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Preface 

We all know the hard fact: neither wealth nor income is ever uniform for us 
all. Justified or not, they are unevenly distributed; few are rich and many are 
poor! 

Investigations for more than hundred years and the recent availability of 
the income distribution data in the internet (made available by the finance 
ministries of various countries; from the tax return data of the income tax 
departments) have revealed some remarkable features. Irrespective of many 
differences in culture, history, language and, to some extent, the economic 
policies followed in different countries, the income distribution is seen to fol­
low a particular universal pattern. So does the wealth distribution. Barring 
an initial rise in population with income (or wealth; for the destitutes), the 
population decreases either exponentially or in a log-normal way for the ma­
jority of 'middle income' group, and it eventually decreases following a power 
law (Pareto law, following Vilfredo Pareto's observation in 1896) for the rich­
est 5-10 % of the population! This seems to be an universal feature - valid 
for most of the countries and civilizations; may be in ancient Egypt as well! 
Econophysicists tried to view this as a natural law for a statistical many-
body-dynamical market system, analogous to gases, liquids or solids: classical 
or quantum. 

Considerable developments have taken place recently, when econophysi­
cists tried to model such a 'market' as a thermodynamic system and iden­
tified the income distribution there to be similar to the energy distribution 
in thermodynamic systems like gases etc. This workshop on 'Econophysics 
of Wealth Distributions', first in the 'Econophys-Kolkata' series, was held 
in Kolkata under the auspices of the 'Centre for Applied Mathematics and 
Computational Science', Saha Institute of Nuclear Physics, during 15 - 19 
March 2005. We plan to hold the next meeting in this series on 'Econophysics 
of Stock Markets' early next year. We hope to meet again along with the 
readers there. 

We are extremely happy that almost all the leading economists and physi­
cists, engaged in these studies on wealth distributions could come and partici-
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pate in the workshop. In this "first ever conference on Econophysics of Wealth 
Distributions" (New Scientist, 12 March 2005), physicists and economists dis­
cussed about their latest researches in the field. There were some agreements 
and more disagreements; but many interdisciplinary collaborations also got 
started. 

We believe, this Proceedings Volume will be able to convey the elctrifying 
atmosphere of the workshop, and will inspire further research in this important 
field. 

Kolkata, 
May 2005 

Arnab Chatterjee 
Sudhakar Yarlagadda 
Bikas K Chakrabarti 
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Pareto's Law of Income Distribution: Evidence 
for Germany, the United Kingdom, and the 
United States 

Fabio Clementi1'3 and Mauro Gallegati2'3 

1 Department of Public Economics, University of Rome "La Sapienza", Via del 
Castro Laurenziano 9, 00161 Rome, Italy, fabio.clementi@uniromal.i t 

2 Department of Economics, Universita Politecnica delle Marche, Piazzale Martelli 
8, 60121 Ancona, Italy, ga l legat i@dea.unian . i t 

3 S.I.E.C., Department of Economics, Universita Politecnica delle Marche, 
Piazzale Martelli 8, 60121 Ancona, Italy, h t tp : / /www.dea.unian. i t /wehia / 

S u m m a r y . We analyze three sets of income data: the US Panel Study of Income 
Dynamics (PSID), the British Household Panel Survey (BHPS), and the German 
Socio-Economic Panel (GSOEP). It is shown that the empirical income distribution 
is consistent with a two-parameter lognormal function for the low-middle income 
group (97%-99% of the population), and with a Pareto or power law function for 
the high income group ( l%-3% of the population). This mixture of two qualitatively 
different analytical distributions seems stable over the years covered by our data 
sets, although their parameters significantly change in time. It is also found that the 
probability density of income growth rates almost has the form of an exponential 
function. 

Key words: Personal income; Lognormal distribution; Pareto's law; Income growth 
rate 

1 Introduction 

More than a century ago, the economist Vilfredo Pareto stated in his Cours 
d'Economie Politique that there is a simple law which governs the distribution 
of income in all countries and at all times. Briefly, if iV represents all the 
number of income-receiving units cumulated from the top above a certain 
income limit x, and A and a are constants, then: 

and, therefore, log (N) = log (A) — alog (x). In other words, if the logarithms 
of the number of persons in receipt of incomes above definite amounts are 
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plotted against the logarithms of the amount of these incomes, the points 
so obtained will be on a straight line whose slope with the axis on which 
the values of log (x) are given will be a. Pareto examined the statistics of 
incomes in some countries and concluded that the inclination of the line with 
the log (x) axis differed but little from 1.5. 

Very recently, considerable investigations with modern data in capitalist 
economies have revealed that the upper tail of the income distribution (gen­
erally less than 5% of the individuals) indeed follows the above mentioned 
behaviour, and the variation of the slopes both from time to time and from 
country to country is large enough not to be negligible. Hence, characteriza­
tion and understanding of income distribution is still an open problem. The 
interesting problem that remains to be answered is the functional form more 
adequate for the majority of population not belonging to the power law part 
of the income distribution. Using data coming from several parts of the world, 
a number of recent studies debate whether the low-middle income range of 
the income distribution may be fitted by an exponential [1-8] or lognormal 
[9-13] decreasing function.4 

In this paper we have analyzed three data sets relating to a pool of ma­
jor industrialized countries for several years in order to add some empirical 
investigations to the ongoing debate on income distribution. When fits are 
performed, a two-parameter lognormal distribution is used for the low-middle 
part of the distribution (97%-99% of the population), while the upper high-
end tail ( l%-3% of the population) is found to be consistent with a power law 
type distribution. Our results show that the parameters of income distribution 
change in time; furthermore, we find that the probability density of income 
growth rates almost scales as an exponential function. 

The structure of the paper is as follows. Section 2 describes the data used in 
our study. Section 3 presents and analyzes the shape of the income distribution 
(Sect. 3.1) and its time development over the years covered by our data sets 
(Sect. 3.2). Section 4 concludes the paper. 

2 The Data 

We have used income data from the US Panel Study of Income Dynamics 
(PSID), the British Household Panel Survey (BHPS), and the German Socio-
Economic Panel (GSOEP) as released in a cross-nationally comparable format 
in the Cross-National Equivalent File (CNEF). The CNEF brings together 
multiple waves of longitudinal data from the surveys above, and therefore 

4 Recently, a distribution proposed by [14,15] has the form of a deformed exponen­
tial function: 

PK (X) = ( V 1 + K2X2 — KXj 

which seems to capture well the behaviour of the income distribution at the low-
middle range as well as the power law tail. 
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provides relatively long panels of information. The current release of the CNEF 
includes data from 1980 to 2001 for the PSID, from 1991 to 2001 for the BHPS, 
and from 1984 to 2002 for the GSOEP. Our data refer to the period 1980-2001 
for the United States, and to the period 1991-2001 for the United Kingdom. 
As the eastern states of Germany were reunited with the western states of the 
Federal Republic of Germany in November 1990, the sample of families in the 
East Germany was merged with the existing data only at the beginning of the 
1990s. Therefore, in order to perform analyses that represent the population 
of reunited Germany, we chose to refer to the subperiod 1990-2002 for the 
GSOEP. 

A key advantage of the CNEF is that it provides reliable estimates of an­
nual income variables defined in a similar manner for all the countries that 
are not directly available in the original data sets.5 It includes pre- and post-
government household income, estimates of annual labour income, assets, pri­
vate and public transfers, and taxes paid at household level. In this paper, the 
household post-government income variable (equal to the sum of total family 
income from labour earnings, asset flows, private transfers, private pensions, 
public transfers, and social security pensions minus total household taxes) 
serves as the basis for all income calculations. Following a generally accepted 
methodology, the concept of equivalent income will serve as a substitute for 
personal income, which is unobservable. Equivalent income x is calculated as 
follows. In a first step, household income h is adjusted for by household type 0 
using an equivalence scale e (0) .6 This adjusted household income x = h/e (9) 
is then attributed to every member of the given household, which implies that 
income is distributed equally within households. 

In the most recent release, the average sample size varies from about 7,300 
households containing approximately 20,200 respondent individuals for the 
PSID-CNEF to 6,500 households with approximately 16,000 respondent indi­
viduals for the BHPS-CNEF; for the GSOEP-CNEF data from 1990 to 2002, 
we have about 7,800 households containing approximately 20,400 respondent 
individuals. 

All the variables are in current year currency; therefore, we use the con­
sumer price indices to convert into constant figures for all the countries. The 
base year is 1995. 

6 Reference [16] offers a detailed description of the CNEF. See also the CNEF web 
site for details: http://www.human.cornell.edu/pam/gsoep/equivfil.cfm. 

6 We use the so-called "modified OECD" equivalence scale, which is defined for 
each household as equal to 1 + 0.5 x (#adults — 1) + 0.3 x (^children). 
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3 Empirical Findings 

3.1 The Shape of the Distribution 

The main panel of the pictures illustrated in Fig. 1 presents the empirical 
cumulative distribution of the equivalent income from our data sets for some 
randomly selected years in the log-log scale.7 As shown in the lower insets, 
the upper income tail (about l%-3% of the population) follows the Pareto's 
law: 

l-F(x)=P(X>x)=Cax-a (2) 

where Ca = ka, k,a > 0, and k < x < oo. Since the values of x above some 
value XR can not be observed due to tail truncation, to fit the (logarithm of 
the) data for the majority of the population (until the 97 t h-99 t h percentiles of 
the income distribution) we use a right-truncated normal probability density 
function: 

f yj(v) > -oo <y<yR 

f iv) = { Jj(y)dv (3) 
I 0 , yR < y < oo 

where y = log (x), and yu = log (XR). The fit to (3) is shown by the top insets 
of the pictures. 

To select a suitable threshold or cutoff value XR separating the lognormal 
part from the Pareto power law tail of the empirical income distribution, we 
use visually oriented statistical techniques such as the quantile-quantile (Q-
Q) and mean excess plots. Figure 2 gives an example of these graphical tools 
for the countries at hand. The top pictures in the figure are the plots of the 
quantile function for the standard exponential distribution (i.e., a distribution 
with a medium-sized tail) against its empirical counterpart. If the sample 
comes from the hypothesized distribution, or a linear transformation of it, 
the Q-Q plot is linear. The concave presence in the plots is an indication 
of a fat-tailed distribution. Since a log-transformed Pareto random variable 
is exponentially distributed, we conduct experimental analysis on the log-
transformed data by excluding some of the lower sample points to investigate 
the concave departure region on the plots and obtain a fit closer to the straight 
line. The results are shown by the insets of the top pictures in the figure. The 
lower pictures plot the empirical average of the data that are larger than or 
equal to XR, E (X\X > XR), against XR. If the plot is a linear curve, then it 
may be either a power type or an exponential type distribution. If the slope 
of the linear curve is greater than zero, then it suggests a power type (as 
in the main panels); otherwise, if the slope is equal to zero, it suggests an 
exponential type (as in the insets for the log-transformed data). 

7 To treat each wave of the surveys at hand as a cross-section, and to obtain 
population-based statistics, all calculations used sample weights which compen­
sate for unequal probabilities of selection and sample attrition. Furthermore, to 
eliminate the influence of outliers, the data were trimmed. We also dropped ob­
servations with zero and negative incomes from all samples. 
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(a) US (1996) (b) UK (2001) 

(c) Germany (1991) 

Fig. 1. The cumulative probability distribution of the equivalent income in the 
log-log scale along with the lognormal (top insets) and Pareto (lower insets) fits for 
some randomly selected years 

3.2 T e m p o r a l C h a n g e of t h e D i s t r i b u t i o n 

The two-part structure of the empirical income distribution seems to hold 
all over the t ime span covered by our da ta sets. The distribution for all the 
years and countries are shown in Fig. 3. As one can easily recognize, the dis­
tr ibution shifts over the years covered by our da ta sets. It is conceivable to 
assume tha t the origin of this shift consists in the growth of the countries. To 
confirm this assumption, we study the fluctuations in the output and equiv­
alent income growth rate, and t ry to show tha t the evolution of both these 
quantities is governed by similar mechanisms, pointing in this way to the ex­
istence of a correlation between them as one would expect. We calculate the 
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(a) US (1996) (b) UK (2001) 

(c) Germany (1991) (d) US (1996) 

(e) UK (2001) (f) Germany (1991) 

Fig. 2. Q-Q plots (top pictures) against standard exponential quantiles and mean 
excess plots (lower pictures) against threshold values for some randomly selected 
years. A concave departure from the straight line in the Q-Q plot (as in the top 
main panels) or an upward sloping mean excess function (as in the lower main 
panels) indicate a heavy tail in the sample distribution. The insets in the pictures 
apply the same graphical tools to the log-transformed data 
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data onloganttmuc scaled axes(1991 -2001) 

(a) US (1980-2001) (b) UK (1991-2001) 

(c) Germany (1990-2002) 

Fig. 3. Time development of the income distribution for all the countries and years 

growth rates using the monthly series of the Index of Industrial Production 
(IIP) from [17] for output and connecting individual respondents' incomes 
over time for the equivalent income,8 and express them in terms of their log­
arithm.9 To account for the fact that the variance of the growth rates varies, 
we scale each growth rate by dividing by the corresponding estimated stan­
dard deviation. In Fig. 4 we graph the empirical probability density function 
for these scaled growth rates, where the data points for the equivalent in­
come in the main panels are the average over the entire period covered by the 

To properly weight the sample of individuals represented in all the years of the 
CNEF surveys, we use the individual's longitudinal sample weights. 

9 All the data have been adjusted to 1995 prices and detrended by the average 
growth rate, so values for different years are comparable. 
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ie mean (logarithmic) growth rate (CNEF-Br-

. / I 
, / 

(a) US (1980-2001) (b) UK (1991-2001) 

(c) Germany (1990-2002) 

Fig. 4. The probability distribution of equivalent income (main panels) and IIP 
(insets) growth rate for all the countries and years 

CNEF surveys. As one can easily recognize, after scaling the resulting em­
pirical probability density functions appear identical for observations drawn 
from different populations. Remarkably, both curves display a simple "tent-
shaped" form; hence, the probability density functions are consistent with an 
exponential decay [18]: 

f(r) 
1 

aV2 exp — (4) 

where —oo < r < oo, —oo < f < oo, and a > 0. We test the hypothesis tha t 
the two growth rate distributions have the same continuous distribution by 
using the two-sample Kolmogorov-Smirnov (K-S) test; the results shown in 
Table 1 mean tha t the test is not significant at the 5% level. These findings are 
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Table 1. Two-sample Kolmogorov-Smirnov test statistics and p-values for both 
output and equivalent income growth rate data for all the countries 

Country 
United States 

United Kingdom 
Germany 

K-S test statistic 
0.0761 
0.06-16 
0.0865 

p- value 
0.1133 
0.6161 
0.2050 

in quantitative agreement with results reported on the growth of firms and 
countries [19-26], leading us to the conclusion that the data are consistent 
with the assumption that a common empirical law might describe the growth 
dynamics of both countries and individuals. 

Even if the functional form of the income distribution expressed as lognor-
mal with power law tail seems stable, its parameters fluctuate within narrow 
bounds over the years for the same country. For example, the power law slope 
has a value a = [1.1,3.34] for the US between 1980 and 2001, while the cur­
vature of the lognormal fit, as measured by the Gibrat index (3 = 1/ (a^/2), 
ranges between approximately fi = 1 and [3 = 1.65; for the UK between 1991 
and 2001, a = [3.47,5.76] and (3 = [2.18,2.73]; for Germany between 1990 
and 2002, a = [2.42,3.96] and fi = [1.63,2.14]. The time pattern of these 
parameters is shown by the main panels of Fig. 5, which also reports in one of 
the insets the temporal change of inequality as measured by the Gini coeffi­
cient. As one can easily recognize, the information about inequality provided 
by the Gibrat index seems near enough to those provided by the Gini coeffi­
cient, which is a further confirmation of the fact that the lognormal law is a 
good model for the low-middle incomes of the distribution. The Pareto index 
is a rather strongly changing index. Among others, the definition of income 
we use in the context of our analysis contains asset flows. It is conceivable 
to assume that for the top 1% to 3% of the population returns on capital 
gains rather than labour earnings account for the majority share of the total 
income. This suggests that the stock market fluctuations might be an impor­
tant factor behind the trend of income inequality among the richest, and that 
capital income plays an important role in determining the Pareto functional 
form of the observed empirical income distribution at the high income range 
[27]. The other insets of the pictures also show the time evolution of various 
parameters characterizing income distribution, such as the income separating 
the lognormal and Pareto regimes (selected as explained in Sect. 3.1), the frac­
tion of population in the upper tail of the distribution, and the share of total 
income which this fraction accounts for.10 One can observe that the fraction 
of population and the share of income in the Pareto tail move together in the 
opposite direction with respect to the cutoff value separating the body of the 

The share of total income in the tail of the distribution is calculated as Ha/ft, 
where jia is the average income of the population in the Pareto tail and JJ, is the 
average income of the whole population. 
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(a) US (1980-2001) (b) UK (1991-2001) 

(c) Germany (1990-2002) 

Fig. 5. Temporal evolution of various parameters characterizing the income distri­
bution 

distribution from its tail, and the latter seems to track the temporal evolution 
of the Pareto index. This fact means that a decrease (increase) of the power 
law slope and the accompanying decrease (increase) of the threshold value XR 
imply a greater (smaller) fraction of the population in the tail and a greater 
(smaller) share of the total income which this population account for, as well 
as a greater (smaller) level of inequality among high income population. 

4 Summary and Conclusions 

Our analysis of the data for the US, the UK, and Germany shows that 
there are two regimes in the income distribution. For the low-middle class 
up to approximately 97%-99% of the total population the incomes are well 
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described by a two-parameter lognormal distribution, while the incomes of 
the top l % - 3 % are described by a power law (Pareto) distribution. 

This structure has been observed in our analysis for different years. How­
ever, the distribution shows a rightward shift in time. Therefore, we analyze 
the output and individual income growth rate distribution from which we ob­
serve tha t , after scaling, the resulting empirical probability density functions 
appear similar for observations coming from different populations. This effect, 
which is statistically tested by means of a two-sample Kolmogorov-Smirnov 
test, raises the intriguing possibility tha t a common mechanism might char­
acterize the growth dynamics of both output and individual income, pointing 
in this way to the existence of a correlation between these quantities. Further­
more, from the analysis of the temporal change of the parameters specifying 
the distribution, we find tha t these quantities do not necessarily correlate to 
each other. This means tha t different mechanisms are working in the distribu­
tion of the low-middle income range and tha t of the high income range. Since 
earnings from financial or other assets play an important role in the high in­
come section of the distribution, one possible origin of this behaviour might 
be the change of the asset price, which mainly affects the level of inequality 
at the very top of the income distribution and is likely to be responsible for 
the power law nature of high incomes. 
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S u m m a r y . Personal income distribution in the USA has a well-defined two-class 
structure. The majority of population (97-99%) belongs to the lower class charac­
terized by the exponential Boltzmann-Gibbs ("thermal") distribution, whereas the 
upper class (1-3% of population) has a Pareto power-law ("superthermal") distribu­
tion. By analyzing income data for 1983-2001, we show that the "thermal" part is 
stationary in time, save for a gradual increase of the effective temperature, whereas 
the "superthermal" tail swells and shrinks following the stock market. We discuss 
the concept of equilibrium inequality in a society, based on the principle of maximal 
entropy, and quantitatively show that it applies to the majority of population. 

Attempts to apply the methods of exact sciences, such as physics, to de­
scribe a society have a long history [1]. At the end of the 19th century, Italian 
physicist, engineer, economist, and sociologist Vilfredo Pareto suggested that 
income distribution in a society is described by a power law [2]. Modern data 
indeed confirm that the upper tail of income distribution follows the Pareto 
law [3, 4, 5, 6, 7]. However, the majority of population does not belong there, 
so characterization and understanding of their income distribution remains an 
open problem. Dragulescu and Yakovenko [8] proposed that the equilibrium 
distribution should follow an exponential law analogous to the Boltzmann-
Gibbs distribution of energy in statistical physics. The first factual evidence 
for the exponential distribution of income was found in Ref. [9]. Coexistence 
of the exponential and power-law parts of the distribution was recognized in 
Ref. [10]. However, these papers, as well as Ref. [11], studied the data only 
for a particular year. Here we analyze temporal evolution of the personal in­
come distribution in the USA during 1983-2001 [12]. We show that the US 
society has a well-defined two-class structure. The majority of population 
(97-99%) belongs to the lower class and has a very stable in time exponen­
tial ("thermal") distribution of income. The upper class (1-3% of population) 
has a power-law ("superthermal") distribution, whose parameters significantly 
change in time with the rise and fall of stock market. Using the principle of 
maximal entropy, we discuss the concept of equilibrium inequality in a soci-
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ety and quantitatively show that it applies to the bulk of population. Most 
of academic and government literature on income distribution and inequality 
[13, 14, 15, 16] does not attempt to fit the data by a simple formula. When 
fits are performed, usually the log-normal distribution [17] is used for the 
lower part of the distribution [5, 6, 7]. Only recently the exponential distribu­
tion started to be recognized in income studies [18, 19], and models showing 
formation of two classes started to appear [20, 21]. 

Let us introduce the probability density P(r), which gives the probability 
P(r) dr to have income in the interval (r, r + dr). The cumulative probability 
C(r) = J°° dr'P(r') is the probability to have income above r, C(0) = 1. 
By analogy with the Boltzmann-Gibbs distribution in statistical physics [8, 
9], we consider an exponential function P(r) oc exp(—r/T), where T is a 
parameter analogous to temperature. It is equal to the average income T = 
(r) = /0°° dr'r'P(r'), and we call it the "income temperature." When P(r) is 
exponential, C(r) oc exp(—r/T) is also exponential. Similarly, for the Pareto 
power law P(r) oc l/ra+1, C(r) oc \/ra is also a power law. 

We analyze the data [22] on personal income distribution compiled by 
the Internal Revenue Service (IRS) from the tax returns in the USA for the 
period 1983-2001 (presently the latest available year). The publicly available 
data are already preprocessed by the IRS into bins and effectively give the 
cumulative distribution function C(r) for certain values of r. First we make 
the plots of log C(r) vs. r (the log-linear plots) for each year. We find that the 
plots are straight lines for the lower 97-98% of population, thus confirming 
the exponential law. From the slopes of these straight lines, we determine 
the income temperatures T for each year. In Fig. 1, we plot C(r) and P(r) 
vs. r/T (income normalized to temperature) in the log-linear scale. In these 
coordinates, the data sets for different years collapse onto a single straight 
line. (In Fig. 1, the data lines for 1980s and 1990s are shown separately and 
offset vertically.) The columns of numbers in Fig. 1 list the values of the annual 
income temperature T for the corresponding years, which changes from 19 k$ 
in 1983 to 40 kS in 2001. The upper horizontal axis in Fig. 1 shows income r 
in k$ for 2001. 

In Fig. 2, we show the same data in the log-log scale for a wider range 
of income r, up to about 300T. Again we observe that the sets of points for 
different years collapse onto a single exponential curve for the lower part of the 
distribution, when plotted vs. r/T. However, above a certain income r* « 4T, 
the distribution function changes to a power law, as illustrated by the straight 
lines in the log-log scale of Fig. 2. Thus we observe that income distribution 
in the USA has a well-defined two-class structure. The lower class (the great 
majority of population) is characterized by the exponential, Boltzmann-Gibbs 
distribution, whereas the upper class (the top few percent of population) has 
the power-law, Pareto distribution. The intersection point of the exponential 
and power-law curves determines the income r* separating the two classes. 
The collapse of data points for different years in the lower, exponential part 
of the distribution in Figs. 1 and 2 shows that this part is very stable in 
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Adjusted gross income in 2001 dollars, k$ 

0 1 2 3 4 5 6 
Rescaled adjusted gross income 

Fig. 1. Cumulative probability C(r) and probability density P(r) plotted in the 
log-linear scale vs. r/T, the annual personal income r normalized by the average 
income T in the exponential part of the distribution. The IRS data points are for 
1983-2001, and the columns of numbers give the values of T for the corresponding 
years. 

t ime and, essentially, does not change at all for the last 20 years, save for a 
gradual increase of temperature T in nominal dollars. We conclude tha t the 
majority of population is in statistical equilibrium, analogous to the thermal 
equilibrium in physics. On the other hand, the points in the upper, power-law 
part of the distribution in Fig. 2 do not collapse onto a single line. This par t 
significantly changes from year to year, so it is out of statistical equilibrium. 
A similar two-part s t ructure in the energy distribution is often observed in 
physics, where the lower par t of the distribution is called "thermal" and the 
upper par t "superthermal" [23]. 

Temporal evolution of the parameters T and r* is shown in Fig. 3.A. 
We observe tha t the average income T (in nominal dollars) was increasing 
gradually, almost linearly in time, and doubled in the last twenty years. In 
Fig. 3.A, we also show the inflation coefficient (the consumer price index CPI 
from Ref. [24]) compounded on the average income of 1983. For the twenty 
years, the inflation factor is about 1.7, thus most, if not all, of the nominal 
increase in T is inflation. Also shown in Fig. 3.A is the nominal gross domestic 
product (GDP) per capita [24], which increases in t ime similarly to T and CPI. 
The ratio r*jT varies between 4.8 and 3.2 in Fig. 3.A. 
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Fig. 2. Log-log plots of the cumulative probability C(r) vs. r/T for a wider range 
of income r. 

In Fig. 3.B, we show how the parameters of the Pareto tail C(r) oc \jra 

change in time. Curve (a) shows that the power-law index a varies between 
1.8 and 1.4, so the power law is not universal. Because a power law decays 
with r more slowly than an exponential function, the upper tail contains 
more income than we would expect for a thermal distribution, hence we call 
the tail "superthermal" [23]. The total excessive income in the upper tail can 
be determined in two ways: as the integral f™ dr'r'P(r') of the power-law 
distribution, or as the difference between the total income in the system and 
the income in the exponential part. Curves (c) and (b) in Fig. 3.B show the 
excessive income in the upper tail, as a fraction / of the total income in 
the system, determined by these two methods, which agree with each other 
reasonably well. We observe that / increased by the factor of 5 between 1983 
and 2000, from 4% to 20%, but decreased in 2001 after the crash of the US 
stock market. For comparison, curve (e) in Fig. 3.B shows the stock market 
index S&P 500 divided by inflation. It also increased by the factor of 5.5 
between 1983 and 1999, and then dropped after the stock market crash. We 
conclude that the swelling and shrinking of the upper income tail is correlated 
with the rise and fall of the stock market. Similar results were found for the 
upper income tail in Japan in Ref. [4]. Curve (d) in Fig. 3.B shows the fraction 
of population in the upper tail. It increased from 1% in 1983 to 3% in 1999, 
but then decreased after the stock market crash. Notice, however, that the 
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stock market dynamics had a much weaker effect on the average income T of 
the lower, "thermal" part of income distribution shown in Fig. 3.A. 

1985 1990 1995 2000 

1985 1990 1995 2000 n 
Year 1985 1990 1995 2000 

Fig. 3. Left panel A: Temporal evolution of various parameters characterizing in­
come distribution. Right panel B: (a) The Pareto index a of the power-law tail 
C(r) oc l/ra. (b) The excessive income in the Pareto tail, as a fraction / of the total 
income in the system, obtained as the difference between the total income and the 
income in the exponential part of the distribution, (c) The tail income fraction / , 
obtained by integrating the Pareto power law of the tail, (d) The fraction of popu­
lation belonging to the Pareto tail, (e) The stock-market index S&P 500 divided by 
the inflation coefficient and normalized to 1 in 1983. 

For discussion of income inequality, the standard practice is to con­
struct the so-called Lorenz curve [13]. It is defined parametrically in terms 
of the two coordinates x(r) and y(r) depending on the parameter r, which 
changes from 0 to oo. The horizontal coordinate x(r) = J^dr'P(r') is 
the fraction of population with income below r. The vertical coordinate 
y(r) = ^dr'r'Pir')/ f™dr'r'P(r') is the total income of this population, 
as a fraction of the total income in the system. Fig. 4 shows the data points 
for the Lorenz curves in 1983 and 2000, as computed by the IRS [16]. For 
a purely exponential distribution of income P(r) ex exp(—r/T), the formula 
y = x + (1 — x) ln(l — x) for the Lorenz curve was derived in Ref. [9]. This for­
mula describes income distribution reasonably well in the first approximation 
[9], but visible deviations exist. These deviations can be corrected by taking 
into account that the total income in the system is higher than the income in 
the exponential part, because of the extra income in the Pareto tail. Correct­
ing for this difference in the normalization of y, we find a modified expression 
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[11] for the Lorenz curve 

y = (1 - f)[x + (1 - x) ln(l - x)\ + }6{x - 1), (1) 

where / is the fraction of the total income contained in the Pareto tail, and 
0{x — 1) is the step function equal to 0 for x < 1 and 1 for x > 1. The Lorenz 
curve (1) experiences a vertical jump of the height / at x = 1, which reflects 
the fact that, although the fraction of population in the Pareto tail is very 
small, their fraction / of the total income is significant. It does not matter for 
Eq. (1) whether the extra income in the upper tail is described by a power 
law or another slowly decreasing function P(r). The Lorenz curves, calculated 
using Eq. (1) with the values of / from Fig. 3.B, fit the IRS data points very 
well in Fig. 4. 

US, IRS data for 1983 and 2000 

0 10 20 30 40 50 60 70 80 90 100% 
Cumulative percent of tax returns 

Fig. 4. Main panel: Lorenz plots for income distribution in 1983 and 2000. The 
data points are from the IRS [16], and the theoretical curves represent Eq. (1) with 
/ from Fig. 3. Inset: The closed circles are the IRS data [16] for the Gini coefficient 
G, and the open circles show the theoretical formula G = (1 + / ) / 2 . 

The deviation of the Lorenz curve from the diagonal in Fig. 4 is a certain 
measure of income inequality. Indeed, if everybody had the same income, the 
Lorenz curve would be the diagonal, because the fraction of income would be 
proportional to the fraction of population. The standard measure of income 
inequality is the so-called Gini coefficient 0 < G < 1, which is defined as 
the area between the Lorenz curve and the diagonal, divided by the area 
of the triangle beneath the diagonal [13]. It was calculated in Ref. [9] that 
G = 1/2 for a purely exponential distribution. Temporal evolution of the Gini 
coefficient, as determined by the IRS [16], is shown in the inset of Fig. 4. In the 
first approximation, G is quite close to the theoretically calculated value 1/2. 
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The agreement can be improved by taking into account the Pareto tail, which 
gives G = (1 + / ) / 2 for Eq. (1). The inset in Fig. 4 shows that this formula 
very well fits the IRS data for the 1990s with the values of / taken from Fig. 
3.B. We observe that income inequality was increasing for the last 20 years, 
because of swelling of the Pareto tail, but started to decrease in 2001 after 
the stock market crash. The deviation of G below 1/2 in the 1980s cannot 
be captured by our formula. The data points for the Lorenz curve in 1983 lie 
slightly above the theoretical curve in Fig. 4, which accounts for G < 1/2. 

Thus far we discussed the distribution of individual income. An inter­
esting related question is the distribution of family income P2(r). If both 
spouses are earners, and their incomes are distributed exponentially as Pi (r) <x 
exp(—r/T), then 

rr 

P2(r) = / dr 'Pi(r ' )Pi(r - r') oc r exp( - r /T) . (2) 
Jo 

Eq. (2) is in a good agreement with the family income distribution data from 
the US Census Bureau [9]. In Eq. (2), we assumed that incomes of spouses are 
uncorrelated. This assumption was verified by comparison with the data in 
Ref. [11]. The Gini coefficient for family income distribution (2) was found to 
be G = 3/8 = 37.5% [9], in agreement with the data. Moreover, the calculated 
value 37.5% is close to the average G for the developed capitalist countries of 
North America and Western Europe, as determined by the World Bank [11]. 

On the basis of the analysis presented above, we propose a concept of the 
equilibrium inequality in a society, characterized by G = 1/2 for individual 
income and G = 3/8 for family income. It is a consequence of the exponential 
Boltzmann-Gibbs distribution in thermal equilibrium, which maximizes the 
entropy S = J dr P(r) In P(r) of a distribution P{r) under the constraint 
of the conservation law (r) = /0°° dr P(r) r = const. Thus, any deviation 
of income distribution from the exponential one, to either less inequality or 
more inequality, reduces entropy and is not favorable by the second law of 
thermodynamics. Such deviations may be possible only due to non-equilibrium 
effects. The presented data show that the great majority of the US population 
is in thermal equilibrium. 

Finally, we briefly discuss how the two-class structure of income distribu­
tion can be rationalized on the basis of a kinetic approach, which deals with 
temporal evolution of the probability distribution P(r,t). Let us consider a 
diffusion model, where income r changes by Ar over a period of time At. Then, 
temporal evolution of P(r, t) is described by the Fokker-Planck equation [25] 

dP - d (AP+d(BP\\ A- {Ar) P. {{Ar?) (V 
-dt-dr-{AP+dr:{BP))> A-~^r> B~^AT- (3) 

For the lower part of the distribution, it is reasonable to assume that Ar is 
independent of r. In this case, the coefficients A and B are constants. Then, 
the stationary solution dtP = 0 of Eq. (3) gives the exponential distribution [8] 
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P(r) oc exp(—r/T) with T = B/A. Notice that a meaningful solution requires 
that A > 0, i.e. (Ar) < 0 in Eq. (3). On the other hand, for the upper tail 
of income distribution, it is reasonable to expect that Ar oc r (the Gibrat 
law [17]), so A = ar and B = br2. Then, the stationary solution dtP = 0 of 
Eq. (3) gives the power-law distribution P(r) oc l / r a + 1 with a = 1 + a/b. 
The former process is additive diffusion, where income changes by certain 
amounts, whereas the latter process is multiplicative diffusion, where income 
changes by certain percentages. The lower class income comes from wages 
and salaries, so the additive process is appropriate, whereas the upper class 
income comes from investments, capital gains, etc., where the multiplicative 
process is applicable. Ref. [4] quantitatively studied income kinetics using 
tax data for the upper class in Japan and found that it is indeed governed 
by a multiplicative process. The data on income mobility in the USA are 
not readily available publicly, but are accessible to the Statistics of Income 
Research Division of the IRS. Such data would allow to verify the conjectures 
about income kinetics. 

The exponential probability distribution P(r) oc exp(—r/T) is a mono­
tonous function of r with the most probable income r = 0. The probability 
densities shown in Fig. 1 agree reasonably well with this simple exponential 
law. However, a number of other studies found a nonmonotonous P(r) with 
a maximum at r ^ 0 and -P(O) = 0. These data were fitted by the log-normal 
[5, 6, 7] or the gamma distribution [19, 20, 26]. The origin of the discrepancy 
in the low-income data between our work and other papers is not completely 
clear at this moment. The following factors may possibly play a role. First, 
one should be careful to distinguish between personal income and group in­
come, such as family and household income. As Eq. (2) shows, the later is 
given by the gamma distribution even when the personal income distribution 
is exponential. Very often statistical data are given for households and mix 
individual and group income distributions (see more discussion in Ref. [9]). 
Second, the data from tax agencies and census bureaus may differ. The for­
mer data are obtained from tax declarations of all taxable population, whereas 
the later data from questionnaire surveys of a limited sample of population. 
These two methodologies may produce different results, particularly for low 
incomes. Third, it is necessary to distinguish between distributions of money 
[8, 26, 27], wealth [20, 28], and income. They are, presumably, closely related, 
but may be different in some respects. Fourth, the low-income probability 
density may be different in the USA and in other countries because of differ­
ent social security policies. All these questions require careful investigation in 
future work. We can only say that the data sets analyzed in this paper and 
our previous papers are well described by a simple exponential function for 
the whole lower class. This does not exclude a possibility that other functions 
can also fit the data [29]. However, the exponential law has only one fitting 
parameter T, whereas log-normal, gamma, and other distributions have two 
or more fitting parameters, so they are less parsimonious. 
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Summary. By employing exhaustive lists of personal income and firms, we show 
that the upper-tail of the distribution of income and firm size has power-law (Pareto-
Zipf law), and that in this region their growth rate is independent of the initial value 
of income or size (Gibrat's law of proportionate effect). In addition, detailed balance 
holds in the power-law region; the empirical probability for an individual (a firm) 
to change its income (size) from a value to another is statistically the same as 
that for its reverse process in the ensemble. We prove that Pareto-Zipf law follows 
from Gibrat's law under the condition of detailed balance. We also show that the 
distribution of growth rate possesses a non-trivial relation between the positive and 
negative sides of the distribution, through the value of Pareto index, as is confirmed 
empirically. Furthermore, we also show that these properties break down in the non 
power-law region of distribution, and can possibly do so temporally according to 
drastic change in financial or real economy. 

Key words, personal income, firm size, Pareto-Zipf distribution, Gibrat law, 
det ailed- balance 

1 Introduction 

Flow and stock are fundamental concepts in economics. They refer to a 
certain economic quantity over a given period of time and its accumulation at 
a point in time respectively. Personal income and wealth can be regarded as 
the flow and stock of each household in a giant dynamical network of people, 
which is open to various economic activities. The same is true for firms. 

High-income distribution follows a power-law: the probability P>(x) that 
a given individual has income equal to, or greater than x, obeys 

P>(X)KX-», (1) 

with a constant /J, called the Pareto index. This phenomenon, now known as 
Pareto law, has been observed [5, 7, 2, 17, 8, 9] in different countries (see 
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Fig. 1 (a) for Japanese data). On the other hand, low and middle-income 
distribution has been considered to obey log-normal distribution, Boltzman 
distribution or other functional form (see Clementi and Gallegati, Souma and 
Nirei, Willis, Yakovenko in this workshop). 

A similar distribution has also been observed for firm size [4] (see Fig. 1 (b) 
for european data), n is typically around 2 for personal income and around 1 
for firm size distribution1. The latter is often refered to as Zipf law. We call 
the distribution (1) Pareto-Zipf law in this paper. 

Income (in thousand yen) 

Fig. 1. (a) Cumulative probability distribution of Japanese personal income in the 
year 2000. The line is simply a guide for eyes with \i = 1.96 in (1). Note that the 
dots are income tax data of about 80,000 taxpayers. (See [17][9] for the details), 
(b) Cumulative probability distribution of firm size (total-assets) in France in the 
year 2001. Data consist of 669620 firms, which are exhaustive in the sense that firms 
exceeding a threshold are all listed. The line corresponds to p = 0.84 (See also [11]). 

Understanding the origin of the law has importance in economics because 
of its linkage with consumption, business cycles, and other macro-economic 
activities. Also note that even if the range for which (1) is valid is a few 
percent in the upper tail of the distribution, it is often observed that such 
a small fraction of individuals (firms) occupies a large amount of total sum 
of income (size). Small idiosyncratic shock can make a considerable macro-
economic impact. 

Many researchers, recently including those in non-equilibrium statistical 
physics, have proposed models for power-law [7, 14, 15, 13, 6, 16]. Actually 
many kinds of proposed scenarios have predicted a power-law distribution as 
a static snapshot. However, in order to test models, it is highly desirable to 
have direct observation of the dynamical process of growth and fluctuations 
of personal income (or firm size). This is what we address in this paper. 

1 It would be interesting to note that debt distribution of bankrupted firms obeys 
Zipf law in accordance to firm size distribution [12]. 
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2 Growth and Fluctuations 

For the study of personal income, we employ Japanese income-tax data, 
which is an exhaustive list of all taxpayers who paid 10 million yen (approx. 10 
thousand euros/dollars) or more in a year. It is considered that the taxpayers 
cover most of the power-law region in Fig. 1 (a). Distribution of personal 
income has been studied by using the data [2, 17]. Furthermore, growth and 
fluctuations of each individual can be examined [9]. In fact, we examined a 
relatively stable period in Japanese economy, namely 1997 and 1998. 

<$* 

104 

(b) 

104 10 106 104 

Income tax x^ (in thousand yen) Income tax x^ (in thousand yen) 

Fig. 2. (a) Scatter-plot of all individuals whose income tax exceeds 10 million yen 
in both 1997 and 1998. These points (52,902) were identified from the complete list 
of high-income taxpayers in 1997 and 1998, with income taxes x\ and X2 in each 
year, (b) The same as (a) with vertical axis for r = log10(x2/xi). The segments are 
bins fora^ £[io4+°-2(»-1> il0

4 + 0-2 '1] (n = !,-•• ,5). 

In the scatter plot in Fig. 2 (a) each point represents a person who is high-
income taxpayers in both of the years, 1997 and 1998. The plot represents the 
joint distribution P\2{x\,X2)- The plot is consistent with detailed-balance in 
the sense that the joint distribution is invariant under the exchange of values 
#i and x2, i.e. Pi2(xi,x2) = P\2(x2,Xi)2. Detailed-balance means that the 
empirical probability for an individual to change its income from a value to 
another is statistically the same as that for its reverse process in the ensemble. 

Our concern is the annual change of individual income-tax. Growth rate 
is defined by R = x^jxx. It is customary to use its logarithm, r = log10 R. We 
examine the probability density for the growth rate P{r\x\) on the condition 
that the income x\ in the initial year is fixed (see Fig. 2 (b)). The result 
shows that the distribution for growth rate r is statistically independent of 
the value of x\, as shown in Fig. 3. This is known as law of proportionate 
effect or Gibrat's law (see [18]). 

2 Actually we can make a direct statistical test for the symmetry in the two argu­
ments of Pi2(xi, X2). This can be done by two-dimensional Kolmogorov-Smirnov 
test, which is not widely known but has been developed by astrophysicists to test 
uniform distribution of galaxies appearing in the sky (see references in [11]) . 
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The phenomenological properties (A) detailed-balance, (B) Pareto-Zipf 
law, and (C) Gibrat's law are observed for firm size as well as for personal 
income. See [11] for such a study of large firms in European countries. 

-1 0 1 
r=log10(x2/x1) 

Fig. 3. Probability density P(r\xi) of growth rate r = log10(x2/xi) from 1997 to 
1998. Note that due to the limit x± > 104 (in thousand yen), the data for large 
negative growth, r < 4 — log10 xi, are not available. Different bins of initial income-
tax with equal size in logarithmic scale were taken as xi £ [104+0-2(-n^1\ io4 + 0-2 n] 
(n = 1, • • • , 5) to plot probability densities separately for each such bin. The solid 
line in the portion of positive growth (r > 0) is an analytic fit. The dashed line 
(r < 0) on the other side is calculated by the relation in (7). 

The probability distribution for the growth rate, such as the one observed 
in Fig. 3, contains information of dynamics. One can notice that it has a 
skewed and heavy-tailed shape with a peak at R = 1. How is such a functional 
form consistent with the detailed-balance shown in Fig. 2? And how these 
phenomenological facts are consistent with Pareto's law in Fig. 1? Answers to 
these questions are given in the next section. 

3 Pareto-Zipf and Gibrat under detailed balance 

Let x be a personal income or a firm size, and let its values at two successive 
points in time (i.e., two consecutive years) be denoted by Xi and x2. We denote 
the joint probability distribution for the variables x\ and x2 by Pi2(xi, x2)• We 
define conditional probability, PIR(XI,X2/XI) = xiPi2(xi,x2), where Pi(xi) 
is marginal, i.e., Pi(xi) = J^° Piu(xi,R)dR = f™ Pi2(xi,x2)dx2. 

The phenomenological properties can be summarized as follows. 

(A) Detailed Balance: 
Py2{x1,X2)=Pi2(x2,X1). (2) 
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(B) Pareto-Zipf's law: 
PitaOocar-"-1 , (3) 

for x —> oo with /x > 0. 
(C) Gibrat's law: The conditional probability Q(R\x) is independent of x: 

Q{R\x)=Q{R). (4) 

We note here that this holds only for x larger than a certain value. All 
the arguments below is restricted in this region. 

Now we prove that the properties (A) and (C) lead to (B). Under the 
change of variables from (xi,£2) to (x\,R), sincePi2(2;i,a;2) = (1/XI)PIR(XI,R), 

one can easily see that Pm(xi,R) = (1/R)PIR(RXI,R~1). It immediately 
follows from the definition of Q(R \ x) that 

Q{R-l\x2) = nPi(xi) , . 
Q(R\Xl)

 UP1{x2y
 w 

This equation is thus equivalent to detailed-balance condition. 
If Gibrat's law holds, Q(R | a;) = Q(R), then 

Pi(xi) = I QJR-1) ,-, 
P1{x2) R Q{R) ' l } 

Note that while the left-hand side of (6) is a function of x\ and x2 = Rxi, 
the right-hand side is a function of ratio R only. It can be easily shown that 
the equality is satisfied by and only by a power-law function (3)3. 

As a bonus, by inserting (3) into (6), we have a non-trivial relation: 

Q(R) = R-^QiR-1), (7) 

which relates the positive and negative growth rates, R > 1 and R < 1, 
through the Pareto index /x. 

One can also show that Q(R) has a cusp at R = 1; Q'(R) is discontinuous 
at R = 1. Explicitly, [Q+I(l] + Q _ ' ( l ) ] /Q(l ) = -/x - 2, where we denote 
the right and left-derivative of Q(R) at R = 1 by the signs + and — in the 
superscript, respectively. This relation states that the shape of cusp in Q(R) 
at R = 1 is determined by the Pareto index /x. 

Summarizing this section, we have proved that under the condition of 
detailed balance (A), Gibrat's law (C) implies Pareto-Zipf law (B). The op­
posite (B) —• (C) is not true. See [11] for several kinematic relations, and also 
[9, 3, 10] for the validity of our findings in personal income and firms data. 

3 Expand (6) with respect to R around R = 1 and to equate the first-order term 
to zero, which gives an ordinary differential equation for P\{x). 
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4 Temporal breakdown of the laws 

In economically unstable period such as "bubble" and "crash", income 
distribution deviates from power-law as shown in Fig. 4 for Japanese case. 
The year 1991 coincides with the peak of speculative bubble of land price. 
One can observe that the 1991 data cannot be fitted by Pareto's law in the 
entire range of high income, while one year later the distribution went back 
to power-law. 

(b) 
A 2.2 | , , , , , , ^-| 
X . • ' 

1 2.0 -

1986 1988 1990 1992 1994 1996 1998 2000 

Year 

104 105 

Income tax (in thousand yen) 

Fig. 4. (a) Cumulative probability distributions of income tax in 1991 and 1992. 
The fitted line is for /j, = 2.057. Note that the distribution does not obey power-law 
in 1991. (b) Annual change of Pareto index p from the year 1987 to 2000. The abrupt 
change from 1991 to 1992 corresponds to abnormal rise and collapse of risky assets 
prices. (See [9] for estimation). 

Sample survey on income earners provides information about income-
sources. Picking those persons with total income exceeding 50 million yen 
(who are necessarily included in the exhaustive list described so far), it can 
be observed that in terms of the numbers chief income-sources are employment 
income, rental of real estate, and capital gains from lands and stock shares 
(Fig. 5 (a)), and that in terms of the amounts contribution comes largely from 
capital gains from lands and stocks (Fig. 5 (b)). It is expected that asymmetric 
behavior of price fluctuations in those risky assets and the accompanying in­
crease in high-income persons cause the breakdown of detailed-balance and/or 
the statistical independence, which necessarily invalidates Pareto's law. 

This can be verified in Fig. 6 showing the breakdown of Gibrat's law. 
By statistical test [11], the null hypothesis Pi2(%i,X2) = P\2{%2,%\) can be 
rejected for the pair of 1991 and 1992, but cannot be rejected for the pairs of 
1992 and 1993, and of 1997 anf 1998 with significance level 95%. 
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Fig. 5. See the list of income types below. Left panels: 1991. Right panels: 1992. (a) 
Fraction of the numbers for income earners with total income exceeding 50 million 
yen with a particular income type. A person can have more than a single income type, 
(b) Fraction of the amounts in average over all the earners. The numerals are la: 
business income, lb: firm income (agricultural), lc: other operating income (lawyers, 
doctor, entertainers, etc.), 2: interest income, 3: dividends, 4: rental income (mainly 
of real estate), 5: wages/salaries, 6: comprehensive capital gains, 7: sporadic income, 
8: miscellaneous income (including public pension, etc.), 9: forestry income, 10: 
retirement income, 11: short-term separate capital gains (selling real estate possessed 
in 5 years), 12: long-term separate capital gains (selling real estate possessed over 5 
years), 13: capital gains from stocks, etc. 
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Fig. 6. (a) Probability density P(r\xi) of growth rate r = log10(a;2/a;i) from 1991 
to 1992. It is obvious that P(r\x\) depends on xi , thus breaking Gibrat's law. (b) 
The same plot for the successive years of 1997 and 1998, for which Gibrat's law 
holds. 
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5 Small and midsize firms 

31 

According to survey by statistics bureau, the number of Japanese com­
panies is approximately 1.6 million in the year 2001. Credit Risk Database 
(CRD) is a database of about one million Japanese small-business firms. Small-
business firms have qualitatively different characteristics of firm size growth 
from those for large firms [1]. The CRD covers the non-power-law regime and 
the transition region to Pareto-Zipf regime. 

