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Preface

One of the more promising non-destructive means of diagnosing the properties 

of quite complicated materials is to use wave energy as a probe. An analysis of 

this technique requires a detailed understanding of fi rst how signals evolve in the 

medium of interest in the absence of inhomogeneities and, second, the nature of 

the scattered or echo fi eld when the original signal is perturbed by inhomogene-

ities which might exist in the medium. The overall aim of the analysis is to calcu-

late relationships between an unperturbed signal waveform and an associated 

echo waveform and indicate how these relationships can be used to characterise 

inhomogeneities in the medium.

An initial aim of this monograph is to give a largely self-contained, introduc-

tory account of acoustic wave propagation and scattering in the presence of time 

independent perturbations. Later chapters of the book will indicate how the 

approach adopted here for dealing with acoustic problems can be extended to 

cater for similar problems in electromagnetism and elasticity.

In this monograph we gather together the principal mathematical topics which 

are used when dealing with wave propagation and scattering problems involving 

time independent perturbations. In so doing we will provide a unifi ed and reason-

ably self-contained introduction to an active research area which has been devel-

oping over recent years. We will also indicate how the material can be used to 

develop constructive methods of solution. The overall intention is to present the 

material so that is just as persuasive to the theoretician as to the applied scientist 

who may not have the same mathematical background. This book is meant to be 

a guide which indicates the technical requirements when investigating wave 

scattering problems. Throughout the emphasis will be on concepts and results 

rather than on the fi ne detail of proof. The proofs of results which are simply 

stated in the text, many of which are lengthy and very much of a technical nature, 

can be found in the references cited.

Many of the results described in this book represent the works of a large 

number of authors and an attempt has been made to provide a reasonably com-

prehensive Bibliography. However, particular mention must be made of the 



pioneering works of Ikebe, Lax and Phillips and of Wilcox. The infl uence of the 

works of these authors has been considerable and is gratefully acknowledged. In 

particular, a profound debt of gratitude is owed to Rolf Leis and Calvin Wilcox 

who have been such an inspiration over the years.

I would also like to express my gratitude to the many colleagues with whom 

I have had such useful discussions. In particular, I would thank Christos 

Athanasiadis, Aldo Belleni-Morante, Wilson Lamb and Ioannis Stratis who have 

read various parts of the manuscript and offered so many suggestions.

A special word of thanks must also go to Mary Sergeant for the patient 

way in which she tackled the seemingly endless task of typing and proof 

corrections.

Finally, I want to express my appreciation to Karen Borthwick and Helen 

Desmond of Springer Verlag for their effi cient and friendly handling of the publi-

cation of this book.

GFR

Glasgow

2005
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1

Introduction and Outline of Contents

The study of wave phenomena in a material can often yield signifi cant information 

about the characteristics of that material. In this monograph we shall be inter-

ested in how this can be achieved in a number of areas in the applied sciences. 

This study has been motivated by problems arising in such areas as, for example, 

radar, sonar, non-destructive testing and ultrasonic medical diagnosis. In all these 

areas a powerful diagnostic is the dynamical response of the media to a given 

excitation.

The fundamental problem with which we shall be concerned is, in its simplest 

terms, the following one.

A system of interest consists of a medium, a source of energy, that is, a “trans-

mitter”, and a detector , that is, a “receiver”. The transmitter emits a signal which 

is detected at the receiver, possibly after becoming perturbed, that is, scattered, 

by some inhomogeneity in the medium. We are interested in the manner in which 

the signal evolves throughout the given medium and in the form it assumes, with 

or without being scattered, at the receiver.

We take as a starting point the assumption that all media involved consist of 

a continuum of interacting, infi nitesimal elements. Consequently, a disturbance 

in some small region of a medium will induce an associated disturbance in neigh-

bouring regions with the result that some sort of disturbance eventually spreads 

throughout the medium. The progress or evolution of such disturbances we shall 

call propagation. In this book we will be particularly interested in those cases 

when the disturbance is a wave. Typical examples of this phenomenon include, 

for instance, waves on water where the medium is the layer of water close to the 

surface, the interaction forces are fl uid pressure and gravity and the resulting 

waveform is periodic. Again, acoustic waves in gases, liquids and solids are sup-

ported by an elastic interaction and exhibit a variety of waveforms which can be, 

for example, sinusoidal, periodic, transient pulse or arbitrary. In principle any 

type of waveform can be set in motion in a given system provided suitable initial 

or source conditions are imposed. These various processes can be conveniently 

expressed, symbolically, in the form
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u(x,  t) = U(t − s)u(x,  s)

where u(x,  t) is a quantity which describes the state of the system at the point 

x and time t whilst U(t − s) is a quantity which characterises the evolution, in 

time, of the system from an initial state u(x,  s) to a state u(x,  t). Furthermore, if 

V(t − s) characterises the evolution of some other system then we can expect 

that a comparison, in some suitable sense, of U(t − s) and V(t − s) could provide 

information regarding wave phenomena in the two systems. In the following 

chapters we shall discuss means of determining the form of U and V, both in 

abstract and in certain specifi c cases of practical interest, and indicate how they 

might be used in the development of constructive methods for determining the 

wave processes in the two systems.

In the earlier parts of the book attention will be confi ned to an investigation 

of the properties of the scalar wave equation as it appears in acoustics. Later 

material will be devoted to an examination of wave equations appearing in studies 

of the elastic fi eld and the electromagnetic fi eld.

Our main interest here will be in those physical phenomena whose evolution 

can be described in terms of propagating waves. A simple example of such phe-

nomena is a physical quantity, y, that is defi ned in the form

 y(x,  t) = f(x − ct), (x,  t) ∈ R × R (1.1)

where c is a real constant. We notice that y has the same value at all those x and 

t for which (x − ct) has same values. For example, the function f defi ned by

f(x − ct) = exp(−(x − ct))

has the value one when (x,  t) = (0, 0) and also whenever x and t have values 

which ensure that (x − ct) = 0. Thus (1.1) represents a wave which moves with 

constant velocity c along the x–axis, without changing shape. If, further, f is 

assumed to be suffi ciently differentiable then on differentiating (1.1) twice with 

respect to x and t we obtain

 
∂
∂

−
∂
∂











= ∈ ×
2

2

2
2

2
0

t
c

x
y x t x t( , ) , ( , ) R R  (1.2)

Similarly, we notice that a physical quantity, w, defi ned by

w(x,  t) = g(x + ct), (x,  t) ∈ R × R

where c is a real constant, represents a wave moving with constant velocity c 

along the x-axis without changing shape, but moving in the opposite direction to 

the wave y(x,  t) defi ned in (1.1). Furthermore, we see that w(x,  t) also satisfi es 

an equation of the form (1.2). The equation (1.2) is referred to as the classical 
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wave equation. The prefi x “classical” will only be used in order to avoid possible 

confusion with other wave equations which might come into consideration.

Because the wave equation is linear the compound wave

 u(x,  t) = y(x,  t) + w(x,  t) = f(x − ct) + g(x + ct) (1.3)

where f, g are arbitrary functions, is also a solution of the wave equation. This is 

the celebrated d’Alembert solution of the wave equation. In a specifi c problem 

the functions f and g are determined in terms of the imposed initial conditions 

which solutions of (1.2) are required to satisfy [3],[4].

We would emphasise at this stage that not all solutions of the wave equation 

yield propagating waves. For example, if the wave equation can be solved using 

a separation of variables technique then so-called stationary wave solutions can 

be obtained. They are called stationary waves since they have certain features 

such as nodes and anti-nodes which retain their position permanently with respect 

to time. Such solutions can be related to the bound states appearing in quantum 

mechanics and to the trapped wave phenomenon of classical wave theory.

In practical situations experimental measurements are mainly made far from 

the inhomogeneity, that is, in the so-called far fi eld of the scatterer.

In the particular case of acoustic wave scattering processes, we shall see later 

that in the absence of any scatterers, the acoustic fi eld, u0(x,  t), has the asymp-

totic form

u x t
s x t x

x x
x0

0 0

0 0
2 0

1
( , )

( )
,=

⋅ − +
+







 →∞

θ
Ο

The quantity s is defi ned by

s f y x y dy
y x

( ) .( ) , ,τ
π

θ τ τ
δ

= − −( ) ∈
− ≤
∫

1

4
0 0

0 0

R

where f is a source function which characterises the signal emitted by a transmit-

ter placed at a point x0 and q0 is a unit vector defi ned by x0 = −x0q0. The quantity 

s is referred to as the signal waveform.

When the signal from the transmitter is scattered by some inhomogeneity in 

the medium then the scattered fi eld, us(x,  t), can be shown to have the asymptotic 

form

u x t
e x t

x x
xs( , )

( , , )
,=

−
+







 →∞

θ θ0

2

1
Ο

where e(τ,  q,  q0) is called the echo waveform. It depends on q0, the direction of 

incidence of the signal, and q, the direction of observation.
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The principal aim in practical wave scattering problems is to calculate the 

relationship between the echo and signal waveforms and to highlight their depen-

dency on the source function and the scatterers. We shall see, in the following 

chapters, that many of the results obtained when developing an associated scat-

tering theory lead to effi cient, constructive means of performing these calcula-

tions for a wide range of physically relevant problems.

Scattering means different things to different people. Broadly speaking it can 

be thought of as the interaction of an evolutionary process with a non-homoge-

neous medium which might also have a non-linear response. In the following 

chapters a mathematical framework will be developed which is particularly well 

suited to the study of scattering processes from both a theoretical and a construc-

tive point of view. The intention throughout will be to present the material so that 

it is just as persuasive to mathematicians interested in the spectral analysis of 

initial boundary value problems for partial differential equations as to the applied 

scientist who, understandably, might require more quantitative results from their 

mathematical model. Consequently, certain sections and chapters can be safely 

passed over by those already familiar with the material.

Scattering phenomena arise as a consequence of some perturbation of a given 

system and they are analysed by developing an associated scattering theory.

These scattering theories are concerned with the comparison of two systems, one 

being regarded as a perturbation of the other, and with the study of the manner 

in which the two systems might eventually become equal in some sense. As we 

shall see, this will lead quite automatically to a discussion of certain entities called 

wave operators. The availability of an appropriate scattering theory would, 

therefore, seem to offer good prospects for providing a sound basis from which 

to develop robust approximation methods for obtaining solutions to some given, 

but diffi cult, problem in terms of a more readily obtainable solution to an associ-

ated problem.

There are two main formalisms available when developing a scattering theory, 

the time dependent and the time independent. The time dependent formalism 

deals with a time dependent wave function, that is, with a solution of the wave 

equation which describes the evolution of the wave as it actually occurs. In the 

distant past the wave is virtually unaffected by the presence of any scatterer. 

Hence, the corresponding wave function might be expected to behave asymptoti-

cally when t →−∞ like the wave function for a truly unperturbed or free problem. 

Similarly, in the distant future, when again the wave can be expected to be virtu-

ally unaffected by any scatterer, the corresponding wave function might be 

expected to behave asymptotically when t → +∞ like the wave function for some 

other free problem. It turns out, as we shall see, that it is possible to relate the 

essentially free wave function which obtains in the distant past before any scat-

tering takes place to the essentially free wave function which obtains in the 

distant future well after any scattering has occurred. This connection is effected 

by means of a certain operator, denoted by S, called the scattering operator.

Since it is mainly the asymptotically free motions which are observed in prac-

tice the single operator S contains all the information of experimental interest. 
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Thus, if we know how to compute the scattering operator, S, then the scattering 

problem is solved. Working with these asymptotic values is experimentally sen-

sible and, in addition, it avoids any explicit discussion of the, often quite compli-

cated, nature of the wave function near the scatterer.

In a time-dependent scattering theory the time evolution of the states of a 

system and their asymptotic behaviour for large times are of dominant interest. 

This gives rise to the so-called time domain analysis of a given problem.

The time-independent formalism arises as a result of trying to expand the 

actual wave function in terms of so-called stationary scattering states. These 

states are obtained as a consequence of separating out, in some way, the time 

dependence in the problem and then studying the solutions of the resulting spatial 

equations. This approach gives rise to the so-called frequency domain analysis

of a given problem in which a central interest is the asymptotic behaviour of 

solutions at large distances. These stationary states turn out to be eigenfunctions, 

often in some generalised sense, of an associated spatial operator. A principal 

usefulness of this formalism is that it provides a powerful means for dealing 

with the actual computation of the scattering operator and for establishing 

its properties.

We have already remarked that not all states of a system need, necessarily, 

lead to scattering events. However, those states of a system that do lead to scat-

tering events and which, as t → ±∞, are asymptotically equal (AE), in some 

sense, to scattering states of some simpler system are said to satisfy an asymp-

totic condition. A precise description of this condition is a principal study of 

time-dependent scattering theory. As we shall see, once we have introduced the 

appropriate mathematical structures, it can be formulated abstractly in terms of 

a pair of one-parameter groups of linear operators {U(t)} and {V(t)} with t ∈ R,

the relation between these groups usually being given in terms of their infi nitesi-

mal generators. We remark that one of the reasons for the name “time-indepen-

dent scattering theory” is the fact that in this theory these groups can be replaced 

by the resolvent of related spatial operators. The importance of the time-indepen-

dent theory lies in the fact that the actual calculation of various expressions can 

often be more readily carried out than for similar expressions occurring in the 

time-dependent theory.

In the quantum mechanics of the scattering of elementary particles by a 

potential the wave packets describing scattered particles can be shown to be AE, 

for large time, to the corresponding wave packets for free particles. The corre-

spondence between these two systems, one describing the scattered particles the 

other describing the free particles, is effected by means of so-called Møller opera-

tors [3]. Wilcox [5] has developed analogous concepts for wave propagation 

problems associated with the equations of classical physics. Specifi cally, Wilcox 

showed that waves propagating in an inhomogeneous medium are AE, for large 

time, to corresponding waves propagating in an homogeneous medium. The cor-

respondence between the two wave systems is given by an analogue of the Møller 

operators of quantum scattering which we shall simply refer to as wave opera-

tors (WO). Since wave propagation problems in homogeneous media can often 
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be solved explicitly, a knowledge of an appropriate WO would then provide infor-

mation concerning the asymptotic behaviour of solutions to wave propagation 

problems in inhomogeneous media. We remark that the Wilcox approach leads 

to the comparison of unitary groups whilst an alternative approach developed by 

Lax and Phillips [2] compares so-called incoming and outgoing subspaces.

Mathematically, many scattering problems can be conveniently modelled in 

terms of initial boundary value problems (IBVP) for the wave equation in 

either scalar or vector form.

For much of this monograph we shall be concerned with so-called direct 

problems for which the signal and target characteristics are known and the aim 

is to predict the scattered fi eld. Nevertheless, we would remark that of prime 

practical interest are the much more diffi cult inverse problems in which the 

initiating signal and the scattered fi eld are known and the target characteristics 

have to be determined. However, before we can comfortably start to discuss 

inverse problems a proper understanding of direct problems is required. There-

fore, to fi x ideas here we shall confi ne attention, initially, to direct problems and 

to IBVPs that have the following typical form.

Determine a quantity u(x,  t) which satisfi es

 {∂2
t
 + L(x,  t)} u(x,  t) = f(x,  t), (x,  t) ∈ Q (1.4)

 u(x,  s) = js(x), ut(x,  s) = ys(x), x ∈ Ω(s) (1.5)

 u(x,  t) ∈ (bc)(t), (x,  t) ∈ ∂Ω(s) × R (1.6)

where

 L(x,  t) = −c2∆ + V(x,  t) (1.7)

with ∆ denoting the usual Laplacian in Rn, and

Q ⊂ {(x,  t) ∈ Rn × R}

Ω(t) := {x ∈ Rn : (x,  t) ∈ Q}

B(t) := {x ∈ Rn : (x,  t) ∉ Q}

The region Q is open in Rn × R and Ω(t) denotes the exterior, at time t, of a 

scattering target B(t). For each value of t the domain Ω(t) is open in Rn and 

is assumed to have a smooth boundary ∂Ω(t). The lateral surface of Q, denoted 

∂Q, is defi ned by

 

∂ = ∂
∈

Q t
t I

: ( )Ω∪  (1.8)

where I := {t ∈ R : 0 ≤ t < T}. The quantities f, c, js, ys and V are given data func-

tions and s ∈ R denotes a fi xed initial time. The notation in (1.6) indicates that 
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the solution, u(x, t), is required to satisfy certain conditions, denoted (bc), imposed 

on the boundary which, in general, might depend on t.

Problems of the form (1.4) to (1.6) divide quite naturally into the following 

two broad classes.

P1: (i) V(x, t) ≡ 0

(ii) (bc)(t) imposed

P2: (i) V(x, t) ≠ 0

(ii) (bc)(t) not imposed.

Problems of the form P1 are referred to as target scattering problems whilst 

problems of the form P2 describe potential scattering.

The fi rst thing that has to be done when analysing any such problems is to 

declare the type of solution that is actually being sought; that is, a solution

concept has to be introduced. To this end we often make use of Cm(Rn × R, R)

which denotes the collection of m-times continuously differentiable functions of 

x ∈ Rn and t ∈ [0,T), T > 0 which have values in R.

A local classical solution of (1.4) to (1.6) is an element

 u ∈ C(Rn × [0,T), R) � C2(Rn× (0,T), R) (1.9)

which for some T > 0, satisfi es (1.4) to (1.6).

A local classical solution is called a global classical solution if we can take 

T = ∞.

A p-periodic classical solution is a global classical solution which is p-

 periodic in t ∈ R.

Since we shall be concerned with IBVP that model real-life situations we shall 

require that the problem is well-posed, that is,

• a solution exists and is unique for a large class of initial data,

• the solution depends continuously on the given data.

Even when it is possible in principle, the actual determination of a classical solution 

is often a very diffi cult task in practice. The situation can be eased considerably by 

realising, that is, by interpreting or seeking solutions of, the IBVP (1.4) to (1.6) in 

some more convenient collection of functions than that indicated in (1.9). For 

example, consider the case of potential scattering as indicated in P2 above but 

with V independent of t. We might choose to realise the IBVP (1.4)–(1.6) in the 

collection L2(R
n × R) ≡ L2(R

n × R, �) the familiar space of (equivalence classes 

of) square integrable functions with domain Rn × R and with values in �. With 

the understanding that we would then have to work with distributional rather 

than classical derivatives we can obtain a realisation of the IBVP (1.4)–(1.6) in 

the collection L2(R
n × R) ≡ L2(R

n× R, �) by introducing the spatial mapping or 

operator A defi ned by (see Chapter 2 for more analytical details)
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 A : L2(R
n,  �) → L2(R

n,  �) ≡ L2(R
n) 

(1.10)
Av = −∆v + V, v ∈ D(A)

where D(A) denotes the domain of defi nition of A which in this instance is 

taken to be

D(A) = {v ∈ L2(R
n) : −∆v + V ∈ L2(R

n), v ∈ (bc)}

The classical IBVP (1.4)–(1.6) can now be replaced by the following abstract 

Initial Boundary Problem (IVP)

 {∂t
2 + A}u(x,  t) = f(x,  t), (x,  t) ∈ Rn × R (1.11)

 u(x,  s) = js(x), ut(x,  s) = ys(x), x ∈ Rn (1.12)

the boundary conditions (1.6) having been accommodated in the defi nition of 

D(A).

If we now repeat this strategy for all the problems which could come under 

the heading of P1 and P2 above, then we arrive at the following hierarchy of 

IVPs.

 {∂2
t  + Aj(t)}uj(x,  t) = fj(x,  t), (x,  t) ∈ Rn × R (1.13)

 u x s x s
t
u n s x sj j j j( , ) ( , ), ( , ) ( , )=

∂
∂

=ϕ ψ  (1.14)

where j = 0, 1, 2, 3, 4, s ∈ R is a fi xed initial time and jj, yj, fj are given data 

functions. The operators Aj(t) :  H → H =: L2(R
n), j = 0, 1, 2, 3, 4 which appear 

in the above have the following specifi c forms.

 A0u0 = −c2∆u0 =: L0u0, u0 ∈ D(A0) (1.15)

D(A0) = {u0 ∈ H : L0u0 ∈ H}

 A1u1 = {−c2∆ + V}u1 =: L1u1, u1 ∈ D(A1) (1.16)

D(A1) = {u1 ∈ H : L1u1 ∈ H}

 A2u2 = −c2∆u2 =: L2u2, u2 ∈ D(A2) (1.17)

D(A2) = {u2 ∈ H : L2u2 ∈ H, u2 ∈ (bc)}

    A3(t)u3 = {−c2∆ + V(x,  t)}u3 =: L3(x,  t)u3, u3 ∈ D(A3(t)) (1.18)

D(A3(t)) = {u3 ∈ H : L3(⋅,  t)u3 ∈ H}

 A4(t)u4 = −c2∆u2 =: L4u4, u4 ∈ D(A4(t)) (1.19)

D(A4(t)) = {u4 ∈ H : L4u4 ∈ H, u4 ∈ (bc)(t)}

We shall see later that as a consequence of the Duhamel Principle we can, 

without any loss of generality, confi ne attention to problems involving a homoge-

neous form of the equation (1.13).
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We remark that A0 generates a free problem (FP) whilst A1 and A2 each 

generate a perturbed problem (PP) with respect to the FP generated by A0.

These operators are clearly independent of t and as such give rise to so-called 

autonomous problems (AP). The operators A3(t) and A4(t), being dependent on 

time, generate so-called non-autonomous problems (NAPs) which are PPs with 

respect to both the FP generated by A0 and also the problems generated by A1

and A2. We also notice that each of these operators generate an IVP. The bound-

ary conditions required when discussing target scattering centred on either A2 or 

A4(t) are accommodated in the defi nition of the domain of the operators.

An investigation of NAPs is complicated and technically more demanding than 

that for APs. Such problems will not be discussed here. However, an overview of 

the main features of such problems together with a set of references for further 

reading can be found in the Commentary.

Our principal interests in this monograph are centred on IVPs that have the 

generic form (1.11), (1.12). These encompass a wide range of physically signifi -

cant problems in such fi elds as acoustics, electromagnetics, elasticity and their 

various combinations. Throughout we shall have four main aims.

• To provide results concerning the existence and uniqueness of solution to such 

IVPs.

 This we have to do in order that we can be in a position meaningfully to 

compare systems governed by such IVPs. The required results will be obtained 

using semigroup theory.

• To provide means of interpreting the various solution forms that might be 

obtained.

 This will involve a detailed investigation of the spectral properties of such 

spatial operators as A in (1.11) and the development of associated generalised 

eigenfunction expansion theorems.

• To provide practically realistic mechanisms for comparing systems governed 

by such IVPs.

 This will involve a detailed study of the relevant wave operators and the scat-

tering operator.

• To develop a constructive scattering theory which will yield, in particular, 

computable expressions for the echo wave form.

 This aspect could often be suggested by results from the previous aims.

We shall fi rst examine these aspects in an abstract setting and then illustrate their 

use by working in detail some particular problems in acoustics, electromagnetics 

and elasticity.

Since this book is meant to be an introductory text, for some if not all readers, 

it is felt that it should be as self-contained as possible. The intention is fi rst to 

give, at a leisurely pace, a reasonably comprehensive overview of the various 

concepts, techniques and strategies associated with the development of construc-

tive scattering theories.
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To give some indication of the various strategies that we shall adopt we shall 

fi x ideas by confi ning attention, for the moment, to the IVP (1.11), (1.12) with the 

source term f set to zero for the reason explained above and with A replaced by A0 

to characterise the FP and with A replaced by A1 for the PP, the initial conditions 

in each case being appropriately subscripted. We now proceed in an entirely 

formal manner. First, we will make what appears to be an outrageous assumption; 

we assume that in (1.11) the operator A can be treated as a constant. By doing this 

we effectively suppress the x dependence in (1.11) and (1.12). This will imply that 

the partial differential equation (1.11) involving the unknown quantity (number), 

u(x,  t), can be replaced by an ordinary differential equation for the unknown 

quantity (function) u(⋅,  t). This procedure will be made more precise in the follow-

ing chapters. If we now solve this ordinary differential equation for u(⋅,  t) and 

replace the x dependence we then fi nd that the FP (with s = 0 for convenience) 

has a solution, denoted by u0(x,  t), which can be written in the form

 u x t tA x A tA x0 0
1 2

0 0
1 2

0
1 2

0( , ) cos ( ) sin ( )/ / /= ( )( ) + ( )( )−ϕ ψ  (1.20)

If we now assume j0 ∈ L2(R
n) and y0 ∈ D A0

1 2−( )/  and defi ne

 h x x iA x0 0 0
1 2

0( ) : ( ) ( )/= + −ϕ ψ  (1.21)

then

 u0(x,  t) = Re{v0(x,  t)}  (1.22)

where

 v x t itA h x U t h x0 0
1 2

0 0 0( , ) exp ( ) : ( ) ( )/= −( ) =  (1.23)

is the complex-valued solution of the FP (1.11), (1.12). The quantity U0(t) is called 

an evolution operator which maps h0(x), the initial state of the system, into 

v0(x,  t), the state of the system at some other time t.

For PPs we replace A by A1, where with a slight abuse of notation, A1 will 

be understood to represent one or other of the operators appearing in (1.16) 

to (1.19). On repeating the same procedure as for the FP we obtain a solu-

tion, u1(x,  t), for the PP in the form

 u x t tA x A tA x1 1
1 2

1 1
1 2

1
1 2

1( , ) cos ( ) sin ( )/ / /= ( )( ) + ( )( )−ϕ ψ  (1.24)

If j1 ∈ L2(R
n) and y1 ∈ D A1

1 2−( )/  and if we defi ne

 h x x iA x1 1 1
1 2

1( ) : ( ) ( )/= + −ϕ ψ  (1.25)

then we can re-write (1.24) in the form
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 u1(x,  t) = Re{v1(x,  t)} (1.26)

where

 v x t itA h x U t h x1 1
1 2

1 1 1( , ) exp ( ) : ( ) ( )/= −( ) =  (1.27)

The quantity U1(t) is an evolution operator which maps h1(x), the initial state 

of the perturbed system, into v1(x,  t), the state of the perturbed system at some 

later time t.

In order to develop a scattering theory we must fi rst show that the FP and the 

PP have solutions in some convenient collection of functions and, moreover, that 

they can be meaningfully written in the form (1.23) and (1.27), respectively. Once 

this has been done then we will need a means of comparing these solutions, that 

is, we will need some suitable formula for measuring their distance apart as either 

t → ±∞ or x → ∞. In general, such a formula is called a norm. A familiar example 

of this is the formula for measuring the distance, in R2, between the origin, O, 

and a point P with coordinates (x,  y). The length of the line OP, denoted OP, 

is well known to be

 OP
2 := x2 + y2  (1.28)

In (1.28) we are working with numbers. However, we shall see (Chapter 3) 

that the notion of a norm can be generalised so that we can measure the separa-

tion of two functions rather than the separation of the numerical values of the 

functions. Being able to do this will have the advantage that we will be able to 

settle questions of existence and uniqueness of physically signifi cant solutions of 

the FP and the PP more readily than by working with numerical values. With all 

this in mind we shall assume here, for the sake of illustration, that the solutions 

we require belong to some suitable collection of functions, denoted by X, say. We 

will then write the number v(x,  t) in the form

 v(x,  t) = v(⋅,  t)(x) = v(t)x (1.29)

and refer to v as an X-valued function of t, that is, for each value of t we have 

v(t) ∈ X. We then compare the solutions of the FP and the PP by considering 

expressions of the form

 v1(t) − v0(t) (1.30)

where ⋅ denotes some suitably chosen norm defi ned, on X, in terms of spatial 

coordinates. We then fi nd that

 v1(t) → v0(t) =  U1(t)h1 − U0(t)h0 

 =   U 0*(t)U1(t)h1 − h0 

 =:  Ω(t)h1 − h0 (1.31)
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where ∗ denotes that U0(t) has a modifi ed form (it will be something like an 

inverse) as a result of moving it from one quantity to another. The time depen-

dence in the above comparison can be removed by taking the limit as t → ±∞. 

We then obtain

 lim ( )
t

v t v t h h
→±∞

±− ( ) = −1 0 1 0Ω  (1.32)

where

 Ω Ω±
→±∞ →±∞

= =: lim ( ) lim *( ) ( )
t t

t U t U t0 1  (1.33)

If it can be shown that the two solutions v1(t) and v0(t) exist and that the various 

steps leading to (1.32) can be justifi ed then it will still remain to show that the 

limits in (1.33), which defi ne the so-called wave operators (WOs), Ω±, actually 

exist.

When all the above has been achieved we see that if the initial data for the 

FP and PP are related according to

 h0 = Ω±h1 (1.34)

then the limit in (1.32) is zero thus indicating that the PP is asymptotically free 

as t → ±∞. That is, solutions of the PP with initial data (state) h1 are time asymp-

totically equal to solutions of an FP with initial data (state) h0 which is given 

by (1.34).

Consequently, if solutions of the two systems are known to exist in the 

form (1.23) and (1.27) then, keeping (1.34) in mind, we would expect there to 

exist elements h± such that

 v1(t) ∼ U0(t)h± as t → ±∞ (1.35)

where ∼ will be used to denote asymptotic equality (AE) and the ± are used 

to indicate, the possibly different, limits as t → ±∞. We would emphasise that it 

is not automatic that both the limits implied by (1.35) should exist. Indeed a solu-

tion such as v1 could be asymptotically free as t → +∞ but not as t → −∞. If we 

combine (1.27) and (1.35) then we have

 U 0*(t)U1(t)h1 =: Ω(t)h1 ∼ h± (1.36)

Thus, we can conclude that

 Ω± : h1 → h± (1.37)

The two initial conditions h± for the FP which yield the initial condition for 

the PP are related. This is illustrated by noticing that the above discussion 

implies
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 h+ = Ω+h1 = Ω+Ω∗−h− =: Sh− (1.38)

where S is called the scattering operator (SO) for the problem.

Although the above discussion has been abstract and almost entirely formal, 

nevertheless it has been suffi cient to indicate that the following strategy could 

be profi tably adopted when investigating wave phenomena in specifi c physical 

problems.

• Represent in some suitable collection of functions, the given physical problems, 

FP and PP, as operator equations which are characterised by self-adjoint opera-

tors A0 and A1 respectively.

• Obtain existence and uniqueness results for solution to the FP and PP.

• Determine the spectral properties of A0 and A1. This will enable appropriate 

(generalised) eigenfunction expansion theorems to be obtained by means of 

which the various solution forms indicated above can be interpreted in a con-

structive manner.

• Investigate the AE of solutions to the FP and PP and determine conditions 

which ensure that the WOs, Ω±, exist.

• Obtain far-fi eld approximations for solutions to the FP and PP in terms of the 

SO.

• Determine the structure of WOs and SO in terms of generalised 

eigenfunctions.

• Investigate whether or not all solutions of the perturbed system are asymptoti-

cally free as t →±∞. This is the so-called asymptotic completeness property. 

It is closely related to the existence of such elements as h± which were intro-

duced in (1.35).

• Provide computable representations of solutions to the mathematical problems 

which have been introduced.

• Provide computable relations between the signal and echo wave forms.

• Develop robust approximation methods.

The above strategy only has credibility if all the steps leading up to it can be justi-

fi ed, that is, made more precise mathematically. To be able to do this there 

are two immediate requirements. First, we must introduce into the discussion 

elements of linear operator theory. This will provide a natural framework 

within which the various physical problems can be given a sound mathematical 

formulation. Second, we must be able to provide an interpretation of such quanti-

ties as A1/2 and cos (tA1/2) which have appeared above. We shall see that we will 

be able to do this by using results from the spectral theory of operators and 

the theory of semigroups of operators. Broadly speaking, we shall use semi-

group theory to obtain existence and uniqueness results and spectral theory to 

develop constructive methods. Furthermore, with this additional mathematical 

structure available we shall be able to give a precise meaning to what is actually 

meant by wave scattering. So far, our understanding of this has been entirely 

intuitive.
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A Commentary on the material presented in this monograph will be found in 

the fi nal chapter. This will provide more historical background, additional refer-

ences and a guide to further reading and more specialised texts. The remaining 

chapters of the book are arranged as follows.

In Chapter 2 we provide some motivation for the remaining chapters. This we 

do by fi rst recalling a number of elementary concepts and results from the clas-

sical analysis of waves on a string. Of particular importance for later analysis is 

the Duhamel Principle introduced at this stage. The ideas of scattering processes 

are illustrated and a scattering matrix introduced. Jost type solutions are intro-

duced as a means of discussing the asymptotic behaviour of solutions at large 

distances from the scatterer.

We introduce in Chapters 3 to 5 a number of concepts and results from func-

tional analysis and operator theory which are used regularly in the subsequent 

chapters. The presentation is mainly restricted to giving basic defi nitions, formu-

lating the more important theorems and illustrating results by examples. More 

advanced topics in analysis will be introduced as required, thus emphasising their 

role when discussing wave phenomena.

In Chapter 6 we use the technical material introduced in the previous chapters 

to outline a strategy for discussing wave propagation and scattering. The discus-

sion is strongly directed towards the development of constructive methods.

In Chapter 7 we set up a mechanism for discussing echo wave forms. This 

chapter relies very much on the materials and strategies introduced in Chapter 

6. For ease of presentation and for the sake of clarity the development is made 

in terms of an acoustic problem. Detailed workings for more general problems 

will be deferred to the specifi c cases studied in later chapters.

The remaining chapters treat a number of problems that arise quite frequently 

in practice. These fall into three groups, acoustic, electromagnetic and elastic 

problems. Although coupled fi elds problems are of considerable interest in prac-

tice they will not be discussed in this monograph.

Chapters 8 and 9 deal with acoustic waves in nonhomogeneous media; specifi -

cally with acoustic waves in spatially stratifi ed media and with acoustic waves in 

spatially periodically stratifi ed media. In Chapter 8 the notion of trapped waves 

is introduced and appropriate generalised eigenfunction expansion theorems are 

discussed. Chapter 9 introduces the elements of Floquet theory and its bearing 

on the scattering problems of interest here.

The discussion of acoustic problems ends, in Chapter 10, with some remarks 

on acoustic inverse problems. In this chapter a promising method for treating the 

inverse problem is outlined.

Electromagnetic wave problems and elastic wave problems are considered in 

Chapter 11. The development follows the pattern adopted when discussing acous-

tic problems.

Chapter 12 indicates possibilities for further reading by providing some addi-

tional remarks and references for the material in the previous chapters. The 

chapter ends with a number of appendices which recall some frequently used 

topics from analysis.
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2

Some One-Dimensional Examples

2.1 Introduction

Many of the strategies and techniques which are used in solving quite demanding 

scattering problems have been inspired by the methods used and results obtained 

when investigating wave motions on strings. In this connection we gather together 

in this chapter, for convenience and completeness, some of these details. The 

material is essentially well known and, consequently, is presented here in a 

largely formal manner. Full details can be found in the references cited in the 

Commentary.

Wave scattering phenomena involve three ingredients, an incoming or inci-

dent wave, an interaction zone in which the incident wave is perturbed in some 

manner and an outgoing wave which arises as a consequence of the perturbation. 

The waves in the interaction zone have, almost always, a very complicated struc-

ture. We shall see that this particular diffi culty can be avoided, to a large extent, 

if we concentrate on the consequences of the interaction rather than on the inter-

action itself. This we shall do by developing relationships between the incoming 

and outgoing processes, that is, we shall construct a scattering theory. To do this 

we fi rst need to know how waves propagate in the absence of perturbations, that 

is, we need to study the FP. When details of the solutions to FP are well under-

stood we can then turn to an investigation of the more demanding PP which can 

embrace such features as boundary conditions, forcing terms, variable coeffi -

cients and so on.

In the following sections we work through a number of specifi c problems 

associated with waves on an infi nite string.

2.2 Free Problems

It is well known that the small amplitude transverse wave motion of a string is 

governed by an equation of the form [2] [7]



18 2 Some One-Dimensional Examples

 {∂t
2 − c2∂x

2}u(x, t) = f(x, t), (x, t) � R × R (2.1)

where f characterises a force applied to the string, u(x, t) denotes the transverse 

displacement of the string at a point x at time t and c represents the velocity of 

a wave which might have been generated in the string. Throughout, we use the 

notation ∂t
n to denote the nth partial derivative with respect to the variable t and 

similarly for other variables. Also, the subscript notation will be used to denote 

differentiation of dependent variables.

We shall see later that it is quite suffi cient for most of our purposes to study 

only the homogeneous form of (2.1). Specifi cally, we shall see in Section 2.8 that 

if we can solve the homogeneous equation then we will also be able to solve the 

inhomogeneous equation by using Green’s function techniques and Duhamel’s 

Principle. Consequently, in this chapter, unless otherwise stated, we take as a 

prototype equation

 {∂t
2 − c2∂x

2}u(x, t) = 0, (x, t) � R × R (2.2)

Solutions, u(x, t), of this equation will, in general, be required to satisfy appro-

priate initial conditions to control the variations with respect to the time variable

t and, similarly, certain boundary conditions to control the variations in the dis-

placements with respect to the space variable x. However, in most cases of practi-

cal interest at all those points x that are a long way away from any boundary the 

effect of the boundary will be minimal since it could take quite a time, depending 

on the wave velocity, c, for the boundary infl uences to have any substantial effect 

at these points x. Thus for large values of t the wave motion is largely unaffected 

by the boundaries, that is the waves are (virtually) free of the boundary 

infl uence.

In this chapter we shall take as our prototype free problem (FP) the Initial 

Value problem (IVP)

 {∂t
2 − c2∂x

2}u(x, t) = 0, (x, t) � R × R (2.3)

 u(x,  0) = j(x), ut(x,  0) = y(x), x � R (2.4)

Associated with this FP are a variety of perturbed problems (PP) which could 

involve, for example, either forcing terms or variable coeffi cients or boundary 

conditions or combinations of these. Consequently, in any study of waves and 

their echoes there are three things that have to be done before anything else.

• Determine the general form of solutions to the equation governing the wave 

motion.

• Investigate initial value problems IVPs associated with the defi ning equation 

governing the wave motion and develop, in the absence of any perturbation, 

constructive methods of solution. This is taken as the underlying FP.

• Investigate PPs associated with the above FP and develop for them construc-

tive methods of solution.



Once these three matters have been satisfactorily addressed then we will be 

well placed actually to compare solutions of the FP and the PPs and so develop 

a scattering theory. By means of such a scattering theory, which sometimes might 

appear to have a very abstract structure, we will see that we will be able to 

analyse, in an effi cient and thoroughly constructive manner, the echo signals 

arising from perturbations of an otherwise free system. Furthermore, we shall 

see in later chapters that many of these one-dimensional techniques and strate-

gies can be extended to cater for much more complicated systems than those 

dealing with waves on strings.

2.3 Solutions of the Wave Equation

In this section we obtain the general form of solutions of the one-dimensional 

wave equation

 {∂t
2 − c2∂x

2}u(x, t) = 0, (x, t) � R × R (2.5)

To this end introduce new variables, the so-called characteristic

coordinates,

 x = x − ct and h = x + ct (2.6)

We remark that the lines x = constant and h = constant are called character-

istic lines for (2.5) [9]. Transforming (2.5) to the new variables x, h we have

 2x = h + x and 2ct = h − x (2.7)

and we will write

 u(x, t) = v(x, h) (2.8)

Consequently, using the chain rule we obtain

 2cvx = cux − ut

(2.9)
4c2vxh = c2uxx + cuxt − cutx − utt = c2uxx − utt

Thus the wave equation (2.5) transforms under (2.6) into

 vxh(x, h) = 0 (2.10)

The equation (2.10) has a general solution of the form

 v(x, h) = f(x ) + g(h) (2.11)

 2.3 Solutions of the Wave Equation 19
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where f, g are arbitrary, but suffi ciently differentiable functions which are 

determined in terms of imposed conditions to be satisfi ed by a solution of 

interest.

Returning to the original variables we have

 u(x, t) = f(x − ct) + g(x + ct) (2.12)

In order that (2.12) should be a solution of (2.5), in the classical sense, then 

the functions f and g must be twice continuously differentiable functions of their 

arguments. We shall see later that we can relax this requirement.

In (2.12) the function f characterises a wave travelling to the right, unchanging 

in shape and moving with a velocity c > 0. To see this consider the f-wave when 

it is at position x0 at time t = 0. Then in this case the wave has a shape (profi le) 

given by f(x0). At some future time t ≠ 0 the wave will have reached a point

x = x0 + ct. Consequently,

f(x − ct) = f(x0)

which indicates that the shape of the wave is the same at the point (x, t) as it is 

at the point (x0, t). Clearly, since x > x0 we see that f(x − ct) represents a wave 

travelling to the right with velocity c and which is unchanging in shape.

Similarly, g(x + ct) represents a wave travelling to the left with velocity c and

which is unchanging in shape.

We notice that since

 {c∂x + ∂t} f(x − ct) = 0, {c∂x − ∂t}g(x + ct) = 0 (2.13)

then both f(x − ct) and g(x + ct) individually satisfy the wave equation

 {∂t
2 − c2∂x

2}w(x, t) = 0 (2.14)

It will be convenient at this stage to introduce some notation. This we can do 

quite conveniently by considering the following particular solution of (2.14)

 w(x, t) = a cos (kx − wt − e), a > 0, w > 0 (2.15)

This is a harmonic wave defi ned in terms of the quantities

k = wave (propagation) number

w = angular frequency

a = amplitude

e = phase angle.

A number of perhaps more familiar wave features can be defi ned in terms of 

these quantities; specifi cally,



c = w /k = wave velocity. The wave travelling in the positive direction if k > 0.

l = 2p /k = wave length

f = w /2p = frequency of the (harmonic) oscillation

T = f −1 = 2p /w = period of the oscillation

q(x,  t) = kx − wt − e = the phase of the wave.

It will often be convenient to defi ne the corresponding complex harmonic 

wave

 y (x,  t) = a exp{iq(x,  t)} = C exp{i(kx − wt)} (2.16)

where w(x,  t) = Re(y(x,  t)) with a = C and e = −arg C.

If a depends on either x or t then w is referred to as an amplitude modulated 

wave.

If q(x,  t) is nonlinear in either x or t then w is referred to as a phase modu-

lated wave.

A wave of the form

 w(x,  t) = e−pt cos (kx − wt − e), p > 0 (2.17)

is a damped harmonic wave.

A wave of the form

 w(x,  t) = e−qx cos (kx − wt − e), p > 0 (2.18)

is an attenuated harmonic wave.

Solutions of (2.14) that have the specifi c form

 w(x,  t) = X(x)T(t) (2.19)

are known as separable solutions. A typical example of such a solution is

 w(x,  t) = sin(px) cos(pct) (2.20)

Direct substitution of (2.20) into (2.14) readily shows that (2.20) is indeed a 

solution of the wave equation. A general feature of waves such as (2.20) is that 

they are constant in time, that is they are stationary or non-propagating 

waves. To see this notice that the nodes of (2.20), that is, those points x at which 

w(x,  t) = 0 and the antinodes of (2.20), that is those points x at which wx(x,  t) 

= 0 maintain permanent positions, x =  .  .  .  −1, 0, 1, 2  .  .  .  and x =  .  .  .  −1–
2
, 1–

2
, 3–

2
  

.  .  .  respectively, for all time t. We notice that (2.20) can be written in the form

 w x t x ct x ct x ct( ) sin( )cos( ) sin( ( )) sin( ( )), = = − + +π π π π
1

2

1

2
 (2.21)
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Thus the stationary wave (2.20) is seen to be a superposition of two travel-

ling waves, travelling in opposite directions with velocity c.

We have seen that solutions of (2.14) have the general form

 w(x, t) = f(x − ct) + g(x + ct) (2.22)

We will often be interested in solutions (2.22) that have a particular time 

dependence. This can mean that we might look for solutions that have, for 

example, the following specifi c and separated form

 w(x, t) = X(x)exp{iwt} (2.23)

Substituting (2.23) into (2.14) we fi nd that

 {∂x
2 + k2}X(x) = 0, k = w /c (2.24)

This equation has the solution

 X(x) = Aeikx + Be−ikx (2.25)

and we thus obtain, using (2.23) and (2.25)

 w(x, t) = A exp{i(kx − wt)} + B exp{−i(kx + wt)} (2.26)

Thus, comparing (2.22) and (2.26) we arrive at the following sign 

convention.

For waves with a time dependence exp{−iwt}, then

exp{ikx} characterises a wave travelling to the right (increasing x)

exp{−ikx} characterises a wave travelling to the left (decreasing x).

2.4 Solutions of Initial Value Problems

In this section we study IVP of the form (2.3), (2.4) with x < ∞ and t > 0.

We have seen that the general solution of (2.3) has the form

 u(x, t) = f(x − ct) + g(x + ct) (2.27)

Substituting the initial conditions (2.4) into (2.27) we obtain

 j(x) = f(x) + g(x) (2.28)

 y(x) = −cf ′(x) + cg′(x) (2.29)

We notice that since f and g are assumed, at this stage, to be twice 

continuously differentiable it follows that the initial conditions must be 



such that j is twice continuously differentiable and y is once continuously 

differentiable.

Integrate (2.29) and obtain

 
1

0c
s ds f x g x

x

x

ψ ( ) ( ) ( )∫ =− +  (2.30)

where x0 is an arbitrary constant.

From (2.28) and (2.30) we obtain

 f x x
c

s ds
x

x

( ) ( ) ( )= − ∫
1

2

1

2 0

ϕ ψ  (2.31)

 g x x
c

s ds
x

x

( ) ( ) ( )= + ∫
1

2

1

2 0

ϕ ψ  (2.32)

Substituting (2.31), (2.32) into (2.27) we obtain

 u x t x ct x ct
c

s ds
x ct

x ct

( , ) ( ) ( ) ( )= − + +{ }+
−

+

∫
1

2

1

2
ϕ ϕ ψ  (2.33)

This is the celebrated d’Alembert solution of the one-dimensional wave equa-

tion. The interval [x1 − ct1,  x1 + ct1], t > 0 of the x-axis is the domain of depen-

dence of the point (x1,  t1). The reason for this name is that (2.33) indicates that 

u(x1,  t1) depends only on the values of j taken at the ends of this interval and the 

values of y at all points of this interval. The region, D, for which t > 0, x − ct ≤ 

x1 and x + ct ≥ x1 is known as the domain of infl uence of the point x1. This is 

because the value of j at x1 infl uences the solution u(x,  t) on the boundary of D 

whilst the value of y at x1 infl uences u(x,  t) throughout D.

It will be instructive to consider the d’Alembert solution (2.33) in the following 

two particular cases.

Example 2.1. Assume

• Initial velocity of the string is everywhere zero.

• Initial displacement of the string is only nonzero in the interval (x,  t).

In this case (2.33) reduces to

 u x t x ct x ct( , ) ( ) ( )= − + +{ }
1

2
ϕ ϕ  (2.34)

Thus we see that the forward wave j(x − ct) and the backward wave j(x + ct) 

each travel with a velocity c and have initial amplitude 1–
2
j(x), that is with ampli-

tude one half of the original (initial) amplitude u(x,  t). To fi nd the solution, u(x,  t), 

at some other time we displace the graph j(x) by an amount ct in opposite 
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directions. For instance, suppose the initial displacement was a triangle with base 

(a,  b ). Then as we have seen, this initial waveform will be the sum of two trian-

gular waveforms each having half the original amplitude. At any other time, t, the 

displacement waveform will again be the sum of two triangular waveforms, each 

of half the original amplitude, one travelling to the right, the other to the left. The 

displacement waveform is obtained by summing the ordinates of the two dis-

placed graphs. This can turn out to be a very complicated process. Furthermore, 

to write down the formula for u(x,  t) at any point (x,  t) can often be very diffi cult. 

In the relatively simple case of waves on strings an indication of the complicated 

nature of the displacement waveform can be obtained by graphical means. To see 

this consider the specifi c case when the initial displacement is the triangular 

waveform

 ϕ

α
β α

α α β

β
β α

α β
( ) ( )

;

( )
( )

( )
(

x u x

x

u x
x

u x
= =

≤
−
−

≤ ≤ +

−
−

+
,

;

;

0

0 0

2 1

2

2 1

2

0

0
))≤ ≤

≥











x

x

β

β0;

 (2.35)

Displacing this waveform in the manner mentioned above and plotting the 

results on a graph of u against x yields a series of graphs which are snapshots of 

the displacement waveform at a fi xed time. Carrying this through for time steps 

of duration

m

c
m

( )
. . .

β α−
=

10
0 1 2, , , ,

we will readily notice the following behaviour:

For t = 0 to t
c

=
−2

5

( )β α

In this interval the backward and forward waves interact and produce a very 

complicated graph for the displacement waveform.

For t
c

≥
−3

5

( )β α

The backward and forward waves would seem to have “passed through” each 

other and exhibit no evidence of the “interaction” which was seen earlier. However, 

simple as the graph would now appear to be we do know that these two waves 

will have interacted and will “contain” information to that effect. We would like 

to obtain this information without going through all the complexities which would 

arise when investigating the interaction zone. This is a principal goal of scattering 

theory. We shall demonstrate how this can be achieved in the chapters that 

follow.



Example 2.2. Assume

• Initial velocity of the string is only nonzero in the interval (a,  b ).

• Initial displacement of the string is everywhere zero.

In this case (2.33) reduces to

 
1

2c
s ds

x ct

x ct

ψ ( )
−

+

∫  (2.36)

We argue in much the same way as in Example 2.1. The difference now is that y 

rather than j is prescribed. As an illustration we shall consider the case when 

j(x) has the triangular waveform given in (2.35). Once again we confi ne attention 

to a graphical method and plot “snapshots” of the displacement u(x,  t) at various 

fi xed times. We quickly see that there are fi ve regions of interest,

1. x + ct ≤ a
2. a ≤ x + ct ≤ b
3. x − ct ≤ a and x + ct ≥ b
4. a ≤ x − ct ≤ b
5. x − ct ≥ b

In Region 1 we have x + ct ≤ a and hence the entire range of integration 

in (2.36) is outside the interval (a,  b ). Consequently, u(x,  t) = 0 in Region 1.

In a similar manner u(x,  t) = 0 in Region 5.

In Region 2 we have a ≤ x + ct ≤ b. Consequently

 x − ct = x + ct − 2ct ≤ b − 2ct < a (2.37)

The last inequality will only hold for

 t > (b − a)/2c (2.38)

Therefore, in Region 2,

 u x t
c

s ds
x ct

( ) ( ), =
+

∫
1

2
ψ

α
 (2.39)

Similarly, in Region 4, together with (2.38) we obtain

 u x t
c

s ds
x ct

( ) ( ), =
−∫

1

2
ψ

β
 (2.40)

Finally, in Region 3 since x − ct ≤ a and x + ct ≥ b it follows that

 u x t
c

s ds( ) ( ), = ∫
1

2
ψ

α

β
 (2.41)
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and we conclude, since a and b, are constants, that u(x,  t) is a constant in 

Region 3.

In the case when

 t
c

<
−β α
2

 (2.42)

then arguing as before we fi nd that in Region 3 we now have

 
1

2c
s ds

x ct

x ct

ψ ( )
−

+

∫  (2.43)

which is not a constant.

These two examples illustrate quite clearly how complicated the wave 

structure can be. The situation can, of course, be expected to be even worse if 

any form of perturbation, such as a boundary condition for instance, is involved. 

In the following two sections we introduce some methods that will ease these 

diffi culties. Whilst these methods may seem, at fi rst sight, to be a little heavy-

weight for use when discussing waves on strings nevertheless they do ease con-

siderably the diffi culties we have so far mentioned and more importantly they 

offer good prospects for dealing with more complicated problems than waves on 

strings.

Finally, in this section we return to (2.33) the d’Alembert solution form. We 

notice that if we introduce

 u x t

x ct
c

s ds x

x ct
c

s ds

x ct

+
−

∞

=
− + >

+ +

∫
( , ) :

( ) ( )

( ) ( )

1

2

1

2
0

1

2

1

2

ϕ ψ

ϕ ψ

,

,
−−∞

+

∫ <










x ct

x 0

 (2.44)

 u x t

x ct
c

s ds x

x ct
c

s ds

x ct

−
+

∞

=
+ − >

− −

∫
( , ) :

( ) ( )

( ) ( )

1

2

1

2
0

1

2

1

2

ϕ ψ

ϕ ψ

,

,
−−∞

−

∫ <










x ct

x 0

 (2.45)

then (2.33) can be written in the alternative form

 u(x,  t) = u+(x,  t) + u−(x,  t) (2.46)

This form will be useful when we try to learn more about the behaviour of the 

solution, u(x,  t), for large t. We notice that u+(x,  t) is a function of (x − ct) for 

x > 0 and a function of (x + ct) for x < 0. Consequently, we can write more 

compactly

 u+(x,  t) = f+(x − ct), x � R (2.47)



Similarly, we have

 u−(x,  t) = f−(x + ct), x � R (2.48)

We also notice that in the region x > 0 there are two “waves”, u+(x,  t) travel-

ling to the right (increasing x) and u−(x,  t) travelling to the left (decreasing x). 

Thus, with respect to the origin x = 0 the wave u+(x,  t) is outgoing whilst the 

wave u−(x,  t) is incoming.

Similarly, in the region x < 0 the wave u+(x,  t) is outgoing (increasing 

negative x) with respect to the origin whilst u−(x,  t) is incoming (decreasing 

negative x).

The concepts of incoming and outgoing waves are of crucial importance in 

scattering theory. They will be discussed in more detail in Chapter 6 and the 

Commentary.

2.5 Integral Transform Methods

In this and the following section we introduce some alternative methods of con-

structing solutions to FP for wave problems on strings. These methods have the 

virtue that they generalise quite readily when we need to deal with more compli-

cated and demanding problems than waves on strings. Furthermore, we shall see 

that they also provide an effi cient means for developing robust constructive 

methods for solving quite diffi cult problems.

An explicit method for constructing solutions to IVP for the wave equation is 

provided by the Plancherel theory of the Fourier transform [6], [8], [10]. Specifi -

cally we have the following basic formulae in Rn.

 ˆ ( )( ) : ˆ ( ) lim
( )

exp( ) ( )
/

f Ff p f p ixp f x dx
M n x M

= = −
→∞ ≤∫

1

2 2π
 (2.49)

 ˆ ( ) ( ˆ ) lim
( )

exp( ) ˆ ( )
/

ff x F f ixp f p dp
M n p M

= =
→∞ ≤∫*

1

2 2π
 (2.50)

where x = (x1,  x2,  .  .  .  , xn), p = (p1,  p2,  .  .  .  ,  pn) and x p x pj
n

j j⋅ = =Σ 1 .  Here F* 

denotes the inverse of the transform F. We would emphasise that the integrals in 

(2.49), (2.50) are improper integrals and care must be taken when interpreting 

the limits in (2.49), (2.50). We return to these points in detail in Chapter 6. With this 

understanding we shall refer to (2.49), (2.50) as a Fourier inversion theorem.

This inversion theorem can be used to provide a representation, a so-called 

spectral representation, of differential expressions with constant coeffi cients. 

Such a representation will often reduce the complexities and inherent diffi culties 

of a given problem. This is a consequence of the relation
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 (F (Dj f ))(p) = ipj(Ff )(p) (2.51)

where Dj = ∂/∂xj, j = 1, 2,  .  .  .  , n. For example if we write

A x
j

n

:=− =−
=
∑∆ ∂ ∂2 2

1

and if Φ is a “suffi ciently nice” function then using (2.51) we can obtain the 

representation

 ˆ ( ( ) )( ) lim
( )

exp( ) ( ) ˆ ( )
/

f A f x ixp p f p dp
M n p M

Φ Φ=
→∞ ≤∫

1

2 2

2

π
 (2.52)

In later chapters we shall refer to the three results (2.49), (2.50), (2.52) collectively 

either as a (generalised) eigenfunction expansion theorem or as a spectral 

representation theorem (with respect to A).

To illustrate the use of the above Fourier transforms we consider again the 

following IVP governing waves on a string

 {∂t
2 − c2∂x

2}u(x,  t) = 0, (x,  t) � R × R (2.53)

 u(x,  0) = j(x), ut(x,  0) = y(x), x � R (2.54)

We now only need consider the case when n = 1 and then the inversion 

theorem (2.49), (2.50) can be conveniently written in the form

 ˆ ( )( ) : ˆ ( )
( )

exp( ) ( ) ( ) ( )
/

f Ff p f p ixp f x dx w x p f x dx= = − =∫ ∫
1

2 1 2π R R
,  (2.55)

  ˆ ( ) ( ˆ )
( )

exp( ) ˆ ( ) ( ) ˆ ( )
/

ff x F f ixp f p dp w x p f p dp= = =∫ ∫* ,
1

2 1 2π R R
 (2.56)

where it is understood that the improper integrals appearing in (2.55), (2.56) are 

interpreted as limits as indicated above. We notice that the Fourier kernel

 w x p ixp( )
( )

exp( )
/

, =
1

2 1 2π
 (2.57)

satisfi es

 {∂x
2 + p2}w(x,  p) = 0 (2.58)

If we take the Fourier transform, (2.55), of the IVP for the partial differential 

equation (2.53) we obtain the following IVP for an ordinary differential equation



 {dt
2 + c2p2} û(p,  t) = 0 (2.59)

 û(p,  0) = ĵ (p), ût (p,  0) = ŷ(p) (2.60)

This IVP is easier to solve than that for the partial differential equation (2.53). 

Indeed, we see immediately that the solution is

 ˆ ( ) (cos( )) ˆ( ) (sin( )) ˆ ( )u p t pct p
pc

pct p, = +ϕ ψ
1

 (2.61)

If we now apply the inverse Fourier transform, (2.56) to (2.61), then we obtain 

the required solution of the IVP (2.53), (2.54) in the form

 
ˆ , , ˆ ˆ

*

ϕ ϕ ψu x t w x p pct p
pc

pct p dp

F

R
( )= ( ) ( )( ) ( )+ ( )( ) ( ){ }

=

∫ cos sin
1

ˆ̂ ,u t x⋅( ){ }( )
 

(2.62)

To see how this form relates to that obtained earlier we fi rst expand cos (pct) in 

the form

cos( )pct e eipct ipct= +{ }−1

2

and use the result [3], [4, vol II]

 (F( f(x − L)))(p) = e−ipLf̂ (p) (2.63)

It is then a straightforward matter to show that

 F p pct x ct x ct*( ( )cos( )) ( ) ( )ϕ ϕ ϕɵ = + + −{ }
1

2
 (2.64)

Similarly

  

F
pc

p pct
i

p
pc

e e dip x ct ip x ct*
1 1

2 2

1
ˆ( )sin( ) ˆ ( ) ( ) ( )ϕ

π
ψ( )= −{ }∫ + −

R
pp

c
p e ds dp

c
s ds

ips

x ct

x ct

x ct
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= { }
=

∫ ∫

∫
−

+

−

+

1

2 2
1

2

π
ψ

ψ

ˆ ( )

( )

R

 (2.65)

Combining (2.62), (2.64) and (2.65) we obtain

 u x t x ct x ct
c

s ds
x ct

x ct

( ) ( ) ( ) ( ), = + + −{ }+
−

+

∫
1

2

1

2
ϕ ϕ ψ  (2.66)
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which is the familiar d’Alembert solution obtained earlier. We remark again that 

the Fourier transform of the given IVP for a partial differential equation yields, 

in this instance, an IVP for an ordinary differential equation. Whilst the ordinary 

differential equation is more readily solved than the partial differential equation 

there will remain the matter of inversion of the Fourier transform. Thus, three 

questions will always have to be addressed if we choose to adopt the integral 

transform approach.

• First, what is the most appropriate integral transform for use in reducing the 

given partial differential equation to an equivalent ordinary differential 

equation?

• Second, is there an inversion theorem of the form (2.49) available for use in 

dealing with the given IVP?

• Third, is there available a (spectral) representation theorem of the form (2.49), 

(2.50), (2.52) for use in dealing with the given IVP?

We emphasise that in dealing with our present FP we have been very lucky 

because if we use the Fourier integral transform then the Fourier Plancherel 

theory is available quite independently of any scattering requirements and we can 

answer the last two questions above in the affi rmative. However, for a perturba-

tion of this FP and indeed for more general problems than waves on a string we 

must always prove the availability of a representation theorem of the form (2.52). 

We return to this matter in more detail in Chapter 6 and subsequent chapters.

Finally, in this section we remark that we could have obtained (2.62) and 

hence (2.66) in another way. It turns out that this other approach will offer poten-

tially powerful means of addressing a wide range of physically realistic 

problems.

Essentially, the method rests on how the partial differential equation for the 

problem of interest is cast into the form of an equivalent ordinary differential 

equation. Again for the purposes of illustration we consider the IVP (2.53), (2.54). 

We start by setting A = −c2∂x
2 and then make what seems to be an outrageous 

assumption namely that for our immediate purposes A can be treated as a con-

stant! This being done we arrive at the following IVP for an ordinary differential 

equation

 {dt
2 + A}u(x,  t) = 0, u(x,  0) = j(x), ut(x,  0) = y(x) (2.67)

This IVP has a solution which can be written in the form

 u x t tA x A tA x,( )= ( )( ) ( )+ ( )( ) ( )−cos sin/ / /1 2 1 2 1 2ϕ ψ  (2.68)

It now remains to interpret such quantities as cos tA1/2.

From the standard theory of Fourier transforms [6]

 (F(Af ))(p) = (F(−c2∂x
2 f ))(p) = c2p2f̂ (p) (2.69)



It then follows, because of the particularly simple form of A that we are using 

here, that for a “suffi ciently nice” function Φ we have

 (F(Φ(A)f ))(p) = Φ(c2p2) f̂ (p) (2.70)

Consequently, combining (2.70) and (2.68) we obtain

 ˆ , , cos ˆ sin ˆϕ ϕ ψu x t w x p pct p
pc

pct p dp
R

( )= ( ) ( )( ) ( )+ ( )( ) ( ){ }∫
1

 (2.71)

which is the same as (2.62) obtained by other means. We shall see that in this 

particular method the “outrageous assumption” can be justifi ed, thus making the 

approach mathematically respectable.

Finally, we notice that the Fourier kernel w(x,  p), given by (2.57), satisfi es

 (A + c2p2)w(x,  p) = 0 (2.72)

Consequently, w(x,  p) would appear to be, in some sense, an eigenfunction 

of A with eigenvalue (−c2p2). (See Chapter 4 for more details on this aspect.)

2.6 On the Reduction to a First Order System

An alternative method frequently used when discussing wave motions governed 

by an IVP of the form (2.53), (2.54) is to replace the IVP for the partial differential 

equation by an equivalent problem for a fi rst order system. This approach has a 

number of advantages. Existence and uniqueness results can be readily obtained 

and, furthermore, energy considerations can be included quite automatically. We 

shall illustrate this approach here in an entirely formal manner. Precise analytical 

details will be provided in later chapters.

The initial value problem (2.53), (2.54) can be written in the form 
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 (2.74)

where, as before A = −c2∂x
2.

These equations can be conveniently written in the form

 {∂t − iM}Ψ(x,  t) = 0, Ψ(x,  0) = Ψ0(x) (2.75)

where
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 Ψ Ψ( ) ( , ) ( ) ( )x t
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 − =
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iM
I

A

0

0
 (2.77)

If we again make the “outrageous” assumption that A is a constant then it will 

follow that M is a constant and hence (2.75) can be reformulated as an IVP for 

an ordinary differential equation of the form

 {dt − iM}Ψ(t) = 0, Ψ(0) = Ψ0 (2.78)

where we have used the notation

 Ψ(x,  t) = Ψ(⋅,  t)(x) =: Ψ(t)(x) (2.79)

The solution of (2.78) can be obtained, by using an integrating factor tech-

nique, in the form

 Ψ(t) = exp(itM)Ψ(0) (2.80)

Writing the exponential term in a series form we obtain
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and recalling the series expansions for sin x and cos x we obtain
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If we substitute this expression into (2.79) it is clear that the fi rst component 

of the solution (2.80) yields the same solution of the given IVP as obtained 

earlier.

This approach can be given a rigorous mathematical development as we shall 

see. We shall make considerable use of it in this book since, on the one hand, it 

provides a relatively easy means of settling questions of existence and uniqueness 

and, on the other, it offers good prospects for developing constructive methods.

So far we have only been discussing IVP for the one-dimensional wave equa-

tion, that is, the FP for waves on a string. In the next few sections we turn our 

attention to some PPs associated with this FP and indicate how the various 

methods discussed so far are either inadequate or need to be modifi ed in certain 

ways.

2.7 Waves on Sectionally Homogeneous Strings

In our investigations, so far, of waves on strings we have considered the string 

to have uniform density throughout. This generated what we came to call the Free 

Problem (FP) associated with the classical wave equation. Associated with this 

FP there is a whole hierarchy of Perturbed Problems (PPs). Perhaps the simplest 

PP, in this case, would arise when we investigate waves on a string that has a 

piecewise uniform density. In this section we shall consider two particular 

cases.

2.7.1 A Two-Part String

Consider two semi-infi nite strings Ω1 and Ω2 of (linear) density r1 and r2 respec-

tively that are joined at the point x= r and stretched at tension T with Ω1 occupy-

ing the region x < r and Ω2 the region x > r. As the two strings have different 

(linear) densities then it follows that their associated wave speeds c1, c2 are also 

different.

We shall see that this problem is a one-dimensional version of the more 

general interface problems. In this latter problem a (given) incident wave travels 

in a homogeneous medium which terminates at an interface with another, differ-

ent, homogeneous medium in which the wave can also travel. Examples of such 

problems are given, for instance, by electromagnetic waves travelling in air 

meeting the surface of a dielectric and by acoustic waves travelling in air meeting 

an obstacle. In this class of problems the interface “scatters” the given incident 

wave and gives rise to refl ected and transmitted waves. When all these waves 

combine the resulting wave fi elds are readily seen to be quite different to those 

occurring in the related FP. Such problems are examples of so-called target

scattering problems. We illustrate some of the features of such problems by 

considering the following one-dimensional problem.

The governing wave equation is
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 {∂t
2 − c2(x)∂x

2}u(x,  t) = 0, (x,  t) � R × R (2.83)

 c x
c x r x

c x r x
( )=

< ∈
> ∈{ 1

2

, ,

, ,

R

R
 (2.84)

 u(x,  0) = j(x), ut(x,  0) = y(x) (2.85)

At the interface we shall require continuity of the displacement and of the trans-

verse forces. This leads to boundary conditions of the form

 u(r−,  t) = u(r+,  t), ux(r−,  t) = ux(r+,  t) (2.86)

We remark that we assume here, unless otherwise stated, that r > 0. This is not 

just to increase the complexity of the presentation. It is simply because in many 

later illustrations we shall fi nd it a convenient means of keeping track of the target 

(i.e. interface).

Let f(x − c1t) denote a given incident wave in Ω1. We assume that Ω2 is initially 

at rest so that u(x,  0) = 0 and ut(x,  0) = 0 for x > r.

The wave fi eld, u(x,  t) which must satisfy (2.83), (2.84), (2.85) has the general 

form

 u x t
f x c t g x c t x r

h x c t H x c t x r
( )

( ) ( )

( ) ( )
,

,

,
=

− + + <
− + + >{ 1 1

2 2

 (2.87)

However, since Ω2 is initially at rest we must have

 h′(z ) = 0 and H′(z ) = 0 for z > 0 (2.88)

Hence H(x + c2t) is a constant for t > 0 and therefore may be discarded. The 

appropriate wavefi eld is thus

 u x t
f x c t g x c t x r t

h x c t x r t
( )

( ) ( ) ,

( ) ,
,

,

,
=

− + + < >
− > >{ 1 1

2

0

0
 (2.89)

We also notice that

 f(z ) = h(z ) = 0, z > r 
(2.90)

g(z ) = 0, z < r

At the interface certain boundary conditions will always have to be satisfi ed 

by solutions of (2.83). The most immediate conditions are, as we have already 

mentioned, continuity of displacement:

 u(r−,  t) = u(r+,  t) (2.91)

continuity of transverse force:



 ux(r−,  t) = ux(r+,  t) (2.92)

where

 u r t u x t u r t u x t
x r
x r

x r
x r

( ) lim ( ) ( ) lim ( )−

→
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→
>

= =, , , , ,  (2.93)

and similarly for the derivatives.

Substitute (2.89) into (2.91), (2.92) to obtain

 f(r − c1t) + g(r + c1t) = h(r − c2t) (2.94)

 f ′(r − c1t) + g′(r + c1t) = h′(r − c2t) (2.95)

where the primes denote differentiation with respect to the argument.

Integrate (2.95) to obtain
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 (2.96)

where the integration constant has been set to zero in order to ensure (2.90) is 

satisfi ed.

Solving (2.94), (2.96) for the unknowns g and h we obtain
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It is worth noticing a number of interesting features of the solutions repre-

sented by (2.97) and (2.98). For convenience of presentation and without any loss 

of generality, at this stage, we shall assume that r = 0.

(i) When c2 = 0 there is no transmitted wave, the refl ected wave has the 

form

g(x + c1t) = −f(−x − c1t)

and the required solution is

 u(x,  t) = f(x − c1t) − f(−x − c1t) (2.99)

Thus as expected the refl ected wave travels in the opposite direction to the inci-

dent wave. However although the incident and refl ected waves have the same 

shape they are seen to have opposite signs.
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Finally we notice from (2.99) that u(0,  t) = 0 for all t. Thus, the solution (2.99) 

describes waves on a semi-infi nite string with a fi xed point at x = 0.

(ii) When c1 = c2 there is no refl ected wave; again as would be expected.

(iii) When c2 > c1 then the incident and refl ected waves are seen to travel in 

opposite directions with the same profi le but no change in sign.

Thus the refl ected and incident waves are in phase at the junction (interface) 

provided c2 > c1 and are otherwise totally out of phase.

We will be able to obtain more detailed information about the wave fi eld 

once we have introduced the notions of eigenfunction expansions and Green’s 

functions.

Finally, in this section, we consider the case when the incident wave is a 

simple harmonic wave of angular frequency w. In this case we will have an inci-

dent wave of the form

ui(x,  t) = f(x − ct) = exp{ik(x − ct)} = exp{i(kx − wt)}

 = exp{ikx} exp{−iwt} (2.100)

where w = kc.

We notice that the incident wave separates into the product of two compo-

nents, one only dependent on x, the other only dependent on t. It is natural to 

expect that this will be the case for the complete wave fi eld. Consequently, for 

the nonhomogeneous string problem we are considering we can expect the com-

plete wave fi eld to be separable and to have the form
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Therefore, bearing in mind the sign convention introduced just after (2.26) the 

space-dependent component of the wave fi eld, v(x), can be written in the form
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If we now apply the boundary conditions (2.91), (2.92) which must hold for all 

t > 0 then we readily fi nd
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Here R and T are known as the refl ection and transmission coeffi cients 

respectively. In the case when we are only interested in solutions that have the 

same frequency then these coeffi cients assume the simpler form
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Combining (2.101), (2.102) and (2.103) we see that we recover the solutions 

(2.97), (2.98) in the case when r = 0.

2.7.2 A Three-Part String

We shall assume in this section that a portion of a homogeneous string is sub-

jected to an elastic restoring force E(x) per unit length of the string. Newton’s 

laws of motion then indicate that the equation governing wave motion on the 

string is

 {∂t
2 − c2∂x

2}u(x,  t) − c2m2(x)u(x,  t) = 0 (2.104)

where m2(x) = E(x)/Ts and Ts denotes the string tension.

Equation (2.104) is of a form which is typical when investigating potential 

scattering problems. Here c2m2(x) can be viewed as the potential term. We shall 

only be interested here in the case when E(x) is localised. That is, E(x) will be 

assumed either to vanish outside a fi nite region of the string or to decay expo-

nentially away from some fi xed reference point.

A wave incident on the elastic region (the “potential”) will be partly refl ected 

and partly transmitted. However, even if m(x) has a constant value the solution 

of (2.104) is not as easy to obtain as the solutions (2.83). To see this consider the 

case when m(x) has the constant value m0 and we seek solutions of (2.104) that 

have the one angular frequency w. When this is the situation we assume a solution 

of the form

 u(x,  t) = w(x,  w)e−iwt (2.105)

and, by direct substitution into (2.104), we fi nd that w(x,  w) must satisfy

 d w xx
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We then obtain the string displacement u(x,  t), by (2.105) in the form

 u x t a i t
x

b i t
x

( ) exp exp, = − −( ){ }+ − +( ){ }ω
ν

ω
ν

 (2.108)
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We see that, in (2.108), n is the phase velocity of the wave. Furthermore, we 

notice that the wave motion represented by (2.108) is dispersive since by (2.107) 

the phase velocity, n, of the wave is frequency dependent. It follows that distor-

tionless propagation of the wave as described by f and g in the general solution 

of the classical wave equation, is no longer possible.

We also notice that there is a “cut off” frequency associated with the wave 

motions generated in this system. According to (2.106), (2.107) frequencies that 

are less than m0c lead to an imaginary propagation constant. These low frequency 

disturbances do not propagate as waves, they merely move the string up and 

down in phase. Thus it is possible that localised wave motion might be excited 

on a nonhomogeneous string.

To illustrate the scattering of an incident wave by the elastic region (potential) 

consider a string with a segment that has a constant elastic restoring force so that 

we have

 µ
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x r

x r
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,
 (2.109)

If a wave of frequency w and unit magnitude is incident on this region then the 

resulting spatial part of the wavefi eld may be written, as in the previous section, 

in the form
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where k = w /c and α µ= −k2
0
2 .  It is clear that a wave will not propagate in the 

elastic region unless k ≥ m0.

