
Universitext
Editorial Board

(North America):

S. Axler
K.A. Ribet



Universitext

Editors (North America): S. Axler and K.A. Ribet

Aguilar/Gitler/Prieto: Algebraic Topology from a Homotopical Viewpoint
Aksoy/Khamsi: Nonstandard Methods in Fixed Point Theory
Andersson: Topics in Complex Analysis
Aupetit: A Primer on Spectral Theory
Bachman/Narici/Beckenstein: Fourier and Wavelet Analysis
Badescu: Algebraic Surfaces
Balakrishnan/Ranganathan: A Textbook of Graph Theory
Balser: Formal Power Series and Linear Systems of Meromorphic Ordinary
Differential Equations
Bapat: Linear Algebra and Linear Models (2nd ed.)
Berberian: Fundamentals of Real Analysis
Blyth: Lattices and Ordered Algebraic Structures
Boltyanskii/Efremovich: Intuitive Combinatorial Topology. (Shenitzer, trans.)
Booss/Bleecker: Topology and Analysis
Borkar: Probability Theory: An Advanced Course
Böttcher/Silbermann: Introduction to Large Truncated Toeplitz Matrices
Carleson/Gamelin: Complex Dynamics
Cecil: Lie Sphere Geometry: With Applications to Submanifolds
Chae: Lebesgue Integration (2nd ed.)
Charlap: Bieberbach Groups and Flat Manifolds
Chern: Complex Manifolds Without Potential Theory
Cohn: A Classical Invitation to Algebraic Numbers and Class Fields
Curtis: Abstract Linear Algebra
Curtis: Matrix Groups
Debarre: Higher-Dimensional Algebraic Geometry
Deitmar: A First Course in Harmonic Analysis (2nd ed.)
DiBenedetto: Degenerate Parabolic Equations
Dimca: Singularities and Topology of Hypersurfaces
Edwards: A Formal Background to Mathematics I a/b
Edwards: A Formal Background to Mathematics II a/b
Farenick: Algebras of Linear Transformations
Foulds: Graph Theory Applications
Friedman: Algebraic Surfaces and Holomorphic Vector Bundles
Fuhrmann: A Polynomial Approach to Linear Algebra
Gardiner: A First Course in Group Theory
Gårding/Tambour: Algebra for Computer Science
Goldblatt: Orthogonality and Spacetime Geometry
Gustafson/Rao: Numerical Range: The Field of Values of Linear Operators and
Matrices
Hahn: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups
Heinonen: Lectures on Analysis on Metric Spaces
Holmgren: A First Course in Discrete Dynamical Systems
Howe/Tan: Non-Abelian Harmonic Analysis: Applications of SL (2, R)
Howes: Modern Analysis and Topology
Hsieh/Sibuya: Basic Theory of Ordinary Differential Equations
Humi/Miller: Second Course in Ordinary Differential Equations
Hurwitz/Kritikos: Lectures on Number Theory
Jennings: Modern Geometry with Applications

(continued after index)



Wolfgang Rautenberg

A Concise Introduction 
to Mathematical Logic 



Wolfgang Rautenberg
FB Mathematik und Informatik Inst.
Mathematik II
Freie Universität Berlin
14195 Berlin
Germany
raut@math.fu-berlin.de

Editorial Board
(North America):

S. Axler K. A. Ribet
Mathematics Department Mathematics Department
San Francisco State University University of California at Berkeley
San Francisco, CA 94132 Berkeley, CA 94720-3840
USA USA
axler@sfsu.edu ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 03-XX 68N17

Library of Congress Control Number: 2005937016

ISBN-10: 0-387-30294-8
ISBN-13: 978-0387-30294-2

Printed on acid-free paper.

