portland cement and four variables that
may be related to it (Woods et al. (1932), pp. 635-649). The sample
size (n) is 13. The regressor variables (in percent of the weight) are z; =
calcium aluminate (3Ca0.Al303), x5 = tricalcium silicate (3Ca0.Si03), x5
= tetracalcium alumino ferrite (4Ca0.Al203.Fe20O3), and x4 = dicalcium
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Table 6.8. Cement Hardening Data

T1 T2 T3 T4 Yy
726 660 78.6
1291552 74.3

11 56 8 20 104.3

11 31 847 87.6
752 633 95.9

11 55 9 22 109.2
37117 6102.7
1312244 725
2541822 93.1

21 47 426 115.9
1402334 83.8

1166 912113.3

10 68 8121094

silicate (2Ca0.SiO2). The response variable is y = total calories given off
during hardening per gram of cement after 180 days.

Usually such a data set is analyzed using normal linear regression model
of the form

yi:50+;61z1i+,62z2i"'+5pzpi+€i7izl,"'?n?

where p is the number of regressor variables in the model, 8o, 51, . . . Op are
unknown parameters, and €;’s are independent errors having a N(0,02)
distribution. There are a number of possible models depending on which
regressor variables are kept in the model. Analyze the data and choose
one from this set of possible models using (a) BIC, (b) AIBF of the full
model relative to all possible models.
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Bayesian Computations

Bayesian analysis requires computation of expectations and quantiles of prob-
ability distributions that arise as posterior distributions. Modes of the densi-
ties of such distributions are also sometimes used. The standard Bayes esti-
mate is the posterior mean, which is also the Bayes rule under the squared
error loss. Its accuracy is assessed using the posterior variance, which is again
an expected value. Posterior median is sometimes utilized, and to provide
Bayesian credible regions, quantiles of posterior distributions are needed. If
conjugate priors are not used, as is mostly the case these days, posterior dis-
tributions will not be standard distributions and hence the required Bayesian
quantities (i.e., posterior quantities of inferential interest) cannot be computed
in closed form. Thus special techniques are needed for Bayesian computations.

Ezample 7.1. Suppose X is N(8,0?%) with known o2 and a Cauchy(u, 7) prior
on § is considered appropriate from robustness considerations (see Chapter 3,
Example 3.20). Then

1

7(6]) o< exp (—(0 — 2)%/(20%)) (2 + (0 — w)?)
and hence the posterior mean and variance are
ffooo f exp (— (92;?2> (2 + (0 - u)z)ﬁl db
Joexp (-8 ) (2 4+ (0 - py?) M
S0P exp (U585 ) (724 (0 - )?)
[oexp (-5 ) (2 4+ (0 - )7 B

and

E™(0z) =

VT (Ole) = — (B"(8]2))*.

Note that the above integrals cannot be computed in closed form, but
various numerical integration techniques such as IMSL routines or Gaussian
quadrature can be efficiently used to obtain very good approximations of these.
On the other hand, the following example provides a more difficult problem.
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Example 7.2. Suppose X1, Xs,..., X are independent Poisson counts with
X; ~ Poisson(8;). 8; are a priori considered related, and a joint multivariate
normal prior distribution on their logarithm is assumed. Specifically, let v; =
log(8;) be the ith element of v and suppose

v~ Ni (pl, 7 {(1 — p)Ix + p11'}),
where 1 is the k-vector with all elements being 1, and p, 72 and p are known
constants. Then, because

k

k
f(x|v) = exp (— Z{e”" - l/ﬂti}> /Hzi!,

=1
and

1) scexp (=300~ 1) (L= )i+ 01197 (0= 1))

we have that
m(vix) «

exp { = Th e — i} = gk (v — 1) (1 - )Tk + p11) 7 (v — 1) }
Therefore, if the posterior mean of §; is of interest, we need to compute

E™(8;]e) = E™ (exp(v;)|z) = f“}axp(glﬁ,)f,f;'f,? dv
RE

where g(v|x) =
exp {‘ Zle{e"i — Ui} — 5oz (v — pl) (1= p) Ik + p11) 7! (v — ,ul)} .

This is a ratio of two k-dimensional integrals, and as k grows, the integrals
become less and less easy to work with. Numerical integration techniques fail
to be an efficient technique in this case. This problem, known as the curse
of dimensionality, is due to the fact that the size of the part of the space
that is not relevant for the computation of the integral grows very fast with
the dimension. Consequently, the error in approximation associated with this
numerical method increases as the power of the dimension k, making the
technique inefficient. In fact, numerical integration techniques are presently
not preferred except for single and two-dimensional integrals.

The recent popularity of Bayesian approach to statistical applications is
mainly due to advances in statistical computing. These include the E-M algo-
rithm discussed in Section 7.2 and the Markov chain Monte Carlo (MCMC)
sampling techniques that are discussed in Section 7.4. As we see later, Bayesian
analysis of real-life problems invariably involves difficult computations while
MCMC techniques such as Gibbs sampling (Section 7.4.4) and Metropolis-
Hastings algorithm (M-H) (Section 7.4.3) have rendered some of these very
difficult computational tasks quite feasible.
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7.1 Analytic Approximation

This is exactly what we saw in Section 4.3.2 where we derived analytic large
sample approximations for certain integrals using the Laplace approximation.
Specifically, suppose

] e 9(0)F(x(0)(0) dB
B9 = = oy 0y d6

is the Bayesian quantity of interest where g, f, and 7 are smooth functions of
6.

(7.1)

First, consider any integral of the form
I :/ q(8) exp (—nh(8)) d8,
Rk

where h is a smooth function with —A having its unique maximum at 9.
Then, as indicated in Section 4.3.1 for the univariate case, the Laplace method
involves expanding ¢ and h about 6 in a Taylor series. Let h’ and q’ denote the
vectors of partial derivatives of h and ¢, respectively, and Ay, and A, denote
the Hessians of ~ and ¢. Then writing

= h(6) + %(9 —8)'AL(6)(6—8) +--- and
q(8) = q(6) + (6 — 6)'d'(6) + %(9 —8)A,6)(6-86)+---,
we obtain
) 1Y 1 AN 3 -
1= [ {a®+@-8ra® + 50 -8ya@ie -8+ |

= @ (2m)H/ 2024, (8) V2 {(8) + O}, (7.2)

which is exactly (4.16). Upon applying this to both the numerator and denom-
inator of (7.1) separately (with ¢ equal to g and 1), a first-order approximation

E™(g(8)x) = g(8) {1+ O(n~)}

easily emerges. It also indicates that a second-order approximation may be
available if further terms in the Taylor series expansion are retained in the
approximation.

Suppose that g in (7.1) is positive, and let —nh(8) = log f(x|8)+1log 7(8),
—nh*(8) = —nh(8) + log g(8). Now apply (7.2) to both the numerator and



208 7 Bayesian Computations

denominator of (7.1) with ¢ equal to 1. Then, letting 8* denote the maximum
of —h*, ¥ = A;1(6), Z* = A;1(8%), as mentioned in Section 4.3.2, Tierney
and Kadane (1986) obtain the fantastic approximation
| %12 exp (—nh*(é:))
E™(g(0)[x) = =
|Z|M/2 exp (—nh(o))

{1+0(n™®}, (7.3)

which they call fully exponential. This technique can be used in Example 7.2.
Note that to derive the approximation in (7.3), it is enough to have the prob-
ability distribution of g(8) concentrate away from the origin on the positive
side. Therefore, often when g is non-positive, (7.3) can be applied after adding
a large positive constant to g, and this constant is to be subtracted after
obtaining the approximation. Some other analytic approximations are also
available. Angers and Delampady (1997) use an ezponential approximation
for a probability distribution that concentrates near the origin. We will not
be emphasizing any of these techniques here, including the many numerical in-
tegration methods mentioned previously, because the availability of powerful
and all-purpose simulation methods have rendered them less powerful.

7.2 The E-M Algorithm

We shall use a slightly different notation here. Suppose Y|@ has density
f(y|8), and suppose the prior on 8 is (), resulting in the posterior den-
sity w(0]y). When 7(8]y) is computationally difficult to handle, as is usually
the case, there are some ‘data augmentation’ methods that can help. The
idea is to augment the observed data y with missing or latent data z to ob-
tain the ‘complete’ data x = (y,z) so that the augmented posterior density
m(6|x) = 7(8|y,z) is computationally easy to handle. The E-M algorithm (see
Dempster et al. (1977), Tanner (1991), or McLachlan and Krishnan (1997))
is the simplest among such data augmentation methods. In our context, the
E-M algorithm is meant for computing the posterior mode. However, if data
augmentation yields a computationally simple posterior distribution, there
are more powerful computational tools available that can provide a lot more
information on the posterior distribution as will be seen later in this chapter.
The basic steps in the iterations of the E-M algorithm are the following.
Let p(z|y,é) be the predictive density of Z given y and an estimate 8 of 6.

Find z) = E(Z]y, 9(1)), where 9(1) is the estimate of @ used at the ith step of

the iteration. Note the similarity with estimating missing values. Use 2 to
. ~ (141 .

augment y and maximize 7(6|y, z(¥)) to obtain B(H ). Then find z(+1) using

A (141 . . . . . .
0(1 ) and continue this iteration. This combination of expectation followed

by maximization in each iteration gives its name to the E-M algorithm.
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Implementation of the E-M Algorithm
Note that because 7(8ly) = 7 (0, z|y)/p(zly, 8), we have that
logm(fly) = log 7(8, zly) — log p(z|y, ).

Taking expectation with respect to Z|(A9(Z),y on both sides, we get

~ () ~ (1)
log 7(Bly) = / log (6, zly)p(zly, 8") dz — / log p(aly, )p(zly, 0

= 0,6")-H(0,0") (7.4)

)dz

(where @ and H are according to the notation of Dempster et al. (1977)).