Fig. 7 (a)-(b) shows the breakdown of Gibrat's law by depicting the prob­
ability density function P(r\x\). The probability density has explicit depen­
dence on Xi showing the breakdown of Gibrat's law. In order to quantify the 
dependence, we examine how the standard deviation of r for each group of 
firms, whose size is x\ ~ dx\, scales as x\ becomes larger. Let the standard 
deviation of r be denoted by a. Fig. 7 (c)-(d) shows that a scales as a func­
tion of Xi (a (X Xi), but asymptotically approaches non-scaling regime (a ~ 
const). The breakdown of Gibrat's law in the non-power-law regime and its 
validity in the power-law regime are consistent with what we showed in [11]. 
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Fig. 7. Upper panels: Probability density function P(r\xi) for logarithmic growth-
rate r = log10(i?). For conditioning xi, we use different bins of initial firm size with 
equal interval in logarithmic scale as an £ [io*+0-^(.n-i) ^ 104+o.2Sn] („ = i , . . . , 8 ) f0r 

total-assets (a) and total-debts (b) (both in thousand yen). Lower panels: Standard 
deviation a of r as a function of x\ for total assets (c) and total debts (d). 
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6 Conclusion 

We have shown the following stylized facts concerning distribution of per­
sonal income and firm size, their growth and fluctuations by studying exhaus­
tive lists of high-income persons and firm sizes in Japan and in Europe. 

• In power-law regime, detailed-balance and Gibrat's law hold. 
• Under the condition of detailed-balance, Gibrat's law implies Pareto's law 

(but not vice versa). 
• Growth-rate distribution has a non-trivial relation between its positive and 

negative growth sides through Pareto index. The distribution must have a 
cusp whose shape is related to the value of Pareto index. 

• Power-law, detailed-balance and Gibrat's law break down according to 
abrupt change in risky asset market, such as Japanese "bubble" collapse 
of real estate and stock. 

• For firm size in non-power-law regime corresponding to small and mid­
size firms, Gibrat's law does not hold. Instead, there is a scaling relation 
of variance in the growth-rates of those firms with respect to firm size, 
which asymptotically approaches to non-scaling region as firm size comes 
to power-law regime. 

These stylized facts would serve to test models that explain personal in­
come and firm size distributions. 
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S u m m a r y . Personal income distributions in Japan are analyzed empirically and a 
simple stochastic model of the income process is proposed. Based on empirical facts, 
we propose a minimal two-factor model. Our model of personal income consists of an 
asset accumulation process and a wage process. We show that these simple processes 
can successfully reproduce the empirical distribution of income. In particular, the 
model can reproduce the particular transition of the distribution shape from the 
middle part to the tail part. This model also allows us to derive the tail exponent 
of the distribution analytically. 

Key words : Personal income, Power law, Stochastic model 

1 Introduction 

Many economists and physicists have studied wealth and income. About 
one hundred years ago, Pareto found a power law distribution of wealth and 
income [1]. However, afterwards, Gibrat clarified that the power law is ap­
plicable to only the high wealth and income range, and the remaining part 
follows a lognormal distribution [7]. This characteristic of wealth and income 
was later rediscovered [2] [10] [16] [17]. Today, it is generally believed that high 
wealth and income follow a power law distribution. However, the remaining 
range of the distribution has not been settled. Recently an exponential distri­
bution [5] and a Boltzmann distribution [20] has been proposed. 

To explain these characteristics of wealth and income, some mathematical 
models have been proposed. One of them is based on a stochastic multiplica­
tive process (SMP). For example, the SMP with lower bound [9], the SMP 
with additive noise [15] [19], the SMP with wealth exchange [4], and the gen­
eralized Lotka-Voltera model [3] [14]. 

This paper is organized as follows. In Sec. 2, we empirically study the 
personal income distribution in Japan. In Sec. 3, we propose a two-factor 
stochastic model to explain income distribution. The last section is devoted 
to a summary and discussion. 
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Fig. 1. A log-log plot of the distribution of employment income 1999 (left). A log-
log plot of distributions in 1999 of self-assessed income, sum of employment income 
and self-assessed income, income tax data for top taxpayers, adjusted income tax 
data, and total income (right). 

2 Empirical study of the personal income distribution 

In this article we use three data sets. We call them employment income 
data, self-assessed income data, and income tax data for top taxpayers. The 
employment income data is coarsely tabulated data for the distribution of 
wages in the private sector. This is reported by the National Tax Agency of 
Japan (NTAJ) [11]. This is composed of two kinds of data. One is for employ­
ment income earners who worked for less than a year, and we can acquire the 
data since 1951. For example, a log-log plot of the rank-size distribution of 
the data in 1999 is shown by the open circles in the left panel of Fig. 1. The 
other is for employment income earners who worked throughout the year, and 
we can acquire the data since 1950. For example, the distribution in 1999 is 
shown by the open squares in the left panel of Fig. 1. In this figure the crosses 
are the sum of these two data, and are almost the same as the distribution of 
employment income earners who worked throughout the year. 

The self-assessed income data is also reported by NTAJ. This is also 
coarsely tabulated data, and we can acquire this since 1887. The income tax 
law was changed many times, and so the characteristics of this data also 
changed many times. However, this data consistently contains high income 
earners. In Japan, in recent years, persons who have some income source, who 
earned more than 20 million yen, and who are not employees must declare 
their income. For example, the distribution in 1999 is shown by the open tri­
angles in the right panel of Fig. 1. In this figure the filled circles are the sum 
of the employment income data and the self-assessed income data. However, 
we use only the self-assessed income data in the range greater than 20 mil-
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lion yen. This is because persons who earned more than 20 million yen must 
declare their income, even if they are employees and have only one income 
source. This figure shows that the distribution of middle and low income is 
almost the same as that of the employment income. This means that the main 
income source of middle and low income earners is wages. 

In Japan, if the amount of one's income tax exceeds 10 million yen, the 
individual's name and the amount of income tax are made public by each 
tax office. Some data companies collect this and produce income tax data 
for top taxpayers. We obtained this data from 1987 to 2000. For example, the 
distribution in 1999 is shown by the open diamonds in the right panel of Fig. 1. 
To understand the whole image of distribution, we must convert income tax 
to income. We know from the self-assessed income data that the income of the 
40,623th person is 50 million yen,. On the other hand we also know from the 
income tax data for top taxpayers that the income tax of the 40,623th person 
is 13.984 million yen Hence, if we assume a linear relation between income and 
income tax, we can convert income tax to income by multiplying 3.5755 by 
the income tax [1]. The dots in Fig. 1 represent the distribution of converted 
income tax. This clearly shows the power law distribution in the high income 
range, and the particular transition of the distribution shape from the middle 
part to the tail part. 

2.1 Income sources 

Understanding income sources is important for the modeling of the in­
come process. As we saw above, the main income source of middle and low 
income earners is wages. We can also see the income sources of high income 
earners from the report of NTAJ. The top panel of Fig. 2 shows a number of 
high income earners who earned income greater than 50 million yen in each 
year from 2000 to 2003. In this figure income sources are divided into the 14 
categories of business income, farm income, interest income, dividends, rental 
income, wages & salaries, comprehensive capital gains, sporadic income, mis­
cellaneous income, forestry income, retirement income, short-term separate 
capital gains, long-term separate capital gains, and capital gains of stocks. 
The bottom panel of this figure shows the amount of income for each in­
come source. These figures show that the main income sources of high income 
earners are wages and capital gains. 

2.2 Change of distribution 

The rank-size distribution of all acquired data is shown in the top panel of 
Fig. 3. The gap found in this figure reflects the change of the income tax law. 
We fit distributions in the high income range by the power law distribution, 
for which a probability density function is given by 

p(x) =AX-(-a-1\ 
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Fig. 2. Income sources of high income earners from 2000 to 2003. The top panel 
represents the number of high income earners , and the bottom panel represents the 
amount of income. In both panels, A: business income, B: farm income, C: inter­
est income, D: dividends, E: rental income, F: wages & salaries, G: comprehensive 
capital gains, H: sporadic income, I: miscellaneous income, J: forestry income, K: re­
tirement income, L: short-term separate capital gains, M: long-term separate capital 
gains, and N: capital gains of stocks. 

where A is a normalization factor. Here a is called the Pareto index. The 
small a corresponds to the unequal distribution. The change of a is shown by 
the open circles in the bottom panel of Fig. 3. The mean value of the Pareto 
index is a = 2, and a fluctuates around it. 

It is recognized that the period of modern economic growth in Japan is 
from the 1910s to the 1960s. It has been reported that the gross behavior of 
the Gini coefficient in this period looks like an inverted U-shape [18]. This 
behavior of the Gini coefficient is known as Kuznets's inverted U-shaped rela­
tion between income inequality and economic growth [8]. This postulates that 
in the early stages of modern economic growth both a country's economic 
growth and its income inequality rises, and the Gini coefficient becomes large. 
For developed countries income inequality shows a tendency to narrow, and 
the Gini coefficient becomes small. Figure. 3 shows that the gross behavior of 
the Pareto index from the 1910s to the 1960s is almost the inverse of that of 
the Gini coefficient, i.e., U-shaped. This means that our analysis of the Pareto 
index also supports the validity of Kuznets's inverted U-shaped relation. 

We assume that the change of the Pareto index in the 1970s is respon­
sible for the slowdown in the Japanese economic growth and the real estate 
boom. In Fig. 3 we can also see that a decreases toward the year 1990 and 
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Fig. 3. A change of the personal income distribution (top) and that of the Pareto 
index and Gibrat index (bottom). 

increases after 1990, i.e., V-shaped relation. In Japan, the year 1990 was the 
peak of the asset-inflation economic bubble. Hence the Pareto index decreases 
toward the peak of the bubble economy, and it increases after the burst of the 
economic bubble. The correlation between the Pareto index and risk assets is 
also clarified in Ref. [16]. 

We fit distributions in the low and middle income range by log-normal 
distribution, for which the probability density function is defined by 

p(x) 
1 

cV2 :exp 
na* 

log2 (x/x0) 
2a2 

where XQ is mean value and a2 is variance. Sometimes (5 /2a2 is called 
the Gibrat index. Since the large variance means the global distribution of the 
income, the small /3 corresponds to unequal distribution. The change of fi is 
shown by the crosses in the bottom panel of Fig. 3. This figure shows that a 
and /? correlate with each other around the years 1960 and 1980. However, they 
have no correlation in the beginning of the 1970s and after 1985. Especially 
after 1985, (3 stays almost the same value. This means that the variance of the 
low and middle income distribution does not change. We assume that capital 
gains cause different behaviors of a and /3, and a is more sensitive to capital 
gains than j3. 
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Income Normalized by Average 

Fig. 4. A log-log plot of the cumulative distributions of normalized income from 
1987 to 2000 (left) and a semi-log plot of them (right). 

The top panel of Fig. 3 shows that the distribution moves to the right. 
This motivates us to normalize distributions by quantities that characterize 
the economic growth. Though many candidates exist, we simply normalize 
distributions by the average income. The left panel of Fig. 4 is a log-log plot 
of the cumulative distributions of normalized income from 1987 to 2000, and 
the right panel is a semi-log plot of them. These figures show that distri­
butions almost become the same, except in the high income range. Though 
distributions in the high income range almost become the same, distributions 
of some years apparently deviate from the stational distribution. In addition 
the power law distribution is not applicable to such a case. This behavior 
happens in an asset-inflation economic bubble [6]. 

3 Modeling of personal income distribution 

The empirical facts found in the previous section are as follows. 

(i) The distribution of high income earners follows the power law distribution, 
and the exponent, Pareto index, fluctuates around a = 2. 

(ii) The main income sources of high income earners are wages and capital 
gains. 

(iii) Excluding high income earners, the main income source is wages. 
(iv) The distribution normalized by the average income is regarded as the 

stational distribution. 

Hence, it is reasonable to regard income as the sum of wages and capital 
gains. However, to model capital gains, we must model the asset accumulation 
process. In the following we explain an outline of our model. Details of our 
model are found in Ref. [12]. 
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3.1 Wage process 

We denote the wages of the i-th person at time t as Wi(t), where i = 1 ~ N. 
We assume that the wage process is given by 

w-(t + l) = I UWi^ + se» (*)">(*) i f uwi(t) + sei(t)w(t) > w(t), ,^ 
\ w ( i ) otherwise, 

where u is the trend growth of wage, and reflects an automatic growth in 
nominal wage. In this article we use u = 1.0422. This is an average inflation 
rate for the period from 1961 to 1999. In Eq. (1), a(t) follows a normal 
distribution with mean 0 and variance 1, i.e., N(0,1). In Eq. (1), s determines 
the level of income for the middle class. We choose s = 0.32 to fit the middle 
part of the empirical distribution. In Eq. (1), w(t) is the reflective lower bound, 
which is interpreted as a subsistence level of income. We assume that w(t) 
grows deterministically, 

w(t) =vtw(0). 

Here we use v = 1.0673. This is a time average growth rate of the nominal 
income per capita. 

3.2 Asset accumulat ion process 

We denote the asset of the i-th person at time t as Oj(t). We assume that 
the asset accumulation process is given by a multiplicative process, 

ai(t + 1) = n{t)ai{t) + Wi(t) - a(t), (2) 

where the log return, log -ji (t), follows a normal distribution with mean y and 
variance x2, i.e., N(y,x2). We use y = 0.0595. This is a time-average growth 
rate of the Nikkei average index from 1961 to 1999. We use x = 0.3122. This is 
a variance calculated from the distribution of the income growth rate for high 
income earners. In Eq. (2), we assume that a consumption function, c,(t), is 
given by 

d(t) =w(t) + b{ai(t) + Wi(t) -w(t)}. 

In this article we chose b = 0.059 from the empirical range estimated from 
Japanese micro data. 

3.3 Income dis t r ibut ion derived from the model 

We denote the income of the i-th person at time t as I%(t), and define it 
as 

/ i ( t )=«; i ( t ) + E[7i(t)-l]oi(*). 

The results of the simulation for N = 106 are shown in Fig. 5. The left panel 
of Fig. 5 is a log-log plot of the cumulative distribution for income normalized 
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Fig. 5. A log-log plot of the cumulative distributions of normalized income in 1999 
and simulation results (left), and the Lorenz curve in 1999 and simulation results 
(right). 

by an average. The right panel of Fig. 5 is the simulation results for the Lorenz 
curve. These figures show that the accountability of our model is high. 

In our model, the exponent in the power law part of the distribution is 
derived from the asset accumulation process. From Eq. (1), we can analytically 
derive 

2 1 o g ( l - * / s ) „ 1 + _ 2 * _ 
r-2 ' 

1 1 + 
gx* 

(3) 

where z is a steady state value of [w(t) — c(t)]/{a(t)). Here (a(t)) is the average 
assets. In Eq. (3), g is a steady state value of the growth rate of (a(t)). 
Equation (3) shows that a fluctuates around a = 2, if 2z ~ gx2. 

4 Summary 

In this article we empirically studied income distribution, and constructed 
a model based on empirical facts. The simulation results of our model can ex­
plain the real distribution. In addition, our model can explain the reason why 
the Pareto index fluctuate around a = 2. However there are many unknown 
facts. For example, we have no theory that can explain the income distribu­
tion under the bubble economy, that can determine the functional form other 
than the high income range, and that can explain the shape of the income 
growth distribution, etc. 
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Summary. The distribution of gross earnings of movies released each year show a 
distribution having a power-law tail with Pareto exponent a ~ 2. While this offers 
interesting parallels with income distributions of individuals, it is also clear that it 
cannot be explained by simple asset exchange models, as movies do not interact with 
each other directly. In fact, movies (because of the large quantity of data available 
on their earnings) provide the best entry-point for studying the dynamics of how "a 
hit is born" and the resulting distribution of popularity (of products or ideas). In 
this paper, we show evidence of Pareto law for movie income, as well as, an analysis 
of the time-evolution of income. 

1 Introduction 
While the personal income distribution has been a subject of study for 

a long time [1], it is only recently that other kinds of income distribution, 
e.g., the income of companies [2], have come under close scrutiny. More than 
a century ago, Vilfredo Pareto had reported that the income distribution of 
individuals or households follows a power law with an universal exponent of 
a = 1.5. While recent studies have shown this claim about universality to be 
untenable, it has indeed been extensively verified that the higher-end (i.e., 
the tail) of the income, as well as wealth, distribution follows a power law. 
Whether similar power laws occur for other types of income distribution is 
therefore of high topical interest. 
The income (or gross) of movies released commercially in theaters every year 
provides an opportunity to study a very different kind of income distribution 
from those usually studied. Not only is movie income a very well-defined 
quantity, but high-quality data is publicly available from web-sites such as 
The Numbers [3] and Movie Times [4]. The income distribution, as well, as 
the time evolution of the income, can be empirically determined with high 
accuracy. Movie income distribution is also of theoretical interest because 
such a distribution clearly cannot be explained in terms of asset exchange 
models, one of the more popular class of models used for explaining the nature 
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of personal income distribution. As movies don't exchange anything between 
themselves, one needs a different theoretical framework to explain the observed 
distribution for movie income [5]. 
Even more significantly, movie income can be considered to be a measure of 
popularity [6]. Seen in this light, this distribution is a prominent member of 
the class of popularity distributions, that looks at how the success of various 
products (or ideas) in appealing to public taste is distributed. Examples of 
such distributions include the popularity of scientific papers as measured by 
the number of citations [7], books as measured by the sales figures from an 
online bookstore [8], etc. Of course, income is not the only measure of a movies' 
popularity; e.g., one possibility is to use the number of votes per film from 
registered users of IMDB [9]. However, such voting may not reflect the true 
popularity of movies as it costs nothing to give a vote. On the other hand, 
when one is voting with one's wallet, by going to see a movie in a theater, it 
is a far more reliable indicator of the film's popularity. 

2 A Pare to Law for Movies 

Previous studies of movie income distribution [10, 11, 12] had looked at 
limited data sets and found some evidence for a power-law fit. A more rigorous 
demonstration has been given in Ref. [6], where data for all movies released 
in theaters across USA during 1997-2003 were analysed. It was shown that 
the rank distribution of the opening gross as well as the total gross of the 
highest earning movies for all these years follow a power-law with an exponent 
close to —1/2. As the rank distribution exponent is simply the inverse of the 
cumulative gross distribution exponent [7], this gives a power-law tail for the 
income distribution with a Pareto exponent a ~ 2. It is very interesting 
that this value is identical to that of corresponding exponents for citations 
of scientific papers [7] and book sales [8], and is suggestive of an universal 
exponent for many different popularity distributions. 
Fig. 1 (left) demonstrates the Pareto law of movie income for the movies 
released across theaters in USA in 2004. Both the opening gross, Go, as well 
as the total gross, GT, (scaled by their respective averages over all the movies 
released that year) show a power-law behavior with the same exponent. The 
similarity of these two curves can be partially explained from the inset figure, 
which shows that there is strong degree of correlation between the income 
of a movie at its opening, and its total income. Movies which open poorly 
but perform well later (sleepers) are relatively uncommon and are seen as the 
points deviating from the linear trend in the inset figure. Arguably, a better 
comparison with the Pareto distribution of personal income can be made by 
looking at the income distribution of movies running on a particular weekend 
[Fig. 1 (right)]. However, the smaller number of data points available for such 
a plot means that the scatter is larger. As a result, it is difficult to make a 
judgement on the nature of the weekend income distribution. 
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k/N Rankk (according to weekend gross) 

Fig. 1. Income distribution of movies released in theaters across USA for the year 
2004: (Left) Scaled rank-ordered plot of movies according to opening gross (squares) 
and total gross (diamonds). The rank k has been scaled by the total number of 
movies released that year (N = 326) while the gross (Go, GT) has been scaled by 
its average. The broken line of slope —0.5 has been shown for visual reference. The 
inset shows the total gross earned by a movie, plotted against its opening gross 
(in millions of $). As indicated by the data, there is a high degree of correlation 
between the two. (Right) Scaled rank-ordered plot of movies according to weekend 
gross, Gw, for six arbitrarily chosen weekends. The top 89 movies in a weekend are 
shown, and the weekend gross of each movie has been scaled by the average weekend 
gross of all movies playing that weekend. The inset shows the average of the scaled 
rank-ordered plots for all the weekends in 2004. 

3 Time-evolution of movie income 

In this section, we focus on how the gross of a movie changes with time 
after its theatrical release, until it is withdrawn from circulation. Based on 
how they perform over this time, movies can be classified into blockbusters 
having both high opening and high total gross, bombs (or flops) having low 
opening as well as low total gross and sleepers that have low opening but high 
total gross. Not surprisingly, the corresponding theatrical lifespans also tend 
to be high to intermediate for blockbusters, low for bombs and high to very 
high for sleepers. 
Consider a classic blockbuster movie, Spiderman (released in 2002). Fig. 2 
(left) shows how the daily gross decays with time after release, with regularly 
spaced peaks corresponding to large audiences on weekends. To remove the 
intra-week fluctuations and observe the overall trend, we focus on the time se­
ries of weekend gross. This shows an exponential decay, a feature seen not only 
for almost all other blockbusters, but for bombs as well [Fig. 2 (right)]. The 
only difference between blockbusters and bombs is in their initial, or opening, 
gross. However, sleepers behave very differently, showing an increase in their 
weekend gross and reaching their peak performance (in terms of income) quite 
a few weeks after release, before undergoing an exponential decay. 
To make a quantitative analysis of the relative performance of movies in a 
given year (say 2002), we define the persistence time r of a movie as the time 
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Spiderman : Daily Gross (released 03/05/02, Friday) 

42 56 70 
Days Running 

ru.M 
y*\i 

My Big Fat Greek Wedding ( 2002) 

V 

Spiderman (2002) 

Bulletproof 
Monk (2003) 

Weekends Running 

Fig. 2. Classifying movies according to time-evolution of the gross (income): (Left) 
Daily gross of a typical blockbuster movie (Spiderman) showing weekly periodic fluc­
tuations (with gross peaking on weekends), while the overall trend is exponential de­
cay. (Right) Comparing examples of blockbusters (Spiderman), bombs (Bulletproof 
Monk) and sleepers (My Big Fat Greek Wedding) in terms of the time-evolution of 
weekend gross. Time is measured in weekends to remove intra-week fluctuations. 

(measured in number of weekends) upto which it is being shown at theaters. 
Fig. 3 (left) shows that most movies run for upto about 10 weekends, after 
which there is a steep drop in their survival probability. The tail is almost 
entirely composed of sleepers, the best performance being by My Big Fat 
Greek Wedding (r = 51 weekends). The inset shows the time-evolution of the 
average number of theaters showing a movie. It suggests an initial power-law 
decay followed by an exponential cut-off. We also look at the time-evolution of 
the gross per theater, g. This is a better measure of movie popularity, because 
a movie that is being shown in a large number of theaters has a bigger income 
simply on account of higher accessibility for the potential audience. Unlike 
the overall gross that decays exponentially with time, the gross per theater 
shows a power-law decay with exponent f$ ~ — 1 [Fig. 3 (right)]. 

4 Conclusions 

To conclude, we have shown that movie income distribution has a power-
law tail with Pareto exponent a ~ 2. This is suggestive of a possible universal 
exponent for many popularity distributions. The exponent is identical for 
the opening as as well as the total gross distribution. Since the Pareto tail 
appears at the opening week itself, it is unlikely that the mechanism for gener­
ating this behavior involves information exchange between moviegoers. Also, 
as mentioned before, conventional asset exchange models don't apply in this 
case. Therefore, explaining the Pareto tail of the income distribution, as well 
as the distribution of the time-evolution of movie income, is an interesting 
challenge to theories of distributions with power-law tails. 

We would like to acknowledge helpful discussions with S. Raghavendra, S. S. Manna, 
D. Stauffer, P. Richmond and B. K. Chakrabarti. 
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Weekends, W Weekends, W 

Fig. 3. Time evolution of movie income for all movies released across theaters in 
USA in the year 2002. (Left) Cumulative probability distribution of movie persis­
tence time T (in terms of weekends). The broken line shows fit with a stretched 
exponential distribution P(x) = exp(—[X/XQ]C), with XQ ~ 16.5 and c ~ 1.75. The 
inset shows the number of theaters (scaled by the average number of theaters that a 
movie was shown in its theatrical lifespan) in which a movie runs after W weekends, 
averaged over the number of movies that ran for that long. (Right) Weekend gross 
per theater for a movie (scaled by the average weekend gross over its theatrical lifes­
pan), g(W), after it has run for W weekends, averaged over the number of movies 
that ran for that long. The initial decline follows a power-law with exponent j3 ~ — 1 
(the fit is shown by the broken line). 
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Summary. This paper reviews recent attempts at modelling inequality of wealth 
as an emergent phenomenon of interacting-agent processes. We point out that re­
cent models of wealth condensation which draw their inspiration from molecular 
dynamics have, in fact, reinvented a process introduced quite some time ago by 
Angle (1986) in the sociological literature. We emphasize some problematic aspects 
of simple wealth exchange models and contrast them with a monetary model based 
on economic principles of market mediated exchange. The paper also reports new 
results on the influence of market power on the wealth distribution in statistical 
equilibrium. As it turns out, inequality increases but market power alone is not 
sufficient for changing the exponential tails of simple exchange models into Pareto 
tails. 

1 Introduction 

Since the days of Vilfredo Pareto, the frequency distribution of wealth 
among the members of a society has been the subject of intense empirical re­
search. Recent research confirms that power-law behaviour with an exponent 
between 1 and 2 indeed seems to characterize the right tail of the distribution 
(Levy and Solomon, 1997; Castaldi and Milakovic, 2005). However, when ap­
plied to the entire shape of the empirical distribution, the power law would 
produce a rather mediocre fit and would be outperformed by other candidate 
processes like the lognormal or Gamma distributions. As it seems to emerge 
from the literature, a transition occurs in the data from an exponential shape 
to power-law behavior somewhere above the 90 percent quantile again. 

These and other findings should give rise to modelling efforts explaining the 
remarkably similar wealth distribution of many developed countries. Unfor­
tunately, economic theory has been quite silent on this topic for a long time. 
Until recently, one had to go back the to literature of the fifties and six­
ties (e.g., Champernowne, 1953; Mandelbrot, 1961) to find stochastic models 
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of wealth accumulation in modern societies. Recent advances in computer 
technology, however, open another avenue for analysis of the emergence of 
wealth distributions allowing this issue to be studied in a computational agent-
based framework. Such a bottom-up approach could, in principle, be helpful 
in isolating the key mechanisms that apparently lead to a stratification of 
wealth in advanced economies. As it appears, this path has been pursued re­
cently by physicists rather than economists (cf. Bouchaud and Mezard, 2000; 
Dragulescu and Yakovenko, 2000; Chakraborti and Chakrabarti, 2000; Sil­
ver, Slad and Takamoto, 2002, among others). However, it has been entirely 
overlooked in the pertinent publications that these models have an important 
predecessor in the sociological literature. Investigating essentially the same 
structures already almost twenty years ago, Angle, 1986, might be consid­
ered as the first contribution to agent-based analysis of wealth formation. In 
the following, I will shortly review Angle's interesting work as the prototypi­
cal agent-based model of wealth dynamics, based on particle-like microscopic 
interactions of agents. I will point out aspects of this class of models (cov­
ering most of the econophysics contributions mentioned above) that would 
be considered to be problematic by economists (section 2). As an alternative 
framework, I will, then, review the contribution by Silver et. al. (2002) which 
much better fits into standard economic reasoning, but nevertheless provides 
a similarly simple formalization of an agent-based exchange model (section 3). 
Section 4 presents some additional results expanding on the seminal frame­
work of Silver et. al. Conclusions are in section 5. 

2 Angle's Surplus Theory of Social Stratification and the 
Inequality Process 

In a long chain of papers covering more than 15 years, sociologist John 
Angle has elaborated on a class of stochastic processes which he first proposed 
in 1986 as a generating mechanism for the universal emergence of inequality 
in wealth distributions in human societies. His starting point is evidence he 
attributes to archeological excavations that inequality among the members 
of a community is typically first found with the introduction of agriculture 
and the ensuing prevalence of food abundance: While simpler hunter/gatherer 
societies appear to be rather egalitarian, production of a "surplus" beyond 
subsistence level immediately seems to lead to a "ranked society" or some 
kind of "chiefdom" (Angle, 1986, p. 298). 

So as soon as there is some excess capacity of food, processes seem to be 
set into motion from which inequality emerges. Angle, surveying earlier narra­
tive work in sociology, sees this as the result of redistribution by which some 
members of society succeed in grabbing some of the surplus wealth of others. 
The relevant empirical observations are summarized as follows: 
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"Proposition 1: Where people are able to produce a surplus, some 
of the surplus would be fugitive and would leave the possession of the 
people who produce it. 

Proposition 2: Wealth confers on those who possess it the ability to 
extract wealth from others. So netting out each person's ability to do 
this in a general competition for surplus wealth, the rich tend to take 
surplus away from the poor." (Angle, 1986, p. 298). 

According to Angle, the expropriation of the losers happens via (1) theft, 
(2) extortion, (3) taxation, (4) exchange coerced by unequal power between 
the participants, (5) genuinely voluntary exchange, or (6) gift (ibid.). 

The process he designs as a formalisation of these ideas is a true interacting 
particle model: in a finite population, agents are randomly matched in pairs 
and try to catch part of the other's wealth. A random toss Dt £ {0,1} decides 
which of both agents is the winner of this conflict. Angle in various papers 
considers cases with equal winning probabilities 0.5 as well as others with 
probabilities being biased in favor of either the wealthier or poorer of both 
individuals. If the winner of this encounter is assumed to take away a fixed 
proportion of the other's wealth, w, the simplest version of the "inequality 
process" leads to a stochastic evolution of wealth of individuals i and j who 
had bumped into each other according to: 

Wi,t = witt-i + DtuiWjj-i - (1 - Dt)uwi>t-i, 

(1) 
wi,t = Wj,t-i + (1 - Dt)^Wi,t-i ~ Dtwwjtt-i-

Time t is measured in encounters and one pair of agents from the whole 
population is chosen for this interaction in each period. Angle (1986) shows 
via simulations that this dynamics leads to a stationary distribution which 
can be reasonably well fitted by a Gamma distribution. Angle (1993) provides 
an argument for why the Gamma distribution approximates the equilibrium 
distribution of the process for empirically relevant values of its parameters. 
Later papers provide various extensions of the basic model. While the expo­
nential decay of the Gamma distribution might not be in accordance with 
power law behavior at the high end of the richest individuals, Angle's model 
is the first agent-based approach matching several essential features of em­
pirical wealth distributions which he carefully lists as desiderada (i.e. stylized 
facts) for a theory of inequality. Among other properties, he emphasizes the 
uni-modality with a mode above minimum income which could not be repro­
duced by a monotonic distribution function. Angle is also careful to point out 
that with binned data, realizations of his process would be hard to distinguish 
from realizations of Pareto random variables which he demonstrates via a few 
Monte Carlo runs. 

Unfortunately, Angle's process might be hard to accept for economists as 
a theory of the emergence of inequality in market economies. 
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First, a glance at the list of the six mechanisms for appropriation of another 
agent's wealth might raise doubts about their relative importance in modern 
societies: for most countries of the world, "theft" should perhaps not be the 
most eminent mechanism for stratification of the wealth distribution. Note 
also that "genuinely voluntary exchange" is listed only at rank 5 and behind 
"exchange coerced by unequal power". However, voluntary exchange is at the 
heart of economic activity at all levels of development rather than being a 
minor facet. 

However, despite being mentioned in the list of mechanisms of redistribu­
tion, voluntary exchange is not really considered in Angle's model in which 
an agent simply takes away part of the belongings of another. What is more, 
this kind of encounter would - in its literal sense - hardly be imaginable as 
both agents would rather prefer not to participate in this game of a burglar 
economy - at least if they possess a minimum degree of risk aversion. The 
model, thus, is not in harmony with the principle of voluntary participation 
of agents in the hypothesized process which economists would consider to be 
an important requirement for a valid theory of exchange activities. One should 
also note that another problem is the lack of consideration of the measure­
ment of wealth (in terms of monetary units) and the influence of changes of 
the value of certain components of overall wealth. 

Despite these problematic features from the viewpoint of economics, An­
gle's model deserves credit as the first contribution in which inequality results 
as an emergent property of an agent-based approach. A glance at the recent 
econophysics literature shows that the basic building blocks of practically all 
relevant contributions share the structure of the inequality process formalized 
by equation (1). The inequality process is, for example, practically identical 
to the process proposed by Bouchaud and Mezard (2000) and isomorphic to 
almost all other models mentioned above. This recent strand of research on 
wealth dynamics is, therefore, almost exemplary for the lack of coordination 
among research pursued on the same topic in different disciplines and for the 
unfortunate duplication of effort that comes along with it. 

Interestingly, the above criticism concerning the structure of the exchange 
process had also been voiced in a review of monetary exchange models devel­
oped by physicists by Hayes (2002) who introduced the label of "theft and 
fraud" economies, but restricted it to variants in which the richer could lose 
more (in absolute value) than the poor. However, it is not clear why models 
which introduce a certain asymmetry to avoid this kind of exploitation should 
not also suffer from the lack of willingness of agents to participate in their ex­
change processes. It, therefore, appears that one might wish to reformulate the 
"burglar economies" in a way that brings elements of voluntary economic ex­
change processes into play. While the economics literature has not elaborated 
on wealth distributions emerging from exchange activities within a group of 
agents, a huge variety of approaches is available in economics that could be 
utilized for this purpose. An interesting start has been made in a recent paper 
by Silver, Slud and Takamoto (2002) which contains a two-good general equi-
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librium model of an economy with heterogenous agents. Somewhat ironically, 
the overall outcome of this model is the same as with the inequality process: 
the stationary wealth distribution turns out to be a Gamma distribution. 

3 An Exchange Economy with Changing Preferences 

Unlike the framework reviewed in the previous section, the setting of Sil­
ver et al. is an extremely familiar one for economists. Their economy consists 
of two goods, denoted x and y which necessitate the introduction of a rela­
tive price p being defined as the current value of a unit of good y in units 
of good x. Note that with this assumption, considerations of revaluation of 
wealth components come into play which are altogether neglected in the so­
ciological/physical models. All agents of the economy have their preferences 
formalized by a so-called Cobb-Douglas utility function: 

Here, i and t are indices for the individuals and time, respectively. x;jt 

and yitt are, therefore, the possessions of good x and y by individual i at 
time t and fat 6 [0,1] is a preference parameter which might differ among 
individuals and, for one and the same individual, might also change over time. 
Uitt, then, is utility gained by individual i at time t. Individuals start with a 
given endowment in t = 0 and try to maximize their utility via transactions in 
a competitive market where one good is exchanged against the other. Given 
their possessions of both goods at some time t — 1, it is a simple exercise 
to compute their demands for goods x and y at time t given the current 
preference parameter fi>t: 

%i,t = fi,t{%i,t-i +Ptyi,t-i), 

(3) 

Vi,t = (1 - fat) ( -h^~ + Vi,t-i ) • 
\ Pt J 

In (3), we have used the standard assumption that agents take the price 
as given in a competitive market. Note that this market, therefore, dispenses 
with any assumption of unequal exchange or even exploitation which is so 
central to the microscopic process of the previous chapter. 

Summing up demand and supply by all our agents, we can easily calculate 
the equilibrium price which simultaneously clears both markets: 

E (! - fay) xi,t-i 
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After meeting in the market, each agent possesses a different bundle of 
goods and his wealth can be evaluated as: 

Wi,t = %i,t + PtVi,t- (5) 

The driving force of the dynamics of the model by Silver et al. is simply 
the assumption of stochastically changing preferences: all fi>t are drawn anew 
in each period independently for all individuals. In the baseline scenario, the 
fitt are simply drawn from a uniform distribution over [0,1], but other distri­
butions lead to essentially the same results. The dynamics is, thus, generated 
via the agents' needs to rebalance their possessions in order to satisfy their 
new preference ordering. With all agents attempting to change the composi­
tion of their "wealth", price changes are triggered because of fluctuations in 
the overall demand for x and y. This leads to a revaluation of agents previous 
possessions, Xitt-i and yitt-i, and works like a capital gain or loss. 

To summarize, we have a model in which all agents are identical except 
for their random preference shocks and no market or whatsoever power is 
attributed to anyone. The resulting inequality (illustrated as the benchmark 

= 0 in Fig. 1) is, therefore, the mere consequence of the eventualities 
of the history of preference changes and ensuing exchanges of goods. We, 
therefore, do not have to impose any type of "power" in order to endogeneously 
generate a stratification of the wealth distribution that - like the model of 
section 2 - is able to capture all except the very end (the Pareto tail) of the 
empirical data. 

4 Some Extensions of the Monetary Exchange Model 

The model by Silver et al. demonstrates that stratification of wealth can 
result from an innocuous exchange dynamics without agents robbing or fleec­
ing each other. It should, therefore, be a promising avenue to supplement the 
simpler dynamic models in the previous section. In some extensions, we, there­
fore, tried to explore the sensitivity of this approach to certain changes of its 
underlying assumptions. Among the many sensitivity tests we could imagine, 
we started with the following variations of the basic framework: 

• replacement of market interaction by pairwise exchange, 
• introduction of agents with higher bargaining power so that the outcome 

of pairwise matches could differ from a competitive framework, 
• introduction of natural differences among agents of some kind: here we 

assumed that for part of the population, preference changes are less pro­
nounced than for others, 

• introduction of savings via a framework which allows for money as an 
additional component in the utility function. 

Due to space limitations, we will not provide detailed results on all of these 
experiments, but will rather confine ourselves to one particularly interesting 
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variant: the introduction of market power. 
Introducing market power of some sort is certainly interesting in light of the 
focus of the sociological and physics-inspired literature on issues of power 
of some individuals over others. Different avenues for implementing market 
power seem possible. Here, for the sake of a first exploration of this issue, we 
chose a very simple and extreme one. We assume that part of the population 
can act as monopolists in pairwise encounters: if they are matched with an 
agent from the complementary subset of non-monopolists, they can demand 
the monopoly price. If two non-monopolists are matched, we compute the 
competitive solution. We do the same when two monopolists meet each other 
assuming that their potential monopolistic power cancels out. 

Although this is an almost trivial insight in economics, it should be noted 
that the monopolist is not entirely free in dictating any price/transaction 
combination, but has to observe the constraint that the other agent has to 
voluntarily participate in the transaction. Since the option to not agree on 
the transaction would leave the monopolist with a zero gain as well, even in 
this extreme market scenario "exploitation" is much more limited than in a 
world of "theft and fraud". Note also that although one could perhaps speak 
of exploitation (when comparing the monopoly setting with the competitive 
price), no expropriation is involved whatsoever since even the non-monopolist 
will still increase his utility by his transaction with the more "powerful" mo­
nopolist. 

As it turns out, allowing for monopoly power indeed changes the resulting 
wealth distribution. Fig. 1 shows the pdf for (fixed) fractions of monopolists. 
Varying the proportion of monopolists from 0 (the former competitive sce­
nario with pair-wise transactions) to 0.4 we see a slight change in the shape of 
the distribution. As it happens all distributions still show pronounced expo­
nential decline and can be well fitted by Gamma distributions. However, the 
estimated parameters of the Gamma distribution show a systematic variation. 
In particular, the slope parameter decreases with the fraction of monopolists, 
pm. A closer look at the simulation results also shows that the average wealth 
of monopolists exceeds that of other agents but the difference decreases with 
increasing pm. Note that the Gini dispersion ratio (G) is a negative function 

of A for the Gamma distribution: G = ^rtx+i)' s o ^ a * ^ e m c r e a s m S m~ 
equality would also be indicated by this popular statistics. 

The result that monopoly power is not neutral with respect to the distri­
bution of wealth is certainly reassuring. However, we may also note that its 
introduction in the present framework does not lead to a dramatic change of 
the shape of the distribution. In particular, it does not seem to lead to any­
thing like a Pareto tail in place of the exponential tail of the more competitive 
society. Since we have already chosen the most extreme form of market power 



58 Thomas Lux 

w e a l t h 

Fig. 1. Kernel estimates of statistical wealth distributions with different fractions 
of monopolistic agents pm. Results are from simulations with 10,000 agents recorded 
after 5 * 105 trading rounds. 

in the above setting it seems also unlikely that one could obtain widely dif­
ferent results with milder forms of bargaining power. 

5 Conclusions and Outlook to Future Research 

What kind of conclusions can be drawn from this review of different ap­
proaches to agent-based models of wealth stratification? First, it is perhaps 
obvious that this author would like to advocate an approach in line with 
standard principles of economic modelling. If one is not willing to follow the 
emphasis of the sociological literature on all types of exertion of power, and 
if one tends to the view that wealth is influenced more by legal economic ac­
tivity than by illegal theft and fraud, economic exchange should be explicitly 
incorporated in such models. This would also help to identify more clearly the 
sources of the changes of wealth. Note that despite the voluntary participation 
of agents in the exchange economy and the utility-improving nature of each 
trade, a change in the distribution of wealth comes with it. The difference to 
earlier models is that the changes in wealth are explained by deeper, under­
lying economic forces while they are simply introduced as such in the models 
reviewed in sec. 2. Market exchange models also allow to consider changes of 
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monetary evaluation of goods and assets as a potentially important source of 
changes in an individual's nominal wealth. 

Unfortunately, monetary exchange so far does not provide an explanation 
of the power-law characterizing the far end of the distribution. As we have 
shown above, even an extremely unequal distribution of market power within 
the population seems not sufficient to replicate this important empirical fea­
ture. Following recent proposals in the literature one could try additional 
positive feedback effects that give agents with an already high level of wealth 
an additional advantage (West, 2005; Sinha, 2005). 

In the above model, one could argue that the more wealthy agents would 
also acquire more bargaining power together with their higher rank in the 
wealth hierarchy. Whether this would help to explain the outer region, re­
mains to be analyzed. However, there are perhaps reasons to doubt that the 
Pareto feature might be the mere result of clever bargaining. A glance at the 
Forbes list of richest individuals (analyzed statistically by Levy and Solomon, 
1997, and Castaldi and Milakovic, 2005) reveals that the upper end of the 
distribution is not populated by smart dealers who in a myriad of small deals 
succeeded to outwit their counterparts. Rather, it is the founders and heirs 
of industrial dynasties and successful companies operating in new branches of 
economic activity whom we find there1. The conjecture based on this anec­
dotal evidence would be that the upper end of the spectrum has its roots 
in risky innovative investments. Few of these succeed but the owners behind 
the succeeding ones receive an overwhelming reward. This would suggest that 
models without savings and investments should lack a mechanism for a power 
law tail. One would, therefore, have to go beyond such conservative models 
and combine their exchange mechanism (which works well for the greater part 
of the distribution) with an economically plausible process for the emergence 
of very big fortunes. 
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S u m m a r y . The Lagrange principle L = f + \g —> maximum! is used to maximize 
a function f(x) under a constraint g(x). Economists regard f(x) = U as a ratio­
nal production function, which has to be maximized under the constraint of prices 
g(x). In physics f(x) = InP is regarded as entropy of a stochastic system, which 
has to be maximized under constraint of energy g(x). In the discussion of wealth 
distribution it may be demonstrated that both aspects will apply. The stochastic 
aspect of physics leads to a Boltzmann distribution of wealth, which applies to the 
majority of the less affluent population. The rational approach of economics leads to 
a Pareto distribution, which applies to the minority of the super rich. The boundary 
corresponds to an economic phase transition similar to the liquid - gas transition in 
physical systems. 

Key words: Lagrange principle, Cobb Douglas production function, entropy, Boltz­
mann distribution, Pareto distribution, econophysics. 

1 Introduction 

Since the work of Pareto [1] as long ago as 1897, it has been known that 
economic distributions strictly follow power law decays. These distributions 
have been observed across a wide variety of economic and financial data. More 
recently, Roegen [2], Foley [3], Weidlich,[4] Mimkes [5] [6], Levy and Solomon 
[7][8], Solomon and Richmond [9], Mimkes and Willis [10], Yakovenko [11], 
Clementi and Gallegatti [12] and Nirei and Souma [13] have proposed statis­
tical models for economic distributions. In this paper the Lagrange principle 
is applied to recent data of wealth in different countries. 
The Lagrange equation 

/ — Xg —>• maximum). (1) 

applies to all functions (/) that are to be maximized under constraints (g). 
The factor A is called Lagrange parameter. 
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2 Calculation of the Boltzmann distribution 

In stochastic systems the probability P is to be maximized under con­
straints of capital according to the Lagrange principle 

lnP(xj) — XEjWjXj —> maximum}. (2) 

InP is the logarithm of probability P(XJ) or entropy that will be maximized 
under the constraints of the total capital in income ZWJXJ . The variable (XJ) 
is the relative number of people in the income class (WJ). The Lagrange factor 
A = l / < w > i s equivalent to the mean income < w > per person. Dis­
tributing N households to (WJ ) property classes is a question of combinatorial 
statistics, 

P = N)/n(Njl) (3) 

Using Sterlings formula (lnN\ = NlnN — N) and x = Nj/N we may change 
to 

—EjXjlriXj — XEjWjXj —• maximum] (4) 

At equilibrium (maximum) the derivative of equation 4 with respect to Xj will 
be zero, 

dlnP/dxj = —{IriXj + 1) = XWJ (5) 

In this operation for Xj all other variables are kept constant and we may solve 
Eq.6 for x = Xj. The number N(w) of people in income class (w) is given by 

N(w)=Ae-^> (6) 

In the physical model the relative number of people (x) in the income class (w) 
follows a Boltzmann distribution, Eq.6. The Lagrange parameter A has been 
replaced by the mean income < w >. The constant A is determined by the 
total number of people Ni with an income following a Boltzmann distribution 
and may be calculated by the integral from zero to infinity, 

N1= N(w)dw = A<w > (7) 

The amount of capital K(w) in the property class (w) is 

K(w) = Awe~^>. (8) 

The total amount K\ is given by the integral from zero to infinity, 

K1=Aw x(w) dw = A<w >2 (9) 

The ratio of total wealth, Eq.9 divided by the total number of households, 
Eq.8 leads to 

KJNI =<w> (10) 
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which is indeed the mean income < w > per household. The Lorenz distribu­
tion y = Ki(w) as a function of x = Ni(w) in fig.l may be calculated from 
the Boltzmann distribution, Eqs.8 and 6, and leads to 

y = x + (1 - x)ln{\ - x) (11) 

This function will be applied to Lorenz distributions of wealth. 

2.1 German wealth data 1993 and the Boltzmann distribution 

Property data for Germany (1993) have been published [14] by the German 
Institute of Economics (DIW). The data show the number N(w) of households 
and the amount of capital K(w) in each property class (w). The data are gen­
erally presented by a Lorenz distribution. Fig.l shows the Lorenz distribution 
of capital K vs. the number N of households in Germany 1993. 

Lorenz Distribution of Wealth in Germany 1993 

1,0 

0,8 

0,6 

f 0,4 

o 
0,2 

0,0 
0,0 0,2 0,4 0,6 0,8 1,0 

Households N 

Fig. 1. Lorenz distribution, sum of capital K vs. sum of households N in Germany 
1993, data from DIW [14], dotted line according to eq. 11. However, the Boltzmann 
approach only fits for 80 % of the total capital, solid line. 

The data points are fitted by the dotted line for the Lorenz function of 
a Boltzmann distribution, eq. 11. The Boltzmann approach fits well only for 
80% of the capital, solid line. A more detailed analysis of the super rich 20 % 
in Germany 1993 in fig.l is not possible due to the few data points. 

2.2 US wages data 1995 and the Boltzmann distribution 

Wages like wealth may be expected to show a Boltzmann distribution 
according to eq.6. However, jobs below a wage minimum WQ have the attrac-

(DIW Data) 
-(100 % Boltzmann) 
- ( 80 % Boltzmann) 
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US wage distribution (manufacturing) 
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Fig. 2. Number of people in wage classes in manufacturing in the US [15]. The data 
have been fitted by the Boltzmann distribution, eq. 12 with a(w,wo,) = (w — wo). 

tiveness a* = 0. Accordingly, the distribution of income will be given by 

N(w) = a(w,w0)e~<^> (12) 

The number of people earning a wage (w) will depend on the job attractiveness 
a(w,Wo) and the Boltzmann function. Low wages will be very probable, high 
wages less probable. Fig. 2 shows the wage distribution for manufacturing in 
the US in 1995 [12]. Again the Boltzmann distribution seems to be a good fit. 
However, some authors prefer to fit similar data by a log normal distribution 
e.g. F. Clementi and M. Gallegatti [12]. Presently, both functions seem to 
apply equally well. 

