

Michael Schäfer

Computational Engineering – Introduction to Numerical Methods

Michael Schäfer

Computational Engineering–
Introduction to
Numerical Methods

With 204 Figures

123

Professor Dr. rer. nat. Michael Schäfer
Chair of Numerical Methods in Mechanical Engineering
Technische Universität Darmstadt
Petersenstr. 30
64287 Darmstadt
Germany
schaefer@fnb.tu-darmstadt.de

Solutions to the exercises:
www.fnb.tu-darmstadt.de/ceinm/ or www.springer.com/3-540-30686-2

The book is the English edition of the German book: Numerik im Maschinenbau

Library of Congress Control Number: 2005938889

ISBN-10 3-540-30685-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30685-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Digital data supplied by author
Cover Design: Frido Steinen-Broo, EStudio Calamar, Spain
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper 7/3100/YL 5 4 3 2 1 0

Preface

Due to the enormous progress in computer technology and numerical methods
that have been achieved in recent years, the use of numerical simulation meth-
ods in industry gains more and more importance. In particular, this applies
to all engineering disciplines. Numerical computations in many cases offer a
cost effective and, therefore, very attractive possibility for the investigation
and optimization of products and processes.

Besides the need for developers of corresponding software, there is a strong
– and still rapidly growing – demand for qualified specialists who are able to
efficiently apply numerical simulation tools to complex industrial problems.
The successful and efficient application of such tools requires certain basic
knowledge about the underlying numerical methodologies and their possibil-
ities with respect to specific applications. The major concern of this book is
the impartation of this knowledge in a comprehensive way.

The text gives a practice oriented introduction in modern numerical meth-
ods as they typically are applied in engineering disciplines like mechanical,
chemical, or civil engineering. In corresponding applications the by far most
frequent tasks are related to problems from heat transfer, structural mechan-
ics, and fluid mechanics, which, therefore, constitute a thematical focus of the
text.

The topic must be seen as a strongly interdisciplinary field in which aspects
of numerical mathematics, natural sciences, computer science, and the corre-
sponding engineering area are simultaneously important. As a consequence,
usually the necessary information is distributed in different textbooks from
the individual disciplines. In the present text the subject matter is presented
in a comprehensive multidisciplinary way, where aspects from the different
fields are treated insofar as it is necessary for general understanding.

Following this concept, the text covers the basics of modeling, discretiza-
tion, and solution algorithms, whereas an attempt is always made to estab-
lish the relationships to the engineering relevant application areas mentioned
above. Overarching aspects of the different numerical techniques are empha-
sized and questions related to accuracy, efficiency, and cost effectiveness, which

VI Preface

are most relevant for the practical application, are discussed. The following
subjects are addressed in detail:

Modelling: simple field problems, heat transfer, structural mechanics, fluid
mechanics.
Discretization: connection to CAD, numerical grids, finite-volume meth-
ods, finite-element methods, time discretization, properties of discrete sys-
tems.
Solution algorithms: linear systems, non-linear systems, coupling of vari-
ables, adaptivity, multi-grid methods, parallelization.
Special applications: finite-element methods for elasto-mechanical prob-
lems, finite-volume methods for incompressible flows, simulation of turbu-
lent flows.

The topics are presented in an introductory manner, such that besides basic
mathematical standard knowledge in analysis and linear algebra no further
prerequisites are necessary. For possible continuative studies hints for corre-
sponding literature with reference to the respective chapter are given.

Important aspects are illustrated by means of application examples. Many
exemplary computations done “by hand” help to follow and understand the
numerical methods. The exercises for each chapter give the possibility of re-
viewing the essentials of the methods. Solutions are provided on the web page
www.fnb.tu-darmstadt.de/ceinm/. The book is suitable either for self-study or
as an accompanying textbook for corresponding lectures. It can be useful for
students of engineering disciplines, but also for computational engineers in
industrial practice. Many of the methods presented are integrated in the flow
simulation code FASTEST, which is available from the author.

The text evolved on the basis of several lecture notes for different courses
at the Department of Numerical Methods in Mechanical Engineering at Darm-
stadt University of Technology. It closely follows the German book Numerik
im Maschinenbau (Springer, 1999) by the author, but includes several modi-
fications and extensions.

The author would like to thank all members of the department who have
supported the preparation of the manuscript. Special thanks are addressed to
Patrick Bontoux and the MSNM-GP group of CNRS at Marseille for the warm
hospitality at the institute during several visits which helped a lot in com-
pleting the text in time. Sincere thanks are given to Rekik Alehegn Mekonnen
for proofreading the English text. Last but not least the author would like to
thank the Springer-Verlag for the very pleasant cooperation.

Darmstadt
Spring 2006 Michael Schäfer

Contents

1 Introduction . 1
1.1 Usefulness of Numerical Investigations . 1
1.2 Development of Numerical Methods . 4
1.3 Characterization of Numerical Methods . 6

2 Modeling of Continuum Mechanical Problems 11
2.1 Kinematics . 11
2.2 Basic Conservation Equations . 15

2.2.1 Mass Conservation . 16
2.2.2 Momentum Conservation . 18
2.2.3 Moment of Momentum Conservation 19
2.2.4 Energy Conservation . 19
2.2.5 Material Laws . 20

2.3 Scalar Problems . 20
2.3.1 Simple Field Problems . 21
2.3.2 Heat Transfer Problems . 23

2.4 Structural Mechanics Problems . 26
2.4.1 Linear Elasticity . 27
2.4.2 Bars and Beams . 30
2.4.3 Disks and Plates . 35
2.4.4 Linear Thermo-Elasticity . 39
2.4.5 Hyperelasticity . 40

2.5 Fluid Mechanical Problems . 42
2.5.1 Incompressible Flows . 43
2.5.2 Inviscid Flows . 45

2.6 Coupled Fluid-Solid Problems . 46
2.6.1 Modeling . 47
2.6.2 Examples of applications . 49

Exercises for Chap. 2 . 56

VIII Contents

3 Discretization of Problem Domain . 57
3.1 Description of Problem Geometry . 57
3.2 Numerical Grids . 60

3.2.1 Grid Types . 61
3.2.2 Grid Structure . 62

3.3 Generation of Structured Grids . 66
3.3.1 Algebraic Grid Generation . 67
3.3.2 Elliptic Grid Generation . 69

3.4 Generation of Unstructured Grids . 71
3.4.1 Advancing Front Methods . 72
3.4.2 Delaunay Triangulations . 74

Exercises for Chap. 3 . 76

4 Finite-Volume Methods . 77
4.1 General Methodology . 77
4.2 Approximation of Surface and Volume Integrals 81
4.3 Discretization of Convective Fluxes . 84

4.3.1 Central Differences . 85
4.3.2 Upwind Techniques . 86
4.3.3 Flux-Blending Technique . 88

4.4 Discretization of Diffusive Fluxes . 89
4.5 Non-Cartesian Grids . 91
4.6 Discrete Transport Equation . 94
4.7 Treatment of Boundary Conditions . 95
4.8 Algebraic System of Equations . 97
4.9 Numerical Example . 100
Exercises for Chap. 4 . 103

5 Finite-Element Methods . 107
5.1 Galerkin Method . 107
5.2 Finite-Element Discretization . 110
5.3 One-Dimensional Linear Elements . 112

5.3.1 Discretization . 112
5.3.2 Global and Local View . 115

5.4 Practical Realization . 118
5.4.1 Assembling of Equation Systems . 118
5.4.2 Computation of Element Contributions 120
5.4.3 Numerical Example . 121

5.5 One-Dimensional Cubic Elements . 123
5.5.1 Discretization . 123
5.5.2 Numerical Example . 126

5.6 Two-Dimensional Elements . 128
5.6.1 Variable Transformation for Triangular Elements 129
5.6.2 Linear Triangular Elements . 131
5.6.3 Numerical Example . 132

Contents IX

5.6.4 Bilinear Parallelogram Elements . 138
5.6.5 Other Two-Dimensional Elements 140

5.7 Numerical Integration . 143
Exercises for Chap. 5 . 146

6 Time Discretization . 149
6.1 Basics . 149
6.2 Explicit Methods . 154
6.3 Implicit Methods . 157
6.4 Numerical Example . 161
Exercises for Chap. 6 . 165

7 Solution of Algebraic Systems of Equations 167
7.1 Linear Systems . 167

7.1.1 Direct Solution Methods . 168
7.1.2 Basic Iterative Methods . 169
7.1.3 ILU Methods . 171
7.1.4 Convergence of Iterative Methods 174
7.1.5 Conjugate Gradient Methods . 176
7.1.6 Preconditioning . 178
7.1.7 Comparison of Solution Methods . 179

7.2 Non-Linear and Coupled Systems . 182
Exercises for Chap. 7 . 184

8 Properties of Numerical Methods . 187
8.1 Properties of Discretization Methods . 187

8.1.1 Consistency . 188
8.1.2 Stability . 191
8.1.3 Convergence . 195
8.1.4 Conservativity . 196
8.1.5 Boundedness . 197

8.2 Estimation of Discretization Error . 199
8.3 Influence of Numerical Grid . 202
8.4 Cost Effectiveness . 206
Exercises for Chap. 8 . 206

9 Finite-Element Methods in Structural Mechanics 209
9.1 Structure of Equation System . 209
9.2 Finite-Element Discretization . 211
9.3 Examples of Applications . 215
Exercises for Chap. 9 . 221

X Contents

10 Finite-Volume Methods for Incompressible Flows 223
10.1 Structure of Equation System . 223
10.2 Finite-Volume Discretization . 224
10.3 Solution Algorithms . 230

10.3.1 Pressure-Correction Methods . 231
10.3.2 Pressure-Velocity Coupling . 235
10.3.3 Under-Relaxation . 239
10.3.4 Pressure-Correction Variants . 244

10.4 Treatment of Boundary Conditions . 247
10.5 Example of Application . 251
Exercises for Chap. 10 . 258

11 Computation of Turbulent Flows . 259
11.1 Characterization of Computational Methods 259
11.2 Statistical Turbulence Modeling . 261

11.2.1 The k-ε Turbulence Model . 263
11.2.2 Boundary Conditions . 265
11.2.3 Discretization and Solution Methods 270

11.3 Large Eddy Simulation . 271
11.4 Comparison of Approaches . 275

12 Acceleration of Computations . 277
12.1 Adaptivity . 277

12.1.1 Refinement Strategies . 278
12.1.2 Error Indicators . 280

12.2 Multi-Grid Methods . 281
12.2.1 Principle of Multi-Grid Method . 282
12.2.2 Two-Grid Method . 284
12.2.3 Grid Transfers . 287
12.2.4 Multigrid Cycles . 288
12.2.5 Examples of Computations . 290

12.3 Parallelization of Computations . 295
12.3.1 Parallel Computer Systems . 296
12.3.2 Parallelization Strategies . 297
12.3.3 Efficieny Considerations and Example Computations . . . 302

Exercises for Chap. 12 . 306

List of Symbols . 307

References . 313

Index . 317

1

Introduction

In this introductory chapter we elucidate the value of using numerical methods
in engineering applications. Also, a brief overview of the historical develop-
ment of computers is given, which, of course, are a major prerequisite for
the successful and efficient use of numerical simulation techniques for solving
complex practical problems.

1.1 Usefulness of Numerical Investigations

The functionality or efficiency of technical systems is always determined by
certain properties. An ample knowledge of these properties is frequently the
key to understanding the systems or a starting point for their optimization.
Numerous examples from various engineering branches could be given for
this. A few examples, which are listed in Table 1.1, may be sufficient for the
motivation.

Table 1.1. Examples for the correlation of properties with functionality
and efficiency of technical systems

Property Functionality/Efficiency

Aerodynamics of vehicles Fuel consumption
Statics of bridges Carrying capacity
Crash behavior of vehicles Chances of passenger survival
Pressure drop in vacuum cleaners Sucking performance
Pressure distribution in brake pipes Braking effect
Pollutants in exhaust gases Environmental burden
Deformation of antennas Pointing accuracy
Temperature distributions in ovens Quality of baked products

2 1 Introduction

In engineering disciplines in this context, in particular, solid body and flow
properties like

deformations or stresses,
flow velocities, pressure or temperature distributions,
drag or lift forces,
pressure or energy losses,
heat or mass transfer rates, . . .

play an important role. For engineering tasks the investigation of such prop-
erties usually matters in the course of the redevelopment or enhancement of
products and processes, where the insights gained can be useful for different
purposes. To this respect, exemplarily can be mentioned:

improvement of efficiency (e.g., performance of solar cells),
reduction of energy consumption (e.g., current drain of refrigerators),
increase of yield (e.g., production of video tapes),
enhancement of safety (e.g., crack propagation in gas pipes, crash behavior
of cars),
improvement of durability (e.g., material fatigue in bridges, corrosion of
exhaust systems),
enhancement of purity (e.g., miniaturization of semi-conductor devices),
pollutants reduction (e.g., fuel combustion in engines),
noise reduction (e.g., shaping of vehicle components, material for pavings),
saving of raw material (e.g., production of packing material),
understanding of processes, . . .

Of course, in the industrial environment in many instances the question of
cost reduction, which may arise in one way or another with the above im-
provements, takes center stage. But it is also often a matter of obtaining a
general understanding of processes, which function as a result of long-standing
experience and trial and error, but whose actual operating mode is not ex-
actly known. This aspect crops up and becomes a problem particularly if
improvements (e.g. as indicated above) should be achieved and the process
– under more or less changed basic conditions – does not function anymore
or only works in a constricted way (e.g., production of silicon crystals, noise
generation of high speed trains, . . .).

There are fields of application for the addressed investigations in nearly
all branches of engineering and natural sciences. Some important areas are,
for instance:

automotive, aircraft, and ship engineering,
engine, turbine, and pump engineering,
reactor and plant construction,
ventilation, heating, and air conditioning technology,
coating and deposition techniques,
combustion and explosion processes,

1.1 Usefulness of Numerical Investigations 3

production processes in semi-conductor industry,
energy production and environmental technology,
medicine, biology, and micro-system technique,
weather prediction and climate models, . . .

Let us turn to the question of what possibilities are available for obtaining
knowledge on the properties of systems, since here, compared to alternative
investigation methods, the great potential of numerical methods can be seen.
In general, the following approaches can be distinguished:

theoretical methods,
experimental investigations,
numerical simulations.

Theoretical methods, i.e., analytical considerations of the equations describ-
ing the problems, are only very conditionally applicable for practically rel-
evant problems. The equations, which have to be considered for a realistic
description of the processes, are usually so complex (mostly systems of partial
differential equations, see Chap. 2) that they are not solvable analytically.
Simplifications, which would be necessary in order to allow an analytical solu-
tion, often are not valid and lead to inaccurate results (and therefore probably
to wrong conclusions). More universally valid approximative formulas, as they
are willingly used by engineers, usually cannot be derived from purely analyt-
ical considerations for complex systems.

While carrying out experimental investigations one aims to obtain the re-
quired system information by means of tests (with models or with real objects)
using specialized apparatuses and measuring instruments. In many cases this
can cause problems for the following reasons:

Measurements at real objects often are difficult or even impossible since,
for instance, the dimensions are too small or too large (e.g., nano system
technique or earth’s atmosphere), the processes elapse too slowly or too
fast (e.g., corrosion processes or explosions), the objects are not accessible
directly (e.g., human body), or the process to be investigated is disturbed
during the measurement (e.g., quantuum mechanics).
Conclusions from model experiments to the real object, e.g., due to differ-
ent boundary conditions, often are not directly executable (e.g., airplane
in wind tunnel and in real flight).
Experiments are prohibited due to safety or environmental reasons (e.g.,
impact of a tanker ship accident or an accident in a nuclear reactor).
Experiments are often very expensive and time consuming (e.g., crash
tests, wind tunnel costs, model fabrication, parameter variations, not all
interesting quantities can be measured at the same time).

Besides (or rather between) theoretical and experimental approaches, in
recent years numerical simulation techniques have become established as a
widely self-contained scientific discipline. Here, investigations are performed

4 1 Introduction

by means of numerical methods on computers. The advantages of numerical
simulations compared to purely experimental investigations are quite obvious:

Numerical results often can be obtained faster and at lower costs.
Parameter variations on the computer usually are easily realizable (e.g.,
aerodynamics of different car bodies).
A numerical simulation often gives more comprehensive information due
to the global and simultaneous computation of different problem-relevant
quantities (e.g., temperature, pressure, humidity, and wind for weather
forecast).

An important prerequisite for exploiting these advantages is, of course, the
reliability of the computations. The possibilities for this have significantly
improved in recent years due developments which have contributed a great
deal to the “booming” of numerical simulation techniques (this will be briefly
sketched in the next section). However, this does not mean that experimen-
tal investigations are (or will become) superfluous. Numerical computations
surely will never completely replace experiments and measurements. Com-
plex physical and chemical processes, like turbulence, combustion, etc., or
non-linear material properties have to be modelled realistically, for which as
near to exact and detailed measuring data are indispensable. Thus, both ar-
eas, numerics and experiments, must be further developed and ideally used in
a complementary way to achieve optimal solutions for the different require-
ments.

1.2 Development of Numerical Methods

The possibility of obtaining approximative solutions via the application of
finite-difference methods to the partial differential equations, as they typically
arise in the engineering problems of interest here, was already known in the
19th century (the mathematicians Gauß and Euler should be mentioned as
pioneers). However, these methods could not be exploited reasonably due
to the too high number of required arithmetic operations and the lack of
computers. It was with the development of electronic computers that these
numerical approaches gained importance. This development was (and is) very
fast-paced, as can be well recognized from the maximally possible number of
floating point operations per second (Flops) achieved by the computers which
is indicated in Table 1.2. Comparable rates of improvement can be observed
for the available memory capacity (also see Table 1.2).

However, not only the advances in computer technology have had a crucial
influence on the possibilities of numerical simulation methods, but also the
continuous further development of the numerical algorithms has contributed
significantly to this. This becomes apparent when one contrasts the develop-
ments in both areas in recent years as indicated in Fig. 1.1. The improved

1.2 Development of Numerical Methods 5

Table 1.2. Development of computing power and memory capacity of
electronic computers

Floating point operations Memory space
Year Computer per second (Flops) in Bytes

1949 EDSAC 1 1 · 102 2 · 103

1964 CDC 6600 3 · 106 9 · 105

1976 CRAY 1 8 · 107 3 · 107

1985 CRAY 2 1 · 109 4 · 109

1997 Intel ASCI 1 · 1012 3 · 1011

2002 NEC Earth Simulator 4 · 1013 1 · 1013

2005 IBM Blue Gene/L 3 · 1014 5 · 1013

2009 IBM Blue Gene/Q 3 · 1015 5 · 1014

capabilities with respect to a realistic modeling of the processes to be investi-
gated also have to be mentioned in this context. An end to these developments
is not yet in sight and the following trends are on the horizon for the future:

Computers will become ever faster (higher integrated chips, higher clock
rates, parallel computers) and the memory capacity will simultaneously
increase.
The numerical algorithms will become more and more efficient (e.g., by
adaptivity concepts).
The possibilities of a realistic modeling will be further improved by the
allocation of more exact and detailed measurement data.

One can thus assume that the capabilities of numerical simulation techniques
will greatly increase in the future.

Along with the achieved advances, the application of numerical simulation
methods in industry increases rapidly. It can be expected that this trend
will be even more pronounced in the future. However, with the increased
possibilities the demand for simulations of more and more complex tasks also
rises. This in turn means that the complexity of the numerical methods and the
corresponding software further increases. Therefore, as is already the case in
recent years, the field will be an area of active research and development in the
foreseeable future. An important aspect in this context is that developments
frequently undertaken at universities are rapidly made available for efficient
use in industrial practice.

Based on the aforementioned developments, it can be assumed that in the
future there will be a continuously increasing demand for qualified specialists,
who are able to apply numerical methods in an efficient way for complex
industrial problems. An important aspect here is that the possibilities and
also the limitations of numerical methods and the corresponding computer
software for the respective application area are properly assessed.

6 1 Introduction

100

101

102

103

104

105
Speed-up

1970 1980 1990 2000 2010

Gauß elimination

Gauß-Seidel

SOR
PCG

Multigrid
Adaptivity

100

101

102

103

104

105

106
Speed-up

1970 1980 1990 2000 2010

CDC 7600

Cray X-MP

Fujitsu NWT

IBM SP

Vector supercomputers

Parallel computers

Fig. 1.1. Developments in computer technology (bottom) and numerical methods
(top)

1.3 Characterization of Numerical Methods

To illustrate the different aspects that play a role when employing numerical
simulation techniques for the solution of engineering problems, the general
procedure is represented schematically in Fig. 1.2.

The first step consists in the appropriate mathematical modeling of the
processes to be investigated or, in the case when an existing program package
is used, in the choice of the model which is best adapted to the concrete
problem. This aspect, which we will consider in more detail in Chap. 2, must be
considered as crucial, since the simulation usually will not yield any valuable
results if it is not based on an adequate model.

The continuous problem that result from the modeling – usually systems
of differential or integral equations derived in the framework of continuum
mechanics – must then be suitably approximated by a discrete problem, i.e.,
the unknown quantities to be computed have to be represented by a finite

1.3 Characterization of Numerical Methods 7

Validation
Verification

Algebraic
equation systems

Grid generation
Discretization

Differential equations
Boundary conditions

Experimental data
Math. models

Engineering problem Problem solution

Analysis
Interpretation

Visual information
Derived quantities

Visualization
Evaluation

Numerical
solution

Algorithms
Computers

?

Fig. 1.2. Procedure for the application of numerical simulation techniques for the
solution of engineering problems

number of values. This process, which is called discretization, mainly involves
two tasks:

the discretization of the problem domain,
the discretization of the equations.

The discretization of the problem domain, which is addressed in Chap. 3, ap-
proximates the continuous domain (in space and time) by a finite number of
subdomains (see Fig. 1.3), in which then numerical values for the unknown
quantities are determined. The set of relations for the computation of these
values are obtained by the discretization of the equations, which approximates
the continuous systems by discrete ones. In contrast to an analytical solution,
the numerical solution thus yields a set of values related to the discretized
problem domain from which the approximation of the solution can be con-
structed.

There are primarily three different approaches available for the discretiza-
tion procedure:

the finite-difference method (FDM),
the finite-volume method (FVM),
the finite-element method (FEM).

8 1 Introduction

Fig. 1.3. Example for the dis-
cretization of a problem domain
(surface grid of dispersion stirrer)

In practice nowadays mainly FEM and FVM are employed (the basics are
addressed in detail in Chaps. 4 and 5). While FEM is predominantly used in
the area of structural mechanics, FVM dominates in the flow mechanical area.
Because of the importance of these two application areas in combination with
the corresponding discretization technique, we will deal with them separately
in Chaps. 9 and 10. For special puposes, e.g., for the time discretization, which
is the topic of Chap. 6, or for special approximations in the course of FVM and
FEM, FDM is often also applied (the corresponding basics are recalled where
needed). It should be noted that there are other discretization methods, e.g.,
spectral methods or meshless methods, which are used for special purposes.
However, since these currently are not in widespread use we do not consider
them further here.

The next step in the course of the simulation consists in the solution of the
algebraic equation systems (the actual computation), where one frequently is
faced with equations with several millions of unknowns (the more unknowns,
the more accurate the numerical result will be). Here, algorithmic questions
and, of course, computers come into play. The most relevant aspects in this
regard are treated in Chaps. 7 and 12.

The computation in the first instance results in a usually huge amount of
numbers, which normally are not intuitively understood. Therefore, for the
evaluation of the computed results a suitable visualization of the results is
important. For this purpose special software packages are available, which
meanwhile have reached a relatively high standard. We do not address this
topic further here.

1.3 Characterization of Numerical Methods 9

After the results are available in an interpretable form, it is essential to
inspect them with respect to their quality. During all prior steps, errors are
inevitably introduced, and it is necessary to get clarity about their quan-
tity (e.g., reference experiments for model error, systematic computations for
numerical errors). Here, two questions have to be distinguished:

Validation: Are the proper equations solved?
Verification: Are the equations solved properly?

Often, after the validation and verification it is necessary to either adapt the
model or to repeat the computation with a better discretization accuracy.
These crucial questions, which also are closely linked to the properties of the
model equations and the discretization techniques, are discussed in detail in
Chap. 8.

In summary, it can be stated that related to the application of numer-
ical methods for engineering problems, the following areas are of particular
importance:

Mathematical modelling of continuum mechanical processes.
Development and analysis of numerical algorithms.
Implementation of numerical methods into computer codes.
Adaption and application of numerical methods to concrete problems.
Validation, verification, evaluation and interpretation of numerical results.

The corresponding requirements and their interdependencies are indicated
schematically in Fig. 1.4.

Mathematical
theory

Experimental
investigation

Detailed
models

Efficient
algorithms

Efficient
implementation

Application to practical problems

��

��

� ��

��

Fig. 1.4. Requirements and interdependencies for the numerical simulation of prac-
tical engineering problems

Regarding the above considerations, one can say that one is faced with
a strongly interdisciplinary field, in which aspects from engineering science,
natural sciences, numerical mathematics, and computer science (see Fig. 1.5)
are involved. An important prerequisite for the successful and efficient use of

10 1 Introduction

Numerical
simulation

Engineering
science

Numerical
mathematics

Physics
Chemistry

Computer
science

� �
�

�
Fig. 1.5. Interdisciplinarity
of numerical simulation of
engineering problems

numerical simulation methods is, in particular, the efficient interaction of the
different methodologies from the different areas.

2

Modeling of Continuum Mechanical Problems

A very important aspect when applying numerical simulation techniques is
the “proper” mathematical modeling of the processes to be investigated. If
there is no adequate underlying model, even a perfect numerical method will
not yield reasonable results. Another essential issue related to modeling is
that frequently it is possible to significantly reduce the computational effort
by certain simplifications in the model. In general, the modeling should follow
the principle already formulated by Albert Einstein: as simple as possible,
but not simpler. Because of the high relevance of the topic in the context of
the practical use of numerical simulation methods, we will discuss here the
most essential basics for the modeling of continuum mechanical problems as
they primarily occur in engineering applications. We will dwell on continuum
mechanics only to the extent as it is necessary for a basic understanding of
the models.

2.1 Kinematics

For further considerations some notation conventions are required, which we
will introduce first. In the Euclidian space IR3 we consider a Cartesian coor-
dinate system with the basis unit vectors e1, e2, and e3 (see Fig. 2.1). The
continuum mechanical quantities of interest are scalars (zeroth-order tensors),
vectors (first-order tensors), and dyads (second-order tensors), for which we
will use the following notations:

scalars with letters in normal font: a, b, . . . , A, B, . . . , α, β, . . . ,
vectors with bold face lower case letters: a, b, . . . ,
dyads with bold face upper case letters: A, B, . . .

The different notations of the tensors are summarized in Table 2.1. We denote
the coordinates of vectors and dyads with the corresponding letters in normal
font (with the associated indexing). We mainly use the coordinate notation,
which usually also constitutes the basis for the realization of a model within a

12 2 Modeling of Continuum Mechanical Problems

computer program. To simplify the notation, Einstein’s summation convention
is employed, i.e., a summation over double indices is implied. For the basic
conception of tensor calculus, which we need in some instances, we refer to
the corresponding literature (see, e.g., [19]).

0

�
x1

�x2

�x3

�

�

� �

e1

e2

e3

x=x1e1+x2e2+x3e3

Fig. 2.1. Cartesian coordinate system with unit
basis vectors e1, e2, and e3

Table 2.1. Notations for Cartesian tensors

Order Name Notation

0 Scalar φ

1 Vector v = viei (symbolic)
vi (components, coordinates)

2 Dyad A = Aijeiej (symbolic)
Aij (components, coordinates)

Movements of bodies are described by the movement of their material
points. The material points are identified by mapping them to points in IR3

and a spatially fixed reference point 0. Then, the position of a material point at
every point in time t is determined by the position vector x(t). To distinguish
the material points, one selects a reference configuration for a point in time t0,
at which the material point possesses the position vector x(t0) = a. Thus, the
position vector a is assigned to the material point as a marker. Normally, t0 is
related to an initial configuration, whose modifications have to be computed
(often t0 = 0). With the Cartesian coordinate system already introduced, one
has the representations x = xiei and a = aiei, and for the motion of the
material point with the marker a one obtains the relations (see also Fig. 2.2):

xi = xi(a, t) pathline of a,

ai = ai(x, t) material point a at time t at position x.

xi are denoted as spatial coordinates (or local coordinates) and ai as material
or substantial coordinates. If the assignment

2.1 Kinematics 13

xi(aj , t) ⇔ ai(xj , t)

is reversably unique, it defines a configuration of the body. This is exactly the
case if the Jacobi determinant J of the mapping does not vanish, i.e.,

J = det
(

∂xi

∂aj

)
�= 0 ,

where the determinant det(A) of a dyad A is defined by

det(A) = εijkAi1Aj2Ak3

with the Levi-Civita symbol (or permutation symbol)

εijk =

⎧⎨⎩ 1 for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) ,
−1 for (i, j, k) = (1, 3, 2), (3, 2, 1), (2, 1, 3) ,

0 for i = j or i = k or j = k .

The sequence of configurations x = x(a, t), with the time t as parameter, is
called deformation (or movement) of the body.

0
�

a1, x1

�
a2, x2

�
a3, x3

a

x = x(a, t)

	

Fig. 2.2. Pathline of a material point a in
a Cartesian coordinate system

For the description of the properties of material points, which usually
vary with their movement (i.e., with the time), one distinguishes between
the Lagrangian and the Eulerian descriptions. These can be characterized as
follows:

Lagrangian description: Formulation of the properties as functions of a and
t. An observer is linked with the material point and measures the change
in its properties.
Eulerian description: Formulation of the properties as functions of x and
t. An observer is located at position x and measures the changes there,
which occur due to the fact that at different times t different material
points a are at position x.

The Lagrangian description is also called material, substantial, or reference-
based description, whereas the Eulerian one is known as spatial or local de-
scription.

14 2 Modeling of Continuum Mechanical Problems

In solid mechanics mainly the Langrangian description is employed since
usually a deformed state has to be determined from a known reference config-
uration, which naturally can be done by tracking the corresponding material
points. In fluid mechanics mainly the Eulerian description is employed since
usually the physical properties (e.g., pressure, velocity, etc.) at a specific lo-
cation of the problem domain are of interest.

According to the two different descriptions one defines two different time
derivatives: the local time derivative

∂φ

∂t
=

∂φ(x, t)
∂t

∣∣∣∣
x fixed

,

which corresponds to the temporal variation of φ, which an observer measures
at a fixed position x, and the material time derivative

Dφ

Dt
=

∂φ(a, t)
∂t

∣∣∣∣
a fixed

,

which corresponds to the temporal variation of φ, which an observer linked to
the material point a measures. In the literature, the material time derivative
often is also denoted as φ̇. Between the two time derivatives there exists the
following relationship:

Dφ

Dt︸︷︷︸
material

=
∂φ

∂t

∣∣∣∣
x fixed︸ ︷︷ ︸

local

+ vi
∂φ

∂xi

∣∣∣∣
a fixed︸ ︷︷ ︸

convective

, (2.1)

where

vi =
Dxi

Dt

are the (Cartesian) coordinates of the velocity vector v.
In solid mechanics, one usually works with displacements instead of de-

formations. The displacement u = uiei (in Lagrangian description) is defined
by

ui(a, t) = xi(a, t) − ai . (2.2)

Using the displacements, strain tensors can be introduced as a measure for
the deformation (strain) of a body. Strain tensors quantify the deviation of a
deformation of a deformable body from that of a rigid body. There are various
ways of defining such strain tensors. The most usual one is the Green-Lagrange
strain tensor G with the coordinates (in Lagrangian description):

Gij =
1
2

(
∂ui

∂aj
+

∂uj

∂ai
+

∂uk

∂ai

∂uk

∂aj

)
.

2.2 Basic Conservation Equations 15

This definition of G is the starting point for a frequently employed geometrical
linearization of the kinematic equations, which is valid in the case of “small”
displacements (details can be found, e.g., in [19]), i.e.,∣∣∣∣∂ui

∂aj

∣∣∣∣ =

√
∂ui

∂aj

∂uj

∂ai
� 1 . (2.3)

In this case the non-linear part of G is neglected, leading to the linearized
strain tensor called Green-Cauchy (or also linear or infinitesimal) strain ten-
sor:

εij =
1
2

(
∂ui

∂aj
+

∂uj

∂ai

)
. (2.4)

In a geometrically linear theory there is no need to distinguish between
the Lagrangian and Eulerian description. Due to the assumption (2.3) one has

∂ui

∂aj
=

∂xi

∂aj
− δij ≈ 0 ,

where

δij =
{

1 for i = j ,
0 for i �= j

denotes the Kronecker symbol. Thus, one has

∂xi

∂aj
≈ δij or

∂

∂ai
≈ ∂

∂xi
,

which means that the derivatives with respect to a and x can be interpreted
to be identical.

2.2 Basic Conservation Equations

The mathematical models, on which numerical simulation methods for most
engineering applications are based, are derived from the fundamental conser-
vation laws of continuum mechanics for mass, momentum, moment of momen-
tum, and energy. Together with problem specific material laws and suitable
initial and boundary conditions, these give the basic (differential or integral)
equations, which can be solved numerically. In the following we briefly describe
the conservation laws, where we also discuss different formulations, as they
constitute the starting point for the application of the different discretiza-
tion techniques. The material theory will not be addressed explicitly, but in
Sects. 2.3, 2.4, and 2.5 we will provide examples of a couple of material laws
as they are frequently employed in engineering applications. For a detailed
description of the continuum mechanical basics of the formulations we refer
to the corresponding literature (e.g., [19, 23]).

16 2 Modeling of Continuum Mechanical Problems

Continuum mechanical conservation quantities of a body, let them be de-
noted generally by ψ = ψ(t), can be defined as (spatial) integrals of a field
quantity φ = φ(x, t) over the (temporally varying) volume V = V (t) that the
body occupies in its actual configuration at time t:

ψ(t) =
∫

V (t)

φ(x, t) dV .

Here ψ can depend on the time either via the integrand φ or via the integration
range V . Therefore, the following relation for the temporal change of mate-
rial volume integrals over a temporally varying spatial integration domain is
important for the derivation of the balance equations (see, e.g., [23]):

D

Dt

∫
V (t)

φ(x, t) dV =
∫

V (t)

[
Dφ(x, t)

Dt
+ φ(x, t)

∂vi(x, t)
∂xi

]
dV . (2.5)

Due to the relation between the material and local time derivatives given
by (2.1), one has further:∫

V

(
Dφ

Dt
+ φ

∂vi

∂xi

)
dV =

∫
V

[
∂φ

∂t
+

∂(φvi)
∂xi

]
dV . (2.6)

For a more compact notation we have skipped the corresponding dependence
of the quantities from space and time, and we will frequently also do so in the
following. Equation (2.5) (sometimes also (2.6)) is called Reynolds transport
theorem.

2.2.1 Mass Conservation

The mass m of an arbitrary volume V is defined by

m(t) =
∫
V

ρ(x, t) dV

with the density ρ. The mass conservation theorem states that if there are no
mass sources or sinks, the total mass of a body remains constant for all times:

D

Dt

∫
V

ρdV = 0 . (2.7)

For the mass before and after a deformation we have:∫
V0

ρ0(a, t) dV0 =
∫
V

ρ(x, t) dV ,

2.2 Basic Conservation Equations 17

where ρ0 = ρ(t0) and V0 = V (t0) denote the density and the volume, re-
spectively, before the deformation (i.e., in the reference configuration). Thus,
during a deformation the volume and the density can change, but not the
mass. The following relations are valid:

dV

dV0
=

ρ0

ρ
= det

(
∂xi

∂aj

)
.

Using the relations (2.5) and (2.6) and applying the Gauß integral theorem
(e.g., [19]) one obtains from (2.7):∫

V

∂ρ

∂t
dV +

∫
S

ρvini dS = 0 ,

where n = niei is the outward unit normal vector at the closed surface S of the
volume V (see Fig. 2.3). This representation of the mass conservation allows
the physical interpretation that the temporal change of the mass contained in
the volume V equals the inflowing and outflowing mass through the surface.
In differential (conservative) form the mass balance reads:

∂ρ

∂t
+

∂(ρvi)
∂xi

= 0 . (2.8)

This equation is also called continuity equation.

