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Preface

Ever since I heard the word “entropy” for the first time, I was
fascinated with its mysterious nature. I vividly recall my first
encounter with entropy and with the Second Law of Thermo-
dynamics. It was more than forty years ago. I remember the hall,
the lecturer, even the place where I sat; in the first row, facing
the podium where the lecturer stood.

The lecturer was explaining Carnot’s cycle, the efficiency
of heat engines, the various formulations of the Second Law
and finally introducing the intriguing and mysterious quan-
tity, named Entropy. I was puzzled and bewildered. Until that
moment, the lecturer had been discussing concepts that were
familiar to us; heat, work, energy and temperature. Suddenly, a
completely new word, never heard before and carrying a com-
pletely new concept, was being introduced. I waited patiently to
ask something, though I was not sure what the question would
be. What is this thing called entropy and why does it always
increase? Is it something we can see, touch or feel with any of our
senses? Upon finishing her exposition, the lecturer interjected,
“If you do not understand the Second Law, do not be discour-
aged. You are in good company. You will not be able to under-
stand it at this stage, but you will understand it when you study
statistical thermodynamics next year.” With these concluding
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remarks, she had freed herself from any further explanation of
the Second Law. The atmosphere was charged with mystery.
I, as well as some of those present during the lecture were left
tongue-tied, our intense craving for understanding the Second
Law unsatisfied.

Years later, I realized that the lecturer was right in claiming
that statistical mechanics harbors the clues to the understand-
ing of entropy, and that without statistical mechanics, there is
no way one can understand what lies beneath the concept of
entropy and the Second Law. However, at that time, we all sus-
pected that the lecturer had chosen an elegant way of avoiding
any embarrassing questions she could not answer. We therefore
accepted her advice, albeit grudgingly.

That year, we were trained to calculate the entropy changes
in many processes, from ideal gas expansion, to mixing of gases,
to transfer of heat from a hot to a cold body, and many other
spontaneous processes. We honed our skills in calculations of
entropy changes, but we did not really capture the essence of the
meaning of entropy. We did the calculations with professional
dexterity, pretending that entropy is just another technical quan-
tity, but deep inside we felt that entropy was left ensconced in
a thick air of mystery.

What is that thing called entropy? We knew it was defined
in terms of heat transferred (reversibly) divided by the absolute
temperature, but it was neither heat nor temperature. Why is it
always increasing, what fuel does it use to propel itself upwards?
We were used to conservation laws, laws that are conceived as
more “natural.” Matter or energy cannot be produced out of
nothing but entropy seems to defy our common sense. How can
a physical quantity inexorably keep “producing” more of itself
without any apparent feeding source?

I recall hearing in one of the lectures in physical chem-
istry, that the entropy of solvation of argon in water is large
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and negative.! The reason given was that argon increases the
structure of water. Increase of structure was tantamount to
increase of order. Entropy was loosely associated with disorder.
Hence, that was supposed to explain the decrease of entropy.
In that class, our lecturer explained that entropy of a system
can decrease when that system is coupled with another system
(like a thermostat) and that the law of ever-increasing entropy is
only valid in an isolated system — a system that does not inter-
act with its surroundings. That fact only deepened the mystery.
Not only do we not know the source which supplies the fuel for
the ever-increasing entropy, but no source is permitted, in prin-
ciple, no feeding mechanism and no provision for any supplies
of anything from the outside. Besides, how is it that “structure”
and “order” have crept into the discussion of entropy, a concept
that was defined in terms of heat and temperature?

A year later, we were taught statistical mechanics and along
side we learnt the relationship between entropy and the number
of states, the famous Boltzmann relationship which is carved on
Ludwig Boltzmann’s tombstone in Vienna.?> Boltzmann’s rela-
tionship provided an interpretation of entropy in terms of dis-
order; the ever-increasing entropy, being interpreted as nature’s
way of proceeding from order to disorder. But why should a sys-
tem go from order to disorder? Order and disorder are intangible
concepts, whereas entropy was defined in terms of heat and tem-
perature. The mystery of the perpetual increment of disorder in
the system did not resolve the mystery of entropy.

I taught thermodynamics and statistical mechanics for many
years. During those years, I came to realize that the mys-
tery associated with the Second Law can never be removed
within classical thermodynamics (better referred to as the

LThis was another fascinating topic that was eventually chosen for my PhD thesis.
2A picture is shown on the dedication page of this book.
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non-atomistic formulation of the Second Law; see Chapter 1).
On the other hand, looking at the Second Law from the molec-
ular point of view, I realized that there was no mystery at all.

I believe that the turning point in my own understanding of
entropy, hence also in my ability to explain it to my students
came when I was writing an article on the entropy of mixing
and the entropy of assimilation. It was only then that I felt I
could penetrate the haze enveloping entropy and the Second
Law. It dawned on me (during writing that article) how two key
features of the atomic theory of matter were crucial in dispersing
the last remains of the clouds hovering above entropy; the large
(unimaginably large) numbers and the indistinguishability of the
particles constituting matter.

Once the haze dissipated, everything became crystal clear.
Not only clear, but in fact obvious; entropy’s behavior which
was once quite difficult to understand, was reduced to a simple
matter of common sense.

Moreover, I suddenly realized that one does not need to
know any statistical mechanics to understand the Second Law.
This might sound contradictory, having just claimed that statis-
tical mechanics harbors the clues to understanding the Second
Law. What I discovered was that, all one needs is the atom-
istic formulation of entropy, and nothing more from statisti-
cal mechanics. This finding formed a compelling motivation for
writing this book which is addressed to anyone who has never
heard of statistical mechanics.

While writing this book, I asked myself several times at
exactly what point in time I decided that this book was worth
writing. I think there were three such points.

First, was the recognition of the crucial and the indispensable
facts that matter is composed of a huge number of particles, and
that these particles are indistinguishable from each other. These
facts have been well-known and well-recognized for almost a
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century, but it seems to me that they were not well emphasized
by authors who wrote on the Second Law.

The second point was while I was reading the two books by
Brian Greene.? In discussing the entropy and the Second Law,
Greene wrote*:

“Among the features of common experience that have
resisted complete explanation is one that taps into the
deepest unresolved mysteries in modern physics.”

I could not believe that Greene, who has explained so bril-
liantly and in simple words so many difficult concepts in modern
physics, could write these words.

The third point has more to do with aesthetics than sub-
stance. After all, I have been teaching statistical thermodynam-
ics and the Second Law for many years, and even using dice
games to illustrate what goes on in spontaneous processes. How-
ever, [ always found the correspondence between the dice chang-
ing faces, and the particles rushing to occupy all the accessible
space in an expansion process, logically and perhaps aestheti-
cally unsatisfactory. As you shall see in Chapter 7, I made the
correspondence between dice and particles, and between the
outcomes of tossing dice and the locations of the particles. This
correspondence is correct. You can always name a particle in
a right compartment as an R—particle and a particle in the left
compartment as an L-particle. However, it was only when I
was writing the article on the entropy of mixing and entropy of
assimilation, that I “discovered” a different process for which
this correspondence could be made more “natural” and more
satisfying. The process referred to is deassimilation. It is a spon-
taneous process where the change in entropy is due solely to

3Greene, B. (1999, 2004).
4Greene, B. (2004), p. 12.
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the particles acquiring new identity. The correspondence was
now between a die and a particle, and between the identity of
the outcome of throwing a die, and the identity of the particle.
I found this correspondence more aesthetically gratifying, thus
making the correspondence between the dice-game and the real
process of deassimilation a perfect one and worth publishing.

In this book, I have deliberately avoided a technical style of
writing. Instead of teaching you what entropy is, how it changes,
and most importantly why it changes in one direction, I will
simply guide you so that you can “discover” the Second Law
and obtain the satisfaction of unveiling the mystery surrounding
entropy for yourself.

Most of the time, we shall be engaged in playing, or imagin-
ing playing, simple games with dice. Starting with one die, then
two dice, then ten, a hundred or a thousand, you will be building
up your skills in analyzing what goes on. You will find out what
is that thing that changes with time (or with the number of steps
in each game), and how and why it changes. By the time you get
to a large number of dice, you will be able to extrapolate with
ease whatever you have learned from a small number of dice, to
a system of a huge number of dice.

After experiencing the workings of the Second Law in the
dice world, and achieving full understanding of what goes on,
there is one last step that I shall help you with in Chapter 7.
There, we shall translate everything we have learned from the
dice world into the real experimental world. Once you have
grasped the evolution of the dice games, you will be able to
understand the Second Law of thermodynamics.

I have written this book having in mind a reader who knows
nothing of science and mathematics. The only prerequisite for
reading this book is plain common sense, and a strong will to

apply it.
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One caveat before you go on reading the book; “common
sense” does not mean easy or effortless reading!

There are two “skills” that you have to develop. The first
is to train yourself to think in terms of big numbers, fantas-
tically big numbers, inconceivably big numbers and beyond. 1
will help you with that in Chapter 2. The second is a little more
subtle. You have to learn how to distinguish between a specific
event (or state or configuration) and a dim event (or a state or
configuration). Do not be intimidated by these technical sound-
ing terms.> You will have ample examples to familiarize yourself
with them. They are indispensable for understanding the Second
Law. If you have any doubts about your ability to understand
this book, I will suggest that you take a simple test.

Go directly to the end of Chapter 2 (Sections 2.7 and 2.8).
There, you shall find two quizzes. They are specifically designed
to test your understanding of the concepts of “specific” and
“dim.”

If you answer all the questions correctly, then I can assure
you that you will understand the entire book easily.

If you cannot answer the questions, or if you tried but got
wrong answers, do not be discouraged. Look at my answers to
these questions. If you feel comfortable with my answers even
though you could not answer the questions yourself, I believe
you can read and understand the book, but you will need a little
more effort.

If you do not know the answers to the questions, and even
after reading my answers, you feel lost, I still do not think that
understanding the book is beyond your capacity. I would suggest
that you read Chapter 2 carefully and train yourself in thinking

3In statistical mechanics, these terms correspond to microstates and macrostates. In
most of the book, we shall be playing with dice; and dice are always macroscopic.
That is why I chose the terms “specific” and “dim” instead.
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probabilistically. If you need more help, you are welcome to
write to me and I promise to do my best to help.

Again, do not feel intimidated by the word “probabilisti-
cally.” If you are not surprised that you did not win the one
million prize in the lottery, although you habitually buy tickets,
you have been thinking “probabilistically.” Let me tell you a lit-
tle story to make you comfortable with this formidable sounding
word.

My father used to buy one lottery ticket every weekend for
almost sixty years. He was sure that someone “up there” favored
him and would bestow upon him the grand prize. I repeatedly
tried to explain to him that his chances of winning the grand
prize were very slim, in fact, less than one hundredth of one
percent. But all my attempts to explain to him his odds fell on
deaf ears. Sometimes he would get seven or eight matching num-
bers (out of ten; ten matches being the winning combination).
He would scornfully criticize me for not being able to see the
clear and unequivocal “signs” he was receiving from Him. He
was sure he was on the right track to winning. From week to
week, his hopes would wax and wane according to the number
of matches he got, or better yet, according to the kind of signs he
believed he was receiving from Him. Close to his demise, at the
age of 96, he told me that he was very much disappointed and
bitter as he felt betrayed and disfavored by the deity in whom
he had believed all his life. I was saddened to realize that he did
not, and perhaps could not, think probabilistically!

If you have never heard of the Second Law, or of entropy, you
can read the brief, non-mathematical description of various for-
mulations and manifestations of the Second Law in Chapter 1.
In Chapter 2, I have presented some basic elements of proba-
bility and information theory that you might need in order to
express your findings in probabilistic terms. You should real-
ize that the fundamentals of both probability and information
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theory are based on nothing more than sheer common sense.
You need not have any background in mathematics, physics
or chemistry. The only things you need to know are: how to
count (mathematics!), that matter is composed of atoms and
molecules (physics and chemistry!), and that atoms are indis-
tinguishable, (this is advanced physics!). All these are explained
in non-mathematical terms in Chapter 2. From Chapters 3-5,
we shall be playing games with a varying number of dice. You
watch what goes on, and make your conclusions. We shall have
plenty of occasions to “experience” the Second Law with all
of our five senses. This reflects in a miniscule way the immense
variety of manifestations of the Second Law in the real physical
world. In Chapter 6, we shall summarize our findings. We shall
do that in terms that will be easy to translate into the language of
a real experiment. Chapter 7 is devoted to describing two simple
experiments involving increase in entropy; all you have to do is
to make the correspondence between the number of dice, and
the number of particles in a box, between different outcomes
of tossing a die, and the different states of the particles. Once
you have made this correspondence, you can easily implement
all that you have learned from the dice-game to understand the
Second Law in the real world.

By the time you finish reading Chapter 7, you will understand
what entropy is and how and why it behaves in an apparently
capricious way. You will see that there is no mystery at all in its
behavior; it simply follows the rules of common sense.

By understanding the two specific processes discussed in
Chapter 7, you will clearly see how the Second Law works.
Of course, there are many more processes that are “driven”
by the Second Law. It is not always a simple, straightforward
matter to show how the Second Law works in these processes.
For this, you need to know some mathematics. There are many
more, very complex processes where we believe that the Second
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Law has its say, but there is, as yet, no mathematical proof of
how it does that. Biological processes are far too complicated
for a systematic molecular analysis. Although I am well aware
that many authors do use the Second Law in conjunction with
various aspects of life, I believe that at this stage, it is utterly
premature. I fully agree with Morowitz® who wrote: “The use
of thermodynamics in biology has a long history of confusion.”

In the last chapter, I have added some personal reflections
and speculations. These are by no means universally accepted
views and you are welcome to criticize whatever I say there. My
email address is given below.

My overall objective in writing this book is to help you
answer two questions that are associated with the Second Law.
One is: What is entropy? The second is: Why does it change in
only one direction — in apparent defiance of the time-symmetry
of other laws of physics?

The second question is the more important one. It is the heart
and core of the mystery associated with the Second Law. I hope
to convince you that:

1. The Second Law is basically a law of probability.

2. The laws of probability are basically the laws of common
sense.

3. It follows from (1) and (2) that the Second Law is basically
a law of common sense — nothing more.

I admit, of course, that statements (1) and (2) have been
stated many times by many authors. The first is implied in
Boltzmann’s formulation of the Second Law. The second has
been expressed by Laplace, one of the founders of probabil-
ity theory. Certainly, I cannot claim to be the first to make
these statements. Perhaps I can claim that the relationship of

6Morowitz (1992) page 69.
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“basicality” is a transitive relationship, i.e., that statement (3)
follows from (1) and (2), is original.

The first question is about the meaning of entropy. For
almost a hundred years, scientists speculated on this question.
Entropy was interpreted as measuring disorder, mixed-upness,
disorganization, chaos, uncertainty, ignorance, missing infor-
mation and more. To the best of my knowledge, the debate is
still on going. Even in recent books, important scientists express
diametrically opposing views. In Chapter 8, I will spell out in
details my views on this question. Here I will briefly comment
that entropy can be made identical, both formally and concep-
tually, with a specific measure of information. This is a far from
universally accepted view. The gist of the difficulty in accepting
this identity is that entropy is a physically measurable quantity
having units of energy divided by temperature and is therefore
an objective quantity. Information however, is viewed as a neb-
ulous dimensionless quantity expressing some kind of human
attribute such as knowledge, ignorance or uncertainty, hence, a
highly subjective quantity.”

In spite of the apparent irreconcilability between an objec-
tive and a subjective entity, I claim that entropy is information.
Whether either one of these is objective or subjective is a ques-
tion that encroaches on philosophy or metaphysics. My view is
that both are objective quantities. But if you think one is subjec-
tive, you will have to concede that the second must be subjective
too.

There is trade-off in order to achieve this identity. We need
to redefine temperature in units of energy. This will require the
sacrifice of the Boltzmann constant, which should have been
expunged from the vocabulary of physics. It will bring a few
other benefits to statistical mechanics. For the purpose of this

7More on this aspect of entropy may be found in Ben—-Naim (2007).
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book, absence of the Boltzmann constant will automatically
make entropy dimensionless and identical with a measure infor-
mation. This will, once and for all, “exorcise” the mystery out
of entropy!

To the reader of this book, I dare to promise the following:

1. If you have ever learned about entropy and been mystified
by it, I promise to unmystify you.

2. If you have never heard and never been mystified by entropy,
[ promise you immunity from any future mystification.

3. If you are somewhere in between the two, someone who has
heard, but never learned, about entropy, if you heard people
talking about the deep mystery surrounding entropy, then I
promise you that by reading this book, you should be puzzled
and mystified! Not by entropy, not by the Second Law, but
by the whole ballyhoo about the “mystery” of entropy!

4. Finally, if you read this book carefully and diligently and do
the small assignments scattered throughout the book, you
will feel the joy of discovering and understanding something
which has eluded understanding for many years. You should
also feel a deep sense of satisfaction in understanding “one
of the deepest, unsolved mysteries in modern physics.”®
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Introduction, and a Short History of the
Second Law of Thermodynamics

In this chapter, I shall present some important milestones in
the history of the Second Law of Thermodynamics. I shall also
present a few formulations of the Second Law in a descriptive
manner. In doing so, I necessarily sacrifice precision. The impor-
tant point here is not to teach you the Second Law, but to give
you a qualitative description of the types of phenomena which
led the scientists of the nineteenth century to formulate the Sec-
ond Law.

There are many formulations of the Second Law of Ther-
modynamics. We shall group all these into two conceptually
different classes: Non-Atomistic and Atomistic.

1.1. The Non-Atomistic Formulation of the Second Law'

Traditionally, the birth of the Second Law is associated with the
name Sadi Carnot (1796-1832). Although Carnot himself did

1By “non-atomistic” formulation, I mean the discussion of the Second Law without
any reference to the atomic constituency of matter. Sometimes, it is also said that
this formulation views matter as a continuum. The important point to stress here is
that these formulations use only macroscopically observable or measurable quantities
without any reference to the atomic constituency of matter. It does not imply that the
formulation applies to non-atomistic or continuous matter. As we shall see later, were
matter really non-atomistic or continuous, the Second Law would not have existed.
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Fig. (1.1) Heat engine.

not formulate the Second Law,? his work laid the foundations
on which the Second Law was formulated a few years later by
Clausius and Kelvin.

Carnot was interested in heat engines, more specifically, in
the efficiency of heat engines. Let me describe the simplest of
such an engine (Fig. (1.1)). Suppose you have a vessel of volume
V containing any fluid, a gas or a liquid. The upper part of
the vessel is sealed by a movable piston. This system is referred
to as a heat engine. The vessel is initially in State 1, thermally
insulated, and has a temperature T1, say 0°C. In the first step of
the operation of this engine (Step I), we place a weight on the
piston. The gas will be compressed somewhat. The new state is
State 2. Next, we attach the vessel to a heat reservoir (Step II).
The heat reservoir is simply a very large body at a constant
temperature, say To = 100°C. When the vessel is attached to the
heat reservoir, thermal energy will flow from the heat reservoir
to the engine. For simplicity, we assume that the heat reservoir
is immense compared with the size of the system or the engine.
In Fig. (1.1), the heat reservoir is shown only at the bottom of
the engine. Actually it should surround the entire engine. This

2This is the majority opinion. Some authors do refer to Carnot as the “inventor” or
the “discoverer” of the Second Law.
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ensures that after equilibrium is reached, the system will have
the same temperature, T3, as that of the reservoir, and though
the reservoir has “lost” some energy, its temperature will be
nearly unchanged. As the gas (or the liquid) in the engine heats
up, it expands, thereby pushing the movable piston upwards.
At this step, the engine did some useful work: lifting a weight
placed on the piston from level one to a higher level, two. The
new state is State 3. Up to this point, the engine has absorbed
some quantity of energy in the form of heat that was transferred
from the reservoir to the gas, thereby enabling the engine to do
some work by lifting the weight (which in turn could rotate
the wheels of a train, or produce electricity, etc.). Removing
the weight, Step III, might cause a further expansion of the gas.
The final state is State 4.

If we want to convert this device into an engine that repeat-
edly does useful work, like lifting weights (from level one to
level two), we need to operate it in a complete cycle. To do this,
we need to bring the system back to its initial state, i.e., cool
the engine to its initial temperature T¢. This can be achieved by
attaching the vessel to a heat reservoir or to a thermostat, at
temperature T7 = 0°C, Step IV (again, we assume that the heat
reservoir is much larger compared with our system such that
its temperature is nearly unaffected while it is attached to the
engine). The engine will cool to its initial temperature T7, and
if we take away the weight, we shall return to the initial state
and the cycle can start again.

This is not the so-called Carnot cycle. Nevertheless, it has all
the elements of a heat engine, doing work by operating between
the two temperatures, T1 and T5.

The net effect of the repeated cycles is that heat, or ther-
mal energy, is pumped into the engine from a body at a high
temperature T, = 100°C; work is done by lifting a weight
and another amount of thermal energy is pumped out from the
engine into a body at lower temperature T1 = 0°C. The Carnot
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cycle is different in some details. The most important difference
is that all the processes are done very gradually and very slowly.3
We shall not be interested in these details here.

Carnot was interested in the efficiency of such an engine
operating between two temperatures under some ideal condi-
tions (e.g. mass-less piston, no friction, no heat loss, etc.).

At the time of the publication of Carnot’s work in 1824,% it
was believed that heat is a kind of fluid referred to as caloric.
Carnot was mainly interested in the limits on the efficiency of
heat engines. He found out that the limiting efficiency depends
only on the ratio of the temperatures between which the engine
operates, and not on the substance (i.e., which gas or liquid)
that is used in the engine. Later, it was shown that the effi-
ciency of Carnot’s idealized engine could not be surpassed by
any other engine. This laid the cornerstone for the formulation
of the Second Law and paved the way for the appearance of the
new term “entropy.”

It was William Thomson (1824-1907), later known as Lord
Kelvin, who first formulated the Second Law of Thermodynam-
ics. Basically, Kelvin’s formulation states that there could be no
engine, which when operating in cycles, the sole effect of which
is pumping energy from one reservoir of heat and completely
converting it into work.

Although such an engine would not have contradicted the
First Law of Thermodynamics (the law of conservation of the
total energy), it did impose a limitation on the amount of work
that can be done by operating an engine between two heat reser-
voirs at different temperatures.

3Technically, the processes are said to be carried out in a quasi-static manner. Some-
times, this is also referred to as a reversible process. The latter term is, however, also
used for another type of process where entropy does not change. Therefore, the term
quasi-static process is more appropriate and preferable.

#«Reflections on the motive power of fire and on machines fitted to develop this
power,” by Sadi Carnot (1824).
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In simple terms, recognizing that heat is a form of energy, the
Second Law of Thermodynamics is a statement that it is impos-
sible to convert heat (thermal energy) completely into work
(though the other way is possible, i.e., work can be converted
completely into heat, for example, stirring of a fluid by a mag-
netic stirrer, or mechanically turning a wheel in a fluid). This
impossibility is sometimes stated as “a perpetual motion of the
second kind is impossible.” If such a “perpetual motion” was
possible, one could use the huge reservoir of thermal energy of
the oceans to propel a ship, leaving a tail of slightly cooler water
behind it. Unfortunately, this is impossible.

Another formulation of the Second Law of Thermodynam-
ics was later given by Rudolf Clausius (1822-1888). Basically,
Clausius’ formulation is what every one of us has observed; heat
always flows from a body at a high temperature (hence is cooled)
to a body at a lower temperature (which is heated up). We never
observe the reverse of this process occurring spontaneously.
Clausius’ formulation states that no process exists, such that its
net effect is only the transfer of heat from a cold to a hot body.
Of course we can achieve this direction of heat flow by doing
work on the fluid (which is how refrigeration is achieved). What
Clausius claimed was that the process of heat transferred from a
hot to a cold body when brought in contact, which we observe
to occur spontaneously, can never be observed in the reverse
direction. This is shown schematically in Fig. (1.2), where two
bodies initially isolated are brought into thermal contact.

While the two formulations of Kelvin and Clausius are differ-
ent, they are in fact equivalent. This is not immediately apparent.

B s - e

Fig. (1.2)
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However, a simple argument can be employed to prove their
equivalency, as any elementary textbook of thermodynamics
will show.

There are many other formulations or manifestations of the
Second Law of Thermodynamics. For instance, a gas in a con-
fined volume V| if allowed to expand by removing the partition,
will always proceed in one direction (Fig. (1.3)).° The gas will
expand to fill the entire new volume, say 2V. We never see a
spontaneous reversal of this process, i.e., gas occupying volume
2V will never spontaneously converge to occupy a smaller vol-
ume, say V.

There are more processes which all of us are familiar with,
which proceed in one way, never in the reverse direction, such as
the processes depicted in Figs. (1.2), (1.3), (1.4) and (1.5). Heat
flows from a high to a low temperature; material flows from
a high to a low concentration; two gases mix spontaneously;
and a small amount of colored ink dropped into a glass of
water will spontaneously mix with the liquid until the water

3The Second Law may also be formulated in terms of the spontaneous expansion of
a gas. It can also be shown that this, as well as other formulations, is equivalent to
the Clausius and Kelvin formulations.
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Fig. (1.5)

is homogeneously colored (Fig. (1.5)). We never see the reverse
of these processes.

All these processes have one thing in common. They proceed
in one direction, never proceeding spontaneously in the reverse
direction. But it is far from clear that all these processes are
driven by a common law of nature. It was Clausius who saw the
general principle that is common in all these processes. Recall
that Clausius’ formulation of the Second Law is nothing but a
statement of what everyone of us is familiar with. The greatness
of Clausius’ achievement was his outstanding prescience that
all of these spontaneous processes are governed by one law,
and that there is one quantity that governs the direction of the
unfolding of events, a quantity that always changes in one direc-
tion in a spontaneous process. This was likened to a one-way
arrow or a vector that is directed in one direction along the time
axis. Clausius introduced the new term entropy. In choosing the

word “entropy,” Clausius wrote:®

“I prefer going to the ancient languages for the names
of important scientific quantities, so that they mean the
same thing in all living tongues. I propose, accordingly, to
call S the entropy of a body, after the Greek word ‘trans-
formation.” I have designedly coined the word entropy
to be similar to energy, for these two quantities are so

6Quoted by Cooper (1968).



8 Entropy Demystified

analogous in their physical significance, that an analogy
of denominations seems to me helpful.”

In the Merriam-Webster Collegiate Dictionary (2003),
“entropy” is defined as: “change, literary turn, a measure of
the unavailable energy in a closed thermodynamic system... a
measure of the system’s degree of order...”

As we shall be discussing in Chapter 8, the term entropy in
the sense that was meant by Clausius is an inadequate term.
However, at the time it was coined, the molecular meaning of
entropy was not known nor understood. In fact, as we shall see
later, “entropy” is not the “transformation” (nor the “change”
nor the “turn”). It is something else that transforms or changes
or evolves in time.

With the new concept of entropy one could proclaim the gen-
eral overarching formulation of the Second Law. In any sponta-
neous process occurring in an isolated system, the entropy never
decreases. This formulation, which is very general, embracing
many processes, sowed the seed of the mystery associated with
the concept of entropy, the mystery involving a quantity that
does not subscribe to a conservation law.

We are used to conservation laws in physics. This makes
sense:” material is not created from nothing, energy is not given
to us free. We tend to conceive of a conservation law as “under-
standable” as something that “makes sense.” But how can a
quantity increase indefinitely and why? What fuels that unre-
lenting, ever-ascending climb? It is not surprising that the Sec-
ond Law and entropy were shrouded in mystery. Indeed, within
the context of the macroscopic theory of matter, the Second
Law of Thermodynamics is unexplainable. It could have stayed

7Here we use the term “makes sense” in the sense that it is a common experience and
not necessarily a consequence of logical reasoning.
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a mystery forever had the atomic theory of matter not been dis-
covered and gained the acceptance of the scientific community.
Thus, with the macroscopic formulation we reach a dead end in
our understanding of the Second Law of Thermodynamics.

1.2. The Atomistic Formulation of the Second Law

Before the development of the kinetic theory of heat (which
relied on the recognition of the atomistic theory of matter), ther-
modynamics was applied without any reference to the compo-
sition of matter — as if matter were a continuum. Within this
approach there was no further interpretation of entropy. That
in itself is not unusual. Any law of physics reaches a dead end
when we have to accept it as it is, without any further under-
standing. Furthermore, the Second Law was formulated as an
absolute law — entropy always increases in a spontaneous pro-
cess in an isolated system. This is not different from any other
law, e.g. Newton’s laws are always obeyed — no exceptions.®
A huge stride forward in our understanding of entropy and
of the Second Law of Thermodynamics, was made possible
following Boltzmann’s statistical interpretation of entropy —
the famous relationship between entropy and the total number
of microstates of a system characterized macroscopically by a
given energy, volume, and number of particles. Take a look at
the cover illustration or at the picture of Boltzmann’s statue.
Ludwig Boltzmann (1844-1906),° along with Maxwell and
many others, developed what is now known as the kinetic the-
ory of gases, or the kinetic theory of heat. This not only led
to the identification of temperature, which we can feel with

8«Always” in the realm of phenomena that were studied at that time, and which are
now referred to as classical mechanics.

9For a fascinating story of Boltzmann’s biography, see Broda (1983), Lindley (2001),
and Cercignani (2003).



10 Entropy Demystified

our sense of touch, with the motions of the particles con-
stituting matter, but also to the interpretation of entropy in
terms of the number of states that that are accessible to the
system.

The atomistic formulation of entropy was introduced by
Boltzmann in two stages. Boltzmann first defined a quantity he
denoted as H, and showed that as a result of molecular collisions
and a few other assumptions, this quantity always decreases
and reaches a minimum at equilibirium. Boltzmann called his
theorem “the minimum theorem”, which later became famous
as Boltzmann’s H-theorem (published in 1872). Furthermore,
Boltzmann showed that a system of particles starting with any
distribution of molecular velocities will reach thermal equilib-
rium. At that point, H attains its minimum and the resulting
velocity distribution will necessarily be the so-called Maxwell
distribution of the velocities (see also Chapter 7).

At that time, the atomistic theory of matter had not yet been
established nor universally accepted. Although the idea of the
“atom” was in the minds of scientists for over two thousand
years, there was no compelling evidence for its existence. Nev-
ertheless, the kinetic theory of heat did explain the pressure and
temperature of the gas. But what about entropy, the quantity
that Clausius introduced without any reference to the molecu-
lar composition ofmatter?

Boltzmann noticed that his H-quantity behaved similarly to
entropy. One needs only to redefine entropy simply as the neg-
ative value of H, to get a quantity that always increases with
time, and that remains constant once the system reaches ther-
mal equilibrium.

Boltzmann’s H-theorem drew criticisms not only from
people like Ernst Mach (1838-1916) and Wilhelm Ostwald
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(1853-1932), who did not believe that atoms existed, but also
from his colleagues and close friends.!”

The gist of the criticisms (known as the reversibility objection
or the reversibility paradox), is the seeming conflict between the
so-called time-reversal!! or time symmetry of the Newtonian’s
equations of motion, and the time asymmetry of the behavior
of Boltzmann’s H-quantity. This conflict between the reversibil-
ity of the molecular collisions, and the irreversibility of the H-
quantity was a profound one, and could not be reconciled. How
can one derive a quantity that distinguishes between the past
and the future (i.e. always increasing with time), from equa-
tions of motions that are indifferent and do not care for the
past and future? Newton’s equations can be used to predict the
evolution of the particles into the past as well as into the future.
Woven into the H-Theorem were arguments from both mechan-
ics and probability, one is deterministic and time symmetric,
while the other is stochastic and time asymmetric. This conflict
seems to consist of a fatal flaw in the Boltzmann H-theorem.
It was suspected that either something was wrong with the H-
theorem, or perhaps even with the very assumption of the atom-
istic nature of matter. This was clearly a setback for Boltzmann’s
H-theorem and perhaps a (temporary) victory for the
non-atomists.

Boltzmann’s reaction to the reversibility objection was that
the H-theorem holds most of the time, but in very rare cases,

10For instance, Loschmidt wrote in 1876 that the Second Law cannot be a result of
purely mechanical principle.

11t should be noted as Greene (2004) emphasized that “time-reversal symmetry” is
not about time itself being reversed or ”running” backwards. Instead, time reversal is
concerned with whether events that happen iz time in one particular temporal order
can also happen in the reverse order. A more appropriate phrase might be “event
reversal or process reversal”.
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it can go the other way, i.e. H might increase, or the entropy
might decrease with time.

This was untenable. The (non-atomistic) Second Law of
Thermodynamics, like any other laws of physics, was conceived
and proclaimed as being absolute — no room for exceptions,
not even rare exceptions. No one had ever observed violation of
the Second Law. As there are no exceptions to Newton’s equa-
tions of motion,'? there should be no exceptions to the Second
Law, not even in rare cases. The Second Law must be absolute
and inviolable. At this stage, there were two seemingly differ-
ent views of the Second Law. On the one hand, there was the
classical, non-atomistic and absolute law as formulated by Clau-
sius and Kelvin encapsulated in the statement that entropy never
decreases in an isolated system. On the other hand, there was the
atomistic formulation of Boltzmann which claimed that entropy
increases “most of the time” but there are exceptions, albeit
very rare exceptions. Boltzmann proclaimed that entropy could
decrease — that it was not an impossibility, but only impro-
bable.!3 However, since all observations seem to support the
absolute nature of the Second Law, it looked as if Boltzmann
suffered a defeat, and along with that, the atomistic view of
matter.

In spite of this criticism, Boltzmann did not back down. He
reformulated his views on entropy. Instead of the H-theorem
which had one leg in the field of mechanics, and the other
in the realm of probability, Boltzmann anchored both legs
firmly on the grounds of probability. This was a radically

12vyithin classical mechanics.

13 As we shall see in Chapters 7 and 8, the admitted non-absoluteness of the atom-
ists’ formulation of the Second Law is, in fact, more absolute than the proclaimed
absoluteness of the non-atomists’ formulation. On this matter, Poincare commented:
“...to see heat pass from a cold body to a warm one, it will not be necessary to have
the acute vision, the intelligence, and the dexterity of Maxwell’s demon; it will suffice
to have a little patience” quoted by Leff and Rex (1990).
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new and foreign way of reasoning in physics. Probability, at
that time, was not part of physics (it was not even a part of
mathematics). Boltzmann proclaimed that entropy, or rather
atomistic-entropy, is equal to the logarithm of the total num-
ber of arrangements of a system. In this bold new formulation,
there were no traces of the equations of motion of the parti-
cles. It looks as if it is an ad-hoc new definition of a quantity,
devoid of any physics at all, purely a matter of counting the
number of possibilities, the number of states or the number of
configurations. This atomistic entropy had built-in provisions
for exceptions, allowing entropy to decrease, albeit with an
extremely low probability. At that time, the exceptions allowed
by Boltzmann’s formulation seemed to weaken the validity of
his formulation compared with the absolute and inviolable non-
atomist formulation of the Second Law. In Chapter 8, I shall
return to this point arguing that, in fact, the built-in provision
for exceptions strengthens rather than weakens the atomistic
formulation.

There seemed to be a state of stagnation as a result of the
two irreconcilable views of the Second Law. It was not until
the atomic theory of matter had gained full acceptance that the
Boltzmann formulation won the upper hand. Unfortunately, this
came only after Boltzmann’s death in 1906.

A year earlier, a seminal theoretical paper published by Ein-
stein on the Brownian motion provided the lead to the victory
of the atomistic view of matter. At first sight, this theory seems
to have nothing to do with the Second Law.

Brownian motion was observed by the English botanist
Robert Brown (1773-1858). The phenomenon is very simple:
tiny particles, such as pollen particles, are observed to move at
seemingly random fashion when suspended in water. It was ini-
tially believed that this incessant motion was due to some tiny
living organism, propelling themselves in the liquid. However,
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Brown and others showed later that the same phenomenon
occurs with inanimate, inorganic particles, sprinkled into a
liquid.

Albert Einstein (1879-1955) was the first to propose a theory
for this so-called Brownian motion.'* Einstein believed in the
atomic composition of matter and was also a staunch supporter
of Boltzmann.!® He maintained that if there are very large num-
bers of atoms or molecules jittering randomly in a liquid, there
must also be fluctuations. When tiny particles are immersed in a
liquid (tiny compared to macroscopic size, but still large enough
compared to the molecular dimensions of the molecules com-
prising the liquid), they will be “bombarded” randomly by the
molecules of the liquid. However, once in a while there will be
assymetries in this bombardment of the suspended particles, as
a result of which the tiny particles will be moving one way or
the other in a zigzag manner.

In 1905 Einstein published as part of his doctoral disser-
tation, a theory of these random motions.'® Once his theory
was corroborated by experimentalists [notably by Jean Perrin
(1870-1942)], the acceptance of the atomistic view became
inevitable. Classical thermodynamics, based on the continuous
nature of matter, does not have room for fluctuations. Indeed,
fluctuations in a macroscopic system are extremely small. That
is why we do not observe fluctuation in a macroscopic piece of
matter. But with the tiny Brownian particles, the fluctuations

141¢ is interesting to note that the founders of the kinetic theory of gases such as
Maxwell, Clausius and Boltzmann never published anything to explain the Brownian
motion.

131t is interesting to note that Einstein, who lauded Boltzmann for his probabilis-
tic view of entropy, could not accept the probabilistic interpretation of quantum
mechanics.

16 A well-narrated story of Einstein’ theory of Brownian motion may be found in John
Rigden (20035). A thorough and authoritative discussion of the theory of Brownian
motion, including a historical background, has been published by Robert Mazo
(2002).
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are magnified and rendered observable. With the acceptance of
the atomic composition of matter also came the acceptance of
Boltzmann’s expression for entropy. It should be noted that this
formulation of entropy stood fast and was not affected or modi-
fied by the two great revolutions that took place in physics early
in the 20th century: quantum mechanics and relativity.!” The
door to understanding entropy was now wide open.