3 Calculation of the Pareto Distribution 

Economic actions (/) are optimized under the constraints of capital, costs 
or prices (g). Economists are used to maximize the rational production func­
tion U(XJ) under constraints of total income Swjdxj. The variable (XJ) is 
relative number of people in each income class (WJ ). The Lagrange principle 
27 is now given by 

U(XJ) — XSjWjXj —>• maximum}. (13) 

At equilibrium (maximum) the derivative of equation 29 with respect to Xj 
will be zero, 
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dU/dxj = XWJ (14) 

In economic calculations a Cobb Douglas type Ansatz for the production 
function U is often applied, 

U(XJ) = Allxjaj (15) 

A is a constant, the exponents a>j are the elasticity constants. Inserting Eq.15 
into equation 14 we obtain 

dU/dxj = djAx"3 = XWJ (16) 

In this operation for Xj all other variables are kept constant and we may solve 
Eq.15 for x = Xj. The relative number x(w) of people in income class (w) is 
now given by 

N(w) = A{\w/aA)T^r) = C(wm/w)2+s (17) 

According to this economic model the number of people N(w) in the income 
class (w) follows a Pareto distribution! In eq. 17 the Lagrange parameter A 
has been replaced by the minimum wealth class of the super rich, wm = 1/A 
, the constants have been combined to C. The Pareto exponent is given by 
2 + S = 1/(1 — a). The relative number of people x{w) decreases with rising 
income (w). The total number of rich people N2 with an income following a 
Pareto distribution is given by the integral from a minimum wealth wm to 
infinity, 

N2 = J N{w)dw = Cwm/(1 + 5) (18) 

The minimum wealth wm is always larger than zero, wm > 0. The amount of 
capital K(w) in the property class (w) is 

K(w) = N(w)w = Cwm{wmlw)1+6 (19) 

The total amount of capital K2 of very rich people with an income following 
a Pareto distribution is given by the integral from a minimum wealth w m to 
infinity, 

K2 = f N(w)wdw = Cw2
m/5 (20) 

For positive wealth the exponent 6 needs to be positive, S > 0. For a high 
capital of the super rich the exponent 5 is expected to be: 0 < 6 < 1. The ratio 
of total wealth Eq.20 divided by the total number of super rich households 
Eq.19 leads to 

wm = (K2/N2)5/(l + S) (21) 
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Fig. 3. shows the percentage of people in wage classes relative to average (USA 
1983 — 2001) [Silva and Yakovenko] [11]: The distribution is clearly divided into two 
parts. The wealth of the majority of people (97%) follows a Boltzmann distribution, 
the wealth of the minority of super rich follows a Pareto law. The Pareto tail has a 
slope between 2 and 3. 

3.1 B o l t z m a n n a n d P a r e t o d i s t r ibut ion in U S A w e a l t h d a t a 

Yakovenko [11] and others have presented da ta tha t follow a Boltzmann 
distribution for the majority of normal wages and a Pare to distribution for 
the income of the minority of very rich people, fig. 3. 
A. Boltzmann distribution 

A l . The wealth of the majority of the population in fig. 3 follows the Boltz­
mann distribution of Eq.6. 
A2. The total number of normal rich people is Ni = 97% of the total popula­
tion, 

Ni = / N(w)dw = A<w>= 0.97 

A3. The wealth of the normal population is given by 

Kt= N(w)wdw = Ni < w >= 0.97 < w > 

(22) 

(23) 

B. Pareto distribution 
B l . The wealth of the super rich minority follows a Pare to law, Eq.17. 
B2. The exponent of the Pareto tail in fig. 3 is between 2 and 3 or 0 < 6 < 1, 
as required by Eq.20. 
B3. The minimum wealth of the super rich according to fig. 3 is about eight 
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times the normal mean, wm = 8 < w >. 
B4. The total number of the super rich minority is N2 = 3% of the total 
population, 

N2= f N(w)dw = Cwm = 0,03 (24) 

B5. The total capital of the super rich minority (for 5 = 0.5) is 

K2 = N2wm{\ + 5)/5 = 0.03 * 8 < w > *3 = 0.72 < w > (25) 

B6. The mean wealth of the super rich minority is 

< w2 >= (K2/N2) = wm(l + 5)/5 = 8<w>*3 = 25<w> (26) 

B7. In fig. 3 the super rich minority (3% of the population) owns 0.72 < w >= 
40% of the national wealth and the normal majority (97% of the population) 
owns 0.97 < w > = 40%. 

4 Boltzmann and Pareto phase transition 

The normal rich majority and the super rich minority belong to two dif­
ferent states or phases. The majority is governed by the Boltzmann law, the 
minority by a Pareto law. This corresponds to two different phases, like liquid 
and gas in physical sciences, and may be calculated by the Lagrange principle, 

L = f — Xg —>• rnaximurn\ (27) 

L\ = —xlnx— <w> SjWjXj —> maximum). (28) 

L2 = Axa— < w > SkWuXk —> maximum] (29) 

y = b — xm (30) 

Eq.27 is the general Lagrange equation, Eq.28 the Lagrange principle in 
stochastic systems and Eq.29 the Lagrange principle in rational systems. All 
may be considered linear equations of < w >. The b— value in Eq.30 is given 
by the entropy or utility function, which is lower for the super rich popula­
tion due to the small factor A, which is of the order of A = 0.1 in fig. 3. 
The slope "m" is given by the total wealth EjWjXj, which is higher for the 
normal population (60%). The borderline between the normal and the super 
rich population is given by the intersection of the two lines at < w > c in 4. 
Below < w >c the solid line is higher (at maximum) and the normal phase 
dominates. Above < w >c the broken line is higher (at maximum) and the 
super rich phase dominates. The transition point < w >c is given by L\ = L2 

. However, the data are not yet sufficient to tell whether the transition "nor­
mal" - "super rich" really is of first order, as it is indicated by the sharp knee 
in fig.3 and the intersection in fig. 4. Other authors [13] find a smooth second 
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Fig. 4. For low mean income < w > the Lagrange function L\ (solid line) is at 
maximum, the normal rich phase dominates. For very large mean income < w > the 
Lagrange function Li (broken line) is higher (at maximum), the super rich phase 
dominates. 

order transition from the Boltzmann region of normal people to the Pareto 
region of the super rich. The point of transition is important for the full un­
derstanding of the system, but even more important is the mechanism tha t 
keeps normal and super rich people separated and drifting more and more 
apar t . This topic will be discussed in a separate paper on the mechanism of 
economic growth. 
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S u m m a r y . Economic growth is a result of production and may be calculated by a 
differential form 5q(K, L), which depends on capital (K) and labor (L). Differential 
forms in two variables are generally not exact. Accordingly, a general production 
function q does not exist ex ante, the integral J Sq may not be calculated, unless 
the path of integration is given. All production functions qx(K,L) depend on a 
given production process (x). This corresponds to the first law of thermodynamics. 
The not exact differential form Sq of economic production will become exact by 
introducing an integrating factor (A), 5q = Xdf. This corresponds to the second 
law of thermodynamics. The function / exists ex ante and is called entropy (5) 
in physics and production function ([/) in economics. The factor A will be a mean 
price level, the mean GDP per capita or standard of living. Production is a Carnot 
process, which always creates two levels (A). In motors and refrigerators these levels 
(A) are called hot and cold, in economic systems they are called rich and poor, which 
explains the two different functions of wealth for normal and for super rich people. 
The efficiency of the Carnot process grows with the difference in levels (A). For this 
reason the gap between poor and rich tends to grow permanently. 

Key words : Differential forms, economic growth, distribution of wealth, Boltz-
mann distribution, Pareto distribution, Carnot process, entropy, Cobb Douglas pro­
duction function. 

1 Introduction 

In the last ten years new interdisciplinary approaches to economics have 
developed in natural science. First steps have been made by W. Weidlich 
1972 [10], D. K. Foley 1994 [3], J. Mimkes 1995 [7], H. G. Stanley 1999 [9], 
Aruka 2000 [1] and others. In order to enhance the communication between 
different disciplines a number of international conferences have been carried 
out worldwide in the last five years, with topics on complexity in economics, 
econophysics and economic agents. In this paper differential forms are dis­
cussed as a basis for economic growth. In natural science the concept of not 
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exact differential forms leads to the first and second laws of thermodynamics. 
Accordingly, the principles of calculus may be expected to lead to basic laws 
of macro economics and markets. In the first chapters we will discuss differ­
ential forms. One dimensional differential forms df(x) are always exact, they 
may be calculated beforehand (ex ante), the integral from x = A to x = B 
will depend on the limits, only. (This is the calculus we learn in high school). 
A closed integral of an exact differential form will always be zero, 

B A B B 

jdf = j dh+j df2= j dh-j df2=Q (1) 
A B A A 

However, in two dimensions differential forms Sg(x, y) are not necessarily exact 
and may not be calculated ex ante. A closed integral of not exact differential 
forms will generally not be zero, the value of the integral will depend on the 
limits A and B and on the path of integration, (see e.g. Kaplan [5]) 

B A B B 

<ftg = jdgi + J5g2 = j ' S g i - J5g2 ^ 0 (2) 
A B A A 

The net output depends on the path of the integral and cannot generally be 
determined ex ante. 

2 Differential Forms in Economics: the "First Law" 

Economic growth (Sq) is a result of periodic production (W). In farms, 
automobile plants or professional offices laborers may work for the same time, 
but the result will depend on the production process. Production may be 
modeled by the calculus of not exact differential forms, 

- isw = <j>5q (3) 

Periodic production depends on the path of integration, the production pro­
cess. Eq.3 is equivalent to the first law of thermodynamics [4]. The negative 
sign indicates that work (-W) has to be invested in order to obtain a net 
output (Aq) of production. 

2.1 Income (Y) and Consumption (C) 

The cyclic process of economic production, Eq.3, may be split into two 
parts, the integral from A to B and back from B to A, 

B A B B 

-J5W = J5q = J5g1+J8g2 = J5g1-J5g2=Y-C = Aq (4) 
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Sales returns (Y) and costs (C) of a company, income (Y) and consumption 
(C) of a private person are both part of the same production cycle and depend 
on the production and consumption process. Eq.4 states that the surplus or 
net output {Aq) may not be calculated beforehand (ex ante), unless the pro­
duction process (x) or path of integration is known. Each production process 
leads to a specific production function qx • A general production function (q) 
without a given production process does not exist, ex ante. 

3 Differential Forms in Economics: the "Second Law" 

The not exact differential form of economic net output 6q may be turned 
into an exact differential form df - that may be calculated ex ante - by an 
integrating factor A, 

Sq = Xdf (5) 

This law corresponds to the second law of thermodynamics, 8Q = TdS. In 
stochastic systems (thermodynamics) A = T is called temperature, f = S 
is called entropy (see e.g. Fowler and Guggenheim [4]). In rational systems 
(economics) / = U is called production function and A is a mean price level 
or mean income level. 

4 Product ion Function of Stochastic Systems 

In stochastic systems the function / = S is given by the entropy function. 
5 measures the complexity of a stochastic (production) process and is defined 
by the logarithm of probability P, 

S = InP (6) 

Example 1. Production with heterogeneously skilled labour: Companies em­
ploy workers, engineers, secretaries, managers etc. If there are three types of 
labour - with Ni, N-2 and N$ employees for each type, the entropy may be 
calculated by mathematics of combinations, 

S = lnP = lnNl/N1\N2lN3\. (7) 

Introducing the relative number of employees x = Ni/N, y = N2/N, z = 
N3/N in each type of labour and the Stirling formula for lnN\ = NlnN — N 
we obtain the entropy of mixing, 

S = InP = —Nxlnx + ylny + zlnz (8) 

For constant A Eq.5 may be integrated and we obtain the special production 
function qx (entropy of mixing in stochastic systems), 
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qx = \AS = -\Nln(xx,yv,zz) 

x + y + z = 1 

x,y,z > 0 

(9) 

This production function applies to a process with three production factors 
x,y,z at constant level A. The production function 9 has been plotted for a 
new product, qr(x), in fig. 1. The first small numbers of a new product x 
obtain the highest marginal net productivity. 

Entropy and Cobb Douglas production functions 

0,10 0,15 0,20 0,25 

Production factor x 

Fig. 1. The entropy function q\(x) according to Eq.9 - solid line - differs only little 
from the Cobb Douglas production function q\(x) according to Eq.10. 

4.1 Production Function of Rational Systems 

In rational systems (economics) the functions / in Eq.5 is called production 
function U, 

f = UCD(x,y,z) = A(xayPz^) (10) 

In the Cobb Douglas type function the values of power are variously specified 
according to the scale of production. At constant scale of production the 
condition for the elasticity coefficients is given by a + f3 + 7 = 1, a,/J, 7 > 0. 
A is again a mean price level or mean income level. In fig. 1 the Cobb Douglas 
type function U = 0.7^/3; is given by the dashed line. Both functions, entropy 
of stochastic systems and the Cobb Douglas function of rational systems do 
not differ by much. 
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5 The Carnot Production Process 

According to Carnot the first and second law may be combined and inte­
grated for a specific closed path: along A = constant and S = constant in the 
X — S diagram, as shown in 2, 

fSq = f TdS = T2AS - Ti_AS = Y-C = Aq (11) 

A = constant is equivalent to production at constant price level or constant 
standard of living, S = constant is equivalent to transport between two levels 
Ai and A2 without net output, 6q = 0. The Carnot cycle is an idealized pro-

Carnot production cycle 
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Fig. 2. In the Carnot cycle the closed integral of production Eq. l l is carried out 
at constant A and constant S, starting and ending at point (1). The surplus of this 
production process Aq = Y — C = AX * AS corresponds to the enclosed area in 2. 

cess. It is the basis of production, every economic unit like companies, banks, 
countries and single persons have to follow this process. The first and second 
law are universal and apply to economics, to biology, to natural science. In 
motors and refrigerators the Carnot process creates two temperature levels, 
the hot side and the cold side. In production, trade and finance the Carnot 
process creates two income levels, the rich side and the poor side. The effi­
ciency of the Carnot process is proportional to the difference in price levels 
(A). 
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In production we have earnings of owners (Y) and income of workers or labour 
costs (C), fig. 2. In trade we have import and export prices, in finance we find 
different interests for borrowing and lending. An example of the Carnot pro­
cess is given for trade: 
Example 2: Carnot cycle of trade (Dutch import of furniture from Indonesia): 
(1) —>• (2): A Dutch importer collects (AS < 0) furniture from workers in 
Indonesia. At the low wage level (Ai) in furniture producing in Indonesia the 
production costs are C = Ai * AS. 
(2) —> (3): The furniture is transported to Holland without changing the dis­
tribution, S = constant. 
(3) —> (4): In Holland the furniture is sold and distributed (AS > 0) to the 
customers. At the higher price level (A2) of furniture in Holland the earnings 
are Y = X2* AS. 
(4) —> (1): The cycle starts again. The surplus of the furniture production 
cycle is Aq = Y — C = NAX * AS and corresponds to the enclosed area in 
fig. 2. 
This example applies to the production processes of all commodities, to food 
markets and automobile companies, to financial markets and wealth distribu­
tion. 

5.1 The two Levels in World Wealth Distribution 

The 1995 world distribution of wealth, fig.3 is clearly divided into two 
parts. Fig.3 shows the GDP distribution of the world and the corresponding 
number of people. In the "third world" more than three billion people live 
below or close to a GDP of 2.000 US $ per capita. And in the "first world" 
about one billion people live between 12.000 and 16.000 US $ per capita. 
(The small dip at 14.000 US $ per capita is artificial and due to fluctuations 
of the US $ and EU currencies.) The separation into rich and poor countries 
may be explained by the Carnot cycle. In rich countries large companies, 
stocks and property are operating with high efficiency due to a well developed 
infra structure. The companies are big economic Carnot machines or capital 
pumps. The Carnot process is the basis of heat pumps, which may draw 
heat from a cold river to a warm house. And by the same mechanism capital 
pumps may draw capital from a poor countries and pump it to rich countries. 
An extreme example has been the 19th century colonialism, that has drawn 
immense wealth from the "third world" to the "first world". The efficiency 
(n) of a capital pump grows with the difference in income levels (A), 

r ? = ( A 2 - A i ) / A i (12) 

Example 3. Efficiency of trade: The GDP per capita in Holland and Indonesia 
are Xitoiiand = 12.000 US S per capita and Xindonesia = 3.000 US $ per capita. 
Importing local commodities like furniture from Indonesia to Holland leads 
to an (ideal) efficiency of n = (12.000 - 3.000)/3.000 = 3 or 300% revenues. 
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Fig. 3. Shows the distribution of wealth in the world [CIA World Factbook, USA, 
2004] [2]. The number of people in different income classes is given by the gross 
domestic product (GDP) per person. The distribution is clearly divided into two 
parts. The majority of people (about three billion) in the "third world" live below 
or close to 2.000 US $ per person. The minority of about one billion people in the 
"first world" have an income between 12.000 and 15.000 US $ per capita. (The gap 
at 14.000 US $ per capita is an artifact and due to US - EU currency fluctuations.) 
About two billion people, the "second world" live in between the two extremes. 

The Carnot process stabilises the difference in levels A in a motor, once it is 
running well. In the same way the Carnot process of trade may stabilise the 
difference in income levels between the first and third world. 

5.2 The two Levels in National Wealth Distribution 

The distribution of wealth within a nation like the USA 1993- 2001, fig.4, 
and other countries is again clearly divided into two parts. The wealth of 
less affluent majority follows a Boltzmann distribution, which may be derived 
from the entropy function 9. The wealth of the super rich minority follows a 
Pareto law, which may be derived from the Cobb Douglas function 10. The 
separation into less affluent and super rich people may be explained by the 
Carnot cycle. Super rich people run large companies, stocks and property. 
They are again owners of big economic Carnot machines or capital pumps. 
The efficiency of a capital pump grows with the difference in income levels. 
This is the reason for wage dumping and for first world companies to change 
to third world production. In a running motor the difference in temperature 
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Fig. 4. shows the percentage of people in wage classes relative to average (USA 
1983 — 2001) [Silva and Yakovenko]. The distribution is clearly divided into two 
parts. The wealth of the majority of people (97%) follows a Boltzmann distribution, 
the wealth of the minority of super rich follows a Pareto law. 

levels inside and outside will grow. In the same way in economies the Carnot 
process will enhance the difference in income levels between the normal and 
the super rich. 
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S u m m a r y . We discuss the ideal gas like models of a trading market. The effect 
of savings on the distribution have been thoroughly reviewed. The market with 
fixed saving factors leads to a Gamma-like distribution. In a market with quenched 
random saving factors for its agents we show that the steady state income (m) 
distribution P(m) in the model has a power law tail with Pareto index v equal to 
unity. We also discuss the detailed numerical results on this model. We analyze the 
distribution of mutual money difference and also develop a master equation for the 
time development of P(m). Precise solutions are then obtained in some special cases. 

1 Introduction 

The distribution of wealth among individuals in an economy has been an 
important area of research in economics, for more than a hundred years. Pareto 
[1] first quantified the high-end of the income distribution in a society and 
found it to follow a power-law 

P(m) ~ m-(1+v), (1) 

where P gives the normalized number of people with income m, and the 
exponent v is called the Pareto index. 

Considerable investigations with real data during the last ten years re­
vealed that the tail of the income distribution indeed follows the above men­
tioned behavior and the value of the Pareto index v is generally seen to vary 
between 1 and 3 [2, 3, 4, 5]. It is also known that typically less than 10% of 
the population in any country possesses about 40% of the total wealth of that 
country and they follow the above law. The rest of the low income popula­
tion, in fact the majority (90% or more), follow a different distribution which 
is debated to be either Gibbs [3, 6, 7] or log-normal [4]. 

Much work has been done recently on models of markets, where economic 
(trading) activity is analogous to some scattering process [6, 8, 9, 10, 11, 12, 
13, 14, 15, 16] as in the kinetic theory [17] of gases or liquids. 
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We put our attention to models where introducing a saving propensity 
(or factor) [18] for the agents, a wealth distribution similar to that in the 
real economy can be obtained [8, 12]. Savings do play an important role in 
determining the nature of the wealth distribution in an economy and this 
has already been observed in some recent investigations [19]. Two variants of 
the model have been of recent interest; namely, where the agents have the 
same fixed saving factor [8], and where the agents have a quenched random 
distribution of saving factors [12]. While the former has been understood to a 
certain extent (see e.g, [20, 21]), and argued to resemble a gamma distribution 
[21], attempts to analyze the latter model are still incomplete (see however 
[22]). Further numerical studies [23] of time correlations in the model seem to 
indicate even more intriguing features of the model. In this paper, we intend 
to analyze the second market model with randomly distributed saving factor, 
using a master equation type approach similar to kinetic models of condensed 
matter. 

We have studied here numerically a gas model of a trading market. We have 
considered the effect of saving propensity of the traders. The saving propensity 
is assumed to have a randomness. Our observations indicate that Gibbs and 
Pareto distributions fall in the same category and can appear naturally in the 
century-old and well-established kinetic theory of gas [17]: Gibbs distribution 
for no saving and Pareto distribution for agents with quenched random saving 
propensity. Our model study also indicates the appearance of self-organized 
criticality [24] in the simplest model so far, namely in the kinetic theory of 
gas models, when the stability effect of savings [18] is incorporated. 

2 Ideal-gas like models 

We consider an ideal-gas model of a closed economic system where total money 
M and total number of agents N is fixed. No production or migration occurs 
and the only economic activity is confined to trading. Each agent i, individual 
or corporate, possess money rrii(t) at time t. In any trading, a pair of traders 
i and j randomly exchange their money [6, 7, 8], such that their total money 
is (locally) conserved and none end up with negative money (rrii(t) > 0, i.e, 
debt not allowed): 

mi(t)+m,j(t) = mi(i: + l)+mj(t+l); (2) 

time (t) changes by one unit after each trading. The steady-state (t —> oo) 
distribution of money is Gibbs one: 

P{m) = {I/T) exp(-m/T) ; T = M/N. (3) 

Hence, no matter how uniform or justified the initial distribution is, the 
eventual steady state corresponds to Gibbs distribution where most of the 
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people have got very little money. This follows from the conservation of money 
and additivity of entropy: 

P(mi)P(m2) = P(rrii + m2). (4) 

This steady state result is quite robust and realistic too! In fact, several vari­
ations of the trading, and of the 'lattice' (on which the agents can be put and 
each agent trade with its 'lattice neighbors' only), whether compact, fractal or 
small-world like [2], leaves the distribution unchanged. Some other variations 
like random sharing of an amount 2m2 only (not of mi + m2) when mi > m2 

(trading at the level of lower economic class in the trade), lead to even drastic 
situation: all the money in the market drifts to one agent and the rest become 
truely pauper [9, 10]. 

2.1 Effect of fixed or uniform savings 

In any trading, savings come naturally [18]. A saving propensity factor A is 
therefore introduced in the same model [8] (see [7] for model without savings), 
where each trader at time t saves a fraction A of its money rrii(t) and trades 
randomly with the rest: 

nii(t + 1) = rrii{t) + Am; nij(t + 1) = m.j(t) — Am (5) 

where 
Am = (1 - X)[e{mi(t) + mj(t)} - mi(t)], (6) 

e being a random fraction, coming from the stochastic nature of the trading. 

Fig. 1. Steady state money distribution (a) P{m) for the fixed A model, and (b) 
Pf(m) for some specific values of A in the distributed A model. All data are for 
N = 200. Inset of (b) shows scaling behavior of Pf(m). 
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The evolution of money in such a trading can be written as: 

m;(t + 1) = Xirrnit) + eij [(1 - \i)m,i(t) + (1 - \j)mj(t)], (7) 

mj(t + 1) = Xjmj(t) + (1 - eij) [(1 - Xi)mi(t) + (1 - A,-K-(*)] (8) 

One again follows the same trading rules as before, except that 

Am = eij(l - Xj)m,j{t) - (1 - Aj)(l - e ^ m ^ i ) (9) 

here; Aj and Xj being the saving propensities of agents i and j . The agents have 
fixed (over time) saving propensities, distributed independently, randomly and 
uniformly (white) within an interval 0 to 1 agent i saves a random fraction 
A; (0 < Xi < 1) and this Aj value is quenched for each agent (A» are indepen­
dent of trading or t). Starting with an arbitrary initial (uniform or random) 
distribution of money among the agents, the market evolves with the trad­
ings. At each time, two agents are randomly selected and the money exchange 
among them occurs, following the above mentioned scheme. We check for the 
steady state, by looking at the stability of the money distribution in succes­
sive Monte Carlo steps t (we define one Monte Carlo time step as N pairwise 
interations). Eventually, after a typical relaxation time (~ 106 for N = 1000 
and uniformly distributed A) dependent on N and the distribution of A, the 
money distribution becomes stationary. After this, we average the money dis­
tribution over ~ 103 time steps. Finally we take configurational average over 
~ 105 realizations of the A distribution to get the money distribution P(m). 
It is found to follow a strict power-law decay. This decay fits to Pareto law 
(1) with v = 1.01 ± 0.02 (Fig. 2). Note, for finite size N of the market, the 
distribution has a narrow initial growth upto a most-probable value mp after 
which it falls off with a power-law tail for several decades. This Pareto law 
(with v ~ 1) covers the entire range in m of the distribution P(m) in the limit 
N —> oo. We checked that this power law is extremely robust: apart from the 
uniform A distribution used in the simulations in Fig. 2, we also checked the 
results for a distribution 

/9(A)~ |Ao-A| a , A 0 ^ l , 0 < A < 1 , (10) 

of quenched A values among the agents. The Pareto law with u = 1 is universal 
for all a. The data in Fig. 2 corresponds to Ao = 0, a = 0. For negative a 
values, however, we get an initial (small m) Gibbs-like decay in P{m) (see 
Fig. 3). 

In case of uniform distribution of saving propensity A (0 < A < 1), the 
individual money distribution Pf(m) for agents with any particular A value, 
although differs considerably, remains non-monotonic: similar to that for fixed 
A market with mp(X) shifting with A (see Fig. 1). Few subtle points may be 
noted though: while for fixed A the mp(X) were all less than of the order of 
unity (Fig. 1(a)), for distributed A case mp(A) can be considerably larger and 
can approach to the order of N for large A (see Fig. 1(b)). The other important 
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Fig. 3. Steady state money distribution P(m) in the model with for a system of 
N = 100 agents with A distributed as p(X) ~ \ a , with different values of a. In all 
cases, agents play with average money per agent MjN = 1. 

difference is in the scaling behavior of P/(m), as shown in the inset of Fig. 
1(b). In the distributed A ensemble, Pf(m) appears to have a very simple 
scaling: 

Pf(m)~(l-\)r(m(l-\)), (11) 

for A —> 1, where the scaling function T(x) has non-monotonic variation 
in x. The fixed (same for all agents) A income distribution P/(m) do not 
have any such comparative scaling property. It may be noted that a small 
difference exists between the ensembles considered in Fig 1(a) and 1(b): while 
/mPf(m)dm = M (independent of A), J mPf(m)dm is not a constant and 
infact approaches to order of M as A —> 1. There is also a marked qualitative 
difference in fluctuations (see Fig. 4): while for fixed A, the fluctuations in time 
(around the most-probable value) in the individuals' money m;(i) gradually 
decreases with increasing A, for quenched distribution of A, the trend gets 
reversed (see Fig. 4). 

We now investigate on the range of distribution of the saving propensities 
in a certain interval a < \i < b, where, 0 < a < b < 1. For uniform distribution 
within the range, we observe the appearance of the same power law in the 
distribution but for a narrower region. As may be seen from Fig. 5, as a —>• b, 
the power-law behavior is seen for values a or b approaching more and more 
towards unity: For the same width of the interval |6 — a\, one gets power-law 
(with same v) when 6—^1. This indicates, for fixed A, A = 0 corresponds to 
Gibbs distribution, and one gets Pareto law when A has got non-zero width of 
its distribution extending upto A = 1. This of course indicates a crucial role 
of these high saving propensity agents: the power law behavior is truely valid 
upto the asymptotic limit if A = 1 is included. Indeed, had we assumed Ao = 1 
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Fig. 4. Time variation of the money of the ith trader: For fixed A market - (a), (b), 
(c); and for agents with specific values of A in the distributed A market - (d), (e), 
(f)-

in (10), the Pareto exponent v immediately switches over to v = 1 + a. Of 
course, Ao ^ 1 in (10) leads to the universality of the Pareto distribution with 
v = 1 (irrespective of Ao and a). Indeed this can be easily rationalised from 
the scaling behavior (11): P(m) ~ JQ Pf(m)p(\)d\ ~ m~2 for p(X) given by 
(10) and m~(2 + a) if Ao = 1 in (10) (for large m values). 

These model income distributions P(m) compare very well with the wealth 
distributions of various countries: Data suggests Gibbs like distribution in the 
low-income range (more than 90% of the population) and Pareto-like in the 
high-income range [3] (less than 10% of the population) of various countries. In 
fact, we compared one model simulation of the market with saving propensity 
of the agents distributed following (10), with Ao = 0 and a = —0.7 [12]. The 
qualitative resemblance of the model income distribution with the real data 
for Japan and USA in recent years is quite intriguing. In fact, for negative 
a values in (10), the density of traders with low saving propensity is higher 
and since A = 0 ensemble yields Gibbs-like income distribution (3), we see 
an initial Gibbs-like distribution which crosses over to Pareto distribution (1) 
with v = 1.0 for large m values. The position of the crossover point depends 
on the value of a. It is important to note that any distribution of A near 
A = 1, of finite width, eventually gives Pareto law for large m limit. The same 
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Fig. 5. Steady state money distribution in cases when the saving propensity A is 
distributed uniformly within a range of values: (a) width of A distribution is 0.5, 
money distribution shows power law for 0.5 < A < 1.0; (a) width of A distribution is 
0.2, money distribution shows power law for 0.7 < A < 0.9. The power law exponent 
is v ~ 1 in all cases. All data shown here are for TV = 100, M/N = 1. 

kind of crossover behavior (from Gibbs to Pareto) can also be reproduced in a 
model market of mixed agents where A = 0 for a finite fraction of population 
and A is distributed uniformly over a finite range near A = 1 for the rest of 
the population. 

We even considered annealed randomness in the saving propensity A: here 
Xi for any agent i changes from one value to another within the range 0 < 
Xi < 1, after each trading. Numerical studies for this annealed model did not 
show any power law behavior for P(m); rather it again becomes exponentially 
decaying on both sides of a most-probable value. 

3 Dynamics of money exchange 

We will now investigate the steady state distribution of money resulting from 
the above two equations representing the trading and money dynamics. We 
will now solve the dynamics of money distribution in two limits. In one case, 
we study the evolution of the mutual money difference among the agents and 
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look for a self-consistent equation for its steady state distribution. In the other 
case, we develop a master equation for the money distribution function. 

m 
Fig. 6. Steady state money distribution P(m) against m in a numerical simulation 
of a market with N = 200, following equations (7) and (8) with etj = 1/2. The 
dotted lines correspond to m~^1+v'\ v = 1. 

3.1 Distribution of money difference 

Clearly in the process as considered above, the total money (rrii + rrij) of the 
pair of agents i and j remains constant, while the difference Arriij evolves as 

(Amij)t+i = {rrii -m,j)t+i 
Aj + Aj 

(Arriij) f 
A,; — A^ 

(rrii +m,j)t 

+ (2etj - 1)[(1 - Xi)mi(t) + (1 - \j)mj(t)]. (12) 

Numerically, as shown in Fig. 2, we observe that the steady state money 
distribution in the market becomes a power law, following such tradings when 
the saving factor Xi of the agents remain constant over time but varies from 
agent to agent widely. As shown in the numerical simulation results for P(m) 
in Fig. 6, the law, as well as the exponent, remains unchanged even when 
eij = 1/2 for every trading. This can be justified by the earlier numerical 
observation [8,12] for fixed A market (Aj = A for all i) that in the steady state, 
criticality occurs as A —> 1 where of course the dynamics becomes extremely 
slow. In other words, after the steady state is realized, the third term in (12) 
becomes unimportant for the critical behavior. We therefore concentrate on 
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this case, where the above evolution equation for Arriij can be written in a 
more simplified form as 

{Amij)t+1 = aij(Amij)t + Pij{mi + mj)t, (13) 

where a^- = (̂A^ + Xj) and fy = \{Xi — Xj). As such, 0 < a < 1 and 
- I < / 3 < I . 

The steady state probability distribution D for the modulus A = \Am\ of 
the mutual money difference between any two agents in the market can be 
obtained from (13) in the following way provided A is very much larger than 
the average money per agent = M/N. This is because, large A can appear 
from 'scattering' involving rrii — rrij = ±A and when either rrii or rrij is small. 
When both rrii and rrij are large, maintaining a large A between them, their 
probability is much smaller and hence their contribution. Then if, say, rrii is 
large and rrij is not, the right hand side of (13) becomes ~ (a%j + /3ij)(Aij)t 

and so on. Consequently for large A the distribution D satisfies 

D(A) = f dA' D{A') {S(A - (a + p)A') + S(A -{a- p)A')) 

= '<(xMx)>-
where we have used the symmetry of the /3 distribution and the relation 
aij + fiij = Aj, and have suppressed labels i, j . Here (...) denote average over 
A distribution in the market. Taking now a uniform random distribution of 
the saving factor A, p(X) = 1 for 0 < A < 1, and assuming D(A) ~ ^\-U+7) 
for large A, we get 

1 = 2 f dX X"< = 2(1 + 7)-1, (15) 

giving 7 = 1. No other value fits the above equation. This also indicates that 
the money distribution P(m) in the market also follows a similar power law 
variation, P(m) ~ m~(1+") and v = 7. We will now show in a more rigorous 
way that indeed the only stable solution corresponds to v = 1, as observed 
numerically [12, 13, 14]. 

3.2 Master equation and its analysis 

We also develop a Boltzmann-like master equation for the time development 
of P(m,t), the probability distribution of money in the market [25, 26]. We 
again consider the case eij = \ in (7) and (8) and rewrite them as 

CsL^te) ,— *<*%)•• 'H(1±A)- (16) 

Collecting the contributions from terms scattering in and subtracting those 
scattering out, we can write the master equation for P(m, t) as 
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j - 1 \-P(m,t) = { / dnii / dnij P(mi,t)P(mj,t) S(/J.fmi + njrrij -m)), 

(17) 
which in the steady state gives 

P(m) = ( / drrii \ drrij P(mi)P(mj) 5(fj,fmi + fijnij — m)). (18) 

Assuming, P(m) ~ m~(1+") for m —> oo, we get [25, 26] 

1 = {(M+)" + 0 0 " ) = J J d^+dfi-p(fi+)q(fi-) [(ji+y + (jx-)"] . (19) 

Considering now the dominant terms (oc x~r for r > 0, or oc ln(l/a;) for r = 0) 
in the x —>• 0 limit of the integral /0°° m^ + r ^P(m) exp(—mx)dm, we get from 
eqn. (19), after integrations, 1 = 2/(v+ 1), giving finally v = 1 (details in 
Appendix). 

4 Summary and Discussions 

We have numerically simulated here ideal-gas like models of trading markets, 
where each agent is identified with a gas molecule and each trading as an 
elastic or money-conserving two-body collision. Unlike in the ideal gas, we 
introduce (quenched) saving propensity of the agents, distributed widely be­
tween the agents (0 < A < 1). For quenched random variation of A among the 
agents the system remarkably self-organizes to a critical Pareto distribution 
(1) of money with v ~ 1.0 (Fig. 2). The exponent is quite robust: for savings 
distribution p(A) ~ |Ao — A|a, Ao ^ 1, one gets the same Pareto law with v = 1 
(independent of Ao or a). 

A master equation for P(m,t), as in (17), for the original case (eqns. (7) 
and (8)) was first formulated for fixed A (Ai same for all i), in [20] and solved 
numerically. Later, a generalized master equation for the same, where A is 
distributed, was formulated and solved in [22] and [25]. We show here that 
our analytic study clearly support the power-law for P(m) with the exponent 
value v = 1 universally, as observed numerically earlier [12, 13, 14]. 

It may be noted that the trading market model we have talked about here 
has got some apparent limitations. The stochastic nature of trading assumed 
here in the trading market, through the random fraction e in (6), is of course 
not very straightforward as agents apparently go for trading with some def­
inite purpose (utility maximization of both money and commodity). We are 
however, looking only at the money transactions between the traders. In this 
sense, the income distribution we study here essentially corresponds to 'paper 
money', and not the 'real wealth'. However, even taking money and commod­
ity together, one can argue (see [10]) for the same stochastic nature of the 
tradings, due to the absence of 'just pricing' and the effects of bargains in the 
market. 
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Apart from the observation that Gibbs (1901) and Pareto (1897) distri­
butions fall in the same category and can appear naturally in the century-old 
and well-established kinetic theory of gas, that this model study indicates 
the appearance of self-organized criticality in the simplest (gas) model so far, 
when the stability effect of savings incorporated, is remarkable. 
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A Alternative solution of the steady state master 
equation (18) 

Let Sr(x) = /0°° dmP(m)ml'+r exp(-mx); r > 0,x > 0. If P(m) = A/m' 

?r(aO = A f 
Jo 

dm mr exp(—mx) 

A— if r > 0 
r 

^ l n ( - ) if r = 0. (20) 

From eqn. (18), we can write 

Sr(x) = 
/•OO /-O0 

{ / dnii / dnij P(mi)P(mj)(minf + rrij^)v+r exp[-(mi/x+ + rrijfj,j)x]) 

/•oo r /-oo 

~ / drrii J4mp1(exp(-m i /x+x) (Mi1")" T) / drrij P(mj){exp(-mj[ijx)) 
Jo Uo 

/

oo r /-oo 

drrij ^ lm^1(exp(-mj/xjx) (njY r) / dnii P(m;){exp(-mi/x+x)) (21) 

or, 

Sr(x) = I d(4 p(nf) ( dim Ami r exp(-mnj,fx)) (/x+)"+r 

+ / dfij q{nj) [ I dm, Amrfx exp(-mj(i,jx)) {^jY+r (22) 



Ideal-Gas Like Markets: Effect of Savings 91 

since for small x, the terms in the square brackets in (21) approach unity. We 
can therefore rewrite (22) as 

Sr(x) = 2 

-, 1_ 

f dn+{ii+),/+rsr(xii+)+ r dir (M-y+rsr(xlx-) (23) 

Using now the forms of Sr(x) as in (20), and collecting terms of order x r 

(for r > 0) or of order l n ( l / x ) (for r = 0) from both sides of (23), we get (19). 
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Summary. Various multi-agent models of wealth distributions denned by micro­
scopic laws regulating the trades, with or without a saving criterion, are reviewed. 
We discuss and clarify the equilibrium properties of the model with constant global 
saving propensity, resulting in Gamma distributions, and their equivalence to the 
Maxwell-Boltzmann kinetic energy distribution for a system of molecules in an ef­
fective number of dimensions D\, related to the saving propensity A [M. Patriarca, 
A. Chakraborti, and K. Kaski, Phys. Rev. E 70 (2004) 016104]. We use these re­
sults to analyze the model in which the individual saving propensities of the agents 
are quenched random variables, and the tail of the equilibrium wealth distribution 
exhibits a Pareto law f(x) oc x~a~x with an exponent a = 1 [A. Chatterjee, B. K. 
Chakrabarti, and S. S. Manna, Physica Scripta T106 (2003) 367]. Here, we show that 
the observed Pareto power law can be explained as arising from the overlap of the 
Maxwell-Boltzmann distributions associated to the various agents, which reach an 
equilibrium state characterized by their individual Gamma distributions. We also 
consider the influence of different types of saving propensity distributions on the 
equilibrium state. 

1 Introduction 

A rich man is nothing but a poor man with money'— W. C. Fields. 

If money makes the difference in this world, then it is perhaps wise to 
dwell on what money, wealth and income are, to study models for predicting 
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the respective distributions, how they are divided among the population of a 
given country and among different countries. The most common definition of 
money suggests that money is the "Commodity accepted by general consent 
as medium of economics exchange" [1]. In fact money circulates from one 
economic agent (which can be an individual, firm, country, etc.) to another, 
thus facilitating trade. It is "something which all other goods or services are 
traded for" (for details see [2]) . Throughout history various commodities have 
been used as money, termed usually as "commodity money" which include rare 
seashells or beads, and cattle (such as cows in India). Since the 17th century 
the most common forms have been metal coins, paper notes, and book-keeping 
entries. However, this is not the only important point about money. It is worth 
recalling the four functions of money according to standard economic theory: 

(i) to serve as a medium of exchange universally accepted in trade for goods 
and services 

(ii) to act as a measure of value, making possible the determination of the 
prices and the calculation of costs, or profit and loss 

(iii) to serve as a standard of deferred payments, i.e., a tool for the payment 
of debt or the unit in which loans are made and future transactions are 
fixed 

(iv) to serve as a means of storing wealth not immediately required for use. 

A main feature that emerges from these properties and that is relevant from 
the point of view of the present investigation is that money is the medium in 
which prices or values of all commodities as well as costs, profits, and trans­
actions can be determined or expressed. As for the wealth, it usually refers 
to things that have economic utility (monetary value or value of exchange), 
or material goods or property. It also represents the abundance of objects 
of value (or riches) and the state of having accumulated these objects. For 
our purpose, it is important to bear in mind that wealth can be measured in 
terms of money. Finally, income is defined as "The amount of money or its 
equivalent received during a period of time in exchange for labor or services, 
from the sale of goods or property, or as profit from financial investments" 
[3]. Therefore, it is also a quantity which can be measured in terms of money 
(per unit time). Thus, money has a two-fold fundamental role, as (i) an ex­
change medium in economic transactions, and (ii) a unit of measure which 
allows one to quantify (movements of) any type of goods which would other­
wise be ambiguous to estimate. The similarity with e.g., thermal energy (and 
thermal energy units) in physics is to be noticed. In fact, the description of 
the mutual transformations of apparently different forms of energy, such as 
heat, potential and kinetic energy, is made possible by the recognition of their 
equivalence and the corresponding use of a same unit. And it so happens that 
this same unit is also the traditional unit used for one of the forms of energy. 
For example, one could measure energy in all its forms, as actually done in 
some fields of physics, in degree Kelvin. Without the possibility of expressing 
different goods in terms of the same unit of measure, there simply would not 
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be any quantitative approach to economy models, just as there would be no 
quantitative description of the transformation of the heat in motion and vice 
versa, without a common energy unit. 

2 Multi-agent models for the distr ibution of wealth 

In recent years several works have considered multi-agent models of a 
closed economy [4, 5, 6, 7, 8, 9, 10, 11, 14]. Despite their simplicity, these 
models predict a realistic shape of the wealth distribution, both in the low 
income part, usually described by a Boltzmann (exponential) distribution, as 
well in the tail, where a power law was observed a century ago by the Italian 
social economist Pareto [15]: the wealth of individuals in a stable economy 
follows the distribution, F(x) ex x~a, where F(x) is the upper cumulative 
distribution function, that is the number of people having wealth greater than 
or equal to x, and a is an exponent (known as the Pareto exponent) estimated 
to be between 1 and 2. In such models, N agents exchange a quantity x, 
that has sometimes been defined as wealth and other times as money. As 
explained in the introduction, here money must be interpreted all the goods 
that constitute the agents' wealth expressed in the same currency. To avoid 
confusion, in the following we will use only the term wealth. The states of 
agents are characterized by the wealths {xn}, n = 1,2,. . . , N. The evolution 
of the system is then carried out according to a prescription, which defines 
a "trading rule" between agents. The evolution can be interpreted both as 
an actual time evolution or a Monte Carlo optimization procedure, aimed at 
finding the equilibrium distribution. At every time step two agents i and j 
are extracted at random and an amount of wealth Ax is exchanged between 
them, 

x'j =Xj+Ax. (1) 

It can be noticed that in this way the quantity x is conserved during the single 
transactions, x\ + x'j = Xi + Xj. Here x\ and x'j are the agent wealths after the 
transaction has taken place. Several rules have been studied for the model. 

2.1 Basic model without saving: Boltzmann distribution 

In the first version of the model, so far unnoticed in later literature, the 
money difference Ax is assumed to have a constant value [4, 5, 6], 

Ax = Ax0 . (2) 

This rule, together with the constraint that transactions can take place only if 
x\ > 0 and x'j > 0, provides a Boltzmann distribution; see the curve for A = 0 
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in Fig. 1. An equilibrium distribution with exponential tail is also obtained if 
Ax is a random fraction e of the wealth of one of the two agents, Ax = exi or 
Ax = exj. A trading rule based on the random redistribution of the sum of the 
wealths of the two agents has been introduced by Dragulescu and Yakovenko 
[7], 

x'j = e(xi +Xj), (3) 

where e is a random number uniformly distributed between 0 and 1 and e is 
the complementary fraction, i.e. e + e = 1. Equations (3) are easily shown to 
correspond to the trading rule (1), with 

Ax = exi — exj . (4) 

In the following we will concentrate on the latter version of the model and 
its generalizations, though both the versions of the basic model defined by 
Eqs. (2) or (4) lead to the Boltzmann distribution, 

/ (z ) = ^ e x p ( - ^ ) , (5) 

where the effective temperature of the system is just the average wealth (x) 
[4, 5, 6, 7]. The result (5) is found to be robust, in that it is largely inde­
pendent of various factors. Namely, it is obtained for the various forms of Ax 
mentioned above, for pairwise as well as multi-agent interactions, for arbi­
trary initial conditions [8], and finally, for random or consecutive extraction 
of the interacting agents. The Boltzmann distribution thus obtained has been 
sometimes referred to as an "unfair distribution", in that it is characterized 
by a majority of poor agents and very few rich agents, as signaled in particu­
lar by a zero mode and by the exponential tail. The form of distribution (5) 
will be referred to as the Boltzmann distribution and is also known as Gibbs 
distribution. 

2.2 Minimum investment model without saving 

Despite the Boltzmann distribution is robust respect to the variation of 
several parameters, the way it depends on the details of the trading rule is 
subtle. For instance, in the model studied in [9], the equilibrium distribution 
can have a very different shape. In that model it is assumed that both economic 
agents i and j invest the same amount xmin, which is taken as the minimum 
wealth of the two agents, xmin = min{a;;, Xj}. The wealths after the trade are 
x\ = Xi + Ax and x'j = Xj — Ax, where Ax = (2e — l)xmin. 

We note that once an agent has lost all his wealth, he is unable to trade 
because xmin has become zero. Thus, a trader is effectively driven out of the 
market once he loses all his wealth. In this way, after a sufficient number of 
transactions only one trader survives in the market with the entire amount of 
wealth, whereas the rest of the traders have zero wealth. 
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1 1.5 

Fig. 1. Probability density for wealth x. The curve for A = 0 is the Boltzmann 
function f(x) = (x)-1 exp(—x/(x)) for the basic model of Sec. 2.1. The other curves 
correspond to a global saving propensity A > 0, see Sec. 2.3. 

2.3 Model with constant global saving propensity: 
Gamma distribution 

A step toward generalizing the basic model and making it more realistic 
is the introduction of a saving criterion regulating the trading dynamics. This 
can be achieved defining a saving propensity 0 < A < 1, that represents the 
fraction of wealth saved — and not reshuffled — during a transaction. The 
dynamics of the model is as follows [8, 9]: 

x\ = Xxi + e(l - \)(xi + Xj), 

x'j = XXJ + e(l - X)(xi + Xj), 

with e = 1 — e, corresponding to a Ax in Eq. (1) given by 

Ax = (1 — X)[eXi — exj]. 

(6) 

(7) 

This model leads to a qualitatively different equilibrium distribution. In par­
ticular, it has a mode xm > 0 and a zero limit for small x, i.e. f(x —> 0) —> 0, 
see Fig. 1. The functional form of such a distribution has been conjectured to 
be a Gamma distribution on the base of an analogy with the kinetic theory 
of gases, which is consistent with the excellent fitting provided to numerical 
data [16, 17]. Its form can be conveniently written by defining the effective 
dimension D\ as [17] 

^ = 1 + ^ 
2 1 - A 

1 + 2A 
1 - A ' 

(8) 

According to the equipartition theorem, one can introduce a corresponding 
temperature defined by the relation (a;) = D\T\/2, i.e. 

