Springer Series on Environmental Management

Bruce N. Anderson Robert W. Howarth Lawrence R. Walker Series Editors

Springer Series on Environmental Management

The Professional Practice of Environmental Management (1989) R.S. Dorney and L. Dorney (eds.)

Chemicals in the Aquatic Environment: Advanced Hazard Assessment (1989) L. Landner (ed.)

Inorganic Contaminants of Surface Water: Research and Monitoring Priorities (1991) J.W. Moore

Chernobyl: A Policy Response Study (1991) B. Segerståhl (ed.)

Long-Term Consequences of Disasters: The Reconstruction of Friuli, Italy, in its International Context, 1976-1988 (1991) R. Geipel

Food Web Management: A Case Study of Lake Mendota (1992) J.F. Kitchell (ed.)

Restoration and Recovery of an Industrial Region: Progress in Restoring the Smelter-Damaged Landscape near Sudbury, Canada (1995) J.M. Gunn (ed.)

Limnological and Engineering Analysis of a Polluted Urban Lake: Prelude to Environmental Management of Onondaga Lake, New York (1996) S.W. Effler (ed.)

Assessment and Management of Plant Invasions (1997) J.O. Luken and J.W. Thieret (eds.)

Marine Debris: Sources, Impacts, and Solutions (1997) J.M. Coe and D.B. Rogers (eds.)

Environmental Problem Solving: Psychosocial Barriers to Adaptive Change (1999) A. Miller Rural Planning from an Environmental Systems Perspective (1999) F.B. Golley and J. Bellot (eds.)

Wildlife Study Design (2001) M.L. Morrison, W.M. Block, M.D. Strickland, and W.L. Kendall

Selenium Assessment in Aquatic Ecosystems: A Guide for Hazard Evaluation and Water Quality Criteria (2002) A.D. Lemly

Quantifying Environmental Impact Assessments Using Fuzzy Logic (2005) R.B. Shepard **Richard B. Shepard**

Quantifying Environmental Impact Assessments Using Fuzzy Logic

With 42 Illustrations

Richard B. Shepard Applied Ecosystem Services, Inc. Troutdale, OR 97060 USA rshepard@appl-ecosys.com

Series Editors: Dr. Bruce N. Anderson Planreal Australasia Keilor, Victoria 3036 Australia bnanderson@compuserve.com

Dr. Robert W. Howarth Program in Biogeochemistry and Environmental Change Cornell University Corson Hall Ithaca, NY 14853 rwh2@cornell.edu Dr. Lawrence R. Walker Department of Biological Sciences University of Nevada Las Vegas Las Vegas, NV 89154 walker@unlv.nevada.edu

Cover illustration: Fig. 9.18, page 94. Intersection, conjunction, T-norm, minimum.

Library of Congress Cataloging-in-Publication Data
Quantifying environmental impact assessments using fuzzy logic / Richard B. Shepard.
p. cm. — (Springer series on environmental management)
Includes bibliographical references (p.) and index.
ISBN 0-387-24398-4
1. Environmental impact analysis. 2. Fuzzy logic. I. Shepard, Richard B. II. Series.
TD194.6.Q36 2005
333.71'4—dc22 2005040214

ISBN-10: 0-387-24398-4 Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (SBA)

9 8 7 6 5 4 3 2 1 SPIN 10979020

springeronline.com

Preface

Formal requirements for the assessment of environmental impacts of development activities may have begun in the United States with the passage of the National Environmental Policy Act (NEPA) in 1969, but they now are found in more than 200 countries worldwide. The details vary, but the underlying goals of minimizing environmental degradation and improving environmental conditions are the same. In many countries, these national requirements are supplemented by additional requirements by states, provinces, counties, cities and other political divisions that are collectively called sub-national statutes and regulations.