The refl ection and transmission coeffi cients, R and T respectively, together 

with the constants A and B are determined by requiring continuity of displace-

ment and slope at x = ±r. It is a straightforward but rather lengthy matter to 

show that

 R ikr
D

rexp( ) sin( )2 2
0=

µ
α  (2.111)

 T ikr
i k

D
exp( )2

2
=

α
 (2.112)

where

 D = (k2 + a2)sin (2ar) + 2ikr cos (2ar) (2.113)

We see, from (2.111), that perfect transmission (i.e. R = 0) occurs when 

sin (2ar) = 0, that is, whenever an integral number of half-wavelengths of the 

wave on the elastic region fi t into that region.



We also notice that R and T become unbounded at zeros of the denominator 

D. These will be identifi ed as so-called resonances of the system.

2.8 Duhamel’s Principle

So far, we have only been dealing with the homogeneous wave equation. We shall 

now show that this is really suffi cient for many of our immediate purposes. That 

is, we shall show that the results we obtain when investigating the homogeneous 

equation can be used to generate solutions for the nonhomogeneous wave equa-

tion. As an illustration we consider in this section the IVP

 {∂t
2 − c2∂x

2}u(x,  t) = f(x,  t), (x,  t) � R × R (2.114)

 u(x,  0) = j(x), ut(x,  0) = y(x) (2.115)

For convenience of presentation we shall again write A = −c2∂x
2.

We shall assume that the solution of (2.114), (2.115) has the form

 u(x,  t) = v(x,  t) + w(x,  t) (2.116)

We now proceed as before by interpreting (2.114) as an ordinary differential equa-

tion. To this end we shall understand that u, the function defi ning the displace-

ment u(x,  t), has the interpretation

 u : t → u(⋅,  t) =: u(t) (2.117)

and similarly for v and w in (2.116).

With this in mind we assume that

 {dt
2 + A}v(t) = 0, v(0) = j, vt(0) = y (2.118)

and that

 {dt
2 + A}w(t) = f(t), w(0) = 0, wt(0) = 0 (2.119)

We have already seen that the problem (2.118) has a solution of the form

v t tA A tA( )= ( )( ) + ( )( )−cos sin/ / /1 2 1 2 1 2ϕ ψ

which leads to

 v x t tA x A tA x,( )= ( )( ) ( )+ ( )( ) ( )−cos sin/ / /1 2 1 2 1 2ϕ ψ  (2.120)

To obtain w(x,  t) in (2.119) we set
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 w t t d
t

( ) ( )= ∫ η τ τ,
0

 (2.121)

where h(t,  t) is assumed to satisfy

 {dt
2 + A}h(t,  t) = 0, h(t,  t) = 0, ht(t,  t) = f(t) (2.122)

A straightforward calculation then shows that w(t) defi ned by (2.121) is a 

solution of the IVP (2.119). Therefore, combining these results we obtain the 

required solution in the form

  u x t tA x A tA x t d
t

, ,( )= ( )( ) ( )+ ( )( ) ( )+ ( )

=

− ∫cos sin/ / /1 2 1 2 1 2

0
ϕ ψ η τ τ

BB t x B t x t dt

t

( )( )( )+ ( )( )( )+ ( )∫ϕ ψ η τ τ,
0

 (2.123)

where

 B t A tA( ) = ( )( )−: sin/ /1 2 1 2  (2.124)

Bearing in mind how the solution form (2.120) was obtained and applying the 

same techniques to the IVP (2.122), where in this case the initial conditions are 

imposed at t = t rather than t = 0, we obtain

 η τ τ τ τ τt A t A f B t f,( )= −( )( )( ) ( )= −( ) ( )−1 2 1 2/ /sin  (2.125)

Hence

 w t t d B t f d
t t

( ) ( ) ( ) ( )= = −∫ ∫η τ τ τ τ τ,
0 0

 (2.126)

and consequently

 u x t B t x B t x B t f x dt

t

( ) ( ( ) )( ) ( ( ) )( ) ( ) ( ), ,= + + −∫ϕ ψ τ τ τ
0

 (2.127)

Thus we see that if we can solve the homogeneous equation, that is, if we can 

interpret (2.124) in a practical, constructive manner, then we can solve the inho-

mogeneous equation in the form (2.127). This is known as Duhamel’s Principle 

and (2.126) is said to defi ne the Duhamel Integral for the inhomogeneous equa-

tion. With this section in mind we shall concentrate our attention, almost entirely, 

for the remainder of the book on the associated homogeneous equations.



2.9 On the Far Field Behaviour of Solutions

In this section we give a fi rst indication of how solutions of FPs and PPs might 

be considered as being AE. This we shall do by considering the following IVP. 

Determine a quantity w(x,  t) which satisfi es

 {∂t
2 + L(x)}w(x,  t) = 0 (2.128)

 w(x,  s) = js(x), wt(x,  s) = ys(x) (2.129)

where s � R is a fi xed initial time and in (2.129) js(x) and ys(x) are given initial 

data. In (2.128)

 L(x) = −c2∂x
2 + V(x) (2.130)

where c is the wave speed and V is a function characterising a perturbation of 

the (one-dimensional) Laplacian ∂x
2.

Problems of the form (2.128)–(2.130) are typical of those which arise when 

investigating potential scattering, an example of which was given above when 

discussing wave motions on an elastically braced string. We would remark that 

(2.128) and (2.130) together provide a perturbation of the classical wave equation 

and such an equation is frequently referred to as the plasma wave equation.

When V(x) ≡ 0 we refer to (2.128)–(2.130) as a Free Problem (FP). We notice 

that this FP is governed by the familiar wave equation. When V(x) ≠ 0 everywhere 

then (2.128)–(2.130) is referred to as a Perturbed Problem (PP).

We have seen in the previous sections that the wave equation, which governs 

the FP in this case, has solutions which can be written in the form

 w(x,  t) = f(x − ct) + g(x + ct) (2.131)

where f and g are arbitrary functions which characterise waves, of constant 

profi le, travelling with velocity c from left to right and right to left respectively.

In the particular case when both waves have the same time dependency, 

exp(−iwt), then the familiar separation of variables technique indicates that the 

wave equation has solutions, denoted w(x,  t,  k), which we can write in the form

 w(x,  t,  k) = exp(−iwt){u+(x,  k) + u−(x,  k)} (2.132)

where the quantities u±(x,  k) must satisfy

 
d

dx
k u x k k

c
x

2

2

2 2
2

2
0+











= = ∈±( ), , ,
ω

R  (2.133)

However, although the u±(x,  k) both satisfy (2.133) nevertheless they have differ-

ent properties. This can be seen by fi rst noticing that (2.133) yields
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 u+(x,  k) = exp(ikx) and u−(x,  k) = exp(−ikx) (2.134)

Combining (2.132) and (2.134) we obtain

 w x t k i t
x

c
i t

x

c
( ) exp exp, , = − −( )( )+ − +( )( )ω ω  (2.135)

Thus, recalling the form (2.131) we see that u+ characterises a wave moving from 

left to right and u− characterises a wave moving from right to left, both waves 

having the same time dependency exp(−iwt). Equivalently, we say that u+ rep-

resents an outgoing wave, since in R, for x > 0, it is moving away from the origin 

whilst u− represents an incoming wave since, in R, for x < 0, it is moving towards 

the origin. This feature of the wave motion leads quite naturally to the following 

defi nition which caters for more general situations [6].

Defi nition 2.3. Solutions v(x,  k) of the equation

 {∆ + k2}v(x,  k) = 0, x � R, n � 1 (2.136)

are said to satisfy the Sommerfeld radiation condition if and only if for all k 

as r = x → ∞

 
∂
∂r

k v x k o
r

∓{ } = ( )( ),
1

 (2.137)

 v x k O
r n

( )
/ ( )

, = ( )−

1
1 2 1  (2.138)

The estimates (2.137), (2.138) are understood to hold uniformly with respect to 

the direction x/x. The estimate (2.137) taken with the minus (plus) sign is called 

the Sommerfeld outgoing (incoming) radiation condition.

With u± defi ned as in (2.134) it is clear that u+(x,  k) is an outgoing solution 

and u−(x,  k) is an incoming solution in the sense of Defi nition 2.3. A derivation 

of these radiation conditions can be found in the text cited in the Commentary.

In later sections we shall see that the u±(x,  k) have the important property 

that any solution of (2.136) can be expressed as a linear combination of the 

u±(x,  k) [1]. As a consequence we shall refer to the u±(x,  k) as fundamental 

solutions of (2.133).

We now turn our attention to the case when the potential V(x) ≠ 0, that is to 

the PP which is a perturbation of the FP we have just been discussing. A natural 

fi rst step when dealing with this PP is to see if the time dependency in the problem 

can again be separated out. If we assume that this separation is possible then 

instead of (2.132) and (2.133) we now have



 w x t k i t w x k w x k k
c

( ) exp( ){ ( ) ( )}, , , , ,= − + =+ −ω
ω2

2

2
 (2.139)

where

 
d

dx
k Q x w x k k

c
x

2

2

2 2
2

2
0+ −











= = ∈±( ) ( ), , ,
ω

R  (2.140)

and

 Q x
V x

c
( )

( )
=

2
 (2.141)

Since (2.140) is clearly a perturbation of (2.133), which has certain fundamen-

tal solutions, u±(x,  k), defi ned in (2.134), then it is natural to ask if (2.140) also 

has fundamental solutions and, if so, can they be regarded as perturbations of the 

u±(x,  k)? Furthermore, if such fundamental solutions of (2.140) exist then are 

they in some sense AE to the fundamental solutions, u±(x,  k), of (2.133)? It turns 

out that for (2.140) there is a family of solutions, parameterised by k, for which 

the answer to both these questions is in the affi rmative. These are the so-called 

Jost solutions.

2.9.1 Jost Solutions

Bearing in mind the remarks at the end of the last section the Jost solutions, 

whenever they exist, are those solutions of (2.140), denoted by y± and j±, which 

have the following uniform asymptotic behaviour:

as x → +∝

 y±(x,  k) = u±(x,  k){1 + o(1)} = exp(±ikx){1 + o(1)} (2.142)

 ψ x x k
u x k

x
o ikx ik o± ±= + = ± ± +( )

( )
{ ( )} exp( ){ ( )},

,∂
∂

1 1 1  (2.143)

as x → −∞

 j±(x,  k) = u�(x,  k){1 + o(1)} = exp(�ikx){1 + o(1)} (2.144)

 ϕx x k
u x k

x
o ikx ik o± = + = ± +( )

( )
{ ( )} exp( ){ ( )},

,∂
∂
∓

∓1 1 1  (2.145)

Alternatively, these can be written in the more compact forms:

 lim {exp( ) ( )}
x

ikx x k
→∞

± =∓ ψ , 1  (2.146)

 lim {exp( ) ( )}
x

xikx x k ik
→∞

± =±∓ ψ ,  (2.147)
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 lim {exp( ) ( )}
x

ikx x k
→−∞

±± =ϕ , 1  (2.148)

 lim {exp( ) ( )}
x

xikx x k ik
→−∞

±± =ϕ , ∓  (2.149)

Thus we see that as x → ±∞ the Jost solutions will have the behaviour of plane 

waves. Consequently, we can expect the perturbed equation (2.140) to have solu-

tions which can be interpreted as distorted plane waves which are AE to solu-

tions of the FP.

Perhaps one of the more convenient ways of settling the questions of exis-

tence and uniqueness of the Jost solutions is to represent them as solutions of 

certain integral equations. This will have the added bonus of yielding a construc-

tive method. To this end we recall that solutions of an equation of the form

 y″(x) + {k2 − q(x)}y(x) = 0 (2.150)

can be obtained by the variation of parameters method. Specifi cally, assume that 

(2.150) has a solution that can be written in the form

 y(x) = A(x) exp(ikx) + B(x) exp(−ikx) (2.151)

Substituting (2.151) into (2.150) it is natural to set

 (2ik)A′(x) exp(ikx) = q(x)y(x) (2.152)

and so obtain

 A x
ik

q v y v ikv dv C
x

( ) ( ) ( )exp( )= − +∫
1

2
1

0
 (2.153)

Now substitute (2.152), (2.153) into (2.150) and obtain

 B x
ik

q v y v ikv dv C
x

( ) ( ) ( )exp( )=
−

+ +∫
1

2
2

0
 (2.154)

The integration constants C1 and C2 have now to be chosen to ensure that asymp-

totic behaviours of the forms (2.142)–(2.145) are obtained as required. To this 

end, if we identify y in (2.150) with the Jost solutions y+ and j+ and consider 

the form of exp(−ikx)y+and exp(+ikx)j+ as x → ∞ and x → −∞ respectively 

then the required asymptotic behaviour will be obtained if for y+ we set

 C
ik

q v y v ikv dv1
0

1
1

2
= − = −

∞

∫ ( ) ( )exp( )  (2.155)

and



 C
ik

q v y v ikv dv2
0

1

2
= = +

∞

∫ ( ) ( )exp( )  (2.156)

For j+ we set

 C
ik

q v y v ikv dv1

01

2
= = −

−∞∫ ( ) ( )exp( )  (2.157)

 C
ik

q v y v ikv dv2

0

1
1

2
= − = +

−∞∫ ( ) ( )exp( )  (2.158)

to obtain the required asymptotic behaviour.

Combining these several results we obtain

 ψ ψ± ±∞
= ± + −∫( ) exp( ) ( )sin( ( )) ( )x k ikx

k
q v k v x v k dv

x
, ,

1
 (2.159)

 ϕ ϕ± ±

−∞
= − −∫( ) exp( ) ( )sin( ( )) ( )x k ikx

k
q v k v x v k dv

x

, ,∓
1

 (2.160)

which are Volterra integral equations of the second kind for the Jost solutions 

y±(x,  k) and j±(x,  k).

Solutions of (2.159), (2.160) can be obtained by successive approximations in 

the form

 ψ ± ±

=

∞

= ± ∑( ) exp( ) ( )x k ikx h x kj

j

, ,
0

 (2.161)

 ϕ± ±

=

∞

= ∑( ) exp( ) ( )x k ikx g x kj

j

, ,∓
0

 (2.162)

where, for example, with Im k � 0

  
g x k

g x k
k

q v ik v x k v x g v kj j

0

1

1

1

±

+
±

=

=− − −

( , )

( ) ( )exp( ( ))sin( ( )) (, ,∓ ))dv
x

∞

∫
 (2.163)

Similar results for the hj
± can be obtained.

These Jost solutions have been extensively studied and their principal fea-

tures are conveniently summarised in the following theorem.

Theorem 2.4. The Schrödinger equation

∂
∂

+ −










= ∈
2

2

2 0
x

k Q x y x k x( ( )) ( ), , R
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has Jost solutions y± and j± which satisfy the Volterra integral equations

 ψ ψ± ±∞
= ± + −∫( ) exp( ) ( )sin( ( )) ( )x k ikx

k
Q v k v x v k dv

x
, ,

1
 (2.164)

 ϕ ϕ± ±

−∞
= − −∫( ) exp( ) ( )sin( ( )) ( )x k ikx

k
Q v k v x v k dv

x

, ,∓
1

 (2.165)

provided

 { } ( )1+ <∞
−∞

∞

∫ v Q v dv  (2.166)

Furthermore

(i) The Jost solutions y±(x,  k) and j±(x,  k) are unique. Successive approxi-

mations to these solutions can be obtained in the forms (2.161) and (2.162).

(ii) For every x � R the Jost solutions y+(x,  k) and j+(x,  k) and their deriva-

tives y x
+(x,  k) and jx

+(x,  k) are

(a) continuous with respect to k for Im k � 0

(b) analytic with respect to k for Im k > 0.

Analogous properties for y−(x,  k) and j−(x,  k) hold for Im k ≤ 0.

(iii) The Jost solutions y±(x,  k) and j±(x,  k) are inter-related as follows.

y−(x,  k) = y+(x,  k*) = y*(x,  k*)

j−(x,  k) = j+(x,  −k*) = j*(x,  k*)

2.9.2 Some Scattering Aspects

The Wronskian of two solutions, y1(x,  k) and y2(x,  k), of the Schrödinger equation 

(2.150) is denoted W(y1,  y2) and defi ned by

 W(y1,  y2) = y1(x,  k)y′2(x,  k) − y′1(x,  k)y2(x,  k) (2.167)

where the prime denotes differentiation with respect to x. A fundamental prop-

erty of the Wronskian is given by the following theorem.

Theorem 2.5. Two solutions of the Schrödinger equation (2.150) are linearly 

independent if and only if their Wronskian is non-zero.

For the Jost solutions y± and j± we fi nd that as x → ∞

 W(y+,  y−) = −2ik + o(1) (2.168)

and as x → −∞

 W(j+,  j−) = +2ik + o(1) (2.169)



Consequently Theorem 2.5 indicates that (y+,  y−) and (j+,  j−) are two linearly 

independent pairs of solutions of (2.140).

Since any linear combination of the pair (j+,  j−) and the pair (j+,  j−) will 

also yield a solution of (2.140) we see that we can, in particular, write

 j+(x,  k) = c11(k)y+(x,  k) + c12(k)y−(x,  k) (2.170)

 y+(x,  k) = c21(k)j−(x,  k) + c22(k)j+(x,  k) (2.171)

where the coeffi cients cij have yet to be determined.

We now recall that in the case when Q(x) = 0 then the Schrödinger equation 

(2.140) reduces to the familiar wave equation which has the associated solutions 

y±
0 (x,  k) and j±0 (x,  k) where

 y±
0 (x,  k) = exp(±ikx), j±0 (x,  k) = exp(�ikx) (2.172)

In this particular case the coeffi cients cij in (2.170), (2.171) are such that

c11(k) = c22(k) = 0

Furthermore, we notice that y+ and j− characterise plane waves moving from left 

to right whilst y− and j+ characterise plane waves moving from right to left.

When Q(x) ≠ 0 for all x then we obtain (2.170), (2.171). The limiting behaviour 

of the Jost solutions given in (2.142)–(2.145) indicates that (2.170) represents a 

solution of the Schrödinger equation which, by the properties of the left-hand 

side, reduces to exp(−ikx) as x → −∞ whilst the right-hand side reduces to c11(k) 

exp(ikx) + c12(k) exp(−ikx) as x → ∞. Consequently (2.170) is a solution of the 

Schrödinger equation (2.140) which represents the scattering, by the potential 

Q(x), of a plane wave of amplitude c12(k) incident from x = +∞ and moving right 

to left. The scattering process gives rise to a refl ected plane wave of amplitude 

c11 moving left to right towards x = +∞ and to a transmitted wave with unit 

amplitude moving right to left towards x = −∞. It is customary to normalise this 

process so that the incident wave has unit amplitude in which case (2.170) is 

rewritten in the form

 TR(k)j+(x,  k) = −RR(k)y+(x,  k) + y−(x,  k) (2.173)

where

 R k
c k

c k
T k

c k
R R( )

( )

( )
( )

( )
=− =11

12 22

1
,  (2.174)

and the subscript R refers to the fact that we are dealing with an incident wave 

from the right. The minus sign is included for later convenience.

Similarly, (2.171) can be interpreted as a solution of the Schrödinger equation 

which represents the scattering, by a potential Q(x), of a plane wave incident 
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from x = −∞. The process gives rise as before to a scattered and transmitted 

wave and normalising as before we can write (2.171) in the form

 TL(k)y+(x,  k) = j(x,  k) + RL(k)j+(x,  k) (2.175)

where

 R k
c k

c k
T k

c k
L L( )

( )

( )
( )

( )
=− =22

21 21

1
,  (2.176)

and the subscript L denotes that we are dealing with a wave incident from the 

left. Again the minus signs are included for later convenience.

The equations (2.173) and (2.175) can be written conveniently in the matrix 

form

 Φ−(k) = S(k)Φ+(k) (2.177)

where

 Φ Φ−
−

−
+

+

+
=











=












( ) ( ) ( ) ( )k k k k
ϕ
ψ

ϕ
ψ

,  (2.178)

and

 S k
R T

T R
k

L L

R R

( ) ( )=










 (2.179)

The matrix S(k) is called the scattering matrix for the problem. Its role in scat-

tering theory will be discussed in later sections. For the time being we simply 

note that it provides a connection between the incident fi elds and the scattered 

fi elds.

2.10 Concluding Remarks

It turns out that the various techniques and strategies we have outlined so far can 

be extended to cater effi ciently and constructively with more general problems 

than those dealing simply with wave motions on strings. These generalisations 

can be made in a relatively easy manner if we choose to work with the actual 

functions involved rather than with the numerical values of the functions. To be 

able to do this requires that we should work within a mathematical structure 

which generates an easily solvable, but abstract, version of the given physical 

problem and yet is one which always ensures that there is an easy path back to 

the required physical (numerical) results. We indicate in the following chapter a 

way of achieving this.



Essentially the main steps are the following.

1. Identify a collection of elements which contains those elements which can be 

used.

Characterise, for example, wave motions which have some particular prop-

erty such as fi nite energy. Call this collection X.

The elements of X are abstract quantities which can be thought of, for 

example, as functions themselves rather than their numerical values.

2. Endow X with a set of rules which will allow the elements of X to be manipu-

lated algebraically and geometrically. These rules would parallel and extend 

the familiar processes which are used in the Euclidean space Rn, n < ∞ The 

collection X taken together with the structure defi ned in terms of these alge-

braic and geometric rules we shall call a space and denote it here, for the time 

being, by H.

3. Introduce the notion of an operator which, in its simplest form, maps (trans-

forms) one element of H into some other element of H.

4. Use these several notions to represent (realise) a given physical problem, 

which is essentially a problem involving numerical values of functions, in the 

space H. This will yield an abstract problem involving the functions themselves 

rather than their numerical values.

5. Investigate the availability of associated inverse operators as a means of 

solving the abstract problem.

6. Settle questions of the existence and uniqueness of solutions to the abstract 

problem. That is, examine the well-posed nature of the abstract problem.

7. Solve the abstract problem.

8. Interpret the solution of the abstract problem in a manner which will allow the 

recovery of the required physical results.

The fi rst four steps can be made by introducing the notion of a so-called Hilbert 

space structure and using the properties of (linear) operators on such spaces.

Step 5 can be made using results from the spectral theory of (linear) operators 

on a Hilbert space.

Step 6 can be made effi ciently and constructively using results from the 

elegant theory of semigroups of operators.

Step 7 can be achieved using results from the theory of ordinary differential 

equations but it must be remembered that the work is in the abstract space, H,

rather than Rn.

The fi nal step here will be made by introducing the notion of a generalised 

Fourier transform and proving generalised Fourier inversion theorems modelled 

on the Fourier–Plancherel theory which can be established quite independently 

of any scattering phenomena.

With this preparation we will then be well placed to develop a scattering 

theory which would highlight constructive methods for analysing echo fi eld phe-

nomena. This we shall demonstrate by investigating in the following chapters a 

number of specifi c, physically relevant, problems. However, before embarking on 

this we shall fi rst introduce, in the next chapter, a number of basic ideas and 
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results from general mathematical analysis which will be suffi cient to create a 

suitable mathematical structure in which to work and settle items 1–8 above.
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3

Preliminary Mathematical Material

3.1 Introduction

This rather long chapter is provided mainly for the benefi t of those who are inter-

ested in studying wave phenomena but whose mathematical background does not 

necessarily include modern functional analysis and operator theory. For such 

scientists this chapter is intended to be a guide through the material available 

whilst for those with more mathematical background it can act as a source. Virtu-

ally no proofs are given. Details of these can be found in the references cited. 

Despite the fact that much of the material might, at fi rst sight, give the impression 

of being unnecessarily abstract, nevertheless, it will be seen to be of consider-

able use in justifying various approaches to the development of constructive 

methods of solving physical problems.

3.2 Notations

Some standard mathematical notations which are frequently used throughout the 

book are the following.

Let X and Y be any two sets. The inclusion x ∈ X denotes that the quantity 

x is an element in the set X. The (set) inclusion Y ⊂ X, denotes that the set Y

is contained in the set X in which case the set Y is said to be a (proper) subset

of the set X. The possibility that Y might actually be the same as X exists and in 

this case we write Y � X and simply refer to Y as a subset of X. The set which 

consists of elements that belong to either X or Y or both is called the union of X

and Y and is denoted by Y � X. The set consisting of all elements belonging to X

and Y simultaneously is called the intersection of X and Y and is denoted by X

� Y. The set consisting of all the elements of X which do not belong to Y is called 

the difference of X and Y is denoted by X \ Y. In particular, if Y ⊂ X then X \ Y

is called the complement of Y in X.
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We write X × Y to denote the set of elements of the form (x, y) where x ∈ X

and y ∈ Y. We recall that a simple example of this notation is the Euclidean space 

R2 where we identify X = Y = R.

It is clear that X ⊂ X � Y, Y ⊂ X � Y, X � Y ⊂ X, X � Y ⊂ Y and that if 

Y ⊂ X then X = Y � (X \ Y).

3.3 Vector Spaces

Vector spaces will provide a framework within which abstract quantities such as 

functions themselves rather than their numerical values can be manipulated 

algebraically in a meaningful manner.

Defi nition 3.1. A vector space (linear space) over a set of scalars K is a non-

empty set, X, of elements x, y,  .  .  .  called vectors, together with two algebraic 

operations called vector addition and multiplication by a scalar which 

satisfy

L1: x + y + z = (x + y) + z = x + (y + z), x, y, z ∈ X

L2: There exists a zero element q ∈ X such that

x + q = x, x ∈ X

L3: If x ∈ X then there exists an element (−x) ∈ X such that

x + (−x) = q, x ∈ X

L4: x + y = y + x, x, y ∈ X

L5: (a + b)x = ax + by, a, b ∈ K, x ∈ X

L6: a(x + y) = ax + ay, a ∈ K, x, y ∈ X

L7: a(bx) = abx, a, b ∈ K, x ∈ X

L8: There exists a unit element I ∈ K such that

Ix = x, x ∈ X

In following chapters, K will usually be either R or C.

The notion of the distance between abstract quantities can be introduced by 

mimicking familiar processes in Euclidean geometry

Defi nition 3.2. A metric space M is a set X and a real-valued function, d, called 

a metric or distance function defi ned on X × X such that for all x, y, z ∈ X

M1: d(x, y) � 0

M2: d(x, y) = 0 if and only if x = y

M3: d(x, y) = d(y, x)

M4: d(x, z) ≤ d(x, y) + d(y, z)

The axiom M4 is known as the triangle inequality.



We emphasise that a set X can be made into a metric space in many different 

ways simply by employing different metric functions. Consequently, for the sake 

of clarity we shall sometimes denote a metric space in the form (X,  d) in order 

to make explicit the metric employed.

Example 3.3. Let X = R2 and d be the usual Euclidean distance function (metric). 

Then if x = (x1,  x2,  x3,  .  .  .  ,  xn) and y = (y1,  y2,  y3,  .  .  .  ,  yn) denote any two points 

in Rn the distance between these two points is given by

d x y x yi i

i

n
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
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
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It is this particular distance function and its properties that we mimicked when 

formulating Defi nition 3.2. Clearly, (X,  d) in this example is a metric space.

Example 3.4. Let X = C[0,  1], the set of all real-valued continuous functions 

defi ned on the subset [0, 1] ⊂ R. This set can be made into two metric spaces, M1 

and M2, where

M X d

d f g f x g x f g X

M X d

d f g
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In constructing M1 and M2 we must, of course, prove that d1, and d2 each satisfy 

the metric space axioms M1 to M4 in Defi nition 3.2. In these two examples M1 to 

M3 are obviously satisfi ed. The axiom M4, usually the hardest property to estab-

lish, is seen to hold in these two cases by virtue of well-known properties of the 

modulus and of classical Riemann integrals.

We remark that the metric space C[0,  1] is an example of an infi nite dimen-

sional space and is one which we shall frequently have occasion to use.

Once we have introduced the notion of distance in abstract spaces then we 

are well placed to give a precise meaning to what is meant by convergence in 

such spaces. This will be a necessary ingredient when we come to develop con-

structive, approximation methods.

Defi nition 3.5. A sequence of elements {xn}∞n=1 in a metric space M := (X,  d) is 

said to converge to an element x ∈ X if

d(x,  xn) → 0 as n → ∞

In this case we write either xn → x as n → ∞ or lim
n

nx x
→∞

=  where it is understood 

that the limit is taken with respect to the distance function d.
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We would emphasise that the use of different metrics can induce different 

convergence results. For instance in Example 3.4 we have

d2( f, g) ≤ d1( f, g), f, g ∈ X

Therefore, given a sequence {fn}∞n=1 ⊂ X such that fn → f with respect to d1 then 

it follows that we also have fn → f with respect to d2. However, if we are given 

that the sequence converges with respect to d2, then it does not follow that the 

sequence also converges with respect to d1.

Defi nition 3.6. A sequence { fn}∞n=1 ⊂ (X, d) is called a Cauchy sequence if, for 

all e > 0, there exists a number N(e) such that n, m � N(e) implies d(fn, fm) < e.

The following is a standard result.

Theorem 3.7. In any metric space M := (X, d) every convergent sequence

(i) has a unique limit

(ii) is a Cauchy sequence.

It must be emphasised that the converse of (ii) is false as it is possible that 

there are Cauchy sequences in (X, d) which might not converge to a limit element 

x ∈ X. This diffi culty can be avoided by restricting attention to certain preferred 

classes of metric spaces.

Defi nition 3.8. A metric space in which all Cauchy sequences converge to an 

element of that space is called a complete metric space.

It can be shown that for the metric spaces M1, M2 in Example 3.4 the metric 

space M1 is complete but M2 is incomplete.

Many of the strategies adopted when analysing problems will be seen to rely 

on the following notion.

Defi nition 3.9. Given a metric space M := (X, d) a set Z ⊂ X is said to be dense

in X if every element y ∈ X is the limit, with respect to d, of a sequence of 

elements in Z.

Consequently, in most practical situations we try to work with “nice” elements 

belonging to a set, such as Z, which is dense in some larger set, X, whose elements 

can provide more general results.

To give an indication that this enlargement, or completion as it is more properly 

called, can be made available we fi rst need to introduce the following notions.

Defi nition 3.10. (i) Let X1, X2 be sets and let M � X1 be a subset. A mapping

f from M into X2 is a rule that assigns to an element x ∈ M � X1 an element 

f(x) =: y ∈ X2 and we write



f :X1 � M → X2

The element y = f(x) ∈ X2 is the image of x with respect to f. The set M is called 

the domain of Defi nition of f which is denoted D( f ). Consequently, we write

f :X1 � D( f ) → X2

and

x → f(x) = y ∈ X2 for all x ∈ D( f ) � X1

The set of all images with respect to f is the range of f, denoted R( f ), where

R( f ) := {y ∈ X2 : y = f(x) for x ∈ D( f ) � X1}

(ii) A mapping f is called either injective or an injection or one-to-one

(denoted 1-1) if for every x1, x2 ∈ D( f ) � X1 we have that

x1 ≠ x2 implies f(x1) ≠ f(x2)

This means that different elements in D( f ) have different images in R( f ).

(iii) A mapping f is called either surjective or a surjection or a mapping of 

D( f ) onto X2 if R( f ) = X2.

(iv) For an injective mapping T :X1 � D(T) → X2 the inverse mapping, T−1,

is defi ned to be the mapping R(T) → D(T) such that y ∈ R(T) is mapped onto 

that x ∈ D(T) for which Tx = y. Less generally, but more conveniently here, we 

defi ne T−1 only if T is 1-1 and onto X2.

We notice that in (iv) we have written Tx rather than T (x). This anticipates the 

notation used in later sections.

In the following chapters we will deal with a variety of different mappings. 

For example, a function is usually understood to be mapping of one (real or 

complex) number into some other number. It is a rule that assigns to a number 

in one set a number in some other set. The term operator will be reserved for 

mappings between sets of abstract elements such as functions themselves rather 

than their numerical values.

Defi nition 3.11. A mapping, f, from a metric space (X1, d1) to a metric space 

(X2, d2) is said to be continuous, if for {xn}∞n=1 ⊂ X1 we have f(xn) → f(x) with 

respect to the structure of (X2, d2) whenever, xn → x with respect to the structure 

of (X1, d1).

Defi nition 3.12. Let Mj = (Xj, dj), j = 1, 2 be metric spaces. A mapping, f, which

(i) satisfi es f  : X1 → X2 is one-to-one and onto (bijection)

(ii) preserves metrics in the sense
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d2( f(x), f(y)) = d1(x, y), x, y ∈ X1

is called an isometry and M1, M2 are said to be isomorphic.

It is clear that an isometry is a continuous mapping. Furthermore, isometric 

spaces are essentially identical as metric spaces in the sense that any result which 

holds for a metric space M = (X, d) will also hold for all metric spaces which are 

isometric to M. It is for this reason that we always try to work in a framework of 

isometric spaces. This will be particularly important when we come to develop 

some of the fi ner points of scattering theory.

We now state a fundamental result which indicates in what sense an incom-

plete metric space can be made complete.

Theorem 3.13. If M = (X, d) is an incomplete metric space then it is possible 

to fi nd a complete metric space M̃ = (X̃, d̃) so that M is isometric to a dense 

subset of M̃.

The familiar concepts of open and closed sets on the real line extend to 

arbitrary metric spaces according to the following Defi nition.

Defi nition 3.14. If M = (X, d) is a metric space then

(i) the set

B(y, r) := {x ∈ X :d(x, y) < r}

is called the open ball in M, of radius r > 0 and centre y.

(ii) a set G ⊂ X is said to be open with respect to d if, for all y ∈ G, there 

exists r > 0 such that B(y, r) ⊂ G.

(iii) a set N ⊂ G is called a neighbourhood of y ∈ N if B(y, r) ⊂ N for some 

r > 0.

(iv) a point x is called a limit point of a subset Y ⊂ X if

B(x, r) � {Y \{x}} ≠ f for all r > 0

where f denotes the empty set.

(v) a set F ⊂ X is said to be closed if it contains all its limit points.

(vi) the union of F and all its limit points is called the closure of F and will 

be denoted F̄.

(vii) a point x ∈ Y ⊂ X is an interior point of Y if Y is a neighbourhood of x.

These various abstract notions can be quite simply illustrated by considering 

subsets of the real line.

A particularly important class of metric spaces is the following.

Defi nition 3.15. A normed linear space is a vector space X, defi ned over K= R

or C, together with a mapping ⋅:X → R, known as a norm on X, satisfying



N1: x � 0 for all x ∈ X

N2: x = 0 if and only if x = q, the zero element in X

N3: lx = l x, for all l ∈ K and x ∈ X

N4: x + y ≤ x + y (triangle inequality).

The pair (X,  ⋅) is referred to as a real or complex normed linear (vector) space 

depending on whether the underlying fi eld K is R or C.

Example 3.16. (i) X = Rn is a real normed linear space with a norm defi ned by

x x x x x xn k
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(ii) X = C[0,  1], the set of all continuous functions defi ned on [0,  1], is a real 

normed linear space with a norm defi ned by either

f f x f X
x

: sup ( )= ∈
∈[ ]01,

,

or

f f y dy f X: ( )= ∈∫ ,
0

1

We notice that any normed linear space (X,  ⋅) is also a metric space with 

the metric (distance function) d defi ned by

d x y x y( , )= −

This is the so-called induced metric on X. With this understanding we see that 

such notions as convergence, continuity, completeness, open and closed sets 

which we introduced earlier for metric spaces carry over to normed linear spaces. 

Typically we have.

Defi nition 3.17. Let (X,  ⋅) be a normed linear space. A sequence {xn}∞n=1 ⊂ X is 

said to converge to x ∈ X if, given e > 0 there exists N(e) such that

x x n Nn− < ε εwhenever � ( )

in which case we write either xn − x → 0 as n → ∞ or xn → x as n → ∞.

Defi nition 3.18. (i) The normed linear space (X,  ⋅) is complete if it is com-

plete as a metric space in the induced metric.

(ii) A complete normed linear space is called a Banach space.

We would emphasise that there are metric spaces which are not normed linear 

spaces. A comparison of Defi nitions 3.2 and 3.15 clearly indicates this.
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3.4 Distributions

A distribution is a generalisation of the concept of a classical function. It is a 

powerful mathematical tool for at least three reasons. First, in terms of the theory 

of distributions, it is possible to give a precise mathematical description of such 

idealised physical quantities as, for example, point charges and instantaneous 

impulses. Second, distribution theory provides a means for interchanging limiting 

operations when such interchanges might not be valid for classical functions. For 

instance, in contrast to classical analysis, in distribution theory there are no 

problems arising from the existence of non-differentiable functions. Indeed, all 

distributions, or generalised functions as they are sometimes called, can be 

treated as being infi nitely differentiable. Third, distribution theory enables us to 

use series which in classical analysis would be considered as being divergent.

Distribution theory arises as a result of the following observation. A continu-

ous, real or complex valued function f of the real variable x = (x1,  x2,  x3,  .  .  .  ,  xn) 

∈ Rn can be defi ned on Rn in one or other of two distinct ways. First, we can 

prescribe its value, f(x), at each point x ∈ Rn. Alternatively, we could prescribe 

the value of the integral

I f x x dxf ( ) : ( ) ( )ϕ ϕ= ∫Rn

for each continuous, complex-valued function j whose value, j(x), is zero for 

suffi ciently large x (this latter to ensure that the integral exists).

These two defi nitions have distinct and quite different characterisations. In 

the fi rst a function is considered as a rule which assigns numbers to numbers. In 

the second, which leads to something we will eventually call a distribution, we 

have a rule which assigns numbers to functions.

When working with the second approach, instead of dealing with the point-

wise values, f(x), of the function f we consider the functional If and its “values”, 

If (j), at each of the so-called test functions j.

These two descriptions of f are equivalent. To see this assume that for two 

continuous functions f and g the functionals If and Ig, defi ned as indicated above, 

are equal. That is, for any test function j we have If (j) = Ig(j). It then follows 

from elementary properties of the integral that f(x) = g(x) for all x ∈ Rn. Hence 

the required equivalence is established.

A partial rationale for introducing this second way of defi ning a function can 

be given as follows. A distributed physical quantity cannot be characterised by 

its value at a point but rather by its averaged value in a suffi ciently close neigh-

bourhood of that point. For instance, it is impossible to measure the density of a 

material at a point. In practice we can only measure the average density of the 

material in a small neighbourhood of the point and then call this the density at 

the point. Thus we can think of a generalised function as being defi ned by its 

“average values” in a neighbourhood of the point of interest. Consequently, from 

a physical standpoint it is more convenient to consider continuous functions as 

functionals of the form indicated above.



To clarify matters we give some examples and introduce a little more 

notation.

Example 3.19. Let C(Ω) denote the set of all complex-valued functions which 

are continuous on the region Ω. For f ∈ C(Ω) let

f f x x∞ = ∈{ }: sup ( ) : Ω

It is readily verifi ed that C(Ω) is a complex vector space with respect to the usual 

pointwise operations on functions. Furthermore, C(Ω) is a complete, normed 

linear space with respect to ⋅∞.

Defi nition 3.20. Let a real or complex valued function f, defi ned on a domain 

D ⊂ Rn, be nonzero only for points belonging to a subset Ω ⊂ D. Then the closure 

of Ω, denoted Ω̄, is called the support of f and is denoted supp f.

If Ω is a compact set, that is, a closed and bounded set, then the function f 

is said to have compact support in D.

In order to simplify the notation when working in more than one dimension 

we shall frequently use multi-index notation. This can be easily introduced if 

we consider a partial differential expression of the form

L a x pq q
q q

N
q

q q p

N

N

N

= ≥
+ + ≤
∑ 1

1 2

1

1 2 0. . .

. . .

( ) . . .∂ ∂ ∂ ,

where ∂j := ∂/∂xj, j = 1, 2,  .  .  .  , N and the qj, j = 1, 2,  .  .  .  , N are non-negative 

integers with aq1,  .  .  .  , qN
 denoting differentiable (to suffi cient order) functions.

Any set q := {q1, q2,  .  .  .  , qN} of non-negative integers is called a multi-index. 

The sum q q qN= + +1 ...  is called the order of the multi-index. We denote aq1, . . . ,qN
 

(x) by aq(x) and ∂1
q

1 ∂2
q

2  .  .  .  ∂N
qN by Dq. Consequently the above partial differential 

expression can be written as

L a x Dq
q

q p

=
≤
∑ ( ) .

Defi nition 3.21. Let Ω be an open set in Rn.

(i) C 0
∞ := {j ∈ C∞(Ω): supp f ⊂ Ω}.

Here j ∈ C∞(Ω) indicates that j and all its partial derivatives of all orders 

exist and are continuous. An element j ∈ C∞(Ω) is referred to as a smooth 

element or as an infi nitely differentiable element.

(ii) The set C 0
∞(Ω) is called the set of test functions defi ned on Ω.

(iii) A sequence of test functions, {jn}∞n=1, is said to be convergent to a test 

function j if

(a) jn and j are defi ned on the same compact set
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(b)

ϕ ϕ

ϕ ϕα α

n

n

as k

D D as k

− → →∞

− → →∞

∞

∞

0

0

for all multi-indices a. Here, ϕ ϕ∞
∈

=: sup ( )
x

x
Ω

.

(iv) The set C 0
∞(Rn) together with the topology (a concept of convergence) 

induced by the convergence defi ned in (iii) is called the space of test functions 

and is denoted by D(Rn).

Unless certain subsets of Rn have to be emphasised then we shall write 

D ≡ D(Rn) unless otherwise stated.

(v) A linear functional f on D is a mapping f  : D → K = R or C such 

that

f(aj + by) = af(j)+ bf(y)

for all a, b ∈ C and j, y, ∈ D.

A mapping f  : D → K is a rule which given any j ∈ D produces a number 

z ∈ K and we write

z = f(j) ≡ 〈 f,  j〉

This indicates the action of the functional f on j.

We remark that if j ∈ C0
∞(Ω), Ω ⊂ Rn, then j vanishes on ∂Ω, the “boundary” 

of the set Ω.

Example 3.22. Let j be the function defi ned on Ω := R. by

ϕ( )
exp
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It is readily shown that j is infi nitely, continuously differentiable on R and that 

supp j = [−a,  a]. Hence j ∈ C0
∞(R).

Defi nition 3.23. (i) A functional f on D is continuous if it maps every con-

vergent sequence in D into a convergent sequence in K = R or C; that is,

f(jn) → f(j) whenever jn → j in D

(ii) A continuous, linear functional on D is called a distribution or gen-

eralised function.



Notation 3.24. For convenience at this stage we shall use a bold type 

face to indicate a distribution and will write 〈f, j〉 to denote the action of the 

distribution f on the test function j. We will be able to relax this notation 

later.

Defi nition 3.25. (Convergence of distributions)

A sequence {fn} of distributions is said to be convergent if the sequence of 

numbers {〈fn, j〉} is convergent for all j ∈ D.

This defi nition implies that if {fn} is a convergent sequence of distributions 

then there is a distribution f such that for n → ∞

〈fn,j〉 → 〈f,j〉 for all j ∈ D

In this case fn is said to converge weakly to f as n → ∞.

Defi nition 3.26. (i) A function f which is integrable on every open, bounded 

subset Ω ⊂ Rn is said to be locally integrable on Rn.

(ii) For every locally integrable function f there is a distribution f defi ned 

by

f f
R

, ( )ϕ ϕ ϕ= =∫ f s s ds
n

( ) ( ) :

The distribution f is said to be generated by the function f.

(iii) A distribution generated by a locally integrable function is called a regular 

distribution. Distributions which are not regular distributions are called sin-

gular distributions.

We remark that Defi nition 3.26 (ii) is meaningful since B := supp j ⊂ Rn. 

Consequently we then have

f( )ϕ ϕ ϕ= ( ) ≤∫ ∫
∈

f s s ds x f s ds
B x B B

( ) sup ( ) ( )

The right-hand side is bounded since f is locally integrable. Hence we can con-

clude that f(j) is well defi ned.

Thus we see that the class (set) of all distributions will contain elements 

which correspond to ordinary (classical) functions as well as singular distribu-

tions which do not.

Defi nition 3.27. The set of all distributions on D together with the topology 

indicated in Defi nition 3.25 is called the dual of D and denoted D′.

For the sake of our convenience in later sections we summarise here the main 

properties of a distribution which we have introduced so far.
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(i) Linearity:

For any test functions j, y and complex numbers a, b

f(aj + by) = af(j)+ bf(j)

(ii) Continuity:

f(jn) → f(j) whenever jn → j

(iii) Equality:

Two distributions f and g are equal provided f(j) = g(j) for any test function j.

They are said to be different if there exists a test function j such that 

f(j) ≠ g(j).

Strictly speaking, equality here means equality almost everywhere (ae), that 

is, if the set {x : f(j) ≠ g(j)} has measure zero then f(j) = g(j). The notion of 

measure is introduced in the next chapter. For the time being it is suffi cient to 

think of the situation in R1 when measure can be identifi ed with the length of an 

interval and a set of measure zero is a point.

(iv) Linear combinations:

The linear combination (af + bg) of two distributions f and g is defi ned as

〈af + bg, j〉 = a 〈f, j〉 + b〈g, j〉

(v) The product of a distribution f and a smooth function h is defi ned in a 

natural manner as

〈hf, j〉 = 〈f, hj〉 � j ∈ D

If j ∈ D and h is a smooth function then hj is also a test function. However, 

if h is not smooth then hj ∉ D. Therefore we cannot defi ne the product of a 

distribution with a function which is discontinuous or has discontinuous 

derivatives.

We notice that our defi nition is a generalisation of the familiar identity

{ ( ) ( )} ( ) ( ){ ( ) ( )}h x f x x dx h x f x x dxϕ ϕ= ∫∫ ΩΩ

which always holds when f is locally integrable.

We have already pointed out that a generalised function does not have values 

at a point. However, it is possible to give meaning to the statement that a distri-

bution becomes zero in a region. The distribution f becomes zero in the region 

Ω if 〈f, j〉 = 0 for all j ∈ D(Ω), and we write f = q in Ω.

(vi) The set of all points such that in no neighbourhood of each point does 

f ≠ q is known as the support of the distribution f. We denote the support of f 

by supp f. If supp f is bounded then the distribution f is said to have compact 

support.



We now turn to the differential calculus of distributions. Our plan here, as 

indeed it will be when developing most properties of distributions, is to start with 

regular distributions and then generalise the results, whenever possible, to all 

distributions. For ease of presentation at this stage we restrict attention to pro-

cesses in R1 = R.

If f is a differentiable function which generates a regular distribution f and if 

df/dx denotes the distribution generated by f ′ then we obtain, by integration by 

parts,

d

dx
f s s ds f s s ds

f

RR
,ϕ ϕ ϕ= ′ =− ′∫∫ ( ) ( ) ( ) ( )

The integrated terms in the above vanish since j is a test function and as such 

vanishes at infi nity. Consequently, for regular distributions, corresponding to dif-

ferentiable functions, we have

d

dx

f
f,ϕ ϕ=− ′,

Example 3.28. [8]. For any distribution f the functional j → − 〈f,j′〉 with j ∈ 

D is a distribution.

The following defi nition now follows quite naturally.

Defi nition 3.29. The derivative of a generalised function f is the generalised 

function f ′ defi ned by

〈f ′,j〉 = − 〈f,j′〉 � j ∈ D

We see from the above that the distribution generated by the derivative, f ′, of 

a differentiable function f is the same as the derivative of the distribution f. These 

two ways of interpreting the symbol f ′ for a differentiable function f are consis-

tent with classical calculus [8].

The advantage of distribution theory over classical calculus is that every gen-

eralised function is differentiable; this follows from Example 3.28.

If a function f is locally integrable but not differentiable, in the classical sense, 

the associated distribution f ′ is called the generalised derivative of f.

It is a straightforward matter to obtain corresponding results when the underly-

ing space is Rn. For instance, let Ω ⊂ Rn be an open set and let D(Ω) denote the 

space of test functions defi ned on Ω. Let a denote a multi-index. The ath distribu-

tional derivative of a distribution f on D(Ω) is the distribution Da f defi ned by

Daf(j) = 〈Daf,j〉 = (−1)a 〈f, Daj〉 = (−1)af (Daj)

This follows using integration by parts (i.e. Green’s theorem).

We now give a number of examples to illustrate these various ideas.
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Example 3.30. The Dirac delta, d, defi ned in R1 by

(i) d(x) = 0, x ≠ 0

(ii) −∞
∞∫ =δ( )x dx 1

(iii) −∞
∞ = = ∈∫ δ ϕ ϕ ϕ ϕ( ) ( ) , ( ),x x dx d 0 D

generates a continuous, linear functional, d. That it is a linear functional follows 

immediately from (iii). The continuity of d follows from

d d( ) , ( ) sup ( )ϕ ϕ ϕ ϕ ϕ= = ≤ = ∞0 x

However, d is a singular distribution. To see this let j be the test function defi ned 

by

ϕ( )
exp

x

b x a

x a
x a

=
> ≥

−{ } <








0

1
2 2

,

,

where b > a > 0.

If we assume that d is a regular distribution then we can easily obtain

exp ( ) ( ) ( ) ( )
−{ }= = ≤

− −∫ ∫
1

0
1

2a
s s ds

e
s ds

b

b

a

a

ϕ δ ϕ δ

and by taking the limit a → 0 we obtain a contradiction.

The derivative of d is, following Defi nition 3.29, defi ned by

〈d ′,j〉 = − 〈d,j′〉 = −j′(0)

Similarly the nth derivative of d is given by

〈d (n),j〉 = (−1)(n) 〈d,j(n)〉 = (−1)(n)j(n)(0)

A particularly useful example is provided by the functional fd with f(x) = x 

∈ (−1, 1) =: Ω. In this case we have, for all j ∈ C0
∞(Ω)

(fd )(j) = (xd )(j) = 〈xd, j〉 = 〈d, xj〉 = [xj]x=0 = 0

Thus xd = q ∈ (C0
∞(Ω))′ is the zero distribution on D(Ω).

Every continuous function is locally integrable and hence generates a distribu-

tion (see Defi nition 3.26). However, there are many discontinuous functions 

which are also locally integrable.



Example 3.31. Consider the function f defi ned by

f x x x( ) , ,
/= ∈ −[ ]−1 2

1 1

This function has a singularity at the origin. However, it is locally integrable 

since

f s ds s ds
a

b

a

b

( )
/= −∫∫ 1 2

is bounded in each interval (a,  b) ⊂ [−1, 1]. Thus f generates a distribution f 

defi ned by

f f 0( ) ( ) [
/ϕ ϕ ϕ ϕ= = ∈ −− ∞∫, , ,1]

-1

1

s s ds C
1 2

1

Hence f is a regular distribution.

Example 3.32. The function defi ned by x is a locally integrable function which 

is differentiable for all x ≠ 0. However, it is not differentiable at x = 0. Neverthe-

less, it has a generalised derivative which is calculated as follows. For any test 

function, j, we have

X , ,′ =− ′

=− ′

=− ′ − ′

=−

−∞

∞

∞

−∞

∫

∫∫

ϕ ϕ

ϕ

ϕ ϕ

ϕ

X

s s ds

s s ds s s ds

s ds

( )

( ) ( )

( )

0

0

++
∞

−∞ ∫∫ ϕ( )s ds
0

0

where we have integrated by parts and used the fact that the test function j 

vanishes at infi nity. We now introduce a function sgn defi ned by

sgn( )x
x

x
= − <

<{ 1 0

1 0

for

for

It is not necessary here for us to specify sgn(0) since it can be shown, as an easy 

exercise that the above function will generate the same distribution sgn for any 

choice of sgn(0). Consequently, we have from the above that for all j ∈ D

X ′ =

=
−∞

∞

∫,

,

ϕ ϕ

ϕ

sgn( ) ( )s s ds

sgn
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Therefore, we say that X′= sgn, in the sense of distributions.

We remark that since the generalised derivative is a distribution it is meaning-

less to talk about its value at a point; it can only be given any meaning over an 

interval.

Example 3.33. The Heaviside function, H, defi ned on [−a,  a] by

H x
a x

x a
( )= − ≤ <

≤ <{0 0

1 0

,

,

is locally integrable and generates the distribution H according to

H H( ) ( ) ( ) ( ) ( )ϕ ϕ ϕ ϕ ϕ= = = ∈ −∞

− ∫∫, , ,H s s ds s ds C a a
a

a

a

0
0

Hence, H is a regular distribution.

The distributional derivative of H is calculated, in the now familiar manner, 

as follows, bearing in mind that the test function, j, vanishes at infi nity.

′ =− ′ = = = =
−∞

∞∞

∫∫H , ,ϕ ϕ ϕ δ ϕ ϕ ϕ( ) ( ) ( ) ( ) ( )s ds s s ds0
0

d d

Therefore, we see that H′ = d, in the sense of distributions.

Although the previous discussion has been conducted with respect to ordinary 

derivatives nevertheless similar results can be obtained for partial derivatives 

using the multi-index notation introduced earlier.

When we come to deal with differential equations having the typical form

Lu = f

where L is a given differential expression then various types of solution must be 

considered. If f is a regular distribution generated by a function which is locally 

integrable but not continuous then the above equation cannot be expected to have 

any meaning in the classical sense. A similar observation holds if f is a singular 

distribution. In these cases we say that the equation holds in the sense of distri-

butions. The solutions to this equation which might be obtained in these cases 

will be distributions and are known as weak or generalised solutions of the 

equation.

Example 3.34. Consider the differential equation

xu′(x) = 0, x ∈ (−1, 1)

This equation has a classical solution



u(x) = constant

However if we regard the equation as a distributional differential equation then 

it has a weak or generalised solution of the form

u = c1H + c2

where H is the distribution generated by the Heaviside function, H, and c1, c2 are 

constants. To see that this is indeed the case we fi rst notice that (see Example 

3.33)

u′ = c1d

This, in turn, indicates that for any test function j

xu′(j) = 〈xu′, j〉 = 〈u′,xj〉 = 〈c1d, xj〉 = c1{(xj)(0)} = 0

and we conclude that xu′ = 0, or equivalently, xu′(x) = 0 in the sense of 

distributions.

Again, there are various kinds of solution of an equation of the form Lu = f 

when it is considered as an equation involving a generalised function f. These are 

classifi ed as follows.

Defi nition 3.35. (i) A distribution, u, satisfying the equation Lu = f is called a 

distributional or generalised solution of the equation.

(ii) A function u which is suffi ciently continuously differentiable and thus 

generates a regular distribution u which satisfi es Lu = f in the generalised sense 

is called a classical solution of the equation Lu = f.

(iii) A function u which is not n-times continuously differentiable, and there-

fore cannot be a classical solution of Lu = f, but which generates a regular dis-

tribution, u, which is a generalised solution of Lu = f is called a weak solution 

of Lu = f.

(iv) A distributional solution of Lu = f is a solution u which is a singular 

distribution.

Finally, in this subsection, we briefl y sketch, for later use, the notion of the 

convolution of two distributions f and g.

The classical formula for the convolution of two continuous functions f and 

g defi ned on R is given by

( )( ) : ( ) ( ) ( ) ( )f g x f x y g y dy f y g x y dy∗ = − = −∫∫
RR

In the distributional case we adopt the following.
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Defi nition 3.36. The convolution, f ∗ g of two distributions f and g is defi ned to 

be

〈(f ∗ g)(x),j(x)〉 = 〈f(x), 〈g(y),j(x + y)〉〉

where j ∈ D. We have abused notation slightly in order to emphasise the 

“integration” variable. Furthermore, we have assumed in this defi nition that the 

distribution g has compact support. Consequently, the right-hand side of this 

expression is well defi ned since

j(x) := 〈g(y),j(x + y)〉

is a test function.

We notice that when f and g are regular distributions then f ∗ g is also a regular 

distribution and we recover the classical formula for the convolution of two 

functions.

Example 3.37. The Dirac delta concentrated at x = a is denoted da(x) and defi ned 

to be

da(x) = d(x − a)

This has the property (see Defi nition 3.25)

d da a
R

x x x x dx a( ) ( ) ( ) ( ), ( ) =ϕ ϕ ϕ=∫

Furthermore, if f is a regular distribution then

〈(f ∗ da)(x),j(x)〉 = 〈f(x), 〈da(y),j(x + y)〉〉
 = 〈f(x),j(x + a)〉
 = 〈f(x − a),j(x)〉

Thus, remembering that the integration variables are only written in for conven-

ience, we have

f(x) ∗ da(x) = f(x − a)

in a distributional sense.

Since it can readily be shown that different locally integrable functions defi ne 

different distributions it follows that the set of locally integrable functions can 



be embedded in the set of all distributions. An even more powerful result can be 

obtained, namely, that D is dense in D′. Hence every distribution is a weak limit 

of test functions. For more detailed discussion of these remarks see the Com-

mentary and the references cited there.

With these various observations in mind we see that when a function f is 

considered as a distribution then it is identical to all functions which can be 

obtained by changing the values of f(x) on isolated points, more precisely, on sets 

of measure zero. Hence, a distribution is not associated with a function but with 

an equivalence class of functions which are equal almost everywhere (ae), that 

is, everywhere except on sets of measure zero.

The use of bold type to indicate a distribution will be suppressed from now 

onwards. Whether a quantity f is to be regarded as either a function or as a dis-

tribution will usually be clear from the text. However, the bold type will be 

restored if clarifi cation is needed.

3.5 Fourier Transforms and Distributions

Integral transforms play an important role in mathematical analysis and its appli-

cations. Perhaps one of their most impressive properties is that they can transform 

differentiation into the algebraic operation of multiplication by a scalar. Conse-

quently, if we are faced with having to solve an ordinary differential equation for 

an unknown function u then we can use a suitable integral transform to obtain an 

equivalent algebraic equation for û, the transform of u. We then solve the algebraic 

equation for û and recover the required solution function u by means of an associ-

ated inverse integral transform. Similarly, a partial differential equation involving 

an unknown function v can be transformed into an equivalent ordinary differential 

equation for the transformed function v̂. The required function v is recovered by 

solving for v̂ and then using an associated inverse integral transform.

The prototype of such transforms is the Fourier transform. Here we give a 

very brief sketch of some of the more important aspects of the classical Fourier 

transform. Full details of the theory of Fourier transforms and their applications 

can be found in the references cited in the Commentary. In this connection we 

would particularly recommend [3], [10] and, for the mathematical theory, [11]. 

Once we have introduced the classical Fourier transform we shall turn attention 

to the notion of generalised Fourier transforms which cater for distributions.

Defi nition 3.38. A function f : R → C is said to be absolutely integrable if 

f x dx( )
−∞

∞

∫  exists.

Examples 3.39. (i) Every test function is absolutely integrable.

(ii) Every continuous function which tends to zero faster than x
−(1+a), where 

a > 0, as 0 < a ≤x → ∞ is absolutely integrable.

(iii) No polynomials, other than the trivial polynomial which is everywhere 

zero, are absolutely integrable.
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The classical Fourier transform is defi ned as follows.

Defi nition 3.40. For any absolutely integrable function, f, the (classical) Fourier 

transform of f, denoted f̂ , is defi ned by

ˆ( ) ( ) ( ˆ )( )f p f x e dx F f pipx= =−

−∞

∞

∫
1

2π

The integral is convergent since f is absolutely integrable. Indeed, it can be shown 

to be uniformly convergent with respect to p.

Defi nition 3.41. A function f : R → C is said to be piecewise smooth if

(i) all its derivatives exist and are continuous except possibly at a set of 

points x1, x2, x3,  .  .  .  such that any fi nite interval contains only a fi nite number of 

the xi.

(ii) the function and all its derivatives have at most a fi nite number of jump 

discontinuities.

(iii) The function is said to be n-times continuously differentiable if (i), (ii) 

are satisfi ed with “all” replaced by “its fi rst n”.

Associated with Defi nition 3.40 is the inverse transform.

Defi nition 3.42. If f is absolutely integrable, continuous and piecewise smooth 

then

ˆ ( ) ˆ ( ) ( ˆ )( ) ˆ * ( )ff x f p e dp f f x F x fipx= = ≡+∫
1

2π R

where F̂* is the transform inverse to F̂.

Defi nitions 3.40 and 3.42 can be combined to provide what we will come to 

call an inversion theorem of the form

 ˆ ( ) ( ) ( ˆ )( )f p f x e dx f f pipx= =−∫
1

2π R
 (3.1)

 ˆ ( ) ˆ ( ) ( ˆ * )( )ff x F p e dp F f xipx= =+∫
1

2π R
 (3.2)

In practice we will always have to demonstrate that Defi nitions 3.40 and 3.42 

are available; that is, we have to prove the inversion theorem for the problem 

being considered. The proof of such a theorem is not easy. Nevertheless, Fourier 

transforms play a central rôle in modern applied mathematical analysis. Their 

important property is the reciprocal nature of the transform as indicated by the 

proved inversion theorem. A glance at Defi nition 3.40 and Defi nition 3.42 indicates 

that f is related to f̂  in the same way that f̂  is related to f apart from a minus sign. 



We shall return to this aspect in subsequent chapters. In these later chapters we 

will see that it is possible to construct an integral transform which is particularly 

appropriate for the specifi c problem under consideration in that it has an associ-

ated inverse theorem.

The Fourier transform we have just introduced has the following properties.

Example 3.43. Let f be an absolutely integrable and piecewise smooth 

function.

(i) ( ) ( ˆ̂ )( )f x f x− =

(ii) ( ˆ )( ) ˆ ( )f p ipf p′ =

(iii) [( ˆ )( )] [ ˆ ( )]( )
d

dp
F f p i F xf p= −

(iv) If fa(x) := f(x − a) then

(F̂ fa) = exp(−ipa)(F̂ f )(p)

The details are left as an exercise.

An alternative Defi nition of the Fourier transform which is frequently used is 

given by

ɶ ɶ ɶ

ɶ

f p f x e dx Ff p F p f

f x f p e dp

ipx

ipx

( ) ( ) ( )( ) ( )

( ) ( ) (

= = ≡

= =

∫

∫ −

R

R

1

2π
ɶɶ ɶF f F x f∗ ≡) ( )*

The two transforms are related in the following way

ˆ ( ) ( )

ˆ ( ) )

F p F p

F x F x

= −

= −

1

2

2

π
π

ɶ

ɶ* *(

This follows directly from the defi nitions. Corresponding to the properties out-

lined in Example 3.43 we have

Example 3.44. For f as in Example 3.43 we have

(i) 2π f x f x( ) ( )( )− = ɶ

(ii) ( )( ) ( )′ =−f p ipf pɶ

(iii) 
d

dp
Ff p i F xf p[( )( )] [ ( )]( )ɶ ɶ=

(iv) If fa(x) := f(x − a) then

(F̃ fa) = exp(−ipa)(F̃ f )(p)

In the following chapters we shall use the Fourier transform in the form F̂. 

This transform can be interpreted by saying that any (suffi ciently “nice”) function 
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f can be regarded as a superposition, either as a sum or as an integral, of an infi nite 

number of sinusoidal waves (characterised by exp(−ipx)) with different frequen-

cies p where the wave of frequency p has amplitude ˆ ( )f p 2π . For this reason 

the integral relation

ˆ ( ) ˆ ( ) ( ˆ )( )ff x f p e dp F f xipx= = ∗+∫
1

2π R

is called the spectral resolution of the function f and f̂  is referred to as the 

spectral density of f.

The development of the theory of Fourier transforms based on Defi nition 3.40 

and Defi nition 3.41 is inadequate for our purposes. This is because the theory is 

restricted to absolutely integrable functions and these are not suitable for the 

analysis we have in mind. To see this simply recall that we are mainly interested 

here in differential equations and these have solutions that have the form of either 

polynomials or trigonometric functions or exponential functions and none of 

these are absolutely integrable. This means that the forms we are most interested 

in do not have Fourier transforms in the classical sense of Defi nition 3.40 and 

Defi nition 3.42. Consequently, we might expect to get a better theory of the 

Fourier transforms if we work in terms of generalised functions and this indeed 

proves to be the case.

The intuitively natural way to defi ne the Fourier transform of a generalised 

function f is to defi ne f̂ , the Fourier transform of f by

 〈f̂ ,j〉 = 〈f,ĵ 〉 (3.3)

for all j ∈ D. However, the right-hand side of (3.3) does not make any sense 

because, in general, ĵ  is not a test function since the Fourier transform of a func-

tion of bounded support (see Defi nition 3.21) is not usually also a function of 

bounded support. To overcome this diffi culty and at the same time retain as much 

as possible of the methodology we have so far outlined we could try to introduce 

a new space of test functions, denoted by S(R), with the property that Fourier 

transforms of functions in S(R) would also be in S(R). This means that we would 

have to develop another version of distribution theory, using exactly the same 

methodology as before, but with certain technical modifi cations that would 

ensure that Fourier transforms do indeed fi t into the theory. With this in mind we 

introduce

Defi nition 3.45. A smooth function f : R → C such that for all n, r ≥ 0

x x xn rϕ( )( )→ →∞0 as

is called a function of rapid decay.

The set of all functions of rapid decay is denoted by S(R).

The collection S(R) can readily be shown to have the following properties.



Properties 3.46. (i) Every test function is a function of rapid decay, that is 

D � S(R).

(ii) If j, j ∈ S(R) then (aj + bj) ∈ S(R) for all constants, a, b.

(iii) If j ∈ S(R) then xnj(r)(x) ∈ S(R) for all n, r ≥ 0.

(iv) If xnj(r)(x) is bounded for each n, r ≥ 0 then j is a function of rapid 

decay.

(v) Every function of rapid decay is absolutely integrable.

Because of its particular importance in applications we prove the following 

result.

Theorem 3.47. If j ∈ S(R) then ĵ  ∈ S(R)

Proof.

• Property 3.46(v) ⇒ j has a Fourier transform.

• Properties 3.46(iii) and 3.46 (v) ⇒ xnj(x) is absolutely integrable.

• Example 3.43(iii) applied n times shows that ĵ  is differentiable n times for any 

n.

• Applying Example 3.43(iii) r times we obtain

p p p ix x e dx

x x
d

dx
e dx

e

n r n r ipx

r
n

ipx

i

ϕ ϕ

ϕ

( )( ) ( ) ( )

( )

� = −

= ( )
=

−

−

−

∫

∫

R

R

ppx
n

rd

dx
x x dx( )∫ ( ( ))ϕ

R

where we have integrated by parts n times. Hence

p p p
d

dx
x x dxn r

n
rϕ ϕ( ) ≤ ( )∫

�
( )( ) ( ( ))

R

Properties 3.46(iii) and 3.46(v) guarantee the convergence of the integral on the 

right-hand side and thus we obtain a bound on the left-hand side. It then follows 

by Property 3.46(iv) that ĵ  is a function of rapid decay. �

A notion of convergence in S(R) is introduced as follows.

Defi nition 3.48. If j, j1, j2 are functions of rapid decay then we say that jm → j 

in S(R) as m → ∞ provided that for all integers r and n we have, uniformly in x

xnjm
(r)(x) → xnj(r)(x) as m → ∞

With this preparation we can now introduce the following.
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Defi nition 3.49. A distribution of slow growth is a continuous linear func-

tional on the space S(R). Alternatively, we say that it is a linear functional which 

maps every convergent sequence in S(R) into a convergent sequence in C.

We remark that every distribution of slow growth is a distribution in the sense 

introduced earlier. The converse, however, is not true.

It is generally true that functions of slow growth generate distributions of slow 

growth and that functions which do not grow slowly, in the sense described 

above, generate distributions which are not of slow growth.

Ordinary functions which grow too rapidly at infi nity do not belong to the set 

of distributions of slow growth. This we can express more precisely in the fol-

lowing manner.

Defi nition 3.50. (i) f(x) = �(xn) as x → ∞ means that there exist numbers A 

and R such that f(x) ≤ A x
n whenever x > R.

(ii) A function f : R → C which is locally integrable and such that f(x) = �(xn) 

for some n as x → ∞ is called a function of slow growth.

Example 3.51. (i) Every nth degree polynomial is �(xn).

(ii) e−x is not a function of slow growth since x−ne−x → ∞ as x → ∞ for 

any n.

(iii) eiax is a function of slow growth if x and a are real.

Defi nition 3.52. To each locally integrable function of slow growth, f, there 

corresponds a distribution of slow growth, f, a regular distribution, defi ned 

by

f ), ,ϕ ϕ ϕ= ∈∫ f x x dx( ) ( ) (S R
R

We have introduced the above statement as a defi nition. However, it is fre-

quently presented in the form of a theorem in which it is proved that the above 

functional has all the properties required to ensure that f is a distribution of slow 

growth.

With these several results and remarks in mind, a theory of distribu-

tions of slow growth can now be constructed in a similar manner to that 

used when dealing with ordinary distributions. We leave the details as an 

exercise.

The reason for introducing the space S(R) was to be able to defi ne Fourier 

transforms of distributions in the same way as already discussed for ordinary 

functions.

We defi ne the Fourier transform f̂ of a generalised function f by

〈f̂,j〉 = 〈f,ĵ 〉, for j ∈ S(R)

In order that this defi nition should make sense we need the following technical 

result (see [2], [11]).



Theorem 3.53. If f is a distribution of slow growth then the functional 

f̂ : j → 〈f, ĵ 〉 is a distribution of slow growth.

With this result available we can introduce the following.

Defi nition 3.54. (i) If f is a distribution of slow growth then its Fourier transform 

is the distribution of slow growth, f̂, defi ned by

〈f̂,j〉 = 〈f, ĵ 〉, for j ∈ S(R)

(ii) If f is a locally integrable function of slow growth then the distribution, 

f̂, is called the generalised Fourier transform of f.

We now have available, symbolically, the same structure as that used for 

ordinary functions. Indeed, Examples 3.43 and 3.44 will hold with f replaced by 

f appropriately.

We conclude this section by giving examples of the Fourier transforms of 

some frequently occurring functions.

Example 3.55. The simplest function is the constant function. Write 1 for the dis-

tribution generated by the constant function whose value everywhere is 1. Then

ˆ ˆ ˆ( ) ˆ( )1 1, ,ϕ ϕ ϕ ϕ= = ⋅ = ∫∫I
RR

x dx x dx

Now

( )( ) ( )ϕ
π

ϕq e x dxipx= ⋅−∫
1

2 R

which implies

ˆ( ˆ̂ )( ) ˆ( )ϕ ϕ
π

ϕ0
1

2
= ∫ x dx

R

Using Example 3.43(i)

( ˆ̂ )( ) ( ) ( )ϕ ϕ ϕ0 0 0= − =

Combining these several results we obtain

ˆ ˆ ( ) ( ˆ̂ )( ) ( ) ˆ ( ) ( )I
RR

,ϕ
π

ϕ
π

ϕ
π

ϕ
π

ϕ δ= = = = ∫∫
1

2

1

2
0

1

2
0

1

2
x dx x x dx

and conclude that

I
ɵ= 2πδ
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Example 3.56. (i) Write x for the distribution generated by the function f defi ned 

by f(x) = x.

Then

x̂ i=− ′2πδ

(ii)

d̂ =
1

2π
1

(iii)
δ

π

πδ

x a e

e x a

iax

iax

−( )=

( )= +

−

−

�

�

1

2

2 ( )

The details are left as an exercise.
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4

Hilbert Spaces

4.1 Introduction

In this chapter we generalise the familiar concepts of algebra and geometry that 

we used in a Euclidean space setting when we have always been dealing with 

numbers and the numerical values of functions. We now want to extend these 

ideas in such a way that we can discuss the functions themselves rather than their 

numerical values. It turns out that a particular type of normed linear space called 

a Hilbert space provides an ideal setting for this purpose.

We begin by defi ning an inner product which is an abstract version of the 

familiar scalar product of elementary vector algebra. This will allow us to defi ne, 

just as in fi nite dimensional Euclidean spaces, the notion of angles, particularly 

right angles, in abstract vector spaces. We then go on to introduce the idea of two 

elements of an (abstract) vector space being perpendicular. This is followed by 

a discussion of how sets of perpendicular elements of a vector space can form a 

basis for an infi nite dimensional space in a similar way that the x, y and z-axes

form a basis for R3.

We end this chapter with a brief outline of the salient features of operators 

on Hilbert spaces.

Defi nition 4.1. An inner product on a vector space X is a rule which assigns to 

elements x, y ∈ X a real or complex number, denoted by (x, y), called the inner 

product of x, y ∈ X which has the properties

(i) (x, x) is real and positive for all x ≠ q the zero element in X and (q, q) = 0

(ii) (x, y) =̄(y, x) for all x, y ∈ X where the bar denotes complex conjugate

(iii) (ax, y) = a(x, y) for all x, y ∈ X and any scalar a

(iv) (x + y, z) = (x, z) + (y, z) for all x, y, z ∈ X.

A vector space X together with an inner product (⋅, ⋅) is called an inner

product space.

We notice that for a real inner product space the bar is redundant since all 

the inner products are real. Furthermore, we see that (ii) and (iv) imply that we 
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also have (x + y,  z) = (x,  z) + (y,  z). Thus, the algebraic properties of an inner 

product space would appear to be the same as for the scalar product in ordinary 

vector algebra. However, there is one important difference. In a complex space 

the inner product is not linear in both arguments. It is, in fact, conjugate linear 

in the sense that (x,  ay) = ā(x,  y) for any scalar a and x, y ∈ X. This follows from 

Defi nition 4.1(ii) and (iii)

(x,  ay) = ā(x,  y) = ā(x,  y)

Examples 4.2. (i) On Cn, the set of n-tuples of complex numbers x = (x1,  x2,  .  .  .  ,  

xn), y = (y1,  y2,  .  .  .  ,  yn) where xk, yk ∈ C for k = 1, 2,  .  .  .  , n, we can defi ne an 

inner product

( ) :x ay x yk k

k

n

, =
=
∑

1

For the corresponding real space, Rn, we can defi ne an inner product with the 

same symbolic form but now all quantities are real.