2(») 1 - A 

1 + 2A 
(x). (9) 



98 Patriarca, Chakraborti, Kaski and Germano 

Then the distribution for the reduced variable £ = x/T\ reads 

f{0 = nkji) ^A/2_1 eM~° - lD>/2i0' (10) 

i.e. a Gamma distribution of order D\/2. For integer or half-integer values of 
n = -DA/2, this function is identical to the equilibrium Maxwell-Boltzmann 
distribution of the kinetic energy for a system of molecules in thermal equi­
librium at temperature T\ in a -D^-dimensional space (see Appendix A for 
a detailed derivation). For D\ = 2, the Gamma distribution reduces to the 
Boltzmann distribution. This extension of the equivalence between kinetic the­
ory and closed economy models to values 0 < A < 1 is summarized in Table 
1. This equivalence between a multi-agent system with a saving propensity 

Table 1. Analogy between kinetic and multi-agent model 

Kinetic model Economic model 

variable K (kinetic energy) x (wealth) 
units N particles N agents 
interaction collisions trades 
dimension integer D real number D\ [see Eq. (8)] 
temperature kBT = 2 (K) jD Tx = 2 (x) jDx 

reduced variable £ = Kjk^T £ = x/T\ 
equilibrium distribution /(£) = 7D / 2(£) /(£) = 7 D A / 2 ( £ ) 

0 < A < 1 and an iV-particle system in a space with effective dimension 
D\ > 2 was originally suggested by simple considerations about the kinetics 
of a collision between two molecules. In fact, for kinematical reasons during 
such an event only a fraction of the total kinetic energy can be exchanged. 
Such a fraction is of the order of 1 — A « 1/D, to be compared with the 
expression 1 — A = 3/(£>/2 + 2) derived from Eq. (8) [17]. While A varies 
between 0 and 1, the parameter D\ monotonously increases from 2 to oo, and 
the effective temperature T\ correspondingly decreases from (x) to zero; see 
Fig. 2. It is to be noticed that according to the equipartition theorem only 
in D\ = 2 effective dimensions (A = 0) the temperature coincides with the 
average value (x), T\ = 2 (x) /2 = (x), as originally found in the basic model 
[4, 5, 6, 7]. In its general meaning, temperature represents rather an estimate 
of the fluctuation of the quantity x around its average value. The equiparti­
tion theorem always gives a temperature smaller than the average value (x) 
for a number of dimensions larger than two. In the present case, Eqs. (8) or 
(9) show that this happens for any A > 0. 

The dependence of the fluctuations of the quantity x on the saving propen­
sity A was studied in [8]. In particular, the decrease in the amplitude of the 
fluctuations with increasing A is shown in Fig. 3. 
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Fig. 2. Effective dimension D\, Eq. (8), and temperature, Eq. (9), as a function of 
saving propensity A. 
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Fig. 3. Reproduced from [8] (only here m = x while T = 1 is a constant). The 
continuous and the dotted curves are the wealths of two agents with A = 0.9 and 
A = 0.5 respectively: notice the larger fluctuations in correspondence of the smaller 
A. The inset shows that Am = Ax = \/((x — (x))2) decreases with A. 

The fact that in general the market temperature T\ decreases with A means 
smaller fluctuations of x during trades, consistently with the saving criterion, 
i.e. with a A > 0. One can notice that in fact T\ = (1 — A) (x) / ( l + 2A) « 
(1 — A) (a:) is of the order of the average amount of wealth exchanged during 
a single interaction between agents, see Eqs. (6). 
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2.4 Model with individual saving propensities: Pareto tail 

In order to take into account the natural diversity between various agents, 
a model with individual propensities {A;} as quenched random variables was 
studied in [10, 11]. The dynamics of this model is the following: 

x'i = XiXi + e[(l - \i)xi + (1 - XJ)XJ] , 

x'j = XjXj + e[(l - Xi)Xi + (1 - XJ)XJ] , (11) 

where, as above, e = 1 — e. This corresponds to a Ax in Eq. (1) given by 

Ax = e(l - Xi)xi - e(l - XJ)XJ . (12) 

Besides the use of this trading rule, a further prescription is given in the 
model, namely an average over the initial random assignment of the individual 
saving propensities: With a given configuration {A^}, the system is evolved 
until equilibrium is reached, then a new set of random saving propensities {AJ} 
is extracted and reassigned to all agents, and the whole procedure is repeated 
many times. As a result of the average over the equilibrium distributions 
corresponding to the various {A^} configurations, one obtains a distribution 
with a power law tail, f(x) oc a; -" - 1 , where the Pareto exponent has the value 
a = 1. This value of the exponent has been predicted by various theoretical 
approaches to the modeling of multi-agent systems [12, 13, 14]. 

3 Further analysis of the model with individual saving 
propensities 

On one hand, the model with individual saving propensities relaxes to­
ward a power law distribution — with the prescription mentioned above to 
average the distribution over many equilibrium states corresponding to differ­
ent configurations {A^}. On the other hand, the models with a global saving 
propensity A > 0 and the basic model with A = 0, despite being particular 
cases of the general model with individual saving propensities, relax toward 
very different distributions, namely a Gamma and a Boltzmann distribution, 
respectively. In this section we show that this difference can be reconciled by 
illustrating how the observed power law is due to the superposition of differ­
ent distributions with exponential tails corresponding to subsystems of agents 
with the same value of A. 

3.1 The a;-A correlation 

A key point which explains many of the features of the model and of the 
corresponding equilibrium state is a well-defined correlation between average 
wealth and saving propensity, which has been unnoticed so far in the literature 
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Fig. 4. Equilibrium state in the x-X plane after t = 109 trades for a system of 
N = 1000 agents. Left: Circles (o) represent agents, crosses (x) represent the average 
wealth (x(A)), the continuous line is the function {x(X}) = K/(1 — A), with « = 
0.1128. Right: The product (x(A)) (1 — A) (dotted line) is constant, in agreement 
with Eq. (14). The product Ax(\)(l — A) (continuous line), where Ax(\) is the 
standard deviation, shows that Ax(X) grows slower than (x(\)). 

[18]. The existence of such a correlation can be related to the origin of the 
power law and its cut-off at high values of x. It also explains the paradox 
according to which a very rich agent may lose all his wealth when interacting 
with poor agents, as a consequence of the stochastic character of the trading 
rule defined by Eq. (11). Figure 4 shows the equilibrium state for a system with 
N = 1000 agents after t = 109 trades. Each agent is represented by a circle (o) 
in the wealth-saving propensity x%-Xi plane. The correlation between wealth x 
and saving propensity A becomes very high at large values of x and A. Namely, 
one observes that the average wealth (x(X)) [crosses (x) in Fig. 4] diverges 
for A —)• 1. The average (a;(A)) was obtained by computing the probability 
density f(x,X) in the x-X plane (normalized so that j dx dX f (x, A) = 1) and 
averaging for a fixed value of A, 

(x(A)> = fdxxf(x,X). (13) 

The observed correlation naturally follows from the structure of the trade 
dynamics (11). We remind that initially every agent has the same wealth 
xo = (x). During the initial phase of the evolution, when all agents have 
approximately the same wealth (x), an agent i with a large saving propensity 
Xi can save more — on average — and therefore accumulate more. Afterwards, 
the agent i will continue to enter trades by investing only a small fraction 
(1 — Xi)xi of his wealth x, in the trade. Even when interacting with an agent 
j , with a smaller wealth Xj < x%, agent i may still be successful in the trading, 
since agent j may have also a smaller saving propensity Aj, so that the traded 
fraction of wealth (1 — XJ)XJ is comparable with or even larger than (1 — Xi)xi. 
Trading by agent i will very probably be successful on average with all agents 
j with a Aj such that (1 — XJ)XJ is smaller than (1 — Xi)xi. These considerations 
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Fig. 5. Histogram of the wealths x' = x(t + 1) after a trade versus x = x(t) before 
the trade for all agents and trades, in a system with TV = 1000 agents and 109 trades. 
The distribution is narrower for large x (rich agents), implying that it is unlikely 
that a rich agent becomes poor within a single trade. 

suggest tha t agent i will reach equilibrium (and his maximum possible wealth) 
when (1 — Xi)xi = K RS {(1 — X)x). The ratio between the constant K and the 
average {(1 — X)x) = $^,-(1 — XJ)XJ/N is actually found to be of the order of 
magnitude of 10. The formula 

<*(A0> 1 - A i 
(14) 

however, shown as a continuous line in Fig. 4, provides an excellent inter­
polation of the average wealth (a;(A)) (also shown in the figure) computed 
numerically. 

3.2 Var iat ion of a s ingle agent ' s w e a l t h 

The stability of the asymptotic s tate is also shown by the histogram in 
Fig. 5 of the wealths x' = x(t + 1) after a t rade versus x = x(t) before it 
defined in Eqs. (1). The distribution is narrower at larger values of x than at 
smaller ones, implying tha t the probability tha t an agent i will undergo a large 
relative variation of his wealth Xi within a single t rade is much higher for poor 
agents. The situation at small x (corresponding to agents with smaller saving 
propensities) is instead more similar to tha t of the t rading rule without saving 
(A = 0), Eqs. (6): the distribution is broader, indicating a higher probability 
of a large wealth reshuffling during a t rade. 

3.3 P o w e r laws at smal l x and t sca les 

A peculiarity of the model with individual saving propensities is notewor­
thy. On one hand, in the procedure used to obtain a power law in [10] all 
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Fig. 6. The equilibrium configurations corresponding to four different random sav­
ing propensity sets {A,}, for a system with N = 1000 agents, differ especially at 
large x where the distribution deviates from a power law. 

agents are equivalent to each other: they enter the dynamical evolution law 
on an equal footing, their saving propensities are reassigned randomly with 
the same uniform distribution between 0 and 1, and even their initial con­
ditions can be set to be all equal to each other, #j = (x), without loss of 
generality. Therefore the various equilibrium configurations, corresponding to 
different sets {A^}, are expected to be statistically equivalent to each other, 
in the sense that one should be able to obtain the power law distribution by 
a simple ensemble average for any fixed configuration of saving propensities 
{Xi}, if the number of agents iV is large enough. On the other hand, an av­
eraging procedure over several {A^} configurations is in practice necessary to 
obtain a power law distribution. 

In order to understand this apparent paradox, we checked how the equi­
librium distributions, corresponding to a given set of saving propensities {A;}, 
look like. One finds that every configuration {A^} produces equilibrium dis­
tributions very different from each other; see Fig. 6 for some examples. The 
structures observed are very different from power laws, with well resolved 
peaks at large x. Only when an average over different {Ai} configurations 
is carried out, one obtains a smooth power law with Pareto exponent a = 1. 
These same figures show, however, that for a given configuration {A^} a power 
law is actually observed at small values of x. Another related interesting fea­
ture of simulations employing a single saving propensity configuration {A^} is 
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Fig. 7. Time evolution of the x distribution of a system with N = 1000 agents: 
t = 2 x 106 (top left), 3 x 106 (top-right), 5 x 106 (bottom-left), and 2 x 107 trades 
(bottom-right). The distribution looks as a power law at small times, but develops 
into a structured distribution, maintaining a power law shape only at small x. 

that a power law distribution is found only on a limited time scale, while it 
disappears partly or totally at equilibrium. Thus also in the time dimension 
one surprisingly finds a distribution much more similar to a power law at a 
smaller rather than larger scale. This is shown in the example in Fig. 7, where 
the distributions of a system of 1000 agents at four different times are com­
pared to each other. These features suggest that the power law is intrinsically 
built into the dynamical laws of the model but that, for some reasons, it fades 
away at large x and t scales. The x-X correlation discussed above in Sec. 3.1 
can provide an explanation of these features, both for those in the x and in 
the time dimension, as discussed below. 

3.4 Origin of the power law 

The peculiar features illustrated above, the necessity of averaging over 
different configurations {A^} as done in [10] to obtain a power law distribu­
tion, as well as the power law distribution itself, are here explained in terms 
of equilibrium states of suitably defined subsystems and the x-X correlation 
illustrated above. This may seem odd since at first sight the averaging proce­
dure of [10] defines a nonequilibrium process, the system being brought out of 
equilibrium from time to time by the reassignment of the saving propensities. 
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Fig. 8. Semi-log and log plots of partial distributions (continuous curves) and the 
resulting overlap (dotted line). Above: Partial distributions from the 10 intervals of 
width A\ = 0.1 of the total A range (0,1). Below: The last partial distribution (with 
a power law tail) above, corresponding to the interval A = (0-9,1.0), has been further 
resolved into ten partial distributions for the sub-intervals of width A\ = 0.01. 

Correspondingly, one may attribute the power law to the underlying dynam­
ical process, as it is often the case in nonequilibrium models (e.g. models of 
markets on networks [19]). 

However, if one considers the partial distributions of agents with a certain 
value of A, one finds an unexpected result. For numerical reasons we consider 
the subsets made up of those agents with saving propensity A within a window 
AX around a given value A. Figure 8 (upper row) shows the partial distribu­
tions (continuous lines) of the ten subsystems obtained by dividing the A 
range (0,1) into ten slices of width AX = 0.1 and average values 0.05,... ,0.95 
(curves from left to right respectively). Most of the partial distributions have 
an exponential tail, and only when summed up their overlap (dotted line) 
reproduces a power law. It can be noticed that the last partial distribution, 
corresponding to the interval A = (0.9,1.0), is not of exponential form, but 
rather presents a power law tail, which overlaps with the total distribution 
at large x. However, its power law form is due only to the low resolution in 
A employed. In fact even this partial distribution can in turn be shown to be 
given by the superposition of exponential tails. By increasing the resolution 
in A, i.e. using a smaller interval AX = 0.01 to further resolve the interval 
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A = (0.9,1.0) into subintervals with average values A = 0.905,. . . , 0.995, one 
obtains the partial distributions shown in the lower row of Fig. 8. It is to be 
noticed that also in this case the last partial distribution corresponding to 
the interval A = (0.99,1.00) has a power law tail. The procedure can then in 
principle be reiterated to resolve also this partial distribution by increasing 
the resolution in A. 

These facts also explain the origin of the peaks visible at large x in the 
plots in Figs. 6 and 7. Due to the high wealth-saving propensity correlation 
at large values of x, see Fig. 4, these peaks are due to agents with high A. The 
reason why these agents give rise to resolved peaks instead of contributing to 
extending the power law tail is that the partial distributions (i.e. the average 
values) of single agents get farther and farther from each other for A —• 1, 
while the corresponding widths do not grow enough to ensure the overlap 
of the distributions of neighbor agents in A-space. Eventually, each agent (or 
cluster of agents) at high values of x will be resolved as an isolated peak against 
the background of the total distribution. In greater detail, one finds that the 
average value (x(X)) diverges for A —• 1 as 1/(1 — A), as shown in Fig. 4. 
This implies that also the distance between two generic consecutive agents 
increases: if agents are labeled from i = 1 to i = N in order of increasing 
A (Ai < • • • < A_/v) and the A distribution is uniform, then AX = A^+i — 
Xi = constant. The distance between the average positions of the partial 
distributions of two consecutive agents is, from Eq. (14), 

6(x(X)) = (x(X + AX)) - (x(X)) « ^ ^ - A \ « ^ ^ , (15) 

where K is a constant. Thus 6{x(X)) diverges even faster than (x(A)). At the 
same time, the width of the partial distribution Ax(X), here estimated as 

Ax{X) = y(x2(X)) — (x(X)) , grows slower than (x(A)), i.e. for A —> 1 the 
ratio Ax(X)l (x(X)) —>• 0; see Fig. 4 (right). The breaking of the power law 
and the appearance of the isolated peaks takes place at a cutoff xc where the 
distance S(x(X)) between the peaks corresponding to consecutive agents i and 
i + 1 becomes comparable with the peak width Ax{X). 

Also the origin of the peculiarities in the time evolution of the distribution 
function, mentioned in Sec. 3.3, can now be explained easily. In order to reach 
the asymptotic equilibrium state, agents can rely on an income flux which is 
on average proportional to Xi{\ — Xi). At the beginning, when all agents have 
the same wealth Xi = xo, this quantity is smaller for agents with a larger 
A^ and with this smaller flux agents with large Ai have to reach their higher 
asymptotic value oc 1/(1 — A,). As a consequence, the relaxation time of an 
agent is larger for larger A, a result already found in the numerical simula­
tions of the multi-agent model with fixed global saving propensity (see Fig. 2 
in [8]). Correspondingly, partial distributions of rich agents will reach their 
asymptotic form later (last frame in Fig. 7), while, at intermediate times, their 
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Fig. 9. Wealth distribution of a system of N = 106 agents after 1012 trades: the 
uniform A distribution Eq. (16) produces a smoother distribution with a power law 
shape extending to higher x (left) than for a random A distribution (right). 

distributions will be spread at smaller values of x, contributing to smoothen 
the total distribution (first frame in Fig. 7). 

It is also possible to explain why the averaging procedure of [10] is success­
ful in producing a power law distribution. Averaging over different configura­
tions {Xi} is equivalent to simulate a very dense distribution in A — which has 
large relaxation time and number of agents — with an affordable number of 
agents and computer time. However, the procedure is not needed in principle, 
since the power law can be obtained also when a single configuration with a 
proper density in A-space is used. 

3.5 Checking different A distributions 

A practical way to avoid the appearance of the peaks at large x and obtain 
a distribution closer to a power law is to increase the density of agents, espe­
cially at values of A close to 1. In a random extraction of {Aj}, it is natural 
that consecutive values of A; will not be equally spaced. Even small differences 
will be amplified at large x and will result in the appearance of peaks. A de­
terministic assignment of the A, e.g. a uniform distribution achieved through 
the following assignment, 

Ai = -^, t = 0 , J V - l , (16) 

is a uniform distribution of A in the interval [0,1) and will generate a smoother 
distribution of x. The comparison of the results for this distribution with those 
for a random distribution of A is done in Fig. 9 (notice the high value of N). 
In the uniform case not only the power law extends to higher values of x but 
also that the distribution of peaks at large x is globally smoother, in the sense 
that on average the single peaks follow a power law better. 
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4 Conclusions 

We have reviewed some multi-agent models for the distribution of wealth, 
in which wealth is exchanged at random in the presence of saving quantified 
by the saving propensity A. We have shown how a distribution of A generates a 
power law distribution of wealth through the superposition of Gamma distri­
butions corresponding to particular subsets of agents. The physical picture for 
the model with individual saving propensities is thus more similar to that of 
the model with a constant global saving propensity than it may seem at first 
sight. In fact any subset of agents with the same value of the saving propensity 
A equilibrates in a way similar to agents in the model with a global saving 
propensity, i.e. leading to a wealth distribution with an exponential tail. Cor­
respondingly we have shown that both the noise in the power law tail and 
the cutoff in the power law depend on the coarseness of the A distribution. 
This extends the analogy between economic and gas-like systems beyond the 
case of a global A > 0, characterized by a Maxwell-Boltzmann distribution, to 
uniform continuous distributions in A that span the whole interval AG [0,1). 
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A Maxwell-Boltzmann distribution in D dimensions 

Here we show that for integer or half-integer values of the parameter n the 
Gamma distribution 

7 n ( 0 = A n ) - 1 f - 1 exp( -e ) , (17) 

where r(n) is the Gamma function, represents the distribution of the rescaled 
kinetic energy £ = K/T for a classical mechanical system in D = 2n dimen­
sions. In this section, T represents the absolute temperature of the system 
multiplied by the Boltzmann constant fee-

We start from a system Hamiltonian of the form 

ff(p.Q) = o E ^ ^ ) - (18) 
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where P = {pi,...,p_/v} and Q = { q i , . . . , q^} are the momentum and po­
sition vectors of the N particles, while V(Q) is the potential energy con­
tribution to the total energy. For systems of this type, in which the to­
tal energy factorizes as a sum of kinetic and potential contributions, the 
normalized probability distribution in momentum space is simply / ( P ) = 
Y\i(^miT)-D/2 exp(-p; 2 /2m;T). Thus, since the kinetic energy distribution 
factorizes as a sum of single particle contributions, the probability density fac­
torizes as a product of single particle densities, each one of the form 

/(p) = (^r^exp(-^)' (19) 

where p = (p i , . . . ,pu) is the momentum of a generic particle. It is convenient 
to introduce the momentum modulus p of a particle in D dimensions, 

p2^p2 = f > 2 , (20) 

where the p^s are the Cartesian components, since the distribution (19) de­
pends only on p = i / p 2 . One can then integrate the distribution over the 
D — 1 angular variables to obtain the momentum modulus distribution func­
tion, with the help of the formula for the surface of a hypersphere of radius p 
in D dimensions, 

1-KDI'2 

S ^ = TiDj2)pD"- ( 2 1 ) 

One obtains 

HP) = SM ffp) = r ( I ) / 2 ) (
2

2 m r ) W P J - exp ( - ^ ) - (22) 

The corresponding distribution for the kinetic energy K = p2 /2m is therefore 

f(K) 
dp ,, ,' 
dKf(p) 

1 (K\DI2-X ( K 

P=V^K r{D/2)T\T) ~*\ T 
exp [-•=). (23) 

Comparison with the Gamma distribution, Eq. (17), shows that the Maxwell-
Boltzmann kinetic energy distribution in D dimensions can be expressed as 

f(K)=T-1
7D/2(K/T). (24) 

The distribution for the rescaled kinetic energy, 

Z = K/T, (25) 

is just the Gamma distribution of order D/2, 

f(0 dK H K=er = mm r*2-1 ̂ - « - I°M • <*> # 
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S u m m a r y . In this paper we present detailed simulation results on the wealth dis­
tribution model with quenched saving propensities. Unlike other wealth distribution 
models where the saving propensities are either zero or constant, this model is not 
found to be ergodic and self-averaging. The wealth distribution statistics with a sin­
gle realization of quenched disorder is observed to be significantly different in nature 
from that of the statistics averaged over a large number of independent quenched 
configurations. The peculiarities in the single realization statistics refuses to van­
ish irrespective of whatever large sample size is used. This implies that previously 
observed Pareto law is essentially a convolution of the single member distributions. 

In a society different members possess different amounts of wealth. Indi­
vidual members often make economic transactions with other members of the 
society. Therefore in general the wealth of a member fluctuates with time and 
this is true for all other members of the society as well. Over a reasonably 
lengthy time interval of observation, which is small compared to the inherent 
time scales of the economic society this situation may be looked upon as a 
stationary state which implies that statistical properties like the individual 
wealth distribution, mean wealth, its fluctuation etc. are independent of time. 

More than a century before, Pareto observed that the individual wealth 
(m) distribution in a society is characterized by a power-law tail like: P(m) ~ 
m-(1+") a n c j predicted a value for the constant v « 1, known as the Pareto 
exponent [1]. Very recently, i.e., over the last few years, the wealth distribution 
in a society has attracted renewed interests in the context of the study of 
Econophysics and various models have been proposed and studied. A number 
of analyses have also been done on the real-world wealth distribution data 
in different countries [2, 3, 4]. All these recent data indeed show that Pareto 
like power-law tails do exist in the wealth distributions in the large wealth 
regime but with different values of the Pareto exponent ranging from v = 1 to 
3. It has also been observed that only a small fraction of very rich members 
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Fig. 1. The three probability densities of wealth distribution, namely Probi(m) 
(solid line), Prob2(m) (dashed line) and Prob(m) (dot-dashed line) are plotted with 
wealth m for N = 256 in (a) for the DY model and in (b) for the CC model for A 
= 0.35. The excellent overlapping of all three curves indicate that both the DY and 
CC models are ergodic as well as self averaging. 

actually contribute to the Pareto behavior whereas the middle and the low 
wealth individuals follow either exponential or log-normal distributions. 

In this paper we report our detailed simulation results on the three re­
cent models of wealth distribution. The three models are: (i) the model of 
Dragulescu and Yakovenko (DY) [5] which gives an exponential decay of the 
wealth distribution, (ii) the model of Chakrabort i and Chakrabart i (CC) [6] 
with a fixed saving propensity giving a Gamma function for the wealth distri­
bution and (iii) the model of Chatterjee, Chakrabart i and Manna (CCM) [7] 
with a distribution of quenched individual saving propensities giving a Pare to 
law for the wealth distribution. 

All these three models have some common features. The society consists of 
a group of AT individuals, each has a wealth rrii(t),i = 1, N. The wealth distri­
bution {rrii(t)} dynamically evolves with time following the pairwise conser­
vative money shuffling method of economic transactions. Randomly selected 
pairs of individuals make economic transactions one after another in a t ime 
sequence and thus the wealth distribution changes with t ime. For example, 
let two randomly selected individuals i and j , (i ^ j) have wealths rrii and 
rrij. They make transactions by a random bi-partitioning of their total wealth 
rrii + rrij and then receiving one par t each randomly: 

nn{t + 1) = e(t)(mi(t) + mj(t)) 

mj(t + 1) = (1 - e(t))(mi(t) + mj(t)). (1) 

Here time t is simply the number of transactions and e(t) is the t-th random 
fraction with uniform distribution drawn for the t-th transaction. 
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Fig. 2. For the CC model with N = 256 and A = 0.35 these plots show the functional 
fits of the wealth distribution in (a) and the variation of the most probable wealth 
mp(A) in (b). In (a) the simulation data of Prob(m) is shown by the solid black line 
where as the fitted Gamma function of Eqn. (5) is shown by the dashed line. In (b) 
the nip (A) data for 24 different A values denoted by circles is fitted to the Gamma 
function given in Eqn. (6) (solid line). The thin line is a comparison with the mp(A) 
values obtained from the analytical expression of a(A) and 6(A) in [10]. 

In all three models the system dynamically evolves to a stationary state 
which is characterized by a time independent probability distribution Prob(m) 
of wealths irrespective of the details of the initial distribution of wealths to 
start with. Typically in all our simulations a fixed amount of wealth is assigned 
to all members of the society, i.e. Prob(m,t = 0) = 5(m — (m)). The model 
described so far is precisely the DY model in [5]. The stationary state wealth 
distribution for this model is [5, 8, 9]: 

Prob(m) = -;—r-exp(—m/(m)). 
(m) (2) 

Typically (m) is chosen to be unity without any loss of generality. 
A fixed saving propensity is introduced in the CC model [6]. During the 

economic transaction each member saves a constant A fraction of his wealth. 
The total sum of the remaining wealths of both the traders is then randomly 
partitioned and obtained by the individual members randomly as follows: 

mi(t + 1) = Ami(f) + e(*)(l - A)(m;(t) + m^t)) 

nij(t + 1) = Xm,j(t) + (1 - e(i))(l - X)(m,i(t) + mj(t)). (3) 

The stationary state wealth distribution is an asymmetric distribution with a 
single peak. The distribution vanishes at m = 0 as well as for large m values. 
The most probable wealth mp(X) increases monotonically with A and the 
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Fig. 3. The wealth distribution Prob(m) in the stationary state for the CCM model 
for a single initial configuration of saving propensities {A,} with iV=256 is shown 
by the solid line. Also the wealth distributions of the individual members with 
seven different tagged values of Xtag are also plotted on the same curve with dashed 
lines. This shows that the averaged (over all members) distribution Prob(m) is the 
convolution of wealth distributions of all individual members. 

distribution tends to the delta function again in the limit of A —> 1 irrespective 
of the initial distribution of wealth. 

In the third CCM model different members have their own fixed individ­
ual saving propensities and therefore the set of {Xi,i = l,iV} is a quenched 
variable. Economic transactions therefore take place following these equations: 

rm(t + 1) = Xnrnit) + e(t)[(l - X^m^t) + (1 - Xj)mj(t)] 

mj(t + 1) = \jmj(t) + (1 - e(t))[(l - \i)mi(t) + (1 - Aj -KM] (4) 

where Xi and Aj are the saving propensities of the members i and j . The 
stationary state wealth distribution shows a power law decay with a value of 
the Pareto exponent v m 1 [7]. 

In this paper we present the detailed numerical evidence to argue that 
while the first two models are ergodic and self-averaging, the third model is 
not. This makes the third model difficult to study numerically. 

We simulated DY model with N = 256,512 and 1024. Starting from an 
initial equal wealth distribution Prob(m) = 5(m — 1) we skipped some trans­
actions corresponding to a relaxation time tx to reach the stationary state. 
Typically tx oc N. In the stationary state we calculated the three differ­
ent probability distributions, namely: (i) the wealth distribution Probi(m) 
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Fig. 4. The individual member's wealth distribution in the CCM model. A member 
is tagged with a fixed saving propensity Atag=0.05 in (a) and 0.999 in (b) for iV=256. 
In the stationary state the distribution Probi(m) is asymmetric in (a) and is fitted 
to a Gamma function. However for very large A the distribution in (b) is symmetric 
and fits very nicely to a Gaussian distribution. 

of an arbitrarily selected tagged member (ii) the overall wealth distribution 
Prob2(m) (averaged over all members of the society) on a long single run 
(single initial configuration, single sequence of random numbers) and (iii) the 
overall wealth distribution Prob(m) averaged over many initial configurations. 
In Fig. 1(a) we show all three plots for N = 256 and observe that these three 
plots overlap excellent, i.e., these distributions are same. This implies that the 
DY model is ergodic as well as self-averaging. 

Similar calculations are done for the CC model as well (Fig. 1(b)). We see 
a similar collapse of the data for the same three probability distributions. This 
lead us to conclude again that the CC model is also ergodic and self-averaging. 
Further we fit in Fig. 2(a) the CC model distribution Prob(m) using a Gamma 
function as cited in [10] as: 

Prob(m) ~ ma(x' exp(—&(A)m) (5) 

which gives excellent non-linear fits by xmgrace to all values of A in the range 
between say 0.1 to 0.9. Once fitting is done the most-probable wealth is esti­
mated by the relation: mp(\) = a(\)/b(\) using the values of fitted parameters 
a(X) and b(X). Functional dependences of a and b on A are also predicted in 
[10]. We plot mp(\) so obtained with A for 24 different values of A in Fig. 2(b). 
We observe that these data points fit very well to another Gamma function 
as: 

mp(A) = AA"exp(-/3A). (6) 

The values of A w 1.46, a « 0.703 and f3 « 0.377 are estimated for N = 256, 
512 and 1024 and we observe a concurrence of these values up to three decimal 
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Fig. 5. (a) The mean wealth of a tagged member who has the maximal saving 
propensity is plotted as a function of time for four different values of A m M . In (b) 
this data is scaled to obtain the data collapse. 

places for the three different system sizes. While mp(0) = 0 from Eqn. (6) is 
consistent, mp( l ) = 1 implies A = exp(/?) is also consistent with estimated 
values of A and /?. Following [10] we plotted mp(A) = 3A/(1 + 2A) in Fig. 2(b) 
for the same values of A and observe that these values deviate from our points 
for the small values of A. 

However, for the CCM model many inherent structures are observed. We 
argue that this model is neither ergodic nor self-averaging. For a society of 
N = 256 members a set of quenched individual saving propensities {0 < Aj < 
l,i = l,N} are assigned drawing these numbers from an independent and 
identical distribution of random numbers. The system then starts evolving 
with random pairwise conservative exchange rules cited in Eqn. (4). First 
we reproduced the Prob(m) vs. m curve given in [7] by averaging the wealth 
distribution over 500 uncorrelated initial configurations. The data looked very 
similar to that given in [7] and the Pareto exponent u is found to be very close 
to 1. 

Next we plot the same data for a single quenched configuration of saving 
propensities as shown in Fig. 3. It is observed that the wealth distribution 
plotted by the continuous solid line is far from being a nice power law as 
observed in [7] for the configuration averaged distribution. This curve in Fig. 
3 has many humps, especially in the large wealth limit. To explain this we 
made further simulations by keeping track of the wealth distributions of the 
individual members. We see that the individual wealth distributions are sig­
nificantly different from being power laws, they have single peaks as shown 
in Fig. 4. For small values of A, the Probi(m) distribution is asymmetric and 
has the form of a Gamma function similar to what is already observed for the 
CC model (Fig. 4(a)). On the other hand as A —> 1 the variation becomes 
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Fig. 6. In the stationary state the mean value of the wealth of the member with max­
imum saving propensity Xmax is plotted with \max • This value diverges as \max —¥ 1 
for TV = 64 (circle), 128 (square), 256 (triangle up), 512 (diamond) and 1024 (tri­
angle down), (b) This data is scaled to obtain a data collapse of the three different 
sizes. 

more and more symmetric which finally attains a simple Gaussian function 
(Fig. 4(b)). The reason is for small A the individual wealth distribution does 
feel the presence of the infinite wall at m = 0 since no debt is allowed in 
this model, where as for A —> 1 no such wall is present and consequently the 
distribution becomes symmetric. This implies that the wealth possessed by 
an individual varies within a limited region around an average value and cer­
tainly the corresponding phase trajectory does not explore the whole phase 
space. Therefore we conclude that the CCM model is not ergodic. 

Seven individual wealth distributions have been plotted in Fig. 3. corre­
sponding to six top most A values and one with somewhat smaller value. We 
see that top parts of these Probi(m) distributions almost overlap with the 
Prob2(m) distribution. This shows that Prob2(m) distribution is truly a su­
perposition of N Probi(m) distributions. In the limit of A —> 1, large gaps 
are observed in the Prob2(m) distribution due to slight differences in the A 
values of the corresponding individuals. These gaps remain there no matter 
whatever large sample size is used for the Prob2(m) distribution. 

We further argue that even the configuration averaging may be difficult 
due to very slow relaxation modes present in the system. To demonstrate 
this point we consider the CCM model where the maximal saving propensity 
Amaa: is continuously tuned. The iV-th member is assigned Xmax and all other 
members are assigned values {0 < Â  < Xmax,i = 1,N — 1}. The average 
wealth (m(\max))/N of the iV-th member is estimated at different times for 
N = 256 and they are plotted in Fig. 5(a) for four different values of Amax. 
It is seen that as Xmax —> 1 it takes increasingly longer relaxation times to 
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reach the stationary state and the saturation value of the mean wealth in the 
stationary state also increases very rapidly. In Fig. 5(b) we made a scaling of 
these plots like 

[(m(\max))/N](l - Xmax)
0-725 ~ Q[t(l - Xmax)]. (7) 

This implies that the stationary state of the member with maximal saving 
propensity is reached after a relaxation time tx given by 

tx CX (1 - Xmax)^1- (8) 

Therefore we conclude that in CCM the maximal A member takes the longest 
time to reach the stationary state where as rest of the members reach their 
individual stationary states earlier. 

This observation poses a difficulty in the simulation of the CCM model. 
Since this is a problem of quenched disorder it is necessary that the observ-
ables should be averaged over many independent realizations of uncorrelated 
disorders. Starting from an arbitrary initial distribution of rrn values one gen­
erally skips the relaxation time tx to reach the stationary state and then 
collect the data. In the CCM model the 0 < Xi < 1 is used. Therefore if M 
different quenched disorders are used for averaging it means the maximal of 
all M x N X values is around 1 — 1/(MN). From Eqn. (8) this implies that the 
slowest relaxation time grows proportional to MN. Therefore the main mes­
sage is more accurate simulation one intends to do by increasing the number 
of quenched configurations, larger relaxation time tx it has to skipp for each 
quenched configuration to ensure that it had really reached the stationary 
state. 

Next, we calculate the variation of the mean wealth («i(Amax))/iV of the 
maximally tagged member in the stationary state as a function of Xmax and 
for the different values of N. In Fig. 6(a) we plot this variation for N = 64, 
128, 256, 512 and 1024 with different symbols. It is observed that larger the 
value of N the (m(Xmax))/N is closer to zero for all values of Xmax except for 
those which are very close to 1. For Xmax -¥ 1 the mean wealth increases very 
sharply to achieve the condensation limit of (m(Xmax = 1))/N = 1. 

It is also observed that the divergence of the mean wealth near Xmax = 1 is 
associated with a critical exponent. In Fig. 6(b) we plot the same mean wealth 
with the deviation (1 — Xmax) from 1 on a double logarithmic scale and observe 
power law variations. A scaling of these plots is done corresponding to a data 
collapse like: 

[(m(Xmax))/N}N-°-15 ~ T[(l - Xmax)N
l-b]. (9) 

Different symbols representing the data for the same five system sizes fall 
on the same curve which has a slope around 0.76. The scaling function 
T[x] ->• x~s as x ->• 0 with 5 « 0.76. This means (m(Afflo:t)}JV-L15 ~ 
(1 - A™*)- 0- 7 6^- 1- 1 4 or (m{Xmax)) ~ (1 - AroM)-°-76iV0-01. Since for a 
society of N traders (1 — Xmax) ~ 1/N this implies 
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(m(Xmax)) ~ AT0-77. (10) 

This result is therefore different from the claim that {m(\max)) ~ N [7]. 
To summarize, we have revisited the three recent models of wealth distri­

bution in Econophysics. Detailed numerical analysis yields that while the DY 
and CC models are ergodic and self-averaging, the CCM model with quenched 
saving propensities does not seem to be so. In CCM existence of slow modes 
proportional to the total sample size makes the numerical analysis difficult. 

All of us thank B. K. Chakrabarti and S. Yarlagadda and A. Chatterjee for 
their very nice hospitality in the ECONOPHYS - KOLKATA I meeting. 
GM thankfully acknowledged facilities at S. N. Bose National Centre for Basic 
Sciences in the FIP programme. 
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1 Introduction 

We formulate a model of personal income distributions within society. Our 
aim is to understand the origin of the 'natural law' first proposed by Pareto 
who suggested that the high end part of the income distribution follows a 
power law where fi(w) ~ w- 1 -™. We generalise a model proposed the so-
called CC-CCM model introducing the possibility of exchanges of money at 
random times. Unlike the CC-CCM model this generalisation predicts tail 
exponents greater than unity in line with Pareto's prediction and empirical 
observation. 

2 Kinetics of wealth distributions 

We consider the Chakraborti, Chakrabarti - Chatterjee, Chakrabarti, 
Manna (CC-CCM) model first proposed by [2] and subsequently investigated 
numerically by [3, 4, 5] and analytically by [6] in different regimes of the 
parameters of the model. We modify the model appropriately in order to ex­
plain experimental findings concerning distributions of wealth in societies. In 
the model the time evolution of the distribution of wealth Wi(t) is specified 
through dynamical rules that involve exchanges between two agents (two-
agent exchanges) in two consecutive times t and t — St. The rules (depicted in 
Fig. 1) read: 

Wi (t) = XiWi(t -St) + e [(1 - \i)wi(t - St) + (1 - \j)wj(t - St)] 

Wj (t) = \jWj(t - St) + ei [(1 - \i)wi{t - St) + (1 - \j)wj(t - St)] (1) 

where Xij describe the amount of money saved in the exchange process 
(saving propensities), 0 < e < 1 is a uniformly distributed random number 
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Fig. 1. Two agent exchange process described by the dynamical rules (1). Here 
Xi and Aj are saving propensities and S := [(1 — \i)wi(t) + (1 — \j)uij(t)] is the 
amount of money exchanged. 

with (e) = 1/2, ei = 1 — e and the t ime ST = 8t between two consecutive 
collision processes is assumed to be a random variable with a probability 
density function (pdf) psr(5t) (waiting t ime pdf). The random waiting t ime 
is a novel element in CC-CCM model which we introduce to enforce a power 
law wealth distribution function with an arbi trary tail exponent in the high 
end. 

We describe the model in terms of the two agent distribution function 
f2(v,w;t). This function specifies the probability density of an event in which 
two randomly chosen agents have wealth values Vj = v and Wt = w at t ime 
t. This means tha t f2(v,w;t) := P (Vt =v,Wt = w). The one-agent function 
fi(v; t) is obtained by integrating the two-agent function over values w > 0 at 
t ime t. The kinetic equation for the two-agent distribution function is obtained 
by conditioning on the occurrence of the collision at t ime t — £ for some 
0 < £ < t. This means tha t 

h{v,w;t) (2) 

JpsAO^J dv'dw'P(Vt = v,Wt=w \Vt-s = v',Wt-s = w') f2(v',w';t - {) 
0 R* 

(3) 

where the integrations in (2) and (3) run from zero to infinity and the condi­
tional probability in the integrand in (3) is expressed via a two-dimensional 
delta function (no dissipation of wealth assumption) as follows: 

A + eAi eAi 
eiAi A + eiAi (4) 

Here the saving propensities A are assumed to be random variables distributed 
independently from the values of wealth. The terms in (3) correspond, from 
the left to the right, to following events, namely to the probability tha t the 



122 Peter Richmond, Przemyslaw Repetowicz and Stefan Hutzler 

previous exchange took place at time t — £, the conditional probability that 
the agents have wealth values (v, w) given that they had wealth values (v',w') 
prior to the exchange, that occurred at time t — £, and to the unconditional 
probability that of the later event. Since the right hand side of (3) is a con­
volution both in the time and in the wealth arguments and since the time 
and wealth values are positive, we transform equation (3) into an algebraic 
equation by means of a Laplace-Laplace transform with respect to wealth and 
to time respectively. We take x := (xi,£2) G R+ and define: 

/2(x;s) :=Cv,Mf2]{x\s) := J dx J dtf2(v,w;t)e-^v+x^e-
st (5) 

R*. R+ 

We multiply (3) by e-(»i"+»2«')e-**) integrate over t G 1+ and (v,w) G R\ 
we obtain: 

t 

/2(x;s) = J d v e - ( ^ x ) v J dt Jd&-stpsT(0f2(v,w;t-0 = (6) 

R + 0 

dve-^T^vpST(s)f2(v, s) = pST(s)f2((A
TK),s) (7) 

/ • 

where x = (xi, x2) the matrix A is defined viz 

and psr(s) := / dte~stpsrit) is the Laplace transform of the waiting time 
R + 

pdf. Setting x2 = 0 in (7) and using the fact that /2(a;,0) = /2(0,a;) = /i(x) 
we obtain the following equation for the one-point distribution function: 

fi(x;s) = psT(s)f2((X + e\i)x,eX1x;s) (9) 

From (9) we see that the average wealth (v) := —dxfi(x; s) does not de-

pend on time. Indeed, differentiating (9) by x at x = 0 we get: 

(v) (*) = PST(S) (V) (S) (A + 2eAi) = pST(s) (V) (S) (10) 

where the last equality in (10) follows from averaging over e subject to the 
condition that (e) = 1/2. Taking into account that ^ r (O) = 1, and inverting 
the Laplace transform in (10) yields: 

y , dnpST(s) 
ds 

n=± 

y ' " [(v) (t)] = 0 & (v) (t) = const(t) (11) 
s=o n] dt 

Since the average wealth is constant with time the one-point distribution func­
tion must have a stationary limit / i (w) = l im^co/ i (w, t) which we investigate 
in the following section. 
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2.1 The power law tail 

Numerical simulations [4, 5] and analytical investigations [6] of the orig­
inal CC-CCM model with not random waiting times suggest that the sta­
tionary one-point distribution conforms, in the high-end, to a power law 
fi(w) ~ l / w 1 + a with the exponent (tail exponent) equal unity a = 1. Mea­
surements [8],[10] of wealth distributions yield, however, the tail exponent 
different from unity and dependent on the country or population group in 
question. Is the generalization of the CC-CCM model, that we develop in this 
paper and that involves random waiting times between exchange processes, 
consistent with experimental measurements at least as far the tail exponent is 
concerned? We show that this is indeed the case, the randomness of waiting 
times is a sufficient element to obtain the exponent a different from unity and 
dependent on the parameters of the model. Inverting the Laplace transform 
in (9) we obtain the stationary distribution of wealth in the Laplace domain. 
We have: 

t 

f1(x)=\imt^ooJdZf2({\ + e\1)x,e\1x,t-0pST(0 (12) 
o 

We expand the Laplace transform of the distribution function in a series in x 
as 

fi(x;t) = 1 - {v)x + A{t)xa + 0{x1+a) (13) 

where A(t) is some function of time (tail amplitude), that depends on the 
initial conditions, and (v) is the average wealth, independent of time as shown 
in the previous section. We insert the expansion (13) into (12), we use the 
mean-field approximation, meaning that the two point function factorize-s 
into a product of one-point functions, and we obtain: 

fi(x) = l-(v)x 

+lim t_0 0 I j d£A(t - OPST(0 I «(eAi)a> + {(A + eAi)a)) xa 

+0(xa+1) (14) 

Comparing (14) with (13) and averaging over the uniformly distributed e 
subject to the condition (e) = 1/2 we obtain a transcendental equation for 
the tail exponent a. We have: 

1 - A a + 1 

Ai 
\ _ CI , n\i:m

 A(f) 
J — K1 T "Jimit-^co ( 1 fA(t-0pST(0dZ 

0 

- (^ 1 i r ' l l im A ^ ' 
— (i- + a jum^co 

{A®psT)(t) 

(15) 

(16) 
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where (A ® psT)(t) means a convolution of the tail amplitude A(t) and the 
waiting time pdf psr) (t) at t ime t. 

Note tha t the left hand side of (15) is equal to two at a = 0 and a = 1 
respectively, it has a minimum and a maximum in the interval a G [0,2], is 
strictly increasing and decreasing for a > 2 for (A) > 1/2 and for (A) < 1/2 
respectively. The right hand side of (15) intersects the left hand side for some 
a €  [1,2] and for some a G [0,1] in case if Af := ,A^pl{<x>) *s s m a u e r o r 

is bigger than unity respectively. This depends on the form of the initial 
condition for the one-point wealth distribution and on the form of the waiting 
t ime pdf. For not random waiting times PST(0 = £(£ — dt), for some dt > 0, 
the large t ime limit of the convolution is equal to the large t ime limit of the 
tail amplitude (A ® P$T)(OO) = A(oo) we have N = 1, the only intersection of 
the left hand and right hand sides of (15) is a = 1 and thus we retrieve the 
numerical and the analytical findings from [3, 4, 5] and from [6] respectively. 

3 Conclusions 

We have generalized the CC-CCM exchange of wealth model, by introduc­
ing random times between exchanges, in order to account for the fact tha t the 
tail exponent of the stat ionary one-agent wealth distribution is not unity. We 
have obtained variable tail exponents a £ [0,2] dependent on the functional 
form of the tail amplitude, determined by the initial condition of the wealth 
distribution, and on the functional form of the waiting t ime pdf. We note tha t , 
in our generalization of the model, both the random waiting times, and the 
amounts of money exchanged are independent from one another and from the 
waiting times. 
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S u m m a r y . We have studied numerically the statistical mechanics of the dynamic 
phenomena, including money circulation and economic mobility, in some transfer 
models. The models on which our investigations were performed are the basic model 
proposed by A. Dragulescu and V. Yakovenko [1], the model with uniform saving rate 
developed by A. Chakraborti and B.K. Chakrabarti [2], and its extended model with 
diverse saving rate [3]. The velocity of circulation is found to be inversely related with 
the average holding time of money. In order to check the nature of money transferring 
process in these models, we demonstrated the probability distributions of holding 
time. In the model with uniform saving rate, the distribution obeys exponential 
law, which indicates money transfer here is a kind of Poisson process. But when 
the saving rate is set diversely, the holding time distribution follows a power law. 
The velocity can also be deduced from a typical individual's optimal choice. In 
this way, an approach for building the micro-foundation of velocity is provided. In 
order to expose the dynamic mechanism behind the distribution in microscope, we 
examined the mobility by collecting the time series of agents' rank and measured it 
by employing an index raised by economists. In the model with uniform saving rate, 
the higher saving rate, the slower agents moves in the economy. Meanwhile, all of 
the agents have the same chance to be the rich. However, it is not the case in the 
model with diverse saving rate, where the assumed economy falls into stratification. 
The volatility distribution of the agents' ranks are also demonstrated to distinguish 
the differences among these models. 

Key words : Transfer model, Dynamic Process, Money Circulation, Mobility 

1 Introduction 

Recently, wealth or income distribution has a t t racted much attention in 
the field of econophysics [4, 5, 6]. More than 100 years ago, Italian economist 
Pare to first found tha t the income distribution follows an universal power law 
[7]. However, the economy has undergone dramatic transitions in last century, 
some researchers had doubted about if the law still holds in the modern stage 
and turned to reexamine the income distribution and its shift by employing 
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income tax data [8, 9, 10, 11, 12]. The empirical analysis showed that in many 
countries the income distribution typically presents with a power-law tail, and 
majority of the income distribution can be described by an exponential law. 
This universal shape of distribution and its shift trigger an increasing inter­
ests in exploring the mechanism behind them. To solve this problem, several 
multi-agent models have been developed by applying principles of statistical 
mechanics [1, 2, 3, 13, 14, 15]. In these models, economic system is analogized 
to the ideal gas, where the agents can be regarded as particles, and money 
is just like energy. Therefore, the trading between agents can be viewed as 
collisions between particles in the gas. By using such analogy, the developed 
approach that applied to the ideal gas system now can be used to study this 
kind of economic system. Whatever the trading rule is set in these models, it 
is worthy noting that money is always transferred from one agent to another 
in the trading process. So this kind of models could be referred as money 
transfer models [16]. 

Leading the search into this issue was a paper by A. Dragulescu and V. 
Yakovenko [1]. In their ideal-gas model, the economy is closed and the amount 
of money transferred in each round of trading is determined randomly. Their 
simulation analysis shows that the steady money distribution follows an ex­
ponential law. Several papers have extended the work by introducing different 
characteristics into the model and found that different trading rule may lead to 
different shapes of money distribution. A. Chakraborti and B.K. Chakrabarti 
examined the case where the agents do not take out all amount of money as 
they participate the exchange, but instead they save a part of their money [2]. 
This case is well grounded in reality, and the ratio they save is called saving 
rate hereafter. When the saving rate are the same for all agents, the money 
distribution obeys a Gamma law [17]. However, when the agents' saving rates 
are set randomly, the money distribution changes to a Power-law type [3]. 
A second extension looks at non-conservation. F. Slanina considered a case 
that the economy is not conserved but opened, and so he regarded it as in­
elastic granular gases [15]. Some further studies manage to seek for the exact 
mathematical solution by using a master equation [18, 19]. 

In fact, money transfer is a dynamic process. Besides the money distribu­
tion, it possess some other presentations. Thus, investigating the distribution 
only can not provide the whole picture of the relationship between the dis­
tribution and the trading rule. Some efforts have been put into the study on 
the dynamic mechanism behind the distribution, that opens more windows to 
observe how the economy works. 