The association of entropy with the number of configura-
tions and probabilities was now unassailable from the point
of view of the dynamics of the particles. Yet, it was not easily
understood and accepted, especially at the time when probabil-
ity was still not part of physics.

Almost at the same time that Boltzmann published his views
on the Second Law, Willard Gibbs (1839-1903) developed the
statistical mechanical theory of matter based on a purely sta-
tistical or probabilistic approach. The overwhelming success of
Gibbs’ approach, though based on probabilistic postulates,!®
has given us the assurance that a system of a very large number
of particles, though ultimately governed by the laws of motion,
will behave in a random and chaotic manner, and that the laws
of probability will prevail.

The mere relationship between entropy and the number of
states in a system is not enough to explain the behavior of

17perhaps, it should be noted that within the recent theories of black holes, people
speak about the “generalized Second Law of Thermodynamics” [Bekenstein (1980)].
It seems to me that this generalization does not affect Boltzmann’s formula for the
entropy.

18Today, any book on physics, in particular, statistical mechanics, takes for granted
the atomic structure of matter. It is interesting to note in Fowler and Guggenheim’s
book on Statistical Thermodynamics (first published in 1939, and reprinted in 1956),
one of the first assumptions is: “Assumption 1: The atomistic constitution of mat-
ter.” They add the comment that “Today, this hardly ranks as an assumption but it
is relevant to start by recalling that it is made, since any reference to atomic constitu-
tions is foreign to classical thermodynamics.” Today, no modern book on statistical
mechanics makes that assumption explicitly. It is a universally accepted fact.
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entropy. One must supplement this relationship with three criti-
cally important facts and assumptions. First, that there is a huge
number of particles and an even “huger” number of microstates.
Second, that all these states are equally likely i.e. have equal
probability of occurrence, hence are equally likely to be visited
by the system. Third, and most importantly, that at equilib-
rium, the number of microstates that are consistent with (or
belonging to) the macrostate that we actually observe, is almost
equal to the total number of possible microstates. We shall
come back to these aspects of a physical system in Chapters 6
and 7.

With these further assumptions that would crystallize into
a firm theory of statistical thermodynamics, the atomistic for-
mulation of entropy has gained a decisive victory. The non-
atomistic formulation of the Second Law is still being taught
and applied successfully. There is nothing wrong with it except
for the fact that it does not, and in principle cannot reveal the
secrets ensconced in the concept of entropy.

Boltzmann’s heuristic relation between entropy and the log-
arithm of the total number of states'® did open the door to an
understanding of the meaning of entropy. However, one needs
to take further steps to penetrate the haze and dispel the mystery
surrounding entropy.

There are several routes to achieve this end. I shall discuss the
two main routes. One is based on the interpretation of entropy in
terms of the extent of disorder in a system;2° the second involves

19¥For simplicity and concreteness, think of N particles distributed in M cells. A full
description of the state of the system is a detailed specification of which particle is in
which cell.

20The association of entropy with disorder is probably due to Bridgman (1941;1953).
Guggenheim (1949) suggested the term “spread” to describe the spread over a large
number of possible quantum states. A thorough discussion of this aspect is given by
Denbigh and Denbigh (1985).
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the interpretation of entropy in terms of the missing information
on the system.?!

The first, the older and more popular route, has its origin in
Boltzmann’s own interpretation of entropy: a large number of
states can be conceived of as having a large degree of disorder.
This has led to the common statement of the Second Law of
Thermodynamics that “Nature’s way is to proceed from order
to disorder.”

In my opinion, although the order-disorder interpretation
of entropy is valid in many examples, it is not always obvious.
In a qualitative way, it can answer the question of what is the
thing that changes in some spontaneous processes, but not in
all. However, it does not offer any answer to the question of
why entropy always increases.

The second route, though less popular among scientists is, in
my opinion, the superior one. First, because information is a bet-
ter, quantitative and objectively defined quantity, whereas order
and disorder are less well-defined quantities. Second, informa-
tion, or rather the missing information, can be used to answer
the questions of what is the thing that changes in any spon-
taneous process. Information is a familiar word; like energy,
force or work, it does not conjure up mystery. The measure of
information is defined precisely within information theory. This
quantity retains its basic meaning of information with which we
are familiar in everyday usage. This is not the case when we use
the concept of “disorder” to describe what is the thing that
changes. We shall further discuss this aspect in Chapters 7 and
8. Information in itself does not provide an answer to the ques-
tion of why entropy changes in this particular way. However,
information unlike disorder, is defined in terms of probabilities

2l pformation theory was developed independently of thermodynamics by Claude
Shannon in 1948. It was later realized that Shannon’s informational measure is iden-
tical (up to a constant that determines the units) with Boltzmann’s entropy.
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and as we shall see, probabilities hold the clues to answering the
question “why.”

For these reasons, we shall devote the next chapter to famil-
iarizing ourselves with some basic notions of probability and
information. We shall do that in a very qualitative manner so
that anyone with or without a scientific background can follow
the arguments. All you need is sheer common sense. Once you
acquire familiarity with these concepts, the mystery surround-
ing entropy and the Second Law will disappear, and you will
be able to answer both the questions: “What is the thing that is
changing?” and “Why is it changing in this particular manner?”

50%
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A Brief Introduction to Probability
Theory, Information Theory,
and all the Rest

Probability theory is a branch of mathematics. It has uses in
all fields of science, from physics and chemistry, to biology and
sociology, to economics and psychology; in short, everywhere
and anytime in our lives.

We do probabilistic “calculations” or “assessments,” con-
sciously or unconsciously, in many decisions we make, whether
it be crossing the street, taking a cab, eating never before tried
food, going to war, negotiating a peace treaty and so on. In
many activities we try to estimate the chances of success or
failure.

Without this kind of probabilistic thinking, a doctor could
not diagnose a disease from the symptoms, nor can he or she
prescribe the best medication for a disease that has been diag-
nosed. Likewise, insurance companies cannot tailor-fit the cost
of car insurance to different persons with varying personal
profiles.

The theory of probability sprang from questions addressed
to mathematicians by gamblers, presuming that the mathemati-
cians have a better knowledge of how to estimate the chances of
winning a game. Perhaps, some even believed that certain people

19



20 Entropy Demystified

have “divine” power and that they could predict the outcome
of a game.!

Basically, probability is a subjective quantity measuring
one’s degree or extent of belief that a certain event will occur.?
For instance, I may estimate that there is only a 10% chance
that the suspect has committed a crime and therefore he or she
should be acquitted. However, the judge may reach a completely
different conclusion that the suspect, with high probability, was
guilty. The reason that such an extreme discrepancy exists is
mainly a result of different people having different information
on the evidence and different assessment of this information.
Even when two persons have the same information, they might
process this information in such a way as to reach different esti-
mates of the chances, or the probability of occurrence of an
event (or the extent of plausibility of some proposition).

Out of this highly vague, qualitative and subjective notion,
a distilled, refined theory of probability has evolved which is

1t is interesting to note that the Latin word for “guessing” is adivinaré, or in Spanish
adivinar. The verb contains the root “divine.” Today, when one says, “I guess,” or
when a Spanish speaking person says “yo adivino,” it does not imply that one has
some power to predict the outcome. Originally, the term adivinaré probably implied
some divine power to predict the outcome of an experiment, or a game.

Bennett (1998) comments on this belief and writes: “Ancients believed that the
outcome of events was ultimately controlled by a deity, not by chance. The use of
chance mechanism to solicit divine direction is called divination, and the step taken
to ensure randomness were intended merely to eliminate the possibility of human
interference, so that the will of the deity could be discerned.”
2There is another, more general meaning of probability as a measure of the plausibility
of a proposition, given some information or some evidence, Carnap (1950, 1953);
Jaynes (2005). We shall use the term probability as used in physics. We shall always
discuss events, not propositions. We shall not deal with the question of the meaning
of probability, randomness, etc. These questions encroach upon philosophy. As we
shall discuss in this chapter, questions about probability are always about conditional
probability. Sometimes, the condition is formulated in terms of an event that has
occurred or will occur. Other times, the condition can contain whatever information,
or knowledge given on the event. Without any knowledge, no answer can be given
to any question of probability.
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quantitative and constitutes an objective branch? of mathemat-
ics. Although it is not applicable to all possible events, proba-
bility is applicable to a very large body of events; for instance,
games of chance and many “events” which are the outcomes of
experiments in physics.

Thus, if you claim that there is a probability of 90% that the
Messiah will appear on Monday next week, and I claim that the
chances are only 1%, there is no way to decide who is right or
wrong. In fact, even if we wait for the coming Monday and see
that nothing has happened, we could not tell whose estimate
of the probability was correct.* However, for some classes of
well-defined experiments, there is a probability that “belongs”
to the event, and that probability is accepted by all.

For instance, if we toss a coin which we have no reason to
suspect to be unbalanced or “unfair”, the odds for the outcomes
head (H) or tail (T) are 50%:50%, respectively. In essence, there
is no proof that these are the “correct” probabilities. One can
adopt a practical experimental proof based on actual, numerous

31t should be noted that “objective” here, does not imply “absolute probability.” Any
probability is a “conditional probability,” i.e., given some information, or evidence.
It is objective only in the sense that everyone would come to the same estimate of
probability given the same information. D’Agostini (2003) has used the term “inter-
subjectivity,” others use the term “least subjective.”

4There is a tendency, as one reader of this book commented, to conclude that the
one who made the 1% guess was “correct,” or “more correct” than the one who
did the 90% guess. This is true if we use the term probability colloquially. However,
here we are concerned with the scientific meaning of probability. Suppose I make
a guess that the probability of obtaining the result “4” in throwing a die is 90%,
and you make the guess that the probability is 1%. We throw the die and the result
is “4” (or 2, or any other result). Whose guess was correct? The answer is neither!
In this case, we know the probability of that particular event and the fact that the
event “outcome 4” occurred in a single throw does not prove anything regarding the
probability of that event. In the question we posed about the Messiah, the occurrence
or the non-occurrence of the event does not tell us anything about the probability of
that event. In fact, it is not clear how to define the probability of that event or even
if there exists a “correct” probability of that event.
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tossing of a coin and counting of the frequencies of the out-
comes. If we toss a coin a thousand times, there is a good chance
that about 500 outcomes will turn out to be H and about 500
will turn out to be T; but there is also a chance that we will
get 590 Hs and 410 Ts. In fact, we can get any sequence of
Hs and Ts by tossing the coin a thousand times; there is no
way to derive or to extract the probabilities from such experi-
ments. We must accept the existence of the probabilities in this,
and similar experiments with dice, axiomatically. The odds of
50:50 per cent, or half for H and half for T, must be accepted as
something belonging to the event, much as a quantity of mass
belongs to a piece of matter. Today, the concept of probability
is considered to be a primitive concept that cannot be defined in
terms of more primitive concepts.

Let us go back to the pre-probability theory era from the
16th and 17th centuries, when the concept of probabilities was
just beginning to emerge.

An example of a question allegedly addressed to Galileo
Galilei (1564-1642) was the following:

Suppose we play with three dice and we are asked to bet on
the sum of the outcomes of tossing the three dice simultaneously.
Clearly, we feel that it would not be wise to bet our chances on
the outcome of 3, nor on 18; our feeling is correct (in a sense
discussed below). The reason is that both 3 and 18 have only one
way of occurring; 1:1:1 or 6:6:6, respectively, and we intuitively
judge that these events are relatively rare. Clearly, choosing the
sum, 7, is better. Why? Because there are more partitions of
the number 7 into three numbers (between 1 and 6), i.e., 7 can
be obtained as a result of four possible partitions: 1:1:5, 1:2:4,
1:3:3, 2:2:3. We also feel that the larger the sum, the larger
the number of partitions, up to a point, roughly at the center
between the minimum of 3 and the maximum of 18. But how
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can we choose between 9 and 10? A simple count shows that
both 9 and 10 have the same number of partitions, i.e., the same
number of combinations of integers (from 1 to 6), the sum of
which is 9 or 10. Here are all the possible partitions:

For 9: 1:2:6, 1:3:5, 1:4:4, 2:2:5, 2:3:4, 3:3:3
For 10: 1:3:6, 1:4:5, 2:2:6, 2:3:5, 2:4:4, 3:3:4

At first glance, we might conclude that since 9 and 10 have
the same number of partitions, they should also have the same
chances of winning the game. This conclusion would be wrong
as discussed below. The correct answer is that 10 has better
chances of winning than 9. The reason is that, though the num-
ber of partitions is the same for 9 and 10, the total number
of outcomes of the three dice that sum up to 9, is a little bit
smaller than the number of outcomes for 10. In other words,
the number of partitions is the same, but each partition has a
different “weight,” e.g., the outcome 1:4:4 can be realized in
three different ways:

1:4:4, 4:1:4, 4:4:1

This is easily understood if we use three dice having differ-
ent colors, say blue, red and white, the three possibilities for
1:4:4 are:

blue 1, red4 and white 4
blue4, red1 and white 4
blue4, red4 and whitel

When we count all the possible partitions and all the possible
weights, we get the results shown below.
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All the possible outcomes for sum = 9, for three dice:

1:2:6, 1:3:5, 1:4:4, 2:2:5, 2:3:4, 3:3:3
1:6:2, 1:5:3, 4:1:4, 2:5:2, 2:4:3
2:1:6, 3:1:5, 4:4:1, 5:2:2, 3:2:4

2:6:1, 3:5:1, 3:4:2

6:1:2, 5:1:3, 4:2:3

6:2:1, 5:3:1 4:3:2
Weights: 6 6 3 3 6 1

Total number of outcomes for 9 is 285.

All the possible outcomes for sum = 10, for three dice:

1:3:6, 1:4:5, 2:2:6, 2:3:5, 2:4:4, 3:3:4
1:6:3, 1:5:4, 2:6:2, 2:5:3, 4:2:4, 3:4:3
3:1:6, 4:1:5, 6:2:2, 3:2:5, 4:4:2, 4:3:3

3:6:1, 4:5:1, 3:5:2,
6:1:3, 5:1:4 5:2:3
6:3:1, 5:4:1 5:3:2
Weights: 6 6 3 6 3 3

Total number of outcomes for 10 is 27.

The total distinguishable outcome for the sum of 9 is 25,
and for the sum of 10 is 27. Therefore, the relative chances of
winning with 9 and 10, is 25:27, i.e., favoring the choice of
10. Thus, the best choice of a winning number, presumably as
suggested by Galilei, is 10.

But what does it mean that 10 is the “best” choice and that
this is the “correct” winning number? Clearly, I could choose
10 and you could choose 3 and you might win the game. Does
our calculation guarantee that if I choose 10, I will always win?
Obviously not. So what does the ratio 25:27 mean?
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The theory of probability gives us an answer. It is not a
precise nor a fully satisfactory answer, and it does not guarantee
winning; it only says that if we play this game many times, the
probability that the choice of 9 will win is 2516, whereas the
probability that the choice of 10 will win is slightly larger, 2716
[216 being the total number of possible outcomes; 63 = 216].
How many times do we have to play in order to guarantee my
winning? On this question, the theory is mute. It only says that
in the limit of an infinite number of games, the frequency of
occurrence of 9 should be 25/1¢, and the frequency of occurrence
of 10 should be 27/216. But an infinite number of games cannot be
realized. So what is the meaning of these probabilities? At this
moment, we can say nothing more than that the ratio 27:25,
reflects our belief or our degree of confidence that the number
10 is more likely to win than the number 9.

We shall leave this particular game for now. We shall come
back to this and similar games with more dice later on.

In the aforementioned discussion, we have used the term
probability without defining it. In fact, there have been several
attempts to define the term probability. As it turns out, each
definition has its limitations. But more importantly, each defini-
tion uses the concept of probability in the very definition, i.e., all
definitions are circular. Nowadays, the mathematical theory of
probability is founded on an axiomatic basis, much as Euclid-
ian geometry or any other branch of mathematics is founded on
axioms.

The axiomatic approach is very simple and requires no
knowledge of mathematics. The axiomatic approach was

3 Note that this statement sounds highly subjective. However, this subjectivity should
be accepted by anyone who has common sense and who wants to use the theory of
probability.
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developed mainly by Kolmogorov in the 1930s. It consists of
the following three basic concepts:

1) The sample space. This is the set of all possible outcomes
of a specific, well-defined experiment. Examples: The sample
space of throwing a die consists of six possible outcomes {1, 2,
3,4, 5, 6}; tossing a coin has the sample space consisting of two
outcomes {H:T} (H for head and T for tail). These are called
elementary events. Clearly, we cannot write down the sample
space for every experiment. Some consist of an infinite num-
ber of elements (e.g., shooting an arrow at a circular board);
some cannot even be described. We are interested only in sim-
ple spaces where the counting of the outcomes, referred to as
elementary events, is straightforward.

2) A collection of events. An event is defined as a union, or a
sum of elementary events. Examples:

(a) The result of tossing a die is “even.” This consists of the ele-
mentary events {2, 4, 6}, i.e., either 2 or 4 or 6 has occurred,
or will occur in the experiment of tossing a die.®

(b) The result of tossing a die is “larger than or equal to 5.”
This consists of the elementary events {5, 6}, i.e., either 5 or
6 has occurred.

In mathematical terms, the collection of events consists of
all partial sets of the sample space.”

3) Probability. To each event, we assign a number, referred to as
the probability of that event, which has the following properties:

(a) The probability of each event is a number between zero
and one.

6The use of the past or future does not imply that time is part of the definition of an
event or of probability.

7We shall use only finite sample spaces. The theory of probability also deals with
infinite, or continuous spaces, but we shall not need these in this book.
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(b) The probability of the certain event (i.e., that any of the
outcomes has occurred) is one.

(c) The probability of the impossible event is zero.

(d) If two events are disjoint or mutually exclusive, then the
probability of the sum (or union) of the two events is simply
the sum of the probabilities of the two events.

Condition (a) simply gives the scale of the probability func-
tion. In daily life, we might use the range 0-100% to describe
the chances of, for example, raining tomorrow. In the theory
of probability, the range (0,1) is used. The second condition
simply states that if we do perform an experiment, one of the
outcomes must occur. This event is called the certain event and is
assigned the number one. Similarly, we assign the number zero
to the impossible event. The last condition is intuitively self-
evident. Mutual exclusivity means that the occurrence of one
event excludes the possibility of the occurrence of the second.
In mathematical terms, we say that the intersection of the two
events is empty (i.e., contains no elementary event).

For example, the two events:

A = {the outcome of throwing a die is even}
B = {the outcome of throwing a die is odd}
Clearly, the events A and B are disjoint; the occurrence

of one excludes the occurrence of the other. If we define the
event:

C = {the outcome of throwing a die is

larger than or equal to 5}

Clearly, A and C, or B and C are not disjoint. A and C
contain the elementary event 6. B and C contain the elementary
event 5.

The events, “greater than or equal to 4,” and “smaller than
or equal to 2,” are clearly disjoint. In anticipating the discussion
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below, we can calculate the probability of the first event {4, 5, 6}
to be 3/s, and the probability of the second event {1, 2} to be 2/s;
hence, the combined (or the union) event {1,2,4, 5,6} has the
probability /s, which is the sum of 2/s and 3/s.

A very useful way of demonstrating the concept of probabil-
ity and the sum rule is the Venn diagram. Suppose blindfolded,
we throw a dart at a rectangular board having a total area of
S = A x B. We assume that the dart must hit some point within
the board (Fig. (2.1)). We now draw a circle within the board,

Fig. (2.1)

Fig. (2.2)

Fig. (2.3)
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and ask what the probability of hitting the area within this circle
is.8 We assume by plain common sense, that the probability of
the event “hitting inside the circle” is equal to the ratio of the
area of the circle to the area of the entire board.’

Two regions drawn on the board are said to be disjoint if
there is no overlap between the regions (Fig. (2.2)). It is clear
that the probability of hitting either one region or the other is
the ratio of the area of the two regions, to the area of the whole
board.

This leads directly to the sum rules stated in the axioms
above. The probability of hitting either one of the regions is
the sum of the probabilities of hitting each of the regions.

This sum rule does not hold when the two regions overlap,
i.e., when there are points on the board that belong to both
regions, like the case shown in Fig. (2.3).

It is clear that the probability of hitting either of the regions
is, in this case, the sum of the probabilities of hitting each of the
regions, minus the probability of hitting the overlapping region.
Simply think of the area covered by the two regions; it is the
sum of the two areas of the two regions — minus the area of the
intersection.

On this relatively simple axiomatic foundation, the whole
edifice of the mathematical theory of probability has been
erected. It is not only extremely useful but also an essential tool
in all the sciences and beyond. As you must have realized, the

8We exclude from the present discussion the question of hitting exactly a specific
point, or exactly a specific line, like the perimeter of the circle, the probability of which
is negligible in practice, and zero in theory. We shall use the Venn diagrams only for
illustrations. In actual calculations of probabilities in the forthcoming chapters, we
shall always use finite sample spaces.

9 Actually, we are asking about the conditional probability that the dart hit the circle,
given that the dart has hit the board. See below on conditional probability.
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basics of the theory are simple, intuitive, and require no more
than common sense.

In the axiomatic structure of the theory of probability, the
probabilities are said to be assigned to each event.!® These
probabilities must subscribe to the four conditions a, b, ¢, and
d. The theory does not define probability, nor does it pro-
vide a method for calculating or measuring probabilities.!! In
fact, there is no way of calculating probabilities for any gen-
eral event. It is still a quantity that measures our degree or
extent of belief of the occurrence of certain events, and as
such, it is a highly subjective quantity. However, for some sim-
ple experiments, say tossing a coin, throwing a die, or find-
ing the number of atoms in a certain region of space, we
have some very useful methods of calculating the probabil-
ities. They have their limitations and they apply to “ideal”
cases, yet these probabilities turn out to be extremely use-
ful. What is more important, since these are based on com-
mon sense reasoning, we should all agree that these are the
“correct” probabilities, i.e., these probabilities turn from being
subjective quantities to objective quantities. We shall describe
two very useful “definitions” that have been suggested for this
concept.

101 mathematical terms, probability is a measure defined for each event. Much
as the length, the area or the volume of a region in one, two or three dimensions,
respectively. In the example using the Venn diagrams, we also take the area of a
region as a measure of the relative probability.

Hin fact, even Kolmogorov himself was well aware that he left the ques-
tion of the meaning or the definition of probability unanswered! It is now
almost universally accepted that probability is an un-definable primitive. Some
authors of textbooks on probability even retrained from defining the term
probability.
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2.1. The Classical Definition

This definition is sometimes referred to as the a priori defini-
tion.!? Let N(total) be the total number of possible outcomes
of a specific experiment. For example, N(total) for throwing a
die is six, i.e., the six outcomes (or six elementary events) of
this experiment. We denote by N(event), the number of out-
comes (i.e., elementary events) that are included in the event
that we are interested in. For example, the number of elemen-
tary events included in the event “even” is 3, i.e., {2,4, 6}. The
probability of the “event,” in which we are interested, is defined
as the ratio N(event)/N(total). We have actually used this intu-
itively appealing definition when calculating the probability of
the event “greater than or equal to 4.” The total number of ele-
mentary events (outcomes) of throwing a die is N(total) = 6.
The number of elementary events included in the event “greater
than orequal to4” is N(event) = 3, hence, the probability of this
event is 3/5 or 15, which we all agree is the “correct” probability.

However, care must be taken in applying this definition of
probability. First, not every event can be “decomposed” into
elementary events, e.g. the event “tomorrow, it will start rain-
ing at 10 o’clock.” But more importantly, the above formula
presumes that each of the elementary events has the same like-
lihood of occurrence. In other words, each elementary event
is presumed to have the same probability; /s in the case of a
die. But how do we know that? We have given a formula for

1256me authors object to the use of the term “a priori.” Here, we use that term
only in the sense that it does not rely on an experiment to find out the probabilities.
Also, the term “classical” is not favored by some authors. D’ Agostini (2003) prefers
to call this method the “combinatorial” method. It should be noted, however, that
“combinatorics” is an exact branch of mathematics dealing with the number of ways
of doing certain things. As such, it has nothing to do with probability. However, in
probability, one uses the combinatorial method to calculate probabilities according
to the classical definition.
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calculating the probability of an event based on the knowledge
of the probabilities of each of the elementary events. This is the
reason why the classical definition cannot be used as a bona
fide definition of probability; it is a circular definition. In spite
of that, this “definition” (or rather the method of calculating
probabilities) is extremely useful. Clearly, it is based on our
belief that each elementary event has an equal probability, 1/.
Why do we believe in that assertion? The best we can do is to
invoke the argument of symmetry. Since all faces are presumed
equivalent, their probabilities must be equal. This conclusion
should be universally agreed upon, as much as the axiomatic
assertion that two straight lines will intersect at most, at a sin-
gle point. Thus, while the probability of the event “it will rain
tomorrow” is highly subjective, the probability that the outcome
of the event “even” in throwing a die is 1/, should be agreed
upon by anyone who intends to use the probabilistic reasoning,
as much as anyone who intends to use geometrical reasoning
should adopt the axioms of geometry.

As in geometry, all of the probabilities as well as all the
theorems derived from the axioms apply strictly to ideal cases;
a “fair” die, or a “fair” coin. There is no definition of what
a fair die is. It is as much an “ideal” concept as an ideal or
Platonic circle or cube.'3 All real dice, as all cubes or spheres,
are only approximate replicas of the ideal Platonic objects. In
practice, if we do not have any reason to suspect that a die is not
homogenous or unsymmetrical, we can assume that it is ideal.

In spite of this limitation, this procedure of calculating prob-
abilities is very useful in many applications. One of the basic

130f course, one assumes not only that the die is fair, but also that the method of
throwing the die is “fair” or unbiased. The definition of a “fair” die, or the “random”
toss of it, also involves the concept of probability. We might also add that informa-
tion theory provides a kind of “justification” for the choice of equal probabilities.
Information theory provides a method of guessing the best probabilities based on
what we know, all we know, and nothing but what we know on the experiment.
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postulates of statistical mechanics is that each of the microstates
comprising a macroscopic system has the same probability.
Again, one cannot prove that postulate much less than one can
“prove” the assertion that each outcome of throwing a die is
1/6. This brings us to the second “definition,” or if you like, the
second procedure of calculating probabilities.

2.2. The Relative Frequency Definition

This definition is referred to as the a posteriori or “experimen-
tal” definition since it is based on actual counting of the relative
frequency of the occurrence of events.

The simplest example would be tossing a coin. There are
two possible outcomes; head (H) or tail (T). We exclude the
rare events, such as the coin falling exactly perpendicular to
the floor, breaking into pieces during the experiment, or even
disappearing from sight so that the outcome is indeterminable.

We proceed to toss a coin N times. The frequency of occur-
rence of heads is recorded. This is a well-defined and feasi-
ble experiment. If #(H) is the number of heads that occurred
in N(total) trials, then the frequency of occurrence of head is
n(H)/N(total). The probability of occurrence of the event “H,”
is defined as the limit of this frequency when N tends to infin-
ity.1* Clearly, such a definition is not practical; first, because

14The frequency definition is

.. n(H)
Pr(H)= 1 f
r{H) N(;gtl;l:)ioo N(total)

This may be interpreted in two different ways. Either one performs a sequence of exper-
iments, and measure the limit of the relative frequency when the number of experi-
ments is infinity, or throw infinite coins at once and count the fraction of coins which
turned out to be H. One of the fundamental assumptions of statistical mechanics is that
average quantities calculated by either methods will give the same result. This hypoth-
esis is the seed of a whole branch of mathematics known as Ergodic theory.
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we cannot perform infinite trials. Second, even if we could, who
could guarantee that such a limit exists at all? Hence, we can
only imagine what this limit will be. We believe that such a limit
exists, and it is unique; but, in fact, we cannot prove that.

In practice, we do use this definition for a very large number
N. Why? Because we believe that if N is large enough and if
the coin is fair, then there is a high probability that the relative
frequency of occurrence of heads will be 15.15 We see that we
have used the concept of probability again in the very definition
of probability.

This method could be used to “prove” that the probabil-
ity of each outcome of throwing a die is 1/s. Simply repeat the
experiment many times and count the number of times that the
outcome 4 (or any other outcome) has occurred. The relative
frequency can serve as “proof” of the probability of that event.
This reasoning rests on the belief that if N is large enough, we
should get the frequency of one out of six experiments. But what
if we do the experiment a million times and find that the result
“4” occurred in 0.1665 of the times (instead of 0.1666...)?
What could be concluded? One conclusion could be that the
die is “fair,” but we did not run enough experiments. The sec-
ond conclusion could be that the die is unfair, and that it is
slightly heavier on one side. The third conclusion could be that
the throwing of the die was not perfectly random. So, how do
we estimate the probability of an event? The only answer we
can give is that we believe in our common sense. We use com-
mon sense to judge that because of the symmetry of the die (i.e.,
all faces are equivalent), there must be equal probability for the
outcome of any specific face. There is no way we can prove that.

I51n fact, we believe that this is the right result even without actually doing the
experiment. We are convinced that by doing a mental experiment, the result will
converge to the right probability. If we do the experiment of say, throwing a die, and
find that the frequency of occurrence of the event “even” is indeed nearly 12, which
is consistent with the result we have calculated from the classical definition, then we
get further support to the “correctness” of our assignment of probabilities.
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All we can say is that if the die is ideal (such a die does not exist),
then we believe that if we toss the die many times, the outcome
of say, 4, showing up in the long run is 1/5 of the total number
of experiments. This belief, though it sounds subjective, must
be shared by all of us and regarded as objective. You have the
right not to agree to this. However, if you do not agree to this,
you cannot use the theory of probability, nor be convinced by
the arguments presented in the rest of the book.

It should be noted, however, that the identification of the
elementary events is not always simple or possible. We present
one famous example to demonstrate this. Suppose we have
N particles (say electrons) and M boxes (say energy levels).
There are different ways of distributing the N particles in the
M boxes. If we have no other information, we might assume
that all the possible configurations have equal likelihood.
Figure (2.4) shows all the possible configurations for N = 2
particles in M = 4 boxes.

We can assign equal probabilities to all of these 16 config-
urations. This is referred to as “classical statistics” — not to
be confused with the “classical” definition of probability. This
would be true for coins or dice distributed in boxes. It would
not work for molecular particles distributed in energy levels.
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oy

Bose Einstein Configurations.

Fig. (2.5)

Fermi Dirac Configurations.

Fig. (2.6)

It turns out that Nature imposes some restrictions as to
which configurations are to be counted as elementary events.
Nature also tells us that there are two ways of listing elemen-
tary events, depending on the type of particles. For one type of
particle (such as photons or *He atoms) called bosons, only 10
out of these configurations are to be assigned equal probability.
These are shown in Fig. (2.5).

The second group of particles (such as electrons or protons),
referred to as fermions, are allowed only six of these configura-
tions. These are shown in Fig. (2.6).
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In the first case (Fig. (2.5)), we say that the particles obey
the Bose-Einstein statistics, and in the second case (Fig. (2.6)),
we say that the particles obey the Fermi-Dirac statistics. I have
brought up this example here only to show that in general, we
do not have a universal rule on how to enumerate the elementary
events. It is only through trial and error that one can proceed to
select the elementary events, and then find whatever theoretical
support there is for the eventual correct selection. In this manner,
deep and profound principles of physics were discovered.'®

2.3. Independent Events and Conditional Probability

The concepts of dependence between events and conditional
probability are central to probability theory and have many
uses in science.!” In this book, we shall need only the con-
cept of independence between two events. However, reasoning
based on conditional probability appears in many applications
of probability.

Two events are said to be independent if the occurrence
of one event has no effect on the probability of occurrence of
the other.

For example, if two persons who are far apart throw a fair
die each, the outcomes of the two dice are independent in the
sense that the occurrence of say, “5” on one die, does not have

16In Fig. (2.5), we have eliminated six configurations (within the dashed rectangle
in Fig. (2.4)). All of these were counted twice in Fig. (2.4), when the particles are
indistinguishable. In Fig. (2.6), we have further eliminated four more configurations
(within the dashed-dotted rectangle in Fig. (2.4). For Fermion particles, two particles
in one box is forbidden. (This is called the Pauli’s exclusion principle.) It turns out
that these rules follow from some symmetry requirements on the wave functions of
the system of particles. To the best of my knowledge, the assignment of probabilities
preceded the discovery of the principles of symmetry.

171t should be noted that the introduction of conditional probabilities and inde-
pendence between events is unique to probability theory, and that is what makes
probability theory differ from set theory and measure theory.
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.

Fig. (2.7)

any effect on the probability of occurrence of a result, say, “3,”
on the other (left pair of dice in Fig. (2.7)). On the other hand,
if the two dice are connected by an inflexible wire (right pair in
Fig. (2.7)), the outcomes of the two results will be dependent.
Intuitively, it is clear that whenever two events are independent,
the probability of the occurrence of both events, say, “5” on
one die, and outcome “3” on the other, is the product of the
two probabilities. The reason is quite simple. By tossing two
dice simultaneously, we have altogether 36 possible elementary
events. Each of these outcomes has an equal probability of 1/36,
which is also equal to 1/s times 1/, i.e., the product of the prob-
abilities of each event separately.

A second fundamental concept is conditional probability.
This is defined as the probability of the occurrence of an event
A given that an event B has occurred. We write this as Pr {A/B}
(Read: Probability of A given B).!8

Clearly, if the two events are independent, then the occur-
rence of B has no effect on the probability of the occurrence of A.
We write that as Pr{A/B} = Pr{A}. The interesting cases occur
when the events are dependent, i.e., when the occurrence of one
event does affect the occurrence of the other. In everyday life,
we make such estimates of conditional probabilities frequently.

Sometimes, the occurrence of one event enhances the
probability of the second event; sometimes it diminishes it.

18Note that the conditional probability is defined only for a condition, the probability
of which is not zero. In the abovementioned example, we require that the event B is
not an impossible event.
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Examples:

1) The probability that it will rain today in the afternoon, given
that the sky is very cloudy at noon, is larger than the proba-
bility of “raining today in the afternoon.”

2) The probability that it will rain today in the afternoon, given
that the sky is clear at noon, is smaller than the probability
of “raining today in the afternoon.”

3) The probability that it will rain today, given that the out-
come of tossing a die is “4,” is the same as the probability
of “raining today.”

We can say that in the first example, the two events are
positively correlated; in the second example, they are negatively
correlated; and in the third example, they are uncorrelated or
indifferent.!”

In the three examples given above, we feel that the statements
are correct. However, we cannot quantify them. Different per-
sons would have made different estimates of the probabilities of
“raining today in the afternoon.”

To turn to things more quantitative and objective, let us
consider the following events:

A = {The outcome of throwing a die is “4”}

B = {The outcome of throwing a die is “even”} (i.e., it is one
of the following: 2,4, 6)

C = {The outcome of throwing a die is “odd”} (i.e., it is

one of the following: 1, 3, 5)

91n the theory of probability, correlation is normally defined for random variables.
For random variables, “independent” and “uncorrelated” events are different con-
cepts. For single events, the two concepts are identical.
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We can calculate the following two conditional probabilities:

Pr{of A/ given B} =13 > Pr{of A} =1/
Pr{of A/ given C} =0 < Pr{of A} =1

In the first example, the knowledge that B has occurred
increases the probability of the occurrence of A. Without that
knowledge, the probability of A is 1/s (one out of six possibili-
ties). Given the occurrence of B, the probability of A becomes
larger, 1/3 (one out of three possibilities). But given that C has
occurred, the probability of A becomes zero, i.e., smaller than
the probability of A without that knowledge.

It is important to distinguish between disjoint (i.e., mutu-
ally exclusive events) and independent events. Disjoint events
are events that are mutually exclusive; the occurrence of one
excludes the occurrence of the second. Being disjoint is a prop-
erty of the events themselves (i.e., the two events have no com-
mon elementary event). Independence between events is not
defined in terms of the elementary events comprising the two
events, but in terms of their probabilities. If the two events
are disjoint, then they are strongly dependent. The following
example illustrates the relationship between dependence and the
extent of overlapping.

Let us consider the following case. In a roulette, there are
altogether 12 numbers {1, 2, 3,4,5,6,7,8,9,10,11,12}

Each of us chooses a sequence of six consecutive numbers,
say, I choose the sequence:

A=1{1,2,3,4,5,6}
and you choose the sequence:
B =1{7,8,9,10,11,12}

The ball is rolled around the ring. We assume that the
roulette is “fair,” i.e., each outcome has the same probability
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Fig. (2.8)

of 1/15. If the ball stops in my territory, i.e., if it stops at any of
the numbers I chose {1,2, 3,4, 5, 6}, I win. If the ball stops in
your territory, i.e., if it stops at any of the numbers you chose
(7,8,9,10,11, 12}, you win.

Clearly, each of us has a probability, 1/, of winning. The
ball has an equal probability of 1/12 of landing at any number,
and each of us has 6 numbers in each territory. Hence, each of
us has the same chances of winning.

Now, suppose we run this game and you are told that I won.
What is the probability that you will win if you chose B? Clearly,
Pr{B/A} = 0 < 1h, i.e., the conditional probability of B given
A, is zero, which is smaller than the unconditional probability,
Pr{B} = 1h. As a simple exercise, try to calculate the follow-
ing conditional probabilities. In each example, my choice of the
sequence A = {1,..., 6} is fixed. Calculate the conditional prob-
abilities for the following different choices of your sequence.
(Note that in this game both of us can win simultaneously.)

Pr{7,8,9,10,11,12/A}, Pr{6,7,8,9,10,11/A},
Pr{5,6,7,8,9,10/A}, Pr{4,5,6,7,8,9/A},
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Pr{3,4,5,6,7,8/A), Pr{2,3,4,5,6,7/A},
Pr{1,2,3,4,5,6/A).