Then, the general E-M algorithm involves the following two steps in the ith

iteration: @

E-Step: Calculate Q6,6 ! );

M-Step: Maximize Q(8, é(l)) with respect to 8 and obtain é(l) such that
max Q(0,0") = Q(o¢+1,8").

Note that

A (i+1) NO) ()

logm(0" " ly) —logm(6""ly) = {Q(ow), 8%y — Q(e®, é(i))}
- {H(O(H‘l),é(i)) _ H(O(i), é(i))} '
)

From the E-M algorithm, we have that Q(@¢+1), 9(i)) > Qe é(i
for any @,

). Further,

H(6,8" )

~ (1) i ~ (1)
- / log p(zly, O)p(zly, 8) dz - / log p(aly, 6)p(aly, 8”) da

= /log Lf()—:}'%'b?—)))} p(zly,09) dz

P(Zb’ao(i))} (@)

=— {log | ———— z|y,0\") dz
/ g{;o<z|y,o> P o)

<0,

)y~ H(O®,9"

because, for any two densities p1 and ps, [log(pi(z)/p2(x))pi(z)dz is the
Kullback-Leibler distance between p; and ps, which is at least 0. Therefore,
(1)

H(0D,6") - H(0®,8") <o,

and hence (i+1) @
@ ly) = =(0 |y)

for any iteration i. Therefore, starting from any point, the E-M algorithm can
usually be expected to converge to a local maximum.
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Table 7.1. Genetic Linkage Data

Cell Count |Probability
y= 125 1+°¢
y= 18 %(1 -6
ys = 20| 3(1-6)
ya= 34 ¢

Ezample 7.3. (genetic linkage model.) Consider the data from Rao (1973) on
a certain recombination rate in genetics (see Sorensen and Gianola (2002) for
details). Here 197 counts are classified into 4 categories as shown in Table 7.1,
along with the corresponding theoretical cell probabilities.

The multinomial mass function in this example is given by f(y[0) < (2 +
6)¥1(1 — §)¥21¥s@¥ g0 that under the uniform(0,1) prior on 6, the observed
posterior density is given by

7(Bly) o (2 + )1 (1 — g)va+vagus,

This is not a standard density due to the presence of 2 4+ 6. If we split the first
cell into two with probabilities 1/2 and /4, respectively, the complete data
will be given by x = (21, %2, Z3, Z4,Z5), Where ) + T2 = y1, T3 = Y2, T4 = Y3
and z5 = y4. The augmented posterior density will then be given by

m(0]x) ox 72175 (1 — g)*3t=4

which corresponds with the Beta density.
The E-step of E-M consists of obtaining

Q(6,09) = B [(Xa + X5)log 6 + (X3 + Xa) log(1 - 6)ly, 6]
= {E [ley, é(i)] + y4} log6 + (y2 + y3)log(1 - 6).  (7.5)

The M-step involves finding §¢+1) to maximize (7.5). We can do this by solving
2Q(8,0%)) =0, so that

E [Xaly,89] + 4

P+l —

— . (7.6)
E [ley, 0(”} +ys+y2+ys

Now note that E [XQIy, é(i)] =F [X2|X1 + Xo, é(i)], and that
Xo| X1 + Xo,00 ~ binomial(X; + X, l/é(i). Therefore,

2460 /4
E | Xa|X: + X 6t 6%
[ 2| X1 + Xo =y1, ]_y12—+é(_i)’

and hence
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Table 7.2. E-M Iterations for Genetic Linkage Data Example

Tteration s 4

1 .60825
2 62432
3 .62648
4 62678
5 62682
6 .62682
4@
A+ — Yigpgo T Y4 (7.7)
5 . .
(1 2-9H§<i> tYy2+ys+ya
In our example, (7.7) converges to 6 = .62682 in 5 iterations starting from

6 = 5 as shown in Table 7.2.

7.3 Monte Carlo Sampling

Consider an expectation that is not available in closed form. An alternative to
numerical integration or analytic approximation to compute this is statistical
sampling. This probabilistic technique is a familiar tool in statistical infer-
ence. To estimate a population mean or a population proportion, a natural
approach is to gather a large sample from this population and to consider
the corresponding sample mean or the sample proportion. The law of large
numbers guarantees that the estimates so obtained will be good provided the
sample is large enough. Specifically, let f be a probability density function (or
a mass function) and suppose the quantity of interest is a finite expectation
of the form

Esh(X) = /X h(x) f(x) dx (7.8)
(or the corresponding sum in the discrete case). If i.i.d. observations X;, Xa, ...
can be generated from the density f, then

P = — > h(X)) (7.9)

converges in probability (or even almost surely) to Efh(X). This justifies
using h., as an approximation for F +h(X) for large m. To provide a measure
of accuracy or the extent of error in the approximation, we can again use a
statistical technique and compute the standard error. If Varyh(X) is finite,
then Vary(h,,) = Varh(X)/m. Further, Varh(X) = Efh?(X) — (th(X))2
can be estimated by
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and hence the standard error of h,, can be estimated by

m

ﬁsm = %(Z(h(xi) — hm)?)V2.

=1

If one wishes, confidence intervals for E¢h(X) can also be provided using the
central limit theorem. Because

Vm (b — E;h(X))

Sm

— N(0,1)

m—>00

in distribution, (ﬁm — Za/28m/V/m, R + Zaj25m/v/m) can be used as an
approximate 100(1 — )% confidence interval for Efh(X), with 2,3 denoting
the 100(1 — «/2)% quantile of standard normal.

The above discussion suggests that if we want to approximate the posterior
mean, we could try to generate i.i.d. observations from the posterior distribu-
tion and consider the mean of this sample. This is rarely useful because most
often the posterior distribution will be a non-standard distribution which may
not easily allow sampling from it. Note that there are other possibilities as
seen below.

Ezample 7.4. (Example 7.1 continued.) Recall that

[ Oexp (—%@ﬁ) (12 + (0 — ,u)z)_1 dé
foexp (— ) (24 (0 - )7 df
S0 {Re () (P 0w de
R Y o D e D
where ¢ denotes the density of standard normal. Thus E™(6|z) is the ratio of
expectation of h(#) = 8/(7%2 + (8 — 1)?) to that of h(8) = 1/(7%2 + (6 — p)?),

both expectations being with respect to the N(z,o?) distribution. Therefore,
we simply sample 6,8, ... from N(z,0?) and use

E*(@jr) ity 0i (7% + (0: — w)?)
S (124 (6 - pw)?)

as our Monte Carlo estimate of E™(#|z). Note that (7.8) and (7.9) are applied
separately to both the numerator and denominator, but using the same sample
of #’s.

It is unwise to assume that the problem has been completely solved. The
sample of §’s generated from N(zx,0?) will tend to concentrate around ,

E™(0|z) =

b

-1
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whereas to satisfactorily account for the contribution of the Cauchy prior to
the posterior mean, a significant portion of the 6’s should come from the tails
of the posterior distribution. It may therefore appear that it is perhaps better
to express the posterior mean in the form

S bexp (— (”2;?2) 7(0) df
[ exp (— (62_;)2) 7(8) do 7

E™(|z) =

then sample 8’s from Cauchy(u,7) and use the approximation

g - Tt ()
E(f|z) = ST exp (_ (6,;2;?)2)

However, this is also not totally satisfactory because the tails of the posterior
distribution are not as heavy as those of the Cauchy prior, and hence there
will be excess sampling from the tails relative to the center. The implication
is that the convergence of the approximation is slower and hence a larger
error in approximation (for a fixed m). Ideally, therefore, sampling should be
from the posterior distribution itself for a satisfactory approximation. With
this view in mind, a variation of the above theme has been developed. This is
called the Monte Carlo importance sampling.

Consider (7.8) again. Suppose that it is difficult or expensive to sample
directly from f, but there exists a probability density u that is very close to
f from which it is easy to sample. Then we can rewrite (7.8) as

E/h(X) = | h{x)f(x)dx

= Ey {h(X)w(X)},

where w(x) = f(x)/u(x). Now apply (7.9) with f replaced by u and h replaced
by hw. In other words, generate i.i.d. observations X;, Xo, ... from the density
u and compute

hwy, = % i h(X;)w(X,).

The sampling density u is called the importance function. We illustrate im-
portance sampling with the following example.
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Ezample 7.5. Suppose X1, Xa,...,X, are i.i.d. N(8,0?), where both # and
0?2 are unknown. Independent priors are assumed for § and o2, where 6 has a
double exponential distribution with density exp(—|6])/2 and o? has the prior
density of (1 + 02)~2. Neither of these is a standard prior, but robust choice
of proper prior all the same. If the posterior mean of 8 is of interest, then it

is necessary to compute
E™(0x) = / / 07 (8, 0%|x) df do?.
—00 JO

Because 7(#, 0%|x) is not a standard density, let us look for a standard density
close to it. Letting Z denote the mean of the sample 1, x2,...,z, and s2 =
S (z; — %)% /n, note that

7(8,0%|x) x (¢2)7"/2 exp( — {(0—xz) +s2}) exp(—|6])(1 + 0?)~2
=[s24+(0—-2) ]n/2+1 (02)~("/242) exp ( 257 {(6 24 sn})
X{[si+(0—i)2]_(n/2+l)} ( |0|)(1+ 2)2
o2
o u1(0?|8)uz(6) eXP(—|9|)('1—+“C§)2,

where u;(0?|6) is the density of inverse Gamma with shape parameter n/2+1
and scale parameter 2{(6 — z)? + s3}, and uy is the Student’s ¢ density with
d.f. n+ 1, location Z and scale a multiple of s,. It may be noted that the
tails of exp(—|0|)(1j%.z)2 do not have much of an influence in the presence of
u1(02|0)uz(6). Therefore, u(f, 02) = u;1(02|0)uz(f) may be chosen as a suitable
importance function. This involves sampling 0 first from the density u,(6), and
given this 8, sampling 02 from wu;(0?|@). This is repeated to generate further
values of (8, 02). Finally, after generating m of these pairs (8, 02), the required
posterior mean of 4 is approximated by

BT = S

where w(8,0?) = f(x|8,02%)r(8,0%)/u(8,c?).