These works can be divided into two parts. One is about how the money 
moves in the assumed economy [20, 21, 22]. As we know, the money is not 
static even after the money distribution gets steady. They are always trans­
ferred among agents. Naturally, because of the randomness, whether in the 
simulations or in the reality, the time interval that money stays in one agent's 
pocket is a random variable which is named as holding time. The introduction 
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of holding time opens a new path to understanding of the circulation velocity 
at micro level. 

The other one is about how agents' positions shift in the economy [23]. Like 
the money, agents are not static in the transferring process. If the agents are 
sorted according to the amount of money they hold, it is found that the rank of 
any agent varies over time. This phenomenon is called mobility in economics. 
According to economists' argument, only analysis on the distribution is not 
sufficient especially when comparing the generating mechanism of income and 
the inequality[24, 25]. 

In addition, the study on the dynamic characters in the proposed models 
makes the evaluation criteria more complete. The aim of econophysicists to 
develop these models is to mimic the real economy by abstracting its essence. 
However, we cannot judge whether such abstraction is reasonable or not de­
pending on the shape of distribution only. Thus, we must take the circulation 
and mobility into account when constructing a "good" multi-agent model. 

In this paper, the dynamic processes of the transfer models are investigated 
by examining the holding time distribution and the degree of mobility. The 
models and simulations will be briefly presented in the next section. In the 
Sec. 3 and 4, we will show the nature of circulation and mobility in these 
models respectively. Finally, we will give our conclusion in Sec. 5. 

2 Models and Simulations 

We start with the transfer model proposed by A. Dragulescu and V. 
Yakovenko, in which the economic system is closed, put it in another way, 
the total amount of money M and the number of economic agents N are 
fixed. Each of agents has a certain amount of money initially. In each round 
of trading process, two agents i,j are chosen to take part in the trade ran­
domly. And it is also decided randomly which one is the payer or receiver. 
Suppose the amounts of money held by agent i and j are rrii and rrij, the 
amount of money to be exchanged Am is decided by the following trading 
rule: 

Am = -e(mi + mj), (1) 

where e is a random number from zero to unit. If the payer cannot afford the 
money to be exchanged, the trade will be cancelled. This model is very simple 
and extensible which is named as the basic model in this paper. 

When A. Chakraborti and B.K. Chakrabarti intended to extend the basic 
model, they argued that the agents always keep some of money in hand as 
saving when trading. The ratio of saving to all of the money held is denoted 
by s and called saving rate in this paper. For all the agents, the saving rates 
are set equally before the simulations. Like the trading pattern of the basic 
model, two agents i,j are chosen out to participate the trade in each round. 
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Suppose that at t-th round, agents i and j take part in trading, so at t + 1-th 
round their money rrii(t) and m.j(t) change to 

mi(t + 1) = m,i(t) + Am;mj(t + 1) = rrij(t) - Am, (2) 

where 
Am = (l- s)[(e - l)m,i(t) + em,j(t)], (3) 

and £ is a random fraction. It can be seen that Am might be negative. That 
means agent i is probably the payer of the trade. This model degenerates 
into the basic model if s is set to be zero. In this model, all of agents are 
homogenous with the same saving rate. So we call it the model with uniform 
saving rate. 

This model was further developed by B.K. Chakrabarti's research group by 
setting agents' saving rates randomly before the simulations and keeping them 
unchanged all through the simulations. Likewise, this is called the model with 
diverse saving rate. Correspondingly, the trading rule Equation (3) changes 
to 

Am = (1 - Si)(e - l)rrii(t) + (1 - Sj)em,j(t), (4) 

where Si, Sj are the saving rates of agent i and j respectively. 
Our following investigations on the dynamic phenomena is based on these 

three models. The scale is the same for all the simulations: the number of 
agent N is 1,000 and the total amount of money M is 100,000. 

3 Money Circulation 

As the medium of exchange, money is held and transferred by people. 
In the process of money transferring, if an agent receives money from oth­
ers at one moment, he will hold it for a period, and eventually pays it to 
another agent. The time interval between the receipt of the money and its 
disbursement is named as holding time. We introduce the probability distri­
bution function of holding time Ph (r), which is defined such that the amount 
of money whose holding time lies between r and r + dr is equal to MPh{r)dT. 
In the stationary state, the fraction of money MPh(r) dr participates in the 
exchange after a period of r . Then the average holding time can be expressed 
as 

/•CO 

f = / Ph(r)rdT. (5) 
Jo 

The velocity indicates the speed at which money circulates. Since money is 
always spent randomly in exchange, the transferring process can be deemed 
as a Poisson type, and the velocity of money can then be written as [20] 
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This is the statistical expression of the circulation velocity of money in terms 
of holding t ime. 

Two caveats to this conclusion are in order. First, we need to observe the 
probability density function of holding time to check whether the transfer 
of money is a Poisson process. If the assumption is correct, the probability 
density function must take the following form 

P(T) = Ae -AT (7) 

where A corresponds to the intensity of the Poisson process. We have carried 
out the measurement of holding time in our previous work [21]. In those sim­
ulations, the time interval between the moments when the money takes par t 
in t rade after to for the first two times is recorded as holding time, suppos­
ing we star t to record at round to- The da ta were collected after majority of 
money(> 99.9%) had been recorded and over 100 times with different random 
seeds. 

The simulation results are shown in Fig . l . It can be seen the probability 
distributions of holding t ime decay exponentially in the model with uniform 
saving rate. This fact indicates tha t the process is a Poisson process. On the 
other case, when the saving rates are set diversely, the distribution changes 
to a power-law type. 

5 10 15 20 25 30 35 40 

Holding Time, T (1x103) 

104 10s 

Holding Time, T 

Fig. 1. The stationary distributions of holding time: (left panel) for the model with 
uniform saving rate in a semi-logarithmic scale, (right panel) for the model with 
diverse saving rate in a double-logarithmic scale, where the fitting exponent of the 
solid line is about —1.14. Note that in the figure the probabilities have been scaled 
by the maximum probability respectively. 

In the model with uniform saving rate, the monetary circulation velocity 
corresponds to the intensity of Poisson process, which is negatively related to 
the saving rate. Form Fig. 1 we can see tha t the lower the saving rate is, the 
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steeper the distribution curve. This result is also plotted in Fig. 2, which tells 
us the relation between the velocity and the saving rate is not linear. 

0.0 0.2 0.4 0.6 0.8 1.0 

Saving Rate 

Fig. 2. The monetary circulation velocity versus the saving rate in the model with 
uniform saving rate. 

Second, the relation between the velocity of money and the average hold­
ing time suggests tha t the velocity could be investigated by examining how 
economic agents make decisions on the holding t ime of money. There are 
many kinds of agents who may have different characters when they utilize 
money in an economic system, such as consumers, firms, and investors etc. 
We can choose one of them as a representative to examine how their spend­
ing decisions affect the velocity. The typical one is consumers whose behavior 
has always been depicted by the life-cycle model prevailed in economics. The 
model considers a representative individual who expects to live T years more. 
His object is to maximize the lifetime utility 

U f u(C{t))dt, 
Jo 

subject to the budget constraint condition 

/ C(t) dt<W0+ [ Y{t) 
Jo Jo 

dt, 

(8) 

(9) 

where «(•) is an instantaneous concave utility function, and C(t) is his con­
sumption in time t. The individual has initial wealth of Wo and expects to 
earn labor income Y(t) in the working period of his or her life. The main 
conclusion deduced from this optimal problem is tha t the individual wants 
to smooth his consumption even though his income may fluctuate in his life 
t ime. From this conclusion, we can also calculate the average holding t ime of 
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money based on the time path of income and consumption as the following 
form 

_ = fi[C{t)-Y(t)]tdt 
JoY(t)dt 

With a few manipulations in a simple version of the life-cycle model [22], we 
get 

v = rhi- (11> 

This result tells us that the velocity of money depends on the difference be­
tween the expected length of life T and that of working periods T0. It also 
implies that the velocity, as an aggregate variable, can be deduced from the 
individual's optimal choice. In this way, a solid micro foundation for velocity 
of money has been constructed. 

4 Economic Mobility 

It is the economists' consensus that static snapshots of income distribution 
alone is not sufficient for meaningful evaluation of wellbeing and the equality. 
This can be understood easily from a simple example. Suppose in an economy 
there are two individuals with money $1 and $2 initially. At the next moment, 
the amount of money held by them changes to $2 and Si. The distribution in 
this case is unchanged, but the ranks of both agents vary over time. Although 
the system seems unequal at either of the two moments in terms of the dis­
tribution, the fact is that the two individuals are quite equal combining these 
two moments. Besides, from this simple example, it can also been found that 
the structure of economy may vary heavily with an unchanged distribution. 
Thus the investigation on mobility is helpful not only to the measurement on 
equality but also to the exposure of the mechanism behind the distribution. 

We investigated the mobility in the referred transfer models by placing 
emphasis on the "reranking" phenomenon. To show this kind of mobility, we 
sorted all of agents according to their money and recorded their ranks at the 
end of each round. All of data were collected after the money distributions 
get stationary and the sampling time interval was set to be 1000 rounds. 

The time series of rank in these three models are shown in Fig.3. Then, 
we can compare the characters of rank fluctuation of these models. All of the 
agents in the basic model and the model with uniform saving rate can be 
the rich and be the poor. The rich have the probability to be poor and the 
poor also may be luck to get money to be the rich. The mobility in these two 
model are quite similar except the fluctuation frequency of the time series. 
The economy in the model with diverse saving rate is highly stratified (see 
Fig. 3c). The rich always keep their position, and the poor are doomed to be 
the poor. The agents in each level differ in their rank fluctuations. The higher 
the agent' rank, the smaller the variance of his rank. 
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Fig. 3 . The typical time series of rank (a) from basic model, (b) from the model with 
uniform saving rate s = 0.5 and (c) from the model with diverse saving rate where 
the saving rates of these typical agents are 0.99853, 0.9454, 0.71548 and 0.15798 
(from bottom to top ) respectively. 

Table 1. Comparison of the Three Transfer Models in Mobility 

The Basic Model 
The Model with Uniform Saving 

s = 0.1 
s = 0.3 
s = 0.5 
s = 0.7 
s = 0.9 

The Model with Diverse 

Rate 

Saving Rate 

Mobility l(t,t') 
0.72342 

0.70269 
0.65165 
0.58129 
0.4773 

0.30212 
0.19671 

Stratification 
No 
No 

Yes 
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To compare the mobilities quantitatively, we applied the measurement 
index raised by G. S. Fields et al [26]. The mobility between the two sample 
recorded in different moments is defined as 

1 N 

(12) 

where, Xi(t) and Xi(t') are the rank of agent i at t and t' respectively. It is 
obvious that the bigger the value of I, the greater the degree of mobility. To 
eliminate the effect of the randomness, we recorded more than 9000 samples 
continuously and calculated the value of mobility I between any two consec­
utive samples. The average value of Is in these models are shown in Table 
1. It can be found that the degree of mobility decreases as the saving rate 

1 10 100 
Volatility 

1 2 3 4 5 6 
Volatility 

Fig. 4. The distribution of the volatility of agents' rank (a) for the basic model, (b) 
for the model with uniform saving rate s = 0.5 and (c) for the model with diverse 
saving rate. 
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increases in the model with uniform saving rate . The intuition for this result 
is straightforward. The larger the ratio agents put aside, the less money they 
take out to participate the t rade. Then, the less money to lose or win. Thus, 
the higher saving rate, the less probability of change in rank or mobility. The 
very low degree of mobility in the model with diverse saving rate is due to its 
stratification. 

To show more details of the mobility, we also obtain the distribution of 
the volatility ( x-it) ) w m c n is shown in Fig.4. It is noted tha t the dis­
tributions of the rank variety ratio are quite similar and follow power laws in 
the basic model and the model with uniform saving rate. The exponent of the 
power-law distribution is found to decrease as the saving rate increases. This 
phenomenon is consistent with the alter t rend of the index because the higher 
the saving rate, the little money is exchanged and the smaller the volatility of 
rank. Consequently, when the saving rate increases, the right side of volatility 
distribution will shift to the vertical axis, leading to a more steeper tail. From 
Fig.4c, we can see tha t the volatility distribution in the model with diverse 
saving rate ends with an exponential tail as the times of simulations increase. 

5 Conclusion 

The dynamic phenomena of three transfer models, including money circu­
lation and economic mobility, are presented in this paper. The holding t ime 
distributions in these models are demonstrated, and the relation between the 
velocity of money and holding t ime of money is expressed. Studies on this 
dynamic process lead us to a good understanding the nature of money cir­
culation process and provide a new approach to the micro-foundation of the 
velocity. The "reranking" mobilities in these models are compared graphi­
cally and quantitatively. This observation provide more information about 
the dynamic mechanism behind the distribution. Such investigations suggest 
tha t the characters of circulation and mobility should be considered when 
constructing a multi-agent model. 
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S u m m a r y . We develop a stochastic model where the poorer end of the society 
engage in two-party trading while the richer end perform trade with gross entities. 
Using our model we are able to capture some of the essential features of wealth 
distribution in societies: the Boltzmann-Gibbs distribution at the lower end and 
the Pareto-like power law tails at the richer end. A reasonable scenario to connect 
the two ends of the wealth spectrum is presented. Also, we show analytically how 
different power law exponents can be obtained. Furthermore, a link with the models 
in macroeconomics is also attempted. 

1 Introduction 

In countries like United States, Japan , United Kingdom, Germany, Switzer­
land, New Zealand, etc., where da ta for wealth distribution is readily available, 
it is observed tha t the wealth is very unequally distributed and is highly con­
centrated. In a wealthy country like the United States various surveys over 
the past 30 years (in particular the Survey of Consumer Finances) show tha t 
a lions share of the total wealth is concentrated in the richest percentiles: the 
richest 1% owns one third of the wealth, and the top 5% holds more than half. 
At the other extreme, the bot tom 10% own little or nothing at all. 

Income is also unequally distributed and inequality in income leads to 
unequal wealth distribution. Income is defined as revenue from all sources 
before taxes but after transfers and thus includes labor earnings and income 
generated by wealth. However, income distribution is less skewed (and hence 
less unequal) than wealth distribution. The 1992 Survey of Consumer Finances 
revealed tha t the income of the income-rich top 1% was 18.5% of the total 
sample, and tha t of the top 5% was one third of the total income. In the same 
survey, the Gini index (whose value 0 corresponds to equal distribution and 
value 1 to wealth entirely in the hands of the richest) was shown to be 0.78 
for the wealth distribution and only 0.57 for the income distribution. 

There are many possible measures of wealth. In this paper we will con­
centrate on total net worth which includes all assets held by the households 
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(financial wealth, real estate, vehicles) and net of all liabilities (mortgages and 
other debts). The degree of concentration of net worth held by various wealth 
percentile groups in various years is given in Table 1. 

Table 1. Percent of net worth held by various percentile groups of the wealth 
distribution [1]. 

Percentile Year 
group 1989 1992 1995 1998 2001 

0-49.9 2.7 3.3 3.6 3.0 2.8 
50-89.9 29.9 29.7 28.6 28.4 27.4 
90-94.9 13.0 12.6 11.9 11.4 12.1 
95-98.9 24.1 24.4 21.3 23.3 25.0 
99-100 30.3 30.2 34.6 33.9 32.7 

Inequality in the distribution of wealth in the population of a nation has 
provoked a lot of political debate. The observations that the top few percent­
age own a lions share of the wealth has been mathematically formulated as a 
power law by Pareto at the turn of the 19th century [2]. It is important for 
both economists, econophysicists, and policy makers to understand the root 
cause on this inequality: whether social injustice is the main culprit for such 
a lop-sided distribution. Over the past, economists have developed two mod­
els, namely, the dynastic model and the life-cycle model, to explain wealth 
distribution. In the dynastic model, where bequests are vehicles of transmis­
sion of wealth inequality, people save to improve the consumption of their 
descendants. On the other hand, in the life-cycle model, where wealth of an 
individual is a function of the age, people save to provide for their own con­
sumption after retirement. Both these models and their hybrid versions have 
had only limited success quantitatively [3]. However, one of the ingredients 
that goes into these models, i.e., uninsurable shocks or stochasticity in income 
[4], has been exploited by econophysicists with remarkable success in repro­
ducing power law tails qualitatively. It appears that randomness may very 
well be enough to explain the skewed wealth distribution and that a loaded 
dice may not be the root cause. 

The wealth distribution of the poor (0-90 wealth percentile group) is expo­
nential or Boltzmann-Gibb's like [5, 6], while that of the higher wealth group 
has a power law tail with exponent varying between 2 and 3. The Boltzmann-
Gibb's law has been shown to be obtainable when trading between two peo­
ple, in the absence of any savings, is totally random [7, 8, 9]. The constant 
finite savings case has been studied earlier numerically by Chakraborti and 
Chakrabarti [7] and later analytically by us [8]. As regards the fat tail in the 
wealth distribution, several researchers have obtained Pareto-like behavior 
using approaches such as random savings [10], inelastic scattering [11], gener­
alized Lotka Volterra dynamics [12], asymmetric interactions between agents 
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[13], nonextensive Tsallis statistics [14], analogy with directed polymers in 
random media [15], and three parameter based trade-investment model [16]. 
As regards an egalitarian solution, there has also been an interesting model 
(conservative exchange market model) based on the Bak-Sneppen model that 
takes measures to improve the lot of the poorest [17]. Within this model the 
authors obtain a Gibbs type of wealth distribution with almost all agents 
above a finite poverty line. 

In this article, we try to model the processes that produce the wealth 
distribution in societies. Our model involves two types of trading processes 
- tiny and gross [19]. The tiny process involves trading between two indi­
viduals while the gross one involves trading between an individual and the 
gross-system. The philosophy is that small wealth distribution is governed 
by two-party trading while the large wealth distribution involves big players 
interacting with the gross-system. The poor are mainly involved in trading 
with other poor individuals. Whereas the big players mainly interact with 
large entities/organizations such as government(s), markets of nations, etc. 
These large entities/organizations are treated as making up the gross-system 
in our model. The gross-system is thus a huge reservoir of wealth. Hence, our 
model invokes the tiny channel at small wealths while at large wealths the 
gross channel gets turned on. Our two types of trading model is motivated by 
the fact that a kink seems to be generic in the wealth/income distributions in 
real populations (as borne out by the empirical data in Fig. 9 of Ref. [5] and 
Fig. 1 of Ref. [18]) indicating that two different dynamics may be operative 
in the poor and the wealthy regimes. 

2 Two Types of Trading Model 

2.1 Model for Tiny-Trading 

The model describes two-party trading between agents 1 and 2 whose 
respective wealths j/i and y^ are smaller than a cutoff wealth yc. The two 
agents engage in trading where they put forth a fraction of their wealth (1 — 
\t)yi and (1 — Xt)y2 [with 0 < At < 1]. Then the total money (1 — At)(j/i +2/2) 
is randomly distributed between the two. The total money between the two 
is conserved in the two-party trading process. We assume that probability of 
trading by individuals having certain money is proportional to the number of 
individuals with that money. 

We will now derive the equilibrium distribution function f(y)dy which 
gives the probability of an agent having money between y and y + dy. We 
assume that, irrespective of the starting point, the system evolves to the 
equilibrium distribution after sufficient number of trading interactions. We 
will now consider interactions after the system has attained steady state. The 
joint probability that, before interaction, money of 1 lies between x and x + dx 
and money of 2 lies between z and z + dz is f(x)dxf(z)dz. Since the total 
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money is conserved in the interaction, we let L = x + z and analyze in terms 
of L. Then the joint probability becomes f(x)dxf(L — x)dL. We will now gen­
erate equilibrium distribution after interaction by noting that at steady state 
the distribution is the same before and after interaction. Probability that L is 
distributed to give money of 1 between y and y + dy is 

dy f{x)dxf{L - x)dL, (1) 
(1 - Xt)L 

with x\t <y< x\t + (1 — At)L. Thus we see that x < y/Xt and x > [y — (l — 
Xt)L]/Xt- Actually x should also satisfy the constraint 0 < x < L because the 
agents cannot have negative money. Thus the upper limit on x is min{L, y/Xt} 
(i.e., minimum of L and y/Xt) and the lower limit is max{0, [y — (1 — Xt)L]/Xt}-
Now, we know that the total money L has to be greater than y so that 
the agents have non-negative money. Thus we get the following distribution 
function for the money of 1 to lie between y and y + dy 

/

co My,L,Xt) 

dL dxT{x,L,Xt), (2) 
Ja(y,L,\t) 

where 
a(y,L, Xt) =max [0, {y - (1 - Xt)L}/Xt], 

Ky,L,\t) =mm[L,y/Xt], 

and 

f(x)f(L-x) 
T{x,L,\t) = 

(1 - Xt)L 

The above result was obtained earlier by using Boltzmann transport theory 
[19]. 

On introducing an upper cutoff yc for the two-party trading, the contri­
bution to the distribution function f(y) from the tiny channel becomes 

/

co pb(y,L,\t) 

dL I dxT(x,L,Xt)U(x,L,yc). (3) 
Ja(y,L,\t) 

In the above equation 
H(x,L,yc) = [1 - 0(x - yc)][l - 6{L - x - yc)], 

with 9(x) being the unit step function and 7 = 1/Jo^ dxf(x) is a normal­
ization constant introduced to account for the less than unity value of the 
probability of picking a person below yc. 
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2.2 Model for Gross-Trading 

Next, we will analyze the contribution to the distribution function f(y) 
from gross-trading. An individual possessing wealth y\ larger than a cutoff 
wealth (yc) trades with a fraction (1 — Xg) of his wealth yi with the gross-
system. The latter puts forth an equal amount of money (1 — Xg)yi. The 
trading involves the total sum 2(1 — Xg)y1 being randomly distributed between 
the individual and the reservoir. Thus on an average the gross-system's wealth 
is conserved. The probability that the individuals money after interaction lies 
between y and y + dy is 

dV -f(vi)dyu (4) 
2(1 - A9)j/! • 

where Xgyi <y<(2 — Xg)yi. Then the distribution function f(y) is given by 

, , v rv/x° dyif(yi) 
fyy) = / ^77^—TV (5) 

Jy/(2-\g) 4/1 U - Xg) 
Now it is interesting to note that the solution of the above equation is given 
by f(y) = c/yn. Then, to obtain n one solves the equation 

( 2 - A 9 ) " - A £ = 2 n ( l - A 9 ) , (6) 

and obtains n = 1,2. Only n = 2 is a realistic solution because it gives a finite 
cumulative probability. Surprisingly, the solution is independent of Xg. Also, 
clearly the distribution function makes sense only for y > 0. On taking into 
account an upper cutoff yc, the contribution to the distribution function f(y) 
from the gross channel is 

fy/X' dyif(yi) M 

Jy/(2-\g) 2 y i ( l - A g ) 

2.3 Hybrid Model 

Here an individual possessing wealth larger than a cutoff wealth yc does 
trading with the gross-system, while individuals possessing wealth smaller 
than yc engage in two-party tiny-trading. Hence from Eqs. (3) and (7), the 
distribution function is obtained to be 

/•oo rb(y,L,\t) 

f(y)=l dL dxT(x,L,Xt)U(x,L,yc) 
•'V Ja(y,L,Xt) 

[v/x° dxf{x) n. 

Now, it must be pointed out that when the savings At = 0, Ag ^ 0, and 
y —¥ 0, Eq. (8) yields (up to a proportionality constant) the following same 
result as the purely tiny-trading case without an upper cutoff [8]: 
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/'(!/) « - / ( ! / ) / (0) . (9) 

In obtaining the above equation we again assumed that the function f(y) and 
its first and second derivatives are well behaved. Then the solution for small 
y is given by 

f(y) a f(0)exp[-yf(0)]. (10) 

3 Results and Discussion 

The distribution function f(y) can be obtained by solving the nonlinear 
integral Eq. (8). To this end, we simplify Eq. (8) for computational purposes 
as follows: 

/

2Vc rHv,L,\t) 

dL / dxT(x, L, Xt)H(x, L,yc) 
Ja(y,L,Xt) 

+[1 - 9(y - yas)\ fV/X3 y ( g ) 6(x - yc) 

+0(y-yas)f(yas)^-, (n) 
yZ 

where Q(y,Xt,yc) = 1 - 9[y - (2 - \t)yc] and y > yas gives the asymptotic 
behavior f(y) oc 1/y2- In our calculations, we have taken yas to be at least 
20yc and obtained f(y) for all y less than 2000 times the average wealth 
per person yav. We solved Eq. (11) iteratively by choosing a trial function, 
substituting it on the RHS (right hand side) and obtaining a new trial function 
and successively substituting the new trial functions over and over again on 
the RHS until convergence is achieved. The criterion for convergence was that 
the difference between the new trial function /„ and the previous trial function 
fp satisfies the accuracy test ^ \fn(yi) ~ fP(yi)\/ Z)« fp(Vi) < °-0 0 2 I20]-

In Fig. 1, using a log-log plot we depict the distribution function f(y) for 
the constant savings case Xt = Xg = 0.5 with the average money per person 
yav being set to unity and with the values of the wealth cutoff yc = 3,5,10. 
As expected, for larger values of yc, the Pareto-like 1/y2 behavior sets in 
later. The transition to purely gross-trading occurs at (2 — Xt)yc, while below 
Xgyc it is purely two-party tiny-trading. Thus the transition from purely tiny-
trading to purely gross-trading occurs in Fig. 1 over a region of width yc. 
However, all the tails merge irrespective of the cutoff. At smaller values of y 
the behavior of f(y), depicted in the inset, is similar to the purely two-party 
trading model studied earlier (see Ref. [8]). The curves in the inset appear to 
be close because here the trading is two-party and is governed by the same 
savings. Next, in Fig. 2 we plot f{y) with the cutoff yc = 5, yav = 1, and 
for values of savings fraction Xt = Xg = X = 0.1,0.5,0.8. Here the power-law 
behavior (1/y2) takes over for y > (2 — X)yc and hence at lower savings it 
sets in later. In the power-law region the curves merge together. As shown 
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Fig. 1. Plot of the wealth distribution function for savings Xt = \g = 0.5 and 
various wealth cutoff values yc = 3, 5,10. The average money per person yav is set 
to unity. The dotted lines are guides to the eye. 

in the inset of Fig. 2, at smaller values of y the f(y)s become zero with the 
higher peaked curves (corresponding to larger As) approaching zero faster 
similar to the case of the purely two-party t rading model in our earlier work 
[8]. Here the transition from purely tiny- to purely gross-trading at higher A 
is sharper because the transition occurs over a region of width 2(1 — X)yc-
Lastly, in Fig. 3, we show the distribution function f(y) for the zero savings 
case in the tiny-channel (A^ = 0) and for various savings \g = 0.2,0.5,0.9 in 
the gross-channel with yav = 1 and yc = 5. The distribution, as expected, 
decays exponentially (or Boltzmann-Gibbs-like) for small values of y and has 
power-law (1/y 2) behavior at large values. The curves merge in the Pareto-
like region and, in fact, f(y) fs 0.1/y2 in all the three figures at large values 
of y. In Fig. 3 too, for reasons mentioned earlier, the transit ion is sharper at 
larger values of Xg. Fig. 3 takes into account the fact tha t , in societies, the 
rich tend to have higher savings fraction (A) compared to the poor. Actually, 
if the savings fraction were to increase gradually with wealth, one can expect 
a more gradual change in the transition region of the distribution rather than 
the sharp local maxima (around y « 6.5 ) shown by the \g = 0.9 curve. 

In all the figures anomalous looking kinks/shoulders appear at the cross 
over between the Boltzmann-Gibbs-like and the Pareto-like regimes. This is 
due to the sharp cut-off at yc t ha t we introduced using a step function. 
However, as mentioned in the introduction, such kinks do occur in real in-
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come/wealth distributions [5, 18]. Different societies have the onset of Pareto-
like behavior at different wealths which is indicative that the cut-off has to be 
obtained empirically based on various factors like the social structure, welfare 
policies, type of markets, form of government, etc. It is of interest to note 
that the analysis carried out on income classes in USA during 1983-2001 in 
Ref. [21] revealed that the Boltzmann-Gibbs part is quite stationary while 
the Pareto tail swells and shrinks (and thus changes with time). This is per­
haps indicative that the poorer section corresponds to a system at equilibrium 
while the richer society represents a steady state system that is far from equi­
librium. Thus perhaps some sort of a self-organized criticality is operative in 
the wealthier society where wealth generating ideas or new technology may 
be responsible for driving the system away from equilibrium. 

In Japan the wealth/income distribution vanishes at zero wealth/income 
and then rises to a maximum (see Ref. [5]). In US the distribution seems to 
be a maximum at zero wealth/income (see Ref. [5]). Both these aspects can 
be covered in our model as the poor in general are known to save very little. 
If their savings are zero, one gets the Boltzmann-Gibbs behavior at the poor 
end. On the other hand, if the savings are small one gets a maximum close to 
zero and the distribution vanishes at zero wealth. 

It would be interesting to deduce the savings pattern from the wealth 
distribution. While it has been observed that the rich tend to save more than 
the poor, how gradually the savings change as wealth increases can perhaps 
be inferred from the change in slope. However, as explained below, the middle 
region (involving the middle-class) has been modeled quite crudely by us and 
needs to be refined before a serious connection with savings pattern can be 
attempted. 

We will now further discuss the motivation for using two different mech­
anisms to model the observed wealth distribution. The model is an approxi­
mation where the direct wealth exchange occurs between people who are in 
economic proximity. At the bottom of the spectrum, the poor, who have lim­
ited economic means and avenues, come in contact with a few poor and their 
economic activity is modeled in terms of two-party trading. At the other end 
of the wealth spectrum, the rich have access to various economic avenues (e.g., 
markets, know-how, work force, capital, credit facilities, contacts, wealthy so­
ciety, etc.) due to which they can trade with huge organizations and are thus 
modeled to interact with a reservoir. As regards the middle-class that is be­
tween the rich and the poor, they trade amongst themselves as well as with 
the poor and the reservoir. As a first step towards realizing this scenario, we 
included in our earlier work [19] only the two extreme cases of interaction. 
What we had not taken into account is the interaction of the middle class 
with the reservoir. To rectify this, we have chosen the cutoff yg for the inter­
action with the reservoir such that yg lies below the two-party trading cutoff 
yt- However, this did not seem to alter the calculated curves significantly [22]. 
Thus, we believe that our model is a reasonable one at the poor and rich 
ends and is a crude approximation for the middle class. In order to model the 
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wealth distribution of the middle class better, one needs to produce a gradual 
transition from a two-party trading at the poorer end to the gross trading at 
the richer end. 

Although it is true that the poor also come in market contact with wealthy 
organizations like a soft-drink company, nevertheless the contact is an indirect 
one mediated through intermediaries. For example, the poor person deals 
with a richer shop-keeper selling the drink who in turn deals with a richer 
local distributor who in turn deals with the big soft-drink company. Thus the 
middle-class act as intermediaries between the rich and the poor. Next, we 
will examine the validity for our type of two-party trading. We feel that in 
any trading there is a random fluctuation of the price around its true value. 
The total money put forth for trading corresponds to the amount of random 
fluctuation. However the poorer of the two puts forth less and makes the 
trading biased in his/her favor. This can be justified from the fact that the 
poor people are constantly looking for bargains to make ends meet. 

Compared to other types of analysis involving two-party trading to explain 
Pareto law (see Ref. [10]), our gross-trading mechanism can make contact 
with the standard approach in macroeconomics as will be shown below. In 
macroeconomics, the objective is to maximize a cumulative utility function 
subject to a wealth constraint [23]. Mathematically this is formulated as 

EtJ2^u(ct+i), (12) 
i 

subject to the constraint 

Vt+i = (1 + r)yt+i-i + et+i - ct+i, (13) 

where a, yt, and e* are consumption, wealth, and labor earnings respectively 
at time t, r is the interest rate on wealth y, 0 < /3 < 1 is the time-discount fac­
tor, u(ct) is the concave utility function, Et is the expectation value based on 
the available information at time t. Using the method of Lagrange multipliers, 
the conditions of optimality yield 

Et[u'(ct) - (1 + r)Pu'(ct+i)] = 0, (14) 

where u'(ct) is the derivative of u(ct) with respect to cj. From the above 
equation we see that consumption at different times are related. In our work 
[see Eq. (4)], we introduced the stochasticity 

yt+i-yt=e{l-Xg)yt, (15) 

where e is a random number such that — 1 < e < 1, which implies that 

ryt +et+1 - ct+1 = e(l - \g)yt. (16) 

The above equation can be made consistent with the optimal consumption 
relation given by Eq. (14). In fact if it is assumed that (1 + r)/3 = 1, which is 
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anyway approximately true, then consumption smoothing of the form ct+i = 
Ct [which is consistent with Eq. (14)] implies tha t all the stochasticity given by 
the RHS of Eq. (16) lies in the income only. Thus our model (for the power-
law tail) is consistent with the s tandard approaches in macroeconomics using 
uninsurable shocks in income. 

It is of interest to note tha t if we modify the stochasticity as 

yt+1 -yt = e(l - Xg)yl~S, (17) 

with 0 < 6 < 1, then the asymptotic behavior of the distribution function has 
two power-law solutions with exponents 2 — 26 and 1 — 28 [24]. Such solutions 
are obtained by solving the integral equation 

fiy) = L 2(1-A,)*-" (18) 

where the limits of integration x± are obtained iteratively in terms of y, from 
the equation 

x± = y ± (1 - Xg)x
1±s, (19) 

as a power series with a typical term in the series being yl~nS with n = 
0 , 1 , 2, . . . . Thus one can obtain different exponents for the power-law tail. 

In conclusion, we introduced interaction of the rich with huge entities (a 
model tha t is consistent with main models in macroeconomics) and obtained 
a Pareto-like power-law. On the other hand, the Boltzmann-Gibbs-like wealth 
distribution, corresponding to the bulk of the society, is understood through 
a two-party trading mechanism. All in all, we show tha t stochasticity can 
explain the observed skewness in the wealth distribution in societies. 
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1 Introduction 

A study of the distribution of the income of workers, companies and coun­
tries was presented, a little more than a century ago, by Italian economist 
Vilfredo Pareto. He investigated data of personal income for different Eu­
ropean countries and found a power law distribution that seems not to be 
dependent on the different economic conditions of the countries. In his book 
Cours d'Economie Politique [1] he asserted that in all countries and times 
the distribution of income and wealth follows a power law behaviour where 
the cumulative probability P(w) of people whose income is at least w is given 
by P(w) oc w~a, where the exponent a is named today Pareto index, while 
the power law is known as Pareto law. The exponent a for several countries 
was 1.2 < a < 1.9. However, recent data indicates that, even though Pareto's 
distribution provides a good fit to the distribution of high range of income, it 
does not agree with observed data over the middle and low range of income. 
For instance, data from Japan [2, 3], Italy [4], India [5], Brazil [6], the United 
States of America and the United Kingdom [7, 8, 9] are fitted by a lognormal 
or Gibbs distribution with a maximum in middle range plus a power law for 
high income one. 

The existence of these two regimes may be justified in a qualitative way by 
stating that in the low and middle income class the process of accumulation 
of wealth is additive, causing a Gaussian-like distribution, while in the high 
income class the wealth grows in a multiplicative way, generating the power 
law tail [3]. However, it is not clear if the difference between this two-regime 
behaviour and the original Pareto law is the results of an historical change 
of the income profile during the last century, or a characteristic of the data 
analysed. 
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Different models of capital exchange among economic agents have been 
proposed trying to obtain the power law distribution for the wealthiest strata. 
Most of these models consider an ensemble of interacting economic agents 
that exchange a fixed or random amount of a quantity called "wealth". This 
wealth parameter represents the welfare of the agents. The exact choice of 
this parameter is not straightforward. For instance, when thinking of coun­
tries in the world economy, the GNP (Gross National Product) or some func­
tion of macroeconomic indicators could be a reasonable choice. In the case 
of companies, equity, share price or some suitable combination of them with 
outstanding debt are reasonable candidates. In the model of Dragulescu and 
Yakovenko [7] this parameter is associated with the amount of money a per­
son has available to exchange. Within this model the amount of money corre­
sponds to a kind of economic "energy" that may be exchanged by the agents 
in a random way and the resulting wealth distribution is a Gibbs exponen­
tial distribution, as it would be expected. An exponential distribution as a 
function of the square of the wealth is also obtained in a model where some 
action is taken, at each time step, on the poorest agent, trying to improve its 
economic state [10]. In the case of this last model a poverty line with finite 
wealth is also obtained, describing a way to diminish inequalities in a wealth 
distribution [11]. 

In order to try to obtain the power law tail several methods have been 
proposed. Keeping the constraint of wealth conservation a detailed studied 
proposition is that each agent saves a fraction - constant or random - of 
their resources [13, 14, 15, 16, 19, 20, 12, 17, 18], fraction that introduces a 
multiplicative factor in the exchanges. One possible result of that model is 
condensation, i.e. the concentration of all the available wealth in just one or a 
few agents. To overcome this situation different rules of interaction have been 
applied, for example increasing the probability of favouring the poorer agent 
in a transaction [19, 18], or introducing a cut-off that separates interactions 
between agents below and above this cut-off [21]. Most of these models are able 
to obtain a power law regime for the high-income class, but for some values 
of the parameters, while for the low income, the regime can be approximately 
fit by an exponential or lognormal function. Finally it is worth quoting that 
Slanina [22] proposed a non-conservative version of the "gas" model [7], where 
the agents win or lose some extra wealth in the interaction, and he is able to 
obtain a power law regime for the high income class. One interesting point of 
this model is the non-conservation of wealth (or money) that makes it more 
realistic; on the other hand, the model is deterministic, not stochastic. 

Here we would like to address the point that in all those models possible 
correlations between wealth and probability of interaction are not considered. 
That means that there are no correlations between the wealth of the agents 
and the probability of interaction between them. This seems to be at odds 
with the idea that people tend to strongly interact mainly with others of their 
own social and economic class[21] and also the fact that success in business is 
awarded with more business. One example are the internet based e-shops that 
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are beginning to substitute traditional shops. When presented with different 
choices, people prefer to buy in e-shops that have better "references", i.e. 
in the shops that have made transactions with more customers. In that way 
successful traders are rewarded with more links. Another example: Inaoka et 
al [23] analyse the exchanges in Japanese banks, concluding that the bigger 
ones have more interactions between them and with the others than the small 
banks. The resulting network of interactions is very different for big banks 
(almost fully connected) than for small ones (a kind of star-like network). 

Recently we have presented a model including correlations between wealth 
and the possibility of having an exchange[24]. In this model agents can trade 
just if they belong to the same economic class (i.e. their wealth difference is 
within a given range u) and the result is an extreme class polarization with the 
decline of the middle class. Here we present a different approach, correlating 
the success of an agent in their economics exchanges with its degree of con­
nectivity. A model is considered where each agent possess a given amount of 
wealth, randomly chosen between the arbitrary values of 0 and wmax. A differ­
ent level of a randomly distributed risk aversion parameter is also attributed 
to each agent, as in previously discussed models, being this individual risk 
aversion level constant during the simulation. The agents are initially placed 
on a random lattice, with a given average connectivity V. When the exchange 
of wealth between agents take place, every time an agent increase its wealth, 
it also increases its connectivity, that is, the number of neighbours that are 
linked to it. In the next section we describe the details of the model and the 
simulations, and in the last section we present the results and conclusions. 

2 Dynamic network model 

We consider a set of economic agents characterized by two parameters: 
a wealth Wi and a risk aversion factor /3(i), with 0 < /3(i) < 1. The last 
parameter remains fixed during the whole process, and allows us to define the 
quantity [1 — /3(i)] as the percentage of wealth that agent i is disposed to risk. 
Agents are the nodes of a random network (i.e. a network having a Poisson 
distribution of connectivities) with average connectivity V and interactions 
are only allowed between connected agents. 

The dynamics of the system consist first in choosing at random two agents 
connected by a link, which will exchange resources. Then, we put them to 
interact with the following rules: we establish that no agent can win more 
than the amount he puts at risk. This means that the amount that will be 
exchanged is the minimum value of the available resources of both agents, 
dw = min[(l — /?i)wi; (1 — (3-2)w2]-Finally, we introduce a probability p > 0.5 
of favoring the poorer of the two partners, because increasing the probability 
of favoring the poorer agent is a way to simulate the action of the state or of 
some type of regulatory policy that tries to redistribute the resources [17, 11]. 
Also, several authors[13, 14, 12, 18] have shown that without this prescription 
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the system condensates, i.e. just one or a few agents concentrate the total 
wealth of the system. Here we determine this probability using a formula 
proposed by Scafetta et. al. [19, 20, 18], 

1 , , \wi -w2\ ,,.. 
2 wi +w2 

being w\ and wi the respective wealths of the two partners in the exchange; 
/ is a factor going from 0 (equal probability for all agents) to 1/2. Thus, in 
each exchange the poorer agent has probability p of receiving the quantity dw 
whereas the richer one has probability 1 — p. 

Moreover, at the same time that the winner in the exchange increases his 
wealth by dw, he is also rewarded with a given number of links, proportional 
to the amount dw. These additional links could come from the loser agent 
(version A of the model), or could be taken at random from any point of the 
lattice (version B). 

We performed numerical simulation with these rules and found that, after 
a transient, the system arrives to a stationary state where the wealth has 
been distributed but also the network has changed from a random one to a 
web where the richer agents concentrate most of the links. This represents a 
society where the more successful agents obtain also better trade conditions, 
thus improving the opportunities of making more money. On the other side 
the situation will be not so unfair as expected for the poorer strata of the 
population. The smaller connectivity creates a kind of "protective screening" 
for the less favored agents, preventing them from losing more money. 

3 Results and Conclusions 

We consider a number of agents N ranging from 5000 to 10000 and a 
number of average exchanges big enough to guarantee a stationary state (103 

to 104 exchanges per agent). The initial wealth for each agent is chosen at 
random from an uniform distribution where between 0 and wmax, being here 
wmax = 500. We investigate several values for the average number of links per 
agent, going from 5 to 80 links per agent in the case N = 5 x 105 agents. The 
initial distribution of links is a Poisson distribution. 

In order to update the lattice at each exchange, we divide the total wealth 
of the system by the total number of links, attributing a "monetary" value 
to each link. The winner in a transaction also wins the equivalent number of 
links, rounded by elimination of any fractionary number. Finally the value of 
/ used to determine the probability p of favoring the poorer agent has been 
set equal to 0., 0.1, 0.3 and 0.5. 

We show here three different cases: the static lattice, in order to have a 
reference for comparison, the case A - where after the exchange the winner 
takes links from the loser up to a limit of leaving the loser connected by at 
least one link -, and the case B - where the winner takes a link at random 
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from any agent - . Notice tha t in all three cases the total number of links 
remains constant throughout the evolution. 

Number of Links Number of Links 

Fig. 1. Cumulative histogram of the asymptotic link distribution for / = 0.1 (left 
column) and / = 0.5 (right column), V = 5 (first row) and V = 80 (second row). 
The results are taken from 100 runs. The lines joining the symbols are only guides 
to the eye. 

In Fig. 1 we show the asymptotic distributions of links for / = 0.1 and 
/ = 0.5 (the poorer agent is maximally favored at each transaction) and 
for V = 5 and V = 80. In all cases the full curve corresponds to the initial 
distribution, tha t is also the static one, as the lat ter is not modified by the 
dynamics. It can be seen tha t in all cases the resulting distribution deviates 
significantly from the initial one: a few agents end up having a number of links 
much higher than the average, whereas most of the population has very few 
links. The maximum is always shifted to the left. This effect is most dramatic 
in the case / = 0.1, V = 80: for case B the maximum is shifted from 80 links 
to only 10, whereas some agents are connected to up to ~ 800 other agents. 
In the case A, for these same parameters , the resulting distribution is rather 
different: the maximum is much less pronounced but has been shifted to very 
low values v m 1, while the maximal number of links is also much smaller. 
Finally, in the case / = 0.5, the effect of favoring the poorer agents seems to 
smooth out almost completely the differences between the dynamics A and B. 



154 S. Risau Gusman, M. F. Laguna and J. R. Iglesias 

The most interesting results concern the asymptotic wealth distribution. 
In Fig. 2 we present results for / = 0.1 and / = 0.5, V = 5 and V = 80. For 
/ = 0.1, (but also for small values of / ) , there appears a very high peak for 
low values of income: about 60 per cent of the agents own about one tenth 
of the average wealth. On the other hand, most of the wealth is owned by a 
few very rich agents. The personal wealth of these agents is about ten times 
greater than the average wealth. The differences between the different cases 
concern mainly the number of people in the middle class, loosely defined as 
the wealth interval between wmax/10 and wmax, and the number of people 
in the upper class (w > wmax). One striking feature observed for / = 0.1 is 
that in the high class the asymptotic distribution for case A follows a power 
law, whose exponent is ~ —2 (corresponding to a Pareto exponent —1). Also, 
it is rather surprising that the distribution for case A and the static one are 
almost identical for / = 0.1, V = 80, even though the underlying lattices are 
very different (see Fig. 1). 
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Fig. 2. Cumulative histogram of the asymptotic wealth distribution for / = 0.1 
(left column) and / = 0.5 (right column), V = 5 (first row) and V = 80 (second 
row). The results are taken from 100 runs. For f=0.1 the straight lines correspond 
to fits with a power law, whose exponents are -1.8. The lines joining the symbols 
are only guides to the eye. 
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As it has been observed for the links distribution, the differences between 
the three cases are smoothed out for high values of / . But the wealth distribu­
tion depends on the dynamics of the network for low values of / . It seems that 
the effect of the dynamics of links is important when there are no regulations 
in the exchanges / RS 0. , and the result is that the number of agents in the 
middle class decreases while the number of agents in the very low or in the 
high income class increases, but the effect is not as pronounced as in ref. [24]. 
In the case of / = 0.5 the wealth distribution looks similar to that of devel­
oped countries like Japan[2] or England [9]: A maximum in the distribution is 
observed for a "middle class" and for high income a power law may be drawn, 
but on a relatively narrow strip of wealth. The income of that "middle class" 
is almost the same average initial value of the wealth, while the number of 
very rich people is smaller by a factor of 10 compared to what happens for 
/ = 0.1. 

In order to compare the different distributions between them and with 
empirical data, it is useful to determine the values of the Gini coefficients. 
As it can be observed in Table 1 differences among the different cases are 
only significant for low values of / , but in these cases the Gini coefficients are 
very far from being realistic. It is only for high values of / that we obtain 
Gini indexes that are close to those observed in real societies. For / = 0. 
and / = 0.1 unfairness clearly increases with connectivity in case A and for 
the same parameters it also increases when switching from the static case to 
both dynamic lattices. On the other hand, for higher values of / ( / = 0.3 
and / = 0.5), it seems that the reconnection of the lattice induces a kind 
of protective screening of the lower classes, being the Gini exponents slightly 
lower for both dynamic networks than for the static one (with the exception 
of case A, V = 5). Moreover, the Gini indices are even lower for case B, when 
the links are cut at random, than for case A, when they are taken from the 
loser agent. However, in all cases the changes are small, meaning that the 
reconnection of the lattice has little effect on inequalities. 

0 
0.1 
0.3 
0.5 

Static 
5 

0.816 
0.793 
0.609 
0.443 

20 
0.9213 
0.878 
0.651 
0.466 

80 
0.955 
0.91 

0.666 
0.473 

Case A 
5 

0.964 
0.884 
0.62 
0.441 

20 
0.981 
0.897 
0.622 
0.432 

80 
0.983 
0.915 
0.623 
0.428 

Case B 
5 

0.980 
0.89 

0.603 
0.433 

20 
0.987 
0.868 
0.59 
0.422 

80 
0.985 
0.873 
0.593 
0.424 

Table 1. Gini coefficients for the three dynamics treated in the article. The columns 
in each case correspond to the different values of 77 whereas the rows correspond to 
the different values of / . 

We have also analyzed the correlation between the number of links of each 
agent and the wealth he has accumulated. For the static case we find that 
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there is no correlation between connectivity and wealth, as it is expected i.e. 
we find that for all wealth classes the average connectivity coincides with its 
population average. For case B we always find that there is a linear relation­
ship: wealthier agents tend to be the more connected. On the other hand, in 
the case A we find a clear linear relation only for high values of / . For small 
values of / and not too large connectivity we find that the average connec­
tivity is almost constant but, unlike the static case, this constant is smaller 
than that of the population average. There are, of course, agents with more 
links than the average and these are, surprisingly, very low income agents. 
Probably this is one of the reasons that for low values of / the low income 
class has practically zero wealth: they have success in their exchanges but, as 
they can only get the same amount they risk, the average gain is negligible. 

Risk aversion (p) Risk aversion (p) 

Fig. 3. Wealth vs. Risk aversion. Each point represents an individual, and the whole 
population has 10000 agents. The two columns only differ in the way the graphs are 
presented: a logarithmic ordinate scale in the left and normal ordinate in the right. 