Note how the correlation changes from extreme negative
(“given A” certainly excludes your winning in the first exam-
ple), to extreme positive (“given A” assures your winning in
the last example). At some intermediate stage, there is a choice
of a sequence that is indifferent to the information “given A.”
Which is the choice? If you can calculate all the abovementioned
conditional probabilities, it shows that you understand the dif-
ference between disjoint events and independent events. If you
cannot do the calculations, look at the answer at the end of this
chapter. It is a nice exercise, although it is not essential for an
understanding of the Second Law.

2.4. Three Caveats
2.4.1. Conditional probability and subjective probability

There is a tendency to refer to “probability” as objective, and
to conditional probability as subjective. First, note that proba-
bility is always conditional. When we say that the probability
of the outcome “4” of throwing a die is 1/, we actually mean
that the conditional probability of the outcome “4,” given that
one of the possible outcomes: 1, 2, 3, 4, 5, 6 has occurred, or
will occur, that the die is fair and that we threw it at random,
and any other information that is relevant. We usually suppress
this given information in our notation and refer to it as the
unconditional probability. This is considered as an objective
probability.2°

20Here, we want to stress the change in the extent of “objectivity” (or subjectivity),
when moving from probability of an event to a conditional probability.
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Now, let us consider the following two pairs of examples:

O1: The conditional probability of an outcome “4,” given that
Jacob knows that the outcome is “even,” is 1/3.

O3: The conditional probability of an outcome “4,” given that
Abraham knows that the outcome is “odd,” is zero.

S1: The conditional probability that the “defendant is guilty,”
given that he was seen by the police at the scene of the crime,
1s 9/10.

S»: The conditional probability that the “defendant is guilty,”
given that he was seen by at least five persons in another city at
the time of the crime’s commission, is nearly zero.

In all of the aforementioned examples, there is a tendency to
refer to conditional probability as a subjective probability. The
reason is that in all the abovementioned examples, we involved
personal knowledge of the conditions. Therefore, we judge that
it is highly subjective. However, that is not so. The two proba-
bilities, denoted O and O3, are objective probabilities.

The fact that we mention the names of the persons, who are
knowledgeable of the conditions, does not make the conditional
probability subjective. We could make the same statement as in
O1, but with Rachel instead of Jacob. The conditional prob-
ability of an outcome “4,” given that Rachel knows that the
outcome is even, is 1/3. The result is the same. The subjectivity
of this statement is just an illusion resulting from the involve-
ment of the name of the person who “knows” the condition. A
better way of rephrasing O1 is:

The conditional probability of an outcome “4,” given that
we know that the outcome is even, is 1/3, or even better; the con-
ditional probability of an outcome “4,” given that the outcome
is “even,” is 1/3.

In the last two statements, it is clear that the fact that Jacob
or Rachel, or anyone of us knowing the condition does not
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have any effect on the conditional probability. In the last state-
ment, we made the condition completely impersonal. Thus, we
can conclude that the given condition does not, in itself, con-
vert an objective (unconditional) probability into a subjective
probability.

Consider the following paragraph from Callen (1983):

“The concept of probability has two distinct interpreta-
tions in common usage. ‘Objective probability’ refers to
a frequency, or a fractional occurrence; the assertion that
‘the probability of newborn infants being male is slightly
less than one half’ is a statement about census data. ‘Sub-
jective probability’ is a measure of expectation based on
less than optimum information. The (subjective) prob-
ability of a particular yet unborn child being male, as
assessed by a physician, depends upon that physician’s
knowledge of the parents’ family histories, upon accumu-
lating data on maternal hormone levels, upon the increas-
ing clarity of ultrasound images, and finally upon an edu-
cated, but still subjective, guess.”

Although it is not explicitly said, what the author implies is that
in the first example: “the probability of a newborn infant being
male is slightly less than one half” as stated is an answer to an
unconditional probability question, “What is the probability of
a newborn infant being male?” The second example is cast in
the form of an answer to a conditional probability question:
“What is the probability of a particular yet unborn child being
male, given. .. all the information as stated.”

Clearly, the answer to the second question is highly subjec-
tive. Different doctors who are asked this question will give dif-
ferent answers. However, the same is true for the first question
if given different information. What makes the second ques-
tion and its answer subjective is not the condition or the specific
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information, or the specific knowledge of this or that doctor, but
the lack of sufficient knowledge. Insufficient knowledge confers
liberty to give any (subjective) answer to the second question.
The same is true for the first question. If all the persons who
are asked have the same knowledge as stated, i.e. no informa-
tion, they are free to give any answer they might have guessed.
The first question is not “about the census data” as stated in
the quotation; it is a question on the probability of the occur-
rence of a male gender newborn infant, given the information
on “census data.” If you do not have any information, you can-
not answer this “objective question,” but anyone given the same
information on the “census data” will necessarily give the same
objective answer.

There seems to be a general agreement that there are essen-
tially two distinct types of probabilities. One is referred to as the
judgmental probability which is highly subjective, and the sec-
ond is the physical or scientific probability which is considered
as an objective probability. Both of these can either be condi-
tional or unconditional. In this book, we shall use only scien-
tific, hence, objective probabilities. In using probability in all
the sciences, we always assume that the probabilities are given
either explicitly or implicitly by a given recipe on how to calcu-
late these probabilities. While these are sometimes very easy to
calculate, at other times, they are very difficult,?! but you can

21¥or instance, the probability of drawing three red marbles, five blue marbles and
two green marbles from an urn containing 300 marbles, 100 of each color, given that
the marbles are identical and that you drew 10 marbles at random, and so on. .. This
is a slightly more difficult problem, and you might not be able to calculate it, but
the probability of this event is “there” in the event itself. Similarly, the probability of
finding two atoms at a certain distance from each other, in a liquid at a given temper-
ature and pressure, given that you know and accept the rules of statistical mechanics,
and that you know that these rules have been extremely useful in predicting many
average properties of macroscopic properties, etc. This probability is objective! You
might not be able to calculate it, but you know it is “there” in the event.
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always assume that they are “there” in the event, as much as
mass is attached to any piece of matter.

2.4.2. Conditional probability and cause and effect

The “condition” in the conditional probability of an event may
or may not be the cause of the event. Consider the following
two examples:

1. The conditional probability that the patient will die of lung
cancer, given that he or she is a heavy smoker, is 9/10.

2. The conditional probability that the patient is a heavy smoker
given that he or she has lung cancer, is 9/10.

Clearly, the information given in the first condition is the
cause (or the very probable cause) of the occurrence of lung
cancer. In the second example, the information that is given in
the condition — that the patient has cancer, certainly cannot be
the cause of the patient being a heavy smoker. The patient could
have started to smoke at age 20, at a much earlier time before
the cancer developed.

Although the two examples given above are clear, there are
cases where conditional probability is confused with causation.
As we perceive causes as preceding the effect, so also is the con-
dition perceived as occurring earlier in conditional probability.

Consider the following simple and illustrative example that
was studied in great detail by Ruma Falk (1979).22 You can view
it as a simple exercise in calculating conditional probabilities.
However, I believe this example has more to it. It demonstrates
how we would intuitively associate conditional probability with
the arrow of time, confusing causality with conditional prob-
abilistic argument. This may or may not be relevant to the

22This example and the analysis of its implication is taken from Falk (1979).
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association of the direction of change of entropy with the arrow
of time (discussed further in Chapter 8).

The problem is very simple; an urn contains four balls, two
white and two black. The balls are well mixed and we draw one
ball, blindfolded.

First we ask: What is the probability of occurrence of the
event, “White ball on first draw?” The answer is immediate:
1. There are four equally probable outcomes; two of them are
consistent with the “white ball” event, hence, the probability of
the event is 2/4 = 1.

Next we ask: What is the conditional probability of drawing
a white ball on a second draw, given that in the first draw, we
drew a white ball (the first ball is not returned to the urn). We
write this conditional probability as Pr{White, / White,}. The
calculation is very simple. We know that a white ball was drawn
on the first trial and was not returned. After the first draw, there
are three balls left; two blacks and one white. The probability
of drawing a white ball is simply 1/3.

This is quite straightforward. We write

Pr{White, / White1} = 1/3

Now, the more tricky question: What is the probability that
we drew a white ball in the first draw, given that the second
draw was white? Symbolically, we ask for

Pr{White1 / White,} = ?

This is a baffling question. How can an event in the “present”
(white ball on the second draw), affect the probability of an
event in the “past” (white drawn in the first trial)?

These questions were actually asked in a classroom. The
students easily and effortlessly answered the question about
Pr{White,/ White,}, arguing that drawing a white ball on the
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first draw has caused a change in the urn, and therefore has
influenced the probability of drawing a second white ball.

However, asking about Pr{White;/White;} caused an
uproar in the class. Some claimed that this question is mean-
ingless, arguing that an event in the present cannot affect the
probability of an event in the past. Some argued that since the
event in the present cannot affect the probability of the event in
the past, the answer to the question is 12. They were wrong. The
answer is 1/3. Further discussion of this problem and Falk’s anal-
ysis can be found in Falk (1979). I want to draw the attention of
the reader to the fact that we are sometimes misled into associat-
ing conditional probability with cause and effect, hence we intu-
itively perceive the condition as preceding the effect; hence, the
association of conditional probability with the arrow of time.

The distinction between causation and conditional probabil-
ity is important. Perhaps, we should mention one characteristic
property of causality that is not shared by conditional probabil-
ity. Causality is transitive. This means that if A causes B, and B
causes C, then A causes C. A simple example: If smoking causes
cancer, and cancer causes death, then smoking causes death.

Conditional probability might or might not be transitive. We
have already distinguished between positive correlation (or sup-
portive correlation) and negative correlation (counter or anti-
supportive).

If A supports B, i.e., the probability of occurrence of B
given A, is larger than the probability of occurrence of B,
[Pr{B/A} > Pr{B}], and if B supports C (i.e., [Pr{C/B} > Pr{C}],
then it does not necessarily follow, in general, that A supports C.

Here is an example where supportive conditional probability
is not transitive. Consider the following three events in throwing
a die:

A:{15233)4}3 B:{2339435}3 C:{3543536}
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Clearly, A supports B [i.e., [Pr{B/A} = 3/4 > P{B} = 2/5]. B
supports C [i.e., [Pr{C/B} = 3/4 > P{B} = 2/3], but A does not
support C [i.e., [Pr{C/A} = 1/ < P{C} = 23]

2.4.3. Conditional probability and joint probability

If you have never studied probability, you might benefit from
reading this caveat.

I had a friend who used to ride a motorcycle. One night,
while driving on the highway, he was hit by a truck and was
seriously injured. When I visited him in the hospital, he was
beaming and in a euphoric mood. I was sure that was because
of his quick and complete recovery. To my surprise, he told
me that he had just read an article in which statistics about the
frequencies of car accidents were reported. It was written in the
article that the chances of getting involved in a car accident is one
in a thousand. The chance of being involved in two accidents in a
lifetime, is about one in a million. Hence, he happily concluded:
“Now that I had this accident, I know that the chances of me
being involved in another accident are very small. . ..” 1 did not
want to dampen his high spirits. He was clearly confusing the
probability of “having two accidents in a lifetime,” with the
conditional probability of “having a second accident, given that
you were involved in one accident.”

Of course, he might have been right in his conclusion. How-
ever, his probabilistic reasoning was wrong. If the accident was
a result of his fault, then he might take steps to be very care-
ful in the future, and might avoid driving on the highways,
or at night, or stop riding a motorcycle altogether. All these
will reduce his chances of getting involved in a second acci-
dent. But this argument implies that there is dependence between
the two events, i.e., the “given condition” affects the chance of
being involved in a second accident. If, however, there is no
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dependence between the events, say, if the accident was not his
fault, even if he could be extremely careful in the future, the
chances of his being involved in the next accident could not be
reduced merely because he was involved in one accident!

Let us make the arguments more precise. Suppose that you
tossed a coin 1000 times and all of the outcomes turned out
to be heads H. What is the probability of the next outcome to
be H? Most untrained people would say that chances of having
1001 heads are extremely small. That is correct. The chances are
(1/2)1001, extremely small indeed. But the question was on the
conditional probability of a result H given 1000 heads in the last
1000 tosses. This conditional probability is one half (assuming
that all the events are independent).

The psychological reason for the confusion is that you know
that the probability of H and T is half. So if you normally make
1000 throws, it is most likely that you will get about 500 H
and 500 T. Given that the first 1000 throws result in heads
(though a very rare event) is possible, you might feel that “it is
time that the chances will turn in favor of T,” and the sequence
of outcome must behave properly. Therefore, you feel that the
chances of a tail T, given that 1000 heads have occurred, are
now close to one. That is wrong, however. In fact, if a coin
shows 1000 outcomes in a row to be H, I might suspect that
the coin is unbalanced, and therefore I might conclude that the
chances of the next H are larger than 1.

To conclude, if we are given a fair coin, and it is tossed
at random (which is equivalent to saying that the probability
of H is 1/2), the probability of having 1000 outcomes of H is
very low (14)1990 but the conditional probability of having
the next H, given “1000-in-a-row-of-heads” is still 1. This
is of course true presuming that the events at each toss are
independent.
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2.5. ATeaspoon of Information Theory

Information theory was born in 1948.23 “Information,” like
probability, is a qualitative, imprecise and very subjective con-
cept. The same “information” obtained by different people will
have different meanings, effects and values.

If I have just invested in IBM stocks while you have just sold
yours, we shall have very different reactions upon reading the
news that IBM has just launched a new, highly advanced com-
puter. A farmer in Mozambique who happens to hear exactly
the same news would be indifferent to this news; in fact, it might
even be meaningless to him.

Just as probability theory has developed from a subjective
and imprecise concept, so has information theory, which was
distilled and developed into a quantitative, precise, objective and
very useful theory. For the present book, information theory
serves as an important milestone in the understanding of the
meaning of entropy.*

Originally, information theory was introduced by Claude
Shannon (1948) in the context of transmission of information
along communication lines. Later, it was found to be very useful
in statistical mechanics, as well as in many other diverse fields of
research e.g. linguistics, economics, psychology and many other
areas.

I shall present here only a few of the most basic ideas from
information theory — the minimum knowledge necessary to
use the term “information,” in connection with the meaning of
entropy and to answer the question, “What is the thing that

23Shannon (1948).

24Some authors prefer to refer to the missing information as the “uncertainty.”
Although I think that uncertainty is an appropriate term, my personal inclination
is to prefer “information” or “missing information.” I believe that in the context of
the application of information theory to statistical mechanics, as cogently developed
by Jaynes (1983) and Katz (1967), the word “information” is preferable.
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changes?” In Chapter 8, I will argue that entropy is nothing but
missing information as defined in information theory.

Let us start with a familiar game. I choose an object or a per-
son, and you have to find out who or what I have chosen, by ask-
ing binary questions, i.e., questions which are only answerable
by yes or no. Suppose I have chosen a person, say Einstein, you
have to find out who the person is by asking binary questions.
Here are the two possible “strategies” for asking questions:

Dumb “Strategy” Smart “Strategy”
1) Is it Nixon? 1) Is the person a male?
2) Is it Gandhi? 2) Is he alive?
3) Is it me? 3) Is he in politics?
4) Is it Marilyn Monroe? 4) Is he a scientist?
5) Is it you? 5) Is he very well-known?
6) Is it Mozart? 6) Is he Einstein?
7) Is it Niels Bohr?
8)

I have qualified the two strategies as “dumb” and “smart.”
The reason is quite simple and I hope you will agree with me.
The reason is as follows: If you use the first “strategy,” you
might of course, hit upon the right answer on the first ques-
tion, while with the smart “strategy,” you cannot possibly win
after one question. However, hitting upon the right answer on
the first guess is highly improbable. It is more likely that you
will keep asking “forever,” specific questions like those in the
list, never finding the right answer. The reason for preferring
the second “strategy” is that at each answer, you gain more
information (see below), i.e., you exclude a large number of
possibilities (ideally, half of the possibilities; see below for the
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more precise case). With the smart “strategy,” if the answer to
the first question is YES, then you have excluded a huge number
of possibilities — all females. If the answer to the second ques-
tion is NO, then you have excluded all living persons. In each
of the additional answers you get, you narrow down further the
range of possibilities, each time excluding a large group. With
the dumb “strategy”, however, assuming you are not so lucky
to hit upon the right answer on the first few questions, at each
point you get an answer, you exclude only one possibility, and
practically, you almost have not changed the range of unknown
possibilities. Intuitively, it is clear that by using the smart “strat-
egy,” you gain more information from each answer than with
the dumb “strategy,” even though we have not defined the term
information. It seems better to be patient and choose the smart
“strategy,” than to rush impatiently and try to get the right
answer quickly.

All that I have said above is very qualitative. That is also
the reason I put the word “strategy” in quotation marks. The
term “information” as used here is imprecise (to be made more
precise within the framework of information theory). However,
I hope you will agree with me and you will intuitively feel that I
have correctly deemed the first list as “dumb™ questions and the
second as “smart.” If you do not feel so, you should try to play
the game several times, switching between the two strategies.
[ am sure you will find out that the smart strategy is indeed
the smarter one. Shortly, we shall make the game more precise,
and justify why one set of questions is deemed “dumb” and the
other set “smart,” and more importantly, you will have no other
choice but to concur with me and be convinced, that the “smart”
strategy is indeed the smartest one. Before doing that, however,
let us ponder on this very simple game and try to understand
why we cannot make any precise statement regarding the merits
of the two strategies.



54 Entropy Demystified

First, you can always argue that since you know I am a sci-
entist, and that I am likely to choose a person like Einstein, then
it would be better for you to choose the first strategy and you
might even succeed. However, knowing that you know that I
am a scientist, and that you might think I am likely to choose
Einstein, I could outsmart you and choose Kirk Douglas instead.
Perhaps, you could “out-out” smart me by knowing that I am
likely to outsmart you and choose Kirk Douglas, and so on.
Clearly, it is very difficult to argue along these lines.

There are many other elements of subjectivity that might
enter into the game. To further illustrate this, you might have
heard in this morning’s news that a long sought serial killer was
captured, and you might guess, or know, that I have heard the
same news, and since it is still very fresh on my mind, that [ am
likely to choose that person.

That is why one cannot build a mathematical theory of
information on this kind of game. There are too many quali-
tative and subjective elements that resist quantification. Never-
theless, thanks to Shannon’s information theory, it is possible to
“reduce” this type of game in such a way that it becomes devoid
of any traces of subjectivity. Let us now describe a new game
that is essentially the same as before, but in its distilled form, is
much simpler and more amenable to a precise, quantitative and
objective treatment.

Let us have eight equal boxes (Fig. (2.9)). T hide a coin in one
of the boxes and you have to find where I hid it. All you know
is that the coin must be in one of the boxes, and that I have no
“preferred” box. Since the box was chosen at random, there is a
1/ chance of finding the coin in any specific box. To be neutral,
the box was selected by a computer which generated a random
number between 1 and 8, so you cannot use any information you
might have on my personality to help you in guessing where [ am
“likely” to have placed the coin.
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Second question

Third question First question
N =16 N =32
Log ,N =4 Log,N =5
Fig. (2.9)

Note that in this game, we have completely removed any
traces of subjectivity — the information we need is “where the
coin is.” The “hiding” of the coin can be done by a computer
which chooses a box at random. You can also ask the computer
binary questions to find the coin’s location. The game does not
depend on what you know or on what the computer knows;
the required information is there in the game, independent of
the players’ personality or knowledge. We shall shortly assign a
quantitative measure to this information.

Clearly, the thing you need is information as to “where the
coin is.” To acquire this information, you are allowed to ask
only binary questions.?® Instead of an indefinite number of per-
sons in the previous game, we have only eight possibilities. More
importantly, these eight possibilities have equal probabilities, 1/
each.

250f course, there are many other ways of obtaining this information. You can ask
“where the coin is,” or you can simply open all the boxes and see where it is. All of
these are not in accordance with the rules of the game, however. We agree to acquire
information only by asking binary questions.
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Again, there are many strategies for asking questions. Here
are two extreme and well-defined strategies.

The Dumbest Strategy The Smartest Strategy

1) Is the coin in box 1? 1) Is the coin in the right half (of the
eight)?

2) Is the coin in box 2?  2) Is the coin in the upper half (of the
remaining four)?

3) Is the coin in box 3?  3) Is the coin in the right half (of the
remaining two)?

4) Is the coin in box 4?  4) I know the answer!

5)

First, note that I used the term strategy here without quo-
tation marks. The strategies here are well-defined and precise,
whereas in the previous game, I could not define them precisely.
In this game, with the dumbest strategy, you ask: “Is the coin in
box k,” where k runs from one to eight? The smartest strategy
is different: each time we divide the entire range of possibilities
into two halves. You can now see why we could not define the
smartest strategy in the previous game. There, it was not clear
what all the possibilities are, and it was even less clear if division
by half is possible. Even if we limited ourselves to choosing only
persons who have worked in a specific field, say, in thermody-
namics, we would still not know how to divide into two halves,
or whether such a division is possible in principle.

Second, note that in this case, I use the adjectives “dumb-
est” and “smartest” strategies (I could not do that in the previ-
ous game so I just wrote “dumb” and “smart”). The reason is
that here one can prove mathematically, that if you choose the
smartest strategy and play the game many, many times, you will
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out beat any other possible strategies, including the worst one
denoted the “dumbest.” Since we cannot use the tools of math-
ematical proof, let me try to convince you why the “smartest”
strategy is far better than the “dumbest” one (and you can
also “prove” for yourself by playing this game with a friend
or against a computer).

Qualitatively, if you choose the “dumbest” strategy, you
might hit upon or guess the right box on the first question.
But this could happen with a probability of 1/3 and you could
fail with a probability of 7/3. Presuming you failed on the first
question (which is more likely and far more likely with a larger
number of boxes), you will have a chance of a right hit with a
probability of 1/7 and to a miss with a probability of 6/7, and
so on. If you miss on six questions, after the seventh question,
you will know the answer, i.e., you will have the information
as to where the coin is. If, on the other hand, you choose the
“smartest” strategy, you will certainly fail on the first question.
You will also fail on the second question, but you are guaran-
teed to have the required information on the third question. Try
to repeat the above reasoning for a case with one coin hidden
in one of 1000 boxes.

The qualitative reason is the same as in the previous game
(but can now be made more precise and quantitative). By ask-
ing “Is the coin in box 1?” you might win on the first question
but with very low probability. If you fail after the first question,
you have eliminated only the first box and decreased slightly
the number of remaining possibilities: from 8 to 7. On the other
hand, with the smartest strategy, the first question eliminates
half of the possibilities, leaving only four possibilities. The sec-
ond question eliminates another half, leaving only two, and on
the third question, you get the information!

In information theory, the amount of missing informa-
tion, i.e., the amount of information one needs to acquire
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by asking questions is defined in terms of the distribution of
probabilities.?®

In this example, the probabilities are: {1/s, 1/5, 1/, 1/, 1/,
g, 1/3, 1/8}. In asking the smartest question, one gains from
each answer the maximum possible information (this is referred
to as one bit of information). You can prove that maximum
information is obtained in each question when you divide the
space of all possible outcomes into two equally probable parts.

Thus, if at each step of the smartest strategy I gain maxi-
mum information, I will get all the information with the min-
imum number of questions. Again, we stress that this is true
on the average, i.e., if we play the same game many, many times;
the smartest strategy provides us with a method of obtaining the
required information with the smallest number of questions.
Information theory also affords us with a method of calculating
the number of questions to be asked on the average, for each
strategy.

Note also that the amount of information that is required is
the same, no matter what strategy you choose. The choice of the
strategy allows you to get the same amount of information with
different number of questions. The smartest strategy guarantees
that you will get it, on the average, by the minimum number of
questions.

If that argument did not convince you, try to think of the
same game with 16 boxes. I have doubled the number of boxes
but the number of questions the smartest strategy needs to ask
increases by only one! The average number that the dumbest
strategy needs is far larger. The reason is again the same. The
smartest strategy gains the maximum information at each step,

26 Note that “probability” was not defined, but was introduced axiomatically. Infor-
mation is defined in terms of probability. The general definition is: sum over all
Pr{i}log Pr{i}, where Pr{i} is the probability of the ith event. This has the form of an
average, but it is a very special average quantity.
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whereas the dumbest strategy gains little information on the first
few steps. In Fig. (2.9), two more cases of the game with different
numbers of boxes are shown. The number of questions in each
case, calculated from information theory, is given below.?”

The important point to be noted at this stage is that the
larger the number of boxes, the greater the amount of informa-
tion you would need to locate the coin, hence, the larger the
number of questions needed to acquire that information. This
is clear intuitively. The amount of information is determined
by the distribution [which in our case is {1/N---1/N} for N
equally probable boxes].

To make the game completely impersonal, hence, totally
objective, you can think of playing against a computer. The com-
puter chooses a box and you ask the computer binary questions.
Suppose you pay a cent for each answer you get for your binary
questions. Surely, you would like to get the required information
(where the coin is hidden) by paying the least amount of money.
By choosing the smartest strategy, you will get maximum value
for your money. In a specific definition of the units of informa-
tion, one can make the amount of “information” equal to the
number of questions that one needs to ask using the smartest
strategy.

To summarize the case involving N boxes and o#ne coin hid-
den in one of the boxes. We know that the choice of the selected
box was made at random, i.e., the person who hid the coin
did not have any “preference,” or any bias towards any of the
boxes. In other words, the box was selected with equal proba-
bility 1/N. In this case, it is clear that the larger the number of
the boxes, the larger the number of questions we need to ask to
locate the hidden coin. We can say that the larger the number

271f N is the number of equally likely possibilities, then logy, N is the number of
questions you need to ask to locate the coin, e.g., for N = 8, log; 8 = 3; for N = 16,
logy 16 = 4; for N = 32, logy 32 = 5; and so on.
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of the boxes, the larger the amount of the missing information
will be, and that is why we need to ask more questions.

Let us go one step further. We are told that two coins were
hidden in N boxes. Let us assume for concreteness that the two
coins were placed in two different boxes. Again, we know that
the boxes were chosen at random. The probability of finding
the first coin in a specific box is 1/N. The probability of finding
the next coin, having located the first one is only 1/(N — 1).
Clearly, in this game, we need to ask more questions to locate
the two coins. In general, for a fixed number of boxes N, the
larger the number of hidden coins 7, the larger the number of
questions we need to ask to locate them. Up to a point, when n
is larger than N/2, we can switch to ask questions to find out
which boxes are empty.?® Once the empty boxes are found, we
shall know which boxes are occupied. For n = N (as for n = 0),
we have all the information, and no questions to ask.

2.6. ATip of a Teaspoon of Mathematics,
Physics and Chemistry

As I have said in the preface, no knowledge of any advanced
mathematics is needed to understand this book. If you really
do not know any mathematics, I suggest that you just train
yourself to think in terms of large numbers, very large, unimag-
inably large numbers. It is also useful to be familiar with the
notation of exponents. This is simply a shorthand notation for
large numbers. One million is written 10 which reads: one, fol-
lowed by six zeros. Or better yet, the multiplication of ten by
itself six times; 106 = 10 x 10 x 10 x 10 x 10 x 10.

28Note that we assume that the coins are identical. All we need to know is which
boxes are occupied or equivalently, which boxes are empty.
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For one million, it is easy to write explicitly the full number,
whereas if you have a number such as 10*3 (which is roughly
the number of atoms in a one centimeter cube of a gas), you will
find it inconvenient to write the number explicitly. When you
get numbers of the form 10'°°%° you will have to fill up more
than a page of zeros, which is impractical! If you have a number
of the form 10(10%), you can spend all your life writing the zeros
and still not be able to reach the end.

To get a feel for the kind of numbers we are talking about,
I have just written the number “1000” in one second, i.e., one
followed by three zeros. Perhaps you can write faster, say the
number “10000” in one second. Suppose you are a really fast
writer and you can write the number “1000000” (i.e., one fol-
lowed by six zeros, which is a million) in one second; in 100
years you can write explicitly the number of zeros followed by
one (assuming you will do only this)

6 x 60 x 60 x 24 x 365 x 100 = 18,921,600,000

This is one followed by about 10'Y zeros. This is certainly a
very large number.
We can write it as:

10(1010) — 10(1followedby 10zeros) _ 1010000000000

Suppose you or someone else did the same, not in one hun-
dred years but for 15 billion years (about the presently estimated
age of the universe), the number written explicitly would have
about 108 zeros, or the number itself would be

101018 — 10(1 followed by 18 zeros)

This is certainly an unimaginably large number. As we shall see
later in this book, the Second Law deals with events that are
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so rare that they might “occur” once in 1010% experiments.%’
These numbers are far larger than the one you could write explic-
itly if you were to sit and write it for 15 billion years.

These are the kind of numbers that you will encounter when
discussing the Second Law of Thermodynamics from the molec-
ular point of view. That is all the mathematics you need to know
to understand the Second Law. If you want to follow some of
the more detailed notes, it is helpful if you could get familiar
with the following three notations.

1) Absolute value: The absolute value of a number, written as
|x|, simply means that whatever x is, |x| is the positive value
of x. In other words, if x is positive, do not change anything. If
x is negative, simply delete the “minus” sign. Thus |5| = 5, and
|—5| = 5. That is quite simple.

2) Logarithm of a number.’° This is an extremely useful nota-
tion in mathematics. It makes writing very large numbers easy.
The logarithm of a number x, is the number you must place
10"ERE t6 obtain x. Very simple! We write this as log; x.

Example: What is the number to be placed 1075RE to obtain
10002 That is simply 3, since 10> = 1000. It is written as
log;o 1000 = 3. What is the logarithm of 10000? Simply write
10000 = 10* and you get log;n 10000 = 4. This is simply the
number of times you multiply 10 by itself. Although we shall
not need the logarithm of any arbitrary number, it is quite clear
that log; 1975 is larger than 3, but smaller than 4. The symbol
logy is called the logarithm to the base 10. In a similar fashion,

29This kind of numbers would not only take unimaginable time to write explicitly.
It might be the case that such a span of time does not have a physical existence at
all. Time, according to modern cosmology, could have started at the big-bang, about
15 billion years ago. It might end at the big crunch, if that event would occur in the
future.

30We shall use only logarithm to the base 10. In information theory, it is more
convenient to use logarithm to the base 2.
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the log, x is the number you have put 2758 to get x. For exam-
ple, the number you have to put 2ERE to obtain 16 is simply 4.
Since 2* = 16, or equivalently, this is the number of times you
multiply 2 by itself to obtain 16. One can define log, x for any
positive number x, but for simplicity we shall use this notation
only for x which is of the form 259MEINTEGER Ty information
theory, the amount of information we need to locate a coin hid-
den in N equally likely boxes is defined as log, N.

3) Factorials. Mathematicians use very useful shorthand nota-
tions for sum (") and product ([]). We shall not need that.
There is one quite useful notation for a special product. This is
denoted N!. It means multiplying all the numbers from 1 to N.
Thus, for N = 5, N! = 1x2 x 3 x4 x 5. For N =100, multiply
1x2x3x---x100.

With these, we have covered all that we shall need in
mathematics.

What about physics? As in the case of mathematics, you need
not know any physics, nor chemistry, to understand the Sec-
ond Law. There is, however, one fact that you should know. In
Richard Feynman’s lecture notes, we find the following: “If, in
some cataclysm, all of scientific knowledge were to be destroyed,
and only one sentence passed on to the next generations of crea-
tures, what statement would contain the most information in the
fewest words? 1 believe it is the atomic hypothesis (or the atomic
fact, or whatever you wish to call it) that ‘all things are made of
atoms — little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but
repelling upon being squeezed into one another.

The fact is that all matter is composed of atoms (and
molecules). Although nowadays this fact is taken for granted, it
was not always the case. The atomic structure of matter has its
roots in the philosophy of the ancient Greeks and dates back to
more than two thousand years ago. It was not part of Physics,

2%
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but a philosophical speculation. There was no proof of the phys-
ical existence of atoms for almost two thousand years. Even at
the end of the nineteenth century, this hypothesis was still vig-
orously debated. When the Second Law of Thermodynamics
was formulated, the atomic nature of matter was far from being
an established fact. Boltzmann was one of the promoters of the
atomic structure of matter, and as we have noted, he opened the
door to a molecular understanding of the Second Law of Ther-
modynamics. He had to face powerful opponents who claimed
that the existence of the atom was only a hypothesis and that
the atomic structure of matter was a speculation and therefore
should not be a part of physics. Nowadays, the atomic structure
of matter is an accepted fact.

The second fact that you should know is somewhat more
subtle. It is the indistinguishability of atoms and molecules. We
shall spend a considerable time playing with dice, or coins. Two
coins could be different in color, size, shape, etc., such as shown
in Fig. (2.10).

In daily life, we use the terms identical and indistinguishable
as synonyms. The two coins in Fig. (2.11) are identical in shape,
size, color, and in anything you like.

Fig. (2.10)
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We shall say that they are distinguishable from each other,
in the sense that if they move around, we can follow each of the
coins with our eyes, and at any given time, we can tell which
coin came from which place.

Suppose you interchange the two coins on the left of
(Fig. (2.11)) to obtain the configuration on the right. If the coins
are identical, then you cannot tell the difference between the left
and the right configurations. However, if you follow the process
of interchanging the coins, you can tell where each coin came
from. This is impossible to tell, in principle, for identical molecu-
lar particles. For these cases, we use the term indistinguishability
rather than identity.

Consider a system of two compartments (Fig. (2.12)). Ini-
tially, we have 5 coins in each compartment which are sepa-
rated by a partition. The coins are identical in all aspects. We
now remove the partition and shake the whole system. After
some time we shall see a new configuration like the one on the
right side.

We say that the particles (in this case, the coins) are distin-
guishable even though they are identical, if we can tell at any

® O o
OQ OOO o O OO0
o ©l0 70| ™| 00 0 o

Fig. (2.12)
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point of time which coin originated from which compartment,
simply because we can follow the trajectories of all the particles.
We say that the particles are indistinguishable when we do the
same experiment as above, but we cannot tell which is which
after removing the partition. We cannot follow the trajectories
of the particles. This fact was foreign to classical mechanics. In
classical mechanics, we always think of particles of any size as
being “labeled,” or at least, are in principle, “labelable.” New-
ton’s equation of motion predicts the trajectories of each specific
particle in the system. In quantum mechanics, this is not possi-
ble, in principle.3!

In the next two chapters, we shall have plenty of examples
where we start with distinguishable dice, and voluntarily disre-
gard their distinguishability. This process of “un-labeling” the
particles will be essential in understanding the Second Law of
Thermodynamics.

As for chemistry, you do not need to know anything beyond
the fact that matter is composed of atoms and molecules. How-
ever, if you want to understand the example I have given in the
last part of Chapter 7 (interesting, but not essential), you need
to know that some molecules have an asymmetrical center (or
chiral center) and these molecules come in pairs, denoted by /
and d;3? they are almost identical, but one is a mirror image
of the other (these are called enantiomers). All amino acids —
the building blocks of proteins, that are in turn the building

31Note that we can distinguish between different and identical particles. We cannot
distinguish by any of our senses between identical and indistinguishable particles (that
is why they are considered colloquially as synonyms). Note also that we can change
from different to identical particles continuously, at least in theory. But we cannot
change from identical to indistinguishable, in a continuous way. Particles are either
distinguishable or indistinguishable. Indistinguishability is not something we observe
in our daily life. It is a property imposed by Nature on the particles.

32The two isomers rotate a polarized light in different directions [ (for levo) to the
left and d (for dextro) to the right.
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Fig. (2.13)

blocks of muscles and many other tissues of the body — come
in one version of these pairs. An example is the amino acid
alanine (Fig. (2.13)).

Most of the natural amino acids are of the /-form; they are
distinguished by their optical activity. The only thing you need
to know is that these pairs of molecules are almost exactly the
same as far as the molecular parameters such as mass, moment of
inertia, dipole movement, etc. are concerned. Molecules of the
same type, say the [-form, are indistinguishable among them-
selves, but the [-form and the d-form are distinguishable, and in
principle, are separable.

At this stage, we have discussed all the required “pre-
requisites” you need for understanding the rest of the book.
Actually, the only pre-requisite you need in order to follow the
pre-requisites given in this chapter is common sense. To test
yourself, try the following two quizzes.

2.7. A Matter of Lottery

A state lottery issued one million tickets. Each ticket was sold at
$10; therefore, the gross sales of the dealer were $10,000,000.
One number wins $1,000,000. There were 999,000 numbers,
each winning a prize, the value of which is one US$ or its
equivalent, but in different currencies. There are also 999 prizes,
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each with a $10 value, but in different currencies. So altogether,
the dealers must distribute the equivalent of US$2,008,990. This
leaves a nice, net gain of about $8,000,000 to the dealers. Note
that all the one dollar gains and the ten dollar gains are in differ-
ent currencies and distinguishable. In other words, two persons
gaining a one dollar value, get different dollars, i.e., different
prizes having the same value.

Now the questions:

Answer the first three questions by Yes or No.
I bought only one ticket, and

1) I tell you that I won $1,000,000 in the lottery, would you
believe it?

2) I tell you that I won a one-dollar equivalent in Indian cur-
rency, would you believe it?

3) I tell you that I won a ten-dollar equivalent in Chinese cur-
rency, would you believe it?

Now, estimate the following probabilities:

4) What is the probability of winning the $1,000,000 prize?

5) What is the probability of winning the one dollar in Indian
currency?

6) What is the probability of winning the ten dollar equivalent
in Chinese currency?

7) What is the probability of winning a one dollar valued prize?

8) What is the probability of winning a ten dollar valued prize?

9) After answering questions 4-8, would you revise your
answers for questions 1-3?

For answers, see the end of the chapter (Section 2.10.2).
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2.8. A Matter of Order-Disorder

Look at the two figures on the first page of the book. I named
them ordered and disordered. Let us refer to them as B and A.33
Now that you know some elementary notions of probability, try
to answer the following questions. Suppose that 200 dice were
used to construct each of the figures A and B.