(ii) On C[a, b], the set of complex-valued, continuous functions defi ned on 

the interval [a, b] ∈ R we can defi ne an inner product of the form

( ) ( ) ( ) [ ]f g f x g x dx f g C a b
a

b

, , , ,= ∈∫

Defi nition 4.3. On any inner product space, X, we can defi ne a norm by

x
2 = (x,  x)

Exercise 4.4. (i) Verify that the inner products introduced in Example 4.2 

satisfy the inner product axioms in Defi nition 4.1.

(ii) Verify that the quantity · introduced in Defi nition 4.3 is indeed a 

norm.

The norm induced by the inner product introduced in Example 4.2(ii) is 

referred to as the square integrable norm since

f f f f x f x dx f x dx
a

b

a

b2 2= = =∫ ∫( ) ( ) ( ) ( ),

The set of all continuous functions defi ned on the interval [a, b] endowed with 

the square integrable norm is a normed space (verify). Convergence in this normed 

space is understood as follows.

Defi nition 4.5. Let F, f1, f2, f3,  .  .  .  be functions with action either R → R or 

R → C. We say that fn → F in the mean on [a, b] as n → ∞ if



f x F x dxn
a

b

( ) ( )− →∫ 2
0

Clearly, this defi nition only holds for functions that are suffi ciently well behaved 

for the integral to exist.

Convergence in the mean is less demanding than uniform convergence. It is 

called convergence in the mean because it is the mean value of ( fn − F ) that 

tends to zero and not the value at particular points.

The idea of convergence in the mean is particularly important in mathematical 

physics. The equations in mathematical physics are often solved by series expan-

sion methods, for example Fourier series. These expansions do not always con-

verge uniformly but they often can be shown to converge in the mean.

Some of the differences between the types of convergence mentioned above 

are given by the following example.

Example 4.6. Defi ne functions fn, n = 1, 2,  .  .  .  by fn(x) = exp(−nx). It is clear 

that fn ∈ C[0, 1]. Furthermore, for each x ∈ [0, 1] we have

 fn(x) → F(x) as n → ∞ (4.1)

where F is defi ned by

F(x) = 0 for x ≠ 0

 F(0) = 1

We emphasise that the result (4.1) is a statement about the convergence of a 

sequence of numbers, fn(x), for any x ∈ [0, 1]. It is not a statement about the 

sequence of functions fn, n = 1, 2,  .  .  .  The statement (4.1) indicates that fn → F 

pointwise. It is also the case that fn → F in the sense of convergence in the mean. 

The integral involved is ∫ −0
1 2exp( )nx dx  which is easily evaluated and can be 

shown to tend to zero as n → ∞.

In this example F ∉ C[0, 1] since it is discontinuous. To ease matters we may 

be tempted to consider the function F0 defi ned by

F0(x) = 0 for all x ∈ [0, 1]

Clearly F0 ∈ C[0, 1]. We can now ask if fn → F0 in the sense of convergence in 

C[0, 1]. Different answers can be obtained depending on the norm used on C[0, 1].

We have seen that the collection C[0, 1] can be turned into a normed space 

in a number of ways. We consider two cases.

Case 1:

C[0, 1] is endowed with the uniform norm defi ned by

f f x x: sup ( ) := ≤ ≤{ }0 1

This is also referred to as the sup. norm.

 4.1 Introduction 79
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Case 2:

C[0, 1] is endowed with the square integrable norm defi ned by

f f x dx
2 2

0

1

= ∫ ( )

Using the uniform norm we conclude that f → F0. This follows because 

fn(0) − F0(0) = 1 for all n and hence sup fn(x) − F0(x) cannot possibly tend 

to zero. However, if we use the norm in Case 2 then a simple integration indicates 

that fn → F0.

Limits in the mean are not unique. This is because the value of an integral is 

unaffected by changing the value of the integrand at a number of isolated points.

We see from the above that there are two important types of convergence in 

function spaces. The fi rst is uniform convergence, which is convergence with 

respect to the sup. norm introduced in Case 1 above. The second is convergence 

in the mean which is convergence with respect to the integral norm introduced 

in Case 2.

We have seen above that a sequence of continuous functions can converge in 

the mean to a discontinuous function. However, such a sequence cannot converge 

uniformly to a discontinuous function. Yet we notice that any uniformly conver-

gent sequence in C[a, b] can be integrated term by term and as such converges 

in the mean. Therefore, we see that uniform convergence implies convergence in 

the mean but the converse does not hold.

One of the powerful features of applied functional analysis is that it provides 

a means of introducing and working with a norm which is best suited to the 

problem in hand. In much of the analysis in this monograph we shall be working 

in a Hilbert space rather than a Banach space structure. A particularly important 

and frequently occurring Hilbert space is L2[a, b].

Defi nition 4.7. L2[a, b] is the completion of C[a, b] with respect to the square 

integrable norm.

Thus L2[a, b] contains all functions which are the limits of continuous func-

tions in the sense of mean convergence.

Example 4.8. We have seen that L2[a, b] contains discontinuous functions. 

Indeed, it can contain functions that have infi nite discontinuities provided that 

the discontinuity is “nice” enough for it to be square integrable. For instance the 

function f defi ned by f(x) = x−1/3 is an element of L2[0, 1]. However, the function 

g defi ned by g(x) = x−2/3 is not. We can conclude that every function f which is 

such that the integral ∫ a
b f x dx( )

2
 exists is an element of L2[a, b].

There is an important aspect of L2[a, b] which much always be borne in mind, 

namely the space L2[a, b] contains functions which are not integrable according 

to the theory of Riemann integration.



For example the function F defi ned by F(x) = 1 for rational values of x and 

zero for all other values of x is a discontinuous function and is such that 

∫ a
b F x dx( )

2
 does not exist in the Riemann sense. Now, Riemann integration is 

the “usual” method of integration which we use in practical problems but this 

little example shows that Riemann integration is not always adequate. Fortu-

nately, a more powerful integration theory is available, namely Lebesgue integra-

tion theory [5], [9], [11], by means of which we can show that the above integral 

does exist and hence that F ∈ L2[a, b].

In this monograph there will be no need to have a detailed knowledge of 

Lebesgue theory. It will be suffi cient simply to know it is available. Consequently, 

L2[a, b] can be regarded as a Banach space which contains all ordinary, that is 

Riemann, square integrable functions together with other functions which are 

highly discontinuous, just like the function F introduced above, which must be 

included to make the space complete.

This situation is eased by recalling that L2[a, b] is the completion of C[a, b] 

with respect to the square integrable norm. Thus, every element of L2[a, b] can 

be approximated, arbitrarily well, by elements in C[a, b]. That is to say, C[a, b] is 

dense in L2[a, b] (see Defi nition 3.9). For this reason we really need only work 

with elements of C[a, b] initially and then, if necessary, use denseness arguments 

to obtain more general results.

We see that the notion of an inner product as introduced here is an abstract 

version of the familiar scalar or dot-product of fi nite dimensional vector algebra. 

In this connection simply think of the algebra used in n-dimensional Euclidean 

space Rn.

We have already mentioned that when analysing problems it is often more 

profi table and easier to work with the actual functions involved rather than with 

the numerical values of such functions. Working in the structure of inner product 

spaces provides a means of doing this. In order to complete this introduction of 

an analytical structure that will enable us to work meaningfully with functions 

rather than with their numerical values, whilst still retaining the familiar methods 

used in fi nite dimensional Euclidean space, we need the additional ingredient of 

orthogonality. Once this concept has been introduced it will lead naturally to 

the meaning of the angle between two functions and of a basis of an infi nite 

dimensional space.

We notice from the above that, should we so wish, we could build up essen-

tially all Euclidean geometry in the context of an inner product space structure. 

With this in mind we recall the following familiar result [5].

Theorem 4.9. (Cauchy–Schwarz inequality)

For any complex numbers xk, yk, k = 1, 2,  .  .  .  , n

x y x yk k

k

n

k

k

n

k

k

n

= = =
∑ ∑ ∑≤
















1

2

2

1

2

1

where the bar denotes complex conjugate.
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Corollary 4.10. (Cauchy–Schwarz inequality for integrals)

f x g x dx f x g x
a

b

a

b

a

b

( ) ( ) ( ) ( )∫ ∫ ∫≤( )( )
2

2 2

for any functions f and g that ensure the integrals exist.

An abstract version of these two results is available for general inner product 

spaces. To indicate this we need a little notational preparation.

Defi nition 4.11. Let V be a vector space and S ⊂ V a subset of elements x1, x2,  .  .  .  , 

xp. Consider the relation

 a xk k

k

p

=
∑ =

1

0  (4.2)

where ak, k = 1,  .  .  .  , p are scalars. If (4.2) only holds for ak = 0, k = 1,  .  .  .  , p then 

the elements xk, k = 1,  .  .  .  , p are said to be linearly independent and S is a 

linearly independent subset of V. The elements xk, k = 1,  .  .  .  , p are said 

to be linearly dependent if they are not linearly independent. That is, (4.2) 

will hold for some p-tuple of scalars not all of which are zero. Similarly S is a 

linearly dependent subset of V if it is not linearly independent.

Defi nition 4.12. A vector space V is said to be fi nite dimensional if there is a 

positive integer n such that V contains a linearly independent set of n elements 

but any set of (n + 1) or more elements of V is linearly dependent. The integer 

n is the dimension of V and is denoted dim V = n. By defi nition the vector space 

V = {q}, where q is the zero element, is fi nite dimensional and dim V = 0.

If V is not fi nite dimensional then it is infi nite dimensional.

Infi nite dimensional vector spaces are of greater interest than the fi nite dimen-

sional ones. This is particularly true for practical problems defi ned in terms of 

partial differential equations. For instance C[a, b] is infi nite dimensional whereas 

Rn and Cn are fi nite dimensional.

With this preparation the abstract version of Theorem 4.9, suitable for use in 

inner product spaces, can be stated in the following form [5].

Theorem 4.13. (Schwarz inequality)

Let V be an inner product space.

(i) (x,  y)
2 ≤ (x,  x)(y,  y) for any x, y ∈ V.

(ii) Equality in (i) only holds if x and y are linearly dependent.

We have already seen that in any inner product space we can defi ne a norm 

by

x
2 := (x,  x)



Consequently, the Schwarz inequality can be written in the form

 ( , )x y x y≤  (4.3)

This important result indicates that in a real inner product space we have

− ≤ ≤1 1
( )x y

x y

,

If we compare this result with the expression

cosϕ =
⋅x y

x y

where j denotes the angle between two vectors x and y in three-dimensional 

geometry then we can defi ne an angle between two elements of an inner product 

space by

 ϕ : cos
( )

= { }−1 x y

x y

,
 (4.4)

4.2 Orthogonality, Bases and Expansions

In the previous section we defi ned, in (4.4), the angle between two elements of 

an inner product space. A particularly useful notion which comes out of this is 

that of orthogonality.

Defi nition 4.14. (i) Two elements x, y of an inner product space, X, are said to 

be orthogonal if (x,  y) = 0.

(ii) A set of elements {xk}∞k=1 ⊂ X is called orthonormal if

( )x x
k m

k m
k m,

,

,
= =

≠{10
This defi nition applies to both real and complex inner product spaces.

Examples 4.15. (i) For C2 endowed with the inner product

( )x y x y x yk k

k

, , , C= ∈
=
∑

1

2
2

the elements x = [1,i] and y = [1, −i] are orthogonal because

(x,  y) = ([1, i], [1, −i]) = 1.1 + i (̄−i) = 1 + i2 = 0
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(ii) For C[0, p] with inner product

( ) : ( ) ( )f g f x g x dx, = ∫0

π

the functions defi ned by f(x) = sin (mx) and g(x) = sin (nx) are orthogonal for 

any positive integers m, n with m ≠ n.

An abstract version of Pythagoras’ theorem is as follows.

Theorem 4.16. If x and y are orthogonal elements of an inner product space 

then

x y x y+ = +2 2 2

Proof.

 x y x y x y x x y y x y y x x y+ = + + = + + + = +2 2 2
( , ) ( , ) ( , ) ( , ) ( , )  �

It is perhaps interesting to remember the amount of labour involved in proving 

this result in elementary geometry classes!

We recall that all vectors in R3 can be expressed in terms of three unit vectors 

one each in the direction of the x-, y- and z-axis respectively. The three unit 

vectors are said to form a basis for R3 and the coeffi cients attached to each, when 

expressing an arbitrary vector, v, in terms of these basis elements, are referred 

as the components of v with respect to the basis. We want to parallel this situation 

when working in infi nite dimensional spaces. To this end we introduce the 

following.

Defi nition 4.17. A set of elements {xk} of an inner product space is called an 

orthogonal set if

(i) (xj,  xk) = 0 whenever j ≠ k

(ii) for each k we have xk ≠ q = zero element.

Part (ii) of this defi nition excludes the zero element. The effect of this is 

indicated by the following.

Lemma 4.18. A fi nite orthogonal set is linearly independent.

Proof. Let {xk}
n
k=1

 be an orthogonal set. We want to show that Σk
n

k kc x= =1 0   

implies that the scalars ck, k = 1, 2, 3,  .  .  .  , n are all zero.

If Σk
n

k kc x= =1 0  then for any j

0
1 1

2=






= =

= =
∑ ∑c x x c x x c xk k j

k

n

k k j

k

n

k k, ,( )



the last equality following by orthogonality. Therefore we conclude that ck = 0, 

k = 1, 2, 3,  .  .  .  , n provided xk ≠ 0. This is assured by part (ii) and the 

required result follows. �

This result indicates that any set containing the zero element is a linearly 

dependent set. We shall rely on this result later when we work with various types 

of expansions which are particularly useful in applications.

Defi nition 4.19. An orthogonal basis for an inner product space V is an orthogo-

nal set {en} which is such that for any x ∈ V there are scalars cn such that

x c ek k

k

=
=

∞

∑
1

It should be noted that not every (inner product) space has a basis. It might 

be that a space is so large that infi nite linear combinations such as those in Defi ni-

tion 4.19 do not account for all elements of the space. However, those spaces, 

and especially inner product spaces, which occur in applications usually do have 

a basis. Furthermore, in applications it turns out the spaces involved are usually 

complete. Consequently, for the remainder of this monograph we shall adopt the 

following defi nition.

Defi nition 4.20. A complete inner product space with a basis is a Hilbert space.

When we are working in fi nite dimensional spaces a basis is a very useful 

commodity because instead of manipulating the vectors or elements of the fi nite 

dimensional space we can manipulate their components. These components are 

numbers, either real or complex, and as such are often more amenable to com-

putation than the elements themselves. It turns out that much the same thing is 

true in infi nite dimensional spaces. Consequently, it is of prime importance to 

know how bases can be constructed for infi nite dimensional spaces. The follow-

ing offers a systematic and constructive method for doing this.

Theorem 4.21. (Gram–Schmidt orthogonalisation process)

Given a sequence { fn} in an inner product space there is an orthogonal sequence 

{gn} such that every fi nite linear combination of the fn is a fi nite linear combi-

nation of the gn.

The proof of this theorem is straightforward and constructive. However, it is 

rather lengthy and the details can be found in standard texts such as [5]. It 

is suffi cient for us at the moment to know that this process exists.

Elements of a Hilbert space can be represented as an infi nite series of basis 

vectors. The ability to do this will enable us to develop a number of powerful, 

constructive methods for solving problems we encounter in applications. What 

we are about to do is very similar to developing a classical Fourier series and it 
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turns out that the required coeffi cients can be obtained in much the way as the 

classical Fourier coeffi cients are determined. To see this we require the following 

property of inner products.

Theorem 4.22. Let V denote an inner product space with inner product (⋅,  ⋅).

(i) If {xn} is a sequence in V such that xn → x ∈ V as n → ∞ then (xn,  y) → 

(x,  y) as n → ∞ for all y ∈ V.

(ii) If {un} is a sequence in V and if S uk k:= =
∞Σ 1  then

( ) ( ) .u y S y y Vk

k

, , for any
=

∞

∑ = ∈
1

Proof. Using the Schwarz inequality we obtain

( , ) ( , ) ( , )x y x y x x y x x yn n n− = − ≤ −

and the right-hand side tends to zero by hypothesis.

The second part follows immediately by setting x = S and x un k
n

k= =Σ 1  in the  

above. �

This result indicates that for fi xed y ∈ V the inner product is a continuous 

function of x and vice versa.

Theorem 4.23. Let {en} be an orthogonal basis for an inner product space V.  

Any x ∈ V can be expanded in the form x c ek k k= =
∞Σ 1( , )  where the coeffi cients ck 

are  determined by

 c
x e

e
n

n

n

=
( ),

2
 (4.5)

Proof. Using the defi nition of basis we see that there are scalars (numbers) cn  

such that for any x ∈ V we have a result of the form x c ek k k= =
∞Σ 1( , ) . Consequently, 

using Theorem 4.22 we have that for all n

( ) ( )x e c e en k k n

k

, ,=
=

∞

∑
1

All terms on the right-hand side of this expression vanish except when k = n and 

hence (4.5) follows immediately. �

The importance of this last result is that it offers a generalisation of the usual 

Fourier series expansion to inner product spaces.



Defi nition 4.24. Let {en} be an orthogonal set in an inner product space V. For  

any x ∈ V the series Σk k kc e=
∞

1  is called a generalised Fourier series and the  

numbers cn defi ned in (4.5) are called the generalised Fourier coeffi cients or 

expansion coeffi cients of x with respect to the set {en}.

Once determined these generalised Fourier expansions will enable us to 

decompose a given, hard problem into a number of simpler problems. This 

aspect we shall deal with in detail in the chapter dealing with spectral theory. 

Another benefi t of having available a generalised Fourier expansion is that it 

provides a means of developing constructive approximation procedures for use 

in practical applications. To see this notice fi rst that the coeffi cients (4.5) have 

the property that Σk
N

k kc e=1  can be made as close as we wish to x simply by 

taking N large enough.  However, in practical, numerical computations we do 

not have the luxury of having the ability to work with an infi nite number of ele-

ments and consider what happens as N → ∞. Instead we are constrained to 

working with a fi nite number of elements. Consequently, we have to answer 

questions of the following form. Given a fi nite set of elements e1, e2,  .  .  .  , eN of 

a Hilbert space then what linear combination of these elements is the best 

approximation to a given element x in the Hilbert space? The answer will be an 

expression of the form

 c ekN k

k

N

=
∑

1

 (4.6)

In (4.6) the coeffi cient ckN depends on N, hence the double subscripts in (4.6). 

This means that if we use the coeffi cients ckN when using the fi nite set e1, 

e2,  .  .  .  , eN then we can expect to have to change all the coeffi cients to get the 

best approximation to x if we work with a fi nite set of the form e1, e2,  .  .  .  , eN, 

eN+1. However, it turns out that when the elements e1, e2,  .  .  .  , eN are pairwise 

orthogonal the coeffi cients in (4.6) are independent of N and are just the coeffi -

cients used (4.5). For this reason we will always make determined efforts in 

applications to work with orthogonal sets and the associated orthogonal 

expansions.

This remarkable feature is encapsulated in the following theorem.

Theorem 4.25. Let {ek}
N
k=1 be an orthogonal set in an inner product space 

V. For any x ∈ V the coeffi cients ck which minimize x c ek
N

k k− =Σ 1  are given 

by (4.5).

Proof. Set ck = (x,  ek)ek
2 + dk and expand x c ek

N
k k− =Σ 1  as an inner product.  

Direct calculation of the inner product terms then clearly indicates that the 

required minimum is obtained when dk ≡ 0 for all k. �
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In this overview of the notion of a basis we have been using the intuitively 

obvious concept of the countability of a set. For the sake of completeness we 

make this more precise as follows.

Defi nition 4.26. A set is said to be countably infi nite if it can be put in a one-

to-one correspondence with the set of all positive integers.

A set is said to be countable if it is either fi nite or countably infi nite. That is, 

the elements of the set can be put into one-to-one correspondence with either a 

fi nite set of integers or the set of all integers.

This defi nition simply means that we can label uniquely each element in the 

set with an integer. For more details see the texts cited in the reference, in par-

ticular see [5], [9].

In many books dealing with Hilbert space theory the following result is 

proved.

Theorem 4.27. An inner product space has a basis if and only if it contains 

a countable dense set.

We remark that in applications this result is often taken as axiomatic.

A natural question to ask about the coeffi cients in the generalised Fourier 

expansion of an element of an inner product space concerns their behaviour as 

k → ∞. It turns out that they tend to zero as indicated by the following 

theorem.

Theorem 4.28. (Bessel’s inequality) 

Let {ek} be an orthonormal set in an inner product space V. For any x ∈ V

c xk

k

2

1

≤
=

∞

∑

where ck = (x,  ek), k = 1, 2,  .  .  .

This result leads to the following criterion for deciding whether or not a given 

orthonormal sequence is a basis.

Theorem 4.29. (Parseval’s relation)

Let {ek} be an orthonormal sequence in an inner product space V. This set is a 

basis for V if and only if for each x ∈ V

c xk

k

2

1

=
=

∞

∑

where ck = (x,  ek), k = 1, 2,  .  .  .  are the expansion coeffi cients for x ∈ V with 

respect to the set {ek}.



The proofs of these last two results can be found in any of the texts on func-

tional analysis cited in the References.

An important result which will lead the way to the spectral theorem and 

associated decomposition results in a Hilbert space setting is the following.

Theorem 4.30. (Riesz–Fischer theorem)

Let {ek} be an orthonormal basis for an infi nite dimensional Hilbert 

space H.

If {ck} is a sequence of numbers with the property that the series Σk kc=
∞

1
2

 

is convergent then there exists an x ∈ H such that x c ek k k= =
∞Σ 1  with ck = 

(x,  ek).

Here H could be a real or complex Hilbert space. Correspondingly, the numbers 

ck could be either real or complex.

Again the proof of this theorem is to be found in standard texts on functional 

analysis [5].

We now provide some additional geometric aspects of abstract Hilbert spaces. 

We begin with two frequently used notational features.

Defi nition 4.31. (i) An inner product space is called a pre-Hilbert space.

(ii) A complete inner product space is called a Hilbert space. 

Defi nition 4.32. (i) A subset G of a Hilbert space H is called a linear manifold 

(or simply a manifold) if it is invariant with respect to linear operations, that is, 

if l1, l2 are scalars then l1g1 + l2g2 ∈ G whenever g1, g2 ∈ G.

(ii) A closed linear manifold is called a subspace of H.

Warning: Always check the defi nition of “subspace” being used by an author; 

they do vary!

If G1, G2 are two manifolds in a Hilbert space H then the subset of H, denoted 

G1 + G2, consisting of all elements g ∈ H of the form g = g1 + g2 with g1 ∈ G1, 

g2 ∈ G2 is called the sum of G1 and G2.

The subset G1 � G2 ⊂ H consisting of elements of H that are simultan-eously 

elements of both G1 and G2 is a manifold called the intersection of G1 and G2.

Defi nition 4.33. Let G1, G2 be two manifolds in a Hilbert space H. The direct 

sum of G1 and G2, denoted G1 � G2 is defi ned by

G1 � G2 = (G1 + G2 : G1 � G2 = {q})

where q denotes the (unique) zero element in H.

Defi nition 4.34. (i) Let Hk, k = 1, 2 be Hilbert spaces with inner products (⋅,  ⋅)k, 

k = 1, 2 respectively. The set of ordered pairs
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〈x,  y〉, x ∈ H1, y ∈ H2

is a Hilbert space, H, with linear operations and inner product defi ned by

l1〈x1,  y1〉 + l2〈x2,  y2〉 = 〈l1x1 + l2x2,  l1y1 + l2y2〉(〈x1,  y1〉,  〈x2,  y2〉) 

 = (x1,  x2)1 + (y1,  y2)2

where x1, x2 ∈ H1, y1, y2 ∈ H2 and l1, l2 are scalars, either real or complex.

The Hilbert space H is called the direct product of H1 and H2 and is denoted 

H := H1 × H2.

(ii) Let Hk, k = 1, 2,  .  .  .  be a sequence of Hilbert spaces with structure 

(⋅,  ⋅)k⋅⋅k, k = 1, 2,  .  .  .  respectively. Let H denote the set of sequences {xk}
∞
k=1 

xk ∈ Hk, k = 1, 2,  .  .  .  which satisfy Σk k kx=
∞ <∞1

2
. The set H is a Hilbert space 

with  inner product defi ned by

( ) ( )x y x yk k k

k

, ,=
=

∞

∑
1

with x, y ∈ H and xk, yk ∈ Hk, k = 1, 2,  .  .  .  . We write

H H
k

k= ×
=

∞

1

Hilbert spaces provide a very clear and easily workable extension of the 

familiar algebra and geometry of fi nite dimensional spaces to infi nite dimensional 

spaces. In applications we want to know that such an extension is always avail-

able. This will mean that for much of the time in applications we can work as 

though we were making the analysis in fi nite dimensional spaces. A limiting 

process could then provide the more general results.

Let G be a subspace (or just a manifold) of a Hilbert space H. The elements 

of H that are orthogonal to G, that is orthogonal to all elements of G, constitute 

a subspace of H called the orthogonal complement of G in H which is denoted 

G�. The dimension of G� is called the co-dimension of G and we write co-

dimension G = dim G�.

One of the more powerful results of Hilbert space theory for use in applica-

tions is that a Hilbert space H has an orthogonal decomposition into the orthogo-

nal direct sum of subspaces G and G�. This feature is encapsulated in the following 

celebrated theorem.

Theorem 4.35. (Projection Theorem)

Let

(i) H be a Hilbert space with structure (⋅,  ⋅), ⋅
(ii) M be a subspace of H

(iii) M� be the orthogonal complement of M in H.

Then every element x ∈ H can be written uniquely in the form



x = y + z, y ∈ M, y ∈ M�

This theorem can be written compactly in the form

H = M � M� = {y + z : y ∈ M, z ∈ M�}

Furthermore, direct calculation shows that

x y z
2 2 2= +

Theorem 4.35 is the bedrock for much of the analysis in this monograph and 

indeed for the majority of practical applications. It provides a means for decom-

posing not only Hilbert spaces but also various operations that are performed on 

them. This will often enable quite diffi cult problems to be broken down into 

simpler and more easily manageable components.

4.3 Linear Functionals and Operators on Hilbert Spaces

A mapping is a generalisation to vector spaces of the notion of a function (see 

Defi nition 3.10).

Defi nition 4.36. Let V1, V2 be vector spaces and X1, X2 subsets of V1, V2 respec-

tively. A mapping, T, with action denoted by T : X1 → X2 is a rule which, given 

any x ∈ X1 associates with it an element of X2 denoted Tx.

We shall write x → Tx to denote that x ∈ X1 is mapped into the element 

Tx ∈ X2.

We now restrict attention to Hilbert spaces. Let H be a Hilbert space with 

structure (⋅,  ⋅), ⋅.

A mapping f of a manifold D( f ) ⊂ H into a manifold R( f ) ⊂ K = R or C is 

called a functional on H and we write

f : D( f ) ⊂ H → R( f ) ⊂ K

This notation indicates that f can be either a real or complex valued function on H.

This mapping will be a linear functional if

f(l1h1 + l2h2) = l1 f(h1) + l2 f(h2)

for any h1, h2 ∈ D( f ) and scalars l1, l2. The manifold D( f ) is called the domain 

(of defi nition) of the mapping f whilst R( f ) is the range of the mapping f.

A more general type of mapping is an operator.

A mapping L of a manifold D(L) ⊂ H onto a manifold R(L) with action 

denoted by
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L : H ⊃ D(L) → R(L) ⊂ H

is called a linear operator in H if

L(l1h1 + l2h2) = l1L(h1) + l2L(h2)

for any h1, h2 ∈ D(L) and scalars l1, l2. As above D(L) and R(L) are called respec-

tively the domain and range of the operator L.

A linear operator L : D(L) ⊂ H → R(L) ⊂ H is said to be densely defi ned on 

H if D(L) is dense in H, that is, if̄ D(L) = H.

Two of the simplest but quite important linear operators on H are

(i) the trivial operator Θ which is such that

Θh = q = zero element in H, for all h ∈ H

(ii) the identity operator I which is such that

Ih = h ∈ H for all h ∈ H

Given a linear operator L defi ned in a Hilbert space H then all solutions of 

the equation Lh = q ∈ H form a manifold N(L) ⊂ H known as the null space or 

kernel of the operator L.

When N(L) = {q} then the equation Lh = q ∈ H has only the trivial solution 

h = q. In this case it is possible to defi ne an inverse operator, L−1, which is such 

that [5], [9]

(i) D(L−1) = R(L) and R(L−1) = D(L)

(ii) L−1g = h, where g ∈ D(L−1) = R(L) and h ∈ H is the unique solution of 

Lh = g

(iii) the property (ii) implies

L−1(Lh) = h ∈ D(L)

   L(L−1g) = g ∈ D(L−1)

An important feature of operators on a Hilbert space is provided by the fol-

lowing defi nition which offers a natural extension to infi nite dimensional spaces 

of familiar aspects of geometry in R3.

Defi nition 4.37. Let H be a Hilbert space and L : H → H a linear operator. The 

set of all elements 〈h, Lh〉 ∈ H × H is denoted Γ(L) and called the graph of L.

A linear manifold Γ in H × H is the graph of some linear operator L if and 

only if it does not contain elements of the form 〈q, g〉, g ≠ q.

Two linear operators L1, L2 on a Hilbert space H are said to be equal if 

D(L1) = D(L2) =: D ⊂ H and L1h = L2h for any h ∈ D. Equivalently the operators 

are equal if Γ(L1) = Γ(L2).



Remark 4.38. We would strongly emphasise that it should always be borne in 

mind that the operators L1, L2 with D(L1) ≠ D(L2) are different operators even 

if there holds L1h = L2h for any h ∈ D(L1) � D(L2).

An operator L′ is said to be an extension of an operator L (alternatively, L

is a restriction of L′) if D(L) ⊂ D(L′) and Lh = L′h for all h ∈ D(L). Hence, an 

extension L′ of L is any operator which agrees with L when applied to elements 

of D(L) but is arbitrary elsewhere. This arbitrariness is removed in practice by 

requiring that the extension should have certain properties of the original opera-

tor, for instance, continuity. In the particular case when D(L) is dense in H it can 

be shown that the extension is unique.

Let L be a linear operator in a Hilbert space H and let G1 ⊂ H be a subspace. 

Let G2 = G1
� be the orthogonal complement of G1 in H. Further, set

D1 = G1 � D(L)

D2 = G2 � D(L) = G1
�

� D(L)

The subspace G1 is called a reducing subspace of L if

D(L) = D1 � D2, LD1 ⊂ G1, LD2 ⊂ G2

It is clear that G2 = G1
� is a reducing subspace (see Theorem 4.35).

We shall denote the restriction of L to G1 and G2 by L1 and L2 respectively 

and refer to L1 and L2 as the parts (components) of L. It is clear that D(L) =
D1 � D2 and that

Lh = L1g1 + L2g2, h ∈ D(L)

where gk, k = 1, 2 is the projection of h onto the subspace Gk, k = 1, 2. Conse-

quently, R(L) = R(L1) � R(L2). We shall refer to the operator L as the direct sum

of its parts L1, L2 and we write L = L1 � L2.

It is clear from the above remarks that a study of the operator L is equivalent 

to a study of its components L1 and L2.

A decomposition of an operator into more than two parts can be similarly 

defi ned.

The above remarks provide the fi rst indications of how a given operator might 

be decomposed into several more manageable parts. We shall return to this aspect 

in detail when we deal with the topic of spectral theory.

Let

Lk : H ⊃ D(Lk) → R(Lk) ⊂ H, k = 1, 2

be linear operators. Bearing in mind that usually these operators are not defi ned 

on all of H we defi ne their sum, L1 + L2, and their product, L1L2, as follows
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D(L1 + L2) = D(L1) � D(L2)

 (L1 + L2)h = L1h + L2h, h ∈ D(L1 + L2) (4.7)

and

D(L1L2) = {h ∈ D(L2) : L2h ∈ D(L1)}

 (L1L2)h = L1(L2h), h ∈ D(L1L2) (4.8)

We remark that D(L1 + L2) = D(L1L2) = D(L2) when D(L1) = H. Also, in 

general, L1L2 ≠ L2L1, that is L1 and L2 do not commute.

A linear functional, f, on a Hilbert space H is said to be bounded on H if

 f
f h

h
h D f H h: sup

( )
: ( )= ∈ ⊂ ≠{ }<∞, θ  (4.9)

where f is the norm of the functional f.

Similarly an operator L on H is said to be bounded on H if

 L
Lh

h
h D L H h: sup : ( )= ∈ ⊂ ≠{ }<∞, θ  (4.10)

where L is the norm, or more fully, the operator norm of the operator L. 

We remark that the operator L has a bounded inverse, L−1, if and only if

 inf : ( )
Lh

h
h D L H h∈ ⊂ ≠{ }>, θ 0  (4.11)

and

 L
Lh

h
h D L H h−

−

= ∈ ⊂ ≠{ }{ }1
1

inf : ( ) , θ  (4.12)

It is possible to describe the general form of linear functionals on a Hilbert 

space. Before doing this we need to introduce the following two results.

Theorem 4.39. If a linear functional is continuous at any one point then it 

is uniformly continuous.

Proof. Let H be a Hilbert space. If f : H → K = R or C is continuous at g ∈ H then 

for any e > 0 there is a d > 0 such that f(g + h) − f(g) < e, h ∈ H whenever 

h < d. It then follows from the linearity of f that for any x ∈ H

f x h f x f h f g h f g( ) ( ) ( ) ( ) ( )+ − = = + − < ε



whenever h < d. Since d is independent of x the required uniformity 

follows. �

This result indicates that a linear functional is either discontinuous every-

where or uniformly continuous everywhere. Hence we shall simply call a 

uniformly continuous functional a continuous functional.

Continuity and boundedness are essentially the same property for linear func-

tionals but not for functionals in general. Indeed the following result can be 

obtained [5], [9].

Theorem 4.40. A linear functional is continuous if and only if it is bounded.

We now turn to a description of the general form of bounded linear functionals 

defi ned on either a whole Hilbert space H or on a dense manifold D of H.

Consider the function Fh defi ned by

 Fh(g) = (g,  h), g ∈ H (4.13)

where h ∈ H is given. This functional is linear by virtue of the properties of an 

inner product and also continuous for the same reason. Alternatively, we can use 

the Schwarz inequality to show that it is bounded with

F
F g

g
g hh

h= ≠{ }≤sup
( )

: θ

Substituting g = h in this inequality we can conclude that Fh = h.

A general result in this connection is the following [5], [9].

Theorem 4.41. (Riesz representation theorem)

If F is a bounded linear functional defi ned on either all of a Hilbert space, 

H, or a dense manifold D(F ) ⊂ H then there exists a unique vector h ∈ H such 

that

F = Fh = (⋅,  h) with F � Fh = h

[An alternative, slightly more transparent, statement of this is as follows: 

For every continuous linear functional F on a Hilbert space H there is a unique 

h ∈ H such that F(g) = (g,  h) for all g ∈ H.]

A proof of this important result can be found in the standard texts cited in 

the References and Commentary.

The set of linear bounded functionals on H is denoted by H* and is referred 

to as the dual of H (see Defi nition 3.27). We defi ne linear operations and an inner 

product on this set in the following manner.
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Defi nition 4.42. (Structure of H*)

(i) l1Fh1
+ l

1
Fh2

= Fh3
, h3 := l̄1h1 + l̄2h2

(ii) (Fh1
, Fh2

) = (h1,h2) where lk ∈ K and hk ∈ H, k = 1, 2.

As a consequence of Defi nition 4.42 we consider H* as a Hilbert space. To see 

that this makes sense we keep in mind (4.7). Then recognising that an inner 

product is conjugate linear we have

(l1Fh1
+ l2Fh2

)(g) = l1Fh1
(g) + l2Fh2

(g) = l1(g, h1) + l2(g, h2)

= (g, l̄1h1) + (g, l̄2h2) = Fh3
(g), h3 = l̄1h1 + l̄2h2.

Furthermore, the Riesz representation theorem indicates that there is a one-to-

one mapping of H onto H* such that h → Fh. This mapping is isometric because 

Fh = h. Finally, it is conjugate linear because from the above

l1h1 + l2h2 → l̄1Fh1
+ l̄2Fh2

These several remarks indicate that to regard H* as a Hilbert space does indeed 

make sense.

We now turn our attention to the corresponding features of bounded linear 

operators defi ned on the whole Hilbert space H.

We denote by B(H) the set of all linear, bounded operators on H that map H

into itself. This set is invariant with respect to linear operations, that is, for scalars 

lk ∈ K, k= 1, 2 we have (l1L1+l2L2) ∈ B(H) whenever L1, L2 ∈ B(H). Consequently, 

B(H) can be considered as a linear space. We also notice that B(H) is invariant with 

respect to products of operators, that is, L1L2 ∈ B(H) whenever L1,L2 ∈ B(H).

Much of the analysis that follows will involve approximation processes. Con-

sequently, we need an understanding of the convergence processes which are 

available.

In Hilbert spaces there are two principal notions of convergence.

Defi nition 4.43. Let H be a Hilbert space with structure (  ,  ), ⋅
(i) A sequence {xk}

x
k=1 ⊂ H is said to be strongly convergent to an element 

x ∈ H if

lim
k

kx x
→∞

− = 0

in which case we write

s x x
k

k− =
→∞
lim

(ii) A sequence {xk}
∞
k=1 ⊂ H is said to be weakly convergent to an element 

x ∈ H if for all y ∈ H

lim ( ) ( )
k

kx y x y
→∞

=, ,



in which case we write

w x x
k

k− =
→∞
lim

Bounded linear operators acting in Hilbert spaces will be of particular interest 

to us in later chapters. Consequently, it will be convenient to introduce the fol-

lowing convergence concepts in B(H).

Defi nition 4.44. Let H be a Hilbert space and {Tk}
∞
k=1 ⊂ B(H).

(i) The sequence {Tk}
∞
k=1 is strongly convergent to T if, for all h ∈ H

lim
k

kT h Th
→∞

− = 0

and we write

s T T
k

k− =
→∞
lim

(ii) The sequence {Tk}
∞
k=1 is weakly convergent to T if {Tkh}∞k=1 is weakly 

convergent to Th for all h ∈ H and we write

w T T
k

k− =
→∞
lim

(iii) The sequence {Tk}
∞
k=1 is uniformly convergent to T if

lim
k

kT T
→∞

− = 0

and we write

u T T
k

k− =
→∞
lim

We remark that uniform convergence is sometimes called convergence in norm.

The following results will be useful later.

Theorem 4.45. Let H be a Hilbert space and Tk,T, Sk,S ∈ B(H), k = 1, 2,  .  .  .

(i) If s T Tk k− =→∞lim  and s S Sk k− =→∞lim  then s T S TSk k k− =→∞lim .

(ii) If u T Tk k− =→∞lim  and u S Sk k− =→∞lim  then u T S TSk k k− =→∞lim .

For a proof of this see the references cited in the Commentary, in particular 

[5], [6], [9]. We remark that a similar result does not hold for weak convergence.

4.4 Some Frequently Occurring Operators

In this section we gather together the salient features of some linear operators 

which we will often meet in the following chapters.
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Defi nition 4.46. A bounded linear operator T on a Hilbert space H is invertible 

if there exists a bounded linear operator T−1 on H such that

TT−1 = T−1T = I

where I is the identity operator on H.

We remark that in the above defi nition T is on H, that is D(T) = H. When D(T) 

⊂ H, that is when T is in H, then the defi nition will have to be modifi ed. We will 

return to this aspect when it is needed later in some applications.

The following result can be established [5], [6], [9]. Indeed, it is often used as 

the defi nition of an inverse operator.

Theorem 4.47. An invertible operator T ∈ B(H) is 1-1 and maps H onto H. The 

inverse of T is unique.

The next result, which provides a generalisation of the geometric series 

(1 − a)−1, is fundamental to much of the material in later chapters.

Theorem 4.48. (Neumann series) Let H be a Hilbert space and let T ∈ B(H) 

have the property T < 1. Then

(i) (I − T ) is invertible

(ii) (I − T )−1 ∈ B(H)

(iii) ( )I T Tk k− =−
=
∞1

0Σ  (Neumann series) is uniformly convergent

(iv) (I − T )−1
 ≤ (1 − T)−1

The proof of this result is entirely straightforward but rather lengthy [5], [6].

The existence of an inverse operator is of fundamental importance when 

solving operator equations. Such operators are not always easy either to deter-

mine or to work with. However, associated with a given operator on a Hilbert 

space is an operator that has some of the fl avour of an inverse operator, namely 

an adjoint operator.

Let H be a Hilbert space and T ∈ B(H). Then, forgiven h ∈ H the functional 

(Tg, h), g ∈ H is linear and bounded. Consequently, by the Riesz representation 

Theorem, there is a unique element h* such that (Tg, h) = (g, h*)

The mapping h → h* is defi ned on all of H and is readily seen to be linear and 

bounded. Consequently, we write

T*h = h* for any h ∈ H

so that



(Tg, h) = (g, T*h), g, h ∈ H

These various observations can be written compactly in the following form 

(see Commentary).

Theorem 4.49. Let H be a Hilbert space with structure (  ,  ) and let T ∈ B(H).

There exists a unique, linear, bounded operator T* on H, called the adjoint of

T, defi ned by

(Tg, h) = (g, T*h), for all g, h ∈ H

which is such that

T* = T

Some elementary properties of T* are contained in the following.

Theorem 4.50. Let H be a Hilbert space and let T, S ∈ B(H).

(i) T** := (T*)* = T

(ii) (lT )* = l̄T*, l ∈ C

(iii) (T + S)* = T + S*

(iv) (TS)* = S*T*

(v) If T is invertible then so also is T* and

(T*)−1 = (T−1)*

(vi)TT* = T*T = T
2.

We emphasise, as before, that these several results have to be modifi ed when 

D(T) ≠ H.

Defi nition 4.51. Let H be a Hilbert space and T ∈ B(H).

(i) If T = T* then T is self-adjoint or Hermitian.

(ii) If T* = T−1 then T is unitary.

(iii) If TT* = T*T then T is normal.

(iv) If T is unitary and R, S ∈ B(H) are such that

R = TST−1

then R and S are unitarily equivalent with respect to T.

(v) T is self-adjoint if and only if

(Tf, g) = ( f, Tg) for all f, g ∈ H

(vi) T is unitary if and only if T is invertible and

(Tf, g) = (f, T−1g) for all f, g ∈ H.
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Remarks: (i) It is instructive to examine the compatibility of (v) and (vi) above 

with the various results mentioned above in this section.

(ii) If T is self-adjoint then (Tf, f ) is real.

Theorem 4.52. Let H be a Hilbert space with structure (  ,  ). If T ∈ B(H) is self-

adjoint then T, the norm of T, can be determined by

T T f f m M
f

= = { }
=

sup , max ,
1

where

M := sup{(Tf, f ) : f = 1}

m := inf{(Tf, f ) : f = 1}

and f ∈ H.

The numbers M and m are, respectively, the upper and lower bounds of the 

operator T.

A means of comparing the “size” of various operators on H is afforded by the 

following.

Defi nition 4.53. Let H be a Hilbert space with structure (  ,  ) and T ∈ B(H). If the 

operator T is self-adjoint then it is said to be non-negative, and we write T � 0, 

if and only if for all f ∈ H we have (Tf, f ) � 0. When the inequality is strict then 

T is said to be positive.

It now follows that

(a) T is non-negative if m � 0.

(b) Operators T1,T2 are such that T1 ≤ T2 if and only if (T2 − T1) � 0.

An important class of bounded operators are the so-called fi nite dimen-

sional operators T which map H onto R(T) where dim R(T) < ∞. A fi nite dimen-

sional operator, or an operator of fi nite rank as it is sometimes called, can be 

expressed in the form

 Th a h f gk k

k

N

=
=
∑ ( ), k

1

 (4.14)

where dim R(T) = N. The real positive numbers ak are ordered in the form 

a1 � a2 �  .  .  .  � aN > 0 and the sets of vectors { fk}, {gk} ⊂ H are orthonormal.

In the general theory of operators a signifi cant role is played by the so-called 

compact operators whose properties are similar to those of fi nite dimensional 

operators.



Defi nition 4.54. An operator T ∈ B(H) is compact if it is the limit of a uniformly 

convergent sequence {Tk} of operators of fi nite rank, that is, T − Tk → 0 as 

k → ∞.

An equivalent defi nition is:

An operator T ∈ B(H) is compact if for every bounded sequence { fk}
∞
k=1 ⊂ H 

the sequence {Tfk}
∞
k=1 has a strongly convergent subsequence.

Example 4.55. (i) If T1 is a compact operator and T2 is a bounded operator on 

the same Hilbert space H then T1T2 and T2T1 are also compact operators.

(ii) If Tk,lk, k = 1, 2,  .  .  .  , N are, respectively, compact linear operators and 

complex-valued coeffi cients then

T Tk k

k

N

=
=
∑λ

1

is a compact operator.

(iii) Operators T, T*, TT*, T*T are simultaneously compact or non-

compact.

Compact operators have a relatively simple structure similar to that of opera-

tors of fi nite rank. Specifi cally, a compact operator T can be written in the form

 Th a h f gk k k

k

=
=

∞

∑ ( ),
1

 (4.15)

where {ak} is a non-increasing sequence of real positive numbers which tends to 

zero, that is ak → 0 as k → ∞. The numbers ak are called the singular numbers 

of the operator T in (4.15). The sets {fk}, {gk} are orthonormal.

If in (4.15) we have ak = 0 for suffi ciently large k � N then T is a fi nite 

dimensional operator as in (4.14); that is, T has a decomposition of the form 

(4.14).

If T is self-adjoint then the sets { fk} and {gk} can be chosen to satisfy, for all 

k, either fk = gk or fk = −gk.

An operator T ∈ B(H) can also be usefully decomposed in the form

 T = TR + iTI (4.16)

where

T T T TR R: ( )= + =
1

2
* *

T
i

T T TI I: ( )= − =
1

2
* *

This decomposition is similar to the decomposition of complex numbers.
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One of the simplest self-adjoint operators is the projection operator which 

is defi ned in the following way.

Let H be a Hilbert space with structure (  ,  ) and let M be a subspace. The 

projection theorem (Theorem 4.35) states that every element f ∈ H = M � M�

can be expressed uniquely in the form

 f = g + h, g ∈ M, h ∈ M� (4.17)

The uniqueness of this representation allows us to introduce a linear operator 

P : H → H defi ned by

 Pf = g ∈ M, f ∈ H (4.18)

Such an operator is called a projection operator or projector as it provides a 

projection of H onto M.

We notice that (4.17) can also be written in the form

 f = g + h = Pf + (I − Pf ) (4.19)

which indicates that

(I − P) : H → M−

is a projection of H onto M−.

When it is important to emphasise the subspace involved in a decomposition 

of the form (4.19) we will write P = P (M).

Projection operators play a very important part in much of the analysis that 

is to follow. For convenience we collect together here their main properties. The 

proof of these various properties is a standard part of courses on the general 

theory of linear operators on Hilbert spaces; the Commentary indicates a number 

of sources for the interested reader, in particular [1], [4].

Theorem 4.56. Let H be a Hilbert space with structure (  ,  ).

(a) Abounded linear operator P : H → H is a projection on H if and only if

P = P2 = P*

An operator P such that P = P2 is called idempotent.

(b) Let M ⊂ H be a subspace (closed linear manifold). The projection P : H →
M has the properties

(i) (Pf, f ) = Pf
2

(ii) P � 0

(iii) P ≤ 1, P = 1 if R(P) ≠ q
(iv) (I − P ) =: P� : H → M� is a projection.



Theorem 4.57. Let H be a Hilbert space with structure (  ,  ) and let Mk ⊂ H, 

k = 1, 2 be subspaces in H. The projections

P (Mk): H → Mk, k = 1, 2

have the following properties.

(i) The operator P := P(M1)P(M2) is a projection on H if and only if

P(M1)P(M2) = P(M2)P(M1)

When this is the case then

P : H → R(P) = M1 � M2

(ii) M1,M2 are orthogonal if and only if

P(M1)P(M2) = 0

in which case P(M1) and P(M2) are said to be mutually orthogonal 

projections.

(iii) The operator P := P(M1) + P(M2) is a projection on H if and only if M1 

and M2 are orthogonal. In this case

P : H → R(P) = M1 � M2

that is P(M1) + P(M2) = P(M1 � M2).

(iv) The projections P(M1), P(M2) are partially ordered in the sense that 

the following statements are equivalent.

(a) P(M1)P(M2) = P (M2)P (M1) = P (M1)

(b) M1 � M2

(c) N(P(M2)) � N(P(M1)) where N(P(Mk)) denotes the null space of P(Mk), 

k = 1, 2

(d) P(M1)f ≤ P (M2)f for all f ∈ H

(e) P(M1) ≤ P(M2).

(v) A projection P(M2) is a part of a projection P(M1) if and only if 

M2 ⊂ M1.

(vi) The difference P(M1) − P(M2) of two projections P(M1), P(M2) is a pro-

jection if and only if P(M2) is a part of P(M1). When this is the case then

P := (P(M1) − P(M2)) : H − R(P) = M1 � M2
�

that is (P(M1) − P(M2)) = P(M1 � M2
�).

(vii) A series of mutually orthogonal projections P(Mk), k = 1, 2,  .  .  .  on

H, denoted by Σ P Mk
k

( )  is strongly convergent to the projection P(M) where 

M M
k

k=⊕ .
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(viii) A linear combination of projections P(Mk), k = 1, 2,  .  .  .  , N on H, 

denoted by P P Mk
N

k k: ( ),= =Σ 1λ  where lk are real-valued coeffi cients, is self-

adjoint on H.

(ix) Let {P(Mk)}∞k=1 denote a monotonically increasing sequence of projec-

tions P(Mk), k = 1, 2,  .  .  .  on H. Then

(a) {P(Mk)}x
k=1 is strongly convergenttoaprojection P on H; that is 

P (Mk) f → Pf as k → ∞ for all f ∈ H

(b) P H R P R P Mk

k

: ( ) ( ( ))→ =
=

∞

1

∪

(c) N P N P Mk

k

( ) ( ( )).=
=

∞

1

∩

We remark that there exists an intimate connection between general self-

adjoint operators and projections. This we will discuss later under the heading 

of spectral theory. As a consequence we will be able to establish the various 

decomposition results and expansion theorems we have already mentioned.

In subsequent chapters we will often encounter the following particular type 

of compact operator.

Defi nition 4.58. Let H be a Hilbert space with structure (  ,  ). An operator T ∈ 

B(H) is called a Hilbert Schmidt operator if

T Tek

k

2 2

1

= <∞
=

∞

∑

where {ek}
∞
k=1 is an orthonormal basis for H.

If T is a compact operator then it is a compact Hilbert–Schmidt operator 

if its singular numbers ak(T) tend to zero suffi ciently rapidly so that the series  

Σk ka T=
∞

1
2( ) is convergent; that is Σk ka T=

∞ <∞1
2( ) .

It is clear from this defi nition that any fi nite-dimensional operator is a compact 

Hilbert–Schmidt operator.

Some of the best known classes of Hilbert–Schmidt operators are integral 

operators. It will be convenient, for later use, to introduce these operators as 

operators on weighted L2-spaces.

Defi nition 4.59. The Hilbert space of functions which are square integrable on 

the whole space RN with respect to some weight function r is denoted L2,r(RN). 

Here r is a real-valued positive function in each open, bounded region Ω ⊂ RN. 

The structure (  ,  )r, ⋅r is defi ned by

( , ) : ( ) ( ) ( ) , , ( )f f f x f x x dx f f CN
N

1 2 1 2 1 2 0ρ ρ= ∈∫ ∞
R

R

 f f x x dx f CN
N

ρ ρ2 2
0: ( ) ( ) , ( )= ∈∫ ∞

R
R



The space L2,r(RN) is defi ned as the completion of C∞
0(RN) with respect to this 

structure.

The space L2,r(Ω), Ω ⊂ RN is defi ned similarly.

We defi ne an integral operator, T, on L2,r(Ω) according to

 ( )( ) : ( ) ( ) ( )Tf y K x y f x x dx= ∫ , ρ
Ω

 (4.20)

where K is called the kernel of T. The kernel is square integrable on Ω × Ω in 

the sense

 K x y x y dxdy k( ) ( ) ( ),
2

0
2ρ ρ

ΩΩ∫∫ = <∞  (4.21)

The operator T defi ned in (4.20) is clearly linear and bounded. Further, its 

norm can be estimated according to T ≤ k0. Moreover, it can be shown that T 

in (4.20) is a compact Hilbert–Schmidt operator.

The operator T* which is adjoint to T in (4.20) is defi ned by

 ( )( ) : ( ) ( ) ( )T f x K x y f y y dy* ,= ∫ ρ
Ω

 (4.22)

The integral operator T in (4.20) is self-adjoint if and only if the kernel is sym-

metric in the sense that K(x, y) = K̄(y, x).

An integral operator is fi nite dimensional if and only if its kernel K(x, y) can 

be expressed in the form

K x y g x f yk k

k

N

( ) ( ) ( ), =
=
∑

1

where fk, gk, k = 1, 2,  .  .  .  , N are square integrable functions. Kernels of this type 

are called degenerate. For an integral operator T with a degenerate kernel K it 

can be shown that dim(R(T )) ≤ N.

4.5 Unbounded Linear Operators on Hilbert Spaces

Not all linear operators are bounded. However, it turns out that practically all the 

operators we encounter in applications are so-called closed operators and they 

retain much of the fl avour of the continuity property displayed by bounded linear 

operators.

Defi nition 4.60. Let X1, X2 be normed linear spaces and T : X1 → X2 a linear opera-

tor with domain D(T ) ⊂ X1. If

(i) xk ∈ D(T) for all k

(ii) xk → x in X1

(iii) Txk → y in X2

when taken together, imply x ∈ D(T) and Tx = y, then T is said to be a closed 

operator.
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We would emphasise that in Defi nition 4.60 we require the simultaneous 

convergence of the sequences {xk}
∞
k=1 and {Txk}

∞
k=1.

An alternative defi nition of a closed operator can be profi tably given in terms 

of the graph of an operator.

Defi nition 4.61. Let X1, X2 be normed linear spaces with norms ⋅1, ⋅2 respec-

tively. A linear operator

T : D(T) � X1→ X2

is a closed linear operator if and only if its graph,

G(T) := {(x1, x2) ∈ X1 × X2 : x1 ∈ D(T ), x2 = Tx1}

is a closed subset of X1 × X2. We recall that X1 × X2 is a normed linear space 

where the structure is defi ned in the usual component-wise manner. For example 

the norm is

( , ) :x x x xX X2 1 1 2 21 2× = +

In applications it frequently turns out that a closed operator is in fact a 

bounded operator. To establish whether or not this is the case we need some if 

not all of the following standard results (see [5], [6], [9] and the Commentary).

Theorem 4.62. (Uniform boundedness theorem)

Let I be an index set and let

(i) X, Y be Banach spaces

(ii) {Ta}a∈I be such that

sup
α

α
∈
{ }<∞ ∈

I
YT x x Xfor all

Then sup{ .
α

α
∈

<∞
I

T  That is if {Tax}a∈I is a bounded set in Y for all x ∈ X then {Ta} 

is bounded in B(X, Y). We recall that B(X, Y) denotes the class of all bounded 

linear operators with action X → Y.

Theorem 4.63. (Bounded inverse theorem) Let X, Y be Banach spaces and let 

T ∈ B(X, Y) be 1-1 and onto, then T−1 exists as a bounded operator.

Theorem 4.64. (Closed graph theorem) Let X, Y be Banach spaces and 

T : X ⊃ D(T) → Y be a closed linear operator. If D(T) is a closed set then T is 

bounded.

Example 4.65. We shall show that the process of differentiation can be realised 

as a closed linear operator on the space of continuous functions. This will be in 



a form which will be rather more general than we will require in this monograph 

as we will be principally concerned with working in Hilbert spaces. Nevertheless, 

this example will serve as a prototype.

Let X = Y = C[a, b], −∞ < a < b < ∞ be endowed with the usual supremum 

norm which for convenience and brevity we sometimes denote by ⋅∞. Defi ne, 

for example,

T : X ⊃ D(T ) → Y

( )( )
( )

( ) ( ) [ ]Tg x
dg x

dx
g x g D T x a b= ≡ ′ ∈ ∈, , ,

D(T ) := {g ∈ X : g′ ∈ X, g(a)= 0}

Let {gk} ⊂ D(T) be a sequence with the properties that as k → ∞ we have 

gk → g and Tgk → h with respect to ⋅∞. We can establish that T is closed if 

we can show that g ∈ D(T) and that Tg = h. To this end consider

 f x h t dt x a b
a

x

( ) ( ) , ,= ∈[ ]∫  (4.23)

The convergence Tgk → h with respect to ⋅∞ implies that the convergence is 

uniform with respect to x. Since Tgk ∈ C[a, b] for all k it follows that h ∈ C[a, b]. 

Consequently, by the Fundamental Theorem of Calculus we deduce that f in (4.23) 

is continuous and differentiable with f ′(x)= h(x) for all x ∈ [a, b]. Furthermore, 

the properties of the Riemann integral in [9] indicate that f(a)=0. Collecting these 

results we can conclude that f ∈ D(T).

Since gk ∈ D(T), the Fundamental Theorem of Calculus implies

g x g t dtk k
a

x

( ) ( )= ′∫

and we have

g x f x g t h t dt

g h b a

k
a

x

k

k

( ) ( ) ( ( ) ( ))

( )

− = ′ −

≤ ′ − −
∫

∞

Now the right-hand side of this expression tends to zero by virtue of the conver-

gence Tgk → h and it follows that gk → f ∈ D(T). Furthermore, we will also have 

that g′ = f ′ = h. Hence T, as defi ned, is a closed operator.

If an operator, T , is not closed then it is sometimes possible to associate with 

T an operator that is closed. This parallels the process of associating with a set 

M in a metric space a closed set  M̄ called the closure of M.

 4.5 Unbounded Linear Operators on Hilbert Spaces 107



108 4 Hilbert Spaces

Defi nition 4.66. A linear operator T is closable if whenever

(i) fn ∈ D(T)

(ii) fn → q as n → ∞

(iii) Tfn tends to a limit as n → ∞ then Tfn → q as n → ∞.

If T is a closable operator defi ned on a normed linear space X then we may 

defi ne an extension of T (see the comments following Defi nition 4.37), denoted 

T̄, and called the closure of T̄ , in the following manner.

(i) Defi ne

D( T̄) := { f ∈ X : ∃ { fk} ⊂ D(T) with fk → f and {Tfk} a Cauchy sequence}

Equivalently we defi ne D( T̄) to be the closure of D(T ) with respect to the 

graph norm

f f T fG X X

2 2 2= +

(ii) For f ∈ D( T̄) set

T f T f
k

k=
→∞
lim

where { fk} is defi ned as in (i).

There are many connections between closed, bounded and inverse operators. 

The following theorem draws together a number of results which will be used 

frequently in later sections. Proofs of these results can be found in the texts cited 

in the Commentary; we would particularly mention [5], [8], [9], [6].

Theorem 4.67. Let X be a Banach space. An operator T ⊂ B(X) is closed if and 

only if D(T) is closed.

Theorem 4.68. Let

(i) X1, X2 be normed linear spaces

(ii) T := X1 ⊃ D(T) → X2 be a linear, one-to-one operator. Then T is closed 

if and only if the operator

T−1 := X2 ⊃ R(T) → X1

is closed.

Theorem 4.69. Let

(i) X1, X2 be normed linear spaces

(ii) T := X1 ⊃ D(T) → X2 be a linear operator.

(a) If there exists a constant m � 0 such that



Tf m f f D T2 1� , ( )∈

then T is a one-to-one operator. Furthermore, T is closed if and only if R(T) is 

closed in X2.

(b) Let T be one-to-one and closed. Then T ∈ B(X1, X2) if and only if R(T) 

is dense in X2 and there exists a constant m > 0 such that

Tf m f f D T2 1� , ( )∈

(c) If T is closed then

N(T) := { f ∈ D(T): Tf = q}

is a closed subset of X1.

Finally in this section we highlight a number of important results that we will 

have to recognise when dealing with unbounded operators.

We have seen that two operators, T1,T2 are said to be equal, denoted T1 = T2, 

if D(T1)= D(T2) and T1 f = T2 f for all f ∈ D(T1) = D(T2).

The restriction of an operator T : X ⊃ D(T) → Y to a subset M ⊂ D(T) is 

denoted by TM and is the operator defi ned by

 T for allM MM Y T f Tf f M: ,→ = ∈  (4.24)

An extension of T to a set S ⊃ D(T) is an operator T̃ : S → Y such that

 ɶT TD T( )=  (4.25)

This last defi nition indicates that T̃f  = Tf for all f ∈ D(T). Hence T is a restric-

tion of T̃ to D(T).

In this monograph we say that T is an operator on a Hilbert space H if its 

domain, D(T), is all of H. We say that T is an operator in H if D(T) is not neces-

sarily all of H.

Furthermore, if T1 and T2 are two linear operators then we shall use the 

notation

 T1 ⊂ T2 (4.26)

to denote that T1(T2) is a restriction (extension) of T2(T1).

A particularly useful feature of a bounded linear operator T on a Hilbert space 

H is that it is associated with a bounded linear operator T*, the adjoint of T, 

defi ned according to the equation (see Theorem 4.49)

(Tf, g) = (f, T*g) for all f, g ∈ H
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where (  ,  ) denotes the inner product on H. The proof of the existence of such an 

adjoint operator makes use of the Riesz representation theorem (Theorem 4.41) 

and the proof breaks down when T is either unbounded or not defi ned on all of 

H. However,even when the proof fails it may happen that for some element g ∈
H there is an element g* ∈ H such that

 (Tf, g) = (f, g*) for all f ∈ D(T) (4.27)

If for some fi xed g ∈ H there is only one g* ∈ H such that (3.30) holds then we 

can write

 g* = T*g (4.28)

and consider the operator T* as being well defi ned for at least this g ∈ H.

However, it remains to determine the conditions under which (4.27) yields a 

unique g* ∈ H. Results in this direction are as follows.

Theorem 4.70. Let

(i) T be a linear operator on a Hilbert space H

(ii) there exist elements g, g* ∈ H such that (Tf, g) = (f, g*) for all f ∈ D(T)

Then g* is uniquely determined by g and (4.27) if and only if D(T) is dense in H.

Theorem 4.71. Let

(i) T be a linear operator in a Hilbert space H with D̄(T ) = H

(ii) D(T*) = {g ∈ H: there exists g* ∈ H satisfying (4.27)}. Then D(T*) is a 

subspace of H and the operator T* with domain D(T*) and defi ned by

T*g = g* for all g ∈ D(T)

is a linear operator.

These two results lead naturally to the following.

Defi nition 4.72. Let T be a linear operator in a Hilbert space with D(T) = H. The 

operator T* with domain D(T*) defi ned as in Theorem 4.71 is called the adjoint

of T.

When T is a bounded operator then this defi nition of an adjoint operator 

coincides with that given in Theorem 4.49. However, we emphasise that in the 

general case when the operator may be unbounded then more attention must be 

given to the rôle and importance of domains of operators. The following results 

illustrate this aspect.



Theorem 4.73. Let T,S be linear operators in a Hilbert space H.

(i) If T ⊂ S and̄ D(T) = H (which, incidentally, implies that̄ D(S) = H) then

T* ⊃ S*.

(ii) If D̄(T ) = D(T*) = H then T ⊂ T**.

(iii) If T is one-to-one and such that D̄(T ) = D(̄T −1) = H then T* is one-

to-one and (T*)−1 = (T−1)*

The following types of operators are important in applications.

Defi nition 4.74. Let T be a linear operator in a Hilbert space H and assume 

D( T̄) = H.

(i) If T = T* then T is self-adjoint (in H).

(ii) If T ⊂ T* then T is symmetric (in H).

Some properties of these operators are indicated in the following.

Theorem 4.75. Let T be a linear operator in a Hilbert space H.

(i) If T is one-to-one and self-adjoint then D̄(T−1) = H and T−1 is

self-adjoint.

(ii) If T is defi ned everywhere on H then T * is bounded.

(iii) If T is self-adjoint and defi ned everywhere on H then T is bounded.

(iv) If D̄(T ) = H then T* is closed.

(v) Every self-adjoint operator is closed.

(vi) If T is closable then ( T̄ )* = T* and T̄ = T**.

(vii) If T is symmetric then it is closable.

For proofs of these various results see the references cited in the Commentary 

and in particular [8], [9].

Self-adjoint operators play a particularly important rôle in the following chap-

ters. Here we give an indication how to decide whether or not a given operator 

has this property. First we need the following notion.

Defi nition 4.76. Let T be a linear operator in a Hilbert space H with D̄(T) = H.

The operator T is said to be essentially self-adjoint if T̄ = T*.

We notice that if T is essentially self-adjoint then necessarily it must be closed 

since T* is a closed operator (Theorem 4.75(iv)). Furthermore, from Theorem 

4.75(vi) we conclude that T* = ( T̄ )*. Therefore T is essentially self-adjoint if and 

only if T̄ = ( T̄ )*, that is, if and only if T̄ is self-adjoint.

From Defi nition 4.74 we see that if T is symmetric then it is a restriction of 

its adjoint T*. However, we would emphasise that a symmetric operator need not 

be self-adjoint. It may well be that a symmetric operator might have a self-adjoint 

extension. Nevertheless we must always remember that the extension is not

unique; the extension process is usually followed in order to preserve, or even to 
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provide, such properties as for example linearity, boundedness, self-adjointness 

etc. We shall be particularly interested in the case when a symmetric operator 

has exactly one self-adjoint extension. In this connection we have the following 

results [8].

Theorem 4.77. Let T be a linear, symmetric operator in a Hilbert space H. 

Then

(i) T is closable

(ii) R( T̄ ± I ) = R̄(T ± I ) where I is the identity on H.

Theorem 4.78. A symmetric operator T : H→H is self-adjoint if and only if

R(T + iI ) = H = R(T − iI )

Finally, in this section we give two examples of operators that are unbounded. 

These are the operators of multiplication by the independent variable and the 

differentiation operators. These operators frequently occur in mathematical 

physics and perhaps the quickest way to see this is to recall that when integral 

transform methods are used differentiation can be replaced by multiplication by 

the independent variable (see Example 3.43).

Example 4.79. Let H := L2(−∞, ∞) = L2(R) and let M denote the “rule” of multi-

plying by the independent variable, that is, (Mf)(x) = xf(x). Consider the operator 

T defi ned by

T : H ⊃ D(T) → H

Tf = Mf, f ∈ D(T)

D(T) := { f ∈ H : Mf ∈ H}

Let

f x
n x n

n( )= ≤ < +{1 1

0

,

, elsewhere

Then clearly fn = 1, where ⋅ denotes the usual norm in L2(R). Furthermore 

we have

Tf xf x dx x dx nn
n

n2 2 2
1

2= = >∫ ∫
+

( )
R

The two results imply that

Tf

f
n

n

n

>

Consequently, since we can choose n as large as we please, it follows that T 

is unbounded on H.



Example 4.80. Let H = L2(R) and consider the operator T defi ned by

T :H ⊃ D(T) → H

Tf i
df

dx
if f D T= = ′ ∈, ( )

D(T) := {f ∈ H  : if ′ ∈ H}

Further, let T be an extension of the operator T0 defi ned to be

T0 = TS

where S = D(T) � L2[0, 1] and L2[0, 1] is a subspace of L2(R). Consequently, if 

T0 is unbounded then so is T . To show that T0 is indeed unbounded consider the 

sequence, { fn}, defi ned by

f x

nx x
n

n
x

n( )=
− ≤ ≤

< ≤










1 0
1

0
1

1

,

,

The derivative of this function is

′ =
− < <

< <










f x

n x
n

n
x

n( )

,

,

0
1

0
1

1

Straightforward calculation yields

f f x dx
n

n n
2 2

0

1 1

3
= =∫ ( )

and

T f f x dx nn n0
2 2

0

1

= ′ =∫ ( )

Hence

T f

f
n n

n

n

0
3= >

It follows that T0, and hence T, is unbounded on H.

We shall return to these examples in later chapters.
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5

Two Important Techniques

5.1 Introduction

In this chapter we outline two analytical techniques which are frequently used 

when discussing scattering problems. The fi rst is centred on spectral theory and 

how it contributes to the defi nition and constructive solution of scattering prob-

lems. The second uses results from the theory of semigroups to settle questions 

of existence and uniqueness of solutions to scattering problems.

As in previous chapters the majority of results are simply stated. Proofs are 

included when it is felt that they might be particularly useful in applications. 

Full details can be found in the References cited either in the text or in the 

Commentary.

5.2 Spectral Decomposition Methods

Spectral theory provides mechanisms for decomposing quite complicated prob-

lems into a number of simpler problems with properties which are more manage-

able. We shall illustrate how this can be done in the following sections. We 

consider a typical, abstract problem fi rst when the underlying space is fi nite 

dimensional and then when the space is infi nite dimensional. In both cases we 

will work mainly in a Hilbert space setting and assume that the operator which 

characterises the problem is self-adjoint. The discussion of these two cases leads 

quite naturally to a statement of the celebrated spectral theorem. We shall prove 

this theorem for bounded, self-adjoint operators. The proof for more general 

operators is discussed in the Commentary.

5.2.1 Basic Concepts

In this chapter we will be concerned with abstract equations having the typical 

form
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 (A − lI)u = f (5.1)

To be more precise let X be a complex, normed linear space and let

A : X � D(A) → X

be a linear operator. In (5.1) I is the identity operator on X and l ∈ C. We assume 

that f ∈ X is a given data element. The aim is to solve (5.1) for the unknown 

quantity u ∈ X.

Solutions of (5.1) can be written in the form

 u = (A − lI)−1f =: Rl f (5.2)

where Rl ≡ Rl(A) = (A − lI)−1 is known as the resolvent (operator) of A. Quite 

how useful the representation (5.2) may be depends crucially on the nature of the 

resolvent, Rl. This observation leads naturally to the following notions.

Defi nition 5.1. A regular value of A is a complex number l such that

(i) Rl(A) exists

(ii) Rl(A) is bounded

(iii) Rl(A) is defi ned on a dense subset of X.

The set of all regular values of A, denoted r(A), is called the resolvent set

of A.

Defi nition 5.2. The spectrum of A, denoted s(A), is the complement in the 

complex plane of the resolvent set r(A), that is

s(A) = C\r(A)

The spectrum of A is partitioned by the following disjoint sets.

(i) The point spectrum of A, denoted sp(A), consists of all those l ∈ C such 

that Rl(A) does not exist.

(ii) The continuous spectrum of A, denoted sc(A), consists of all those 

l ∈ C such that Rl(A) exists as an unbounded operator and is defi ned on a 

dense subset of X.

(iii) The residual spectrum of A, denoted sr(A) consists of all these l ∈ C

such that Rl(A) exists as either a bounded or an unbounded operator but in either 

case is not defi ned on a dense subset of X.

The spectrum of A is the union of these three disjoint sets

s(A) = sp(A) � sc(A) � sR(A)

and any l ∈s(A) is referred to as a spectral value of A.

Before continuing we recall the following properties of linear operators on 

Banach spaces. The proofs of these various results can be found in the standard 

texts cited in the Commentary.
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Theorem 5.3. Let X, Y be Banach spaces and let A : X � D(A) → R(A) � Y 

denote a linear operator. Then

(i) The inverse operator A−1 : R(A) → D(A) exists if and only if Au = qY 

implies u = qX where qX,qY are the zero elements in X and Y respectively.

(ii) If A−1 exists then it is a linear operator.

(iii) If dim D(A) = n < ∞ and A−1 exists then dim R(A) = dim D(A).

Theorem 5.4. If a Banach space X is fi nite dimensional then every linear 

operator on X is bounded.

These last two results combine to indicate that in the fi nite dimensional 

case

sc(A) = sr(A) = f

We thus see that the spectrum of a linear operator on a fi nite dimensional 

space consists only of the point spectrum. In this case the operator is said to have 

a pure point spectrum.

The next few results are particularly useful in applications.

Theorem 5.5. The resolvent set, r(A), of a bounded linear operator on a Banach 

space X is an open set. Hence, the spectrum, sc(A), is a closed set.

Theorem 5.6. Let X be a Banach space and A a bounded linear operator on X. 

For all l0 ∈ r(A) the resolvent operator, Rl(A), has the representation

 R A R A
k k

k

λ λλ λ( ) ( )= −( ) +

=

∞

∑ 0
1

0
0

 (5.3)

The series is absolutely convergent for every l in the open disc given by

λ λ λ− < −
0

1

0
R A( )

in the complex plane. This disc is a subset of r(A).

Theorem 5.7. The spectrum, s(A), of a bounded linear operator A : X → X on 

a Banach space X is compact and lies in the disc given by l ≤ A. Hence 

the resolvent set of A, r(A), is not empty.

Defi nition 5.8. Let X be a Banach space and A : X � D(A) → X a linear operator. 

If (A − lI )u = q for some non-trivial u ∈ D(A) then u is an eigenvector of A 

with associated eigenvalue l.

For the remainder of this chapter we confi ne attention to linear operators on 

a complex separable Hilbert space H.
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The set Ml consisting of the zero element in H and all eigenvectors of A cor-

responding to the eigenvalue l is called the eigenspace of A corresponding to 

the eigenvalue l.

The eigenspace Ml is, in fact, a subspace, that is a closed linear manifold, of 

H. That it is a linear manifold is clear since for any u1, u2 ∈ Ml and a. b ∈ C we 

have, by the linearity of A,

A(au1 + bu2) = l(au1 + bu2)

To show that Ml is a closed linear manifold let {uk}⊂ Ml be a sequence such that 

uk → u as k → ∞. Now consider two cases.

(i) A is a bounded operator.

A is bounded implies that A is continuous. Hence,

Au = A lim uk = limAuk = limluk = lu

and thus u ∈ Ml and we conclude that Ml is closed.