Surface S

Normal
vector n

Volume V

�

�

�

x1

x2

x3

Fig. 2.3. Notations for application of Gauß
integral theorem

For an incompressible material one has:

det
(

∂xi

∂aj

)
= 1 and

Dρ

Dt
=

∂vi

∂xi
= 0,

i.e., the velocity field in this case is divergence-free.

18 2 Modeling of Continuum Mechanical Problems

2.2.2 Momentum Conservation

The momentum vector p = piei of a body is defined by

pi(t) =
∫
V

ρ(x, t)vi(x, t) dV .

The principle of balance of momentum states that the temporal change of the
momentum of a body equals the sum of all body and surface forces acting on
the body. This can be expressed as follows:

D

Dt

∫
V

ρvi dV

︸ ︷︷ ︸
change of momentum

=
∫
S

Tijnj dS

︸ ︷︷ ︸
surface forces

+
∫
V

ρfi dV

︸ ︷︷ ︸
volume forces

, (2.9)

where f = fiei are the volume forces per mass unit. Tij are the components
of the Cauchy stress tensor T, which describes the state of stress of the body
in each point (a measure for the internal force in the body). The components
with i = j are called normal stresses and the components with i �= j are called
shear stresses. (In the framework of structural mechanics T is usually denoted
as σ.)

Applying the Gauß integral theorem to the surface integral in (2.9) one
gets:

D

Dt

∫
V

ρvi dV =
∫
V

∂Tij

∂xj
dV +

∫
V

ρfi dV .

Using the relations (2.5) and (2.6) yields the following differential form of the
momentum balance in Eulerian description:

∂(ρvi)
∂t

+
∂(ρvivj)

∂xj
=

∂Tij

∂xj
+ ρfi . (2.10)

For the Lagrangian representation of the momentum balance one normally
uses the second Piola-Kirchhoff stress tensor P, whose components are given
by:

Pij =
ρ0

ρ

∂ai

∂xk
Tkl

∂aj

∂xl
.

With this, the Lagrangian formulation of the momentum balance reads in
differential form:

ρ0
D2xi

Dt2
=

∂

∂aj

(
Pjk

∂xi

∂ak

)
+ ρ0fi . (2.11)

2.2 Basic Conservation Equations 19

2.2.3 Moment of Momentum Conservation

The moment of momentum vector d = diei of a body is defined by

d(t) =
∫
V

x × ρ(x, t)v(x, t) dV ,

where “×” denotes the usual vector product, which for two vectors a = aiei

and b = bjej is defined by a × b = aibjεijkek. The principle of balance of
moment of momentum states that the temporal change of the total moment
of momentum of a body equals the toal moment of all body and surface forces
acting on the body. This can be expressed as follows:

D

Dt

∫
V

(x × ρv) dV

︸ ︷︷ ︸
change of moment

of momentum

=
∫
V

(x × ρf) dV

︸ ︷︷ ︸
moment of

volume forces

+
∫
S

(x × Tn) dS.

︸ ︷︷ ︸
moment of

surface forces

(2.12)

Applying the Gauß integral theorem and using the mass and momentum
conservation as well as the relations (2.5) and (2.6), the balance of moment
of momentum can be put into the following simple form (Exercise 2.2):

Tij = Tji ,

i.e., the conservation of the moment of momentum is expressed by the sym-
metry of the Cauchy stress tensor.

2.2.4 Energy Conservation

The total energy W of a body is defined by

W (t) =
∫
V

ρedV

︸ ︷︷ ︸
internal
energy

+
1
2

∫
V

ρvivi dV

︸ ︷︷ ︸
kinetic
energy

with the specific internal energy e. The power of external forces Pa (surface
and volume forces) is given by

Pa(t) =
∫
S

Tijvjni dS

︸ ︷︷ ︸
power of

surface forces

+
∫
V

ρfivi dV

︸ ︷︷ ︸
power of

volume forces

and for the power of heat supply Q one has

20 2 Modeling of Continuum Mechanical Problems

Q(t) =
∫
V

ρq dV

︸ ︷︷ ︸
power of

heat sources

−
∫
S

hini dS

︸ ︷︷ ︸
power of

surface supply

,

where q denotes (scalar) heat sources and h = hiei denotes the heat flux vector
per unit area. The principle of energy conservation states that the temporal
change of the total energy W equals the total external energy supply Pa + Q:

DW

Dt
= Pa + Q .

This theorem is also known as the first law of thermodynamics.
Using the above definitions the energy conservation law can be written as

follows:

D

Dt

∫
V

ρ(e+
1
2
vivi) dV =

∫
S

(Tijvj−hi)ni dS +
∫
V

ρ(fivi+ q) dV . (2.13)

After some transformations (using (2.5) and (2.6)), application of the Gauß in-
tegral theorem, and using the momentum conservation law (2.10), one obtains
for the energy balance the following differential form (Exercise 2.3):

∂(ρe)
∂t

+
∂(ρvie)

∂xi
= Tij

∂vj

∂xi
− ∂hi

∂xi
+ ρq . (2.14)

2.2.5 Material Laws

The unknown physical quantities that appear in the balance equations of
the previous sections in Table 2.2 are presented alongside with the number
of equations available for their computation. Since there are more unknowns
than equations, it is necessary to involve additional problem specific equa-
tions, which are called constitutive or material laws, that suitably relate the
unknowns to each other. These can be algebraic relations, differential equa-
tions, or integral equations. As already indicated, we will not go into the
details of material theory, but in the next sections we will give examples of
continuum mechanics problem formulations as they result from special mate-
rial laws which are of high relevance in engineering applications.

2.3 Scalar Problems

A number of practically relevant engineering tasks can be described by a single
(partial) differential equation. In the following some representative examples
that frequently appear in practice are given.

2.3 Scalar Problems 21

Table 2.2. Unknown physical quantities and conservation laws

Unknown No. Equation No.

Density ρ 1 Mass conservation 1
Velocity vi 3 Momentum conservation 3
Stress tensor Tij 9 Moment of momentum conservation 3
Internal energy e 1

Energy conservation 1
Heat flux hi 3

Sum 17 Sum 8

2.3.1 Simple Field Problems

Some simple continuum mechanical problems can be described by a differential
equation of the form

− ∂

∂xi

(
a

∂φ

∂xi

)
= g , (2.15)

which has to be valid in a problem domain Ω. An unknown scalar function
φ = φ(x) is searched for. The coefficient function a = a(x) and the right
hand side g = g(x) are prescribed. In the case a = 1, (2.15) is called Poisson
equation. If, additionally, g = 0, one speaks of a Laplace equation.

In order to fully define a problem governed by (2.15), boundary conditions
for φ have to be prescribed at the whole boundary Γ of the problem domain
Ω. Here, the following three types of conditions are the most important ones:

− Dirichlet condition: φ = φb,

− Neumann condition: a
∂φ

∂xi
ni = bb,

− Cauchy condition: cbφ + a
∂φ

∂xi
ni = bb.

φb, bb, and cb are prescribed functions on the boundary Γ and ni are the
components of the outward unit normal vector to Γ . The different boundary
condition types can occur for one problem at different parts of the boundary
(mixed boundary value problems).

The problems described by (2.15) do not involve time dependence. Thus,
one speaks of stationary or steady state field problems. In the time-dependent
(unsteady) case, in addition to the dependence on the spatial coordinate x,
all quantities may also depend on the time t. The corresponding differential
equation for the description of unsteady field problems reads:

∂φ

∂t
− ∂

∂xi

(
a

∂φ

∂xi

)
= g (2.16)

22 2 Modeling of Continuum Mechanical Problems

for the unknown scalar function φ = φ(x, t). For unsteady problems, in ad-
dition to the boundary conditions (that in this case also may depend on the
time), an initial condition φ(x, t0) = φ0(x) has to be prescribed to complete
the problem definition.

Examples of physical problems that are described by equations of the
types (2.15) or (2.16) are:

temperature for heat conduction problems,
electric field strength in electro-static fields,
pressure for flows in porous media,
stress function for torsion problems,
velocity potential for irrotational flows,
cord line for sagging cables,
deflection of elastic strings or membranes.

In the following we give two examples for such applications, where we only
consider the steady problem. The corresponding unsteady problem formula-
tions can be obtained analogously as the transition from (2.15) to (2.16).

Interpreting φ as the deflection u of a homogeneous elastic membrane,
(2.15) describes its deformation under an external load (i = 1, 2):

− ∂

∂xi

(
τ

∂u

∂xi

)
= f (2.17)

with the stiffness τ and the force density f (see Fig. 2.4). Under certain
assumptions which will not be detailed here, (2.17) can be derived from the
momentum balance (2.10).

� �
� �� �

f
�

�
� x1

x3

x2

Fig. 2.4. Deformation of an elastic membrane under external load

As boundary conditions Dirichlet or Neumann conditions are possible,
which in this context have the following meaning:

− Prescribed deflection (Dirichlet condition): u = ub,

− Prescribed stress (Neumann condition): τ
∂u

∂xi
ni = tb.

As a second example we consider incompressible potential flows. For an
irrotational flow, i.e., if the flow velocity fulfills the relations

∂vj

∂xi
εijk = 0 ,

2.3 Scalar Problems 23

there exists a velocity potential ψ, which is defined by

vi =
∂ψ

∂xi
. (2.18)

Inserting the relation (2.18) into the mass conservation equation (2.8), under
the additional assumption of an incompressible flow (i.e., Dρ/Dt = 0), the
following equation for the determination of ψ results:

∂2ψ

∂x2
i

= 0 . (2.19)

This equation corresponds to (2.15) with f = 0 and a = 1.
The assumptions of a potential flow are frequently employed for the in-

vestigation of the flow around bodies, e.g., for aerodynamical investigations
of vehicles or airplanes. In the case of fluids with small viscosity (e.g., air)
flowing at relatively high velocities, these assumptions are justifiable. In re-
gions where the flow accelerates (outside of boundary layers), one obtains a
comparably good approximation for the real flow situation. As an example for
a potential flow, Fig. 2.5 shows the streamlines (i.e., lines with ψ = const.)
for the flow around a circular cylinder.

As boundary conditions at the body one has the following Neumann con-
dition (kinematic boundary condition):

∂ψ

∂xi
ni = vbini ,

where vb = vbiei is the velocity with which the body moves. Having computed
ψ in this way, one obtains vi from (2.18). The pressure p, which is uniquely
determined only up to an additive constant C, can then be determined from
the Bernoulli equation (see [23])

p = C − ρ
∂ψ

∂t
− 1

2
ρvivi .

2.3.2 Heat Transfer Problems

A very important class of problems for engineering applications are heat trans-
fer problems in solids or fluids. Here, usually one is interested in temperature

Fig. 2.5. Streamlines for poten-
tial flow around circular cylinder

24 2 Modeling of Continuum Mechanical Problems

distributions, which result due to diffusive, convective, and/or radiative heat
transport processes under certain boundary conditions. In simple cases such
problems can be described by a single scalar transport equation for the tem-
perature T (diffusion in solids, diffusion and convection in fluids).

Let us consider first the more general case of the heat transfer in a fluid.
The heat conduction in solids then results from this as a special case. We
will not address the details of the derivation of the corresponding differential
equations, which can be obtained under certain assumptions from the energy
conservation equation (2.14).

We consider a flow with the (known) velocity v = viei. As constitutive
relation for the heat flux vector we employ Fourier’s law (for isotropic mate-
rials)

hi = −κ
∂T

∂xi
(2.20)

with the heat conductivity κ. This assumption is valid for nearly all relevant
applications. Assuming in addition that the specific heat capacity of the fluid
is constant, and that the work done by pressure and friction forces can be
neglected, the following convection-diffusion equation for the temperature T
can be derived from the energy balance (2.14) (see also Sect. 2.5.1):

∂(ρcpT)
∂t

+
∂

∂xi

(
ρcpviT − κ

∂T

∂xi

)
= ρq (2.21)

with possibly present heat sources or sinks q and the specific heat capacity cp

(at constant pressure).
The most frequently occuring boundary conditions are again of Dirichlet,

Neumann, or Cauchy type, which in this context have the following meaning:

− Prescribed temperature: T = Tb,

− Prescribed heat flux: κ
∂T

∂xi
ni = hb,

− Heat flux proportional to heat transport: κ
∂T

∂xi
ni = α̃(Tb − T).

Here, Tb and hb are prescribed values at the problem domain boundary Γ
for the temperature and the heat flux in normal direction, respectively, and
α̃ is the heat transfer coefficient. In Fig. 2.6 the configuration of a plate heat
exchanger is given together with the corresponding boundary conditions as a
typical example for a heat transfer problem.

As a special case of the heat transfer equation (2.21) for vi = 0 (only
diffusion) we obtain the heat conduction equation in a medium at rest (fluid
or solid):

∂(ρcpT)
∂t

− ∂

∂xi

(
κ

∂T

∂xi

)
= ρq . (2.22)

2.3 Scalar Problems 25

∂T

∂x1
= 0

T = Tw

T = Tw

∂T

∂x1
= 0

T = Ta

T = Ta

v = 0

v = va

v = vw

Water

Solid

Air

ρ = ρw

ρ = ρs

ρ = ρa

Fig. 2.6. Heat transfer problem in a plate heat exchanger with corresponding
boundary conditions

The corresponding equations for steady heat transfer are obtained from (2.21)
and (2.22) by simply dropping the term with the time derivative.

Besides conduction and convection, thermal radiation is another heat
transfer mechanism playing an important role in technical applications, in
particular at high absolute temperature levels (e.g., in furnaces, combustion
chambers, . . .). Usually highly non-linear effects are related to radiation phe-
nomena, which have to be considered by additional terms in the differential
equations and/or boundary conditions. For this topic we refer to [22].

An equation completely analogous to (2.21) can be derived for the species
transport in a fluid. Instead of the temperature in this case one has the species
concentration c as the unknown variable. The heat conductivity corresponds
to the diffusion coefficient D and the heat source q has to be replaced by a
mass source R. The material law corresponding to Fourier’s law (2.20)

ji = −D
∂c

∂xi

for the mass flux j = jiei is known as Fick’s law. With this, the corresponding
equation for the species transport reads:

∂(ρc)
∂t

+
∂

∂xi

(
ρvic − D

∂c

∂xi

)
= R . (2.23)

The types of boundary conditions and their meaning for species transport
problems are fully analogous to that for the heat transport. In Table 2.3 the
analogy between heat and species transport is summarized.

An equation of the type (2.21) or (2.23) will be used in the following
frequently for different purposes as an exemplary model equation. For this we
employ the general form

∂(ρφ)
∂t

+
∂

∂xi

(
ρviφ − α

∂φ

∂xi

)
= f , (2.24)

26 2 Modeling of Continuum Mechanical Problems

Table 2.3. Analogy of heat and species transport

Heat transport Species transport

Temperature T Concentration c
Heat conductivity κ Diffusion coefficient D
Heat flux h Mass flux j
Heat source q Mass source R

which is called general scalar transport equation.

2.4 Structural Mechanics Problems

In structural mechanics problems, in general, the task is to determine defor-
mations of solid bodies, which arise due to the action of various kinds of forces.
From this, for instance, stresses in the body can be determined, which are of
great importance for many applications. (It is also possible to directly for-
mulate equations for the stresses, but we will not consider this here.) For the
different material properties there exist a large number of material laws, which
together with the balance equations (see Sect. 2.2) lead to diversified complex
equation systems for the determination of deformations (or displacements).

In principle, for structural mechanics problems one distinguishes between
linear and non-linear models, where the non-linearity can be of geometrical
and/or physical nature. Geometrically linear problems are characterized by
the linear strain-displacements relation (see Sect. 2.1)

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (2.25)

whereas physically linear problems are based on a material law involving a
linear relation between strains and stresses. In Table 2.4 the different model
classes are summarized.

We restrict ourselves to the formulation of the equations for two simpler
linear model classes, i.e., the linear elasticity theory and the linear thermo-

Table 2.4. Model classes for structural mechanics problems

Geometrically
linear

Geometrically
non-linear

Physically
linear

small displacements
small strains

large displacements
small strains

Physically
non-linear

small displacements
large strains

large displacements
large strains

2.4 Structural Mechanics Problems 27

elasticity, which can be used for many typical engineering applications. Fur-
thermore, we briefly address hyperelasticity as an example of a non-linear
model class. For other classes, i.e., elasto-plastic, visco-elastic, or visco-plastic
materials, we refer to the corresponding literature (e.g., [14]).

2.4.1 Linear Elasticity

The theory of linear elasticity is a geometrically and physically linear one. As
already outlined in Sect. 2.1, there is no need to distinguish between Eulerian
and Lagrangian description for a geometrically linear theory. In the following
the spatial coordinates are denoted by xi.

The equations of the linear elasticity theory are obtained from the lin-
earized strain-displacement relations (2.25), the momentum conservation law
(2.10) formulated for the displacements (in the framework of structural me-
chanics this often also is denoted as equation of motion)

ρ
D2ui

Dt2
=

∂Tij

∂xj
+ ρfi , (2.26)

and the assumption of a linear elastic material behavior, which is characterized
by the constitutive equation

Tij = λεkkδij + 2μεij . (2.27)

Equation (2.27) is known as Hooke’s law. λ and μ are the Lamé constants,
which depend on the corresponding material (μ is also known as bulk modulus).
The elasticity modulus (or Young modulus) E and the Poisson ratio ν are
often employed instead of the Lamé constants. The relations between these
quantities are:

λ =
Eν

(1 + ν)(1 − 2ν)
and μ =

E

2(1 + ν)
. (2.28)

Hooke’s material law (2.27) is applicable for a large number of applications
for different materials (e.g., steel, glass, stone, wood,. . .). Necessary prerequi-
sites are that the stresses are not “too big”, and that the deformation happens
within the elastic range of the material (see Fig. 2.7).

The material law for the stress tensor frequently is also given in the fol-
lowing notation:⎡⎢⎢⎢⎢⎢⎢⎣

T11

T22

T33

T12

T13

T23

⎤⎥⎥⎥⎥⎥⎥⎦ =
E

(1+ν)(1−2ν)

⎡⎢⎢⎢⎢⎢⎢⎣
1−ν ν ν 0 0 0

ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

C

⎡⎢⎢⎢⎢⎢⎢⎣
ε11

ε22

ε33

ε12

ε13

ε23

⎤⎥⎥⎥⎥⎥⎥⎦.

28 2 Modeling of Continuum Mechanical Problems

�

�

Strain

S
tr

es
s

�� �Elastic Partially plastic

Fig. 2.7. Qualitative strain-stress rela-
tion of real materials with linear elastic
range

Due to the principle of balance of moment of momentum, T has to be sym-
metric, such that only the given 6 components are necessary in order to fully
describe T. The matrix C is called material matrix. Putting the material law
in the general form

Tij = Eijklεkl ,

the fourth order tensor E with the components Eijkl is called the elasticity
tensor (of course, the entries in the matrix C and the corresponding compo-
nents of E match).

Finally, one obtains from (2.25), (2.26), and (2.27) by eliminating εij and
Tij the following system of differential equations for the displacements ui:

ρ
D2ui

Dt2
= (λ + μ)

∂2uj

∂xi∂xj
+ μ

∂2ui

∂xj∂xj
+ ρfi . (2.29)

These equations are called (unsteady) Navier-Cauchy equations of linear elas-
ticity theory. For steady problems correspondingly one has:

(λ + μ)
∂2uj

∂xi∂xj
+ μ

∂2ui

∂xj∂xj
+ ρfi = 0 . (2.30)

Possible boundary conditions for linear elasticity problems are:

− Prescribed displacements: ui = ubi on Γ1,

− Prescribed stresses: Tijnj = tbi on Γ2.

The boundary parts Γ1 and Γ2 should be disjoint and should cover the full
problem domain boundary Γ , i.e., Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = Γ .

Besides the formulation given by (2.29) or (2.30) as a system of partial dif-
ferential equations, there are other equivalent formulations for linear elasticity
problems. We will give here two other ones that are important in connection
with different numerical methods. We restrict ourselves to the steady case.

2.4 Structural Mechanics Problems 29

(Scalar) multiplication of the differential equation system (2.30) with a test
function ϕ = ϕiei, which vanishes at the boundary part Γ1, and integration
over the problem domain Ω yields:

∫
Ω

[
(λ+μ)

∂2uj

∂xi∂xj
+ μ

∂2ui

∂xj∂xj

]
ϕi dΩ +

∫
Ω

ρfiϕi dΩ = 0 . (2.31)

By integration by parts of the first integral in (2.31) one gets:

∫
Ω

[
(λ+μ)

∂uj

∂xi
+ μ

∂ui

∂xj

]
∂ϕi

∂xj
dΩ =

∫
Γ

Tijnjϕi dΓ +
∫
Ω

ρfiϕi dΩ . (2.32)

Since ϕi = 0 on Γ1 in (2.32) the corresponding part in the surface integral
vanishes and in the remaining part over Γ2 for Tijnj the prescribed stress tbi

can be inserted. Thus, one obtains:

∫
Ω

[
(λ+μ)

∂uj

∂xi
+ μ

∂ui

∂xj

]
∂ϕi

∂xj
dΩ =

∫
Γ2

tbiϕi dΓ +
∫
Ω

ρfiϕi dΩ . (2.33)

The requirement that the relation (2.33) is fulfilled for a suitable class of
test functions (let this be denoted by H) results in a formulation of the linear
elasticity problem as a variational problem:

Find u = uiei with ui = ubi on Γ1, such that∫
Ω

[
(λ+μ)

∂uj

∂xi
+ μ

∂ui

∂xj

]
∂ϕi

∂xj
dΩ =

∫
Ω

ρfiϕi dΩ +
∫
Γ2

tbiϕi dΓ

for all ϕ = ϕiei in H.

(2.34)

The question remains of which functions should be contained in the func-
tion space H. Since this is not essential for the following, we will not provide
an exact definition (this can be found, for instance, in [3]). It is important
that the test functions ϕ vanish on the boundary part Γ1. Further require-
ments mainly concern the integrability and differentiability properties of the
functions (all appearing terms must be defined).

The formulation (2.34) is called weak formulation, where the term “weak”
relates to the differentiability of the functions involved (there are only first
derivatives, in contrast to the second derivatives in the differential formula-
tion (2.30)). Frequently, in the engineering literature, the formulation (2.34)
is also called principle of virtual work (or principle of virtual displacements).
The test functions in this context are called virtual displacements.

30 2 Modeling of Continuum Mechanical Problems

Another alternative formulation of the linear elasticity problem is obtained
starting from the expression for the potential energy P = P (u) of the body
dependent on the displacements:

P (u) =
1
2

∫
Ω

[
(λ+μ)

∂uj

∂xi
+ μ

∂ui

∂xj

]
∂ui

∂xj
dΩ−

∫
Ω

ρfiui dΩ−
∫
Γ2

tbiui dΓ . (2.35)

One gets the solution by looking among all possible displacements, which ful-
fill the boundary condition ui = ubi on Γ1, for the one at which the potential
energy takes its minimum. The relationship of this formulation, called the
principle of minimum of potential energy, with the weak formulation (2.34)
becomes apparent if one considers the derivative of P with respect to u (in a
suitable sense). The minimum of the potential energy is taken if the first vari-
ation of P , i.e., a derivative in a functional analytic sense, vanishes (analogous
to the usual differential calculus), which corresponds to the validity of (2.33).

Contrary to the differential formulation, in the weak formulation (2.34)
and the energy formulation (2.35) the stress boundary condition Tijnj = tbi

on Γ2 is not enforced explicitly, but is implicitly contained in the correspond-
ing boundary integral over Γ2. The solutions fulfill this boundary condition
automatically, albeit only in a weak (integral) sense. With respect to the con-
struction of a numerical method, this can be considered as an advantage since
only (the more simple) displacement boundary conditions ui = ubi on Γ1 have
to be considered explicitly. In this context, the stress boundary conditions are
also called natural boundary conditions, whereas in the case of displacements
boundary conditions one speaks about essential or geometric boundary condi-
tions.

It should be emphasized that the different formulations basically all de-
scribe one and the same problem, but with different approaches. However,
the proof that the formulations from a rigorous mathematical point of view
in fact are equivalent (or rather which conditions have to be fulfilled for this)
requires advanced functional analytic methods and is relatively difficult. Since
this is not essential for the following, we will not go into detail on this matter
(see, e.g., [3]).

So far, we have considered the general linear elasticity equations for three-
dimensional problems. In practice, very often these can be simplified by suit-
able problem specific assumptions, in particular with respect to the spatial
dimension. In the following we will consider some of these special cases, which
often can be found in applications.

2.4.2 Bars and Beams

The simplest special case of a linear elasticity problem results for a tensile
bar. We consider a bar with length L and cross-sectional area A = A(x1) as
shown in Fig. 2.8.

The equations for the bar can be used for the problem description if the
following requirements are fulfilled:

2.4 Structural Mechanics Problems 31

Cross-sectional area

A(x1)
�kL

fl� � � � �

�

� x1

x3

� �L

�

� x2

x3

Fig. 2.8. Tensile bar under load in longitudinal direction

forces only act in x1-direction,
the cross-section remains plane and moves only in x1-direction.

Under these assumptions we have

u2 = u3 = 0

and the unknown displacement u1 only depends from x1:

u1 = u1(x1) .

In the strain tensor only the component

ε11 =
∂u1

∂x1

is different from zero. Furthermore, there is only normal stress acting in x1-
direction, such that in the stress tensor only the component T11 is non-zero.
The equation of motion for the bar reads

∂(AT11)
∂x1

+ fl = 0 , (2.36)

where fl = fl(x1) denotes the continuous longitudinal load of the bar in
x1-direction. If, for instance, the self-weight of the bar should be considered
when the acceleration of gravity g acts in x1-direction, we have fl = ρAg.
The derivation of the bar equation (2.36) can be carried out via the integral
momentum balance (the cross-sectional area A shows up by carrying out the
integration in x2- and x3-direction). Hooke’s law becomes:

T11 = Eε11 . (2.37)

In summary, one is faced with a one-dimensional problem only. To avoid re-
dundant indices we write u = u1 and x = x1. Inserting the material law (2.37)
in the equation of motion (2.36) finally yields the following (ordinary) differ-
ential equation for the unknown displacement u:

32 2 Modeling of Continuum Mechanical Problems

(EAu′)′ + fl = 0 . (2.38)

The prime denotes the derivative with respect to x. As examples for possible
boundary conditions, the displacement u0 and the stress tL (or the force kL)
are prescribed at the left and right ends of the bar, respectively:

u(0) = u0 and EAu′(L) = AtL = kL . (2.39)

In order to illustrate again the different possibilities for the problem for-
mulation using a simple example, we also give the weak and potential energy
formulations for the tensile bar with the boundary conditions (2.39). The
principle of minimum potential energy in this case reads:

P (u) =
1
2

L∫
0

EA(u′)2 dx −
L∫

0

flu dx − u(L)kL → Minimum ,

where the minimum is sought among all displacements for which u(0) = u0.
The “derivative” (first variation) of the potential energy with respect to u is
given by

lim
α→0

dP (u + αϕ)
dα

=

L∫
0

EAu′ϕ′ dx −
L∫

0

flϕdx − ϕ(L)kL .

The principle of virtual work for the tensile bar thus reads:

L∫
0

EAu′ϕ′ dx =

L∫
0

flϕdx + ϕ(L)kL (2.40)

for all virtual displacements ϕ with ϕ(0) = 0.
The relationship of this weak formulation with the differential formula-

tion (2.38) with the boundary conditions (2.39) becomes apparent if one in-
tegrates the integral on the left hand side of (2.40) by parts:

L∫
0

(EAu′)′ ϕdx + [EAu′ϕ]L0 −
L∫

0

flϕdx − ϕ(L)kL =

L∫
0

[
− (EAu′)′ − fl

]
ϕdx + [EAu′(L) − kL] ϕ(L) = 0 .

The last equation obviously is fulfilled if u is a solution of the differential
equation (2.38) that satisfies the boundary conditions (2.39). Therefore, the
principles of virtual work and of minimum potential energy are fulfilled. The
reverse conclusion is not that clear, since there can be displacements satisfy-
ing the principles of virtual work and minimum potential energy, but not the

2.4 Structural Mechanics Problems 33

differential equation (2.38) (in the classical sense). For this, additional differ-
entiability properties of the displacements are necessary, which, however, we
will not elaborate here.

Another special case of linear elasticity theory, which can be described by
a one-dimensional equation, is beam bending (see Fig. 2.9). We will focus here
on the shear-rigid beam (or Bernoulli beam). This approximation is based on
the assumption that during the bending along one main direction, plane cross-
sections remain plane and normals to the neutral axis (x1-axis in Fig. 2.9)
remain normal to this axis also in the deformed state. Omitting the latter
assumption one obtains the shear-elastic beam (or Timoshenko beam).

Cross-sectional area

A(x1)

�
QL

fq� � � � � � � � �

�

� x1

x3

� �L

�

� x2

x3

Fig. 2.9. Beam under vertical load

Under the assumptions for the shear-rigid beam, the displacement u1 can
be expressed by the inclination of the bending line u3 (deflection parallel to
the x3-axis):

u1 = −x3
∂u3

∂x1
.

In the strain tensor, just as for the tensile bar, only the component

ε11 =
∂u1

∂x1
= −x3

∂2u3

∂x2
1

is different from zero. The equation of motion for the shear-rigid beam reads

∂2T11

∂x2
1

+ fq = 0 , (2.41)

where fq = fq(x1) denotes the continuous lateral load (uniform load) of the
beam in x3-direction. For instance, to take into account the self-weight of the
beam one has again fq = ρAg, where the acceleration of gravity g now is
acting in x3-direction. A = A(x1) is the cross-sectional area of the beam. For
the normal stresses in x1-direction (all other stresses are zero) one has the
material law

34 2 Modeling of Continuum Mechanical Problems

T11 = Bε11 , (2.42)

where

B = EI with I =
∫
A

x2
3 dx2dx3

is the flexural stiffness of the beam. I is called axial geometric moment of
inertia. In the case of a rectangular cross-section with width b and height h,
for instance, one has

I =

h/2∫
−h/2

b/2∫
−b/2

x2
3 dx2dx3 =

1
12

bh3 .

Writing w = u3 and x = x1, from the equation of motion (2.41) and
the material law (2.42) the following differential equation for the unknown
deflection w = w(x) of the beam results:

(Bw′′)′′ + fq = 0 . (2.43)

Thus, the beam equation (2.43) is an ordinary differential equation of fourth
order. This also has consequences with respect to the boundary conditions
that have to be prescribed. For problems of the considered type there is the
rule that the number of boundary conditions should be half the order of the
differential equation. Thus for the beam two conditions at each of the interval
boundaries have to be prescribed.

Concerning the combination of the boundary conditions there are different
possibilities in prescribing two of the following quantities: the deflection, its
derivative, the bending moment

M = Bw′′ ,

or the transverse force

Q = Bw′′′ .

The prescription of the two latter quantities corresponds to the natural bound-
ary conditions. For instance, if the beam is clamped at the left end x = 0 and
free at the right end x = L, one has the boundary conditions (see Fig. 2.10,
left)

w(0) = 0 and w′′(0) = 0 (2.44)

as well as

M(L) = Bw′′(L) = 0 and Q(L) = Bw′′′(L) = 0 . (2.45)

2.4 Structural Mechanics Problems 35

�
� x1

x3

� �L

w=
∂w

∂x
=0 M =Q=0

�
� x1

x3

� �L

w=
∂w

∂x
=0 w=Q=0

Fig. 2.10. Boundary conditions for beams with clamped left and free (left) and
simply supported (right) right end

For a simply supported right end one would have (see Fig. 2.10, right):

w(L) = 0 and M(L) = Bw′′(L) = 0 .

The potential energy of a shear-rigid beam, for instance, with clamped left
end and prescription of M und Q at the right end, is given by:

P (w) =
B

2

L∫
0

(w′′)2dx −
L∫

0

ρAfqw dx − w(L)QL− w′(L)M(L) . (2.46)

The unknown deflection is defined as the minimum of this potential energy
among all deflections w satisfying the boundary conditions (2.44).

2.4.3 Disks and Plates

A further special case of the general linear elasticity equations are problems
with plane stress state. The essential assumptions for this case are that the
displacements, strains, and stresses only depend on two spatial dimensions
(e.g., x1 and x2) and that the problem can be treated as two-dimensional. For
thin disks loaded by forces in their planes, these assumptions, for instance,
are fulfilled in good approximation (see Fig. 2.11).

For problems with plane stress state for the stresses one has

T13 = T23 = T33 = 0 .

For the strains in the x1-x2-plane from the general relation (2.25) it follows:

ε11 =
∂u1

∂x1
, ε22 =

∂u2

∂x2
and ε12 =

1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
.

Instead of (2.28) for the Lamè constant λ the relation

λ =
Eν

1 − ν2

36 2 Modeling of Continuum Mechanical Problems

� � � �

� � � �

�
�

�
�

�
�

tb

tb

tb

f

�

�
	

x1

x3

x2

Fig. 2.11. Thin disk in plane stress state

has to be employed (see, e.g., [25] for a motivation of this). With this, Hooke’s
law for the plane stress state is expressed by the following stress-strain relation
(in matrix notation):⎡⎣T11

T22

T12

⎤⎦ =
E

1 − ν2

⎡⎣ 1 ν 0
ν 1 0
0 0 1−ν

⎤⎦⎡⎣ ε11

ε22

ε12

⎤⎦ . (2.47)

Note that in general a strain in x3-direction can also appear, which is given
by

ε33 = − ν

E
(T11 + T22) .

From the matarial law (2.47) and the (steady) Navier-Cauchy equa-
tions (2.30) finally the following system of differential equations for the two
displacements u1 = u1(x1, x2) and u2 = u2(x1, x2) results:

(λ+μ)
(

∂2u1

∂x2
1

+
∂2u2

∂x1∂x2

)
+ μ

(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

)
+ ρf1 = 0 , (2.48)

(λ+μ)
(

∂2u1

∂x2∂x1
+

∂2u2

∂x2
2

)
+ μ

(
∂2u2

∂x2
1

+
∂2u2

∂x2
2

)
+ ρf2 = 0 . (2.49)

The displacement boundary conditions are

u1 = ub1 and u2 = ub2 on Γ1 ,

whereas the stress boundary conditions on Γ2 read

E

1 − ν2

(
∂u1

∂x1
+ ν

∂u2

∂x2

)
n1 +

E

2(1 + ν)

(
∂u1

∂x2
+

∂u2

∂x1

)
n2 = tb1 ,

E

2(1 + ν)

(
∂u1

∂x2
+

∂u2

∂x1

)
n1 +

E

1 − ν2

(
ν

∂u1

∂x1
− ∂u2

∂x2

)
n2 = tb2 .

Analogous to disks, also problems involving long bodies, whose geometries
and loads do not change in longitudinal direction, can be reduced to two

2.4 Structural Mechanics Problems 37

spatial dimensions (see Fig. 2.12). In this case one speaks of problems with
plane strain state. Again, the displacements, strains, and stresses only depend
on two spatial directions (again denoted by x1 and x2).

����

�
�
�
�

�
�
�
�

����

��

tb

tb

tb

tb

f�

�	 x3

x2

x1

Fig. 2.12. Disk in plane strain
state

The plane strain state is characterized by

ε13 = ε23 = ε33 = 0 .

The normal stress in x3-direction T33 does not necessarily vanish in this case.
The essential difference from a disk in plane stress state is the different strain-
stress relation. For the plane strain state this reads⎡⎣T11

T22

T12

⎤⎦ =
E

(1 + ν)(1 − 2ν)

⎡⎣ 1 − ν ν 0
ν 1 − ν 0
0 0 1 − 2ν

⎤⎦⎡⎣ ε11

ε22

ε12

⎤⎦ ,

where again the original Lamé constant λ given by (2.28) must be used. With
this a two-dimensional differential equation system for the unknown displace-
ments similar to (2.48) and (2.49) results.