In some high-dimensional problems, a combination of numerical integra-
tion, Laplace approximation and Monte Carlo sampling seems to give ap-
pealing results. Delampady et al. (1993) use a Laplace-type approximation to
obtain a suitable importance function in a high-dimensional problem.

One area that we have not touched upon is how to generate random de-
viates from a given probability distribution. Clearly, this is a very important
subject being the basis of any Monte Carlo sampling technique. Instead of
providing a sketchy discussion from this vast area, we refer the reader to
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the excellent book by Robert and Casella (1999). We would, however, like to
mention one recent and very important development in this area. This is the
discovery of a very efficient algorithm to generate a sequence of uniform ran-
dom deviates with a very big period of 21997 — 1. This algorithm, known as
the Mersenne twister (MT), has many other desirable features as well, details
on which may be found in Matsumoto and Nishimura (1998). The property of
having a very large period is especially important because Monte Carlo sim-
ulation methods, especially MCMC, require very long sequences of random
deviates for proper implementation.

7.4 Markov Chain Monte Carlo Methods

7.4.1 Introduction

A severe drawback of the standard Monte Carlo sampling or Monte Carlo
importance sampling is that complete determination of the functional form
of the posterior density is needed for their implementation. Situations where
posterior distributions are incompletely specified or are specified indirectly
cannot be handled. One such instance is where the joint posterior distribu-
tion of the vector of parameters is specified in terms of several conditional
and marginal distributions, but not directly. This actually covers a very large
range of Bayesian analysis because a lot of Bayesian modeling is hierarchical
so that the joint posterior is difficult to calculate but the conditional posteri-
ors given parameters at different levels of hierarchy are easier to write down
(and hence sample from). For instance, consider the normal-Cauchy problem
of Example 7.1. As shown later in Section 7.4.6, this problem can be given a
hierarchical structure wherein we have the normal model, the conjugate nor-
mal prior in the first stage with a hyperparameter for its variance and this
hyperparameter again has the conjugate prior. Similarly, consider Example 7.2
where we have independent observations X; ~ Poisson(6;). Now suppose the
prior on the 6;’s is a conjugate mixture. We again see (Problem 14) that
a hierarchical prior structure can lead to analytically tractable conditional
posteriors. It turns out that it is indeed possible in such cases to adopt an
iterative Monte Carlo sampling scheme, which at the point of convergence will
guarantee a random draw from the target joint posterior distribution. These
iterative Monte Carlo procedures typically generate a random sequence with
the Markov property such that this Markov chain is ergodic with the lim-
iting distribution being the target posterior distribution. There is actually a
whole class of such iterative procedures collectively called Markov chain Monte
Carlo (MCMC) procedures. Different procedures from this class are suitable
for different situations.

As mentioned above, convergence of a random sequence with the Markov
property is being utilized in this procedure, and hence some basic under-
standing of Markov chains is required. This material is presented below. This
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discussion as well as the following sections are mainly based on Athreya et al.
(2003).

7.4.2 Markov Chains in MCMC

A sequence of random variables { X, }»>0 is a Markov chain if for any n, given
the current value, X, the past {X;,j < n—1} and the future {X, : j > n+1}
are independent. In other words,

P(ANB|X,) = P(A|X,)P(B|X,), (7.10)

where A and B are events defined respectively in terms of the past and the
future. Among Markov chains there is a subclass that has wide applicability.
They are Markov chains with time homogeneous or stationary transition prob-
abilities, meaning that the probability distribution of X, 4+, given X, = z, and
the past, X; : § <n —1 depends only on z and does not depend on the values
of X; :j <n—1orn. If the set S of values {X,,} can take, known as the
state space, is countable, this reduces to specifying the transition probability
matrix P = ((p;;)) where for any two values 4,j in S, p;; is the probability
that X,, 11 = j given X, = 1, i.e., of moving from state ¢ to state j in one time
unit. For state space S that is not countable, one has to specify a transition
kernel or transition function P(z,-) where P(z, A) is the probability of mov-
ing from z into A in one step, i.e., P(X 41 € A|X,, = z). Given the transition
probability and the probability distribution of the initial value Xy, one can
construct the joint probability distribution of {X; : 0 < j < n} for any finite
n. For example, in the countable state space case

P(XO = iO7X1 = il, s ,X'n.—l = in—1>Xn = Z'n.)
= P(X'n. = Z'n.lXO =10,--., Xn_1= i'n.~1)
XP(XO = io,Xl = il, .. -X'n.—l = in—l)

= pinvlinP(XO = io, ey Xn—l = in—l)

= P(Xo = 90)Pigis Piris - - Pinrin-
A probability distribution = is called stationary or invariant for a transition
probability P or the associated Markov chain {X,} if it is the case that
when the probability distribution of Xg is  then the same is true for X,, for
all n > 1. Thus in the countable state space case a probability distribution

m = {m; : i € S} is stationary for a transition probability matrix P if for each
jin S,

P(X,=j) = ZP(X1 = j]Xo = ) P(Xo = i)

= Zmpz‘j = P(Xo = j) =m;. (7.11)

1
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In vector notation it says « = (w1, m3,...) is a left eigenvector of the matrix
P with eigenvalue 1 and

T =mnP (7.12)

Similarly, if S is a continuum, a probability distribution 7 with density p(z)
is stationary for the transition kernel P(-,-) if

F(A):/Ap(.r) d;v:/SP(;zt,A)p(r) dz

for all AC S.

A Markov chain {X,} with a countable state space S and transition prob-
ability matrix P = ((p;;)) is said to be drreducible if for any two states ¢ and j
the probability of the Markov chain visiting j starting from ¢ is positive, i.e.,
for some n > l,pl(-?) = P(X,, = j|Xo = i) > 0. A similar notion of irreducibil-
ity, known as Harris or Doeblin irreducibility exists for the general state space
case also. For details on this somewhat advanced notion as well as other results
that we state here without proof, see Robert and Casella (1999) or Meyn and
Tweedie (1993). In addition, Tierney(1994) and Athreya et al. (1996) may be
used as more advanced references on irreducibility and MCMC. In particular,
the last reference uses the fact that there is a stationary distribution of the
Markov chain, namely, the joint posterior, and thus provides better and very
explicit conditions for the MCMC to converge.

Theorem 7.6. (law of large numbers for Markov chains) Let { X, },>0
be a Markov chain with a countable state space S and a transition probability
matriz P. Further, suppose it is irreducible and has a stationary probability
distribution m = (m; : ¢ € S) as defined in (7.11). Then, for any bounded
function h 1 S — R and for any initial distribution of X

1 n—1

- > h(X) = > h()m (7.13)
i=0 7

in probability as n — oo.

A similar law of large numbers (LLN) holds when the state space S is not
countable. The limit value in (7.13) will be the integral of A with respect to the
stationary distribution n. A sufficient condition for the validity of this LLN
is that the Markov chain {X,,} be Harris irreducible and have a stationary
distribution 7.

To see how this is useful to us, consider the following. Given a probability
distribution 7 on a set S, and a function h on S, suppose it is desired to
compute the “integral of h with respect to #”, which reduces to >, h{j)n;
in the countable case. Look for an irreducible Markov chain {X,} with state
space S and stationary distribution w. Then, starting from some initial value
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Xo, run the Markov chain {X;} for a period of time, say 0,1,2,...n —1 and
consider as an estimate

pn ==Y h(X;). (7.14)

By the LLN (7.13), this estimate un will be close to 3_; h(j)m; for large n.

This technique is called Markov chain Monte Carlo MCMC). For example,
if one is interested in m(A4) = ;¢ 4 m; for some A C S then by LLN (7.13)
this reduces to

n—1
m(d) = - 3" 14(%;) = 7(A)
0

in probability as n = oo, where I4(X;) =1 if X; € A and 0 otherwise.

An irreducible Markov chain {X,,} with a countable state space S is called
aperiodic if for some 7 € S the greatest common divisor, g.c.d. {n : pg?) >0} =
1. Then, in addition to the LLN (7.13), the following result on the convergence
of P(X,, = j) holds.

Z |P(X, =3)—m;] =0 (7.15)

as n — oo, for any initial distribution of Xy. In other words, for large n the
probability distribution of X, will be close to m. There exists a result similar
to (7.15) for the general state space case that asserts that under suitable
conditions, the probability distribution of X,, will be close to 7 as n — co.

This suggests that instead of doing one run of length n, one could do N
independent runs each of length m so that n = Nm and then from the i*P
run use only the m'® observation, say, Xm,i and consider the estimate

N
1
ANm = 5 ;h(xm,i). (7.16)

Other variations exist as well. Some of the special Markov chains used in
MCMC are discussed in the next two sections.