©2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York,
NY 10013, USA), except for brief excepts in connection with reviews or scholarly analysis. Use in con-
nection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in the United States of America. (SBA)

9 8 7 6 5 4 3 2

springer.com



Wolfgang Rautenberg

A Concise Introduction

to
Mathematical Logic

Textbook

Typeset and layout: The author
Version from December 2005



Foreword
by Lev Beklemishev, Utrecht

The field of mathematical logic—evolving around the notions of logical validity,
provability, and computation—was created in the first half of the previous century
by a cohort of brilliant mathematicians and philosophers such as Frege, Hilbert,
Gödel, Turing, Tarski, Malcev, Gentzen, and some others. The development of this
discipline is arguably among the highest achievements of science in the twentieth
century: it expanded mathematics into a novel area of applications, subjected logical
reasoning and computability to rigorous analysis, and eventually led to the creation
of computers.

The textbook by Professor Wolfgang Rautenberg is a well-written introduction to
this beautiful and coherent subject. It contains classical material such as logical
calculi, beginnings of model theory, and Gödel’s incompleteness theorems, as well
as some topics motivated by applications, such as a chapter on logic programming.
The author has taken great care to make the exposition readable and concise; each
section is accompanied by a good selection of exercises.

A special word of praise is due for the author’s presentation of Gödel’s second
incompleteness theorem in which the author has succeeded in giving an accurate
and simple proof of the derivability conditions and the provable Σ1-completeness, a
technically difficult point that is usually omitted in textbooks of comparable level.
This textbook can be recommended to all students who want to learn the foundations
of mathematical logic.
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Preface
This book is based on the second edition of my Einführung in die Mathematische
Logik whose favorable reception facilitated the preparation of this English version.
The book is aimed at students of mathematics, computer science, or linguistics. Be-
cause of the epistemological applications of Gödel’s incompleteness theorems, this
book may also be of interest to students of philosophy with an adequate mathemati-
cal background. Although the book is primarily designed to accompany lectures on a
graduate level, most of the first three chapters are also readable by undergraduates.
These first hundred pages cover sufficient material for an undergraduate course on
mathematical logic, combined with a due portion of set theory. Some of the sections
of Chapter 3 are partly descriptive, providing a perspective on decision problems,
automated theorem proving, nonstandard models, and related topics.

Using this book for independent and individual study depends less on the reader’s
mathematical background than on his (or her) ambition to master the technical
details. Suitable examples accompany the theorems and new notions throughout.
To support a private study, the indexes have been prepared carefully. We always
try to portray simple things simply and concisely and to avoid excessive notation,
which could divert the reader’s mind from the essentials. Linebreaks in formulas
have been avoided. A special section at the end provides solution hints to most
exercises, and complete solutions of exercises that are relevant for the text.

Starting from Chapter 4, the demands on the reader begin to grow. The challenge
can best be met by attempting to solve the exercises without recourse to the hints.
The density of information in the text is pretty high; a newcomer may need one hour
for one page. Make sure to have paper and pencil at hand when reading the text.
Apart from a sufficient training in logical (or mathematical) deduction, additional
prerequisites are assumed only for parts of Chapter 5, namely some knowledge of
classical algebra, and at the very end of the last chapter some acquaintance with
models of axiomatic set theory.

On top of the material for a one-semester lecture course on mathematical logic,
basic material for a course in logic for computer scientists is included in Chapter 4
on logic programming. An effort has been made to capture some of the interesting
aspects of this discipline’s logical foundations. The resolution theorem is proved
constructively. Since all recursive functions are computable in PROLOG, it is not
hard to get the undecidability of the existence problem for successful resolutions.

Chapter 5 concerns applications of mathematical logic in various methods of model
construction and contains enough material for an introductory course on model
theory. It presents in particular a proof of quantifier eliminability in the theory of
real closed fields, a basic result with a broad range of applications.
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VIII Preface

A special aspect of the book is the thorough treatment of Gödel’s incompleteness
theorems. Since these require a closer look at recursive predicates, Chapter 6 starts
with basic recursion theory. One also needs it for solving questions about decidability
and undecidability. Defining formulas for arithmetical predicates are classified early,
in order to elucidate the close relationship between logic and recursion theory. Along
these lines, in 6.4 we obtain in one sweep Gödel’s first incompleteness theorem,
the undecidability of the tautology problem by Church, and Tarski’s result on the
nondefinability of truth. Decidability and undecidability are dealt with in 6.5, and
6.6 includes a sketch of the solution to Hilbert’s tenth problem.