Finally, the correlation between wealth and risk aversion also presents some 
interesting features. In Fig. 3 we show some results for case B (no noticeable 
differences are observed for different cases and connectivities)(.) For low values 
of / , only the most risk averting individuals have a significant chance to get 
rich. But, to get rich, j3 should be of the order of 0.6 to 0.8, as bigger values 
of j3 imply very low sums put at stake. For high values of / the situation 
changes to become more uniform; even very risk-prone individuals are able 
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to get very wealthy. However, for high values of / the wealthier individuals 
are significantly poorer than their counterparts for low values of / : the richer 
agents have a wealth of the order of 4 x wmax for / = 0.5 and 12 x wmax for 
/ = 0.1. Concerning the lower classes, it is possible to see on the logarithmic 
representation tha t a risk aversion of the order of 0.5 or higher guarantees a 
finite wealth of the order of 1/10 x wmax for / = 0.25. 

We conclude tha t the introduction of a correlation between connectivity 
and success in "commercial" exchanges produces a wealth distribution and 
Gini coefficients different than tha t of an static social lattice, but the effects 
are not as evident as expected. The more important parameter is still / , the 
probability of favoring the poorer agent in each exchange, and, in a minor 
degree, the average connectivity of the lattice. For low values of / the wealth 
distribution is very unfair, still worse than in real societies. A finite fraction 
of the order of 2 /3 of the population has almost zero wealth while for the 
richer classes one obtains a rather robust power law. For high values of / the 
distribution presents a maximum for finite values of the wealth, of the order 
of the average wealth, but there is still a finite fraction of agents with almost 
zero wealth. The effect of the average connectivity is also more evident for low 
values of / but in all cases it seems tha t increasing the average connectivity 
is the best way to obtain power laws in the different situations studied. The 
effect of a dynamical network can be boosted either considering a correlation 
between the wealth of the agents, as in ref. [24], or modifying the rule tha t 
no agent can win more than the amount he puts at stake, because this strong 
constraint limits social and economical mobility. 
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S u m m a r y . The distribution of money for several countries is analyzed according 
to the Bolztmann-Gibbs distribution with explicit consideration of the degeneracy 
of states. At high values of money the experimental data are systematically larger 
than the values corresponding to the BG statistics. The use of Tsallis non extensive 
statistics results in a good fit in the whole range of income values, converging to 
Paretos law in the high money limit and indicating the fractal nature of the distribu­
tion. In some cases, the distribution has two or more components, which, according 
to model calculations, arise from the different degeneracy of each ensemble. Criteria 
to determine whether this situation corresponds to equilibrium are analysed. 

1 Introduction 

The shape and origin of the income distribution is of utmost importance 
in order to develop models to explain it and to analyse the causes of inequality 

The higher end of the distribution of money seems to follow a power law of 
universal character, as shown by Pareto more than a century ago [2]. Several 
a t tempts were made in order to explain this intriguing behaviour [3-7] as well 
as the low and medium region income [7-11]. Recently, a Boltzmann-Gibbs 
(BG) distribution has been proposed to account for the income distribution 
for several countries, tha t , notwithstanding, does not follow Paretos law in 
the high income limit [12-14]. Therefore, the behaviour of the distribution in 
the whole range of money requires the use of two functions, one for the high 
and one for the low and medium income region. As shown in the present com­
munication, this discrepancy can be settled using the non extensive statistics 
proposed by Tsallis [15,16], thus indicating the fractal nature of the distribu­
tion. Tsallis statistics has also been used by other authors in connection with 
the distribution of money [17,18]. 

In addition to this difficulty, the income distribution of several countries 
shows the presence of more than one component in the intermediate region. 
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While this polymodal character of the distribution can be easily accounted 
for by a superposition of functions it should also be considered whether this 
behaviour corresponds to a real equilibrium or to an intermediate state in the 
temporal evolution of the system. The purpose of this work is to show that the 
Tsallis function can account for the distribution of money in the whole range 
of money values, to find criteria to establish if the distribution corresponds 
to equilibrium and to analyze bimodal cases to obtain information on the 
equilibrium and its social consequences. 

2 The distr ibution of money 

In a previous report the income distributions of the UK, Japan and New 
Zealand were shown to follow quite closely the BG function, when the degener­
acy of states is considered [14]. Assuming that the degeneracy is proportional 
to money, m, the BG equation becomes the Gamma function, i.e. 

^ ( m ) = Nm^-V exp(-TO//3) (1) 

The data for several countries, exemplified by those of Japan, New Zealand 
and the UK in selected years, could be well reproduced by this function. 

However, more detailed consideration, as evidenced in a log plot, shows 
that this distribution strongly deviates from the experimental data in the high 
income limit (Fig 1). 

e 
Q. 0,1-

• *y^? 
Japan 1998 

*L \ x t . • Hew Zealand 

\ " \ X N ( A UK 1998 
\ \ J . 

d 1996 

: n 

1A 
4D BO 

Incom«/10O0 

Fig. 1. Probability density vs. money for the income data of Japan and UK, 1998 
and New Zealand 1996. The solid lines correspond to the Gamma function. The 
income axis has been scaled according to the following factors: New Zealand: 1; UK: 
2; Japan: 500. 
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Fig. 2. Probability density vs. money for the income data of Japan and UK, 1998, 
and New Zealand 1996. The solid lines correspond to the Tsallis function. 

However, the data could be fit to a Tsallis function in the whole money range, 
with a value of q close to 1.1 (Fig. 2). The lines shown in that figure corre­
sponds to q = 1.13, 1.13 and 1.10, for Japan, UK and New Zealand, respec­
tively. 

Tsallis equation for the probability density is: 

Pi = N9i[l - (1 - q)Bx}1'l-« (2) 

and reduces to the usual BG equation 

Pi = Ngiexp(-x/P) (3) 

for q = 1. In Eq.2, <?» is the degeneracy of states, B is a constant and q is 
a parameter associated with the dimension of the system. This equation has 
been successfully applied to a variety of problems. For x = m, at high values 
of m Tsallis function becomes Pj = Nmn, where n = a — 1 + 1/1 — q, which, 
for q > 1 and (a — 1) < \l/(q — 1)| becomes Paretos law. 

Therefore, non extensive statistics not only accounts for the distribution of 
money in the whole income range, when the degeneracy of states is properly 
considered but also shows its fractal nature. However, taking into account that 
Eq.2 is more difficult to use than Eq. 3 and that the BG statistics produces 
results in satisfactory agreement with the Tsallis function if the small fraction 
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associated with the tail of the distribution is neglected, we will assume, for 
the present purposes, than Eq. 3 applies. 

Another point to be considered is tha t the income distribution in many 
cases shows bimodal (or, in general, polymodal) behaviour. One example is 
obtained from the da ta of J apan for fiscal year 1998. These da ta are presented 
in Fig. 3, together with the fit to a double gamma function and the individual 
components of the distribution. 

Since /3 is related to temperature [12, 13, 19], polymodal distributions for 
systems in equilibrium should be characterised by a unique value of ft This 
seems to be the case for the income distribution of Japan 1998, shown in Fig.3, 
where the value /3 for both components are the same, within the experimental 
error ( f t = 0.8 ± .3 and ft = 1.1 ± 2.1). 
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Fig. 3 . Income distribution for Japan 1998, showing the two components of the 
distribution 

A notable example of polymodal distributions is provided by the da ta from 
Argentina, during the economic crisis at the beginning of 2002 (Fig. 4) [20]. In 
this case, the components cannot be satisfactorily fit to a combination of BG 
functions, but they are well reproduced by the addition of Gaussian functions. 

3 The evolution of the distribution 

In an a t tempt to gain a further insight on the nature of multiple compo­
nents in the income distribution, we made model calculations based on the 



The Monomodal, ... Distribution of Money 163 

0,15-

c 
•S 0,10-
J5 
3 a. o 

Q. 

0,05-

0,00-f , 1 , 1 , 1 , 1 1 
0 200 400 600 800 

Money 

Fig. 4. Income distribution for Argentina, May 2002, showing the three components 
of the distribution 

rate equations for the transference on money between pairs of agents in a so­
ciety, following the same method than in our previous work [14]. However, we 
have now considered the case that an initial BG distribution, characterized 
by single values of a and /3 could change to two different ensembles, A and B, 
with the same value of ft but different values of a, alpha A and as at constant 
total energy. 

In these calculations we used /3 = 40 a.u. and an initial monomodal gamma 
distribution with a value of a = 3, which yields an average money < M >= 
a/3 = 120 a.u. The final statecharacterized by OL A = 2 and OLB = 5, that is, 
< MA > = 80 a.u. and < MB >= 200 a.u., that, in order to keep the total 
money constant requires a fractional final population for A, PA = 2/3 and for 
B, PB = 1/3. 

In the absence of any flow of money in and out of the ensemble, the 
populations of A and B in money level i change in time according to the 
following master equations: 

«AA £ P4Anf + OJAB £ P4Bnf - UBA £ P*Anf -
J J 3 

UAA £ Pt
AAnf - kABnt + kBATif (4) 

j 

dt 
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^ V ^ PBBnB -L , , V ^ T>ABnB , , V ^ pBAnB 
dt 

3 3 

UBB J2 ^Bnf ~ kBAnf + kABn? (5) 
3 

where P£z is, in general, the probability of money transference from level j to 
i of X by interaction with Z, with interaction frequency OJXZ and population 
nf. The coefficients kzx stand to account the rate for the rate of change 
between both ensembles, X and Z. 

Integration of the set of equations 3 and 4 requires values for P^z'. The 
values of these elements for the gain of money are related to those for money 
loss by detailed balance, i.e. 

Eli = f1^] = (li &- ) exp(-(M,- - Mi)IP) (6) 

This restriction, together with the condition of detailed balance for the 
back and forward rate of conversion of A into B, assures that the composition 
of equilibrium will be that of the BG distribution. A similar equation could 
also be imposed on the Tsallis distribution, if it were used instead of the BGs. 

Therefore, the final state to be reached is determined by detailed balance, 
while the instantaneous value of the population distribution will depend on 
the values of the transition probabilities and the rate constants. 

Several different calculations were made. In all of them, the elements P%z 

were calculated using a normalized exponential model 

P?z = Nexp[-(Mi-Mj)/<AM>] (7) 

so that the transference of small amounts of money prevails. 
In most of the calculations the rate coefficients were taken as constant, 

independent of the level of money and with the condition kAB = ^ B A / 2 . In a 
few cases, not presented here, these coefficients were assumed to increase with 
i. The average amount of money transferred per interaction, < M >, was set 
equal to 10. 

A representative calculation is shown in Fig.5. The initial BG distribu­
tion separates into two different sets to finally reach the corresponding BG 
equilibrium composition. A similar calculation but starting from two well sep­
arated initial distributions should merge into the same final state, if the same 
parameters were used. 

It should be noted that the curves presented in Fig. 5 for the intermediate 
states in the evolution to equilibrium can be very well reproduced by BG 
functions although with different values of /3. Thus, the curves whose max­
ima are shifted to lower money values show a decrease of /? from the initial 
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Fig. 5. Dissociation of a single initial distribution into two different ensembles, A 
and B. 

value of 40 a.u. to around 20 a.u., followed by a relatively slower increase to 
the equilibrium value. In correlation with this, the value of /? for the other 
ensemble initially increases and then decreases as money is equilibrated. This 
behaviour arises from the fast rate of change of A into B, as compared with 
money transference, so that an initial disequilibrium appears. 

These results show that an equilibrium society could dissociate in two dif­
ferent groups, while still maintaining equilibrium, if a change if the properties 
of its components takes place. This change is evidenced by the value of a, 
that is, the degeneracy of states. A larger value of a increases the ability of 
the agents in that group to accommodate the money they have and the dis­
tribution moves to larger money values, while a decrease of a produces the 
opposite effect. The segregation results in a broader total distribution, given 
by the addition of the distributions of A and B, with more differences between 
the rich and the poor. Note however that both ensembles have poor and rich 
components, even thought in different proportions. 

The same argument applies if the two groups were two different countries. 
The conclusion is that the key to a richer and egalitarian society (world) 
depends on the ability to increase < m > by increasing the value of a. On 
the contrary, an increase in richness as a result of a larger value of /? causes a 
broader distribution, with more differences between the poor and the rich. 

An additional difficulty, not easy to overcome, is the lack of experimental 
data of the nonequilibrum distribution of income a various times. One recent 
example could be obtained from the evolution of the economy in Argentina 
around the end of the 20th century and the beginning of the present. The crisis 
attained its maximum intensity between the end of 2001 and the first quarter 
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of 2002, which is clearly evidenced in the income distribution. According to the 
data available, the money distribution in Argentina was variable and showed 
certain bimodality. A few representative examples are shown in Figs. 
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Fig. 6. Income distribution for Argentina, (open circles) October 2001, (filled 
squares) May 2004. The solid curve represents the fit to the data of October. 

The data corresponding to May 2002 are fitted by three Gaussian functions, in 
agreement with the previous study that a system far from equilibrium evolves 
to the BG distribution through Gaussian distributions. 

The income distribution in previous years could be fit to a single Gamma 
function, although bimodality was always present. However, as the crisis de­
veloped, the low and medium region of the data could only be fit to Gaussian 
functions. The distortion reached its maximum in May 2003 and seemed to 
tend to return to a more normal shape in 2004. 

The appearance of a Gaussian shape in the distribution is expected ac­
cording to model calculations presented before, for the evolution of a system 
far from equilibrium. 

4 Conclusions 

The main findings reported in this work are: 
1. Monomodal distributions can be reproduced by the sole use of Tsallis non 
extensive statistics, with scaling factors close to 1.1. While others studies 
required the addition of two functions which separately fit the medium and 



The Monomodal, ... Distribution of Money 167 

high income regions, where Paretos law is obeyed, Tsallis function fits both 
regions simultaneously. 
2. Bimodal distributions per se do not indicate a deviation from equilibrium. 
Equilibrium is characterised by a single value of /3 for all the ensembles of the 
system. A rate equation analysis of the evolution of the populations indicate 
tha t a society with a monomodal BG distribution could dissociate in separate 
ensembles, to at tain a new equilibrium. 
3. The income distribution of Argentina during the economy crisis in the 
period 2001-2004 shows polymodal components, with Gaussian shapes, which 
is one of the characteristics of a system out of equilibrium. The other criterium 
is observing BG functions but with different values of /?. 
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S u m m a r y . The paper starts with the assumption that income and wealth distri­
butions are composed of Boltzmann distributions with power low tails at the high 
end. Examples of alternative energy distributions found in physical systems are dis­
cussed, and how they could be used to construct economic models that might allow 
alternative overall distributions of wealth and income in society. These ideas are 
further expanded to show alternative ways in which poverty could be tackled, both 
within individual countries, and globally. 

1 Background: Income Distribution and Statistical 
Physics 

Since the work of Pare to as long ago as 1897, it has been known tha t 
distributions of wealth or income have appeared to be log normal distributions 
tha t follow power law decays at the high end. These distributions have been 
observed across a wide variety of different economies over long periods of t ime. 
Traditionally this has been an economic puzzle; as intuitively different income 
distributions would be expected in differently structured economies. 

In recent years, the study of income distributions has gone through a small 
renaissance with new interest in the field shown by physicists with an interest 
in economics. The work of many in this field has demonstrated tha t income 
and wealth distributions are Maxwell-Boltzmann / Gamma distributions at 
low and medium level, with power law tails at the high end. Support for these 
theories come from raw da ta [1, 2, 3, 4], theoretical [5, 6, 7, 8, 9, 10, 11] and 
modeling approaches [12, 13, 14, 15, 16]. This is also discussed at length in 
many of the other papers in this volume. 

As an example; Figure 1 demonstrates the close correlation tha t can be 
seen between actual economic da ta and Boltzmann distributions in the UK. 

Although this has not been formally accepted in the wider economics com­
munity; this paper takes as a start ing point the assumption tha t income and 
wealth are distributed on an econodynamic basis, and tha t the overwhelming 
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majority of income is distributed as a Maxwell-Boltzmann function as a result 
of maximum entropy considerations. 
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Fig. 1. Boltzmann Distribution Fitted to Income Data. 
Fig. 2. Offset Normal Distribution. 

For physicists and others that are familiar with a maximum entropy ap­
proach it is not then a surprise that the same distributions of income are seen 
in widely different economic systems. From a statistical mechanical point of 
view; as the number of participants in a system increases, the underlying 
mechanisms of exchange (whether this is of energy or wealth) become irrele­
vant; and the resulting distribution is simply the one that is statistically most 
likely. This has very important consequences, both for the effects that such 
distributions have on human life, and the ways that human beings can affect 
these distributions. 

Firstly it is worth considering the appropriateness of the Boltzmann dis­
tribution as a method for sharing wealth amongst humanity. Most human 
abilities are found to be distributed on the basis of a normal distribution as 
shown in Fig. 2. The tails of this distribution decline to zero rapidly, and the 
mode usually has a large offset from zero when describing human qualities. In 
such a distribution the mean, median and mode averages coincide very closely. 

The result is that for most human skills the variation in ability between 
the top decile and the bottom decile is only of the order of a factor of two or 
three or so, very rarely by factors of ten or more. 

The above is not true of course for learnt skills, it is however generally true 
of the ability to learn these skills. Given these ranges of human abilities it is 
possible to construct an argument that a "fair" economic distribution would 
be one similar to an offset normal distribution. 

The Boltzmann distribution (see Fig. 3.) however is markedly different in 
two important respects. Firstly it is skewed; the mode average is considerably 
below the mean average, with the median somewhere between these two. Sec­
ondly it has a long tail with significant numbers of extreme events populated 
at levels considerably above either the median or mean averages. In a Boltz­
mann distribution the bottom decile lies close to the zero axis and has wealth 
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Fig. 2 Offset Normal Distribution 
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significantly less than the average wealth. The top decile has wealth consid­
erably in excess of the average wealth. Two other things can be noted with 
regard to the distribution. Firstly, that the displacement between the mean 
and the median results in a significant majority of individuals having less than 
the mean value of wealth. Secondly there is automatically a portion, roughly 
15% of all individuals, who are permanently below half the mean average in­
come; that is, the normally defined poverty level. (It should be noted that 
adding a power law tail to this distribution further skews the distribution, so 
increasing the disparities between rich and poor). 
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Fig. 3. Boltzmann Distribution. 
Fig. 4 and 5. Energy Levels in Non-lasing & Lasing Materials. 

It is possible from the above to construct an argument that the Boltzmann 
distribution is not a "fair" way for wealth or income to be distributed in a so­
ciety. Certainly social democrats, socialists and communists have constructed 
such arguments and have offered differing solutions to solving this perceived 
problem. 

In communist states strict, and active, microeconomic control was the nor­
mal way of attempting to prevent large discrepancies in wealth. In democratic 
countries this has generally been avoided, because of the stunting effects on 
economic growth. Instead these countries have instituted large scale systems 
of taxation and welfare in an attempt to transfer wealth from the rich to 
the poor. Meanwhile trade unions and professional societies also attempt to 
modify wealth distributions for there own members. 

From an econophysics point of view, the above methods of attempting to 
influence wealth distribution are deeply flawed. In a system of a large number 
of freely interacting particles the Boltzmann distribution is inevitable and 
methods of exchange, even ones such as tax and welfare, are largely irrelevant. 

From an econodynamic perspective, an approach that does make some 
sense is that of the trade unionists and professional societies. By tying together 
the interests of thousands, or even millions, of individuals their members are 
no longer "freely interacting" and are able to release themselves from the 
power of entropy to a limited extent. (Monopolistic companies attempt to 
subvert entropy by similar means). 

Fig.3 Boltzmann distribution 
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Traditional methods of taxation and welfare seem to have much less jus­
tification. It is common experience that such transfers give little long-term 
benefit to the poor. Transfers need to be massive and continuous to be effec­
tive, and there is a wealth of data to suggest that many welfare programmes 
result in the giving of benefit to those of medium income, rather than to the 
poor. This is of course exactly what an econodynamic analysis would predict. 

Given the power of entropy to force the overall distribution regardless 
of different sorts of microeconomic interactions, it would initially seem that 
attempting to modify income distribution will be futile. This is not necessarily 
the case. 

A possible approach is to look at analogies from other physical systems, 
which could be used as alternative economic models. I intend to follow this 
approach in the next two sections of this paper. 

2 Alternative Distributions 

The distinctive skewed shape of the Boltzmann distribution is a result 
of the particular boundary conditions found in most energetic systems. In an 
ideal gas the positive energy of any individual molecule is effectively unlimited; 
the molecule can go as fast as it wants. There is however a very clear boundary 
condition in the other direction, it is impossible for any molecule to have 
negative energy, once it is stopped it can not go any slower. It is this boundary 
condition that forces the skewness in the Boltzmann distribution. For a few of 
the molecules to have a lot of energy it is not possible for a few to have a lot 
of negative energy. Instead a summation over all possible assemblies dictates 
that a lot of molecules must have a little energy to compensate for the few 
with a lot of energy. 

(In economic systems this zero boundary condition is due to the difficulty 
any human being has in maintaining significant long term values of nega­
tive wealth; a growing problem with the increasing levels of communication 
between credit agencies.) 

There are a small number of systems that do not show the typical Boltz­
mann distribution of energy, the most obvious of which is the laser. 

A non-lasing material has closely spaced energy gaps. The exchange of 
photons between molecules can result in free interchange of energy states, 
with one molecule increasing in energy and the other decreasing; as shown in 
Fig. 4. 

A lasing material typically has a closely spaced band of lower energy levels 
with a large gap between this band the next one above. If a molecule is already 
at the top of this lower band (at E4) it is unable to go to the next energy 
level up because there is no other molecule available in bands Ei — E4 that 
can make an equal large jump down. In Fig. 5. AE4-5 is greater than AE1-4, 
so no molecule can jump from E4 to E$, because their is no matching drop 
available to keep total energies balanced. If the material is kept isolated, this 
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lower band can be given a very high occupation of energy levels "pumped" 
by an external source. Again, if kept isolated; this "inverted" distribution 
can be maintained for a significant time. Such an inverted distribution is not 
inherently thermodynamically stable; which is part of the reason that the 
release of energy is so intense when a laser is allowed to interact with its 
external environment. 

The reason for the inversion of the distribution is the existence of an 
effective upper limit on the distribution. It is possible that such an approach 
could be used in an economic system. 

Given a hypothetical isolated economic population N with total Wealth 
W and average wealth w = W/N, let us assume that a law is introduced that 
dictates that any individual that has more than double the average wealth is 
committing a criminal offence and is jailed. So the range of assemblies over 
which the total possible distributions is to be calculated is now limited at 
2w instead of infinity. Any distribution that has a person with wealth greater 
than 2w must be discarded from the total of assemblies. 
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Fig. 6. Wealth Limit at Twice Average Wealth. 
Fig. 7. Wealth Limit at 1.5 Times Average Wealth. 

By symmetry this would result in bell shape running from zero at zero, to 
zero at 2w, and having a maximum at w; Something like Fig. 6, and similar 
to a "wide" normal distribution offset from zero to w. 

Such a distribution would move a significant group of people out of the 
lower wealth levels and could be perceived as being more fair in its overall 
sharing of wealth. 

It is possible to go further; if the maximum wealth were set at 1.5 times the 
average wealth say, then a laser like inverted distribution of the form shown 
in Fig. 7. would result. Statistically the occupation of the lower levels would 
be very small indeed. 

While these ideas are theoretically sound they have very fundamental flaws 
as practical ways of running modern economies. 

The first obvious problem is that of isolation. If a maximum wealth (or 
maximum income) law was introduced in a typical western economy then 
the individuals affected by the law would simply move themselves or their 
excess wealth to another economy without such a law. To be effective such a 
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maximum wealth law must either apply to a nation that is isolated with strict 
controls on both emigration and financial transfers, or the law would have to 
be applied simultaneously to all interacting economies without the exemption 
of a single offshore tax haven. 

The second obvious problem is the process of actually moving from a 
free Boltzmann distribution to a "capped" distribution. This would involve a 
substantial reduction in wealth for a significant (and influential) proportion 
of the population. Perhaps more importantly it might create a perceived loss 
of opportunity for a much larger portion of the population, and would almost 
certainly be seen as an infringement of liberty in most societies. 

Figure 8 Figure 9 

Fig. 8. Ranked Income in the UK. Fig. 9. Salary Caps on Income. 

Figure 8 shows the income distribution of people in the UK from the NES 
earnings survey for 2002. Each point on the graph represents ten people in the 
survey, which in turn is one percent of all taxpayers (12 million people). The 
graph can be thought of as a very finely divided bar chart ranked from the 
lowest to the highest wage earners. It should be noted that the cut off of £1600 
per week is a consequence of the survey, and that a small percentage of high 
earners have not been caught in this data. Notwithstanding this, the graph is 
representative of the typical shape of earnings in a free market society. 

In this example the average wage is £297pw. If a maximum wage was set 
at twice this average at £600, then fully 5% of the population would be above 
this cut off. Reducing these peoples salaries by half to two-thirds would be 
very politically difficult. 

A possible solution to this would be to introduce 'stepped-caps'. Figure 
9 shows a simplistic example. Here the top cap would be set at the existing 
maximum, and would not be changed, or even increased with inflation. The 
bottom cap is set at one and a half times the average wage, and would be 
increased with wage inflation. The intermediate caps would increase with price 
inflation, which is generally less than wage inflation. After very many years the 
caps would eventually catch up with each other to achieve a single cap. This 
would slowly pressurise the system and produce a more equitable distribution. 

Again these proposals would be slow acting, and are likely to be seen as 
politically unacceptable in a free society. 
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3 Creating Local Isolated Systems - Laser Welfare 

In this section a welfare system is proposed that would operate within an 
economy but be isolated from the economy, apart from the subsidies needed 
to keep the isolated system functioning. 

The system to be created will consist of one thousand unemployed people. 
These people are assumed to be "priced out of the market" their existing skills 
are not productive enough for them to be attractive to an employer in the 
open market. It is intended to provide subsidies to these people to help them 
into jobs. These subsidies will be equivalent to the "pumping" that takes place 
in a laser. 

To build the system a number of items are needed. The first is a separate 
system to represent financial wealth. In this system these will be referred to 
as "coupons". Each coupon (CI) will be redeemable from the government for 
$1 cash. 

The second item needed is a way of limiting the number of coupons an indi­
vidual is allowed to earn. This is achieved by issuing each person in the scheme 
an allowance book. Each week the beneficiary will be allowed to claim cash 
from the government against any coupons they have gained that week up to a 
maximum of each week's allowance. Allowances are strictly non-transferable, 
whilst coupons are freely tradable. 

The government uses subsidies and the free market to keep the system 
circulating. It is assumed that the beneficiaries are only 50% of the efficiency 
of a typical person employed on low wages. It is also assumed that the gov­
ernment wants each beneficiary to earn around $100/week; this is deemed to 
be sufficient to meet their basic needs. Suppose there are 1000 beneficiaries 
in the scheme, then each beneficiary is given an allowance book that allows 
the beneficiary to cash in up to, but no more than, 120 coupons (C120) each 
week. Therefore, each week the total of available allowances will be C120,000. 

However each week the government will only release C100,000. These 
coupons will be released by auctioning them to a number of registered employ­
ers taking part in the subsidised labour scheme. The employers will purchase 
the coupons from the government each week for cash. The employers will then 
exchange them with the beneficiaries in exchange for their (inefficient) labour. 

This may seem a very complex way of getting money into the hands of 
unemployed people, but it does have some positive effects. A micro economy 
has been created in which different employers compete to buy coupons from 
the government, and different beneficiaries compete with each other. However 
the competition for the beneficiaries is not so fierce. A closed system has been 
created in which average occupancy is 83% (100/120), an inverted distribution 
will therefore result, and the number of beneficiaries earning less than say $80 
will be very small. 

Initially the price paid by the employers to the government would probably 
be very low, $0.1/Coupon or something of this order, but competition should 
drive this price up to around $0.5/Coupon, as we assumed our beneficiaries 
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were 50% efficient (this ignores bureaucratic costs). This is very useful for 
the government as they are now only paying out a net $0.5 for each $1 that 
reaches the pocket of the beneficiary. However the process should not stop 
there. With competition in place it is to the advantage of both the employer 
and the beneficiary to improve the efficiency of the beneficiary. The employer 
that is able to make the best use of the employee is the one that will make 
the most profit at a certain auction price for coupons. The beneficiary that 
can increase the value of his skills to his employer is the one that is likely to 
earn closer to 120 coupons rather than only end up with 80 coupons. Healthy 
competition has advantages for both parties. 

A more detailed account of the workings of such a scheme are given in a 
previous paper [17]. 

Clearly the above is very simplistic and will need substantial research and 
development before it could be worked into a real life welfare program. Like 
any welfare or taxation program there will be opportunities for fraud; ways in 
which human beings can breakdown the barrier between the two "isolated" 
systems. Also, as in any scheme that subsidises labour, there are likely to be 
significant problems with displacement of jobs. 

However the main point that is being made is that a knowledge of the 
principles of econophysics / econodynamics may be potentially used to create 
alternative and effective financial systems. 

4 Conclusions 

Econophysics is a relatively new science; while dramatic intellectual in­
sights have been made, progress to date has largely been observational, with 
explanations being given for existing phenomena. 

In this paper an engineering approach has been taken that uses assumed 
knowledge of the underlying mechanisms of wealth / income distributions to 
propose possible effective ways of changing economic systems. 

It is highly likely that these initial ideas are far too simplistic to be prac­
tical in the forms described above. It is also the case that the decisions to 
make such changes would be essentially political. It is hoped however that the 
ideas above show a possible line of enquiry that could prove more practical 
in redistributing income in the long term than current policies of transfers of 
taxation to welfare. 
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Fitzgerald: The rich are different from you and me 
Hemingway: Yes, they have more money 

S u m m a r y . It is known that asset exchange models with symmetric interaction 
between agents show either a Gibbs/log-normal distribution of assets among the 
agents or condensation of the entire wealth in the hands of a single agent, depending 
upon the rules of exchange. Here we explore the effects of introducing asymmetry 
in the interaction between agents with different amounts of wealth (i.e., the rich 
behave differently from the poor). This can be implemented in several ways: e.g., 
(1) in the net amount of wealth that is transferred from one agent to another during 
an exchange interaction, or (2) the probability of gaining vs. losing a net amount of 
wealth from an exchange interaction. We propose that, in general, the introduction 
of asymmetry leads to Pareto-like power law distribution of wealth. 

1 Introduction 

"The history of all hi therto existing society is a history of social hier­
archy" - Joseph Persky [1] 

As is evident from the above quotation, the inequality of wealth (and income) 
distribution in society has long been common knowledge. However, it was 
not until the 1890s tha t the nature of this inequality was sought to be quan­
titatively established. Vilfredo Pareto collected da ta about the distribution 
of income across several European countries, and stated tha t , for the high-
income range, the probability tha t a given individual has income greater than 
or equal to x is P>{x) ~ x~a, a being known as the Pareto exponent [2]. 
Pare to had observed a to vary around 1.5 for the da ta available to him and 
believed a ~ 1.5 to be universal (i.e., valid across different societies). How­
ever, it is now known tha t a can vary over a very wide range [3]; furthermore, 
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Fig. 1. Wealth and income distribution in India: (Left) Rank ordered wealth distri­
bution during the period 2002-2004 plotted on a double-logarithmic scale, showing 
the wealth of the fc-th ranked richest person (or household) in India against the rank 
k (with rank 1 corresponding to the wealthiest person) as per surveys conducted 
by Business Standard [7] in Dec 31, 2002 (squares), Aug 31, 2003 (triangles) and 
Aug 31, 2004 (circles). The broken line having a slope of —1.23 is shown for visual 
reference. (Right) Cumulative income distribution during the period 1929-30 as per 
information obtained from Income Tax and Super Tax data given in Ref. [8]. The 
plot has Gibbs/log-normal form at the lower income range, and a power law tail 
with Pareto exponent a ~ 1.15 for the highest income range. 

for the low-income end, the distribution follows either a log-normal [4] or ex­
ponential distribution [5]. Similar power law tails have been observed for the 
wealth distribution in different societies. While wealth and income are obvi­
ously not independent of each other, the exact relation between the two is not 
very clear. While wealth is analogous to voltage, being the net value of assets 
owned at a given point of t ime, income is analogous to current, as it is the 
net flow of wages, dividends, interest payments, etc. over a period of t ime. In 
general, it has been observed tha t wealth is more unequally distributed than 
income. Therefore, the Pareto exponent for wealth distribution is smaller than 
tha t for income distribution. 

Most of the empirical studies on income and wealth distribution have been 
done for advanced capitalist economies, such as, Japan and USA. It is inter­
esting to note tha t similar distributions can be observed even for India [6], 
which until recently had followed a planned economy. As income tax and other 
records about individual holdings are not publicly available in India, we had 
to resort to indirect methods. As explained in detail in Ref. [6], the Pareto 
exponent for the power-law tail of the wealth distribution was determined 
from the rank-ordered plot of wealth of the richest Indians [Fig. 1 (left)]. This 
procedure yielded an average Pareto exponent of ~ 1/1.23 = 0.82. A similar 
exercise carried out for the income distribution in the highest income range 
produced a Pare to exponent a ~ 1.51. Surprisingly, this is identical to what 
Pare to had thought to be the universal value of a . Comparing this with histor­
ical da ta of income distribution in India [8], we again observe the power-law 
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tail although with a different exponent [Fig. 1 (right)]. In addition, we note 
that the low-income range has a log-normal or Gibbs form very similar to 
what has been observed for advanced capitalist economies [4]. In the subse­
quent sections, we will try to reproduce these observed features of wealth & 
income distributions through models belonging to the general class of asset 
exchange models. 

2 Asset exchange models 

Asset exchange models belong to a class of simple models of a closed eco­
nomic system, where the total wealth available for exchange, W, and the total 
number of agents, N, trading among each other, are fixed [9, 10, 11, 12, 13]. 
Each agent i has some wealth Wi(t) associated with it at time step t. Starting 
from an arbitrary initial distribution of wealth (Wi(0), i = 1,2,3,.. . .), during 
each time step two randomly chosen agents i and j exchange wealth, subject 
to the constraint that the combined wealth of the two agents is conserved 
by the trade, and that neither of the two has negative wealth after the trade 
(i.e., debt is not allowed). In general, one of the players will gain and the other 
player will lose as a result of the trade. If we consider an arbitrarily chosen 
pair of agents (i, j) who trade at a time step t, resulting in a net gain of 
wealth by agent i, then the change in their wealth as a result of trading is: 

Wi(t + 1) = Wi(t) + AW; Wj(t + 1) = Wj(t) - AW, 

where, AW is the net wealth exchanged between the two agents. 
Different exchange models are defined based on how AW is related to 
[Wi(t),Wj(t)]. For the random exchange model, the wealth exchanged is a 
random fraction of the combined wealth [W* (t) + Wj (t)], while for the min­
imum exchange model, it is a random fraction of the wealth of the poorer 
agent, i.e., min[Wi(t), Wj(t)]]. The asymptotic distribution for the former is 
exponential, while the latter shows a condensation of the entire wealth W 
into the hands of a single agent [Fig. 2 (left)]. Neither of these reflect the em­
pirically observed distributions of wealth in society, discussed in the previous 
section. 
Introducing savings propensity in the exchange mechanism, whereby agents 
don't put at stake (and are therefore liable to lose) their entire wealth, but put 
in reserve a fraction of their current holdings, does not significantly change 
the steady state distribution [10]. By increasing the savings fraction (i.e., the 
fraction of wealth of an agent that is not being put at stake during a trade), 
one observes that the steady-state distribution becomes non-monotonic, al­
though the tail still decays exponentially. However, randomly assigning differ­
ent savings fractions (between [0,1]) to agents lead to a power-law tail in the 
asymptotic distribution [13]. 
This result raises the question of whether it is the differential ability of agents 
to save that gives rise to the Pareto distribution. Or, turning the question 
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Fig. 2. (Left) Asymptotic wealth distribution for the random exchange model 
(r = 0: exponential distribution) and the minimum exchange model (T = 1: conden­
sation). (Right) Power law wealth distribution with exponent ~ —1.5 for the asym­
metric exchange model with T = 0.99. All figures shown for TV = 1000, t = 1 x 107 

iterations, averaged over 2000 realizations. 

around, we may ask whether the rich save more. This question has been the 
subject of much controversy, but recent work seems to have answered this in 
the affirmative [14]. As mentioned in a leading economics textbook, savings 
is the greatest luxury of all [15] and the amount of savings in a household 
rises with income. In terms of the asset exchange models, one can say that an 
agent with more wealth is more likely to save (or saves a higher fraction of its 
wealth). Implementing this principle appropriately in the exchange rules, one 
arrives at the asymmetric exchange model. 

3 Asymmetr ic exchange model 

The model is defined by the following exchange rules specifying the change in 
wealth, WA(t + 1) — WA(t), of agent A who wins a net amount of wealth after 
trading with agent B [WBit + 1) - WB(t) = WAit) -WA(t + 1)]: 

WA(t + l) = WA(t)+e(l-r[l 
WA{t) 
WB(t) 

})WB(t), if WA{t) < WB(t), 

= WA(t) + eWB(t), otherwise, 

where e is a random number between 0 and 1, specifying the fraction of wealth 
that has been exchanged. For r = 0, this is the random exchange model, while 
for r = 1, it is identical to the minimum exchange model [Fig. 2 (left)]. In the 
general case, 0 < r < 1, the relation between the agents trading with each 
other is asymmetric, the richer agent having more power to dictate terms of 
trade than the poorer agent. The parameter r (thrift) measures the degree to 
which the richer agent is able to use this power. 
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Fig. 3. (Left) Asymptotic wealth distribution (inset shows the cumulative distri­
bution) with a power-law tail having Pareto exponent a ~ 1.5, for the asymmetric 
exchange model with T distributed uniformly over the unit interval [0,1] among N 
agents (N = 1000, t = 1 x 107 iterations, averaged over 104 realizations). (Right) 
Asymptotic wealth distribution for model having asymmetric winning probability 
with ft = 0.1 [pluses] (slope of the power-law curve is 1.30 ± 0.05) and j3 = 0.01 
[crosses] (slope of the power-law curve is 1.27 ± 0.05). (N = 1000, t = 1.5 x 107 

iterations, averaged over 5000 realizations). 

As r is increased from 0 to 1, the asymptotic distribution of wealth is observed 
to change from exponential to a condensate (all wealth belonging to a single 
agent). However, at the transit ion between these two very different types 
of distribution ( r —>• 1) one observes a power-law distribution ! As seen in 
Fig. 2 (right), the power-law extends for almost the entire range of wealth 
and has a Pareto exponent ~ 0.5. This is possibly the simplest asset exchange 
model tha t can give rise to a power-law distribution. Note tha t , unlike other 
models [13], here one does not need to assume the distribution of a parameter 
among agents. 

However, the Pareto exponent for this model is quite small compared to those 
empirically observed in real economies. This situation is remedied if instead 
of considering a fixed value of r for all agents, we consider the heterogeneous 
case where r is distributed randomly among agents according to a quenched 
distribution. For an uniform distribution of r , the steady-state distribution 
of wealth has a power-law tail with a = 1.5 [Fig. 3 (left)], which is the value 
predicted by Pareto, while at the region corresponding to low wealth, the 
distribution is exponential. By changing the nature of the random distribu­
tion, one observes power-law tails with different exponents. For example, for 
P(T) ~ r , the resulting distribution has a Pare to exponent a ~ 1.3, while for 
P(T) ~ T - 2 / 3 , one obtains a ~ 2.1. A non-monotonic U-shaped distribution 
of r yields a ~ 0.73. However, the fact tha t even with these extremely dif­
ferent distributions of r one always obtains a power-law tail for the wealth 
distribution, underlines the robustness of our result. 
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4 Asymmetr ic Winning Probabil i ty Model 

Asymmetry in the interaction between agents (as a function of their 
wealth) can also be introduced through the probability that an agent will 
gain net wealth from an exchange. Consider a variant of the minimum ex­
change model where the probability that agent A (wealth WA) will win a net 
amount in an exchange with B (wealth WB) is 

p(A\A,B) l 

1+ «*(/>[%$-1]) ' 

where 4 is the indifference to relative wealth (for details see Ref. [12]). For /? 
= 0, i.e., p(A\A, B) = | , t h e minimum exchange model is retrieved, where, in 
the steady state, the entire wealth belongs to a single agent (condensation). 
However, for a finite value of j3, the poorer agent has a higher probability of 
winning. For large /3, the asymptotic distribution is exponential, similar to the 
random exchange model. At the transition between these two very different 
types of distributions (condensate and exponential) we observe a power-law 
distribution of wealth [Fig. 3 (right)]. 

5 Discussion 

The two models discussed here for generating Pareto-like distribution of 
wealth are both instances of the "Rich Are Different" principle, implemented 
in the formalism of asset exchange models. It is interesting to note that other 
recently proposed models for generating Pareto law also use this principle, 
whether this is in terms of kinetic theory as in the present paper [16, 17] or in 
a network context [18, 19]. This leads us to conclude that asymmetry in agent-
agent interactions is a crucial feature of models for generating distributions 
having power-law tails. 
To conclude, we have presented two models illustrating the general principle 
of how Pareto-like distribution of wealth (as observed in empirical observa­
tions in society) can be reproduced by implementing asymmetric interactions 
between agents in asset exchange models. In the models presented here the 
asymmetry is based on wealth of agents, with the rich agents behaving dif­
ferently from the poor, either in terms of net wealth changing hands, or the 
probability of gaining net wealth out of a trade. One of the models is possibly 
the simplest asset exchange model that gives a power-law distribution. The 
results are also very robust, the power law being observed for a wide vari­
ety of parameter distributions. The different values of a obtained for different 
parameter distributions is a possible explanation of why different Pareto expo­
nents have been measured in different societies, as well as in the same society 
at different times. 
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1 A Brief Taxonomy of Wealth 

There seems to be widespread agreement on the functional form of wealth 
and income distributions observing a power law tail [3, 13, 9, 14], while the 
left part of wealth and income distributions is somewhat more controversial 
and typically found to follow an exponential or Gamma-like distribution [1, 
3, 13, 11]. The presentations by Clementi, Galegatti, Fujiwara, Souma, Sinha, 
and Yakovenko at this conference certainly point in the same direction but 
the evidence on income distributions clearly outweighs that on wealth—which 
is hardly surprising because it is much easier to observe income flows than the 
stock of wealth. None the less, we would like to focus our attention on the 
distribution of wealth and argue that the observed distributional regularities 
are statistical equilibrium outcomes of two distinct economic processes. 

So what exactly is wealth? The economic sources of wealth are income, in­
heritance, and the revaluation of assets or liabilities. Savings are a theoretical 
accounting tool, essentially describing the mediation from income flows to the 
stock of wealth. The economic uses of wealth are expressed in the composition 
of wealth portfolios and are reflected in the accounting definitions of wealth: 
Marketable wealth, or net worth, is composed of (1) the gross value of owner-
occupied housing; (2) other real estate owned by the household; (3) cash and 
demand deposits; (4) time and savings deposits, certificates of deposit (CDs), 
and money market accounts; (5) bonds (government, corporate, foreign) and 
other financial securities; (6) the cash surrender value of life insurance plans; 
(7) the cash surrender value of pension plans; (8) corporate stock, including 
mutual fund holdings; (9) net equity in unincorporated businesses; and (10) 
equity in trust funds. Subtracting the current value of mortgage debt, con­
sumer debt, and other debt yields a household's marketable wealth. When 
items (6) and (7) are included, the measure is sometimes also referred to 
as augmented wealth, while the definition of financial wealth subtracts the 
net equity position in owner-occupied housing, i.e. the difference between the 
property value and outstanding mortgage debt. 
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Unfortunately, personal wealth data cannot be measured with high ac­
curacy [2]. Nevertheless, a clear qualitative picture emerges from household 
survey data regarding the composition of wealth. First, the overall composi­
tion of wealth has remained fairly stable over the last two decades [15, 16]. 
Second, the composition of wealth by wealth class has also remained very sta­
ble over time. The rich hold most of their wealth in financial assets, investment 
real estate, and stakes in unincorporated businesses, while the vast majority 
of the population holds their wealth primarily in the form of owner-occupied 
housing, deposits, and pension and life insurance plans [2]. 

A few figures illustrate the stark contrast in portfolio compositions. In 
1989, the top one percent of US wealth holders had 52 percent of their wealth 
invested in investment real estate and unincorporated businesses, 29 percent in 
traditional financial securities, 11 percent in liquid assets and only 8 percent in 
owner-occupied housing. In contrast, the bottom 80 percent of households held 
63 percent of their wealth in the form of owner-occupied housing, 21 percent 
in the form of liquid assets, 10 percent in real estate and business equity, and 
only 6 percent in traditional financial assets. During the same year the richest 
one percent of the US population held 45 percent of all nonresidential real 
estate, 62 percent of all business assets, 49 percent of all publicly held stock, 
and 78 percent of all bonds. The richest 10 percent of families held 80 percent 
of all nonresidential real estate, 91 percent of all business assets, 85 percent of 
all stocks, and 94 percent of all bonds, while the bottom 90 percent of wealth 
holders accounted for 64 percent of all principal residences, 55 percent of the 
value of life insurances, 40 percent of deposits, and 38 percent of the value of 
pension accounts [4, 15]. In the UK, evidence from estate data confirms the 
qualitative picture observed in the US [12]. 

The starting point for our model will be the pronounced difference in port­
folio compositions between the very wealthy and the rest. Different households 
are subject to different economic processes that govern their possibilities of 
accumulating personal wealth. We want to argue that the vast majority of 
households engages in a life-cycle type of saving in order to provide themselves 
with housing and financial claims that will ensure their economic viability be­
yond working age. Hence their wealth will be roughly proportional to earned 
income, describing an additively driven process designed to realize a return 
in the distant future. In contrast, the very wealthy accumulate their fortunes 
by re-investing returns into assets that typically yield a return in each period. 
Essentially, then, large fortunes are accumulated for their own sake and the 
underlying accumulation process has a multiplicative character. 

2 Maximum Entropy Principle 

Market economies consist of a large number of heterogeneous agents 
whose interactions produce—possibly unintended and regularly unforseen— 
aggregate consequences that feed back into agents' behavior and the envi-



186 Mishael Milakovic 

ronment they interact in. The vast amount of information in such a complex 
system makes it impractical, if not impossible, to model the distribution of 
wealth by tracing the microscopic fate of all agents. The economic concept of 
statistical equilibrium [5, 10] acknowledges this difficulty from the start and 
consequently curbs its methodological ambition to more modest levels, being 
content with describing the statistical properties of aggregate outcomes as a 
probability distribution of economic agents over possible outcomes. 

The mathematical formalism underlying statistical equilibrium analysis 
is known as the maximum entropy principle. Building on entropy concepts 
from statistical mechanics and information theory, Jaynes [6] generalized the 
principle of entropy maximization into a theory of probabilistic inference that 
has found numerous applications across the natural and social sciences [8]. 
Based on the premise of incorporating solely knowledge that has been given to 
us and scrupulously avoiding probabilistic statements that would imply more 
information than we actually have, the maximum entropy principle derives 
probability distributions from known moment constraints. Virtually all known 
distributions can be derived from the maximum entropy principle [7]. Let us 
denote the number of theoretically admissible values of our variable of interest 
x by i = 1 , . . . , n; then the maximum entropy principle prescribes to maximize 
(informational) entropy H = — J2iPi^°EPi subject to the natural constraint 
^2iPi = 1 a n d m < n observed moment constraints J2iPi9k(xi) = ~9~k f°r 

all k = 1 , . . . , m. Applying Lagrange's multiplier technique yields probability 
distributions of the generic form pi = Z _ 1 ( A i , . . . , Am) exp(—\igi(xi) — ...— 
>^m9m(xi)), where Z(Ai , . . . ,A m ) = J2i^P(-^i9i(xi) - ... - \mgm(xi)) is 
the partition function that normalizes the distribution and Ai , . . . , ATO are the 
Lagrange multipliers chosen so as to satisfy the moment constraints, which 
is the case when ~g~k = —d\ogZ/dXk for all k = l , . . . , m . Concavity of the 
objective function and linear (or a convex set of) constraints ensure that the 
resulting probability distribution is unique and attained at a global entropy 
maximum, while the exponential form of the generic distribution only admits 
positive probabilities. The results readily carry over to a continuous state 
space and we need not bother here with some minor subtleties that arise 
from the continuum concept and are discussed in [6, 7]. The advantage of the 
continuous maximum entropy program lies in its ability to derive closed-form 
solutions for the parameters in many cases of interest. 