7.4.3 Metropolis-Hastings Algorithm

In this section, we discuss a very general MCMC method with wide applica-
tions. It will soon become clear why this important discovery has led to very
considerable progress in simulation-based inference, particularly in Bayesian
analysis. The idea here is not to directly simulate from the given target den-
sity (which may be computationally very difficult) at all, but to simulate an
easy Markov chain that has this target density as the density of its stationary
distribution. We begin with a somewhat abstract setting but very soon will
get to practical implementation.
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Let S be a finite or countable set. Let # be a probability distribution on
S. We shall call 7 the target distribution. (There is room for slight confusion
here because in our applications the target distribution will always be the
posterior distribution, so let us note that « here does not denote the prior
distribution, but just a standard notation for a generic target.) Let Q@ = ((gs5))
be a transition probability matrix such that for each i, it is computationally
easy to generate a sample from the distribution {g;; : j € S}. Let us generate
a Markov chain {X,} as follows. If X, = i, first sample from the distribution
{g:j : 7 € S} and denote that observation Y. Then, choose X1, from the
two values X, and Y,, according to

P(Xn+1 = Yn|Xna Yn) = p(Xna Yn)
P(Xnp1 = Xn| Xy Ya) = 1 — p( X, Yo, (7.17)

where the “acceptance probability” p(:, ) is given by

.. . ) T 5
p(i,7) = min ——,1} 7.18
(i,7) = min { 22 (119
for all (¢,7) such that m;g;; > 0. Note that {X,} is a Markov chain with
transition probability matrix P = ((p;;)) given by

Qij Pij J#
Pij=91->% pi, =1 (7.19)
)

Q is called the “proposal transition probability” and p the “acceptance prob-
ability”. A significant feature of this transition mechanism P is that P and «
satisfy

mipi; = w;p;i  for all 4, 7. (7.20)

This implies that for any j
Zﬂ'ipij :ﬂ'j iji :7Tj, (721)

or, m is a stationary probability distribution for P.

Now assume that S is irreducible with respect to ¢ and m; > 0 for all 7 in
S. It can then be shown that P is irreducible, and because it has a stationary
distribution #, LLN (7.13) is available. This algorithm is thus a very flexible
and useful one. The choice of @ is subject only to the condition that S is
irreducible with respect to @Q. Clearly, it is no loss of generality to assume
that m; > 0 for all ¢ in S. A sufficient condition for the aperiodicity of P is
that p;; > 0 for some i or equivalently

Z%‘jpij <1

3#1
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A sufficient condition for this is that there exists a pair (4, j) such that m;q;; >
0 and ;G5 < TiQsj.

Recall that if P is aperiodic, then both the LLN (7.13) and (7.15) hold.
If S is not finite or countable but is a continuum and the target distribution
m(-) has a density p(-), then one proceeds as follows: Let Q) be a transition
function such that for each z, Q(z,-) has a density ¢(z,y). Then proceed as
in the discrete case but set the “acceptance probability” p(z,y) to be

~ min p(y)q(y, z)
play) = {pm)q(x,y)’l}

for all (z,y) such that p(z)g(z,y) > 0. A particularly useful feature of the
above algorithm is that it is enough to know p(-) upto a multiplicative constant
as in the definition of the “acceptance probability” p(-,-), only the ratios
p(v)/p(z) need to be calculated. (In the discrete case, it is enough to know {m; }
upto a multiplicative constant because the “acceptance probability” p(:,-)
needs only the ratios m;/7;.) This assures us that in Bayesian applications
it is not necessary to have the normalizing constant of the posterior density
available for computation of the posterior quantities of interest.

7.4.4 Gibbs Sampling

As was pointed out in Chapter 2, most of the new problems that Bayesians are
asked to solve are high-dimensional. Applications to areas such as micro-arrays
and image processing are some examples. Bayesian analysis of such problems
invariably involve target (posterior) distributions that are high-dimensional
multivariate distributions. In image processing, for example, typically one has
N x N square grid of pixels with N = 256 and each pixel has k > 2 possible
values. Thus each configuration has (256)% components and the state space S
has (2%6)” configurations. To simulate a random configuration from a target
distribution over such a large S is not an easy task. The Gibbs sampler is a
technique especially suitable for generating an irreducible aperiodic Markov
chain that has as its stationary distribution a target distribution in a high-
dimensional space but having some special structure. The most interesting
aspect of this technique is that to run this Markov chain, it suffices to generate
observations from univariate distributions.

The Gibbs sampler in the context of a bivariate probability distribution
can be described as follows. Let m be a target probability distribution of a
bivariate random vector (X,Y’). For each z, let P(z,-) be the conditional
probability distribution of ¥ given X = z. Similarly, let Q(y,-) be the con-
ditional probability distribution of X given ¥ = y. Note that for each z,
P(z,-) is a univariate distribution, and for each y, Q(y,-) is also a univariate
distribution. Now generate a bivariate Markov chain Z,, = (X, Y,,) as follows:

Start with some Xy = zo. Generate an observation Y from the distribution
P(zg,-). Then generate an observation X; from Q(Yp, ). Next generate an
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observation Y7 from P(X1,-) and so on. At stage n if Z,, = (X,,,Y,) is known,
then generate X, 11 from Q(Y,,-) and Yn4; from P(X,.1,-).

If 7 is a discrete distribution concentrated on {(z;,y;) : 1 <i < K,1 <
j < L} and if m;; = (=, y;) then P(x;,y;) = m;;/m;. and

) =

Qyj,z:) ey )

where m;. = > mj, m; = ), mi;. Thus the transition probability matrix
R = ((r@i5),key)) for the {Z,} chain is given by

75, e0) = QY5 Tr) P(Tk, ye)

_ ey Tre
- 71'.]' Tk. '
It can be verified that this chain is irreducible, aperiodic, and has = as its
stationary distribution. Thus LLN (7.13) and (7.15) hold in this case. Thus
for large n, Z, can be viewed as a sample from a distribution that is close to
7 and one can approximate 3, ; h(i,7)m; by 7., h(Xs, Vi) /n.

1
Note that the conditional distribution of X given Y = y and that of ¥ given
X =1z are

. . . . X 0, 1 p
As an illustration, consider sampling from (Y) ~ Na ((0), [p })

XY =y~ N(py,1 -p?>) and Y|X =z ~ N(pz,1 - p?). (7.22)

Using this property, Gibbs sampling proceeds as described below to generate
(Xn,Yn), n=0,1,2,..., by starting from an arbitrary value zq for Xj, and
repeating the following steps for ¢ = 0,1,...,n.

1. Given z; for X, draw a random deviate from N(px;,1 — p?) and denote
it by ¥;.

2. Given y; for Y, draw a random deviate from N(py;, 1 — p?) and denote it
by Xit1-

The theory of Gibbs sampling tells us that if n is large, then (z,,yn) is a

random draw from a distribution that is close to Ny ((8), E T } ) To see
why Gibbs sampler works here, recall that a sufficient condition for the LLN
(7.13) and the limit result (7.15) is that an appropriate irreducibility condition
holds and a stationary distribution exists. From steps 1 and 2 above and using
(7.22), one has

Yi=pX;+V1-p2m

Xit1=pY; +V1-p2 &,
where 7; and §; are independent standard normal random variables indepen-
dent of X;. Thus the sequence { X;} satisfies the stochastic difference equation

and
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Xit1 = p*Xi + Uiy1,

where
U1 = pV1-p? mi +V1-p% &

Because 7, &; are independent N(0,1) random variables, U;; is also a nor-
mally distributed random variable with mean 0 and variance p%(1—p?)+ (1 —
p*) = 1 — p* Also {U;};>1 being i.i.d., makes {X;};>0 a Markov chain. It
turns out that the irreducibility condition holds here. Turning to stationarity,
note that if Xg is a N(0,1) random variable, then X, = p?X, + U, is also a
N(0,1) random variable, because the variance of X; = p*+1—p* = 1 and the
mean of X; is 0. This makes the standard N(0, 1) distribution a stationary
distribution for {X,}.

The multivariate extension of the above-mentioned bivariate case is very
straightforward. Suppose 7 is a probability distribution of a k-dimensional
random vector (X, Xo,...,Xg). If u = (uy,uz,...,ux) is any k-vector, let
u_; = (u1,ug, .., Ui—1,Uit1, - - -, Uk) De the k—1 dimensional vector resulting
by dropping the ith component u;. Let m;(-|x_;) denote the univariate con-
ditional distribution of X; given that X_; = (X1, X2, Xi—1, Xit1,.--, Xk) =
x_;. Now starting with some initial value for Xog = (z¢1,Zo2,---,Zok) gen-
erate X; = (X11,X12,...,X1x) sequentially by generating X;; according to
the univariate distribution m;(-|xg_,) and then generating X, according to
m2(-|(X11, Zos, Toa, - - -, Tok) and so on. The most important feature to recog-
nize here is that all the univariate conditional distributions, X;|X_; = x_;,
known as full conditionals should easily allow sampling from them. This turns
out to be the case in most hierarchical Bayes problems. Thus, the Gibbs sam-
pler is particularly well adapted for Bayesian computations with hierarchical
priors. This was the motivation for some vigorous initial development of Gibbs
sampling as can be seen in Gelfand and Smith (1990).

The Gibbs sampler can be justified without showing that it is a special
case of the Metropolis-Hastings algorithm. Even if it is considered a special
case, it still has special features that need recognition. One such feature is
that full conditionals have sufficient information to uniquely determine a mul-
tivariate joint distribution. This is the famous Hammersley- Clifford theorem.
The following condition introduced by Besag (1974) is needed to state this
result.

Definition 7.7. Let p(yi,...,yx) be the joint density of a random vector Y =
(Y1,...,Ys) and let p¥(y;) denote the marginal density of Vi, i = 1,...,k.
pr(i)(y,-) > 0 for every i = 1,...,k implies that p(y1,...,yx) > 0, then the
joint density p is said to satisfy the positivity condition.

Let us use the notation p;(yily1,---,Yi—1,Yit1s---,yk) for the conditional
density of ;Y _; = y_;.

Theorem 7.8. (Hammersley-Clifford) Under the positivity condition, the
joint density p satisfies
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Y O(Hpj yj|y1»"'7yj—17y;'+1»"'»y;g)
k 3
v p] yj|y1»"'7yj—lay;'+1»"'»y;g)

(Y1, -

for every y and y’ in the support of p.