The deformation of a thin plate, which is subjected to a vertical load
(see Fig. 2.13), can under certain conditions also be formulated as a two-
dimensional problem. The corresponding assumptions are known as Kirchhoff
hypotheses:

the plate thickness is small compared to the dimensions in the other two
spatial directions,
the vertical deflection u3 of the midplane and its derivatives are small,
the normals to the midplane remain straight and normal to the midplane
during the deformation,
the stresses normal to the midplane are negligible.

This case is denoted as shear-rigid plate (or also Kirchhoff plate), and is a
special case of a more general plate theory that will not be addressed here
(e.g., [6]).

Under the above assumptions one has the following relations for the dis-
placements:

38 2 Modeling of Continuum Mechanical Problems

� � � �
�

�
�

� �
� �� �

f

Q̃

Q̃

�

�

x1

x3

x2

Fig. 2.13. Thin plate under vertical load

u1 = −x3
∂u3

∂x1
and u2 = −x3

∂u3

∂x2
. (2.50)

As in the case of a disk in plane strain state, there are strains only in x1-
and x2-direction and shear acts only in the x1-x2-plane. The corresponding
components of the strain tensor read

ε11 = −x3
∂2u3

∂x2
1

, ε22 = −x3
∂2u3

∂x2
2

and ε12 = −x3
∂2u3

∂x1∂x2
.

All other components vanish. For the stresses one has

T13 = T23 = T33 = 0 .

Due to the assumption that the stresses normal to the midplane are very
small compared to those due to bending moments and thus can be neglected,
the stress-displacement relation (2.47) for the plane stress state also can be
employed here. Together with the equation of motion – after introduction of
stress resultants (for details we refer to the corresponding literature, e.g., [6])
– the following differential equation for the unknown deflection w = w(x1, x2)
(we again write w = u3) results:

K

(
∂4w

∂x4
1

+ 2
∂4w

∂x2
1∂x2

2

+
∂4w

∂x4
2

)
= ρf . (2.51)

The coefficient

K =
E

1 − ν2

d/2∫
−d/2

x2
3 dx3 =

Ed3

12(1 − ν2)
,

where d is the plate thickness, is called plate stiffness. As in the case of a beam,
the Kirchhoff plate theory results in a differential equation, albeit a partial
one, of fourth order. Equation (2.51) also is called biharmonic equation.

As boundary conditions for plate problems one has, for instance, for a
clamped boundary

2.4 Structural Mechanics Problems 39

w = 0 and
∂w

∂x1
n1 +

∂w

∂x2
n2 = 0 , (2.52)

and for a simply supported boundary

w = 0 and
∂2w

∂x2
1

+
∂2w

∂x2
2

= 0 . (2.53)

At a free boundary the bending moment as well as the sum of the transverse
shear forces and the torsional moments have to vanish (for this we also refer
to the literature, e.g., [6]). As usual, the different boundary conditions again
can be prescribed at different parts of the boundary Γ .

After having computed the deflection w on the basis of (2.51) and the
corresponding boundary conditions, the displacements u1 and u2 result from
the expressions (2.50).

2.4.4 Linear Thermo-Elasticity

A frequently occuring problem in structural mechanics applications is defor-
mations, for which also thermal effects play an essential role. For geometrically
and physically linear problems such tasks can be described in the framework
of the linear thermo-elasticity. The corresponding equations result from the
momentum balance (2.10) and the energy balance (2.14) using the linearized
strain-displacement relation (2.25) (geometrically linear theory) and the as-
sumption of a simple linear thermo-elastic material (physically linear theory).

We briefly sketch the basic ideas for the derivation of the equations (details
can be found, e.g., in [19]). For this, we first introduce the specific dissipation
function ψ defined by

ψ = Tij
Dεji

Dt
− ρ

D

Dt
(e − Ts) + ρs

DT

Dt
,

which is a measure for the energy dissipation in the continuum. Here, s is the
specific internal entropy. An assumption for a simple thermo-elastic material
is that there is no energy dissipation, i.e., one has

Tij
Dεji

Dt
− ρ

D

Dt
(e − Ts) + ρs

DT

Dt
= 0 . (2.54)

Together with the energy conservation equation (2.14) it follows from (2.54):

Tρ
Ds

Dt
=

∂hi

∂xi
+ ρq .

Assuming, as usual, the validity of Fourier’s law (2.20) yields:

Tρ
Ds

Dt
= − ∂

∂xi

(
κ

∂T

∂xi

)
+ ρq . (2.55)

40 2 Modeling of Continuum Mechanical Problems

Under the assumption of small temperature variations it is now possible
to introduce a linearization, i.e., one considers the deviation θ = T − T̄ of
the temperature from a (mean) reference temperature T̄ . For a simple linear
thermo-elastic material one has the constitutive equations

Tij = (λεkk − αθ) δij + 2μεij , (2.56)
ρs = αεii + cpθ (2.57)

for the stress tensor and the entropy. Here, α is the thermal expansion coeffi-
cient. The relation (2.56) is known as Duhamel-Neumann equation. The mate-
rial equations (2.56) and (2.57) provide linear relations between the stresses,
strains, the temperature, and the entropy.

Together with the momentum conservation equation (2.26) one finally ob-
tains from (2.55), (2.56), and (2.57) the following system of differential equa-
tions for the displacements ui and the temperature variation θ:

ρ
D2ui

Dt2
+ α

∂θ

∂xi
− (λ + μ)

∂2uj

∂xi∂xj
− μ

∂2ui

∂xj∂xj
= ρfi , (2.58)

− ∂

∂xi

(
κ

∂θ

∂xi

)
+ cpT̄

Dθ

Dt
+ αT̄

Dεkk

Dt
= ρq . (2.59)

For steady problems the equations simplify to:

α
∂θ

∂xi
− (λ + μ)

∂2uj

∂xi∂xj
− μ

∂2ui

∂xj∂xj
= ρfi , (2.60)

− ∂

∂xi

(
κ

∂θ

∂xi

)
= ρq . (2.61)

The boundary conditions for the displacements are analogous to that of the
linear elasticity theory (see Sect. 2.4.1). For the temperature variations the
same type of conditions as for scalar heat transfer problems can be employed
(see Sect. 2.3.2).

An exemplary thermo-elastic problem with boundary conditions is shown
in Fig. 2.14. The configuration (in plane strain state) consists in a concentric
pipe wall, which at the outer side is fixed and isolated, and at the inner side
is supplied with a temperature θf and a stress tfi (e.g., by a hot fluid).

The equations of the linear elasticity theory from Sect. 2.4.1 can be viewed
as a special case of the linear thermo-elasticity, if one assumes that heat
changes are so slow so as not to cause inertia forces. As similarly outlined
in the previous sections for bars, beams, disks, or plates, special cases of the
linear thermo-elasticity can be derived allowing for consideration of thermal
effects for the corresponding problem classes.

2.4.5 Hyperelasticity

As an example for a geometrically and physically non-linear theory, we will
give the equations for large deformations of hyperelastic materials. This may
serve as an illustration of the high complexity that structural mechanics equa-

2.4 Structural Mechanics Problems 41

Isolation

Pipe wall

Fluid

Tijnj = tfi
θ = θf

∂θ

∂xi
ni = 0

ui = 0

Fig. 2.14. Example of a thermo-elastic problem
in plane strain state

tions may take if non-linear effects appear. The practical relevance of hy-
perelasticity is due to the fact that it allows for a good description of large
deformations of rubber-like materials. As an example, Fig. 2.15 shows the
corresponding deformation of a hexahedral rubber block under compression.

Fig. 2.15. Deformation of a rubber block under
compression

A hyperelastic material is characterized by the fact that the stresses can
be expressed as derivatives of a strain energy density function W with respect
to the components Fij = ∂xi/∂aj of the deformation gradient tensor F:

Tij = Tij(F) =
∂W

∂Fij
(F) .

In this case one has a constitutive equation for the second Piola-Kirchhoff
stress tensor of the form

Pij = ρ0(γ1δij + γ2Gij + γ3GikGkj) (2.62)

with the Green-Lagrange strain tensor

42 2 Modeling of Continuum Mechanical Problems

Gij =
1
2

(
∂ui

∂aj
+

∂uj

∂ai
+

∂uk

∂ai

∂uk

∂aj

)
. (2.63)

The coefficients γ1, γ2, and γ3 are functions of the invariants of G (see, for in-
stance, [19]), i.e., they depend in a complex (non-linear) way on the derivatives
of the displacements.

The relations (2.62) and (2.63), together with the momentum conservation
equation in Lagrange formulation

ρ0
D2xi

Dt2
=

∂

∂aj

(
∂xi

∂ak
Pkj

)
+ ρ0fi ,

give the system of differential equations for the unknown deformations xi or
the displacements ui = xi−ai. The displacement boundary conditions are
ui = ubi, as usual, and stress boundary conditions take the form

∂xi

∂ak
Pkjnj = tbi .

For instance, for the problem illustrated in Fig. 2.15 at the top and bottom
boundary the displacements are prescribed, while at the lateral (free) bound-
aries the stresses tbi = 0 are given.

As can be seen from the above equations, in the case of hyperelasticity
one is faced with a rather complex non-linear system of partial differential
equations together with usually also non-linear boundary conditions.

2.5 Fluid Mechanical Problems

The general task in fluid mechanical problems is to characterize the flow be-
havior of liquids or gases, possibly with additional consideration of heat and
species transport processes. For the description of fluid flows usually the Eu-
lerian formulation is employed, because one is usually interested in the prop-
erties of the flow at certain locations in the flow domain.

We restrict ourselves to the case of linear viscous isotropic fluids known
as Newtonian fluids, which are by far the most important ones for practical
applications. Newtonian fluids are characterized by the following material law
for the Cauchy stress tensor T:

Tij = μ

(
∂vi

∂xj
+

∂vj

∂xi
− 2

3
∂vk

∂xk
δij

)
− pδij (2.64)

with the pressure p and the dynamic viscosity μ. With this the conservation
laws for mass, momentum, and energy take the form:

2.5 Fluid Mechanical Problems 43

∂ρ

∂t
+

∂(ρvi)
∂xi

= 0 , (2.65)

∂(ρvi)
∂t

+
∂(ρvivj)

∂xj
=

∂

∂xj

[
μ

(
∂vi

∂xj
+

∂vj

∂xi
− 2

3
∂vk

∂xk
δij

)]
− ∂p

∂xi
+ ρfi , (2.66)

∂(ρe)
∂t

+
∂(ρvie)

∂xi
= μ

[
∂vi

∂xj

(
∂vi

∂xj
+

∂vj

∂xi

)
− 2

3

(
∂vi

∂xi

)2
]
− p

∂vi

∂xi
(2.67)

+
∂

∂xi

(
κ

∂T

∂xi

)
+ ρq ,

where in the energy balance (2.67) Fourier’s law (2.20) is used again. Equa-
tion (2.66) is known as (compressible) Navier-Stokes equation (sometimes the
full system (2.65)-(2.67) is also referred to as such). The unknowns are the
velocity vector v, the pressure p, the temperature T , the density ρ, and the
internal energy e. Thus, one has 7 unknowns and only 5 equations. Therefore,
the system has to be completed by two equations of state of the form

p = p(ρ, T) and e = e(ρ, T) ,

which define the thermodynamic properties of the fluid. These equations are
called thermal and caloric equation of states, respectively. In many cases the
fluid can be considered as an ideal gas. The thermal equation of state in this
case reads:

p = ρRT (2.68)

with the specific gas constant R of the fluid. The internal energy in this case
is only a function of the temperature, such that one has a caloric equation of
state of the form e = e(T). For a caloric ideal gas, for instance, one has

e = cvT

with a constant specific heat capacity cv (at constant volume).
Frequently, for flow problems it is not necessary to solve the equation

system in the above most general form, i.e., it is possible to make additional
assumptions to further simplify the system. The most relevant assumptions
for practical applications are the incompressibility and the inviscidity, which,
therefore, will be addressed in detail in the following.

2.5.1 Incompressible Flows

In many applications the fluid can be considered as approximatively incom-
pressible. Due to the conservation of mass this is tantamount to a divergence-
free velocity vector, i.e., ∂vi/∂xi = 0 (see Sect. 2.2.1), and one speaks of an

44 2 Modeling of Continuum Mechanical Problems

incompressible flow. For a criterion for the validity of this assumption the
Mach number

Ma =
v̄

a

is taken into account, where v̄ is a characteristic flow velocity of the problem
and a is the speed of sound in the corresponding fluid (at the corresponding
temperature). Incompressibility usually is assumed if Ma < 0.3. Flows of
liquids in nearly all applications can be considered as incompressible, but this
assumption is also valid for many flows of gases, which occur in practice.

For incompressible flows the divergence term in the material law (2.64)
vanishes and the stress tensor becomes:

Tij = μ

(
∂vi

∂xj
+

∂vj

∂xi

)
− pδij . (2.69)

The conservation equations for mass, momentum, and energy then read:

∂vi

∂xi
= 0, (2.70)

∂(ρvi)
∂t

+
∂(ρvivj)

∂xj
=

∂

∂xj

[
μ

(
∂vi

∂xj
+

∂vj

∂xi

)]
− ∂p

∂xi
+ ρfi , (2.71)

∂(ρe)
∂t

+
∂(ρvie)

∂xi
= μ

∂vi

∂xj

(
∂vi

∂xj
+

∂vj

∂xi

)
+

∂

∂xi

(
κ

∂T

∂xi

)
+ ρq . (2.72)

One can observe that for isothermal processes in the incompressible case the
energy equation does not need to be taken into account.

Neglecting the work performed by pressure and friction forces and assum-
ing further that the specific heat is constant (which is valid in many cases),
the energy conservation equation simplifies to a transport equation for the
temperature:

∂(ρcpT)
∂t

+
∂(ρcpviT)

∂xi
=

∂

∂xi

(
κ

∂T

∂xi

)
+ ρq .

This again is the transport equation, with which we were already acquainted
in Sect. 2.3.2 in the context of scalar heat transfer problems.

The equation system (2.70)-(2.72) has to be completed by boundary con-
ditions and – in the unsteady case – by initial conditions. For the temperature
the same conditions apply as for pure heat transfer problems as already dis-
cussed in Sect. 2.3.2. As boundary conditions for the velocity, for instance,
the velocity components can be explicitly prescribed:

vi = vbi .

Here, vb can be a known velocity profile at an inflow boundary or, in the
case of an impermeable wall where a no-slip condition has to be fulfilled, a

2.5 Fluid Mechanical Problems 45

prescribed wall velocity (vi = 0 for a fixed wall). Attention has to be paid to
the fact that the velocities cannot be prescribed completely arbitrarily on the
whole boundary Γ of the problem domain, since the equation system (2.70)-
(2.72) only admits a solution, if the integral balance∫

Γ

vbini dΓ = 0

is fulfilled. This means that there flows as much mass into the problem do-
main as it flows out, which, of course, is physically evident for a “reasonably”
formulated problem. At an outflow boundary, where usually the velocity is
not known, a vanishing normal derivative for all velocity components can be
prescribed.

If the velocity is prescribed at a part of the boundary, it is not possi-
ble to prescribe there additional conditions for the pressure. These are then
intrinsicly determined already by the differential equations and the velocity
boundary conditions.

In general, for incompressible flows, the pressure is uniquely determined
only up to an additive constant (in the equations there appear only deriva-
tives of the pressure). This can be fixed by one additional condition, e.g., by
prescribing the pressure in a certain point of the problem domain or by an
integral relation.

In Sect. 10.4 we will reconsider the different velocity boundary conditions
in some more detail. Examples for incompressible flow problems are given in
Sects. 2.6.2, 6.4, and 12.2.5.

2.5.2 Inviscid Flows

As one of the most important quantity in fluid mechanics the ratio of inertia
and viscous forces in a flow is expressed by the Reynolds number

Re =
v̄Lρ

μ
,

where v̄ is again a characteristic flow velocity and L is a characteristic length
of the problem (e.g., the pipe diameter for a pipe flow or the cross-sectional
dimension of a body for the flow around it). The assumption of an inviscid
flow, i.e., μ ≈ 0 can be made for “large” Reynolds numbers (e.g., Re > 107).
Away from solid surfaces this then yields a good approximation, since there
the influence of the viscosity is low. Compressible flows at high Mach numbers
(e.g., flows around airplanes or flows in turbomachines) are often treated as
inviscid.

The neglection of the viscosity automatically entails the neglection of heat
conduction (no molecular diffusivity). Also heat sources usually are neglected.
Thus, in the inviscid case the conservation equations for mass, momentum,
and energy read:

46 2 Modeling of Continuum Mechanical Problems

∂ρ

∂t
+

∂(ρvi)
∂xi

= 0 , (2.73)

∂(ρvi)
∂t

+
∂(ρvivj)

∂xj
= − ∂p

∂xi
+ ρfi , (2.74)

∂(ρe)
∂t

+
∂(ρvie)

∂xi
= −p

∂vi

∂xi
. (2.75)

This system of equations is called Euler equations. To complete the prob-
lem formulation one equation of state has to be added. For an ideal gas, for
instance, one has:

p = Rρe/cv .

It should be noted that the neglection of the viscous terms results in
a drastic change in the nature of the mathematical formulation, since all
second derivatives in the equations disappear and, therefore, the equation
system is of another type. This also causes changes in the admissible boundary
conditions, since for a first-order system fewer conditions are necessary. For
instance, at a wall only the normal component of the velocity can be prescribed
and the tangential components are then determined automatically. For details
concerning these aspects we refer to [12].

The further assumption of an irrotational flow in the inviscid case leads to
the potential flow, which we have already discussed in Sect. 2.3.1.

2.6 Coupled Fluid-Solid Problems

For a variety of engineering applications it is not sufficient to consider phe-
nomena of structural mechanics, fluid mechanics, or heat transfer individually,
because there is a significant coupling of effects from two or three of these
fields. Examples of such mechanically and/or thermally coupled fluid-solid
problems can be found, for instance, in machine and plant building, engine
manufacturing, turbomachinery, heat exchangers, offshore structures, chem-
ical engineering processes, microsystem techniques, biology, or medicine, to
mention only a few of them.

A schematic view of possible physical coupling mechanisms in such kind
of problems is indicated in Fig. 2.16. The problems can be classified accord-
ing to different couplings involved, yielding problem formulations of different
complexity:

(1) Flows acting on solids: drag, lift, movement, and deformation of solids
induced by pressure and friction fluid forces (e.g., aerodynamics of vehicles,
wind load on buildings, water penetration of offshore structures, . . .).

(2) Solids acting on flows: fluid flow induced by prescribed movement and/or
deformation of solids (e.g., stirrers, turbomachines, nearby passing of two
vehicles, flow processes in piston engines, . . .).

2.6 Coupled Fluid-Solid Problems 47

(3) Fluid-solid interactions: movement and/or deformation of solids induced
by fluid forces interacting with induced fluid flow (e.g., aeroelasticity of
bridges or airplanes, injection systems, valves, pumps, airbags, . . .).

(4) Thermal couplings: temperature-dependent material properties, buoyancy,
convective heat transfer, thermal stresses and mechanical dissipation (e.g.,
heat exchangers, cooling of devices, thermal processes in combustion cham-
bers, chemical reactors, . . .).

In the following we will address some special modelling aspects which arise due
to the coupling. Afterwards we will give a couple of exemplary applications
for the above mentioned problem classes.

�

�

�

�

Forces

Deformations

Fluid
properties

Convective
heat transfer

Thermal
stresses

Mechanical
dissipation

�
�

Temperature T

Fluid
(vi, p, T)

Solid
(ui, T)

Fig. 2.16. Schematic
view of mechanically
and thermally coupled
fluid-solid problems

2.6.1 Modeling

Let us consider a problem domain Ω consisting of a fluid part Ωf and a solid
part Ωs, which regarding the shape as well as the location of fluid and solid
parts can be quite arbitrary (see Fig. 2.17).

Γf Γf

Γi Γi

Γi

Γs

ΓsΩs
Ωf

ΩsΩf

Fig. 2.17. Example of fluid-solid
problem domain

The basis of the mathematical problem formulation of such coupled prob-
lems are the fundamental conservation laws for mass, momentum, moment of
momentum, and energy (see Sect. 2.2), which are valid for any subvolume V
(with surface S) of Ω either in fluid or solid parts of the problem domain. In
the individual fluid and solid parts of the problem domain different material

48 2 Modeling of Continuum Mechanical Problems

laws, as they are exemplarily given in Sects. 2.4 and 2.5, can be employed
according to the corresponding needs within the subdomain.

If there is a movement of solid parts of the problem domain within fluid
parts, it is convenient to consider the conservation equations for the fluid part
in the so-called arbitrary Lagrangian-Eulerian (ALE) formulation. With this
one can combine the advantages of the Lagrangian and Eulerian formulations
as they usually are exploited for individual structural and fluid mechanics
approaches, respectively. The principal idea of the ALE approach is that an
observer is neither located at a fixed position in space nor moves with the ma-
terial point, but can move “arbitrarily”. Mathematically this can be expressed
by employing a relative velocity in the convective terms of the conservation
equations, i.e., for a (moving) control volume V with surface S the conser-
vation equations governing transport of mass, momentum, and energy in the
(integral) ALE fomulation read:

D

Dt

∫
V

ρdV +
∫
S

ρ(vj−vg
j)nj dS = 0 , (2.76)

D

Dt

∫
V

ρvi dV +
∫
S

[ρvj(vi−vg
i)nj − Tij] dS =

∫
V

ρfi dV , (2.77)

D

Dt

∫
V

ρcpT dV +
∫
S

[
ρcp(vi−vg

i)T − κ
∂T

∂xi

]
ni dS =

∫
V

ρq dV , (2.78)

where vg
i is the velocity with which S may move, e.g., due to displacements

of solid parts in the problem domain. In the context of a numerical scheme vg
i

is also called grid velocity. Note that with vg
i = 0 and vg

i = vi the pure Euler
and Lagrange formulations are recovered, respectively. In the framework of a
numerical scheme the so-called space (or geometric) conservation law

D

Dt

∫
V

dV +
∫
S

(vj − vg
j)nj dS = 0 , (2.79)

also plays an important role because it allows for an easy way to ensure the
conservation properties for the moving control volumes. For details we refer,
for instance, to [8].

Concerning the boundary conditions different kinds of boundaries have
to be distinguished: a solid boundary Γs, a fluid boundary Γf , and a fluid-
solid interface Γi (see Fig. 2.17). On solid and fluid boundaries Γs and Γf ,
standard conditions as for individual solid and fluid problems as discussed
in the previous sections can be employed. On a fluid-solid interface Γi the
velocities and the stresses have to fulfill the conditions

vi =
Dub

i

Dt
and σijnj = Tijnj , (2.80)

2.6 Coupled Fluid-Solid Problems 49

where ub
i and Dub

i /Dt are the displacement and velocity of the interface,
respectively. In addition, if heat transfer is involved, the temperatures as well
as the heat fluxes have to coincide on Γi. However, it is possible to treat the
temperature globally over the full domain Ω, such that these thermal interface
conditions do not have to be considered explicitly.

2.6.2 Examples of applications

In the following a variety of exemplary applications for coupled fluid-solid
problems with different coupling mechanisms are given.

Flows Acting on Solids

This problem class involves problems where fluid flows exert pressure and
friction forces on structures and inducing stresses there, but the correspond-
ing solid deformations are so small that their influence on the flow can be
neglected. Such problem situations typically occur, for instance, in aerody-
namics applications (e.g., the flow around vehicles, airplanes, buildings, . . .).

The problems can be solved by first solving the fluid flow problem yielding
the fluid stresses tfi = Tijnj , which can be used for the subsequent structural
computation as (stress) boundary conditions tbi = tfi. Figure 2.18 illustrates
a typical problem situation with the relevant boundary conditions.

�vw

v = 0

tb = tfSolidFluid Fig. 2.18. Example for flow acting
on solid with boundary conditions

Flow Induced by Prescribed Solid Movement

Problems with solid parts moving in a fluid, where the movement is not signifi-
cantly influenced by the flow, often appear in technical industrial applications.
For example, the mixing of fluids with rotating installations, the movement
of turbines, or the passing-by of vehicles belong to these kinds of problems.
In these cases there is usually no need to solve any equation for the solid part
of the domain, but, due to the (prescribed) movement of the solid, the flow
domain is time-dependent.

For such kind of problems it can be convenient to consider the conservation
equations in a moving frame of reference related to the movement of the solid,
such that relative to this system the boundary conditions can be handled in an
easier way. In general, for a reference system rotating with an angular velocity

50 2 Modeling of Continuum Mechanical Problems

ω and translating with a velocity c (velocity of the origin) the momentum
equation (2.10) transforms into (see, e.g., [23])

∂(ρw̃i)
∂t

+
∂(ρw̃iw̃j)

∂xj
− ∂T̃ij

∂xj
= ρf̃i − ρb̃i , (2.81)

where b̃i are the components of

b =
[
Dc
Dt

+ 2ω × w +
Dω

Dt
× x + ω × (ω × x)

]
, (2.82)

and w̃i are the components of the velocity w relative to the moving system,
which is related to v by

w = v − ω × x − c . (2.83)

The tilde on the components indicates that these refer to the moving coordi-
nate system. The additional terms in (2.81) are due to volume forces resulting
from the movement of the frame of reference: the acceleration of the reference
system Dc/Dt, the Coriolis acceleration 2ω × w, the angular acceleration
Dω/Dt × x, and the centrifugal acceleration ω × (ω × x). With c = 0 and
ω = 0 the original formulation (2.10) is recovered.

A simple example for this class of applications with a translatory move-
ment is the passing-by of two objects (i.e., cars, trains, elevators, . . .). The
problem situation is illustrated schematically in Fig. 2.19 for rectangular ob-
jects moving with velocities v1 and v2. Along with the objects two moving
coordinate systems with c = v1 and c = v2 can be employed together with
the corresponding boundary conditions as indicated in Fig. 2.19. As an exam-
ple, Fig. 2.20 shows the pressure distribution within the fluid at 4 points in
time during the passing-by of the objects.

v2

v1

c = 0

c = v1

c = v2

c = 0 v = 0

v = 0

Interfaces

Interfaces

w = 0

w = 0 Fig. 2.19. Coordinate systems and
boundary conditions for problems
with translational solid movement

Stirrer configurations can be considered as typical applications for flows
induced by a prescribed rotational solid movement. The problem situation is
illustrated schematically in Fig. 2.21 for a stirrer device rotating with angular
velocity ωb. Along with the stirrer a rotating coordinate systems with ω = ωb

2.6 Coupled Fluid-Solid Problems 51

Fig. 2.20. Pressure distribution
for passing-by problem at 4 points
in time (top/left to bottom/right)

can be employed together with the corresponding boundary conditions as
indicated in Fig. 2.21. Exemplarily, in Fig. 2.22 a helix stirrer configuration
is shown where the corresponding flow is illustrated by some cross-sections of
the axial velocity and a characteristic particle path.

ωb

ω = 0

ω = ωb

Interface

w = 0

v = 0

Fig. 2.21. Coordinate systems and
boundary conditions for problems with
rotational solid movement

Interaction of Flow and Solid Movement

Another important class of problems in technical applications is characterized
by moving solid parts interacting with fluid flows. Here, the solid part of the
problem can be described by a simple rigid body motion. As a simple repre-
sentative example for this class of applications the interaction of a flow with a
rotation of an impeller is displayed in Fig. 2.23. It shows the pressure distribu-
tion for four consecutive positions of the impeller illustrating the development

52 2 Modeling of Continuum Mechanical Problems

Fig. 2.22. Cross-section of
axial velocity (left), particle
path (right) for helix stirrer

of a sucking effect as in a pump. The flow, which enters at the upper channel,
implies a turning moment to the impeller and the resulting impeller rotation
interacts with the flow. The configuration is similar to that of a simple flow
meter (measuring the flow rate by just counting the impeller rotations).

Fig. 2.23. Pressure distribution
flow interacting with rotating im-
peller (dark area corresponds to
low pressure).

Assuming that the impeller rotates without friction around the shaft and
that the bending of the blades can be neglected, the impeller rotation can
simply be modelled by

2.6 Coupled Fluid-Solid Problems 53

D2φ

Dt2
=

3Mf

8md2
, (2.84)

where D2φ/Dt2, m, and d are the angular acceleration, the mass, and the
diameter of the impeller, respectively. Mf are the moments supplied by the
fluid, which are evaluated by integrating the pressure and friction forces over
the surfaces of the blades.

Concerning the flow model again the technique involving fixed and moving
frames of references as outlined in the previous section can be applied (see
Fig. 2.21). The only difference is that now the angular velocity ω of the
rotating frame of reference is no longer constant, but varies with the impeller
rotation by ω = Dφ/Dt.

Interaction of Flow and Solid Deformation

The most general problem class of mechanically coupled fluid-solid problems
is the interaction of flows and solid deformations, which occur if flexible struc-
tures are involved (e.g., paper, fabrics, arteries, . . .). As an example, Fig. 2.24
shows a corresponding problem situation with boundary conditions for the
flow around an elastic cylinder in plane strain conditions, which is fixed at
one point (right point).

�vw ui = 0

vi =
Dub

i

Dt

σijnj = Tijnj

Solid

Fluid Fig. 2.24. Example for interaction
of flow and solid deformation with
boundary conditions

The deformation of the cylinder due to the pressure and shear stress forces
of the flow can be seen in Fig. 2.25 showing an instantaneous distribution of
the streamlines and the horizontal velocity. The deformation in turn influences
the flow by inducing a moment via the movement of the cylinder boundary
and by changing the flow geometry. In this way a strongly interacting dynamic
process results.

Thermally coupled problem

As an example of a thermally coupled fluid-solid problem we consider a hollow
thick walled massive pipe coaxially surrounded by another pipe conveying a
fluid. The pipes are assumed to be infinitely long such that plane strain con-
ditions for the solid part can be applied. The (two-dimensional) problem con-
figuration with boundary conditions is sketched in Fig. 2.26 (left). The inner

54 2 Modeling of Continuum Mechanical Problems

Fig. 2.25. Streamlines and horizontal fluid
velocity for flow around cylinder with fluid-
structure interaction

boundary of the solid pipe is fixed and imposed with a constant temperature
T = Th. The outer boundary of the fluid pipe is at constant temperature
T = Tl (with Tl < Th). At the interface a fixed wall (vi = 0) for the fluid
can be applied, if the deformations are assumed to be small, while the flow
forces define the (stress) boundary conditions tbi = Tijnj for the solid. The
characteristics of the problem solution can be seen in Fig. 2.26 (right) showing
streamlines in the fluid part, displacements in the solid part, as well as the
global temperature distribution.

Interface

vi = 0
tbi = TijnjFluid

Solid

ui = 0
T = Th

vi = 0
T = Tl

Fig. 2.26. Thermally coupled fluid-solid problem: configuration and boundary con-
ditions (left), streamlines, displacements, and global temperature distribution (right)

Multi-Coupled Problem

Finally, as an example with multiple fluid-solid coupling mechanisms, we con-
sider the multi-field problem determining the functionality of a complex an-
tenna structure as they are employed, for instance, in space applications for
tracking satellites and space probes (see Fig. 2.27).

2.6 Coupled Fluid-Solid Problems 55

Fig. 2.27. Deformation of antenna structure

Figure 2.28 schematically illustrates the problem situation and the inter-
actions. The key parameters for the flow are the wind velocity and the site
topography. The temperature distribution is influenced by the sun radiation,
the ambient temperature, as well as by the flow. The structural deformation
is affected by the antenna weight, the temperature gradients, and the flow
forces. From the deformation of the structure, the pointing error describing
the deviation of the axis of the reflector from the optical axis can be deter-
mined. This is the key parameter for the functionality of the antenna, since it
has a significant influence on the power of the incoming electromagnetic sig-
nal. As an example the deformation resulting from a corresponding multi-field
analysis is indicated in Fig. 2.27.

Temperature

Fluid forces

Antenna weight

Wind velocity

Site topography

Sun radiation

Ambient temperature

Deformation

Surface accuracy
Pointing error

Thermal analysis

Flow analysis

Structural analysis

Fig. 2.28. Multi-field
analysis of antennas

56 2 Modeling of Continuum Mechanical Problems

Exercises for Chap. 2

Exercise 2.1. Given is the deformation

x(a, t) = (a1/4, et(a2+a3) + e−t(a2−a3), et(a2+a3) − e−t(a2−a3)) .

(i) Compute the Jacobi determinant of the mapping x = x(a, t) and formu-
late the reverse equation a = a(x, t). (ii) Determine the displacements and
velocity components in Eulerian and Lagrangian descriptions. (iii) Compute
the corresponding Green-Lagrange and the Green-Cauchy strain tensors.

Exercise 2.2. Show that balance of moment of momentum (2.12) can be
expressed by the symmetry of the Cauchy stress tensor (see Sect. 2.2.3).

Exercise 2.3. Derive the differential form (2.14) of the energy conservation
from the integral equation (2.13) (see Sect. 2.2.4).

Exercise 2.4. The velocity v = v(x) of a (one-dimensional) pipe flow is de-
scribed by the weak formulation: find v = v(x) with v(1) = 4 such that

3

3∫
1

v′ϕdx − 2

3∫
1

v′ϕ′ dx =

3∫
1

ϕ sin xdx + ϕ(3)

for all test functions ϕ. Derive the corresponding differential equation and
boundary conditions.

3

Discretization of Problem Domain

Having fixed the mathematical model for the description of the underlying
problem to be solved, the next step in the application of a numerical simula-
tion method is to approximate the continuous problem domain (in space and
time) by a discrete representation (i.e., nodes or subdomains), in which then
the unknown variable values are determined. The discrete geometry represen-
tation usually is done in the form of a grid over the problem domain, such
that the spatial discretization of the problem domain is also denoted as grid
generation. In practice, where one often is faced with very complex geome-
tries (e.g., airplanes, engine blocks, turbines, . . .), this grid generation can be
a very time-consuming task. Besides the question of the efficient generation of
the grid, its properties with respect to its interaction with the accuracy and
the efficiency of the subsequent computation in particular are of high practical
interest. In this chapter we will address the most important aspects in these
respects.

In order to keep the presentation simple, in the following considerations
we will restrict ourselves mainly to the two-dimensional case. However, all
methods – unless otherwise stated – usually are transferable without princi-
pal problems to the three-dimensional case (but mostly with a significantly
increased “technical” effort).

3.1 Description of Problem Geometry

An important aspect when applying numerical methods to a concrete practical
problem, which has to be taken into account before the actual discretization, is
the interface of the numerical method to the problem geometry, i.e., how this
is defined and how the geometric data are represented in the computer. For
complex three-dimensional applications this is a non-trivial problem. Since it
would be beyond the scope of this text to go deeper into this aspect, only
the key ideas are briefly addressed. Detailed information can be found in the
corresponding computer aided design (CAD) literature (e.g., [7]).

58 3 Discretization of Problem Domain

Nowadays in engineering practice the geometry information usually is
available in a standardized data format (e.g., IGES, STEP, . . .), which has
been generated by means of a CAD system. These data provide the interface
to the grid generation process. For the description of the geometry mainly the
following techniques are employed:

volume modeling,
boundary modeling.

The volume modeling is based on the definition of a number of simple objects
(e.g., cuboids, cylinders, spheres, . . .), which can be combined by Boolean
algebra operations. For instance, a square with a circular hole can be repre-
sented by the Boolean sum of the square and the negative of a circular disk
(see Fig. 3.1).

− =
Fig. 3.1. Volume modeling
of two-dimensional problem
domain

The most common method to describe the geometry is the representa-
tion by boundary surfaces (in the three-dimensional case) or boundary curves
(in the two-dimensional case). Such a description consists of a composition
of (usually curvilinear) surfaces or curves with which the boundary of the
problem domain is represented (see Fig. 3.2).

�

�

x

y

x1 = x1(s)

x2 = x2(s)

x3 = x3(s)

x4 = x4(s)

........
.........
.........
..........
..........
...........
............
.............
..............
................

..................
.......................

.................................
..

..........
..........

..........
...........

...........
...........

...........
...........

...........
............

............
.............

..............
...............