(ii) A is an unbounded, closed operator.

In this case, since uk → u as k → ∞ there will exist a w such that

w := lim Auk = lim luk = lu

However, A is a closed operator, which implies that u ∈ D(A) and Au = w. Hence 

u ∈ Ml and we can conclude that Ml is closed. Hence Ml is a subspace of H.

In this monograph we will be largely concerned with linear operators on a 

Hilbert space which are either self-adjoint or unitary. Some of the more important 

properties of such operators are contained in the following.

Theorem 5.9. The eigenvalues of a self-adjoint operator are real.

Proof. Let A : H → H be a bounded, self-adjoint operator and let l ∈ sp(A) with 

associated eigenvector u, then

l(u, u) = (lu, u) = (Au, u) = (u, Au) = l
–
(u, u)

which because u is non-trivial, implies l = l
–
 and hence l ∈ R and so 

sp(A) ⊂ R. �

Theorem 5.10. The eigenvalues of a unitary operator are complex numbers of 

modulus one.

Proof. Let U : H → H be a bounded, unitary operator and let m ∈ sp(U) with asso-

ciated eigenvector w. Then

(w, w) = (Uw, Uw) = (mw, mw) = mm–(w, w)
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which, since w is non-trivial, implies m
2 = 1. �

Theorem 5.11. The eigenvectors of either a self-adjoint or a unitary operator 

corresponding to different eigenvalues are orthogonal.

Proof. Let A : H → H be a self-adjoint operator and let l1, l2 ∈ sp(A), l1 ≠ l2, have 

associated eigenvector u1, u2 respectively. Then

(l1 − l2)(u1, u2) = (l1u1, u2) − (u1, l2u2)

= (Au1, u2) − (u1, Au2)

= (Au1, u2) − (Au1, u2) = 0

which implies (u1, u2) = 0 because l1 ≠ l2.

Let U : H → H be a unitary operator and let m1, m2 ∈ sp(A), m1 ≠ m2 have associ-

ated eigenvectors w1, w2 respectively. Then

m1m2(w1, w2) = (m1w1, m2w2) = (Uw1, Uw2) = (w1, w2)

the last equality following from the defi ning property of a unitary operator (see 

Defi nition 4.51). Hence we conclude that (w1, w2) = 0 since m1m
–

2 ≠ 1. �

In later chapters we will have occasion to make use of a result of the following 

form.

Theorem 5.12. Let H be a complex, separable Hilbert space and let A, B : H →
H be linear operators. If B is bounded and B−1 exists then A and BAB−1 have 

the same eigenvalues.

Proof. If l is an eigenvalue of A then there exists a non-trivial j ∈ H such that 

Aj = lj.

If B−1 exists then B must be a 1-1 onto operator (Theorem 4.47). Consequently, 

Bj cannot be zero for all non-trivial j. Hence

BAB−1Bj = BAj = Blj = lBj

which implies that l is an eigenvalue of the operator BAB−1 with associated 

eigenvector Bj.

Conversely, let m be an eigenvalue of BAB−1 then there exists a non-trivial 

y ∈ H such that BAB−1y = my. Consequently

B−1BAB−1y = mB−1y

which implies that m is an eigenvalue of BAB−1 with associated eigenvector 

B−1y. �

For self-adjoint and unitary operators on a complex, separable Hilbert space 

H eigenvectors corresponding to different eigenvalues are orthogonal (Theorem 
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5.11). Consequently, the eigenspace corresponding to different eigenvalues are 

orthogonal subspaces of H. This in turn implies that the operators act on the 

direct sum of the eigenspaces like a diagonal matrix. To see this recall that if l 

is an eigenvalue of the linear operator A : H → H then the associated eigenspace 

Ml is defi ned as

Ml = {q ≠ y ∈ D(A) : Ay = ly}

More fully, let A : H → H be either a self-adjoint or a unitary operator and let 

l1, l2,  .  .  .  ,lk,  .  .  .  denote its different eigenvalues. For each l we will write Mk to 

denote the eigenspace corresponding to lk. An orthonormal basis for Mk will be 

denoted by {jk
s}s.

We remark that whilst the number of eigenvalues may be either fi nite or infi -

nite nevertheless they are always countable. If this were not so then there would 

be an uncountable number of different eigenvalues with an associated uncount-

able number of orthonormal basis vectors. This is impossible in a separable 

Hilbert space.

We also remark that the dimension of Mk, that is the number of basis elements 

jk
s for Mk, may be either fi nite or infi nite and, furthermore, may be different for 

different values of k.

Since the eigenvectors for different eigenvalues of A are orthogonal the set of 

all eigenvectors jk
s  for different k is orthonormal, that is

(jk
r,  j

m
s ) = drsdkm

where (⋅,  ⋅) denotes the inner product in H and 

δrs

r s

r s
=

=
≠{1

0

,

,

is the Kronecker delta.

To proceed we need the following concept.

Defi nition 5.13. Let E be a subset of a Hilbert space H and let D denote the set 

of all fi nite linear combinations of elements of E. The closure of D (in the topol-

ogy of H) generates a subspace G ⊂ H. The subspace G is said to be spanned 

by E.

Consider the subspace

 H Mp
k

k:=⊕  (5.4)

which consists of all linear combinations of the form Σk s s
k

s
ka, .ϕ  We shall refer to 

Hp as the point subspace of H. It is the subspace spanned by all the eigenvectors 

of A. Evidently the set of vectors jk
s, k, s = 1, 2,  .  .  .  is an orthonormal basis for 

Hp. Thus we have
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Ajk
s = lkj

k
s

and

(jm
r ,  Ajk

s) = lkdmkdrs

Thus on Hp the operator A acts like a diagonal matrix. The off-diagonal terms are 

all zero whilst the diagonal terms are eigenvalues of A.

Summarising the above we see that for any y ∈ Hp there are scalars ak
s such 

that

 ψ ϕ=∑as
k

s
k

k s,

 (5.5)

 A ak s
k

s
k

k s

ψ λ ϕ=∑
,

 (5.6)

The results (5.5), (5.6) provide an example of a spectral representation 

(decomposition) of the operator A.

We notice two things.

(i) The spectral representation(5.5), (5.6) is only valid on Hp. For those opera-

tors that have a spectrum with more components than just eigenvalues (that is 

sc(A) and sR(A) are not necessarily empty) then (5.5), (5.6) are inadequate; more 

terms are required.

(ii) On fi nite dimensional Hilbert spaces the spectrum of a linear operator is 

a pure point spectrum (Theorem 5.4) in which case (5.5), (5.6) provide a perfectly 

adequate spectral representation.

5.2.2 Spectral Decompositions

In the introduction to this chapter we said that one of the main reasons for intro-

ducing and using spectral theory was that it could provide mechanisms for 

decomposing quite complicated operators into simpler, more manageable com-

ponents. In practice a full demonstration of this will involve working through the 

following stages.

• Determine a characterisation of a given physical problem in terms of an opera-

tor A : H → H where H denotes a complex, separable Hilbert space.

• Determine s(A), the spectrum of A, as a subset of the complex plane C.

• Provide a decomposition of C into components intimately connected with the 

nature of s(A).

• Provide a decomposition of H into components, the so-called spectral 

components of H, which are intimately connected with the nature of A and 

s(A).
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• Provide an interpretation of A when it acts on the various spectral components 

of H. This will introduce the so-called (spectral) parts of A which are often 

more manageable than A itself.

• Show how results obtained when dealing with just the parts of A can be com-

bined to provide meaningful and practical results for problems centred on A

itself.

5.2.3 Spectral Decompositions on Finite 

Dimensional Spaces

The only spectral values of operators acting on a fi nite dimensional space are 

eigenvalues.

Theorem 5.14. On a fi nite dimensional, complex Hilbert space the eigenvec-

tors of either a self-adjoint or a unitary operator span the space.

Proof. Let H be a fi nite dimensional, complex Hilbert space and A : H → H a linear 

operator which is either self-adjoint or unitary. Let M denote the subspace spanned 

by the eigenvectors of A and let P : H → M be the projection operator onto M.

Since linear operators on an n-dimensional space (n < ∞) can always be rep-

resented in the form of an n × n matrix the results of matrix algebra indicate that 

a linear operator on a fi nite dimensional complex Hilbert space has at least one 

eigenvalue.

Suppose M ≠ H and consider the operator A(I − P) on M� (which is clearly 

fi nite dimensional). There there must exist a scalar l and a non-trivial element v

∈ M� such that

A(I − P)v = lv

Consequently, since P : H → M implies Pv = q, v ∈ M� (recall the projection 

theorem), we have

Av = APv + A(I − P)v = lv

which implies that v is an eigenvector of A and this contradicts the assumption 

that M is not the whole space. �

This last theorem means that every self-adjoint or unitary operator, A, on an 

n-dimensional space (n < ∞) provides a basis for the space consisting entirely of 

orthonormal eigenvectors of A. Consequently, let

(i) l1, l2,  .  .  .  , lm, denote the different eigenvalues of A

(ii) Mk denote the eigenspace corresponding to the eigenvalue lk, k= 1, 2,  .  .  .  , m

(iii) {jk
s}s be an orthonormal basis for Mk, k = 1, 2,  .  .  .  , m where s = 1, 2,  .  .  .  , 

s(k) and s(k) is a positive integer depending on k.
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Then

Ajk
s = lkj

k
s, s = 1, 2,  .  .  .  , s(k), k = 1, 2,  .  .  .  , m

and we can conclude that {jk
s}s is an orthonormal basis for the whole space. 

The total number of the eigenvectors jk
s is n and m � n. The number of ortho-

normal eigenvectors jk
s associated with the eigenvalue lk, namely s(k), indicates 

the dimension of Mk, denoted dim Mk, and, equivalently, is referred to as the 

multiplicity of lk. We remark that dim Mk may be different for different values 

of k.

A closer look at (5.5) suggests that we defi ne the operator

 Pk : H → Mk, k = 1, 2,  .  .  .  , m (5.7)

 P P a Hk k s
k

s
k

s

s k

: ,
( )

ψ ψ ϕ ψ→ = ∈
=
∑

1

 (5.8)

The representation (5.5) can now be written

 ψ ψ=
=
∑Pk

k

m

1

 (5.9)

which in turn implies the completeness property

 P Ik

k

m

=
∑ =

1

 (5.10)

The operator Pk is a projection onto the eigenspace Mk. Since eigenspaces 

corresponding to different eigenvalues of a self-adjoint or unitary operator are 

orthogonal it follows that the projections Pk, k = 1, 2,  .  .  .  , m are orthogonal in 

the sense that

 PkPm = dkmPk (5.11)

Furthermore, (5.6) can now be written

A a Pk s
k

s
k

k k

k

m

k s

ψ λ ϕ λ ψ= =
=
∑∑

1,

which implies

 A Pk k

k

m

=
=
∑λ

1

 (5.12)
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This is a representation of the operator A in terms of projection operators. It 

illustrates how the spectrum of A can be used to provide a representation of A 

in terms of simpler operators. This use of projections seems quite a natural way 

to obtain the required spectral decompositions.

Unfortunately this particular approach does not generalise to an infi nite 

dimensional space setting. We now describe a slightly different way of obtaining 

a spectral decomposition of A which does generalise to an infi nite dimensional 

space setting where the spectrum of a linear operator can be very much more 

complicated then just a collection of eigenvalues of the type we have so far been 

considering.

We consider a self-adjoint operator on a fi nite dimensional Hilbert space and 

order its distinct eigenvalues in the form

l1 < l2 <  .  .  .  < lm−1 < lm

For each l ∈ R we defi ne an operator-valued function of l by

 E P

I

k

k

r

r r

m

λ

λ λ

λ λ λ

λ λ

=

<

≤ <

≥










=

+∑

0 1

1

1

,

,

,

 (5.13)

which we write, more compactly, in the form

 E Pk

k

λ
λ λ

=
≤
∑  (5.14)

Clearly, El is a projection operator onto the subspace of H spanned by all the 

eigenvectors associated with eigenvalues lk = l.
It follows from (5.13) that

 EmEl = ElEm = Em, m � l (5.15)

When (5.15) holds we write

 Em = El, m = l (5.16)

These various properties indicate that El changes from the zero operator in 

H to the identity operator on H as l runs through the spectrum, that is eigenval-

ues, of A. Furthermore, we notice that El changes by Pk when l reaches lk. With 

this in mind we defi ne

 dEl := El − El−e, e > 0 (5.17)
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It now follows that if e > 0 is small enough to ensure that there is no lk such 

that

l − e < lk < l

then dEl = 0. Furthermore, if l = lk then

 dEl = dElk
 = Pk (5.18)

We are now in the position to indicate a particularly important useful repre-

sentation of self-adjoint operators.

First, we recall the defi nition of the Riemann–Stieljes integral of a function g 

with respect to a function f, namely

 g x df x g x f x f x
n

j j j

j

n

a

b

( ) ( ) lim ( ) ( ) ( )= −
→∞

−
=
∑∫ 1

1

 (5.19)

where a = x0 < x1 <  .  .  .  < xn = b is a partition of the range of integration.

With (5.18) in mind we see that we have

dE E E
n

x x

j

n

j jλ= −
−∞

∞

→∞ =
∫ ∑ −

lim ( )1
1

1

where l1 ≤ x0 < x1  .  .  .  < xn = lm. Consequently, bearing in mind (5.10) and (5.18) 

we obtain

 dE Iλ
−∞

∞

∫ =  (5.20)

Furthermore with (5.12) in mind and arguing as above we have

A P E Ek k

k

m

n
k x x

j

n

j j
= = −

= →∞ =
∑ ∑ −

λ λ
1 1

1
lim ( )

which implies

 A dE=
−∞

∞

∫ λ λ  (5.21)

The expression (5.21) is the spectral representation of the self-adjoint operator 

A, which has eigenvalues l1 <l2 <  .  .  .  < lm on an n-dimensional complex Hilbert 

space H.
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For arbitrary j, y ∈ H in the n-dimensional space H the above results lead 

to

 ( , ) ( , ) ( )ϕ ψ ϕ ψ λλ= =
−∞

∞

−∞

∞

∫ ∫d E dw  (5.22)

 ( , ) ( , ) ( )A d E dwϕ ψ λ ϕ ψ λ λλ= =
−∞

∞

−∞

∞

∫ ∫  (5.23)

where w(l) := (Elj,  y) defi nes a complex-valued function of l which changes 

by (Pkj,  y) at l = lk.

For a unitary operator U : H → H which has eigenvalues lk = exp(iqk) ordered 

in the form

0 < q1 < q2 <  .  .  .  < qm = 2p

using similar arguments to those used above we obtain the spectral 

representation

 U i dE= ∫ exp( )λ λ
π

0

2

 (5.24)

which leads to the expression

 ( , ) exp( ) ( , )U i d Eϕ ψ λ ϕ ψλ
π

= ∫0

2

 (5.25)

Similar calculations are possible for compact linear operators on an infi nite 

dimensional space. (See Defi nition 4.54 and Example 4.55.) For the sake of illus-

tration consider here only a positive, compact operator. All its eigenvalues lk are 

non-negative and we denote them in the form

l1 > l2 >  .  .  .  > 0

with possibly the inclusion of l0 = 0. We can then write

 A Pk k

k

=
=

∞

∑λ
1

 (5.26)

where lk → 0 as k → ∞.

Denoting by P0 the projection onto the null space M0 we then have (compare 

(5.10))

 P P Ik

k

+ =
=

∞

∑ 0

1

 (5.27)
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Then as before (compare (5.13), (5.14))

 E P P

I

j

j k

k kλ

λ

λ λ λ

λ λ

=

<

+ ≤ <

≥










=

∞

−∑

0 0

0 1

1

,

,

,

 (5.28)

It is a straightforward matter to show, in a similar manner to that used above, 

that El is a projection operator-valued function of l. We can also conclude that, 

just as in the fi nite dimensional case when we obtained (5.22), (5.23), we again 

have results of the form

 ( , ) ( , ) ( )ϕ ψ ϕ ψ λλ= =
−∞

∞

−∞

∞

∫ ∫d E dw  (5.29)

 ( , ) ( , ) ( )A d E dwϕ ψ λ ϕ ψ λ λλ= =
−∞

∞

−∞

∞

∫ ∫  (5.30)

which implies

 A dE=
−∞

∞

∫ λ λ  (5.31)

Consequently, we see that a self-adjoint operator on either a fi nite or an infi nite 

dimensional space has, in the two special cases considered, an integral represen-

tation given by (5.21) and (5.31). In these cases the integral representations are 

really a means of re-expressing the diagonalisability property. However, for self-

adjoint operators which do not belong to the two classes mentioned above this 

notion of diagonalisability is no longer meaningful. Nevertheless, it might be pos-

sible to express any self-adjoint operator in the integral form (5.31) provided the 

spectral family {El}, l ∈ s(A) is appropriately defi ned. This is the content of the 

celebrated spectral theorem which we will discuss later.

5.2.4 Reducing Subspaces

We introduce this concept in terms of bounded operators. For unbounded opera-

tors the following defi nition and two theorems require a more careful statement 

which properly takes into account the domains involved. We return to this aspect 

at the end of this subsection.

Defi nition 5.15. A subspace (closed linear manifold) M � H reduces a bounded, 

linear operator A : H → H if

(i) Ay ∈ M for every y ∈ M

(ii) Aj ∈ M for every j ∈ M�.
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The following two theorems indicate the main properties of reducing 

subspaces.

Theorem 5.16. Let

(i) H be a complex, separable Hilbert space and M � H a subspace

(ii) A : H � D(A) → H be a linear operator

(iii) P : H → M be a projection operator onto M.

The following statements are equivalent

(a) M reduces A

(b) PA = AP

(c) (I − P)A = A(I − P).

Proof. It is obvious that (b) and (c) are equivalent. We shall show that (a) ⇒ (b) 

and that ((b), (c)) ⇒ (a).

For any element y ∈ H we have, by the projection theorem,

y = u + v, u ∈ M, v ∈ M�

Hence Ay = Au + Av and we conclude that (a)⇒(b) as follows.

(a) ⇒ (b):

M reduces A ⇒ Au ∈ M and Av ∈ M�.

Therefore

PAy = Au = APy

and hence (a) ⇒ (b).

((b), (c)) ⇒ (a):

If u ∈ M and PA = AP then Pu = u and

Au = APu = P Au

Hence Au ∈ M for all u ∈ M.

If v ∈ M� and (I − P)A = A(I − P) then

(I − P)v = v

Hence

Av = A(I − P)v = (I − P)Av

and we conclude that Av ∈ M� for all v ∈ M�. Hence ((b), (c)) ⇒ (a) �

This theorem indicates the important practical result

 A = AP + A(I − P) (5.32)
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which implies that A is the sum of two parts, namely AP as an operator on M and 

A(I − P) as an operator on M�.

Theorem 5.17. Let A be a bounded, linear operator which is either self-adjoint 

or unitary on a separable, complex Hilbert space H. Let Hp be the subspace 

spanned by the eigenvectors of A. Then Hp reduces A.

The operators induced by A in Hp and Hp
� are again self-adjoint or 

unitary.

Proof. (i) Assume A is self-adjoint.

Let u ∈ Hp, then since Au = lu for some l ∈ R we can conclude that Au ∈ Hp.

If v ∈ Hp
� then

(u, Av) = (Au, v) = 0 for any u ∈ Hp

Hence Av ∈ Hp
� and we conclude that Hp reduces A.

Let P : H → H be a projection. Then there exist operators A1 in Hp and A2 in 

Hp
� with domains

D(A1) = PH = Hp

D(A2) = (I − P)H = P�H = Hp
�

such that (see (5.32))

AF = A1(Pf ) + A2(P
�f ), f ∈ H

The operators A1 and A2 are the operators induced by A in Hp and Hp
�

respectively.

For f, g ∈ Hp we obtain, recognising this last relation, Theorem 5.16, and the 

defi ning properties of the operators

(A1 f, g) = (APf, g) = (PAf, g) = ( f, APg) = ( f, A1g)

Hence A1 is self-adjoint on Hp. Similarly A2 is self-adjoint on Hp
�.

(ii) Assume that A is unitary.

As before u ∈ Hp implies Au ∈ Hp.

Let v ∈ Hp
� and let w be an eigenvector of A with an associated eigenvalue l.

Then Aw = lw and

l(w, Av) = (Aw, Av) = (w, v) = 0
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the third equality following from the unitarity of A. (See Defi nition 4.51(ii).) This 

last result implies (w,  Av) = 0 because l = 1 (Theorem 5.10). Thus Av is 

orthogonal to every element in the orthonormal basis (of eigenvectors of A) for 

Hp. Therefore Av ∈ Hp
� and hence Hp reduces A.

With A1, A2 defi ned as in part (i) we have for A unitary

f Af A f f Hp= = ∈1 for all

Therefore A1 is an isometric linear operator on Hp (Defi nition 3.12). Similarly, A2 

is an isometric, linear operator on Hp
�. To show that A1 is unitary it remains to 

show that A1 maps Hp onto Hp. To this end, let g ∈ Hp be given. Since A is unitary 

then A maps H onto H and there exists an element f ∈ H such that Af = g.

Since Af = g ∈ Hp and A1Pf ∈ Hp and A2P
�f ∈ Hp

� we conclude, from the 

decomposition of A given in part (i), written in the form g = A1(Pf ) + A2(P
�f ) 

and using Theorem 4.56 that A2(P
�f ) = q and P�f = A2P �f = 0. Conse-

quently, f ∈ Hp and

 g = Af = A1 f ∈ Hp �

We shall refer to Hp as the point subspace of A. Further, we shall denote 

Hp
�, the orthogonal complement of Hp, by Hc, and refer to it as the subspace of 

continuity of A.

We see, from (5.32), that a self-adjoint or a unitary operator splits into two 

(smaller in some sense) parts. One part of the operator acts on the subspace 

spanned by eigenvectors and, as such, can be represented by a diagonal matrix 

of eigenvalues with respect to an orthonormal basis of eigenvectors of the given 

operator. The other part of the given operator acts on the orthogonal complement 

of the subspace spanned by the eigenvectors. The simplest form of this decom-

position occurs when the eigenvectors of the given operators span the whole 

space. In this case the associated Hc will be empty.

Example 5.18. Let H be a separable, complex Hilbert space and N � H a sub-

space. Let P : H → N be a projection of H onto N. Assume that there exists a non-

trivial y ∈ H such that

Py = ly, l ∈ C

Then

l2y = lPy = P 2y = Py = ly

which implies that l = 1 or 0. We therefore conclude that a projection operator 

can only have two distinct eigenvalues, namely, l = 1 or 0.

If y ∈ N then Py = y by virtue of the defi nition of the projection operator P. 

Also if j ∈ N� then Pj = q. Therefore, recalling that a projection operator is 
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self-adjoint and that eigenspaces of self-adjoint operators corresponding to dif-

ferent eigenvalues are orthogonal we can infer that

N = eigenspace of P corresponding to the eigenvalue l = 1

N� = eigenspace of P corresponding to the eigenvalue l = 0.

A basis for the whole space is obtained by combining the basis for N and the 

basis for N�.

The projection operator P can be represented as a diagonal matrix with 

respect to this basis. The diagonal elements are one for the basis vectors of N

and zero for the basis elements of N�.

In this example we have completely described a projection operator in terms 

of its eigenvalues and eigenvectors.

We would emphasise that throughout this subsection we have assumed that 

all the linear operators are bounded.

For more general operators we can begin the discussion by, as before, assum-

ing a decomposition of a separable, complex Hilbert space H in the form

H = M + M�

where M is a subspace of H. We shall denote by P the projection of H onto M.

Defi nition 5.19. A, possibly unbounded, operator A, is said to be decomposed

according to H = M + M� if

 PD(A) � D(A), APD(A) � M and A(I − P)D(A) ∈ M� (5.33)

The results (5.33) imply that for any f ∈ D(A) we have Pf ∈ D(A) and APf ∈
M and A(I − P) ∈ M�. Hence

(I − P)APf = APf − PAPf = APf − APf = q

PA(I − P) f = q

and we conclude (I − P)APf = PA(I − P)f = q. This leads to the conclusion that 

APf = PAf for f ∈ D(A). Thus we see that the condition (5.33) is equivalent to the 

condition that A commutes with the projection P, that is,

 PA � AP (5.34)

If one of the two equivalent conditions (5.33) and (5.34) is satisfi ed then the 

restriction of A to M � D(A) can be considered as an operator in the Hilbert space 

M. This operator is called the part of A in H and is frequently denoted A/M.

Defi nition 5.20. If the operator A is symmetric then the operator A is said to be 

reduced by M if PD(A) � D(A) and APD(A) � M.
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A result involving the reduction of possibly unbounded operators is the 

following.

Theorem 5.21. Let H be a separable, complex Hilbert space and M � H a sub-

space. Let A : H → D(A) � H and let P : H → M be a projection.

(i) If A is a symmetric operator then A is reduced by M if and only if A 

and P commute.

(ii) If A is self-adjoint then A/M is also self-adjoint.

The proof of this theorem is straightforward and can be found in the texts 

cited in the Commentary [5], [10].

5.2.5 Spectral Decompositions on Infi nite 

Dimensional Spaces

Spectral studies on infi nite dimensional spaces are more complicated than similar 

studies on fi nite dimensional spaces. For example, in such spaces there are self-

adjoint and unitary operators which have no eigenvalues yet the spectrum of such 

operators consists of more than the point spectrum (see Defi nition 5.2). Neverthe-

less, it is still possible to obtain spectral decompositions in terms of projection 

operators which have an integral form similar to that already obtained in 

Subsection 5.2.3.

We shall assume, just as for the fi nite dimensional case, (see the remarks fol-

lowing Theorem 5.12 and (5.14)) that there exists a non-decreasing family of 

subspaces {Ml} of a complex, separable Hilbert space H. These subspaces depend 

on a real parameter l ∈ (−∞, ∞) such that

(i) The intersection of all the Ml is q, the zero element in H.

(ii) The union of all the Ml is a dense subset of H.

We now introduce a family of projection operators {El} associated with {Ml}.

First we recall that the family is said to be non-decreasing if Mm � Ml for m <
l. Now, bearing in mind (5.13) and the discussion which followed, the following 

defi nition is natural.

Defi nition 5.22. A family of projection operators {El} depending on the parame-

ter l is said to be a spectral family or a resolution of the identity if it has the 

following properties.

(i) {El} is non-decreasing in the sense that

Em ≤ El for m < l

Equivalently, we have

ElEm = EmEl = Emin(l,m) = Em
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(ii) If e > 0 then for any element j ∈ H and scalar l

El+e j → Elj as e → 0

(iii) Ely → q as l → −∞, Ely → y as l → +∞.

Equivalently, we write

s E s E I− = − =
→−∞ →+∞
lim , lim

λ
λ

λ
λΘ

where Θ denotes the zero operator on H.

With every spectral family {El} we can associate a self-adjoint or unitary 

operator. This is a statement of the celebrated spectral theorem which can be 

quoted in the following form.

Theorem 5.23 (Spectral theorem). Let H be a complex, separable Hilbert 

space.

(i) For each bounded, self-adjoint operator A on H there exists a unique 

spectral family {El} such that

( , ) ( , ) ,A d E Hψ ϕ λ ψ ϕ ϕ ψλ= ∈
−∞

∞

∫ for all

Equivalently, we write

 A dE=−
−∞

∞

∫ λ λ  (5.35)

(ii) For each unitary operator U on H there exists a unique spectral family 

{Fl} such that Fl = Q for l � 0 and Fl = I for l ≥ 2p such that

( , ) ( , ) , ( )U e d F D U Hiψ ϕ ψ ϕ ϕ ψλ
λ

π
= ∈ ⊂∫0

2

for all

Equivalently we write

 U e dFi= ∫ λ
λ

π

0

2

 (5.36)

As before, we refer to (5.35) and (5.36) as the spectral decompositions of 

A and U respectively.

The proof of the theorem is quite technical and lengthy. Full details can be 

found in the texts cited in the Commentary; in this connection we would particu-

larly mention [1], [11], [10], [13]. In defence of this action we recall the sentiments 

expressed in the introductory chapter. This monograph is not a book on func-

tional analysis or operator theory or spectral theory. Nevertheless, we shall need 
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many results from these three fi elds. Consequently, we only include proofs when 

they are needed, either for clarifi cation in the development of material or for their 

usefulness in applications.

Example 5.24. Let H := L2(0, 1) and defi ne A : H → H by

(Ay)(x) = xy(x), y ∈ D(A) = H

It is an easy exercise to show that A is linear and self-adjoint on H.

Let {Ex} denote a family of projections defi ned by

( )( )
( ),

,
E x

z z x

z x
xψ

ψ
=

≤
>{

0

The following are immediate.

(i) ExEy = EyEx = Ex, x ≤ y.

Equivalently, Ex ≤ Ey, x ≤ y.

(ii) E E y dyx x x
x

+
+− = ∫ → →ε

εψ ψ ψ ε2 2
0( ) as 0+

Hence Ex+e → Ex as e → 0+.

We assume further that y(x) is zero for x outside the interval [0, 1]. In this 

case we have

Ex = Θ, x < 0, Ex = I, x > 1

Consequently, {Ex} is a spectral family.

We obtain a spectral decomposition by noticing

xd E xd E y y dy

xd y y dy

x x

x

( , ) ( )( ) ( )

( ) ( )

ψ ϕ ψ ϕ

ψ ϕ

= { }
=

∫∫∫

∫ ∫
−∞

∞

−∞

∞

0

1

0

1

0
{{ }

=

=
∫ x x x dx

A

ψ ϕ

ψ ϕ

( ) ( )

( , )
0

1

Thus A has the spectral representation

 A xdEx=
−∞

∞

∫  (5.37)

We also notice that

( , ) ( , ) ( ) ( )E E y y dyx x
x

x

ψ ϕ ψ ϕ ψ ϕε
ε

− =−
−∫
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and the right-hand side tends to zero as e → 0+. This implies that in this case 

(Exy, j), as a function of x, is also continuous from the left. Hence, the relation

w(x) = (Exy, j), j, y ∈ H

defi nes a continuous function of x.

Example 5.25. Let A : H � D(A) → H = L2(R) be defi ned by

(Ay)(x) = xy(x), y ∈ D(A) = H

Defi ne the spectral family as in Example 5.24. It is then readily shown that in this 

case A also has a spectral decomposition. However, the spectral family {Ex} in 

this case has the properties that Ex increases over the whole range −∞ < x < ∞ 

with Ex → Θ as x → −∞ and Ex → I as x → ∞.

We see, from these two examples, that El as a function of l can increase 

continuously rather than by a series of jumps (steps) as was the case when 

working in a fi nite dimensional setting. This is because A, as defi ned in each 

example, has no discrete eigenvalues.

The spectral family associated with a self-adjoint operator on a Hilbert space 

can provide information about the spectrum of the operator in a relatively simple 

manner. Indeed, we have seen that in a fi nite dimensional setting the spectral 

family is discontinuous at the eigenvalues of the associated operator. This pro-

perty carries over to an infi nite dimensional space setting. In addition, information 

about the parts of the spectrum, other than the eigenvalue spectrum, which can 

exist in an infi nite dimensional space setting can also be obtained. We collect here, 

simply as statements, a number of fundamental properties of spectral families.

Theorem 5.26. Let H be a complex, separable Hilbert space and let A : H → H 

be a bounded, linear, self-adjoint operator with an associated spectral family

{El} and spectral decomposition A dE= ∫−∞
∞ λ λ . Then El has a discontinuity at

l = m if and only if m is an eigenvalue of A.

Let Pm : H → Mm denote the projection operator onto Mm the subspace spanned 

by the eigenvectors of A associated with the eigenvalue m. Then

(i) E P
P

λ µ
µ λ µ

λ µ
=

≥
<{ .

.0

(ii) for e > 0

Emy − Em−ey → Pmy

as e → 0 and for any y ∈ H.

For unitary operators the corresponding result is as follows.
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Theorem 5.27. Let H be a complex, separable Hilbert space and let U : H → H 

be a linear, unitary operator with an associated spectral family {Fl} and

spectral decomposition U e dFi= ∫ 0
2π λ

λ. Then Fl has a discontinuity at l = m if

and only if eim is an eigenvalue of U.

Let Pm : H → Mm denote the projection operator onto Mm the subspace spanned 

by the eigenvectors of U associated with the eigenvalue eim. Then

(i) F P
P

λ µ
µ λ µ

λ µ
=

≥
<{ ,

,0

(ii) for e > 0

Fmy − Fm−ey → Pmy

as e → 0 and for any y ∈ H.

These two theorems indicate that the jumps in the values of El and Fl are the 

same as in the fi nite dimensional case. However, in the infi nite dimensional space 

setting a continuous increase in El and Fl is possible (see also Examples 5.24 

and 5.25).

The resolvent set of a self-adjoint operator can also be characterised in terms 

of the associated spectral family. Specifi cally, the following result can be 

obtained.

Theorem 5.28. Let H, A and {El} be as in Theorem 5.26. A real number m 

belongs to r(A), the resolvent set of A, if and only if there exists a constant 

c > 0 such that {El} is constant on the interval [m − c, m + c].

The importance of this theorem is that it indicates that m ∈ s(A) if and only 

if the spectral family {El} is not constant in any neighbourhood of m ∈ R.

We can say more about the spectrum of a self-adjoint operator. First, we need 

the following important property of self-adjoint operators.

Theorem 5.29. Let H be a complex, separable Hilbert space and let A : H → H 

be a linear, self-adjoint operator. The residual spectrum of A, denoted sr(A), is 

empty.

Proof. Assume sr(A) is non-empty. By defi nition, if l ∈ sr(A) then the resolvent 

operator Rl(A) := (A − lI )−1 exists as either a bounded or an unbounded opera-

tor on D R A Hλ ( )( )≠ . This implies, by the projection theorem, that there exists 

a non-trivial element j ∈ H which is orthogonal to D((A − lI )−1) = D(Rl(A)). 

However, D(Rl(A)) is the range of (A − lI ). Hence there exists a non-trivial 

element j in H such that for all y ∈ D((A − lI )) = D(A) we have

0 = ((A − lI )y, j) = (Ay, j)− l(y, j) = (y, A*j) − (y, l
–
j)
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which implies that A*j = l
–
j, that is l

–
 ∈ sp(A*). Consequently, since A is self-

adjoint we have that

l ∈ sr(A) ⇒ l
–
 ∈ sp(A*) ⇒ l

–
 ∈ sp(A) ⇒ l ∈ sp(A)

This is a contradiction and we can conclude that sr(A) = f. �

This theorem indicates that for a self-adjoint operator A the spectrum of A, 

denoted s(A), decomposes in the form

s(A) = sp(A) � sc(A)

Since points in sp(A) correspond to discontinuities in {El}, the spectral family 

of A, the following result follows immediately.

Theorem 5.30. Let A and {El} be defi ned as in Theorem 5.26. A real number m 

belongs to sc(A), the continuous spectrum of A, if and only if {El} is continuous 

at m and is not constant in any neighbourhood of m.

The spectral theorem (Theorem 5.23) indicates that a spectral family {El} 

determines a self-adjoint operator A according to the relation

A dE=
−∞

∞

∫ λ λ

Clearly, different spectral families lead to different self-adjoint operators.

In applications we are particularly interested in determining the spectral 

family {El} associated with a given self-adjoint operator. This can be achieved by 

means of the celebrated Stone’s formula which relates the spectral family of A 

and the resolvent of A.

Theorem 5.31 (Stone’s formula). Let H be a complex, separable Hilbert space, 

and let A : H → H be a self-adjoint operator. The spectral family, {El}, associated 

with A and (A − lI )−1, the resolvent of A, are related as follows.

For all f, g ∈ H and for all a, b ∈ R

 ([ ] , ) lim lim ([ ( ) ( )] , )E E f g
i

R t i R t i f g dtb a
a

b

− = + − −
↓ ↓ +

+

δ ε δπ
ε ε

0 0

1

2

δδ

∫  (5.38)

where R(t ± ie) = [A − (t + ie)I]−1 .

The manner in which this formula is used to provide the required spectral 

representations is indicated is well illustrated in the References cited in the text 

and in the Commentary; see, in particular [13].
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5.2.6 Functions of an Operator

The spectral theorem (Theorem 5.23) tells us that a self-adjoint operator A has a 

spectral representation in terms of its associated spectral family {El} given by 

(5.35). We will want to form functions of such an operator in later chapters. If 

A ∈ B(H) where H, as usual, denotes a complex, separable Hilbert space, then it 

is easy to see that a natural defi nition for exp (A), for example, is obtained by 

using the familiar expansion for the exponential function, namely

exp( )
!

A
A

n

n

n

=
=

∞

∑
0

This relation is well defi ned since the right-hand side of the exp ression converges 

in the operator norm. However, there are many more complicated operators than 

the one we have just considered which arise in applications. Nevertheless, the 

spectral theorem allows us to form a large class of functions of a self-adjoint 

operator A. This we do in the following manner.

Let j be a complex-valued, continuous function of the realvariable l. We can 

defi ne an operator j(A), where A is a self-adjoint operator on a Hilbert space H, 

by writing

 D A f H d E f f( ( )) : ( , )ϕ ϕ λ λ= ∈ ( ) <∞{ }
−∞

∞

∫ 2
 (5.39)

and for f ∈ D(j(A))

 ( ( ) , ) ( ) ( , ),ϕ ϕ λ λA f g d E f g g H= ∈
−∞

∞

∫  (5.40)

It then follows, formally at least, that we can write

 ϕ ϕ λ λ( ) ( )A dE=
−∞

∞

∫  (5.41)

For j(l) = l we recover the operator A as expected (see (5.35)).

Some of the basic properties of j(A) are contained in the following 

exercise.

Exercise 5.32. Let H be a complex, separable Hilbert space and A : H → H a 

bounded, self-adjoint operator. Let j, j1, j2, be complex-valued, continuous func-

tions defi ned on the support of {El}. Then the following results are valid.

(i) j(A)* = j–(A) where j–(l) = ϕ λ( ).

(ii) If j(l) = j1(l)j2(l) then j(A) = j1(A)j2(A).

(iii) If j(l) = a1j1(l) + a2j2(l) then j(A) = a1j1(A) + a2j2(A).
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(iv) j(A) is normal, that is j(A)*j(A) = j(A)j(A)*.

(v) j(A) commutes with all bounded operators that commute with A.

(vi) If A is reduced by a projection P then

j(A)/PH = j(A/PH)

The details are left as an exercise for the reader.

In applications a particularly interesting function of a self-adjoint operator A 

is its resolvent. The above discussion indicates that if we introduce the function 

jz defi ned by

jz(l) = (l − z)−1

then we can defi ne

 ϕ λ λz zA R A z dE( ) ( ) ( )= = − −

−∞

∞

∫ 1  (5.42)

The next example gives some properties of jz.

Example 5.33. Let H be a complex, separable Hilbert space and let A : H → H be 

a bounded, self-adjoint operator. Also, let z ∈ C be such that Im z ≠ 0. Then

(i) jz(A) = (A − zI)−1 ∈ B(H)

(ii) jz(A) ≤ 1/Im z.

Proof. Since A is self-adjoint, s(A) ⊂ R. Hence for Im z ≠ 0 it follows that z ∈ 

r(A) and part (i) follows by defi nition of the resolvent.

We now show that jz(A) is bounded as in (ii). Indeed, for any

g ∈ D((A − zI)−1) = R(A − zI) = (A − zI)D(A)

where R(A − zI) denotes the range of (A − zI), we have f = (A − zI)−1g ∈ D(A). 

Consequently, writing z = a + ib we obtain

g A zI f A zI f

A I f f f

A zI g

2

2 2 2 2 2

2 1 2

= − −

= − +

= − −

(( ) , ( ) )

( )

( )

α β β

β

�

We conclude that

( ) (( ) )A zI g
g

g D A zI− ≤ ∈ −− −1 1

β
for all

and, on recalling the defi nition of an operator norm, we establish part (ii). �
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Finally, in this subsection we give some useful consequences of the functional 

calculus generated by the relations (5.40) and (5.41).

Example 5.34. (i) For j(x) = x we have j(A) = A. This follows from (5.37) 

and the spectral decomposition theorem, Theorem 5.23, since for all f ∈ D(A), 

g ∈ H

( ( ) , ) ( ) ( , ) ( , ) ( , )ϕ ϕ λ λλ λA f g d E f g d E f g Af g= = =
−∞

∞

−∞

∞

∫ ∫

Arguing as in (i) the next results follow almost immediately.

(ii) For j(x) = 1 we have j(A) = I because

( ( ) , ) ( , ) ( , )ϕ λA f g d E f g f g= =
−∞

∞

∫

(iii) If f, g are continuous, complex-valued functions of a real variable x and 

if ( fg)(x) = f(x)g(x) then for any j, y ∈ H

( ( ) ( ) , ) ( ) ( ( ), )

( ) ( ( ) , )

f A g A f d E g A

f d g A E

ϕ ψ λ ψ

λ ϕ ψ

λ λ

λ λ

=

=

−∞

∞

−∞

∞

∫

∫ sinnce

by

E E E

f d g d E E

f d

λ λ λ

λ µ µ λλ µ ϕ ψ

λ

= =

=

=

−∞

∞

−∞

∞

∫ ∫

2

5 37

*

( ) ( ) ( , ) ( . )

( ) λλ µ µ λ µ µ
λ

λ λ

µ ϕ ψ µ λ

λ λ ϕ ψ

−∞

∞

−∞

−

∫ ∫ = <

=

g d E E E E

f g d E

( ) ( , ) ,

( ) ( ) ( , )

since

∞∞

∞

−∞

∞

∫

∫= ( )( ) ( , )fg d Eλ ϕ ψλ λ

Hence (fg)(A) = f(A)g(A).

(iv) For any j ∈ H

( ( ) , ) ( ) ( , ) ( ) ( )f A f d E f d Eϕ ϕ λ ϕ ϕ λ ϕλ λ= =
−∞

∞

−∞

∞

∫ ∫ 2

5.2.7 Spectral Decompositions of Hilbert Spaces

There are intimate connections betweena self-adjoint operator A : H � D(A) → H 

on a complex, separable Hilbert space H which can be used to provide decom-

positions into simpler parts of not only a given operator such as A but also the 

underlying Hilbert space, the associated spectrum of A and other related quanti-

ties. As an illustration recall that for any self-adjoint operator A : H → H the point 

spectrum, sp(A), of A is (Defi nition 5.2)

sp(A) := {l ∈ R :∃ q ≠ u ∈ H s.t. Au = lu}
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We defi ne (see Defi nition 5.13) Hp(A) to be the linear span of all eigen-

functions of A. As we have seen Hp(A) is a subspace of H and is called the point 

subspace of H with respect to A. Hence by means of the projection theorem we 

can write

 H H A H A H A H Ap c c p= ⊕ =( ) ( ) ( ) ( )where �  (5.43)

We refer to Hc(A) as the subspace of continuity of H with respect to A.

Let

Pp : H → Hp(A)

denote the projection onto Hp(A). Then for any f ∈ H

 f = Pp f + (I − Pp) f = Pp f + Pc f (5.44)

where

Pc := (I − Pp) : H → Hc(A)

is a projection orthogonal to Pp.

Thus in (5.43) and (5.44) we have a decomposition of H with respect to A. 

Furthermore, a decomposition of A is also available. Since, on using, (5.44) we 

obtain

 Af = APp f + APc f =: Ap f + Ac f (5.45)

where Ap, regarded as an operator on Hp(A), is called the discontinuous part 

of A whilst Ac, regarded as an operator on Hc(A), is called the continuous part 

of A.

Also, using (5.44) together with the associated spectral family {El}, we 

obtain

 (El f, f ) = (ElPp f, f ) + (ElPc f, f ) (5.46)

This result provides a means of decomposing integrals such as those appearing 

in (5.21) to (5.23). To see how this can be achieved we introduce the notion of 

spectral measure.

Let H be a complex separable Hilbert space and A : H → H a bounded, self-

adjoint operator with associated spectral family {El}.

For any interval ∆ := (l′, l″] ⊂ R we defi ne

 E∆ = El″ − El′ (5.47)

The defi nition of the spectral family (Defi nition 5.22) together with (5.47) 

indicate that
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(i) E∆ is a projection onto the subspace Ml″ 	 Ml′, that is onto the orthogonal 

complement of Ml′ in Ml″.

(ii) If ∆1, ∆2 are disjoint intervals on R then

E∆1
 E∆2

 = E∆2
 E∆1

 = 0

that is, the ranges of the E∆1
 and E∆2

 are orthogonal. This follows directly by using 

(5.47), writing the various products out in full and using Defi nition 5.22.

(iii) E∆1
 E∆2

 = E∆1
 � ∆2

. Again as in (ii) this follows by direct calculation.

The family {El} defi ned in this manner is called a spectral measure on the 

class of all sets ∆ of the form indicated above.

The defi nition of E∆ in (5.47) can be extended to closed and open intervals. 

To do this we fi rst recall the notation.

 E s Eλ
η

λ η±
→

±= −
+0

0
lim  (5.48)

A spectral family{El} is said to be right continuous if El+0 = El and left 

continuous if El−0 = El. We shall assume in the following that spectral families 

are right continuous.

We now defi ne

 E{l} = El − El−0 (5.49)

The required extensions of (5.48) are given as follows.

(a) ∆1 = [l′, l″] then we set

E∆1
 = Ed1

 + E{l′}, d1 = (l′, l″]

(b) ∆2 = (l′, l″) then we set

E s E d
nn

d∆2 2 2

1
= − = ′ ′′( − 




→∞
lim , ,λ λ

This is meaningful since ∆2 = U
n

d2.

A more general introduction and treatment of spectral measures can be found 

in the texts cited in the Commentary. We would mention in particular [1], [11]. In 

this monograph we shall be mainly concerned with integration with respect to 

numerical measures generated by a function of the form

w : l → w(l) = (Elj, y) �j, y ∈ H, l ∈ R

In this connection the following theorem is instructive [10], [13], [11].

Theorem 5.35. Let H be a complex separable Hilbert space and A : H � D(A) → 

H a self-adjoint operator with spectral family {El}. For any j, y ∈ H the complex 

valued function l → (Elj, y) is of bounded variation.
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Using standard methods [11] we can defi ne (Riemann–Stieltjes) integrals over 

any fi nite interval with respect to the measure generated by the numerical value 

function w defi ned by

w : l → w(l) = (Elj, y), j, y ∈ H

As a consequence if f is a complex-valued, continuous function of l then the 

integral

f d E
a

b

( ) ( , )λ ϕ ψλ∫

defi ned as the limit of Riemann–Stieltjes sums, exists for every fi nite a, b and for 

all j, y ∈ H. Improper integrals over R are defi ned as in the case of Riemann 

integrals as

 f d E f d E
a

b

( ) ( , ) lim ( ) ( , )λ ϕ ψ λ ϕ ψλ λ= ∫∫−∞
∞

 (5.50)

as a → −∞ and b → ∞ whenever they exist.

We re-introduce here, in a slightly different way, some already familiar con-

cepts and notation. This will have advantages later.

Let H be a complex, separable Hilbert space and A : H � D(A) → H a self-

adjoint operator with associated spectral family {El}. We have seen (Theorems 

5.26 and 5.27 and the notation introduced in (5.48)) that Pl = El − El−0 is nonzero 

if and only if l is an eigenvalue of A and Pl is the orthogonal projection onto the 

associate eigenspace. The set of all eigenvalues of A we have denoted by sp(A) 

and referred to it as the point spectrum of A. Let Hp denote the subspaces 

spanned by all the eigenvectors of A, that is, spanned by all the eigenvectors PlH. 

If Hp = H then A is said to have a pure point spectrum.

In general sp(A) is not a closed set. To see that this is the case consider an 

operator A that has a pure point spectrum. The spectrum of A, denoted s(A), is 

the point spectrum of A together with all its points of accumulation, that is s(A) 

:= σ p A( ) . Furthermore, Hp reduces A since PlH does and Ap, the part of A in 

Hp, has pure point spectrum. The proof of these statements is left as an exercise.

In the case when A has no eigenvalues then Hp = {q} and A is said to have a 

purely continuous spectrum. We defi ne Hc = H�
p. In general the part Ac of A 

defi ned in Hc has a purely continuous spectrum which we denote by s(Ac). The 

spectrum of Ac, denoted s(Ac), is called the continuous spectrum of A and will 

be denoted in future by sc(A).

In the above we have offered a decomposition of s(A), the spectrum of A, in 

terms of a decomposition of H rather than a decomposition of C as previously.

The subspaces Hp ≡ Hp(A) and Hc ≡ Hc(A) are called the subspace of dis-

continuity and the subspace of continuity respectively. When there is no 

danger of confusion we shall simply write Hp and Hc.

The following result characterises Hc.
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Theorem 5.36. f ∈ Hc if and only if (El f, f ) is a continuous function of l.

Proof. Let w(l) = (El f, f ). If w is a continuous function of l then w(l) → w(m) 

as l → m. This implies that ((El − Em) f, f ) → 0 as l → m. Hence, recalling (5.49), 

we can conclude that (Pl f, f ) = 0 for all l ∈ R.

Since Pl is a projection and recalling the Schwarz inequality (a, b) ≤ ab, 

we obtain, for all g ∈ H

( , ) ( , ) ( , )( , )E g f E g E f E g g E f fλ λ λ λ λ
2 2

0= ≤ =

Hence f is orthogonal to the ranges of all Pl and therefore to Hp. Hence f ∈ Hc.

Conversely, if f ∈ Hc = H�
p then f is orthogonal to Pl for all l so that, again 

recalling (5.49), (El f, f ) is continuous. �

We shall fi nd it useful when developing a scattering theory to further subdi-

vide (decompose) Hc.

We have seen above that the spectral family {El} generates a spectral measure 

E∆. Thus, for any fi xed f ∈ H we can construct a non-negative measure by 

defi ning

 m E f f E ff ( ) ( , )∆ ∆ ∆= = 2
 (5.51)

We now introduce two further subspaces of H.

Defi nition 5.37. An element f ∈ H is said to be absolutely continuous with 

respect to A if mf is absolutely continuous with respect to the Lebesgue measure, 

⋅, on R. That is, ∆ = 0 implies mf (∆) = E∆ f
2 = 0.

Defi nition 5.38. A measure mf is singular with respect to Lebesgue measure on 

R if there is a set ∆0 with ∆0 = 0 such that mf (∆) = mf (∆ � ∆0) for all sets 

∆ � R. In which case f is said to be singular with respect to A.

The set of all elements in H which are absolutely continuous (singular) with 

respect to A denoted Hac(Hs) is called the subspace of absolute continuity 

(singularity) with respect to A.

Theorem 5.39. Hac and Hs are subspaces of H, are orthogonal complements of 

each other and reduce A.

A proof of this theorem can be found in [6] and [10].

Since the point set {l} has Lebesgue measure zero we have (El f, f ) = (El−0 f, 

f ) for all f ∈ Hac and all l ∈ R. Therefore, by Theorem 4.40, we have Hac � Hc 

and Hp � Hs. If we now set

 Hsc := Hc 	 Hac (5.52)

then we obtain, for each self-adjoint operator A : H → H the following decomposi-

tions of H.



 H = Hac � Hs = Hac � Hsc � Hp (5.53)

If Hac = H then A is said to be (spectrally) absolutely continuous. If Hs = H

then A is said to be (spectrally) singularly continuous.

The parts of A on these various subspaces are denoted Aac, As, Asc respectively. 

We write sac(A), ss(A), ssc(A) to denote the absolutely continuous, the singular 

and the singularly continuous spectrum of A respectively. The associated compo-

nents of the spectrum of A are given by s(Aac), s(As) and s(Asc) respectively.

The physical relevance of the decomposition (5.53) can be considerable, par-

ticularly in some areas of quantum scattering [10]. For the moment we simply state 

that Hp(A) usually contains the bound states of A whilst Hc(A), and more espe-

cially Hac(A) consists of scattering states of A. For most self-adjoint operators 

arising in applications it turns out that Hsc = {q} which implies that Hc = Hac.

Further detailed discussions along these lines can be found in the texts cited 

in the Commentary.

Finally in this subsection, we mention yet another way of decomposing the 

spectrum of a self-adjoint operator A : H → H where H is a Hilbert space.

Defi nition 5.40. The set of all l ∈ s(A) with the range of Pl fi nite dimensional 

forms sd(A) the discrete spectrum of A.

The set complementary to sd(A) in s(A) constitutes the essential spectrum

of A and is denoted se(A).

The sets sd(A) and se(A) are disjoint. The set se(A) consists of the continuous 

spectrum of A, the accumulation points of the point spectrum of A and eigenval-

ues of A of infi nite multiplicities.

Finally, we would remark that in this chapter we have not worked explicitly 

with unbounded operators. If we would wish to do this then more care must be 

taken when handling the domain of the operator. In this connection see Chapter 

3 and [5], [6].

5.3 Semigroup Methods

In Chapter 1 we saw that in the acoustic case an IBVP could be reduced, formally 

at least, to an IVP. The IBVP was defi ned in Rn× R in terms of a partial differential 

equation which was of second order in time whilst the IVP was a Cauchy problem 

for a system of ordinary differential equations which was fi rst order in time and 

defi ned on an appropriate energy space. It turns out that for these fi rst order 

equations results concerning existence, uniqueness and stability of solutions can 

be obtained in an effi cient and elegant manner using results from the theory of 

semigroups and the theory of Volterra integral equations. This approach will be 

seen to offer good prospects for developing constructive methods of solution.

We would again point out that, in keeping with the spirit of this monograph, 

most of the results offered in this chapter are simply stated without proof. This 
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we have done because in most practical problems the main aim is centred on 

making progress by the application of analytical mathematical results rather than 

by working through their proofs, which are often quite lengthy. However, as 

always, References will be given either in the text or in the Commentary indicat-

ing where detailed workings can be found.

We remark that we shall work here in a Hilbert space setting. However, a similar 

analysis can be conducted in a more general Banach space setting [13], [7].

Let H denote a Hilbert space and consider the IVP

 
d

dt
G w t t w w−{ } = ∈ = ∞ =( ) , : ( , ), ( )0 0 0 0R+  (5.54)

where w ∈ C(R+, H) and G : H � D(G) → H. We remark that any boundary condi-

tions which are imposed on the originating problem are accommodated in the 

defi nition of D(G), the domain of G.

An IVP of the form (5.54) governs the manner in which a system evolves from 

an initial state w(0) = w0 to another state, w(t), at some other time t ≠ 0. The 

operator G characterises the particular class of problem being considered. The 

presentation in this section will allow a wide range of specifi c forms to be 

accommodated.

When faced with a problem such as (5.54) the fi rst requirement is to clarify 

the meaning of the defi ning equation. The defi nition of an ordinary derivative 

indicates that (5.54) should be interpreted to mean that

(i) w(t) ∈ D(G)

(ii) lim h w t h w t Gw t
h

−

→
+( )− ( ){ }− ( ) =1

0
0

where ⋅ denotes the norm in H.

When the problem (5.54) models a physical, evolutionary system then ideally 

the problem (5.54) should be well-posed in the following sense.

Defi nition 5.41. A problem is said to be well-posed if it has a unique solution 

which depends continuously on the given data.

This defi nition implies that small changes in the given data produce only small 

changes in the solution.

Let the evolutionary problem (5.54) be well-posed and let U(t) denote the 

transformation which maps w(s), the solution at time s, onto w(s + t), the solu-

tion at time (s + t), that is

w(s + t) = U(t)w(s)

In particular we have

w(t) = U(t)w(0) = U(t)w0



Therefore, since (5.54) is assumed to be well-posed, a solution of (5.54) is unique 

and we have

U(s + t)w0 = w(s + t) = U(t)w(s) = U(t)U(s)w0

which implies the so-called semigroup properties

 U(s + t) = U(s)U(t), s, t ∈ R+, U(0) = I (5.55)

We are thus led to a consideration of a family of operators {U(t)}t≥0. Our fi rst aim 

is to determine the family {U(t)}t≥0. With this in mind we notice that (5.55) is 

reminiscent of the properties of the familiar exponential function. In support of 

this remark we recall the following result which is obtained when investigating 

Cauchy’s functional equation. Specifi cally, if f : [0, ∞) → R is such that

(i) f(s + t) = f(s) f(t) for all s, t ≥ 0

(ii) f(0) = 1

(iii) f is continuous on [0, ∞) (on the right at the origin) then f is defi ned by

f(t) = exp {tA}

for some constant A ∈ R.

Furthermore, if we apply an integrating factor technique to (5.54) then, for-

mally at least, we have

w(t) = exp {tG}w0

provided that G is regarded as a constant. With these results in mind it is natural 

to conjecture that

 U(t) = exp {tG} (5.56)

for some operator G. Of course, this conjecture has to be proved if it is to be of 

any use. In this connection we introduce the following notion.

Defi nition 5.42. A family U := {U(t)}t≥0 of bounded, linear operators on a Hilbert 

space into itself is called a strongly continuous, one-parameter semigroup,

denoted a C0-semigroup, provided

(i) U(s + t) f = U(s)U(t) f = U(t)U(s) f for all f ∈ H and s, t ≥ 0

(ii) U(0) f = f for all f ∈ H

(iii) the mapping t → U(t) is continuous for t ≥ 0 and for all f ∈ H. If, in addi-

tion we have

(iv) U(t) f ≤ f for all f ∈ H then U is called a C0-contraction

semigroup.

We remark that the restriction U(t) ∈ B(H) enable us to compare different 

solutions by means of the relation
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U t u U t v U t u v( ) ( ) ( )0 0 0 0− ≤ −

which only makes sense if U(t) ∈ B(H).

Once we have introduced the notion of a C0-semigroup three questions are 

immediate. 

Q1: Given a C0-semigroup {U(t)}t≥0 how can we obtain the operator G whose 

existence was conjectured in (5.56)? 

Q2: What types of operators, G, can appear in (5.56)? 

Q3: Given a suitable operator G how can we construct an associated semi-

group {exp (tG)}t≥0?

These three questions are investigated in great detail in the general theory of 

C0-semigroups [7], [9]. Whilst we will always be aware of Q1 and Q2 our main 

interest in this monograph is centred on Q3.

If we recall the interpretation given to (5.54) then the following defi nition 

appears quite natural.

Defi nition 5.43. The infi nitesimal generator of the C0-semigroup {U(t)}t≥0 is 

the linear operator

G : H � D(G) → H

defi ned by

Gf h U t f f f D G

D G f H h U t

h

h

: lim{ ( ( ) )}, ( )

( ) : lim{ ( ( )

= − ∈

= ∈
→

−

→

−
0

1

0

1

for

ff f H− )} exists in

Example 5.44. The defi ning properties of a C0-semigroup suggest that, formally 

at least, for the family U = {U(t)}t≥0 defi ned by

U(t) = exp (tG)

we have

G
dU t

dt
U

t

= = ′
=

( )
( )

0

0

which indicates that U is the semigroup generated by the operator G. Further-

more, the familiar integrating factor technique indicates that the solution of (5.54) 

can be expressed in the form

w(t) = exp {tG}⋅w0 = U(t)w0

provided w0 ∈ D(G). To see this last point notice that (5.54) implies that we must 

have



Gw
dU t w

dt
Gw Gw

t
0

0
0 0 0− = − =

=

( )

and this result is only valid if w0 ∈ D(G).

We now collect some well-known facts from the theory of semigroups. The 

presentation is essentially informal and is intended to provide a reference source 

rather than a comprehensive, self-contained account. More details can be found 

in the references cited here and in the Commentary.

Theorem 5.45 ([7], [13]). Let G ∈ B(H). The family {U(t)}t≥0 defi ned by

U U t tG
tG

n
t

n

n

: ( ) exp( )
( )

!
:= = = ∈











+

=

∞

∑ R
0

is a C0-semigroup which satisfi es

U t I as t( )− → →0 0

Moreover, G is the generator of U.

Conversely, if U is a C0-semigroup satisfying the above relation then the 

generator of U is an element G ∈ B(H).

Corollary 5.46. If U(t) = exp (tG), defi ned as Theorem 5.45, then

(i) U(t) = exp (tG) ≤ exp {t G}, t ∈ R+

(ii) U(t) : R+ → H continuously for all t ∈ R+

(iii) 
d

dt
U t G U t U t G

n

n

n n( ) ( ) ( ) .{ }= =

In many cases of practical interest the operator G appearing in (5.54) could 

be unbounded. For such an operator some of the quantities used above such as 

G and exp (tG), defi ned as in Theorem 5.45, are meaningless. Consequently, 

results such as Theorem 5.45 have to be modifi ed. With this in mind the following 

results are available [7], [13].

Theorem 5.47. Let H be a Hilbert space and U := {U(t), t ≥ 0} a C0-semigroup 

with generator G. Then

(i) U(t)U(s) = U(s)U(t) for all t, s ≥ 0

(ii) U is exponentially bounded in the sense that there exist constants 

M > 0 and w ∈ R such that

U t M t( ) exp( )≤ ω

(iii) D G( )  = H and the operator G is closed
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(iv) 
d

dt
U t f U t Gf GU t f for all f D G( ) ( ) ( ) ( ){ }= = ∈

(v) for all l ∈ C such that Re{l} > w there exists R{G, l} := (lI − G)−1 and

R G f e U t f f Ht{ , } ( ) ,λ λ= ∈−∞

∫0

In the next subsections we give conditions which ensure that problems of the 

form (5.54) are well-posed. We indicate when the operator G in (5.54) actually 

generates a C0-semigroup suitable for ensuring that (5.54) is well-posed.

5.3.1 Well-posedness of Problems

Let H be a Hilbert space and G a densely defi ned operator on H. Consider the 

following IVP

 
d

dt
G w t t w w−{ } = ∈ =+( ) , , ( )0 0 0R  (5.57)

A more precise defi nition than that given earlier of the well-posedness of 

problems such as (5.57) is as follows.

Defi nition 5.48. The problem (5.57) is well-posed if the resolvent set r(G) ≠ f 

and if for all w0 ∈ D(G) there exists a unique solution w : R+ → D(G) of (5.57) 

with w ∈ C1((0, ∞), H) � C([0, ∞], H).

Results along the following lines can now be established.

Theorem 5.49. The problem (5.57) is well-posed if G generates a C0-semigroup 

U on H. In this case the solution of (5.57) is given by w(t) = U(t)w0, t ∈ R+.

Proof. Let G generate a C0-semigroup U = {U(t) : t ∈ R+}. If w0 ∈ D(G) then by 

Theorem 5.47 we see that w(⋅) = U(⋅)w0 ∈ C1(R+, H) is D(G)-valued and (5.57) 

holds. To prove well-posedness it remains to establish uniqueness. To this end 

let j be any solution of (5.57) Then, for 0 ≤ s ≤ t < ∞ we have

d

ds
U t s s U t s G s U t s G s{ ( ) ( )} ( ) ( ) ( ) ( )− = − − − =ϕ ϕ ϕ 0

Hence U(t − s)j(s) is independent of s. Consequently, since U(0) = I this inde-

pendence allows us to write

j(t) = U(t − s)j(s) = U(t)j(0) = U(t)w0



The last equality follows from the assumption that j(t) is any solution of (5.57) 

and must therefore satisfy the imposed initial condition. The required uniqueness 

now follows since the right-hand side is w(t). �

The converse of this theorem also holds. The details can be found in [7] and 

titles cited in the Commentary. 

We will also be interested in non-homogeneous forms of the problem (5.54). 

Specifi cally, we will want to discuss problems of the form

 
d

dt
G v t f t t v v−{ } = ∈ =( ) ( ), , ( )R+ 0 0  (5.58)

where f and v0 are given data functions. In this connection the following result 

holds.

Theorem 5.50. Let H be a Hilbert space and G : H � D(G) → H be the generator 

of a C0-semigroup U = {U(t) : t ≥ 0} � B(H). If v0 ∈ D(G) and f ∈ C1(R+, H) then 

(5.58) has a unique solution v ∈ C1(R+, H) with values in D(G).

A proof of this theorem can be obtained by fi rst noticing that a formal applica-

tion to (5.58) of the familiar integrating factor technique yields

 v t U t v U t s f s ds
t

( ) ( ) ( ) ( )= + −∫0
0

 (5.59)

It now remains to prove that (5.59) is indeed a solution of (5.48) and moreover 

that v has all the properties indicated in the statement of Theorem 5.50. This is a 

straightforward matter. The details are left as an exercise but can be found in [13] 

if required.

5.3.2 Generators of Semigroups

We have seen that the well-posedness of an IVP can be established provided there 

is associated with the IVP a C0-semigroup. The following results help to charac-

terise these linear operators which actually generate C0-semigroups. The results 

are simply listed for our convenience in this monograph. Detailed proofs can be 

found in the texts cited in the Commentary. We particularly mention [7], [13] as 

starting texts. We remark that now the linear operators we will be dealing with 

are not necessarily bounded.

Theorem 5.51. Let U = {U(t) : t ≥ 0} � B(H) be a C0-semigroup with generator 

G. Then D(G) is dense in H. Furthermore, G : H � D(G) → H is a closed, linear 

operator.
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Theorem 5.52. A C0-semigroup is uniquely determined by its generator.

Theorem 5.51 is a valuable result whenever we know that G is the generator 

of a C0-semigroup. We also want to know when it is that an operator G is indeed 

the generator of a C0-semigroup. The answer is given by the celebrated Hille–

Yosida theorem [6], [7].

It will be convenient at this stage to introduce the following notation.

For real numbers M > 0 and w > 0 the set of all generators of C0-semigroups 

{U(t)}t≥0 which satisfy on a Hilbert space H the relation

U t M t( ) exp( )≤ ω

will be denoted G(M, w, H). We remark that this notation is also used in general 

Banach spaces.

Necessary and suffi cient conditions for an operator G to belong to G(M, w, 

H) are provide by the following theorem.

Theorem 5.53 (Hille–Yosida theorem). A linear operator G : H � D(G) → H is 

an element of G(M, w, H) if and only if

(i) G is a closed linear operator with domain D(G) dense in H

(ii) a real number l > w is such that l ∈ r(G) the resolvent set of G

(iii) R(G, l) := (lI − G)−1 is such that

[ ( , )]
( )

, , , . . .R G
M

nn

n
λ

λ ω
≤

−
=1 2

We now turn to Q3. Specifi cally, if a given operator G satisfi es the conditions of 

the Hille–Yosida theorem then how can the C0-semigroup {U(t)}t≥0 generated by 

G be constructed?

We have seen, in Theorem 5.45, that when G ∈ B(H) the semigroup {U(t)}t≥0 

generated by G is defi ned by

 U U t tG
tG

n
t

n

n

: ( ) exp( )
( )

!
:= = = ∈









=

∞
+∑

0

R  (5.60)

However in many applications the given operator G is not necessarily bounded. 

Consequently, for a not necessarily bounded operator we try to fi nd a family of 

bounded operators which approximate G in some sense. As a fi rst attempt in this 

direction let {Gk}
∞
k=1 be a family of bounded operators the elements of which 

generate the associated semigroups Uk := {Uk(t)}t≥0 of the form given in (5.60). 

We would like to have a result of the form

exp lim(exp )tG tGk
k

{ }= { }
→∞



This would then enable us to write

U t g U t g t g H
k

k( ) lim ( ) , ,= ≥ ∈
→∞

0

Theorem 5.54. Let G be the generator of a C0-semigroup {U(t)}t≥0 ⊂ B(H) then

U t g tG g t g H
h

h( ) lim (exp{ }) , ,= ≥ ∈
→ +0

0

where Gh is defi ned by

Ghg = {U(h)g − g}/h, g ∈ H

and the convergence is uniform with respect to t for 0 ≤ t ≤ t0 with t0 ≥ 0 arbi-

trary [7], [9].

There is a major practical diffi culty associated with this result which is centred 

on the approximations Gh = {U(h) − I}/h. These quantities are only known if U(h) 

is known and this is what we are trying to fi nd!

A way around the above diffi culty can be obtained by fi rst recalling that when 

G is a real or complex number then

exp{ } [ { }] lim {[ ] } lim {[ ] }tG EXP tG I tG n I tG n
n

n

n

n= − = − = −−

→∞

−

→∞

−1 1 1

When G is an operator in H then the analogue of the result would seem to be 

given by

(exp{ }) lim {[ ] } : lim {[ ( )] }tG g I tG n g V t n g
n

n

n

n= −( ) =
→∞

−

→∞

1

This indeed proves to be the case as the following result can be obtained [7], [9].

Theorem 5.55. Let G be the generator of a C0-semigroup {U(t)}t≥0 ⊂ B(H). Then 

for all g ∈ H

U t g V t n g t g H
n

n( ) lim {[ ( )] }, ,= ≥ ∈
→∞

0 for all

where

V(t/n) = [I − tG/n]−1

The convergence is uniform with respect to t for 0 ≤ t ≤ t0.
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Finally, in this subsection we give Stone’s theorem which will be particularly 

useful when developing scattering theories. In order to do this we require some 

preparation.

Defi nition 5.56. A C0-group on a Hilbert space H is a family of operators U := 

{U(t) : t ∈ R} ⊂ B(H) satisfying all the requirements of Defi nition 5.42 but with s, 

t ∈ R. The generator, G, of a C0-group U on H is defi ned by

Gf h U h f f
h

= −
→

−lim { ( ) }
0

1

where D(G) is the domain of defi nition G which is the set of all f ∈ H for which 

the above limit exists. This limit is two-sided in the sense t → 0 and not just 

t → 0+.

We would point out that G is the generator of a C0-group, U, if and only if G±, 

defi ned as above but with t → 0± respectively, generate C0-semigroups U± where

U t
U t t

U t t
( )

( ) ,

( ) ,
=

≥
≤{ +

−

0

0

Defi nition 5.57. Let H be a Hilbert space with structure (⋅, ⋅) and ⋅.

(i) An operator A : H � D(A) → H is a symmetric operator on H if it is densely 

defi ned on H and if

(Af, g) = (f, Ag) for all f, g ∈ D(A)

(ii) The operator A is skew-symmetric if A ⊂ − A*.

(iii) The operator A is self-adjoint if A = A*.

(iv) The operator A is skew-adjoint if A = −A*.

(v) When H is a complex Hilbert space then A is skew-adjoint if and only if 

(iA) is self-adjoint.

An instructive exercise is to prove the following.

Theorem 5.58. Let H be a Hilbert space and let G : H � D(G) → H generate a 

C0-semigroup U := {U(t) : t ∈ R+} ⊂ B(H). Then U* := {U*(t) : t ∈ R+} is a semi-

group with generator G*.

The semigroup U is a self-adjoint C0-semigroup, that is, U(t) is self-adjoint 

for all t ∈ R+ if and only if its generator is self-adjoint.

Defi nition 5.59. A C0-unitary group is a C0-group of unitary operators.

We now state



Theorem 5.60 (Stone’s theorem) [3]. Let H be a Hilbert space. An operator

G:H � D(G) → H is the generator of a C0-unitary group U on H if and only

if G is skew-adjoint.
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6

A Scattering Theory Strategy

6.1 Introduction

In this chapter we gather together a strategy for investigating wave phenomena 

in a time domain setting and for developing an associated scattering theory. 

In the course of this we make more precise many of the statements found in 

Chapter 1.

In contrast to other strategies in this connection (for example see [9]) the 

approach adopted here is centred on the eigenfunction expansion method men-

tioned in Chapter 5. This will be seen to lead, quite readily, to a mathematical 

description of what is meant by scattering processes and associated scattering 

states. Furthermore, eigenfunction expansions methods associated with the FP 

and the PP will be seen to offer good prospects for the immediate and practical 

construction of solutions and associated wave operators.

A scattering process describes the effects of a perturbation on a system about 

which everything is known in the absence of the perturbation. Such a process 

can be conveniently characterised in terms of three main features; generation, 

interaction and measurement. In the generation stage an incident wave, a signal, 

is generated, far away in both space and time, from any perturbation which might 

have to be considered, for example, a target body or some potential. At this stage 

the interaction between an incident wave and the perturbation is negligible and 

the system evolves as though it were a free system, that is, a system in which 

there are no perturbations. Eventually, the incident wave and the perturbation 

interact and exert considerable infl uences on each other. The resulting effects, 

that is, the scattered waves, often have a very complicated structure. After the 

interaction, during which the scattering has occurred, the now scattered wave 

and the perturbation can once more become quite distant from each other and 

the interaction effects again become negligible. Consequently, any measurement 

of the scattered wave at this stage would indicate that the system is, once again, 

evolving as a free system, but not necessarily the same free system as that con-

sidered originally.
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In practical situations measurements of a wave far away from any per-

turbation are really the only data available. This suggests that one of the funda-

mental questions to be addressed when investigating scattering processes is 

of the following type. If an observer, far distant from any perturbation measures 

the scattered wave (signal) then what was the incident wave (signal)? We would 

like to be able to answer this question without having to investigate, in too 

much detail, the actual interaction stage. Consequently, the asymptotic behaviour 

of solutions to wave equations and especially in the asymptotic equality of 

solutions of the associated free and perturbed systems becomes of particular 

interest.

Even more basic than the above question is the assumption we have made in 

Chapter 1, namely, that the scattered wave can indeed be characterised in terms 

of quantities associated with some free system. This leads to the so-called asymp-

totic condition and the notion of asymptotic completeness. We shall discuss 

these concepts later. Our fi rst concern is to determine whether or not the systems 

of interest actually have solutions which produce propagating waves.