1. Itell you that I got the exact two configurations A and B by
throwing 200 dice twice on the board. Would you believe it?

2. T tell you that I arranged configuration A, then I shook the
table for a few seconds and got B. Would you believe it?

3. I tell you that I arranged configuration B, then I shook the
table for a few seconds and got A. Would you believe it?

To answer the abovementioned questions, you need only to
make a qualitative estimate of the likelihood of the two events
A and B. Now, let us examine if you can also make quantitative
estimates of probabilities. Suppose I tell you that the board is
divided into, say, 1000 small squares. Each square can contain
only one die. The orientation of the die is unimportant, but
the upper face of each die is important. A configuration is an
exact specification of the upper face and location (i.e., in which
square) of each die. There are altogether 200 dice (do not count
the dice, nor the squares in the figure; they are different from
200 and 1000, respectively). Each die can have one of the six
numbers (1,2...6) on its upper face, and it can be located in
any one of the 1000 little squares (but not more than one die in
a single square, and orientation does not matter). Now, estimate
the probabilities of the following events:

4. The probability of obtaining the exact configuration A
5. The probability of obtaining the exact configuration B

33Tentatively, B for Boltzmann and A for Arieh.
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6. The probability of obtaining the exact configuration A but
now disregarding the number of dots on the dice.

7. The probability of obtaining the exact configuration B but
now disregarding the number of dots on the dice.

After practicing with these (tiny) probabilities and presuming
you have answered correctly, try the next two questions. They
are the easiest to answer.

8. I threw the same 200 dice twice a second time, and I got
exactly the same two configurations A and B. Would you
believe it?

Now look carefully at configuration A. Do you see any recog-
nizable patterns or letters? Look only at the dice that have only
one dot on their faces. Do you recognize any patterns? If you
do not, look at the same figure on the last page of the book
(you should now understand why I chose A, for Arieh and B,
for Boltzmann). Now, the last question:

9. Would you revise any of your answers for the 8 questions
above?

Answers are given at the end of this chapter (Section 2.10.3).

2.9. A Challenging Problem

The following is a problem of significant historical value. It is
considered to be one of the problems, the solution of which
has not only crystallized the concept of probability, but also
transformed the reasoning about chances made in gambling
salons into mathematical reasoning occupying the minds of
mathematicians.

Neither the problem nor its solution is relevant to an under-
standing of the Second Law. My aim in telling you this story
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is three-fold. First, to give you a flavor of the type of problems
which were encountered at the time of the birth of the probabil-
ity theory. Second, to give you a flavor of the type of difficulties
encountered in calculating probabilities, even in problems that
seem very simple. And finally, if you like “teasing” problems,
you will savor the delicious taste of how mathematics can offer
an astonishingly simple solution to an apparently difficult and
intractable problem.

The following problem was addressed to Blaise Pascal by his
friend Chevalier de Mere in 1654.3

Suppose two players place $10 each on the table. Each one
chooses a number between one to six. Suppose Dan chose 4
and Linda chose 6. The rules of the game are very simple. They
roll a single die and record the sequence of the outcomes. Every
time an outcome “4” appears, Dan gets a point. When a “6”
appears, Linda gets a point. The player who collects three points
first wins the total sum of $20. For instance, a possible sequence

could be:
1,4,5,6,3,2,4,6,3,4.

Once the number 4 appears three times, Dan wins the entire
sum of $20.

Now, suppose the game is started and at some point in time
the sequence of the outcomes is:

1,3,4,5,2,6,2,5,1,1,5,6,2,1,5

At this point, there is some emergency and the game must be
stopped! The question is how to divide the sum of $20 between
the two players.

Note that the problem does not arise if the rules of the game
explicitly instruct the player on how to divide the sum should

34The historical account of these on other earlier probabilistic problems can be found
in David (1962).
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the game be halted. But in the absence of such a rule, it is not
clear as to how to divide the sum.

Clearly, one feels that since Dan has “collected” one point,
and Linda has “collected” two, Linda should get the bigger por-
tion of the $20. But how much bigger? The question is, what is
the fairest way of splitting the sum, given that sequence of out-
comes? But what do we mean by the fairest, in terms of splitting
the sum? Should Linda get twice as much as Dan because she
has gained twice as many points? Or perhaps, simply split the
sum into two equal parts since the winner is undetermined? Or
perhaps, let Linda collect the total sum because she is “closer”
to winning than Dan.

A correspondence between Blaise Pascal and Pierre de
Fermat ensued for several years. These were the seminal
thoughts which led to the development of the theory of proba-
bility. Note that in the 17th century, the concept of probability
still had a long way to go before it could be crystallized. The
difficulty was not only of finding the mathematical solution. It
was no less difficult to clarify what the problem was, i.e., what
does it mean to find a fair method of splitting the sum?

The answer to the last question is as follows:

As there was no specific rule on how to divide the sum in
case of halting of the game, the “fairest” way of splitting the
sum would be to divide it according to the ratio of the probabil-
ities of the two players in winning the game had the game been
continued.

In stating the problem in terms of probabilities, one hur-
dle was overcome. We now have a well-formulated problem.
But how do we calculate the probabilities of either player win-
ning? We feel that Linda has a better chance of winning since
she is “closer” to collecting three points than Dan. We can
easily calculate that the probability that Dan will win, on the
next throw is zero. The probability of Linda winning on the
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next throw is 1/, and the probability of neither one of them
winning on the next throw is 5/. One can calculate the proba-
bilities of winning after two throws, three throws, etc., It gets
very complicated, and in principle, one needs to sum over an
infinite series, so the mathematical solution to the problems in
this way is not easy. Try to calculate the probability of each
player winning on the next two throws, and on the next three
throws, and see just how messy it can get. Yet, if you like
mathematics, you will enjoy the simple solution based on solv-
ing a one-unknown-equation given at the end of this chapter
(Section 2.10.4).

2.10. Answers to the Problems
2.10.1. Answers to the roulette problems

In all of these problems, my choice of a sequence is fixed:
{1,2,3,4,5, 6}; it has the probability of 1/ of winning. If you
choose the disjoint event {7,8,9,10,11,12}, then the condi-
tional probability is

Pr{B/A} = Pr{7,8,9,10,11,12/A} = 0

This is because knowing that A occurs excludes the occur-
rence of B. In the first example of choosing an overlapping
sequence, we have (see Fig. (2.14))

Pr(B/A} = Pr{6,7,8,9,10,11/A} = s < 1

Knowing that A has occurred means that your winning is
possible only if the ball landed on “6”; hence, the conditional
probability is 1/5, which is smaller than Pr {B} = 15, i.e., there is
negative correlation.

Similarly for B = {5,6,7,8,9,10}, we have

Pr{B/A} = Pr{5,6,7,8,9,10/A} = 2/6 < 1/2
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Here, “given A,” you will win only if the ball lands on either
“5” or “6”; hence, the conditional probability is 2/, which is
still smaller than Pr{B} = 1.

In the third case, B = {4,5,6,7,8, 9}, hence

PI'{B/A} = Pr{4,5,6,7,8,9/A} = 3/6 = 1/2

Here, the conditional probability is 1/, exactly the same as
the “unconditional” probability Pr (B) = 1/, which means that
the two events are independent, or uncorrelated.

For the last three examples, we have

PI‘{B/A} =Pr{3,4,5,6,7, S/A} = 4/6 > 1/2
PI'{B/A} = PI'{Z, 3) 43 55 63 7/A} = 5/6 > 1/2
PI'{B/A} = Pr{1923334353 6/A} = 6/6 =1> 1/2
In the last example, knowing that A occurs makes the occur-
rence of B certain. In these examples, we have seen that over-

lapping events can be either positively correlated, negatively
correlated, or non-correlated.

2.10.2. Answer to “a matter of lottery”

1) You will probably not believe it, although it is possible.
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2) You will probably believe it, although the chances are as low
as in winning the $1,000,000 prize.

3) You will probably believe it, although the chances are as low
as in winning the $1,000,000 prize.

4) The probability is one in a million (10~

5) The probability is one in a million (10~

6) The probability is one in a million (107°).

7) The probability is 999000/1000000 ~ 1.

8)

)

6).
6).

The probability is 999/1000000 ~ 1/1000.
9) If your answer to 1 was NO, you are quite right. The chances
are very low indeed. If your answers to 2 and 3 were YES,

you are probably wrong. The chances are as low as winning
the $1,000,000 prize.

If your answers to questions 2 and 3 were YES, you are
probably confusing the exact event “winning a dollar in a spe-
cific currency” with the dim event,> “winning a dollar in any
currency.” The first is a very unlikely event while the second is
almost certain.

2.10.3. Answer to “a matter of order-disorder”

1) You should probably believe A but not B. But see below.

2) You should not believe that.

3) You might believe that, if you consider A as one of a ran-
domly obtained configuration. But you should not believe it
if you consider the specific configuration A.

4) The probability of one die showing a specific face and being
in a specific location is % X ﬁ. The probability of all the
200 dice showing specific faces and being in specific locations

(note that the dice are distinguishable and that no more than

35The term “dim event” will be discussed in the next chapters.
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200
. . . . 1 1
one die in one box is allowed) is <g> 000999 <998 80T -

This is a very small probability.

5) The same as in question 4.

6) The probability is 1/1000 x 999 x 998 x - - - x 801, still very
small.

7) The probability is as in question 6, still very small.

8) Youprobablyshouldnot. Youmightbetempted tobelieve that
[ got configuration A presuming it is a random configuration.
However, the question refers to the exact configuration A.

9) Make sure that whenever the question applies to a specific
configuration like A or B, the probability is extremely small.
However, if you consider configuration A as a random con-
figuration, you might be right in assigning to this configura-
tion a larger probability. The reason is that there are many
configurations that “look” the same as A, i.e., a random con-
figuration, hence, a large probability. However, after realiz-
ing that A contains the word “Arieh,” it is certainly not a
random configuration.

2.10.4. Answer to “a challenging problem”

The solution to the problem is this. Denote by X the probabil-
ity of Linda winning. Now, in the next throw, there are three
mutually exclusive possibilities:

I: outcome {6} with probability 1/s
II: outcome {4} with probability 1/s
II: outcome {1,2, 3,5} with probability 4/s

Let us denote the event “Linda wins” by LW. The following
equation holds
X =Pr(LW) = Pr(I)Pr(LW/I) + P(II)Pr(LW /II)
FPr(IIDPHLW /I = Y x 14 g x 1 4+ 4/ x X



Introduction to Probability Theory, Information Theory, and all the Rest 77

This is an equation with one unknown 6X = 3/ + 4X. The
solution is X = 3/4.

Note that the events I, II, and III refer to the possible out-
comes on the next throw. The event “LW? refers to “Linda
wins,” regardless of the number of subsequent throws. The
equation above means that the probability of Linda winning is
the sum of the three probabilities of the three mutually exclusive
events. If event I occurs, then she wins with probability one. If
event Il occurs, then she has probability 1 of winning. If event
III occurs, then the probability of her winning is X, the same
probability as at the time the game was halted.

50%

0% 100%

END OF CHAPTER 2




First Let Us Play with Real Dice

3.1. One Die

We will start with a very dull game. You choose a number
between 1 and 6, say “4,” and I choose a different number
between 1 and 6, say “3.” We throw the die. The first time the
result 4 or 3 appears, either you or I win, respectively. This game
does not require any intellectual effort. There is no preferred
outcome; each outcome has the same likelihood of appearing
and each one of us has the same chance of winning or losing.
If we play the same game many times, it is likely that on the
average, we shall end up even, not gaining nor losing (presum-
ing the die is fair, of course). How do I know that? Because we
have accepted the fact that the probability of each outcome is
1/s and we also believe, based on our experience, that no one
can beat the laws of probability. However, this was not always
so. In earlier times, it was believed that some people had divine
power which enabled them to predict the outcome of throwing
a die, or that there existed some divine power that determined
the outcomes at it His will. So if we could communicate with
“Him,” either directly or through a mediator, we might know
better what outcome to choose.! Today, however, when we con-
sider the same game of die, we assume that there are six, and
only six possible outcomes (Fig. (3.1)) and each of the outcome

1See footnote on page 20, Chapter 2.

78
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Fig. (3.1)

has the same probability, 1/s. The next table is trivial.

Outcome: 1 2 3 4 S5 6
Probability: % Y Y Y6 Yo s

3.2. Two Dice

A slightly more complicated game is to play with two dice. There
are different ways of playing with two dice. We could choose, for
example, a specific outcome say, “white die, 6 and blue die, 1.”
There are altogether 36 possible specific outcomes; these are
listed below.

1.1, 1.2, 1.3, 1.4, 1.5, 1.6
21, 22, 23, 2.4, 2.5, 2.6
3.1, 3.2, 3.3, 3.4, 3.5, 3.6
4.1, 42, 43, 4.4, 45 45
51, 52, 53, 54, 5.5, 5.6
6.1, 62, 6.3, 6.4, 6.5, 6.6

Clearly, these are all equally likely outcomes. How do I
know? Assuming that the dice are fair and the outcomes are
independent (one outcome does not affect the other), then the
answer follows from plain common sense. Alternative answer:
each outcome of a single die has probabilityl/s. Each specific out-
come of a pair of dice is the product of the probabilities of each



80 Entropy Demystified

die, i.e., 1/s times 1/ which is 1/36. This argument requires the rule
that the probability of two independent events is a product of
the probabilities of each event. This rule is, however, ultimately
based on common sense as well!

As in the case of one die, playing this game is dull and unin-
teresting, and certainly does not require any mental effort.

A slightly more demanding game is to choose the sum of the
outcomes of the two dice, regardless of the specific numbers or
the specific colors of the dice. Here are all the possible outcomes
in this game.

Outcome: 2, 3, 4, 5, 6, 7, 8§ 9, 10, 11, 12

Altogether, we have eleven possible outcomes. We shall refer
to these as dim events for reasons explained below.? If you have
to choose an outcome, which one will you choose? Contrary to
our two previous games, here you have to do a little thinking.
Not much and certainly within your capability.

Clearly, the outcomes listed above are not elementary events,
i.e., they are not equally probable. As you can see from
Fig. (3.2a), or count for yourself, each event consists of a sum
(or union) of elementary events. The elementary events of this
game are the same as in the previous game, i.e., each specific
outcome has the probability of 1/36. Before calculating the prob-
abilities of the compound events, i.e., the events having a specific
sum, take note that in Fig. (3.2a), the events of equal sum fea-
ture along the principal diagonal of the square. This figure is
reproduced in Fig. (3.2b) rotated by 45° (clockwise). Once you
realize that you can count the number of specific (or elementary)
events contained in each of the compound events, you can now
calculate the probability of each of these events. To facilitate

2Here, we use the term dim-event to refer to an event; the details of the events com-
prising it are disregarded.
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Fig. (3.2a)

counting, we have “compressed” the rotated Fig. (3.2b) to pro-
duce Fig. (3.2¢) (each pair is rotated back counter-clockwise),
and regrouped the pairs with equal sum.

DimEvents 2 3 4 S5 6 7 8 9 10 11 12
Multiplicity 1 2 3 4 5 6 5 4 3 2 1
Probability 136 2/36 3/36 /36 /36 ©/36 5/36 /36 3/36 2/36 /36

The probabilities of the compound events are listed in the
table above. The “multiplicity” is simply the number of specific
events comprising the dim event.

How do I know that these are the right probabilities? The
answer is again pure common sense. You should convince your-
self of that. If you are not convinced, then play this game a
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Fig. (3.2b)

few million times and record the frequencies of the outcomes.
However, [ will advise you not to do the experiment, but instead,
trust your common sense to lead you to these probabilities, or
equivalently make a million mental experiments and figure out
how many times each sum will occur. Once you are convinced,
check that the probabilities of all the events sum up to one, as
it should be.

With this background on the game of two dice, let us proceed
to play the game. Which outcome will you choose? Clearly, you
will not choose 2 or 12. Why? Because, these events consist of
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only one specific (or elementary) event. Looking through the
rotated table (Fig. (3.2b)), you will see that your best chance of
winning is to choose outcome 7. There is nothing magical in the
number 7. It so happens that in this particular game, the sum
7 consists of the largest number of specific outcomes; hence, it
is the number that is most likely to win. Of course, if we play
the game only once, you might choose 2 and win. But if you
choose 2 and I choose 7, and if we play many times, I will win
most of the time. The relative odds are 6:1 as the table above
indicates. In Fig. (3.3), we plot the number of elementary events
(or the number of specific configurations) for different sums of
the games with one and two dice.
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Once you feel comfortable with this game, we can proceed
to the next game. A slightly more difficult one, but it puts you
on the right track towards understanding the Second Law of
Thermodynamics.

3.3. Three Dice

This game is essentially the same as the previous one. It is a little
more difficult, and entails more counting. We play with three
dice and we have to choose the sum of the outcome, only the
sum, regardless of the specific numbers on each die or its color.
There is nothing new, in principle, only the counting is more
tedious. Indeed, this is exactly the type of game from which the
theory of probability evolved. Which outcome to choose? That
question was addressed to mathematicians before the theory of
probability was established (see Chapter 2).
The list of all possible outcomes is:

3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18

Altogether, there are 16 different outcomes. To list all the
possible specific outcomes, e.g., {blue = 1,red = 4, white = 3},
would take quite a big space. There are altogether 63 = 216
possible specific outcomes. You clearly would not like to bet on
3 or 18, neither on 4 nor on 17. Why? For exactly the same
reason you have not chosen the smallest or the largest numbers
in the previous game. But what is the best outcome to choose? To
answer this question, you have to count all the possible specific
(or elementary) outcomes that give rise to each of the sums in
the list above. This requires a little effort, but there is no new
principle involved, only common sense and a willingness to do
the counting. Today, we are fortunate to have the computer to
do the counting for us. The results are listed in the table below.
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In the second row, we list the number of possibilities for each
sum. The probabilities are obtained from the second row by
dividing through by 216.

Sum 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Multiplicity 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
Probability -1 -3 -6 10 15 21 25 27 27 25 21 15 10 6 3 1

Y 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216

Thus, for one die, the distribution is uniform. For two, we
find a maximum at sum = 7 (Fig. (3.3)). For three dice, we
have two maximal probabilities at the sums of 10 and 11. The
probabilities of these are 27/216. Therefore, if you want to win,
choose either sum 10 or sum 11. In Fig. (3.4), we plot the number
of elementary events for each possible sum of the three dice. By
dividing the number of events by the total number of specific
events 6> = 216, we get the corresponding probabilities which
are also plotted in Fig. (3.4).

You should be able to confirm for yourself some of these
numbers. You do not need any higher mathematics, nor any
knowledge of the theory of probability — simple counting and
common sense are all you need. If you do that, and if you under-
stand why the maximum probabilities occur at 10 or 11, you
are almost halfway through to understanding the Second Law.

Let us proceed to discuss a few more games of the same kind
but with an increasing number of dice.
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Fig. (3.4)
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3.4. Four Dice and More

The four-dice game is the same as before. We have to choose a
number from 4 to 24. We throw four dice simultaneously and
look at the sum of the four outcomes on the faces of the four
dice, regardless of the identity (or the color), or specific number
on the face of the specific die; only the sum matters.

In this case, we have 6* = 1296 possible specific outcomes.
It is not practical to list all of these. The probability of each spe-
cific outcome is 1/1296. The counting in this case is quite laborious
but there is no new principle. Figure (3.5) shows the probabil-
ities, i.e., the number of specific outcomes, divided by the total
number of specific outcomes, as a function of the sum. For four
dice, the range of possible sums is from the minimum 4 to the
maximum 24. For five dice, the range is from 5 to 30. For six
dice, the range is from 6 to 36 and for seven dice, the range is
from 7 to 42.

In Fig. (3.6), we plot the same data as in Fig. (3.5), but this
time we plot the probabilities as a function of the “reduced”
sum. The reduced sum is simply the sum divided by the maxi-
mum sum. Thus, the different ranges from 0 to N in Fig. (3.5),

Probability
o
o
o

10 20 30 40
Sum of outcomes

Fig. (3.5)
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Probability
o
o
o

0.2 0.4 0.6 0.8 1
Reduced Sum

Fig. (3.6)

are all “compressed” into the same range — from 0 to 1. This
compression changes the area under the curves. In Fig. (3.5),
the area under each curve is one, whereas in Fig. (3.6), it is
reduced by the factor N. Note that the spread of the probabili-
ties in Fig. (3.5) is larger as N increases. In contrast, the spread
in Fig. (3.6) is diminished with N. The larger N, the sharper the
curve. This means that if we are interested in absolute deviations
from the maximum (at N/2), we should look at Fig. (3.5). How-
ever, if we are only interested in the relative deviations from the
maximum (at 1/), we should look at the curves in Fig. (3.6).
When N becomes very large, the curve in Fig. (3.6) becomes
extremely sharp, i.e., the relative deviations from the maximum
becomes negligibly small.

Take note also that in each case, there are either one or two
sums for which the probability is maximum. Observe how the
shape of the distribution turns out. This resembles the bell shape,
also known as the Normal distribution or the Gaussian distribu-
tion. This is an important shape of a probability distribution in
the theory of probability and statistics, but it is of no concern to
us here. You will also note that as the number of dice increases,
the curve in Fig. (3.6) becomes narrower, and the maximum
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probability becomes lower. The lowering of the maxima is the
same as in Fig. (3.5), but the “spread” of the curve is different.
We shall further discuss this important aspect of the probabili-
ties in the next chapter. In Figs. (3.7) and (3.8), we show similar
curves as in Figs. (3.5) and (3.6) but for larger values of N.
We stop at this stage to ponder on what we have seen so
far, before proceeding to the next step. You should ask yourself
two questions. First, which the winning number in each case is;
and second, the more important question, why this is a winning
number. Do not worry about the exact counting; just be assured
that in each game there are one or two sums with the largest
probability. This means that if you play this game many times,
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these specific sums will occur more frequently than all the other
sums, and if you are really going to play this game, you would
better choose one of these winning numbers.

The first question is important, even critical, if you are inter-
ested in playing this game. However, if you want to understand
the Second Law and to be able to follow the arguments in the
chapters that follow, you should ponder on the question “Why.”
Why is there such a winning number? Let us take the case of
three dice. Think of the reasons for the existence of such a win-
ning number. Start with the sum = 3. We have only one specific
outcome; here it is:

blue=1, red=1, white=1... sum=23

You can imagine that this specific outcome will be a very rare
event. So is the event, sum = 18. There is only one specific
outcome that gives the sum 18. Here it is:

blue=6, red=6, white=6... sum=18
For the sum = 4, we have three specific outcomes. Here they are:

blue=1, red=1, white=2... sum=4
blue=1, red=2, white=1... sum=4
blue=2, red=1, white=1... sum=4

The partition of the sum = 4 into three integers is unique 1:1:2,
and if we do not care which die carries the outcome 1, and
which carries 2, we shall not distinguish between the three cases
listed above. We shall refer to each of the three abovementioned
possibilities as a specific configuration. If we disregard the dif-
ferences in the specific configuration and are only interested in
the sum = 4, we shall use the term dim configuration or dim
event.
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Next, let us look at surm = 5. Here we have six specific
possibilities.

Blue=1, Red=1, White=3... sum=235
Blue=1, Red=3, White=1... sum=35
Blue=3, Red=1, White=1... sum=23
Blue=1, Red=2, White=2... sum=23
Blue=2, Red=2, White=1... sum=235
Blue=2, Red=1, White=2... sum=35

Here, we have two causes for the multiplicity of the out-
comes; first, we have different partitions (1:1:3 and 2:2:1), and
each partition comes in three different combinations of colors,
i.e., each partition has weight 3. We shall say that there are six
specific configurations, but only one dim configuration or dim
event.

The terms dim event and specific event are important to an
understanding of the Second Law. As we have seen, each of the
specific events has the same probability. In the two-dice game,
a specific event is a specific list of which die contributes which
number to the total sum. For the case of three dice, if we disre-
gard the color of the dice and the specific contribution of each
die to the total sum, then we find that for sum = 3, we have one
dim event consisting of only one specific event. For sum = 4,
we have one dim event consisting of three specific events, for
sum = 5, we have one dim event consisting of six specific events,
and so on.

In the next chapter, we shall play a modified game of dice
which will bring us closer to the real experiment to be discussed
in Chapter 7. We shall play with more primitive dice, three sur-
faces of each bearing the number “0” and the other three bearing
the number “1.” The simplification in switching from real dice
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to the simplified dice is two-fold. First, we have only two out-
comes for each die (zero or one); and second, for each sum we
have only one partition. The number of specific outcomes com-
prising the dim event sum = n is simply 7, i.e., the number of
faces showing “1.”

50%

100%

END OF CHAPTER 3
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Let’s Play with Simplified Dice and have a
Preliminary Grasp of the Second Law

The new game is simpler than the previous one. We consider
either dice with three faces marked with “0,” and three faces
marked with “1,” or coins with one side marked with “0” and
the other side marked “1.” Since we started with dice, we shall
continue with these, but you can think in terms of coins if you
prefer. The important thing is that we do an “experiment” (toss-
ing a die or a coin), the outcomes of which are either “0” or “1,”
with equal probabilities 12 and 1/. This is one simplification.
Instead of six possible outcomes, we have now only two. The
second simplification arises from the specific choice of “0” and
“1.” When we sum the outcomes of N dice, the sum is simply
the number of ones. The zeros do not add to the counting. For
instance, with N = 10 (Fig. (4.1)), we might have a specific out-
come 1,0,1,1,0,1,0,1,0,0. The sum is 5. It is also the number of
“ones” in this outcome (or the total number of dots in the dice
having a zero or one dot on their faces).

We shall be interested in the “evolution” of the game and
not so much with the winning strategies. But if you are more
comfortable with a gambling game, here are the rules.

92
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Fig. (4.1)

We play with N fair dice, with “0” and “1” outcomes only.
We always start with a pre-arranged configuration; all the dice
show zero.!

By configuration, we mean the detailed specification of the
sequence of “zeros” and “ones,” e.g., first die shows “1,” second
die shows “0,” third shows “0,” etc. We shall refer to the initial
configuration as the zeroth step of the game.

For N = 10, the initial configuration is:
o, o0, 0,0 0,0 00 O, O, O, 0, O

We now choose one die at random, throw it and return it to
its place. We can think of a machine that scans the sequence of
dice, chooses one die at random and gives it a kick so that the
next outcome of that particular die will be either “0” or “1”
with equal probability. Alternatively, we can play the game on
a computer.”

With these simple rules, we will follow the evolution of the
configurations. But again, if you feel more comfortable, let us
play the game. You choose a number between zero and 10, say 4,
and I choose a number between zero and 10, say 6. We start with
an all-zeros configuration and proceed with the game according
to the rules described above. At each step, we check the sum. If
the sum is 4, you win a point; if it is 6, [ win a point. What sum
will you choose? Do not rush to choose the sum = 0. You can
argue that you know the initial configuration, therefore, you will

Later, we shall start with any arbitrary configuration. For the beginning, we shall
assume that the initial configuration is the “all-zeros” configuration.

2The program is very simple. First, it chooses a number from 1 to N, then it changes
the face on the die at that particular location, to get a new outcome between 1 and 6.
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win with certainty on the zeroth step. Indeed, you are perfectly
right. You will win on the zeroth step! But what if we decide
from the outset to play a million steps?

Let us now examine carefully and patiently how this game
will evolve after many steps. You should follow the evolution of
the game even if you are interested only in finding the winning
number. Following the evolution of the game is crucial to an
understanding of the Second Law of Thermodynamics. So be
attentive, alert and concentrate on what goes on, why it goes
this or that way, and as for the how it goes on, we have already
set-up the “mechanism” as described above.

Remember that we are playing a new game. The dice have
only two outcomes “0” and “1.” Therefore, the sum of the
outcomes of N dice can be one of the numbers from zero (all
“0”) to N (all “1”). Furthermore, there is only one partition
for each sum, and this is a great simplification compared with
the previous game, where we had to count different weights for
the different partitions, a very complicated task for a large N
(see Chapters 2 and 3). Here, we have to worry only about the
weight of one partition. For example, with N = 4 and a choice
of sum = 2, there is only one partition of 2 in terms of two
“zeros” and two “ones.” These are

0011 0101 0110 1001 1010 1100

There are six specific configurations, i.e., six ordered
sequence of zeros and ones, for the dim event sum = 2. By dim
event, we mean the number of “ones” that are in the event, or
in the configuration, regardless of the specific locations of these
“ones” in the sequence. For any chosen dim event, say sum = n,
there are different ways of sequencing the “ones” and “zeros”
that determine a specific configuration, or a specific event.

Before we proceed with the new games, I would like to draw
your attention again to Figs. (3.5) and (3.6) (or (3.7) and (3.8)).
In these figures we show the probabilities as a function of the
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various sums, and as a function of the reduced sum (i.e., the sum
divided by the maximum sum, which is simply the number N).
Note that all these plots have a maximum at N /2 (or at reduced
sum = 15). Thelarger N is, the lower the value of the maximum.

4.1. Two Dice; N =2

As in the previous case, the game with one die is uninteresting
and we shall start by analyzing the case of two dice.

Recall that in the present game, we start with a specific ini-
tial configuration, which for the next few games will always be
the all-zeros configuration. Suppose you chose the sum = 0,
arguing that since you know the result of the zeroth step, which
is sum = 0, you are guaranteed to win the zeroth step. Indeed,
you are right. What should I choose? Suppose I chose sum = 2,
the largest possible sum in this game. Recall that in the previous
game with two real dice, the minimum sum = 2, and the max-
imum sum = 12, had the same probability 1/36. Here, the rules
of the game are different. If you choose sum = 0, and I choose
sum = 2, you win with probability one and I win with probabil-
ity zero on the zeroth step, so you do better on the zeroth step.
What about the first step? You will win on the first step if the
die, chosen at random and tossed, has the outcome of zero. This
occurs with probability 1. What about me? I choose sum = 2.
There is no way to get sum = 2 on the first step. On the first
step, there are only two possible sums, zero or one. Therefore,
the probability of my winning on the first step is zero too. So
you did better both on the zeroth and first steps.

What about the next step? It is easy to see that your chances
of winning are better on the second step as well. In order for
me to win, the sum must increase from zero to one on the first
step, and from one to two on the second step. You have more
paths to get to sum = 0 on the second step; the sum = 0 can
be realized by, “stay at summ = 0” on the first step, and “stay
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at sum = 0” on the second step, or increase to sum = 1 on the
first step, and decrease to sum = 0 on the second step.

Figure (4.2) shows two runs of this game, each run involving
100 steps. It is clear that after many steps, the number of “visits”
to sum = 0 and to sum = 2 will be about equal. Although we
started with sum = 0, we say that after many steps, the game
loses its “memory” of the initial steps. The net result is that you
will do a little better in this game.

What if you choose sum = 0, and I choose sum = 12 In
this case, you will win with certainty on the zeroth step. On
the second step, you have a probability, 1/, of winning, and
I have a probability, 15, of winning. But as we observe from
the “evolution” of the game, after many steps, the game will
visit sum = 0O far less frequently than sum = 1. Therefore, it is
clear that after many games, [ will be the winner in spite of your
guaranteed winning on the zeroth step.

« £

3We refer to a “run,” as the entire game consisting a predetermined number of
“Steps »
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Let us leave the game for a while and focus on the evolution
of the game as shown in the two runs in Fig. (4.2). First, note that
initially we always start with sum = 0, i.e., with configuration
{0,0}. We see that in one of the runs, the first step stays at
sum = 0, and in the second run, the sum increases from zero to
one. In the long run, we shall be visiting sum = 0 about 25% of
the steps; sum = 2, about 25 % of the steps; and sum = 1, about
50% of the steps. The reason is exactly the same as in the case of
playing the two-dice game in the previous chapter. There is one
specific configuration for sum = 0, one specific configuration
for sum = 2, but two specific configurations for sum = 1. This
is summarized in the table below.

Configuration {0,0} {1,0} {0,1} {1,1}

Weight 1 2 1
Probability 1y 2/4 1y

This is easily understood and easily checked by either exper-
imenting with dice (or coins), or by simulating the game on a
computer.

In Fig. (4.2), you can see and count the number of visits at
each level. You see that the slight advantage of the choice of
sum = 0 will dissipate in the long run.

Before we proceed to the next game with four dice N = 4,
we note that nothing we have learned in this and the next game
seems relevant to the Second Law. We presented it here, mainly
to train ourselves in analyzing (non-mathematically) the evolu-
tion of the game, and to prepare ourselves to see how and why
new features appear when the number of dice becomes large.
These new features are not only relevant, but are also the very
essence of the Second Law of Thermodynamics.
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If you run many games like this on a computer, you might
encounter some “structures” in some of the runs, for instance, a
sequence of 10 consecutive zeros, or a series of alternating zeros
and ones, or whatever specific structure that you can imagine.
Each specific “structure”, i.e., a specific sequence of results is
possible and if you run many games, they will occur sometimes.
For instance, the probability of observing the event sum = 0, in
all the 100 steps is simply (1/2)1°0 or about one in 103 steps.

4.2. Four Dice; N =4

We proceed to the game with four dice. This introduces us to
a little new feature. Again, we start the game with an all-zeros
configuration at the zeroth step, pick-up a die at random, throw
it, and place the die with the new face in its original place on the
line. Figure (4.3) shows two runs of this kind. Each game is run
with 100 steps. We plot the sum as a function of the number of
steps. The sum ranges from the minimum sum = 0 (all-zeros),
to the maximum sum = 4 (all-ones).
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If you want to play by choosing surm = 0, and stick to
this choice (as required by the rules of the game), you will win
if I choose 4. The reason is the same as in the previous two-
dice game. Since we started with sum = 0, the game is slightly
“biased” towards sum = 0. If  choose sum = 2,1 will certainly
lose on the zeroth step and you will win with certainty the zeroth
step. You will also have some advantage in the next few steps.
However, your initial advantage will dissipate in the long run.
You can see that within 100 steps, we have visited on the average:

Sum =0 in Vs of the steps
Sum =1 in %s of the steps
Sum =2 in 644 of the steps
Sum =3 in 45 of the steps
Sum =4 in Th¢ of the steps

These average numbers are for the long run, and can be cal-
culated exactly. As you can see, the slight advantage of choosing
sum = 0 will dissipate in the long run. Let us examine more care-
fully the runs of this game (Fig. (4.3)) and compare it with the
two-dice game (Fig. (4.2)).

An obvious feature of this game is that the total number of
visits to the initial configuration (sum = 0), is much smaller
than in the previous game. Let us examine all the possible con-
figurations of the system. Here, they are:

Dim Event Specific Events

sum = () 0,0,0,0

sum =1 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1
sum=2  1,1,0,0 1,0,1,0 1,0,0,1 0,1,1,1 0,1,0,1 0,0,1,1
sum =3 1,1,1,0 1,1,0,1 1,0,1,1 0,1,1,1

sum = 4 1,1,1,1
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Altogether, there are 16 possible specific configurations. We
have grouped these configurations into five groups; each of
these is characterized by only the sum of the outcomes, or
equivalently, by the “number of ones,” or the number of dots,
irrespective of where the “ones” appear in the sequence. Thus,
we have proceeded from 16 specific configurations (i.e., speci-
fying exactly the locations of all the zeros and ones), to five dim
configurations (where we specify only the number of “ones’).
The distinction between the specific and dim configurations is
very important.* The dim configuration always consists of one
or more specific configurations.

Another feature which is common to both games (and to
all the remaining games in this chapter) is that though there
is initially a slight bias to the visits sum = 0 compared with
sum = 4, in the long run (or very long run), we shall see that on
the average, the sum will fluctuate above and below the dotted
line we have drawn at the level of sum = 2. This feature will
become more pronounced and clearer as N increases.

Before moving on to the next game, you should “train” your-
self with this game either by actually playing dice, or by simu-
lating the game on a PC. You should only use your common
sense to understand why the number of visits to the initial state
decreases when N increases, and why the number of visits to
sum = 2 is the largest in the long run.

4.3. Ten Dice; N =10

With 10 dice, we shall observe something new, something that
will come into greater focus as we increase the number of dice,
until we can identify a behavior similar to the Second Law.

#In the molecular theory of the Second Law, the specific and the dim configurations
correspond to the microstates and macrostates of the system. We shall discuss this in
Chapter 7.
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We start as before, with an all-zeros configuration, i.e.,
sum = 0, i.e., the number of “ones” is zero. Figure (4.4) shows
two runs of this game.

At the first step we have the same probability of staying at
sum = 0, or move to sum = 1; these have an equal probabil-
ity of 12. We could barely see that on the scale of Fig. (4.4).
The important thing that is happening is on the second, third
and perhaps up to the 10 next steps. As we can see in the runs
shown in Fig. (4.4), the overall trend in the first few steps is
to go upwards. Why? The answer is very simple. After the first
step, we have one of the two configurations; either all-zeros, or
nine zeros. We now choose a die at random. Clearly, it is much
more likely to pick up a zero, then a one. Once we pick up a
zero die, we can either go upwards or stay at the same level, but
not downwards. To go downwards we need to pick up a “1”
(with relatively low probability) and turn it into “0” with prob-
ability 1/. So, going downwards on the second step becomes a
rare event (and it will be more and more so as N increases). |
urge you to examine carefully the argument given above, and
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convince yourself that on the second step, it is far more likely to
go upwards than downwards. It is important to fully understand
this behavior at this stage, before we go on to a larger number
of dice. The reason I urge you to do the calculations for 10 dice,
then extrapolate for a larger number of dice, is because with
10 dice, the calculations are very simple. For a larger number of
dice, the calculations might be intimidating and thus, discourage
you from analyzing all the probabilities.

Here, it is very simple. We start with an all-zeros config-
uration. Therefore, at the first step, we choose a “zero” with
probability one, then we can either go upwards with probabil-
ity 1/, or stay at the same level (sum = 0) with probability 1.
There is no going downwards.