.................
....................

.............................
.. Fig. 3.2. Boundary modeling of

two-dimensional problem domain

Curvilinear surfaces usually are described by B-spline functions or Bezier
curves. For instance, a Bezier curve x = x(s) of degree n over the parameter
range a ≤ s ≤ b is defined by

3.1 Description of Problem Geometry 59

x(s) =
n∑

i=0

biB
n
i (s) (3.1)

with the n+1 control points (or Bezier points) bi and the so-called Bernstein
polynomials

Bn
i (s) =

1
(b − a)n

(
n
i

)
(s − a)i(b − s)n−i.

In Fig. 3.3, as an example, a Bezier curve of degree 4 with the corresponding
control points is illustrated.

�

�

x

y

b0

b1

b2

b3

b4

x = (x(s), y(s))

.........
.........
..........
..........
..........
...........
...........
...........
............
............
.............
.............
...............

................
..................

....................
.........................

...

Fig. 3.3. Bezier curve of degree 4
with control points

The points on a Bezier curve can be determined in a numerically stable
way from the prescribed control points by means of a relatively simple (re-
cursive) procedure known as de Casteljau algorithm. In addition, such curve
representations possess a number of very useful properties for the geometric
data manipulation, which, however, we will not detail here (see, e.g., [7]).

By taking the corresponding tensor product, based on representations of
the form (3.1) also Bezier surfaces x = x(s, t) can be defined:

x(s, t) =
n∑

i=0

m∑
k=0

bi,kBn
i (s)Bm

k (t) (3.2)

with a two-dimensional parameter range a1 ≤ s ≤ b1, a2 ≤ t ≤ b2.
Since in practice this often causes problems, we mention that the boundary

representations resulting from CAD systems often have gaps, discontinuities,
or overlappings between neighboring surfaces or curves. Frequently, on the ba-
sis of such a representation it is not possible to generate a “reasonable” grid.
For this it is necessary to suitably modify the input geometry (see Fig. 3.4).
This usually is supported in commercial grid generators by special helping
tools. Surface representations of the form (3.2) provide a good basis for such
corrections because they allow in a relatively easy way, i.e., by simple con-
ditions for the control points near the boundary, the achievement of smooth
transitions between neighboring surface pieces (e.g., continuity of first and
second derivatives).

60 3 Discretization of Problem Domain

x̃1 = x̃1(s)

x̃2 = x̃2(s)

x̃3 = x̃3(s)

x̃4 = x̃4(s)

........
........
........
.........
.........
.........
..........
...........
............
.............
..............
................

...................
........................

..
........................

.........
.........
.........
.........
..........
..........
..........

..........
..........

...........
...........

............
.............

..............
................

....................
.................................

..

Correction

x1 = x1(s)

x2 = x2(s)

x3 = x3(s)

x4 = x4(s)

........
.........
.........
..........
..........
...........
............
.............
...............

..................
......................

..................................
..

..........
...........

...........
...........

...........
...........

...........
............

............
.............

.............
...............

................
....................

..............................
..

Fig. 3.4. Example for inaccurate boundary representations from CAD systems and
corresponding corrections

3.2 Numerical Grids

All discretization methods, which will be addressed in the following chapters,
first require a discretization of the spatial problem domain. This usually is
done by the definition of a suitable grid structure covering the problem do-
main. A grid is defined by the grid cells, which in the two-dimensional case are
formed by grid lines (see Fig. 3.5). In the three-dimensional case the cells are
formed by grid surfaces which again are formed by grid lines. The intersections
of the grid lines define the grid points.

Grid
cell

Grid
line

Grid
point

Fig. 3.5. Two-dimensional numerical grid
with cells, lines, and points

In practice, often this grid generation for complex problem geometries is
the most time consuming part of a numerical investigation. On the one hand,
the grid should model the geometry as exactly as possible and, on the other
hand, the grid should be “good” with respect to an efficient and accurate
subsequent computation. Here, one has to take into account that there is a
close interaction between the geometry discretization, the discretization of the
equations, and the solution methods (for this also see the properties of the
discretization methods addressed in Sect. 8.1).

3.2 Numerical Grids 61

In general the relation between the numerical solution method and the
grid structure can be characterized as follows:

The more regular the grid, the more efficient the solution algorithms
for the computation, but the more inflexible it is with respect to the
modeling of complex geometries.

In practice, it is necessary to find here a reasonable compromise, where, in
addition, the question of the actually required accuracy for the concrete ap-
plication has to be taken into account. Also, the effort to create the grid
(compared to the effort for the subsequent computation) should be within
justifiable limits. In particular, this applies if due to a temporally varying
problem domain the grid has to be modified or generated anew several times
during the computation. In the next sections we will address the issues that
are of most relevance for the aforementioned aspects.

3.2.1 Grid Types

The type of a grid is closely related to the discretization and solution tech-
niques that are employed for the subsequent computation. There are a number
of distinguishing features which are of importance in this respect.

A first classification feature is the form of the grid cells. While in the
one-dimensional case subintervals are the only sensible choice, in the two-
dimensional and three-dimensional cases triangles or quadrilaterals and tetra-
hedras, hexahedras, prisms, or pyramids, respectively, are common choices
(rarely more general polygons and polyeders). In general, the cells also may
have curvilinear boundaries.

Furthermore, the grids can be classified according to the following types:

boundary-fitted grids,
Cartesian grids,
overlapping grids.

The characteristic features of corresponding grids are illustrated in Fig. 3.6.
Boundary-fitted grids are characterized by the fact that all boundary parts
of the problem domain are approximated by grid lines (boundary integrity).
With Cartesian grids the problem domain is covered by a regular grid, such
that at the boundary irregular grid cells may occur that require a special
treatment. Using overlapping grids, which are also known as Chimera grids,
different regions of the problem domain are discretized mostly independently
from each other, with regular grids allowing for overlapping areas at the in-
terfaces that also make a special treatment necessary.

Cartesian and overlapping grids are of interest only for very special appli-
cations (in particular in fluid mechanics), such that their application nowa-
days is not very common. Therefore, we will restrict our considerations in the
following to the case of boundary-fitted grids.

62 3 Discretization of Problem Domain

Fig. 3.6. Examples of boundary-fitted (left), Cartesian (middle), and overlapping
(right) grids

3.2.2 Grid Structure

A practically very important distinguishing feature of numerical grids is the
logical arrangement of the grid cells. In this respect, in general, the grids can
be classified into two classes:

structurerd grids,
unstructured grids.

In Figs. 3.7 and 3.8 examples for both classes are given.

Fig. 3.7. Examples of structured grids

Structured grids are characterized by a regular arrangement of the grid
cells. This means that there are directions along which the numbers of grid
points is always the same, where, however, certain regions (obstacles) can
be “masked out” (see left grid in Fig. 3.7). Thus, structured grids can be
warped, but logically they are rectangular (or cuboidal in three dimensions).
A consequence of the regular arrangement is that the neighboring relations
betweeen the grid points follow a certain fixed pattern, which can be exploited
in the discretization and solution schemes. Knowing the location of a grid

3.2 Numerical Grids 63

Fig. 3.8. Example of unstructured grid

point, the identity of the neighboring points is uniquely defined by the grid
structure.

For unstructured grids there is no regularity in the arrangement of the grid
points. The possibility of distributing the grid cells arbitrarily over the prob-
lem domain gives the best flexibility for the accurate modeling of the problem
geometry. The grid cells can be adjusted optimally to the boundaries of the
problem domain. Besides the locations of the grid points, for unstructured
grids also the relations to neighboring grid cells have to be stored. Thus, a
more involved data structure than for structured grids is necessary.

In Table 3.1 the most important advantages and disadvantages of struc-
tured and unstructured grids are summarized. For the practical application,
a simple conclusion from this is that one should first try to create the grid as
structured as possible. Deviations from this structure should be introduced
only if this is necessary due to requirements of the problem geometry so that
the grid quality is not too bad (see Sect. 8.3). The latter possibly also has
to be viewed in connection with local grid refinement (see Sect. 12.1), which
might be necessary for accuracy reasons and which can be realized relatively
easily with unstructured grids. There are strong limitations in this respect
with structured grids if one tries to maintain the structure.

Frequently, the grid structure is implicated with the shape of the grid
cells, i.e., triangular or tetrahedral grids are referred to as unstructured, and
quadrilateral or hexahedral grids as structured. However, the shape of the grid
cells does not determine the structure of the grid since structured triangular
grids and unstructured quadrilateral grids can be realized without problems.
Also the discretization technique, which is employed for a given grid for the
approximation of the equations, sometimes is implicated with the grid struc-
ture, i.e., finite-difference and finite-volume methods with structured grids
and finite-element methods with unstructured grids. Also this is misleading.
Each of the methods can be formulated for structured as well as unstructured
grids, where, however, due to the specific properties of the discretization tech-

64 3 Discretization of Problem Domain

Table 3.1. Advantages and disadvantages of structured and unstruc-
tured grids (relative to each other)

Property Structured Unstructured

Modeling of complex geometries − +

Local (adaptive) grid refinement − +

Automatization of grid generation − +

Effort for grid generation + −
Programming effort + −
Data storage and management + −
Solution of algebraic equation systems + −
Parallelization and vectorization of solvers + −

niques the one or the other approach appears to be advantageous (see the
corresponding discussions in Chaps. 4 and 5).

There are also mixed forms between structured and unstructured grids,
whose utilization turns out to be useful for many applications because it is
partially possible to combine the advantages of both approaches. Important
variants of such grids are:

block-structured grids,
hierarchically structured grids.

Figures 3.9 and 3.10 show examples of these two grid types.

Fig. 3.9. Examples of block-structured grids

Block-structured grids are locally structured within each block, but glob-
ally unstructured (irregular block arrangement) and in this sense can be
viewed as a compromise between the geometrically inflexible structured grids

3.2 Numerical Grids 65

Fig. 3.10. Example of hierarchically
structured grid

and the numerically costly unstructured grids. An adequate modeling of com-
plex geometries is possible without restrictions and within the individual
blocks efficient “structured” numerical techniques can be employed. However,
special attention has to be paid to the treatment of the block interfaces. Lo-
cal grid refinements can be done blockwise (see Fig. 3.11), and the so-called
“hanging nodes” (i.e., discontinuous grid lines across block interfaces) that
may occur require a special treatment in the solution method. Furthermore,
a block structure of the grid provides a natural basis for the parallelization of
the numerical scheme (this aspect will be detailed in Sect. 12.3).

Hanging nodes

Fig. 3.11. Example of blockwise locally refined
block-structured grid

In hierarchically structured grids, starting from a (block-)structured grid,
certain regions of the problem domain are locally refined again in a structured
way. With such grids there is much freedom for local adaptive grid refinement
and within the individual subregions still efficient “structured” solvers can be
used. Also in this case the interfaces between differently discretized regions
need special attention. Presently, hierarchically structured grids are not very
common in practice because there are hardly any numerical codes in which
such an approach is consistently realized.

66 3 Discretization of Problem Domain

For finite-element computations in the field of structural mechanics usually
unstructured grids are employed. In fluid mechanical applications, where the
number of grid points usually is much larger (and therefore aspects of the
efficiency of the solver become more important), (block-)structured grids still
dominate. However, in recent years a lot of efforts have been spent with respect
to the development of efficient solution algorithms for adaptive unstructured
and hierarchically structured grids, such that these also gain importance in
the area of fluid mechanics.

3.3 Generation of Structured Grids

In the following sections we outline the two most common methods for the
generation of structured grids: the algebraic grid generation and the elliptic
grid generation. The methods can be used as well for the blockwise generation
of block-structured grids, where additionally the difficulty of discontinuous
block interfaces has to be taken into account (which, however, we will not
discuss further).

In general, the task of generating a structured grid consists in finding a
unique mapping

(x, y) = (x(ξ, η), y(ξ, η)) or (ξ, η) = (ξ(x, y), η(x, y)) (3.3)

between given discrete values ξ = 0, 1, . . . , N and η = 0, 1, . . . , M (logical or
computational domain) and the physical problem coordinates (x, y) (physical
or problem domain). Generally, the physical domain is irregular, while the
logical domain is regular (see Fig. 3.12).

Important quantities for the characterization and control of the properties
of a structured grid are the components of the Jacobi matrix

�

�

x

y

x(ξ, 0)

x(N, η)
x(ξ, M)

x(0, η)

........
.........
.........
..........
..........
...........
............
.............
..............
................

...................
........................

.......................................
...

.........
..........
..........
...........
...........
............
.............
..............
...............

.................
...................

.....................
........................

..................

................
...............

.............
............
...........
...........
..........
..........
..........
.........
.........
.........
.........
.........
........
........
...

..........
..........

..........
...........

...........
...........

...........
...........

...........
............

............
.............

.............
...............

................
...................

.........................
...

..

...

..

..
...............................

........................
..

�

Physical domain Logical domain

�

�

ξ

η

0 1 . . . N
0

1

...

M

Fig. 3.12. Relation between coordinates and grid points in physical and logical
domains

3.3 Generation of Structured Grids 67

J =

⎡⎢⎢⎣
∂ξ

∂x

∂ξ

∂y

∂η

∂x

∂η

∂y

⎤⎥⎥⎦
of the mapping defined by the relations (3.3). To abbreviate the notation we
denote the derivatives of the physical with respect to the logical coordinates
(or vice versa) with a corresponding index, e.g., xξ = ∂x/∂ξ or ηx = ∂η/∂x.
These quantities also are called metrics of the grid.

For the required uniqueness of the relation between physical and logical
coordinates the determinant of the Jacobi matrix J may not vanish:

det(J) = ξxηy − ξyηx �= 0 .

In the next two sections we will see how corresponding coordinate transfor-
mations can be obtained either by algebraic relations or by the solution of
differential equations.

3.3.1 Algebraic Grid Generation

The starting point for an algebraic grid generation is the prescription of grid
points at the boundary of the problem domain (advantageously in physical
coordinates):

x(ξ, 0) = xs(ξ) , x(ξ,M) = xn(ξ) for ξ = 0, . . . , N,

x(0, η) = xw(η) , x(N, η) = xe(η) for η = 0, . . . , M.

For boundary-fitted grids the prescribed grid points are located on the corre-
sponding boundary curves x1, . . . ,x4. For the corner points the compatibility
conditions

xs(0) = xw(0) , xs(N) = xe(0) , xn(0) = xw(M) , xn(N) = xe(M)

have to be fulfilled (see Fig. 3.13).

xe(η) ∈ x1

xn(ξ) ∈ x2

x3 � xw(η)

x4 � xs(ξ)

xs(M) = xe(0)........
.........
.........
..........
..........
...........
............
.............
..............
................

..................
......................

................................
...

..........
..........

..........
...........

...........
...........

...........
...........

...........
............

............
.............

..............
...............

.................
....................

............................
..

Fig. 3.13. Prescription of boundary grid
points for algebraic generation of boundary-
fitted grids

68 3 Discretization of Problem Domain

By algebraic grid generation the points in the interior of the domain are
determined from the boundary grid points by an interpolation rule. Using a
simple linear interpolation results, for instance, in the following relation

x(ξ, η) = (1 − η

M
)xs(ξ) +

η

M
xn(ξ) + (1 − ξ

N
)xw(η) +

ξ

N
xe(η)

− ξ

N

[η

M
xn(M) + (1 − η

M
)xs(M)

]
(3.4)

−(1 − ξ

N
)
[η

M
xn(0) + (1 − η

M
)xs(0)

]
,

which is known as transfinite interpolation. With formula (3.4) the coordinates
of all interior grid points (for ξ = 1, . . . , N−1 and η = 1, . . . , M−1) are defined
in terms of the given boundary grid points. For the problem domain shown in
Fig. 3.13 with the given distribution of boundary grid points from (3.4) the
grid shown in Fig. 3.14 results. Another grid generated with this method is
shown in Fig. 3.16 (left). Generalizations of the transfinite interpolation, which
are possible in different directions, result, for instance, by a prior partitioning
of the problem domain into different subdomains or by the usage of higher-
order interpolation rules (see, e.g., [13]).

Fig. 3.14. Grid generated by transfinite inter-
polation

Frequently, it is desirable to cluster grid lines in certain areas of the prob-
lem domain in order to achieve there locally a higher discretization accuracy.
Usually these are regions in which high gradients of the problem variables
occur (e.g., in the vicinity of walls for flow problems).

By employing the transfinite interpolation a clustering of the grid lines
can be achieved by a corresponding concentration of the grid points along
the boundary curves. For this so-called stretching functions can be employed.
A simple stretching function allowing for a concentration of grid points xi

(i = 1, . . . , N − 1), for instance at the right end of the interval [x0, xN], is
given by

xi = x0 +
αi − 1
αN − 1

(xN − x0) for all i = 0, . . . , N , (3.5)

3.3 Generation of Structured Grids 69

where the parameter 0 < α < 1 (expansion factor) serves to control the desired
clustering of the grid points. The closer α is to zero, the denser the grid points
are near xN . In Fig. 3.15 the distributions resulting from different values for
α are indicated.

Equation (3.5) is based on the well-known totals formula for geometric
series. The grids generated this way have the property that the ratio of neigh-
boring grid point distances is always constant, i.e.,

xi+1 − xi

xi − xi−1
= α for all i = 1, . . . , N − 1 .

By applying formula (3.5) to certain subregions a concentration of grid points
can be achieved at arbitrary locations. Two- or three-dimensional concentra-
tions of grid points can be obtained by a corresponding application of (3.5)
in each spatial direction.

α = 0.5

α = 0.8

x0 . . . xN

α = 1.0
Fig. 3.15. Grid point clustering
for N = 7 with different expan-
sion factors α

From the above procedure already the general assets and drawbacks of
algebraic grid generation become apparent. They are very easy to implement
(including the clustering of grid lines), require little computational effort, and
for simpler geometries possess enough flexibility for a quick generation of “rea-
sonable” grids. All geometric quantities (metrics) needed for the subsequent
computation can be computed analytically, such that no additional numeri-
cal errors arise. However, for more complex problem domains such methods
are less suitable, because irregularities (e.g., kinks) in the boundary of the
problem domain propagate into the interior and the proper control of the
“smoothness” and the “distortion” of the grids is relatively difficult.

3.3.2 Elliptic Grid Generation

An alternative approach for the generation of structured grids is provided
by techniques based on the solution of suitable partial differential equations.
In this context one distinguishes between hyperbolic, parabolic, and elliptic
methods, corresponding to the type of the underlying differential equation.
We will address here only the elliptic method, which is the most widespread
in practice.

With elliptic grid generation one creates the grid, for instance via a system
of differential equations of the form

70 3 Discretization of Problem Domain

ξxx + ξyy = 0 ,
(3.6)

ηxx + ηyy = 0 ,

which is solved in the problem domain with prescribed boundary grid points
as boundary conditions. Here, one exploits the fact that elliptic differential
equations, as for instance the above Laplace equation (3.6), fulfill a maximum
principle stating that extremal values always are taken at the boundary. This
ensures that a monotonic prescription of the boundary grid points always
results in a valid grid, i.e., crossovers of grid lines do not occur.

For the actual determination of the grid coordinates the equations (3.6)
have to be solved in the logical problem domain, i.e., dependent und indepen-
dent variables have to be interchanged. In this way (by applying the chain
rule) the following equations result:

c1xξξ − 2c2xξη + c3xηη = 0 ,
(3.7)

c1yξξ − 2c2yξη + c3yηη = 0

with

c1 = x2
η + y2

η , c2 = xξxη + yξyη , c3 = x2
ξ + y2

ξ .

This differential equation system can be solved for the physical grid coordi-
nates x and y. As numerical grid for the solution process the logical grid is
taken and the required boundary conditions are defined by the given bound-
ary curves (in the physical domain). Note that the system (3.7) is non-linear,
such that an iterative solution process is required (see Sect. 7.2). This can be
started, for instance, with a grid that is generated algebraically beforehand.

By adding source terms to (3.6) a clustering of grid points in certain regions
of the problem domain can be controlled:

ξxx + ξyy = P (ξ, η),
ηxx + ηyy = Q(ξ, η).

Regarding the (non-trivial) question of how to choose the functions P and Q in
order to achieve a certain grid point distribution, we refer to the corresponding
literature (e.g., [15]).

To illustrate the characteristic properties of algebraically and elliptically
generated grids, Fig. 3.16 shows corresponding grids obtained for the same
problem geometry with typical representatives of both approaches. One can
observe the considerably “smoother” grid lines resulting from the elliptic
method.

Concerning the advantages and disadvantages of the elliptic grid gener-
ation one can state that due to the necessity of solving (relatively simple)
partial differential equations these methods are computationally more costly
than algebraic methods. An advantage is that also in the case of boundary ir-
regularities smooth grids in the interior result. The metric of the grid usually

3.4 Generation of Unstructured Grids 71

Fig. 3.16. Example for different properties of algebraically (left) and elliptically
(right) generated grids

has to be determined numerically. However, this usually is not critical due
to the smoothness of the grid. The concentration of grid points in certain re-
gions of the problem domain is basically simple, but the “proper” choice of the
corresponding functions P and Q in the concrete case might be problematic.

3.4 Generation of Unstructured Grids

A vital motivation for the usage of unstructured grids is the desire to autom-
atize the grid generation process as far as possible. The ideal case would be
to start form the description of the problem geometry by boundary curves
or surfaces, so that a “feasible” grid is generated without any further inter-
vention of the user. Since one comes closest to this ideal case with triangles
or tetrahedras, usually these cell types are employed for unstructured grids.
Recently, also interesting approaches for the automatic generation of quadri-
lateral or hexahedral grids for arbitrary geometries have been developed. The
so-called paving method appears to be particularly promising (see, e.g., [5]).
However, we will concentrate here on triangular grids only.

In practice, the most common techniques for the generation of unstruc-
tured triangular grids are advancing-front methods and Delaunay triangula-
tions, which exist in a variety of variants. We will concentrate on identifying
the basic ideas of these two approaches. Also combinations of both techniques,
which try to exploit respective advantages (or avoid the disadvantages) are
employed.

Other techniques for the generation of unstructured grids are quadtree
methods (octree methods in three dimensions), which are based on recursive
subdivisions of the problem domain. These methods are easy to implement,
require little computational effort, and usually produce quite “good” grids in
the interior of the problem domain. However, an essential disadvantage is that
the corresponding grids often have a very irregular structure in the vicinity of

72 3 Discretization of Problem Domain

the boundary of the problem domain (which is very unfavorable particularly
for flow problems).

3.4.1 Advancing Front Methods

Advancing front methods, which date back to the mid 1980s, can be employed
for the generation of triangular as well as quadrilateral grids (or also combina-
tions of both). Starting from a grid point distribution at the boundary of the
problem domain new grid cells are systematically created successively, until
finally the full problem domain is covered with a mesh.

Let us assume first that also the distribution of the interior grid points
already is prescribed. In this case the advancing front methods for generating
triangular grids is as follows:

(i) All edges along the inner boundary of the problem domain are succes-
sively numbered clockwise (not applicable if there are no inner bound-
aries). The edges along the outer boundary are successively numbered
counterclockwise. The full numbering is consecutively stored in a vector
k defining the advancing front.

(ii) For the last edge in the vector k all grid points are searched which are
located on or within the advancing front. From these (admissible) grid
points one is selected according to a certain criterion, e.g., the one for
which the sum of the distances to the two grid points of the last edge
is smallest. With the selected and the two points of the last edge a new
triangle is formed.

(iii) The edges of the new triangle, which are contained in k, are deleted and
the numbering of the remaining edges in k is adjusted (compression).
The edges of the new triangle, which are not contained in k, are added
at the end of k.

(iv) Steps (ii) and (iii) are repeated until all edges in k are deleted.

The procedure is illustrated in Fig. 3.18 for a simple example (without inner
boundary).

The advancing front method also can be carried out without prescribing
interior grid points, which, of course, only makes the algorithm interesting
with respect to a mostly automatized grid generation. Here, at the beginning
of step (ii), following a certain rule first a new interior grid point is created,
e.g., such that this forms with the two points of the actual edge an equilateral
triangle. However, one should check if the point created this way is admissible.
In other words, it must be located such that the generated triangle does not
intersect with an already created triangle and it should not be too close to an
already existing point because this would lead (maybe only at a later stage
of the algorithm) to a strongly degenerated triangle. If the created point is
not admissible in this sense, another point can be created instead or a point
already existing on the advancing front can be selected following the same
criteria as above.

3.4 Generation of Unstructured Grids 73

7

6
54

3

2

1

8

9

10

11

12

13

Fig. 3.17. Numbering of edges at inner and
outer boundaries for advancing front method

Grid point distribution

Resulting grid

Fig. 3.18. Example for generation of unstructured grid with advancing front method
(the thick lines represent the respective actual advancing fronts)

An advantage of the advancing front method is the simple possibility of
the automatic generation of the interior grid points (with “good” quality of
the triangles). In addition, it is always ensured – also in non-convex cases –
that the boundary of the problem domain is represented by grid lines because
the boundary discretization defines the starting point of the method and is
not modified during the process. A disadvantage of the method must be seen
in the relatively high computational effort, which, in particular, is necessary
for checking if points are admissible and have tolerable distances.

74 3 Discretization of Problem Domain

3.4.2 Delaunay Triangulations

Delaunay triangulations, which have been investigated since the beginning
of the 1980s, are unique triangulations of a given set of grid points fulfilling
certain properties, i.e., out of all possible triangulations for this set of points
these properties determine a unique one. Knowing this, the idea is to use these
properties to create such triangulations.

One such approach, which is known as Bowyer-Watson algorithm, is based
on the property that the circle through the three corner points (circumcircle)
of an arbitrary triangle contains no other points (the circumcircle of a triangle
is uniquely determined and its midpoint is located at the intersection point
of the perpendicular bisectors of the triangle sides). The corresponding grid
generation algorithm starts from a (generally very coarse) initial triangulation
of the problem domain. By adding at each time one new point successively
further grids are created, where the corresponding strategy is based on the
above mentioned circumcircle property. First, all triangles whose circumcircles
contain the new point are determined. These triangles are deleted. A new tri-
angulation is generated by connecting the new point with the corner points of
the polygon which results from the deletion of the triangles. The methodology
is illustrated in Fig. 3.19.

New
point

Fig. 3.19. Insertion of new grid point in a Delaunay triangulation with the Bowyer-
Watson algorithm

The above triangulation procedure can be started “from scratch” by defin-
ing a “supertriangle” fully containing the problem domain. The nodes of the
supertriangle are temporarily added to the list of nodes and the point inser-
tion procedure is carried out as described above. Finally, after having inserted
all points, all triangles which contain one or more vertices of the supertriangle
are removed. As an example, the procedure is illustrated in Fig. 3.20 for the
Delaunay triangulation of an ellipse with one internal grid point. The points

3.4 Generation of Unstructured Grids 75

Supertriangle

12
3 4 5

6
789

Intermediate
stage

After point
insertion

Final triangulation

Fig. 3.20. Supertriangle and point insertion process for Delaunay triangulation of
an ellipse

are inserted in the order of the indicated numbering. The intermediate stage
shows the situation after the insertion of point 5.

If the locations at which the grid points should be added are prescribed,
the above procedure simply is carried out as long as all points are inserted.
However, as for the advancing-front method, also the Bowyer-Watson algo-
rithm can be combined with a strategy for an automatic generation of grid
points. A relatively simple approach for this can be realized, for instance, in
connection with a priority list on the basis of a certain property of the tri-
angles (e.g., the diameter of the circumcircle). The triangle with the highest
priority is checked with respect to a certain criterion, e.g., the diameter of
the circumcircle should be larger than a prescribed value. If this criterion is
fulfilled, a new grid point is generated (e.g., the midpoint of the circumcircle)
for this triangle. According to this procedure new triangles are inserted into
the grid and added to the priority list. The algorithm stops if there is no more
triangle fulfilling the given criterion.

Other methods for the generation of a Delaunay triangulation are based
on the so called edge-swapping technique. Here, each time pairs of neighboring
triangles possessing a common edge are considered. By the “swapping” of the
common edge two other triangles are created, and based on a certain criterion
one decides which of the two configurations is selected (see Fig. 3.21). Such
a criterion can be, for instance, that the smallest angle occurring in the two
triangles is maximal. For the example shown in Fig. 3.21 in this case the right
configuration would be selected.

Methods for the generation of a Delaunay triangulations usually are less
computationally intensive than advancing front methods because there are
no elaborate checking routines with respect to intersections and minimal dis-

76 3 Discretization of Problem Domain

�

Fig. 3.21. Edge-swapping tech-
nique for neighboring triangles

tances necessary. A major disadvantage of these methods, however, is that
for non-convex problem domains no boundary integrity is guaranteed, i.e.,
triangles can arise that are located (at least partially) outside the problem
domain. In this case the grid has to be suitably modified in the corresponding
region, where it is then not always possible to fulfill the underlying basic prop-
erty. In particular, this can cause difficulties for corresponding generalizations
for the three-dmensional case.

Exercises for Chap. 3

Exercise 3.1. For a two-dimensional problem domain the boundary curves
x1 = (s, 0), x2 = (1+2s−2s2, s), x3 = (s, 1−3s+3s2), and x4 = (0, s) with
0 ≤ s ≤ 1 are given. (i) Determine the coordinate transformation resulting
from the application of the transfinite interpolation (3.4) when the prescribed
boundary points are the ones defined by s = i/4 with i = 0, . . . , 4. (ii) Discuss
the uniqueness of the mapping. (iii) Use the stretching function (3.5) with
α = 2/3 for the clustering of grid points along the boundary curve x4. (iv)
Transform the membrane equation (2.17) to the coordinates (ξ, η).

Exercise 3.2. For the problem geometry shown in Fig. 3.22 generate a tri-
angular grid with the advancing front method with the black grid points.
Afterwards insert the white grid points into the grid by means of the Bowyer-
Watson algorithm.

Fig. 3.22. Problem domain and grid point distri-
bution for Exercise 3.2

4

Finite-Volume Methods

Finite-volume methods (FVM) – sometimes also called box methods – are
mainly employed for the numerical solution of problems in fluid mechanics,
where they were introduced in the 1970s by McDonald, MacCormack, and
Paullay. However, the application of the FVM is not limited to flow prob-
lems. An important property of finite-volume methods is that the balance
principles, which are the basis for the mathematical modelling of continuum
mechanical problems, per definition, also are fulfilled for the discrete equations
(conservativity). In this chapter we will discuss the most important basics of
finite-volume discretizations applied to continuum mechanical problems. For
clarity in the presentation of the essential principles we will restrict ourselves
mainly to the two-dimensional case.

4.1 General Methodology

In general, the FVM involves the following steps:

(1) Decomposition of the problem domain into control volumes.
(2) Formulation of integral balance equations for each control volume.
(3) Approximation of integrals by numerical integration.
(4) Approximation of function values and derivatives by interpolation with

nodal values.
(5) Assembling and solution of discrete algebraic system.

In the following we will outline in detail the individual steps (the solution of
algebraic systems will be the topic of Chap. 7). We will do this by example
for the general stationary transport equation (see Sect. 2.3.2)

∂

∂xi

(
ρviφ − α

∂φ

∂xi

)
= f (4.1)

78 4 Finite-Volume Methods

for some problem domain Ω. We remark that a generalization of the FVM to
other types of equations as given in Chap. 2 is straightforward (in Chap. 10
this will be done for the Navier-Stokes equations).

The starting point for a finite-volume discretization is a decomposition of
the problem domain Ω into a finite number of subdomains Vi (i = 1, . . . , N),
called control volumes (CVs), and related nodes where the unknown variables
are to be computed. The union of all CVs should cover the whole problem
domain. In general, the CVs also may overlap, but since this results in un-
necessary complications we consider here the non-overlapping case only. Since
finally each CV gives one equation for computing the nodal values, their final
number (i.e., after the incorporation of boundary conditions) should be equal
to the number of CVs. Usually, the CVs and the nodes are defined on the
basis of a numerical grid, which, for instance, is generated with one of the
techniques described in Chap. 3. In order to keep the usual terminology of
the FVM, we always talk of volumes (and their surfaces), although strictly
speaking this is only correct for the three-dimensional case.

For one-dimensional problems the CVs are subintervals of the problem
interval and the nodes can be the midpoints or the edges of the subintervals
(see Fig. 4.1).

�� CV Nodes

Fig. 4.1. Definitions of CVs and
edge (top) and cell-oriented (bot-
tom) arrangement of nodes for
one-dimensional grids

In the two-dimensional case, in principle, the CVs can be arbitrary poly-
gons. For quadrilateral grids the CVs usually are chosen identically with the
grid cells. The nodes can be defined as the vertices or the centers of the CVs
(see Fig. 4.2), often called edge or cell-centered approaches, respectively. For
triangular grids, in principle, one could do it similarily, i.e., the triangles define
the CVs and the nodes can be the vertices or the centers of the triangles. How-
ever, in this case other CV definitions are usually employed. One approach is
closely related to the Delaunay triangulation discussed in Sect. 3.4.2. Here, the
nodes are chosen as the vertices of the triangles and the CVs are defined as the
polygons formed by the perpendicular bisectors of the sides of the surrounding
triangles (see Fig. 4.3). These polygons are known as Voronoi polygons and
in the case of convex problems domains and non-obtuse triangles there is a
one-to-one correspondance to a Delaunay triangulation with its “nice” prop-
erties. However, this approach may fail for arbitrary triangulations. Another
more general approach is to define a polygonal CV by joining the centroids
and the midpoints of the edges of the triangles surrounding a node leading to
the so-called Donald polygons (see Fig. 4.4).

4.1 General Methodology 79

CVs

Nodes

Fig. 4.2. Edge-oriented
(left) and cell-oriented
(right) arrangements of
nodes for quadrilateral grids

CV

Node

Fig. 4.3. Definition of CVs and nodes for tri-
angular grids with Voronoi polygons

CV

Node

Fig. 4.4. Definition of CVs and nodes for tri-
angular grids with Donald polygons

For three-dimensional problems on the basis of hexahedral or tetrahedral
grids similar techniques as in the two-dimensional case can be applied (see,
e.g., [26]).

After having defined the CVs, the balance equations describing the prob-
lem are formulated in integral form for each CV. Normally, these equations are
directly available from the corresponding continuum mechanical conservation
laws (applied to a CV), but they can also be derived by integration from the
corresponding differential equations. By integration of (4.1) over an arbitrary
control volume V and application of the Gauß integral theorem, one obtains:∫

S

(
ρviφ − α

∂φ

∂xi

)
ni dS =

∫
V

f dV , (4.2)

80 4 Finite-Volume Methods

where S is the surface of the CV and ni are the components of the unit
normal vector to the surface. The integral balance equation (4.2) constitutes
the starting point for the further discretization of the considered problem with
an FVM.

As an example we consider quadrilateral CVs with a cell-oriented arrange-
ment of nodes (a generalization to arbitrary polygons poses no principal dif-
ficulties). For a general quadrilateral CV we use the notations of the distin-
guished points (midpoint, midpoints of faces, and edge points) and the unit
normal vectors according to the so-called compass notation as indicated in
Fig. 4.5. The midpoints of the directly neighboring CVs we denote – again in
compass notation – with capital letters S, SE, etc. (see Fig. 4.6).

�
x1, x

�x2, y

�

�

�

�

s

w
e

n

V

S

se

ne

sw

nw

P

ne

nw

nn

ns Fig. 4.5. Quadrilateral control
volume with notations

P

E

N

W

S

NE

SE

NW

SW

Fig. 4.6. Notations for neighbor-
ing control volumes

The surface integral in (4.2) can be split into the sum of the four surface
integrals over the cell faces Sc (c = e,w,n, s) of the CV, such that the balance
equation (4.2) can be written equivalently in the form∑

c

∫
Sc

(
ρviφ − α

∂φ

∂xi

)
nci dSc =

∫
V

f dV . (4.3)

4.2 Approximation of Surface and Volume Integrals 81

The expression (4.3) represents a balance equation for the convective and
diffusive fluxes FC

c and FD
c through the CV faces, respectively, with

FC
c =

∫
Sc

(ρviφ)nci dSc and FD
c = −

∫
Sc

(
α

∂φ

∂xi

)
nci dSc .