6.2 Propagation Aspects

We consider the IVPs

 {∂2
t + Aj}uj(x, t) = 0, (x, t) ∈ Rn × R, j = 0, 1 (6.1)

 uj(x, 0) = jj(x), ujt(x, 0) = yj(x), j = 0, 1 (6.2)

where j = 0 represents an FP and j = 1 a PP. We shall assume that

Aj : H(Rn) → H(Rn) ≡ L2(R
n), j = 0, 1

and that H(Rn) is a Hilbert space. We remark that here, for ease of presentation, 

we have assumed that both IVPs are defi ned in the same space. It should be 

noticed that we will not always be able to assume this. This assumption could 

well hold when A0 is perturbed by additional terms, as in potential scattering. It 

is unlikely to hold, without further assumptions, when D(A0) is perturbed, as 

would be the case for target scattering. Furthermore, for the sake of illustration 

we shall assume here that A0 is a realisation in H(Rn) of the negative Laplacian 

and A1 is some perturbation of A0.

An analysis of the given IVPs (6.1), (6.2) can begin by interpreting them as 

IVPs for ordinary differential equations rather than for partial differential equa-

tions. This can be achieved in the following manner. Let X be a Hilbert space. 

Furthermore, let Λ � R be a (Lebesgue measurable) subset of R and let f denote 

a function of x ∈ Rn and t ∈ R which has the action

 f ≡ f(⋅, ⋅): t → f(⋅, t) =: f(t) ∈ X, t ∈ Λ (6.3)



that is, f is interpreted as an X-valued function of t ∈ Λ.

We shall denote by L2(Λ,  X) =: H the set of all equivalence classes of measur-

able functions defi ned on Λ with values in X satisfying

 
f f t dtH X

2 2
: ( ) .= <∞

∧∫  (6.4)

where ⋅H denotes a norm on H and ⋅X the norm on X. It is an easy matter to 

show that H is a Hilbert space with inner product

 
( , ) : ( ( ), ( ))f g f t g t dtX=

∧∫  (6.5)

Therefore, with this notation and understanding we can interpret u in (6.1), (6.2) 

as

u ≡ u(⋅,  ⋅): t → u(⋅,  t) =: u(t) ∈ X

The IVP (6.1), (6.2) can now be realised as an IVP for an ordinary differential 

equation, defi ned in H, of the form

 {d2
t  + Aj}uj(t) = 0, uj(0) = jj, ujt(0) = yj, j = 0, 1 (6.6)

When these IVPs are known to have solutions then they can be represented in 

the form

 uj(t) = (cos (tAj
1/2))jj + Aj

−1/2(sin (tAj
1/2))yj, j = 0, 1 (6.7)

Hence, the solution of the given problem, (6.1), (6.2), can be written in the form

 uj(x,  t) = (cos (tAj
1/2))jj(x) + Aj

−1/2(sin (tAj
1/2))yj(x), j = 0, 1 (6.8)

From (6.8), provided that the spectral theorem is available, it would then follow 

that, for j = 0, 1.

 

u x t t dE x
t

dEj j j j( ) cos( ) ( ) ( )
sin(

( ),
)

= { } +










λ λ ϕ
λ

λ
λ Ψ jj

AA
x

jj

( )
( )( ) σσ ∫∫  (6.9)

where s(Aj) denotes the spectrum of Aj and {Ej(l)}l∈s(Aj)
 is the spectral family of Aj.

The representation (6.8) is only meaningful if we know that the problems 

(6.1), (6.2) actually have solutions which, moreover, are known to be unique. 

Furthermore, the practical usefulness of the representation (6.9) depends cru-

cially on how readily the spectral family {Ej(l)}l∈s(Aj)
 can be determined.

An alternative approach frequently adopted when discussing wave motions 

governed by an IVP of the generic form (6.1), (6.2) is to replace the given IVP by 

an equivalent system of equations which are of fi rst order in time. We have already 
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given an indication of how this can be done in Chapter 1 and Chapter 5. 

This approach has a number of advantages since it can provide a straightfor-

ward means of including energy considerations. Results governing the existence 

and uniqueness of solutions with fi nite energy can then be quite readily obtained. 

To develop this approach we introduce an “energy space” HE(Rn) which is defi ned 

as the completion of C0
∞(Rn) × C0

∞(Rn) with respect to the energy norm ⋅E 

where for

 

f R R= 



= ∈ ×∞ ∞f

f
f f C Cn n1

2
1 2 0 0: ( ) ( ),  (6.10)

we defi ne

 
f

R
E f x f x dx

n

2
1

2
2

2
: { ( ) ( ) }= ∇ +∫  (6.11)

We notice that HE(Rn) has the decomposition

 HE(Rn) = HD(Rn) � L2(R
n) (6.12)

where HD(Rn) is the completion of C0
∞(Rn) with respect to the norm defi ned by

 
f f x dx f CE

n

n

2 2
0: ( ) ( )= ∇{ } ∈∫ ∞

R
R,  (6.13)

Furthermore, HE(Rn) is readily seen to be a Hilbert space with respect to the 

inner product (⋅,  ⋅)E defi ned by

 (f,  g)E := (∇f1,  ∇g1) + ( f2,  g2) (6.14)

where f =: 〈 f1,  f2〉, g =: 〈g1,  g2〉 are elements of HE(Rn) and (⋅:  ⋅) denotes the usual 

L2(R
n) inner product.

We now write the IVP (6.1), (6.2) in the form
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 (6.16)

This array can be written compactly in the form

 (∂t − iGj)uj(x,  t) = 0, uj(x,  0) = u0
j(x), j = 0, 1 (6.17)

where



 

u uj
j

jt
j

j

j

x t
u

u
x t x x( ) ( ) ( ) ( ), , ,=









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



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0 ϕ
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 (6.18)

 − =
−











i
I

A
j

j

G
0

0
 (6.19)

We now interpret uj, j = 0, 1, as HE-valued functions of t in the sense that

 uj ≡ uj(⋅,  ⋅): t → uj(⋅:  t) =: uj(t) ∈ HE(Rn), j = 0, 1 (6.20)

In this case (6.17) can be reformulated in HE(Rn) as an IVP for an ordinary dif-

ferential equation of the form

 {dt − iGj}uj(t) = 0, uj(0) = u0
j (6.21)

where for j = 0, 1

Gj : HE(Rn) � D(Gj) → HE(Rn)

G i
I

A
Dj

j
jx x=

−















= ∈
0

0

1

2
1

ξ
ξ

ξ ξ, , 2 ( )G

D(Gj) = {x = 〈x1,  x2〉 ∈ HE(Rn): Ajx1 ∈ L2(R
n), x2 ∈ HD(Rn)}

Once we have obtained the representations (6.21) of the given IVPs (6.1), (6.2) 

then the following questions are immediate.

Q1: Are the problems (6.21) and (6.1), (6.2) well-posed?

Q2: How can the solutions of the problems (6.21) be represented whenever 

they exist?

Q3: How can solutions of (6.21) yield the required solutions to (6.1), (6.2)?

It is clear that if the problems (6.21) are well-posed then it will follow that the 

problems (6.1), (6.2) are also well-posed. To establish the wellposedness of (6.21) 

we use results from the theory of semigroups introduced in Chapter 5. For our 

later convenience we gather together here the relevant results. For ease of pre-

sentation we shall consider, for the moment, the IVP

 

d

dt
B w t t w w−{ } = ∈ =+( ) , , ( )0 0 0R  (6.22)

Theorem 5.49. The problem (6.22) is well-posed if B generates a C0-semigroup 

U on H. In this case the solution of (6.22) is given by w(t) = U(t)w0, t ∈ R+.

We will also want to discuss non-homogeneous problems of the form
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d

dt
B v t f t t v v−{ } = ∈ =+( ) ( ) ( ), ,R 0 0  (6.23)

where f and v0 are given data functions. In this connection the following result 

holds.

Theorem 5.50. Let H be a Hilbert space and B: H � D(B) → H be the generator 

of a C0-semigroup U = {U(t): t � 0} � B(H). If v0 ∈ D(B) and f ∈ C1(R+,  H) 

then (6.23) has a unique solution v ∈ C1(R+,  H) with values in D(B).

A formal application to (6.23) of the familiar integrating factor technique 

yields the solution form

v t U t v U t s f s ds
t

( ) ( ) ( ) ( )= + −∫0
0

These results settle the wellposedness of the IVPs concerned provided we can 

show that B is the generator of a suitable semigroup. With this in mind, we recall.

Theorem 5.60 (Stone’s theorem) [6] Let H be a Hilbert space. An operator B: 

H � D(B) → H is the generator of a C0-unitary group U on H if and only if B 

is skew-adjoint.

Returning now to our original notation we remark that in most cases of practi-

cal interest it can be shown [14] that the Gj, j = 0, 1 are positive, self-adjoint 

operators on HE(Rn). Furthermore, since the wellposedness of the problem (6.22) 

will imply the wellposedness of the problem (6.1), (6.2) for each j = 0, 1 we can 

summarise the use of the above results as follows.

Theorem 6.1 Let H be a Hilbert space and Aj: H � D(Aj) → H, j = 0, 1 be 

positive, self-adjoint operators on H. Let HE denote an energy space asso-

ciated with H. If, for j = 0, 1, the operators Gj: HE � D(Gj) → HE of the 

form iG
A

i
j

=
−












0 1

0
 are self-adjoint on HE then (iGj) generates a C0-group 

{Uj(t), t ∈ R} defi ned by

 

U Gj j j j jt it tA
I

I
A tA( )= ( )= ( ) 









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 (6.24)
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
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
 (6.25)

Therefore, recalling the material in Chapter 5, it follows that the IVPs

 {d2
t + Aj}uj(t) = 0 (6.26)

 uj(0) = jj ∈ D(Aj), ujt(0) = yj ∈ D(Aj
1/2) (6.27)



are also well-posed.

The solution of (6.21) can be obtained, using an integrating factor technique, 

in the form

 uj(t) = exp{itGj}u
0
j = Uj(t)u

0
j (6.28)

Consequently, provided we ensure that the (iGj), j = 0, 1 generate C0-groups and 

that they are of the form (6.24) then it is clear that (6.1), (6.2) are well-posed 

problems and, moreover, the fi rst component of (6.28) yields the same solution 

as (6.8). These observations will enable us to settle propagation problems associ-

ated with (6.1), (6.2).

However, we recall that a practical interpretation of these solution forms 

relies on a detailed knowledge of the spectra, s(Aj), j = 0, 1 and the spectral 

families. {Ej(l)}l∈s(Aj)
, j = 0, 1. The spectral families can be determined by means 

of Stone’s formula [10], [14] which for j = 0, 1 has the form

  
(( ( ) ( )) ) lim ([ ( ) ( )] )E E f g R t i R t i f g dtj j j jλ µ ε ε

δ ε µ δ
− = + − −

↓ ↓ +
, ,

,0 0

λλ δ+

∫  (6.29)

where

 Rj(t ± ie) = (Aj − (t ± ie))−1 (6.30)

Hence. for j = 0, 1 the spectral families, {Ej(l)}l∈s(Aj)
, j = 0, 1, can be obtained 

via an investigation of the resolvent, Rj(l) of Aj. This in turn yields details of the 

underlying spectral properties of Aj.

From a practical point of view the determination of the spectral families is 

quite demanding and detailed investigations are often left to specifi c cases. 

However, since an investigation of Rj(l) is always required it would seem that an 

alternative approach based directly on the theory of eigenfunction expansions 

could offer good prospects for developing constructive methods. We shall tend 

to concentrate on this approach in the following chapters.

6.3 Solutions with Finite Energy and Scattering States

Bearing in mind (6.12) and the notion of energy in a wave [3] we introduce

 
E u t u x t u x t dx u tt E

Rn
( ) { ( ) ( ) } ( ), , ,= ∇ + =∫ 2 2 2

 (6.31)

and

 
E B u t u x t u x t dx u tl B E

B
( ) { ( ) ( ) } ( ), , , , ,= ∇ + =∫ 2 2 2

 (6.32)

where B � R is any bounded set. E(u,  t) denotes the global energy of the wave 

at time t whilst E(B,  u,  t) denotes the energy of the wave in B at time t.
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In this section we shall only be interested in those systems in which the global 

energy is conserved, that is

 E(u,  t) = E(u,  0) = constant (6.33)

Therefore, if we are dealing with wave equation problems of the typical form (6.1), 

(6.2) then the energy integrals (6.31) associated with these problems have the 

form

 
E u t x x dx jj j j

Rn
( ) { ( ) ( ) }, , ,1= ∇ + =∫ ϕ ϕ2 2

0  (6.34)

For the FP, that is for the case j = 0, the following result can be obtained [17].

Theorem 6.2 (i) A0 is a self-adjoint, non-negative operator on L2(R
n).

(ii) A0 has a unique, non-negative square root A1/2
0  with domain

D(A0
1/2) = {u ∈ L2(R

n): Da
u  ∈ L2(R

n), a ≤ 1} =: L1
2(Rn)

where a is a multi-index of the form a = (a1,  a2,  .  .  .  ,  an) and the ak are 

non-negative integers for k = 1, 2,  .  .  .  , n and α α= =Σk
n

k1 .  Further, we defi ne  

Da := D1
a

1
D2

a
2
  .  .  .  Dn

a
n
, where ∂/∂xk, k = 1, 2,  .  .  .  , n.

We remark that Lm
2 (Rn), m = 0, 1,  .  .  .  are the usual Sobolev Hilbert spaces 

[1].

Consequently, using (6.12) we see that if j0 ∈ D(A0
1/2 = L1

2(R
n) and y0 ∈ L2(R

n) 

then the representation

 u0(t) = (cos (tA0
1/2))j0 = A−0

1/2(sin (tA0
1/2))y0 (6.35)

implies that u0(t) ∈ L1
2(R

n) and u0t(t) ∈ L2(R
n). In this case the energy integral 

E(u0,  t) is fi nite and u0 is called a solution with fi nite energy (wfe).

When we come to deal with the PP then we will require a similar result to 

Theorem 6.2 for the operator A1 in (6.1).

Although we have assumed that the global wave energies E(uj,  t), j = 0, 1 

remain constant this is not necessarily the case for the local energies E(B,  uj,  t), 

j = 0, 1. As a consequence it is natural to say that the uj(x,  t), j = 0, 1, represent 

scattering waves if for every bounded, measurable set B � Rn

 
lim ( )
t

jE B u t
→∞

=, , 0  (6.36)

If we assume that j0 and y0 are real-valued functions such that j0 ∈ H(Rn) =: 

L2(R
n) and y0 ∈ D(A0

−1/2) and if we defi ne



 h0 = j0 + i0
−1/2y0 (6.37)

then (6.35) can be expressed in the form

 u0(t) = u0(⋅⋅  t) = Re(v0(⋅,  t)) (6.38)

where

 v0(t) ≡ v0(⋅,  t) = exp{−itA1/2
0 }h0 =: U0(t)h0 (6.39)

is the complex-valued solution in H(Rn) of (6.1), (6.2) with j = 0. The representa-

tion (6.38), (6.39) implies that the evolution and asymptotic behaviour of u0(x,  t) 

is determined by that of v0(x,  t).

If, with (6.39) in mind, a wave system of interest evolves according to

 v(x,  t) = U0(t)h(x) (6.40)

then it is natural to say that h ∈ H(Rn) is a scattering state if and only if (6.36) 

holds.

If we introduce the mapping

 Qq: HE(Rn) → HE(Rn) (6.41)

where

Qqw(x) = cq(x)w(x) for all x ∈ Rn

and cq is the characteristic function for

B(q) := {x ∈ Rn: x ≤ q}

then we notice that

E B q v t Q U t hq E
( ( ), , ) ( )0 0 0

2=

Hence, (6.36) is equivalent to

 
lim ( )
t

q E
Q U t h q

→∞
= >0 0 0 0for every  (6.42)

It is a straightforward matter to verify, for 0 ≤ q < ∞, that Qq is an orthogonal 

projection on HE and that

s Q I
q

q− =
→∞
lim

This leads to the following defi nition [18].
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Defi nition 6.3. (i) A family of orthogonal projections on HE, denoted by {Qq: 0 ≤ 

q < ∞} is called a family of localising operators on HE if Qq: HE → HE satisfi es 

s Q I
q

q− =
→∞
lim .

(ii) An element h0 ∈ HE is a scattering state for A0 and {Qq} if and only if 

(6.42) holds. The set of all such scattering states will be denoted by Hs.

6.4 Construction of Solutions

Once questions of existence and uniqueness of solution have been settled then 

we can turn our attention to methods for actually determining such solutions.

We consider the IVP (6.1), (6.2) for the case j = 0, 1 and, with future applica-

tions in mind, we shall take n = 3.

We fi rst notice that Theorem 6.2 indicates that the spectral theorem is available 

for interpreting the solution forms (6.35) and (6.39). Specifi cally, if {E0(l)}l∈s(A0) 

denotes the spectral family of A0 then we have the spectral representations

 
A dE0 0

0
=

∞

∫ λ λ( )  (6.43)

 
Φ Φ( ) ( ) ( )A dE0 0

0
=

∞

∫ λ λ  (6.44)

where Φ is a bounded, Lebesgue measurable function of l. However, as we have 

already mentioned, a diffi culty associated with the results (6.43) and (6.44) con-

cerns the practical determination of the spectral family {E0(l)}l∈s(A0). For the case 

of the FP that we are concerned with the situation can be eased by introducing 

results for Fourier transforms in L2(R
3) := H(R3). The Plancherel theory indicates 

that for any f ∈ H(R3) the following limits exist.

 

ˆ ( )( ) ˆ ( ) : lim
( )

exp( ) ( )
/

f F f p f p ix p f x dx
r x r

0 3 2

1

2
= = − ⋅

→∞ ≤∫π
 (6.45)

 ˆ ( ) ( ˆ )( ) : lim
( )

exp( ) ˆ ( )*

/
ff x F f x ix p f p dp

r p r
= = ⋅

→∞ ≤∫0 3 2

1

2π
 (6.46) 

where x, p ∈ R3. It can also be shown that for any bounded, Lebesgue measurable 

function Φ we have

 ˆ ( ( ) )( ) lim
( )

exp( ) ( ˆ ( )
/

f A f x ox p p f p dp
r p r

Φ Φ0 3 2

1

2
= ⋅

→∞ ≤∫π
2

 (6.47)

We would emphasise that the limits in (6.45) to (6.47) have to be taken in the 

H(R3) sense. Furthermore, the theory of Fourier transform indicates that F0: 

H(R3) → H(R3) and, moreover, that it is a unitary operator. Consequently, we 

have F 0
−1 = F *0 .

We notice that



 w x p ix p x p R0 3 2

31

2
( )

( )
exp( )

/
, , ,= ⋅ ∈

π
 (6.48)

satisfi es the Helmholtz equation

 ( ) ( , ) , ,∆+ = ∈p w x p x p2
0

30 R  (6.49)

Thus, w0 might be thought to be an eigenfunction of A0 = −∆ with associated eigen-

value p
2. However, a direct calculation shows that w0 ∉ H(R3) and so w0 must be 

a generalised eigenfunction of A0. Nevertheless, the Fourier Plancherel theory, 

which has been developed independently of any scattering aspects, indicates that 

all the limits (6.45), (6.46) and (6.47) exist. Consequently, the spectral decomposi-

tion of A0 can be written as a generalised eigenfunction expansion in the form

 ˆ ( )( ) ˆ ( ) : lim ( ) ( )f F f p f p w x p f x dx
r x r

0 0= =
→∞ ≤∫ ,  (6.50)

 ˆ ( ) ( ˆ )( ) : lim ( , ) ˆ ( )*ff x F f x w x p f p dp
r p r

= =
→∞ ≤∫0 0  (6.51)

 ˆ ( ( ) )( ) lim ( , ) ( ) ˆ ( )f A f x w x p p f p dp
r p r

Φ Φ0 0
2=

→∞ ≤∫  (6.52)

where as before all limits are taken in the H(R3) sense. It will be useful later on 

to bear in mind that (6.52) can also be written in the form

 ( ( ) )( ) ( ) ˆ ( )F A f p p f pΦ Φ0
2=  (6.53)

These various results imply that the wave function v0, introduced in (6.39) can be 

interpreted in the form

 ˆ ( ) ( , )exp( ) ˆ ( )hv x t w x p it p h p dp0 0 03
, −∫

R
 (6.54)

We remark that the improper integral in (6.54) must be interpreted in the H(R3) 

limit sense as in (6.50) to (6.52). With this understanding we should also notice 

that in (6.54)

 w x p it p i x p t p0 3 2

1

2
( )exp( )

( )
exp( ( ))

/
, − = ⋅ −

π
 (6.55)

are solutions of (6.1) with j = 0 and as such represent plane waves propagating 

in the direction of the vector p. Therefore, the wave function given by (6.54) is a 

representation of a wave (acoustic) in terms of elementary plane waves (6.55).

We now turn our attention to the PP given by (6.1), (6.2) with j = 1. As we 

have already mentioned, for ease of presentation at this stage we shall assume 

that the FP and the PP are both defi ned in the same Hilbert space. We have seen 

that the complex-valued solution of the FP is given by (6.39). Consequently, 
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arguing as for the FP we fi nd that, provided j1 ∈ H(R3) and y1 ∈ D(A1
−1/2), the 

complex-valued solution of the PP is given by

 v1(x,  t) ≡ v1(x,  t) = exp{−itA1
−1/2}h1(x) =: U1(t)h1(x) (6.56)

where

 h1 = j1 + iA1
−1/2 (6.57)

For the FP the Fourier Plancherel theory provides us with the generalised eigen-

function expansion (6.50) to (6.52). As a consequence we could interpret (6.39) 

in the form (6.54). We would like to have a similar result for the PP. Specifi cally, 

associated with A1 we want a generalised eigenfunction expansion theorem of 

the form

 ( )( ) ( ) : lim ( ) ( )F f p f p w x p f x dx
r x r

1 1= =
→∞ ≤∫

ɶ ,  (6.58)

 f x F f x w x p f p dp
r p r

( ) ( )( ) : lim ( ) ( )= =
→∞ ≤∫1 1

* ,ɶ ɶ  (6.59)

 ( ( ) )( ) lim ( ) ( ) ( )Φ ΦA f x w x p p f p dp
r p r

1 1
2=

→∞ ≤∫ , ɶ  (6.60)

where, as previously, the above limits have to be taken in the H(R3) sense. The 

kernels w1(x,  p) are taken to be solutions of

 ( ) ( , ) , ,A p w x p x p1
2

1
30− = ∈R  (6.61)

and as such are to be generalised eigenfunctions of A1.

We would emphasise that for any specifi c perturbed problem it has to be 

proved that a generalised eigenfunction expansion (spectral decomposition) such 

as (6.58) to (6.60) is indeed available for use. For specifi c physical problems this 

can often involve a great deal of work. A full spectral analysis of A1 is required 

and functions such as w1, which are intimately connected with the particular 

problem being considered, have to be determined. We shall return to these various 

aspects in later chapters when we come to deal with specifi c scattering problems. 

For the remainder of this chapter we shall assume that such generalised eigen-

function expansions are available. Consequently, we will then be able to write 

(6.56) in the following form.

 ˆ ( , ) ( , )exp( ) ( )hv x t w x p it p f p dp1 1 13
= −∫ ɶ

R
 (6.62)

which is interpreted in the same way as (6.54).

We remark that in (6.54) and (6.62) the p need not be the same for both. It is 

associated with eigenvalues of A0 in (6.54) and with eigenvalues of A1 in (6.62).



From (6.54) and (6.62) it is a straightforward matter to obtain the 

representations

 u x t w x p p t p p
t p

p
dp

R
0 0 0 02

, cos
sin

( )= ( ) ( ) ( )+ ( )
( ){ }∫ , ɶ ɶϕ ψ  (6.63)

 u x t w x p p t p p
t p

p
dp

R
1 1 1 13

, cos
sin

( )= ( ) ( ) ( )+ ( )
( ){ }∫ , ɶ ɶϕ ψ  (6.64)

Hence, provided we can establish an eigenfunction expansion theorem of the 

form (6.58) to (6.60) then, since all the terms in (6.63) and (6.64) are computable, 

we have available, in (6.63) and (6.64), a practical means of constructing solutions 

to the FP and PP respectively.

For the purpose of developing a scattering theory it remains to investigate 

whether or not these solutions can be considered as being asymptotically equal, 

in some sense, as t → ±∞. We shall begin to investigate this aspect in the next 

section.

6.4.1 Wave Operators and Their Construction

In Chapter 1 we introduced the notions of Asymptotic Equality (AE) and Wave 

Operator (WO). Specifi cally, we say that vj, j = 0, 1 the complex solutions of (6.1), 

(6.2), are AE as t → ±∞ if

 lim ( ) ( )
t

v t v t
→±∞

− =1 0 0  (6.65)

where ⋅ denotes the norm on H(R3).

Using (6.39) and (6.56) we fi nd

v t v t U t h U t h

U t U t h h

W t h h

1 0 1 1 0 0

0 1 1 0

1 0

( ) ( ) ( ) ( )

( ) ( )

: ( )

− = −

= −
= −

*

Hence

 lim ( ) ( )
t

v t v t W h h
→±∞

±− = −1 0 1 0  (6.66)

where

 W W t U t U t itA
t t t

±
→±∞ →±∞ →±∞

= = =: lim ( ) lim *( ) ( ) lim exp( )exp(/
0 1 0

1 2 −−itA1
1 2/ )  (6.67)

are the WOs associated with A0 and A1.

The manipulations leading to (6.66) have always to be justifi ed but are cer-

tainly valid when the Uj(t), j = 0, 1 are unitary operators. In practice we endeavour 
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to ensure that this is the case. We notice that if the Aj, j = 0. 1 are self-adjoint 

operators then Stone’s theorem [14] ensures that the Uj(t), j = 0. 1 are indeed 

unitary operators.

Thus we see that the limit on the left-hand side of (6.66) will be zero, and so 

the FP and the PP will be AE, provided that the initial data for the FP and the PP 

are related according to

 h± = W±h1 (6.68)

where, for the sake of clarity, h0 has been replaced by h± to indicate that different 

initial values might have to be considered for the FP when investigating t → +∞
and t → −∞.

Before indicating a means of constructing the wave operators W± we fi rst 

recall some features of waves on a semi-infi nite string.

Example 6.4. The wave motion of a semi-infi nite string is governed by an equa-

tion of the form

 (∂2
t − ∂2

x)u(x, t) = 0, (x, t) ∈ Γ × R (6.69)

where Γ = (0,  ∞).

Since Γ is an unbounded region then any solution of (6.69) will, in practice, 

be required to satisfy certain growth conditions, called radiation conditions, as 

x → ∞. To indicate the nature of these conditions we recall that equations like 

(6.69) have solutions that can be written in the form

 u(x, t) = f(x − t) + g(x + t) (6.70)

where f and g are arbitrary functions characterising a wave of constant profi le 

travelling with unit velocity from left to right and from right to left respectively. 

The precise form of f and g is settled in terms of the initial and boundary condi-

tions that are imposed on solutions of (6.69). In the particular case when both 

waves can be assumed to have the same time dependency, exp(−iwt), then we 

could expect to be able to write (6.70) in the form

 u(x, t) = e−iwtu+ (x) + e−iwtu−(x) (6.71)

Direct substitution of (6.71) into (6.69) shows that the two quantities u+ and u−
must satisfy 

 (d2
x + w2)u±(x) = 0 (6.72)

Now (6.72) does not imply that the u± are necessarily the same. Indeed,

 u+(x) = eiwx and u−(x) = e−iwx (6.73)



both satisfy (6.72). Combining (6.71) and (6.73) we obtain

 u(x,  t) = exp(−iw(t − x)) + exp(−iw(t + x)) (6.74)

Thus, on recalling (6.70) we see that u+ characterises a wave moving from left to 

right and u− a wave moving from right to left, both having the same time depend-

ency exp(−iwt). Equivalently, we can say that u+ is an outgoing wave since it 

is moving away from the origin whilst u− is an incoming wave as it is moving 

towards the origin. This particular feature of wave motion can be neatly encap-

sulated as follows. (See the Commentary and the References cited there.)

Defi nition 6.5. Solutions u± of the equation

(∆ + w2)u± (x) = f(x), x ∈ Rn

are said to satisfy the Sommerfeld radiation conditions if and only if
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r x
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0
1

1 2
as  (6.76)

The estimates in (6.75) and (6.76) are considered to hold uniformly with respect 

to the direction x/x.

The estimate (6.75) taken with a minus (plus) sign is called the Sommerfeld 

outgoing (incoming) radiation condition.

With u± defi ned as in (6.73) it is clear that u+ is outgoing whilst u− is incom-

ing. From the practical point of view this is entirely to be expected. Furthermore, 

it will often be convenient to think of u− as an incident wave and u+ as a scat-

tered wave.

Since we are dealing with perturbation processes it is reasonable to assume 

that w1, the kernel function in the generalised eigenfunction expansion theorem 

(6.58) to (6.60), is a perturbation of w0 the kernel function in the generalised 

eigenfunction expansion theorem (6.50) to (6.52). Since w0 characterises a plane 

wave we shall refer to w1, a perturbation of w0, as a distorted plane wave.

Defi nition 6.6. An outgoing (incoming) distorted plane wave w+(x,  p) (w−(x,  p)) 

satisfi es.

(i) (∆ + w2)w±(x) = 0, x, p ∈ Rn

(ii) w+(x,  p)w0(x,  p) satisfi es the outgoing radiation condition (resp. w−(x,  p) 

− w0(x,  p) satisfi es the incoming radiation condition).

Consequently, we shall assume here that the kernel w1 (x,  p) is either an outgoing 

or an incoming distorted plane wave and we shall write

 w1(x,  p) ≡ w±(x,  p) = w0(x,  p) + w′±(x,  p) (6.77)
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where w′+ (w′−) behaves like an outgoing (incoming) wave.

Of course, when dealing with specifi c, physical problems the existence and 

structure of the distorted plane waves must be established. 

The existence of the distorted plane waves can be established by means 

of the Limiting Absorption Principle (LAB) [4], [5] which is based on 

noticing that if A is a self-adjoint, linear operator in a Hilbert space H and if 

l = m + iv ∈ �, with v ≠ 0 then the equation

(A − lI)u(x,  l) = f(x)

has a solution u(⋅, l) ∈ H for each f ∈ H because l ∉ s(A). In the LAB method 

we look for solutions in the form 

u x u x
v

±
→

=
±

( ) lim ( ), ,µ λ
0

The diffi culty with this approach is centred on the interpretation of this limit. In 

general it can only be understood in the sense of convergence in a Hilbert space 

H(�), where � is an arbitrary subdomain of the region over which functions in 

H are defi ned. Physically, the quantity u(x,  l), v ≠ 0 describes a steady state wave 

in an energy absorbing medium with absorption coeffi cient proportional to v [17]. 

We shall deal with this method in more detail when we come to consider the 

specifi c problems discussed in later chapters.

If we assume the existence of the w± and, moreover, that they form two 

complete sets of generalised eigenfunctions for A1 then on substituting (6.77) into 

(6.58) to (6.60) we obtain

 ɶf p F f p w x p f x dx
r x r

± ±
→∞

±= =
≤
∫( ) ( )( ) lim ( ) ( ),  (6.78)

 f x F f x w x p f p dp
r p r

( ) ( )( ) lim ( ) ( )= =±
→∞

± ±
≤∫

* ,ɶ ɶ  (6.79)

 ( ( ) )( ) lim ( ) ( )) (Φ ΦA f x w x p f p dp
r p r

p1
2=

→∞
± ±

≤∫ , ɶ  (6.80)

provided these limits exist. We refer to F+ as an outgoing generalised Fourier 

transform and F− as an incoming generalised Fourier transform.

On the basis of these various assumptions we see that the solution v1(x,  t) 

given in (6.62) has two spectral representations depending on whether w+ or w− 

is used in the expansion theorem (6.78) to (6.80). Specifi cally, we have

 v x t w x p it p h p dp
r p r

1( ) lim ( )exp( ) ( ), ,= −
→∞

+ +
≤∫

ɶ  (6.81)

and

 v x t w x p it p h p dp
r p r

1( ) lim ( )exp( ) ( ), ,= −
→∞

− −
≤∫

ɶ  (6.82)



where

 ɶh p w x p h x dx
r x r

±
→∞

±
≤

= ∫( ) lim ( ) ( ),  (6.83)

Since w+(resp. w−) is an outgoing (resp. incoming) distorted plane wave we refer 

to (6.81) (resp. (6.82)) as the outgoing (resp. incoming) spectral representations 

of v1. 

We are now in a position to construct a useful form for the wave operators 

W±. If we substitute the decomposition (6.77) for w− into (6.82) then we obtain

 v1(x,  t) = v−0(x,  t) + v−(x,  t) (6.84)

where

 v x t w x p it p h p dp
r p r

0 0
−

→∞
−

≤
= −∫( ) lim ( )exp( ) ( ), , ɶ  (6.85)

 v x t w x p it p h p dp
r p r

−

→∞
− −

≤
= ′ −∫( ) lim ( )exp( ) ( ), , ɶ  (6.86)

We now notice that since the kernel function in the integral (6.85) is w0 then 

it follows that v−0 represents a free wave. Therefore we can write

 v0
−(x,  t) = U0(t)h0

−(x) = exp(−itA1/2
0 h0

−(x) (6.87)

where

 h0
−(x) = v0

−(x,  0) (6.88)

Hence, bearing in mind (6.85), (6.68) and (6.58) we fi nd 

 h0
−(x) = v0

−(x,  0) = (F*0 h̃−)(x) = (F*0 F−h1)(x) (6.89)

Now, (6.89) relates the initial data for a FP and the initial data for an associ-

ated PP. Therefore, we conclude that as t → −∞ we might expect that

 h0
−(x) = (F*0 F−h)(x) = W−h(x) (6.90)

that is, we might expect that

 W− = F*0 F− (6.91)

It turns out that this is indeed the case provided we have local energy decay of 

the form

 lim ( )
t

v t
→−∞

− ⋅ =, 0  (6.92)
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Using (6.84) we see that (6.92) is equivalent to 

 lim ( ) ( )
t

v t v t
→−∞

−⋅ − ⋅[ ] =1 0 0, ,  (6.93)

where ⋅ is the H(R3) norm. It now follows that 

 

v t v t itA h itA h

itA

1 0 1
1 2

1 0
1 2

0( ) ( ) exp( ) exp( )

{exp(

/ /⋅ − ⋅ = − − −

=

− −, ,

00
1 2

1
1 2

0 1
/ /)exp( ) }− − −itA F F h*

 (6.94)

Equation (6.94) together with (6.93) and the defi nition of the WO given in (6.67) 

implies that W− exists and is given by

 W− = F*0 F− (6.95)

If we substitute the decomposition (6.77) for w+ into (6.81) then we obtain 

 v1(x,  t) = v+0(x,  t) + v+(x,  t) (6.96)

where

 v x t w x p it p h p dp
r p r

0 0
+

→∞
+

≤
= −∫( ) lim ( )exp( ) ( ), , ɶ  (6.97)

 v x t w x p it p h p dp
r p r

+

→∞
+ +

≤
= ′ −∫( ) lim ( )exp( ) ( ), , ɶ  (6.98)

Arguing as before we see that v+0(x,  t) represents a free wave and that we can 

write

 v+0(x,  t) = U0(t)h
+
0(x) = exp(−itA1/2

0 )h+0(x) (6.99)

where

 h+0(x) = v+0(x,  0) = (F*0 h̃+)(x) = (F*0 F+h1)(x) (6.100)

This results implies that we might expect that 

 W+ = F*0 F+ (6.101)

We can show that W+ exists and that (6.100) is indeed the case provided that we 

have local energy decay of the form 

 lim ( )
t

v t
→+∞

+ ⋅ =, 0  (6.102)

The proof follows as for the case of W− and the details are left as an exercise.



Once we have determined the existence and the form of the wave operators 

W± then a scattering operator, S, which links the initial conditions h0
± can be 

introduced as follows.

The above results indicate that 

 h0
± = W±h1 = F*0 F±h1 (6.103)

This in turn implies 

F0h0
± = ĥ0

± = F±h1

Hence

h+0
ˆ = F+h1 = F+F*−h−0

ˆ =: Sh−0
ˆ  (6.104)

and we see that 

 S := F+F *−  : h−0
ˆ → h+0

ˆ  (6.105)

This operator and the unitarily equivalent operator 

 F*0 SF0 := F*0 F+F *−F0 : h
−
0 → h+0 (6.106)

are particularly useful when discussing the theoretical and practical details of the 

asymptotic condition and the associated AE results.

6.5 Asymptotic Conditions

We introduced in Chapter 1 the notion of AE. The aim in this section is to provide 

a more precise formulation of this asymptotic property. 

The requirement that the scattered waves can be characterised, at large posi-

tive and large negative times, in terms of free waves which are totally unaffected 

by any scatterer, is called the asymptotic condition. To place this in a mathe-

matical framework we again consider a simple case. Specifi cally, we consider a 

FP characterised by an operator A0 and an associated group {U0(t)} and a PP, 

describing the wave scattering, which is characterised in terms of an operator A1

and a group {U1(t)}. Here, as introduced earlier 

 U0(t) = exp{−itA0
1/2}, U1(t) = exp{−itA1

1/2} (6.107)

Furthermore, we have seen that the FP has an initial state vector h0 given by 

(6.37) whilst the PP has an initial state vector h1 given by (6.57). We shall assume 

that A0 and A1 both act in the same Hilbert space H.

In a typical scattering situation the time evolution of the scattered wave which 

has initial state h1 ∈ H is governed by the group {U1(t)}, that is, the state of the 
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scattered wave at some other time t is U1(t) h1. In the absence of any scattering 

mechanism the time evolution of the free wave having a initial state h0 ∈ H is 

governed by the group {U0(t)}. The state of the free wave at some other time t is 

then U0(t)h0. Our aim is to see if we can approximate, as t → ±∞, the waves 

arising from the PP by waves arising from the free evolution of suitable FPs. This 

is most readily done by assuming that for h1 ∈ H there exist two initial states h± 

such that the wave U1(t) h1 converges to U0(t)h± as t → ±∞. Symbolically, we 

mean that we should be able to satisfy the requirements

 lim ( ) ( ) lim ( ) ( )
t t

U t h U t h U t h U t h
→−∞

−
→+∞

+− = − =1 1 0 1 1 00 0,  (6.108)

where ⋅
 
is the norm on H. We refer to (6.108) as the asymptotic conditions. 

When these requirements are satisfi ed then it will mean that the scattered wave, 

characterised by U1(t)h1, is virtually indistinguishable from the wave U0(t)h− in 

the remote past and from U0(t)h+ in the distant future. The requirement that 

vectors such as h± should exist and moreover exist as elements of H is really 

quite a severe restriction. However, we would remark that an indication of how 

this requirement can be met has already been given in the previous subsection. 

The set of vectors h1 ∈ H for which (6.108) can be satisfi ed is called the set 

of scattering states for A1, and will be denoted by M(A1). We shall assume that 

for each self-adjoint operator A with which we shall be concerned the set of scat-

tering states, M(A), has the following properties. 

(i) M(A) is a subspace of H. 

(ii) M(A) is invariant under the group {U(t)}, that is, if h ∈ M(A) then 

U(t)h = exp(−itA1/2)h ∈ M(A) for all t ∈ R

We notice that if h is an eigenfunction of A1/2, that is, for some m ∈ H

A1/2h = mh

then the state U(t)h = exp(−itA1/2)h = exp(−itm)h is simply a multiple of the 

state h and as such it cannot defi ne a scattering process. It defi nes a so-called 

bound state of A. For this reason scattering states are expected to be associated 

with the continuous spectrum of A.

In this description of the asymptotic condition we are associating with each 

initial state h−
 
∈ M(A0) another state vector h+ ∈ M(A0), both state vectors being 

interpreted as initial states at the time t = 0. If there is no scattering taking place 

then U1(t) = U0(t) and clearly we have h− = h+. However, when scattering does 

occur then the correspondence between h− and h+ is effected by means of a 

scattering operator S. Typical forms for the scattering operator have been indi-

cated in (6.105) and (6.106).

When dealing with specifi c problems it is sometimes convenient to alter the 

various requirements mentioned above. This is because h1 is usually associated 

with the PP and as such is a given quantity. Our task then is to determine the 



states h± so that the asymptotic conditions (6.108) are satisfi ed. This is done by 

means of the WO, as in (6.68), and using an SO to determine the relation between 

h− and h+, as in (6.105) or (6.106). We can summarise the above discussion in the 

following manner. 

Defi nition 6.7. A wave evolving according to

U1(t)h1(x) = exp(−itA1
1/2)h1(x)

is said to satisfy the asymptotic condition for t → +∞, defi ned with respect to 

the family of operators

{U0(t) = exp(−itA0
1/2)}

if there exists an element h+ ∈ M(A0) � H such that as t → +∞ the wave 

U1(t)h1(x) is asymptotically indistinguishable from the wave U0(t)h+(x).

A similar defi nition holds as t → −∞.

This defi nition implies that an element h± ∈ H is such that the free evolution 

U0(t)h± defi nes, as t → ±∞, the asymptotes of some evolution U1(t)h1. However, 

we need to determine whether or not every h1 ∈ H, evolving according to U1(t)h1 

has asymptotes, as t → ±∞, of the form U0(t)h±. To be able to settle this question 

we need some preparation which involves properties of the wave operators W±. 

First we show that the wave operators W± satisfy the so-called intertwining 

relation 

 A0W± = W± A1 (6.109)

To see that this is the case we notice that

exp( ) exp( ) lim {exp( )exp(/ / /− = − −±
→±∞

i A W i A itA itA
t
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Differentiate with respect to t and set t = 0 to obtain (6.109).

We next notice, using the properties of inner products on Hilbert spaces, that 

for all f, g ∈ D(W*± ) we have

( ) lim (exp( )exp( ) exp(/ / /W f W g itA itA f itA
t

± ±
→±∞

= −* , * ,0
1 2

1
1 2

0
1 2 ))exp( ) )/− = ( )itA g f g1

1 2 ,

(6.110)

Hence the wave operators W*±  are isometries. Furthermore, we can use (6.110) 

to obtain
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(W*± f, W*±g) = ( f, W±W*±g) = ( f,  g)

from which it follows that

 W±W*±  = I (6.111)

We remark that from (6.111) we might expect that W*±  should behave like W*± . 

We obtain conditions below which can ensure this.

We notice that for f, g ∈ H related according to

g := W*± f ∈ R(W*± ) = range of W*±

we have

 W*+ W+g = W*+ (W+W*+ f ) = W*+ f = g (6.112)

If, however, an element h ∈ H is orthogonal to R(W*+ ) then

 0 = (h,  W*+ f ) = (W+h,  f ) for all f ∈ H (6.113)

Hence it follows that 

 W+h = 0, h ∈ R(W*± )� (6.114)

and that 

W*+ W+h = W*+ (W+h) = 0 

Hence we have shown that W*+ W+ is a projection onto R(W*+ ).

Similarly, W*−W− is a projection onto R(W*− ).

With this preparation we return to the question of the availability of the initial 

data, h±, for the FP which will yield the required AE for the PP. 

We emphasise that, as always in this monograph, the FP will be concerned 

with an incident wave (signal) in the absence of any perturbation whilst the PP 

will be concerned with scattered waves which are a consequence of some per-

turbation of the incident wave. 

We have seen that when developing a scattering theory we try to relate the 

evolution of a given PP and the evolution of a rather simpler, associated FP. If 

the evolution of the PP is governed by the group {U1(t)} and that of the FP by the 

group {U0(t)} and if the PP has given initial data h1 then the solutions of the PP 

and the FP will be AE as t → −∞ provided the FP has initial data, h−, given by

 h− = W−h1 (6.115) 

where W U t U tt− →−∞= lim *( ) ( )0 1  (see (6.67), (6.68)).



Once the initial data, h−, is determined according to (6.115) it then remains 

to determine whether there exist some, possibly different, initial data, h+, for the 

FP that will ensure that we also have AE of the PP and the FP as t → +∞. With 

this in mind we fi rst notice, from (6.115), that to ensure AE as t → −∞ the initial 

data for the PP must satisfy 

 h1 = W*−h− ∈ R(W*− ) (6.116)

However, with AE as t → +∞ in mind, we see that we can also introduce the 

infl uence of the wave operator W+ by expressing h1 in the form 

 h1 = h+ + h�, h+ ∈ R(W*+ ), h� ∈ R(W*+ )� (6.117)

Since W*+ W+ is a projection onto R(W*+ ) the fi rst component of (6.117) indicates, 

remembering (6.116), that the following must also hold 

 R(W*+ ) � h+ = W*+ W+h1 = W*+ W+W*−h− =: W*+ Sh− (6.118)

where

 S := W+W*−  : h− → h+ (6.119)

is the scattering operator which, when known, enables us to determine the 

required initial data from the previously obtained data h−.

As t → +∝ the evolution of the initial data h1 will still be governed by the 

group {U1(t)} and from (6.117) we have 

 U1(t)h1 = U1(t)h+ + U1(t)h
− (6.120)

Consequently,

W+U1(t)h1 = W+U1(t)h+ + W+U1(t)h
�

Now, using the intertwining relation (6.109) and (6.114) we fi nd 

W+U1(t)h
� = U0(t)W+h� = 0 

Consequently, we see that as t → +∞ the component U1(t)h
� of the state of the 

system remains orthogonal to the scattering subspace generated by h+.

Finally, in this section we demonstrate some useful connections between the 

ranges of the WO and the properties of the SO.

Theorem 6.8. (i) R(W*− ) � R(W*+ ) if and only if S is isometric 

(ii) R(W*+ ) � R(W*− ) if and only if S* is isometric

(iii) R(W*+ ) = R(W*− ) if and only if S is unitary. 

 6.5 Asymptotic Conditions 179



180 6 A Scattering Theory Strategy

Proof. (i) Assume R(W*− ) � R(W*+ ). For any element f ∈ H we then have 

W*−  f ∈ R(W*+ ). Since W*+ W+ is a projection onto R(W*+ ) this implies

 W*+ W+W*− f = W*− f (6.121)

Furthermore, since we always have 

 W h itA itA h h
t

±
→±∞

= ( ) −( ) =lim exp exp/ /
0
1 2

1
1 2  (6.122)

then using (6.119), (6.122) and properties of projection operators we obtain

 Sf W Sf W W W f W f f= = = =+ + + − −* * * *  (6.123)

Hence S is isometric.

Conversely, assume that S is isometric. Then (6.123) indicates that the projec-

tion of W*− f onto R(W*+ ) has a norm which is identical with W*− f. Hence 

W*− f ∈ R(W+). Hence R(W*− ) � R(W*+ ).

(ii) This follows by noticing that S* = W−W*+  and using the same argument 

as for (i) with plus and minus interchanged. 

(iii) This follows by noticing that S is unitary if and only if SS* = S*S = I, that 

is, if and only if both S and S* are isometric. Consequently (ii) will follow from 

(i) and (ii). �

A physical interpretation of this theorem can be obtained, for instance, by 

considering the condition R(W*− ) � R(W*+ ). We have seen that if the initial data 

for the PP and the FP are related as t → −∞ according to 

 h1 = W*−h− (6.124)

then the PP and the FP are AE as t → −∞. In the above theorem (6.121) implies 

that we also have 

 h1 = W*+ Sh− (6.125) 

For AE of the PP and the FP as t → +∞ when h− is already fi xed to ensure AE 

as t → −∞ we consider

lim ( ) ( )
t

U t h U t h W h h

W W h h

Sh h

→+∞
+ + +

+ − − +

− +

− = −
= −
= −

1 1 0 1

*

The right-hand side vanishes by virtue of (6.125) and (6.68) which implies that we 

have the required AE as t → +∞. Therefore, we see that the condition R(W*− ) � 

R(W*+ ) implies that if solutions of the PP can be shown to be asymptotically free 

as t → −∞ then they become asymptotically free again as t → +∞. The scattering 



operator S provides the transformation between the initial state for the asymptoti-

cally free state as t → −∞ and the initial state for the asymptotically free state 

as t → +∞. Similar interpretations for (ii) and (iii) can also be given.

In summary, we have seen that there are conditions which ensure that a given 

initial state h1 evolving according to U1(t)h1 at some general time t will approach 

U0(t)h− as t → −∞ and U0(t)Sh− = U0(t)h+ as t → +∞.

In many cases of practical interest the wave operators can be shown to have 

the following property.

Defi nition 6.9. The wave operators W± defi ned as in (6.67) are said to be asymp-

totically complete if R(W*+ ) = R(W*− ).

Asymptotic completeness of the wave operators is thus equivalent to the uni-

tarity of the scattering operator. However, as we shall see in later chapters, to 

prove, for a given problem, that the associated SO is indeed unitary is not always 

a simple matter. 

6.6 A Remark about Spectral Families

A comparison of (6.44) and (6.47), bearing in mind (6.48), would seem to suggest 

that

 dE0(l)f(x) = w0(x,  p)f̂ (p)dp (6.126)

To make this more precise we fi rst recall that E0(m) satisfi es 

E
I

0( )µ µ
µ

= { , 0

0, < 0

�

Consequently, E0(m) has the property of the Heaviside unit function H(t). Thus, 

if in (6.47) we take Φ(l) = H(m − l) then we obtain 

E f x w x p H p f p dp u
R p R

0 0
2

0( ) ( ) lim ( ) ( ) ( ) ,µ µ= −
→∞ ≤∫ , �

from which it follows that 

 E f x
w x p f p dp

p
0

0

0
( ) ( )

( ) ( )µ µ
µµ

=
<{

≤∫
, , 0

0,

�
 (6.127)

Differentiating (6.127) we recover (6.126). 

Even for the FP the practical determination of the spectral family {E0(l)} is a 

diffi cult matter. It would seem best left to abstract analytical discussions where 

it can be of considerable use [7], [12]. 

The results (6.45) to (6.47) are often referred to as a Fourier inversion 

theorem. We have already mentioned that the results (6.45) to (6.47) can be 

 6.6 A Remark about Spectral Families 181



182 6 A Scattering Theory Strategy

obtained quite independently of any scattering considerations by means of the 

Plancherel theory of Fourier transforms. We shall endeavour, for both FP and PP, 

to use the Fourier inversion theorem approach rather than the spectral family 

approach.

6.7 Some Comparisons of the Two Approaches 

In the last few sections we have worked directly with wave equations and their 

solutions. However, we could have worked, throughout, in terms of the equivalent 

fi rst order systems which were introduced earlier to settle the wellposedness of 

the problems. 

For convenience we gather together here the salient results from the treat-

ment of wave equations and their associated fi rst order systems. We then indicate 

how they are related. 

When working with IVPs of the form

 {∂2
t + Aj}uj(x, t) = 0, (x, t) ∈ Rn × R, j = 0.1 (6.1)

 uj(x,  0) = jj(x), ujt(x,  0) = yj(x), j = 0.1 (6.2)

we noticed that their solutions could be written in the form (see (6.37) and 

(6.57))

uj(t) = (cos tAj
1/2)jj + Aj

−1/2(sin tAj
1/2)yj, j = 0, 1

We then defi ned

hj(x) = jj(x) + iAj
−1/2yj(x), j = 0, 1

and combined these results to obtain(see (6.37) and (6.57))

 uj(t) ≡ uj(⋅, t) = Re(vj(⋅, t)), j = 0, 1 (6.38)

where

 vj(t) ≡ vj(⋅, t) = exp{−itAj
1/2}hj =: Uj(t)hj, j = 0, 1 (6.39)

The quantity vj is referred to as the complex-valued solution of (6.1).

We remark that if the initial time is t = s rather than zero then in the above t

has to be replaced by (t − s).

We then went on to discuss the AE of the solutions vj(x, t) and, as a conse-

quence, introduced the wave operators W± defi ned by 



 W W t U t U t itA
t t t

±
→±∞ →±∞ →±∞

= = =: lim ( ) lim *( ) ( ) lim exp( )exp(/
0 1 0

1 2 −−itA1
1 2/ )  (6.67)

The wave operators were then determined in the form (see (6.91) and (6.101)) 

W± = F*0 F±

where F0 is the Fourier transform defi ned in (6.45) and F± are the incoming and 

outgoing generalised Fourier transforms defi ned in (6.78) bearing in mind (6.77) 

and (6.58). 

The IVPs (6.1) and (6.2) can be written as fi rst order systems of the following 

form 
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This array can be conveniently written as an IVP for an ordinary differential equa-

tion in HE of the form 

 {dt − iGj}uj(t) = 0, uj(0) = u0
j (6.21)

where, for j = 0, 1.

Gj : HE(Rn) � D(Gj) → HE(Rn)

G i
A

D Gj
j

jξ
ξ
ξ

ξ ξ ξ=
−














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





= ∈
0 1

0

1

2

1 2, , ( )

D(Gj) = {x = 〈x1,x2〉 ∈ HE(Rn): Ajx1 ∈ L2(R
n), x2 ∈ HD(Rn)}

and where we understand that

uj ≡ uj(⋅, ⋅) : t → uj(⋅, t) =: uj(t) ∈ HE(Rn), j = 0, 1

The IVPs (6.21) have solutions of the form

 uj(t) = exp{itGj}u
0
j = Uj(t)u0

j (6.28)

where

 U Gj j j j jt it tA
I

I
A tA( )= ( )= ( ) 
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Acknowledging (6.37) and (6.57) we obtain, for j = 0, 1

u U uj j j
j j

j

x t t x
itA h x

iA itA
( ) ( ) ( )

( )

exp

/

/
, Re

exp
= =

−{ }( )
−( ) −

0
1 2

1 2
jj j
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h x

x t

1 2/ ( )
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



=Re ,v

where the complex-valued solutions of (6.21) can be written in the form

v gj j

j

j j jx t U t
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and the Uj(t) are defi ned as in (6.39) and (6.56). 

In a similar manner to that outlined above when discussing the AE of solutions 

vj(x,  t) we investigate the AE of the solutions vj(x,  t) by requiring 

0 1 0

1 1 0 0
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where ⋅HE
 denotes the norm in the energy space HE(Rn), (6.11), and, as in 

(6.67),

W U t U t
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±
→±∞
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*

Thus we see that we will have the required AE if 

g0(x) = W±g1(x) 

that is, if
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We see that the fi rst component of this result yields, as might have been expected, 

the same result as that obtained in Subsection 6.2.

6.8 Summary 

In the above sections we have outlined in a reasonably precise way a strategy, 

already hinted at in Chapter 1, for the analysis of wave scattering problems in the 
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time domain. We now see that this strategy, written more compactly, consists of 

the following fundamental problems.

• Settle the existence and uniqueness of solutions to (6.1), (6.2) and determine 

their propagation properties. We have seen that this can be achieved by using 

Stone’s theorem to show that the solution forms (6.28) are valid. 

• Establish the existence and uniqueness of the wave operators W± defi ned in 

(6.67). We have seen, in the above sections, that this can be achieved using 

generalised eigenfunction (generalised Fourier transform) techniques in con-

junction with certain energy decay requirements. 

• Provide a spectral analysis of the associated spatial operators Aj, j = 0, 1 in 

order to be able to generate appropriate generalised eigenfunction expansion 

theorems.

• Prove the limiting absorption principle for the operators Aj, j = 0, 1 and as a 

consequence settle the existence and uniqueness of appropriate distorted plane 

waves.

• Investigate the completeness of the wave operators. This means determining 

whether or not all solutions of the PP are asymptotically free as t → ±∞. This 

is closely related to establishing the existence of the quantities h± introduced 

in (6.68). 

These problems have been discussed, with various degrees of generality, see 

for example [10], [12], [14], [2], [13]. We will fi nd that by working through the 

above programme we will be able to develop promising methods for the practical 

construction of solutions, wave operators and the scattering operator. 
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7

An Approach to Echo Analysis

7.1 Introduction

As we mentioned earlier we interested in the manner in which a signal emitted 

by a transmitter evolves through a medium and in the form that it assumes at a 

receiver. In this chapter we illustrate how this information can be obtained. In 

the approach adopted here a given wave problem, defi ned in Rn × R, is reduced 

to a fi rst order system which is defi ned in a suitably chosen abstract space. From 

a practical point of view there are two main advantages in adopting this approach. 

First, by carefully selecting the abstract space setting energy aspects can be very 

simply accommodated. A fi rst order system structure can allow a ready applica-

tion of results from the theory of semigroups given in Chapter 5. In particular, we 

have seen that conditions can be given which ensure that the fi rst order system, 

and hence the given wave problem, is well-posed. We shall assume in this chapter 

that these conditions are satisfi ed.

7.2 A Typical Mathematical Model

Let

Q ⊂ {(x, t) ∈ Rn × R}

Ω = {x ∈ Rn : (x, t) ∈ Q}, B = {x ∈ Rn : (x, t) ∉ Q}

The region Q is assumed to be open in Rn × R and Ω denotes the exterior of a 

scattering target B.

The scattering problems with which we shall be concerned are centred on the 

following IBVPs.

For j = 0, 1 determine a quantity uj(x, t) satisfying the IBVP
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 {∂2
t  + Lj(x)}uj(x,  t) = fj(x,  t), (x,  t) ∈ Q (7.1)

 uj(x,  s) = jj(x,  s), ujt(x,  s) = yj(x,  s), x ∈ Ωj, s ∈ R (7.2)

 uj(x,  t) ∈ (bc)j, (x,  t) ∈ ∂Ωj × R (7.3)

where

Lj(x) is a differential expression characterising the wave fi eld

fj, ∂j(⋅,  s), yj(⋅,  s) are given data functions

s ∈ R is a fi xed initial time

∂Ωj is the boundary of the target Bj

(bc)j indicates boundary conditions to be satisfi ed by uj(⋅,  ⋅).

We remark that in (7.1) the inhomogeneous term fj characterises the transmit-

ter and the signals which it emits.

We shall assume that the case j = 0 denotes an FP whilst the case j = 1 denotes 

a PP.

In this chapter we will reduce the generality of the problem (7.1) to (7.3) by 

confi ning attention to acoustic Dirichlet problems. In this case we take, for 

j = 0, 1

 Lj(x) = −∆, for all x (7.4)

 (bc)j = {uj(⋅,  ⋅) : uj(x,  t) = 0, (x,  t) ∈ ∂Ωj × R} (7.5)

 uj(x,  s) = 0, ujt(x,  s) = 0 (7.6)

Our aim here is to discuss and determine solutions of the acoustic Dirichlet prob-

lems defi ned above and, in particular, investigate the nature of the solution at 

large distances from both the target and the transmitter. We have already indi-

cated that a very convenient method of tackling such problems is to represent 

them in some suitable energy space. The appropriate settings and associated 

results are distinguished by employing subscripts.

As before, we use the notation

g= 



=g

g
g g1

2
1 2,

and introduce the energy norm

 g E
R

g g g x g x dx
n

2
1 2 0

2
1

2
2

21

2
= = ∇ +{ }∫, ( ) ( )  (7.7)

where we assume g1, g2 ∈ C∞
0 (Rn).

Associated with the norm in (7.7) is the inner product

 (f,  g)E = (∇f1,  ∇g1) + ( f2,  g2) (7.8)



where on the right-hand side of (7.8) the notation (⋅,  ⋅) denotes the usual L2(R
n) 

inner product.

We shall write HE = HE(Rn) to denote the completion of C∞
0 (Rn) × C∞

0 (Rn) 

with respect to the energy norm (7.7) and introduce, for j = 0, 1

 Hj = {g ∈ HE : g = 0 on Bj} (7.9)

 H j
loc = {g = 〈g1,  g2〉 : zg ∈ Hj �z ∈ C∞

0 (Rn)} (7.10)

In most practical cases the FP models a free space problem. In this case solu-

tions to the FP will indicate the evolution of a signal through the medium in the 

absence of any scatterers. We shall assume that this is the case here. We notice 

that the fi rst component of g ∈ H j
loc(t) must vanish on ∂Ωj and on Bj.

For j = 0, 1 the function uj = uj(⋅,  ⋅) is a solution of locally fi nite energy of 

the IBVP (7.1) to (7.3) if

(i) uj = 〈u1j,  u2jt〉 ∈ C(R,  H j
loc)

(ii) {∂2
t + Lj(x)}uj(x,  t) = fj(x,  t), (x,  t) ∈ Q

(in the sense of distributions).

We shall say that uj defi nes a solution of fi nite energy if uj ∈ C(R,  HE) and 

uj(t) ∈ Hj for each t whilst uj defi nes a free solution of fi nite energy if 

uj ∈ C(R,  HE).

If uj ∈ HE then uj has fi nite energy and we write

 u
R

j j j jtt u t u x t u x t dx
n

( ) ( ) { ( ) ( ) }
2 2 2 21

2
= = ∇ +∫ , ,  (7.11)

for the total energy of uj at time t.

The wave energy in a sphere is obtained from (7.11) by restricting the range 

of integration appropriately.

With this preparation we fi nd that the IBVPs (7.1) to (7.6) lead to IVPs of the 

following form. For j = 0, 1

 {∂t + Nj}uj(x,  t) = Fj(x,  t), (x,  t) ∈ Q (7.12)

 uj(x,  s) = 〈jj(⋅,  s),yj(⋅,  s)〉(x), x ∈ Ωj (7.13)

where

uj(x,  t) = 〈uj,ujt〉(x,  t), Fj(x,  t) = 〈0, fj〉(x,  t)

N j
j

I

A
:=

−











0

0

and on denoting by LD
2 (Ωj) the completion of C∞

0 (Ωj) in L2(Ωj) we have 

introduced

 7.2 A Typical Mathematical Model 189



190 7 An Approach to Echo Analysis

Aj : L
D
2 (Ωj) → LD

2 (Ωj)

Aju(⋅,  t) = Lj(⋅)uj(⋅,  t), uj(⋅,  t) ∈ D(Aj)

D(Aj(t)) = {u ∈ LD
2 (Ωj) : Lj(⋅,  t)u(⋅,  t) ∈ LD

2 (Ωj)}

Throughout we shall assume that the receiver and the transmitter are in the far 

fi eld of the Bj and, furthermore, that supp fj ⊂ {(x,  t), t0 ≤ t ≤ T, x − x0 ≤ d0} 

where x0 denotes the position of the transmitter and t0, T, d0 are constants.

If we introduce

Gj : Hj → Hj

Gjuj(t) = iNju(t), uj(t) ∈ D(Gj)

D(Gj) = {uj(t) ∈ Hj : Njuj(t) ∈ Hj}

then the IVP (7.12) can be realised as a fi rst order system in Hj(t) in the form

 {dt − iGj}uj(t) = Fj(t), t ∈ R (7.14)

uj(s) = ujs

In Chapter 5 and Chapter 6 we indicated conditions which ensured that the 

IVPs (7.14) were well-posed and furthermore had solutions which could be written 

in the form

 u U u U Fj j s j j
s

t

t t s t d j( ) ( ) ( ) (= − + − ) =∫ τ τ τ , ,0 1  (7.15)

where Uj(t − s) is the propagator for (7.14) which we have determined in the 

form

 Uj(t − s) = exp{i(t − s)Gj}, j = 0, 1 (7.16)

It is a straightforward matter to show that the propagators Uj(t − s), j = 0, 1 

have the properties

Uj(t − r)Uj(r − s) = Uj(t − s)

 Uj(0) = I

 ∂tUj(t − s) = iGjUj(t − s)

 ∂sUj(t − s) = −iUj(t − s)Gj



The relation (7.15) is aversion of the familiar variation of parameter formula and 

the integral involved is an associated Duhamel type integral.

7.3 Scattering Aspects and Echo Analysis

As we have seen in the previous chapter, scattering theory is concerned with the 

(asymptotic) comparison of two systems. This is the type of theory we want to 

have available in practice since experimental measurements are usually made in 

the far fi eld, that is, far distant from the receiver and the transmitter. In the 

present case these systems are as summed to be characterized by the operators 

iGj, j = 0, 1 respectively.

We shall assume

(i) iG(t), j = 0, 1 are self-adjoint operators defi ned on suitable Hilbert 

space(s)

(ii) The operators iGj, j = 0, 1 satisfy conditions which ensure that the IVPs

 {dt − iGj}uj(t) = Fj(t), uj(s) = usj, j = 0, 1 (7.17)

are well-posed

(iii) Uj(t − s), j = 0, 1 denote the associated propagators (evolution 

operators).

Of course, when dealing with specifi c problems it has to be proved that these 

assumptions are valid and available.

Following the development in Chapter 1 and Subsection 6.4.1 we now intro-

duce (see also [8])

Wave Operators(WO): 

 W G G U U

U U

1

0 1

±
→±∞

→±∞

= − − −

= − − −

s
t

t

s t s t s

s s t t s

( ) lim ( ) ( )

lim ( ) (

0 1 0, *

))  (7.18)

Scattering Operator (SO):

 Ss(G0,  G1) = W+s(G0,  G1)W*−s(G0,  G1) (7.19)

We would point out that (ii) and Theorem 5.21 (Stone’s theorem) ensure that 

(7.18) is meaningful.

In developing here an echo analysis for an IBVP of the form (7.1) to (7.5) 

we shall assume, for the purposes of illustration, that n = 3, that the medium is 

initially at rest and concern ourselves with the IVPs

 {dt − iGj}uj(t) = Fj(t), uj(s) = 0, j = 0, 1 (7.20)
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The Free (unperturbed) Problem (FP) obtains when j = 0 and Ω = R3. 

The Perturbed Problem (PP) obtains when j = 1 and Ω ⊂ R3.

Using the properties of propagators listed after (7.16) together with Theorem 

5.50 and the fact that Uj(t − s) : Hj → Hj then the variation of parameters formula 

indicates that solutions of (7.20) can be written, for j = 0, 1, in the form

 u U U F U hj j j j
s

t

j jt t s s d t s s( ) ( ) ( ) ( ) : ( ) ( )= − − = −∫ τ τ τ  (7.21)

Scattering phenomena involve three fundamental items: the incident fi eld, u0, 

the total fi eld, u1, and the scattered wave fi eld, us. In the present case we have

Free wave fi eld = Incident wave fi eld u0(t) = U0(t − s)h0(s)

Perturbed wave fi eld = Total wave fi eld u1(t) = U1(t − s)h1(s)

Scattered wave fi eld us(t) = u1(t) − u0(t)

The defi nition of the WOs and SO enables us to write

 u1(t) = U1(t − s)h1(s)

 = U0(t − s)U0(s − t)U1(t − s)h1(s)

 = U0(t − s)W+s(G0,  G1)h1(s) + st(1) as t → ∞

where st(1) is an L2(R
n) function of t with st(1) → 0 as t → ∞.

Similarly we can obtain

 us(t) = U0(t − s){W+s(G0,  G1)h1(s) − h0(s)} + st(1) (7.22)

For t << 0 there is no scattered fi eld. Hence u1(t) = u0(t) that is, U1(t − s)h1(s) 

= U0(t − s)h0(s). Using the properties (7.16), (7.17) and (7.18) we can obtain the 

relation

h W G G h0 0 1 1 00
1( ) ( , ) ( ) ( )s s xs x= + →∞− σ as

where sxo
(1) is an L2(R

n) function of x with sxo
(1) → 0 as x0 → ∞.

Consequently, operating on both sides of this result with Ss and recalling (7.19) 

we obtain

 Ss(G0,  G1)h0(s) = Ss(G0,  G1)W−s(G0,  G1)h1(s) + sxo
(1) 

 = W+s(G0,  G1)h1(s) + sxo
(1) (7.23)

If we now substitute (7.23) in (7.22) then we obtain

 us(t) = U0(t,  s){Ss(G0,  G1) − I}h0(s) + st(1) + sxo
(1) (7.24)

Thus we see that the scattered (echo) fi eld is determined, in the far fi eld, by the 

SO and the FP data.
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In the previous section, (7.24) provides a representation of the echo fi eld in an 

abstract setting. To obtain a physical representation of this fi eld, that is a repre-

sentation in Rn × R, we follow the procedure outlined in Chapter 2. We have seen 

that a problem such as (7.1)–(7.3) defi ned in Rn × R can be represented as the 

IVP (7.14) in the abstract (energy) space Hj (see (7.9)). The problem (7.14) has a 

solution which can be expressed uniquely in the form (7.15) where the propaga-

tors U(t − s), j = 0, 1 are defi ned in (7.16). To give an indication of how these 

echo fi elds can be obtained we consider, in R3, the acoustic Dirichlet problem 

(7.1)–(7.6) in the specifi c case of the scattering of a single pulse of duration T 

emitted at time t0 by a transmitter localised near a point x0. Hence, the source 

functions fj, j = 0, 1 which characterise the transmitter will be assumed to have 

the space-time support

supp andf x t t t t T x xj ⊂ ≤ ≤ + − ≤{ }( , ) : 0 0 0 0δ

where t0 and d0 are constants. We shall also assume, in keeping with the formula-

tion of (7.1)–(7.6)

(i) The scatterer B(t) is contained in a closed, bounded set in R3 with comple-

ment Ω1(t) = R3 − B(t). Hence

B t x x( ) :⊂ ≤{ }δ  where d is fi xed for all t.

(ii) The origin of coordinates lies in B(t).

(iii) ∂Ω1(t), the boundary of Ω1(t), is for all t, a smooth surface.

(iv) The scatterer and transmitter are disjoint which implies

δ δ+ <0 0x

(v) The transmitter stops transmitting before the signal reaches the scatterer 

which implies

T x< − −0 0δ δ

With these assumptions in mind we are led, as above, to the problems (7.20) and 

we see that (7.21) now assumes the form

 u U U F U hj j j j
t

t T

j jt t s s t s s( ) ( ) ( ) ( ) : ( ) ( )= =
+

∫, , ,τ τ
0

0

 (7.25)

which leads to the equivalent representation

 u U Fj j j
t

t T

t t d( ) ( ) ( )=
+

∫ , τ τ τ
0

0

 (7.26)
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Consequently, bearing in mind the representation (2.82) and the defi nitions of the 

terms in (7.13) and (7.14) the required physical wave fi elds, uj, j = 0, 1, are 

obtained as the fi rst components of the abstract quantities uj, j = 0, 1, in the 

form

 
u t v t s itA h j

h A

j j j j

j j

( ) Re{ ( )} Re{[exp( )] }

{exp(

/

/

= = − =

=

, , ,1 2

1 2

0 1

ii A f dj j
t

t T

τ τ τ1 2

0

0 / } ( )
+

∫
 (7.27)

For this scattering problem the FP is taken to be the special case when there 

are no scatterers present, that is, when Ω = R3. Thus, A0 : L2(R
3) → L2(R

3) defi ned 

by

 A0u0 = −∆u0 for all u0 ∈ D(A0) (7.28)

D(A0) = {u ∈ L2(R
3) : −∆u ∈ L2(R

3)}

is self-adjoint in L2(R
3) [9], [4].

Our main aim is to calculate the scattered (echo) fi eld us(x,  t) produced by 

the signal (incident) fi eld u0(x,  t) where

 us(x,  t) = u1(x,  t) − u0(x,  t) (7.29)

Now u1 is defi ned on a region Ω1 ⊂ R3 and u0 on Ω = R3. To be able to compare 

these two quantities we introduce the operator

 
J L L

Jg x
j x g x x

x

: ( ) ( )

( )
( ) ( )

2 1 2
3

1

3
10

Ω

Ω
Ω

→

=
∈
∈ −{

R

R

for

for

 (7.30)

where j ∈ C∞(R3) is such that 0 ≤ j(x) ≤ 1 with j(x) = 1 for x � d and j(x) = 0 

in a neighbourhood of B1. It will be convenient to extend the defi nition of us in 

(7.29) to the complex plane by defi ning

 us(x,  t) = Re{vs(x, t)} (7.31)

where

vs(x,  t) = Jv1(x,  t) − v0(x,  t)

with vj, j = 0, 1 defi ned as in (7.27). Clearly, the far fi eld form of the echo us can 

be obtained from that of vs.

The calculation of the far fi eld form of us and vs can be based on the theory 

of wave operators introduced in Chapter 6 and [4] and developed fully in [9].



For the present scattering problem the wave operators are defi ned by (see 

Subsection 6.4.1)

 W s itA J itA
t

±
→±∞

= − −lim {exp( )} {exp( )}/ /
0
1 2

1
1 2  (7.32)

It is proved in [9] that these limits exist and that they defi ne unitary operators 

W± : L2(Ω1) → L2(R
3).

It now follows that for each h1 ∈ L2(Ω1)

 Jv1(t) = J{exp(−itA1
1/2)}h1(x)

 = {exp(−itA0
1/2)}W+h1(x) + st(1) as t → +∞ (7.33)

where st(1) is an L2(R
3) valued function of t which tends to zero in L2(R

3) as 

t → +∞.

The equations (7.27), (7.31) and (7.33) combine to give

 vs(x,  t) = {exp(−itA0
1/2)}{W+h1(x) − h0(x)} + st(1) as t → +∞ (7.34)

With the assumptions (i) to (v) in mind we see that vs(x,  t) = 0 for t0 + T ≤ t 

≤ t0 + x − d − d0 and x ∈ R3. Furthermore, if we choose

t x0 0=− + +δ δ

then the arrival time of the signal at the scatterer B1 will be non-negative. With 

this understanding we see that

 J{exp(−itA1
1/2)}h1(x) = {exp(−itA0

1/2)}h0(x) for t1 ≤ t ≤ 0 (7.35)

where

 t t T x T1 0 0= + =− + + +δ δ  (7.36)

Setting t = 0 in (7.36) yields

Jh1 = h0

whilst for t = t1

 {exp(it1A0
1/2)}J{exp(−it1A1

1/2)}h1(x) = h0(x) (7.37)

The scatterer B1 will be in the far fi eld of the transmitter if either x0 >> 1 

or, by (7.36), t1 << −1. Combining this observation with (7.37) and (7.32) indicates 

that

 h x W h x xx0 1 00
1( ) ( ) ( )= + →∞− σ as  (7.38)
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where sx0
(1) is an L2(R

3) valued function of x0 such that sx0
(1) tends to zero in 

L2(R
3) when x0 → ∞.

We now introduce, as in Subsection 6.4.1, the scattering operator S defi ned 

by

 S = W+W*− (7.39)

where W*− denotes the adjoint of W−.