Chapter 7 is devoted exclusively to Gödel’s second incompleteness theorem and
some of its generalizations. Of particular interest thereby is the fact that questions
about self-referential arithmetical statements are algorithmically decidable due to
Solovay’s completeness theorem. Here and elsewhere, Peano arithmetic PA plays a
key role, a basic theory for the foundations of mathematics and computer science,
introduced already in 3.3. The chapter includes some of the latest results in the
area of self-reference not yet covered by other textbooks.

Remarks in small print refer occasionally to notions that are undefined or will be
introduced later, or direct the reader toward the bibliography, which represents an
incomplete selection only. It lists most English textbooks on mathematical logic
and, in addition, some original papers, mainly for historical reasons. This book
contains only material that will remain the subject of lectures in the future. The
material is treated in a rather streamlined fashion, which has allowed us to cover
many different topics. Nonetheless, the book provides only a selection of results and
can at most accentuate certain topics. This concerns above all the Chapters 4, 5,
6, and 7, which go a step beyond the elementary. Philosophical and foundational
problems of mathematics are not systematically discussed within the constraints of
this book, but are to some extent considered when appropriate.

The seven chapters of the book consist of numbered sections. A reference like
Theorem 5.4 is to mean Theorem 4 in Section 5 of a given chapter. In cross-
referencing from another chapter, the chapter number will be adjoined. For instance,
Theorem 6.5.4 is Theorem 5.4 in Chapter 6. You may find additional information
about the book or contact me on my website www.math.fu-berlin.de/∼raut .

I would like to thank the colleagues who offered me helpful criticism along the way;
their names are too numerous to list here. Particularly useful for Chapter 7 were
hints from Lev Beklemishev (Moscow) and Wilfried Buchholz (Munich). Thanks
also to the publisher, in particular Martin Peters, Mark Spencer, and David Kramer.

Wolfgang Rautenberg
December 2005
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Introduction
Traditional logic as a part of philosophy is one of the oldest scientific disciplines. It
can be traced back to the Stoics and to Aristotle.1 It is one of the roots of what
is nowadays called philosophical logic. Mathematical logic, however, is a relatively
young discipline, having arisen from the endeavors of Peano, Frege and Russell to
reduce mathematics entirely to logic. It steadily developed during the twentieth
century into a broad discipline with several subareas and numerous applications in
mathematics, computer science, linguistics, and philosophy.

One of the features of modern logic is a clear distinction between object language
and metalanguage. The latter is normally a kind of a colloquial language, although
it differs from author to author and depends also on the audience the author has in
mind. In any case, it is mixed up with semiformal elements, most of which have their
origin in set theory. The amount of set theory involved depends on one’s objectives.
General semantics and model theory use stronger set-theoretical tools than does
proof theory. But on average, little more is assumed than knowledge of the most
common set-theoretical terminology, presented in almost every mathematical course
for beginners. Much of it is used only as a façon de parler.

Since this book concerns mathematical logic, its language is similar to the language
common to all mathematical disciplines. There is one essential difference though. In
mathematics, metalanguage and object language strongly interact with each other
and the latter is semiformalized in the best of cases. This method has proved
successful. Separating object language and metalanguage is relevant only in special
context, for example in axiomatic set theory, where formalization is needed to specify
how certain axioms look like. Strictly formal languages are met more often in
computer science. In analysing complex software or a programming language, like
in logic, formal linguistic entities are the objects of consideration.