I am most familiar with the requirements at the national level in the United States as well as at the state and county levels in the western half of the country. However, books, other published reports, and communications with peers amply document that problems caused by the subjective nature of environmental impact assessments are international in scope. This subjectivity can be quantified and treated with mathematical rigor by the application of advanced computational intelligence techniques. This approach will work equally well regardless of geographic location or political jurisdiction because it is responsive to variations in societal values, legal frameworks, and regulatory agency practices. Trans-national organizations such as the European Union, World Bank, and United Nations Environmental Program also set project environmental standards that must be met in addition to the standards set by local governments. It is important to make this disclaimer emphatically: in no way is this book to be taken as criticism of environmental impact assessment (EIA) laws, regulations, practitioners, or theorists. Such criticism would be neither warranted nor justified. Identifying subjective aspects is not criticism. Such identification forms the basis for understanding this book and benefitting from its content.

This book has three objectives:

1. The first objective is to document how environmental impact assessments have been conducted and to explain when and why contention develops. The book stresses that environmental assessments (whether of impacts or of existing conditions) are subjective expressions of societal, group, and individual values and opinions. As such, they are not objective or measurable. Science, particularly ecology and environmental science, has difficulties dealing with feelings, beliefs, and values, which are "nonscientific" concepts.

The specifics of the EIA process vary with the controlling jurisdiction; there is no attempt to describe all the variations and subtle differences, because this is not a book to teach the theory and detailed practice of environmental impact assessments as implemented worldwide. However, specific points will be based on my experiences as well as what others have experienced and described in published literature.

The first objective establishes two important points: EIAs are subjective and existing assessment methods do not effectively handle subjectivity. We speak and write using terms that cannot be measured. Concepts such as *significant, distant, acceptable* and others are understood by everyone – but we each may have a different definition of these terms. Almost all environmental regulatory processes depend on such imprecise, vague, inherently uncertain terms. Commercial development may be prohibited on *steep* slopes, but how is *steep* defined? It is almost always an arbitrary, crisp value; for example, 20 percent. This does not mean that a slope of 19.5 percent is not *steep*, but it means that there is no sharp threshold that separates *steep* from *not steep*. Fortunately, fuzzy sets, fuzzy logic, and approximate reasoning (among other computational intelligence methods) handle subjectivity effectively by quantifying it and manipulating it with mathematical rigor.

2. The second objective is to justify the use of fuzzy sets, fuzzy logic and approximate reasoning to provide decision-makers with the ability to make well-informed decisions: ones that are technically sound and legally defensible. I do this by describing core issues of an environmental impact assessment in terms of fuzzy modeling and other computational intelligence techniques.

The concept of fuzzy sets was developed explicitly to address the inherent imprecision of everyday language which we all use to express ideas that cannot be measured. Fuzzy logic is the mathematics that permits rigorous operations on fuzzy sets to arrive at a outcome that is meaningful and can be explained. Approximate reasoning is the computer modeling of how humans make decisions (IF this THEN do that) when all the input data are subjective and not directly measurable. Other advanced techniques of artificial intelligence (AI) (including expert systems, decision support systems, and data mining using neural networks and evolutionary algorithms) also can be effectively and productively applied to addressing the underlying purposes of environmental impact assessments.

3. The third objective is to illustrate the use of computational intelligence techniques presented in objective 2 for environmental impact assessment. This example creates an approximate reasoning model applied to a project completed the traditional way under Washington state laws and regulations. While the example is based on a real industrial development proposal, the original environmental impact assessment was not developed with computational intelligence techniques. Therefore, the example has been adapted to demonstrate the application of these tools by adding missing information and deleting some components to make the example a reasonable size.

Symbol	Meaning
	set NOT (also complement or inversion)
\cap	set AND (also intersection operator)
U	set OR (also union operator)
Х	higher-dimensional fuzzy space
[x,x,x]	fuzzy membership value
\in	member of a set; within
poss(x)	the possibility of event x
prob(x)	the probability of event x
{x}	crisp, or Boolean, membership function
•	dyadic operator
$\xi(x)$	expected value of a fuzzy region
μ	fuzzy membership function
\propto	proportionality
$\mu(x)$	membership, or truth, function in fuzzy set
\Re	element from domain of fuzzy set
\otimes	Cartesian product or space
\oslash	empty, or null, set
\supset	implication
\wedge	logical AND
\vee	logical OR
Σ	summation

Mathematical symbols used in fuzzy logic (from [9]).