Multiplying (7.38) by S gives

 W h x Sh x xx+ = + →∞1 0 00
1( ) ( ) ( )σ as  (7.40)

This follows since by the unitarity of W− we have W−W*− = I [9],[4].

We now combine (7.34) and (7.40) to obtain

 vs(x,  t) = {exp(−itA0
1/2)}{(S − I)h0(x)} + st(1) + sx0

(1) (7.41)

The result (7.41) shows that in the far fi eld an approximation is given in terms 

of the scattering operator S and the FP data h0(x). (Notice the symbolic similarity 

with (7.24).)

The construction of the scattering operator for B1 can be achieved in terms 

of an associated generalised eigenfunction expansion. The expansions were intro-

duced in Chapter 6. For convenience we recall some of the salient features here. 

For details see [9],[4] and Chapter 6.

The operator A0 is a self-adjoint operator on L2(R
3) and has a purely continu-

ous spectrum.

The plane waves

 w0(x,  p) := (2p)1/2{exp((ix⋅p)}, x, p ∈ R3 (7.42)

form a complete family of generalised eigenfunctions for A0.

For scattering by bounded objects the generalised eigenfunctions are 

distorted plane waves [9],[6],[4]

 w±(x,  p) = w0(x,  p) + ws
±(x,  p), x ∈ Ω1 and p ∈ R3 (7.43)

We have seen in Chapter 6 that these distorted plane waves satisfy

 ( ) ( , ) ,∆ Ω+ = ∈±p w x p x0 1  (7.44)

 
∂
∂











=










→∞±w

x
i p w x p O

x
x

s
s

∓ ∓ ( ), ,
1

2  (7.45)

The existence and uniqueness properties of these distorted plane waves can 

be found in [9],[6] and Chapter 6. Physically, ws
±(x,  p), represents the steady state 



scattered (echo) fi eld when the plane wave (7.42) is scattered by B1. The far fi eld 

form of ws
±(x,  p) can be shown to be [9]

 

w x p
p x

x
T p p O

x
xs

± ±=
±

+










→∞( )
exp( )

( ), , as
4

1
2π

θ  (7.46)

where q = x/x and T(p,  p′), the scattering amplitude or differential cross-

section of B1, is defi ned for all p, p′ ∈ R3 such that p = p′.

Following the development in Chapter 6 the plane and distorted plane waves 

w0 and w± generate the generalised eigenfunction expansions (6.50) to (6.52) and 

(6.81) to (6.83) respectively. As a consequence, we saw in Subsection 6.4.1 that 

the wave operators, W±, had the representation

 W+ = F*0 F− and W− = F*0 F+ (7.47)

Combining (7.39) and (7.47) we obtain

 S = W+W*−  = F*0 ŜF0 (7.48)

where

 Ŝ = F−F*+ (7.49)

is called the S-matrix for the scatterer B1.

In order to be able to make use of (7.41) we need an interpretation of the term 

(S − I)h0. This can be achieved by fi rst noticing that

 (S − I)h0 = (F*0 SŜF0 − I)h0 = F*0 (Ŝ − I)ĥ0 (7.50)

For acoustic scattering problems in R3 it has been shown that

 ˆ( ˆ ) ˆ
( )

( , ) ˆ ( )
/

h S I h
i p

T p p h p d

S

− = +∫0 1 2 0
2 2 2π

θ θ θ  (7.51)

The integration in (7.51) is over points q of the unit sphere S2 in R3. The fi rst proof 

of the integral representation was given by Shenk [6].

Finally, in this section we investigate the nature of the signal and of the echoin 

the far fi eld.

The complex wave function v0(x,  t) defi ned by (7.27) has the Fourier 

representation

 ˆ ( ) ( ) {exp( ( ))} ˆ ( )/h v x t i x p t p h p dp0
1 2

02
3

, ,= −− ∫π
R

 (7.52)

where

 ˆ ( ) ( ) ˆ ( , )/h p i p f p p0
1 2 1

02= −−π  (7.53)
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and

 ˆ ( ) ( ) {exp( ( . ))} ( )f p i x p t f x t dxdt0
2

02
4

ω π ω, ,= − +− ∫
R

 (7.54)

denotes the four-dimensional Fourier transform of f0.

The notion of an asymptotic wave function was introduced in Chapters 4 and 

6. For this particular problem the asymptotic wave function, u∞0 , associated with 

the signal wave fi eld u0(x,  t) = Re{v0(x,  t)} is defi ned to be (see [9, Chapter 2])

 u x t
s x t

x
x x0

∞ =
−

=( )
( )

,
,

,
θ

θ  (7.55)

where s ∈ L2(R × S2) is defi ned by

 
ˆ ( , ) Re ( ) exp( ) ˆ ( )

Re exp(

/hs i i h dw

i

τ θ π τω ω ωθ

τω

= { } −{ }{ }
=

− ∞

∫2 1 2
0

0

)) ˆ ( , ) }{ } −{ }∞

∫ f dw0
0

ω ωθ  (7.56)

It is proved in [9] that u∞0  describes the asymptotic behaviour of u0 in L2(R
3) 

as t → ∞ in the sense that

 u0(⋅,  t) = u∞0 (⋅,  t) + st(1) as t → ∞ (7.57)

From (7.41) we see that the echo wave fi eld can be represented in the form

 us(x,  t) = Re{[exp(itA0
1/2)](S − I)h0(x,  t)} + st(1) + sx0

(1) (7.58)

The fi rst term on the right-hand side is the same as that for the signal u0, as defi ned 

in (7.27), but with h0 replaced by (S − I)h0. Consequently, with this in mind, it 

follows from our treatment of u0 that we can write

 us(x,  t) = u∞s (x,  t) + st(1) + sx0
(1) as t → ∞ (7.59)

where

 u x t
e x t

x
x xs

∞ =
−

=( ) :
( )

,
,

,
θ

θ  (7.60)

and

 e i S I h d( ) Re ( ) [exp( )][( ) ] ( )/τ θ π τω ω θ ω, ,= −{ }− ∧∞

∫2 1 2
0

0
 (7.61)

where [.  .  .]∧ denotes the Fourier transform of [.  .  .].

From (7.50) and (7.51) it follows that

 ˆ ( : ) Re exp( ) ( , ) ˆ ( )he i T h d dw

S

τ θ
π

τω ω ωθ ωθ ωθ θ= [ ] ′ ′ ′




+
∞

∫∫
1

4

2
0

0
2










 (7.62)
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and, by using (7.53),

ˆ ( : )
( )

Re exp( ) ( , ) ˆ ( , )
/

he i i T f d dwτ θ
π

τω ω ωθ ωθ ω ωθ θ= [ ] ′ − ′ ′+
1

2 2 1 2 0

SS2
0 ∫∫
∞











 (7.63)

Thus (7.56) and (7.63) provide a representation of the asymptotic signal wave 

form and the asymptotic echo wave form respectively.

We are now at the stage where we have, in principle at least, a structure for 

determining the echo fi eld in a scattering problem. However, for it to be a work-

able proposition in practice we see that we have to be able to determine the WOs 

and SO associated with the scattering problem of interest. In earlier chapters we 

have shown how this can be done using generalised eigenfunction expansion 

theorems. Consequently, we shall, in the remaining chapters of this monograph, 

tend to concentrate on this aspect for some specifi c problems which are of practi-

cal interest in the physical sciences.
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8

Scattering Processes in Stratifi ed Media

8.1 Introduction

The propagation of acoustic waves in an inhomogeneous medium occupying a 

domain Ω ⊂ R3 is governed by two functions of x := (x1,  x2,  x3) ∈ R3 namely r(x), 

the density of the medium, and c(x), the local wave speed in the medium.

We have seen that acoustic waves propagating in an inhomogeneous medium 

can be characterised in terms of an acoustic potential, u(x,  t), (x,  t) ∈ R3 × R 

which satisfi es the partial differential equation [4]

 {∂2
t + L(x)}u(x,  t) = F(x,  t) (8.1)

where

L x c x x
x

( ) : ( ) ( )
( )

=− ∇⋅ ∇








2 1
ρ

ρ

 F(x, t) : = source density function which characterises 

a signal transmitted into the medium

The equation (8.1) must be supplemented by certain initial conditions which 

describe the state of the medium before an external signal is incident upon it and 

by certain conditions at the boundary ∂Ω of the domain Ω ⊂ R3. With respect to 

the latter there are two particularly important boundary conditions:

Free Boundary Condition:

 u(x,  t) = 0, x ∈ ∂Ω (8.2)

Rigid Boundary Condition:

 
∂
∂

∂
u

n
x t x( ), ,= ∈0 Ω  (8.3)
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where n := (n1, n2, n3) denotes the unit exterior normal to ∂Ω at points x ∈ ∂Ω
whenever the normal exists at x ∈ ∂Ω.

Throughout this chapter we shall assume that the density r(x) and wave speed 

c(x) are bounded in the sense

 0 < rm ≤ r(x) ≤ rM < ∞ and 0 < cm ≤ c(x) ≤ cM < ∞ (8.4)

where rm, rM, cm and cM are suitable constants. We would remark that we 

shall also assume in this chapter that r and c are continuous. This assumption 

is suffi cient for our present purposes. However, it can be relaxed provided 

that the meaning of the wave equation (8.1) under such circumstances is 

clarifi ed.

As in Section 7.4, the signal source, characterised by the term F in (8.1), will 

be assumed to be localised in space and time. It will be suffi cient here to assume 

that F has the property

 suppF ⊂ {(x, t) : x2
1 + x2

2 + (x3 − x0
3)2 ≤ d0, T ≤ t ≤ 0} (8.5)

This being the case then u(x, t) can be characterised as that solution of (8.1) 

which satisfi es

 u(x, t) ≡ 0 for all t < T (8.6)

Furthermore, (8.5) implies that if initial conditions

 u(x,  0) = j(x), ut(x,  0) = y(x) (8.7)

are imposed on solutions of (8.1) then

 supp j � supp y ⊂ {x ∈ R3 : x2
1 + x2

2 + (x3 − x0
3)2 ≤ d} (8.8)

where d = d0 + cM T. It will then follow that u(x, t) can be characterised for 

t � 0 as the solution of the homogeneous IVP

 {∂2
t + L(x)}u(x, t) = 0, x ∈ Ω, t > 0 (8.9)

 u(x,  0) = j(x), ut(x,  0) = y(x), x ∈ Ω (8.10)

where it is understood that the initial conditions (8.10) satisfy (8.8). This reduc-

tion of an IVP for (8.1) to the homogeneous IVP (8.9), (8.10) is another use of the 

Duhamel Principle mentioned in Chapters 2 and 7. For the time being we shall 

confi ne attention to the homogeneous equation (8.9).

When investigating wave processes in nonhomogeneous media the intention 

will be to parallel, as far as possible, the analysis used when studying wave pro-

cesses in homogeneous media.



For homogeneous media problems we saw in Chapters 1, 6 and 7 that the 

analysis of the given physical problem was centred on representing the physical 

problem as an abstract problem in some suitably chosen Hilbert space. This being 

done, the independently established Plancherel theory of Fourier transforms then 

enabled generalised eigenfunction expansion theorems to be established which 

provided the means for interpreting the abstract solution forms as physically 

meaningful quantities. However, when we come to deal with nonhomogeneous 

media problems then we have to prove that appropriate generalised eigenfunction 

expansion theorems are available for our use.

In this chapter we confi ne attention to one of the simpler nonhomogeneous 

media, namely, stratifi ed media. For simplicity and ease of presentation the con-

struction of solutions will be illustrated for a particular type of nonhomogeneous 

medium which is typical of a large class of stratifi ed media. However, even in this 

case the analysis can become quite technical and associated proofs are frequently 

very lengthy. Consequently, we shall often simply state results. Full details can 

always be found in the references cited in the text or in the Commentary.

8.2 Hilbert Space Formulation

The evolution of acoustic waves in a medium fi lling a domain Ω ⊂ R3 is described 

by the solutions of an IBVP of the form

 {∂2
t + L(x)}u(x,  t) = 0, x, t ∈ Ω × R, t > 0 (8.11)

 u(x,  0) = j(x), ut(x,  0) = y(x), x ∈ Ω (8.12)

 Bu(x,  t) = 0, (x,  t) ∈ ∂Ω × R (8.13)

where (8.13) characterises one or other of the boundary conditions (8.2) or 

(8.3).

When analysing the IBVP (8.11) to (8.13) we shall make use of the divergence 

theorem which states that for a suffi ciently smooth vector w defi ned on Ω̄ = Ω � 

∂Ω the following relation holds [2]

 ∇⋅ = ⋅∫∫ w wdx dsn
∂ ΩΩ

 (8.14)

where

dx = volume element in Ω
ds = surface element in ∂Ω
n = n(x) = exterior unit named to ∂Ω at the point x ∈ ∂Ω

When w(x) = f(x)∇g(x) where f and g are suffi ciently differentiable functions 

of x then
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 ∇ · ( f(x)∇g(x)) = (∇f · ∇g)(x) + ( f ∇g)(x) (8.15)

If we now set in (8.15) 

f(x) = v(x) and ∇g(x) = (r−1∇u)(x)

then it follows that 

 

∇⋅ ∇ = ∇ ⋅ ∇

−

− −

−

∫ ∫( ( ) ( ) ( )) ( ( ) ( ) ( )

( ) ( ) (

v x x u x dx x x u x

v x Lu x c

vρ ρ1 1

2

Ω Ω

xx x dx

v x
u

n
x x ds

) ( ))

( ) ( ) ( )

ρ

ρ

−

−= ∫

1

1∂
∂∂ Ω  

(8.16)

This is a particularly convenient form of (8.14) when discussing IBVPs of the form 

(8.11) to (8.13). If we now repeat the calculation leading to (8.16) but with v and 

u interchanged then it is a straightforward matter to establish the relation

  vLu uLv x c x x dx u
v

n
v

u

n
x x ds−{ } = −{ }− − −∫∫ ( ) ( ) ( ) ( ) ( )2 1 1ρ ρ

∂
∂

∂
∂∂ΩΩ

 (8.17)

We remark that (8.16) and (8.17) are particular forms of Greens identities [2].

The results (8.16) and (8.17) are particularly useful as they provide a good 

indication of an appropriate Hilbert space structure to use when analysing IBVPs 

of the form (8.11) to (8.13). Consequently, we shall introduce here the weighted 

Hilbert space

 H(w) : = L2(Ω,c−2(x)r−1(x)dx) (8.18)

consisting of functions defi ned on Ω which are square integrable with respect to 

the weighted measure

 w(x)dx : = c−2(x)r−1(x)dx (8.19)

and which is endowed with an inner product (⋅, ⋅)H(w) defi ned by

 ( ) : ( ) ( ) ( ) ( )( )u v u x v x c x x dxH w, = − −∫ 2 1ρ
Ω

 (8.20)

We now introduce an operator A as follows

 A : H(w) → H(w) (8.21)

 Au = Lu for all u ∈ D(A)

 D(A) = {u ∈ H(w) : Lu ∈ H(w), Bu(x,  ⋅) = 0, x ∈ ∂Ω}

Hence, bearing in mind (8.17) and (8.20), we can conclude that



 (Au,  v)H(w) = (u,  Av)H(w) (8.22)

and it follows that A is symmetric, that is, formally self-adjoint, on H(w).

Furthermore, we see that (8.16) implies

 ( ) ( )( ) ( )( )Au u u u x x dxH w, = ∇ ⋅∇ −∫ ρ 1 0�
Ω

 (8.23)

Hence A is a formally self-adjoint, positive operator on D(A) ⊂ H(w).

With these several results to hand we are now well placed to give IBVPs of 

the form (8.11) to (8.13) a Hilbert space realisation which will easily allow the 

powerful analytical notions and techniques introduced in earlier chapters to be 

used.

First we see that a realisation in H(w) of the given IBVP (8.11) to (8.13) can 

be the abstract IVP

 {∂2
t + A}u(x,  t) = 0 (8.24)

 u(x,  0) = j(x), ut(x,  0) = y(x), x ∈ Ω (8.25)

where it is understood that the imposed boundary conditions are accommodated 

in the defi nition of D(A).

Following the analysis of waves in homogeneous media given earlier we 

replace the abstract IVP (8.24), (8.25) involving a partial differential equation by 

an equivalent IVP for an ordinary differential equation, namely

 {d2
t + A}u(t) = 0, u(0) = j, ut(0) = y (8.26)

where it is understood

 u ≡ u(⋅, ⋅) : t → u(⋅, t) =: u(t) (8.27)

If we assume that (8.26) is well-posed then (8.26) has a solution which can be 

written uniquely in the form

 u t tA A tA( ) cos sin={ } + { }−1 2 1 2 1 2ϕ ψ  (8.28)

To settle the wellposedness of (8.26) we again parallel the analysis in homo-

geneous media and reduce it to the fi rst order system

 Ψt(t) − iMΨ(t) = 0, Ψ(0) = Ψ0 (8.29)

where

 Y Y Y( ) ( ) ( )t
u

u
t

t

= 




= = 




, 0 0

ϕ
ψ

 (8.30)
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 M=
−










i
I

A

0

0
 (8.31)

and it is understood that

 Ψ = 〈y1, y2 〉 ∈ H(w) × H(w),  
(8.32)

M : H(w) × H(w) � D(M) → H(w) × H(w)

A precise defi nition of D(M), the domain of M will be given below. First, since 

we are ultimately interested in solutions of (8.11) to (8.13) that can be regarded 

as “solutions with fi nite energy” we introduce the integral

 E u t u x t u x t w x dxt( ) : { ( ) ( ) } ( ), , , ,Ω
Ω

= ∇ +∫ 2 2
 (8.33)

and interpret it as the energy of acoustic waves in a nonhomogeneous region Ω 

at time t. This suggests the introduction of a weighted energy space, HE(w), 

defi ned by

 HE(w) := HD(w) × H(w) (8.34)

where

HD(w) := closure of C∞(Ω) with respect to the norm

 f f x w x dxHD w( )
: { ( ) } ( )

2 2= ∇∫Ω
 (8.35)

The norm on HE(w) is defi ned by

 f fH E wE w
f x f x w x dx f f H

( )
: { ( ) ( ) } ( ) ( )

2
1

2
2

2
1 2= ∇ + = ∈∫ , ,

Ω
 (8.36)

Associated with this norm is the inner product

 (f,  g)HE(w) : = (∇f1,  ∇g1)H(w) + ( f2,  g2)H(w) (8.37)

where f = 〈 f1, f2 〉 and g = 〈 g1, g2 〉.
In terms of the above notation we shall understand

 M : H(w) × H(w) � D(M) → H(w) × H(w) (8.38)

where for f = 〈 f1, f2 〉 ∈ H(w) × H(w)

 Mf =
−













= −




= −i

I

A

f

f
i

f

Af
i f Af

0

0

1

2

2

1
2 1: ,  (8.39)

However, when the analysis is being conducted in the energy space HE(w) ⊂ H(w) 

× H(w) we shall understand M to be such that



 M : HE(w) ⊃ D(M) → HE(w) (8.40)

and say that f = 〈 f1, f2 〉 ∈ D(M) provided Mf ∈ D(M), that is provided 〈 −f2, Af1 〉 
∈ HE(w). We therefore defi ne D(M) to be

 D(M) : = {f = 〈 f1, f2 〉 ∈ HE(w) : f2 ∈ HD(w), Af1 ∈ H(w)} (8.41)

It now follows that M defi ned in this way is a positive, formally self-adjoint opera-

tor on D(M). To see this, notice fi rst that for f, g ∈ HE(w)

 
( ) ,

( ) (

( )

( )

Mf g,

,

H

H w

E w
i

f

Af

g

g

i f g iA

= −







( )

= − ∇ ∇ +

2

1

1

2

2 1 ff g H w1 2, ) ( )

 
(8.42)

and

 

( )

( )

( )

(

f Mg, ,

,

H

H w

H w

E w

E

f

f
i

g

Ag

f i g

= 



−



( )

= ∇ − ∇
( )

1

2

2

1

1 2 )) ( )( )+ f iAg H w2 1,
 

(8.43)

If we now apply (8.16) to the terms containing A on the right-hand side of (8.42) 

and (8.43) and acknowledge that by virtue of the boundary conditions accommo-

dated in the defi nition of D(A) all integrated terms, that is terms involving ∂Ω, will 

vanish, then the required symmetry and positivity of M on D(M) will follow.

For many problems of practical interest it turns out that the associated opera-

tor M on an energy space HE(w) is, in fact, a self-adjoint operator on its domain 

D(M) ⊂ HE(w) [3]. This being the case it is then a straightforward matter, using 

the results in Section 5.3, to settle the wellposedness of (8.29) and hence of (8.11) 

to (8.13). Furthermore, whenever solutions exist in HE(w) then, by defi nition, they 

will have the required fi nite energy property. To complete the analysis of problems 

of the form (8.11) to (8.13) it then only remains to establish the availability of 

suitable generalised eigenfunction expansion theorems in order to be able to 

provide a practical interpretation of terms such as (cos tA1/2)j which appear in 

the abstract solution form (8.28).

Our approach will be modelled on the analysis of wave processes in homoge-

neous media which we discussed in Chapters 1, 6 and 7. There we studied the 

IBVP

{∂2
t − ∆}u(x,  t) = 0, (x,  t) ∈ Ω × R

u(x,  0) = j(x), ut(x,  0) = y(x), x ∈ Ω

u(x,  t) ∈ (bc), (x,  t) ∈ ∂Ω × R

For the free, that is, unperturbed problem we took Ω = R3 and introduced the 

operator

 8.2 Hilbert Space Formulation 207



208 8 Scattering Processes in Stratifi ed Media

A0 : L2(R
3) → L2(R

3) = : H(R3)

A0u0 = −∆u0, u0 ∈ D(A0)

D(A0) = {u ∈ H(R3) : ∆u ∈ H(R3)}

The IVP for the free problem was then represented in H(R3) in the form

{d2
t + A0}u0(t) = 0, t ∈ R

u0(0) = j, u0t(0) = y

This abstract problem was shown to have a solution in the form

u0(t) = (cos (tA0
1/2))j + A0

−1/2(sin (tA0
1/2))y

A physical interpretation of this abstract solution form was then obtained by using 

the Plancherel theory of Fourier transforms which yields the following, indepen-

dently obtained, results [5], [7], [3].

ˆ ( )( ) : ˆ ( ) lim ( ) ( )fF f p f p w x p f x dx
R x R

= =
→∞ ≤∫ 0 ,

ˆ ( ) ˆ )( ) lim ( ) ˆ ( )ff x F f x w x p f p dp
R p R

= =
→∞ ≤∫*( ,0

ˆ ( ) ( ) lim ( ) ) ˆ ( )f A f x w x p p f p dp
R p R

Φ Φ0 0
2=

→∞ ≤∫ ,

where F : H(R3) → H(R3) denotes the Fourier transform, F* = F −1 and Φ is a 

suitably “nice” function. Furthermore,

w x p ix p x p0 3 2

31

2
( )

( )
exp( )

/
, , ,= ⋅ ∈

π
R

is the usual Fourier kernel. We notice that w0 satisfi es the Helmholtz equation

( ) ( , ) ,∆+ = ∈p w x p x p
2

0
30 for all R

Thus w0 appears to be an eigenfunction of the operator A0 with associated eigen-

value p
2. However, this cannot be the case as direct calculation shows that 

w0 ∉ H(R3) and therefore w0 must be a generalised eigenfunction of A0. Conse-

quently, the above results from the Fourier Plancherel theory are referred to col-

lectively as a generalised eigenfunction expansion theorem.

We shall indicate, in the next few sections, how similar results can be obtained 

when dealing with scattering problems in stratifi ed media.



8.3 Scattering in Plane Stratifi ed Media

A medium is said to be plane stratifi ed if the local sound speed, c(x), and 

density, r(x), are functions of a single Cartesian coordinate. This we will indicate 

by writing

 c(x) = c(x1,  x2,  x3) = c(x3) =: c(z) (8.44)

 r(x) = r(x1,  x2,  x3) = r(x3) =: r(z) (8.45)

where for ease of presentation we have written x3 = z.

We shall investigate here acoustic wave phenomena in the particular case 

when

 c z
c z h

c z h
( )= ≤ <{ 1

2

0,

, �
 (8.46)

and

 ρ ρ
ρ

( )z
z h

z h
=

≤ <{ 1

2

0,

, �
 (8.47)

where c1, c2, r1, r2 and h are bounded constants.

If we assume that this particular stratifi ed medium occupies the half space

 R3
+ := {x = (x1,  x2,  x3) ∈ R3 : (x1,  x2) ∈ R2 and z > 0} (8.48)

then the IBVP governing acoustic wave phenomena in such a material, when 

z = 0 is a free surface, has the form (see (8.1) and (8.9))

 {∂2
t + L(x)}u(x,  t) = 0, x ∈ R3

+ and t > 0 (8.49)

 u(x,  0) = j(x) and ut(x,  0) = y(x), x ∈ R3
+ (8.50)

 u(x,  t) = 0, z = 0, t � 0 (8.51)

where the differential expression L(x) in (8.1) now assumes the modifi ed form 

defi ned by

 L x u x c z z
z

u x( ) ( ) : ( ) ( )
( )

( )=− ∇⋅ ∇








2 1
ρ

ρ
 (8.52)

The IVP (8.49)to (8.53) models acoustic wave phenomena in a medium com-

prising a layer of thickness h, sound speed c1 and density r1, lying underneath a 

layer having sound speed c2 and density r2. Acoustic wave processes in such 

media present a phenomena which we have so far not encountered. Specifi cally, 
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waves can be trapped in the layer 0 ≤ z ≤ h as a consequence of total refl ection 

at an interface between two media. We shall discuss these trapped or guided 

waves in more detail when we discuss generalised eigenfunction expansion theo-

rems associated with (8.49) to (8.53).

As in Section 8.2, an IBVP such as (8.49) to (8.53) is conveniently analysed in 

a weighted L2 setting. With this in mind we see that all the structures introduced 

in Section 8.2 are available here provided we take

Ω = R3
+

and modify the weight function (8.19) to read

 w(x)dx = c−2(z)r−1(z)dx (8.53)

The solution of the IBVP (8.49) to (8.53) is based on being able to construct 

an operator

 A : H(w) � D(A) → H(w) := L2(R
3
+, w(x)dx) (8.54)

which is a self-adjoint realisation in H(w) of L(x) that incorporates the boundary 

condition (8.51). A fi rst step in this direction is given by (8.21) provided that the 

weight function and the boundary condition are modifi ed as in (8.53) and (8.51) 

respectively. It then follows, as in Section 8.2, that the operator A introduced here 

is a positive, formally self-adjoint (symmetric) operator on its domain D(A). It 

now remains to show that A, as defi ned here, is actually a self-adjoint operator 

on its domain. This will then ensure that we have the spectral theorem available 

for interpreting the solutions of abstract IVPs centred on the operator A. In estab-

lishing this result we shall use the following notations (see Chapter 3)

D(R3
+) = Schwartz space of infi nitely differentiable functions 

on R3
+ with compact support (8.55)

 D′(R3
+) = dual space of all distributions on R3

+ (8.56)

We also introduce the Sobolev Hilbert spaces [1], [3]

H L u D u L a mm( ) ( ) { : ( ) }R R R+ + += ∈ ≤3
2

3
2

3
∩

α for

where

a = (a1,  a2,  a3,  .  .  .  ,  an) = multi-index of non-negative integers

 

α α α= =
=
∑ k

k

n

order of
1



fa(x) = fa1a2a3.  .  .an
(x)

D f x D D D D
x

n k
m

m

k
m

nα α α α( ) . . . , := =
∂
∂1 2

1 2 where

The space Hm(R3
+) is a Hilbert space with inner product

 ( ) : ( ) ( )u v D u x D v x dxm
a

m

, =
≤
∑∫

+

α

αR3
 (8.57)

and D(R3
+) is a linear subset of Hm(R3

+) for all m. Of particular use to us here is 

the fact that

 H1
0(R

3
+) := closure of D(R3

+) in H1(R3
+) (8.58)

is a closed subspace of H1(R3
+). It is known [1] that all elements of H1

0 (R
3
+) satisfy 

the homogeneous Dirichlet condition required in (8.21).

In proving that the operator A is self-adjoint we shall make use of the follow-

ing general result.

Theorem 8.1. Let H be a Hilbert space. A symmetric operator B : H → H which 

is such that

Range of B =: RanB = H

is self-adjoint.

Proof. If B : H → H is a symmetric operator then evidently B ⊂ B*. Consequently, 

it is suffi cient to show that every element g ∈ D(B*) is also an element of D(B). 

Therefore, let g ∈ D(B*) and B*g = g*. Then since RanB = H there exists an 

element h ∈ D(B) such that Bh = g*. Consequently, for each f ∈ D(B) and because 

B has been assumed to be symmetric we obtain

(Bf,  g) = ( f,  g*) = ( f,  Bh) = (Bf,  h)

Since RanB = H then we have g = h. Hence g ∈ D(B) as required. �

With this preparation we now prove the following result.

Theorem 8.2. Range of (I + A) = Ran (I + A) = H(w).

Proof. If f ∈ Ran (I + A) then there exists an element u ∈ D(A) such that 

(I + A)u = f.

We want to show that for any f ∈ H there exists a u ∈ D(A) such that 

(I + A)u = f.
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Now, for all u ∈ D(A) and v ∈ H1(R3
+) see that (8.16) and (8.20) imply

 ( )
( )

( ) ( )Au v
z

u x v x dx, =− ∇⋅ ∇








+
∫

1
3 ρR

 (8.59)

 
= ∇ ⋅∇ −

+
∫ ( )( ) ( )u v x z dxρ 1

3R  
(8.60)

 
= − ∈ +( ) ( )( )f u v v HH w, for all 0

1 3R
 

(8.61)

Consequently, for all v ∈ H1
0(R

3
+)

 

( ) ( ) ( ) ( )

{( )( ) ( ) ( ) ( )}

( )f v f x v x w x dx

u v x z u x v x dx

H w, =

= ∇ ⋅∇ +
+
∫

−

R3

1ρ
RR+
∫ 3

  (8.62)

If now we set

 { } {( )( ) ( ) ( ) ( )}u v u v x z u x v x dx, = ∇ ⋅∇ +−

+
∫ ρ 1

3R
 (8.63)

then we see that (8.63) defi nes an inner product on H1
0(R

3
+) which is equivalent 

to the inner product (⋅,  ⋅)1, defi ned by (8.57). Furthermore, for all f ∈ H(w) and v 

∈ H1
0(R

3
+)

 ( , ) { , }( ) ( ) ( ) ( )f v f v f v vH w H w H w H w≤ ≤ 1 2
 (8.64)

the last inequality following because

 v v x w x dx v vH w( ) ( ) ( ) { }= ≤
+
∫ 2

3
,

R
 (8.65)

for all v ∈ H1
0(R

3
+ ).

For the sake of illustration we now introduce, bearing (8.60) and (8.61) in 

mind, a linear functional Φf defi ned according to

 Φf (v) := ( f,  v)H(w) = {u,  v} (8.66)

The expression (8.66) taken in conjunction with the results (8.62) to (8.65) pro-

vides an expression of the Riesz representation theorem. Therefore we can con-

clude that for each f ∈ H(w) there is a u ∈ H1
0(R

3
+) such that (8.62) holds for all 

v ∈ H1
0(R

3
+).

Before completing the proof we fi rst emphasise that the “divergence operator” 

appearing in the defi nitions of L and D(A) (see (8.1) and (8.21)) must be under-

stood in the sense of distributions. Consequently, if a vector W = (W1,  W2,  W3) is 

such that Wj ∈ L2(R
3
+), j = 1, 2, 3 then (∇ · W) ∈ L2(R

3
+) if and only if

 ( )( ) ( ) ( ) ( )W W)( for all⋅∇ =− ∇⋅ ∈ +
++
∫∫ ϕ ϕ ϕx dx x x dx D R

RR

3

33
 (8.67)



Now u ∈ H1
0(R

3
+) by construction. Furthermore, (8.62) with v ∈ D(R3

+) ⊂ 

H1
0(R

3
+) taken together with (8.67) and (8.59) to (8.61) implies

 −∇⋅
( )
∇







 = −

1

ρ z
u x x f u x w z( ) ( ) ( )( ) ( )  (8.68)

each side of which defi nes an element in L2(R
3
+). Hence we can conclude that 

u ∈ D(A) and that (I + A)u = f, as required. �

8.3.1 The Eigenfunctions of A

We have seen that A, defi ned in (8.21) is a positive, self-adjoint operator in H(w). 

Hence, it has a spectral family {El,  l � 0} and corresponding spectral representa-

tion (see Section 5.2)

A dE=
∞

∫ λ λ
0

Φ Φ( ) ( )A dE=
∞

∫ λ λ
0

where Φ is a bounded, Lebesgue measurable function of l. However, a practical 

diffi culty centred on these spectral representations concerns the actual determi-

nation of the spectral family {El}. The situation can be eased, as we have already 

mentioned in the previous chapter, by using generalised eigenfunction expansion 

theorems of a similar form to those indicated in Section 8.2 and Chapters 1, 6 and 

7. Therefore one of our principal aims is to determine the generalised eigenfunc-

tions of A that have a clear wave theoretic interpretation. Consequently, parallel-

ing as far as possible the analysis of homogeneous media problems, we will 

require that in the present case the generalised eigenfunctions of A, denoted by 

y(x), should be characterised by the following properties.

The generalised eigenfunctions in our present case are solutions of the dif-

ferential equation

 L x x c x x
x

x x( ) ( ) : ( ) ( )
( )

( ) ( )ψ ρ
ρ

ψ λψ λ=− ∇⋅ ∇{ }= ∈ +
2 1

, R  (8.69)

Solutions of (8.69) will be expected to satisfy

 y(x) = locally in D(A) (i.e. jy ∈ D (A)) for each j ∈ D (R3) (8.70)

 y(x) = locally in R3
+ (8.71)

Furthermore, the y(x) will be expected to satisfy certain boundary and inter-

face conditions. Specifi cally, if we introduce the notation
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 x = (x1,  x2,  x3) =: (y,  z) (8.72)

where y = (x1,  x2) ∈ R2 and x3 = z then we will require that y satisfi es the 

following.

Boundary Condition on z = 0

 ψ ψ( ) ( , ) ,x y yz= = = ∈0
20 0 R  (8.73)

Interface Conditions z = h

 y(y,  h+) = y(y,  h−) (8.74)

 
1 1

2 1ρ
ψ

ρ
ψ∂

∂
∂
∂z

y h
z

y h( ) ( ), ,+ −=  (8.75)

where h+ = h + 0 and h− = h − 0

We shall look for solutions of the IBVP (8.69) to (8.75) in the form

 y(x) = y(y,  z) = {exp(ip⋅y)}q(z) (8.76)

where p := (p1,  p2) and p⋅y = p1x1 + p2x2.

The form (8.76) is suggested by taking the Fourier transform of the above 

IBVP with respect to the variables x1 and x2 with the aim of reducing the partial 

differential equation involved to an equivalent ordinary differential equation.

Substitution of (8.76) into (8.69), (8.73), (8.74) and (8.75) leads to the following 

ordinary differential equations and boundary conditions.

 
d

dz c
p z z h

2

2
1
2

2
0 0+ −








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
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

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= ≤ <
λ

θ( ) for  (8.77)

 
d

dz c
p z z h

2

2
2
2

2
0+ −



















= >
λ

θ( ) for  (8.78)

 q(0) = 0 (8.79)

 q(h+) = q(h−) (8.80)

 
1 1

2 1ρ
θ

ρ
ψ∂

∂
∂
∂z

h
z

h( ) ( )+ −=  (8.81)

It is clear that y(z) as defi ned in (8.76) is not an element of H(w), for this 

reason it is referred to as a generalised (improper) eigenfunctionof L(x) and 

hence A. The quantities y(z) are referred to as reduced (generalised) eigenfunc-

tions since they satisfy the reduced equations (8.77), (8.78).

In constructing solutions of (8.77) to (8.81) the following notations will be used



 ξ
λ

η
λ

: :

/ /

= −






 = −







c

p
c

p
2
2

2
1 2

1
2

2
1 2

and  (8.82)

 ξ λ ξ ξ ξ λ� �0 02
2 2

2
2 2

for and with forc p i c p= ′ ′> <  (8.83)

 η λ η η η λ� �0 01
2 2

1
2 2

for and with forc p i c p= ′ ′> <  (8.84)

For any p ∈ R2 and l ∈ R+ such that l ≠ c2
1p

2 and l ≠ c2
2p

2 the general solution 

of (8.77), (8.78) and (8.79) has the form

 y(z) = asin hz, 0 < z < h

 = b exp (ixz) + g exp (−ixz), z > h (8.85)

where a, b and g are suitable constants.

This function will also satisfy (8.80), (8.81) if and only if

 

β ξ γ ξ α η

β ξ γ ξ α
ρ
ρ

η
ξ

exp( ) exp( ) sin

exp( ) exp( ) co

i h i h h

i h i h
i

+ − =

+ − = 2

1

ssηh
 (8.86)

Solving (8.85) and (8.86) for b and g we obtain

 β α η α
ρ
ρ

η
ξ

η ξ= −






 −

1

2

2

1

sin cos exp( )h
i

h i h  (8.87)

 γ α η α
ρ
ρ

η
ξ

η ξ= +








1

2

2

1

sin cos exp( )h
i

h i h  (8.88)

Hence the solutions of (8.77) to (8.79) are given by (8.85) to (8.88) with a an 

arbitrary constant.

It remains to determine the values of l and p for which (8.77) to (8.79) give 

bounded functions of z ∈ R+. In this connection we fi rst notice the following.

(i) If x is real (that is l > c2
2p

2) thenq(z) is bounded.

(ii) If x = ix′ is purely imaginary (that is l < c2
2p

2) then q(z) is bounded if 

and only if g = 0, that is if and only if

 ′ =−ξ
ρ
ρ

η η2

1

cot h  (8.89)

(iii) If x = ix′ is purely imaginary and h is real then (8.89) has solutions. If 

both x = ix′ and h = ih′ are purely imaginary then (8.89) has no solutions. To see 

this notice that (8.89) may be written

 ′ =− ′ ′ξ
ρ
ρ

η η2

1

cot h  (8.90)

and this has no solutions with x′ > 0 and h′ > 0.
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In the special case when c1 = c2 and r1 = r2 then L reduces to the negative 

Laplacian (with a multiply factor c) in R3
+ which has an associated Dirichlet condi-

tion. In this case we have seen in the earlier chapters that there is a complete set 

of improper eigenfunctions which can be defi ned in the form

 y(x,  p) = exp{i(x1p1 + x2p2 + x3p3)} − exp(i(x1p1 + x2p2 − x3p3)) (8.91)

where x = (x1,  x2,  x3) and p = (p1,  p2,  p3).

In physical terms(8.91) describes a plane wave propagating towards the 

boundary x3 = 0 of R3
+ together with a refl ected wave. We discuss more general 

cases below. We shall see that if c1 > c2 in (8.46) then the improper eigenfunctions 

are much like those displayed in (8.91) and consist of an incident and a refl ected 

wave. However if c1 < c2 another class of improper eigenfunctions arises. In addi-

tion to improper eigenfunctions like (8.91) we will now obtain functions localised 

near the region(0 ≤ x3 ≤ h). They correspond physically to waves that are trapped 

as a result of total refl ection at an interface between the two media.

Bearing in mind the observations (i), (ii) and (iii) above, and the defi nitions 

(8.82), we can obtain the following results.

Case 1: c1 � c2

In this case it is obvious that c2
1p

2 � c2
2p

2. Hence there are improper eigen-

functions for every l > c2
2p

2 and none for l < c2
2p

2.

Case 2: c1 < c2

It is clear that here c2
1p

2 < c2
2p

2. Hence, there are improper eigenfunctions 

for every l > c2
2p

2 and none for l < c2
1p

2.

In addition there are improper eigenfunctions for those values of l and p 

which satisfy

 c p c p1
2 2

2
2 2< <λ  (8.92)

Case 2 is the more interesting case. Consequently, we shall assume for the 

remainder of this chapter that

 c1 < c2 (8.93)

A detailed study of both cases can be found in [9]. However, as mentioned 

earlier, it is frequently the case that many of the proofs in this area are very tech-

nical and long. Since in this monograph our main interest is not so much in the 

detailed proof of a result as in its application a number of the main results will 

simply be stated and their applications reviewed.

8.3.2 The Wave Eigenfunctions of A

The required generalised eigenfunctions are characterised by (8.69), (8.72), (8.73) 

and (8.76). These eigenfunctions, as we have already mentioned, are of two main 

types will be called free wave eigenfunctions and guided wave eigenfunc-



tions. When discussing such eigenfunctions there are a number of cases to be 

considered.

Case 2a:

 λ> > = +c p c p p p p2
2 2

1
2 2 2

1
2

2
2where  (8.94)

In this case functions satisfying (8.69) to (8.73) and (8.76) exist. They are 

denoted by y0, referred to as free wave eigenfunctions and, with a slight abuse 

of notation, can be expressed in the form

 y0(x,  p,  l) ≡ y0(y,  z,  p,  l) = (2p)−1{exp i(p⋅y)}y0(z,  p,  l) (8.95)

where

 ψ λ α λ

η

β ξ η ξ γ ξ η ξ0
0

( ) ( )

sin

( ( )) ( )exp(
z p p

z

z h

i z h i
, , ,

, )exp( ,
= < <

− + − (( ))z h

z h

−
>










 (8.96)

It can be shown that the positive normalising constant a(p,  l) can be conveniently 

taken to be

a p( )
( ) ( )

/

,
,

λ
ρ

πξ β ξ η
=








2
1 2

4

In physical terms the eigenfunction y0(y,  z,  p,  l) characterises an acoustic 

fi eld with time dependence exp(−itl1/2) (see (8.49) and (8.69)). With (8.85) in 

mind this fi eld can be interpreted as a plane wave which propagates in the region 

z > h, is refracted at this interface z = h, (totally) refl ected at the boundary z = 0 

and refracted again at the interface z = h.

Case 2b:

 c p c p p p p1
2 2

2
2 2 2

1
2

2
2< < > = +λ where  (8.97)

For those values of l which satisfy (8.97) the functions y0(y,  z,  p,  l) defi ned by 

(8.95) and (8.96) together with (8.82), (8.77) and (8.78) still satisfy (8.69) to (8.73), 

and (8.76). However, in this case (8.97) implies that x in (8.82) is pure imaginary 

thus, recalling (8.83), we write

 ξ ξ ξ
λ

= ′ ′ −






 >i p

c
where =

2

2
2

1 2

0

/

 (8.98)

In this case (8.82) indicates that h is real and positive. It follows that the bound-

edness condition is satisfi ed by y0(y,  z,  p,  l) in (8.95) and satisfi es the bounded-

ness condition (8.89) if and only if 
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 g (ix′,  h) = 0 (8.99)

or, recalling (8.88), if and only if 

 ′ =−ξ
ρ
ρ

η η2

1

cot h  (8.100)

When l and p are such that (8.97) holds then (8.100) is equivalent to the fol-

lowing sequence of relations

 h kη π
ρ ξ
ρ η

= −( ) +
′−1

2

1 1

2

tan  (8.101)

For values of k = 1, 2,  .  .  .  , the relation (8.101) defi nes a functional relation 

between p and

 w = l1/2 (8.102)

Solutions of this relationship will be denoted

 λ λ ω ω λ= = =k kp p p( ), ( ) ( )1 2  (8.103)

each one of which represents a relation between the wave number p of the 

plane wave in y0(y,  z,  p,  l) and the corresponding frequencies w. In the general 

theory of wave motions relations such as those just described are known as dis-

persion relations.

The functions yk defi ned by

 ψ ψ λk y z p y z p p kk( , , ) ( , , , ( )), , , . . .= =0 1 2  (8.104)

satisfy, by construction, (8.69) to (8.71) and (8.76) for all eigenvalues l which 

satisfy (8.97). These functions have the specifi c form, bearing in mind (8.76) and 

(8.82),

 yk(y,  z,  p) = (2p)−1{exp i(p⋅y)}yk(z,  p) (8.105)

where

 ψ η
η ξk k

k

k k

z p a p
p z z h

p h p z h z
( ) ( )

sin ( ) .

sin ( ) exp( ( )( ))
,

,

,
=

< <
− ′ − >

0

hh{  (8.106)

 η
λ

k
k

p
p

c
p( )

( )
/

= −








1
2

2
1 2

 (8.107)



 ′ = −






ξ

λ
k

k
p p

p

c
( )

( )
/

2

2
2

1 2

 (8.108)

In (8.106) the quantity ak(p) is a positive constant which can be conveniently 

determined by the normalising condition

 ψ ψ ρk kz p w z dz z p c z z dz( ) ( ) : ( ) ( ) ( ), ,
2 2 2 1

00
1= =− −∞

∫∫  (8.109)

The eigenfunctions yk(z,  p) represent an acoustic fi eld having a time depen-

dence exp(−iwk(p))which characterises a plane wave which is trapped in the 

layer 0 ≤ z ≤ h by refl ection at z = 0 and total internal refl ection at the interface 

z = h. In the region z > h the acoustic fi eld is exponentially damped in the z 

direction and propagates strictly in the horizontal direction defi ned by the vector 

p = (p1,  p2).

8.3.3 Generalised Eigenfunction Expansions

The generalised eigenfunctions introduced in the previous subsections have differ-

ent wave theoretic interpretations depending on the relative magnitudes of l, p, c1 

and c2. We saw that there were two classes of wave eigenfunctions namely the free 

and the guided. These two classes can be conveniently characterised by defi ning

 
p

c

h c c
p k pk1

1

2
2

1
2 1 2 1

2
2 1=

−
= −

π
( )

( ),
 

(8.110)

 Ω0 := {(p,  l) : p ∈ R2 and c2
2p

2 < l} ⊂ R3 (8.111)

 Ωk kp p p k= > ={ : , , , . . .}1 2  (8.112)

The required expansion theorems can be obtained by following the very 

precise but lengthy analytical techniques developed in Wilcox [7]. Before stating 

the results we recall and just gather together, purely for convenience, the modi-

fi ed notations we use when dealing with this particular stratifi ed medium.

Notation Summary

x = (x1,  x2,  x3) =: (y,  z) ∈ R3, y := (x1,  x2) ∈ R2, z = x3

R3
+ := {x ∈ R3 : y ∈ R2, z > 0}, see (8.48)

w(x)dx = c−2(z)r−1(z)dx = c−2(z)r−1(z)dydz = w(z)dx, see (8.53)

H(w) = L2(R
3
+, w(x)dx), see (8.54)

With these particular notations the operator A in (8.21) will be modifi ed 

accordingly.

 8.3 Scattering in Plane Stratifi ed Media 219



220 8 Scattering Processes in Stratifi ed Media

Theorem 8.3. For every f ∈ H(w) the limits

ˆ ( )( ) ˆ ( ) ( ) lim ( ) ( ) ( )f F f p f p L y z p f y z z d
M

0 0 2 0 0, , , , , ,λ λ ψ λ ω= = −
→∞

Ω xx
y M

M

≤∫∫0

(8.113)

ˆ ( )( ) ˆ ( ( ) lim ( ) ( ) ( )f F f p f p L y z p f y z w z dxk k k
M

k
y

, , ) , , ,λ λ ψ= = −
→∞ ≤

2 Ω
MM

M

∫∫0

(8.114)

where k = 1, 2,  .  .  .  exist and satisfy the Parseval relation

 f fH w k L
k

k
( )

( )

2 2

0
2

=
=

∞

∑
Ω  (8.115)

Furthermore if we defi ne

 Ω0
2

2
2 2M p p c p M: {( , ) : }= ∈ < <λ λR and  (8.116)

 Ωk
M p p p M k: { : , , . . .}= < < =for 1 2  (8.117)

then it can be shown that the limits

 ˆ ( , ) ( ) lim ( ) ˆ (ff y z H w y z p f p dpd
M

M0 0 0
0

= −
→∞∫ ψ λ λ λ, , , , )

Ω
 (8.118)

 ˆ ( ) ( ) lim ( ) ˆ ( ) . . . , , . . .ff y z H w y z p f p dp kk
M

k k
k
M

, , , ,= − =
→∞∫ ψ 1 2

Ω
 (8.119)

exist and moreover

 f y z H w f y z
M

k

k

( ) ( ) lim ( ), , = −
→∞ =

∞

∑
0

 (8.120)

With the understanding we adopted in Chapters 1, 6 and 7 the above results can 

be written in the following more concise symbolic form

 ˆ ( ( ) ( ) ( )f p y z p f y z w z dx0 03
, ) , , , ,λ ψ λ=

+
∫

R
 (8.121)

 ˆ ( ) ( ) ˆ ( )ff y z y z p f p dpd0 0 0
0

, , , , ,= ∫ ψ λ λ λ
Ω

 (8.122)

 ˆ ( ) ( ) ( ) ( )f p y z p f y z w z dxk k, , , , λ ψ=
+
∫

R3
 (8.123)

 
ˆ ( ) ( ) ˆ ( ) .ff y z y z p f p dp kk k

k

, , , , , 2, . .= =∫ 1
ψ  (8.124)

 f y z f y zk

k

( ) ( ), ,=
=

∞

∑
0

 (8.125)



The relations (8.121) to (8.125) are the required generalised eigenfunction expan-

sions. They provide a spectral representation associated with the operator A in 

the sense that for all f ∈ D(A)

 ( ( ))( , ) ( ) ( , ) ( )( , ) ˆ ( , )F Af p Af p F f p f p0 0 0 0λ λ λ λ λ λ= = =�  (8.126)

 ˆ ( ( ))( ) ( ) ( ) ( )( , )( ) ( ) ˆ ( )f F Af p Af p p F f p p f pk k k k k k= = =� λ λ  (8.127)

where k = 1, 2,  .  .  .  . The relations (8.121) to (8.125) defi ne a modal decomposi-

tion appropriate for the model we are investigating in this section.

Once these modal decompositions are established then we can obtain the 

required physical solutions from abstract solution forms obtained when dealing 

with the operator A introduced in (8.54). Specifi cally, if the IBVP (8.49) to (8.52) 

is realised in the weighted L2-space H(w) then paralleling the analysis for homo-

geneous media but now using A rather than A0 we can represent the solutions of 

(8.49) to (8.52) in the form

 u(x,  t) = u(y,  z,  t) = Re{v(x,  t)} = Re{v(y,  z,  t)} (8.128)

where v(x,  t) is the complex form of the required solution and is defi ned as an 

abstract quantity in the form

 v(⋅  ,  t) ≡ v(⋅  ,  ⋅  ,  t) = (exp{−itA1/2}) f (8.129)

where

 f := j + iA−1/2y ∈ H(w) (8.130)

it being assumed that j ∈ H(w) and y ∈ D(A−1/2).

By applying the generalised eigenfunction expansion theorem (8.121) to 

(8.124) a physical form for the required solution can be obtained from (8.129). 

This yields the modal decomposition 

 v x t v y z t v y z tk

k

( ) ( ) ( ), , , , ,= =
=

∞

∑
0

 (8.131)

where

 ˆ ( ) ( exp ˆ ( )/fv y z t y z p it f p dpd0 0
1 2

0
0

, , , , , ) ,= −( ){ }∫ ψ λ λ λ λ
Ω

 (8.132)

 ˆ ( ) ( ) exp ( ) ˆ ( )fv y z t y z p itw p f p dpk k k k
k

, , , ,= −( ){ }∫ ψ
Ω

 (8.133)

where k = 1, 2,  .  .  .  .
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8.3.4 Some Remarks about Asymptotic Wave Functions

If the representation (8.76) is substituted into the modal decomposition (8.133) 

then the spectral integrals for the associated guided modes, k � 1, take the 

form

ˆ ( ) {exp( ( ( )))} ( ) ˆ ( )fv y z t i x p t p z p f p dp kk k k k, , , , , ,= − ⋅ − =
1

2
1 2

π
ω ψ .. . .

Ωk
∫  (8.134)

where yk(z,  p) is defi ned in (8.105).

The behaviour for large t of these integrals can be calculated by the method 

of stationary phase. As might be suspected this is a lengthy procedure. However, 

the manner in which this is done is worked through in considerable detail in [7]. 

The following convergence theorem can be obtained using this technique.

Theorem 8.4. For each k � 1

(i) there exists an element v∞k (⋅, ⋅,  t) ∈ H(w) for all t > 0 and the mapping t 

→ v∞k  is continuous

(ii) the element v∞k (⋅, ⋅,  t) ∈ H(w) is an asymptotic wave function for the 

modal wave vk(⋅, ⋅,  t) in the sense that

 lim ( ) ( )
t

k kv t v t
→∞

∞⋅ ⋅ − ⋅ ⋅ =, , , , 0  (8.135)

To investigate the asymptotic behaviour of the free mode we begin by substi-

tuting (8.95) into (8.132) to obtain

ˆ ( ) {exp( ( ))} ( ) ˆ ( )/fv y z t i y p t z p f p dpd0
1 2

0 0

1

2 0

, , , , ,= ⋅ −∫π
λ ψ λ λ λ

Ω

The representation (8.96) for y0 implies that

 v0(y,  z,  t) = v
0
+(y,  z − h,  t)+ v0

−(y,  z − h,  t) (8.136)

where (see (8.82), (8.87), (8.88))

ˆ ( ) exp ( ) ( ) ˆ ( )/fv y z t i y p z t a p f p0
1 2

0

1

2

+ = ⋅ + −( )( ){ }, , , , ,
π

ξ λ λ β ξ η λ ddpdλ
Ω0
∫  (8.137)

ˆ ( ) exp ( ) ˆ ( )/fv y z t i y p z t a p f p0
1 2

0

1

2

− = ⋅ − −( )( ){ }, , , ) ( , ,
π

ξ λ λ γ ξ η λ ddpdλ
Ω0
∫  (8.138)

If we make the change of variable



( , ) ( , )

/

p p g q
c

pλ ξ
λ

→ = = −






where

2
2

2
1 2

then (8.137) can be written (see (8.96) and (8.130) to (8.133))

 
ˆ ( ) {exp( ( ( )))} ˆ ( )fv y z t i y p zq t p q f p dpdq

q
0 3 2

1

2

+ =
( )

⋅ + −, , , ,
/π

ω λ
�00∫  (8.139)

where

 ˆ ( ) ( )
( )

( )
ˆ (/ /f p c q f p,

,

,
, )λ ρ

β ξ η
β ξ η

λ− { }2
2

2
1 2 1 2

02  (8.140)

and

 λ λ ω= = = +( , ) ( , ) ( )p q p q c p q2
2
2 2 2  (8.141)

Similarly by making the change of variable in (8.138)

( ) ( )

/

p p q q
c

p, , whereλ ξ
λ

→ =− = − +








2
2

2
1 2

we obtain

  
ˆ ( )

( )
{exp( ( ( )))} ˆ ( )

/
fv y z t i y p zq t p q f p dpdq

q
0 3 2

1

2

−

≤
= ⋅ + −, , , ,

π
ω λ

00∫  (8.142)

where f̂  is defi ned in (8.140).

If we now add (8.139) and (8.142), bearing in mind (8.136) then we obtain

  
ˆ ( )

( )
{exp( ( ( )))} ˆ ( )

/
fv y z h t i y p zq t p q f p dpdq0 3 2

1

2
, , , ,+ = ⋅ + −

π
ω λ

R33∫  (8.143)

for all z � 0. Hence (8.143) and (8.141) imply that in the half space z � h the 

quantity v0(y,  z,  t) coincides with a solution, in L2(R
3), of the d’Alembert equation 

with propagation constant c2.

The discussions in Chapter 1 and in [3, Chapter 8], indicate that the right-hand 

side of (8.143) defi nes an asymptotic wave function v∞ in L2(R
3) of the typical 

form

 v y z t
G r c t

r

∞ =
−

( )
(

, ,
, )2 θ

 (8.144)
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where

r y z
y z

r

2 2 2= + =and
,

θ
( )

It then follows that if

 v y z t
v y z h t z h

z h
0

0

∞
∞

= −
≤ ≤{( )

( ),
, ,

, ,

0

�
 (8.145)

then

 lim ( ) ( )
( )t H w

v t v t
→∞

∞⋅ ⋅ − ⋅ ⋅ =0 0 0, , , ,  (8.146)
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9

Scattering in Spatially Periodic Media

9.1 Introduction

In the previous chapter we discussed acoustic wave scattering processes in a 

nonhomogeneous medium, specifi cally in a stratifi ed medium. There we saw that 

the stratifi cation could give rise to trapped wave phenomena.

In this chapter we outline some additional effects that can occur when the 

stratifi cation of the medium is periodic. Such media and associated scattering 

effects arise in many areas of practical interest, for instance, in non-destructive 

testing, ultrasonic medical diagnosis and radar and sonar problems to name but 

a few.

For ease of presentation we shall in this chapter only be concerned with 

problems in one space dimension, that is, with string problems. Additional studies 

in more than one space dimension are referred to in the Commentary. This will 

allow us to avoid having to investigate trapped wave phenomena and so be able 

to concentrate on periodic media effects on acoustic wave propagation. We will 

also take the opportunity here of writing some of the results in terms of an associ-

ated spectral family rather than immediately in terms of generalised eigenfunc-

tions (see Chapter 5).

9.2 The Mathematical Model

In this chapter we will investigate the initial value problem

 {∂2
t − L(x)}u(x, t) = f(x) exp(−iwt), (x, t) ∈ R × R+ (9.1)

 u(x,  0) = j(x), ut(x,  0) = y(x) (9.2)

where
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 L x c x x
x x x

q x( ) ( ) ( )
( )

( )=−
∂
∂

∂
∂







−{ }2 1

ρ
ρ

 (9.3)

 c,  r,  q are given functions of x with period p (9.4)

 w is a frequency parameter satisfying w > 0 (9.5)

The source term f and the initial values j(x) and y(x) are assumed to vanish 

outside a bounded interval of R (see also Chapter 8).

The initial value problem (9.1), (9.2) describes the vibrations of a periodically 

nonhomogeneous infi nite string generated by a time harmonic source term. We 

would emphasise that the periodicity terms w and p are not necessarily the 

same.

Again for the sake of simplicity we shall assume that all data functions are 

suffi ciently “nice” in the sense that we will assume

 c,  r,  q ∈ C(R) and j,  y,  f ∈ C0
∞(R) (9.6)

As mentioned in Chapter 8, regularity conditions such as (9.6) can always be 

relaxed provided that the equation (9.1) can be interpreted meaningfully.

The analysis of this problem follows along the lines used in Chapter 8. Con-

sequently, we introduce the weighted Hilbert space

 H(w) = L2(R,c−2(x)r−1(x)dx) (9.7)

which is endowed with the inner product (⋅  ,  ⋅)H(w) defi ned by

 ( , ) : ( ) ( ) ( )( )u v u x v x w x dxH w = ∫
R

 (9.8)

where

w(x) = c−2(x)r−1(x)

The initial value problem (9.1), (9.2) can be represented in H(w) by introduc-

ing an operator A as follows

 A : H(w) → H(w) (9.9)

 Au = Lu for all u ∈ D(A)

D(A) = {u ∈ H(w): Lu ∈ H(w)}

Then, as in Chapter 8, we can show that A is a positive, formally self-adjoint 

operator on D(A) � H(w).

With this preparation we see that the given IVP (9.1), (9.2) involving a partial 

differential equation can be realised, in H(w), as an abstract IVP for an ordinary 

differential equation in the form



 {d2
t + A}u(t) = f exp(−iwt) (9.10)

 u(0) = j, ut(0) = y (9.11)

where, as in the previous chapter, we understand

 u = u(⋅  ,  ⋅): t → u(,  ⋅  t)= u(t) ∈ H(w) (9.12)

The solution of (9.10), (9.11) can be written in the form

 u t tA A t A G t s g s ds
t

( ) cos sin ( , ) ( )= ( )( ) + ( )( ) +− ∫1 2 1 2 1 2

0
ϕ ψ  (9.13)

where g(t) = f exp(−iwt) and where G(t,  s) is the Green’s function for the IVP 

(9.10), (9.11) [8] which satisfi es

 LG(t,  s) = d(t − s) (9.14)

 G(0,  s) = 0, Gt(0,  s) = 0 (9.15)

In this case G(t,  s) has the form [8]

 G t s
t s s t

W
( , )

( ) ( ) ( ) ( )

( , )
=

−θ θ θ θ
θ θ

1 2 1 2

1 2

 (9.16)

where q1,  q2 are any two linearly independent solutions of Lq = 0 and

 W (q1,  q2) = q1(s)q ′2(t) − q ′1(s)q2(t) (9.17)

If we choose

 q1(t) = sin tA1/2, q2(t) = cos tA1/2 (9.18)

then

 W (q1,  q2) = −A1/2 (9.19)

Furthermore, after a completely straight forward but rather lengthy calcula-

tion, we obtain

  G t s g s ds
f

A
i t

i

A
tA tA

t

( , ) ( )
( )

exp( ) sin cos=
−

− + ( )− ( ){∫0 2 1 2

1 2 1 2

ω
ω

ω }}  (9.20)

Applying the functional calculus for self-adjoint operators indicated in (5.41) we 

can now write (9.13) in the following form
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 u t t d E
t
d E t d E f⋅( )= ( ) ( )+ ( )+ ( ) ( )

∞ ∞ ∞

∫ ∫ ∫, cos
sin

,λ ϕ
λ

λ
ψ ξ λλ λ λ

0 0 0
 (9.21)

where

 ξ λ
λ ω

ω
ω
λ

λ λ, exp sin cost i t
i

t t( )=
−( )

−( )+ ( )− ( ){ }1
2  (9.22)

and {El} denotes the spectral family of A.

The result (9.21) indicates that the asymptotic behaviour of u(x,  t) as t → ∞ 

is, as might be expected, closely related to the properties of s(A), the spectrum 

of A, and of {El} the spectral family of A.

The properties of s(A) are, as we have seen in Chapter5, governed by

 R(l) := (A − l)−1 (9.23)

the resolvent of A.

The relationship between the spectral family, {El}, and the resolvent R(l) is 

given by Stone’s formula [9],[7] which in our present case assumes the form

 

(( ) , ) (( ) , )

lim (( (

( ) ( )E E f g E E f g

i
R i

H w H wβ β α α

τπ
ε

+ − + −

↓

+ − +

= +

0 0 0 0

0

1
ττ ε τ ε

α

β
) ( )) , ) ( )− −∫ R i f g dH w

 
(9.24)

where f,  g ∈ H(w).

Since A is positive and has no eigenvalues (see Theorem 9.8 for another proof 

of this result) then E0 = 0 and Eb+0 = Eb−0 so that (9.24) reduces to

 ( , ) lim (( ( ) ( )) , ) ( )E f g
i

R i R i f g dH wβ
τ

β

π
ε τ ε τ ε= + − −

↓ ∫
1

2 0 0
 (9.25)

Thus we see that the computation of {El} can be reduced to examining the limit-

ing behaviour of R(z)f as Im z ↓ 0 and Im z ↑ 0.

If we write

 U(x,  z) = R(z) f(x) (9.26)

then we see that U(x,  z) satisfi es

 c x x
x x x

q x U x z zU x z f2 1
( ) ( )

( )
( ) ( , ) ( , )ρ

ρ
∂
∂

∂
∂







−{ } + =  (9.27)

where the coeffi cients are periodic. The equation (9.27) is an example of Hill’s 

equation, the classical theory of which can be applied to an investigation of the 

resolvent.



An analysis of Hill’s equation can be made using results of Floquet’s theory 

of periodic differential equations. For convenience we give in the next section a 

short account of Floquet theory and display a number of results that are particu-

larly relevant for our present study.

9.3 Elements of Floquet Theory

In this section we shall be concerned with the general second order equation

 a0(x)y″(x) + a1(x)y′(x) + a2(x)y(x) = 0 (9.28)

in which the coeffi cients ar(x) are complex valued, piecewise continuous and 

periodic, all with the same period p. Consequently,

 ar(x + p) = ar(x), 0 ≤ r ≤ 2 (9.29)

where p is a non-zero constant. In investigating (9.28) we shall assume that the 

usual theory of linear differential equations without singular points applies [3], 

[4], [2].

We notice that if z(x) is a solution of (9.28), since the equation is unaltered if 

x is replaced by (x + p), then z(x + p) also is a solution. However, in general 

(9.28) need not have any non-trivial solutions with period p. Nevertheless the 

following result holds.

Theorem 9.1. There is a non-zero constant b and a nontrivial solution z(x)

of (9.28) such that

 z(x + p) = bz(x) (9.30)

Proof. Let qk(x), k = 1,  2 be linearly independent solutions of (9.28) which 

satisfy

 q1(0) = 1, q ′1(0) = 0, q2(0) = 0, q ′2(0) = 1 (9.31)

Since qk(x + p), k = 1,  2 also linearly independent solutions of (9.28) there are 

constants Cij, i, j ≤ such that

q1(x + p) = C11q1(x) + C12q2(x) (9.32)

 q2(x + p) = C21q1(x) + C22q2(x) (9.33)

where the matrix C := [Cij] is non-singular.

Every solution z(x) of (9.28) has the form

 z(x) = a1q1(x) + a2q2(x) (9.34)
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where a1,  a2 are constants. Now, recognising (9.32) and (9.33) we see that (9.30) 

holds provided

C C

C C

11 12

21 22

0
−

−
=

β
β

that is, provided

 b2 − (C11 + C22)b + det C = 0 (9.35)

This quadratic equation for b has at least one non-trivial solution since det C ≠ 0.

An alternative form of (9.35) can be obtained as follows. Using (9.32) to (9.34) 

it follows that

 C11 = q1( p), C12 = q ′1( p), C21 = q2( p), C22 = q ′2(p) (9.36)

Hence, using Liouvilles’ formula for the Wronskian [2], [4]

 det ( , )( ) exp
( )

( )
C W p

a

a
d

p

= = − { }{ }∫θ θ
η
η

η1 2
1

00
 (9.37)

We remark that we have also used the fact that W(q1,  q2)(0) = 1. Thus (9.35) 

can be written

 β β
η
η

η2
11 22

1

00
0− + + − { }{ }=∫( ) exp

( )

( )
C C

a

a
d

p

 (9.38)

One of the main results of the Floquet theory is the following.

Theorem 9.2. There are linearly independent solutions z1(x) and z2(x) of (9.28) 

such that either

(i)

z1(x) = {exp(m1x)}v1(x)

z2(x) = {exp(m2x)}v2(x)

where m1,m2 are constants, not necessarily distinct, and v1,v2 are periodic func-

tions of x of period p, or

(ii)

 z1(x) = {exp(mx)}v1(x)

z2(x) = {exp(mx)}{xv1(x) + v2(x)}

where m is a constant and v1,v2 are periodic functions of x of period p.



Proof. Assume that (9.35) has distinct solutions b1 and b2 then, by Theorem 9.1 

there are non-trivial solutions z1(x), z2(x) of (9.28) such that

 zk(x + p) = bkzk(x), k = 1, 2 (9.39)

and these solutions are linearly independent.

Since bk,k = 1, 2 are non-zero we can defi ne mk,k = 1, 2 so that

 exp(pmk) = bk (9.40)

We then defi ne

 vk(x) = {exp(−mkx)}zk(x) (9.41)

and it follows from (9.39) and (9.40) that

vk(x + p) = {exp(−mk(x + p))}bkzk(x) = vk(x)

Hence by (9.41)

zk(x) = {exp(mkx)}vk(x)

where the vk have period p.

When (9.35) has a repeated root b then we defi ne m so that

exp(pm) = b

From Theorem 9.1 it follows that there is a non-trivial solution Ψ1(x) of (9.28) 

such that

 Ψ1(x + p) = bΨ1(x) (9.42)

Let Ψ2(x) be a solution of (9.28) so that Ψ1(x), Ψ2(x) are not linearly 

dependent.

Since Ψ2(x + p) also satisfi es (9.28) there are constants d1,d2 such that

 Ψ2(x + p) = d1Ψ1(x) + d2Ψ2(x) (9.43)

From (9.42) and (9.43) we obtain

W(Ψ1,  Ψ2)(x + p) = bd2W(Ψ1,  Ψ2)(x)

Therefore, using Liouville’s formula for the Wronsksian

β
η
η

η
η
η

ηd
a

a
d

a

a
d

x

x p p

2
1

0

1

00
= − { }{ }= − { }{ }+

∫ ∫exp
( )

( )
exp

( )

( )
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which follows since the integrand has period p. Furthermore the right-hand form 

in this expression is equal to b2 since b is also a solution of (9.38). Hence d2 = b. 

From (9.43) we now obtain

 Ψ2(x + p) = d1Ψ1(x) + bΨ2(x) (9.44)

There are now two possibilities to consider.

Possibility 1: d1 = 0

In this case (9.44) implies

Ψ2(x + p) = bΨ2(x)

This, together with (9.42), indicates that we have the same situation as in (9.39) 

but with b1 = b2 = b. Consequently, this case is now covered by part (i) of the 

theorem.

Possibility 2: d1 ≠ 0

In this case we defi ne

V1(x) = {exp(−mx)}Ψ1(x)

and

V x mx x
d

p
xV x2 2

1
1( ) {exp( )} ( ) ( )= − −







Ψ

β

Then by (9.42) and (9.44) V1(x) and V2(x) have period p. Therefore since

Ψ

Ψ

1 1

2
1

1 2

( ) {exp( )} ( )

( ) {exp( )} ( )

x mx V x

x mx
d

p
xV x V

=

=






 +

β
(( )x{ }

then part (ii) is covered with z1(x) = Ψ1(x) and ξ β2 1 2( ) ( / ) ( )x p d x= Ψ .

Defi nition 9.3. The solutions bk,k = 1, 2 of (9.35) or (9.38) are called the charac-

teristic multipliers of (9.28) and the mk,k = 1, 2 are called the characteristic 

exponents of (9.28). �

9.3.1 Hill’s Equation

A particular form of (9.28) which frequently occurs in practice is the equation

 {P(x)y′(x)}′ + Q(x)y(x) = 0 (9.45)



where P and Q are real-valued, periodic functions with the same period p. Fur-

thermore, we shall assume that P is continuous and non-vanishing and that P′ and 

Q are piecewise continuous. Thus, (9.45) is a particular form of (9.28) and is 

referred to as Hill’s equation.

If we assume that

 
a

a
d

p
1

00
0

( )

( )

η
η

η{ } =∫  (9.46)

and set

B x
a

a
d

x

( )
( )

( )
= { }∫ 1

00

η
η

η

then multiplying (9.28) by {a0(x)}−1exp(B(x)) we obtain an equation of the form 

(9.45) with

P x B x Q x
a x

a x
B x( ) exp( ( )), ( )

( )

( )
exp( ( ))= ={ }2

0

Using (9.46) we see that B, P and Q all have period p.

For the equation (9.45) the quadratic equation (9.38) becomes, bearing in mind 

(9.36),

 b2 − (q1( p) + q ′2( p))b + 1 = 0 (9.47)

From the familiar properties of quadratic equations we see that the characteristic 

multipliers b1, b2 satisfy

 b1b2 = 1 (9.48)

The solutions qk(x) of (9.45) are real valued because P(x) and Q(x) are real 

valued.

The properties of the solution qk(x),k = 1, 2 of (9.45) depend on the properties 

of the solutions bk,k = 1, 2 of (9.47). In this connection we introduce the real 

number D, called the discriminant of (9.45), defi ned by

 D := q1( p) + q ′2( p) (9.49)

Using again familiar properties of quadratic equations we see that when dis-

cussing the roots of (9.47) there are fi ve cases to be considered.

Case 1: D > 2

It follows from (9.47) that the bk,k = 1, 2 are real and distinct. Furthermore, they 

are positive but not equal to unity. Consequently, using (9.48) it follows that there 

is a real number m such that
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exp(mp) = b1 and exp(−mp) = b2

This follows from (9.40). Therefore, by part (i) of Theorem 9.2 we obtain

 z1(x) = {exp(mx)}v1(x) and z2(x) = {exp(−mx)}v2(x) (9.50)

where v1 and v2 each have period p.

Case 2: D < −2

This case is similar to Case 1 except that here b1 and b2 are now negative but 

they are not equal to (−1). Hence the m in (9.50) must be replaced by ( / )m i p+ π .

Case 3: −2 < D < 2

It follows from (9.47) that the bk,k = 1, 2 are not real but distinct. However, they 

are complex conjugates and (9.48) indicates that they have unit modulus. Hence 

there exists a real number a such that either 0 < ap < p or −p < ap < 0 and

{exp(iap)} = b1 and {exp(−iap)} = b2

Therefore, using part (i) of Theorem 9.2 we can write

 z1(x) = {exp(iax)}v1(x) and z2(x) = {exp(−iax)}v2(x) (9.51)

where the vk,k = 1, 2 each have period p.

Case 4: D = 2

In this case (9.47) has equal roots bk = 1,k = 1, 2. Consequently, we have to decide 

which part of Theorem 9.2 applies. The standard theory of algebraic equations 

indicates, bearing in mind that bk,k = 1, 2, that part (i) of Theorem 9.2 applies if 

rank (C − I ) = 0 whilst part (ii) applies if rank (C − I ) = 1. There are two possi-

bilities to consider.

Possibility 1: q2( p) = q ′1( p) = 0

Since

W(q1,  q2)(p) = W(q1,  q2)(0) = 1

then we have

q1( p)q ′2(p) = 1

D = q1( p) + q ′2( p) = 2

Consequently

q1( p) = q ′2( p) = 1

Hence rank (C − I ) = 0 and part (ii) of Theorem 9.2 applies.



Since bk = 1, k = 1, 2 then the characteristic exponents mk,k = 1, 2 must be 

zero. Consequently, Theorem 9.2 implies that

zk(x) = vk(x), k = 1, 2

where each of the vk have period p.