Proof. For y and y’ in the support of p,

Py -5 ¥k) = Pe(¥klYrs- - Yr—1)PW1,5 - - -5 Yk—1)

k(yk|yla---ayk 1
—Pk(y;c|3/1a---»yk 1
(
(

(yI’ s ayk—lay;c)

k— l(yk 1|y17 .- '7yk*27y;c)
k=1 U1V, - Yk—2, Yk)

k yk|y17"'7yk 1
k(Wrlyty - yk—1

Xp(yla s 7y;c—1ay;c)

ﬁpj(yj|y1»'"7yj*1»y;'+17"'»y;c) ’

/
P15+ Yk). O
L (WYt Y1 Y5 Vk) i k

It can be shown also that under the positivity condition, the Gibbs sampler
generates an irreducible Markov chain, thus providing the necessary conver-
gence properties without recourse to the M-H algorithm. Additional conditions
are, however, required to extend the above theorem to the non-positive case,
details of which may be found in Robert and Casella (1999).

7.4.5 Rao-Blackwellization

The variance reduction idea of the famous Rao-Blackwell theorem in the pres-
ence of auxiliary information can be used to provide improved estimators when
MCMC procedures are adopted. Let us first recall this theorem.

Theorem 7.9. (Rao-Blackwell theorem) Let §( X1, Xo,...,X,,) be an es-
timator of 6 with finite variance. Suppose that T 1is sufficient for 6, and let
0*(T), defined by 6*(t) = E(6(X1, Xo,...,Xpn)|T =1t), be the conditional ex-
pectation of §(X1, Xz2,...,X,) given T =t. Then

E(8*(T) - 0)* < E(5(X1, X2,...,Xyn) — 0)2

The inequality is strict unless 6 = 6™, or equivalently, § is already a function
of T.

Proof. By the property of iterated conditional expectation,
E(6"(T)) = BEGE(X1, Xs,. .., Xp)IT)] = B(X1, Xa, -, X0)):

Therefore, to compare the mean squared errors (MSE) of the two estimators,
we need to compare their variances only. Now,
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Var(8(X1, Xa,...,Xy,)) = Var [E(S|T)] + E [Var(8|T)]
= Var(6*) + E [Var(4|T)]
> Var(d8*),

unless Var(8|T) = 0, which is the case only if § itself is a function of T. O

The Rao—Blackwell theorem involves two key steps: variance reduction by
conditioning and conditioning by a sufficient statistic. The first step is based
on the analysis of variance formula: For any two random variables S and T,
because

Var(S) = Var(E(S|T)) + E(Var(S|T)),

one can reduce the variance of a random variable S by taking conditional
expectation given some auxiliary information 7. This can be exploited in
MCMC. .

Let (X;,Y;),7 = 1,2,...,N be the data generated by a single run of
the Gibbs sampler algorithm with a target distribution of a bivariate ran-
dom vector (X,Y). Let h(X) be a function of the X component of (X,Y)
and let its mean value be p. Suppose the goal is to estimate u. A first es-
timate is the sample mean of the h(X;),j = 1,2,..., N. From the MCMC
theory, it can be shown that as N — oo, this estimate will converge to
i in probability. The computation of variance of this estimator is not easy
due to the (Markovian) dependence of the sequence {X;,j = 1,2,...,N}.
Now suppose we make n independent runs of Gibbs sampler and generate
(Xi;,Yi5),5=1,2,...,N;i=1,2,...,n. Now suppose that IV is sufficiently
large so that (X;n, Yin) can be regarded as a sample from the limiting target
distribution of the Gibbs sampling scheme. Thus (X;n,Y;n),i =1,2,...,nare
i.i.d. and hence form a random sample from the target distribution. Then one
can offer a second estimate of y—the sample mean of h(X,n),71=1,2,...,n.
This estimator ignores a good part of the MCMC data but has the advan-
tage that the variables h(X;n), 1 = 1,2,...,n are independent and hence the
variance of their mean is of order n~!. Now applying the variance reduction
idea of the Rao-Blackwell theorem by using the auxiliary information Yy,
1=1,2,...,n, one can improve this estimator as follows:

Let k(y) = E(h(X)|Y = y). Then for each i, k(Y;n) has a smaller variance
than h(X;n) and hence the following third estimator,

has a smaller variance than the second one. A crucial fact to keep in mind
here is that the exact functional form of k(y) be available for implementing
this improvement.
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7.4.6 Examples

Ezample 7.10. (Example 7.1 continued.) Recall that X0 ~ N (8, 0?) with
known o2 and @ ~ Cauchy(u, 7). The task is to simulate 6 from the poste-
rior distribution, but we have already noted that sampling directly from the
posterior distribution is difficult. What facilitates Gibbs sampling here is the
result that the Student’s ¢ density, of which Cauchy is a special case, is a
scale mixture of normal densities, with the scale parameter having a Gamma
distribution (see Section 2.7.2, Jeffreys test). Specifically,

-1

w(0) (72 + (80— ,u)Q)

A 1/2 A o) 17241 A
o [ e (— a6 P ) N exn(= )

so that 7(#) may be considered the marginal prior density from the joint prior
density of (8, \) where

0|\ ~ N(p, 72/X) and A\ ~ Gamma(1/2,1/2).

It can be noted that this leads to an implicit hierarchical prior structure
with X being the hyperparameter. Consequently, 7(6|z) may be treated as
the marginal density from 7(8, A|x). Now note that the full conditionals of
7(0, A|z) are standard distributions from which sampling is easy. In particular,

72 Ao? 252
8 ~ N : 2
Az <72+)\02£+72+)\02N’ 72+)\02>’ (7.23)
2 06— 2
A6,z ~ A@ ~ Exponential (7-_‘_542'@) . (7.24)
T

Thus, the Gibbs sampler will use (7.23) and (7.24) to generate (8, ) from
(0, Mx).

Example 7.11. Consider the following example due to Casella and George
given in Arnold (1993). Suppose we are studying the distribution of the num-
ber of defectives X in the daily production of a product. Consider the model
(X | Y,0) ~ binomial(Y, 8), where Y, a day’s production, is a random variable
with a Poisson distribution with known mean A, and 6 is the probability that
any product is defective. The difficulty, however, is that Y is not observable,
and inference has to be made on the basis of X only. The prior distribution
is such that (8 | Y = y) ~ Beta(a,y), with known a and + independent of
Y. Bayesian analysis here is not a particularly difficult problem because the
posterior distribution of 8| X = z can be obtained as follows. First, note that
X |6 ~ Poisson(A\d). Next, 8 ~ Beta(a,y). Therefore,

()X = 2) o< exp(—N)O=T 1 -0 0< O < 1. (7.25)
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The only difficulty is that this is not a standard distribution, and hence pos-
terior quantities cannot be obtained in closed form. Numerical integration
is quite simple to perform with this density. However, Gibbs sampling pro-
vides an excellent alternative. Instead of focusing on 6| X directly, view it as
a marginal component of (Y, 6 | X). It can be immediately checked that the
full conditionals of this are given by

Y|X =1z,6 ~ z + Poisson(A(1 — )), and

0| X =z,Y =y ~Betala+z,y+y—x)

both of which are standard distributions.

Ezrample 7.12. (Example 7.11 continued.) It is actually possible here to sample
from the posterior distribution using what is known as the accept-reject Monte
Carlo method. This widely applicable method operates as follows. Let g(x)/K
be the target density, where K is the possibly unknown normalizing constant
of the unnormalized density ¢g. Suppose h(x) is a density that can be simulated
by a known method and is close to g, and suppose there exists a known
constant ¢ > 0 such that g(x) < ch(x) for all x. Then, to simulate from the
target density, the following two steps suffice. (See Robert and Casella (1999)
for details.)
Step 1. Generate Y ~ h and U ~ U(0, 1);
Step 2. Accept X =Y if U < g(Y)/{ch(Y)}; return to Step 1 otherwise.
The optimal choice for ¢ is sup{g(x)/h(x), but even this choice may result in
undesirably large number of rejections.

In our example, from (7.25),

g(0) = exp(—A0)8"T>"1(1 -6 1{0 < H < 1},

so that k() may be chosen to be the density of Beta(z + a,~). Then, with
the above-mentioned choice for c, if § ~ Beta(x + a, ) is generated in Step 1,
its ‘acceptance probability’ in Step 2 is simply exp(—A6). Even though this
method can be employed here, we, however, would like to use this technique
to illustrate the Metropolis-Hastings algorithm. The required Markov chain is
generated by taking the transition density q(z,y) = q(y|z) = h(y), indepen-
dently of z. Then the acceptance probability is

— )L
o) = min{ SRS 1)
= min {exp (— Ay — 2)),1}.

Thus the steps involved in this “independent” M-H algorithm are as follows.
Start at ¢ = 0 with a value z( in the support of the target distribution; in
this case, 0 < 2o < 1. Given z;, generate the next value in the chain as given
below.

(a) Draw Y; from Beta(zr + «, 7).

(b) Let

| Y, with probability p;
T+ = 9 2, otherwise,
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where p; = min{exp (—\(Y; — z:)),1}.

(c) Set t =t + 1 and go to step (a).

Run this chain until ¢ = n, a suitably chosen large integer. Details on its
convergence as well as why independent M-H is more efficient than accept-
reject Monte Carlo can be found in Robert and Casella (1999). In our example,
forz =1, a =1,y =49 and A = 100, we simulated such a Markov chain. The
resulting frequency histogram is shown in Figure 7.1, with the true posterior
density super-imposed on it.

Ezample 7.15. In this example, we discuss the hierarchical Bayesian analysis
of the usual one-way ANOVA. Consider the model

yij =0 +ej,0=1,...,ni50=1,...,k;

€; ~N(0,00),7=1,...,n5i=1,...,k, (7.26)

and are independent. Let the first stage prior on 6; and o2 be such that they
are i.i.d. with

0; NN(,u,T,J?T), i=1,...,k

2 . .
o; ~ inverse Gamma(a;,b1), i=1,...,k.