For the face Se, for instance, the unit normal vector ne = (ne1, ne2) is defined
by the following (geometric) conditions:

(xne − xse) · ne = 0 und |ne| =
√

n2
e1 + n2

e2 = 1 .

From this one obtains the representation

ne =
(yne − yse)

δSe
e1 − (xne − xse)

δSe
e2 , (4.4)

where

δSe = |xne − xse| =
√

(xne − xse)2 + (yne − yse)2

denotes the length of the face Se. Analogous relations result for the other CV
faces.

For neighboring CVs with a common face the absolute value of the total
flux Fc = FC

c + FD
c through this face is identical, but the sign differs. For

instance, for the CV around point P the flux Fe is equal to the flux −Fw

for the CV around point E (since (ne)P = −(nw)E). This is exploited for the
implementation of the method in order to avoid on the one hand a double com-
putation for the fluxes and on the other hand to ensure that the corresponding
absolute fluxes really are equal (important for conservativity, see Sect. 8.1.4).
In the case of quadrilateral CVs the computation can be organized in such a
way that, starting from a CV face at the boundary of the problem domain,
for instance, only Fe und Fn have to be computed.

It should be noted that up to this point we haven’t introduced any ap-
proximation, i.e., the flux balance (4.3) is still exact. The actual discretization
now mainly consists in the approximation of the surface integrals and the vol-
ume integral in (4.3) by suitable averages of the corresponding integrands at
the CV faces. Afterwards, these have to be put into proper relation to the
unknown function values in the nodes.

4.2 Approximation of Surface and Volume Integrals

We start with the approximation of the surface integrals in (4.3), which for a
cell-centered variable arrangement suitably is carried out in two steps:

(1) Approximation of the surface integrals (fluxes) by values on the CV faces.

82 4 Finite-Volume Methods

(2) Approximation of the variable values at the CV faces by node values.

As an example let us consider the approximation of the surface integral∫
Se

winei dSe

over the face Se of a CV for a general integrand function w = (w1(x), w2(x))
(the other faces can be treated in a completely analogous way).

The integral can be approximated in different ways by involving more or
less values of the integrand at the CV face. The simplest possibility is an
approximation by just using the midpoint of the face:∫

Se

winei dSe ≈ ge δSe , (4.5)

where we denote with ge = weinei the normal component of w at the loca-
tion e. With this, one obtains an approximation of 2nd order (with respect to
the face length δSe) for the surface integral, which can be checked by means
of a Taylor series expansion (Exercise 4.1). The integration formula (4.5) cor-
responds to the midpoint rule known from numerical integration.

Other common integration formulas, that can be employed for such ap-
proximations are, for instance, the trapezoidal rule and the Simpson rule. The
corresponding formulas are summarized in Table 4.1 with their respective
orders (with respect to δSe).

Table 4.1. Approximations for surface integrals
over the face Se

Name Formula Order

Midpoint rule δSege 2
Trapezoidal rule δSe(gne + gse)/2 2
Simpson rule δSe(gne + 4ge + gse)/6 4

For instance, by applying the midpoint rule for the approximation of the
convective and diffusive fluxes through the CV faces in (4.3), we obtain the
approximations:

FC
c ≈ ρvinciδSc︸ ︷︷ ︸

ṁc

φc and FD
c ≈ −αnciδSc

(
∂φ

∂xi

)
c

,

where, for simplicity, we have assumed that vi, ρ, and α are constant across
the CV. ṁc denotes the mass flux through the face Sc. Inserting the definition

4.2 Approximation of Surface and Volume Integrals 83

of the normal vector, we obtain, for instance, for the convective flux through
the face Se, the approximation

FC
e ≈ ṁeφe = ρ[v1(yne − yse) − v2(xne − xse)] .

Before we turn to the further discretization of the fluxes, we first deal
with the approximation of the volume integral in (4.3), which normally also is
carried out by means of numerical integration. The assumption that the value
fP of f in the CV center represents an average value over the CV leads to the
two-dimensional midpoint rule:∫

V

f dV ≈ fP δV ,

where δV denotes the volume of the CV, which for a quadrilateral CV is given
by

δV =
1
2
|(xse − xnw)(yne − ysw) − (xne − xsw)(yse − ynw)| .

An overview of the most common two-dimensional integration formulas
for Cartesian CVs with the corresponding error order (with respect to δV) is
given in Fig. 4.7 showing a schematical representation with the corresponding
location of integration points and weighting factors. As a formula this means,
e.g., in the case of the Simpson rule, an approximation of the form:∫

V

f dV ≈ δV

36
(16fP + 4fe + 4fw + 4fn + 4fs + fne + fse + fne + fse) .

It should be noted that the formulas for the two-dimensional numerical inte-
gration can be used to approximate the surface integrals occurring in three-
dimensional applications. For three-dimensional volume integrals analogous
integration formulas as for the two-dimensional case are available.

In summary, by applying the midpoint rule (to which we will retrict
ourselves) we now have the following approximation for the balance equa-
tion (4.3): ∑

c

ṁcφc︸ ︷︷ ︸
conv. fluxes

−
∑

c

αnci δSc

(
∂φ

∂xi

)
c︸ ︷︷ ︸

diff. fluxes

= fP δV︸ ︷︷ ︸
source

. (4.6)

In the next step it is necessary to approximate the function values and deriva-
tives of φ at the CV faces occurring in the convective and diffusive flux ex-
pressions, respectively, by variable values in the nodes (here the CV centers).
In order to clearly outline the essential principles, we will first explain the
corresponding approaches for a two-dimensional Cartesian CV as indicated in
Fig. 4.8. In this case the unit normal vectors nc along the CV faces are given
by

84 4 Finite-Volume Methods

Midpoint rule

Order 2

Trapezoidal rule

Order 2

Order 2

Simpson rule

Order 4

1

1/4

1/4

1/4

1/4

1/8

1/8 1/8

1/8

1/2

1/9

1/9 1/9

1/9

4/9

1/36

1/36

1/36

1/36

Fig. 4.7. Schematic representation of numerical integration formulas for two-
dimensional volume integrals over a Cartesian CV

ne = e1 , nw = −e1 , nn = e2 , ns = −e2

and the expressions for the mass fluxes through the CV faces simplify to

ṁe = ρv1(yn − ys) , ṁn = ρv2(xe − xw) ,
ṁw = ρv1(ys − yn) , ṁs = ρv2(xw − xe) .

Particularities that arise due to non-Cartesian grids will be considered in
Sect. 4.5.

4.3 Discretization of Convective Fluxes

For the further approximation of the convective fluxes FC
c , it is necessary

to approximate φc by variable values in the CV centers. In general, this in-
volves using neighboring nodal values φE, φP, . . . of φc. The methods most
frequently employed in practice for the approximation will be explained in
the following, where we can restrict ourselves to one-dimensional considera-
tions for the face Se, since the other faces and the second (or third) spatial
dimension can be treated in a fully analogous way. Traditionally, the corre-
sponding approximations are called differencing techniques, since they result

4.3 Discretization of Convective Fluxes 85

�
x1, x

�
x2, y

xw xe

ys

yn

s

w e

n

P ��

�

�

nenw

nn

ns

��

�� �

�

�

�
δSs

δSn

δSw δSe

Fig. 4.8. Cartesian control volume
with notations

in formulas analogous to finite-difference methods. Strictly speaking, these are
interpolation techniques.

4.3.1 Central Differences

For the central differencing scheme (CDS) φe is approximated by linear inter-
polation with the values in the neighboring nodes P und E (see Fig. 4.9):

φe ≈ γeφE + (1 − γe)φP . (4.7)

The interpolation factor γe is defined by

γe =
xe − xP

xE − xP
.

The approximation (4.7) has, for an equidistant grid as well as for a non-
equidistant grid, an interpolation error of 2nd order. This can be seen from a
Taylor series expansion of φ around the point xP:

φ(x) = φP + (x − xP)
(

∂φ

∂x

)
P

+
(x − xP)2

2

(
∂2φ

∂x2

)
P

+ TH ,

where TH denotes the terms of higher order. Evaluating this series at the
locations xe and xE and taking the difference leads to the relation

φe = γeφE + (1 − γe)φP − (xe − xP)(xE − xe)
2

(
∂2φ

∂x2

)
P

+ TH ,

which shows that the leading error term depends quadratically on the grid
spacing.

86 4 Finite-Volume Methods

�

�

x

φ

P Ee

φP

φE

φe

Fig. 4.9. Approximation of φe

with CDS method

By involving additional grid points, central differencing schemes of higher
order can be defined. For instance, an approximation of 4th order for an
equidistant grid is given by

φe =
1
48

(−3φEE + 27φE + 27φP − 3φW) ,

where EE denotes the “east” neighboring point of E (see Fig. 4.11). Note that
an application of this formula only makes sense if it is used together with an
integration formula of 4th order, e.g., the Simpson rule. Only in this case is
the total approximation of the convective flux also of 4th order.

When using central differencing approximations unphysical oscillations
may appear in the numerical solution (the reasons for this problem will be
discussed in detail in Sect. 8.1). Therefore, one often uses so-called upwind
approximations, which are not sensitive or less sensitive to this problem. The
principal idea of these methods is to make the interpolation dependent on the
direction of the velocity vector. Doing so, one exploits the transport property
of convection processes, which means that the convective transport of φ only
takes place “downstream”. In the following we will discuss two of the most
important upwind techniques.

4.3.2 Upwind Techniques

The simplest upwind method results if φ is approximated by a step function.
Here, φe is determined depending on the direction of the mass flux as follows
(see Fig. 4.10):

φe = φP , if ṁe > 0 ,

φe = φE , if ṁe < 0 .

This method is called upwind differencing scheme (UDS). A Taylor series
expansion of φ around the point xP, evaluated at the point xe, gives:

4.3 Discretization of Convective Fluxes 87

φe = φP + (xe − xP)
(

∂φ

∂x

)
P

+
(xe − xP)2

2

(
∂2φ

∂x2

)
P

+ TH .

This shows that the UDS method (independent of the grid) has an interpola-
tion error of 1st order. The leading error term in the resulting approximation
of the convective flux FC

e becomes

ṁe(xe − xP)︸ ︷︷ ︸
αnum

(
∂φ

∂x

)
P

.

The error caused by this is called artificial or numerical diffusion, since the
error term can be interpreted as a diffusive flux. The coefficient αnum is a
measure for the amount of the numerical diffusion. If the transport direction
is nearly perpendicular to the CV face, the approximation of the convective
fluxes resulting with the UDS method is comparably good (the derivative
(∂φ/∂x)P is then small). Otherwise the approximation can be quite inaccurate
and for large mass fluxes (i.e., large velocities) it can then be necessary to
employ very fine grids (i.e., xe − xP very small) for the computation in order
to achieve a solution with an adequate accuracy. The disadvantage of the
relatively poor accuracy is confronted by the advantage that the UDS method
leads to an unconditionally bounded solution algorithm. We will discuss this
aspect in more detail in Sect. 8.1.5.

�

�

x

φ

P Ee

φP

φE

φe

φe

�

�
ṁe < 0

ṁe > 0

Fig. 4.10. Mass flux dependent
approximation of φe with UDS
method

An upwind approximation frequently employed in practice is the quadratic
upwind interpolation, which in the literature is known as the QUICK method
(Quadratic Upwind Interpolation for Convective Kinematics). Here, a quad-
ratic polynomial is fitted through the two neighboring points P and E, and a
third point, which is located upstream (W or EE depending on the flow direc-
tion). Evaluating this polynomial at point e one obtains the approximation
(see also Fig. 4.11):

88 4 Finite-Volume Methods

φe = a1φE − a2φW + (1 − a1 + a2)φP , if ṁe > 0 ,

φe = b1φP − b2φEE + (1 − b1 + b2)φE , if ṁe < 0 ,

where

a1 =
(2 − γw)γ2

e

1 + γe − γw
, a2 =

(1 − γe)(1 − γw)2

1 + γe − γw
,

b1 =
(1 + γw)(1 − γe)2

1 + γee − γe
, b2 =

γ2
eeγe

1 + γee − γe
.

For an equidistant grid one has:

a1 =
3
8

, a2 =
1
8

, b1 =
3
8

, b2 =
1
8

.

In this case the QUICK method possesses an interpolation error of 3rd or-
der. However, if it is used together with numerical integration of only 2nd order
the overall flux approximation also is only of 2nd order, but it is somewhat
more accurate than with the CDS method.

�

�

x

φ

W P E EEe

φW

φP

φE φEEφe

φe

�� ṁe < 0

ṁe > 0

Fig. 4.11. Mass flux dependent approximation of φe with QUICK method

Before we turn to the discretization of the diffusive fluxes, we will point to
a special technique for the treatment of convective fluxes, which is frequently
employed for transport equations.

4.3.3 Flux-Blending Technique

The principal idea of flux-blending, which goes back to Khosla und Rubin
(1974), is to mix different approximations for the convective flux. In this way
one attempts to combine the advantages of an accurate approximation of a
higher order scheme with the better robustness and boundedness properties
of a lower order scheme (mostly the UDS method).

To explain the method we again consider exemplarily the face Se of a CV.
The corresponding approximations for φe in the convective flux FC

e for the

4.4 Discretization of Diffusive Fluxes 89

two methods to be combined are denoted by φML
e and φMH

e , where ML and
MH are the lower and higher order methods, respectively. The approximation
for the combined method reads:

φe ≈ (1 − β)φML
e + βφMH

e = φML
e + β(φMH

e − φML
e)︸ ︷︷ ︸

bφ,e
β

. (4.8)

From (4.8) for β=0 and β=1 the methods ML and MH, respectively, result.
However, it is possible to choose for β any other value between 0 and 1,
allowing to control the portions of the corresponding methods according to
the needs of the underlying problem. However, due to the loss in accuracy,
values β < 1 should be selected only if with β = 1 on the given grid no
“reasonable” solution can be obtained (see Sect. 8.1.5) and a finer grid is not
possible due to limitations in memory or computing time.

Also, if β = 1 (i.e., the higher order method) is employed, it can be be-
neficial to use the splitting according to (4.8) in order to treat the term bφ,e

β

“explicitly” in combination with an iterative solver. This means that this
term is computed with (known) values of φ from the preceding iteration and
added to the source term. This may lead to a more stable iterative solution
procedure, since this (probably critical) term then makes no contribution to
the system matrix, which becomes more diagonally dominant. It should be
pointed out that this modification has no influence on the converged solution,
which is identical to that obtained with the higher order method MH alone.
We will discuss this approach in some more detail at the end of Sect. 7.1.4.

4.4 Discretization of Diffusive Fluxes

For the approximation of diffusive fluxes it is necessary to approximate the
values of the normal derivative of φ at the CV faces by nodal values in the
CV centers. For the east face Se of the CV, which we will again consider
exemplarily, one has to approximate (in the Cartesian case) the derivative
(∂φ/∂x)e. For this, difference formulas as they are common in the framework
of the finite-difference method can be used (see, e.g., [9]).

The simplest approximation one obtains when using a central differencing
formula (

∂φ

∂x

)
e

≈ φE − φP

xE − xP
, (4.9)

which is equivalent to the assumption that φ is a linear function between the
points xP and xE (see Fig. 4.12). For the discussion of the error of this ap-
proximation, we consider the difference of the Taylor series expansion around
xe at the locations xP and xE:

90 4 Finite-Volume Methods(
∂φ

∂x

)
e

=
φE − φP

xE − xP
+

(xe − xP)2 − (xE − xe)2

2(xE − xP)

(
∂2φ

∂x2

)
e

− (xe − xP)3 + (xE − xe)3

6(xE − xP)

(
∂3φ

∂x3

)
e

+ TH .

One can observe that for an equidistant grid an error of 2nd order results,
since in this case the coefficient in front of the second derivative is zero. In
the case of non-equidistant grids, one obtains by a simple algebraic rearrange-
ment that this leading error term is proportional to the grid spacing and the
expansion rate ξe of neighboring grid spacings:

(1 − ξe)(xe − xP)
2

(
∂2φ

∂x2

)
e

with ξe =
xE − xe

xe − xP
.

This means that the portion of the 1st order error term gets larger the more
the expansion rate deviates from 1. This aspect should be taken into account
in the grid generation such that neighboring CVs do not differ that much in
the corresponding dimensions (see also Sect. 8.3).

�

�

x

φ (
∂φ
∂x

)
e

φE − φP
xE − xP

P Ee

φP

φE

Fig. 4.12. Central differencing
formula for approximation of 1st
derivative at CV face

One obtains a 4th order approximation of the derivative at the CV face
for an equidistant grid by(

∂φ

∂x

)
e

≈ 1
24Δx

(φW − 27φP + 27φE − φEE) , (4.10)

which, for instance, can be used together with the Simpson rule to obtain an
overall approximation for the diffusive flux of 4th order.

Although principally there are also other possibilities for approximating
the derivatives (e.g., forward or backward differencing formulas), in practice
almost only central differencing formulas are employed, which possess the
best accuracy for a given number of grid points involved in the discretization.
Problems with boundedness, as for the convective fluxes, do not exist. Thus,

4.5 Non-Cartesian Grids 91

there is no reason to use less accurate approximations. For CVs located at the
boundary of the problem domain, it might be necessary to employ forward or
backward differencing formulas because there are no grid points beyond the
boundary (see Sect. 4.7).

4.5 Non-Cartesian Grids

The previous considerations with respect to the discretization of the convective
and diffusive fluxes were confined to the case of Cartesian grids. In this section
we will discuss necessary modifications for general (quadrilateral) CVs.

For the convective fluxes, simple generalizations of the schemes introduced
in Sect. 4.3 (e.g., UDS, CDS, QUICK, . . .) can be employed for the approxi-
mation of φc. For instance, a corresponding CDS approximation for φe reads:

φe ≈ |xẽ − xP|
|xE − xP| φE +

|xE − xẽ|
|xE − xP| φP , (4.11)

where xẽ is the intersection of the connnecting line of the points P and E with
the (probably extended) CV face Se (see Fig. 4.13). For the convective flux
through Se this results in the following approximation:

FC
e ≈ ṁe

|xE − xP| (|xẽ − xP|φE + |xE − xẽ|φP) .

When the grid at the corresponding face has a “kink”, an additional error
results because the points xẽ and xe do not coincide (see Fig. 4.13). This
aspect should be taken into account for the grid generation (see also Sect. 8.3).

�x1

�x2

e

ẽP
E

Fig. 4.13. Central difference approx-
imation of convective fluxes for non-
Cartesian control volumes

Let us turn to the approximation of the diffusive fluxes, for which farther
reaching distinctions to the Cartesian case arise as for the convective fluxes.
Here, for the required approximation of the normal derivative of φ in the
center of the CV face there are a variety of different possibilities, depending
on the directions in which the derivative is approximated, the locations where
the appearing derivatives are evaluated, and the node values which are used

92 4 Finite-Volume Methods

for the interpolation. As an example we will give here one variant and consider
only the CV face Se.

Since along the normal direction in general there are no nodal points,
the normal derivative has to be expressed by derivatives along other suitable
directions. For this we use here the coordinates ξ̃ and η̃ defined according
to Fig. 4.14. The direction ξ̃ is determined by the connecting line between
points P and E, and the direction η̃ is determined by the direction of the CV
face. Note that ξ̃ and η̃, because of a distortion of the grid, can deviate from
the directions ξ und η, which are defined by the connecting lines of P with
the CV face centers e and n. The larger these deviations are, the larger the
discretization error becomes. This is another aspect that has to be taken into
account when generating the grid (see also Sect. 8.3).

�x1, x

�
x2, y

�
ne

e

ẽ

n

se

neP

E

N
η

η̃

ξ

ξ̃
ψ Fig. 4.14. Approximation of dif-

fusive fluxes for non-Cartesian con-
trol volumes

A coordinate transformation (x, y) → (ξ̃, η̃) results for the normal deriva-
tive in the following representation:

∂φ

∂x
ne1+

∂φ

∂y
ne2 =

1
J

[(
∂y

∂η̃
ne1− ∂x

∂η̃
ne2

)
∂φ

∂ξ̃
+

(
∂x

∂ξ̃
ne2− ∂y

∂ξ̃
ne1

)
∂φ

∂η̃

]
(4.12)

with the Jacobi determinant

J =
∂x

∂ξ̃

∂y

∂η̃
− ∂y

∂ξ̃

∂x

∂η̃
.

The metric quantities can be approximated according to

∂x

∂ξ̃
≈ xE − xP

|xE − xP | and
∂x
∂η̃

≈ xne − xse

δSe
, (4.13)

which results for the Jacobi determinant in the approximation

Je ≈ (xE − xP)(yne − yse) − (yE − yP)(xne − xse)
|xE − xP | δSe

= cos ψ ,

4.5 Non-Cartesian Grids 93

where ψ denotes the angle between the direction ξ̃ and ne (see Fig. 4.14). ψ
is a measure for the deviation of the grid from orthogonality (ψ = 0 for an
orthogonal grid).

The derivatives with respect to ξ̃ and η̃ in (4.12) can be approximated
in the usual way with a finite-difference formula. For example, the use of a
central difference of 2nd order gives:

∂φ

∂ξ̃
≈ φE − φP

|xE − xP| and
∂φ

∂η̃
≈ φne − φse

δSe
. (4.14)

Inserting the approximations (4.13) and (4.14) into (4.12) and using the com-
ponent representation (4.4) of the unit normal vector ne we finally obtain the
following approximation for the diffusive flux through the CV face Se:

FD
e ≈ De(φE − φP) + Ne(φne − φse) (4.15)

with

De =
α
[
(yne − yse)2 + (xne − xse)2

]
(xne − xse)(yE − yP) − (yne − yse)(xE − xP)

, (4.16)

Ne =
α [(yne − yse)(yE − yP) + (xne − xse)(xE − xP)]

(yne − yse)(xE − xP) − (xne − xse)(yE − yP)
. (4.17)

The coefficient Ne represents the portion that arise due to the non-orthogo-
nality of the grid. If the grid is orthogonal, ne and xE − xP have the same
direction such that Ne = 0. The coefficient Ne (and the corresponding values
for the other CV faces) should be kept as small as possible (see als Sect. 8.3).

The values for φne and φse in (4.15) can be approximated, for instance, by
linear interpolation of four neighboring nodal values:

φne =
γPφP + γEφE + γNφN + γNEφNE

γP + γE + γN + γNE

with suitable interpolation factors γP, γE, γN, and γNE (see Fig. 4.15).

neP

E

N

NE

Fig. 4.15. Interpolation of values in CV
edges for discretization of diffusive fluxes
for non-Cartesian CV

94 4 Finite-Volume Methods

4.6 Discrete Transport Equation

Let us now return to our example of the general two-dimensional transport
equation (4.3) and apply the approximation techniques introduced in the pre-
ceding sections to it.

We employ exemplarily the midpoint rule for the integral approximations,
the UDS method for the convective flux, and the CDS method for the diffusive
flux. Additionally, we assume that we have velocity components v1, v2 > 0
and that the grid is a Cartesian one. With these assumptions one obtains the
following approximation of the balance equation (4.3):(

ρv1φP − α
φE − φP

xE − xP

)
(yn − ys)

−
(

ρv1φW − α
φP − φW

xP − xW

)
(yn − ys)

+
(

ρv2φP − α
φN − φP

yN − yP

)
(xe − xw)

−
(

ρv2φS − α
φP − φS

yP − yS

)
(xe − xw) = fP(yn − ys)(xe − xw) .

A simple rearrangement gives a relation of the form

aPφP = aEφE + aWφW + aNφN + aSφS + bP (4.18)

with the coefficients

aE =
α

(xE − xP)(xe − xw)
,

aW =
ρv1

xe − xw
+

α

(xP − xW)(xe − xw)
,

aN =
α

(yN − yP)(yn − ys)
,

aS =
ρv2

yn − ys
+

α

(yP − yS)(yn − ys)
,

aP =
ρv1

xe − xw
+

α(xE − xW)
(xP − xW)(xE − xP)(xe − xw)

+

ρv2

yn − ys
+

α(yN − yS)
(yP − yS)(yN − yP)(yn − ys)

,

bP = fP .

If the grid is equidistant in each spatial direction (with grid spacings Δx and
Δy), the coefficients become:

aE =
α

Δx2
, aW =

ρv1

Δx
+

α

Δx2
, aN =

α

Δy2
, aS =

ρv2

Δy
+

α

Δy2
,

aP =
ρv1

Δx
+

2α

Δx2
+

ρv2

Δy
+

2α

Δy2
, bP = fP .

4.7 Treatment of Boundary Conditions 95

In this particular case (4.18) coincides with a discretization that would result
from a corresponding finite-difference method (for general grids this normally
is not the case).

It can be seen that – independent from the grid employed – one has for
the coefficients in (4.18) the relation

aP = aE + aW + aN + aS .

This is characteristic for finite-volume discretizations and expresses the con-
servativity of the method. We will return to this important property in
Sect. 8.1.4.

Equation (4.18) is valid in this form for all CVs, which are not located
at the boundary of the problem domain. For boundary CVs the approxima-
tion (4.18) includes nodal values outside the problem domain, such that they
require a special treatment depending on the given type of boundary condi-
tion.

4.7 Treatment of Boundary Conditions

We consider the three boundary condition types that most frequently oc-
cur for the considered type of problems (see Chap. 2): a prescibed variable
value, a prescibed flux, and a symmetry boundary. For an explanation of the
implementation of such conditions into a finite-volume method, we consider
as an example a Cartesian CV at the west boundary (see Fig. 4.16) for the
transport equation (4.3). Correspondingly modified approaches for the non-
Cartesian case or for other types of equations can be formulated analogously
(for this see also Sect. 10.4).

Let us start with the case of a prescribed boundary value φw = φ0. For
the convective flux at the boundary one has the approximation:

FC
w ≈ ṁwφw = ṁwφ0 .

With this the approximation of FC
w is known (the mass flux ṁw at the bound-

ary is also known) and can simply be introduced in the balance equation (4.6).
This results in an additional contribution to the source term bP.

The diffusive flux through the boundary is determined with the same ap-
proach as in the interior of the domain (see (4.18)). Analogously to (4.9) the
derivative at the boundary can be approximated as follows:(

∂φ

∂x

)
w

≈ φP − φw

xP − xw
=

φP − φ0

xP − xw
. (4.19)

This corresponds to a forward difference formula of 1st order. Of course, it is
also possible to apply more elaborate formulas of higher order. However, since
the distance between the boundary point w and the point P is smaller than

96 4 Finite-Volume Methods

the distance between two inner points (half as much for an equidistant grid,
see Fig. 4.16), a lower order approximation at the boundary usually does not
influence the overall accuracy that much.

P E
ew

N

n

S
s

Fig. 4.16. Cartesian boundary CV at west boundary
with notations

In summary, one has for the considered boundary CV a relation of the
form (4.18) with the modified coefficients:

aW = 0 ,

aP =
ρv1

xe − xw
+

α(xE − xw)
(xP − xw)(xE − xP)(xe − xw)

+

ρv2

yn − ys
+

α(yN − yS)
(yP − yS)(yN − yP)(yn − ys)

,

bP = fP +
[

ρv1

xe − xw
+

α

(xP − xw)(xe − xw)

]
φ0.

All other coefficients are computed as for a CV in the interior of the problem
domain.

Let us now consider the case where the flux Fw = F 0 is prescribed at
the west boundary. The flux through the CV face is obtained by dividing F 0

through the length of the face xe−xw. The resulting value is introduced in (4.6)
as total flux and the modified coefficients for the boundary CV become:

aW = 0 ,

aP =
ρv1

xe − xw
+

α

(xE − xP)(xe − xw)
+

ρv2

yn − ys
+

α(yN − yS)
(yP − yS)(yN − yP)(yn − ys)

,

bP = fP +
F 0

xe − xw
.

All other coefficients remain unchanged.
Sometimes it is possible to exploit symmetries of a problem in order to

downsize the problem domain to save computing time or get a higher accuracy

4.8 Algebraic System of Equations 97

(with a finer grid) with the same computational effort. In such cases one has
to consider symmetry planes or symmetry lines at the corresponding problem
boundary. In this case one has the boundary condition:

∂φ

∂xi
ni = 0 . (4.20)

From this condition it follows that the diffusive flux through the symmetry
boundary is zero (see (4.18)). Since also the normal component of the velocity
vector has to be zero at a symmetry boundary (i.e., vini = 0), the mass flux
and, therefore, the convective flux through the boundary is zero. Thus, in the
balance equation (4.6) the total flux through the corresponding CV face can
be set to zero. For the boundary CV in Fig. 4.16 this results in the following
modified coefficients:

aW = 0 ,

aP =
ρv1

xe − xw
+

α

(xE − xP)(xe − xw)
+

ρv2

yn − ys
+

α(yN − yS)
(yP − yS)(yN − yP)(yn − ys)

.

If required, the (unknown) variable value at the boundary can be determined
by a finite-difference approximation of the boundary condition (4.20). In the
considered case, for instance, with a forward difference formula (cp. (4.19))
one simply obtains φw = φP.

As with all other discretization techniques, the algebraic system of equa-
tions resulting from a finite-volume discretization has a unique solution only
if the boundary conditions at all boundaries of the problem domain are taken
into account (e.g., as outlined above). Otherwise there would be more un-
knowns than equations.

4.8 Algebraic System of Equations

As exemplarily outlined in Sect. 4.6 for the general scalar transport equation,
a finite-volume discretization for each CV results in an algebraic equation of
the form:

aPφP −
∑

c

acφc = bP ,

where the index c runs over all neighboring points that are involved in the
approximation as a result of the discretization scheme employed. Globally, i.e.,
for all control volumes Vi (i = 1, . . . , N) of the problem domain, this gives a
linear system of N equations

98 4 Finite-Volume Methods

ai
Pφi

P −
∑

c

ai
cφ

i
c = bi

P for all i = 1, . . . , N (4.21)

for the N unknown nodal values φi
P in the CV centers.

After introducing a corresponding numbering of the CVs (or nodal values),
in the case of a Cartesian grid the system (4.21) has a fully analogous structure
that also would result from a finite-difference approximation. To illustrate
this, we consider first the one-dimensional case. Let the problem domain be
the interval [0, L], which we divide into N not necessarily equidistant CVs
(subintervals) (see Fig 4.17).

� x
φ1

P · · · φi−1
P φi

P φi+1
P · · · φN

P

W w P e E0 L

Fig. 4.17. Arrangement of CVs and nodes for 1-D transport problem

Using the second-order central differencing scheme, the discrete equations
have the form:

ai
Pφi

P − ai
Eφi

E − ai
Wφi

W = bi
P . (4.22)

With the usual lexicographical numbering of the nodal values as given in
Fig. 4.17 one has:

φi
W = φi−1

P for all i = 2, . . . , N ,

φi
E = φi+1

P for all i = 1, . . . , N − 1 .

Thus, the result is a linear system of equations which can be represented in
matrix form as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
P −a1

E

−a2
W a2

P −a2
E 0

· · ·
−ai

W ai
P −ai

E

· · ·
0 · · −aN−1

E

−aN
W aN

P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1
P

·
φi−1

P

φi
P

φi+1
P

·
φN

P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

φ

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
P

b2
P

·
bi
P

·
·

bN
P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

b

.

When using a QUICK discretization or a central differencing scheme of
4th order, there are also coefficients for the farther points EE and WW (see
Fig. 4.18):

4.8 Algebraic System of Equations 99

aPφP − aEEφEE − aEφE − aWφW − aWWφWW = bP , (4.23)

i.e., in the corresponding coefficient matrix A two additional non-zero diago-
nals appear:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
P −a1

E −a1
EE

−a2
W a2

P −a2
E −a2

EE 0

−a3
WW −a3

W a3
P −a3

E −a3
EE

· · · · ·
−ai

WW −ai
W ai

P −ai
E −ai

EE

· · · · ·
· · · · −aN−2

EE

0 · · · −aN−1
E

−aN
WW −aN

W aN
P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

· · · φi−2
P φi−1

P φi
P φi+1

P φi+2
P · · ·

WW W w P e E EE

Fig. 4.18. CV dependencies with higher order scheme for 1-D transport problem

For the two- and three-dimensional cases fully analogous considerations
can be made for the assembly of the discrete equation systems. For a two-
dimensional rectangular domain with N × M CVs (see Fig. 4.19), we have,
for instance, in the case of the discretization given in Sect. 4.6 equations of
the form

ai,j
P φi,j

P − ai,j
E φi,j

E − ai,j
Wφi,j

W − ai,j
S φi,j

S − ai,j
N φi,j

N = bi,j
P

for i=1, . . . , N and j =1, . . . , M . In the case of a lexicographical columnwise
numbering of the nodal values (index j is counted up first) and a corresponding
arrangement of the unknown variables φi,j

P (see Fig. 4.19), the system matrix
A takes the following form:

100 4 Finite-Volume Methods

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1
P −a1,1

N · 0 · −a1,1
E

−a1,2
S · · · 0

· · · · ·
0 · · · ·
· · · · −aN−1,M

E

−a2,1
W · · · ·

· · · · 0

· · · · ·
0 · · · −aN,M−1

N

−aN,M
W · 0 · −aN,M

S aN,M
P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

M+1

M

...

j

...

1

0
0 1 · · · i · · · N N+1

φi+1,j
Pφi−1,j

P φi,j
P

φi,j−1
P

φi,j+1
P

Fig. 4.19. Arrangement
of CVs and nodes for 2-D
transport problem

As outlined in Sect. 4.5, due to the discretization of the diffusive fluxes, in
the non-Cartesian case additional coefficients can arise, whereby the number
of non-zero diagonals in the system matrix increases. Using the discretization
exemplarily given in Sect. 4.5, for instance, one would have additional depen-
dencies with the points NE, NW, SE, and SW, which are required to linearly
interpolate the values of φ in the vertices of the CV (see Fig. 4.20). Thus, in
the case of a structured grid a matrix with 9 non-zero diagonals would result.

4.9 Numerical Example

As a concrete, simple (two-dimensional) example for the application of the
FVM, we consider the computation of the heat transfer in a trapezoidal plate
(density ρ, heat conductivity κ) with a constant heat source q all over the

4.9 Numerical Example 101

P

E

N

W

S

NE

SE

NW

SW

Fig. 4.20. Interpolation of vertice
values for non-Cartesian CV

plate. At three sides the temperature T is prescribed and at the fourth side
the heat flux is given (equal to zero). The problem data are summarized in
Fig. 4.21. The problem is described by the heat conduction equation

−κ
∂2T

∂x2
− κ

∂2T

∂y2
= ρq (4.24)

with the boundary conditions as indicated in Fig. 4.21 (cp. Sect. 2.3.2). For the
discretization we employ a grid with only two CVs as illustrated in Fig. 4.22.
The required coordinates for the distinguished points for both CVs are indi-
cated in Table 4.2.

�
x

�y

��
L1 = 12

��L2 = 2 �� L3 = 6

�

�

H = 4
ρ = 1kg/m3

q = 8Nm/skg

κ = 2 N/Ks

T = 0

T = 20

T =
5

16
y3

∂T

∂x
+

∂T

∂y
= 0

Fig. 4.21. Configuration of trapezoidal plate heat conduction example (temperature
in K, length in m)

The integration of (4.24) over a control volume V and the application of
the Gauß integral theorem gives:∑

c

Fc = −κ
∑

c

∫
Sc

(
∂T

∂x
n1 +

∂T

∂y
n2

)
dSc =

∫
V

q dV ,

102 4 Finite-Volume Methods

�x

�y

P1 P2

CV1 CV2

Fig. 4.22. CV definition for trapezoidal
plate

Table 4.2. Coordinates of distin-
guished points for discretized trape-
zoidal plate

CV1 CV2
Point x y x y

P 13/4 2 31/4 2
e 11/2 2 10 2
w 1 2 11/2 2
n 7/2 4 13/2 4
s 3 0 9 0
nw 2 4 5 4
ne 5 4 8 4
se 6 0 12 0
sw 0 0 6 0

Volume 18 18

where the summation has to be carried out over c = s,n,w, e. For the ap-
proximation of the integrals we employ the midpoint rule and the derivatives
at CV faces are approximated by second-order central differences. Thus, the
approximations of the fluxes for CV1 is:

Fe = −κ

∫
Se

(
4√
17

∂T

∂x
+

1√
17

∂T

∂y

)
dSe ≈

≈ De (TE − TP) + Ne(Tne − Tse) = −17
9

(TE − TP) − 10 ,

Fw = −κ

∫
Sw

(
− 2√

5
∂T

∂x
+

1√
5

∂T

∂y

)
dSw =

= −κ

∫
Sw

(
− 2√

5
120
16

x2 +
1√
5

15
16

y2

)
dSw = 60 ,

Fs = −κ

∫
Ss

(
−∂T

∂y

)
dSs ≈ −κ

(
∂T

∂y

)
s

(xse − xsw) ≈

≈ −κ

(
TP − TS

yP − yS

)
(xse − xsw) = 6TP ,

4.9 Numerical Example 103

Fn = −κ

∫
Sn

∂T

∂y
dSn ≈ −κ

(
∂T

∂y

)
n

(xne − xnw) ≈

≈ −κ

(
TN − TP

yN − yP

)
(xne − xnw) = 3TP − 60 .