Acknowledgments

Among all the people whose efforts have brought me to the level of understanding and experience that allows me to write knowledgeably about environmental impact assessments and fuzzy system models a handful stand out of the crowd. Earl Cox introduced me to fuzzy sets and fuzzy logic with the first edition of his *The Fuzzy System Handbook* a decade ago. Since then his comments and suggestions have been helpful to my understanding of this subject and the subtleties of writing software that function to compute fuzzy system models with parallel rule-firing and the ability to solve otherwise intractable problems. Dr. William Siler created a parallel-firing fuzzy inference engine that is at the core of the solutions presented here. Three other friends and professional colleagues deserve public thanks for the highly productive conversations we have had over the years on environmental issues and running natural resource industries. These friends, Jonathan Brown, Paul Scheidig, and Ivan Urnovitz, manfully read drafts of the book and let me know at what sections their eyes started to glaze over. Paul Scheidig bravely read the first two parts and gave me his usual invaluable feedback. The suggestions from all the above for elucidation and clarity make this book a much better work. My fiancee, Pamela Sue Alexander, cheerfully accepted my long hours at the computer with patience and understanding; this made the process both easier and more pleasant. My editor at Springer, Janet Slobodien, has been a great guide into the world of book publishing, a world much different from that of peer-reviewed scientific or trade journal publishing. Despite the best efforts of all these outstanding people, any errors or mistakes that remain are mine alone.

Richard B. Shepard February 2005 Troutdale, Oregon

Contents

Pre	face						•••			 	 •	 	•			•	v
List	of F	igures					•••		•••	 		 	•				xvii
List	of T	ables .					•••		•••	 		 	•				xxi
1			on														
	1.1	Makir	ng Decisi	ons.					•••	 	 	 		• •	• •	• •	4
		1.1.1	Decisio	n Sup	por	t Sy	ste	ms		 	 	 					4
			Decision 1.1.1.1 1.1.2	MuÌ	ti-O	bjec	tiv	е.		 	 	 					5
			1.1.1.2	Mul	ti-C	ritei	ria			 	 	 					5
			Expert S														
			Decision														

Part I The Traditional Approach

2	Ger	neral Principles	11
	2.1	Definition of EIA	11
	2.2	Objectives of EIA	12
		EIÁ Principles	
		2.3.1 Basic Principles	
		2.3.2 Operating Principles	
	2.4	Other Guidelines	
	2.5	Problem Areas	16

	2.6	EIA Process Overview	18
3	Sco	ping	23
4		eline Conditions	27 28
	4.1	What To Include	20 29
	4.2	Collecting Data	
		4.2.1 Literature Reports	30
	4.0	4.2.2 Field Studies	30
	4.3	Baseline Condition Use	31
	4.4	Missing or Insufficient Data	32
5	Alte	ernatives	35
6	Imp	pact Assessment	39
	6.1	Impact Identification	40
	6.2	Impact Prediction	43
	6.3	Impact Evaluation	45
		6.3.1 Individual Impacts	46
		6.3.2 Alternatives Evaluation	47
		6.3.3 Cumulative Effects Assessment	49
7	Wri	ting the Impact Statement	53

Part II The Modern Approach

8	Mo	ving to	the New Paradigm	57
	8.1	Tools	for the New Paradigm	57
	8.2		ess Toward Adoption	
		8.2.1	Mercury Bioaccumulation Risks	58
			Checklist Enhancement	
		8.2.3	Fuzzy Logic GIS	60
			Fuzzy Decision Analysis	
		8.2.5	Fuzzy EIA	
9	Intr	oductio	on to Fuzzy Sets and Logic	63
			urement and Language	
			Subjectivity to Objectivity	
	9.3		istic Variables	