Similarly, on the second step, the argument is a little more
complicated. If we end up on the first step at the level sum = 0,
then the two possibilities are exactly as for the first step. How-
ever, if we end up at the first step at level sum = 1, then we have
four possibilities:

1) Pick up at random a “1” with probability 1/19, and stay at
the same level with probability 1/

2) Pick up at random a “1” with probability 1/19 and go down-
wards with probability 1/

3) Pick up at random a “0” with probability /10 and go
upwards with probability 1/

4) Pick up at random a “0” with probability ?/10 and stay at the
same level with probability 1/.

The net probabilities of the four possibilities are:

1) 1/10 times 15 = 1/ for staying at the same level (sum = 1)
2) 110 times 15 = 1/59 for going downwards (sum = 0)

3) %ho times 1 = 2/ for going upwards (sum = 2)

4) 9/10 times 1/ = 9/20 for staying at the same level (sum = 1).
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Clearly, staying at the same level (sum = 1), or going
upwards has a much higher probability than going downwards.
This is reflected in the general upward trend in the runs shown
in Fig. (4.4).

On the third step, we can do the same calculation. The trend
to go upwards is still greater than to go downwards, although
a little weaker as for the second step. Why? Because to go
upwards, we need to pick up a “0” with probability of at most
8/10 (presuming we are at the level sum = 2 at this step) and climb
up with probability 1. The probability of climbing up is still
larger than that of going down, but it is somewhat weaker com-
pared with the upward trend at the second step. The argument
is the same for the fourth, fifth steps, etc.; with each increasing
step, the probability of climbing up becomes less and less pro-
nounced until we reach the level sum = 5. When we reach this
level (sum = 5), again we have four possibilities:

1) Pick up a “1” with probability 15, and stay at the same level
with probability 1

2) Pick up a “1” with probability 12, and go downwards with
probability 1/

3) Pick up a “0” with probability 14, and go upwards with
probability 1/

4) Pick up a “0” with probability 1/, and stay at the same level
with probability 1.

The net probabilities of these four possibilities are:

1) 1/ times 1/ = 1/4 for staying at the same level (sum = 5)
2) 1/ times 15 = 1/4 for going downwards (sum = 4)

3) 1/ times 15 = 1/4 for going upwards (sum = 6)

4) 1/ times 15 = 1/4 for staying at the same level (sum = 5).

The important finding is that once we reach the level
sum = 5, we have probability 1/4 of going upwards and the same
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probability, 1/4 of going downwards, but twice that probability,
i.e. 15 of staying at that level, sum = 5.

Once we reach the level sum = 5 for the first time, the
chances of going upwards or downwards become symmetrical.
We may say that at this stage, the system has “forgotten™ its
initial configuration. If we start with any arbitrary configura-
tion at a level below sum = 5, there will be a greater tendency
to go upwards than to go downwards. If on the other hand,
we start at a level above sum = 5, we shall have a strong
bias to go downwards. If we start at level sum = §, or reach
that level during the run, we shall have a larger probability of
staying at that same level. As we shall see below, these argu-
ments are valid for all the cases, but become more powerful
for a larger number of dice. For this reason, we shall refer to
the level sum = § (in this particular game with 10 dice) as
the equilibrium level. Indeed, the very nature of this level is to
be at equilibrium, i.e., with equal weights, or equal probabil-
ities of going upwards or downwards but a larger probability
of staying put. We drew the equilibrium line with a dashed line
in each run. It is an equilibrium also in the sense that for any
deviation from that line, either upwards or downwards, the sys-
tem has a tendency of returning to this line. We can think of
an imaginary “force” restoring the system back to the equilib-
rium level. The further we go away from the equilibrium line,
the larger will be the restoring “force” leading us back to the
equilibrium line.

The two features described above — initially a preference to
go upwards, and once reaching the equilibrium level, to stay
there or around there — are the seeds of the Second Law.
Figuratively, it can be described as a kind of ghostly “force” that
attracts any specific configuration towards the equilibrium line.
Once there, any deviation from the equilibirum line is “pulled”
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back to that line.” To put it differently, we can think of the equi-
librium line as an attractor, always pulling the “sum” towards it.

For this reason, large deviations from the equilibrium line
have very little chance of occurrence. This is why we have
observed only very rarely the reverting of a configuration to
the original state, or a configration reaching the extreme level
of sum = 10. (It is easy to calculate that a visit to either of these
extremes has a probability of (1)1°, which is about one in 1000
steps.)

As with the four dice, we could have listed all the possible
specific configurations for the 10 dice. In the table below we have
listed only a few configurations in each group of the dim-state.

Dim Examples of Number of Specific
Event Specific Events Events Comprising
the Dim Event

dim-0 0000000000 1

dim-1 0000000001, 0000000010,... 10
dim-2 0000000011, 0000001010,... 45
dim-3 0000000111, 0000001011,... 120
dim-4 0000001111, 0000010111,... 210
dim-5§ 0000011111, 0000101111,... 252
dim-10 1111111111 1

5 Note, however, that the equilibrium line does not characterize a specific configura-
tion. In fact, this is a dim configuration consisting of the largest number of specific
configurations for this particular game. The meaning of the equilibrium line here is
related to, but not the same, as the equilibrium state of a thermodynamic system, as
discussed in Chapter 7.
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We have grouped all the 210 = 1024 specific configurations
into 11 groups; each group is referred to as a dim configura-
tion (or dim-state or dim-event). Dim-one (i.e., all configura-
tions having only a single “1”) has 10 specific configurations.
Dim-five has 252 specific configurations.

Although I did not recommend pursuing the game aspect
of this experiment, you might have taken note that if you have
chosen sum = 0, and I have chosen sum = 3, initially you will
win at the zeroth step with certainty. You will win on the next
step with probably 1/, and thereafter the probability will decline
rapidly as the game proceeds. On the other hand, I have zero
probability of winning in the first few steps. However, once we
reach the level sum = 5,1 will have the upper hand, and on the
average, the odds of winning are 252:1 in my favor!

Let us turn to examine the evolution of the next two runs
before we unfold the full characteristic of the behavior of what
entropy essentially is. Let us also change our nomenclature.
Instead of saying level sum = k, we shall simply say dim-k.
The sum is really not the important thing. What is of impor-
tance is how many “ones,” or how many dots there are in the
dim configuration, or the dim event.

4.4. Hundred Dice; N = 100

The runs shown in Fig. (4.5) were taken with 1000 steps. Evi-
dently, with a larger number of dice, we need more steps to go
from dim-0 to the equilibrium level, which in this case is dim-50.
How fast do we get to the equilibrium level? If we are extremely
lucky, and on each step we pick up a zero, and on each throw we
geta “1,” then we need a minimum of 50 steps to reach the level
dim-50 for the first time.® However, we do not pick up a “0”

6In the real process, it is mainly the temperature that determines the rate of the
process. However, neither in this game nor in the real process shall we be interested
in the rate of the process (see also Chapter 7).
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on each step, and when we pick up a zero, it has only a chance
of 15 to convert to “1,” i.e., going upwards. These affect the
rate of climbing towards the level dim-50. You can see that on
the average, we get there in about 200 to 400 steps. As you can
observe, the ascension is quite steady, with occasionally resting
at the same level, and occasionally sliding down for a while, and
then regaining the upward thrust.

Once you get to level dim-50, you will be staying at that
level or in its vicinity, most of the time. Occasionally, a large
deviation from the equilibrium level will occur. During these
specific runs, the initial level dim-0 was never visited. This
does not imply never visiting level zero. The chance of this
occurrence is one in (2)1%0 steps or one in about 1030 =
1,000,000, 000,000,000,000,000, 000,000,000 steps. (This
is a huge number [just “huge,” and we can even write it explic-
itly. However, it is quite small compared to what awaits us in
the next runs: numbers that we could never even write explicitly]
the chances of visiting level dim-0 (or level dim-100) is less than
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once in a billion of a billion of steps.) Do not try to do this exper-
iment with dice. This is a long, arduous and tedious experiment.
It is easier to run the game on a PC.

4.5. Thousand Dice; N = 1000

The results of this run are much the same as before, but having
a slightly smoother curve, on the scale of Fig. (4.6). To reach the
equilibrium level, we need about 3000 to 4000 steps. Once we
reach the equilibrium line, deviations from this level have about
the width of the line demarcating the equilibrium level. Larger
deviations are rare (can be seen as sharp spikes like barbed wire
stretched along the equilibrium line), and of course, deviations
large enough to bring us to level zero will “never” be observed.
This is not an impossible event but it will occur at a rate of about
one in 10390 steps (one followed by three hundred zeros). Even
if we run the program for a very long time on the computer, we
could still not observe this event.
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Recall our calculations of the probability of going upwards,
going downwards, or staying at the same level. Although the
calculations are the same, it is instructive to have a feel for how
these tendencies change with the number of dice.

On the first step, we have the same probability of going
upwards or of staying at level dim-0 as before. Suppose we
reached dim-1 after the first step; then we have four possibil-
ities for the second step:

1) Pick up at random a “1” with probability /1000 and stay at
that level with probability 1/

2) Pick up atrandoma “1” with probability 1/1000 and go down-
wards with probability 1/

3) Pick up at random a “0” with probability 299/1000 and go
downwards with probability 1/2

4) Pick up at random a “0” with probability 22%/1000 and stay
at the same level with probability 1.

Thus, the probabilities of the three net possibilities for the
next steps are:

1) /1000 times 1/24-999/1000 times 1/ = 1/ to stay at the same
level

2) 9991000 times 1 = 9994000 for going upwards

3) 11000 times 12 = 1000 for going downwards.

We note that the probability of staying at the same level is
the largest (probability nearly 1/2). This is almost the same prob-
ability as for going upwards , 999/2000, while the probability
of going downwards is negligible, (1/000).

This is a very remarkable behavior, and you should examine
these numbers carefully. Compare this with the case of N = 10,
and think of what happens when N increases to 10*, 10° and far
beyond that. Understanding this game is crucial to the under-
standing of the way entropy behaves.
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The same calculations can be repeated for the third, fourth,
etc., steps, As long as there are many more zeros in the configu-
rations, there will be a larger probability of going upwards and
a smaller probability of going downwards. The “strength” of
this argument becomes weaker and weaker as we climb up and
as the sum reaches the level N/2 = 500. This is reflected in the
form of the overall curve we observed in Fig. (4.6). Initially the
climb upwards has a steep slope; then the slope becomes more
and more gentle as we get closer to the equilibrium line. Once
we reach that level for the first time, we have a larger proba-
bility of staying there, and equal probabilities of going either
upwards or downwards. As in the previous cases, whenever any
deviations occur from the equilibrium line, the system will have
a tendency to return to this line, as if there is an unseen “force”
pulling the curve towards the equilibrium line.

4.6. Ten Thousand Dice; N = 104 and Beyond

Figure (4.7) shows a run with N = 10%. There is no need to
draw more than one run. All the runs are nearly identical in
shape. As we can see, the curve is very smooth on this scale;
even the little spikes we have observed in the previous case have
disappeared. This does not mean that up and down fluctuations
do not occur; it only means that on the scale of this graph, these
fluctuations are unnoticeable. We can notice these fluctuations
if we amplify the curve at some small range of steps as we have
done in the two lower panels of Fig. (4.7).

As you can see, once we have reached the equilibrium line
(this occurs after quite a large number of steps), we stay there
and in its vicinity, almost permanently. The curve of the results
of our run, and the equilibrium line merges and becomes one
line. We do not see any major fluctuations and certainly there
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is no visit to the initial configuration. However, there is still
a non-zero probability of occurrence of such an event. This is
(15)10:000 or about once in every 103°00 steps (one followed by
3000 zeros; do not try to write it explicitly). This means that
practically, we shall “never” see any visits to the initial con-
figuration and once we reach the equilibrium line, we will stay
near that level “forever.” I have enclosed the words “never”
and “forever” within quotation marks to remind you that nei-
ther “never” nor “forever” are absolute, i.e., “once in a while”
there is a non-zero chance of visiting the initial configuration.
This chance is already extremely small for N = 1000, and as
we shall see in Chapter 7 (when dealing with real systems), we
have numbers of the order of N = 1023, which is billions and
billions times larger than N = 1000. For such a system, the
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probability of visiting the starting configuration is so small that
we can actually use the words “never” and “forever” without
quotation marks.

To give you a sense of what this number means, think of
running the game at a rate of 1000 steps in a second. If you
think you can do it faster, do it with one million steps a second.
The age of the universe is currently estimated to be on the order
of 15 billion years. Therefore, if you were playing this game
with one million steps per second, you will do the total of

10° x 60 x 60 x 24 x 365 x 15 x 10° = 4 x 10" steps

That is, you will be doing about 10,000,000,000,000,000
steps during all this time. This means that if you play the game
during the entire age of the universe, you will not visit the initial
configuration even once. You will have to play a billion times
the age of the universe in order to visit the initial configuration.
Thus, although we have admitted that “never” is not absolute,
it is very close to being absolute. Let us ponder for a while what
is really meant by an absolute “never” or “forever.”

In daily life you might use these terms without giving it a sec-
ond thought. When you promise your wife to be faithful “for-
ever,” you don’t mean it in the absolute sense. The most you
can say is that within the next hundred years you will “never”
betray her.

What about the statement that the sun will rise every morn-
ing “forever?” Are you sure that this will occur “forever” in
an absolute sense? All we know is that in the past few million
years, it did occur, and we can predict (or rather guess) that it
will continue to do so in the next millions or billions of years.
But can we say “forever” in an absolute sense? Certainly not!

What about the laws of nature? Can we say that the law of
gravity, or the speed of light, will remain the same “forever?”
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Again, we are not sure;’ all we can say is that it is probable that
they will hold out at most, for the next 15 billion years or so.

Thus, there is no way of saying that any event in the real
physical world will occur “forever,” or will “never” occur in
an absolute sense. Perhaps, these terms can be applied to the
Platonic world of ideas. In that world, we can make many state-
ments like “the ratio of the circumference to the radius of a
circle” will never deviate from 2.

We have enclosed the words “never” and “forever” within
quotation marks to remind us that these are not meant to be in
an absolute sense. We have also seen that in the physical world,
we can never be sure that we can use “never” and “forever”
in an absolute sense (the first “never” in the preceding sentence
is closer to the absolute sense, than the second “never”). But
we have seen that the assertion made about staying “forever”
at, or near the equilibrium line, and “never” returning to the
initial state, can be used with much more confidence than in
any other statement regarding physical events. In the context of
the Second Law, we can claim that “never” is the “neverest” of
all “nevers” that we can imagine, and the staying “forever” at
equilibrium is the “foreverest” of all “forevers.”

Therefore, from now on, we shall keep the quotation marks
on “never” and “forever,” to remind us that these are not abso-
lute, but we shall also render these words in bold letters to
emphasize that these terms, when used in the context of the
Second Law, are closer to the absolute sense than any other
statements made in the real physical world.

I hope you have followed me so far. If you have not, please
go back and examine the arguments for the small number of

7Recently, even the constancy of the constants of physics has been questioned. We
do not really know whether or not these constants, such as the speed of light did not,
or will not change on a scale of cosmological times. See Barrow and Webb (2005).
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dice. In all of the games in this chapter you should ask yourself
three questions:

1) What is this thing that changes at each step? Try to give it
a name of your choice. A name that reflects what you were
monitoring in any of these games.

2) How is this change achieved? This is the easiest question!
And most importantly,

3) Why is the change always in one direction towards the equi-
librium line, and why it “never” goes back to the initial con-
figuration, and stays very near the equilibrium line “forever.”

If you feel comfortable with these questions and feel that you
can explain the answer, you are almost 50% towards under-
standing the Second Law of Thermodynamics.

We still have one more important question to answer. What
have all these dice games to do with a real physical experiment,
and to what extent do the things that we have observed have
relevance to the Second Law? We shall come back to these ques-
tions in Chapter 7. But before doing that, we shall take a break.

I presume it took some effort on your part to follow me
thus far. Therefore, I suggest that it is time to relax and expe-
rience, somewhat passively, the Second Law (or rather, some
analogues of the Second Law) with our senses. What we will do
in the next chapter is simply to imagine different experiments
which, in principle, you could experience with your senses. This
should give you a sense of the variety of processes that can actu-
ally occur under the same rules of the game. This will also pre-
pare you to better appreciate the immensely larger number of
processes that are actually governed by the Second Law. You
need not make any calculations; just think of why the processes
you are experiencing occur in this or that particular way. We
shall come back to a deeper analysis after that experience and
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also translate all that we have experienced from the dice lan-
guage into the language of real systems consisting of atoms and
molecules. In Chapter 6, we shall try to understand the Second
Law within the dice-world. In Chapter 7, we shall translate all
this understanding into the language of real experiments.

0% 100%

END OF CHAPTER 4
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Experience the Second Law with all Your
Five Senses

In this chapter, we shall not gain any new understanding of the
games of dice as we have done in the previous chapters, nor
obtain any new insights into the nature of the Second Law of
Thermodynamics. Instead, we shall describe a few hypothetical
experiments. Underlying all of these processes is a common basic
principle which, as we shall see, is relevant to the Second Law.
We shall also use different senses to feel the Second Law. All of
these processes are different manifestations of the same principle
and represent the immense number of possible manifestations of
the Second Law. To avoid boring you with repetitions, we shall
change the rules of the game slightly. This is done to demonstrate
that the rules need not be rigid. For instance, we do not have to
pick up a single die in each step; we can pick up two dice in each
step, or three or four, or even all of them at once. We can also
pick up the dice in an orderly fashion, not necessarily at ran-
dom, but change the outcome at random; or we can choose a die
at random but change the outcome deterministically, e.g., from
“1” to “0,” or from “0” to “1.” What matters is that each die
has a “fair” opportunity to change, and that there is an element
of randomness in the process. We shall return to a discussion of
the mechanism of the change in Chapter 7. But for now, let us
enjoy some hypothetical experiments. They are designed to be
enjoyable and to enrich your experience and familiarity with the

116
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Second Law. You do not need to make any effort to understand
these processes. We shall come back to the issue of understanding
in the next chapter, and to the issue of relevance to the real world
in Chapter 7. For now, just read and enjoy the “experience.”

5.1. See it with your Visual Sense

We start with the simplest case. We do not change any of the
rules as described in Chapter 4, nor do we change the number of
possible outcomes, nor their probabilities. The only difference is
that instead of counting the number of “ones” (or equivalently
summing all the outcomes of all the dice), we watch how the
color of a system changes with time, or with the number of steps.

Fig. (5.1)

Suppose we have N dice, three faces of each die being colored
blue and the other three, yellow. You can think of a coin being
on one side blue and yellow on the other, but we shall continue
to use the language of dice in this and the next chapters.

A specific configuration of the N dice will be a specification
of the exact color shown on the upper face of each die. In this
particular experiment, there is no “sum” of outcomes that we
can count. The outcomes are colors and not numbers.! In the

UIn physical terms, the outcome is an electromagnetic wave of a certain frequency.
This specific wave enters the eye, and focuses on the retina’s rod cells which send a
message to the brain. There, it is processed and we perceive that signal as a color.
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case of numbered dice, we have referred to a dim configuration,
the set of all the specific configurations that have the same sum
or equivalently the same number of “ones.” To proceed from the
specific configuration to the dim configuration, you can think of
the dice as pixels in a digital picture; pixels of two types of colors
so small that you observe only an “average” color. In Fig. (5.1),
we show a few dim events. On the extreme left bar, we have
(100%) yellow. We add (10%) of blue to each successive bar.
The bar at the extreme right is pure (100%) blue.

In all of the examples in this chapter, we use N = 100 dice.
Initially, we start with an all-yellow dice and turn on the mecha-
nism of changing the outcomes of the dice with the same rules as
before. Choose a die at random, throw it and place it back into
the pool of dice. These are admittedly very artificial rules. How-
ever, we shall see in Chapter 7 that, in principle, such an evo-
lution of colors can be achieved in a real physical system where
the “driving force” is the Second Law of Thermodynamics.
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Fig. (5.2)
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What are we going to observe? Of course, here we cannot
“plot” the sums of the outcomes. We could have assigned the
number “zero” to the yellow face, and the number “1” to the blue
face, and plot the number of ones as the game evolves with time or
with the number of steps. But in this experiment, we only want to
see what goes on. In Fig. (5.2), we show how the “average” color
evolves with time. Starting with an all-yellow configuration, the
ascension is measured as the percentage of the added blue color.

If we start the run with an all-yellow system, we will initially
observe nothing. We know that there is a strong “upward” ten-
dency towards blue as we have observed in Chapter 4. The effect
of a few blue dice will not be perceived by our visual sense. As we
proceed with many more steps, we will start to see how the sys-
tem’s color slowly changes from yellow to green. Once we reach
a certain hue of green (the one which is composed of about 50%
blue and 50% yellow), the color of the system remains perma-
nent. We will never observe any further changes. Perhaps there
will be some fluctuations about the equilibrium “green line,” but
we will almost never “visit” either the pure yellow or pure blue
colors. Note also that even for N = 100, all the fluctuations in the
colors are within the range of green color. When N is very large,
no fluctuations will be observed, and although changes do occur,
the dim color remains almost constant. This is the 50% : 50%
mixture of the blue and yellow colors.

We will show in Chapter 7 that such an experiment can
actually be carried out with real particles (say, two isomers that
have different colors). For the moment, we should only take
note that from whatever configuration we start with, applying
the rules will lead us to the same final (equilibrium) color.

5.2. Smell it with your Olfactory Sense

Next, we describe another small variation on the theme of the
Second Law. Asin the previous example, we have again two kinds
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of faces with equal probabilities. We assume that when a die
shows a face A, it emits a scent of type A, and when it shows a face
B, it emits a scent of type B. If we have a hundred dice, N = 100,
with any arbitrary configuration of As and Bs, we smell an aver-
age scent of type A + B, in the same proportion as the ratio of As
to Bs in that configuration. Note that the sense of smell is a result
of specific molecules adsorbed on specific receptors.?

As we shall discuss in Chapter 7, an analogue of this exper-
iment can be performed by using real molecules. In principle,
we can actually follow the evolution of the scent of a system
with our olfactory sense, as it evolves according to the Second
Law of Thermodynamics. Here, however, we discuss only a toy
experiment with dice that emit two different molecules having
different scents.

Percentage

200

400 600 800 1000
Number of Steps

Fig. (5.3)

2The physical outcomes are molecules of specific structures that are adsorbed on
receptors that are located on the surface of the inner part of the nose. From there,
a signal is transmitted to the brain where it is processed to produce the perception of
a specific scent.
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Again, we start with an all-As configuration and start run-
ning the game as in Chapter 4. However, there is a slight vari-
ation in the rules. We pick up #wo dice at random, throw them
and smell the resulting configuration. The throwing process pro-
duces either A or B, with probabilities 1/2 and 1/2. For example,
suppose that face A emits molecules that have the smell of green
leaves, and face B emits molecules that have the scent of red
roses (Fig. (5.3)).

Initially, we smell the pure scent of type A. After several
steps, we still smell type A although we know that there is a
high probability of the system going “upwards,” i.e., towards a
mixture of A and B. However, a small percentage of B will not
be noticeable even by those trained professionally in sniffing
perfumes (e.g. people who are employed in the cosmetic and
perfumery business). In Fig. (5.3), we show the evolution of the
scent of the system with 100 dice. We start with the leafy scent
of green leaves and run the game.

After many steps, you will start to notice that scent type B has
mixed with the dominating scent type A. After a longer period
of time, you will reach a point where the ratio of the scents
A to B will be 1:1, i.e., in accordance with the “equilibrium
line” of the configurations of the dice having the ratio of 1:1.
Once we have reached that specific blend of scent, we will no
longer experience any further changes. We know that there are
some fluctuations, but these will not be very different from the
equilibrium scent. As the number of dice increases, we will reach
a constant equilibrium scent; no noticeable deviations from this
scent will be sensed.

As we have noted above, although this is a very hypothetical
process, one can actually design a real experiment and follow the
evolution of the overall scent of a mixture of molecules having
different scents. We will discuss this kind of experiment in Chap-
ter 7. In fact, the real experiment is much easier to design than
this one with hypothetical dice.
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5.3. Taste it with your Gustatory Sense

As with the sniffing experiment, we can design an experiment
in which we can taste with our tongue. In this experiment, we
change one aspect of the rules of the game. Again, we start with
100 dice. Each die has three faces having a sweet taste, say sugar
syrup, and the other three having a sour taste, say lemon juice
(Fig. (5.4)). We proceed to find out the “average” taste of the
entire system.> The taste that we experience is a dim taste. We
do not distinguish between different specific configurations of
the dice; only the ratio of the two tastes can be perceived by our
gustatory sense.

We begin with an all-sour configuration (represented by
yellow in Fig. (5.4)). Instead of choosing a die at random, we
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Fig. (5.4)

3As in the case of scents, the sense of taste is produced by molecules of a specific
structure that are adsorbed on sensitive taste cells in microscopic buds on the tongue.
From there, a message is sent to the brain where it is processed to produce the sensation
of taste.
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choose a die in an orderly fashion, say sequentially from left to
right. We pick up a die, throw it, taste the new dim configura-
tion, and then turn to the next die in the sequence, and so on.
If we have 100 dice, we will start with the die numbered one,
and proceed to the last one, numbered 100. We shall repeat the
sequence 10 times, performing 1000 steps in total. Figure (5.4)
shows the evolution of the taste in this game.

In spite of the change in the rules of the game, the evolu-
tion of the game in its gross features will be the same as before.
We start with a pure sour taste and for the first few steps we
will not notice any change in the overall taste. Unless you are a
gourmet or have an extremely discriminating sense of taste, you
cannot tell the difference between a 100% sour taste and a mix-
ture, say of 99% sour and 1% sweet tastes. But we know from
our analysis in Chapter 4 (or as you can experiment with dice
or carry out a real experiment as described in Chapter 7), that
there is a strong tendency for the system to go “upwards,” which
in this case is towards the sweet-and-sour taste. After a thou-
sand steps, you will notice that the taste is almost 50% : 50%
sweet-and-sour, and once you have reached this “level,” you
will not notice any more changes in the taste. The mechanism
of changing the taste of each die is, of course, the same as for
the previous examples. However, the changes are such that the
dim taste, like the total sum of our dice in Chapter 4, does not
change in a noticeable manner. We shall taste the same sweet-
and-sour taste “forever.” Although we know that fluctuations
occur, these are barely noticeable on our tongue. The system
has reached the equilibrium sweet-and-sour line, “never” visit-
ing again either the initial sour, or the pure sweet taste.

5.4. Hear it with your Auditory Sense

In this experiment, we describe a hypothetical process that will
allow your ears to hear and experience the Second Law. Again
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Fig. (5.5)

we make a slight change to the rules; instead of two outcomes
as we had in the previous section, we assume that we have
three possible outcomes. Again using the language of dice, let us
assume that each die has two faces marked with A, two marked
with B and two, C (Figure (5.5)). We can imagine that when-
ever face A is shown on the upper side, a tone A is emitted. We
can think of the faces as vibrating membranes which vibrate at
different frequencies. The sound waves emitted are perceived as
different tones by our ears.* The sound does not have to be pro-
duced by the die itself; we can think of a signal given to a tuning
fork which produces tone A whenever A is the outcome of the
die. Similarly, another tone, B, is produced by outcome B, and
another tone, C, produced by outcome C.

Again, we start with an all-As initial configuration and start
running the process with the same rules as before, except that
we have three, instead of two, “outcomes”. Pick-up a die at
random and toss it to obtain one of the outcomes, A, B or C.

Using almost the same analysis as we have done in Chapter 4,
we can follow the evolution of the system not in terms of a
“sum” of outcomes, but in terms of the sound of the dim tone
we hear with our ears.

Initially, we will hear a pure A tone. We know that there is a
high probability of the system “climbing” not to a new “sum,”

#In physical terms, the sound waves reaching the ear drum produce vibrations that
are transmitted to the inner part of the ear. From there, a message is sent to the brain
where it is processed to produce the sensation of a specific tone.
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but to a mixture of tones, still dominated by A. If we start with
N = 1000 dice of this kind, we will initially notice almost no
change. If you have a good musical ear, after some time you
will start hearing a mixture of tones (or a chord) which could
be more pleasant to your ears if A, B and C are harmonious.
After a long time we will reach an equilibrium tone. We will
hear one harmonious chord composed of the three pure tones A,
B and C with equal weights. Once we have reached that “level”
of tone, the system will stay there “forever.” There will be some
fluctuations in the relative weights of the three tones but these
will hardly be noticeable even to the most musically trained ears.

5.5. Feel it with your Touch (Tactile) Sense

In this last example, we will describe an extremely hypothetical
version of a real experiment involving temperature.

We perceive the temperature of a hot or cold body through
our skin.’ It is a sense for which the molecular origin was not
understood for a long time. Nowadays, the molecular theory of
heat is well understood; nevertheless, it is still not easy for the
layman to accept the fact that temperature is nothing but the
“average” speed of motion (translation, rotation and vibration)
of the atoms and molecules that constitute matter. We feel that a
block of iron is cold or hot, but we do not feel the motion of the
iron atoms. In our daily lives, we regard the two, very different
notions, temperature and motion, as two unrelated phenomena.
A fast moving ball could be very cold, and an immobile ball
could be very hot. Yet, one of the great achievements of the
molecular theory of matter is the identification of temperature
(that we sense as hot and cold) as an average velocity of the

3The sense of touch is produced by nerve cells underneath the skin which respond to
pressure and temperature. The cells send messages to the brain where it is processed
to produce the sense of pressure, temperature and perhaps of pain too.
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atoms and molecules. This insight was not easy to accept before
the establishment of the atomic theory of matter. Nowadays,
however, this theory is well established and well accepted.

To capitalize on the insight we have already gained with
the dice games, we will design our final process based on our
sense of touch. It involves temperature, but temperature in an
extremely simplified version of any real experiment. We shall
briefly discuss real experiments involving the temperature of
gases in Chapter 7. This experiment is very important since the
Second Law of Thermodynamics was borne out of the consider-
ations of heat engines and heat flow between bodies at different
temperatures.

This experiment is designed specifically to be felt by our
fifth and last (recognized) sense. The dice in this game have
two kinds of faces, three faces being hot (say 100°C) and
three faces being cold (say 0°C).° Each face has a fixed
temperature.” We also assume that the faces are perfectly insu-
lated from each other (otherwise the real Second Law of Ther-
modynamics will be working on the molecules that constitute
the dice themselves to equilibrate the temperature within each
die, and that will spoil our game). In Fig. (5.6), we show the
cold face as blue, and the hot face as red, as commonly used on
water taps.

6This is an extremely hypothetical experiment. In a real experiment that we shall
discuss in Chapter 7, atomic particles will replace the dice. While we can imagine
molecules having different colors, tastes or smells, there is no “temperature” that can
be assigned to each molecule. The temperature we sense is a result of the distribution
of kinetic energies among the molecules. To simulate something similar to a real
experiment, we should use dice having an infinite number of faces, each representing
a different possible velocity of a molecule.

7We also need to assume that we have a mechanism that keeps each hot face and
each cold face at their fixed temperature. Here, it is quite difficult to prevent the equi-
libration of temperature between the different faces as well as maintaining a constant
temperature of the faces after touching with our hands or with a thermometer.
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We start with, say 100 dice, all with the cold faces facing
upward, so that if we touch the sample as a whole we feel a cold
sensation. The game is run exactly as for the game in Chapter 4,
but with a slight change in the rules. We start with all-cold faces
upward, selecting a die at random. But the change of the face is
done not by throwing the die, but deterministically. If it is cold, it
will be changed to hot, and if it is hot, it will be changed to cold.

If the dice are very small like “pixels” at different tempera-
tures, we only feel the average temperature of the system when
we touch the entire system of 100 dice. We cannot discriminate
between different specific configurations (i.e., which die’s face
is hot or cold); only the dim configuration, or the dim tempera-
ture is felt (i.e., only the ratio of hot to cold dice). As we proceed
using these rules, we will feel a gradual increase in the temper-
ature. After sometime, an equilibrium level of the temperature



128 Entropy Demystified

will be reached. From that time on, the temperature will stay
there “forever.” The dim temperature will be almost constant
at 50°C. No changes will be felt as time passes by (Fig. (5.6)).

With this last example, we end our tour of sensing the work-
ings of the Second Law on a system of dice. We will analyze
the underlying principle of all of these experiments in the next
chapter, and its relevance to the real world of the Second Law
in Chapter 7.
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END OF CHAPTER 5




Finally, Grasp it with Your Common Sense

After having experienced various manifestations of the Second
Law with dice, it is time to pause, analyze and rationalize what
we have learned so far. We recall that we have observed different
phenomena with different mechanisms. We shall see in the next
chapter that some of these examples (color, taste and scent)
have counterparts in real experimental systems. Other examples
cannot be performed using particles (single particles do not emit
sound waves; and the temperature that we feel with the tip of
our fingers is a result of the distribution of velocities. One just
cannot assign a temperature to each molecule). There are of
course many more examples. The central question that concerns
us in this chapter is: What are the features that are common to
all the phenomena that we have observed in the experiments
described in Chapters 4 and 5? The phenomena discussed in
this chapter are essentially the same as those in Chapters 4 and
5, except that N is very large, much larger than the largest value
of N discussed previously.
The three questions we need to ask ourselves are:

1) What is the common thing that we have observed changing
towards something we called the “equilibrium line,” and that
once we have reached that line, no further changes can be
observed?

129
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2) How did we achieve that change? What is the essential aspect
of the mechanism that leads us from the initial to the final
state?

3) Why has that change occurred in only one direction, and no
further changes are observed once we reach the equilibrium
line?

We shall discuss these questions for the simple prototype
experiment with a two-outcome dice. Our conclusions will
apply to all the other types of dice that we have discussed in
the previous chapters and it will likewise apply to real experi-
ments as discussed in the next chapter.

We recall that our system consists of N dice. The outcome
of tossing any die is either “0” or “1,” with equal probability
1. We have prescribed the rules by means of which, we change
the configuration of the dice. We have seen that the rules can be
changed. What is important is that there is at least one element
of randomness in the rules; either we choose a die at random and
change the outcome of the die deterministically, or we choose
a predetermined order for selecting the die and throwing it to
obtain a new outcome randomly, or we do both steps randomly.

We have defined a specific configuration or a specific event
as a precise specification of the outcomes of each individual die.
The exact configuration of the four dice in Fig. (6.1) is: The first
die (red) on the left shows “0”; the second die (blue) next to the
first shows “17; the third one (green) shows “1”; and the last
one (yellow) shows “0.” This specification gives us a complete
and detailed description of the system.

We have used the term dim configuration, dim state or dim
event for a less detailed description of the system. In a dim
event, we specify only the number of “ones” (or equivalently
the number of “zeros”) regardless of which specific die car-
ries the number “one” or which carries the number “zero.”
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Fig. (6.1)

Thus, a dim description of the system in Fig. (6.1) is simply 2,
or dim-2.

When we go from the specific configuration to the dim con-
figuration, we disregard the identity of the die (whether it is red
or blue, or whether it stands first or second in the row). We say
that the dice, in this description, are indistinguishable. Here, we
voluntarily give up the knowledge of the identity of the dice
in passing from the specific to the dim description. In the real
world, atoms and molecules are indistinguishable by nature, and
that is an important difference between dice and atoms; this will
be discussed in the next chapter.

Two characteristics of the dim configuration should be noted
carefully.

First, for any dim description: “There are 7 ones in a system
of N dice,” the number of specific descriptions corresponding to
this dim description grows with N. As a simple example, con-
sider the dim description “There is a single (n = 1) one in a
system of N dice.” Here, there are exactly N specific configura-
tions, comprising dim-1.

Second, fixing N, the number of specific configurations con-
stituting the same dim configuration grows as 7 grows from zero
up to N/2 (depending on whether N is even or odd, there are
one or two maximal points, respectively). We have already seen
that kind of dependence in Chapter 4. We give another example
here for a system of fixed N = 1000, where 7 changes from zero
to N (Fig. (6.2)).
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It is important to take note of these two trends. It requires
some counting that might be tedious for large N and 7, but
there is no inherent difficulty and no sophisticated mathematics
required, just plain and simple counting.

Once we have defined the specific configuration and the dim
configuration, we can answer the first question we posed in the
beginning of this section, viz., “What is the thing that changes
with each step in the games in Chapters 4 and 5, which is also
common to all the games?”

Clearly, the thing that you have observed changing is differ-
ent in each experiment. In one, you see the color changing from
yellow to green; in the others, you see changes in taste, smell,
temperature, etc. All of these are different manifestations of the
same underlying process. We are now interested in the common
thing that changes in all of the experiments we have discussed
in the last two chapters.

Let us go back to the “0” and “1” game discussed in
Chapter 4. There, we have followed the sum of the outcomes.
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Clearly, we cannot follow the “sum” of the outcomes in the
experiments of Chapter 5. However, the “sum” in the game in
Chapter 4 was also calculated based on the number of “ones”
(or the number of zeros) in the experiment. Similarly, we could
assign “one” and “zero” to the two colors, the two tastes, or the
two temperatures, and track the number of “ones” in each of
the games discussed in Chapter 5. This is fine, but not totally sat-
isfactory. We need to find a proper name to describe that thing
that is common to all the experiments, and give it a numeri-
cal value. This number increases until it reaches an equilibrium
value. Let us tentatively call this number the d-entropy (d for
dice) or simply dentropy. For the moment, this is just a name
with no attached meaning yet.

This will be fine for this specific game. However, you might
raise two objections to the description. First, we know that (real)
entropy always increases. In this example, the dentropy will go
upwards if we start from an “all-zeros” configuration. But what
if we start with an “all-ones” configuration? The dentropy will
dive downwards. This contradicts our knowledge of the behav-
ior of the real entropy. The second objection you might raise is
this: What if the dice have three different outcomes, say “zero,”
“one,” and “two,” or even non-numerical outcomes such as
tones A, B and C, or three or four colors, or perhaps an infi-
nite range of colors, velocities, etc.? What number should we be
monitoring?