The flux Fw has been computed exactly from the given boundary value func-
tion. Similarly, one obtains for CV2:

Fe = 0 , Fw ≈ 17
9

(TP − TW) + 10 , Fs ≈ 6TP , Fn ≈ 3TP − 60 .

For both CVs we have δV = 18, such that the following discrete balance
equations result:

98
9

TP − 17
9

TE = 154 and
98
9

TP − 17
9

TW = 194 .

We have TP = T1 and TE = T2 for CV1, and TP = T2 and TW = T1 for CV2.
This gives the linear system of equations

98T1 − 17T2 = 1386 and 98T2 − 17T1 = 1746

for the two unknown temperatures T1 and T2. Its solution gives T1 ≈ 17, 77
and T2 ≈ 20, 90.

Exercises for Chap. 4

Exercise 4.1. Determine the leading error terms for the one-dimensional
midpoint and trapezoidal rules by Taylor series expansion and compare the
results.

Exercise 4.2. Let the concentration of a pollutant φ = φ(x) in a chimney be
described by the differential equation

−3φ′ − 2φ′′ = x cos(πx) for 0 < x < 6

with the boundary conditions φ′(0)=1 and φ(6)=2. Compute the values φ1

and φ2 in the centers of the two control volumes CV1 = [0, 4] and CV2 = [4, 6]
with a finite-volume discretization using the UDS method for the convective
term.

Exercise 4.3. Consider the heat conduction in a square plate with the prob-
lem data given in Fig. 4.23. Compute the solution with a finite-volume method
for the two grids illustarted in Fig. 4.24. Compare the results with the analytic
solution Ta(x, y) = 20 − 2y2 + x3y − xy3.

104 4 Finite-Volume Methods

� x

�
y

�� 2 m �

�

2 m
ρ = 1kg/m3

q = 8 Nm/skg

κ = 2 N/Ks

T = 20

T = 12 − 8x + 2x3

κ
∂T

∂x
= −2y3

κ
∂T

∂x
= 24y − 2y3

Fig. 4.23. Problem def-
inition for Exercise 4.3
(temperatures in K)

�x

�y

P1

P3

P2

P4

0 1 2
0

1

2

�x

�y

P1

P3

P2

P4

0 3/2 2
0

3/2

2

Fig. 4.24. Numerical grids for Exercise 4.3

Exercise 4.4. Formulate a finite-volume method of 2nd order for equidis-
tant grids for the bar equation (2.38). Use this for computing the displace-
ment of a bar of length L = 60m with the boundary conditions (2.39) with
A(x) = 1 + x/60, u0 = 0, and kL = 4N employing a discretization with three
equidistant CVs.

Exercise 4.5. Formulate a finite-volume method of 4th order for the mem-
brane equation (2.17) for an equidistant Cartesian grid.

Exercise 4.6. Consider the integral

I =
∫
Se

φdS

for the function φ = φ(x, y) over the face Se of the CV [1, 3]2. (i) Determine
the leading error term and the order (with respect to the length Δy of Se) for
the approximation

I ≈ φ(3, α)Δy

4.9 Numerical Example 105

depending on the parameter α ∈ [1, 3]. (ii) Compute I for the function
φ(x, y) = x3y4 directly (analytically) and with the approximation defined
in (i) with α = 2. Compare the two solutions.

Exercise 4.7. The velocity vector of a two-dimensional flow is given by

v = (v1(x, y), v2(x, y)) = (x cos πy, x4y) .

Let the flux through the surface S of the control volume V = [1, 2]2 be defined
by

I =
∫
S

vini dS .

(i) Approximate the integral with the Simpson rule. (ii) Transform the in-
tegral with the Gauß integral theorem into a volume integral (over V) and
approximate this with the midpoint rule.

5

Finite-Element Methods

The techniques known today as finite-element methods (FEM) date back to
work conducted between 1940 and 1960 in the field of structural mechanics.
The term finite element was introduced by Clough (1960). Nowadays, the FEM
is widely used primarily for numerical computations in solid mechanics and
can be regarded as a standard tool there. However, the FEM also has entered
other application areas. We will address in this chapter the basic ideas of the
method mostly by means of representative examples. The Galerkin method is
employed as the general framework allowing for a universal application of the
method. We remark that for the FEM there exists a comparatively elegant
mathematical theory with respect to existence, convergence criteria, and error
estimations. However, we will not address these aspects here (see, e.g., [3]).

5.1 Galerkin Method

The basis for a universal application of the finite-element method is provided
by the Galerkin method, which we will introduce by means of a simple example.
For this we consider the Poisson equation

− ∂2φ

∂xi∂xi
= f (5.1)

for a problem domain Ω with the corresponding Dirichlet and Neumann
boundary conditions

φ = φb on Γ1 , (5.2)

∂φ

∂xi
ni = tb on Γ2 , (5.3)

where the disjoint boundary parts Γ1 and Γ2 together add up to the whole
boundary Γ of Ω.

108 5 Finite-Element Methods

For the unknown function φ = φ(x) we make an ansatz of the form

φ(x) ≈ ϕ0(x) +
N∑

k=1

ckϕk(x) (5.4)

with the unknown coefficients ck and prescribed functions ϕk. Here, the func-
tion ϕ0 should satisfy the Dirichlet boundary conditions, i.e., ϕ0 = φb on
Γ1, and for the other functions ϕk (k = 1, . . . , N) the corresponding homo-
geneous Dirichlet condition ϕk = 0 on Γ1 should be fulfilled. So, in total the
ansatz satisfies the Dirichlet condition (5.2) on Γ1. The Neumann boundary
condition first remains unconsidered.

Inserting the ansatz (5.4) into the differential equation (5.1) yields:

− ∂2ϕ0

∂xi∂xi
−

N∑
k=1

ck
∂2ϕk

∂xi∂xi
= f in Ω .

The problem now is to find coefficients ck such that this equation is fulfilled
“as good as possible”. As a measure for the error, the residual R is defined:

R = − ∂2ϕ0

∂xi∂xi
−

N∑
k=1

ck
∂2ϕk

∂xi∂xi
− f .

Conditions for the coefficients ck are obtained by requiring that the sum of the
integrals over Ω for the weighted residuals for N linearly independent weight
functions ωj (j = 1, . . . , N) vanish:∫

Ω

R ωj dΩ = 0 for all j = 1, . . . , N . (5.5)

This equation system can be used for the determination of the unknown co-
efficients ck (there are N equations for N unknowns).

For arbitrary weight functions this approach is called method of weighted
residuals. Selecting as weight functions ωj again the ansatz functions ϕj (for
j = 1, . . . , N) defines the Galerkin method. In this case, after inserting R and
ϕj into (5.5), one has for the determination of the coefficients ck the equations

−
∫
Ω

∂2ϕ0

∂xi∂xi
ϕj dΩ −

∫
Ω

N∑
k=1

ck
∂2ϕk

∂xi∂xi
ϕj dΩ =

∫
Ω

f ϕj dΩ . (5.6)

In the second term on the left hand side the sequence of summation and
integration can be exchanged and the coefficients ck, which do not depend on
x, can be taken out of the integral. By subsequent partial integration in the
integrals on the left hand side the system (5.6) can equivalently be written as

5.1 Galerkin Method 109∫
Ω

∂ϕ0

∂xi

∂ϕj

∂xi
dΩ −

∫
Γ

∂ϕ0

∂xi
ϕjni dΓ +

N∑
k=1

ck

⎡⎣∫
Ω

∂ϕk

∂xi

∂ϕj

∂xi
dΩ −

∫
Γ

∂ϕk

∂xi
ϕjni dΓ

⎤⎦ =
∫
Ω

f ϕj dΩ .

Since the weight functions ϕj vanish on Γ1, it is sufficient to integrate the
boundary integrals over Γ2 instead of Γ . Exchanging the sequence of integra-
tion and summation for the boundary integral terms one obtains:∫

Ω

∂ϕ0

∂xi

∂ϕj

∂xi
dΩ +

N∑
k=1

ck

∫
Ω

∂ϕk

∂xi

∂ϕj

∂xi
dΩ

=
∫
Ω

f ϕj dΩ +
∫
Γ2

∂

∂xi

(
ϕ0 +

N∑
k=1

ckϕk

)
︸ ︷︷ ︸

≈ φ

ni ϕj dΓ .

In the boundary integral the Neumann boundary condition (5.3) on Γ2 now
can be inserted, such that finally for all j = 1, . . . , N the following relation
results:

∫
Ω

∂ϕ0

∂xi

∂ϕj

∂xi
dΩ +

N∑
k=1

ck

∫
Ω

∂ϕk

∂xi

∂ϕj

∂xi
dΩ =

∫
Ω

f ϕj dΩ +
∫
Γ2

tb ϕj dΓ . (5.7)

Thus, the following linear equation system with N equations and N un-
knowns for the unknown coefficients ck results:

N∑
k=1

Sjkck = bj for j = 1, . . . , N (or compactly Sc = b) (5.8)

with

Sjk =
∫
Ω

∂ϕk

∂xi

∂ϕj

∂xi
dΩ ,

bj =
∫
Γ2

tbϕj dΓ +
∫
Ω

f ϕj dΩ −
∫
Ω

∂ϕ0

∂xi

∂ϕj

∂xi
dΩ .

According to structural mechanics problems the matrix S and the vector b are
called stiffness matrix and load vector, respectively. After solving the equation
system (5.8) for the coefficients ck one finally has an approximative solution
of the problem according to the relation (5.4).

110 5 Finite-Element Methods

One can immediately recognize the relation to the weak formulation of the
problem, which for our example is given by∫

Ω

∂φ

∂xi

∂ϕ

∂xi
dΩ =

∫
Ω

f ϕdΩ +
∫
Γ2

∂φ

∂xi
ni ϕdΓ

for all test functions ϕ (see Chap. 2). The Galerkin method can directly be
derived from this formulation by inserting the ansatz (5.4) for φ and taking
the ansatz functions ϕj as test functions.

The Galerkin method is determined by the choice of the ansatz func-
tions ϕk. Chosing special piecewise polynomial functions this defines a finite-
element method, i.e., the finite-element method can be interpreted as a
Galerkin method with special ansatz functions. We will next deal with the
question of how to select these functions.

5.2 Finite-Element Discretization

As for finite-volume methods, for the application of a finite-element method
first the problem domain has to be discretized. For this one subdivides the
domain into non-overlapping simple subdomains Ei for i = 1, . . . , N , the
so called finite elements (see Fig. 5.1). Depending on the spatial problem
dimension usually the following element types are employed:

1-d: subintervals;
2-d: triangles, quadrilaterals, curvilinear elements;
3-d: tetrahedras, hexahedras, prisms, curvilinear elements.

Mixed subdivisions, e.g., into triangles and quadrilaterals in the two-dimen-
sional case, are also possible (and sometimes also sensible). Curvilinear ele-
ments mainly are employed for a better approximation of curved boundaries.
However, in this introductory text we will not address such elements.

Element Ei

Fig. 5.1. Subdivision of problem
domain into finite elements

5.2 Finite-Element Discretization 111

In each subdomain (element) Ei piecewise polynomial ansatz functions for
φ are selected. In the two-dimensional case this can be, for instance, linear
polynomials of the form

φi(x1, x2) = ai
1 + ai

2x1 + ai
3x2 .

At the element interfaces the ansatz functions have to fulfill certain (problem
dependent) continuity requirements, not least so that a physically meaningful
numerical solution can be obtained. These requirements can involve not only
the continuity of the global solution, but also the continuity of derivatives
(e.g., for beam or plate problems). Approaches fulfilling the problem specific
continuity requirements are called conforming. In practice, in particular for
beam and plate problems, also non-conforming elements are employed because
the fulfillment of continuity is related to some computational effort. Also with
such elements, under certain prerequisites, physically meaningful numerical
solutions can be obtained. However, we will not address this issue further
here (see [2]).

In order to fulfill the continuity requirements, it is helpful to express the
ansatz functions directly in dependence on function values and/or derivatives.
The values φi

1, . . . , φ
i
p employed for this are denoted as local nodal variables

or also degrees of freedom of an element (thus, this can be function values
and/or derivatives!). In addition, for this representation local shape functions
N i

1, . . . , N
i
p are introduced. With this – by a simple transformation – the ansatz

functions can be represented in each element as a linear combination of these
shape functions with the nodal variables as coefficients:

φi(x) =
p∑

j=1

φi
jN

i
j(x) . (5.9)

If only function values are used as nodal variables, i.e.,

φi
j = φi(xj) for j = 1, . . . , p

at suitable locations x1, . . . ,xp in the Element Ei, the local shape functions
fulfill the relations

N i
j(xn) =

{
1 for j = n ,
0 for j �= n ,

(5.10)

since φi at the nodes xn must take the nodal value φi
n.

From the elementwise representation of the unknown function by local
nodal variables and local shape functions according to (5.9) a global represen-
tation of the solution (over the whole problem domain) can be assembled in a
systematic way. For this, all nodal variables in the problem domain are num-
bered consecutively, where common local nodal variables of adjoint elements
are counted only once. This way a global representation of the finite-element
solution in the form

112 5 Finite-Element Methods

φ(x) ≈ ϕ0(x) +
N∑

k=1

φkNk(x) (5.11)

is obtained, where Nk is a composition of that local shape functions N i
j , for

which the local nodal variable φi
j coincides with the global nodal variable

φk. In the function ϕ0 the geometrical (Dirichlet) boundary conditions are
subsumed.

The functions Nk are called global shape functions. In a finite-element
method these correspond to the ansatz functions ϕk in the general Galerkin
method described in the previous section. An important property of the global
shape functions is that the function Nk is non-zero only in those elements
which have the node Pk in common. This property ensures that in the system
matrix S defined by (5.8) most entries are zero, i.e., S is a sparse matrix (as
was already the case for the FVM).

In the next sections the general procedure formulated above will be exem-
plified and concretized by means of simple finite elements, in particular also
with respect to the practical realization of the method.

5.3 One-Dimensional Linear Elements

As the simplest example for a finite element we first consider one-dimensional
linear elements, which in the structural mechanics context also are denoted as
bar elements. As example problem we take the (one-dimensional) differential
equation

−αφ′′ = f in Ω = [a, b] (5.12)

with the boundary conditions

φ(a) = φa and αφ′(b) = hb , (5.13)

where α is constant. With the corresponding interpretation of the problem
quantities, for instance, the problem describes the deformation of a bar or the
heat conduction in a one-dimensional medium (see Chap. 2).

5.3.1 Discretization

For the discretization of the problem domain we divide the interval [a, b] into
the elements (subintervals) Ei = [xi−1, xi] for i = 1, . . . , N , where x0 = a and
xN = b (see Fig. 5.2). In the element Ei we make for φ the linear ansatz:

φi(x) = ai
1 + ai

2x . (5.14)

5.3 One-Dimensional Linear Elements 113

� x

a = x0 x1 x2 · · · xi−1 xi xi+1

��
Element Ei

· · · xN−1 xN = b

Fig. 5.2. Element allocation for one-dimensional finite elements

Since a linear function is uniquely determined by the values at two points, as
local nodal variables the values φi

1 = φi(xi−1) and φi
2 = φi(xi) at the ends of

the elements appear to be the natural choice.
From the two conditional equations

φi(xi−1) = ai
1 + ai

2xi−1 = φi
1 and φi(xi) = ai

1 + ai
2xi = φi

2

the ansatz coefficients result in

ai
1 =

φi
1xi − φi

2xi−1

xi − xi−1
and ai

2 =
φi

2 − φi
1

xi − xi−1
.

Inserting these into the ansatz (5.14) one obtains for φ in the element Ei the
representation

φi(x) = φi
1

xi − x

xi − xi−1
+ φi

2

x − xi−1

xi − xi−1
= φi

1N
i
1 + φi

2N
i
2 (5.15)

with the local shape functions

N i
1(x) =

xi − x

xi − xi−1
and N i

2(x) =
x − xi−1

xi − xi−1
. (5.16)

One can observe that these fulfill the conditions (5.10) (see Fig. 5.3).

�

�

1

xi−1 xi

x

N i
1 N i

2

Fig. 5.3. Local shape functions for one-
dimensional linear finite elements

With the local shape functions (5.16) the global shape functions Ni for
i = 0, . . . , N now can be defined as follows:

Ni(x) =

⎧⎪⎪⎨⎪⎪⎩
N i

2(x) for xi−1 < x < xi and i ≥ 1,

N i+1
1 (x) for xi < x < xi+1 and i < N,

0 otherwise,

(5.17)

114 5 Finite-Element Methods

where N0 and NN , each differing only in one element from zero, correspond
to the two boundary points (see Fig. 5.4). The global representation of the
unknown function φ in the full problem domain Ω = [a, b] reads:

φ(x) ≈ φaN0(x) +
N∑

k=1

φkNk(x) (5.18)

with the global nodal variables φk = φ(xk) for k = 1, . . . , N . The function
φaN0 corresponds to the function ϕ0 in the general ansatz (5.11).

�

�

1

x

a = x0 x1 x2 · · · xi−1 xi xi+1 · · · xN−1 xN = b

N0 N1 Ni NN

Fig. 5.4. Global shape functions for one-dimensional linear finite elements

The application of the Galerkin method for problem (5.12) with the
ansatz (5.18) and the weight functions Nj leads to the global system

N∑
k=1

Sjkφk = bj for all j = 1, . . . , N (5.19)

with

Sjk = α

b∫
a

N ′
kN ′

j dx ,

bj =

b∫
a

fNj dx − φaα

b∫
a

N ′
0N

′
j dx + hbNj(b) .

It should be noted that the two last summands in the expression for bj , which
contain the boundary conditions, only contribute for j = 1 and j = N to the
load vector, respectively.

In principle, the components of the stiffness matrix Sjk and the load vector
bj could be computed from the global representation given by (5.19) (as inte-
grals over the full interval [a, b]). For the systematic practical implementation
of the finite-element method, however, this appears not to be convenient. A
much more profitable approach is a local elementwise procedure, in which the

5.3 One-Dimensional Linear Elements 115

computation of the integrals is first performed at the element level using the
local shape functions and afterwards the global system is assembled from the
individual element contributions.

5.3.2 Global and Local View

For the elementwise approach one exploits the composition of the global and
local shape functions according to (5.17) as well as the following relations
between the global and local nodal variables (see Fig. 5.5):

φk = φk+1
1 = φk

2 for k = 1, . . . , N − 1 and φN = φN
2 . (5.20)

For the practical implementation it is convenient to retain these relations in
matrix form in a so-called coincidence matrix (see Table 5.1).

� x

a = x0

φa

φ1
1

x1

φ1

φ2
1

φ1
2

x2

φ2

φ3
1

φ2
2

· · · xi−1

φi−1

φi
1

φi−1
2

xi

φi

φi+1
1

φi
2

xi+1

φi+1

φi+2
1

φi+1
2

Local

Global

{
{

}
}

· · · xN−1

φN−1

φN
1

φN−1
2

xN = b

φN

φN
2

Fig. 5.5. Relation between local and global nodal variables for one-dimensional
linear finite elements

Table 5.1. Allocation of global to local nodal variables for
one-dimensional linear finite elements (coincidence matrix)

Local Element
nodal variable 1 2 · · · i · · · N − 1 N

1 φa 1 · · · i − 1 · · · N − 2 N − 1
2 1 2 · · · i · · · N − 1 N

Analogous to the global formulation for the full problem domain Ω = [a, b]
we consider a local formulation for the element Ei = [xi−1, xi], where the
boundary conditions are not taken into account for the time being. The local
ansatz for the unknown function φ in the element [xi−1, xi] reads (see (5.15):

φi(x) =
2∑

k=1

φi
kN i

k(x) (5.21)

116 5 Finite-Element Methods

The application of the Galerkin method for the differential equation (5.12)
with the ansatz (5.21) for the element Ei and the weight functions N i

j leads
to the equation system

2∑
k=1

Si
jkφi

k = bi
j for j = 1, 2 (or compactly Siφi = bi) (5.22)

with

Si
jk = α

xi∫
xi−1

(N i
k)′(N i

j)
′ dx and bi

j =

xi∫
xi−1

fN i
j dx (5.23)

The matrix Si and the vector bi are called element stiffness matrix and ele-
ment load vector, respectively.

Next we consider the relations between the global and local equation sys-
tems (5.19) and (5.22). Let us start with the left hand sides of the systems.
Since the global shape functions Nj each differ from zero only in the elements
Ej = [xj−1, xj] and Ej+1 = [xj , xj+1], we have for all j = 2, . . . , N − 1:

N∑
k=1

Sjkφk = α
N∑

k=1

φk

b∫
a

N ′
kN ′

j dx = α
N∑

k=1

φk

N∑
i=1

xi∫
xi−1

N ′
kN ′

j dx =

= α

j+1∑
k=j−1

φk

j+1∑
i=j

xi∫
xi−1

N ′
kN ′

j dx =

= αφj−1

xj∫
xj−1

N ′
j−1N

′
j dx + αφj

xj∫
xj−1

N ′
jN

′
j dx +

αφj

xj+1∫
xj

N ′
jN

′
j dx + αφj+1

xj+1∫
xj

N ′
j+1N

′
j dx .

Using the relations (5.17) between the local and global shape functions it
further holds

N∑
k=1

Sjkφk = αφj−1

xj∫
xj−1

(N j
1)′(N j

2)′ dx + αφj

xj∫
xj−1

(N j
2)′(N j

2)′ dx +

αφj

xj+1∫
xj

(N j+1
1)′(N j+1

1)′ dx + αφj+1

xj+1∫
xj

(N j+1
2)′(N j+1

1)′ dx

= φj−1S
j
21 + φj

(
Sj

22 + Sj+1
11

)
+ φj+1S

j+1
12 .

5.3 One-Dimensional Linear Elements 117

Analogously for j = 1 and j = N one gets the relations

N∑
k=1

S1kφk = φ1

(
S1

22 + S2
11

)
+ φ2S

2
12 ,

N∑
k=1

SNkφk = φN−1S
N
21 + φNSN

22 .

For the right hand sides of the equation systems (5.19) and (5.22) the
following relations hold for j = 1, . . . , N :

bj =

b∫
a

fNj dx − φaα

b∫
a

N ′
0N

′
j dx + hbNj(b) =

=
N∑

i=1

xi∫
xi−1

fNj dx − φaα

N∑
i=1

xi∫
xi−1

N ′
0N

′
j dx + hbNj(b) =

=

xj∫
xj−1

fNj dx +

xj+1∫
xj

fNj dx − φaα

xj∫
xj−1

N ′
0N

′
j dx + hbNj(b) =

=

xj∫
xj−1

fN j
2 dx +

xj+1∫
xj

fN j+1
1 dx − φaα

xj∫
xj−1

N ′
0(N

j
2)′ dx + hbNj(b) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b1
2 + b2

1 − φaS1
21 for j = 1 ,

bj
2 + bj+1

1 for j = 2, . . . , N − 1 ,

bj
2 + hb for j = N .

Thus, the global equation system (5.19) is composed of contributions from
the element stiffness matrices and load vectors as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
22+S2

11 S2
12

S2
21 S2

22+S3
11 S3

12 0

.

0 SN−1
21 SN−1

22 +SN
11 SN

12

SN
21 SN

22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

...

φN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

φ

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
2+b2

1 − φaS1
21

b2
2+b3

1

...

bN−1
2 +bN

1

bN
2 + hb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

b

.

One can observe the typical band structure of the stiffness matrix, which
results due to the locality of the element ansatz functions.

118 5 Finite-Element Methods

Note that with a corresponding polynomial ansatz, one-dimensional ele-
ments of arbitrary order can be defined where an ansatz of order p requires
p + 1 nodal variables. The principal procedure runs completely analogous to
that outlined for the linear case.

5.4 Practical Realization

The correlations identified in the previous section, which can be similarly
formulated for other problems and other finite-elements, now suggest the fol-
lowing general procedure for the practical realization of the finite-element
method:

(i) Subdivision of problem domain into elements and selection of element
ansatz type.

(ii) Computation of element stiffness matrices and load vectors for all ele-
ments.

(iii) Assembling of global stiffness matrix and load vectors from the element
stiffness matrices and load vectors.

(iv) Consideration of boundary conditions.
(v) Solution of global equation system.

In the next few sections we will go into more detail for some of these steps.

5.4.1 Assembling of Equation Systems

The assembling of the global equation system in step (iii) can be performed
very systematically elementwise according to the following procedure:

Stiffness matrix: if the k-th and j-th nodal variable of the i-th element is
equal to n and m then Si

kj is added to Snm.
Load vector: if the j-th nodal variable of the i-th element is equal to m
than bi

j is added to bm.

This can be realized in a computer code very easily by employing the infor-
mation stored in the coincidence matrix.

When assembling the global system it is advantageous first not to take
into account the boundary conditions – let the resulting system be denoted
by S̃φ̃ = b̃ – and to do the necessary modifications for their consideration
subsequently (step (iv)). In the case of Neumann boundary conditions for
this just the respective contributions have to be added to the corresponding
components of the load vector. For Dirichlet boundary conditions it has to be
ensured that in the global system the nodal variables for which certain values
are prescribed really get these values. This can be realized as follows: if for
the k-th nodal variable the value φr is prescribed, first the φr-fold of the k-th
column of S̃ is subtracted from the load vector b̃. Afterwards the k-th row

5.4 Practical Realization 119

and column in S̃ is set to zero, the k-th main diagonal element is set to 1, and
the k-th component of the load vector is set to φr.

Normally, the equation system is then solved in this form, although due
to the prescribed boundary values it contains trivial equations. Of course,
the already known nodal variables could be eliminated from the system by
simply deleting the corresponding rows and columns from the system. Since
in practice the number of prescribed values compared to the total number of
unknowns is relatively small, this is usually not done. This has the advantage
that then all nodal variables are contained in the computed solution vector
and can be used directly for further processing (e.g., for a visualization).

For the example in Sect. 5.3 the above procedure means that the global
equation system is set up first in the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
22 S1

12

S1
21 S1

22+S2
11 S2

12

S2
21 S2

22+S3
11 S3

12 0

.

0 SN−1
21 SN−1

22 +SN
11 SN

12

SN
21 SN

22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

S̃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ0

φ1

φ2

...

φN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

φ̃

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
1

b1
2+b2

1

b2
2+b3

1

...

bN−1
2 +bN

1

bN
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

b̃

.

Note that the matrix S̃ is singular, such that the corresponding equation sys-
tem in this form possesses no unique solution. Only after the consideration of
the boundary conditions is this uniquely determined. The Neumann bound-
ary condition αφ′(b) = hb requires the modification bN = b̃N + hb and the
integration of the Dirichlet boundary condition φ0 = φa leads to the system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 S1
22+S2

11 S2
12

S2
21 S2

22+S3
11 S3

12 0

.

0 SN−1
21 SN−1

22 +SN
11 SN

12

SN
21 SN

22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ0

φ1

φ2

...

φN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φa

b1
2+b2

1 − φaS1
21

b2
2+b3

1

...

bN−1
2 +bN

1

bN
2 + hb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Deleting the first row and first column from this system, the system Sφ = b
is recovered again.

120 5 Finite-Element Methods

5.4.2 Computation of Element Contributions

For the necessary evaluation of the element integrals in step (ii) for the com-
putation of the element stiffness matrices and load vectors – with respect to a
universal treatment of all elements – it is useful first to transform the integrals
by means of a corresponding variable substitution to a unit domain.

For the example from Sect. 5.3 the integrals in (5.23) over the elements
Ei = [xi−1, xi] can be transformed via the following variable substitution to
the unit interval [0, 1]:

x = xi−1 + Δxiξ with Δxi = xi − xi−1 . (5.24)

In the unit element [0, 1] one obtains for φ the representation

φe(ξ) = φe
1(1 − ξ) + φe

2ξ = φe
1N

e
1 + φe

2N
e
2 (5.25)

with the local shape functions (see Fig. 5.6)

N e
1 = 1 − ξ and N e

2 = ξ ,

and the local nodal variables φe
1 = φe(0) and φe

2 = φe(1).

�

�

1

0 1

ξ

Ne
1 Ne

2

Fig. 5.6. Local shape functions for linear one-
dimensional unit element

For the integrals in (5.23), because of

d
dξ

=
d
dx

dx

dξ
= Δxi

d
dx

,

one has the transformation rules

Si
jk = α

xi∫
xi−1

dN i
k

dx

dN i
j

dx
dx =

α

Δxi

1∫
0

dN e
k

dξ

dN e
j

dξ
dξ , (5.26)

bi
j =

xi∫
xi−1

fN i
j dx = Δxi

1∫
0

fN e
j dξ . (5.27)

The integrals over the unit interval normally are evaluated numerically (usu-
ally with Gauß quadrature, see Sect. 5.7). Note that in the present example

5.4 Practical Realization 121

the corresponding integral in (5.26) no longer depends on the element i, such
that it has to be evaluated only once (this is generally valid if α is elementwise
constant). Therefore, in this case for the computation of the element matrices
first the corresponding integrals for the unit interval can be computed (once):

Se = α

⎡⎢⎢⎢⎢⎢⎢⎣

1∫
0

dN e
1

dξ

dN e
1

dξ
dξ

1∫
0

dN e
1

dξ

dN e
2

dξ
dξ

1∫
0

dN e
2

dξ

dN e
1

dξ
dξ

1∫
0

dN e
2

dξ

dN e
2

dξ
dξ

⎤⎥⎥⎥⎥⎥⎥⎦ = α

[
1 −1

−1 1

]
, (5.28)

from which, by using the transformation rule (5.26), the element matrices for
all elements Ei can be evaluated in a simple way (without further integral
evaluations):

Si =
1

Δxi
Se =

α

Δxi

[
1 −1

−1 1

]
. (5.29)

The same applies for the computation of the element load vector according
to (5.27), if f is elementwise constant.

5.4.3 Numerical Example

To exemplify the procedure described in the preceding sections we consider a
concrete numerical example for the problem (5.12) and (5.13) with the data
[a, b]= [0, 8], α=1/2, φa =0, hb =255 , and f(x)=−3x2/2. We subdivide the
problem domain [0, 8] equidistantly into 4 elements, such that Δxi = Δx = 2
for all elements i = 1, 2, 3, 4 (see Fig. 5.7).

� x

0 = x0 x1 x2 x3 x4 = 8

��
Δx = 2

Fig. 5.7. Element subdivision for
one-dimensional numerical example

According to (5.29) the element stiffness matrices result in

Si =
1
4

[
1 −1

−1 1

]
for all elements i = 1, 2, 3, 4. With this for the global stiffness matrix (for the
time being without boundary conditions) one obtains

S̃ =
1
4

⎡⎢⎢⎢⎢⎣
1 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤⎥⎥⎥⎥⎦ .

122 5 Finite-Element Methods

For clarification we note that the assembling of S̃ corresponds to the addition
of the four 5 × 5 matrices

S̃1 =
1
4

⎡⎢⎢⎢⎢⎣
1 −1 0 0 0

−1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , S̃2 =
1
4

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 1 −1 0 0
0 −1 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

S̃3 =
1
4

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 1 −1 0
0 0 −1 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , S̃4 =
1
4

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 −1
0 0 0 −1 1

⎤⎥⎥⎥⎥⎦ ,

which contain the respective element stiffness matrices at locations corre-
sponding to the relations between the local and global nodal variables.

For the element load vectors one obtains from (5.27) the relation

bi = −3Δx

2

⎡⎢⎢⎣
1∫
0

(xi−1 + Δx ξ)2(1 − ξ) dξ

1∫
0

(xi−1 + Δx ξ)2ξ dξ

⎤⎥⎥⎦ ,

which results in the following values for the four elements:

b1 =
[−1
−3

]
, b2 =

[−11
−17

]
, b3 =

[−33
−43

]
, b4 =

[−67
−81

]
.

This yields the global load vector (without boundary conditions)

b̃ =

⎡⎢⎢⎢⎢⎣
−1
−3

0
0
0

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
0

−11
−17

0
0

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
0
0

−33
−43

0

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
0
0
0

−67
−81

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−1
−14
−50
−110
−81

⎤⎥⎥⎥⎥⎦ .

Next, the two boundary conditions have to be considered. For the Neu-
mann condition φ′(8)/2 = 255 the value hb = 255 has to be added to the last
component of the load vector b̃. The incorporation of the Dirichlet boundary
condition φ(0) = 0 finally leads to the global equation system

1
4

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

φ0

φ1

φ2

φ3

φ4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

−14
−50
−110

174

⎤⎥⎥⎥⎥⎦ .

5.5 One-Dimensional Cubic Elements 123

The solution of the system yields:

φ0 = 0 , φ1 = 0 , φ2 = 56 , φ3 = 312 , φ4 = 1008 .

The values of the nodal variables in this case coincide with the corresponding
values of the exact solution φ(x) = x4/4 − 2x, which, of course, can easily be
determined for the considered example.

5.5 One-Dimensional Cubic Elements

As a further example of a one-dimensional element, which also represents
a conforming ansatz for the beam bending, we consider an element with a
cubic ansatz. Simultaneously, this element, which also is called beam element,
should serve as an example for the procedure if derivatives are employed as
nodal variables. As an example problem we consider the (one-dimensional)
beam equation

Bφ(4) = −fq , (5.30)

for the problem domain Ω = [a, b], where at the interval ends corresponding
geometric boundary conditions for φ are prescribed (see Sect. 2.4.2).

5.5.1 Discretization

Let the subdivision of the problem domain Ω = [a, b] into elements again be
given according to Fig. 5.2. We can directly start our considerations for the
unit element and afterwards transfer it by the variable transformation (5.24)
to the individual elements. This results in a simplified presentation.

A cubic ansatz for φ on [0, 1] is:

φe(ξ) = ae
1 + ae

2ξ + ae
3ξ

2 + ae
4ξ

3 . (5.31)

This cubic function is uniquely determined by four values. As nodal variables
we select the function values and the first derivatives of φ at the ends of the
interval:

φe
1 = φ(0), φe

2 =
dφ

dξ
(0), φe

3 = φ(1), φe
4 =

dφ

dξ
(1) . (5.32)

From (5.31) and (5.32) one obtains the following relations between the nodal
variables φe

i and the coefficients ae
i :⎡⎢⎢⎣

ae
1

ae
2

ae
3

ae
4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0

−3 −2 3 −1
2 1 −2 1

⎤⎥⎥⎦
⎡⎢⎢⎣

φe
1

φe
2

φe
3

φe
4

⎤⎥⎥⎦ .

124 5 Finite-Element Methods

Inserting this into the ansatz (5.31) one obtains the representation

φe(ξ) = φe
1N

e
1 + φe

2N
e
2 + φe

3N
e
3 + φe

4N
e
4 (5.33)

with the local shape functions

N e
1(ξ) = (1 − ξ)2(1 + 2ξ) , N e

2(ξ) = ξ(1 − ξ)2 ,

N e
3(ξ) = ξ2(3 − 2ξ) , N e

4(ξ) = ξ2(ξ − 1) ,

which again are characterized by the property of taking the value 1 at the
assigned nodal variable and zero at the other ones (see Fig. 5.8).