The way of arguing about formal languages and theories is traditionally called the
metatheory. An important task of a metatheoretical analysis is to specify procedures
of logical inference by so-called logical calculi, which operate purely syntactical.
There are many different logical calculi. The choice may depend on the formalized
language, on the logical basis, and on certain aims of the formalization. Basic
metatheoretical tools are in any case the naive natural numbers and inductive proof
procedures. We will sometimes call them proofs by metainduction, in particular
when talking about formalized theories that may speak about natural numbers and
induction themselves. Induction can likewise be carried out on certain sets of strings
over a fixed alphabet, or on the system of rules of a logical calculus.
1 The Aristotelian syllogisms are useful examples for inferences in a first-order language with unary
predicate symbols. One of these serves as an example in Section 4.4 on logic programming.

XIII



XIV Introduction

The logical means of the metatheory are sometimes allowed or even explicitly
required to be different from those of the object language. But in this book the logic
of object languages, as well as that of the metalanguage, are classical, two-valued
logic. There are good reasons to argue that classical logic is the logic of common
sense. Mathematicians, computer scientists, linguists, philosophers, physicists, and
others are using it as a common platform for communication.

It should be noticed that logic used in the sciences differs essentially from logic used
in everyday language, where logic is more an art than a serious task of saying what
follows from what. In everyday life, nearly every utterance depends on the context.
In most cases logical relations are only alluded to and rarely explicitly expressed.
Some basic assumptions of two-valued logic mostly fail, for instance, a context-
free use of the logical connectives. Problems of this type are not dealt with in this
book. To some extent, many-valued logic or Kripke semantics can help to clarify the
situation, and sometimes intrinsic mathematical methods must be used in order to
analyze and solve such problems. We shall use Kripke semantics here for a different
goal though, the analysis of self-referential sentences in Chapter 7.

Let us add some historical remarks, which, of course, a newcomer may find easier to
understand after and not before reading at least parts of this book. In the relatively
short period of development of modern mathematical logic in the last century, some
highlights may be distinguished, of which we mention just a few.

The first was the axiomatization of set theory in various ways. The most impor-
tant approaches are the ones of Zermelo (improved by Fraenkel and von Neumann)
and the theory of types by Whitehead and Russell. The latter was to become the
sole remnant of Frege’s attempt to reduce mathematics to logic. Instead it turned
out that mathematics can be based entirely on set theory as a first-order theory. Ac-
tually, this became more salient after the rest of the hidden assumptions by Russell
and others were removed from axiomatic set theory2 around 1915; see [Hej].

Right after these axiomatizations were completed, Skolem discovered that there
are countable models of the set-theoretic axioms, a drawback for the hope for an
axiomatic definition of a set. Just then, two distinguished mathematicians, Hilbert
and Brouwer, entered the scene and started their famous quarrel on the foundations
of mathematics. It is described in an excellent manner in [Kl2, Chapter IV] and
need therefore not be repeated here.

As a next highlight, Gödel proved the completeness of Hilbert’s rules for predicate
logic, presented in the first modern textbook on mathematical logic, [HA]. Thus, to
some extent, a dream of Leibniz became real, namely to create an ars inveniendi for
mathematical truth. Meanwhile, Hilbert had developed his view on a foundation of

2 For instance, the notion of an ordered pair is indeed a set-theoretical and not a logical one.



Introduction XV

mathematics into a program. It aimed at proving the consistency of arithmetic and
perhaps the whole of mathematics including its nonfinitistic set-theoretic methods
by finitary means. But Gödel showed by his incompleteness theorems in 1931 that
Hilbert’s original program fails or at least needs thorough revision.

Many logicians consider these theorems to be the top highlights of mathematical
logic in the twentieth century. A consequence of these theorems is the existence of
consistent extensions of Peano arithmetic in which true and false sentences live in
peaceful coexistence with each other, called “dream theories” in Section 7.2. It is an
intellectual adventure of holistic beauty to see wisdoms from number theory known
for ages, like the Chinese remainder theorem, or simple properties of prime num-
bers and Euclid’s characterization of coprimeness (page 193) unexpectedly assuming
pivotal positions within the architecture of Gödel’s proofs.