	9.4	Ranking of Preferences	66
	9.5	Fuzzy Sets (Type-1)	68
		9.5.1 Crisp Sets	
		9.5.2 Fuzzy Sets	
		9.5.3 Fuzzy Numbers	
		9.5.4 Membership Function Shape	77
		9.5.5 Alpha Cuts	
		9.5.6 Fuzzy Hedges	83
	9.6	Fuzzy Sets (Type-2)	
	9.7	Fuzzy Set Operators	
	9.8	IF-THEN Rules	
	9.9	Defuzzification	98
	9.10	Fuzzy Implication	99
		9.10.1 Min-Max Implication Rules	
		9.10.2 Additive Implication Rules	
		9.10.3 Weighted Geometric Mean	
		9.10.4 Symmetric Summation	
		9.10.5 Ordered Weighted Aggregators	
	9.11	Compatibility Index	
		9.11.1 Unit Compatibility Index	109
		9.11.2 Statistical Compatibility Index	112
		9.11.3 Compatibility Height Selection	112
10		ironmental Conditions	
		Inadequate Data	
	10.2	Fuzzy Set Design	117
	10.3	Characterization	121
	_		
11		act Inference and Assessment	
		Societal Values and Beliefs	
	11.2	Fuzzy Expert System Models	133
		11.2.1 Designing the Model	
		11.2.1.1 Universe of Discourse	
		11.2.1.2 Name Convention	
		11.2.1.3 Hedge	136
		11.2.1.4 Membership Function Shape, Overlap,	
		and Location	
		11.2.1.5 Defuzzification and Output Processing	
		11.2.2 Rule Creation	137

	11.2.2.1	Sources
	11.2.2.2	Rule Organization
		Logic Operators 143
		Implication Operators
	11.2.2.5	Aggregation Operator
	11.2.2.6	Defuzzification Method 147
		Importance Weights 148
	11.3 Significance, A	cceptability, Sustainability
		ance
		Likelihood of Occurrence 151
		Direction and Magnitude 153
	11.3.1.3	Areal Extent
	11.3.1.4	Duration
		Reversibility 156
		Mitigation Degree 157
		Occurrence Timing 158
		Geographic Scale 158
		bility 159
	11.3.3 Sustaina	ability
12	Multi-Objective, M	ulti-Criteria Decision-Making 167

Part III Application

13	Introduction	
	13.2 Description of the Project	
	13.3 Purpose	
	13.4 Need	184
14	Scoping	187
	14.1 Determining Components	188
	14.2 Public Participation Process	190
	14.3 Conflicting Values	191

15	Baseline Environment	. 195
	15.1 Vegetation and Wildlife	. 195
	15.1.1 Vegetation Cover Types	. 196
	15.1.2 Sensitive, Threatened, and Endangered Plant	
	Species	. 199
	15.1.3 Wildlife	. 199
	15.1.4 Threatened and Endangered Wildlife Species	. 202
	15.2 Wetlands, Hydrology, and Water Quality	. 204
	15.2.1 Wetlands	
	15.2.2 Hydrology	. 204
	15.2.3 Water Quality	. 206
	15.3 Aesthetics	. 208
	15.4 Transportation	. 209
	15.4.1 Introduction	
	15.4.2 Existing Traffic Volumes and Operations	. 210
	15.4.3 Nonautomobile Transportation Facilities	. 211
	15.4.3.1 Public Bus Transportation	. 211
	15.4.3.2 Airports	. 212
	15.4.3.3 Bicycle Facilities	
	15.4.3.4 Pedestrian Facilities	. 212
	15.5 Fuzzifying Initial Conditions	. 213
	15.6 Environmental Condition Index	. 216
16	Project Alternatives	219
10	16.1 The Affected Environment	
	16.1.1 Vegetation and Wildlife	
	16.1.1.1 Alternative 1	
	16.1.1.2 Alternative 2	
	16.1.1.3 Alternatives 3 and 4	
	16.1.1.4 Alternative 5	
	16.1.2 Threatened and Endangered Species	
	16.1.2.1 Bald Eagle	
	16.1.2.2 Sandhill Crane	
	16.1.3 Wetlands, Hydrology, and Water Quality	
	16.1.3.1 Wetlands	. 225
	16.1.3.2 Hydrology	
	16.1.3.3 Water Quality	. 230
	16.1.4 Aesthetics	
	16.1.4.1 Alternative 1	