The second stage prior on p, and o2 is

o] 0.0z 0.04 0.06

Fig. 7.1. M-H frequency histogram and true posterior density.
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pr ~ N(po,02) and o2 ~ inverse Gamma(ag, by).

Here a1, ag, b1, ba, ft0, and o are all specified constants. Let us concentrate
on computing
u(y) = E"(8ly).

Sufficiency reduces this to considering only

_ 1 &
V= — i=1,...,kand
f nijzz:ly”z an

g

SEZZ(y”—Y;)2,Z:1,,k

Jj=1
From normal theory,

Y;|0,0% ~ N(6;,0%/n;), i=1,...,k,
which are independent and are also independent of
S216,0% ~ o2, i=1,...,k,

which again are independent. To utilize the Gibbs sampler, we need the full
conditionals of m(8, 2, i, 02|y). It can be noted that it is sufficient, and in
fact advantageous to consider the conditionals,

(i) 7(8l0?, px, 02, y),

(il) (0216, in, 02, ¥),

(111) 7I'(/J,7r|0'72r,0, 027y)7 and

(iv) 7r(0'72|. ltir, 6, o?, y),

rather than considering the set of all univariate full conditionals because of
the special structure in this problem. First note that

0|N7r70-72r ~ Nk(pfﬂ‘laafr-[k)a
and hence

Olpir, 02,02,y ~ Ni(u, D) where

2 2
(1) _ Ix . g; /ni

Ha a2 +0i2/niyl

and
o2 +0f/n,
2 2
oio?/n,

2 s di 1 with 5V = ,
18 lagonal wi i 0'72‘_ i 0'i2/'n,i

(7.27)

which determines (i). Next we note that, given €, from (7.26), S2 =
>hi1(yij — 0:)? is sufficient for o7, and they are independently distributed.
Thus we have,

x2( 2 2.2 _
S%o%,0 ~ 07X, 1,0 =1,.. ., k,

and are independent, and ¢? are i.i.d. inverse Gamma (a1, b1), so that
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1 1
0210, pix,02,y ~ inverse Gamma(a; + §ni,b1 + 55’;‘2), (7.28)

and they are independent for i = 1,.. ., k, which specifies (ii). Turning to the
full conditional of u,, we note from the hierarchical structure that the condi-
tional distribution of p. |02, 8,02,y is the same as the conditional distribution
of pr|o2,8. To determine thls distribution, note that

0;pr, 02 ~ N(in,02),

fori=1,...,k and are i.i.d. and p, ~ N(ug,02). Therefore, treating € to be
a random Sample from N(pir,02), so that § = Zi:l 6;/k is sufficient for p,,
we have the joint distribution,

g‘uw» 0'72r ~ N(Hwa Ufr/k)a and pi, ~ N(llo, 08)

Thus we obtain,

2 _ o2 /k ool /k
02,0 02y~ N(— T8 g / 0%x 7.29
I Jam , OOy (08+072|'/k + 2/k 0,00 z/k) ( )

which provides (iii). Just as in the previous case, the conditional distribution
of 0%|px, 0,02,y turns out to be the same as the conditional distribution of
02|, 6. To obtain this, note again that

0:pr, 02 ~ N(pin,02),

fori=1,...,k and are i.i.d. so that this time Zle(ﬁi — pr)? is sufficient for
o2. Further

o

E (0; — pr)?|02 ~ 02x% and o2 ~ inverse Gamma(as, bo),

so that

k
1
o2|pr,0,0%,y ~ inverse Gamma(ay + oo + = 5 Z(@Z — un)?). (7.30)

=1

This gives us (iv), thus completing the specification of all the required full
conditionals. It may be noted that the Gibbs sampler in this problem requires
simulations from only the standard normal and the inverse Gamma distribu-
tions.

Reversible Jump MCMC

There are situations, especially in model selection problems, where the MCMC
procedure should be capable of moving between parameter spaces of differ-
ent dimensions. The standard M-H algorithm described earlier is incapable
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of such movements, whereas the reversible jump algorithm of Green (1995) is
an extension of the standard M-H algorithm to allow exactly this possibility.
The basic idea behind this technique as applied to model selection is as fol-
lows. Given two models M; and M> with parameter sets 8; and 63, which are
possibly of different dimensions, fill the difference in the dimensions by sup-
plementing the parameter sets of these models. In other words, find auxiliary
variables «y12 and ~y5; such that (81,712) and (82,~21) can be mapped with
a bijection. Now use the standard M-H algorithm to move between the two
models; for moves of the M-H chain within a model, the auxiliary variables
are not needed. We sketch this procedure below, but for further details refer
to Robert and Casella (1999), Green (1995), Sorensen and Gianola (2002),
Waagepetersen and Sorensen (2001), and Brooks et al. (2003).

Consider models M7, Ms, ... where model M; has a continuous parameter
space ©;. The parameter space for the model selection problem as a whole
may be taken to be

{(M;,0;): 0, € 6;,i=1,2,...}.

Let f(x|M;,8;) be the model density under model M;, and the prior density
be
n(0) =Y mm(0:|M;)I (0 =6, €6,),

where 7; is the prior probability of model M; and 7 (8;|M;) is the prior density
conditional on M; being true. Then the posterior probability of any B C U;60;
is

7(Blx) = Z/Bﬂeﬂ(ei]Mi,x) de;,

where
7r(0i[Mi,x) 0.8 7rz7r(01|Mz)f(x|Mz, 01)

is the posterior density restricted to M;. To compute the Bayes factor of My
relative to M;, we will need

P (Mylx) 11
P”(M1|X) Tk ’

where
ur fei W(ez‘Mz)f(X‘Mz, 01) dBZ

2575 Jo, m(0;1M;) f (x|M;, 6;) dB;

is the posterior probability of M;. Therefore, for the target density =(€|x),
we need a version of the M-H algorithm that will facilitate the above-shown
computations. Suppose 8; is a vector of length n,. It suffices to focus on
moves between 6; in model M; and 8; in model M; with n; < n;. The
scheme provided by Green (1995) is as follows. If the current state of the chain
is (M;,8;), a new value (M;,8;) is proposed for the chain from a proposal

PT(Myfx) =
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(transition) distribution Q(6;,d6,), which is then accepted with a certain
acceptance probability. To move from model M; to M;, generate a random
vector V of length n; — n; from a proposal density

;=T

()= [] %om).

Identify an appropriate bijection map
hij : 9; x RPITT — Qj,

and propose the move from 6; to 8; using 0; = h;;(6;, V). The acceptance
probability is then

p((M;, 6:), (M;,6;)) = min {1, 0; (05, 65)} ,
where
m(0;|M;,x)p;i(0;) | Ohi;(6:,v)
(0:[Mi, x)pi; (0:)i;(v) | 0(8i,v)
with p;;(0;) denoting the (user-specified) probability that a proposed jump
to model M, is attempted at any step starting from 6; € ©;. Note that
Zj pij =1.

Example 7.14. For illustration purposes, consider the simple problem of com-
paring two normal means as in Sorensen and Gianola (2002). Then, the two
models to be compared are

@i;(0:,0;) = -

b

vilM1,v,0% ~ N(v,0%),i=1,2,...m1 +my iid.,

N(vi,0%),i=1,2,...my;
. 2 1, ) y &y 1
Yl Mz, vy, 02,0 {N(V2,02),i=m1+1,...m1+m2.

To implement the reversible jump M-H algorithm we need the map, k5 taking
(v,0%,V) to (v1,12,07%). A reasonable choice for this is the linear map

12 10 1 v
vy | =110-1 a?
o> 01 O 14

7.4.7 Convergence Issues

As we have already seen, Monte Carlo sampling based approaches for inference
make use of limit theorems such as the law of large numbers and the central
limit theorem to justify their validity. When we add a further dimension to
this sampling and adopt MCMC schemes, stronger limit theorems are needed.
Ergodic theorems for Markov chains such as those given in equations (7.13)
and (7.15) are these useful results. It may appear at first that this procedure
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necessarily depends on waiting until the Markov chain converges to the target
invariant distribution, and sampling from this distribution. In other words, one
needs to start a large number of chains beginning with different starting points,
and pick the draws after letting these chains run sufficiently long. This is
certainly an option, but the law of large numbers for dependent chains, (7.13)
says also that this is unnecessary, and one could just use a single long chain.
It may, however, be a good idea to use many different chains to ensure that
convergence indeed takes place. For details, see Robert and Casella (1999).

There is one important situation, however, where MCMC sampling can
lead to absurd inferences. This is where one resorts to MCMC sampling with-
out realizing that the target posterior distribution is not a probability distri-
bution, but an improper one. The following example is similar to the normal
problem (see Exercise 13) with lack of identifiability of parameters shown in
Carlin and Louis (1996).

Ezample 7.15. (Example 7.11 continued.) Recall that, in this problem, (X |
Y,6) ~ binomial(Y,#), where Y | A ~ Poisson()\). Earlier, we worked with
a known mean A, but let us now see if it is possible to handle this problem
with unknown A. Because Y is unobservable and only X is observable, there
exists an ‘identifiability’ problem here, as can be seen by noting that X|6 ~
Poisson(A\d). We already have the Beta(c,~) prior on §. Suppose 0 < o < 1.
Consider an independent prior on A according to which w(A) « I(A > 0).
Then,

(A, 0|z) o exp(— AN 1 -9 0 << 1,2 >0 (7.31)

This joint density is improper because

o0 1
/ / exp(—AG)ATETH=1(1 — 9)7=1 4\ df
0 0

1 00
:/ (/ exp(—/\0)/\zdz\> g=re1(1 - 9)7"1 dg
0 0

' Plx+1) ppia -1

1
=I'(z+ 1)/ 6°=2(1 - 6)""'do
0
= 0OQ.