�

�

1

0 1

ξ

Ne
1

Ne
2

Ne
3

Ne
4

Fig. 5.8. Local shape functions
for one-dimensional cubic finite
element

The weak form of the beam equation (5.30) for the unit element [0, 1] with
the test functions ϕ reads:

B

1∫
0

φ′′ϕ′′ dx = −
1∫

0

fqϕdx . (5.34)

With the ansatz (5.33) this leads via the Galerkin method to the following
equation system for the unit element:

4∑
k=1

Se
jkφe

k = be
j for j = 1, . . . , 4 (5.35)

with the element stiffness matrix and element load vector

Se
jk = B

1∫
0

(N e
k)′′(N e

j)′′ dx and be
j = −

1∫
0

fqN
e
j dx .

For the element stiffness matrix and the element load vector for the element
Ei = [xi−1, xi] we obtain with the variable transformation (5.24) the following
relations:

5.5 One-Dimensional Cubic Elements 125

Si
jk = B

xi∫
xi−1

d2N i
k

dx2

d2N i
j

dx2
dx =

B

Δx3
i

1∫
0

d2N e
k

dξ2

d2N e
j

dξ2
dξ =

1
Δx3

i

Se
jk ,

bi
j = −

xi∫
xi−1

fqN
i
j dx = −Δxi

1∫
0

fqN
e
j dξ = Δxi be

j .

When using an ansatz with derivatives as nodal variables, the derivatives
in the integrals transformed to the unit interval refer to the variable ξ. For the
later coupling with neighboring elements, however, it is more practical that
only derivatives with respect to x appear as nodal variables, since otherwise
derivatives of neighboring elements have a different meaning. This must be
taken into account by the transformation to the original integrals via the
relation

dφ

dξ
=

dφ

dx

dx

dξ
= Δxi

dφ

dx

between the derivatives. In this way, for the beam element the following ex-
pressions for the element stiffness matrix Si and the element load vector bi

result:

Si =
B

Δx3
i

⎡⎢⎢⎣
12 6Δxi −12 6Δxi

6Δxi 4Δx2
i −6Δxi 2Δx2

i

−12 −6Δxi 12 −6Δxi

6Δxi 2Δx2
i −6Δxi 4Δx2

i

⎤⎥⎥⎦ , (5.36)

bi =
f i
qΔxi

12

⎡⎢⎢⎣
−6

−Δxi

−6
Δxi

⎤⎥⎥⎦ , (5.37)

where we have assumed that fq takes the constant value f i
q in the element

Ei (if this is not the case, the value in the center of the element can be
taken as mean value or the integrals must be evaluated numerically). The
corresponding local nodal variables are

φi
1 = φ(xi−1) , φi

2 =
dφ

dx
(xi−1) , φi

3 = φ(xi) , φi
4 =

dφ

dx
(xi) .

The global equation system can be assembled in an analogous way as
for the linear element by using the relations between local and global nodal
variables. For N elements we have 2N + 2 global nodal variables, including
the ones which possibly are already prescribed due to geometric boundary
conditions. Numbering the global nodal variables successively from 1 to 2N+2,
the corresponding coincidence matrix takes the form given in Table 5.2. We
will exemplify the assembling of the global system in the next section by
means of a concrete example.

126 5 Finite-Element Methods

Table 5.2. Relation of global and local nodal variables for one-
dimensional cubic element (coincidence matrix)

Local Element
nodal variable 1 2 · · · i · · · N − 1 N

1 1 3 · · · 2i − 1 · · · 2N − 3 2N − 1
2 2 4 · · · 2i · · · 2N − 2 2N
3 3 5 · · · 2i + 1 · · · 2N − 1 2N + 1
4 4 6 · · · 2i + 2 · · · 2N 2N + 2

5.5.2 Numerical Example

As an example of a concrete application of the beam element we consider the
deflection of a continuous beam of length L = 7m with constant cross-section,
which is clamped at one end and simply supported at two other locations
x = 3L/7 and x = L. The beam is loaded by a continuously distributed
load fq = −12N/m and a concentrated force F = −6N at x = 2L/7. The
flexural stiffness is B = 4Nm2. The unknown is the deflection w = w(x) of
the beam (in the vertical direction) for 0 ≤ x ≤ 7. Figure 5.9 shows a sketch
of the problem situation. For details about the problem modeling we refer to
Sect. 2.4.2.

�

F = −6 N
fq = −12 N/m

2m 1m 4m

1 2 3

�� �� ��

Fig. 5.9. Twofold simply supported, laterally clamped continuous beam under ver-
tical load with subdivision into finite elements

We divide the beam into three elements, as indicated in Fig. 5.9. The
lengths of the elements are h1 =2 m, h2 =1m, and h3 =4m. The global nodal
variables, i.e., the respective function values and first derivatives of w at the
ends of the elements, are:

5.5 One-Dimensional Cubic Elements 127⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(0)
w′(0)
w(2)
w′(2)
w(3)
w′(3)
w(7)
w′(7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Inserting the concrete numerical values into formula (5.36) gives the ele-
ment stiffness matrices

S1 =
B

4

⎡⎢⎢⎣
6 6 −6 6
6 8 −6 4

−6 −6 6 −6
6 4 −6 8

⎤⎥⎥⎦, S2 = 2B

⎡⎢⎢⎣
6 3 −6 3
3 2 −3 1

−6 −3 6 −3
3 1 −3 2

⎤⎥⎥⎦,

S3 =
B

32

⎡⎢⎢⎣
6 12 −6 12

12 32 −12 16
−6 −12 6 −12
12 16 −12 32

⎤⎥⎥⎦.

With the coincidence matrix in Table 5.2 (with N=3) the global stiffness
matrix (without boundary conditions) becomes

S̃ =
B

16

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24 24 −24 24 0 0 0 0
24 32 −24 16 0 0 0 0

−24 −24 216 72 −192 96 0 0
24 16 72 96 −96 32 0 0
0 0 −192 −96 195 −90 −3 6
0 0 96 32 −90 80 −6 8
0 0 0 0 −3 −6 3 −6
0 0 0 0 6 8 −6 16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the element load vectors of the three elements we obtain with for-
mula (5.37):

b1 =
fq

6

⎡⎢⎢⎣
6
2
6

−2

⎤⎥⎥⎦ , b2 =
fq

12

⎡⎢⎢⎣
6
1
6

−1

⎤⎥⎥⎦ , b3 =
fq

3

⎡⎢⎢⎣
6
4
6

−4

⎤⎥⎥⎦ .

With this the global load vector results in

128 5 Finite-Element Methods

b̃ =
fq

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
2
6

−2
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

fq

12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
6
1
6

−1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

fq

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
6
4
6

−4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
F
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12
−4

−24
3

−30
−15
−24

16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the concentrated force at x = 2, affecting the nodal variable φ3 = w(2),
is already considered.

According to the prescribed geometric boundary conditions

w(0) = w′(0) = w(3) = w(7) = 0

we have:

φ1 = φ2 = φ5 = φ7 = 0 .

By just deleting the corresponding rows and columns (possible in this case
because all prescribed values are 0), the following equation system remains to
be solved:

1
4

⎡⎢⎢⎣
216 72 96 0
72 96 32 0
96 32 80 8
0 0 8 16

⎤⎥⎥⎦
⎡⎢⎢⎣

φ3

φ4

φ6

φ8

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−24

3
−15

16

⎤⎥⎥⎦
The solution of the system gives:

φ3 = 0.009625 , φ4 = 0.611 , φ6 = −1.48 , φ8 = 4.74 .

Thus, for instance, the deflection of the beam at the point of application of
the concentrated force is w(2) = 0.009625m.

5.6 Two-Dimensional Elements

The techniques introduced for the one-dimensional case can be employed in
a very similar way for the definition of finite elements in two spatial dimen-
sions (and also for three-dimensional elements, which, however, will not be
addressed in this introductory text). As a representative example we consider
the Poisson equation for the unknown function φ = φ(x, y) with homogeneous
Dirichlet boundary conditions φ = 0 on the boundary Γ (to save indices here
and in the following we write x = x1 and y = x2). As already outlined in
Sect. 5.1, in this case the application of the Galerkin method with the global

5.6 Two-Dimensional Elements 129

shape functions Nk (k = 1, . . . , N) as ansatz functions leads to the following
linear equation system for the unknown coefficients (nodal variables) φk:

N∑
k=1

φk

∫
Ω

(
∂Nk

∂x

∂Nj

∂x
+

∂Nk

∂y

∂Nj

∂y

)
dΩ =

∫
Ω

fNj dΩ for j = 1, . . . , N .

Assuming again that f is constant within an element (with value f i), for
the considered problem integrals of the following types over the elements Ei

(i = 1, . . . , N) have to be computed:∫
Ei

(
∂N i

k

∂x

∂N i
j

∂x
+

∂N i
k

∂y

∂N i
j

∂y

)
dΩ and

∫
Ei

N i
j dΩ , (5.38)

where N i
k again denotes the local shape function in the element.

For two-dimensional problems in practice usually element subdivisions into
triangles or quadrilaterals are employed. As in the one-dimensional case the
elementwise computation of the contributions for the stiffness matrix and the
load vector can be put down to the computation of integrals over a unit do-
main. We will exemplify this for simple triangular and quadrilateral elements.

5.6.1 Variable Transformation for Triangular Elements

A triangle Di in general location with the vertices (x1, y1), (x2, y2), and
(x3, y3) can uniquely be mapped by the variable transformation

x = x1 + (x2 − x1)ξ + (x3 − x1)η ,
(5.39)

y = y1 + (y2 − y1)ξ + (y3 − y1)η

to the isosceles unit triangle D0 with edge length 1 (see Fig. 5.10). The two
integrals in (5.38) transform according to the relations∫

Di

(
∂N i

k

∂x

∂N i
j

∂x
+

∂N i
k

∂y

∂N i
j

∂y

)
dxdy = ki

1

∫
D0

∂N e
k

∂ξ

∂N e
j

∂ξ
dξdη +

ki
2

∫
D0

∂N e
k

∂η

∂N e
j

∂η
dξdη + ki

3

∫
D0

(
∂N e

k

∂ξ

∂N e
j

∂η
+

∂N e
k

∂η

∂N e
j

∂ξ

)
dξdη (5.40)

and ∫
Di

N i
j dxdy = J

∫
D0

N e
j dξdη , (5.41)

where

130 5 Finite-Element Methods

ki
1 =

[
(x3 − x1)2 + (y3 − y1)2

]
/J ,

ki
2 =

[
(x2 − x1)2 + (y2 − y1)2

]
/J , (5.42)

ki
3 = [(x3 − x1)(x1 − x2) + (y3 − y1)(y1 − y2)] /J .

Here,

J = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)

denotes the Jacobi determinant of the coordinate transformation (5.39). The
value of J corresponds to the double area of the triangle Di.

� x

�
y

Di

(x1, y1)

(x2, y2)

(x3, y3)

� ξ

�
η

(ξ1, η1)
(ξ2, η2)

(ξ3, η3)

D0

0

1

1

Fig. 5.10. Transformation of triangle in arbitrary location to unit triangle

Note that with the same transformation (5.39) also a parallelogram in
arbitrary location can be transformed to the unit square Q0 = [0, 1]2 (see
Fig. 5.11). This becomes obvious if the triangle in Fig. 5.10 is complemented
to a parallelogramm.

� x

�
y

Qi
P1

P2

P4

P3

� ξ

�
η

P̃1 P̃2

P̃3 P̃4

Q0

0

1

1

Fig. 5.11. Transformation of parallelogram in arbitrary location to unit square

5.6 Two-Dimensional Elements 131

5.6.2 Linear Triangular Elements

The most simple triangular element is obtained with the following linear
ansatz for φ (in the unit triangle):

φe(ξ, η) = ae
1 + ae

2ξ + ae
3η . (5.43)

This function is uniquely determined by the prescription of the three function
values φe

1, φe
2, and φe

3 at the vertices of the triangle, which are selected as
nodal variables. Between the nodal variables and the ansatz coefficients we
have the relation ⎡⎣ae

1

ae
2

ae
3

⎤⎦ =

⎡⎣ 1 0 0
−1 1 0
−1 0 1

⎤⎦⎡⎣φe
1

φe
2

φe
3

⎤⎦ .

Inserting the coefficients ae
i in the ansatz (5.43) one obtains for φ on the unit

triangle the representation

φe(ξ, η) = φe
1N

e
1 + φe

2N
e
2 + φe

3N
e
3 (5.44)

with the local shape functions

N e
1(ξ, η) = 1 − ξ − η , N e

2(ξ, η) = ξ , N e
3(ξ, η) = η .

The shape function N e
1 is illustrated in Fig. 5.12. The other two run analo-

gously (with value 1 in the points P2 and P3, respectively).

	η

�ξ

P1 P2

P3

Ne
1

Fig. 5.12. Shape function Ne
1 for linear

triangular finite elements

For the integrals over the unit triangle appearing in (5.40) and (5.41) one
gets:

S1e
jk =

∫
D0

∂N e
k

∂ξ

∂N e
j

∂ξ
dξdη =

1
2

⎡⎣ 1 −1 0
−1 1 0

0 0 0

⎤⎦ ,

S2e
jk =

∫
D0

∂N e
k

∂η

∂N e
j

∂η
dξdη =

1
2

⎡⎣ 1 0 −1
0 0 0

−1 0 1

⎤⎦ ,

132 5 Finite-Element Methods

S3e
jk =

∫
D0

(
∂N e

k

∂ξ

∂N e
j

∂η
+

∂N e
k

∂η

∂N e
j

∂ξ

)
dξdη =

1
2

⎡⎣ 2 −1 −1
−1 0 1
−1 1 0

⎤⎦ ,

be
j =

∫
D0

N e
j dξdη =

1
6

⎡⎣ 1
1
1

⎤⎦ .

Thus, the element stiffness matrix results in

Si = ki
1S

1e + ki
2S

2e + ki
3S

3e =
1
2

⎡⎣ki
1+ki

2+2ki
3 −ki

1−ki
3 −ki

2−ki
3

−ki
1−ki

3 ki
1 ki

3

−ki
2−ki

3 ki
3 ki

2

⎤⎦
with the (element dependent) constants ki

1, ki
2, and ki

3 defined in (5.42). The
element load vector is given by

bi = f iJ be =
f iJ

6

⎡⎣ 1
1
1

⎤⎦ .

If terms other than those in the considered Poisson problem appear in the
underlying differential equations, the corresponding element stiffness matrices
and load vectors can be determined in a completely analogous way.

5.6.3 Numerical Example

We will now exemplify the procedure for the assembling of the global equation
system from the element contributions and the consideration of boundary
conditions also for the two-dimensional case. We consider the two-dimensional
heat conduction problem defined in Exercise 4.3 (see Fig. 4.23).

For the problem solution we employ the linear triangular element intro-
duced in the preceding section with the subdivision of the problem domain
into triangles Di (i = 1, . . . , 8) and the nodal variables φk (k = 1, . . . , 9) as
indicated in Fig. 5.13.

The application of the Galerkin method leads to the following global prob-
lem formulation:

9∑
k=1

φk

2∫
0

2∫
0

∂Nk

∂x

∂Nj

∂x
+

∂Nk

∂y

∂Nj

∂y
dxdy =

2∫
0

y3Nj dy +

2∫
0

(12y − y3)Nj dy + 4

2∫
0

2∫
0

Nj dxdy (5.45)

for j = 1, . . . , 9 with the global shape functions Nj .

5.6 Two-Dimensional Elements 133

�x

�y

1

2

3

4

5

6

7

8

0 1 2
0

1

2

φ1 φ2 φ3

φ4 φ5 φ6

φ7 φ8 φ9

Fig. 5.13. Finite-element discretiza-
tion with triangular elements for 2-d
example problem

The assembling of the global equation system follows the procedure de-
scribed in Sect. 5.4. For the corresponding computations the coordinates of the
element vertices and the allocation of the global to the local nodal variables
of the individual elements (coincidence matrix) are summarized in Tables 5.3
and 5.4, respectively. Note that although in the coincidence matrix the start-
ing point of the local numbering is arbitrary, the sequence of the numbering
(here counter-clockwise) should be the same in each element (see Fig. 5.12).

Table 5.3. Node coordinates of triangular
elements for 2-d example problem

Node
Coordinates 1 2 3 4 5 6 7 8 9

x 0 1 2 0 1 2 0 1 2
y 0 0 0 1 1 1 2 2 2

Table 5.4. Allocation of global and local nodal
variables for 2-d example problem (coincidence
matrix)

Local Element
nodal variable 1 2 3 4 5 6 7 8

1 1 2 2 3 4 5 5 6
2 2 5 3 6 5 8 6 9
3 4 4 5 5 7 7 8 8

For the constants ki
i, ki

2, and ki
3 in (5.42) one obtains:

134 5 Finite-Element Methods

ki
1 = 1, ki

2 = 1, ki
3 = 0 for the elements i = 1, 3, 5, 7 ,

ki
1 = 2, ki

2 = 1, ki
3 = −1 for the elements i = 2, 4, 6, 8 .

With this the element stiffness matrices become

Si =
1
2

⎡⎣ 2 −1 −1
−1 1 0
−1 0 1

⎤⎦ for the elements i = 1, 3, 5, 7 ,

Si =
1
2

⎡⎣ 1 −1 0
−1 2 −1

0 −1 1

⎤⎦ for the elements i = 2, 4, 6, 8 .

For the element load vector one gets for all elements i = 1, . . . , 8:

bi =
4
6

⎡⎣ 1
1
1

⎤⎦ .

Next, the assembling of the global system can be done according to the
methodology introduced in Sect. 5.4. Due to the symmetry of the global stiff-
ness matrix it is sufficient if only the coefficients on and above the main
diagonal are considered. Employing the information of the coincidence matrix
in Table 5.4 we obtain the entries for the global stiffness matrix and the global
load vector according to the schemes given in Tables 5.5 and 5.6, respectively.
All components which are not indicated are zero.

The global stiffness matrix and load vector are obtained by summation of
the individual contributions for the coefficients. For our example this yields:

S̃ =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −2 0 0 0 0

0 −1 2 0 0 −1 0 0 0
−1 0 0 4 −2 0 −1 0 0

0 −2 0 −2 8 −2 0 −2 0
0 0 −1 0 −2 4 0 0 −1
0 0 0 −1 0 0 2 −1 0
0 0 0 0 −2 0 −1 4 −1
0 0 0 0 0 −1 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and b̃ =

4
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
2
3
6
3
2
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Again, one can recognize the typical band structure of the matrix.
Next, the boundary conditions have to be taken into account. Let us start

with the Neumann boundary conditions, which require the evaluation of the
boundary integrals in (5.45) resulting in additional contributions to the load
vector. For the elementwise computation of these integrals one can employ

5.6 Two-Dimensional Elements 135

Table 5.5. Composition of global stiffness matrix for 2-d
example problem

Global Element
stiffness matrix 1 2 3 4 5 6 7 8

S11 S1
11

S12 S1
12

S14 S1
13

S22 S1
22 S2

11 S3
11

S23 S3
12

S24 S1
23 S2

13

S25 S2
12 S3

13

S33 S3
22 S4

11

S35 S3
23 S4

13

S36 S4
12

S44 S1
33 S2

33 S5
11

S45 S2
23 S5

12

S47 S5
13

S55 S2
22 S3

33 S4
33 S5

22 S6
11 S7

11

S56 S4
23 S7

12

S57 S5
23 S6

13

S58 S6
12 S7

13

S66 S4
22 S7

22 S8
11

S68 S7
23 S8

13

S69 S8
12

S77 S5
33 S6

33

S78 S6
23

S88 S6
22 S7

33 S8
33

S89 S8
23

S99 S8
22

Table 5.6. Composition of global load vector
for 2-d example problem

Global Element
load vector 1 2 3 4 5 6 7 8

b1 b1
1

b2 b1
2 b2

1 b3
1

b3 b3
2 b4

1

b4 b1
3 b2

3 b5
1

b5 b2
2 b3

3 b4
3 b5

2 b6
1 b7

1

b6 b4
2 b7

2 b8
1

b7 b5
3 b6

3

b8 b6
2 b7

3 b8
3

b9 b8
2

136 5 Finite-Element Methods

(one-dimensional) boundary shape functions for the element edges located at
boundaries where a Neumann condition is prescribed. For the employed linear
ansatz the boundary shape functions for the unit interval in y direction read:

N r
1(η) = 1 − η and N r

2(η) = η .

The assignment of the boundary nodal variables to the elements involving a
Neumann condition is given in Table 5.7. The boundary shape function (now
dependent on y) for the corresponding elements are

N1
1 (y) = N4

1 (y) = 1 − y , N1
2 (y) = N4

2 (y) = y ,

N5
1 (y) = N8

1 (y) = 2 − y , N5
2 (y) = N8

2 (y) = y − 1 .

The superscripts and subscripts relate to the element and the boundary nodal
variable, respectively. Thus, Nk

i = Nk
i (y) is the boundary shape function in

the k-th element, which has the value 1 at the i-th boundary nodal variable.

Table 5.7. Allocation of bound-
ary nodal variables and elements
for example problem

Local Element
nodal variable 1 4 5 8

1 1 3 4 6
2 4 6 7 9

The computation of the corresponding boundary integral contributions
yields:

r1
1 =

1∫
0

y3N1
1 (y) dy =

1∫
0

y3(1 − y) dy =
1
20

,

r1
2 =

1∫
0

y3N1
2 (y) dy =

1∫
0

y3y dy =
1
5

,

r4
1 =

1∫
0

(12y − y3)N4
1 (y) dy =

1∫
0

(12y − y3)(1 − y) dy =
39
20

,

r4
2 =

1∫
0

(12y − y3)N4
2 (y) dy =

1∫
0

(12y − y3)y dy =
19
5

,

r5
1 =

1∫
0

y3N5
1 (y) dy =

2∫
1

y3(2 − y) dy =
13
10

,

5.6 Two-Dimensional Elements 137

r5
2 =

1∫
0

y3N5
2 (y) dy =

2∫
1

y3(y − 1) dy =
49
20

,

r8
1 =

1∫
0

(12y − y3)N8
1 (y) dy =

2∫
1

(12y − y3)(2 − y) dy =
67
10

,

r8
2 =

1∫
0

(12y − y3)N8
2 (y) dy =

2∫
1

(12y − y3)(y − 1) dy =
151
20

.

According to the allocation given in Table 5.7, the coefficients of the load
vector have to be modified as follows (not strictly mathematically, we use the
same notation for the modified coefficients):

b̃1 ← b̃1 + r1
1 ,

b̃3 ← b̃3 + r4
1 ,

b̃4 ← b̃4 + r1
2 + r5

1 ,

b̃6 ← b̃6 + r4
2 + r8

1 ,

b̃7 ← b̃7 + r5
2 ,

b̃9 ← b̃9 + r8
2 .

The other coefficients remain unchanged. Inserting the concrete values, we
obtain for the load vector:

b̃ =
4
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
2
3
6
3
2
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

1
20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0

39
30
0

210
49
0

151

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1
60

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

43
120
197
210
240
750
227
120
493

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

According to the Dirichlet boundary conditions we have:

φ1 = φ2 = φ3 = 20 , φ7 = 12 , φ8 = 6 , φ9 = 12 .

Proceeding in the way as outlined in Sect. 5.4 for considering these conditions
we finally obtain for the stiffness matrix and the load vector:

138 5 Finite-Element Methods

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 4 −2 0 0 0 0
0 0 0 −2 8 −2 0 0 0
0 0 0 0 −2 4 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20
20
20
39
60
57
12
6

12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Eliminating the already known nodal variables, the equation system that re-
mains to be solved is ⎡⎣ 4 −2 0

−2 8 −2
0 −2 4

⎤⎦⎡⎣φ4

φ5

φ6

⎤⎦ =
1
2

⎡⎣39
60
75

⎤⎦ ,

which has the solution

φ4 = 18.75 , φ5 = 18.0 , φ6 = 23.25 .

For the elements employed the computed coefficients directly correspond
to the temperatures at the corresponding locations. Comparing these with the
respective analytical solution (see Table 5.8), already a relatively good agree-
ment of the results is achieved – despite the rather coarse element subdivision
and the low order of the polynomial ansatz.

Table 5.8. Analytical and numerical so-
lution with linear triangular elements for
2-d example problem

T (0, 1) T (1, 1) T (2, 1)

Analytical 18.00 18.00 24.00
Numerical 18.75 18.00 23.25

5.6.4 Bilinear Parallelogram Elements

As an example of a quadrilateral element we consider the simplest element
out of this class, i.e., the bilinear parallelogram element. For this, we use the
following bilinear ansatz in the unit square Q0 = [0, 1]2 for φ:

φe(ξ, η) = ae
1 + ae

2ξ + ae
3η + ae

4ξη . (5.46)

As nodal variables we chose the four function values φe
1, φe

2, φe
3, and φe

4 at the
vertices of the square (in successive counter-clockwise numbering), by which

5.6 Two-Dimensional Elements 139

the function is uniquely determined in the element. At the edges of the square
one has a linear course of the ansatz function. Thus, the function values at
the vertices uniquely determine the linear course along an edge, such that
the continuity to neighboring elements is ensured. Consequently, the bilinear
parallelogram element (by preserving the continuity) also can be combined
easily with the linear triangular element.

Between the nodal variables φe
i and the ansatz coefficients ae

i we have the
following correlation: ⎡⎢⎢⎣

ae
1

ae
2

ae
3

ae
4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0

−1 1 0 0
−1 0 0 1

1 −1 1 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

φe
1

φe
2

φe
3

φe
4

⎤⎥⎥⎦ .

Inserting this into the ansatz (5.46) we obtain the shape function representa-
tion

φe(ξ, η) = φe
1N

e
1 + φe

2N
e
2 + φe

3N
e
3 + φe

4N
e
4 (5.47)

with the local shape functions

N e
1(ξ, η) = (1 − ξ)(1 − η) ,

N e
2(ξ, η) = ξ(1 − η) ,

N e
3(ξ, η) = ξη ,

N e
4(ξ, η) = (1 − ξ)η .

The function N e
1 is illustrated in Fig. 5.14. The other ones are obtained by

rotations by 90o, 180o, and 270o.

	η

�ξ

P1 P2

P3P4
Ne

1

Fig. 5.14. Shape function Ne
1 for

bilinear parallelogram element

For the integrals in (5.40) and (5.41) over the unit square one obtains

S1e
jk =

∫
Q0

∂N e
k

∂ξ

∂N e
j

∂ξ
dξdη =

1
6

⎡⎢⎢⎣
2 −2 −1 1

−2 2 1 −1
−1 1 2 −2

1 −1 −2 2

⎤⎥⎥⎦ ,

140 5 Finite-Element Methods

S2e
jk =

∫
Q0

∂N e
k

∂η

∂N e
j

∂η
dξdη =

1
6

⎡⎢⎢⎣
2 1 −1 −2
1 2 −2 −1

−1 −2 2 1
−2 −1 1 2

⎤⎥⎥⎦ ,

S3e
jk =

∫
Q0

(
∂N e

k

∂ξ

∂N e
j

∂η
+

∂N e
k

∂η

∂N e
j

∂ξ

)
dξdη =

1
6

⎡⎢⎢⎣
3 0 −3 0
0 −2 0 3

−3 0 2 0
0 3 0 −2

⎤⎥⎥⎦ ,

be
j =

∫
Q0

N e
j dξdη =

1
4

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ .

With this the element stiffness matrix and the element load vector for the
bilinear parallelogram element can be computed as

Se = ki
1S

1e + ki
2S

2e + ki
3S

3e and bi = f iJ be ,

where k1, k2, and k3 again are the (element dependent) constants defined
in (5.42).

5.6.5 Other Two-Dimensional Elements

With a complete polynomial ansatz (all terms up to a certain degree appear),
principally elements of arbitrary high order can be constructed, also in the
two-dimensional case. However, polynomials with a degree higher than three
are rarely used, since with the polynomial degree the number of nodal variables
increases quite rapidly, i.e., (p + 1)(p + 2)/2 nodal variables are needed for
degree p. The corresponding system matrices then possess many non-zero
entries and the numerical solution of the equation system becomes relatively
costly (see Chap. 7).

The complete ansatz polynomial of second order for two-dimensional prob-
lems, for instance, is (for simplicity we omit the index “e” in the following)

φ(ξ, η) = a1 + a2ξ + a3η + a4ξ
2 + a5ξη + a6η

2 .

As nodal variables for corresponding triangular elements, for instance, the
function values of φ in the vertices and in the midpoints of the edges of the
triangles can be taken. In the cubic case already 10 nodal variables per element
are required. Also incomplete (reduced) polynomial ansatz functions, in which
some terms in the complete polynomial are omitted, are possible.

In Table 5.9 an overview of several common triangular elements are given
together with the corresponding polynomial ansatz functions. Here, the nota-
tion indicated in Table 5.10 is used for the definition of the nodal variables.

5.6 Two-Dimensional Elements 141

Thus, the symbol “ ”, for instance, means that at the corresponding location
the following 6 nodal variables are defined:

φ,
∂φ

∂ξ
,

∂φ

∂η
,

∂2φ

∂ξ2
,

∂2φ

∂η2
,

∂2φ

∂ξ∂η
.

The point in the interior of the triangle for the two cubic elements corre-
sponds to the barycenter of the triangle. Elements with derivatives as nodal
variables, in particular, are well suited for plate problems. For instance, the
last three elements in Table 5.9 also are conforming for these kind of problems
because the continuity of the normal derivatives along the triangle edges at
the interfaces of neighboring elements is ensured.

By selecting different polynomial ansatz functions and nodal variables
also quadrilateral elements of different order – either conforming or non-
conforming – can be defined. In Table 5.11 the most important quadrilateral
elements are summarized together with the corresponding polynomial ansatz
functions, where for the definition of the nodal variables again the notation
introduced in Table 5.10 is employed.

The ansatz polynomial of the biquadratic or the bicubic elements can be
seen as a product of quadratic or cubic polynomials in ξ and η, respectively.
The corresponding elements are denoted as Lagrange elements because they
are in direct relation to Lagrange interpolation. The bilinear element described
in the preceding section also belongs to this element class.

The Serendipity elements are characterized by ansatz functions, which on
each edge of the quadrilateral represent a complete polynomial that is uniquely
determined by the respective prescribed nodal values along the edges. This
way the continuity of neighboring elements is ensured. However, the internal
nodes that result from the corresponding product ansatz are omitted, such
that the ansatz polynomial is incomplete.

The question of which finite element is best suited for a concrete problem
(i.e., achievement of a desired accuracy with lowest possible computational
effort), cannot be answered universally because this strongly depends on the
specific problem. The higher the degree of the ansatz, the more accurate the
elementwise approximation of the solution. Simultaneously, however, the effort
for the assembling of the equation system and its numerical solution increases
quickly. As already mentioned there is an elaborated mathematical theory on
the method also addressing aspects of approximation errors (see, e.g., [3]).
We will not go into further detail here, but note that under certain regularity
assumptions for the finite-element solution φh error estimates of the form

‖φ(x) − φh(x)‖ ≤ Chp+1 (5.48)

can be derived. Here, h is a measure of the element size, C is a constant not
depending on h (but on φ), p is the degree of the ansatz polynomial, and ‖ · ‖
denotes a suitable norm.

142 5 Finite-Element Methods

Table 5.9. Overview of common two-dimensional triangular elements

Nodal variables Description

Linear triangular element
3 degrees of freedom, continuous
φ(ξ, η) = a1 + a2ξ + a3η

Quadratic triangular element
6 degrees of freedom, continuous
φ(ξ, η) = a1 + a2ξ + a3η + a4ξ

2 + a5ξη + a6η
2

Cubic triangular element
10 degrees of freedom, continuous
φ(ξ, η) = a1 + a2ξ + a3η + a4ξ

2 + a5ξη + a6η
2+

a7ξ
3 + a8ξ

2η + a9ξη
2 + a10η

3

Cubic triangular element
10 degrees of freedom, continuous, continuous 1st derivatives
φ(ξ, η) = a1 + a2ξ + a3η + a4ξ

2 + a5ξη + a6η
2+

a7ξ
3 + a8ξ

2η + a9ξη
2 + a10η

3

Bell triangle
18 degrees of freedom, continuous, continuous 1st derivatives
φ(ξ, η) = reduced 5th order polynomial

Argyris triangle
21 degrees of freedom, continuous, continuous 1st derivatives
φ(ξ, η) = complete 5th order polynomial

Table 5.10. Notation for defining nodal variables

Symbol Prescribed nodal variables

Function value

Function value and 1st derivatives

Function value, 1st and 2nd derivatives

Normal derivative

5.7 Numerical Integration 143

Table 5.11. Overview of common two-dimensional quadrilateral elements

Nodal variables Description

Bilinear quadrilateral element
4 degrees of freedom, continuous
φ(ξ, η) = a1 + a2ξ + a3η + a4ξη

Quadratic quadrilateral element (Serendipity)
8 degrees of freedom, continuous
φ(ξ, η) = a1 + a2ξ + a3η + a4ξ

2 + a5ξη + a6η
2+

a7ξ
2η + a8ξη

2

Biquadratic quadrilateral element (Lagrange)
9 degrees of freedom, continuous
φ(ξ, η) = a1 + a2ξ + a3η + a4ξ

2 + a5ξη + a6η
2 + a7ξ

2η+
a8ξη

2 + a9ξ
2η2

Cubic quadrilateral element (Serendipity)
12 degrees of freedom, continuous
φ(ξ, η) = a1 + a2ξ + a3η + a4ξ

2 + a5ξη + a6η
2 + a7ξ

3+
a8ξ

2η + a9ξη
2 + a10η

3 + a11ξ
3η + a12ξη

3

Cubic quadrilateral element
12 degrees of freedom, continuous, continuous 1st deriva-
tives
φ(ξ, η) = a1 + a2ξ + a3η + a4ξ

2 + a5ξη + a6η
2 + a7ξ

3+
a8ξ

2η + a9ξη
2 + a10η

3 + a11ξ
3η + a12ξη

3

Bicubic quadrilateral element (Lagrange)
16 degrees of freedom, continuous
φ(ξ, η) = a1 + a2ξ + a3η + a4ξ

2 + a5ξη + a6η
2 + a7ξ

3+
a8ξ

2η + a9ξη
2 + a10η

3 + a11ξ
3η + a12ξ

2η2+
a13ξη

3 + a14ξ
2η3 + a15ξ

3η2 + a16ξ
3η3

5.7 Numerical Integration

Already, for simpler ansatz functions relatively complex integrals have to be
evaluated. For the considered simple examples it has been possible to evaluate
the integrals for the computation of the various element contributions simply
“by hand”. For more complex elements (e.g., isoparametric elements, which
we will discuss in Sect. 9.2) an exact integration usually is no longer possible
and numerical integration techniques have to be employed for this purpose.
An exact computation of the integrals also is not necessary because by the dis-
cretization already an error is introduced and a numerical integration scheme

144 5 Finite-Element Methods

of sufficiently high order does not significantly deteriorate the accuracy of the
numerical solution.

We already dealt with numerical integration methods in connection with
finite-volume methods (see Sect. 4.2). In that case it was necessary that the
integration points coincide with the locations at which the corresponding vari-
ables are defined. This is not necessary for the evaluation of the integrals
within the finite-element method because of the use of shape functions within
the elements. Thus, more efficient methods can be employed here.

In general, a formula for the numerical integration of an arbitrary (scalar)
function φ = φ(x) over a domain Ω can be written in the form∫

Ω

φdΩ ≈
p∑

i=1

φ(xi)wi

with suitable integration weights wi and nodal points xi in Ω. The idea for the
construction of more efficient numerical integration formulas is to select the
locations of nodal points – for a given number of points – in such a way that the
error becomes minimal. Optimal in this sense are the Gauß quadature formulas
with which a polynomial of degree 2p−1 still can be integrated exactly with p
nodal points. Thus, these formulas for a given number of nodal points are much
more accurate than the ones we have discussed in the context of finite-volume
methods. For instance, with the Simpson rule (with 3 nodal points) only
polynomials up to degree 2 can be integrated exactly, while the corresponding
Gaussian quadrature formula still yields exact values for polynomials up to
degree 5.