The two objections can be settled by first noting that the
thing that we observe or feel in each specific game is one thing,
but the thing that we monitor is another.

In our simple game of dice, we have been monitoring the
number of “ones.” This number increases steadily only if we
start with an all-zeros configuration. Had we started with an
all-ones configuration, the number of ones will decrease steadily

»

towards the equilibrium line. We shall now see that with a simple
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transformation we can monitor the thing that always increases
towards the equilibrium line.! To do this, we shall need the
symbol of the absolute magnitude as defined in Chapter 2.
Instead of the number of “ones” denoted by 7, we can mon-
itor the number |7 — N/2|. Recall that N is the number of dice,
and n is the number of “ones.” Hence, this quantity measures the
deviation, or the “distance” between 7 and half of the number
of dice. We take the absolute value so that the distance between,
say n = 4 and N/2 = §, is the same as the distance between
n = 6 and N/2 = 5. What matters is how far we are from the
quantity N/2,? which, as you recall, is the equilibrium line.
When we start with an all-zeros configuration, we haven = 0
and hence, |7 — N/2| = N /2. When we start with all-ones, we
have n = N and |7z — N/2| = N/2. In both cases, the distances
from N/2 are the same. As n changes, this quantity will tend
to change from N/2 to zero. So we have a quantity that almost
always decreases from whatever initial configuration we start
with.? Once we get to the minimal value of |z — N/2| = 0, we
are at the equilibrium line. Check that for say, N = 10 and
all the possible values of 7. If you do not like to monitor a
decreasing number, take the negative values of these numbers,*
i.e., —|n — N/2|. This will increase steadily from —N/2 to zero.
If you do not like to monitor negative numbers, take N/2 —
|n — N/2|. This number will increase steadily from whatever
initial configuration towards the maximum value of N/2 in all

LThere is no real need to do that. However, we do that to make the behavior of the
dentropy consistent with the behavior of the real entropy as discussed in Chapter 7.
2An equivalent quantity would be the square of n — N/2, i.e., (n — N/Z)z.

3Recall that we used the words “always” and “never” in the sense discussed at the
end of Chapter 4.

4 Again, it is not essential to do so. Recall the H-theorem. There, the H-quantity also
decreases towards equilibrium (See Chapter 1).
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the cases.> As you can see, by a simple transformation, we can
define a new quantity that “always” increases with time (or
with the number of steps). But this quantity does not answer the
second objection. It is good for the game with only two possible
outcomes. It cannot be applied to the more general case where
the die has three or more outcomes. Thus, we need to search for
a quantity that is common to all the possible experiments of the
kind discussed in Chapters 4 and 5.

We shall now construct a new quantity that will always
increase and which is valid even for the more general cases.
There are many possibilities of choosing such a quantity.
We shall choose the quantity that is closest to the quan-
tity called entropy. To do this, we need the concept of
information, or more precisely, the mathematical measure of
information.

The quantity we shall choose to describe the thing that
changes is the “missing information.” We shall denote it by MI
(for now, MI is an acronym for “missing information” but later
in the next chapter, it will also be identified with the concept of
entropy).

This quantity has several advantages in that it describes
quantitatively, what the thing that changes in the process is.
First, it conforms to the meaning of information as we use it in
our daily lives. Second, it gives a number which describes that
thing that changes from any initial state to the final state, and for
any general game. It is always a positive number and increases
in our dice games as well as in the real world. Finally and most
importantly, it is the quantity which is common to all dice games
and therefore is suitable to replace the tentative term dentropy.

31If you like, you can also “normalize” this quantity by dividing it by N/2 to obtain
a quantity that starts at zero and end up at one.
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It will also be identical to the quantity that is common to all
physical systems, i.e., entropy.®

The qualitative definition is this: We are given a configura-
tion described dimly, e.g., “there are n “ones” in the system of
N dice.” We are not informed of the exact configuration. Our
task is to find out which the specific configuration given is.”

Clearly, from the knowledge of the dim configuration alone,
we cannot infer the exact or the specific configuration; we need
more information. This information is called the missing infor-
mation or MI.> How do we get that information? By asking
binary questions. We can define the MI as the number of binary
questions we need to ask in order to acquire that information,
i.e., knowledge of the specific configuration.

We have seen in Chapter 2 that the missing information is a
quantity that is defined in such a way that it is independent of
the way we acquire this information. In other words, it does not
matter what strategy we use. The MI is “there” in the system.
However, if we use the smartest strategy, we could identify the
MI as the average number of binary questions that we need to
ask. Thus, in order to use the number of binary questions to
measure the amount of the MI, we must choose the smartest
procedure to ask questions as described in Chapter 2. It is clear
that the larger the MI, the larger will be the number of questions
we need to ask. Let us look at the calculations in a few examples.
Given the information that “there is a single ‘one’ in a system

6Since we are only interested in changes in the entropy, it is enough to determine the
entropy up to an additive constant; also, a multiplicative constant that determines
the units of our measure of entropy. See also Chapters 7 and 8.

"The definition also applies to the more general case where the dim description is
“there are 14 showing face A, ng showing face B, etc., in a system of N dice.”
8Note that we can use either of the terms “information,” or “missing information.”
The first applies to the information that is in the system. We use the second when we
want to ask how much information we would need to acquire in order to know the
specific state or the specific configuration.
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Fig. (6.3)

of 16 dice” (Fig. (6.3)) how many questions will we need to
ask to obtain the MI in order to know the exact or the specific
configuration?

This is exactly the same problem as that of finding the hid-
den coin in 16 equally probable boxes (Fig. (2.9)). So we shall
proceed with the same strategy (see Chapter 2) and ask: Is it
in the upper part? If the answer is yes, we choose the rhs and
ask again: Is it in the rhs (of the four left boxes). If the answer
is no, we simply choose the half which contains the coin. With
this strategy, we will find the coin with exactly three questions.
Clearly, if we have to find a single “one” in a larger N, say,
N = 100 or 1000, the MI will be larger and we will need to ask
more questions. Try to calculate the number of questions to be
asked where the single “one” is in N = 32 and N = 64 dice.’

Next, suppose we are given “‘two ones’ in a system of 16
dice” (Fig. (6.4)). To acquire the MI in this case, we need to ask
more questions. First, we can ask questions to locate the first
“one,” then we will ask the same type of questions to locate the
second “one” in the remaining 15 dice.

9One can prove that this number is log, N, i.e., the logarithm to the base 2 of the
number of dice. Note that N is the number of dice. In this example, it is also the
number of specific configurations.
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Clearly, for a fixed N, the number of questions required to
be asked in order to obtain the required information increases
with 7. The larger # is, the more questions we will need to ask
to locate all of the “ones” (or all of the hidden coins).

The number of questions required can be easily calculated
for any n and N. We simply start by asking questions to deter-
mine where the first “one” is in the N dice, where the second
“one” is in the remaining N — 1 dice, where the third “one” is in
the remaining N — 2 dice, and so on, until we have all the infor-
mation required on the 7 dice. This is true for any » provided it
is smaller than N /2.

You should also be smart enough not only in choosing the
best strategy but also in choosing which of the outcomes are to
be located. If 7 is larger than N/2, it would be better for us to
switch to asking for the locations of the “zeros” instead of the
“ones.” For instance, if we are given three “ones” in a system of
four dice, the MI is exactly the same as if we were given a single
“one” in a system of four dice. In this case, it will be smart to
ask questions to locate the single “zero” in the first case, or the
single “one” in the second case. By asking two questions, the
entire, exact configuration can be determined.
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Thus, the quantity MI increases with N for a fixed ». For a
fixed N, the MI increases with increasing 7, from n = 0 (i.e.,
with all “zeros,” we need to ask zero questions) to n = N/2
(orto (N+1)/2if N is odd) and then decreases when # increases
beyond n = N /2. When we reach n = N, again MI is zero (i.e.,
when all are “ones,” the number of questions we need to ask is
zero too).10

A similar procedure can be prescribed for cases where there
are more than two outcomes. This is slightly more complicated
but it is not essential in order to understand the Second Law.

We now have a quantity referred to as MI, which is a num-
ber that describes the missing information we need in order to
specify the exact configuration whenever we are given only the
dim configuration. This number can be easily computed for any
given # and N.!!

Let us go back to our game in Chapter 4, where we mon-
itored the sum of the outcomes or the number of ones in the
evolution of the game. Instead of these two equivalent num-
bers, we shall now monitor the MI at each step. This is a more
general quantity (it can be applied to any number and any type
of outcomes), and it always increases (no matter from which
state we start), reaching a maximum at some point (in this case
n = N/2). Most importantly, this is the quantity which can be
shown to be identical to the entropy of a real system.

One should realize that MI is a quantity we choose to mon-
itor the evolution of the game. This is one of many other pos-
sible quantities we can choose (other possibilities being the

10Note that the MI discussed in this paragraph is strictly an increasing function of N,
and of 7 (for n < N/2). In realizing an experiment with dice, the MI that we monitor
behaves similarly to the curves shown in Chapter 4, for the sum as a function of the
number of steps.

1The number of questions is logyW, where W = ﬁ is the total number of

configurations to place 7 “ones” (or coins) in N dice (or N boxes). Note that this
number is symmetric about 7 = N/2, at which point W is maximum.
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number of “ones,” the sum of the outcomes, or the quantity
N/2 —|n — N/2|). The thing that changes is the dim state or the
dim configuration of the system. The number we have assigned
to these states is only an index that can be measured and moni-
tored. The same index can be applied to any of the experiments
we have carried out in Chapters 4 and 5, where the outcomes are
not numbers, but colors, tones, scents, tastes or temperatures.
All these are different manifestations of the same underlying
process; the change from a dim configuration having a small
index (e.g., MI or the sum) to a dim configuration having a
larger index. The only thing that remains is to give this index
a name — nothing more. For the moment, we use the name MI
which means “missing information” and clearly does not elicit
any mystery. Having found a name for the index we are moni-
toring, a name that also has the meaning of information,!? we
can discard the tentative term dentropy. We can use the term
MI instead. We shall see later that MI is essentially the same as
the entropy of the system.!3

Let us now move on to the next question posed at the begin-
ning of this chapter. How do we get from the initial to the final
state?

The answer is very simple for these particular games of dice.
We have prescribed the rules of the game. The simplest rules
are: choose a die at random, throw it to get a new random
outcome and record the new dim configuration. This answers
the question “how?”

We have also seen that we have some freedom in choosing the
rules. We can choose a die in some orderly fashion (say from left
to right, or from the right to left, or any other prescribed way),

12This aspect has already been discussed by Shannon (1948). A more detailed expo-
sition of this topic is given by Ben-Nain (2007).

13 Actually, we are never interested in the absolute entropy of the system. What mat-
ters, and what is measurable, is only the difference in entropy.
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and then throw the die to obtain a random new outcome. Or,
we could choose a die at random and then change the outcome
in a predetermined fashion; if it is “0,” it will be changed to “1,”
and if it is “1,” it will be changed to “0.” There are many other
rules that can be applied, for instance, choose two (or three, or
four, etc.) dice at random and throw them. The evolution of
the game will be slightly different in detail for each step, but the
gross view of the evolution will be the same as we have witnessed
in the experiments in Chapter 5. The important thing is that the
rules should give each of the dice a “fair” chance to change, and
to have a random element in the process. Within these limits,
we have many possible rules to achieve the change.

It should be noted that we can easily envisage a non-random
rule where the evolution will be very different; for instance, if
we choose a die in an orderly fashion, say from left to right, then
change the face of the die in a predetermined way from “0” to
“1” or from “1” to “0.” Starting with an all-zeros configuration,
the system will evolve into an all-ones configuration, and then
back to all-zeros and so forth, as shown in the sequence below.

{OJO’ 030} — {1309030} - {151)030} — {13 19130} -
{L,1,1,1} - {0,1,1,1} - {0,0,1,1} — {0,0,0,1} —
{0309030} - {1>0>030} — e

In such a case, the evolution of the system is every different as
compared with the evolution shown in Chapters 4 and 5.

We could also prescribe rules that elicit no change at all
(choose a die at random and do not change its face), or change
the entire configuration from all-zeros to all-ones (choose a die
in an orderly fashion and always change from “0” to “1,” and
from “1” to “1”). These rules are not of interest to us. As we
shall discuss in the next chapter, these rules have no counterparts
in the physical world (see Chapter 7).
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We conclude that the answer to the “how” question is very
simple. All we need is to define the rules in such a way that they
contain some element of randomness, and to give each of the
dice a “fair” chance to change from one outcome to another.

Finally, we address the last and the most important question.
Why does the system evolve from a low MI to a high MI (or
why did the “sum” or the number of “ones” increase steadily
towards the equilibrium line in the games in Chapter 4)?

The answer to this question lies at the very core of the Second
Law of Thermodynamics. Although the answer given here to this
question is strictly pertinent to our simple game of dice, we shall
see that it is also valid for the real physical processes.

As in any law of physics, there are two possible answers
to the question “Why.” One can simply answer with “that
is the way it is,” nothing more, nothing less. There is no
way of understanding any of Newton’s laws of motion in a
deeper way. A moving ball when left uninterrupted by any
force, will continue moving in a straight line and at con-
stant velocity forever. Why? There is no answer to this ques-
tion. That’s the way it is. That is how nature works. There
is no logical reason, nor explanation. In fact, this law sounds
“unnatural” since it conflicts with what we normally observe
in the real world. A non-scientific minded person who read
the manuscript of this book was surprised to hear that such
a law exists exclaiming “Everyone knows that a moving ball,
left uninterrupted, will eventually stop.” This law is not based
on, and cannot be reduced to, common sense. In fact, most
of the quantum mechanical laws are even counterintuitive and
certainly do not sound to us as logical or natural (the rea-
son is probably because we do not “live” in the microscopic
world, and quantum mechanical effects are not part of our daily
experiences).
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The second answer is to seek for a deeper underlying prin-
ciple or an explanation of the law. This is what people have
attempted to do for decades for the Second Law. The Second
Law of Thermodynamics is unique in that one can give an
answer to the question “Why” based on logic and common
sense (perhaps the only other law of nature that is also based on
common sense is Darwin’s law of natural evolution!#).

We have seen in the previous chapters that there are many
different manifestations of the (essentially) same process (and
many more in the real world). Though in the various experi-
ments, we monitored different manifestations, e.g., in one game,
the number of “ones”; in another, the number of “yellows”; yet
in another, the number of “sweet” dice — we have decided to
use the same index, MI to follow the evolution of all these dif-
ferent games. These are different descriptions of essentially the
same underlying process. “The system evolves towards more
greenness,” “the system evolves towards the larger sum,” “the
system evolves towards the larger MI,” and so on.!> All of
these are correct descriptions of what goes on, but none can be
used to answer the question “Why.” There is no law of nature
which states that a system should change towards more green-
ness. This is obvious. Neither is there a law of nature which
states that a system should change towards more disorder or
more MI.

If I have given you the answer to the “Why” question as,
“because nature’s way is to go from order to disorder, or from
a low MI to a large MI,” you can justifiably continue to ask.

14 Here, “common sense” is strictly in the sense of logic. The theory of evolution,
until very recently, was very far from being “common sense.” It was only after the
discovery of DNA, and the ensuing understanding of the mechanism of evolution on
a molecular level, that the theory became common sense.

15 A more common statement is: “The system evolves towards more disorder.” We
shall comment on this in Chapter 8.
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Why? Why does the system change from a low to a high degree
of disorder, or from a low to a high MI? Indeed, there is no such
law. The things we have monitored are good for describing but
not for explaining the cause of this evolution. To answer the
question “Why,” we need an answer that does not elicit, a new
“Why” question.

The answer to the question “Why” (for all the processes we
have observed so far, and indeed for all real processes as well)
is very simple. In fact, it can be reduced to nothing but common
sense.

We have seen that in each game, starting with any initial
configuration, the system will proceed from a dim configura-
tion consisting of a smaller number of specific configurations,
to a new dim configuration consisting of a larger number of spe-
cific configurations. Why? Because each specific configuration is
an elementary event, and as such, it has the same probability.
Therefore, dim configurations that consist of a larger number
of elementary events have a larger probability. When N is very
large, the probability of the dim events, towards which the sys-
tem evolves, becomes extremely high (nearly one!).'® This is
tantamount to saying that:

Events that are expected to occur more frequently, will occur
more frequently. For very large N, more frequently equates with
always!

This reduces the answer to the question “Why” to a mere
tautology. Indeed, as we have seen in Chapter 2, probability is

nothing but common sense, so is the answer to our question
“Why »

16Note that I wrote “dim-events” not the “dim-event” corresponding to the equi-
librium line. The latter has a maximal probability but it is not one! The dim events
referred to here are the dim event corresponding to the equilibrium line together with
its immediate vicinity. More on this in Chapter 7.
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The changes we have observed in all the experiments are
from dim events of lower probabilities to dim events of higher
probability. There is nothing mysterious in this finding. It is
simply a matter of common sense, nothing more.

It is also clear from this point of view, that the increase of MI
(as well as of the entropy — see next chapter) is not associated
with an increase in the amount of material or of energy.

You will be wondering, if entropy’s behavior is nothing but
common sense, why all these talks about the deep mystery of
the Second Law? I shall try to answer this question in Chapter
8. For the moment, we are still in the world of dice. I suggest
that you choose a number N, say 16 or 32, or whatever, and run
the game either mentally or on your PC, according to one of the
rules described in Chapters 4 and 5. Follow the evolution of the
configurations and ask yourself what the thing that changes is,
how it changes, and why it changes in the particular way. Your
answers will be strictly relevant to this specific game of dice, but
as we shall see in the next chapter, the answers are also relevant
to the behavior of entropy in the real world.

50%

0% 100%
END OF CHAPTER 6
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Translating from the Dice-World to the
Real World

In Chapter 6, I have assured you that if you understood the
evolution of the dice games and if you could answer the ques-
tions “What,” “How,” and “Why,” you are almost through in
the understanding of the Second Lawj; all that is left to do is to
show that what you have learned in the dice-world is relevant
to the real world.

In this chapter, we shall translate the language of dice into
the language of two real experiments. We shall start with the
simplest, well-known and well-studied experiment: the expan-
sion of an ideal gas.

To make the translation easier, let us redefine the dice game
from Chapter 4 by considering dice having the letter R etched on
three faces, and the letter L on the remaining three faces. Thus,
instead of “0” and “1,” or yellow and blue, or sweet and sour,
we simply have two letters R and L. (R and L stand for “right”
and “left”, but at the moment it can be interpreted as any two
outcomes of the dice, or of the coins.) We start with an all-Ls
system and run the game according to the rules as prescribed in
Chapter 4. We can monitor the number of “Rs,” or the number
of “Ls,” or the missing information, MI. Thus, in this system,
we shall find that after some time, both the number of “Rs” and
the number of “Ls” will be almost equal to N/2, where N is the

146
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Fig. (7.1)

total number of dice. We show three stages of this game with
N =10 in Fig. (7.1).

Note that the initial state (dim-0) is unique. There is only one
specific state that belongs to this dim state. In the intermediate
state (dim-2), we have many possible specific states (10 x 9/2 =
45) for the particular dim state which is described in the figure.
The last state (dim-5) is again one specific state out of many
possible specific states (10 x 9 x 8 x 7 x 6/5! = 252). This is
the maximal dim state. In Fig. (7.1), we have indicated some of
the specific configurations that comprise the dim states.

7.1. The Correspondence with the Expansion Process

Consider the experimental system depicted in Fig. (7.2). We have
two compartments of equal volume separated by a partition.
The compartment on the right is called R, and the compartment
on the left is called L. We start with N atoms of, say argon, all
the atoms being in the left compartment L. As long as we do
not remove the partition, nothing noticeable will occur. In fact,
on the microscopic level, the particles are incessantly jittering
randomly, changing their locations and velocities. However, on
the macroscopic level, there is no measurable change. We can
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measure the pressure, temperature, density, color or any other
properties, and we shall find a value that does not change with
time or with location. We say that the system is initially con-
tained in compartment L and is at an equilibrium state.! If we
remove the partition, we set the Second Law in motion! We
shall now observe changes. We can monitor the color, pressure,
density, etc. We shall find that these quantities will change with
time and location. The changes we observe are always in one
direction; atoms will move from compartment L to compart-
ment R. Suppose we monitor the density or color in L. We will
observe that the density steadily decreases (or the intensity of
the color, if it has color will diminish) with time. After some
time, the system will reach an equilibrium state and you will no
longer observe any further changes in any one of the parameters
that you have been monitoring. This is referred to as the new
equilibrium state. Once you have reached this state, the system
will stay there “forever.” It will “never” return to the initial
state. This process is one relatively simple manifestation of the
Second Law.

In this specific process, we started from one equilibrium state
(all atoms in L) and progressed to a new equilibrium state (the
atoms are dispersed within the entire space of L and R). Let
us repeat the experiment in a slightly different manner. This
will ease the translation from the dice game to the real world.

Here we refer to the equilibrium state in the thermodynamic sense. It should be
distinguished from the equilibrium line. This distinction will be made clear later on
in this chapter.
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Suppose that instead of removing the partition as in Fig. (7.2),
we only open a very small hole between the two compartments
such that only one molecule, or very few can move from L to
R at any given interval of time. If we open and close this little
door at short intervals of time, we shall proceed from the initial
state to the final state, exactly as in Fig. (7.2), but in this case,
we shall proceed in a series of intermediate equilibrium states.?

We show three stages along this process in Fig. (7.3).

Let us now make the following correspondence between the
world of dice and the real world of the expanding gas in the
present experiment.

Each die corresponds to one specific atom, say, one argon
particle. The faces of the dice in the last experiment of “R” and
“L,” correspond to a specific atom in the R and the L compart-
ment, respectively.

We make the correspondence between the two “worlds”
more specific for the case N = 2, shown in the two upper pan-
els in Fig. (7.4). Note that in this correspondence, we distin-
guish between the particles (red and blue). On the lower panel

1
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Fig. (7.3)

2This kind of process is referred to as a quasi-static process. If the door is small
enough, we do not need to open and close it every time an atom passes. The system is
not in an equilibrium state, but the measurable quantities like densities, temperature,
color, etc., will change very slowly, as if we were passing through a sequence of
equilibrium states.
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of Fig. (7.4), we have also added the correspondence with the
assimilation process that I shall describe later in this chapter.
Next, we define a specific configuration as a complete speci-
fication of which particle is in which compartment. In contrast
to the dice-world, where we can distinguish between the dice
(although we disregarded this information when we monitored
only the quantities that are pertinent to the dim configuration),
here, the particles are indistinguishable from the outset. There-
fore, we do not have to give up any information. The indis-
tinguishability is a property of the atoms; it is something that
nature imposes on the particles. The dice could be identical in
all aspects, yet they are distinguishable in the sense that we can
monitor each die. If we shake 10 identical dice, we can moni-
tor one specific die, and at any point in time we can tell where
this specific die comes from. In defining the dim configuration
of dice, say five Rs in 10 dice, we can distinguish between all
the different specific configurations. We can tell which die car-
ries an R, and which carries an L, as is clear from Fig. (7.1) or
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Fig. (7.4). We cannot do this in an atomic system. All we can
know or measure is the number of atoms in R and not which
specific atoms are in R or in L. Thus in the system depicted in
Fig. (7.4), we cannot distinguish between the two specific states:
“blue particle in L and red particle in R” and “blue particle in
R and red particle in L.” These two states coalesce into one dim
state: “one particle in L and one particle in R.”

We refer to a configuration as dim when we specify only the
number of particles in R (this will correspondingly specify the
number of particles in L), disregarding the detailed specification
of which atom is in L or in R. Clearly, each dim configuration
consists of many specific configurations (except for the all-Rs or
all-Ls configurations). It should be noted again that all we can
measure or monitor is the fotal number of particles in R or any
quantity that is proportional to this number (e.g., intensity of
color, scent, density, pressure, etc.) We cannot “see” the specific
configuration as we did in the dice-games.

Because of its crucial importance, we will once again describe
the distinction between a dim configuration and the correspond-
ing specific configurations (Fig. (7.5)).

In order to clarify the difference between the specific con-
figurations, we have assigned different colors to the particles.
In a system of particles, consisting of atoms or molecules, there
are no labels (or colors) to distinguish between two identical
particles. Hence, all we can see or measure is the dim configu-
ration as shown on the left hand side of Fig. (7.5). It should be
stressed, however, that although we cannot distinguish between
the specific configurations, these do contribute to the probabili-
ties of the dim configuration. Each specific configuration here is
assumed to be equally probable.? Therefore, the probability of

3See, however, the discussion of fermion and boson particles in Chapter 2.
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each dim configuration is the sum of the probabilities of the spe-
cific configurations that comprise the dim event. You can think
of all the specific events on the right hand side of Fig. (7.5) as
coalescing into one dim event on the left hand side. The proba-
bilities of the five dim events are: 1/14, %/16, ¢/16, /16, 1/16.

We are now in a position to answer the three questions of
“What,” “How” and “Why” for the real experiment. As in the
case of the dice games, the question “What is the thing that
changes?” has many answers. For instance, we can observe the
intensity of the color as it evolves during the expansion. We can
monitor the change in density, taste or scent with time. We can
even calculate the change in the approximate number of particles
in each compartment with time. Initially, we start with N atoms
in compartment L. As we open the little door or remove the
partition, the number of atoms, 7, in L steadily decreases with
time up to a point when it stops changing.
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The answer to the “What” question is exactly the same as
the answer we have given to the “what” question in the previ-
ous chapter, viz., it is the dim configuration that is changing.
While that is changing, it carries along with it some proper-
ties that we can see, hear, smell, taste or measure with macro-
scopic instruments. Thus, to the question: “What is the thing
that changes?” in this experiment can be answered if we com-
pare this experiment with the analysis given in the dice game.
The only difference is the interpretation of the term “configu-
ration,” that has been defined here in terms of particles in two
different compartments of R and L, while in the dice case, con-
figuration was specified in terms of two outcomes, R and L of
the die. Once we have made the correspondence between the
game of dice and the expansion of the gas, we can use the same
answer to the question, “What is the thing that is changing?”
We shall come back to the question of what the best quantity
is, that describes the thing which is common to all the processes
later on.

Now we move on to the next question: “How did we get
from the initial to the final state?” In the game of dice, we pre-
scribed the rules of the game. So the answer to the question, in
the context of the dice game, was straightforward; the changes
occur according to the prescribed rules. The answer to the same
question is different for the real experiment. Here, in principle,
the equations of motion govern the evolution of the locations
and the velocities of all the particles. However, in a system of a
very large number of particles, one can apply the laws of prob-
ability.* We can loosely say that if we start from some exact

#In classical mechanics, if we know the exact locations and velocities of all the par-
ticles at a given time, then, in principle, we could have predicted the locations and
velocities of all the particles at any other time. However, this vast information cannot
be listed, let alone solving some 1023 equations of motion. The remarkable success
of statistical mechanics is a monumental witness to the justification of applying sta-
tistical arguments to a system composed of very large numbers of particles.
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description of all the locations and velocities of all particles,
after a short time, the system will lose that information. Due to
the random collisions and the roughness of the walls, the evolu-
tion of the system can be more effectively described by the laws
of statistics than by the laws of mechanics.®

Thus, we can effectively apply probabilistic arguments sim-
ilar to the ones applied in a dice game, i.e., there is an element
of randomness that gives any one of the particles a “chance”
to move from L to R or from R to L. Therefore, the answer to
the question of “how” is not exactly, but effectively, the same
as in the case of the dice game. We have also seen that the pre-
cise rules in the dice game were not very important; what was
important is that each die had a “fair” chance to change and in
a random fashion. This argument applies to the real experiment
of expansion of a gas as well, i.e., each atom or a molecule must
have a “fair” chance to move from L to R or from R to L.

If we remove the element of randomness, then the system will
not evolve according to the Second Law. In Chapter 6, we pre-
scribed rules, the application of which results in either zo change
at all, or a change from “all zeros” to “all ones,” i.e., oscillat-
ing between these two extreme configurations. Likewise, we can
think of a system of molecules that will not evolve according to
the Second Law.

Consider the two following “thought experiments.” Suppose
that all the particles were initially moving upward in a concerted
manner as shown in Fig. (7.6a). If the walls are perfect planes,
with no irregularities, no roughness and exactly perpendicular to
the direction of motion of the atoms, then what we will observe

SThere is a deep and difficult problem in attempting to predict the probabilities from
the dynamics of the particles. These efforts which started with Boltzmann have failed.
One cannot, in principle, derive probabilities from the deterministic equations of
motions. On the other hand, it is well-known that a system of very large number of
particles moving randomly shows remarkable regularities and predictable behavior.
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is that the particles will move upwards and downwards forever.
Even after the partition is removed, all the particles that were
initially in compartment L will stay in this compartment. The
Second Law cannot “operate” on such a system.®

A second “thought experiment” is illustrated in Fig. (7.6b).
Suppose again that we start with all the particles in L, but now
the particles move in straight lines from left to right and from
right to left. Initially, all the particles will move in concert and
at the same velocity. The trajectory of all the particles will be
the same, hitting the partition and bouncing back. If we remove
the partition, the stream of particles will now move in concert
from L to R and back from R to L, indefinitely. In both of these
thought-experiments, there will be no evolution governed by the
Second Law. In fact, such a process cannot be achieved in a real

6Such a system is of course impossible to realize. Realization of such an experiment
is tantamount to knowing the exact location and velocity of each particle at any
given time.
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experiment. That is why we have referred to this process as a
thought-experiment.

Clearly, any real walls must have some imperfections and
even if we could have started with either of the above initially
synchronised motions, very soon the laws of probability would
take over and the Second Law would become operative.

It should be noted that in thermodynamics, we are not inter-
ested in the question of how a system moves from the initial
to the final state. All that matters is the difference between the
final and initial state. Here, we have looked through a magnify-
ing glass on the details of the motion of individual particles to
establish the correspondence between the rules of the dice game,
and the rules of moving from L to R, or from R to L in the gas
expansion. It is time to proceed to the next and most important
question of “why!”

As we have noted in Chapter 6, the answer to the ques-
tion “Why”, given in the dice game, can also be applied to
the case of the gas expansion. The gas will proceed from dim
configurations of lower probability to dim configurations of
high probability. Here, a specific configuration means a detailed
specification of which particle is in which compartment. A dim
configuration (which is the only one that we can monitor) is
“how many particles are in compartment R.” If you have under-
stood the arguments presented in Chapters 4-6 regarding the
evolution of the system from the initial state to the equilib-
rium state, then you would also understand the evolution of
the physical system described in this chapter. We have seen
that even for some 10* or 10° dice, the probability of return-
ing to the initial state is negligibly small and concluded that
once the system reaches the vicinity of the equilibrium line, it
will stay there “forever,” “never” returning to the initial state.
The argument is a fortiori true for a system of 10?3 dice or
particles.
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As in the case of the dice game, we have stressed that there
is no law of nature that says that the system should evolve from
yellow to green, or from order to disorder, or from less MI to
more MI. All of these are either observable manifestations or
means of monitoring the evolution of the system. The funda-
mental reason for the observed evolution of the system is obvi-
ous and self evident. Any system will always spend more time
in states of higher probability than states of lower probability.
When N is very large, say on the order of 1023, “high proba-
bility” turns into “certainty.” This is the essence of the Second
Law of Thermodynamics. It is also a basic law of common sense,
nothing more.

7.2. The Correspondence with the Deassimilation Process

In drawing the correspondence between the evolution of the
dice game and the gas-expanding experiment, I have completed
my mission: to guide you in understanding the workings of
the Second Law of Thermodynamics. However, I would like
to draw another correspondence between the dice game and
a physical experiment. This additional case will not add any-
thing new to your understanding of the Second Law, but will
perhaps add one more example of a spontaneous process gov-
erned by the Second Law of Thermodynamics. My motiva-
tion for presenting it is mainly for aesthetic reasons. Let me
explain why.

Any spontaneous process involving an increase in entropy
is driven by the same law of common sense, i.e., events that
are more probable will occur more frequently. We have seen
only one such physical process, a spontaneous expansion of
gas. There are, of course, more complicated processes, such as a
chemical reaction, mixing of two liquids, splattering of a falling



158 Entropy Demystified

egg, and many more. It is not always easy to define precisely
the states of the system on which the Second Law is operative.
In teaching thermodynamics, it is customary and quite instruc-
tive to classify processes according to the type of states which
are involved in the processes. In terms of information, or rather
in terms of the missing information, we sub-classify processes
according to the type of information that is lost. In the expansion
process, each particle was initially located in a smaller volume
V. After the expansion, it became located in a larger volume
2V, hence, it is more “difficult” to locate the particle or equiva-
lently, we have less information on the locations of the particles.
In a process of heat transfer between two bodies at different
temperatures, there is a more subtle change in the amount of
information. Before the process, the particles in the hot body
are characterized by one distribution of energies (velocities) and
the particles in the cold body by another distribution of veloc-
ities. After contact and equilibration, there is a single distribu-
tion of the velocities of all the particles in the two bodies. We
shall discuss this process again below. In more complicated pro-
cesses such as the splattering of an egg, it is difficult to define
the types of information that are lost; among others, it may be
information on the location, velocity, orientation etc. That is
a very complicated process, sometimes beyond our ability to
describe.

In the dice game, we had N identical dice; each could be
in two (or more) states, say, “0” and “1,” or yellow and blue,
or “R” and “L.” In the expansion process, we have made the
correspondence between the two outcomes of the dice with
the two locations of the particles of the same kind (say, argon
atoms). This is fine. We can always denote an atom in com-
partment R as an R-atom and similarly, an atom in compart-
ment L as L-atom. This is formally correct but aesthetically
unsatisfactory since the inherent identity of the atoms did not
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change in this process. In other words, we have made the corre-
spondence between the identity of the outcome of the dice and
the location of the particle.

Let me present a new experiment which is again driven by
the Second Law, but where the correspondence between the dice
game and the physical process is more plausible and more aes-
thetically satisfying. We shall make the correspondence between
the identity of the outcome of the dice and the identity of the
particles.

Going through this process also affords us a little “bonus”:
we can imagine real experiments where we can follow the color,
scent, or taste of the system as it evolves with time.

Consider a molecule having two isomers, say, Cis and Trans,
of a molecule, schematically depicted in Fig. (7.7).

Starting with pure Cis, the system might not change for
a long time. If we add a catalyst (the analogue of removing
the partition), we would observe the spontaneous change from
the pure Cis form into some mixture of Cis and Trans forms.
Statistical mechanics provides a procedure for calculating the
ratio of the concentrations of the two isomers at equilibrium.
In this particular reaction, we can identify two different kinds
of causes for the entropy changes, equivalently, two kinds of
informational changes; one is associated with the identity of the
molecule, while the other is associated with the re-distribution

Fig. (7.7)
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of the energy over the internal degrees of freedom of the two
species.

There is one particular example of a chemical reaction in
which only the identity of the molecules changes (the internal
degrees of freedom are the same for the two species). This is
the case of two enantiomers, or two optically active molecules.
These are two isomers that have exactly the same structure and
the same chemical constituent; the only difference is that one
is a mirror image of the other. Here is an example of such a
molecule (Fig. (7.8)).

Let us call these isomers d and [ (d for dextro and [ for levo).

These two molecules have the same mass, same moment of
inertia, same internal degree of freedom, and the same set of
energy levels. Thus, when we perform a “reaction” involving the
transformation from d to [ form, the only change in the system is
in the number of indistinguishable particles. Let us perform the
following experiment.? Start with N molecules of the d form.

7

H H
I I
HOOC—C —CH, CH;—C—COOH
NH, NH,
Alanine | Alanine d
Fig. (7.8)

7The two isomers rotate the plane of a polarized light to the right (dextro) or to the
left (levo).

8This process has been called deassimilation, i.e., the reversal of the assimilation
process defined as a process of the loss of identity of the particles. In some textbooks,
this process is erroneously referred to as mixing. For more details, see Ben-Naim
(1978, 2006).
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Place a catalyst that induces a spontaneous transformation from
d to [, or from [ to d. It can be proven that at equilibrium, we
will find about N /2 of the d-form and about N /2 of the I-form.’
One can also calculate the entropy change in this process and
find that it is exactly the same as in the expansion process that
we have discussed before. However, the kind of “driving force”
is different, and in my opinion, the correspondence between
the dice game and this process is more satisfactory and more
“natural.”

To see this, we note that in both of the experiments, we have
made the correspondence:

a specific die <> a specific particle

In the expansion experiment, we have also made the corre-
spondence between:

a specific identity of the outcome of a die

1

a specific location of the particle

In the second experiment, referred to as deassimilation, the
correspondence is between:

a specific identity of the outcome of a die

!

a specific identity of the particle

Thus, whereas in the expansion process the evolution from
the initial to the final state involves changes in the locational

9This is intuitively clear. Since the two isomers are identical except for being a mirror
image of each other, there is no reason that at equilibrium there will be one form
in excess of the other. Exactly for the same reasons that in the expansion process,
there will be nearly the same number of particles in R and in L (presuming that the
volumes of the two compartments are the same).
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information about the particles, in the deassimilation process,
on the other hand, there is a change in the identity of the par-
ticles.10 This is the same type of informational loss we have
monitored in the dice game.

The correspondence between the dice and the particles for
this process is shown on the lower panel of Fig. (7.4).

In both the dice game and the deassimilation processes, there
is an evolution involving a change of the identity of the parti-
cles. We start with N, all-zeros dice in one case, and with all
d-form in the real experiment. After some time, N/2 of the dice
have changed into “ones” in one case, and N/2 of the particles
acquire a new identity, the [ form, in the other case.!! This cor-
respondence is smoother and more natural than the one between
the dice game and the expansion process. The evolution of the
system can be exactly described in the same way as we have
done for the expansion of the gas. Merely replace R and L by d
and [, and you will understand the evolution of this experiment.
As previously shown in Figs. (7.1) and (7.3), we also show in
Fig. (7.9) the three stages of the process of deassimilation and
the correspondence with both the expansion experiment and
dice game.