In fact, the marginal distributions are also improper. However, it has full con-
ditional distributions that are proper:

A8,z ~ Gamma (z + 1,8) and 7(6|), ) ox exp(—A8)§= "1 (1 —4)7 L.

Thus, for example, the Gibbs sampler can be successfully employed with these
proper full conditionals. To generate 6 from 7(6|\, z), one may use the inde-
pendent M-H algorithm described in Example 7.12. Any inference on the
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marginal posterior distributions derived from this sample, however, will be
totally erroneous, whereas inferences can indeed be made on Af.

In fact, the non-convergence of the chain encountered in the above example
is far from being uncommon. Often when we have a hierarchical prior, the prior
at the final stage of the hierarchy is an improper objective prior. Then it is not
easy to check that the joint posterior is proper. Then none of the theorems on
convergence of the chains may apply, but the chain may yet seem to converge.
In such cases, inference based on MCMC may be misleading in the sense of
what was seen in the example above.

7.5 Exercises

1. (Flury and Zoppe (2000)) A total of m + n lightbulbs are tested in two
independent experiments. In the first experiment involving n lightbulbs,
the exact lifetimes y1,...,y, of all the bulbs are recorded. In the second
involving m lightbulbs, the only information available is whether these
lightbulbs were still burning at some fixed time ¢ > 0. This is known as
right-censoring. Assume that the distribution of lifetime is exponential
with mean 1/, and use 7(f) x 6~. Find the posterior mode using the
E-M algorithm.

2. (Flury and Zoppé (2000)) In Problem 1, use uniform(0, 8) instead of ex-
ponential for the lifetime distribution, and 7() = I(¢,x)(8). Show that
the E-M algorithm fails here if used to find the posterior mode.

3. (Inverse c.d.f. method) Show that, if the c.d.f. F(z) of a random vari-
able X is continuous and strictly increasing, then U = F(X) ~ UJ0,1],
and if V ~ U[0,1], then Y = F~}(V) has c.d.f F. Using this show that if
U ~ U[0,1], —InU/B is an exponential random variable with mean §71.

4. (Box-Muller transformation method) Let U; and U, be a pair of
independent Uniform (0, 1) random variables. Consider first a transfor-
mation to

W = R? = —2logUy; V =2nls,

and then let
X =RcosV; Y =RsinV.

Show that X and Y are independent standard normal random variables.
5. Prove that the accept-reject Monte Carlo method given in Example 7.12
indeed generates samples from the target density. Further show that the
expected number of draws required from the ‘proposal density’ per obser-
vation is ¢~ 1.
6. Using the methods indicated in Exercises 1, 2, and 3 above, or combina-
tions thereof, prove that the standard continuous probability distributions

can be simulated.
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Consider a discrete probability distribution that puts mass p; on point
z;, 1 =0,1,.... Let U ~ U(0,1), and define a new random variable Y as

follows.
Yy — o iftUu S Po; )
Tl i Niop <USYiop, i1
What is the probability distribution of Y'?

. Show that the random sequence generated by the independent M-H algo-

rithm is a Markov chain.

. (Robert and Casella (1999)) Show that the Gamma distribution with

a non-integer shape parameter can be simulated using the accept-reject
method or the independent M-H algorithm.

Gibbs Sampling for Multinomial. Consider the ABO Blood Group
problem from Rao (1973). The observed counts in the four blood groups,
0, A, B, and AB are as given in Table 7.3. Assuming that the inheritance
of these blood groups is controlled by three alleles, A, B, and O, of which
O is recessive to A and B, there are six genotypes OO0, AO, AA, BO, BB,
and AB, but only four phenotypes. If 7, p, and ¢ are the gene frequencies
of O, A, and B, respectively (with p + ¢ + r = 1), then the probabilities
of the four phenotypes assuming Hardy-Weinberg equilibrium are also as
shown in Table 7.3. Thus we have here a 4-cell multinomial probability
vector that is a function of three parameters p,q,r with p+g+7r = 1.
One may wish to formulate a Dirichlet prior for p,q,r. But it will not
be conjugate to the 4-cell multinomial likelihood function in terms of
p,q,7 from the data, and this makes it difficult to work out the posterior
distribution of p, ¢, r. Although no data are missing in the real sense of
the term, it is profitable to split each of the n4 and ng cells into two:
n4 into ma4,na0 With corresponding probabilities p?, 2pr and npg into
npp, ngo with corresponding probabilities ¢2, 2¢r, and consider the 6-cell
multinomial problem as a complete problem with n44,npg as ‘missing’
data.

Table 7.3. ABO Blood Group Data

Cell Count|Probability
no = 176 r?

na = 182| p* + 2pr
ng = 60| ¢+ 2gr
nap = 17 2pq

Let N = np +na +ngp + nap, and denote the observed data by n =
(no,na,np,nap). Consider estimation of p,q,r using a Dirichlet prior
with parameters «, 3, with the ‘incomplete’ observed data n.

The likelihood upto a multiplicative constant is

L(p,q,7) = r*"° (p* + 2pr)™4(g* + 2qr)"" (pg)™*".



11.

7.5 Exercises 235

The posterior density of (p,¢,r) given n is proportional to
PRI (2 4 gpr)™A (g7 + 2gr)" (p) AP TeT () AP AL

Let ng = naa +nao, n = npp + npo, and write npo for ng. Verify
that if we have the ‘complete’ data, n = (noo,"As, RA0,NBB, NBO, NAB),
then the likelihood is, upto a multiplicative constant

(p*)44 (g% (r2)"00 (2pg)™a® (2qr) =0 (2pr)™ae

where

N 1 1
Ny =n44a+ ’Q‘nAB + ‘2‘nAO

L1 1
np = 5MAB +npp + 51BO

L1 1
ng = §nAO + anBO + noo-

Show that the posterior distribution of (p,¢,r) given n is Dirichlet with
parameters n + & — 1,n5 + 3 — 1,nf ++ — 1, when the prior is Dirichlet
with parameters («, 3, 7).

Show that the conditional distributions of (ns4,npp) given 11 and (p, ¢,7)
is that of two independent binomials:

2

),

. . P
(naaln,p,q,7) ~ binomial(n,, m

2

(npg|n,p,q,7) ~ binomial(ng, ), and

7
q? + 2gr
(p,q,7|In,npaa,nBE) ~ Dirichlet(nX + o — l,ng + 38— l,ng + - 1).
Show that the Rao-Blackwellized estimate of (p, q,7) from a Gibbs sample

of size m is

1 & , : ,

—> (a+ni’B+ng v+ nb)/(a+ B+ +N),

i=1

where the superscript ¢ denotes the ith draw.
(M-H for the Weibull Model: Robert (2001)). The following twelve
observations are from a simulated reliability study:
0.56, 2.26, 1.90, 0.94, 1.40, 1.39, 1.00, 1.45, 2.32, 2.08, 0.89, 1.68.
A Weibull model with the following density form is considered appropriate:

flzle,n) < anz®~te " 0 < < oo,

with parameters («,n). Consider the prior distribution
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m(a,n) o e P le 4,

The posterior distribution of (&, n) given the data (z1,z2,...,z,) has
density

n n
7T(O:, 77|Z11I2a v ,In) x (O”I)n(]:[ Ii)a_l €Xp {_TIZI’L&} 71'(():,77).
=1 i=1

To get a sample from the posterior density, one may use the M~H algo-
rithm with proposal density

1 o 7
q(alan/|aan) = —¢€Xp {—_ - _} 3
an

which is a product of two independent exponential distributions with
means «, 7. Compute the acceptance probability p((e/,7'), (a®,n®))
at the tth step of the M-H chain, and explain how the chain is to be
generated.

Complete the construction of the reversible jump M-H algorithm in Exam-
ple 7.14. In particular, choose an appropriate prior distribution, proposal
distribution and compute the acceptance probabilities.

(Carlin and Louis (1996)) Suppose y1,¥2, ..., ¥, is an i.1.d. sample with

y’i|91792 ~ N(el + 92702)7

where o2 is assumed to be known. Independent improper uniform prior

distributions are assumed for 6; and 6,.
(a) Show that the posterior density of (6, 82]y) is

(61, 02]y) o exp(—n(; + 02 — §)2/(20%))I((61,6,) € R?),

which is improper, integrating to oo (over R?)).

(b) Show that the marginal posterior distributions are also improper.

(c¢) Show that the full conditional distributions of this posterior distribu-
tion are proper.

(d) Explain why a sample generated using the Gibbs sampler based on
these proper full conditionals will be totally useless for any inference on the
marginal posterior distributions, whereas inferences can indeed be made
on 91 + 92.

Suppose X1, Xs,..., X are independent Poisson counts with X; having
mean 8;. §; are a priori considered related, but exchangeable, and the prior

k
m(f1,...,0k) < (1+ Zgir(kﬂ)’
i=1

is assumed.
(a) Show that the prior is a conjugate mixture.
(b) Show how the Gibbs sampler can be employed for inference.
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15. Suppose X, X2,...,X, are i.i.d. random variables with
Xi|A1, A2 ~ exponential with mean 1/ Az,

and independent scale-invariant non-informative priors on A; and A, are
used. i.e., 7T(/\1,/\2) X (/\1/\2)_1[(/\1 > 0,2 > 0)

(a) Show that the marginals of the posterior, w(A1, A2|x) are improper,
but the full conditionals are standard distributions.

(b) What posterior inferences are possible based on a sample generated
from the Gibbs sampler using these full conditionals?
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Some Common Problems in Inference

We have already discussed some basic inference problems in the previous
chapters. These include the problems involving the normal mean and the
binomial proportion. Some other usually encountered problems are discussed
in what follows.

8.1 Comparing Two Normal Means

Investigating the difference between two mean values or two proportions is a
frequently encountered problem. Examples include agricultural experiments
where two different varieties of seeds or fertilizers are employed, or clinical
trials involving two different treatments. Comparison of two binomial propor-
tions was considered in Example 4.6 and Problem 8 in Chapter 4. Comparison
of two normal means is discussed below.