			16.1.4.2	Alternative 2	. 234
			16.1.4.3	Alternative 3	. 234
			16.1.4.4	Alternative 4	. 235
			16.1.4.5	Alternative 5	. 235
		16.1.5	Transpo	ortation	. 236
				Alternative 1	
			16.1.5.2	Alternative 2	. 237
			16.1.5.3	Alternative 3	. 237
			16.1.5.4	Alternative 4	. 238
			16.1.5.5	Alternative 5	. 239
		16.1.6	Cumula	ative Effects	. 239
		_			
17				isions	
				1odel	
	17.2	Enviro	onmental	l Condition Indices	. 249
	17.3	Makin	ig and Su	upporting Policy Decisions	. 251
	17.4	Cavea	ts		. 251
	17.5	What	the Futur	re Holds	. 253
Ref	erenc	es			255
Ind	ex				259

List of Figures

6.1	An example of a Leopold matrix. Each cell is scored for impact magnitude and importance.	41
6.2	An example of an impact network used on a dredging project	43
9.1	The crisp set of steep slopes. The threshold is at 20 percent. All grades greater than 20 percent are members of the set; all grades less than 20 percent are not members. Exactly 20 percent is an ambiguous	
	discontinuity.	70
9.2	A generic fuzzy set showing all the parts discussed in	
	the text.	71
9.3	The fuzzy set of steep slopes. Each measured grade > 2	
	percent is a member of this set to some degree	73
9.4	The fuzzy set, <i>significant</i> , demonstrating that the grade	
	of membership varies until there is consensus that all	
	higher values are completely within the set	74
9.5	A fuzzy term set for slope steepness.	75
9.6	An example of a singleton fuzzy set for the number 2.25.	76
9.7	One way of expressing the concept of "about 20." The	
	shape and width of the membership function will vary	
	with the meaning in different situations.	77
9.8	A triangular fuzzy term set.	79
9.9	A trapezoidal fuzzy term set	80
9.10	A bell (sigmoid, S)-shape fuzzy term set	81
0		

	Alpha-cut threshold for fuzzy set <i>Significant</i> Fuzzy hedges modifying the fuzzy set of <i>Normal</i> traffic	82
9.13	 volume (a) Graphical representation of a Type-2 fuzzy set for <i>Significance</i>. The domain of the grade of membership 	83
	associated with $x = 4$ is shown by the vertical line. (b) The Gaussian secondary membership function at $x = 4$	88
9.14	A triangular fuzzy set for the concept of <i>Acceptable</i> . The	00
	base points of the member function (marked l and r)	89
9.15	51 5	
	mean.	91
9.16	Gaussian primary membership function with uncertain	
	standard deviation. The FOU disappears to certainty	
	when $\mu_{\Upsilon}(x) = 1.0.$	92
		93
	Fuzzy AND.	94
9.19	The union of two sets, <i>A</i> and <i>B</i> , and the T-conorm, or	
		94
9.20	Antecedent conditions combined with AND using the	
	, , , , , , , , , , , , , , , , , , ,	97
		98
9.22	Applying the rules using the min-max inference method. 1	.03
	Regions of decreased compatibility in a solution fuzzy set.1	.09
9.24	Defuzzified output of erosion risk significance when	
		10
9.25	Defuzzified output of erosion risk significance when	
	μ [0.72]1	11
10.1	Acceptable values of dissolved oxygen for salmonids,	•••
40.0	expressed as a fuzzy set	23
10.2	The Type-2 fuzzy set for <i>a moderate amount</i> . This is	
	the middle set of five in the term set for the linguistic	•
	variable, <i>Aesthetics</i> 1	28
11.1	The major components of an approximate reasoning	
	expert system model and the flow of processing	
	through the components	.34