Possibility 2: q2(p) and q ′1(p) not both zero

In this case rank (C − I) ≠ 0 and part (ii) of Theorem 9.2 applies with m = 0. 

Hence

z1(x) = v1(x) and z2(x) = xv1(x) + v2(x)

where the vk,k = 1, 2 each have period p.

Case 5: D = −2

In this case (9.47) has equal roots bk = −1, k = 1, 2. We proceed as in Case 4 and 

consider two possibilities.

Possibility 1: q2( p) = q ′1( p) = 0

Arguing as in Case 4 we have that rank (C + 1) = 0 and part (i) of Theorem 

9.2 applies with m m
i

p
1 2= =

π
.

Hence

 ξ
π

ξ
π

1 1 2 2( ) exp ( ) ( ) exp ( )x
i x

p
v x x

i x

p
v x= ( ){ } = ( ){ }and  (9.52)

where v1 and v2 each have period p. It now follows from (9.52) that

zk(x + p) = −zk(x), k = 1, 2

and hence that all solutions of (9.45) satisfy

z(x + p) = −z(x)

Possibility 2: q2( p) and q ′1( p) are not both zero.

Here rank (C + 1) ≠ 0 and part (ii) of Theorem 9.2 holds with m
i

p
=

π
. Hence

z1(x) = u1(x) and z2(x) = xu1(x) + u2(x)

where u x
i x

p
v x kk k( ) exp ( ), ,= ( ){ } =

π
1 2

Thus the uk,k = 1, 2 satisfy

uk(x + p) = −uk(x), k = 1, 2
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Defi nition 9.4. A function f with the property f(x + p) = −f(x) for all x is said 

to be semi-periodic with semi-period p.

It follows from Defi nition 9.4 that a function which is semi-periodic with semi-

period p is periodic with period 2p.

We shall need the following results in later sections.

Theorem 9.5. (i) If D > 2 then all non-trivial solutions of (9.45) are unbounded 

on (−∞, ∞).

(ii) If D < 2 then all non-trivial solutions of (9.45) are bounded on (−∞, ∞).

Proof. If D > 2 then we have Case 1 and (9.50) holds. It is clear that any linear 

combination of z1(x) and z2(x) is unbounded either as x → ∞ or as x → −∞. The 

argument for D < −2 (which is Case 2 in the above) is similar. Part (i) is 

proved.

If D < 2 then Case 3 applies and (9.51) holds. Hence

ζk kx v x k( ) ( ) , ,= =1 2

Since vk,k = 1, 2 are periodic in (−∞, ∞) they are also bounded there. Hence 

the zk,k = 1, 2 are bounded in (−∞, ∞). This establishes part (ii). �

Defi nition 9.6. The equation (9.45) is said to be

(a) unstable if all non-trivial solutions are unbounded on (−∞, ∞).

(b) conditionally stable if there exists a non-trivial solution which is 

bounded in (−∞, ∞).

(c) stable if all solutions are bounded in (−∞, ∞).

Using Cases 4 and 5 the following theorem can be established.

Theorem 9.7 The equation (9.45) has non-trivial solutions with period p if and 

only if D = 2 and with semi-period p if and only if D = −2. All solutions of (9.45) 

have either period p or semi-period p if, in addition, q2(p) = q ′1(p) = 0.

Proof. This is left as an exercise.

9.4 Solutions of the Mathematical Model

If we set 

 V x z
U x z

x
( , )

( , )

( )
=

ρ
 (9.53)

 q x q x x
x

x0

1
( ) ( ) ( )

( )
( )= − ( )′{ }ρ

ρ
ρ  (9.54)

 f
f x

x
1=

( )

( )ρ
 (9.55)



then (9.27) can be written in the form

 c2(x){d2
x − q0(x)}V (x, z) = −f1(x) (9.56)

The homogeneous form of (9.56) is a form of (9.28) in the particular case 

when

 a0 = 1, a1 = 0, a2 = q0 (9.57)

Following the analysis of equations of the form (9.28) given in the last section, 

let q1(x, z) and q2(x, z) be solutions of the homogeneous equations

 c2(x){d2
x − q0(x)}qk(x, z) = 0, k = 1, 2 (9.58)

which satisfy

 q1(0, z) = 1, q ′1(0, z) = 0 (9.59)

 q2(0, z) = 0, q ′2(0, z) = 1 (9.60)

where the primes denote differentiation with respect to x.

Using (9.58) to (9.60) we fi nd that the Wronskian of q1 and q2 has the constant 

value one. Furthermore, since c and q0 are p-periodic then

 qk(x + p, z) = qk( p, z)q1(x, z) + q ′k( p, z)q2(x, z), k = 1, 2 (9.61)

This follows from the fact that both sides of (9.61) are solutions of (9.58) with 

the same initial conditions.

We can now use results from Floquet theory introduced in the previous 

section to investigate solutions of (9.58) that have the form

 x( p, z) = a1q1( p, z) + a2q2( p, z) (9.62)

and which have the property

 x(x + p, z) = bx(x, z) (9.63)

Bearing in mind (9.61) we fi nd that we must have

 (q1( p, z) − b)a1 + q2( p, z)a2 = 0 (9.64)

 q ′1( p, z)a1 + (q ′2( p, z) − b)a2 = 0 (9.65)

This system has non-trivial solutions a1 and a2 if and only if

 b2 − D( p, z)b + 1= 0 (9.66)

where
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 D( p,  z) = q1( p,  z) + q ′2( p,  z) (9.67)

We remark that in obtaining (9.66) we have used the fact that the Wronskian 

W(q1,  q2) = 1.

We notice that every solution of (9.58) that satisfi es (9.63) with b := exp(Iap) 

has the form

z(x,  z) = {exp(iax)}V (x,  z)

with V(x,  z) = {exp(−iax)}z(x,  z) being p-periodic.

It now follows that the properties, in particular the growth properties, of the 

solutions of (9.58) are determined by the location of the roots of (9.66). Just as 

in the previous section there are now a number of possible cases to consider. For 

convenience we give them for the particular case of interest in this section.

Case 1: −2 < D( p,  z) < 2

In this case (9.66) has no real roots b1 and b2 satisfying b2 = b
−

1 and b1 = 1. 

It follows that (9.58) has a fundamental system of solutions of the form

 x1(x,  z) = {exp(iax)}V1(x,  z), x2(x,  z) = {exp(iax)}V2(x,  z) (9.68)

with 0< <α
π
p

 and p-periodic functions V1 and V2.

Case 2: D( p,  z) = 2, q2( p,  z) = q ′1( p,  z) = 0

In this case every solution of (9.58) is p-periodic. This follows since the Wron-

skian W(q1,  q2) = 1 will now imply that q ′2( p,  z)q1( p,  z) = 1 and hence q ′2( p,  z) = 

q1( p,  z) = 1 since

D( p,  z) = q1( p,  z) + q2( p,  z) = 2

It follows that q1,  q ′1,  q2,  q ′2, have the same values at x = 0 and x = p and so q1 

and q2 are p-periodic.

Case 3: D( p,  z) = 2, q2( p,  z) ≠ 0, q ′1( p,  z) ≠ 0

The equation (9.58) has a non-trivial p-periodic solution since b = 1 is a root 

of (9.66). Furthermore, since q2( p,  z) and q ′1( p,  z) are not both zero then the 

conditions (9.59), (9.60) indicate that at least one of the functions q1 and q2 is not 

periodic. In this case (9.58) has a fundamental system of the form

 z1(x,  z) = V1(x,  z), z2(x,  z) = xV1(x) + V2(x,  z) (9.69)

where V1 and V2 are p-periodic.

Case 4: D( p,  z) = −2, q2( p,  z) = q ′1( p,  z) = 0

In this case every solution of (9.58) satisfi es

 z(x + p,  z) = −z(x,  z) (9.70)



This follows since, arguing as in Case 2, we fi nd that q1, q ′1, q2, q ′2 have opposite 

signs at x = 0 and x = p.

Case 5: D( p,  z) = −2, q2( p,  z) ≠ 0, q ′1( p,  z) = 0

Arguing as in Case 2, we fi nd that in this case (9.58) has a fundamental system 

of the form (9.43) where V1 and V2 satisfy (9.70).

Case 6: D( p,  z) ∈ C − [−2,  2]

In this case the roots b1 and b2 of (9.66) do not lie on the unit circle. If they did 

lie on the unit circle then they would be of the form b = exp(iap) with a real. 

This being so then on solving the quadratic equation (9.66) we would obtain

D p z D p z i( , ) ( , ) exp( )± − =2 4 2 α

which implies

D( p,  z)2 − 4 = (2exp(ia) − D( p,  z))2

and hence

D( p,  z) = {exp(−ia)}({exp(2ia)} + 1) = 2cos α ∈ [−2,  2]

Since b1b2 = 1 then the system (9.64), (9.65) has exactly one root b with 

b > 1. Consequently, on setting b = exp (ap) we obtain the fundamental system

 x1(x,  z) = {exp(ax)}V1(x,  z), x2(x,  z) = {exp(−ax)}V2(x,  z) (9.71)

with Re a > 0 and − < <π α π/ Im /p p  together with p-periodic functions Vk, k = 

1, 2.

We can now obtain the following result.

Theorem 9.8. Let A denote the H(w) realisation of the differential expression 

defi ned in (9.3).

The spectrum of A, denoted s(A), is purely continuous.

Proof. If A has an eigenvalue z and an associated eigenvector x then we have

 Ax = zx (9.72)

(see also (9.27)).

We have seen that A is a positive, self-adjoint operator on its domain D(A) � 

H(w). Consequently, we require non-trivial solutions of (9.72) such that

 ξ( ) ( )x w x dx
2 <∞

−∞

∞

∫  (9.73)

The equation (9.72) is a particular form of (9.45) for which P(x) = 1 and 

Q(x) = (z − q(x)). Consequently the analysis of the previous sections is available; 
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in particular the Cases 1 to 5 and Theorems 9.5 and 9.7. Therefore, we can 

conclude

(i) for D > 2 non-trivial solutions, z(x), of (9.72) are unbounded on 

(−∞, ∞)

(ii) for D < 2 non-trivial solutions, z(x), of (9.72) are bounded on 

(−∞, ∞).

In the case of conclusion (ii) it follows from Case 3 that we must have non-

trivial solutions such that

 z(x + p) = pz(x)

ζ ζ( ) ( )x p x+ = =1

However, this being the case (9.73) would not be convergent. Hence, there is no 

non-trivial z satisfying (9.72). Thus A has no isolated eigenvalues and we conclude 

that s(A) can only be continuous.

It follows directly from the above that

 z ∈ s(A) if and only if D( p,  z) ∈ [−2,  2] (9.74)

The above discussion indicates that scalars m and n which ensure that D( p,  m) 

= 2 and D( p,  v) = −2, respectively, are of special interest. Recalling (9.27) and 

the boundary value problems (9.58) to (9.60) the previous discussions indicate 

that D( p,  m) = 2 if and only if m is an eigenvalue of the problem

 c2(x){d2
x − q0(x)}j(x,  m) + mj(x,  m) = 0 (9.75)

 j(0,  m) = j( p,  m), j′(0,  m) = j′( p,  m) (9.76)

Similarly D( p,  m) = −2 if and only if v is an eigenvalue of the problem

 c2(x){d2
x − q0(x)}j(x,  v) + nj(x,  v) = 0 (9.77)

 j(0,  v) = −j( p,  v), j′(0,  v) = j′( p, n) (9.78)

By the standard Sturm–Liouville theory [3] the eigenvalues of (9.75), (9.76) 

and of (9.77), (9.78) can be arranged as monotonic sequences {mk}
∞
k = 1 and {nk}

∞
k = 1 

with mk and nk tending to infi nity, double eigenvalues being counted twice.

The location of the eigenvalues mk, nk, k = 1, 2 can be shown to be of the form 

[3], [4]

 m1 < n1 ≤ n2 < m2 ≤ m3 < n3 ≤ n4 ≤  .  .  . (9.79)

In particular the boundary of s(A), denoted ∂s(A), consists of simple eigenvalues 

l1,  l2,  .  .  .  of both problems (9.75), (9.76) and (9.77), (9.78). Further details on the 

properties of these eigenvalues can be found in [4] and [8].



After this preparation we can indicate the behaviour of R(l + it) as t ↓ 0. 

There are two principal results that can be obtained in this connection. However, 

as on a number of previous occasions, the proofs of these results are highly 

technical and long. Consequently, we will simply state the results here. Full 

details of the associated proofs can be found in the references cited in the Com-

mentary. In this connection we would particularly mention [4] and [8, Section 

XIII].

The fi rst of the two important results is the following.

Theorem 9.9. If A is the operator defi ned in (9.9) and if f ∈ C0
∞(R) then R(z)f 

= (A − zI)−1f depends analytically on z ∈ r(A), the resolvent set of A. Moreover, 

R(z)f can be extended analytically from both above and below s(A)0, the inte-

rior of s(A), The quantity R(z)f, together with its analytic continuations, 

depend continuously on (x,  z) for x ∈ R.

If l ∈ ∂s(A), the boundary of s(A), then there exists a non-trivial, p-periodic 

solution, y(x,  l), of the homogeneous form of equation (9.27) with the 

properties

 y(x + p,  l) = y(x,  l),  l = mk (9.80)

 y(x + p,  l) = −y(x,  l), l = nk (9.81)

and a solution, U(x,  l) of (9.27) such that

 
( ( ) )( ) ( , ) ( , ) ( ) ( ) { ( )}

( , )

R z f x y x y s w s f s ds z

U x O

= { } −

+ +
−∞

∞

∫λ λ ε λ

λ

1 2

zz z−( ) →λ λ1 2
as

 
(9.82)

with either z ∈ r(A) or z = h + i0 and h ∈ s(A)0. Furthermore, w(x) = c−2(x) 

r−1(x) is the weight function introduced earlier and e is defi ned by

 ε
λ µ λ ν
λ µ λ ν

=
=

− ={ −

+

1

1

2 2 1

2 1 2

if or =

if or =

k k

k k

 (9.83)

The estimate (9.82) holds uniformly with respect to x ∈ R.

The quantity U(x,  l) is bounded as x → ∞ if and only if

 y s w s f s ds( , ) ( ) ( )λ
−∞

∞

∫ = 0  (9.84)

or equivalently if and only if

U(x,  z) = R(z)f(x) → U(x,  l) as z → l

Finally, we state the following result.
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Theorem 9.10. Let y(x,  l) and U(x,  l) be the solutions of the homogeneous 

forms of the equation (9.27) with z = l which appear in the estimate (9.82) for 

the resolvent R(z). Then the solution u(x,  t) of the initial value problem (9.1), 

(9.2) satisfi es the following estimates uniformly on bounded subsets of R.

(i) If q ≠ 0 and w2 ∈ ∂s(A) then

  

u x t
i

t i t y x w s y s f s ds
x

( , )
( )

exp( ) ( , ) ( ) ( , ) ( )=
−

−{ }
+

−∞∫
1

1 2

2 2ε
πω

ω ω ω

UU x i t o t( , )exp( ) ( )ω ω2 1− + →∞as
 

(9.85)

where e is defi ned in (9.83) and l = w2.

(ii) If q ≠ 0 and w2 ∉ ∂s(A) then the principle of limiting amplitude holds 

in the sense that

 u(x,  t) = (R(w2 + i0)f )(x) exp(−iwt) + o(1) as t → ∞ (9.86)

(see [5],  [6],  [9] and the Commentary).

(iii) If q = 0 and w = 0 then zero belongs to s(A) and y(x,  0) is constant 

and

 u x t y x t f s w s ds U x o t( , ) ( , ) ( ) ( ) ( , ) ( )= + + →∞
−∞

∞

∫2 0 0 1 as  (9.87)

(iv) If q = 0 and w 2 > 0 then the (static) term

 y x w s s
i

f s ds2 0
1

( , ) ( ) ( ) ( )ψ
ω

+{ }−∞

∞

∫  (9.88)

must be added to the right-hand side of (9.85) and (9.86).

References and Further Reading

 [1] R.A. Adams: Sobolev Spaces, Academic Press, New York, 1975.

 [2] G. Birkhoff and G.-C. Rota: Ordinary Differential Equations (3rd Edn), John Wiley, 

New York, 1978.

 [3] E. Coddington and Levinson: Theory of Ordinary Differential Equations. McGraw-

Hill, New York, 1955.

 [4] M.S.P. Eastham: Theory of Ordinary Differential Equations, Van Nostrand, London, 

1970.

 [5] D.M. Eidus: The principle of limiting absorption, Math. Sb., 57(99), 1962 and AMS 

Transl., 47(2), 1965, 157–191.

 [6] D.M. Eidus: The principle of limiting amplitude, Uspekhi Mat. Nauk. 24(3), 1969, 

91–156 and Russ. Math. Surv. 24(3), 1969, 97–167.

 [7] R. Leis: Initial Boundary Value Problems in Mathematical Physics, John Wiley, 

Chichester, 1986.



 [8] M. Reed and B. Simon: Methods of Mathematical Physics, Vols 1–4, Academic Press, 

New York, 1972–1979.

 [9] G.F. Roach: Greens Functions (2nd Edn), Cambridge Univ. Press, London, 

1970/1982.

[10] G.F. Roach: An Introduction to Linear and Nonlinear Scattering Theory, Pitman 

Monographs and Surveys in Pure and Applied Mathematics, Vol. 78, Longman, Essex, 

1995.

 References and Further Reading 243



10

Inverse Scattering Problems

10.1 Introduction

The determination of properties of a medium from a knowledge of wave scatter-

ing processes in that medium is an inverse scattering problem. Perhaps the sim-

plest illustration of such a problem, which at the same time distinguishes it from 

the majority of scattering problems we have discussed so far, is provided by the 

following “tennis ball” problem. Assume that the system of interest consists of a 

light bulb, a tennis ball and a screen. When the light is switched on it shines on 

the tennis ball which in turn casts a shadow on the screen. If we know the details 

of the light source and the tennis ball then the problem of determining the details 

of the shadow is a direct scattering problem. If, however, we only know the 

details of the light source and the shadow and we want to determine the details 

of the tennis ball then this is an inverse scattering problem.

In the earlier chapters we have concentrated on direct scattering problems 

and have seen that a knowledge of scattered waves (the shadow)in the far fi eld 

(of the bulb and ball) can lead to reliable constructive solution methods. For the 

inverse problems a knowledge of the scattered waves in the far fi eld is an essential 

ingredient from the outset. This is due almost entirely to the fact that in practice 

the majority of measurements are made in the far fi eld.

In more general terms the inverse scattering problem can be thought of as the 

determination of an impurity in an otherwise homogeneous region from the mea-

surements available of a fi eld scattered by the inhomogeneity.

Such problems frequently arise when analysing, for example, various ultra-

sonic diagnostic techniques and other non-destructive testing processes. Typical 

areas include remote sensing problems associated with radar, sonar, geophysics 

and medical diagnosis.

Since in the majority of practical problems measurements of the scattered 

fi eld can only be made in the far fi eld of the transmitter and scatterer we can 

expect that scattering theory can be used to provide a satisfactory means of 

investigating the sensing problem mentioned above. To see this recall that when 
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developing a scattering theory we always try to work with self-adjoint operators 

A0, A1 on a Hilbert space H. Associated with these operators are Evolution 

operators:

U0(t) := exp(−itA0), U1(t) := exp(−itA1)

Wave operators:

W U t U t
t

±
→±∞

=: lim ( ) ( )0 1
*

Scattering operator:

S := W+*W−

If the operators A0, A1 characterise initial value problems with solutions u0, u1 

respectively which are required to satisfy given initial data f0, f1 respectively then 

we have seen that the solutions can be written in the form

u0(t) = U0(t)f0, u1(t) = U1(t) f1

In practice f1 is given from the outset and u1 is regarded as the solution of a Per-

turbed Problem (PP). When the intention is to use scattering theory techniques 

to approach solutions to this problem then the aim is to determine initial data for 

an associated Free Problem (FP), which has a reasonably easily obtainable solu-

tion u0, which will ensure that u0 and u1 are asymptotically equal (AE) as t → 

±∞. To this end we introduce initial data f 0
± for the FP which generates FP solu-

tions u± such that (u1 − u±) → 0 in a suitable energy norm as t → ±∞ respectively. 

The initial data f 0
± are related by means of the scattering operator S in the form

Sf 0
− = f0

+

With the above understanding we can describe the two types of scattering 

problems mentioned above as follows:

Direct Scattering Problems: Knowing U0, U1 and f1 determine S and f 0
±.

Inverse Scattering Problems: Knowing S and U0(t) determine U1(t).

In this chapter, with practical problems such as those mentioned above in 

mind, we shall reduce considerably the generality of these abstract problems by 

restricting attention to a study of a perturbed wave equation of the form

 {∂t
2 − ∆ + q(x)}u(x,  t) = 0, (x,  t) ∈ Rn × R (10.1)

where 1 ≤ n ≤ ∞. This equation is also referred to as the plasma wave equation 

and as such is intimately connected with potential scattering problems. It arises 



in the modelling of many physical systems ranging, for example, from the study 

of the electron density in the atmosphere of the earth to the vibrations of an 

elastically braced string. We concentrate here on indicating methods which are 

used to determine the potential term, q, when u, the state of the system, is known 

(in the far fi eld).

When the potential term is time independent a number of methods are avail-

able for tackling inverse scattering problems. In particular, taking the Fourier 

transform with respect to time of the plasma wave equation yields a stationary 

Schrödinger equation. The potential is then recovered by means of the celebrated 

Marchenko equations in one or other of its many forms in both the frequency and 

time domains (see Commentary). A comprehensive and self-contained account 

of the derivation of the two basic types of Marchenko equations is given in [8]. 

Essentially, the required potential term is obtained in terms of a certain functional 

of a refl ection coeffi cient. There are other methods of recovering the potential 

and these may be conveniently called high energy limit methods. Before introduc-

ing this method some preparation is required. This is given in the next section 

where we concentrate on the plasma wave equation rather than on the classical 

wave equation as we have been doing in previous chapters.

10.2 Some Asymptotic Formulae for the Plasma 

Wave Equation

We consider the plasma wave equation (10.1) in which the potential term q(x) 

satisfi es the following.

Assumption 10.1. The potential function q is defi ned in R3 and is a non-nega-

tive, bounded function with compact support, that is, q is a measurable func-

tion on R3 satisfying

0 < q(x) ≤ c0, x ∈ R3

q x x R( ) ,= 0 0�

where c0 and R0 are positive constants.

We introduce the operator

 A : L2(R
3) → L2(R

3) ≡ H (10.2)

Au = −∆u + q(x), u ∈ D(A)

D(A) = {u ∈ H : (−∆u + qu) ∈ H}

which is a self-adjoint realisation of (−∆ + q(x)) in H.
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We also introduce a real-valued functions s ∈ C2 defi ned on R such that

supp (s) ⊂ [a, b]

with −∞ < a < b < ∞. We denote by q a unit vector in R3 and set

 u0(x, t) ≡ u0(x, t, q, s) = s(x ⋅  q − t) (10.3)

where x⋅q denotes the scalar product in R3. The form of the argument of s indi-

cates that the right-hand side of (10.3) represents a plane wave and that conse-

quently u0 satisfi es the free equation (see [12, Chapter 7])

 (∂ t
2 − ∆)u0(x, t) = 0 (10.4)

As in earlier chapters s characterises the signal profi le. Furthermore, since

q(x)u0(x, t, q) = 0

with (x, t) ∈ R3 × (−∞, t0) and (x, t) ∈ R3× (t1, ∞) where

t0 := −b − R0 and t1 := −a + R0

then u0(x, t, q) satisfi es the (free) plasma wave equation for t ≤ t0 and t � t1.

Let u(x, t) ≡ u(x, t, q) denote the solution of (10.1), the perturbed wave equa-

tion, that is the plasma wave equation, which satisfi es the initial conditions

 u(x, t0, q) = u0(x, t, q) and ∂tu(x, t0, q) = ∂tu0(x, t, q) (10.5)

We shall refer to u(x, t) as the total fi eld. We denote the scattered wave by 

usc(x, t) = usc(x, t, q) where

usc(x, t, q) = u(x, t, q) − u0(x, t, q)

and the scattered fi eld is assumed to satisfy the IVP

 {∂t
2 − ∆ + q(x)}usc(x, t) = −q(x)u0(x, t, q) (10.6)

 usc(x, t, q) = ∂tusc(x, t, q) = 0, t ≤ t0, x ∈ R3 (10.7)

where we have recognised (10.5).

In practical cases it is usually usc that is measured and, moreover, measured 

in the far fi eld of the transmitter and receiver. Consequently we need to study the 

asymptotic behaviour of usc(x, t, q) as t → ∞. In order to do this we need some 

preparation. Consequently, we shall introduce the notion of a scattering ampli-

tude denoted by F (k, w, w′) where



 F k y k q y iky dy( ) ( ) ( ){exp( )}, , ,ω ω
π

ϕ ω ω′ = − ′∫
1

4 3R
 (10.8)

with k > 0 and w, w′ ∈ S2 the unit sphere in three dimensions. Here j(x,  x), with 

x, c ∈ R3 is the unique solution of the celebrated Lippmann–Schwinger equation 

[1], [3], [6], [11]

 ϕ ξ ξ
π

ξ
ϕ ξ( ) exp( )

exp( )
( ) ( )x ix

i x y

x y
q y y dy, ,= ⋅ −

−
−∫

1

4 3R
 (10.9)

The solutions j(x,  e) are the distorted plane waves associated with the plasma 

wave equation (10.1).

We now introduce the far fi eld solution u∞sc defi ned by

 u x t u x t s x K x t sxsc sc
∞ ∞ −≡ = −( , ) ( , , , ) ( , , , )θ ω θ1  (10.10)

where wx = x/x,

 ˆ ( , , , )
( )

{exp( )} ˆ( ) ( , , )
/

sK v s iv s F dω θ
π

ρ ρ ρ ω θ ρ=
−∞

∞

∫
1

2 1 2
 (10.11)

is the asymptotic wave function (profi le) (see Chapter 6) and ŝ(r) is the usual 

one-dimensional Fourier transform of s(t) given by

ˆ( )
( )

{exp( )} ( )
/

s i s dρ
π

ρτ τ τ= −
−∞

∞

∫
1

2 1 2

The following result can be obtained [17].

Theorem 10.2. If the requirements of Assumption 10.1 hold then

usc(x,  t,  q,  s) = u∞sc(x,  t,  q,  s) as t → ∞

in the sense that

lim ( ) ( )
t H

u t s u t s
→∞

∞⋅ − ⋅ =sc sc, , , , , ,θ θ 0

A proof of this result for the plasma wave equation rather than the classical 

wave equation is given in Appendix A10.1.

10.3 The Scattering Matrix

In this section we introduce a representation of a Hilbert space H which is in 

terms of a given self-adjoint operator A : H → H. Such a representation will enable 
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us to defi ne a so-called scattering matrix associated with A. As we shall see, 

the scattering matrix plays a central role in the development of what have become 

known as high energy limit methods for solving inverse scattering problems.

10.3.1 Decomposable Operators

We start with the Hilbert space H := L2(R
n) which as we have seen consists of 

(equivalence classes) of square-integrable functions defi ned on Rn and taking 

values in C. A generalisation of this structure would be to consider functions on 

Rn taking values in a more general vector space than C; in a fi xed Hilbert space 

H0 (say). With this in mind let Λ � R and suppose that f is a vector-valued func-

tion on Λ which takes values in a fi xed Hilbert space H0. We shall write fl to 

signify the value, in H0, of the function f at the point l ∈ Λ. We will then denote 

the function f by the collection { fl} and often write

 f = { fl}l∈Λ ≡ {fl} (10.12)

The function f in (10.12) is measurable if for every element g ∈ H0 the complex-

valued function ( g,  f0)0 is measurable where (⋅, ⋅)0 denotes the inner product in H0.

Measure is a generalisation of the familiar concept of length defi ned on 

intervals of R.

In an abstract setting we introduce

Defi nition 10.3. Let X denote a set and Θ a class of subsets of X. A positive 

measure on the pair (X,  Θ) is a mapping m with the properties

(i) m(f) = 0, f = the empty set.

(ii) For {qk} a countable collection of disjoint elements of Θ (that is 

qk � qn = f for k ≠ n)

m mk

k

k

k

θ θ
=

∞

=

∞










=∑

1 1

∪ ( )

When such a measure exists then the pair (X,  Θ) is called a measurable space 

and the elements of Θ are called measurable sets.

A more mathematically rigorous account of measure and measurability can 

be found in such texts as [9], [10], [12], [11].

Defi nition 10.4. Let X be a space and f : X → R. The function f is said to be 

measurable if for all a ∈ R the set

{x ∈ X : f(x) > a}

is measurable.



In a similar manner to that adopted for L2(R
n) we shall denote by L2(Λ, Rn) 

the set of all (equivalence classes) of (measurable) functions f which satisfy

 f f d
2

0

2= <∞∫ λ λ
Λ

 (10.13)

The operations on L2(Λ, Rn) of vector addition, multiplication by a scalar and 

defi nition of an inner product are

 f + g = { fl + gl}, af = {a fl} (10.14)

 ( ) ( )f g f g d, ,= ∫ λ λ λ0
Λ

 (10.15)

where f = { fl} and g = {gl}.

Furthermore all the Hilbert space axioms including that of completeness can 

be shown to hold for L2(Λ, Rn) in just the same manner as for L2(R
n) [10], [11].

A further generalisation is possible which is centred on an operator of interest. 

To this end let l ∈ Λ � R and let A(l) ∈ B(H0).

An operator-valued function A is said to be measurable if for every f ∈ 

L2(Λ,  H0) the vector-valued function defi ned as {A(l)fl} is measurable. Then for 

this B(H0)-valued function we defi ne an operator in L2(Λ,  H0) by

 D A f L H A f d( ) ( ) : ( )− ∈ <∞{ }∫2 0 0

2Λ
Λ

, λ λλ  (10.16)

 Af = {A(l) fl} (10.17)

An operator A defi ned as in (10.16), (10.17) is said to be decomposable. Fur-

thermore, if A(l) = j(l)I0 where j is a measurable function and I0 is the identity 

element in H0 then A is said to be diagonalisable.

Two important results in this area are given in the following theorems.

Theorem 10.5. Let F be a bounded operator in L2(Λ,  H0) which commutes with 

the self-adjoint operator

A = {lI0}

Then F is a decomposable operator given by F = {F(l)} and

F ess F= <∞
∈
sup ( )

λ
λ

Λ

Theorem 10.6. A bounded decomposable operator A = {A(l)} is bounded invert-

ible (respectively, self-adjoint, unitary) if and only if A(l) is bounded invert-

ible (respectively, self-adjoint, unitary) almost everywhere.

A proof of these theorems can be found in such standard texts as, for example, 

[9], [10], [11], [13].
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10.3.2 Some Algebraic Properties of W± and S

We begin by recalling, for convenience, a number of defi nitions and notations 

introduced in Chapter 6.

Let A0 and A1 denote the free and perturbed operators respectively, each being 

defi ned on a Hilbert space H. We have introduced Evolution operators, U0(t), 

U1(t)

 U t itA U t itA0 0
1 2

1 1
1 2( ) exp{ } ( ) exp{ }/ /= − = −,  (1.23)

Wave operators, W±

 W U t U t
t

±
→±∞

=: lim ( ) ( )0 1
*  (6.67)

Scattering operator S

 S := W+W*− (6.105)

A number of useful properties of these quantities can be established; for 

example

U T W U T U t U t

U T U t U t

t

t

1 1 1 0

1 1 0

( ) ( ) lim ( ) ( )

lim ( ) ( ) ( )

l

±
→±∞

→±∞

=

=

=

* *

*

iim ( ) ( ) ( )

lim ( ) ( ) ( )

′→∞

′→±∞

′ + ′+

= ′ ′

=

t

t

U T U t T U t T

U t U t U T

W

1 1 0

1 0 0

*

*

±±*U T0( )

Similarly

U0(T )W ± = W±U1(T )

The relations

 U0(T )W ± = W±U1(T ) (10.18)

 U1(T )W *± = W*±U0(T ) (10.19)

are known as the intertwining relations.

The intertwining relations (10.18), (10.19) lead to the following result

  SU0(T ) = W+W*−U0(T ) = W+U1(T )W*− = U0(T )W+W*− = U0(T )S (10.20)



Finally, in this subsection, we set W = W± to denote one or other of the two 

wave operators and notice

iT W U T I f W A f W iT U T I f A f− −− − ≤ − −1
0 0

1 2 1
0 0

1 2* * *( ( ) ) ( ( ) )/ /

As T → 0 the right-hand side of this inequality tends to zero by virtue of the 

properties of the infi nitesimal generator of U0(T ) (see Chapter 5). Furthermore, 

in the limit as T → 0 the left-hand side indicates that

 i
d

dT
W U T f W A f( ( ) ) /* *0 0

1 2=  (10.21)

However, using (10.19) we also have

 

i
d

dT
U T W f i

d

dT
W U T f

iW
d

dT
U T f

iW iA U

( ( ) ) ( ( ) )

( ( ) )

( /

1 0

0

0
1 2

0

* *

*

*

=

=

= − (( ) )T f  (10.22)

 → WA0
1/2 as T → 0 (10.23)

But

 

i
d

dT
U T W f i A U T W f

A W f T

( ( ) ) ( ( ) )/

/

1 1
1 2

1

1
1 2 0

* *

* as

= −

→ →  (10.24)

Thus, combining (10.22) to (10.24) we conclude that

 A1
1/2W* = W*A0

1/2 (10.25)

We have seen in (10.20) that S and U0(T ) commute. Therefore Theorems 10.5 

and 10.6 indicate that S is a bounded, decomposable operator and, hence, we can 

write S in the form

 S = {S(l)} (10.26)

The quantity S(l) is referred to as the S-matrix of energy l associated with the 

scattering operator S.

We also have that

 U0SU 0
−1 = SU0U 0

−1 = S = {S(l)} (10.27)
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If we now use the spectral theorem together with the Fourier transform, F, 

defi ned in R3 in the form

 ( )( ) ( ) {exp( )} ( )/Fu ix u x dxξ π ξ= −− ∫2 3 2

3R
 (10.28)

 ( )( ) ( ) {exp( )} ( )/F *v x ix v d= − ∫2 3 2

3
π ξ ξ ξ

R
 (10.29)

then (10.27) can be written in the equivalent form

 ( * ) ( ) ( )F FS f S f= ⋅{ }ξ ξ ξɶ  (10.30)

where

f C∈ ∈ =∞
0

3 3( ), , /R Rξ ξ ξ ξɶ

The details of obtaining this alternative representation are left as an exercise. We 

remark that (10.30) is sometimes taken as a relation which defi nes the scattering 

matrix.

10.4 The Inverse Scattering Problem

The inverse scattering problem is a non-linear, ill-posed problem. When dealing 

with classical wave scattering phenomena there are essentially two types of such 

problems. One arises as a consequence of target scattering phenomena whilst the 

other centres on potential scattering effects. In this chapter we are dealing with 

the plasma wave equation which is typical of the type of equation which charac-

terises potential scattering. The associated inverse problem is the determination, 

or reconstruction as it is sometimes called, of the potential, q, from the far fi eld 

behaviour of the scattered fi eld. Details of inverse scattering problems associated 

with target scattering are given in the Commentary.

In the particular case of an inverse scattering problem associated with the 

plasma wave equation there are three basic questions that have to be addressed.

1. Does a potential term q exist which is compatible with measured data?

2. Is the potential term unique?

3. How can the potential term be constructed from measured data?

In Section 10.2 we can see a possible strategy for attacking the inverse problem 

associated with the plasma wave equation. Specifi cally, we could take the follow-

ing steps.

• Launch the incident pulses u0(x,  t,  q,  s) characterised by (10.3).

• Evaluate usc(x,  t,  q,  s) from experimental data in practice, and recover the 

asymptotic wave function K(u,  w,  q,  s) via (10.8). Here we acknowledge the 

results of Theorem 10.2.



• Obtain the scattering amplitude using (10.11).

• Construct the potential function q by solving the fi rst kind Volterra integral 

equation (10.8).

The above set of steps can involve a great deal of hard, technical work [2], [8].

Newton [8] addressed these questions by investigating an extension of the 

Marchenko equations in R1. However, the potential term was required to satisfy 

quite strict conditions. Furthermore, either the scattering data or the associated 

spectral measure was required on the whole real line and for all energy numbers 

k � 0.

An alternative approach which offers good prospects for reconstructing the 

potential, q, is the so-called high energy limit method.

10.5 A High Energy Limit Method

In order to explain this method we fi rst recall that the scattering operator S can 

be represented in the form S = {S(l)}, where S(l) is the S-matrix associated with 

S (see Subsection 10.3.1). We then defi ne

 F(k) = −2pik−1(S(k) − I) (10.31)

where I is the identity operator on L2(S
2). The scattering operator is a decompos-

able operator and as a consequence F(k) is a Hilbert Schmidt operator on L2(S
2) 

with Hilbert Schmidt kernel which we denote by F(k,  w,  w′). That is

 ( ( ) )( ) ( ) ( )F Fk f k f d
S

ω ω ω ψ ω= ′ ′ ′∫ , ,
2

 (10.32)

 F ( )k d d
SS

, ,ω ω ω ω′ ′ <∞∫∫ 2

22
 (10.33)

for f ∈ L2(S
2). The quantity F(k,  w,  w′) is referred to as the scattering amplitude. 

If the potential term, q(x), in the plasma wave equation satisfi es

 q x C x x( ) ( ) , ,≤ + ∈ ∈−
0

31 β βR R  (10.34)

then Faddeev [3] showed that provided b > 3 in (10.34) then

 lim ( ) {exp( )} ( )
k

k i x q x dx
→∞

′ = −∫F , ,ω ω
π

ξ
1

4 3R
 (10.35)

Here the limit is taken so that k → ∞ maintaining the relation x = k(w − w′) for 

a given x ∈ R3. When (10.35) holds then q can be recovered by using the usual 

Fourier inversion formula. Faddeev’s work [3] would appear to be the fi rst which 
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gives a rigorous proof for the fact that a high energy limit of the scattering ampli-

tude is the Fourier transform of the potential.

Instead of approaching the inverse scattering problem by considering, as did 

Faddeev, the high energy limit of the scattering amplitude, another profi table 

approach is to examine a high energy limit of the scattering matrix. One such 

approach was introduced by Saito [15]. This begins by setting

 yx,k(w) = exp{−ikxw}, w ∈ S2 (10.36)

where x ∈ R3 and k > 0. We then defi ne

 f(x,  k) = k(F(k)yx,k,  yx,k)S2 (10.37)

here (⋅  ,  ⋅)S2 is the inner product in L2(S
2). We regard yx,k as a function defi ned on 

S2 with parameters k � 0 and x ∈ R3. Here xw is the inner product in R3.

It can be shown, [15], [16], that provided b > 1 in (10.34) then the following 

limit exists

 f x f x k
q y

y x
dy

k
( ) lim ( )

( )
, ,∞ = =−

−→∞ ∫2
23

π
R

 (10.38)

The equation (10.38) is an integral equation of the fi rst kind for q(x) and the fol-

lowing result can be obtained

 q x f x( ) ( ) ( * ( (. , )))( )=− ∞−4 3 1π ξF F  (10.39)

where F denotes the usual Fourier transform (see below).

A proof of (10.39) is sketched in the next section.

In the methods of Faddeev and of Saito we do not need any low energy scat-

tering data to recover q but we do need scattering data in the neighbourhood of 

k = ∞; hence the name of the method.

10.5.1 The Solution of an Integral Equation

Bearing in mind (10.38) we see that the high energy limit method for solving 

inverse scattering problems for the plasma wave equation centres on the ability 

to solve an integral equation of the form

 −
−

=
−∫2

13
π

q y

y x
dy g x

n

( )
( )

R
 (10.40)

where g is a known function and it is required to determine the function q.

Since the equation (10.40) has been defi ned in Rn we will fi nd it necessary to 

use Fourier transforms in Rn. These are defi ned by



   ( )( ) ( ) {exp( )} ( )/Ff i y f y dynξ π ξ= −− ∫2 2

3R
 (10.41)

 (F̄f )(x ) = (Ff )(−x ) (10.42)

 ( )( ) ( ) {exp( )} ( )/F *f y i y f dn= − ∫2 2

3
π ξ ξ ξ

R
 (10.43)

 (F̄ *f )(y) = (F*f )(−x ) (10.44)

where xy, denotes the inner product, in R3, of x and y.

We introduce the notations

 M f C f y O y yn
ε

ε
: ( ) : ( ) ( )= ∈ = →∞{ }−

R as  (10.45)

that is f ∈ Me implies that f satisfi es the estimate

 f y c y y n( ) ( ) ,≤ + ∈−1 ε R  (10.46)

S ≡ S(Rn) = all rapidly decreasing functions on Rn

S′ ≡ S′(Rn) = all linear, continuous functionals on S.

We shall denote the (duality) pairing between S and S′ by 〈⋅  ,  ⋅〉.

Defi nition 10.7. For g ∈ Me, e > 0 and s > 0 defi ne a linear functional Λsg on 

Sx ≡ S(Rn
x) by

 Λs s
g G g y G y dy

n
, *(: ( ){ )}( )= ∫ F ξ

R
 (10.47)

where G ∈ Sx and F̄ * is defi ned as in (10.43).

It can be shown [15] that Λsg ∈ S′x.
Let q ∈ Mm with 1 < m < n and let g be defi ned by (10.40). Then it can be seen 

that g ∈ Mm−1 and consequently Λsg is well defi ned for any s > 0.

If we take the Fourier transform throughout (10.40) and make use of the 

formula for the convolution of two functions

 F( f ∗ g) = (2p)n/2(Ff ) × (Fg) (10.48)

then we obtain

 F = F Fg y qn n− ×+ − −
( ) ( )

( )
2 2 1 1π  (10.49)

We also notice that we have

 F ( )y B t n
t

t
n t− − −= < <( ) ,

( )ξ ξ 0  (10.50)
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in S ′ where

 B

n t

t
t

n=

−( )
( )

+2 2

2

2 1/
Γ

Γ
 (10.51)

when Γ denotes the gamma function [4].

It follows from (10.49) and (10.50) that with t = n − 1 we obtain

 F Fg
n

q
n

=
−

−( )
+

−4

1

2

3 2
1π

ξ
( )/

Γ
 (10.52)

Hence

 F F Sq B g B gn n=− =−ξ Λ , in  (10.53)

where Λg = Λ1g and

 B

n

n
n=

−( )
+

Γ ( )1

2

4
3

2
π

 (10.54)

Therefore, using Fourier inversion we obtain from (10.53)

 q y B g y B g yn n( ) *( )( ) ( * )( )=− =−F F Fξ Λ  (10.55)

This whole process can be reversed. Consequently, we see that (10.55) gives 

the unique solution of (10.40) provided F *Λg ∈ Mm. Thus we have the following 

result.

Theorem 10.8. The integral equation (10.40) has a unique solution q ∈ Mm 

with 1 < m < n if and only if

 g ∈ Mm−1 and F*Λg ∈ Mm (10.56)

The solution q(y) is given by (10.55).

In this section we are particularly interested in problems in R3. In this case 

we recognise the properties of the gamma function and obtain



B

q y g y g y

3 3

3 3

1

4

1

4

1

4

=

=− =−

π

π
ξ

π
( ) )( ) ( )( )F F F*( *Λ

We are interested in the case when g(x) is replaced by the f(x,  ∞) which is 

defi ned in (10.38). Consequently, if we now defi ne

 q x k f k x( ) : ( ))( ), *( ,=− ⋅
1

4 3π
ξF F  (10.57)

then the following approximation result for q can be obtained [15], [16].

Theorem 10.9. Let

(i) q(x) ≤ c(1 + x)−2, c > 0

(ii) q ∈ C2(R3) satisfying

D q x c x xα β α( ) ( ) , , ,≤ + ∈ =−
1

31 1 2R

with constants c1 > 0 and b > 5/2. Here a = (a1,  a2,  a3) is a multi-index of 

non-negative integers such that

α α α α= + +1 2 3.

Furthermore, we have written

D D D D D
x

jj

j

α α α α= = =1 2 3
1 2 3 1 2 3, , ,

∂
∂

,

Then

q q k c k kL( ) ( , ) ( )( )⋅ − ⋅ ≤ →∞−
2

3 2
1

R as

where c2 depends on c1, b and max ( )
x

q x∈R3  but it does not depend on k.

These last two results indicate that we need only work with measurements 

taken at suffi ciently high values of k.

Appendix A10.1 Proof of Theorem 10.2

The scattered wave, usc(x,  t) satisfi es the IVP (10.6), (10.7).

We recall the following notation

 Appendix A10.1 Proof of Theorem 10.2 259
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 u0(x,  t) ≡ u0(x,  t,  q,  s) = s(xq − t) (10.3)

where s characterises the incident waveform.

Using the Duhamel integral we see that the scattered fi eld can be expressed 

in the form

 

u x t iA i t A Q x s dsc , , Re , , ,

Re

( ) exp ( ) ( )

ex

/ /θ τ τ θ τ= − −[ ]( ){ }
=

∫1
1 2

1
1 2

pp /−( )[ ]{ }itA h1
1 2  (A1.1)

where

A1 = realisation of (∆ + q) in L2(R
3)

Q(x,  t,  q) = −q(x)u0(x,  t,  q) ≡ Q(x,  t,  q,  s) = −q(x)u0(x,  t,  q,  s)

h h x s iA i A Q x s= = [ ]( )
−∞

∞

∫( , , ) exp ( , )/ /
, ,θ θ1

1 2
1
1 2

T T

(See also [17].)

Let A0 denote the self-adjoint realisation of (−∆) in L2(R
3), that is

A0u = −∆u, u ∈ H2(R3)

where H2(R3) denotes the Sobolev Hilbert of second order “derivatives” (see [1], [13]).

Introduce, as in [17] and Chapter 6, the complex valued, scattered wave vsc 

defi ned by

 vsc(x,  t,  q,  s) ≡ vsc = {exp(−itA1/2)}h = U1(t)h (A1.2)

where h is defi ned as in (A1.1).

We notice that (6.67) implies

 vsc = U0(t)U*
0(t)U1(t)h = U0(t)W±h (A1.3)

and, in particular, as t → ∞

 vsc(⋅,  t,  q,  s) = U0(t)W+h(⋅  ,  q,  s) (A1.4)

The relation (A1.4) is to be understood in the sense

 lim ( ) ( ) ( )
t

v t s U t W H s
→∞

+⋅ − ⋅ =sc , , , , ,θ θ0 0  (A1.5)

Let g ∈ L2(R
3) and set
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 w = U0(t)g (A1.6)

It is shown in [17] that w satisfi es the asymptotic relation

 ω ω( , ) ( , , ),x t x G x t g tx= − →∞−1
0  (A1.7)

where wx = x/x and

 G v g iv g i dp0 3 2 0

1

2
( ) {exp( )}{ }( ) ( )

/
, ,ω

π
ρ ξ ρ ρξ ωF =

∞
−∫  (A1.8)

where F denotes the usual Fourier transform taken in L2(R
3) with r > 0 and 

w ∈ S2.

If we now set g = W+h in (A1.7) then we get

 U W h x G x t W hx0
1

0+
−

+= −( , , )ω  (A1.9)

as t → ∞.

Defi ne

 G(n,  w,  q,  s) := G0(u,  w,  W+h(⋅,  q,  s)) (A1.10)

and set

 v x t x G x t sssc
∞ −= −( , ) ( , , , ), ,θ ω θ1

 (A1.11)

It now follows from (A1.2) and (A1.8) to (A1.11) that

vsc(x,  t,  q,  s) = v∞sc (x,  t,  q,  s) as t → ∞

that is

lim ( ) ( )
( )t L

v t s v x t s
→∞

∞⋅ − =sc sc, , , , , ,θ θ
2

0
R3
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11

Scattering in Other Wave Systems

11.1 Introduction

So far in this monograph we have been concerned with acoustic wave scattering 

problems. In dealing with such problems we have adopted the Wilcox theory of 

acoustic scattering introduced in [8]. The main reasons for doing this were, on 

the one hand, that the Wilcox theory uses quite elementary results from functional 

analysis, the spectral theory of self-adjoint operators on Hilbert spaces and 

semigroup theory and, on the other it leads quite readily to the development of 

constructive methods based on generalised eigenfunction expansion theorems. 

Furthermore, unlike the Lax–Phillips theory [2] the Wilcox theory applies to scat-

tering problems in both even and odd space dimensions.

In the following sections we indicate how scattering problems associated with 

electromagnetic waves and with elastic waves can be placed in a similar frame-

work to that used when studying acoustic wave scattering problems. Indeed we 

will see that the electromagnetic and the elastic wave problems can be given the 

same symbolic form as acoustic wave problems. Consequently, the constructive 

methods developed for acoustic wave problems can, in principle, become avail-

able for electromagnetic and for elastic wave problems.

11.2 Scattering of Electromagnetic Waves

Each step in the analysis of acoustic wave scattering problems has its analogue 

in the analysis of electromagnetic wave scattering problems. In particular the 

scalar d’Alembert equation which arises when studying the acoustic fi eld is 

replaced by a vector wave equation when investigating the electromagnetic wave 

fi eld. However, the vector nature of the electromagnetic problems does lead to 

more demanding algebraic manipulations and calculations.

We consider here electromagnetic problems in R3 and understand that an 

element x ∈ R3 can be written in component form as x= (x1, x2, x3). Furthermore, 
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we write (x,  t)=(x1,  x2,  x3,  t) to denote the space-time coordinates. When studying 

target scattering we let B ⊂ R3 denote a closed bounded set such that Ω = R3 − B 

is connected. The set B represents the scattering body. For potential type scat-

tering problems there is no need to introduce the set B. In this case the scattering 

arises as a result of perturbations of coeffi cients in the governing fi eld 

equations.

We assume that the medium fi lling Ω is characterised by a dielectric constant 

e and a magnetic permeability m.

Electromagnetic phenomena are governed by the celebrated Maxwell’s 

equations which we write in the form

 {eEt − ∇ × H}(x,  t) = J(x,  t) (11.1)

 {mHt + ∇ × E}(x,  t) = K(x,  t) (11.2)

where E and H represent the electrical and magnetic fi eld vectors respectively, 

whilst J and K denote the electric and magnetic currents respectively. Further-

more, we have introduced the symbol ∇, referred to as nabla, to denote the vector 

differential expression

∇ =
∂
∂

+
∂
∂

+
∂
∂

: i j k
x x x1 2 3

where i, j, k are a triad of unit vectors used to characterise R3. In terms of this 

symbol we defi ne

grad j = ∇j

  div v = ∇⋅v

   curl v = ∇ × v

where the dot denotes the usual scalar product and × the usual vector product 

[4].

Maxwell’s equations (11.1), (11.2) can be written more conveniently in the 

form
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This in turn can be written

 (Ut − iGU)(x,  t) = f(x,  t) (11.4)



where

U E H f J K( ) ( ) ( ) ( )x t x t x t x t, , , , , , ,= =
1 1

ε µ

− =
−∇×

∇×




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=












−iG M M1 0

0

0

0
,

ε
µ

and, as usual 〈⋅, ⋅〉 denotes the transpose of the vector 
.

.





.

Equation (11.4) has the same symbolic form as that discussed in Chapter 7 

(see (7.17)). However, here the unknown U has a more complicated structure 

since it has the general form U = 〈u1, u2〉 where in our particular case u1 = E and 

u2 = H.

We shall use the notation

v(x,  t) = 〈v1,  v2,  v3〉 (x,  t), vj ∈ C, j = 1, 2, 3

to denote a vector in R3 with complex-valued components. Throughout we shall 

be interested in vectors v having the properties

 v ∈ (L2(Ω))3 := {v = 〈v1,  v2,  v3〉 : vj ∈ L2(Ω), j = 1, 2, 3} (11.5)

Occasionally we will emphasise matters by using the notation

L L v v jj j2
3

2
3 2

1 2 3( , ) ( ( )) : , , ,Ω ΩC = <∞ ={ }�

where ⋅ denotes the usual L2(Ω) norm.

The collection L2(Ω, C3) is a Hilbert space, which we shall denote by H, with 

respect to the inner product and norm structure

 (u, v)H = (u1,  v1) + (u2,  v2) + (u3,  v3) (11.6)

 u H u u u
2

1
2

2
2

3
2= + +  (11.7)

where (⋅, ⋅) and ⋅ denote the usual L2(Ω) inner product and norm.

We also introduce

 D(Ω) := {u ∈ (L2(Ω))3 : div u ∈ L2(Ω)} (11.8)

 R(Ω) := {u ∈ (L2(Ω))3 : curl u ∈ (L2(Ω))3} (11.9)

with structure

 u u u

u u u

D

R

2 2 2

2 2

:

:

= +

= +
H

H H

2

div

curl

 (11.10)
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Furthermore, we defi ne

 R0(Ω) := {u ∈R(Ω) : (∇ × u, v) = (u, ∇ × v)} (11.11)

With this preparation it would therefore seem natural to look for solutions U 

of (11.4) which belong to the class

 L := (L2(Ω))3 × (L2(Ω))3 (11.12)

On this class we will fi nd it convenient to defi ne a product of the two elements 

W = 〈w1, w2〉 and V = 〈v1, v2〉 to be

 

( ) :

( ) ( )

W V
w

w

v

v

w v w v

L, ,

, ,

= 






( )

= +

1

2

1

2

1 1 2 2H H  (11.13)

When dealing with Maxwell’s equations (11.1), (11.2) we fi nd it convenient to 

use, instead of L as defi ned above, the class

H = (L2(Ω))3 × (L2(Ω))3

which is a Hilbert space with respect to a weighted inner product defi ned by

 (W, V)H = (W, MV)L (11.14)

where the weight matrix M is defi ned in (11.4).

If we now introduce the operator

 
G

GU M
u

u

: H H→

− =
−∇×

∇×

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




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
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−i 1 1

2

0

0

 (11.15)

where

U = 〈u1, u2〉 ∈ D(G)

D(G) = R0(Ω) × R(Ω) ⊂ H

then we see that (11.1), (11.2) have the following representation in H

 Ut(t) − iGU(t) = f(t), U(0) = U0 ∈ H (11.16)

As in previous chapters we understand

U(⋅, ⋅): t → U(⋅,t) =: U(t)



Implicit in this development are the assumptions of

Initial conditions:

E(0) = E0, H(0) = H0

Boundary conditions:

Total refl ection at the boundary ∂Ω of Ω that is

(n × E) = 0 on ∂Ω

where n is the outward drawn unit vector normal to ∂Ω. Other boundary condi-

tions can be imposed as required [3].

We require solutions of (11.5) that have fi nite energy. With the above structure 

we have that the energy, e, of the electromagnetic fi eld can be expressed in the 

form

 ε ε µ: ( , ) ( , )= = +U u u u uH
2

1 1 2 2H H  (11.17)

Once we have a Hilbert space representation of (11.1), (11.2) the matter of 

existence and uniqueness of solutions to (11.16) arises. These results can be 

obtained using the methods outlined in Chapter 5. To this end the following 

results can be obtained in much the same manner as for acoustic equations but 

now they have to be specialised bearing in mind the structure of H. Specifi cally, 

the following theorem can be established [3].

Theorem 11.1. If G is defi ned as in (11.15) then

(i) G is a self-adjoint operator

(ii) C\R ⊂ r(G)

(iii) (G + il)−1
 ≤ 1/l.

The results in Theorem 8.1 when combined with Stone’s theorem yield, as 

outlined in Chapter 5, the following important result.

Theorem 11.2. The initial boundary value problem

 Ut(t) − iGU(t) = 0, U(0) = U0 (11.18)

is uniquely solvable in H. Moreover, the solution U has fi nite energy.

Once questions of existence and uniqueness have been settled then, as in 

previous chapters, we can take the fi rst component (say) of the solution U to 

provide details solely of the electric fi eld E. However, once it has been established 

that Theorem 11.2 holds, that is, that (11.1), (11.2) is a well-posed system, then 

an attractive alternative approach is to deal with the equations (11.1), (11.2) 

directly and this we shall do.
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If we recall the vector identity

 curl curl v = grad div v − ∆v (11.19)

then we can eliminate H in (11.1), (11.2) and obtain the second order vector 

equation

 {∂2
t + curl curl}E(x,  t) = −∂tJ(x,  t) (11.20)

Whilst we shall use (11.20) in this section we would point out that a similar vector 

wave equation to (11.20) can be obtained for H by eliminating E in (11.1), 

(11.2).

The equation (11.20) is equivalent to a system of three second order partial 

differential equations for the components of the electric fi eld. Once these are 

solved then the magnetic fi eld can be found from (11.20).

In the following it will be convenient to recall some of the more detailed nota-

tions and conventions of matrix algebra.

If the electric fi eld vector E is written in the form

 E = E1i1 + E2i2 + E3i3 (11.21)

where (i1, i2, i3) denotes the orthonormal basis associated with the coordinate 

system (x1,  x2,  x3) then (11.21) defi nes a one-to-one correspondence

 E ↔ u = (E1,  E2,  E3)
T (11.22)

where T denotes the transpose of a matrix. Consequently for two vectors a and 

b with associated correspondences

  a = a1i1 + a2i2 + a3i3 ↔ a = (a1,  a2,  a3)
T (11.23)

 b = b1i1 + b2i2 + b3i3 ↔ b = (b1,  b2,  b3)
T (11.24)

the associated scalar and vector products of vector algebra correspond to the 

following matrix operations

 b⋅a ↔ bTa = b⋅a = b1a1 + b2a2 + b3a3 (11.25)

 b × a ↔ b × a = M(b)a (11.26)

where the matrix M(b) is defi ned by

 M( )b

b b

b b

b b

=
−

−
−







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


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


0

0

0

3 2

3 1

2 1

 (11.27)



Similarly, the vector differential operator

 curl=∇×=
∂
∂

+
∂
∂

+
∂
∂







i i i1

1

2

2

3

3x x x
 (11.28)

has a matrix representation which has the typical form

 curl E = ∇ × E ↔ ∇ × u = M(∂)u (11.29)

where

∂= ∂ ∂ ∂ =
∂
∂

∂
∂

∂
∂







( )1 3

1 2 3

, , , ,2
x x x

Using (11.29) repeatedly we can obtain

 curl curl E = ∇ × ∇ × E ↔ ∇ × ∇ × u = A(∂)u (11.30)

where

 A(b) = M(b)2 = bb −b
2I (11.31)

The term bb denotes a (3 × 3) matrix whose jkth element is bjbk and I denotes 

the (3 × 3) identity matrix. Hence the identity (11.30) can be written

 ∇ × ∇ × u = (∇∇⋅ − ∆I )u (11.32)

where ∆ denotes the three-dimensional Laplacian

 ∆ = ∂2
1 + ∂2

2 + ∂2
3 (11.33)

We remark that (11.19) and (11.32) are corresponding expressions. However, 

care must be exercised when dealing with the vector identity (11.19) in coordinate 

systems other than Cartesian. This is particularly the case when interpreting the 

vector Laplacian ∆ (see [4]).

With these various notations in mind we see that the electromagnetic fi eld 

generated in Ω is characterised by a function u of the form

 u(x,  t) = (u1(x,  t), u2(x,  t), u3(x,  t))T, x ∈ Ω, t ∈ R (11.34)

where uj = Ej, j = 1, 2, 3 are the components of the electric fi eld. The quantity 

u(x,  t) is a solution of the inhomogeneous vector equation

 {∂2
t + ∇ × ∇ ×}u(x,  t) = −∂t J(x,  t) =: f(x,  t), (x,  t) ∈ Ω × R (11.35)
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and J(x,  t) is the electric current density which generates the fi eld. We notice that 

if we are dealing with divergence-free fi elds then the fi rst term on the right-hand 

side of (11.32) vanishes and (11.35) reduces to a vector form of the familiar scalar 

wave equation.

The FP associated with (11.35) has a fi eld which we shall denote by u0(x,  t). 

This is the fi eld generated by the sources (transmitters) in the medium when 

no scatterers are present. It can be represented, as in the scalar case, in terms 

of a retarded potential (see Appendix A12.5). To see this we apply the divergence 

operator to both sides of (11.35) and use the well-known vector identity 

∇⋅∇ × u = 0 to obtain

 ∂2
t ∇⋅u(x,  t) = −∂tJ(x,  t) (11.36)

We now integrate (11.36) twice over the interval t0 ≤ t ≤ t and use the initial 

condition

u(x,  t) = 0 for t < t0, x ∈ Ω

to obtain

 ∇⋅ =− ∇ ∈ ∈∫u x t J x d x t
t

t

( ) . ( ) ., , , ,τ τ
0

Ω R  (11.37)

Using (11.35), (11.37) and the identity (11.32) we see that u satisfi es

 { } ( ) ( ) ( )∂ − =∇∇⋅ −∂∫t
t

t

tu x t J x d J x t2

0

∆ , , ,τ τ  (11.38)

Since

∂ =∂∫t
t

t

tJ x d J x t2

0

( ) ( ), ,τ τ

we see, on replacing u by u0 in (11.38) that the free fi eld is determined by the 

inhomogeneous wave equation

 { } ( ) { } ( )∂ − = ∇∇−∂ ⋅∫t t
t

t

u x t J x d2
0

2

0

∆ , ,I τ τ  (11.39)

for (x,  t) ∈ Ω × R+ and the initial condition u0(x,  t) = 0 for all t ≤ t0.

Equation (11.39) is equivalent to three scalar wave equations and as in the 

acoustic case they can be integrated by the retarded potential formula. For ease 

of presentation we defi ne

IJ x t J x d
t

t

( ) ( , ), = ∫ τ τ
0

Consequently, the function V defi ned by



 V x t
J x t x x

x x
dx

x x
( , )

( , )
=

′ − − ′

− ′
′

′− ≤∫
1

4 0 0π δ

I
 (11.40)

satisfi es

 {∂2
t − ∇}V(x,  t) = IJ(x,  t), (x,  t) ∈ R3 × R (11.41)

and the initial condition V(x,  t) = 0 for t ≤ t0. It then follows, by the linearity of 

the wave equation, that the free fi eld is given by

 u0(x,  t) = {∇∇ − ∂2
t I}⋅V(x,  t) (11.42)

We have now reached the stage where we are in a position to take the same 

steps for analysing electromagnetic scattering problems as we did when dealing 

with acoustic scattering problems in Chapters 6 and 7.

For convenience we gather together in the next section the salient features 

of the analysis of the scattering of acoustic waves.

11.3 Overview of Acoustic Wave Scattering Analysis

The governing equation in this case is

 {∂2
t − ∆}u(x,  t) = f(x,  t), (x,  t) ∈ R3 × R (11.43)

where u characterises the acoustic fi eld.

It is assumed that the transmitter is localised near the point x0. It will also be 

assumed that the transmitter emits a signal at time t0 which, in the fi rst instance, 

is in the form of a pulse of time duration T. Consequently, we will have

sup {( , ) : },p f x t t t t T x x⊂ ≤ ≤ + − ≤0 0 0 0δ

where d0 is a given constant.

If the pulse is scattered by a body B then we will assume that

B constant⊂ ≤ ={ }x x: ,δ δ

It will be assumed that the transmitter and the scattering body are very far 

apart and disjoint; this introduces the so-called far fi eld approximation

x0 0>> +δ δ

The acoustic fi eld for the primary, or Free Problem, that is, the acoustic fi eld 

which obtains when there are no scatterers present in the medium, is given in 

terms of a retarded potential in the form (see Appendix A12.5)
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 u x t
f x t x x

x x
dx

x x
0

1

4 0 0

( )
( )

,
,

=
′ − − ′

− ′
′

′− ≤∫π δ
 (11.44)

for (x,  t) ∈ R3 × R.

If q0 denotes a unit vector defi ned by

 x0 = −x0q0 (11.45)

then expanding x − x′ in powers of x0 we fi nd

u x t
s x t x

x x
0

0 0 0

0 0
2

1
( )

( )
,

,
=

⋅ − +
+









θ θ
○

uniformly for t ∈ R, x ≤ d where

s f x x x dx
x x

( ) ( ( ) )θ τ
π

θ τ τ
δ

0 0 0

1

4 0 0

, , ,= ′ ⋅ ′− − ′ ∈
′− ≤∫ R

is the signal wave form.

When the error term is dropped in the above then the primary fi eld is a plane 

wave propagating in the direction of unit vector q0.

When the primary acoustic fi eld is a plane wave

 u0(x,  t) = s(q0, x⋅q0 − t), supp s(q0,⋅) ⊂ [a, b] (11.46)

which is scattered by B then the resulting acoustic fi eld u(x,  t) is the solution of 

the IBVP

 {∂2
t − ∆}u(x,  t) = 0,     (x,  t) ∈ Ω × R (11.47)

 u(x,  t) ∈ (bc) (11.48)

 u(x,  t) ≡ u0(x,  t), x ∈ Ω, t + b + d < 0 (11.49)

The echo or scattered fi eld is then defi ned to be

 usc(x,  t) = u(x,  t) − u0(x,  t), (x, t ∈ Ω × R) (11.50)

It can then be shown [8] that in the far fi eld

 u x t
e t

x
x xsc

, , x
,( , )

( )
≈

−
=

θ θ
θ0  (11.51)

The quantity e(q0,  q,  t) is the echo wave form.

A main aim in practical scattering theory is to calculate the relationship 

between the signal and echo wave forms. A way of doing this is as follows.



Assume the source function f has the form

 f(x,  t) = g1(x)cos wt + g2(x)sin wt = Re{g(x)exp(−iwt)} (11.52)

where g(x) = g1(x) + ig2(x).

The associated wave fi eld, u(x,  t), will have the same time dependence and 

have the typical form

 u(x,  t) = w1(x)cos wt + w2(x)sin w t = Re{w(x)exp(−iwt)} (11.53)

where w(x) = w1(x) + iw2(x).

The wave fi eld u(x,  t) must satisfy the d’Alembert equation (11.43) and the 

imposed boundary conditions when the source fi eld has the form (11.46).

The boundary value problem for the complex wave function w is

 {∂2
t − ∆}w(x) = −g(x), x ∈ Ω (11.54)

 w(x) ∈ (bc) (11.55)

 
∂
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
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



 →∞

w

x
i w x O

x
xω ( )

1
2

as  (11.56)

The radiation condition (11.56) ensures that the wave fi eld characterised by u will 

be outgoing at infi nity. Furthermore it guarantees the uniqueness of the wave fi eld 

u [8].

The fi eld u0(x,  t) generated by f(x,  t) in the absence of scatterers is character-

ised by the complex wave function w0 which is given by

 w x
i x x

x x
g x dx x

x x
0

31

4 0 0

( )
exp( )

( )=
− ′

− ′
′ ′ ∈

′− ≤∫π
ω

δ
, R  (11.57)

Expanding x − x′ in powers x0, as before, we obtain

 w x
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x
i x O
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ωθ
ωθ as  (11.58)

uniformly for x ≤ d where

 T i x g x dx
x cx

( ) exp ( ) ( )ωθ
π

ωθ
δ

0 0

1

4 0 0

= − ⋅ ′ ′ ′{ }
′− ≤∫  (11.59)

With (11.53) in mind, together with the familiar forms of solutions of the d’Alembert 

equation, it will be convenient to express the primary wave function w0 in the 

form

w0(x,  wq0) = (2p)−3/2exp(iwq0⋅x)
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The wave fi eld which is produced when w0(x,  wq0) is scattered by B is denoted 

w+(x,  wq0). It is taken to have the form

w+(x,  wq0) = w0(x,  wq0) + w+
sc(x,  wq0)

and expected to satisfy the boundary value problem

( ) ( )

( ) ( )

( )
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+
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0 2
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w x
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x
i w x O

x

,

,

,sc 


 →∞as x

It can then be shown (see Chapter 6, [8] and [5]) that in the far fi eld of B the 

scattered, or echo, fi eld is a diverging spherical wave with asymptotic form

 w x
i x

x
T x xsc , , ,+
+≈ =( )

exp( )
( )ωθ

ω
π

ωθ ωθ θ0 0
4

 (11.60)

The coeffi cient T+(wq,  wq0) is the scattering amplitude of B. It determines the 

amplitude and phase of the scattered fi eld in the direction q due to a primary fi eld 

in the direction q0.

It can be shown that the echo wave profi le e can be expressed in terms of 

known quantities in the form (see Chapter 6, [8] and [5])

 ˆ ( , , ) Re {exp( )} ( , ) ˆ( , )se i T s dθ θ τ ωτ ωθ ωθ ω θ ω0 0 0
0

= { }+
∞

∫  (11.61)

where ŝ denotes the Fourier transform of the signal wave form, that is

 ˆ( ) :
( )

{exp( )} ( )
/

s i s dω θ
π

ωτ τ θ τ, ,0 1 2 0

1

2
= −

−∞

∞

∫  (11.62)

11.4 More about Electromagnetic Wave Scattering

Quite simply we follow the various steps outlined in the previous section but now 

we must be careful to recognise that we will be dealing with matrix-valued coef-

fi cients, vectors and tensors [1], [6], [7].

The defi ning equation we must now consider is the inhomogeneous vector 

wave equation

 {∂2
t + ∇ × ∇×}u(x,  t) = f(x,  t), (x,  t) ∈ Ω × R (11.63)



The far fi eld approximations can be obtained in a similar manner as in the 

acoustic case. The fi rst result we can obtain is a representation of s(t,  q0) the 

signal wave profi le in the form

 s Q f x x x dx
x x

( ) ( ) ( ( ) )τ θ θ
π

θ τ
δ

, ,0 0 0 0

1

4 0 0

= ′ ⋅ ′− − ′
′− ≤∫  (11.64)

where Q is a tensor defi ned by

 Q(q) = I − qq (11.65)

and is the projection onto the plane through the origin with normal in the direc-

tion q.

We assume that an electric current density of the form

 J(x,  t) = Re{J(x)exp(−iw t)} (11.66)

generates wave fi elds

 u(x,  t) = Re{w(x)exp(−iw t)} (11.67)

where w(x) = 〈w1,  w2,  w3〉 (x) has complex-valued components. The wave u(x,  t) 

must satisfy (11.63) with f defi ned by (11.66) and (10.35) and the imposed bound-

ary and initial conditions.

In the electromagnetic case the Sommerfeld radiation conditions used in con-

nection with acoustic problems are not adequate; they have to be replaced by the 

Silver–Muller radiation conditions [3]. Consequently, the boundary value problem 

for the vector quantity in (11.67) is

 { } ( ) ( )

( ) ( )

{ } ( )

∇×∇×− = ∈

∈ ∈∂
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,

,

Ω
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

 →∞, x

 

(11.68)

where x = x q and

f(x) = iwJ(x)

An application of the far fi eld assumptions yields the following estimate for 

w0(x), the incident or primary fi eld,

 w x Q
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x
i x O

x
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0

0

0

0
2

1
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( )
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ωθ
ωθ  (11.69)
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where

 T i x f x dx
x x

( ) {exp( )} ( )ωθ
π

ωθ
δ

0 0
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= − ⋅ ′ ′ ′
′− ≤∫  (11.70)

When the error term in (11.69) is dropped then w0 represents a plane wave which 

is represented in the form

 w0(x,  wq0) = {exp(−iwq0⋅x)}Q(q0)⋅a (11.71)

where a is a constant vector.

It will be convenient to introduce the matrix plane wave

 Ψ0(x,  wq0) = (2p)−3/2{exp(−iwq0⋅x)}Q(q0) (11.72)

where the columns of Ψ0 are plane waves of the form given in (11.71).

The electric fi eld produced when the primary wave Ψ0(x,  wq0) is scattered by 

B will be denoted by Ψ+(x,  wq0). It will be assumed to have the form

Ψ+(x,  wq0) = Ψ0(x,  wq0) + Ψ+
sc(x,  wq), x ∈ Ω

and to be a solution of the vector boundary value problem
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where as in the acoustic case the plus sign indicates “outgoing wave”.

It can be shown [8] that Ψ+
sc (x,  wq0) characterises a diverging spherical wave 

with asymptotic form

≈
4

=+
+Ψsc , , ,( )

exp( )
( )x

i x

x
T x xωθ

ω
π

ωθ ωθ θ0 0

We would emphasise that here T+(wq,  wq0) is a matrix-valued coeffi cient.

With these various modifi cations of the acoustic case and using the same 

notations it can be shown that

 ˆ ( , , ) Re {exp( )} ( , ) ˆ( , )se i T s dθ θ τ ωτ ωθ ωθ ω θ ω0 0 0
0

= { }+
∞

∫  (11.73)

where, as in the acoustic case, ŝ denotes the Fourier transform of the signal 

profi le, namely

 ˆ( ) :
( )

{exp( )} ( )
/

s i t s dω θ
π

ω τ θ τ, ,0 1 2 0

1

2
= −

−∞

∞

∫  (11.74)



Although (11.73) and (11.74) have much the same symbolic form as for the 

acoustic case it must be emphasised that T+(wq, wq0) is matrix valued, that 

ŝ (w, q0) is vector valued and that the order of the factors in (11.73) must 

be maintained.

11.5 Potential Scattering in Chiral Media

Chiral materials are those which exhibit optical activity in the sense that the 

plane of vibration of linearly polarized light is rotated on passage through the 

material. Consequently, chiral phenomena in a medium can be investigated 

analytically by introducing into the classical Maxwell’s equations those constitu-

tive relations indicating the coupling of the electric and magnetic fi elds which 

involve a so-called chirality measure. There are a number of such relations. 

Here, for the purposes of illustration we shall use the Drude–Born–Fedorov 

(DBF) relations since they are symmetric under time reversality and duality 

transforms.

We remark that references to work supporting the material outlined in this 

section are given and discussed in the Commentary.