Suppose the model for the available data is as follows. Yj1,...,Yq,, is
a random sample of size n; from a normal population, N(8;,0?), whereas
Yo1,. .., Yay, is an independent random sample of size ny from another normal
population, N (6, 032). All the four parameters 61, 82, 0%, and 03 are unknown,
but the quantity of inferential interest is n = 6; — 65.

It is convenient to consider the case, 02 = 03 = o? separately. In this case,
(Y1, Y, s?) is jointly sufficient for (61,82, 02) where s? = (32, (Y1, — Y1)? +
Z?il(ng — Y3)2)/(ny + ng — 2). Further, given (6,62, 0?),

- o - o?
Yy ~ N(6y, n—l),YQ ~ N (82, E;)’ and (ny +ng — 2)s? ~ azxi1+n2_2,

and they are independently distributed. Upon utilizing the objective prior,
7(61,62,0?) ox 072, one obtains

7(61,62,0°%| data) = 77(91|02,171)77(92|02,Z72)7T(02|52),

and hence
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7(n, 0| data) = 7 (n|o®, g1, G2)m(0?|s). (81)
Now, note that
2 — — — _ 2 1 1
77|U y Y1, Y2 ~ N(yl —Y2,0 (— + —))
m n2

Consequently, integrating out o2 from (8.1) yields,

B _ (n1+n2—1)/2
m(n| data) o {1 + (= (@ — 5))" ) } , (8.2)

(ny +mng — 2)52(7%1 + n%
or, equivalently
n— (1 — 32)
141
T ne

| data ~ tn1+n2—2-
S

In many situations, the assumption that o2 = 02 is not tenable. For ex-

ample, in a clinical trial the populations corresponding with two different
treatments may have very different spread. This problem of comparing means
when we have unequal and unknown variances is known as the Behrens-Fisher
problem, and a frequentist approach to this problem has already been dis-
cussed in Problem 17, Chapter 2. We discuss the Bayesian approach now. We
have that (Y7, s?) is sufficient for (8, 0%) and (Y2, s3) is sufficient for (62,0%),

where s? = 2:7_’__1(}"Z —Y:)%/(n; — 1), i = 1,2. Also, given (0,0, 0%,03),

2
_ o;
Y; ~ N(6;, n_2)7 and (n; — 1)812 ~ U?Xii—ui =12,

(]
and further, they are all independently distributed. Now employ the objective
prior

(61,62, 0%, 03) o< 07 %03 %,

and proceed exactly as in the previous case. It then follows that under the
posterior distribution also #; and 6, are independent, and that

NI V2 (02 — g
n1 (6 y1)| data ~tn,_; and -ﬂ%—@| data ~ t,,—;.(8.3)
S1 2

It may be immediately noted that the posterior distribution of n = 6; — 65,
however, is not a standard distribution. Posterior computations are still quite
easy to perform because Monte Carlo sampling is totally straightforward. Sim-
ply generate independent deviates 6; and 6, repeatedly from (8.3) and utilize
the corresponding n = 0; — 5 values to investigate its posterior distribution.
Problem 4 is expected to apply these results.

Extension to the k-mean problem or one-way ANOVA is straightforward. A
hierarchical Bayes approach to this problem and implementation using MCMC
have already been discussed in Example 7.13 in Chapter 7.
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8.2 Linear Regression

We encountered normal linear regression in Section 5.4 where we discussed
prior elicitation issues in the context of the problem of inference on a response
variable Y conditional on some predictor variable X. Normal linear models
in general, and regression models in particular are very widely used. We have
already seen an illustration of this in Example 7.13 in Section 7.4.6. We intend
to cover some of the important inference problems related to regression in this
section.
Extending the simple linear regression model where E(Y'|8y, 51, X = z) =
Bo + B1z to the multiple linear regression case, F(Y|3,X = x) = 3'x, yields
the linear model
y = X3 +k¢, (8.4)

where y is the n-vector of observations, X the n X p matrix having the ap-
propriate readings from the predictors, 3 the p-vector of unknown regression
coeflicients, and € the n-vector of random errors with mean 0 and constant
variance 0. The parameter vector then is (3, 0?), and most often the statis-
tical inference problem involves estimation of 3 and also testing hypotheses
involving the same parameter vector. For convenience, we assume that X has
full column rank p < n. We also assume that the first column of X is the
vector of 1’s, so that the first element of 3, namely (3, is the intercept.

If we assume that the random errors are independent normals, we obtain
the likelihood function for (3,0?) as

s180) = [ | e { -ty x87- x))

- [—\/zl_ﬂ—a} " exp {Aﬁ (- 9Vv -9+ (8- BYX'X(8-B) } (85)
where
B=(X'X)"'X'y, and y = XJ3.

It then follows that 3 is sufficient for 3 if 02 is known, and (3, (y —9) (y —¥))
is jointly sufficient for (3, o?). Further,

Blo® ~ Ny(B,o*(X'X)7)
and is independent of
= 9)(y = 9Nlo? ~ o*xi_,-
We take the prior,
7(B3,0?) x %. (8.6)

This leads to the posterior,
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(8,0%|y) = 7(8|8,0%)m(*|(y - 3)'(y — ¥))- (8.7)

It can be seen that . A
B|B, % ~ Np(B,0*(X' X))

and that the posterior distribution of o2 is proportional to an inverse Xi—p-
Integrating out o2 from this joint posterior density yields the multivariate ¢
marginal posterior density for 3, i.e.,

m(Bly)

____repxpesr [ @-pxxe-plTt oo
TRV~ P2 = PP (= p)s? i

where s2 = (y — 9)(y — ¥)/(n — p). From this, it can be deduced that the
posterior mean of 3 is 3 if n > p+2, and the 100(1-a)% HPD credible region
for 3 is given by the ellipsoid

{B:(B-BYX'X(B~B) < ps*Fpn-p(a)}, (8.9)

where Fj, ,_,(a) is the (1 — a) quantile of the F), ,_, distribution. Further,
if one is interested in a particular J;, the fact that the marginal posterior
distribution of 3; is given by
BByt (8.10)
djj
where d;; is the jth diagonal entry of (X’X)™!, can be used.

Conjugate priors for the normal regression model are of interest espe-
cially if hierarchical prior modeling is desired. This discussion, however, will
be deferred to the following chapters where hierarchical Bayesian analysis is
discussed.

Ezample 8.1. Table 8.1 shows the maximum January temperatures (in degrees
Fahrenheit), from 1931 to 1960, for 62 cities in the U.S., along with their lat-
itude (degrees), longitude (degrees) and altitude (feet). (See Mosteller and
Tukey, 1977.) It is of interest to relate the information supplied by the geo-
graphical coordinates to the maximum January temperatures.

The following summary measures are obtained.

62.0 2365.0 5674.0 56012.0
2365.0 92955.0 217285.0 2244586.0
5674.0 217285.0 538752.0 5685654.0 ’
56012.0 2244586.0 5685654.0 1.7720873 x 108

X'X =
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City Latitude Longitude Altitude Max. Jan. Temp
Mobile, Ala. 30 88 5 61
Montgomery, Ala. 32 86 160 59
Juneau, Alaska 58 134 50 30
Phoenix, Ariz. 33 112 1090 64
Little Rock, Ark. 34 92 286 51
Los Angeles, Calif. 34 118 340 65
San Francisco, Calif. 37 122 65 55
Denver, Col. 39 104 5280 42
New Haven, Conn. 41 72 40 37
Wilmington, Del. 39 75 135 41
Washington, D.C. 38 7 25 44
Jacksonville, Fla. 38 81 20 67
Key West, Fla. 24 81 5 74
Miami, Fla. 25 80 10 76
Atlanta, Ga. 33 84 1050 52
Honolulu, Hawaii 21 157 21 79
Boise, Idaho 43 116 2704 36
Chicago, Il 41 87 595 33
Indianapolis, Ind. 39 86 710 37
Des Moines, Iowa 41 93 805 29
Dubuque, Iowa 42 90 620 27
Wichita, Kansas 37 97 1290 42
Louisville, Ky. 38 85 450 44
New Orleans, La. 29 90 5 64
Portland, Maine 43 70 25 32
Baltimore, Md. 39 76 20 44
Boston, Mass. 42 71 21 37
Detroit, Mich. 42 83 585 33
Sault Sainte Marie, Mich. 46 84 650 23
Minneapolis -St. Paul, Minn. 44 93 815 22
St. Louis, Missouri 38 90 455 40
Helena, Montana 46 112 4155 29
Omaha, Neb. 41 95 1040 32
Concord, N.H. 43 71 290 32
Atlantic City, N.J. 39 74 10 43
Albuquerque, N.M. 35 106 4945 46
continues

94883.1914 —1342.5011 —485.0209 2.5756

(X'X)"'=10"°

—1342.5011
—485.0209
2.5756

37.8582
—-0.8276
-0.0286

—0.8276 —0.0286
5.8951 —0.0254
—0.0254 0.0009

b
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Table 8.1. Maximum January Temperatures for U.S. Cities, with Latitude, Longi-
tude, and Altitude
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Table 8.1 continued

City Latitude Longitude Altitude Max. Jan. Temp

Albany, N.Y. 42 73 20 31
New York, N.Y. 40 73 55 40
Charlotte, N.C. 35 80 720 51
Raleigh, N.C. 35 78 365 52
Bismark, N.D. 46 100 1674 20
Cincinnati, Ohio 39 84 550 41
Cleveland, Ohio 41 81 660 35
Oklahoma City, Okla. 35 97 1195 46
Portland, Ore. 45 122 77 44
Harrisburg, Pa. 40 76 365 39
Philadelphia, P