The answers to the “What” and “Why” questions are exactly
the same as for these two processes. The answer to the “how”
question is slightly different.!> However, as we have noted

101t should be noted that in an ideal gas system, there are only two kinds of informa-
tion; locational and velocities. The identities of the particles do not consist of a new
kind of information. However, change of identity does contribute to the change in
information (for more details, see Ben-Naim 2007).

11 Any time we refer to N/2 particles, we mean in the vicinity of N/2.

121nstead of the probability of any atom hitting the door in the partition and crossing
from R to L or from L to R, there is a probability of any isomer of acquiring enough
energy (by collisions), to cross from the d-form to the I-form and vice versa, or
alternatively to hit the catalyst, which will induce the transformation from one isomer
to the other.
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above, the question of “how” is not important to an understand-
ing of the Second Law. What is important is only the difference
in entropy between the initial and final states.

Now for the bonus: in Chapter 5, we discussed some hypo-
thetical processes where the color, taste or scent was monitored
in a system of dice.

These processes can, in principle, be made real. Suppose we
have two isomers having different structures so that they have
different colors, scent or tastes. Performing the experiment of the
spontaneous isomerization, we could follow the color change
from blue to green (as in the first example in Chapter 5); or from
scent A to a mixture of scents A and B (as in the second example);
and from a sour taste to a sweet and sour taste (as in the third
example). These changes can be monitored continuously in a
homogenous system.!3

13We could also achieve the same effect by mixing two different gases, as in Fig. (1.4).
In this case, the color (or the scent or taste) will be monitored continuously but not
homogeneously throughout the system, as in the process described in this section.
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It is difficult to find a physical experiment analogous to the
tone-change (fourth example) since single particles do not emit
sound waves. It is impossible to find the analogue of the last
example of Chapter 5. Temperature is a complex phenomenon
depending on a continuous distribution of velocities. We shall
discuss a process involving temperature changes in Section 7.5.

It should be clear by now what the thing is that changes
(which we call entropy) and why it changes in the particular
way, whether it is in the dice game, the expansion process or
the deassimilation process (Fig. (7.9)).

7.3. Summary of the Evolution of the System towards the
Equilibrium State

Consider again the simple experiment as described in Fig. (7.2).
We start with N = 10?3 particles in L. A specific configuration
is a detailed list of which particle is in L and which is in R. A
dim configuration is a description of how many particles are in
L and in R. As long as the partition is in place, there is no change
in the dim configuration nor in the specific configuration.' The
system will not evolve into occupying more states if these are
not accessible.

Now, remove the barrier. The new total number of specific
states is now 2)N; each particle can either be in L or R. The total
number of states, W (total), is fixed during the entire period of
time that the system evolves towards equilibrium.

14There is a subtle point to note here. The information we are talking about is where
the particles are; in L or in R. We could have decided to divide the system into many
smaller cells, say four cells in R and four cells in L. In such a case, the information
of the initial state is different since we shall be specifying which particle is in which
cell; so is the information of the final state. However, the difference between the
information (as well as the entropy) is independent of the internal divisions, provided
we do the same division into cells in the two compartments. [For further details, see
Ben-Naim, (2006, 2007).]
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Clearly, once the barrier is removed, changes will occur and
we can observe them. It could be a change in color, taste, smell
or density. These are different manifestations of the same under-
lying process. What is the thing that changes and is common to
all the manifestations?

The thing that changes is the dim state or dim configura-
tion or dim event, and there are various ways of indexing, or
assigning to these dim states a number that we can plot so as
to be able to follow its numerical change. Why does it change?
Not because there is a law of nature that says that systems must
change from order to disorder, or from a smaller MI to a big-
ger MI. It is not the probability of the dim states that changes
(these are all fixed).!> It is the dim state itself that changes from
dim states having lower probabilities to dim states having higher
probabilities.

Let us follow the system immediately after the removal of
the barrier, and suppose for simplicity, that we open a very
small door that allows only one particle to pass through in some
short span of time. At the time we open the door, the dim state
consists of only one specific state belonging to the post-removal
condition (i.e., when there are zero particles in R). Clearly, when
things start moving at random (either in the dice game or in the
real gas colliding with the walls and once in a while hitting the
hole), the first particle that passes through the hole is from L to
R, resulting in the new state, dim-1. As we have seen in great
detail in Chapter 4, there is a high probability of the system
either moving up or staying at that level, and there is a very
small probability of the system going downwards to a lower
dim state. The reason is quite simple. The probability of any

15There is an awkward statement in Brillouin’s book (1962) that “the probability
tends to grow.” That is probably a slip-of-the-tongue. What Brillouin probably meant
is that events of low probability are evolving into events of high probability. The
probabilities themselves do not change.
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particle (any of the N) crossing the border between L and R is the
same. Let us call that probability p; (which is determined by the
speed of motion, the size of the door, etc.). Whatever pq is, the
probability of moving from dim-1 to dim-0 is the probability of
a single particle in R crossing over to L, which is p1. On the other
hand, the probability of crossing from dim-1 to dim-2 is (N — 1)
times larger than p1 simply because there are (N — 1) particles
in L, and each has the same chance of crossing from L to R. The
same argument can be applied to rationalize why the system will
have a higher probability of proceeding from dim-1 to dim-2,
from dim-2 to dim-3, etc. Each higher dim state has a larger
number of specific states and therefore a larger probability. As
we have seen in Chapters 3 and 4, this tendency of a system going
upwards is the strongest initially, becoming weaker and weaker
as we proceed towards dim-N/2, which is the equilibrium line.
This equilibrium line is the dim state with highest probability
since it includes the largest number of specific states.

One should be careful to distinguish between the number of
specific states belonging to dim-N/2 and the total number of
states of the system which is W(total). These are two different
numbers. The latter is the total of all the specific states included
in all the possible dim states. For instance, for N = 10, we

havel®

W (Total) = W(dim-0) + W (dim-1)
+ W(dim-2) + - --
=14+10445+120+210+252 4210+ 120
+454+10+1 =21

161n general, this equality can be obtained from the identity (1 + 1)N = 2N =

N N!
Zn:O n!(N—n)!"
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As we have discussed in Chapters 2 and 3, the probability of
the dim event is just the sum of the probabilities of the specific
events that comprise the dim event.

For example, for dim-1 of the case N = 10, we have 10
specific events. The probabilities of each of these 10 specific
events are equal to (1)1°. The probability of the dim-event is
simply 10 times that number, i.e.,

Prob(dim-1) = 10 x (1/5)!°

For dim-2, we have 10 x 9/2 = 45 specific events. All of these
have the same probability of (15)10. Therefore, the probability
of dim-2 is:

Prob(dim-2) = 45 x (15)!°

In the table below, we have listed the probabilities of all the dim
events for the case N = 10. Note again the maximum value at
dim-Nj or dim-5.

Dim-Event Number of Specific Events Probability

dim-0 1 1/210

dim-1 10 10/210
dim-2 45 457210
dim-3 120 120/210
dim-4 210 210/210
dim-5 252 2527210
dim-6 210 210/210
dim-7 120 120/210
dim-8 45 457210
dim-9 10 107210
dim-10 1 1,210

Figure (7.10) shows the number of specific events for each
dim event, for different N (N = 10, N = 100 and N = 1000).
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In the lower panel, we show the same data but in terms of prob-
abilities of the dim events.

It is clear from Fig. (7.10) that as N increases, the number of
specific states belonging to the maximal dim states also becomes
very large. However, the probability of the maximal dim state
decreases with N. Thus, as N increases, the probability distri-
bution of the dim events is spread over a larger range of values.
The apparent sharpness of the distribution as shown in the lower
panel of Fig. (7.10) means that deviations from the maximal dim
state, in absolute values, are larger, the larger N is. However,
deviations from the maximal dim states, relative to N, become
smaller, the larger N is.

For instance, the probability of finding deviations of say
+1% from the maximal dim state becomes very small when N
is very large.

We next calculate the probability of finding the system in any
of the dim states between, say, N2 — N/jgg to N + N/, i.e.,
the probability of the system being found around the maximal
dim state, allowing deviations of +1% of the number N. This
probability is almost one for N = 10,000 (see Fig. (7.11)). With
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N on the order of 1023, we can allow deviations of 0.1% or
0.001% and still obtain probabilities of about one, of finding
the system at or near the equilibrium line.

What we have found is very important and crucial to under-
standing the Second Law of Thermodynamics. The probability
of the maximal dim-N/, decreases with N. However, for very
large N, on the order of 1023, the system is almost certain (i.e.,
probability nearly one) to be in one of the dim states within
very narrow distances from the equilibrium dim state. When
N = 10?3, we can allow extremely small deviations from the
equilibrium line, yet the system will spend almost all the time in
the dim states within this very narrow range about the equilib-
rium line.

We stress again that at the final equilibrium state, the total
number of specific states is 2N, and all of these have equal
probabilities and therefore each of these will be visited with an
extremely low frequency (12)N. However, the dim states (alto-
gether there are N + 1 dim states) have different probabilities
since they include different numbers of specific states. The dim
states at and near the maximal dim-N/ will have a probability
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of nearly one, i.e., nearly the same probability of being in any
one of the total specific states.!”

It is now time to clarify the relationship between the equi-
librium line, and the experimental equilibrium state of the sys-
tem. At equilibrium, an experimental system spends the larger
fraction of time at the equilibrium line, larger, compared with
all the other dim states. This does not imply all the time. The
experimental or thermodynamic equilibrium state of the system
is the state for which all the W (total) specific events are accessi-
ble and have equal probability. However, since we cannot dis-
tinguish between dim states that are very near the equilibrium
line, the system will spend nearly all the time in the vicinity
of the equilibrium line. Deviations will occur. There are two
types of deviations. When the deviations are very small, they do
occur and very frequently, but we cannot see them. On the other
hand, we can see large deviations, but they are so rare that we
“never” see them. Therefore, the equilibrium szate of the system
is (almost) the same as the dim event of the equilibrium line and
its immediate vicinity.

Because of the importance of this point, we will repeat the
argument in slightly different words.

Consider the following experiment. We start with two com-
partments having the same volume V; one contains N labeled
particles 1, 2,...,N; the second contains N, labeled particles
N+1,N+2,...,2N."® We now remove the partition between
the two compartments. After some time we ask: “What is the

17By “near” the maximal dim-N/2, we mean near in the sense of a very small
percentage of N, say 0.001% of N. These states are so close that experimentally
they cannot be distinguished. If we start with a system having exactly N/2 in each
compartment separated by a partition, then remove the partition, the number of
states increases from W to 2N, This is a huge change in the number of

states. However, for large N ~ 1023, we will not be able to see any change in the
system. Each compartment will contain nearly, but not exactly, N/2 particles.
18 Assuming for the moment that particles can be labeled.
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probability of observing exactly the initial state?” The answer
is: 272N The second question is: “What is the probability of
observing exactly N particles in each compartment regardless
of the labels?” This is a far larger probability.!” However, this
probability decreases with N, as can be seen from Fig. (7.10).
The probability of observing the dim-N state, although very
large compared with any of the other single dim states, is
still very small. The actual experimental observation is not
the exact dim-N, but a group of dim states in the neighbor-
hood of the equilibrium line dim-N. This neighborhood con-
sists of all the dim states between which we cannot distinguish
experimentally.2?

What about other more complicated processes?

We have discussed in detail the expansion of a gas where we
chose only one parameter to describe the evolution of the events,
i.e., the particle being either in L or R. In the deassimilation
experiment, we also chose only one parameter to describe the
events, i.e., the particle being either an / or a d form. All we
have said about the expansion process can be translated almost
literally to the deassimilation experiment. Simply replace “being
in L” or “being in R,” by “being an I-form” or “being a d-form.”

There are, of course, more complicated processes involving
many more “parameters” to describe the events; a molecule can
be in this or that place, can have one or another velocity, can be
one or the other isomer (or conformer in larger molecules), etc.

In order to understand the Second Law, it is sufficient to
understand one process — the simplest, the best. That is what
we have done. The principle is the same for all the processes;

19This probability is (2N)!/(N1)% x 272N,

20ve cannot distinguish between very close dim states, say between dim-N and
dim-N + 1, or dim-N + 1000. This indistinguishability is different from the indistin-
guishability between specific-states, belonging to the same dim state. In the former, the
indistinguishability is in practice; in the latter, the indistinguishability is in principle.



172 Entropy Demystified

they differ only in the details. Some are easy and some, more
difficult, to describe. Some processes are so complicated that we
still do not know how to describe them. Sometimes, we even
do not know how many parameters are involved in the process.
Let us describe briefly some processes of increasing degrees of
complexity.

7.4. Mixing of Three Components

Suppose we start with three different gases, N4 of A-molecules
in a volume Vg4, Np of B-molecules in a volume Vg and N¢,
Gmolecules in a volume V. (Fig. (7.12)).

We remove the partitions between the three compartments
and watch what happens. If the molecules have the same color,
we will not be able to see anything but we can measure the
densities or the concentrations of each type of molecules at each
point and record the changes. If the molecules have different
colors, tastes or scents, we can follow the change of color, taste
or scent as they evolve after the partitions are removed.

But how do we describe with a single number the thing, the
change of which we are observing? Even with these relatively
simple experiments, the construction of the numerical “index”
(which we need in order to record the evolution of the system)
is not simple. First, we have to define the specific events of our
system. A specific event might read like: “molecule 1 of type A
in volume V4, molecule 2 of type A in volume V3p,... molecule
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1 of type B in V¢, molecule 2 of type B in volume...etc.” A very
lengthy description indeed!

We recognize that there are many of these events among
which we cannot distinguish, e.g., the specific event “molecule
1 of type A in V4, and molecule 2 of type A in volume V3, etc.”
is indistinguishable from the specific event “molecule 1 of type
A in Vg and molecule 2 of type A in V4, etc.” The “etc.” is
presumed to be the same description of the rest of the locations
of all the other molecules.

Next, we define the dim events, e.g., “one A-molecule in V4,
15 B-molecules in Vg and 20 C-molecules in V¢, etc.” Here,
we disregard the labels of the molecules in each compartment.
What matters is that one, any one, A-molecule is in V4, and any
15, B-molecules in Vg, and any 20, C-molecules in V.

Having done that, we need to calculate the probabilities of
all these dim events. This is not so easy in the general case. We
do this by using the same assumptions we had in the expansion
experiment, viz. the probabilities of all the specific events are
equal and they are equal to 1/W(total). Therefore, for each
dim event, we can calculate its probability simply by summing
over all the probabilities of the specific events that comprise the
dim event. However, in this case the dim event is not expressed
by a single number, as was the case in the expansion process.
In order to monitor the evolution of the dim events, we need
a single number. That number is the MI, i.e., the number of
binary questions we need to ask in order to find out at which
of the specific states the system is, given only the dim state.
This number, up to a constant that determines the units, is the
entropy of the system which is defined for each dim state.?!

21Note again that in order to define the entropy of each dim state, we have to open
and close the little doors between the compartments at each point we want to calculate
the entropy. In this manner we allow the system to proceed through a sequence of
equilibrium states.



174 Entropy Demystified

With this number, we can monitor the evolution of the system
from the time we removed the partitions, until it reaches the
final equilibrium state. If we do that, we should find that the MI
has increased in this process.

7.5. Heat Transfer from a Hot to a Cold Gas

In Chapter 5, we described an “experiment” with dice involving
temperature changes. We commented there that the experiment
is extremely unrealistic. Here, we shall discuss a real experiment
involving change of temperatures. This experiment is impor-
tant for several reasons. First, it is one of the classical pro-
cesses in which entropy increases. In fact, it was one of the
simplest processes for which the Second Law was formulated
(see Chapter 1). Second, it is important to demonstrate that the
thing that changes in this process is the same as those in the
other processes, i.e., the MI. Finally, to explain why we could
not have devised a simple dice-game analog for this process.
Consider the following system. Initially, we have two iso-
lated compartments, each having the same volume, the same
number of particles, say argon, but at two different temperatures
T1 = 50K and T, = 400K (Fig. (7.13)). We bring them into
contact (either by placing a heat-conducting partition between
them, or simply removing the partition and letting the two gases
mix). Experimentally, we will observe that the temperature of
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the hot gas decreases, while the temperature of the cold gas
increases. At equilibrium, we shall have a uniform temperature
of T = 225K throughout the system.

Clearly, heat, or thermal energy is transferred from the hot
to the cold gas. To understand how the entropy changes in this
process, we need some mathematics. Here, I shall try to give you
a qualitative feeling for the kind of entropy change involved in
the process.

First, we note that temperature is associated with the distri-
bution of molecular velocities. In Fig. (7.14), we illustrate the
distribution of velocities for the two gases in the initial state.
You will see that the distribution is narrower for the lower tem-
perature gas, while it is broader for the higher temperature gas.
At thermal equilibrium, the distribution is somewhat interme-
diate between the two extremes, and is shown as a dashed curve
in Fig. (7.14).

What we observe experimentally is interpreted on a molecu-
lar level as the change in the distribution of molecular velocities.
Some of the kinetic energies of the hotter gas is transferred to the
colder gas so that a new, intermediate distribution is attained at
the final equilibrium.
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Now look at the two curves in Fig. (7.15), where we plotted
the velocity distribution of the entire system before and after
the thermal contact. Can you tell which distribution is more
ordered or disordered? Can you tell in which distribution the
spread of kinetic energy is more even, or over a larger range of
values??? To me, the final distribution (the dashed curve) looks
more ordered, and the distribution looks less spread-out over the
range of velocities. Clearly, this is a highly subjective view. For
this and for some other reasons discussed in the next chapter, I
believe that neither “disorder,” nor “spread of energy” are ade-
quate descriptions of entropy. On the other hand, information
or MI is adequate. Unfortunately, we need some mathematics to
show that. I will only cite here a result that was proven by Shan-
non in 1948.23 The final distribution of velocities is the one with
the minimum information or maximum MI. Although this result
cannot be seen from the curve, it can be proven mathematically.
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Fig. (7.15)

228ometimes entropy is described as a measure of the spread of the energy. It should
be noted that “spread” like “order” is sometimes appropriate but not always, as
demonstrated in this example.
23Shannon (1948), section 20. More detailed discussion of this aspect of the MI may
be found in Ben-Naim (2007).
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Here again we get a single number that is related to the entropy,
the evolution of which can be monitored.?*

Finally, we recall that in the unrealistic game of dice that we
have described in Chapter 5, we used dice having only two states,
hot and cold, with equal probabilities. In order to make that
experiment more realistic, we should have invented dice with
an infinite number of faces (each corresponding to a different
molecular velocity). Also, we have to change the rules of the
game to describe the evolution towards equilibrium (we cannot
change the velocity of each particle at random; the total kinetic
energy must be conserved). All of these are difficult to implement
in the dice game. Therefore, you should be cautious not to infer
from that particular example of Chapter § anything that is even
close to a real physical system.

In this example, we have followed experimentally one
parameter, the temperature. However, the temperature is
determined by an infinite number of parameters: all possible
velocities. Of course, it is impossible to follow the velocity of
each particle. What we do follow is the temperature which is
a measure of the average velocities of the molecules. However,
the thing that changes, the thing that we call entropy, is nothing
but the change in the amount of missing information; a quantity
that can be expressed in terms of the distribution of velocities,
before and after the contact between the two gases.

Also the “driving-force” for this process is the same as the
one for the expansion process, as well as for the dice-game; the
system will proceed from a state of low probability to a state of
higher probability.

24provided we do the process quasi-statically, i.c., by letting the heat transfer proceed
very slowly so that the equilibrium within each gas is nearly maintained at each stage.
We can think of a small hole through which the gas can pass from one compartment
to the other, similar to the case described in the expansion process. Alternatively, we
can think of a very narrow, heat-conducting material, connecting the two systems.
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Once we have more parameters to describe the events, the
counting becomes more and more difficult. Very quickly we
arrive at such processes (as the processes that take place from the
time an egg hits the floor, until it reaches equilibrium, assuming
that the egg and the floor are in a box and the box is isolated
from the rest of the world) which are impossible to describe. In
such processes, molecules change their locations, their distribu-
tion of velocities, and their internal states, such as vibrations,
rotations, etc. It is virtually impossible to describe this, let alone
calculate the probabilities of the various events. However, we
believe that the principles that govern the changes that occur are
the same as in the simple expansion experiment. In principle, we
believe that there is a quantity that we call entropy which is bet-
ter described as the missing information (MI) that changes in
one direction for any process carried out in an isolated system.
In other words, the Second Law is at work in conducting the
multitude of events that unfold in all these processes.

It is tempting to include life processes in the same category
of processes that are governed by the Second Law. However,
I believe that at this stage of our understanding of “life”, it
would be premature to do so. It is impossible to describe and
enumerate all the “parameters” that change in any life process.
Personally, I believe that life processes, along with any other
inanimate processes, are also governed by the Second Law. I
shall make one further comment regarding life processes in the
next chapter.

As we have seen, there are several “levels” in which we can
describe what the thing is that changes. On the most fundamen-
tal level, the thing that changes is the specific state, or the specific
configuration of the system; a specific die changes its face from 2
to 4. In the expansion process, a specific particle changes its loca-
tion from say, “L” to “R”, and in the deassimilation process,
a specific particle changes, say, from “/” to “d.” What we can
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monitor is something that is a property of the dim state. Each
of these dim states contain many, many specific states, between
which we either do not care to distinguish (like when we follow
only the sum of the outcomes of N dice) or we cannot distinguish
in principle (like which specific particle crossed from L to R).
The thing that we monitor is something we can either measure
(temperature, frequency of electromagnetic wave, density, etc.),
or we can perceive with our senses (color, smell, cold or hot,
etc). If we want a number or an index to monitor the evolution
of the system, the best and the most general one is the missing
information, or equivalently, the entropy.

Why does a system change from one dim state to another?
Simply because the new dim state consists of many more specific
states, and therefore, has a larger probability. Hence, the system
spends a larger fraction of time in the new dim state.

And finally, why is it that when a system reaches the equilib-
rium state, it stays there “forever?” Simply because, the number
of specific states which constitute the dim states near the equi-
librium line is extremely large and each of these contributes the
same probability.

Thus, a system always proceeds from a dim state of low prob-
ability to a dim state of higher probability. This is tantamount
to saying that events which have high frequency of occurrence
will occur with high frequency. This statement is nothing but
common sense. When the number of particles is very large, the
number of elementary events which comprise the same dim event
is so large that the frequency of occurrence of the dim states near
the equilibrium /ine which we referred to as the equilibrium state
is practically one. Therefore, once this state is reached, it will
stay there “forever.” This is exactly the same conclusion we have
reached in the game of dice described in Chapter 6.

At this point, you have gained a full understanding of the rea-
son for the evolution of two processes: the expansion of an ideal
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gas and the deassimilation processes. If you wish, you can for-
mulate your own version of the Second Law: an ideal gas occu-
pying an initial volume V will always expand spontaneously
to occupy a larger volume, say 2V. If the system is isolated,
you will never see the reversed process occurring. It is easy to
show that this formulation is equivalent to either Clausius’ or
Kelvin’s formulation of the Second Law (Chapter 1). To prove
that, suppose that your formulation of the Second Law will not
be obeyed, i.e., sometimes the gas occupying a volume 2V will
spontaneously condense into a volume V. If this occurs, you can
construct a simple contraption to lift a weight. Simply place a
weight on the compressed gas and wait until the gas expands
again. You can also use the spontaneous expansion to transfer
heat from a cold to a hot body. The trick is the same as the one
used to prove the equivalency of the Kelvin and the Clausius
formulation of the Second Law.

7.6. Test Your Understanding of the Second Law

Now that you understand the Second Law in dice games and you
have seen the translation from the dice language to the language
of real particles in a box, it is time that you test yourself with the
same set-up of an experiment as described in Fig. (7.2). Suppose
that you have never heard about the Second Law, but you know

and accept the following assumptions:>°

1) Matter consists of a very large number of atoms or molecules,
on the order of 1023,

25Note that all this knowledge is supposed to be provided by physics. It is true,
though, that some of this knowledge was acquired after the formulation and the
study of the Second Law. Here, however, we presume that this information is given
to us in advance.
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A system of 10?3 atoms in an ideal gas consists of many
specific states (or specific events or specific configurations)
and these are assumed to have equal probabilities.

All the specific events can be grouped into dim events (like
the ones in Fig. (7.5)).

Each dim event (except for dim-0 and dim-N) consists of
a huge number of specific events among which we cannot
distinguish (as those on the right hand side of Fig. (7.5)).
The probability of each dim event is the sum of the probabil-
ities of all the specific events that constitute that dim event.
The relative time spent by the system in each dim state is
proportional to its probability.

There is one dim event that consists of a maximum number
of specific events. Hence, the system spends a larger fraction
of time at this maximal event.

We cannot distinguish between dim events that differ only
by a small number of particles, say between dim-10%3 and
dim-10%% 1000 or between dim-10% and dim-10%3 & 10°.

The last assumption (7), is essential. In my opinion, this

assumption (in fact, it is a fact!), is not emphasized enough

n

textbooks which explain the Second Law. Without this

assumption, one can follow all the arguments in building up the
Second Law but at the end, he or she might not reach the conclu-
sion that entropy should stay strictly constant at equilibrium,
and that entropy should not strictly change in one direction
only (upwards). The fact that we do not observe any decrease
in entropy at equilibrium, and do observe strictly increasing
entropy in a spontaneous process is due to two reasons:

1.

Small fluctuations do occur and very frequently, but they are
unobservable and un-measurable because they are too small
to be observed or to be measured.
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2. Large fluctuations could be observed and measured but
they are extremely rare and therefore never observable and
measurable.

Now I will ask you questions and you will answer. Check
your answers against mine. These are given in brackets.

We start with a system of N particles in a volume V(N is
very large, on the order of 1023, A simpler system for illustration
is shown in Fig. (7.2). Initially, the partition dividing the two
compartments does not allow the particles to cross.

Q:  What will you see?

A: (Nothing — any measurable quantity will have the same
value at each point in the system, and this quantity does not
change with time.)

Next, we open a small door between the left (L) and right (R)
compartments. It is small enough so that only one particle can
hit-and-cross the door within a short interval of time, say ¢ =
1078 seconds.?® At this interval of time there exists a probability,
denoted p1, that a specific particle will hit-and-cross the door.
Since the atoms are identical, the same probability py applies to
any specific particle.

Q:  What is the probability of any of the N particles hitting-
and-crossing the door within the time interval #?

A:  (Clearly, since we have assumed that the door is small
enough so that no two particles can cross within the time inter-
val ¢, the probability of particle 1 crossing is p1, the probability
of particle 2 crossing is p1 ... and the probability of the N-th
particle N crossing is p1. Since all these events are disjoint, the
probability of any particle crossing is N times p1, or N x p1.)

26This is not essential, but it is easier to think of such an extreme case when only one
particle at a time, can cross the door either way.
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Q: Right. What will happen in the first interval of time #?

A: (Either a particle will cross from L to R, or nothing will
happen.)

Q: Correct. Suppose we wait another time ¢, and another time
¢ until the first particle crosses. Which particle will cross over?

A: (I do not know which particle will cross over, but I am sure
that whichever particle crosses over, it must be from L to R.)

Q:  Why?

A:  (Simply because there are no particles in R so the first to
cross over must come from L.)

Q: Correct. Now wait for some more intervals of time until
the next particle crosses over. What will happen?

A:  (Since there are now N — 1 particles in L and only one
particle in R, the probability of a particle, any one of the N — 1
from L to hit-and-cross is much larger than the probability of the
single particle crossing from R to L. So it is far more likely [with
odds of N — 1 to 1] that we shall observe the second particle
also crossing from L to R.)

Q: Correct. Let us wait again for the next particle to cross
over. What will happen?

A;  (Again, since the relative probabilities of a particle crossing
from L to R and from R to L is N — 2 to 2, it is much more
likely that a particle will cross from L to R.)

Q: Indeed, and what about the next step?

A: (The same, the odds are now N — 3 to 3 of a particle
crossing from L to R, this is slightly less than in the previous
step, but since N = 10?3, the odds are still overwhelmingly in
favor of a particle crossing from L to R.)

Q: What will be the next few millions or billions of steps?
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A; (Again, the answers are the same for each time. If there are
nin R and N —nin L, and if 7 is very small compared with N /2,
millions or billions or trillions is still very small compared with
1023, there will be a higher probability of a particle crossing
from L to R than from R to L.)

Q: What happens when n becomes equal or nearly equal to
N/2?

A: (The odds to cross from L to R are about (N — n):n, which
for n about N/2 means %:%, or equivalently, the odds are now
nearly 1:1.)

Q:  So, what will happen next?

A:  (What will happen is one thing and what I will see is
another. What will happen is that on the average, there will
be the same number of particles crossing from L to R as from R
to L. What [ will see is nothing changing. If # deviates from N /2
by a few thousands, or a few millions of particles, I will not be
able to detect such a small deviation. If, however, a very large
deviation occurs, then I could possibly see that, or measure that,
but that kind of deviation is very unlikely to happen, so it will
never be observed.)

Q: So what will you see or measure from now on?

A:  (No changes will be observed or measured; the system will
reach its equilibrium state where the number of particles in L
and R are about equal.)

Q:  You have passed the test. One more question to check if
you have understood the deassimilation process. Suppose we
start with N molecules, all in the d-form. We introduce a tiny
piece of a catalyst. Whenever a molecule, any molecule, hits the
catalyst, there is a probability pq that it will change either from
d to [ or from [ to d. What will you observe in this system?
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A: (Exactly the same answers as given before; just replace L
by the d-form, and R by the [-form. Instead of a little door that
allows crossing from L to R, or from R to L, the catalyst allows
the change from d to [, or from [ to d. With this translation from
the L and R language to the d and / language, all the answers
to your questions will be identical.)

Well, I think you have now understood two examples of how
entropy behaves in a spontaneous process. You have passed the
test, and I have accomplished my mission. If you are interested
in reading some of my personal speculations, you are welcome
to read the next chapter.
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END OF CHAPTER 7
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Reflections on the Status of the

Second Law of Thermodynamics
as a Law of Physics

If you have followed me so far and have reached this last chapter,
you must feel comfortable with the concept of entropy and with
the Second Law. If you throw a pair of (real) dice many times,
and find that the sum = 7 appears on the average more than
any other sums, you should not be surprised. If you throw one
hundred simplified dice (with “0” and “1”), you should not be
puzzled to find out that the sum of the outcomes will almost
always be about 50. If you throw a million simplified dice, you
should not be mystified to find out that you will “never” get
the sum = 0 or the sum = 1,000,000. You know that both
of these results are possible outcomes, but they are so rare that
you can play all your life and will not witness even once that
particular result. You will not be mystified because you have
thought about that and your common sense tells you that events
with high probability will be observed more frequently, while
events with extremely low probability will “never” occur.

If you have never heard of the atomic constituency of matter
and you watch a colored gas initially contained in one compart-
ment of a vessel flowing and filling up the two compartments of
the vessel, as shown in Fig. (8.1a); or two compartments with
two different gases, say yellow and blue, transformed into a
blend of homogenous green, as shown in Fig. (8.1b); or a hot

186
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body at a temperature say T> = 100°C, when brought into con-
tact with a cold body, say at T; = 0°C, cooled to a temperature
somewhere in between T7 and T», as shown in Fig. (8.1c¢), you
should be mystified. Why did the blue gas flow from one cham-
ber to fill the other chamber? Why were the two colored gases
transformed into a single color? Why did the temperatures of
the two bodies change into a single temperature? What are the
hidden forces that propelled all these phenomena, and always in
these directions and never in the opposite directions? Indeed, for
as long as the atomic theory of matter was not discovered and
accepted,! all of these phenomena were shrouded in mystery.
Mystery might not be the right word. Perhaps “puzzlement”
will describe the situation better. The only reason for you to be
puzzled is that you do not have any understanding of why these
phenomena happen in the particular direction. But that is the
same for any law of physics. Once you accept the law as a fact,

1By “discovered and accepted,” I mean “not yet discovered and accepted.” If matter
did not consist of atoms and molecules, then there would have been no mystery
none of the phenomena would have occurred. The Second Law as formulated within
classical thermodynamics would not have existed at all.
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you will feel that it is natural, and that it makes sense.? The same
is true for the Second Law; the fact that these processes are so
common in daily life, means that they are slowly and gradually
being perceived as “natural” and “make sense.”

If, however, you know that a gas consists of some 10> atoms
or molecules, jittering and colliding incessantly millions of times
a second, then you know that the laws of probability will prevail,
and that there is no mystery. There is no mystery in all these
processes as much as there is no mystery in failing to win the
“one million” prize in the last lottery.

023

I would like to believe that even if you encountered the words
“entropy” and the “Second Law” for the first time in this book,
you would be puzzled as to why the word “mystery” was asso-
ciated with these terms at all. You will have no more reasons
to cringe upon hearing the word “entropy,” or to be puzzled
by that unseen “force” that pushes the gas from one side to the
other. There is also no need for you to continue reading this
book. My mission of explaining the “mysteries of the Second
Law” has ended on the last pages of Chapter 7, where you have
reached a full understanding of the Second Law.

In this chapter, I take the liberty to express some personal
reflections on the Second Law. Some of my views are not nec-
essarily universally agreed upon. Nevertheless, I have ventured
into expressing these views and taking the risk of eliciting the
criticism of scientists whose views might be different and per-
haps more correct than mine.

In this chapter, I shall raise some questions and shall try
to answer them. I will begin with a relatively innocent ques-
tion: “Why has the Second Law been shrouded in mystery for
so long?” Is it because it contains a seed of conflict between

2Here, “makes sense” is used in the sense of being a common and familiar experience,
not in the logical sense.
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the time-reversal symmetry of the equations of motion, and the
observed irreversibility of natural processes? Then I shall discuss
a few other questions, the answers to which are still controver-
sial. Is entropy really a measure of “disorder,” and what does
order or disorder of a system mean? How has “information”
invaded a “territory” that used to harbor only physically mea-
surable entities? Is the Second Law intimately associated with
the arrow of time? What is the “status” of the Second Law of
Thermodynamics vis a vis other laws of nature? Is it also pos-
sible that one day science will do away with the Second Law
of Thermodynamics as it will be deemed a redundancy, a relic
of the pre-atomistic view of matter that does not further enrich
our knowledge of how nature works?

8.1. What is the Source of the Mystery?

In my opinion, there are several reasons which gave rise to the
mystery enveloping the Second Law. The first, and perhaps the
simplest reason for the mystery is the very word “entropy.”
Everyone is familiar with concepts like force, work, energy and
the like. When you learn physics, you encounter the same words,
although sometimes they have quite different meanings than the
ones you are used to in everyday life. The amount of “work”
that I have expended in writing this book is not measured in the
same units of work (or energy) that are used in physics. Like-
wise, the “force” exerted on a politician to push for a specific
law or a bill is not the same as the force used in physics. Nev-
ertheless, the precise concepts of work and force as defined in
physics retain some of the qualitative flavor of the meaning of
these words as used in daily life. Therefore, it is not difficult
to accommodate the new and more precise meaning conferred
on familiar concepts such as force, energy or work. When you
encounter, for the first time, a new word such as “entropy,”
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it conjures up an air of mystery; it has a strange and uneasy
effect on you. If you are not a student of physics or chemistry,
and by chance hear scientists talking about “entropy,” you will
certainly feel that this concept is beyond you and a fortiori so,
when you hear the scientists themselves referring to “entropy”
as a mystery.

Leon Cooper (1968), right after quoting Clausius’ expla-
nation of his reasons for the choice of the word “entropy,”
comments>

“By doing this, rather than extracting a name from the

body of the current language (say: lost heat), he suc-

ceeded in coining a word that meant the same thing to
everybody: nothing.”

I generally agree with Cooper’s comment but I have two
reservations about it. First, the word “entropy” is unfortu-
nately a misleading word. This is clearly different than meaning
“nothing.” Open any dictionary and you will find: “Entropy —
Ancient Greek change, literary turn.” Clearly, the concept of
entropy is not “transformation,” nor “change,” nor “turn.” As
we have seen, entropy as defined in either the non-atomistic or
the atomistic formulation of the Second Law is something that
changes. But it is not the “transformation” that is transformed,
nor the “change” that is changing, and certainly not the “turn”
that is evolving.

My second reservation concerns the casual suggestion made
by Cooper that “lost heat” could have been more appropri-
ate. Of course, “lost heat” is a more meaningful term than
“entropy.” It is also in accordance with the universal meaning

3See Chapter 1, page 7. We again quote from Clausius’ writing on the choice of the
word “entropy.” Clausius says: “I propose, accordingly, to call S the entropy of a
body after the Greek word “transformation.”
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assigned to entropy as a “measure of the unavailable energy.*
I will revert to this meaning assigned to entropy in Section 8.3
below.

Besides the unfamiliarity with a new concept that creates an
air of mystery, there is a second reason for the mystery. The
very fact that many authors writing on entropy say that entropy
is a mystery, makes entropy a mystery. This is true for writers
of popular science as well as writers of serious textbooks on
thermodynamics.

Take for example a very recent book, brilliantly written for

the layman by Brian Greene. He writes”:
“And among the features of common experience that
have resisted complete explanation is one that taps into
the deepest unresolved mysteries in modern physics,
the mystery that the great British physicist, Sir Arthur
Eddington called the arrow of time.”

On the next pages of the book, Greene explains the behav-
ior of entropy using the pages of Tolstoy’s epic novel War and
Peace. There are many more ways that the pages of the said
novel can fall out of order, but only one (or two) ways to put
them in order.