11.2	Voting frequency by wildlife biologists on whether
	specified population sizes are significant 140
11.3	Correlation product of erosion risk
11.4	The overall structure of the significance policy 152
11.5	Fuzzy sets for determining impact significance: a)
	likelihood of occurrence; b) direction and magnitude; c)
	aerial extent; d) duration
11.6	Fuzzy sets for determining impact significance: a)
	reversibility; b) mitigation; c) occurrence period; d)
	geographic scale 154
11.7	All labels with interval and uncertainty. From [20, page
	74]
11.8	The final set of labels for Acceptability. Each will be
	represented as a Type-2 fuzzy term 162
11.9	Converting the label <i>A moderate amount</i> into the Type-2
	fuzzy set <i>Moderate_amount</i> . Also shown are the degrees
	of membership for two specific values 163
10.1	
12.1	Example of an AHP for seaport development. Four
	objectives and three criteria (constraints) are shown as
	levels in the decision-making hierarchy 168
13.1	Location of the Columbia Gateway area of the Port of
	Vancouver. The Columbia River is the border between
	the states of Oregon and Washington. This is a portion
	of one map included in the written EIS. (From [2]) 183
15.1	The amount of vegetation of value to wildlife under
	existing conditions 213
15.2	The fuzzy term sets Unacceptable and Acceptable in the
	linguistic variable "Water_quality."
15.3	The fuzzy sets for <i>Good</i> and <i>Not_Good</i> used to quantify
	environmental conditions at the Columbia Gateway site 218
161	The four neurole (numbered 2.5) that compare the
10.1	The four parcels (numbered 2–5) that compose the
	Columbia Gateway area at the Port of Vancouver
	(USA). Parcel 1 is the developed area, part of which is
	seen at the bottom center of the map. (From [2]) 220

List of Tables

Linguistic hedges and their meaning when applied to fuzzy sets. Adapted from [9, page 218]
Boolean truth tables for <i>AND</i> , <i>OR</i> , and <i>NOT</i>
Word variable labels and parameters for Type-2 fuzzy sets
Importance values to be used in pairwise comparisons of environmental components
Planners preferences on dam evaluation criteria (objectives)
The weights of the function evaluation criteria
The relative importances of each dam function on
cultural alterations
The relative effects of each dam function on potential
cultural alteration of the local population
The relative importances of each dam function on the
economy
The relative effects of each dam function on the economy.172
The relative environmental impacts of each dam
function
The relative environmental impacts of each dam
function

12.9	The relative transportation distance importance of each dam function
12.10	The relative importances of transportation distance on each dam function
12.11	Relative criteria scores for each dam function
14.1	Results of pairwise comparisons of some components considered in the Columbia Gateway environmental
14.2	impact assessment
15.1	Areal extent (in acres) of each vegetation cover type
	identified on the Columbia 196
15.2	Wetland types and areal extent prior to development, in acres
15.3	Functions and values (0 = lowest, 10 = highest) for wetlands on each of the four parcels at Columbia
15.4	Gateway
15.5	each vehicle
15.6	hour surveys in 2000; delay time in seconds)
16.1	Direct wetland impacts for each alternative (in acres) (The natural processes that would change wetlands
16.2	were not estimated in the written EIS)
	detention ponds 231

16.3	Estimated annual discharge of pollutants post-	
	development (in pounds).	232
16.4	Level of service (LOS) and volume:capacity (v/c)	
	ratios or intersections in the Columbia Gateway	
	vicinity as projected for peak afternoon hour in 2020.	
	Delay time in seconds.	238
16.5	Potential trip generation for each alternative	239
17.1	Environmental Condition Indices (ECI) for the existing conditions and proposed alternatives at the Columbia	05 0
	Gateway site, Port of Vancouver, USA.	250