Moreover, according to Jaynes' concentration theorem [6], the distribution 
of maximum entropy is not only 'most likely' in the combinatorial sense of 
being achievable in the largest number of ways—but the overwhelming major­
ity of possible distributions compatible with the constraints will have entropy 
very close to the maximum. Thus inference from observed constraints to re­
sulting frequency distribution becomes exceptionally robust and vice versa: 
suppose our variable of interest is distributed with a specific functional form; 
then the concentration theorem assures us of the extreme improbability that 
constraints other than those implied by the maximum entropy principle are 
responsible for the observed outcome, and probability distributions and ag-
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gregate constraints become two sides of the same coin. Hence, as far as the 
distribution of wealth is concerned, we should ask which economic constraints 
produce the observed distributional regularities. 

3 Wealth Distribution in Statistical Equilibrium 

As we will see in the following subsections, it is more convenient to model 
the power law tail of the wealth distribution starting from the economic uses 
of wealth. When we turn to the exponential distribution of fortunes, it will be 
easier to incorporate economic intuitions by considering the sources of wealth. 
Proper accounting ensures that the sources and the uses of wealth are equal 
and therefore the outcome of the maximum entropy models does not depend 
on whether one route or the other is chosen—what is important is the nature 
of the constraints in the maximum entropy program. 

3.1 The Multiplicative Case: Mixing of Returns 

A power law distribution results from the decentralized investment activity 
of wealthy agents who combine assets with uncertain returns in their port­
folios while being constrained by the aggregate growth rate of wealth. The 
statistical equilibrium wealth distribution then defines a probability field over 
returns from available combinations of investment opportunities under the 
most decentralized (or entropy maximizing) investment activity of wealthy 
agents. We will summarize the power law tail model very briefly here since an 
extended version of model can be found in [10]. 

Conceptualize the economy as a set K = { 1 , . . . ,K} C N of investment 
opportunities. For all k G K, let Vk(t) denote the time t value of economic 
activity k, and for all h €  {l,...,n}, n < oo, let o*(i) denote the posi­
tion of household h in activity k, with the interpretation that a^(t) > 0 
indicates a long position at time t (k is an asset) and a*(t) < 0 a short 
position (k is a liability) while o*(t) = 0 allows for the absence of activ­
ity k in the portfolio of household h. Then the time t value of the wealth 
portfolio of household h, denoted Wh(t), follows from the household's combi­
nation of the K different investment opportunities Wh{t) = J2keK ah(t)Vk(t) 
for all h £ { 1 , . . . ,n}. Changes in the value of a portfolio are either the re­
sult of a revaluation of economic activities, or of changes in the behavior of 
the household—expressed as changes in the household's positions. Instead of 
putting forward a specific theory of portfolio choice and asset pricing, our sta­
tistical equilibrium model assumes that we observe a well-defined macroscopic 
average, namely the growth rate of (or average return to) wealth. Assuming 
that returns are compounded continuously and that there is a fictional initial 
period to where all portfolios start out with the same wealth level WQ, wealth 
levels and returns r will be proportional such that Wh(T) = WQ exp(Tr^), 
where rn = (log Wh(T) — log wo)/T is the average return of portfolio h over 
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the time interval [io,^]. Since we want to allow for negative rates of return, 
we also define rm > — oo as the minimum return that is observed among 
the portfolios over the given period. Switching to a continuous state space, 
we maximize the entropy measure — Jzdr f(r) log/(r) subject to the natu­
ral constraint Jzdrf(r) = 1 and the arithmetic mean constraint on returns, 
fz d r / ( r ) r = r, where returns now take values on the support Z = [rm, oo). 

The maximum entropy distribution of hypothetical returns is an exponen­
tial distribution, f(r) = Aexp (—A(r — rm)) and the continuous formulation 
allows to explicitly determine that A = l/(f — rm). Recalling the definition of 
returns as r = (logw — \ogwo)/T, we obtain the corresponding distribution of 
wealth levels from the theorem of densities of a function of a random variable, 
yielding 

f(w) = 4nvm*w-U+V (1) 

where wm is the wealth level corresponding to the minimum return rm and 
(j) = X/T. Notice that it would have been possible to obtain a power law di­
rectly from the maximum entropy program by postulating a logarithmic mean 
constraint on wealth levels instead of an arithmetic mean constraint on re­
turns but the interpretation becomes more cumbersome because the logarith­
mic mean carries no time dimension. Focusing explicitly on returns illustrates 
that the essentially random experience of the mixing of portfolios over the 
returns distribution is sufficient by itself to explain the power law distribution 
of wealth. 

3.2 The Additive Case: Life-Cycle Saving 

Our analysis starts again from the stylized fact concerning the composition 
of wealth portfolios that account for the vast majority of agents, where the net 
position in owner-occupied housing, deposits, and life insurance and pension 
plans are the main assets being held by those agents. We assume, in contrast 
to our previous analysis where we only cared about the uses of wealth and 
not its sources, that these assets are financed from earned income that will 
mostly flow from wages and salaries. Other possible sources are government 
transfer payments, rents, and profits arising from unincorporated businesses 
and financial assets. Regardless of the source of income, and this is the crucial 
point, we postulate that additions to wealth will not be re-invested as in 
the case of very wealthy agents. Instead, the existing level of wealth will 
be augmented by additions out of current income such that wealth remains 
roughly proportional to income. 

Suppose that for all individuals j G { 1 , . . . , n}, n < oo, who accumulate 
wealth in such fashion y|(t) designates the disposable income from source 
e €  E = { 1 , . . . , E} at time period t. Moreover, if Wj(t) denotes the wealth of 
agent j in period t then the change in wealth between periods will depend on 
how much of the agent's income has been 'saved' from the different sources, 
Awj(t) = ^2eeESj(t)yUt) for all j , where seAt) represents the proportion 
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of income from source e tha t agent j utilizes to augment wealth at t ime t. 
The stock of wealth Wj (r) = 5Zt AWJ (t) t ha t agent j has accumulated up 
to period r , when we observe the personal wealth distribution, will depend 
on the agent's accumulation behavior s | , the agent 's fortunes in the (labor) 
market y?, and on the number of periods Tj = T? + XJ in which the agent has 
an income either earned during T? periods of working life or flowing during 
the TJ periods after retirement, with t €  { 1 , . . . , Tj}. 

Thus Sj(t) should not be understood in the classical sense of a 'saving 
propensity' since we want to allow for a negative Sj (t), for example to represent 
the decrease of wealth tha t occurs when an agent retires and spends previously 
accumulated pension income for consumption.1 The macroscopic constraint 
on the average wealth accumulated by the population at time r is given by 

n Tj 

^ = » _ 1 E E E s l W ( * ) - (2) 
j=\t=\ eeE 

We denote the set of theoretically possible wealth levels by W = [0,wm), 
where wm is the wealth level tha t separates the empirically observed expo­
nential and power law regimes.2 Let i G { 1 , . . . , z} run over the set of discrete 
wealth levels Wi £ W and let rii be the fraction of agents with wealth IOJ. 
Then it must also be t rue tha t W^ = Y^iwiniln = Y^iwiPi a n d , to ensure 
tha t all agents are assigned to a wealth level, the natural constraint Y^iPi = 1 
must hold as well. The wealth distribution tha t allows for the largest num­
ber of individual destinies and behaviors consistent with the observed average 
stock of wealth in W will be given by the solution to the maximum entropy 
program under the arithmetic mean constraint W^ = J ^ WiPi and the natural 
constraint. This yields again a (discrete version of the) exponential distribu­
tion, 

Pi = Wi' (3) 

with the parti t ion function Z(/J) = J^^exp (—/xw»). It is straightforward to 
show tha t on the continuous support W = [0,wTO) the relationship between [i 
and w7 is given by wv = l//x — wT O/(exp (fiwm) — 1), which for a reasonably 
large wm approximates the familiar result [i = 1/wp. 

In summary, the distribution of smaller fortunes in market economies can 
be linked to earned income tha t is accumulated for precautionary reasons and 
retirement purposes. The close link to earned income also suggests tha t the 

1 Consumption should be understood in the broad sense of an economic use not 
included in the categories that count as personal wealth. 
The exponential law cannot account for individuals with negative wealth. Thus, 
for the sake of completeness, we should also have a constraint that prevents 
negative wealth. Similar to the conventional life-cycle model, this boils down to 
the postulate that life-time earnings should be greater than or equal to life-time 
'consumption.' 
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distribution of wealth should be quite similar to the distribution of earned in­
come itself and the empirical evidence presented at this conference certainly 
points in this direction as well (see also [3, 13]). A final remark concerns the 
possibility that the majority of households are described by a Gamma in­
stead of an exponential distribution. Pension and life insurance schemes and 
sources of income other than wages and salaries, like rents or profits, also pro­
vide returns. If we believe that the magnitude of these returns is significant in 
the accumulation process, we would need to incorporate a multiplicative con­
straint in addition to the additive constraint on the average stock of wealth. So 
far we have not been able to model the constraint in a convincing manner but 
if it were possible to formulate it as a logarithmic mean, the maximum entropy 
program would yield a Gamma distribution in the simultaneous presence of 
arithmetic and logarithmic means [7]. 

4 Conclusion and Outlook 

The composition of wealth portfolios depends on the level of wealth and 
expresses two different economic behaviors in the process of wealth accumula­
tion. At the same time, the functional form of wealth distributions shows two 
distinct regimes, the right tail following a power law and the left part gener­
ally belonging to the family of Gamma distributions. Statistical equilibrium 
views these phenomena as reflecting two distinct processes in the accumu­
lation of wealth. We have argued that the composition of wealth portfolios 
by wealth class can explain the different distributional regularities effectively 
by itself. While smaller fortunes, accounting for the vast majority of agents, 
are regulated by the adjustment of the stock of wealth to the flow of income, 
larger fortunes are regulated by the adjustment of the flow of income to the 
stock of wealth. If large fortunes were subject to a constraint on the stock 
of wealth, corresponding to an arithmetic mean constraint in the maximum 
entropy program, the combinatorially most likely or informationally least bi­
ased distribution of wealth would not be a power law. In other words, the 
power law distribution implies the complete absence of any aggregate con­
straints other than a logarithmic mean. Contrary to the jargon and intuition 
of thermodynamics, we detect the absence of a 'conservation principle' in the 
personal wealth of the mighty rich. 

While the intuition behind our results should be quite clear, our argument 
in favor of the Gamma law has obviously not been developed in a formally 
satisfactory way so far. Once we have a better statistical equilibrium formu­
lation to account for the Gamma distribution, the remaining task will be to 
elaborate the relationship between the parameters of the Gamma distribution 
and the observed arithmetic and logarithmic means of wealth, with the aim 
of calibrating the model from empirical data. 

The basic puzzle of the distribution of wealth is how the pronounced dif­
ference in the composition of wealth portfolios between the majority of the 
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population and the mighty rich is upheld. After all, it would seem tha t rea­
sonably wealthy agents who do not fall into the power law tail region could 
afford to allocate substantial par ts of their wealth in asset classes tha t yield a 
return in each period. Moreover the demarcation wealth level wm cannot be 
determined from our models, which consider it as an exogenous parameter , 
but it obviously plays a central role in the processes of wealth accumulation. 
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1 Introduction 

A major research focus in economics and econophysics is on the distribu­
tion of wealth in societies at different stages of development. Wealth includes 
money, material goods and assets of different kinds. Knowledge of the mone­
tary equivalent of the latter two components is required in order to quantify 
wealth. A related and easier to measure distribution is that of income. The 
major motivation of theoretical models is to provide insight on the micro­
scopic origins of income/wealth distributions. Such distributions are expected 
to provide good fits to the empirical data. In the context of incomes, Champer-
nowne [2] has commented " The forces determining the distribution of incomes 
in any community are so varied and complex and interact and fluctuate so 
continuously, that any theoretical model must either be unrealistically simpli­
fied or hopelessly complicated." The statement highlights the desirability of 
finding a middle ground between the unrealistically simple and the hopelessly 
complicated. 

A number of distribution functions has been proposed so far to describe 
income and wealth distributions. Theoretical models based on stochastic pro­
cesses, have been formulated to explain the origins of some of the distributions 
[1, 2, 3, 4, 5, 6, 7]. One proposed distribution, mention of which is found in 
economic literature, is the beta distribution [8, 9]. In this paper, we describe 
a simple stochastic model of wealth distribution and show that the beta dis­
tribution is obtained in the non-equilibrium steady state. 

2 Stochastic model 

In the model, each economic agent (can be an individual, a family or a 
company) may be in two states: inactive (E) and active (E ). We determine 
the probability distribution of the wealth of an agent randomly selected from 
a population of agents. Let the agent possess wealth M at time t. Increase 
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in the wealth of the agent can occur in two ways: at a steady rate and at 
random time intervals. In state E, the agent's wealth increases at rate bm and 
in state E , the rate is given by bm +jm. In both E and E , the agent's wealth 
decreases at rate kmM. The decay rate is proportional to the current wealth 
with km being the decay rate constant. Transitions between the states E and 
E occur at random time intervals. The rate of change of wealth is governed 
by the equation 

-^=jmz + bm-kmM = f(M,z) (1) 

where z = 1 (0) when the agent is in the state E (E). Let pj(M,t) (j = 0,1) 
be the probability density function for wealth distribution when z = j . The 
rate of change of the probability density is given by 

9p^'t] = -JL[f(M,z)Pj(M,t)] + £[W^fc(M,t) - WjkPj(M,t)] (2) 

where WUJ is the transition rate from state k to state j . The first term in 
Eq.(2) is the "transport" term representing the net flow of probability density 
and the second term represents the gain/loss in the probability density due 
to random transitions between the state j and the other accessible state. One 
can define the activation and deactivation rates, ka and kd respectively, to be 
ka = Win, and kd = W10. From Eq. (2), 

-QT =--g^{(bm-kmM)p0} + kdp1-kapo (3) 

~~dT = ~~dM^m + bm~ kmM)P^ + k°-P° ~ kdP1 (4) 

with p = Po + Pi- The minimum and the maximum amounts of wealth pos­
sessed by the agent are given by Mmin = bm/km and Mmax = (bm +jm)/km. 
Define m = M/Mmax, mmin = Mmin/Mmax, n = ka/km and r2 = kd/km. In 
the steady state, dpo/dt = 0 and dpi/dt = 0. The steady state solution turns 
out to be the beta distribution 

v(m n n) ~ (m ~ m^nY1-1(l - m)^-1 

P(m,n,r2)- B ( r i > r 2 ) ( 1 _ m r a t e ) r 1 + r , - i ^ 

The normalization constant B(r\,r-2) is 

/ ' 

T3i \ I ijn-mmin)
ri 1(l-m)r2 x 

In Eqs. (5) and (6), r\ > 0, r-2 > 0 and mmj„ < m < 1. Let mTOj„ = 0 and 
ri > 1 and r-2 > 1. In this case, 

« - > = » 



A Stochastic Model of Wealth Distribution 197 

is the well-known beta function. The mean wealth mav and the variance mva 

are given by 

ma 
n 

ri + r 2 ' mv 
rir2 1 

(ri +r-2)'2 ri + r2 + 1 
(8) 

The quantities depend on the ratios r\ and r-2 rather than on the individual 
values of ka, ha and km. 

3 Results and discussion 

Societies are traditionally divided into three classes: poor, middle and rich. 
Figs. 1(a), (b), and (c) show the p{m) versus m distributions in the three 
cases. One can obtain similar curves when mmin ^ 0. The Gini coefficient G, 
a measure of wealth inequality, is expected to be small for each separate class. 
For example, G = 0.2 in the case of Fig. 1(a) describing wealth distribution 
for the poor class. The two-parameter beta distribution is flexible and can 
take a variety of shapes. The precision in fitting data is, however, limited in 
this case. 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0 .2 0 .4 0 .6 0 .8 1 

Fig. 1. Probability density function p(m) as a function of m for (a) n = 2, r2 = 8, 
(b) n = 10, r2 = 10, (c) n = 10, r2 = 2 

McDonald and Xu [10] have proposed a five-parameter generalised beta 
distribution 

GB(y; a,b,c,p,q) 
\a\vap-1{l-0--c)(lt)a}q-

b*PB(p,q)(l+c(m p+i 
(9) 

where 0 < ya < ba and is zero otherwise. Also, 0 < c < 1 and b, p, q > 0. 
B{p,q)represents the normalisation constant. The beta distribution (Eq. (5)) 
is a special case of GB(y; a,b,c,p,q) with mmj„ = 0, c = 0, a = 1, and 6 = 1 . 

Many well-known distribution functions are limiting cases of the gener­
alised beta distribution GB. Some examples are shown in Table 1. The betal 
distribution reduces to the beta distribution (mm j n = 0) with 6 = 1. GG refers 
to the generalised gamma distribution. The special cases of GB(y), GB1 and 
GB2 have been shown to outperform other distributions in providing good 
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Table 1. Generalised beta distribution (GB) and its special cases 

5 parameter 

4 parameter 

3 parameter 

1 = 

a = 

2 parameter 

- 1 

Pareto 

a = 

c = a 

GB1 

1 q —> o o \ 

betal 

q —> 30 \ 

m o / 

lognormal 

\° 

GB 

H 

GG 

= 1 

gamma 

a = 

c= 1 

GB2 

= 1 V-

beta2 

= ] 

1 

Weibull 

xv = 1 
Singh-

Maddala 

/ q —> 30 

Dagum 

quantitat ive fits to the income da ta from various countries and segments of 
society. The beta distribution, considered in the paper, is a special case of 
GBl. 

In this paper, we have provided a stochastic model of wealth distribution 
leading to the beta distribution in the non-equilibrium steady state. It will be 
of interest to formulate stochastic models of generalised beta distributions GB, 
GBl and GB2. An understanding of the microscopic origins of income/wealth 
distributions may provide insight on the policies required to ensure tha t the 
benefits of economic growth reach all sections of society. 
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Summary. In our model, n traders interact with each other and with a central 
bank; they are taxed on the money they make, some of which is dissipated away 
by corruption. A generic feature of our model is that the richest trader always 
wins by 'consuming' all the others: another is the existence of a threshold wealth, 
below which all traders go bankrupt. The two-trader case is examined in detail, 
in the socialist and capitalist limits, which generalise easily to n > 2. In its mean-
field incarnation, our model exhibits a two-time-scale glassy dynamics, as well as 
an astonishing universality. When preference is given to local interactions in finite 
neighbourhoods, a novel feature emerges: instead of at most one overall winner in 
the system, finite numbers of winners emerge, each one the overlord of a particular 
region. The patterns formed by such winners (metastable states) are very much a 
consequence of initial conditions, so that the fate of the marketplace is ruled by its 
past history; hysteresis is thus also manifested. 

1 Introduction 

The tools of statistical mechanics [1] are increasingly being used to analyse 
problems of economic relevance [2]. Our model below, although originally for­
mulated to model the evolution of primordial black holes [3,4], is an interesting 
illustration of the rich-get-richer principle in economics. It is inherently dise-
quilibrating; individual traders interact in such a way that the richest trader 
always wins. 

2 The model 

In this model, n traders are linked to each other, as well as to a federal 
reserve bank; an individual's money accrues interest at the rate of a > 1/2 [3] 
but is also taxed such that it is depleted at the rate of 1/t, where t is the time. 
The interaction strength gij between traders i and j is a measure of how much 
of their wealth is invested in trading; income from trading is also taxed at the 
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rate of i1/2 . There is a threshold term such that the less a trader has, the 
more he loses; additionally the model is non-conservative such that some of 
the wealth disappears forever from the local economy. These last terms can 
have different interpretations in a macro- or a micro-economic context. In the 
former case (where the traders could all be citizens of a country linked by 
a federal bank), the threshold term could represent the plight of the (van­
ishing) middle classes, while the non-conservative nature of the model could 
represent the contribution of corruption to the economy - some of the taxed 
money disappears forever from the region, to go either to the black econ­
omy or to foreign shores. In a more micro-economic context (where traders 
linked by a bank are a subset of the major economy), the interpretation is 
the reverse: the non-conservative nature of the model would imply money lost 
irretrievably by taxation (to go to social benefits from which the traders do 
not themselves benefit), while the threshold term could represent the effect 
of corruption (poorer traders lose more by graft than richer ones). Including 
all these features, we postulate that the wealth rrii(t) for i = 1 , . . . , n of each 
trader evolves as follows [4]: 

dim (en 1 v-^ dm, \ 1 

^=\7-&2 22*t-to-Jrni--- (1) 

In the following,we use units of reduced time s = In j - (to renormalise 
away the effect of initial time to), reduced wealth Xi = f̂yk and reduced 

2 

square wealth yi = x\ = ^-. In these units, we recall the result for an isolated 
trader [3]. A trader whose initial wealth y0 is greater than y*, (with y*(to) = 
( 2a-1 )) ' ^s a sur™vor who keeps getting richer forever: a trader with below 
this threshold wealth goes bankrupt and disappears from the marketplace in 
a finite time. The influence of this initial threshold y* will be seen to persist 
throughout this model: in every case we examine, surviving winners will all 
be wealthier than this. 

3 A tale of two traders: socialist vs capitalist? 

We examine the two-trader case in the socialist and capitalist limits. In the 
socialist limit, the initial equality of wealth is maintained forever by symmetry: 
their common wealth x(s) obeys: 

_ (2a - l)x2 - 2 - gx3 

2x(l+gx) ' [ ' 

This equation is analytically tractable: it has fixed points given by (2a — l)x2 — 
1 Is? 

2 — gx3 = 0. A critical value of the interaction strength g, gc = ( ' ^~ ' ) , 
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separates two qualitatively different behaviours. For g > gc, there is no 
fixed point; overly heavy trading (insufficient saving) causes both traders 
to go quickly bankrupt, independent of their initial capital. In the oppo­
site case of sensible trading, g < gc, there are two positive fixed points, 
yj < X(i) (unstable) < (?>y±)1/2 < X(2) (stable). If both traders are initial 
equally poor with wealth XQ < x^, this is dynamically attracted by x = 0 
- the traders go rapidly bankrupt! For initially rich traders with x0 > #(i), 
their wealth is dynamically attracted by £(2) - they grow richer forever as 
m{t) K X(2)i1/2, a growth rate which is less than that for an isolated trader! 
This case, where equality and overall prosperity prevail even though there are 
no individual winners, could correspond to a (modern) Marxist vision. 

In the capitalist case, with traders who are initially unequally wealthy, 
any small differences always diverge exponentially early on: the details of this 
transient behaviour can be found in [5]. However, the asymptotic behaviour is 
such that richer trader wins, while the poorer one goes bankrupt: the survival 
of the richest is the single generic scenario for two unequally wealthy traders. 
At this point, we are back to the case of an isolated trader referred to in 
Section 3: he may, depending on whether his wealth at this point is less or 
greater than y+, also go bankrupt or continue to get richer forever. 

All of the above generalises easily to any finite number n > 2 of interacting 
traders. 

4 Infinitely many t raders in a soup - the mean field limit 

We now examine the limit n —> oo: we first explore the mean field behaviour 
where every trader is connected to every other by the same dilute interaction 
g =2-. For fixed g~, the limit n —>• oo leads to the mean field equations [5]: 

y'(s) = j(S)y(s) - 2 (3) 

When additionally, ~g is small (weak trading), a glassy dynamics [1] with two-
step relaxation is observed. In Stage I, individual traders behave as if they 
were isolated, so that the survivors are richer than threshold (y*), exactly as 
in the one-trader case of Section 2. In Stage II, all traders interact collectively, 
and slowly [5]. All but the richest trader eventually go bankrupt during this 
stage. 

The model also manifests a striking universality. For example, with an ex­
ponential distribution of initial wealth, the survival probability decays asymp-

totically as S(t) m 2a_r1 ( C In j - j ; additionally, the mean wealth of the 
/ \ l / 2 

surviving traders grows as ({m))j « f Ctliij-) . I n both cases, C = TT ir­
respective of a, ~g and the parameters of the exponential distribution. The 
universality we observe goes further than this, in fact: it can be shown [5] 
that C only depends on whether the initial distribution of wealth is bounded 
or not and on (the shape of) the tail of the wealth distribution. 
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5 Infinitely many traders with local interactions 
emergence of overlords 

the 

Still in the n —> oo limit, we now introduce local interactions: traders in­
teract preferentially with their z = 2D nearest neighbours on a D-dimensional 
lattice: once again we look at the limit of weak trading (g <C 1). The dynamics 
once again consists of two successive well-separated stages with fast individual 
Stage I dynamics, whose survivors are richer than threshold, exactly as before 
(Section 4). The effects of going beyond mean field are only palpable in Stage 
II: the effect of local interactions lead to a slow dynamics which is now very 
different from the mean-field scenario above. The survival probability S(s) 
in fact decays from its plateau value S^ (number of Stage I survivors) to a 
non-trivial limiting value S^y, unlike the mean field result, a finite fraction 
of traders now survive forever! 

Figure 1 illustrates this two-step relaxation in the decay of the survival 
probability S(s). While the (non-interacting) decay to the plateau at S^ = 
0.8 is (rightly) independent of g, the Stage II relaxation shows ageing; the 
weaker the interaction, the longer the system takes to reach the (non-trivial) 
limit survival probability S^j w 0.4134. 
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Fig. 1. Plot of the survival probability S(s) on the chain with 5(1) = 0.8 (after 
reference [5]. Left to right: Full line: g = 10~3. Dashed line: g = 10~4. Long-dashed 
line: g = 10~6. Dash-dotted line: g = 10~6. 

At the end of Stage II, the system is left in a non-trivial attractor, which 
consists of a pattern where each surviving trader is isolated, an overlord who 
keeps getting richer forever. We call these attractors metastable states, since 
they form valleys in the existing random energy landscape; the particular 
metastable state chosen by the system (corresponding to a particular choice of 
pattern) is the one which can most easily be reached in this landscape[l]. The 
number J\f of these states generically grows exponentially with the system size 
(number of sites) N as N ~ exp(iVi7) with S the configurational entropy or 
complexity. The limit survival probability £(00) (Figure 1) is just the density 
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of a typical attractor, i.e., the fraction of the initial clusters which survive 
forever. 

We now examine in some more detail the fate of a set of k > 1 surviving 
traders: this depends on k as follows. 

• k = 1: If there is only one trader, he survives forever, trading with the 
reserve and getting richer. 

• k = 2: If a pair of neighbouring traders (represented as ••) survive Stage I, 
the poorer dies out, while the richer is an overlord, leading to «o or o«. 

• k > 3: If three or more traders survive Stage I, they may have more than 
one fate. Consider for instance (•••): if the middle trader goes bankrupt 
first (•°«), the two end ones are isolated, and both will become overlords. 
If on the other hand the trader at the 'end' first goes bankrupt (e.g. • •°), 
only the richer among them will become an overlord (e.g. too). The pattern 
of these immortal overlords, and even their number, therefore cannot be 
predicted a priori. 

Finally, we present some of the observed patterns. If £(00) = 1/2 on, say, 
a square lattice, (i.e. the highest density of surviving traders is reached), 
there are only two possible 'ground-state' configurations of the system; the 
two possible patterns of immortal overlords are each perfect checkerboards of 
one of two possible parities. This allows for an interesting possibility: we can 
define a checkerboard index for each site, which classifies it according to its 
parity [5]. 

Fig. 2. Two complementary representations of a typical pattern of surviving clusters 
on a 402 sample of the square lattice, with 5(i) = 0.9, so that S(oo) « 0.371 (after 
reference [5]. Left: Map of the survival index. Black squares represent overlords 
for which <yn = 1, while white squares represent bankrupt sites for which <rn = 0. 
Right: Map of the checkerboard index. Black squares represent positive, while white 
squares represent negative, parity 

Figure 2 shows a map of the survival index and of the checkerboard index 
for the same attractor for a particular sample of the square lattice. The local 
checkerboard structure, with random frozen-in defects between patterns of 
different parities is of course entirely inherited from the initial conditions. 
The overlords in the left-hand part of the figure are surrounded by rivulets of 
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poverty ; in the right-hand figure, the deviation from a perfect checkerboard 
structure (all black or all white) is made clearer. Neighbouring sites are fully 
anticorrelated, because each overlord is surrounded by paupers: however, at 
least close to the limit S ^ ) = 1/2, overlords are very likely to have next-
nearest neighbours who are likewise overlords. The detailed examination of 
survival and mass correlation functions made in a longer paper [5] confirms 
these expectations. 

To conclude, we have presented a model where traders interact through a 
reserve; we are able to model the effects of corruption and taxation via the 
non-conservative, threshold nature of our model. These could have different 
implications for micro- and macroeconomic situations. Our main results are 
that, in the presence of global interactions, typically only the wealthiest trader 
survives (provided he was born sufficiently rich); however, if traders interact 
locally, finite numbers of local overlords emerge by creating zones of poverty 
around them. 
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S u m m a r y . In an emerging (Indian) capital market, power-law distribution emerges 
at high market capitalization level and the values of the exponent of the power-law 
are found to be consistent with wealth distribution of the individuals in the economy. 
The high growth of the firms does not change the wealth distribution and likewise 
the value of the exponent. However, negative growth of the firms affects the wealth 
distribution of the firms and is accompanied by the reduction in the value of the 
exponent. Since, mean difference in the ranks for the negative growth is much higher 
and statistically significant than the high growth firms, we conclude that it may have 
led to larger change in the exponents value. 

1 Introduction 

It was empirically proposed by Pareto in 1897 that wealth of individuals 
in an economy follows a power-law distribution at high wealth levels. The 
characteristic form of the distribution is: 

y~x~\ (1) 

where y is the number of people having wealth of x more and 7 is an exponent, 
which varies between 1 and 2 and is generally applicable across countries 
regardless of their social, political and fiscal conditions, with some differences 
in the value of exponent. The Pareto wealth distribution is generated through 
a stochastic process. It is well known that in the capital market the wealth 
(market capitalization of the firms) is generated through a stochastic process. 
If the underlying concept is true, higher wealth level of the firms, would lead 
to power law distribution in capital market, with exponents value converging 
to the value as observed for wealth distribution of the individuals at high 
wealth level. In addition, the firms wealth generation, i.e. growth or decline of 
market capitalization will have direct linkage with the emergence of power law. 
Stated differently, high growth firms will likely to have greater fits in power 
law distribution over time in a given wealth level, while firms with declining 
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growth will show lesser accuracy in power law distribution belonging to the 
same wealth level. Accordingly purpose of this paper is to examine: 

- Whether a power-law distribution emerges at high market capitalization 
of the firms similar to individual wealth distributions. 

- How exponent of power-law distribution behaves across different level of 
firms performance in the capital market over time. 

Pareto distribution can be expressed in various forms and one of the forms 
is: 

Xn = Cn'1^ (2) 

where xn is he wealth of the n-th ranked individual. Since, we are measuring 
firms wealth (market capitalization); xn is the n-th ranked firm in terms of 
market capitalization. Taking logarithm of (1) yields the following equation: 

lnx„ = l n C - ( l / 7 ) l n n (3) 

The equation (2) is a linear equation of the form: 

In xn = a + b In n (4) 

where, xn is the market capitalization of the firm with rank n, and can be used 
as a regression equation to estimate the value of the exponent 7 by finding 
out the value of regression coefficient b. 

We use the database containing the highest market capitalization of the top 
500 companies, listed in the stock market, National Stock Exchange in India. 
The market capitalization is reckoned as the average market capitalization 
between the period March 16 and March 31 for 2004, and between the period 
July 16 and August 31, for 2003(1), while for 2003(2) the market capitalization 
is the average calculated over the period between March 16 and March 31, 
2003. 

In table 4 and in table 6, we present the regression results as well as the 
values of the exponent at different points of time. We also present the values of 
exponent for top 2% through 9% of the ranked firms in table 5. The coefficient 
of determination R2 and adjusted R2 are observed to be high, indicating 
excellent fit of the regression equation. Figure below shows regression fit in 
respect of 2003(1). 

In addition, the t-values are shown in the parentheses and they are signif­
icant at 1% level. It may be noted that 10% of the firms comprise of 74% of 
the total market capitalization, while bottom 10% of the firm constitute 1.3% 
of the total market capitalization. With the growth of market capitalization 
over time, there are changes in the ranking of the firms. In order to find out 
whether the growth has any linkage or association in influencing the power law 
distribution, we choose the firms which have shown high increase ( > 200%) 
of their market capitalization over time, i.e. in 2004 over 2003(1). We also 
carry out similar test for the firms with declining wealth levels. The results 
are shown in table 7. Since the stock prices exhibit non-stationarity, we apply 
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Augmented Dicky Fuller (ADF) statistic to test the hypothesis of existence 
of unit root. The reported values in the table are found to be significant for 
rejection of unit root. 

The power-law distribution emerges at higher market capitalization be­
longing to the upper 10%. The values of the exponent under different per­
centile of the firms occupying the ranks within upper 10% of market capital­
ization depict a decreasing trend. The power law becomes less conspicuous 
as the market capitalization of the firms decreases. The reduction in value of 
the exponent is consistent with other research findings. For example, Steindl 
(1987) and Persky (1992) found that power law fits the upper tail of the 
wealth distribution but becomes less accurate in the lower tail. The higher 
growth of the market capitalization does not seem to influence the exponent 
as may be observed from the Table 4. We observe that faster growth rate in 
capital market does not change distribution of the wealth of the firms and 
correspondingly, we do not observe any noticeable change in the value of the 
exponent. We however notice that the value of exponent reduces for 0.805 
in 2003(1) to 0.702 in 2004, in those cases where the firms undergo negative 
growth. A possible reason for unchanged wealth distribution for high growth 
(> 200%) firms could be that the changes in the ranks of these firms are not 
significant between beginning and end of the period of growth. To test this 
hypothesis that there is no significant difference in the ranks of the firms be­
tween before and after growth period, we apply paired-sample t-test, which 
yields the following results. The table shows that 2-tailed significance of the 

Table 1. Paired Difference 

Mean difference 
-119.3077 

Std. Deviation 
80.64 

t- value 
-5.335 

df 
12 

2-tail significance 
.000 

test is .000. As a result we reject the hypothesis at 5% significance level and 
conclude that there is significant difference in the ranks. The above results 
contradict the argument that faster growth of wealth portfolio on average 
would result in more unequal distribution. A similar phenomenon is also ob­
served for the top 10% firms, where the average growth rate is 59.73% in 
2004 over 2003(1), but the exponent exhibits a very small change in value. A 
plausible explanation for this phenomenon may be related to the strict-sense 
stationarity of a stochastic process and in such conditions, the pdf is invariant 
under a time shift. In the case of negatively growing firms (table 7), the value 
of the exponent is observed to decrease from 0.805 to 0.702. We conduct the 
paired-sample t-test on a null hypothesis that there is no significant difference 
in the ranks and the results are as follows: The table shows that the 2-tailed 
significance of the test is .000 and as a result we reject the null hypothesis 
at 5% significance level and conclude that there is significant difference in 
the ranking. The reason for observed change in the wealth distribution of the 
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Table 2. Paired Difference 
Mean difference Std. Deviation 

63.1837 24.65 
t-value df 2-tail significance 
17.941 48 .000 

declining firms over time could be related to the higher difference in ranks 
as against growing firms. In order to test the hypothesis, whether difference 
in ranks is significantly different between growing market capitalization and 
declining market capitalization of the firms, we apply independent sample t-
test and the results are given below: Levenes tests for equality of variances 

Table 3. t-test for Equality of Means 

Assumed Equal Variance 
Assumed Unequal Variance 

t-value 
-3.796 
-2.520 

2-tail significance 
.000 
.027 

yields F = 13.269, p = .000 Since, the 2-tail significance value is less than 
.05, we conclude that rank differences between growing and declining firms 
are different. This difference in ranks leads to changes in wealth distribution 
and in the value of the exponent of the declining firms. 

2 Conclusion 

The purpose of this paper is to examine whether power-law distribution 
emerges in an emerging capital market like, Indian capital market, similar to 
the wealth distribution of individuals in an economy and how the exponent 
of power-law behaves at various high wealth levels as well as how the relative 
growth and decline of firms over time affects the distribution. The wealth of 
the firm is equivalent to the market capitalization of the firm. Using a database 
of 500 companies having highest market capitalization, we observe that the 
power-law distribution emerges at the top 10% wealth level of the firms. As 
we go down on the ranks, the power-law becomes less conspicuous, which is 
consistent with other research findings. The value of the exponent is observed 
to compare well with respect to wealth distribution of the individuals in the 
economy. The behaviour of exponent in respect of high growth and declining 
firms is also investigated . We observe that the value of exponent does not 
change but the value reduces in the cases of firms showing negative growth. 
The t-test shows that as the rank difference is high and statistically significant 
for the declining firms, it may have caused the exponent to change its value. 
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Table 4. Regression Results (Firms Market Capitalization belonging to Top 10% ) 

a 
b 

n? 
Adj R1 

7 
ADF Statistic 

2004 
11.853 (199.85) * 
-0.843 (-43.958) * 
.976 
.975 
1.186 
-3.252 * 

2003(1) 
11.397 (224.591) * 
-0.847 (-51.371) * 
.983 
.982 
1.181 
-2.859 * 

2003(2) 
5.00 (138.84) * 
-0.973 (-36.47) * 
.966 
.965 
1.028 
-4.153 * 

Table 5. Value of Powerlaw Exponent at High Wealth Level 

Market capitalization of the top (.)% firms of 7 Exponent 
Year % 
2004 
2003(1) 
2003(2) 

2 
1.333 
1.408 
1.404 

3 
1.287 
1.221 
1.199 

4 
1.328 
1.211 
1.164 

5 
1.346 
1.239 
1.155 

6 
1.325 
1.241 
1.155 

7 
1.304 
1.233 
1.151 

8 
1.269 
1.230 
1.107 

9 
1.227 
1.205 
1.104 

Table 6. Value of Powerlaw Exponent at Lower Wealth Level 

2004 
Firms Capitalization 
between 
51 and 150 
151 and 250 
251 and 350 
351 and 450 
451 and 500 

b 
-1.517 (-94.986)* 
-1.585 (-125.346)* 
-1.870 (-105.955)* 
-1.979 (-150.563)* 
-2.136 (80.924)* 

Adj R2 

.989 

.994 

.991 

.996 

.992 

7 
0.659 
0.631 
0.535 
0.505 
0.468 

2003(1) 

b 
-1.326 (-123.923)* 
-1.454 (-153.256)* 
-1.523 (-175.440)* 
-1.699 (-189.416)* 
-1.979 (60.523)* 

Adj R2 

.994 

.996 

.997 

.997 

.987 

7 
0.754 
0.688 
0.657 
0.589 
0.505 

Table 7. Regression Results: Growth of Market Capitalization of firms in 2004 over 
2003(1) 

High (> 200%) Growth 

b 
Adj Rf 
7 

2004 
-1.254 (-23.591)* 

.979 
0.797 

2003(1) 
-1.256 (-8.970)* 

.869 
0.796 

Negative Growth 
2004 

-1.424 (-41.338)* 
.973 

0.702 

2003(1) 
-1.241 (-47.404)* 

.979 
0.805 

* t-value in parenthesis and significant at 1% level, (in all the tables given above). 
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S u m m a r y . We have made extensive studies on the Daily Close Price Index of Bom­
bay Stock Exchange (BSE) for the period of 1997 to 2004. Our analysis revealed the 
fact that the returns of daily close price index of BSE follow Levy stable disrtibution 
and exhibit randomness. 

1 Introduction 

The complexity of Financial market has attracted attention of many physi­
cists in recent years [1] . Consequently, the newly developed methods of anal­
ysis in the field of statistical physics and Nonlinear dynamics have been suc­
cessfully applied in the field of Economics. India being the country with the 
second largest population in the world the study on the Indian stock market 
is always very important and significant from the economic point of view. 

2 Data 

We have analyzed the daily close price index of the Bomay Stock Exchange 
(BSE) for the period 1997 to 2004.The variation of the BSE price indeces and 
the returns are shown in Fig. 1. (a) and (b) respectively. The return of the 
price index time series X(t) is calculated by the formula: 

R(t)=log((X(t+l)/X(t)) 

Fig. 2 shows the probabilty distribution of the return. The statistical pa­
rameters of the distribution are listed in Table 1. The negative value of the 
skewness indicates the assymetric property of the return distribution. The 
large value of the kurtosis compared to the Gaussian kurtosis (fc=0), shows 
that the tail of the return distribution are very fatter than the Gaussian ones. 
We have fit the return distribution with the Levy stable distribution, which 
is defined by its characteristic function as : 
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Fig. 1. Variation of (a) the daily close price index and (b) the reutrns of Bombay 
stock market for the period 1997 to 2004. 
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Fig. 2. Probability distribution of the returns. 

Table 1. Mean, standard deviation, skewness and kurtosis of the BSE price index 
return. 

Mean Std. Dev. Skewness Kurtosis 

0.0002 0.0076 -0.6103 7.9582 

ln(<p(q) =ifiq-j\q\' 1 + ifi—tanf—a) 
\l\ 2 . 

for[a ^ 1] 

From the fit we have obtained the value of a to be 1.69. Which means that 
the daily close price index of the return follow Levy stable distribution. 

3 Methods of Analysis 

We have used two newly developed methods of scaling analysis, namely (i) 
Finite Variance Scaling Method (FVSM) and (ii) Diffusion Entropy Analysis 
(DEA) [2] to detect the exact scaling behavior of the daily close price index 
of the BSE. These methods are based on the prescription that numbers in a 
time series R(t) are the fluctuations of a diffusion trajectory see Refs[l] for 
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details. Therefore we shift our attention from the time series R(t) to prob­
ability density function (PDF) p(x,t) of the corresponding diffusion process. 
Here x denotes the variable collecting the fluctuation and is referred to as the 
diffusion variable. The scaling property of p(x,t) takes the form: 

p(x,t) = l[F&) (1) 

3.1 Finite Variance Scaling Method 

In the FVSM one examines the scaling properties of the second moment 
of the diffusion process generated by a time series. One version of FVSM is 
the standard deviation analysis (SDA), which is based on the eavaluation of 
the standard deviation D(t) of the variable x, and yeilds 

D{t) = ^{x>]t)-{x]t)
2cxV (2) 

The exponent 7 is interpreted as the scaling exponent. 

3.2 Diffusion Entropy Analysis 

DEA introduced recently by Scafetta et. al. [2] focuses on the scaling expo­
nent S evaluated through the Shannon entropy S(t) of the diffusion generated 
by the fluctuations R(t) of the time series using the scaling PDF. Here, the 
PDF of the diffusion process p(x,t) is evaluated by means of the subtrajecto-
ries xn(t) = ^Ri+n{t) with n=0,l,.... Using the scaling PDF (1) we arrive at 
the expression for S(t) as 

S(t) = -A + 5ln{t) (3) 

where A is a constant. Eq. (3) indiactes that in the case of a diffusion process 
with a scaling PDF, its entropy S(t) increases linearly with ln(t). Finally 
we compare 7 and 5. For fractional Brownian motion the scaling exponent 5 
coincided with the 7. For random noise with finite variance, the PDF p(x,t) 
will converge to a Gaussian distribution with 7 = 5 = 0.5. If 7 / 6 the scaling 
represents anomalous behavior. 

4 Resul ts 

The plots of SDA and DEA for returns of daily price index of BSE are 
shown in Fig. 3. and Fig. 4. respectively. The values of the scaling exponents 
are also depicted in the figures. It is seen that the values of both the scaling 
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Fig. 3. SDA of the returns of the BSE daily price index. 

Fig. 4. DEA of the returns of the BSE daily price index. 

exponents 7 and 5 are nearly equal to 0.5, sgnifying the absence of scaling i.e. 
randomness in the returns of daily close price index of BSE. 

Thus our analyses revealed the fact tha t BSE daily close proce index re­
turns follow Levy stable distribution with index 1.69 and exhibit randomness 
or scale independence. 
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1 Banking in India: Cash Credit system 

In recent times commercial banks in India have started functioning as 
universal banks. As of now, banks - whether public sector, private sector 
or foreign, can offer comprehensive financial services under one roof. Their 
functional diversity encompasses project appraisal, project financing, lease 
financing, extending working capital loans and quasi-credit facilities like bank 
guarantees and letters of credit, offering derivative products such as forwards, 
swaps and options, as well as syndication and consultancy services. 

While the role of commercial banks has undergone a substantial change in 
the post-liberalization era, working capital loan still continues to be a major 
functional area for the commercial banks. Conventionally, working capital fi­
nance has been extended by commercial banks in India in the form of cash 
credit facility. Under this system, the lending bank sanctions a loan limit up 
to which the customer may be allowed to draw subject to availability of ade­
quate security pledged or hypothecated to the lending bank. The amount of 
loan outstanding can vary freely and at times the balance in the cash credit 
account can even be in credit (i.e. the bank is indebted to the customer). In­
terest is payable based on the actual level of loan enjoyed on a daily product 
basis. While the borrower has the option to draw up to the limit without 
any prior notice, he has no corresponding obligation either to compensate the 
banker for this option or to ensure an optimum utilization of the facility. In 
such a situation, funds management and financial planning become relatively 
low priority issues for the borrowers, who can pass on the consequences of 
inadequate planning and inefficient management on their part to the banking 
system, where the problem manifests itself as a serious strain on cash man­
agement. This is a major drawback of the cash credit system. In India, credit 
is considered a scarce commodity and need-based financing continues to be 
a main plank underlying the central bank's credit policy even in the liberal­
ized regime. An arbitrary break-up of working capital facility into fixed and 
variable components is thus not in line with the central bank's approach. 
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2 Tandon Commit tee - Style of Credit 

Tandon Committee, which did the most important work on working cap­
ital finance in India, aimed at enforcing an effective financial planning by the 
borrower through a system of reward and penalty. It suggested a bifurcation 
of the working capital facility into two components: a fixed or demand loan 
component at a certain interest rate throughout the year, and a variable com­
ponent bearing a somewhat higher rate of interest. The variable component 
indicates the excess of borrowing over the demand loan component. 

If a borrower tries to project the demand loan component at a "higher than 
necessary" level, it would end up paying interest on amounts not actually re­
quired. On the other hand, if it projects the demand loan at an inappropriately 
low level, much of its withdrawals will attract a higher rate of interest and 
the overall interest cost over the year would not be minimized. The borrowing 
company should, therefore, ensure an efficient financial planning and make 
correct projections for its requirements, with which the lending bank has to 
select an optimum bifurcation in order to minimize the borrower's annual 
interest burden. 

3 Formulation of the problem 

As we have observed, implementation of Tandon Committee's recommen­
dation requires us to work out the optimum level of demand loan that will 
minimize the annual interest burden for a borrower company. While there can 
be no two opinions about the usefulness of the style of credit recommended 
by the Tandon Committee, the question arises how a practical banker is to 
go about the exercise once a customer submits the pattern of the working 
capital requirement over the next one year. The task is one of bifurcation of 
the working capital requirement into two components - a fixed component and 
a variable component, which will minimize the annual interest burden for the 
borrowing company. 
If W(t) = working capital finance required by a borrowing company, expressed 
as a function of time, over the next one year, 
x= level of demand loan or fixed component, 
W(t) — x [where W(t) > x] = level of variable component, 
/ = Interest burden for the company for the next one year 
a = Rate of interest for the fixed component 
(a + b) = Rate of interest for the variable component 

1= fa.x .dt+ f[W(t) - x] . 6[W{t) -x].(a + b)dt, (1) 

where #[!¥(£) — x] is the well-known step-function. Or, 

i=f:^-*+f:^-w-x].ow-x] (2) 
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where Wi = level of working capital finance for the iih month. Conventionally 
the customer will submit his monthwise requirement to the lending bank. 

4 The solution 

If a company works out its requirement of working capital finance for the 
next twelve months i.e Wi for i — 1,2, • • • , 12, then the total interest burden 
for the company during the next twelve months works out to: 

Hx) = Yl^.x + Yl\wi-x].e[wi-x].^ 
i=l i=\ 

, 1 2 

= a.x + ^Y,(Wi-x).e(Wi-x). (3) 
12 

Then, 

= a-a-^n-^Yj{Wl-X)5{Wl-x), (4) 
i= l 

where 6(Wi — x) is the Dirac Delta function and n — number of months for 
which Wi > x. 

Or, 
n a , dl .,, 

TTT = r for -r = °- (5) 
12 a+b J dx w 

In other words, for i" to be minimum, X is to be so chosen that for n months 
Wi > x, where j ^ = -^. Let such solution(s) be designated by XQ. 

5 The implementation 

A. Let the levels of borrowing projected by a company for the next twelve 
months be 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 and 52 units (the levels of 
borrowing need not occur in this chronological order). Also, let a = 10% p.a. 
and b = 2% p.a. 

In such a situation, n/12 = 10/(10 + 2), or n = 10. In other words, 
the demand loan component should be set at such a level that the level of 
borrowing would exceed the demand loan for 10 months. Thus, xo — 42 units 
or more but less than 43 units. The actual solution may be chosen (though 
its is not essential) to be the lowest value of XQ, i.e. XQ — 42 units. 
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Summary. The physical concept of entropy is used to develop a model of entropy 
distribution of income. The Pareto model is compared with the Boltzmann model 
and their implications are analysed in income distribution. Expenditure data of India 
and Sri Lanka are used to verify the workability of the Pareto Law. 