The methods Gödel developed in his paper were also basic for the creation of
recursion theory around 1936. Church’s proof of the undecidability of the tautology
problem marks another distinctive achievement. After having collected sufficient
evidence by his own investigations and by those of Turing, Kleene, and some others,
Church formulated his famous thesis (Section 6.1), although in 1936 no computers
in the modern sense existed nor was it foreseeable that computability would ever
play the basic role it does today.

As already mentioned, Hilbert’s program had to be revised. A decisive step was
undertaken by Gentzen, considered to be another groundbreaking achievement of
mathematical logic and the starting point of contemporary proof theory. The logical
calculi in 1.2 and 3.1 are akin to Gentzen’s calculi of natural deduction.

We further mention Gödel’s discovery that it is not the axiom of choice (AC) that
creates the consistency problem in set theory. Set theory with AC and the continuum
hypothesis (CH) is consistent provided set theory without AC and CH is. This is a
basic result of mathematical logic that would not have been obtained without the
use of strictly formal methods. The same applies to the independence proof of AC
and CH from the axioms of set theory by P. Cohen in 1963.

The above indicates that mathematical logic is closely connected with the aim of
giving mathematics a solid foundation. Nonetheless, we confine ourself to logic and
its fascinating interaction with mathematics. History shows that it is impossible
to establish a programmatic view on the foundations of mathematics that pleases
everybody in the mathematical community. Mathematical logic is the right tool for
treating the technical problems of the foundations of mathematics, but it cannot
solve its epistemological problems.



Notation
We assume that the reader is familiar with basic mathematical terminology and
notation, in particular with the elementary set-theoretical operations of union,
intersection, complemention, and cross product, denoted by ∪, ∩, \ , and ×,
respectively. Here we summarize only some notation that may differ slightly from
author to author, or is specific for this book.

N, Z, Q, R denote the sets of natural numbers including 0, integers, rational, and
real numbers, respectively. n,m, i, j, k denote always natural numbers unless stated
otherwise. Hence, extended notation like n ∈ N is mostly omitted. N+, Q+, R+

denote the sets of positive members of the corresponding sets.
The ordered pair of elements a, b is denoted by (a, b). It should not be mixed

up with the pair set {a, b}. Set inclusion is denoted by M ⊆ N , while M ⊂ N

means proper inclusion (i.e., M ⊆ N and M �= N). We write M ⊂ N only if the
circumstance M �= N has to be emphasized. If M is fixed in a consideration and
N varies over subsets of M , then M \N may also be denoted by \N or ¬N . The
power set (= set of all subsets) of M is denoted PM . ∅ denotes the empty set.

If one wants to emphasize that all elements of a set F are sets, F is also called a
family or system of sets.

⋃
F denotes the union of a set family F , that is, the set of

elements belonging to at least one M ∈ F , and
⋂

F stands for the intersection of
F (�= ∅), which is the set of elements belonging to all M ∈ F . If F = {Mi | i ∈ I}
then

⋃
F and

⋂
F are mostly denoted by

⋃
i∈I Mi and

⋂
i∈I Mi, respectively.

A relation between M and N is a subset of M ×N . Such a relation, call it f , is
said to be a function (or mapping) from M to N if for each a ∈M there is precisely
one b ∈ N with (a, b) ∈ f . This b is denoted by f(a) or fa or af and called the value
of f at a. We denote such an f also by f : M → N , or by f : x 
→ t(x) provided
f(x) = t(x) for some term t (terms are defined in 2.2). idM : x 
→ x denotes the
identical function on M . ran f = {fx | x ∈ M} is called the range of f , while
dom f = M is called its domain. f : M → N is injective if fx = fy ⇒ x = y, for all
x, y ∈ M , surjective if ran f = N , and bijective if f is both injective and surjective.
The reader should basically be familiar with this terminology.