It seems to me that the above quoted sentence contributes to
perpetuating the mystery that is no longer there. In a few more
sentences, Greene could have easily explained “entropy,” as he
explained so many other concepts of modern physics. Yet to me,
it is odd that he writes: “...the deepest unresolved mysteries in
modern physics,” when I believe he should instead have written:
“Today, the mystery associated with the Second Law no longer
exists.” There are many authors who wrote on the Second Law

#Merriam Webster’s Collegiate Dictionary (2004).
SGreene (2004).
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with the intention of explaining it, but in fact ended up propa-
gating the mystery.°

Here is a classical example. Atkins’ book on The Second
Law starts with the following words’:

“No other part of science has contributed as much to
the liberation of the human spirit as the Second Law of
Thermodynamics. Yet, at the same time, few other parts
of science are beld to be recondite. Mention of the Second
Law raises visions of lumbering steam engines, intricate
mathematics, and infinitely incomprebensible entropy.”

What should one make of these opening sentences? 1 def-
initely do not agree with all the three quoted sentences. The
first sentence is ambiguous. I failed to understand what the
Second Law has got to do with “liberating the human spirit.”
However, my point here is not to argue with Atkins views on
the Second Law. I quote these opening sentences from Atkins’
book to demonstrate how each contributes to propagating the
mystery. The first sentence elicits great expectations from the
Second Law and presumably encourages you to read the book.
However, these expectations are largely frustrated as you go on
reading the book. The next two sentences are explicitly discour-
aging — “an infinitely incomprehensible entropy” does not whet
your appetite to even try to taste this dish. In many textbooks
on thermodynamics, the authors spend a lot of time discussing
different manifestations of the Second Law, but very little on
what is common to all these manifestations. Instead of selecting
one or two simple examples of processes that are manifestations
of the Second Law, the authors present a very large number of

6 An exception is Gamov’s book One, Two, Three Infinity that opens a section with
the title The Mysterious Entropy but ends it with: “and as you see, there is nothing
in it to frighten you.”

7 Atkins (1984).
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examples, some of which are too complicated to comprehend.
Reading all these, you cannot see the forest for the trees.?

In Chapter 7, we have discussed two relatively simple exam-
ples that demonstrate the workings of the Second Law. In each
of these examples only one parameter changes. In the first, the
change we observed was in the locational information, i.e., par-
ticles that are initially confined to a smaller volume, disperse
and fill a larger volume. In the second example, the identities
of the particles were changed. In the experiment on heat trans-
fer from a hot to a cold bodys, it is the distribution of velocities
that was changed. There are, of course, more complicated pro-
cesses that involve changes in many parameters (or degrees of
freedom). Sometimes, it is difficult to enumerate all of them. For
instance, the processes that occur following the splattering of an
egg involve changes of location, identities of molecules, distribu-
tion of velocities, orientations and internal rotations within the
molecules. All of these complicate the description of the process,
but the principle of the Second Law is the same. To understand
the principle, it is enough to focus on one simple process, and
the simpler, the better and the easier to understand.

Atkins’ book devotes a whole chapter to “see how the Sec-
ond Law accounts for the emergence of the intricately ordered
forms characteristic of life.”” In my opinion, this promise is not
delivered. I have read Atkins’ entire book, cover-to-cover, and I
failed to “see how the Second Law accounts for the emergence
of the intricately ordered forms characteristic of life.”

These kinds of promises contribute to the frustration of the
readers and discourage them from getting to grips with the
Second Law.

81t is interesting to note that “entropy” and “the Second Law” feature in the titles
of scores of books (see some titles of books in the bibliography). To the best of my
knowledge, no other single law of physics has enjoyed that treat.

9 Atkins (1984).
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Life phenomena involve extremely complicated processes.
Everyone “knows,” scientists as well as non-scientists, that life
is a complex phenomenon, many aspects of which, involving the
mind and consciousness, are still not well understood. Therefore,
discussing life in a book which is supposed to explain the Second
Law leaves the reader with the impression that entropy, like life,
is hopelessly difficult to understand and very mysterious.

It is true that many scientists believe that all aspects of life,
including consciousness, are ultimately under the control of the
laws of physics and chemistry, and that there is no such sepa-
rate entity as the mind which does not succumb to the laws of
physics. I personally believe that this is true. However, this con-
tention is still far from being proven and understood. It might
be the case that some aspects of life will require extension of the
presently known laws of physics and chemistry, as was cogently
argued by Penrose.'? Therefore, in my opinion, it is premature
to discuss life as just another example, fascinating as it may be,
within the context of explaining the Second Law.

There are more serious reasons for the mystery that has
befogged entropy. For over a century, the Second Law was for-
mulated in thermodynamic terms and even after the molecular
theory of matter has been established, the Second Law is still
being taught in thermodynamics, employing macroscopic terms.
This approach inevitably leads down a blind alley. Indeed, as
my first lecturer correctly proclaimed (see Preface), there is no
hope of understanding the Second Law within thermodynamics.
To reach the light, you must go through the tunnels of statisti-
cal thermodynamics, i.e., the formulation of the Second Law in
terms of a huge number of indistinguishable particles. If you go
through the various different formulations of the Second Law
within classical thermodynamics, you can prove the equivalence

10penrose (1989, 1994).
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of one formulation to some other formulations; you can show
that the entropy that drives one process, say the expansion of
a gas, is the same entropy that drives another process, say the
mixing of two different gases. It is somewhat more difficult to
show that it is also the same entropy that drives a chemical reac-
tion, or mixing of two liquids. It is impossible to prove that it is
the same entropy that causes the mess created by the splattering
of an egg (yet we do assume that it is the same entropy and that
one day, when the tools of statistical thermodynamics shall have
been more powerful, we will be able to prove it). However, no
matter how many examples you work out and prove that they
are driven by the inexorably and the ever-increasing entropy,
you will reach a blind alley. You can never understand what
the underlying source of this one-way ascent of the entropy is.
Thermodynamics does not reveal to you the underlying molec-
ular events.

Had the atomic energy of matter not been discovered and
accepted,!! we would have never been able to explain the Second
Law; it would have forever remained a mystery.

That was the situation at the end of the nineteenth century
and at the beginning of the twentieth century. Although the
kinetic theory of heat had succeeded in explaining the pressure,
temperature, and eventually also the entropy in terms of the
motions of atoms and molecules, these theories were considered
to be hypotheses. Important and influential scientists such as
Ostwald and Mach thought that the concept of the atom, and
the theories based on its existence, should not be part of physics.
Indeed, they had a point. As long as no one had “seen” the atoms
directly or indirectly, their incorporation in any theory of matter
was considered speculative.

Hgee footnote 1, page 187.
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The situation changed dramatically at the beginning of the
twentieth century. It was Einstein who contributed decisively to
defeating the aether, and also paved the way for the atomists’
victory. The acceptance of Boltzmann’s molecular interpretation
of entropy became inevitable (see Chapter 1).

But how come the mystery still did not vanish with the
embracing of Boltzmann’s interpretation of entropy? True, the
door was then widely open to a full understanding of the ways
of entropy and yet the mystery persisted.

[ am not sure I know the full answer to this question.
But I do know why, in my own experience, the mystery has
remained floating in the air for a long time. The reason, I believe,
involves the unsettled controversy which arose from the associ-
ation of entropy with “disorder,” with “missing information”
and with the “arrow of time.” I shall discuss each of these
separately.

8.2. The Association of Entropy with “Disorder”

The association of entropy with disorder is perhaps the oldest
of the three, and has its roots in Boltzmann’s interpretation of
entropy. Order and disorder are vague and highly subjective
concepts, and although it is true that in many cases, increase in
entropy can be correlated with increase in disorder, the state-
ment that “nature’s way is to go from order to disorder” is
the same as saying that “nature’s way is to go from low to high
entropy.” It does not explain why disorder increases in a sponta-
neous process. There is no law of nature that states that systems
tend to evolve from order to disorder.

In fact, it is not true that, in general, a system evolves from
order to disorder. My objection to the association of entropy
with disorder is mainly that order and disorder are not well-
defined, and are very fuzzy concepts. They are very subjective,
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sometimes ambiguous, and at times totally misleading. Consider
the following examples:

In Fig. (8.2) we have three systems. On the left hand side,
we have N atoms of gas in volume V. In the second, some of
the N atoms occupy a larger volume 2V. In the third, the N
atoms are spread evenly in the entire volume 2V. Take a look.
Can you tell which of the three systems is the more ordered
one? Well, one can argue that the system on the left, where
the N atoms are gathering in one half of the volume, is more
ordered than the system on the right, where N atoms are spread
in the entire volume. That is plausible when we associate entropy
with missing information (see below), but regarding order, I
personally do not see either of the systems in the figures to be
more ordered, or more disordered, than the other.

Consider next the two systems depicted in Fig. (8.3):

In the left system, we have N blue particles in one box
of volume V and N red particles in another box of the same
volume V. In the right, we have all the atoms mixed up in the
same volume V. Now, which is more ordered? In my view, the
left side is more ordered — all the blues and all the reds are
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separated in two different boxes. On the right-hand side, they
are mixed up in one box. “Mixed-up” is certainly a disordered
state, colloquially speaking. In fact, even Gibbs himself used the
word “mix-upness” to describe entropy. Yet, one can prove that
the two systems mentioned above have equal entropy. The asso-
ciation of mixing with increase in disorder, and hence increase
in entropy, is therefore only an illusion. The trouble with the
concept of order and disorder is that they are not well-defined
quantities — “order” as much as “structure” and “beauty” are
in the eyes of the beholder!

[ am not aware of any precise definition of order and disorder
that can be used to validate the interpretation of entropy in
terms of the extent of disorder. There is one exception, however.
Callen (1985), in his book on thermodynamics, writes (p. 380):

“In fact, the conceptual framework of “information the-
ory” erected by Claude Shannon, in the late 1940s, pro-
vides a basis for interpretation of the entropy in terms of
Shannon’s measure of disorder.”

And further, on the next page, Callen concludes:

“For closed system the entropy corresponds to Shannon’s
quantitative measure of the maximum possible disor-
der in the distribution of the system over its permissible
microstates.”

I have taught thermodynamics for many years and used
Callen’s book as a textbook. It is an excellent textbook. How-
ever, with all due respect to Callen and to his book, I must say
that Callen misleads the reader with these statements. I have
carefully read Shannon’s article “The Mathematical Theory
of Communication,” word-for-word and cover-to-cover, and
found out that Shannon neither defined nor referred to “dis-
order.” In my opinion, Callen is fudging with the definition of
disorder in the quoted statement and in the rest of that chapter.
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What for? To “legitimize” the usage of disorder in interpret-
ing entropy. That clearly is not in accord with Shannon’s writ-
ings. What Callen refers to as Shannon’s definition of disorder
is in fact Shannon’s definition of information. In my opinion,
Callen’s re-definition of information in terms of disorder does
not help to achieve the goal of explaining entropy. As we have
seen in Chapters 2 and 6, the concept of information originated
from a qualitative and highly subjective concept, has been trans-
formed into a quantitative and objective measure in the hands of
Shannon. As we have also seen, the distilled concept of “infor-
mation” also retains the meaning of information as we use it
in everyday life. That is not so for disorder. Of course, one can
define disorder as Callen has, precisely by using Shannon’s def-
inition of information. Unfortunately, this definition of “disor-
der” does not have, in general, the meaning of disorder as we
use the word in our daily lives, and has been demonstrated in
the examples above.!2

To conclude this section, I would say that increase in dis-
order (or any of the equivalent words) can sometimes, but not
always, be associated with increase in entropy. On the other
hand, “information” can always be associated with entropy,
and therefore it is superior to disorder.

8.3. The Association of Entropy with Missing Information

Ever since Shannon put forward his definition of the concept
of information, it has been found to be very useful in interpret-
ing entropy.'3 In my opinion, the concept of missing informa-
tion has not only contributed to our understanding of what is

12Fyrthermore, Shannon has built up the measure of information, or uncertainty, by
requiring that this measure fulfill a few conditions. These conditions are plausible for
information, but not for disorder. For further reading on this aspect of entropy see
Ben-Naim (2007).

13Gee Tribus (1961) and Jaynes (1983) both dealing with the informational theoretical
interpretation of entropy.
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the thing that changes (which is called entropy), but it has also
brought us closer to the last and final step of understanding
entropy’s behavior as nothing but common sense. This view,
however, is not universal.

On this matter, Callen (1983, page 384) writes:

“There is a school of thermodynamics who view thermo-
dynamics as a subjective science of prediction.”

In a paragraph preceding the discussion of entropy as disor-
der, Callen writes:

“The concept of probability has two distinct interpreta-
tions in common usage. ‘Objective probability’ refers to a
frequency, or a fractional occurrence; the assertion that
‘the probability of newborn infants being male is slightly
less than one half’ is a statement about census data. ‘Sub-
jective probability’ is a measure of expectation based on
less than optimum information. The (subjective) prob-
ability of a particular yet unborn child being male, as
assessed by a physician, depends upon that physician’s
knowledge of the parents’ family histories, upon accumu-
lating data on maternal hormone levels, upon the increas-
ing clarity of ultrasound images, and finally upon an edu-
cated, but still subjective, guess.”

As I have explained in Chapter 2 (in the section on “Condi-
tional probabilities and subjective probability”), my views differ
from Callen’s in a fundamental sense. Both examples given by
Callen could be subjective or objective depending on the given
condition or on the given relevant knowledge.

I have quoted Callen’s paragraph above to show that his
argument favoring “disorder” is essentially fallacious. I believe
Callen has misapplied probabilistic argument to deem informa-
tion “subjective” and to advocate in favor of “disorder,” which
in his view is “objective.”
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An extraterrestial visitor, who has no information on the
recorded gender of newborn infants, would have no idea what
the probabilities for a male or female are, and his assignment
of probabilities would be totally subjective. On the other hand,
given the same information and the same knowledge, includ-
ing the frequencies of boys and girls, the reliability of all the
statistical medical records, his assignment of probabilities will
inevitably be objective.

It is unfortunate and perhaps even ironic that Callen dis-
misses “information” as subjective, while at the same time
embracing Shannon’s definition of information, but renaming
it as disorder. By doing that, he actually replaces a well-defined,
quantitative and objective quantity with a more subjective con-
cept of disorder. Had Callen not used Shannon’s definition of
information, the concept of disorder would have remained an
undefined, qualitative and highly subjective quantity.

In my view, it does not make any difference if you refer to
information or to disorder, as subjective or objective. What mat-
ters is that order and disorder are not well-defined, scientific con-
cepts. On the other hand, information is a well-defined scientific
quantity, as much as a point or a line is scientific in geometry,
or the mass or charge of a particle is scientific in physics.

Ilya Prigogine (1997) in his recent book End of Certainty
quotes Murray-Gell-Mann (1994), saying:

“Entropy and information are very closely related.
In fact, entropy can be regarded as a measure of igno-
rance. When it is known only that a system is in a given
macrostate, the entropy of the macrostate measures the
degree of ignorance the microstate is in by counting the
number of bits of additional information needed to specify
it, with all the microstates treated as equally probable.”*

14The microstates and macrostates referred to here are what we call specific and
dim-configurations, or states, or events.
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I fully agree with this quotation by Gell-Mann, yet Ilya
Prigogine, commenting on this very paragraph, writes:

“We believe that these arguments are untenable. They
imply that it is our own ignorance, our coarse graining,
that leads to the second law.”

Untenable? Why?

The reason for these two diametrically contradictory views
by two great Nobel prize winners lies in the misunderstanding
of the concept of information.

In my opinion, Gell-Mann is not only right in his statement,
but he is also careful to say “entropy can be regarded as a mea-
sure of ignorance... Entropy ... measures the degree of igno-
rance.” He does not say “our own ignorance,” as misinterpreted
by Prigogine.

Indeed, information, as we have seen in Chapter 2, is a mea-
sure that is there in the system (or in the game of Chapter 2).
Within “information theory,” “information” is not a subjective
quantity. Gell-Mann uses the term “ignorance” as a synonym
of “lack of information.” As such, ignorance is also an objec-
tive quantity that belongs to the system and it is not the same as
“our own ignorance,” which might or might not be an objective
quantity.

The misinterpretation of the informational-theoretical inter-
pretation of entropy as a subjective concept is quite common.
I will quote one more paragraph from Atkins’ preface from the
book The Second Law."

“ I have deliberately omitted reference to the relation
between information theory and entropy. There is the
danger, it seems to me, of giving the impression that
entropy requires the existence of some cognizant entity
capable of possessing “in formation” or of being to some

15 Atkins (1984).
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degree “ignorant.” It is then only a small step to the pre-
sumption that entropy is all in the mind, and hence is an
aspect of the observer.”

Atkins’ rejection of the informational interpretation of
entropy on grounds that this “analogy” might lead to the “pre-
sumption that entropy is all in the mind,” is ironic. Instead, he
uses the terms “disorder” and “disorganized,” etc., which in my
view are concepts that are far more “in the mind.”

The fact is that there is not only an “analogy” between
entropy and information; the two concepts can also be made
identical.

It should be stressed again that the interpretation of entropy
as a measure of information cannot be used to explain the Sec-
ond Law of Thermodynamics. The statement that entropy is an
ever-increasing quantity in a spontaneous process (in an isolated
system) is not explained by saying that this is “nature’s way of
increasing disorder,” or “nature’s way of increasing ignorance.”
All these are possible descriptions of the thing that changes in
a spontaneous process. As a description, “information” is even
more appropriate than the term “entropy” itself in describing the
thing that changes.

Before ending this section on entropy and information, I
should mention a nagging problem that has hindered the accep-
tance of the interpretation of entropy as information. We recall
that entropy was defined as a quantity of heat divided by tem-
perature. As such, it has the units of energy divided by K (i.e.,
Joules over K or J/K, K being the units of the absolute temper-
ature in Kelvin scale). These two are tangible, measurable and
well-defined concepts. How is it that “information,” which is a
dimensionless quantity,'® a number that has nothing to do with
either energy or temperature, could be associated with entropy,

161 used here “dimensionless” as unit-less or lack of units.
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a quantity that has been defined in terms of energy and temper-
ature? I believe that this is a very valid point of concern which
deserves some further examination. In fact, even Shannon him-
self recognized that his measure of information becomes iden-
tical with entropy only when it is multiplied by a constant k
(now known as the Boltzmann constant), which has the units of
energy divided by temperature. This in itself does not help much
in proving that the two apparently very different concepts are
identical. I believe there is a deeper reason for the difficulty of
identifying entropy with information. I will elaborate on this
issue on two levels.

First, note that in the process depicted in Fig. (8.1c), the
change in entropy does involve some quantity of heat transferred
as well as the temperature. But this is only one example of a
spontaneous process. Consider the expansion of an ideal gas in
Fig. (8.1a) or the mixing of two ideal gases in Fig. (8.1b). In
both cases, the entropy increases. However, in both cases, there
is no change in energy, no heat transfer, and no involvement
of temperature. If you carry out these two processes for ideal
gas in an isolated condition, then the entropy change will be
fixed, independent of the temperature at which the process has
been carried out and obviously no heat transfer from one body
to another is involved. These examples are only suggestive that
entropy change does not necessarily involve units of energy and
temperature.

The second point is perhaps on a deeper level. The units of
entropy (//K) are not only unnecessary for entropy, but they
should not be used to express entropy at all. The involvement
of energy and temperature in the original definition of entropy
is a historical accident, a relic of the pre-atomistic era of ther-
modynamics.

Recall that temperature was defined earlier than entropy and
earlier than the kinetic theory of heat. Kelvin introduced the
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absolute scale of temperature in 1854. Maxwell published his
paper on the molecular distribution of velocities in 1859. This
has led to the identification of temperature with the mean kinetic
energy of atoms or molecules in the gas.!” Once the identifica-
tion of temperature as a measure of the average kinetic energy of
the atoms had been confirmed and accepted, there was no reason
to keep the old units of K. One should redefine a new absolute
temperature, denoting it tentatively as T, defined by T = kT.
The new temperature T would have the units of energy and there
should be no need for the Boltzmann constant k.'® The equation
for the entropy would simply be § = In W, and entropy would
be rendered dimensionless!!”

Had the kinetic theory of gases preceded Carnot, Clausius
and Kelvin, the change in entropy would still have been defined
as energy divided by temperature. But then this ratio would have
been dimensionless. This will not only simplify Boltzmann’s for-
mula for entropy, but will also facilitate the identification of the
thermodynamic entropy with Shannon’s information.

In (1930), G. N. Lewis wrote:

“Gain in entropy always means loss of information and
nothing more.”

This is an almost prophetic statement made eighteen years
before information theory was born. Lewis’ statement left no

2
17This identity has the form (for atomic particles of mass 71) %TT = @ where T is

the absolute temperature and (v2), the average of the squared velocity of the atoms,
and k, the same k appearing on Boltzmann’s tombstone.

181n doing so, the relation 3kT/2 = m(v2)/2 will become simpler 3T/2 = m(v%)/2.
The gas constant R in the equation of state for ideal gases would be changed into
Avogadro number Ny = 6.022 x 1023 and the equation state of one mole of an
ideal gas will read: PV = N4y T, instead of PV = RT.

9Boltzmann’s formula assumes that we know what configurations to count in W.
To the best of my knowledge, this equation is not challenged within non-relativistic
thermodynamics. In the case of Black-Hole entropy, it is not really known if this
relation is valid. I owe this comment to Jacob Bekenstein.
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doubt that he considered entropy as conceptually identical to
information.

Shannon (1948) has shown that entropy is formally identi-
cal with information. There is a story2? that John von Neumann
advised Claude Shannon to use the term “entropy” when dis-
cussing information because:

“No one knows what entropy really is, so in a debate
you will always have the advantage.”

Thus, without entering into the controversy about the ques-
tion of the subjectivity or objectivity of information, whatever it
is, I believe that entropy can be made identical, both conceptu-
ally and formally, to information. The identification of the two
is rendered possible by redefining temperature in terms of units
of energy.?! This would automatically expunge the Boltzmann
constant (k) from the vocabulary of physics. It will simplify the
Boltzmann formula for entropy, and it will remove the stum-
bling block that has hindered the acceptance of entropy as infor-
mation for over a hundred years. It is also time to change not
only the units of entropy to make it dimensionless,?? but the
term “entropy” altogether. Entropy, as it is now recognized,
does not mean “transformation,” or “change,” or “turn.” It
does mean information. Why not replace the term that means
“nothing” as Cooper noted, and does not even convey the mean-
ing it was meant to convey when selected by Clausius? Why
not replace it with a simple, familiar, meaningful, and precisely

20Tribus, M. and Mclrvine, E. C. (1971), Energy and Information, Scientific Amer-
ican, 225, pp. 179-188.

21 As is effectively done in many fields of Physics.

22Note that the entropy would still be an extensive quantity, i.e., it would be pro-
portional to the size of the system.
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defined term “information?” This will not only remove much
of the mystery associated with the unfamiliar word entropy, but
will also ease the acceptance of John Wheeler’s view to “regard
the physical world as made of information, with energy and
matter as incidentals.”*3

Before concluding this section, I owe you an explanation of
my second reservation regarding Cooper’s comment cited on
page 190.

T agree that “lost heat” could be better than “entropy.” How-
ever, both the terms “lost heat,” and the more common term
“unavailable energy,” are applied to T A S (i.e., the product of
the temperature with the change in entropy), and not to the
change of entropy itself. The frequent association of entropy
with “lost heat” or “unavailable energy” is due to the fact that
it is the entropy that carries the energy units. However, if one
defines temperature in terms of units of energy, then entropy
becomes dimensionless. Therefore, when forming the product
T AS, it is the temperature that carries the burden of the units
of energy. This will facilitate the interpretation of T AS (not
the change in entropy) as either “lost heat” or “unavailable
energy.”

I should also add one further comment on nomenclature.
Brillouin (1962) has suggested to refer to “information” as
“neg-entropy.” This amounts to replacing a simple, familiar and
informative term with a vague and essentially misleading term.
Instead, I would suggest replacing entropy with either “neg-
information,” “missing information,” or “uncertainty.”

Finally, it should be said that even when we identify entropy
with information, there is one very important difference between
the thermodynamic information (entropy) and Shannon’s infor-
mation, which is used in communications or in any other branch

23Quoted by Jacob Bekenstein (2003).
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of science. It is the huge difference in order of magnitudes
between the two.>*

As we have seen, the association between entropy and proba-
bility not only removes the mystery, but also reduces the Second
Law to mere common sense. Perhaps it is ironic that the atomic
view of matter that has led to a full understanding of entropy
had initially created a new and apparently deeper mystery. This
brings us to the next question.

8.4. Is the Second Law Intimately Associated with the
Arrow of Time?

Every day, we see numerous processes apparently occurring in
one direction, from the mixing of two gases, to the decaying of a
dead plant or animal. We never observe the reverse of these phe-
nomena. It is almost natural to feel that this direction of occur-
rence of the events is in the right direction, consistent with the
direction of time. Here is what Greene writes on this matter®>:

“We take for granted that there is a direction in the way
things unfold in time. Eggs break, but do not unbreak;
candles melt, but they don’t unmelt; memories are of the
past, never of the future; people age, they don’t unage.”

However, Greene adds: “The accepted laws of Physics
show no such asymmetry, each direction in time, forward

24 A binary question gives you one bit (binary-unit) of information. A typical book,
contains about one million bits. All the printed material in the world is estimated to
contain about 1019 bits. In statistical mechanics, we deal with information on the
order of 1023 and more bits. One can define information in units of cents, or dollars,
or euros. If it costs one cent to buy one bit of information, then it would cost one
million cents to buy the information contained in a typical book. The information
contained in one gram of water, all the money in the world, will not suffice to buy!
25 Greene (2004) page 13.



Reflections on the Status of the Second Law of Thermodynamics 209

and backward, is treated by the laws without distinction,
and that’s the origin of a huge puzzle.”

Indeed it is! For almost a century, physicists were puzzled
by the apparent conflict between the Second Law of Thermo-
dynamics and the laws of dynamics.2® As Brian Greene puts it,
“Not only do known laws (of physics) fail to tell us why we see
events unfold in only one order, they also tell us that, in theory,
events can fold in the reverse order. The crucial question is Why
don’t we ever see such things? No one has actually witnessed a
splattered egg un-splattering, and if those laws treat splattering
and un-splattering equally, why does one event happen while its
reverse never does?”

Ever since Waddington associated the Second Law of Ther-
modynamics with the arrow of time, scientists have endeavored
to reconcile this apparent paradox. The equations of motion are
symmetrical with respect to going forward or backward in time.
Nothing in the equations of motion suggests the possibility of
a change in one direction and forbids a change in the opposite
direction. On the other hand, many processes we see every day
do proceed in one direction and are never observed to occur in
the opposite direction. But is the Second Law really associated
with the arrow of time?

The classical answer given to this question is that if you are
shown a movie played backwards, you will immediately recog-
nize, even if not told, that the movie is going backwards. You
will recognize, for instance, that a splattered egg scattered on the
floor, suddenly and spontaneously collects itself into the pieces
of the broken egg shell, the broken egg shell then becoming

26Here, we refer to either the classical (Newtonian) or the quantum mechanical laws
of dynamics. These are time-symmetric. There are phenomena involving elementary
particles that are not time-reversible. However, no one believes that these are the
roots of the second law. I owe this comment to Jacob Bekenstein.
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whole again, and the egg flying upward and landing intact on
the table. If you see that kind of movie, you will smile and invari-
ably conclude that the movie is going backwards. Why? Because
you know that this kind of process cannot proceed in this direc-
tion in time.

But what if you actually sit in the kitchen one day, look at a
splattered egg scattered on the floor, and suddenly the egg gets
back to its unbroken state, and then jumps back on top of the
table?

Fantastic as it might sound, your association of the process
of the splattering of the egg with the arrow of time is so strong
that you will not believe what your eyes see, and you will prob-
ably look around to see if someone is playing a trick on you
by running the film you are acting in backwards. Or, if you
understand the Second Law, you might tell yourself that you
are fortunate to observe a real process, in the correct direction
of time, a process that is extremely rare but not impossible.

This is exactly the conclusion reached by the physicist in
George Gamov’s book Mr. Tompkin’s Adventure in Wonder-
land.>” When he saw his glass of whisky, suddenly and spon-
taneously, boiling in its upper part, with ice cubes forming on
the lower part, the professor knew that this process, though
extremely rare, can actually occur. He might have been puzzled
to observe such a rare event, but he did not look for someone
playing backwards the “movie” he was acting in. Here is that
lovely paragraph from Gamov’s book:

“The liquid in the glass was covered with violently burst-
ing bubbles, and a thin cloud of steam was rising slowly
toward the ceiling. It was particularly odd, however, that
the drink was boiling only in a comparatively small area

27 Gamov (1940, 1999).
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around the ice cube. The rest of the drink was still quite
cold.

“Think of it!’ went on the professor in an awed, trembling
voice. ‘Here, I was telling you about statistical fluctua-
tions in the law of entropy when we actually see one! By
some incredible chance, possibly for the first time since
the earth began, the faster molecules have all grouped
themselves accidentally on one part of the surface of the
water and the water has begun to boil by itself.

In the billions of years to come, we will still, probably,
be the only people who ever had the chance to observe
this extraordinary phenomenon. He watched the drink,
which was now slowly cooling down. “What a stroke of

luck!’ be breathed happily.”

Our association of the spontaneously occurring events with
the arrow of time is, however, a mere illusion. An illusion created
by the fact that in our lifetime we have never seen even one pro-
cess that unfolds in the “opposite” direction. The association of
the spontaneous, natural occurrence of processes with the arrow
of timeisalmostalways valid —almost, but not absolutely always.

George Gamov, in his delightful book Mr Tompkins in Won-
derland, attempted to explain the difficult-to-accept results of
the theories of relativity and quantum mechanics by narrating
the adventures of Mr. Tompkins in a world where one can actu-
ally see and experience the difficult-to-accept results. He tried to
imagine how the world would look if the speed of light was much
slower than 300,000,000 meters per second, or conversely, how
the world would appear to someone travelling at velocities near
to the speed of light. In this world, one could observe phenom-
ena that are almost never experienced in the real world.
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Similarly, one can imagine a world where Planck’s con-
stant (b) is very large and experience all kinds of incredible phe-
nomena such as, for example, your car effortlessly penetrating a
wall (tunneling effect), and similar phenomena which are never
experienced in the real world where we live.

To borrow from Gamov’s imagination, we can imagine a
world where people will be living for a very long time, many
times the age of the universe, say 1010% years.?8

In such a world, when performing the experiment with gas
expansion, or with mixing of gases, we should see something
like what we have observed in the system of 10 dice. If we start
with all particles in one box, we shall first observe expansion
and the particles will fill the entire volume of the system. But
“once in a while” we will also observe visits to the original
state. How often? If we live for an extremely long time, say
1010% years, and the gas consists of some 1023 particles, then
we should observe visits to the original state many times in our
lifetime. If you watch a film of the expanding gas, running for-
ward or backward, you will not be able to tell the difference.
You will have no sense of some phenomena being more “natu-
ral” than others, and there should not be a sense of the “arrow
of time” associated with the increase (or occasionally decrease)
of entropy. Thus, the fact that we do not observe the unsplat-
tering of an egg or unmixing of two gases is not because there
is a conflict between the Second Law of Thermodynamics and
the equations of motion or the laws of dynamics. There is no
such conflict. If we live “long enough” we shall be able observe

28Perhaps, we should note here that as far as it is known, there is no law of nature that
limits the longevity of people or of any living system. There might be however, some
fundamental symmetry laws that preclude that. But this could be true also for the
speed of light and Planck constant. If that is true, then none of Gamov’s imaginations
could be realized in any “world” where the speed of light or Planck’s constant would
have different values.
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all these reverse processes! The connection between the arrow
of time and the Second Law is not absolute, only “temporary,”
for a mere few billion years.

It should be added that in the context of the association of
the Second Law with the arrow of time, some authors invoke our
human experience that distinguishes the past from the future. It
is true that we remember events from the past, never from the
future. We also feel that we can affect or influence events in the
future, but never events in the past. I fully share these experi-
ences. The only question I have is what have these experiences
to do with the Second Law or with any law of physics?

This brings me to the next question.

8.5. Is the Second Law of Thermodynamics a Law
of Physics?

Most textbooks on statistical mechanics emphasize that the Sec-
ond Law is not absolute; there are exceptions. Though extremely
rare, entropy can go downwand “once in a while.”

Noting this aspect of the Second Law, Greene (2004) writes
that the Second Law “is not a law in the conventional sense.”
Like any law of nature, the Second Law was founded on exper-
imental grounds. Its formulation in terms of the increasing
entropy encapsulates, in a very succinct way, the common fea-
ture of a huge number of observations. In its thermodynamic
formulation or, rather, in the non-atomistic formulation, the
Second Law does not allow exceptions. Like any other law of
physics, it proclaims a law that is absolute, with no excep-
tions. However, once we have grasped the Second Law from
the molecular point of view, we realize that there can be excep-
tions. Though rare, extremely rare, entropy can go the other
way. The Second Law is thus recognized as not absolute, hence
Greene’s comments that it is not a law in the “conventional



214 Entropy Demystified

sense.” Greene’s statement leaves us with the impression that
the Second Law is somewhat “weaker” than the conventional
laws of physics. It seems to be “less absolute” than the other
laws of physics.

But what is a law in the conventional sense? Is Newton’s law
of inertia absolute? Is the constancy of the speed of light abso-
lute? Can we really claim that any law of physics is absolute? We
know that these laws have been observed during a few thousand
years in which events have been recorded. We can extrapolate
to millions or billions of years by examining geological records
or radiations emitted from the time near the Big Bang, but we
cannot claim that these laws have always been the same, or will
always be the same in the future, and that no exceptions will be
found. All we can say is that within a few millions or billions of
years, it is unlikely that we shall find exceptions to these laws.
In fact, there is neither theoretical nor experimental reason to
believe that any law of physics is absolute.

From this point of view, the second law is indeed “not a law
in the conventional sense,” not in a weaker sense, as alluded to
by Greene, but in a stronger sense.

The fact that we admit the existence of exceptions to the
Second Law makes it “weaker” than other laws of physics only
when the other laws are proclaimed to be valid in an absolute
sense. However, recognizing the extreme rarity of the exceptions
to the Second Law makes it not only stronger but the strongest
among all other laws of physics. For any law of physics, one can
argue that no exceptions can be expected within at most some
1019 years. But exceptions to the Second Law can be expected
only once in 1010000000000 ¢ more years.

Thus, the Second Law when formulated within classical
(non-atomistic) thermodynamics is an absolute law of physics.
It allows no exceptions. When formulated in terms of molecular
events, violations are permitted. Though it sounds paradoxical,
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the relative “weakness” of the atomistic formulation makes the
Second Law the strongest among other laws of physics, includ-
ing the Second Law in its thermodynamic (non-atomist) for-
mulation. Putting it differently, the admitted non-absoluteness
of the atomistic-Second-Law is in fact more absolute than the
proclaimed absoluteness of the non-atomistic-Second-Law.2?

In the context of modern cosmology, people speculate on the
gloomy fate of the universe, which ultimately will reach a state
of thermal equilibrium or “thermal death.”

Perhaps not?!

On the other end of the time scale, it has been speculated that
since entropy always increases, the universe must have started
in the “beginning” with a lowest value of the entropy.

Perhaps not?!

And besides, the last speculation is in direct “conflict” with
the Bible:

“1. In the beginning God created the heaven and the
earth.
2. And the earth was unformed, and void.” Genesis 1:1
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The original Hebrew version includes the expression “Tohu
Vavohu,” instead of “unformed” and “void.” The traditional
interpretation of “Tohu Vavohu,” is total chaos, or total disor-
der, or if you prefer, highest entropy!

Having said these, I would venture a provocative view that
the Second Law of Thermodynamics is neither “weaker” nor

29 Although my knowledge of cosmology is minimal, I believe that what I have said
in this section is applicable also to the “generalized second law,” used in connection
with black hole entropy, see Bekenstein (1980).
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“stronger” than the other laws of physics. It is simply not a law
of physics at all, but rather a statement of pure common sense.
This brings me to the last question.

8.6. Can We Do Away with the Second Law?

If the Second Law of Thermodynamics is nothing but a state-
ment of common sense, do we have to list it and teach it as one
of the laws of Physics? Paraphrasing this question, suppose that
no one had ever formulated the Second Law of Thermodynam-
ics? Could we, by purely logical induction and common sense
derive the Second Law? My answer is probably yes, provided
we have also discovered the atomic nature of matter and the
immense number of indistinguishable particles that constitute
each piece of material. I believe that one can go from the bot-
tom up and deduce the Second Law.3 We can certainly do so
for the simple example of expansion of gas or mixing two dif-
ferent gases (as we have done at the end of Chapter 7). If we
develop highly sophisticated mathematics, we can also predict
the most probable fate of a falling egg.3! All of these predictions
would not rely, however, on the laws of physics but on the laws
of probability, i.e., on the laws of common sense.

You can rightly claim that I could make this “prediction”
because I have benefited from the findings of Carnot, Clausius,
Kelvin, Boltzmann and others. So it is not a great feat to
“predict” a result that you know in advance. This is proba-
bly true. So I will rephrase the question in a more intriguing

30Here, I do not mean one can deduce the Second Law by solving the equations
of motion of particles, but from the statistical behavior of the system. The first is
impractical for a system of 1023 particles.

31 Again, I do not mean to predict the behavior of the falling egg by solving the
equations of motion of all the particles constituting the egg. However, knowing all
the possible degrees of freedom of all the molecules comprising an egg, we could, in
principle, predict the most probable fate of a falling egg.
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form. Suppose that all these great scientists, who founded the
Second Law, never existed, or that they did exist but never for-
mulated the Second Law. Would science arrive at the Second
Law purely through logical reasoning, presuming the currently
available knowledge of the atomic nature of matter and all the
rest of physics?

The answer to this question might be NO! Not because one
could not derive the Second Law from the bottom up even if
no top-down derivation has ever existed. It is because science
will find it unnecessary to formulate a law of physics based on
purely logical deduction.
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