11.5.1 Formulation of the Problem

We consider electromagnetic waves propagating in a homogeneous, three-dimen-

sional, unbounded chiral material. The electric fi eld E(x, t) and magnetic fi eld 

H(x, t), where x = (x1, x2, x3), are taken to satisfy the Maxwell’s equations in the 

form

 curl E(x, t) = −Bt(x, t) (11.75)

 curl H(x, t) = Dt(x, t) (11.76)

 div B(x, t) = 0 and div D(x, t) = 0 (11.77)

where D(x, t) and B(x, t) are electric and magnetic fl ux densities.

We introduce constitutive relations which relate the material fi elds H(x, t) and 

D(x, t) to the primitive fi elds E(x, t) and B(x, t) by using the DBF relations, 

namely

 D(x, t) = e(I + bcurl)E(x, t) (11.78)

 B(x, t) = m(I + bcurl)H(x, t) (11.79)

where I is the identity matrix operator, e denotes the electric permittivity, m
the magnetic permeability and b is the chirality measure. It is clear that if b = 0 

then (11.78), (11.79) reduce to the classical relations for the achiral case.
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We consider a bounded obstacle, B, immersed in a chiral material through 

which an incident electromagnetic wave propagates. We are interested in solu-

tions of (11.75), (11.76) which satisfy initial conditions of the form

 E(x, 0) = E0(x) and H(x, 0) = H0(x) (11.80)

and boundary conditions which are dependent on the physical properties of the 

obstacle B.

From (11.75), (11.76) we get

 curl , curl ,E I H( ) ( ) ( )x t
t

x t=−
∂
∂

+µ β  (11.81)

Since E is solenoidal then there will exist a vector function M such that

E(x,  t) = curl M(x,  t)

If in addition we assume

 div M(x,  t) = 0 (11.82)

then using the vector identity

 curl curl v = {grad div − ∆}v (11.83)

we obtain

 ∆M( ) ( ) ( )x t
t
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∂
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+µ βI H  (11.84)

Furthermore if we assume (the magnetic fi eld assumption)
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then (11.84) yields
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Consequently, knowing any solution M(x,  t) of (11.86) then H(x,  t) and E(x,  t) 

can be determined via the relations (11.84) and (11.81).

We remark that (11.78) and (11.79) indicate

 curl , curl) ,H I E( ) ( ( )x t
t

x t=
∂
∂

+ε β  (11.87)



Since H is solenoidal then there will exist a vector function N such that

 H(x,  t) = curl N(x,  t) (11.88)

and if in addition we assume

 divN(x,  t) = 0 (11.89)

then we obtain

 − =
∂
∂

+∆N x t
t

x t( ) ( ) ( ), curl ,ε βI E  (11.90)

Furthermore, if we assume (the electric fi eld assumption)
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then (11.90) yields
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Hence we have reduced the scattering problem for a class of electromagnetic 

waves in chiral materials to an initial boundary value problem of the form
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 u(x, 0) = u0(x), ut(x, 0) = u1(x) (11.94)

 u satisfi es either (11.85) or (11.91) (11.95)

 u ∈ (bc), u ∈ (rc) (11.96)

where the notations (bc) and (rc) denote that the solution u(x,  t) is required to 

satisfy boundary conditions on ∂B, the boundary of B, and a radiation condition 

as x → ∞ respectively.

11.6 Scattering of Elastic Waves

The strategy outlined in this monograph for investigating wave scattering prob-

lems indicates that our fi rst task is to represent the given physical problem as an 

operator equation problem in a suitable Hilbert space where ideally the operator 

involved is self-adjoint. Following the approach in previous chapters we will 
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require that the Hilbert space representation of the given physical problem should 

be in the form of an IVP for a fi rst order differential equation.

11.6.1 An Approach to Elastic Wave Scattering

In R3 elastic wave phenomena are governed by IBVPs of the following typical 

form

 {∂t
2 − ∆*}u(x,  t) = f(x,  t), x ∈ Ω � R3,   t ∈ R+ (11.97)

 u(x, 0) = j(x),    ut(x, 0) = y(x),  x ∈ R3 (11.98)

 u(x,  t) ∈ (bc),  (x,  t) ∈ ∂Ω × R+ (11.99)

where

x  = (x1,  x2,  x3)

j, y = given vector functions characterising initial conditions

∆* = −mcurl curl + lgrad div is the Lamé operator

l, m = Lamé constants

Ω ⊂ R3 = connected, open region exterior to the scattering target B

∂Ω = closed, smooth boundary of Ω
u(x,  t) = vector quantity characterising the elastic wave fi eld

 = 〈u1,  u2,  u3〉 (x,  t)

f(x,  t) = vector quantity characterising the signal emitted by the transmitter.

Other quantities of interest are

 c1 2= + =λ µ longitudinal wave speed

 c2= =µ shear wave speed

T u n
u

n
n u n u( ), div curl

vector traction at a boundary po

=
∂
∂( )+ + ×

=

2µ λ

iint where the normal is n.

 

(11.100)

For u(x,  t) = 〈u1,  u2,  u3〉 (x,  t) we shall write

u ∈ (L2(R
3))3 whenever uj ∈ L2(R

3), j = 1, 2, 3

As in the acoustic and electromagnetic cases we begin an investigation of 

elastic waves by examining the FP. To this end we introduce the following nota-

tions and function spaces.

X(Ω) = space of scalar functions defi ned on a region Ω

X(Ω) = space of vector functions defi ned on a region Ω.



For example if Ω � R3 and
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then

L2(Ω) is a Hilbert space with inner product

 ( ) ( ) ( )u v u x v x dx, = ∫Ω
 (11.101)

L2(Ω) is a Hilbert space with inner product

 (u, v) = (u1,  v1) + (u2,  v2) + (u3,  v3) (11.102)

We also introduce

 L2(∆*, Ω) := L2(Ω) � {u :∆*u ∈ L2(Ω)} (11.103)

L2(∆*, Ω) is a Hilbert space with inner product

 (u, v)∆* := (u, v) + (∆*u, ∆*v) (11.104)

Following the approach adopted in earlier chapters the FP associated with 

the IBVP, that is the problem (11.97), (11.98), can now be interpreted as an IVP 

for a second order ordinary differential equation in L2(R
3). Specifi cally we 

introduce the operator

 A0 : L2(R
3) → L2(R

3) (11.105)

 A0u = −∆*u, u ∈ D(A0)

D(A0) = {u ∈ L2(R
3) : ∆*u ∈ L2(R

3)} ≡ L2(∆*, R3)

This then yields the IVP
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=u f( ) ( )  (11.106)

 u(0) = j, ut(0) = y (11.107)

where we understand

u ≡ u(⋅, ⋅) : t → u(⋅,t) =: u(t)
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It is readily seen that A0 is positive, self-adjoint on L2(∆*, R3) provided l and 

m are strictly positive. Questions of the existence and uniqueness of solution to 

the IVP (11.106), (11.107) can be settled by using the limiting absorption principle 

(see Commentary). The required solution u can then be obtained in the form

 u(x,  t) = Re{v(x,  t)}

v(x,  t) = {exp(−itA1/2)}h(x)

where

h(x) = j(x) + iA−1/2y(x)

when f ≡ 0 otherwise h has to have an additional integral term in its defi nition.

Since A is self-adjoint then the spectral theorem can be used to interpret terms 

such as A1/2. Generalised eigenfunction expansions can then be established to 

provide a basis for constructive methods.

As we have seen in the acoustic and electromagnetic cases a problem such 

as (11.106), (11.107) can be reduced to an equivalent fi rst order system. The 

required reduction is obtained in the now familiar manner and yields the IVP

 Ψt(t) + iGΨ(t) = F(t), Ψ(0) = Ψ0 (11.108)

where
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t t
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Proceeding formally a simple integrating factor technique indicates that

 Ψ Ψ( ) {exp( )} {exp( ( )) } ( )t it i t d
t

= − + − −∫G G F0
0

η η η  (11.109)

For this approach to be meaningful we must be able to show that the problem 

(11.108) is well-posed and that the relation (11.109) is well defi ned. As we have 

seen in the previous chapters all this can be settled by showing that iG is self-

adjoint; Stone’s theorem will then indicate that exp{−itG} is a well-defi ned semi-

group and the result of Chapter 5 will then show (11.108) is a well-posed 

problem.

To show that iG is self-adjoint we consider iG to be defi ned on an “energy 

space” HE which is a Hilbert space with inner product

(Ψ, Φ)E := (∇ × y1, ∇ × j1)L2
 + (y2, j2)∆*
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where

Ψ =〈y1, y2〉, Φ = 〈j1, j2〉

A straightforward calculation establishes that iG is symmetric. The full proof 

that iG is self-adjoint then follows as in Chapters 5 and 6 and [5].

The required solution u(x, t) of the IVP (11.97) (11.98) is then meaningfully 

defi ned by the fi rst component of the solution Ψ of the IVP (11.108). For example, 

in the case when f ≡ 0 then we obtain the solution form

 u(x, t) = (cos tA1/2)j(x) + A−1/2(sin tA1/2)y(x) (11.110)

The self-adjointness of A ensures that the spectral theorem is available for the 

interpretation of such terms as A1/2. Consequently (11.110) is well defi ned and 

computable. As in the acoustic and electromagnetic cases the computation of the 

elastic wave fi eld, u(x, t), is carried out using results of generalised eigenfunction 

expansion theorems. These theorems, once established, are essentially of two 

types, one to cater for longitudinal wave phenomena, the other to accommodate 

shear wave phenomena.

When we deal with perturbed problems, for example with target scattering 

problems, then the IBVP (11.97) to (11.99) has to be investigated. We remark that 

the accommodation of the effects of boundary conditions can possibly cause 

technical diffi culties when the self-adjointness of associated operators has to be 

established. Nevertheless, we have now arrived at the stage when we have 

managed to give elastic wave scattering problems the same symbolic form that 

we investigated when dealing with acoustic and electromagnetic wave scattering 

problems. Consequently, we are now in the position of being able to follow step 

by step the procedures we have outlined in Chapters 5, 6 and 7 for acoustic and 

electromagnetic problems. However, although this is a straightforward matter it 

can be a lengthy process. It has been worked through by a number of authors and 

the details are to be found in the references cited in the Commentary.
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Commentary

12.1 Introduction

From the outset it has been emphasised that this book is an introductory text 

intended for the use of those wishing to begin studying the scattering of waves 

by time-dependent perturbations. For this reason we offer in this chapter some 

additional remarks on the material that has been presented in previous chapters. 

The main intentions are, on the one hand, to give some indications of the work 

that either has been or is being done to cater for more general situations than 

those considered here and, on the other hand, to suggest further reading direc-

tions. Whilst it is recognised that it is impossible to give credit to all sources, 

nevertheless, those cited in the extended Bibliography provided here will, in turn, 

give additional references.

12.2 Remarks on Previous Chapters

Chapter 1:

As its title suggests this chapter is purely introductory. The various aspects 

of scattering theory which will be needed in later chapters are illustrated here in 

an entirely formal manner. Most of the notions which are introduced would seem 

to have appeared initially in the theory of quantum mechanical scattering theory. 

In this connection see [6], [22], [79], [84], [57], [87]. In a series of papers Wilcox 

and his collaborators showed how many of the techniques used in the study of 

quantum mechanical scattering could be extended to deal with wave problems in 

classical physics. The foundations for this work are fully discussed in [131]. The 

Wilcox approach to wave scattering problems relies on the availability of suitable 

generalised eigenfunction expansion theorems [110], [43] and offers good pros-

pects for developing constructive methods of solution. This approach is distinct 

from that adopted by Lax and Phillips [57]; a reconciliation of the two approaches 

is given in [56], [130]. Although mainly concerned with quantum mechanical 
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scattering aspects the texts [12], [17] are worth bearing in mind when developing 

detailed analyses of wave scattering problems.

Chapter 2:

Wave motion on strings is developed in many texts. We would particularly 

mention [11], [117], [126]. The approach to solutions of the wave equation by 

considering an equivalent fi rst order system is discussed from the standpoint of 

semigroup theory in [38], [72]. An investigation of solutions to the wave equation 

represented in the form (2.58) is detailed in [60], [131], [91]. The method of com-

paring solutions to equations that have the typical form given in (2.58) parallels 

that used so successfully in quantum scattering theory. In this connection we 

would particularly mention the texts [6], [12], [17]. A comprehensive account of 

waves on strings can be found in [58]. The discussion of a scattering problem on 

a semi-infi nite string follows the treatment found in [50].

Chapter 3: [98], [113], [122]

In this chapter a number of mathematical facts which are used frequently in 

this monograph are gathered together. The material is included mainly for the 

newcomer to the area of scattering theory who might possibly not have had the 

training in mathematical analysis which present-day mathematics students 

receive. There are a number of fi ne texts available which provide a thorough 

development of the various topics introduced in this chapter, see [42], [46], [48], 

[52], [64], [135]. This being said, particular attention should be paid to the follow-

ing topics. The notion of completeness is crucial for many of the arguments used 

in developing scattering theories. A good account of this concept can be found 

in [52] whilst fi ne illustrations of its use in practical situations can be found in 

[76], [117]. Distribution theory is comprehensively developed in [35], [48], [63], 

[64], [109]. The newcomer to this area should be encouraged to become familiar 

with distribution theory developed in Rn , n > 1, and especially with the notion of 

the n-dimensional Dirac delta [90]. The theory of linear operators on Hilbert 

spaces is comprehensively treated in [4], [42].

Chapter 4:

Hilbert spaces provide generalisations of the familiar notions of algebra and 

geometry whch are used in a Euclidean space setting. In a Hilbert space setting we 

deal with the functions themselves rather than with their numerical value as would 

be the case in a Euclidean space setting. Representing a given problem in a Hilbert 

space therefore yields an abstact setting of that given problem. One of the main 

advantages in working in an abstract setting is that many quite diffi cult problems 

in classical analysis, such as, for example, obtaining existence and uniqueness 

results, can often be resolved more readily in the chosen absract setting.

There are many excellent texts dealing with Hilbert spaces, a number of which 

have already been mentioned. Whilst Hilbert spaces can form a study in themelves 

a good starting point for those who have applications in mind can be found in 

any of [42], [52], [46], [48], [64]. These will, if required, also lead to more general 

treatments of Hilbert space than given in this chapter.



Chapter 5:

The topic of spectral decomposition is now highly developed and has many 

far reaching applications. Comprehensive accounts of spectral decompositon 

methods, from a number of different standpoints, are available. In this connection 

we would particularly mention [4], [12], [24], [27], [33], [42], [48], [52], [66], [84], 

[87], [88], [106], [135], [94], amongst which will be found something to suit most 

tastes. The material in this chapter is quite standard. In the presentation given 

here the development has been mainly concerned with bounded linear operators 

simply for ease of presentation. Similar results can be obtained for unbounded 

operators but in this case more care is required when dealing with domains of 

operators. This aspect is discussed in detail in [42] and [88], the latter giving a 

fi ne account of reducing subspaces.

A comprehensive account of measure theory with applications to scattering 

theory very much in mind can be found in [84]. The account of spectral decom-

position of Hilbert spaces given in [84] can usefully be augmented by the associ-

ated material given in [48] and [135].

A number of the techniques which have been used successfully when dealing 

with quantum mechanical scattering problems can be adjusted to deal with wave 

scattering problems [5], [38], [39], [48], [72], [74], [83], [88], [90], [91], [114], [119], 

[120], [123]. Essentially this amounts to replacing the partial differential equation 

associated with an IBVP for the wave equation by an equivalent IVP for an ordinary 

differential equation defi ned in a suitable energy space (H, say), which will have 

solutions that are H-valued functions of t. Indications were given of how existence 

and uniqueness results for solutions of the IVP could be obtained using results from 

semigroup theory. Suggestions were also given as to how constructive methods 

could be developed using results from the abstract theory of integral equations.

One of the earliest accounts of semigroup theory can be found in [116]. A fi ne 

introduction to the subject is given in [72]. More advanced modern texts which 

will be useful are [120], [38], [13], [14], [83].

Chapter 6: [1], [6], [11], [28], [29], [38], [48], [43], [57], [60], [83], [84], [87], [91], 

[107], [120], [131], [130]

The modelling of acoustic wave phenomena is introduced and discussed in [44] 

and [111]. The material presented here is based very much on the work of [131]. 

Some of the more important results and concepts are gathered together here in order 

that the newcomer to the area should gain familiarity, as quickly as possible, with 

the various strategies involved when developing scattering theories. Many of the 

results are simply stated as their proof is usually quite lengthy. These various proofs 

are given in the literature cited here and it is felt that they can be read more profi tably 

once the overall strategy of the subject has been appreciated. In this connection see, 

for instance, [60], [61], [92], [93], [94]. A considerable amount of work has been done, 

in a quantum mechanics setting, on the existence, uniqueness and completeness of 

wave operators: see [6], [12], [17], [79], [87]. A comprehensive and unifi ed account 

is given in [84]. A detailed account of how these various notions can be adapted to 

cater for a target scattering problem is to be found in [131] and the references cited 
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there. A full account of radiation conditions and incoming and outgoing waves can 

be found in [28], [29], [125] whilst a treatment of generalised eigenfunctions theo-

rems and completeness in this context can be found in [11], [6], [76]. The various 

types of solutions which can be obtained for the partial differential equations which 

arise when analysing scattering processes are introduced and discussed in texts 

dealing with the modern theories of partial differential equations; see for example 

[27], [35], [60], [134]. The notion of solutions with fi nite energy has been used exten-

sively [131]. Methods for determining and discussing such solutions can be readily 

developed by reducing IBVPs for wave equations to equivalent IVPs for an ordinary 

differential equation and then using semigroup theory [38], [120], [72], [91].

Central to the development of the generalised eigenfunction expansion theo-

rems required when dealing with acoustic scattering problems is an appreciation 

of the Helmholtz equation and its properties. A comprehensive treatment of 

boundary value problems for the Helmholtz equation, using integral equation 

methods is given in [51].

The limiting absorption principle was introduced in [28]. It has been applied 

to problems involving a variety of different differential expressions, boundary 

conditions and domains. Recently, in conjunction with the related limiting ampli-

tude principle [29] it has been successfully used to analyse scattering problems 

in domains involving unbounded interfaces [92], [93] [94], [95].

Chapter 7:

An understanding of how a given incident wave evolves throughout a medium 

is the central problem when developing a scattering theory. In this chapter explicit 

attention has been paid to the nature of the signal transmitted [91] and the forms 

that it can adopt at large distances from the transmitter and scatterers. This then 

enables the notions of signal and echo wave forms to be introduced [131]. An 

alternative method to that adopted in this chapter for obtaining such quantities 

relies on the properties of retarded potentials. This is outlined in Appendix A 12.5 

of this chapter.

Chapter 8:

The material presented in this chapter has been greatly infl uenced by that in 

[85], [132], [133]. These references provide a good starting point for those wishing 

to begin working in this particular area.

Chapter 9:

In this chapter Floquet theory plays a central rôle. A fi ne development of this 

theory can be found in [25], [26]. An analysis of the propagation of linear acoustic 

waves in an infi nite string with periodic characteristics is discussed in detail in 

[75] and [128].

Chapter 10:

The inverse scattering problem has been investigated by many authors. In this 

connection particular reference can be made to the books of [2], [70], [71], [59], 



[19], [20]. As might be expected there are also many papers in journals devoted 

to this area. Typical examples of works which cover many aspects of this general 

area can be found in [9], [10], [15], [16], [81], [18], [30], [31], [32], [80], [96], [97].

Chapter 11:

As has been pointed out, working through the details for wave propagation 

in the electromagnetic and the elastic cases whilst, potentially, might be consid-

ered a straightforward matter is nevertheless an extremely lengthy process. This 

fact is well illustrated in [60], [62], [8], [44] and in [68], [69] respectively. The 

details given in these references will provide a starting point for studying electro-

magnetic wave sand elastic waves in a similar manner to that outlined here for 

acoustic wave problems.

12.3 Appendices

This section is included to provide an easy and convenient reference to some of 

the more technical concepts which have been referred to but not developed in 

this monograph. The presentation is brief and is made, almost entirely, in spaces 

of one dimension. More details can be found in standard books on mathematical 

analysis (for example [52], [98]).

A12.1 Limits and Continuity

If B is an interval in R then we write B � R.

If B = (a, b) = {x ∈ R: a < x < b} then B is said to be an open interval.

If B = [a, b] = {x ∈ R: a ≤ x ≤ b} then B is said to be a closed interval which 

we denote by B. It follows that

B̄  = B � {a, b} = B � ∂ B

where ∂B denotes the boundary of B.

The notions of half closed intervals such as [a, b) and (a, b] can be introduced 

similarly.

A real-valued function f defi ned on R, which symbolically is characterised by 

writing f: R → R, is said to have a limit L as x → a ∈ R if for any real number 

e > 0, no matter how small, there is a d > 0 such that

f x L x a( )− < < − <ε δwhenever 0

and we write in this case

lim ( )
x a

f x L
→

=

An equivalent defi nition in terms of sequences is available. Specifi cally, if {xn} is 

a sequence such that xn → a as n → ∞ then it follows that f(xn) → L.
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In order that a function f: R → R should have a limit at x = a then the func-

tion must be defi ned on each side of x = a but not necessarily at x = a. For 

example the function f defi ned by

f x
x

x
( )

sin
=

is not defi ned at x = 0 since there it assumes the form 0/0. However, on expanding 

the numerator in series form, we see that it has the value unity at x = 0.

It is also possible to introduce the notion of one-sided limits. A function f: 

R → R is said to have a limit L from the right at x = a as x → a if for any 

number e > 0 there exists a number d > 0 such that

f x L x a( )− < < − <ε δwhenever 0

When this is the case we replace L by f(x+).

Similarly, a function f: R → R is said to have a limit L from the left at x = 

a as x → a if for any number e > 0 there exists a number d > 0 such that

f x L a x( )− < < − <ε δwhenever 0

When this is the case we replace L by f(x−).

Clearly, if both the limits from right and left exist and if f(x+) = f(x−) then 

limx f x→ ( )α  exists and equals f(x+) = f(x−).

A function f: R → R is continuous at a point x = a ∈ R if limx f x→ ( )α  exists 

and equals f(a). In particular the function has to be defi ned at x = a. For example 

the function f defi ned by f(x) = (sin x)/x and f(0) = 1 is continuous at every point. 

A function is said to be continuous in an interval a ≤ x ≤ b if it is continuous 

at each point in the interval.

The following are important results in applications.

Theorem: IntermediateValue Theorem. If f: R → R is continuous in a fi nite 

(i.e. bounded) interval [a,  b] and if f(a) < p < f(b) then there exists at least one 

point x = c ∈ [a,  b] such that f(c) = p.

Theorem: Concerning Maxima.  If f: R → R is continuous in a fi nite closed 

interval [a,  b] then it has a maximum in that interval. That is, there exist a 

point m ∈ [a,  b] such that f(x) ≤ f(m) for all x ∈ [a,  b].

Applying this result to the function (−f ) indicates that f also has a minimum.

Theorem: Let f: R → R and assume

(i+) f is continuous on a fi nite closed interval [a, b]

(ii) f(x) � 0, x ∈ [a, b]

(iii) ∫ =a
b f d( )η η 0

then f(x) ≡ 0, x ∈ [a, b].

A function f: R → R has a jump discontinuity if both one-sided limits f(x+) 

and f(x−) exist. The number (  f(x+) − f(x−)) is the value of the jump.



A function f: R → R is piecewise continuous on a fi nite closed interval 

[a, b] if there are a fi nite number of point

a = a0 ≤ a1 ≤ a2 ≤  .  .  .  ≤ an = b

such that f is continuous on each sub-interval (aj−1,aj), j = 1, 2,  .  .  ., n and all the 

one side limits f(x−) for 1 ≤ j ≤ n and f(x+) for 0 ≤ j ≤ n exist. Such a function 

has jumps at a fi nite number of points but otherwise is continuous.

It can be shown [98] that every piecewise continuous function is integrable.

Similar results can be shown to hold in Rn [98], [88].

A12.2 Differentiability

A function f: R → R is differentiable at a point x ∈ [a, b] if

lim
( ) ( )

( )x a

f x f a

x a→

−
−

exists. The value of the limit is denoted by either f ′(a) or df dx/( ) (a).

A function f: R → R is differentiable in the open interval (b, c) if it is differen-

tiable at each point of the interval.

When we work in n > 1 dimensions some rather more sensitive notation is 

required. We illustrate this in the following paragraphs.

A12.3 The Function Classes Cm(B), Cm(B̄)

Let B ⊂ Rn, n ≥ 1 and let f: Rn → Rn. We shall assume

(i) a = (a1,a2,  .  .  .  ,an) is a vector with non-negative integer components aj, 

j = 1, 2,  .  .  ., n

(ii) α α= =Σ j
n

j1

(iii) xa = x1
a1x2

a2  .  .  .  xn
an.

We shall denote by Daf(x) the derivative of order a of the function f by

D f x
f x x x

D D D

n

x x x

n

n

n

n

α
α

α α α

α α α

( )
( . . . )

. . .

. . .

=
∂
∂ ∂ ∂

=

1 2

1 2

1

1

2

2

1 2

, , ,

,, , , , , ,D
x

D
x

j nj

j

j

j

m

m

m

α
α

α=
∂
∂

=
∂
∂

=1 2 . . .

with

D0f(x) = f(x)

 12.3 Appendices 291



292 12 Commentary

A set of (complex-valued) functions f on B ⊂ Rn which are continuous together 

with their derivatives Daf(x), a ≤ p where 1 ≤ p < ∞ form a class of functions 

denoted Cp(B).

Functions f ∈ Cp(B) for which all the derivatives Daf(x) with a≤ p allow 

continuous extension into the closure, B̄ , form a class of functions Cp(B̄). We 

shall also write

C B C B C B C Bp

p

p

p

∞

≥

∞

≥

= =( ) ( ) ( ) ( )
0 0

∩ ∩,

These classes of functions are linear sets. Furthermore, if, for example, we endow 

the class C(B) with a norm by setting

f f x
x B

: max ( )=
∈

then C(B) is converted into a normed linear space. Similarly we can convert the 

class C(B̄).

A set of functions f ∈ M ⊂ C(B) is said to be equicontinuous on B if for any 

e > 0 there exists a number d(e) such that for all f ∈ M the inequality f(x1) − f(x2) 

≤ e holds whenever x1 − x2 < d(e) where x1, x2 ∈ B.

A function f ∈ C(B) is said to be Hölder continuous on B if there are numbers 

c > 0 and 0 < a ≤ 1 such that for all x1, x2 ∈ B the inequality

f x f x c x x( ) ( )1 2 1 2− ≤ − α

holds. In the case when a = 1 the function f ∈ C(B) is said to be Lipschitz con-

tinuous on B.

A12.4 Sobolev Spaces

Let Ω � Rn be an open set. The Sobolev space Wp
m(Ω), m ∈ N and 0 ≤ p ≤ a is 

the space of all distributions which together with their distributional derivatives 

of order less than or equal to m are associated with functions that are pth power 

integrable on Ω, that is they are elements of Lp(Ω). Such a collection is a Banach 

space with respect to the norm ⋅m,p defi ned by

f
f

x x x
m p

m

m m
n
m

p

m m

p

n
, :

. . .

/

=
∂

∂ ∂ ∂













≤ ≤

∑∫
1 20

1

1 2Ω

where m = m1 + m2 +  .  .  .  + mn and mj, j = 1, 2,  .  .  ., n are positive integers.

If p = 2 then W 2
m(Ω) is a Hilbert space usually denoted H 2(Ω).

Of particular interest in this monograph are the Hilbert spaces H1(Ω) and 

H2(Ω). These are defi ned as follows



H f L
f x

x
L j n

j

2
2 2 1 2( ) : ( ) :

( )
( ) . . .Ω Ω Ω= ∈

∂
∂

∈ =










, , , ,

with inner product

(  f, g)1,2 = (  f, g)1 = (  f, g) + (∇f,∇g)

and norm

f f f1

2 2 2= + ∇

where (⋅,  ⋅) and ⋅2 denote the usual L2(Ω) inner product and norm 

respectively.

Similarly

H f L
f x

x
L

f x

x x
L j k

j j k

2 2 2

2

2 1 2( ) ( ) :
( )

( )
( )

( ) . .Ω Ω Ω Ω= ∈
∂
∂

∈
∂
∂ ∂

∈ =, , , , , .. , n










with inner product and norm

(  f, g)2,2 = (  f, g) + (∇f, ∇g) + (Daf, Dag)

f f f D f2

2 2 2 2= + ∇ + α

where a is a multi-index such that a = a1 + a2.

An important result in the general theory of Sobolev spaces [1] is the 

celebrated Sobolev lemma which states that an element f ∈ H n k/ 2 1[ ]+ +
(Ω), where 

n is the dimension of Ω and [n/2] means rounded down to an integer, is also such 

that f ∈ Ck(Ω). Thus as the dimension n of Ω increases higher order Sobolev 

spaces must be taken in order to guarantee the continuity of the elements (func-

tions) which they contain.

For more details of the properties of Sobolev spaces, especially concerning 

boundary values (traces) and imbedding theorems see [1].

A12.5 Retarded Potentials

Let f and g be locally integrable functions on Rn and assume that the function h 

defi ned by

h x g y f x y dy
n

( ) ( ) ( )= −∫
R

is also locally integrable on Rn. The function f * g defi ned by
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( )( ) ( ) ( )

( ) ( ) ( )( )

f g x f y g x y dy

g y f x y dy g f x

n

n

∗ = −

= − = ∗

∫
∫

R

R

is called the convolution of the functions f and g.

Let L(D) be a differential expression with constant coeffi cients aa(x) ≡ aa 

which has the typical form

L D a D
a

m

( )=
=
∑ α

α

α 0

where a is a multi-index (see Appendix A12.3).

A generalised function ε ∈ D′ which satisfi es in Rn the equation

L(D)ε(x) = d(x)

is called a fundamental solution of the differential expression. It should be 

noted that in general a fundamental solution is not unique.

Using a fundamental solution, ε(x), of the differential expression L(D) it is 

possible to construct a solution, u(x), of the equation

L(D)u(x) = f(x)

where f is an arbitrary function. In this connection the following theorem is a 

central result.

Theorem ([35], [88]). Let f ∈ D′ be such that the convolution ε∗f exists in D′. 
Then the solution u(x) exists in D′ and is given by

u(x) = (ε ∗ f  )(x)

Moreover, this solution is unique in the class of generalised functions in D′ for 

which a convolution with ε exists.

The above notions are very useful when we come to deal with wave equation 

problems. In the particular case of acoustic waves the wave equation has the 

form


au(x, t) := {∂2
t  − a2∆}u(x, t) = f(x, t)

where 
a is referred to as the d’Alembert expression (operator).

A fundamental solution of the acoustic wave equation in Rn is denoted by 

εn(x, t) and satisfi es




aεn(x, t) = d(x, t)

Fourier transform techniques provide solutions of this equation in the form ([35], 

[88], [112])

ε θ

ε
θ

π

ε
θ

π

1

2
2 2 2

3

1

2

2

2

( ) ( )

( )
( )

( )
( )

x t
a

at x

x t
at x

a a t x

x t
t

a

,

,

,

= −

=
−

−

= δδ( )a t x2 2 2−

where here q denotes the Heaviside unit function defi ned by

q(x) = 1 for x � 0, q(x) = 0 for x < 0

The generalised function Vn defi ned by

Vn(x, t) = en(x, t) ∗ f(x, t)

where en(x, t) is a fundamental solution of the d’Alembert equation and f is a 

generalised function on Rn+1 which vanishes on the half space t < 0 and is called 

a retarded potential with density f. (With a slight abuse of notation we might 

write f(x, t) ∈ D′(Rn+1).)

The retarded potential Vn will, according to the above theorem, satisfy the 

equation


aVn(x, t) = f(x, t)

It can be shown [35], [112] that if f is a locally integrable function on Rn+1 then Vn 

is a locally integrable function on Rn+1 and assumes the following particular 

forms

V x t
a

f d d

V x t
a

f

x a t

x a tt

1
0

2

1

2

1

2

( ) ( )

( )
(

( )

( )

, ,

,
,

=

=

− −

+ −

∫∫ ξ τ ξ τ

π
ξ τ

τ

τ

))

( )

( )

/( ; ( ))

( )

a t x

d d

V x t

S x a t

x a tt

2 2 2
1 20

3

1

4

− − −{ }

=

−

+ +

∫∫
τ ξ

ξ τ

π

τ

τ

,
aa

f t x a

x
d

U x at2

( / )

( ; )

ξ ξ
ξ

ξ
, − −

−∫

where

U(x; at) = ball centre x radius at

S(x, at) = surface of U(x; at)
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As an illustration of the use of retarded potentials recall [90] that the generalised 

Cauchy problem for the wave equation is to determine u ∈ D′(Rn+1) which is zero 

for t < 0 and which satisfi es


au(x, t) := {∂2
t  − a2∆}u(x, t) = f(x, t), u(x, 0) = j(x), ut(x, 0) = y(x)

where f ∈ D′(Rn+1) with data j ∈ D′(Rn) and y ∈ D′(Rn). It can be shown[134], 

[90] that this generalised Cauchy problem has a unique solution of the form

u(x, t) = Vn(x, t) + V n
(0) (x, t) + V n

(1)(x, t)

where

Vn(x, t) = en(x, t)∗f(x, t), Vn
(0) (x, t) = en(x, t)∗y(x), V n

(1)(x, t) = (en(x, t))t∗y(x)

This leads to the following classical solutions of the Cauchy problem for the wave 

equation [90].

n = 3 (Kirchhoff ’s formula)

u x t
a

f t x a

x
d

a t
dS

U x at S x at
( )

( )
( )

( ; ) ( ; )
,

,
=

− −
−

+

+

∫ ∫
1

4

1

42 2π
ξ ξ

ξ
ξ

π
ψ ξ

11

4

1
2π

ϕ ξ
a t

dS
t S x at

∂
∂ { }∫ ( )

( ; )

n = 2 (Poisson’s formula)

u x t
a

f

a t x
d d

U x a t

t

( )
( )

( ( ) ) /( ; ( ))
,

,
=

− − −

+

−∫∫
1

2

1

2

2 2 2 1 20π
ξ τ

τ ξ
ξ τ

π

τ

aa a t x
d

a t a t x

U x at

U

ψ ξ
ξ

ξ

π
ϕ ξ

ξ

( )

( )

( )

( )

/( ; )

/(

2 2 2 1 2

2 2 2 1 2

1

2

− −

+
∂
∂ − −

∫

xx at
d

; )∫ ξ

n = 1 (d’Alembert’s formula)

u x t
a

f d d
a

d
x a t

x a tt

x a
( ) ( ) ( )

( ( ))

( ( ))

(
, ,= +

− −

+ −

−∫∫
1

2

1

20
ξ τ ξ τ ψ ξ ξ

τ

τ

tt

x at

x at

x at

a
d x at x at

)

( )

( )

( )

( ) { ( ) ( )}

+

−

+

∫

∫+ + + + −
1

2

1

2
ϕ ξ ξ ϕ ϕ

A12.6 An Illustration of the Use of Stone’s Formula

For the purpose of illustration we consider an operator which occurs frequently 

in scattering problems. Specifi cally, let A: H ⊃ D(A) → H = L2(R) be defi ned by



Au = uxx, u ∈ D(A)

D(A) = {u ∈ H: uxx ∈ H and u(0) = 0}

To use Stone’s formula we must compute the resolvents, R(t ± ie), of A. To 

this end, recalling the defi nition of A, we consider the boundary value problem

 (A − lI)v(x) = f(x), x ∈ (0, ∞), v(0) = 0 (A12.1)

This is an ordinary differential epuation which has a solution given by

v x A I f x G x y f y dy( ) ( ) ( ) ( ) ( )= − =− ∞

∫λ 1

0
,  (A12.2)

where G(x, y), which is the Green’s function for the problem (A12.1), is readily 

found to have the form [90]

G x y

i x y
y x

i y x
x y

( )

(exp )sin( )

(exp )sin( )
,

,

,

=
≤ ≤

≤ ≤











λ
λ

λ
λ

0

0


We now defi ne

λ ε ε θ ε
λ ε

θ

θ
+

−

−
−

= + = = + =
= − =
: tan ( / )

:

t i R t t

t i

i

i

Re

Re

, ,2 2 1

and choose

λ λθ π θ
+

−= =R e R ei i1 2 2 1 2 2/ /
_

/ ( / ),

We then see that as e ↓ 0

λ λ+ −→+ →−t t,

Therefore

R(t + ie) − R(t − ie) = (A − l+I )−1 − (A − l−I )−1

and on fi rst writing (A12.2) out in full and collecting terms we obtain

lim
sin

( )sin
ε

ε ε
↓

∞
+( )− −( ){ } ( )=

( ) ( )∫
0 0

2
R t i R t i f x

i tx

t
f y tydy

For convenience at this stage assume f, g ∈ C0[a, b], a < b < ∞. Stone’s formula 

now reads
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E E f g
i

i tx

t
f y ty dyg x dxdtb a

a

b

−[ ]( )=
( )

( ) ( ) ( )
∞ ∞

∫∫ ∫,
1

2

2

0 0π
sin

sin

If we now set s t=  and introduce

ɶf s f y sy dy( ) ( )sin

/

= ( ) ( )
∞

∫
2

1 2

0π

then

([ ] ) ( ) ( )E E f g f s g s dsb a
a

b

− = ∫, ɶ ɶ

It can be shown [48] that s (A) ⊂ (0, ∞). Consequently, Ea → Θ as a → 0. 

Hence

 ( ) ( ) ( )E f g f s g s dsλ
λ

, = ∫ ɶ ɶ
0

 (A12.3)

which in turn implies (write g(s) in full and interchange the order of 

integration)

E f x f s sx ds f s s dsxλ
λλ

π
θ( )( )= ( ) ( ) ( ) = ( ) ( )∫∫

2
1 2

00

/

sin :ɶ ɶ

where qs(s) has been introduced for ease of presentation.

 The spectral theorem indicates that for f ∈ D(A)

( )( ) ( )Af x dE f x=
∞

∫ λ λ
0

In the present case we obtain from (A12.3)

dE f x
d

d
f s s ds d

f d

f s

x

x

λ
λ

λ
θ λ

λ
λ θ λ λ

( ) ( ) ( )

(

=








= ( ) ( )

=

∫ ɶ

ɶ

0

1

2

)) ( )θ λx s ds s, =

and hence

 ( )( ) ( ) ( ) ( )

( )sin

/

Af x dE f x s f s s ds

s f s sx

x= =

= ( ) (

∞ ∞

∫ ∫λ θ

π

λ
0

2

0

1 2
22

ɶ

ɶ ))
∞

∫ ds
0

 (A21.4)

which we notice involves the Fourier sine transform of f. This is to be expected, 

bearing in mind results of a classical analysis of the boundary value problem 

(A12.1).

To see how this material can be used in the analysis of wave motions consider, 

as an example, the transverse vibrations of a string occupying the region Ω ⊂ R+. 



The associated wave motions are governed, typically, by an initial boundary value 

problem of the form

 {∂2
t  + A}u(x, t) = 0, (x, t) ∈ Ω × R+ (A12.5)

 u(x, 0) = uo(x), ut(x, 0) = u1(x), u(0, t) = 0 (A12.6)

where A: H → H =: L2(Ω) is defi ned by

Au(x, t) = −∂2
xu(x, t), u ∈ D(A)

D(A) = {u ∈ H: −∂2
xu ∈ H s.t. u(0, t) = 0}

We have seen that a solution of this initial value problem can be written in the 

form

 u(x,t) = (cos(tA1/2))u0(x) + A−1/2(sin(tA1/2))u1(x) (A12.7)

The spectral theorem and the above use of Stone’s formula enales us to write 

(A12.7) in the form

  

u x t t dE u x
t

dE u x

stu s

,( )= ( ) ( )+
( )

( )

= ( )(

∞ ∞

∫ ∫cos
sin

cos

λ
λ

λ
λ λ0

0
1

0

0ɶ )) ( ) +
( )

( ) ( )
∞ ∞

∫ ∫θ θλs sx ds
st

s
dE u s x ds

0
1

0

sin
ɶ  (A12.8)

Once the initial conditions have been given explicitly then their Fourier 

sine transforms ũ0 NS ũ1, respectively, can be calculated as indicated above. 

Hence a completely determined representation of the solution to (A12.5), 

(A12.6) can be obtained from (A12.8) [60]. For example, consider the particular 

case when

 u x u x
x

x

x

x
0 1 2

0 2( ) ( )
sin cos

= = −{ },  (A12.9)

It then follows that

ɶu s s
x sx

x
dx s g s1

1 2

0

1 2

2
2

2
2

( )
sin cos

: ( )

/ /

= ( ) = ( )∞

∫π π
To compute g(s) take an arbitrary j ∈ C0

∞(R+) and consider

 g
x sx

x
s dsdx

x x

R
, ′( )=

( ) ′( )

= ( ) ( )(

→∞

∞∞

∫∫ϕ ϕ

π
ϕ
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sin cos

sin

/

00

1 2

2
ɶ ))

= ( ) ( )

∞

∫ dx
0

2
1

π
ϕ  (A12.10)
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This last result follows from the fact that the Fourier sine transform is its own 

inverse. (Set s = 1 in the defi nition of the Fourier sine transform given above.)

Furthermore,

( ) ( )( ) ( ( ))g g s, , ,′ = − ′ = −ϕ ϕ
π

ϕ δ1
2

1

which implies

 ′ =− −g s s( ) ( )
π

δ
2

1  (A12.11)

Integrating (A12.11) we obtain

g s g d H s
s

( ) ( ) ( ) ( )− =− − =− −∫0
2

1
2

1
0

π
δ ξ ξ

π

Since g 0
2

( )=
π

 we can re-write this in the form

g s H s H s( ) { ( )} ( )= − − = −
π π
2

1 1
2

1

and obtain

ɶu s s H s1

1 2

2
2

1( ) ( )

/

= ( ) −
π

Consequently, in this particular case (A12.8) reduces to

u x t st sx ds t x s t x s ds( ) sin( )sin( ) {cos( ) cos( ) }

sin

, = = − − +

=

∫∫2 0

1

0

1

(( ) sin( )t x

t x

t x

t x

−
−

−
+
+

which nicely displays the travelling wave components.
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Absolute continuity, subspaces of, 144

Absolutely continuous, 145

with respect to, 144

Absolutely integrable, 69

Acoustic Dirichlet problems, 188, 211, 

216

Acoustic fi eld, 271, 272

Acoustic scattering, Wilcox theory of, 

263

Acoustic wave phenomena, 287

Acoustic wave scattering analysis, 

271–274

Acoustic wave scattering processes, 3, 

225

Acoustic waves, linear, 288

Adjoint operator, 98

AE (asymptotically equal), 5, 41, 147, 

246

scattering theory strategy relating to, 

169, 178, 179, 180, 182, 184

Algebraic properties of W± and S,

252–254

Algebra, vector, 268

Amplitude modulated wave, 21

Antinodes, 21

AP (autonomous problem), 9

Arbitrary waveforms, 1

Associated wave fi eld, 273

Asymptotically equal. See AE

Asymptotic complete, 181

Asymptotic completeness property, 13, 

158

Asymptotic conditions, 5, 158, 175–181

Asymptotic equality, 12

Asymptotic formulae, for plasma wave 

equation, 246, 247–249, 256

Asymptotic wave function, 222–224, 249, 

254

Attenuated harmonic wave, 21

Autonomous problem. See AP

Banach space, 57, 108

Bases, expansions, and orthogonality, 

83–91

Boundary conditions, 207, 214, 267, 278, 

288

free, 201

rigid, 201

Bounded, 94

Bounded linear operators, 98, 147, 287

Bounds

lower, 100

upper, 100

Bound states, 3, 145, 176

Cartesian coordinate, 209, 269

Cauchy sequence, 54

Cauchy’s functional equation, 147, 296

Characteristic coordinates, 19

Characteristic lines, 19

Chirality measure, 277

Chiral media, potential scattering in, 

277

Classical Fourier transform, 70
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Classical solutions, 67

global, 7

local, 7

p-Periodic, 7

Classical wave equations, 2–3, 33

Class of functions, 292

Closable, 108

Closed operators, 105

Closed sets, 56

Closure, 56, 108

Co-constriction semigroup, 147

Co-dimension, 90

Coeffi cients

expansion, 87

generalised Fourier, 87

refl ection, 36

transmission, 36

Co-group, 154

Compact Hilbert Schmidt operator, 104, 

255

Compact operators, 100, 101

Compact set, 59

Compact support, 59, 62

Complement, 51

orthogonal, 90

Complete metric space, 54

Completeness, 286, 288

Complex harmonic wave, 21

Complex-valued function, 126

Complex wave function, 197

Construction

of echo fi eld, 193–199

of scattering theory, 17, 287

of solutions of scattering theory, 

166–169

of WO, 169–175

Continuity

absolute, subspaces of, 144

limits and, 289–291

subspaces of, 130, 141, 143

Continuous, 55

absolutely, 145

with respect to, 144

Hölder, 292

in an interval, 290

left, 142

piecewise, 291

right, 142

singularly, 146

strongly, one-parameter semigroup, 

147

Continuous linear functional, 60

Continuous part, 141

Continuous spectrum, 116, 143

Converge, 53, 57

Convergences

in function spaces, 80

in the mean, 80

in norm, 97

uniform, 80

Convergent, 59, 61

strongly, 96, 97

uniformly, 97

weakly, 97

Convolution, 294

Corollary 4.10, 82

Co-unitary group, 154

Countable, 88

Countably infi nite, 88

Cross-section, differential, 197

d’Alembert equation/solution, 3, 223, 

294, 296

one-dimensional examples relating to, 

23, 26, 30

scattering in other wave systems 

relating to, 263, 273

Damped harmonic wave, 21

Decomposable operators, 250–251

Decomposed, 131

Decomposition, 101. See also Spectral 

decomposition

modal, 221, 222

Dense, 54

Densely defi ned, 92

Diagonalisable, 251

Difference, 51

Differentiability, 291

Differential cross-section, 197

Dimension, 82

Direct problems, 6

Direct product, 90

Direct scattering problem, 245, 246

Direct sum, 89, 93

Discontinuity

jump, 290

of subspaces, 143

Discontinuous part, 141



 Index 309

Discrete spectrum, 145

Discriminant, 233

Dispersion relations, 218

Distorted plane waves, 44, 171, 249

Distributional solutions, 67

Distribution function, 60

Distributions, 58–69, 286

Fourier transforms and, 69–76

regular, 61, 74

singular, 61, 67

of slow growth, 74

Disturbances

propagation as evolution of, 1

as waves, 1

Divergence-free fi eld, 270

Divergence operator, 212

Domain

of defi nition, 8, 55, 91, 92

of dependence, 23

of infl uence, 23

of M, 206

of operators, 287

Dual, 61, 95

Duhamel integral, 40, 191, 260

Duhamel Principle, 8, 18, 39–40, 202

Echo analysis

echo fi eld, construction of, 193–199

FP relating to, 189, 192, 194, 196

IBVP relating to, 189, 191

introduction to, 187

IVP relating to, 189, 190, 191

scattering aspects and, 191–192

SO relating to, 191, 192, 193, 195, 196, 

197, 199

typical mathematical model, 187–191

WO relating to, 191, 192, 195, 199

Echo fi eld, construction of, 193–199

Echo waveform, 3

Eigenfunction expansion theorem, 28, 

157

generalised, 207, 208, 213, 219–221, 

288

Eigenfunctions, 31, 167

of A, 213–216

free wave, 216, 217, 219

guided wave, 216, 219

improper, 216

Eigenspace, 118, 120

Eigenvalue, 31, 117–121, 240

Eigenvector, 117–120

Elastic fi eld, wave equations relating to, 

2

Elastic waves, 279–280

Elastic wave scattering, 280–283

Electric fi eld assumption, 279

Electromagnetic fi eld, wave equations 

relating to, 2

Electromagnetic waves, 263–271, 289

Electromagnetic wave scattering, 

274–277

Elementary particles, scattering of, 5

Energy

fi nite. See Finite energy

S-matrix of, 253

Energy space, weighted, 206

Equations, 195. See also d’Alembert 

equation/solution; Wave 

equations

Cauchy’s functional, 147, 296

general second order, 229

Helmholtz, 208, 288

Hill’s, 228, 229, 232–236

homogeneous, 237

homogeneous forms of, 241, 242

integral, solution of, 256–259, 288

Marchenko, 247

Maxwell’s, 264, 266, 277

Schrödinger, 45, 46, 47, 247

Volterra integral, 255

Equicontinuous, 292

Essentially self-adjoint operator, 111

Essential spectrum, 145

Euclidean space Rn, 49, 286

Evolution of disturbances, propagation 

as, 1

Evolution operators, 10, 11, 252

Expansion coeffi cients, 87

Expansions, bases, and orthogonality, 

83–91

Expansion theorem, Eigenfunction, 28, 

157

generalised, 207, 208, 213, 219–221, 

288

Extension, 93, 109

Far fi eld behavior of solutions, 41–43

Far fi eld, scattered waves in, 245
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Far fi eld solution, 249

Finite dimensional operators, 100

Finite dimensional spaces, spectral 

decompositions on, 122–127

Finite dimensional vector space, 82

Finite energy

free solution with, 189

locally, 189

scattering states and, solutions with, 

163–166

solution with, 189, 206, 288

Finite rank, operators of, 100

First order system, reduction of, 31–33

Floquet theory, 229–232, 237, 288

Formulae

asymptotic, for plasma wave equation, 

246, 247–249, 256

Kirchhoff’s, 296

Liouville’s, for Wronskian, 230, 231

Poisson’s, 296

Formulation

Hilbert space, 203–208

of scattering in other wave systems 

problem, 277–279

Fourier coeffi cients, generalised, 87

Fourier inversion theorem, 27, 181

Fourier kernel, 208

Fourier representation, 197

Fourier series, generalised, 87

Fourier sine transform, 298, 299, 300

Fourier transforms, 28–29, 30, 183, 198, 

214

classical, 70

distributions and, 69–76

generalised, 75, 172

inverse scattering problems relating 

to, 247, 254, 255, 256, 261

Plancherel theory of, 27, 30, 166, 167, 

168, 182, 203, 208

scattering in other wave systems 

relating to, 274, 276

FP (free problem), 9, 10, 11, 12

echo analysis relating to, 189, 192, 

194, 196

inverse scattering problems relating 

to, 246

one-dimensional examples relating to, 

17–19

PP relating to, 18, 19

scattering in other wave systems 

relating to, 270, 271, 280, 281

scattering theory strategy relating to, 

158, 164, 166–170, 173, 175, 

178–182

solutions for, 27

study of, 17–19, 33

Free boundary condition, 201

Free problem. See FP

Free solution, with fi nite energy, 189

Free wave eigenfunctions, 216, 217, 219

Frequency domain analysis, 5

Frequently occurring operators, 97–105

Functional, 91. See also Linear 

functionals

Functional equation, of Cauchy, 147, 296

Function classes, 291–292

Functions, 55. See also Eigenfunctions

class of, 292

complex-valued, 126

distribution, 60

generalised, 60

heaviside unit, 295

Lebesgue measurable, 213

of operators, spectral decomposition 

methods relating to, 138–140

of rapid decay, 72

of slow growth, 74

space of test, 60

wave, 4, 5

weight, 241

Function spaces, convergences in, 80

Function techniques, of Green, 18, 227, 

297

Fundamental solutions, 42, 294

Gases, liquids, solids, waves relating to, 

1

Generalised derivative, 63

Generalised eigenfunction expansion 

theorem, 207, 208, 213, 219–221, 

288

Generalised Fourier coeffi cients, 87

Generalised Fourier series, 87

Generalised Fourier transform

incoming, 75, 172

outgoing, 172

Generalised function, 60

Generalised solutions, 66, 67
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General second order equation, 229

Generation features, of scattering 

processes, 157

Generators

infi nitesimal, 148

of semigroups, 151–155

Global classical solution, 7

Graph, 92

Green’s function techniques, 18, 227, 297

Greens identities, 204

Guided wave eigenfunctions, 216, 219

Guided waves, 210

Harmonic waves, 20

attenuated, 21

complex, 21

damped, 21

Heaviside unit function, 295

Helmholtz equation, 208, 288

Hermitian, 99

High energy limit method, 255–256

Hilbert Schmidt kernel, 255

Hilbert Schmidt operator, 104, 255

Hilbert space formulation, 203–208

Hilbert spaces, 191. See also pre-Hilbert 

space; Sobolev Hilbert spaces

frequently occurring operators, 

97–105

introduction to, 77–83

linear functionals and operators on, 

91–97, 286

orthogonality, bases and expansions, 

83–91

scattering in other wave systems 

relating to, 263, 266, 267, 280

spectral decomposition methods 

relating to, 140–145

unbounded linear operators on, 105–

113, 287

weighted, 204, 226

Hill’s equation, 228, 229, 232–236

Hölder continuous, 292

Homogeneous equations, 237

Homogeneous forms of equation, 241, 

242

Homogeneous IVP, 202

Homogeneous media, 203, 205, 207, 213

Homogeneous strings, sectionally, 

waves on, 33

IBVP (initial boundary value problems), 

6, 7, 8, 145, 287

echo analysis relating to, 189, 191

scattering in other wave systems 

relating to, 272, 281, 283

scattering processes in stratifi ed 

media relating to, 203, 204, 205, 

209, 210, 214, 221

Idempotent, 102

Identities

Greens, 204

resolution of, 132

Image, 55

Improper eigenfunctions, 216

Incident wave, 17, 27, 42, 171, 288

Inclusion, 51

Incoming generalised Fourier transform, 

75, 172

Incoming or incident wave, 17, 27, 42, 

171, 288

Induced metric, 57

Infi nite, countably, 88

Infi nite dimensional, 82

Infi nite dimensional spaces, spectral 

decomposition methods on, 

132–137

Infi nitely differentiable element, 59

Infi nitesimal generator, 148

Infi nite string, waves on, 17, 27

Inhomogeneous vector wave equation, 

269, 274–275

Initial boundary value problems. See

IBVP

Initial value problems. See IVP

Injective, 55

Inner product, 77

space, 77

Integral, Duhamel, 40, 191, 260

Integral equation

solution of, 256–259, 288

Volterra, 255

Integral operator, 105

Integral transform methods, 27–31

Interaction, as feature of scattering 

processes, 157

Interaction zone, 17

Interface conditions, 214

Interior point, 56

Intersection, 51, 89
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Intertwining relations, 177, 252

Inverse mapping, 55

Inverse operator, 92, 117

Inverse scattering problems

algebraic properties of W± and S,

252–254

decomposable operators, 250–251

Fourier transforms relating to, 247, 

254, 255, 256, 261

FP relating to, 246

high energy limit method, 255–256

integral equation, solution of, 256–259, 

288

introduction to, 245–247

IVP relating to, 259

plasma wave equation, asymptotic 

formulae for, 246, 247–249, 256

PP relating to, 246

scattering matrix, 48, 249–250

Inverse transform, 70

Inversion theorem, 70

Isometry, 56

Isomorphic, 56

IVP (initial value problems), 8, 9, 10, 18, 

145, 146, 267, 287

Duhamel’s principle relating to, 8, 18, 

39–40

echo analysis relating to, 189, 190, 

191

fi rst order system relating to, 31–33

homogeneous, 202

integral transform methods relating 

to, 27–31

inverse scattering problems relating 

to, 259

scattering in other wave systems 

relating to, 280, 281, 282

scattering processes

in spatially periodic media relating 

to, 226

in stratifi ed media relating to, 205, 

208, 209

scattering theory strategy relating 

to, 158–161, 162, 166, 182, 

183

solutions for, 22–27

Jost solutions, 43–46

Jump discontinuity, 290

Kernel, 92, 105

Fourier, 208

Hilbert Schmidt, 255

Kirchhoff’s formula, 296

LAB (limiting absorption principle), 172, 

288

Lax-Phillips theory, 263, 285

Lebesgue measurable function, 213

Lebesgue theory, 81, 166

Left continuous, 142

Lemma

4.18, 84

Sobolev, 293

Limiting absorption principle. See LAB

Limit point, 56

Limits and continuity, 289–291

Linear acoustic waves, 288

Linear functionals

continuous, 60

and operators on Hilbert spaces, 

91–97, 286

Linearly dependent, 82

Linearly independent, 82, 231

Linearly independent solutions, 230

Linear manifold, 89

Linear operators, 92, 111

bounded, 98, 147, 287

unbounded, 105–113, 287

Linear operator theory, 13

Linear space, normed, 56–57

Liouville’s formula for Wronskian, 230, 

231

Liquids, solids, gases, waves relating to, 1

Local classical solution, 7

Localising operators, 166

Locally fi nite energy, 189

Lower bounds, 100

Magnetic fi eld assumption, 278

Mapping, 54, 91

inverse, 55

Marchenko equations, 247

Mathematical material

distributions, 58–69

Fourier transforms and distributions, 

69–76

notations, 51–52

vector spaces, 52–57
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Mathematical model

echo analysis relating to, 187–191

for scattering in spatially periodic 

media, 225–229

solutions of, 236–242

Matrix plane wave, 276

Matrix representation, 269

Maxwell’s equations, 264, 266, 277

Measurable function, Lebesgue, 

213

Measurable sets, 250

Measurable space, 250

Measure, 250

Chirality, 277

spectral, 141, 142

Measurement, scattering processes 

relating to, 157

Measure theory, 287

Media. See also Scattering; Scattering 

processes

Chiral, 277

homogeneous, 203, 205, 207, 213

nonhomogeneous, 202, 225

Medium, as component of system of 

interest, 1

Metric spaces, 52–53, 54

Modal decomposition, 221, 222

Møller operators, 5

Multi-index notation, 59

Multiplicity, 123

NAP (non-autonomous problem), 9

n-dimensional Dirac delta, 286

Negative Laplacian, 216

Neighborhood, 56

Nodes, 21

Non-autonomous problem. See NAP

Nonhomogeneous media, 202, 225

Non-negative, 100

Non-propagating waves, 21, 22

Non-trivial solutions, 240

Norm, 11

convergences in, 97

operator, 94

square integrable, 78, 80

uniform, 79

Normal, 99

Normed linear space, 56–57

Notations, 51–52

multi-index, 59

Null space, 92

One-dimensional examples

Duhamel’s principle, 39–40

fi rst order system, reduction to, 31–33

FP relating to, 17–19

integral transform methods, 27–31

introduction to, 17

scattering aspects, 46–48

solutions relating to

d’Alembert equation, 23, 26, 30

far fi eld behaviour of, 41–43

IVP, 22–27

Jost, 43–46

wave equations, 19–22

three-part strings, 37–39

two-part strings, 33–37

waves on sectionally homogenous 

strings, 33

One-dimensional wave equation, 

solutions of, 19–22

separable, 21

Open and closed sets, 56

Open ball, 56

Operator norm, 94

Operators, 49, 55, 129. See also SO; WO

adjoint, 98

bounded linear, 98, 147, 287

closed, 105

compact, 100, 101

compact Hilbert Schmidt, 104

decomposable, 250–251

divergence, 212

domain of, 287

essentially self-adjoint, 111

evolution, 10, 11

fi nite dimensional, 100

of fi nite rank, 100

frequently occurring, 97–105

functions of, spectral decomposition 

methods relating to, 138–140

Hilbert Schmidt, 104, 255

on Hilbert spaces, linear functionals 

and, 91–97, 286

integral, 105

inverse, 92, 117

linear, 13, 92, 111
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localising, 166

Møller, 5

projection, 102

self-adjoint, 99, 111, 154, 207, 213

skew-adjoint, 154

skew-symmetric, 154

symmetric, 111, 154

trivial, 92

unbounded linear, on Hilbert spaces, 

105–113, 287

unitary, 195

vector differential, 269

Order, 59

Orthogonal basis, 85

Orthogonal complement, 90

Orthogonality, 81

bases and expansions, 83–91

Orthogonal projections, 103

Orthogonal set, 84

Orthonormal, 83

Outgoing generalised Fourier transform, 

172

Outgoing (incoming) radiation 

condition, Sommerfeld, 171, 275

Outgoing wave, 17, 27, 42, 171, 288

Partially ordered, 103

Parts, 93

Periodic media. See Scattering; 

Scattering processes

Periodic waveforms, 1

Perturbed problem. See PP

Phase modulated wave, 21

Piecewise continuous, 291

Piecewise smooth, 70

Plancherel theory of Fourier transform, 

27, 30, 166, 167, 168, 182, 203, 208

Plane stratifi ed media, 209–213

Plane waves, distorted, 44, 171, 249

Plasma wave equation, asymptotic 

formulae for, 246, 247–249, 256

Point

interior, 56

limit, 56

Point spectrum, 116, 143

Point subspace, 120, 130, 141

Pointwise, 79

Poisson’s formula, 296

Positive, 100

Positive measure, 250

Potential scattering

in chiral media, 277

problems of, 7, 37

Potentials, retarded, 293–296

PP (perturbed problem), 9–12, 192, 283

FP relating to, 18, 19

hierarchy of, 33

inverse scattering problems relating 

to, 246

scattering theory strategy relating to, 

157, 167–170, 175, 176, 178–180, 

185

p-Periodic classical solution, 7

Practical scattering theory, 272

pre-Hilbert space, 89

Problems. See Specifi c entries

Projection operator, 102

Projections, orthogonal, 103

Propagating waves, 2, 5–6, 288, 289

Propagation, as evolution of 

disturbances, 1

Propagation aspect of scattering theory, 

158–163

Propagators, 190, 192

Properties

algebraic, of W± and S, 252–254

asymptotic completeness, 13, 158

of scalar wave equations, 2, 270

of semigroup, 147

Purely continuous spectrum, 143. See

also Continuous spectrum

Pure point spectrum, 117, 143

Quantum mechanical scattering, 285–

286, 287

Radiation conditions, 170, 171, 275, 288

Range, 55, 91, 92

Receiver, as component of system of 

interest, 1

Reduced quantities, 214

Reducing subspaces, 93, 287

spectral decomposition methods 

relating to, 127–132

Reduction

of fi rst order system, 31–33

of subspaces, 93, 127–132, 287

Refl ection coeffi cient, 36
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Regular distributions, 61, 74

Regular value, 116

Residual spectrum, 116

Resolution

of identity, 132

spectral, 72

Resolvent, 116, 228

Resonances, 39

Restriction, 93, 109

Retarded potentials, 293–296

Riesz representation theorem, 212

Right continuous, 142

Rigid boundary condition, 201

Scalars K, 52

Scalar wave equations, 2, 270

Scattered

fi eld, 248, 272

waves, 164, 245

in far fi eld, 245

Scattering

amplitude, 197, 248, 255

aspects of, 46–48

echo analysis and, 191–192

of elementary particles, 5

matrix, 48, 249–250

operator. See SO

in other wave systems

acoustic wave scattering analysis, 

271–274

chiral media, potential scattering in, 

277

d’Alembert equation/solution 

relating to, 263, 273

elastic waves, 279–280

elastic wave scattering, 280–283

electromagnetic waves, 263–271, 

289

electromagnetic wave scattering, 

274–277

formulation of problem, 277–279

Fourier transforms relating to, 274, 

276

FP relating to, 270, 271, 280, 281

Hilbert spaces relating to, 263, 266, 

267, 280

IBVP relating to, 272, 281, 283

introduction to, 263

IVP relating to, 280, 281, 282

phenomena of, 192

problems. See also Inverse scattering 

problems

direct, 245, 246

potential, 7, 37

target, 7, 33, 287

quantum mechanical, 285–286, 287

states, 145

fi nite energy and, solutions with, 

163–166

set of, 176

waves, 164. See also Wave scattering

Scattering, in spatially periodic media

Floquet theory, elements of, 229–232, 

237, 288

Hill’s equation, 228, 229, 232–236

introduction to, 225

mathematical model relating to, 

225–229

solutions of, 236–242

Scattering processes

features of

generation, 157

interaction, 157

measurement, 157

in spatially periodic media, IVP 

relating to, 226

in stratifi ed media

asymptotic wave functions, 

222–224, 249, 254

eigenfunctions of A, 213–216

generalised eigenfunction 

expansions, 207, 208, 213, 

219–221, 288

Hilbert space formulation, 

203–208

IBVP relating to, 203, 204, 205, 209, 

210, 214, 221

introduction to, 201

IVP relating to, 205, 208, 209

plane, 209–213

wave eigenfunctions of A, 216–219

Scattering theory, 4, 5, 11. See also

Wilcox theory of acoustic 

scattering

aspects of, 285

construction of, 17, 287

practical, 272

strategy of
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AE relating to, 169, 178, 179, 180, 

182, 184

asymptotic conditions, 5, 158, 

175–181

comparisons of two approaches, 

182–184

construction of solutions, 166–169

FP relating to, 158, 164, 166–170, 

173, 175, 178–182

introduction to, 157–158

IVP relating to, 158–161, 162, 166, 

182, 183

PP relating to, 157, 167–170, 175, 

176, 178–180, 185

propagation aspects, 158–163

solutions with fi nite energy and 

scattering states, 163–166

spectral families, 181–182

summary of, 184–185

WO and their construction, 

169–175

time-dependent, 5

Schrödinger equation, 45, 46, 47, 247

Sectionally homogeneous strings, waves 

on, 33

Self-adjoint operator, 99, 111, 154, 207, 

213

essentially, 111

Semigroup

Co-constriction, 147

methods of, 145–155, 286, 288

generators of semigroups, 151–155

well-posedness of problems, 

150–151

properties of, 147

strongly continuous, one-parameter, 

147

Semi-period, 236

Semi-periodic, 236

Separable solutions, 21

Sets

compact, 59

measurable, 250

open and closed, 56

orthogonal, 84

of scattering states, 176

Signal profi le, 248

Signal waveform, 3

Silver-Muller radiation conditions, 275

Singular, 144

with respect to, 144

Singular distributions, 61, 67

Singularly continuous, 146

Singular number, 101

Sinusoidal waveforms, 1

Skew-adjoint operator, 154

Skew-symmetric operator, 154

S-matrix of energy, 253

Smooth element, 59

Smooth, piecewise, 70

SO (scattering operators), 3, 4–5, 13, 246

echo analysis relating to, 191, 192, 

193, 195, 196, 197, 199

Sobolev Hilbert spaces, 210, 260

Sobolev lemma, 293

Sobolev spaces, 292–293

Solenoidal, 279

Solids, gases, liquids, waves relating to, 1

Solution concept, 7

Solutions

classical, 7, 67

distributional, 67

far fi eld, 249

far fi eld behavior of, 41–43

with fi nite energy, 189, 206, 288

and scattering states, 163–166

for FP, 27

free, with fi nite energy, 189

fundamental, 42, 294

generalised, 66, 67

of integral equation, 256–259, 288

for IVP, 22–27

Jost, 43–46

linearly independent, 230

non-trivial, 240

of one-dimensional wave equation, 

19–22

for scattering in spatially periodic 

media, 236–242

of scattering theory, construction of, 

166–169

separable, 21

for target scattering problems, 7

two, Wronskian of, 46

of wave equations, 19–22, 286, 288

d’Alembert, 3, 23, 26, 30, 223, 263, 

273, 294, 296

stationary, 3
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Sommerfeld outgoing (incoming) 

radiation condition, 171, 275

Space formulation, Hilbert, 203–208

Space of test functions, 60

Space Rn, Euclidean, 49, 286

Spaces. See also Eigenspace; Hilbert 

spaces; Subspaces

Banach, 57, 108

complete metric, 54

fi nite dimensional, spectral 

decompositions on, 122–127

function, convergences in, 80

infi nite dimensional, spectral 

decomposition methods on, 

132–137

inner product, 77

measurable, 250

metric, 52–53, 54

normed linear, 56–57

null, 92

pre-Hilbert, 89

Sobolev, 292–293

vector, 52–57, 82

weighted energy, 206

Spanned, 120

Spatially periodic media, scattering in. 

See Scattering

Spectral components, 121

Spectral decomposition, 287

methods of

basic concepts of, 115–121

on fi nite dimensional spaces, 122–127

of Hilbert spaces, 140–145

on infi nite dimensional spaces, 

132–137

operator, functions of, 138–140

reducing subspaces, 127–132

Spectral density, 72

Spectral families, 132, 181–182

Spectral measure, 141, 142

Spectral representation, 121

Spectral representation theorem, 27, 28

Spectral resolution, 72

Spectral theorem, 115, 299

Spectral value, 116

Spectrum

continuous, 116, 143

discrete, 145

essential, 145

point, 116, 143

purely continuous, 143

pure point, 117, 143

residual, 116

Square integrable norm, 78, 80

State

bound, 3, 145, 176

scattering, 145, 163–166, 176

of system, 2

as AE, 5

of system of interest, 2, 5

Stationary or non-propagating waves, 

21, 22

Stationary wave solution, 3

Stone’s theorem, 170, 267, 296–300

Stratifi ed media, scattering processes in. 

See Scattering processes

String

homogeneous, 33

infi nite, 17, 27

sectionally, 33

three-part, 37–39

two-part, 33–37

wave motion on, 286

String problems, 225

Strongly continuous, one-parameter 

semigroup, 147

Strongly convergent, 96, 97

Sturm-Liouville theory, 240

Subset, 51

Subspaces, 89

of absolute continuity, 144

of continuity, 130, 141, 143

of discontinuity, 143

point, 120, 130, 141

reduction of, 93, 127–132, 287

Sum, 89

Support, 59, 62

Surjective, 55

Symmetric operator, 111, 154

System of interest

components of

medium, 1

receiver, 1

transmitter, 1

perturbation of, 4

state of, 2, 5

Systems. See First order system, 

reduction of; Scattering
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Target scattering problems, 33, 287

global classical solution for, 7

local classical solution for, 7

p-periodic classical solution for, 7

Theorem

eigenfunction expansion, 28, 157

generalised, 207, 208, 213, 219–221, 

288

Fourier inversion, 27, 181

inversion, 70

Riesz representation, 212

spectral, 115, 299

spectral representation, 27, 28

Stone’s, 170, 267, 296–300

Theorem: IntermediateValue, 290

Theories. See also Scattering theory

Floquet, 229–232, 237, 288

Lax-Phillips, 263, 285

Lebesgue, 81, 166

linear operator, 13

measure, 287

Plancherel, 27, 30, 166, 167, 168, 182, 

203, 208

of quantum mechanical scattering, 285

Sturm-Liouville, 240

Wilcox, of acoustic scattering, 263

Three-dimensional Laplacian, 269

Three-part string, 37–39

Time-dependent scattering theory, 5

Total fi eld, 248

Transient pulse waveforms, 1

Transmission coeffi cients, 36

Transmitter, as component of system of 

interest, 1

Trapped waves, 210, 216

phenomenon of, 3, 225

Triangle inequality, 52

Trivial operator, 92

Two-part string, 33–37

Unbounded linear operators, on Hilbert 

spaces, 105–113, 287

Uniform convergence, 80

Uniformly convergent, 97

Uniform norm, 79

Union, 51

Unitarily equivalent, 99

Unitary operators, 195

Upper bounds, 100

Vector algebra, 268

Vector differential operator, 269

Vector spaces, 52–57

fi nite dimensional, 82

Vector wave equation, inhomogeneous, 

269, 274–275

Volterra integral equation, 255

W± and S, algebraic properties of, 

252–254

Water, waves relating to, 1

Wave eigenfunctions

of A, 216–219

free, 216, 217, 219

guided, 216, 219

Wave equations, 202. See also Equations

classical, 2–3, 33

elastic fi eld relating to, 2

electromagnetic fi eld relating to, 2

inhomogeneous vector, 269, 274–275

one-dimensional, solutions of, 19–22

plasma, asymptotic formulae for, 246, 

247–249, 256

scalar, properties of, 2, 270

solutions of, 19–22, 286, 288

d’Alembert, 3, 23, 26, 30, 223, 263, 

273, 294, 296

stationary, 3

Wave fi eld, associated, 273

Waveforms

arbitrary, 1

echo, 3

periodic, 1

signal, 3

sinusoidal, 1

transient pulse, 1

Wave motion, on strings, 286

Wave operators. See WO

Wave processes, in homogeneous 

media, analysis of, 207

Wave propagation, problems of, 5–6

Waves. See also Scattering

acoustic, linear, 288

amplitude modulated, 21

disturbances as, 1

elastic, 279–280

electromagnetic, 263–271, 289

features of, 21

function of, 4, 5
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asymptotic, 222–224, 249, 254

complex, 197

on gases, liquids, solids, 1

guided, 210

harmonic, 20, 21

incoming or incident, 17, 27, 42, 171, 

288

on infi nite string, 17, 27

matrix plane, 276

outgoing, 17, 27, 42, 171, 288

phase modulated, 21

phenomena of

acoustic, 287

investigation strategy of, 13

study of, 1

trapped, 3

plane, distorted, 44, 171, 249

propagating, 2, 5–6, 288, 289

scattered, 164, 245

on sectionally homogeneous strings, 

33

stationary or non-propagating, 21, 22

trapped, 210, 216

on water, 1

Wave scattering

analysis of, acoustic, 271–274

elastic, 280–283

electromagnetic, 274–277

phenomena of

incoming or incident wave, 17, 27, 

42, 171, 288

interaction zone, 17

outgoing wave, 17, 27, 42, 171, 

288

problems of, 4, 6, 285

processes of, acoustic, 3, 225

Wave solution, stationary, 3

Weakly convergent, 97

Weighted energy space, 206

Weighted Hilbert space, 204, 226

Weight function, 241

Well-posed problem, 146, 150

Wilcox approach, 6, 219, 285

Wilcox theory of acoustic scattering, 

263

WO (wave operators), 4–6, 12, 246

construction of, 169–175

echo analysis relating to, 191, 192, 

195, 199

Wronskian, 237, 238

Liouville’s formula for, 230, 231

of two solutions, 46