The set of all functions from M to N is denoted by NM . The phrase “let f be
a function from M to N” is sometimes shortened to “let f : M → N .” If f, g are
mappings with ran g ⊆ dom f then h : x 
→ f(g(x)) is called their composition. It is
sometimes denoted by h = f ◦ g, but other notation is used as well.

Let I and M be sets, f : I → M , and call I the index set. Then f will often be
denoted by (ai)i∈I and is named, depending on the context, a family, an I-tuple,
or a sequence. If 0 is identified with ∅ and n > 0 with {0, 1, . . . , n − 1}, as is
common in set theory, then Mn can be understood as the set of finite sequences or

XVI



Notation XVII

n-tuples (ai)i<n = (a0, . . . , an−1) of length n whose members are elements of M . In
concatenating finite sequences which has an obvious meaning, the empty sequence
(the only member of M0 = {∅}), plays the role of a neutral element. A sequence of
the form (a1, . . . , an) will frequently be denoted by �a. This is for n = 0 the empty
sequence, similar to {a1, . . . , an} for n = 0 being always the empty set.

If A is an alphabet, i.e., if the elements of A are symbols or at least called symbols,
then the sequence (a1, . . . , an) is written as a1 · · · an and called a string or a word
over the alphabet A. The empty sequence is then called the empty string or the
empty word. Let ξη denote the concatenation of the strings ξ and η. If ξ = ξ1ηξ2

for some strings ξ1, ξ2 and η �= ∅ then η is called a substring or segment of ξ. If, in
addition, ξ1 = ∅ then η is called an initial, and if ξ2 = ∅, a terminal segment of ξ.

Subsets P, Q, R, . . . ⊆ Mn are called n-ary predicates of M or n-ary relations. A
unary predicate will be identified with the corresponding subset of M . We may
write P�a instead of �a ∈ P , and ¬P�a instead of �a /∈ P . Metatheoretical predicates
(or properties) cast in words will often be distinguished from the surrounding text
by single quotes, for instance, if we speak of the syntactic predicate ‘The variable
x occurs in the formula α’. We can do so since quotes inside quotes will not occur.
Single quoted predicates are often used in induction principles, or they are reflected
in a theory, while ordinary (“double”) quotes have a stylistic function only.

An n-ary operation of M is a function f : Mn →M . Almost everywhere f�a will be
written instead of f(a1, . . . , an). Since M0 = {∅}, a 0-ary operation of M is of the
form {(∅, c)} with c ∈ M ; it is denoted by c for short and called a constant. Each
operation f : Mn →M is uniquely described by the graph of f ,

graph f := {(a1, . . . , an+1) ∈Mn+1 | f(a1, . . . , an) = an+1}.

Both f and graph f are essentially the same, but in most situations it is more
convenient to distinguish between f and graph f .

If A, B are expressions of our metalanguage, A⇔ B stands for “A iff B,” that is,
“A if and only if B.” Similarly, A ⇒ B, A & B, and A ∨∨∨ B mean “if A then B,”
“A and B,” and “A or B,” respectively. This notation does not aim at formalizing
the metalanguage but serves improved organization of metatheoretic statements.
We agree that ⇒ , ⇔, . . . separate stronger than linguistic binding particles like
“there is” or “for all.” Hence, in T � α⇔ α ∈ T , for all α ∈ L0 (definition page 64)
the comma should not be omitted; otherwise some serious misunderstanding may
arise, since ‘α ∈ T for all α ∈ L0 ’ has the meaning ‘the theory T is inconsistent’.

A :⇔ B means that the expression A is defined by B. Similarly, s := t means
that the term s is defined by the term t, or whenever s is a variable, the allocation
of the value of t to s. W.l.o.g. or w.l.o.g. abbreviates “Without loss of generality.”