Key words: Entropy, Pareto Law, Boltzmann Law, Expenditure Distribution, 
Truncation of Distribution 

1 Introduction 

In every economic system a set of agents participate in the process of an 
operation just as a set of particles (e.g., a collection of gas molecules forming 
a box of gas) join together to form a physical system. Both the systems are 
described by a set of parameters. A gaseous system may be described by the 
size of the box in which the gas moves. The production system of an economy 
may be described by the types of activities (services, industry, agriculture etc.) 
in which economic agents take part. A person may have access to some or all 
the activities and acquire the capabilities (energy) to enter into the market. 
The total income-capability of the economic system is distributed among the 
persons depending upon their actual participation in the diverse processes of 
production. But how is the distribution process in the economy? Does it follow 
some regularity? Can it be approximated by some functional process like the 
Pareto or the Boltzmann process? Has the physical concept of entropy any 
use to measure the degree of concentration in the distribution? The present 
paper attempts to examine all these issues in the econophysics framework, 
using expenditure data of India and Sri Lanka. 
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2 Concept of entropy in economics 

Consider an economy (system) with n economic agents. The agents may 
be producers or consumers. Let the total income (energy) generated in the 
economy be 53 Yi units. And the agent i shares Yi units out of total 53 ^ 
units. The incomes may be generated from different sources like agriculture, 
industry, services etc. Define j/i = Yi/ 53 ̂ i- Clearly, 0 < yi < 1 and 53 2/» = 1-
Let us assume that the macro-state of the economy is denoted by (Yi , . . . , Yn) 
in some income space. Agent i commands Yi units of income (energy) in 
this space and it spends to have utility (welfare). Following Varian's (1992) 
money-metric measure of satisfaction we write economy's total welfare: 

S = F(Y1,...,Yn) (1) 

which is assumed to be onedegree homogeneous so that 
s = S/Y = f{Y1IY,Yi,...,YnIY,Yi) = f(yi,...,yn), fi > 0 and /?/ < 0. 
Assume / to be additive. Then 

s = J2wifi(Vi) (2) 

where IUJ'S are weights for aggregation. Assume the utility function to be 
logarithmic: Therefore 

s-^Wilnyi. (3) 

Weights are normalized so that 0 < IUJ < 1 and w; = 1. Equation (3) may be 
viewed an equation for decomposition of total satisfaction among the agents. 
The ith component, Wi In yi measures the contribution of agent i to the overall 
satisfaction. Here the issue is: distribute total income among the agents so 
that the distribution becomes optimal in the sense of generating maximum 
satisfaction subject to the given constraints. To put it mathematically, 

Max s = 2^wi^nyi subject to Wi — 1 and yi — 1. (4) 

For solution, form the Lagrange function: L — Wilnyi — \i(J2wi ~ 1) — 

^2(52yi — 1); Ai, A2: Lagrange multipliers. Set the partial derivatives equal to 
zero: 

SL/8wi = lnj/i — Ai = 0 (5) 

SL/Syt = Wi/yi - A2 = 0 (6) 

(JL/tfAi = - ( £ > < - 1) = 0 (7) 

8L/5\2 = -(£iyi-l)=0 (8) 

for all i = 1,2,.. . , n. Solving eqns. (5), (6), (7), (8) we get 

yi = Wi&ndyi = l/n,for alii. (9) 
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When yi = wt, equation (3) becomes 

s = ^2yi\nyi (10) 

It is exactly Boltzmann's H-function used in his statistical analysis of Ther­
modynamics (Georgescu-Roegen 1971). For yi = 1/n, for all i, s = —Inn. 
Also s = 0, when yt = 1, yj = 0, j / i. Thus — Inn < s < 0. Alternatively, 
define s* = -s so that 0 < s* < Inn. Or 0 < s* < Inn < 1. 

Observations: 
(i) The identification of s defined above with Boltzmann's H- function shows 
that it can be treated as entropy conventionally defined as in equation (10). 
The condition for maximum entropy indeed comes out to be exactly similar 
to that found from the normal definition in the physical system, 
(ii) The entropy s of the system is uniquely determined, given the microscopic 
constitution (description) of the system. 
(iii) Absolute entropy of the distribution rises (falls) more and more, as total 
energy(income) is being distributed among more and more (less and less) per­
sons (agents) equally. The economic system becomes more and more egalitar­
ian, as more and more persons share income equally: the market (capitalistic) 
economy turns more and more to one of socialistic economy. This is expected 
from the analogy of the economic system with a physical system. The system 
attains maximum entropy when all yt's are equal, meaning that each agent in 
the system earns the mean level of income. The mean incomes may be thought 
to be the temperatures of the sub-systems in the larger system. Thus using 
our definition of entropy we arrive at the natural conclusion that for the sys­
tem to attain equilibrium (ideal economic state), the temperature throughout 
the system must be equal. 
(iv) The similarity in the characteristics of "economic entropy" defined above 
with "physical entropy" however presents some difficulty: physical systems 
attain equilibrium by maximizing the entropy; economic systems are never 
found in the state of maximum entropy (as defined here), for no economic 
system is absolutely egalitarian. This means the characteristic distributions 
of income (discussed in the next section) observed for economic systems are 
not, in fact, equilibrium distributions in the physical sense. 

The concept of entropy has been extensively used in economics in analyzing 
the distribution structures. Theil (1967) has used it as a measure of inequality. 
Subsequently researchers (Pal and Pal, 1981; Pal 1987) have applied it as a 
measure of diversification. 

3 Theoretical Models: Pareto and Boltzmann 

We now examine whether the actual distributions may be parameterized 
by some theoretical model distributions. Based on empirical results Pareto 
(1896) suggested a functional form of income distribution which exhibits some 
sort of statistical regularity. The form is: 
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NY (x(Y-9)-a,a>0 (11) 

where 9 and a are parameters. Ny is the number of persons with income > Y. 
Take 9 = 0. The corresponding distribution function in terms of proportion: 
F(Y) = 1 — NY/N oc e_ / 3 F ; the probability density function: 

f(Y) oc aY~il+a) (12) 

In contrast, the Boltzmann function is 

NY oce" / 3 F , / 3>0 (13) 

which yields 

F(Y) = 1 - NY/N OC e" /3Y and/(Y) oc e~pYY (14) 

Y~a and e~@Y are respectively the Pareto and the Boltzmann factors. Both 
are declining with the rise in income but the former declines less rapidly than 
the latter. 

In Pareto (CINY/NY)/(IY/Y = —a which entails that the relative fall in the 
number of persons as income rises becomes smaller and smaller and declines 
in proportion to the income. In other words, the percentage fall in the number 
of persons is proportional to the percentage rise income. This is the famous 
Pareto Law. But in Boltzmann (dNy/NY)/dY — — /? which entails that the 
percentage fall in the number of persons is proportional to the amount of rise 
in income. This may be called the Boltzmann Law. 

Actual income distributions are not at all entirely represented either by 
the Boltzmann or by the Pareto distribution. Studies (Silva and Yakovenko, 
2005) reveal that the lower part of the distribution is Boltzmann while the 
upper part is Pareto. In fact, there exits some income, say Y*, which truncates 
the distribution into two parts. We can use R2 to identify the value of Y*. In 
the first stage Least-squares (LS) fitting is performed for all (n) values and 
R2 is noted. In the second stage LS fitting is performed to the upper k values 
{k < n) and R\ is noted. R2 > R\. In the 3rd stage the upper (fc + 1) values 
are taken in estimation and R\ is noted. If R\ < R2, the fc-th value (Y*) is 
identified to truncate the upper part of the distribution consisting of upper k 
values. If i? | > R2, the process goes on until R2 < R2_i-

Pareto observed a to lie between 1.2 and 1.9, the average being 1.5. He 
claimed his law to operate in all conditions in spite of the social systems being 
changed, a = 1.5 is thought to be a state for social equilibrium. If a deviates 
from 1.5, social tensions occur. People cry for change and ultimately a restores 
to 1.5. 

Pareto did not use the parameter a to measure the degree of inequality in 
the distribution. Entropy of Pareto distribution may be computed and used to 
examine the nature of (in) equality prevailing in the system. Entropy is defined 
in the first section in terms of discrete individuals. In Pareto distribution, 
individuals are specified for an interval of income. So the following adjustment 
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is made for the expression of entropy for the Pareto distribution: Let [i be 
the mean income of N persons. Then yilnyt = (Yi/Nfi)ln(Yi/Nfi,)Nf(Y). 
Therefore, s = f£°(Y/(j,)lii(Y/n)f(Y)dY. For the Pareto distribution \x = 
a/(a-l) andsp = J™(Y/fi) \n{Y/n)aY-(1+a">dY = l/(a-l)-\n(Na/a-l) 
(obtained after successive substitutions of v = I n F and u = (a — l)v) and 
S

P
 = ~sp-

Estimates (Table 1) of Pareto exponent (a) based on Monthly Per Capita 
Consumption Expenditure (MPCE) in India and Sri Lanka reveal that (i) the 
upper part of the distribution in both the countries follows Pareto, (ii) India's 
rural society is relatively more egalitarian and (iii) compared to India, Sri 
Lanka is relatively less egalitarian in MPCE. 

Table 1. Pareto Exponent (a) based on Monthly Per Capita Consumption Expen­
diture (MPCE). 

Country and Year 
India: 1994-95 

Sri Lanka: 1986-87 

Region 
Rural 

Urban 

Overall 

No. of MPCE Class 
12 

Top 8 
12 

Top 9 
12 

Top 7 

a 
1.28 
2.34 
1.08 
1.60 
0.60 
1.46 

R2 

0.76 
0.98 
0.84 
0.98 
0.63 
0.95 

s ' / ln iV 
0.70 
0.97 

-
0.90 

-
0.70 
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Following the early studies of the Traveling Salesman and other multi­
variate optimization problems, employing classical statistical [1] and quan­
tum mechanical [2] tricks, during 1985-1990, the Kolkata group made some 
of the earliest modelling investigations regarding the nature of wealth and 
income distribution in societies and its comparison with the energy distribu­
tion in some (quantum) gases. In the 1994 Kolkata Conference, many Indian 
economists (mainly from Indian Statistical Institute campuses) and physicists 
discussed about the possible formulations of some of the economic problems 
and their solutions using tricks from physics [3]. In fact, in one of these pa­
pers in the proceedings, possibly the first published joint paper involving both 
physicist and economist (Sugata Marjit) Indian co-authors [4], the possibility 
of ideal-gas like model of trading market was discussed. Among other things, 
it tried to identify, from the known effects of various fiscal policies, the equiva­
lence of the kinetic energy of the gas molecules with the money of the agents in 
the market and of temperature with the average money in the market. Such 
a 'finite temperature' gas model of the market was first noted by Dietrich 
Stauffer (Cologne) [5]. With the possibility of putting more than one agent in 
the same microstate, identified by the price or money income of the agent in 
the market, the likely distribution was concluded there [4] to be Bose-Einstein 
like, rather than Gibbs like. This study of course had the limitation of absence 
of any comparison with real income distributions in any market or country. 
In 1995, in the second 'Statphys-Kolkata' series of Conferences (being held in 
Kolkata for the last one and a half decade now [6]), Gene Stanley (Boston) 
first introduced the term 'Econophysics' to describe such researches [7]. Since 
then, Kolkata (erstwhile Calcutta) is considered to be the formal birthplace of 
this new term: "Tfte term econophysics was ... first used in 1995 at an interna­
tional conference ...in Calcutta", as mentioned in the successive Symposium 
homepages of the Nikkei Econophysics Symposia [8], and also elsewhere. 

The general features of the observed income/wealth distributions in any 
society, namely the initial rise of the distribution and then exponential decay 
(or a log-normal/Gamma function decay) for the majority middle income re-
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gion (apart from the final Pareto tail for the rich), was taken as an indication 
that a simple Markov scattering, as in kinetic theory of gas, is insufficient 
to capture the full trading picture. It was immediately clear that a saving 
propensity (fraction) for each agent would give the desired feature of a dip at 
the low income: an agent with some initial money cannot now become pauper 
in one scattering or trading as a finite fraction will be saved and can become 
so only if he/she loses in every successive trading. This study was first done 
with Anirban Chakraborti [9]. Actually, a little before its publication, Victor 
Yakovenko and his collaborators (Maryland) [10] had put their seminal paper 
on the ideal (classical) gas model of income distribution in the cond-mat (elec­
tronic) archive and later published (also giving the US data to support their 
ideal gas model). This observation stimulated the Kolkata group very much 
and noting the advantage of the saving factor in explaining the initial dip in 
the distribution, over the Gibbs distribution in the ideal gas model of market, 
several extensions were made: Srutarshi Pradhan and coworkers analyzed the 
self-organizing property of such models [11], Sitabhra Sinha (Chennai) made 
a detailed investigation [12] on the stochastic map equivalents of such mod­
els, and Anirban Chakraborti, together with Marco Patriarca (Helsinki) and 
Kimmo Kaski (Helsinki), made an extensive numerical study of the ideal ideal 
gas model with fixed savings and proposed [13] the Gamma distribution for 
the steady state income distribution in the model. However, a simple, yet pro­
found, observation by Arnab Chatterjee in late 2002, introducing randomly 
distributed saving propensity in the same ideal gas model, proved very suc­
cessful in capturing all the important features of the observed income/wealth 
distributions: dip for low income group, exponential (Gibbs) decay for the 
middle income group and power-law (Pareto) tail for the rich people! This 
was first reported in the 2nd Nikkei Econophysics Symposium in Tokyo in 
November 2002 [14]. This model immediately attracted a lot of attention 
from physicists (and also from economists; see, e.g., the next, rather critical, 
comment by Paul Anglin of Univ. Windsor). 

In the meantime, there were several regular and 'popular science' articles 
which tried to explain and also justify the use of stochasticity in such gas 
models of markets: for example, Brian Hayes (American Scientist) argued 
how a little mismatch over the 'just price' of any commodity, as induced by 
common bargain capacity of the agents in the market, eventually leads to a 
stochastic gas model he "had accidentally created", which he discovered "to 
be the same as the" Kolkata model [15]. This kind of spontaneous rediscovery 
of the gas model for the market independently by several groups indicate 
perhaps the inevitability of the model. 

The fixed saving propensity gas model was later analyzed and improved 
by several groups (a few of them reporting in this workshop). Arnab Das 
and Sudhakar Yarlagadda here wrote a Boltzmann-like equation for the in­
come probability density, which they solved numerically for the steady state 
[16]. With Subhrangshu Manna, extensive numerical studies were made on the 
distributed savings model [17] and the Pareto behavior of the large income 
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tail was established. In fact, together with Debashish Chowdhury (Kanpur), 
Kimmo Kaski and Janos Kertesz (Budapest), a Conference on "Unconven­
tional Applications of Statistical Physics" was held in Kolkata in early 2003 
[18], where several groups (a few of them reporting in this workshop as well) 
made further numerical and analytical studies on the Kolkata models, and es­
tablished several robust features. The data for the Indian income distribution 
has also been analyzed recently by Sitabhra Sinha [19]. Robin Stinchcombe 
(Oxford) joined recently (in his latest June-July 2004 visit to Kolkata) in solv­
ing analytically the master equation for the random saving gas model of the 
market [20]. 

Jenny Hogan (New Scientist) in her very recent report [21] on these devel­
opments described briefly the Kolkata models and mentioned that this "more 
sophisticated model" (with saving factor) has some added desirable features 
over the ideal gas model of markets. She additionally reported some inter­
esting (and a few inspiring) opinions of several distinguished economists and 
physicists on these developments. She also described this Kolkata workshop 
as "the first ever conference on Econophysics of Wealth Distributions" where 
"economists will join physicists to discuss these issues" (her report was pub­
lished just before the workshop). We indeed believe that some of these wishful 
successes and develpoments have already started taking place! 
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S u m m a r y . Some recent papers have proposed models of trading which produce 
realistic-looking distributions of wealth. This Comment argues that, while the mod­
els are correct arithmetically and the papers claim that the empirical support is 
persuasive, they involve undeclared simplifications that limit their application and 
that point to empirical propositions that are easily refuted. Since many of the simpli­
fications involve dismissing the economists' favorite price mechanism, it is important 
to realize why the models do not propose a coherent alternative. This Comment sug­
gests several directions for future research on this important topic. 1 ' 2 

1 An Interesting Question 

Econophysicists have proposed explanations for the distribution of wealth 
using a class of models that the authors describe as "simple", "rich", "intrigu­
ing" and "generic". The authors and certain commentators (Ball [1], Hayes 
[2], Buchanan [3]) find it striking that such models can reproduce a statistical 
regularity which economists appear to overlook. They also use the models to 
comment on government policies that might improve the welfare of society. In 
my opinion, while the arithmetic is correct and the conclusions are seductive, 
the models are not sufficiently reliable to extrapolate their conclusions to the 
real world confidently. 

These models are interesting because they use a previously-unconsidered 
micro-process to explain a macro-phenomenon: that the distribution of wealth 

1 The author could not come to the workshop for unavoidable reasons, but sent 
this comment for discussion there and for inclusion in the Proc. Vol. - Editors. 

2 Though these people do not necessarily agree with what is written, this paper has 
benefited from comments by Richard Arnott, Bill Baylis, Stefan Bornholdt, J.-P. 
Bouchaud, Bikas Chakrabarti, Eric Nodwell, Nicola Scafetta and Y. Sudhakar. 
Research assistance by Xuzhen Zhang is appreciated. An extended version of this 
Comment with more examples, more discussion and a longer bibliography can be 
found at http://www.uwindsor.ca/PaulAnglin. 
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displays a power law. The associated equations are sufficiently simple, and 
computers have become sufficiently fast, that it is easy to simulate these 
processes. Many papers verify the resulting regularity (e.g. Chakrabarti and 
Chatterjee [4], Reed [5], Souma [6]) based sometimes on the entire distribu­
tion and sometimes on a part of the distribution. This Comment does not offer 
new mathematical insights or data because referees and editors have already 
determined the validity of the proofs presented in published papers. 

I focus on a different aspect of the puzzle which may also be useful: the 
validity and relevance of the assumptions being used. As isolated models in a 
broader research program, their ultimate contribution is not yet known. The 
facts that the authors compare the outcome of these models to the distribution 
of wealth in specific countries and that they consider the implications of policy 
variables, such as taxes, suggest that the authors think that the models are 
almost realistic. Given that existing research has demonstrated that many 
things affect the distribution of wealth (e.g. Champernowne [7], Sutton [8] 
or Sattinger [9]) and that wealth affects many other things, this Comment 
questions the sense in which these models appear realistic. 

I focus on three lines of reasoning. First, some authors are confused or 
careless when using some key words. Second, the models overlook five specific 
principles, each of which has been refined by at least a century of economic de­
bates. For this reason and to introduce readers to debates amongst economists 
that appear to have been overlooked, the bibliography is relatively long. 

The importance of the third reason depends on a difference between the 
methods of economists and physicists. Stanley et al [10] noted that physicists 
are "fundamentally empirical", in contrast to economists. I argue that the 
data analysis used in this literature uses a standard that ignores differences 
between physical objects and economic objects and that is especially relevant 
to the proposition advanced by this literature. A simpler explanation, which 
must be at least part of the answer, has been overlooked and can generate a 
not-unrealistic distribution. 

2 Five Basic Principles of Economics 

The models focus on the evolution of a single variable, called "wealth" or 
"money",3 based on a dynamic process described as scale-free. When trying to 

3 Some papers perpetuate misunderstandings about the nature of money. For ex­
ample, the first sentence of Bornholdt and Wagner [11] claimed that Debreu's 
book [12] studied the role of money in an economy. Debreu (p. 28 and endnote 
3 to Ch. 2) claimed the opposite. Claims of equivalence between money, income 
and/or wealth can be found in Chatterjee, Chakrabarti and Manna ([13], p. 161-
162) and Patriarca, Chakraborti, and Kaski ([14], first paragraph). Dragulescu 
and Yakovenko [15] is more careful in its introduction but not consistently. Any­
body who uses a credit card quickly learns that there are differences between the 
concepts of "money" "income" and "wealth". 
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relate the model to the real world, the importance of the measure is unclear. 
It is certainly true that many economists attempt to summarize personal or 
national well-being in terms of wealth or gross domestic product (GDP) but 
even introductory textbooks note problems with the attempt. 

I think that one source of confusion is that the authors view economic 
issues from a Mercantilist perspective. This perspective opposes what Adam 
Smith and David Ricardo identified as the true source of wealth in a nation: 
trading of goods for more-preferred goods, not the holding of money gold or 
wealth, enables a trader to become better off.4 Many authors criticize this 
conclusion by noting that few markets display the conditions needed for the 
famous Invisible Hand result, or its precise formulation as the "First Welfare 
Theorem." Such authors seem to forget that trading can be mutually beneficial 
even when markets are not perfectly efficient. 

I think that the basic problem is that the models obscure ideas which 
would show whether their conclusions are robust. To answer my challenge, I 
think that the research program needs to be explicit about five Basic Princi­
ples: Opportunity Cost, Gains from Trade, Margins, Equilibrium, Compara­
tive Statics. The following discussion illustrates how these models fail each of 
these principles in ways that are empirically relevant. 

2.1 Opportunity Cost and Gains from Trade 

The principle of Opportunity Cost is so fundamental to economic analysis 
that its importance cannot be overstated. When differences between individ­
ual are summarized by a single good, called money or wealth, the models 
do not permit differences in taste or different uses of a given type of good. 
Such differences are important since economists often advocate a decentralized 
price mechanism because it enables traders with different tastes to consume 
different bundles of goods. If differences in taste are empirically relevant and 
if the models do not allow different traders to have different tastes, then the 
relevance of the models' predictions seems limited. To put this idea another 
way, without a sensible reason to trade, it becomes easy to "conclude" that 
any trading mechanism produces a bad outcome. 

2.2 Margins 

Merely recognizing the existence of more than one good, and including a 
measure of tastes to account for each trader's trade off between them, points to 
an empirical inconsistency in the models: when the "price" of the consumable 
increases, a trader can reduce consumption without consumption falling to 
zero. In many cases, quantity demanded of a good is so sensitive to its price 

4 Paul Krugman has written on why this important idea is so difficult to under­
stand and to explain to non-economists: http://www.pkarchive.org then click on 
"International Trade," then on "Ricardo's Difficult Idea 3-96". 
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that expenditure on a good is negatively correlated with the price. (An increase 
in the price may cause a trader to want to sell more and I will comment on 
the selling dimension next.) 

While these models reject the economists' traditional ideas of a market 
process, it is unfortunate that many models also reject the notion and the 
implications of a price. Including price explicitly would make it easier to eval­
uate the empirical relevance of a model which assumes that "the amount of 
money earned or spent by each economic agent is proportional to its wealth" 
([16], p. 537).5 Similarly, it is difficult to evaluate the assertion that the value 
of an item is constant when there are many familiar counter-examples: e.g. a 
cup of coffee (first in the morning versus a second or third cup). For all these 
reasons, noting the possibility of a variable consumption margin implies that 
the models should be interpreted as focusing on a special case. 

2.3 Equilibrium 

Compared to other critics of economics, these models are careful about 
the concept of an equilibrium, usually meaning a stable distribution. But 
the models rarely represent an equilibrium in the sense of quantity supplied 
equalling quantity demanded.6 Since the models propose that trading occurs 
in pairs, the models must assume that any trader can satisfy the demands 
of any other trader at any time. This aspect of a model creates at least two 
problems. First, if a trader can always produce enough stuff for any other 
trader then they should be able to produce enough for themselves. Clarifying 
the model in this way would have the unintended implication that poverty is 
not a barrier to consumption. Second, if a rich trader meets a poor trader, 

6 The reasoning used to justify scale-free-ness fails to distinguish "real" and "nom­
inal" wealth. Economists recognize that neutral inflation has no real effect but 
any reasoning concerning inflation reveals little about interaction if some of us 
become rich in the sense that Bill Gates is rich. The essential problem is that 
many processes are scale-free, as demonstrated in the extended version of this 
Comment, and this ambiguity shows one of the dangers of arguing by "analogy" 
(quoted in Dragulescu and Yakovenko [15], p. 723 and in Pianegonda et al [17], 
p. 668). 

6 Many authors assert that markets rarely attain a perfectly competitive equilib­
rium and use this assertion to justify an alternative model. Some models apply 
this assertion inconsistently (e.g. [18], p. 449 vs p. 446). In other models, an 
economist would predict either that any price could be an equilibrium price or 
that there is no perfectly competitive equilibrium because quantity demanded 
and supplied do not vary with price. 

Economists continue to research this topic: e.g. Barro [19], Benassy [20] and 
Fisher [21] offer three very different approaches. Krueger's [22] presidential ad­
dress to the American Economic Association gives some ideas of how thinking 
amongst economists has evolved. It may also be interesting to note that, in 
part, Vernon Smith is a Nobel Prize Laureate for using controlled experiments to 
demonstrate that markets are more competitive than they should be in theory. 
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then the poor trader would realize that the rich trader wants to buy large 
quantity and the poor trader could improve his or her bargaining position by 
saying "Sorry, I haven't got any". 

Different economists have proposed many different pricing mechanisms, 
and the debate amongst economists has not ended, but all economists agree 
that the process which determines prices cannot be separated from the process 
which determines quantities. A popular alternative is to suppose that any 
imbalance is rationed in a way that is consistent with a formal bargaining 
process (e.g. [23] or [24]). 

2.4 Comparative Statics 

Comparative static analysis emphasizes the idea that careful study of the 
effect of a change in a parameter ("exogenous variable") requires compar­
ing the equilibrium solution ("endogenous variables") before the change with 
the equilibrium solution after the change. Comparative statics analysis helps 
economists to answer the kinds of questions that people ask: Is "globalization" 
or the information revolution responsible for the changes in the distribution of 
income/wealth? Do free markets, central planning or some third way increase 
total wealth? 

Some authors, e.g. [16], claim that their mechanism permits many inter­
pretations. Scafetta, Picozzi and West [25] claim that their model provides 
more support for a classical model rather than a neoclassical model. Before 
accepting these claims, I wonder if this class of models permits the economist's 
textbook model as a special case. Comparative statics analysis could be used 
to study the effects of different trading mechanisms. Being able to isolate 
these effects from other aspects of the model would show which parts of the 
simplified models are important. 

The textbook model would be useful as a reference point, if only because 
it is commonly discussed. Consider a model which includes a parameter mea­
suring the "degree of market imperfection." A costly comparison shopping 
process, where each buyer (seller) meets many sellers (buyers) but selects 
only low price sellers (high price buyers) as trading partners, is an empirically 
relevant alternative model of an imperfect trading mechanism that seems to 
have been overlooked. This margin of adjustment creates a kind of market 
power that is easy to exercise. Identifying the effects of a change in the cost of 
comparison would be a truer test of how imperfections affect the distribution 
of wealth.7 

7 This kind of process has been used to study labour markets [23], financial markets 
[28] and real estate markets [29]. Diamond [30] showed that the market equilib­
rium is not necessarily a continuous function of the imperfection. 
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3 Reinterpreting the Data: Wealth and Age 

The models noted above are simple and simple models have the advantage 
of summarizing key information with a few parameters. Unfortunately, the 
key parameter in many of these models is not observed directly and the range 
of acceptable parameter values may be wide, if the model is the only expla­
nation permitted. The power of estimating a parameter indirectly depends 
on the realism of the model. Other models link an observable parameter (e.g. 
Chakraborti and Chakrabarti [26] and Chatterjee, Chakrabarti and Manna 
[13] focus on the savings rate) to the skewness of wealth. Unfortunately, a test 
involving differences in the savings rate would require comparing the distribu­
tions of wealth in different countries and countries differ in many ways, other 
than the savings rate. 

People save for many reasons but one of the most important reasons is to 
create wealth for retirement. Empirically, knowing how wealth is distributed 
across different ages is at least as important as knowing the overall distribution 
of wealth: Kennickell ([27] esp. Figure 3) showed that the percentage difference 
between the wealth of the median 30- year-old and the wealth of the median 
50-year-old American is about the same as the difference between the 10th 
percentile of 50-year-olds and the 90th percentile of 50-year-olds. 

More formally, suppose that each person starts working at age 20 and 
lives for a maximum of 100 years. Income, y, is the same for all workers. 
While working, the person saves S per year. At date T, they retire and plan 
to spend their wealth at a constant rate R. Two ideas familiar to economists 
show how R, S and T are linked. First, since the saving are intended to pay 
for consumption after retirement, the present value of post-retirement con­
sumption should equal wealth at the date of retirement. Second, the trade off 
between current savings and current consumption can be resolved by invoking 
the idea of consumption smoothing. To apply these conditions, suppose that 
an investment grows exponentially and without risk at a rate of r: saving S 
at age t becomes S exp(r(T-1)) at age T and a constant flow of saving means 
that wealth at an age of a is 

W{a) = 5(exp(r(a - 20)) - l ) / r . (1) 

After age T, wealth is used to pay for consumption until age 100; the present 
value of such consumption at age T is 

R(l - exp(-r(100 - T)))/r. (2) 

Thus, lifetime consumption is self-financing if and only if 

S"(exp(rT) - l ) / r = R(l - exp(- rT)) / r = W(T). (3) 

Smoothing consumption over time implies that 

y-S = R. (4) 
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If r = 0.065 and T = 65 then computation shows tha t a savings rate of 0.048 
during a working life enables a constant ra te of consumption over a lifetime. 
A change in r or in the savings rate would produce different solutions for R, 
S and T but these numbers are broadly consistent with observed data . 

Fig. 1. Comparing Distributions 

The dashed line in Figure 1 shows the Lorenz Curve for the distribution 
of wealth under a Cumulative Savings plan using information on the current 
age distribution of the US ([31]). As expected, it is skewed with the wealth­
iest people being near age 65. Many of the models in this l i terature seek to 
compare the observed distribution of wealth to a Pare to distribution. The 
solid line shows the Lorenz Curve for tha t distribution using the parameter 
1.5 which, some people claim, represents a reasonable value for the US. It is 
possible to compare these two distributions more precisely but , using an eye­
ball metric, the Cumulative Saving distribution looks more skewed for lower 
levels of wealth and less skewed for the higher levels of wealth. 

A reader would be justified in believing tha t differences between the dis­
tributions might be explained by one or more aspects omitted from both 
models.8 The principle of comparative statics shows how to investigate the 
significance of an omission. To take a simple example, if the rate of return on 
investment had been 7.5 percent instead of 6.5 percent then those who are 

Sometimes, simplified models omit some relevant ideas. For example, the assump­
tion that income does not vary with age begs to be improved but most changes 
to this assumption would raise a question of whether it is proper to distinguish 
between wealth disguised as financial assets and wealth disguised as human cap­
ital. Or, people may prefer to use pensions in place of personal wealth to finance 
consumption during their retirement. Wealthier people may invest in riskier in­
vestments which have a higher average rate of return or wealthier people may 
have higher annual income and save more. Rather than offering a more complex 
model, and attempt to resolve the implied measurement issues, my intention is 
to offer a model with more realistic behavioural foundations that also produces a 
realistic-looking distribution. 
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already wealthy benefit disproportionately. But, since the reason to generate 
wealth is to fund consumption during retirement and since r is higher for a 
lifetime, there is also an indirect effect: the savings rate falls to 0.032. The 
resulting Lorenz Curve is shown with the dotted line. 

Using the eyeball metric again and to quote some authors out of context, 
these data "compare very well" or may "encourage" further work in this direc­
tion. And, while it is true that an eyeball metric is not very precise, it is also 
true that the power and size of the statistical tests used by others are rarely 
reported. More generally, this example help to explain why the distribution 
of wealth would be stable regardless of why it is skewed and why an economic 
process which produces a skewed distribution is not necessarily unfair. 

4 Concluding Thoughts 

Tools employed by physicists have created attention-grabbing profits for 
Wall Street firms, as discussed in Matenga and Stanley [32], but the recent 
research on the distribution of wealth strays into areas where previously suc­
cessful tools become unreliable. The ideas that economists have over-simplified 
their models of buying and selling and that a more realistic trading rule pro­
duces a more realistic distribution of wealth are interesting. The arithmetic of 
the models is simple, is correct and the results can be described with surprising 
ease. 

Any one model is part of a larger research program where simple models 
are replaced by better models. As Einstein is supposed to have said: Things 
should be made as simple as possible but no simpler. The success of the models 
encourages further research but this Comment has tried to argue that, to study 
the behaviour of real people who trade when they are willing and able, these 
models unintentionally propose a theory where traders are forced to trade 
and always can. I noted several instances where this class of models ignores 
other explanations as well as historically significant and empirically relevant 
basic principles. The history of economic science offers examples of empirical 
regularities that misled because of a weak behavioural foundation: e.g. The 
failure of large scale Keynesian models of the 1960s and 1970s, at about the 
time that they were used widely, led to the insight now known as the Lucas 
Critique [33]. For these reasons and others, it is difficult for this economist to 
determine the power of the empirical tests used to investigate the hypothesis 
offered by this new literature. 

Given the number of times that the name of Adam Smith is invoked, I am 
surprised that the models seem to reject his intellectual contribution. Only 
sprinkling words like "money" and "wealth" in the text make these models 
sound analogous to a real economy. I offer a process that is consistent with 
many of the ideas that neoclassical economists like, that helps to explain an 
equally important phenomenon and that has been overlooked as an expla­
nation: the relationship between wealth and age. This process also creates a 



Econophysics of Wealth Distribution: A Comment 237 

realistic-looking distribution. Moreover, analysing it illustrates why questions 
concerning the distribution of wealth should not be isolated from other ques­
tions. Is the Cumulative Savings process too simple? Of course. Both this 
model and the other models omit behavioral and technological features of an 
economy whose significance has been repeatedly confirmed. 

A final conclusion of this Comment should be that nobody needs to confuse 
the techniques of analysis with the principles that those techniques embody. 
Many academics and ordinary people claim that modern economics is merely 
mathematized ideology (e.g. McCauley [34]) or that it is not a real science. 
Researchers investigating economic questions are less able to control the initial 
conditions of their experiments. Economic analysis also suffers from the fact 
that the actors being studied exercise freedom of choice. These facts make 
human behaviour less predictable. They also imply that a human being can 
participate in a system selectively in a way that an atom cannot. Hence, certain 
methods of analysis become inappropriate and results which are arithmetically 
correct, but not robust to perturbations from previously identified sources of 
ignorance, can be unimportant. The five basic principles discussed above are 
easy to identify in the models which economists have found useful in the past 
[35]. They can also guide future research. 
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1 Summary by Peter Richmond and Jiirgen Mimkes 

Econophysics has emerged in the past 10 years as an important and active 
area of research for physicists and economistsl. Within Europe, the USA and 
Australasia, there have been a number of important meetings dedicated to the 
area. We note for example, the European Physical Society's series of APFA 
meetings (Application of Physics to Financial Analysis), held in Dublin (1999), 
Liege (2000) London (2001) and Warsaw (2003). A fifth meeting is being 
planned. 

The 2005 workshop in Kolkata brought together physicists and economists 
from Europe, North and South America, China, Japan and India to focus 
specifically on the important topic of wealth distributions - a topic of great 
importance to policy makers, government regulators and taxation authorities. 
A number of important issues emerged from the many interesting presentation 
and subsequent discussion: 
(1) In line with Pareto's 100 year old conjecture, wealth distribution does ap­
pear to be similar in form across all nations and times studied so far. Exception 
do arise but apparently during periods of economic stress and turmoil. Data 
compiled during the recent crisis in Argentine and presented at the meeting 
illustrated this clearly. 
(2) The is apparently stationary distribution seems to follow from a few basic 
principles. However more detailed data for both stationary and dynamical 
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behaviour is needed to enable extensive verification. Such data should span 
both more countries and times. Data such as that presented for Japan that 
identifies over time very wealthy citizens offers scope for development of micro 
models and detailed testing of predictions of the model dynamics and time 
series as well as stationary distributions.. 

The dialogue between economists and physicists is clearly vital for this 
research effort to achive its full potential. In this sense the Kolkata workshop 
fulfilled a valuable purpose and one can hope that other workshops can build 
on these first steps. Within Europe, a number of EC sponsored networks are 
being developed. One such, established in late 2003 is the COST network, 
physics of risk. This spans over 20 EC states together with Australia. It is 
possible that India could become a member for the remainder of the period 
to end 2006. 

One issue discussed at the workshop was that of the standing of young 
students who persue a PhD in this area. Would they be considered by their 
peers to be professional physicists? Would they be employable? 

It is clear that the nature of the problems in econophysics can be formly 
rooted within the broad area of statistical physics. The systems are complex 
and exhibit all the richness of traditional many body systems. A physicist 
needs all the tools traditionally taught within statistical physics and field 
theory - and argualbly more to deal with socio-economic systems. Employment 
statistics may merit further study. However we note that a recent UK survey 
by the Insititute of Physics stated that each year upwards of 20% of new 
physics graduates now enter the finance industry. Furthermore as a result of 
this demand, EPSRC, the UK research funding agency has recently invited 
bids from consortia of universities who wish to establish new centres of both 
research and training of physicist in areas relevant to the finance industries. 
The UK Insititute of Physics has initiated a new subject group 'Physics of 
Finance'; German Physical Society has initiated a section on "physics of socio­
economic systems". Both aim to promote scientific and professional activity of 
physicists in this area. Across Europe it is likely that more activity will emerge 
that supports econo and sociophysics under the broad heading of complex 
systems research. 

The situation in India may merit further study, howver, the participants at 
this meeting would encourage further development of these transdisciplinary 
research areas that links physics not only to economics but also offers scope 
for other links to finance, business, psychology and sociology. A nation that 
aspires to be a part of the knowledge community cannot stand idly by and let 
others monopolize these developments. 

2 Summary by Mauro Gallegati 

The day of the opening of the "Econophys symposium", The Times of 
India under the headline "Nation jumps to 3rd place in Asia", publishes 2 
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articles on wealth distribution. They emphasize, with a moderate tone of self-
accomplishment, the extraordinary progress made by India in recent years: 
"8th in the world in terms of the number of billionaires and 9th in terms 
of the total wealth of super rich." Nevertheless, they point out the extreme 
difference in wealth distribution among Indian citizens: an average Indian 
billionaires wealth is equivalent to almost 9 million times the countrys per 
capita GDP, while the same figures are in the order of ten-thousand times for 
the most developed countries, and over a million for the third world countries. 

One of the main results of the conference was the consensus reached by 
economists and physicists on the shape of the distribution curve: log-normal 
or exponential for the first 97-98th percentiles of it, and Pareto for the very 
upper tail. Moreover, the functional form of the wealth distribution is stable 
over many years and countries, although the parameters fluctuate within nar­
row bounds. These fluctuations explain the wealth differences among citizens 
of countries at different levels of development and concern the very nature 
of the economic phenomena, which cannot be reduced to physics by simply 
substituting some concepts of the two fields, such as money instead of energy. 
In a nutshell, while most of the physicists in this conference assume the ex­
istence of time reversal symmetry, the economists in Kolkata seem to believe 
that the economy is characterized by "self organized criticality". 

On the steps of classical mechanics, mainstream economists try to explain 
the behavior of the aggregate through the analysis of its single components. 
The methodological "reductionism" in fact assumes that, since the aggregate 
is nothing but the sum of its components, aggregate dynamics is determined 
by individual dynamics. This is true if and only if the action of an agent 
is not affected by the actions of the others, i.e. if there is no interaction, 
or if information is complete and agents process it rationally. In presence of 
interaction in fact, the aggregate is different from the sum of its components. 
The only interaction of agents possible in the mainstream economic model is 
an indirect one, through the price system only. 

Quantum revolution dismayed the reductionism hypothesis: the character­
istics of the single particles are not intrinsic properties but they can be un­
derstood only by analyzing the aggregate. Analogously to quantum physics, 
economic agents do not exist if not connected to each other. While in classi­
cal mechanics the property and behavior of the parts determine those of the 
aggregate, in quantum mechanics the opposite is true: the whole determines 
the behavior of the parts. 

Our hope is that econophysics will help mainstream economics to leave the 
"straightjacket of reductionism". 

3 Summary by Thomas Lux 

The distribution of wealth is an outcome of all the complex interactions 
of modern economies. Unlike with certain stock market phenomena one can, 
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therefore, not restrict the analysis to a subsystem (may be at time discon­
nected from the rest of the economy). Rather, in some sense, empirical distri­
butions of wealth and income reflect the entirety of production, distributions 
(via factor inputs to production and their compensations), and redistribution 
(by the government). It is the more remarkable that through the empirical 
work of recent years one has obtained a very strong characterization of the 
main stylized facts, of the distribution of wealth. 

As the main contributions of physics-oriented approaches represented in 
the workshop I would, therefore, like to point out the following: 
(1) a clear description of the universal features of wealth distributions for al­
most all countries for which data are available, namely, a Gibbs-Boltzmann (or 
Gamma) distribution for the bulk of the data and a distinct Pareto tail for the 
extremal part. This establishes the main empirical features to be explained. 
This behavior of the data also proves that explaining wealth distributions is 
far from trivial, 
(2) attempts at explaining the distribution via agent interaction. The findings 
of Pareto have for a long time be simply taken as empirical facts for which no 
satisfactory explanation could be provided. It is important to point out that 
such distributional features can be explained via appropriate models of large 
ensembles of interacting units (which is what an economy consists of), 
(3) as expressed in various ways, the bulk of the distribution with its exponen­
tial or Gamma distribution can be explained by chance events or maximum 
entropy considerations. It, therefore, seems genuinely less interesting than the 
Pareto tail. Expressed differently, one needs a distinctly different mechanism 
to cover the tail data in a theoretical model. 

Now come the more critical remarks: one disturbing observation is the al­
most complete negligence of available knowledge which has been accumulated 
in economics over one or two centuries. This leads to attempts of modeling 
economic interactions in a 'naive' way according to simple ideas of how one 
could conceive economic activity. It is very likely that these first ideas should 
already have been proposed in the history of economic thought and have been 
overcome by more elaborate theories and models. The received body of knowl­
edge is not only available in mongraphs and articles, but had already been 
summarized in handbooks7 and is documented in specialized journals8, which 
shows the state of development of this area of research. The total absence of 
any reference to this whole body of knowledge would almost certainly make 
econophysics contributions conspicuous for economists (imagine a new paper 
on quantum physics without any reference to received literature). However, 
in all the voluminous literature, a perspective of explaining the shape of the 
distribution from interactions of agents is almost entirely absent. Adding such 

7 Atkinson A, Bourguignon F (2000) Eds., Handbook of Income Distribution, Am­
sterdam, Elsevier. 

8 Journal of Income Distribution, Review of Income and Wealth. 
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a perspective would, therefore, be the most important contribution of research 
inspired by statistical physics. 

By the way, modern economic theory is thought to commence with Adam 
Smith s The Wealth of Nations (1776). His main point was that bilateral 
exchange (trade) is mutually advantageous. In this, he turned against earlier 
theories according to which one party looses and the other gains in a bilateral 
exchange. Needless to say, Smith s position is universally accepted today. 

To quote Dragulescu and Yakovenko, one should, therefore, try to simulate 
and analyse big ensembles of economic agents following realistic deterministic 
strategies (Eur. Phy. J. B 17, 2000, 729). Models should be based on economi­
cally plausible assumptions and mechanisms, should incorporate markets, vol­
untary exchange and prices. Wealth is not a primary economic concept, but 
needs to be computed from more elementary variables (quantities of goods, 
assets and their prices). 

As a more long-term goal one should envisage the identification of further 
stylized facts (outof- equilibrium dynamics, e.g. changes of the shape of the 
distribution of wealth during industrialization) and try to construct appropri­
ate models for their explanation. 

Any successful attempt at deciphering the underlying forces behind the 
universal laws of wealth distributions would certainly have to built upon 
available knowledge in economics and combine it with the methodology of 
statistical physics developed for multi-agent problems. 

4 Summary by Victor M Yakovenko 

Here I try to summarize major achievements of this conference and high­
light unresolved issues and directions for future studies. As with experiment 
and theory in physics, establishing close connection between empirical data 
and theoretical modeling is vitally important for economic science. 

4.1 Analysis of Empirical Data 

This conference has firmly established that income distribution has a two-
class structure — it was even shown on the conference poster, to which many 
speakers referred. The upper tail follows the Pareto power law, whereas the 
distribution for the lower-class majority is similar to the Boltzmann-Gibbs 
distribution of energy in physics. This understanding needs to be propagated 
to a broader community and recognized as an important "stylized fact". Many 
researchers still have misconceptions about the structure of the actual distri­
bution. 

The lower-class distribution was fitted to the exponential, gamma, and 
log-normal distributions by different researchers. We need to find out whether 
these differences are real and reflect social structure of different countries, or 
they are spurious effects. For example, it is important to distinguish between 
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distributions of individual income vs. family or household income. The expo­
nential distribution of individual income results in the gamma distribution of 
family income, and both fit the corresponding sets of data for USA. Differ­
ent ways of collecting income data (e.g. taxes vs. surveys) may have different 
sampling rate of the low income population. 

It would be very interesting to expand the empirical study of income dis­
tribution to more countries and different time periods. Having established 
what the equilibrium distribution is, we can study deviations from it under 
various circumstances. For example, very interesting non-equilibrium data for 
Argentina were presented by Juan Ferrero. Are income distributions in devel­
oping and post-socialist countries evolving toward the maximal-entropy equi­
librium shape? Have the governments of some developed countries succeeded 
in changing the shape of the distribution by social engineering? 

Unlike for income, only limited data is collected on wealth distribution, 
and virtually no data on money distribution. Assuming that people keep their 
money in bank accounts, the distribution of bank deposits would give some in­
formation about distribution of money. A big bank could, in principle, collect 
such statistics, and it would be very interesting to compare it with the the­
oretical predictions for money distribution. The distribution of money would 
give information about purchasing power — money that people already have 
and can, in principle, spend without going into debt. 

4.2 Theoretical Modeling 

Statistical distributions in various models with a conserved quantity (anal­
ogous to energy in physics) were presented at the conference in great detail. 
Now we have a very good understanding of mathematical behavior in these 
models. However, much less attention was paid to the economic interpreta­
tion of the conserved quantity. I believe that the conserved quantity should 
be identified with money, because the ordinary people can only receive and 
give, but not manufacture money. Of course, central banks and governments 
can inject money in the economy, but these can be treated as external sources 
without violation of the local conservation principle. Going into debt may 
"create money", but it also creates debt obligations, so conservation laws can 
be formulated in this case too. Models with debt were not presented at this 
conference, but there are interesting and elegant econophysics papers that 
naturally incorporate debt. Surprisingly, we heard from some economists that 
money is "illusory" — a statement in sharp contrast with the everyday expe­
rience for most of us, lower-class people. 

However, most of the conservative models called the conserved quantity 
not "money", but "wealth". One can define wealth as money + property, the 
latter being the number of assets multiplied by their prices. When an agent 
pays money for intangible service, like in the barbershop model of Peter Rich­
mond, his wealth changes. However, when an agent receives tangible assets in 
exchange for money, his wealth does not change. On the other hand, his wealth 
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may change because of material production, which changes the number of ob­
jects, or because the price of objects changes ("paper wealth" generation). 
These processes are not captured in many conservative models, so applying 
them to wealth distribution raises questions. However, it depends to which 
class the models are applied. The lower-class may have little assets besides 
money, so their wealth distribution would be the same as money distribution, 
whereas the upper class wealth would be determined primarily by assets dy­
namics. Physicists should also pay more attention to economic justification of 
the model transaction rules. Some of the proportional rules may be unreal­
istic, because they imply that people are charged different prices depending 
how much money they have. 

While most of theoretical models deal with money or wealth, most of em­
pirical data is available on distribution of income, which is the flux of money. 
Physicists often use income distribution as a proxy for money or wealth distri­
bution. This is not because they are so ignorant that they do not understand 
the difference, but because the data on money or wealth distribution is typ­
ically unavailable. The idea is that, because all three quantities are closely 
inter-related, income distribution should generally reflect the major qualita­
tive features of money and wealth distribution. However, it is time to de­
velop models specifically dedicated to income. These models can be based on 
diffusion in the income space — the so-called income mobility. The models 
should include the age of agents, because young people enter economy with 
low income, and old people leave it with higher income, so that the statistical 
distribution results from a constant demographic flux. 

The real challenge for modeling is to show how the two-class structure 
develops in a society that initially consists of equal agents. The problem goes 
beyond obtaining the power-law and exponential distributions, but concerns 
with identifying the functions of the two classes in the "social ecology", e.g. 
as employers and employees, perhaps by analogy with the predator and prey 
models. 

Differences in money and income temperature between different countries 
have important consequences for the world economy. These were described 
in the talk by Jurgen Mimkes on the basis of thermodynamic analogy. More 
attention of the econophysics community should be attracted to the inter­
national aspects of money and wealth distribution. Here we deal with strong 
space and time gradients of control parameters, which require non-equilibrium 
theories. As we know from physics, developing good understanding of systems 
in statistical equilibrium is only the first step and a reference point on the 
way to understanding non-equilibrium behavior of global and local economy. 
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