We will not go into the details of the derivation of the Gauß quadrature
formulas, which can be found in the corresponding literature (e.g., [2] and the
references given there). Suffice it to say in the one-dimensional case the nodal
points are defined by roots of Legendre polynomials and that the corresponding
integration weights are obtained by integration of Lagrange polynomials. In
Table 5.12 the nodal points and the weights of the Gauß quadrature formulas
for the unit interval up to the order p = 3 are given. The method with p = 1
corresponds to the midpoint rule.

For the integration error of the one-dimensional Gauß quadrature of order
p one has the following general expression (under certain regularity assump-
tions on φ):

1∫
0

φdξ −
p∑

i=1

φ(ξi)wi =
22p+1(p!)4

[(2p)!]3(2p + 1)
φ(2p)(ξm) ,

where ξm is located in the interval (0, 1) (where exactly is usually not known).
The one-dimensional Gauß quadrature formulas can also be used for the

unit square and unit cube by just applying the corresponding formula succes-
sively for each spatial direction (productwise application). This corresponds

5.7 Numerical Integration 145

Table 5.12. Nodal points and
weights for one-dimensional Gauß
quadrature up to order 3

Order i ξi wi

1 1 1/2 1

2 1 (3 −√
3)/6 1/2

2 (3 +
√

3)/6 1/2

3 1 (5 −√
15)/6 5/18

2 1/2 4/9

3 (5 +
√

15)/6 5/18

to a distribution of the nodal points and weights according to the one-
dimensional case in each coordinate direction (see Fig. 5.15). However, the
resulting formulas are no longer optimal in the above mentioned sense. It is
also possible to derive directly corresponding optimal formulas for a specific
domain. For the unit square, for instance, the nodal points are then located
on circles around the point (ξ, η) = (1/2, 1/2).

0 1 0
0

1

1

Fig. 5.15. Distribution of nodal points
for Gauß quadrature with p = 3 for unit
interval and unit square (for productwise
application)

Corresponding integration formulas are available also for the unit triangle.
As an example, in Table 5.13 the coordinates of the nodal points and the cor-
responding weights for the formula with 7 nodal points are given. Figure 5.16
shows the corresponding distribution of the nodal points within the unit tri-
angle. This formula yields exact integrals for polynomials up to degree 5.

0

1

1

Fig. 5.16. Distribution of nodal points for exact
integration of polynomials up to degree 5 for unit
triangle

146 5 Finite-Element Methods

Table 5.13. Nodal points and integration weights for Gauß
quadrature with 7 points for unit triangle

i ξi ηi wi

1 1/3 1/3 9/80

2 (6 +
√

15)/21 (6 +
√

15)/21 (155 +
√

15)/2400

3 (9 − 2
√

15)/21 (6 +
√

15)/21 (155 +
√

15)/2400

4 (6 +
√

15)/21 (9 − 2
√

15)/21 (155 +
√

15)/2400

5 (6 −√
15)/21 (6 −√

15)/21 (155 −√
15)/2400

6 (9 + 2
√

15)/21 (6 −√
15)/21 (155 −√

15)/2400

7 (6 −√
15)/21 (9 + 2

√
15)/21 (155 −√

15)/2400

The nodal points and weights for the unit domains in the different spatial
dimensions for the Gauß quadrature formulas of different orders can be found
in tabular form in the literature (e.g., [20] and the references given therein).

Exercises for Chap. 5

Exercise 5.1. Transform the integrals (5.38) with the variable transforma-
tion (5.39) to the unit triangle D0 (cf. (5.40) and (5.41)).

Exercise 5.2. Determine the local shape functions for the biquadratic paral-
lelogram element and the cubic triangular element.

Exercise 5.3. Derive an expression for the element stiffness matrix of the
quadratic triangular element when applied to the two-dimensional scalar
transport equation (4.1).

Exercise 5.4. In the problem domain 0 ≤ x ≤ 1 the one-dimensional differ-
ential equation φ′(x) − φ(x) = 0 with the initial condition φ(0) = 1 is given.
Compute a finite-element solution with 4 equidistant linear elements.

Exercise 5.5. In the triangle with the vertices (0,0), (1,0), and (0,2) a finite
element is defined by a bilinear ansatz and the local nodal variables

φ1 = φ(0, 0) , φ2 = φ(1, 0) , φ3 = φ(0, 2) , φ4 =
∂φ

∂x
(0, 2) .

Determine the corresponding local shape functions.

Exercise 5.6. The temperature φ = φ(x, y) in a device (see Fig. 5.17) is
described by the differential equation

−2
∂2φ

∂x2
− 2

∂2φ

∂y2
= xy .

5.7 Numerical Integration 147

On the whole boundary the value φ = 1 is prescribed. The device is subdi-
vided into 4 bilinear parallelogram elements E1, . . . , E4 with the global nodal
variables φ1, . . . , φ10 according to Fig. 5.17. The local nodal variables are num-
bered clockwise starting at the right bottom corner of the elements. (i) Give
the corresponding coincidence matrix. (ii) Compute the coefficient b2

2 of the el-
ement load vector for the element E2. (iii) Express the components S̃87 of the
global stiffness matrix and b5 of the global load vector in dependence on the
element stiffness matrices and load vectors Si

jk and bi
j (for i, j, k=1, . . . , 4).

�
x

�y

0

1

2

0 1 2 3

φ1

φ3

φ4 φ2

φ5

φ7

φ8

φ6

φ9

φ10

E1 E2

E3

E4

Fig. 5.17. Finite-element dis-
cretization with bilinear par-
allelogram elements for Exer-
cise 5.6

Exercise 5.7. Compute the heat transfer example from Sect. 5.6.3 with the
discretization into 4 bilinear parallelogram elements shown in Fig. 5.18. Com-
pare the results with that for the linear triangular elements (see Table 5.8).

�x

�y

E1 E2

E3 E4

0 1 2
0

1

2

φ1 φ2 φ3

φ4 φ5 φ6

φ7 φ8 φ9

Fig. 5.18. Finite-element discretization
with bilinear parallelogram elements for
Exercise 5.7

Exercise 5.8. A finite-element discretization for a device consists of four bi-
linear quadrangular elements with counterclockwise numbering of the local
nodal variables. The following components of the global stiffness matrix are
given:

S85 = S1
41 + S3

21 , S46 = S4
32 , S12 = S3

34 ,

148 5 Finite-Element Methods

S53 = S2
43 + S4

41 , S49 = S1
23 , S72 = S2

21

(i) Give the corresponding coincidence matrix. (ii) Sketch a suitable finite-
element discretization with the corresponding numberings of elements and
global nodal variables.

Exercise 5.9. For the function φ = φ(x) the differential equation

5φ′ − φ′′ = 4x for 0 < x < 1

with the boundary conditions φ′(0) = 1 and φ(1) = 0 is given. Choose for φ
the ansatz

φ(x) ≈ c1ϕ1(x) + c2ϕ2(x) with ϕ1(x) = x − 1 , ϕ2(x) = x2 − 1

and determine the ansatz coefficients c1 und c2 with the Galerkin method.

6

Time Discretization

In many practical applications the processes under consideration are unsteady
and thus require for their numerical simulation the solution of time-dependent
model equations. The time has a certain exceptional role in the differential
equations because, unlike for spatial coordinates, there is a distinguished di-
rection owing to the principle of causality. This fact has to be taken into
account for the discretization techniques employed for time. In this chapter
the most important aspects with respect to this issue are discussed.

6.1 Basics

For unsteady processes the physical quantities – in addition to the spatial
dependence – also depend on the time t. In the applications considered here
mainly two types of time-dependent problems appear: transport and vibration
processes. Examples of corresponding processes are, for instance, the Kármán
vortex street formed when fluids flow around bodies (see Fig. 6.1), or vibra-
tions of a structure (see Fig. 6.2), respectively.

Fig. 6.1. Kármán vortex street (instantaneous vorticity)

While the equations for unsteady transport processes only involve first
derivatives with respect to time, for vibration processes second time deriva-
tives also appear. In the first case the problem is called parabolic, in the second
case hyperbolic. Since we do not need the underlying concepts in the following,

150 6 Time Discretization

�
�

Fig. 6.2. Vibrations of a clamped
beam

we will disperse with a more precise definition of the terms that can be used
for a general classification of second-order partial differential equations (see,
e.g., [9] or [12]).

An example of a parabolic problem is the general unsteady scalar transport
equation (cf. Sect. 2.3.2)

∂(ρφ)
∂t

+
∂

∂xi

(
ρviφ − α

∂φ

∂xi

)
= f . (6.1)

An example of the hyperbolic type are the equations of linear elastodynamics
(cf. Sect. 2.4.1). For a vibrating beam, as illustrated in Fig. 6.2, one has, for
instance:

ρA
∂2w

∂t2
+

∂2

∂x2

(
B

∂2w

∂x2

)
+ fq = 0 . (6.2)

Compared to the corresponding steady problems the time is an additional
coordinate, i.e., φ = φ(x, t) or w = w(x, t). Also, all involved prescribed
quantities may depend on time. Note that vibration processes frequently can
be formulated by means of a separation ansatz, i.e., φ(x, t) := φ1(x)φ2(t), in
the form of eigenvalue problems. However, we will not go into further detail
with this here (see, e.g., [2]).

In order to fully define time-dependent problems, initial conditions are
required in addition to the boundary conditions (which may also depend on
time). For transport problems an initial distribution of the unknown function
has to be prescribed, e.g.,

φ(x, t0) = φ0(x)

for problem (6.1), while vibration problems require an additional initial dis-
tribution for the first time derivative, e.g.,

w(x, t0) = w0(x) und
∂w

∂t
(x, t0) = w1(x)

for problem (6.2).
For the numerical solution of time-dependent problems usually first a spa-

tial discretization with one of the techniques described in the preceding sec-
tions is performed. This results in a system of ordinary differential equations
(with respect to time). In a finite-difference method setting this approach is

6.1 Basics 151

referred to as method of lines. For instance, the spatial discretization of (6.1)
with a finite-volume method yields for each control volume the equation

∂φP

∂t
=

1
ρ δV

[
−aP(t)φP +

∑
c

ac(t)φc + bP(t)

]
, (6.3)

where, for the sake of simplicity we assume the density ρ and the volume δV
is temporally constant (and we will also do so in the following). Globally, i.e.,
for all control volumes, (6.3) corresponds to a (coupled) system of ordinary
differential equations for the unknown functions φi

P = φi
P(t) for i = 1, . . . , N ,

where N is the number of control volumes.
When employing a finite-element method for the spatial discretization of

a time-dependent problem, in the Galerkin method a corresponding ansatz
with time-dependent coefficients is made:

φ(x, t) = ϕ0(x, t) +
N∑

k=1

ck(t)ϕk(x) .

For temporally varying boundary conditions also the function ϕ0 has to be
time-dependent, because it has to fulfil the inhomogeneous boundary condi-
tions within the whole time interval. Applying the Galerkin method with this
ansatz in an analogous way as in the steady case leads to a system of ordinary
differential equations for the unknown functions ck = ck(t) (see Exercise 6.2).

For ease of notation in the following the right hand side of the equation
resulting from the spatial discretization (either obtained by finite-volume or
finite-element methods) is expressed by the operator L:

∂φ

∂t
= L(φ) ,

where φ = φ(t) denotes the vector of the unknown functions. For instance,
in the case of a finite-volume space discretization of (6.1) according to (6.3),
the components of L(φ) are defined by the right hand side of (6.3).

For the time discretization, i.e., for the discretization of the systems of or-
dinary differential equations, techniques similar to those for the spatial coor-
dinates can be employed (i.e., finite-difference, finite-volume, or finite-element
methods). Since the application of the different methods does not result in
principal differences in the resulting discrete systems, we restrict ourselves to
the (most simple) case of finite-difference approximations.

First, the time interval [t0, T] under consideration is divided into individ-
ual, generally non-equidistant, subintervals Δtn:

tn+1 = tn + Δtn , n = 0, 1, 2, . . .

For a further simplification of notation the variable value at time tn is indi-
cated with an index n, e.g.:

152 6 Time Discretization

L(φ(tn)) = L(φn).

According to the principle of causality the solution at time tn+1 only can
depend on previous points in time tn, tn−1, . . . Since the time in this sense is a
“one-way” coordinate, the solution for tn+1 has to be determined as a function
of the boundary conditions and the solutions at earlier times. Thus, the time
discretization always consists in an extrapolation. Starting from the prescribed
initial conditions at t0, the unknown variable φ is successively computed at
the points of time t1, t2, . . . (see Fig. 6.3).

�

�φ

t

Values already known ��

•φ0
φ1

φn−1

φn

φn+1

�
?

t0 t1

· · ·

· · · tn−1 tn tn+1 · · · tN−1 tN = T

Fig. 6.3. Time-stepping process

Finally, the temporal developing of φ can be represented as a sequence of
different spatial values at discrete points in time (see Fig. 6.4 for a spatially
two-dimensional problem). It should be noted that for transport problems
steady solutions are often also computed with a time discretization method as
a limit for t → ∞ from the time-dependent equations. However, this method,
known as pseudo time stepping, does not usually result in an efficient method,
but may be useful when, owing to stability problems, the direct solution of
the steady problem is hard to obtain (the time-stepping acts as a relaxation,
see Sect. 10.3.3).

There must be at least one already known time level to discretize the time
derivative. If only one time level is used, i.e., the values at tn, one speaks of
one-step methods, while if more known time levels are employed, i.e., values for

φ0
i

φ1
i

φ2
i

�

�

x1

x2

t0

t1

t2

t

Fig. 6.4. Relation between spa-
tial and temporal discretization

6.1 Basics 153

the time levels tn, tn−1, . . ., one talks about multi-step methods. Furthermore
– and more importantly – the methods for the time discretization generally
are divided into two classes according to the choice of points of time, at which
the right hand side is evaluated:

Explicit methods: discretization of the right hand side only at previous
(already known) time levels:

φn+1 = F(φn,φn−1, . . .) .

Implicit methods: discretization of the right hand side also at new (un-
known) time level:

φn+1 = F(φn+1,φn,φn−1, . . .) .

Here, F denotes some discretization rule for the choice of which we will give
examples later. The distinction into explicit and implicit methods is a very
important attribute because far reaching differences with respect to the prop-
erties of the numerical schemes arise (we will go into more detail in Sect. 8.1.2).

In the next two sections some important and representative variants for the
above classes of methods will be introduced. We restrict our considerations to
problems of the parabolic type (only first time derivative). However, it should
be mentioned that the described methods in principle also can be applied to
problems with second time derivative, i.e., problems of the type

∂2φ

∂t2
= L(φ) , (6.4)

by introducing the first time derivatives

ψ =
∂φ

∂t

as additional unknowns (order reduction). According to (6.4) one has

∂ψ

∂t
= L(φ)

and with the definitions

φ̃ =
[

ψ
φ

]
and L̃(φ̃) =

[L(φ)
ψ

]
a system of the form

∂φ̃

∂t
= L̃(φ̃)

results, which is equivalent to (6.4) and involves only first time derivatives.
However, this way the number of unknowns doubles so that methods that
solve the system (6.4) directly (for instance the so-called Newmark methods,
see, e.g., [2]) usually are more efficient.

154 6 Time Discretization

6.2 Explicit Methods

We start with the most simple example of a time discretization method, the
explicit Euler method, which is obtained by approximating the time derivative
at time level tn by means of a forward differencing scheme:

∂φ

∂t
(tn) ≈ φn+1 − φn

Δtn
= L(φn) . (6.5)

This corresponds to an approximation of the time derivative of the components
φi of φ at the time tn by means of the slope of the straight line through the
points φn

i and φn+1
i (see Fig. 6.5). The method is first-order accurate (with

respect to time) and is also known as the Euler polygon method.

�

�

t

φi

tn tn+1

�� Δtn

∂φi

∂t
(tn)

φn+1
i − φn

i

Δtn

Fig. 6.5. Approximation of time derivative
with explicit Euler method

The relation (6.5) can be resolved explicitly for φn+1:

φn+1 = φn + ΔtnL(φn) .

On the right hand side there are only values from the already known time level,
such that the equations for the values at the point of time tn+1 at the different
spatial grid points are fully decoupled and can be computed independently
from each other. This is characteristic for explicit methods.

Let us consider as an example the unsteady one-dimensional diffusion
equation (with constant material parameters):

∂φ

∂t
=

α

ρ

∂2φ

∂x2
. (6.6)

A finite-volume space discretization with the central differencing scheme for
the diffusion term for an equidistant grid with grid spacing Δx yields for each
control volume the ordinary differential equation:

∂φP

∂t
(t)Δx =

α

ρ

φE(t) − φP(t)
Δx

− α

ρ

φP(t) − φW(t)
Δx

(6.7)

The explicit Euler method with fixed time step size Δt gives the following
approximation:

6.2 Explicit Methods 155

φn+1
P − φn

P

Δt
Δx =

α

ρ

φn
E − φn

P

Δx
− α

ρ

φn
P − φn

W

Δx

Resolving for φn+1
P yields

φn+1
P =

αΔt

ρΔx2
(φn

E + φn
W) + (1 − 2αΔt

ρΔx2
)φn

P .

The procedure is illustrated graphically in Fig. 6.6. One observes that a num-
ber of time steps is necessary until changes at the boundary affect the interior
of the spatial problem domain. The finer the grid, the slower the spreading of
the information (for the same time step size). As we will see in Sect. 8.1.2, this
leads to a limitation of the time step size (stability condition), which depends
quadratically on the spatial resolution and, with a finer spatial grid, becomes
more and more restrictive. This limitation is purely due to numerical reasons
and independent from the actual temporal developing of the problem solution.

tn−1

tn

tn+1

x1 x2 · · · xi−1 xi xi+1 · · · xN

Fig. 6.6. Procedure and
flow of information for
explicit Euler method

There are numerous other explicit one-step methods that differ from the
explicit Euler method in the approximation of the right hand sides. The mod-
ified explicit Euler method formulated by Collatz (1960) is

φn+1 − φn

Δtn
= L(φn +

Δtn
2

L(φn)) ,

which, compared to the explicit Euler method, requires just one additional
evaluation of the right hand side, but is second order accurate on equidistant
grids.

Another class of explicit one-step methods are the Runge-Kutta methods,
which are frequently used in practice particularly for aerodynamical flow sim-
ulations. These methods can be defined for arbitrary order. As an example,
the classical Runge-Kutta method of fourth order is defined by:

φn+1 − φn

Δtn
=

1
6
(f1 + 2f2 + 2f3 + f4) ,

156 6 Time Discretization

where

f1 = L(φn) , f2 = L(φn +
Δtn
2

f1) ,

f3 = L(φn +
Δtn
2

f2) , f4 = L(φn + Δtnf3) .

Combinations of Runge-Kutta methods of the orders p and p+1 frequently
are employed to obtain procedures with an automatic time step size control.
The resulting methods are known as Runge-Kutta-Fehlberg methods (see, e.g.,
[24]).

In multi-step methods more than two time levels are employed to ap-
proximate the time derivative. A corresponding discretization scheme can, for
instance, be defined by assuming a piecewise polynomial course of the un-
known function with respect to time (e.g., quadratically for three time levels)
or by a suitable Taylor series expansion (see, e.g., [12]).

The computation of the solution with a multi-step method must always
be started with a single-step method because initially only the solution at t0
is available. Having computed the solutions for t1, . . . , tp−2, one can continue
with a p time level method. Note that during the computation all variable val-
ues from the involved time levels have to be stored. In the case of large systems
and many time levels this results in a relatively large memory requirement.

Depending on the number of involved time levels, the approximation of
the time derivative, and the evaluation of the right hand side, a variety of
multi-step methods can be defined. An important class of explicit multi-step
methods that are frequently employed in practice are the Adams-Bashforth
methods. These can be derived by polynomial interpolation with arbitrary
orders. However, in practice, only the methods up to the order 4 are used.
For equdistant time steps these are summarized in Table 6.1 (the first order
Adams-Bashforth method is again the explicit Euler method).

Table 6.1. Adams-Bashforth methods up to the order 4

Formula Order

φn+1 − φn

Δt
= L(φn) 1

φn+1 − φn

Δt
=

1

2

[
3L(φn) − L(φn−1)

]
2

φn+1 − φn

Δt
=

1

12

[
23L(φn) − 16L(φn−1) + 5L(φn−2)

]
3

φn+1 − φn

Δt
=

1

24

[
55L(φn) − 59L(φn−1) + 37L(φn−2) − 9L(φn−3)

]
4

6.3 Implicit Methods 157

6.3 Implicit Methods

Approximating the time derivative at time tn+1 by a first order backward
difference formula (see Fig. 6.7) results in the implicit Euler method:

∂φ

∂t
(tn+1) ≈ φn+1 − φn

Δtn
= L(φn+1)

This differs from the explicit variant only in the evaluation of the right hand
side, which now is computed at the new (unknown) time level. Consequently,
explicitly solving for φn+1

P is no longer possible because all variables of the
new time level are coupled to each other. Thus, for the computation of each
new time level – as in the steady case – the solution of an equation system is
necessary. This is characteristic for implicit methods.

�

�

t

φi

tn tn+1

�� Δtn

∂φi

∂t
(tn+1)

φn+1
i − φn

i

Δtn

Fig. 6.7. Approximation of time derivative
with implicit Euler method

For instance, discretizing the one-dimensional diffusion equation (6.6) with
the spatial discretization (6.7) using the implicit Euler method gives:

(1 +
2αΔt

ρΔx2
)φn+1

P =
αΔt

ρΔx2
(φn+1

E + φn+1
W) + φn

P . (6.8)

Regarded over all control volumes, this represents a tridiagonal linear equation
system that has to be solved for each time step.

In the implicit case changes at the boundary in the actual time step spread
in the whole spatial problem domain (see Fig. 6.8) so that the stability prob-
lems indicated for the explicit Euler method do not occur in this form. The
implicit Euler method turns out to be stable independently of Δx and Δt
(see Sect. 8.1.2).

As the explicit method, the implicit Euler method is first order accurate
in time. It is more costly than the explicit variant because more computa-
tional effort (for the solution the equation system) and more memory (for the
coefficients and the source terms) is required per time step. However, there
is no limitation for the time step size due to stability reasons. The higher
effort of the method usually is more than compensated for by the possibility
of selecting larger time steps. Thus, in most cases it is in total much more
efficient than the explicit variant.

158 6 Time Discretization

tn−1

tn

tn+1

x1 x2 · · · xi−1 xi xi+1 · · · xN

Fig. 6.8. Procedure and
flow of information for
implicit Euler method

The algebraic equations resulting with the implicit Euler method for an
unsteady transport problem differ from the corresponding steady case (when
using the same spatial discretizations) only by two additional terms in the
coefficients aP and bP:

(an+1
P + δV ρ

Δtn
)︸ ︷︷ ︸

ãn+1
P

φn+1
P =

∑
c

an+1
c φn+1

c + bn+1
P + δV ρ

Δtn
φn

P︸ ︷︷ ︸
b̃n+1
P

.

In the limit Δtn → ∞ the steady equations result. Thus, the methods can be
easily combined for a single code that can handle both steady and unsteady
cases.

An important implicit one-step method frequently used in practice is the
Crank-Nicolson method, which is obtained when for each component φi of φ
the time derivative at time tn+1/2 = (tn + tn+1)/2 is approximated by the
straight line connecting φn+1

i and φn
i (see Fig. 6.9):

∂φ

∂t
(tn+1/2) ≈ φn+1 − φn

Δtn
=

1
2
[L(φn+1) + L(φn)

]
.

This corresponds to a central difference approximation of the time deriva-
tive at time tn+1/2. The scheme has a second order temporal accuracy. The
method is also called trapezoidal rule because the application of the latter
for numerical integration of the equivalent integral equation yields the same
formula.

The computational effort for the Crank-Nicolson method is only slightly
higher than for the implicit Euler method because only L(φn) has to be com-
puted additionally and the solution of the resulting equation systems usually
is a bit more “difficult”. However, due to the higher order the accuracy is much
better. One can show that the Crank-Nicolson method is the most accurate
second-order method.

For problem (6.6) with the spatial discretization (6.7), the Crank-Nicolson
method results in the following approximation:

6.3 Implicit Methods 159

�

�

t

φi

tn tn+1tn+1/2

�� Δtn

∂φi

∂t
(tn+1/2)

φn+1
i − φn

i

Δtn

Fig. 6.9. Approximation of time deriva-
tive with Crank-Nicolson method

2(1 +
αΔt

ρΔx2
)φn+1

P =
αΔt

ρΔx2
(φn+1

E + φn+1
W) +

αΔt

ρΔx2
(φn

E + φn
W) +

2(1 − αΔt

ρΔx2
)φn

P .

Although it is implicit, the Crank-Nicolson method may suffer from stabil-
ity problems for cases where the problem solution is spatially not “smooth”
(no strong A-stability, see, e.g., [12]). By interspersing some steps of the im-
plicit Euler method at regular intervals, a damping of the corresponding (non-
physical) oscillations can be achieved while preserving the second-order accu-
racy of the scheme.

Note that the explicit and implicit Euler methods as well as the Crank-
Nicolson method can be integrated into a single code in a simple way by
introducing a control parameter θ as follows:

φn+1 − φn

Δtn
= θL(φn+1) + (1 − θ)L(φn) .

This approach in the literature is often called θ-method. For θ = 0 and θ = 1
the explicit and implicit Euler methods, respectively, result. θ = 1/2 gives
the Crank-Nicolson method. Valid time discretizations are also obtained for
all other values of θ in the interval [0, 1]. However, for θ �= 1/2 the method is
only of first order.

As in the explicit case, implicit multi-step methods of different order can
be defined depending on the number of involved time levels, the approximation
of the time derivative, and the evaluation of the right hand side An important
class of methods are the BDF-methods (backward-differencing formula). These
can be derived with arbitrary order by approximating the time derivative at
tn+1 with backward-differencing formulas involving a corresponding number
of previous time levels. The corresponding methods for equidistant time steps
up to the order 4 are indicated in Table 6.2.

The first order BDF-method corresponds to the implicit Euler method.
In particular, the second order BDF-method is frequently used in practice.
With this the unknown function is approximated by the parabola defined
by the function values at the time levels tn−1, tn, and tn+1 (see Fig. 6.10).
Having comparably good stability properties this method only involves slightly

160 6 Time Discretization

Table 6.2. BDF-methods up to the order 4

Formula Order

φn+1 − φn

Δt
= L(φn+1) 1

3φn+1 − 4φn + φn−1

2Δt
= L(φn+1) 2

11φn+1 − 18φn + 9φn−1 + 2φn−2

6Δt
= L(φn+1) 3

25φn+1 − 48φn + 36φn−1 − 16φn−2 + 3φn−3

2Δt
= L(φn+1) 4

more computational effort per time step and is much more accurate than the
implicit Euler method. Only the values φn−1 have to be stored additionally.
From order three on the stability properties deteriorate with increasing order
such that the application of a BDF-method with order higher than 4 is not
recommended.

�

�

t

φi

tn−1 tn tn+1

Fig. 6.10. Approximation of time
derivative with second-order BDF-
method

Another class of implicit multi-step methods are the Adams-Moulton meth-
ods – the implicit counterparts to the (explicit) Adams-Bashforth methods.
The corresponding formulas up to the order 4 for equidistant grids are sum-
marized in Table 6.3. The Adams-Moulton methods of first and second orders
correspond to the implicit Euler and Crank-Nicolson methods, respectively.

Adams-Moulton methods can be used together with Adams-Bashforth
methods of the same order as predictor-corrector methods. Here, the idea is to
determine with the explicit predictor method in a “cheap” way a good start-
ing value for the implicit corrector method. For instance, the corresponding
predictor-corrector method of fourth order is given by:

φ∗=φn+
Δt

24
[
55L(φn) − 59L(φn−1) + 37L(φn−2) − 9L(φn−3)

]
,

φn+1=φn+
Δt

24
[
9L(φ∗) + 19L(φn) − 5L(φn−1) + L(φn−2)

]
.

6.4 Numerical Example 161

Table 6.3. Adams-Moulton methods up to the order 4

Formula Order

φn+1 − φn

Δt
= L(φn+1) 1

φn+1 − φn

Δt
=

1

2

[
L(φn+1) + L(φn)

]
2

φn+1 − φn

Δt
=

1

12

[
5L(φn+1) + 8L(φn) − L(φn−1)

]
3

φn+1 − φn

Δt
=

1

24

[
9L(φn+1) + 19L(φn) − 5L(φn−1) + L(φn−2)

]
4

The error for such a combined method is equal to that of the implicit method,
which is always the smaller one.

6.4 Numerical Example

As a more complex application example for the numerical simulation of time-
dependent processes and for comparison of different time discretization meth-
ods we consider the unsteady flow around a circular cylinder in a channel
with time dependent inflow condition. The problem configuration is shown in
Fig. 6.11. The problem can be described by the two-dimensional incompress-
ible Navier-Stokes equations as given in Sect. 2.5.1. The kinematic viscosity is
defined as ν = 10−3 m2/s, and the fluid density is ρ = 1.0 kg/m3. The inflow
condition for the velocity component v1 in x1-direction is

v1(0, x2, t) = 4vmaxx2(H − x2) sin(πt/8)/H2 , for 0 ≤ t ≤ 8 s

with vmax = 1.5m/s. This corresponds to the velocity profile of a fully deve-
loped channel flow, where the Reynolds number Re = v̄D/ν based on the
cylinder diameter D = 0.1m and the mean velocity v̄(t) = 2vmax(0,H/2, t)/3
varies in the range 0 ≤ Re ≤ 100.

As reference quantities the drag and lift coefficients

cD =
2Fw

ρv̄2D
and cL =

2Fa

ρv̄2D

for the cylinder are considered. Hereby, the drag and lift forces are defined by

FD =
∫
S

(ρν
∂vt

∂xi
nin2 − pn1) dS and FL = −

∫
S

(ρν
∂vt

∂xi
nin1 + pn2) dS ,

where S denotes the cylinder surface (circle), n = (n1, n2) is the normal vector
on S, and vt is the tangential velocity on S.

162 6 Time Discretization

x1

x2

v1 =v2 =0

v1 =v2 =0

v1 =v2 =0

(0, H)

(0, 0)

0.1

0.16

0.15

0.15

2.2

Inflow

Outflow

Fig. 6.11. Configuration for two-dimensional flow around cylinder (lengths in m)

The temporal development of the flow is illustrated in Fig. 6.12 and shows
the vorticity at different points of time. First, there are two counterrotating
vortices behind the cylinder, that become unstable after a certain time (with
increasing oncoming flow). A Kármán vortex street forms and finally decays
with decreasing oncoming flow. The problem effectively involves two kinds of
time dependencies: an “outer” one due to the time-dependent boundary con-
dition and an “inner” one due to the vortex separation by physical instability
(bifurcation).

t = 1.6 s

t = 5.6 s

t = 8.0 s

Fig. 6.12. Temporal development of vorticity for unsteady flow around cylinder

6.4 Numerical Example 163

The spatial discretization uses a finite-volume method with central dif-
ferencing scheme on a grid with 24 576 CVs, a typical grid size for this kind
of problem. The grid can be seen in Fig. 6.13, where for visibility only ev-
ery fourth grid line is shown, i.e., the real number of CVs is 16 times larger.
For the time discretization the implicit Euler method, the Crank-Nicolson
method, and the second-order BDF-method are compared. We only consider
implicit methods because explicit methods for this kind of problems are orders
of magnitude slower and, therefore, are out of discussion here.

Fig. 6.13. Numerical grid for flow around cylinder (every fourth grid line is shown)

Figure 6.14 shows the temporal development of the lift coefficient cL ob-
tained with the different time discretization methods, where for each case the
same time step size Δt = 0.02 s is employed. Thus 400 time steps for the
given time interval of 8 s are necessary. The “exact” solution, which has been
obtained by a computation with a very fine grid and a very small time step
size, is also indicated.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Time t [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Li
ft

co
ef

fic
ie

nt

Exact solution
Crank-Nicolson
BDF 2nd order
Implicit Euler

24576 CVs, Δt = 0.02 s

Fig. 6.14. Temporal development of lift coefficient for different time discretization
schemes for flow around cylinder

164 6 Time Discretization

One can see quite significant differences in the results obtained with the
different methods. With the implicit Euler method the oscillations with the
given time step size are not captured at all. The discretization error in this case
is so large, that the oscillations are damped completely. The BDF-method is
able to resolve the oscillations to some extent, but the amplitude is clearly too
small. The Crank-Nicolson method, as one would expect from a corresponding
analysis of the discretization error, gives the best result.

One of the most important practical aspects for a numerical method is
how much computing time the method needs to compute the solution with a
certain accuracy. In order to compare the methods in this respect, Fig. 6.15
shows the relative error for the maximum of the lift coefficient against the
computing time, which is needed for different time step sizes, for the different
time discretization methods.

1000 10000
Computing time [s]

1

10

100

R
el

. e
rr

or
(m

ax
. l

ift
 c

oe
ffi

ci
en

t)
 [%

]

Crank-Nicolson
BDF 2nd order
Implicit Euler

Fig. 6.15. Relative error against computing time for different time discretizations

One can observe that the implicit Euler method does not perform well
because very small time step sizes are necessary to achieve an acceptable
accuracy (the method is only of first order). The two second-order methods
don’t differ that much, in particular, in the range of small errors. However, the
Crank-Nicolson method is also in this respect the best scheme, i.e., within a
given computing time with this method one obtains the most accurate results.
In other words, a precribed accuracy can be achieved within the shortest
computing time.

In order to point out that not all quantities of a problem react with the
same sensitivity to the discretization employed, in Fig. 6.16 the temporal
development of the drag coefficient cD that results with the different time

6.4 Numerical Example 165

discretization schemes is given. In contrast to the corresponding lift coefficients
one can observe only minor differences in the results for the different methods.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Time t [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ra

g
co

ef
fic

ie
nt

Exact solution
Crank-Nicolson
BDF 2nd order
Implicit Euler

24576 CVs, Δt = 0.02 s

Fig. 6.16. Temporal development of drag coefficient with different time discretiza-
tions

In summary, one can conclude that the time discretization method to-
gether with the time step size has to be chosen according to the accuracy
requirements of the underlying problem, where the stability and approxima-
tion properties of the method have to be taken into account. This is not always
an easy undertaking. In the case of strong temporal variations in the solution,
the method should in any event be at least of second order.

Exercises for Chap. 6

Exercise 6.1. The temperature distribtion T = T (t, x) in a bar of length L
with constant material properties is decribed by the differential equation

∂T

∂t
− α

∂2T

∂x2
= 0 with α =

κ

ρcp

for 0 < x < L and t > 0 (cf. Sect. 2.3.2). As initial and boundary conditions
T (0, x) = sin(πx)+x and T (t, 0) = 0, and T (t, L) = 1 are given (in K). The
problem parameters are L = 1 m and α = 1 m2/s. (i) Use the FVM with two
equidistant CVs and second-order central differences for the spatial discretiza-
tion and formulate the resulting ordinary differential equations for the two
CVs. (ii) Compute the temperature until the time t = 0, 4 s with the implicit
and explicit Euler methods, each with Δt = 0, 1 s and 0, 2 s. (iii) Discuss the

166 6 Time Discretization

results in comparison to the analytic solution Ta(t, x) = e−αtπ2
sin(πx) + x.

Exercise 6.2. Discretize the unsteady transport equation (2.24) with the
finite-element method and formulate the θ-method for the resulting system of
ordinary differential equations.

Exercise 6.3. Formulate the Adams-Bashforth and the Adams-Moulton
methods of fourth order for the problem in Exercise 6.1 and determine the
corresponding truncation errors by Taylor series expansion.

Exercise 6.4. Formulate a second-order finite-volume method (for equidis-
tant grids) for the spatial and temporal discretization of the unsteady beam
equation (6.2).

Exercise 6.5. A finite-volume space discretization yields for t > 0 the system
of ordinary differential equations[

φ′
1

φ′
2

]
=

[
2 0
t
√

t

] [
φ1

φ2

]
+

[
sin(πt)√

t

]
for the two values φ1 = φ1(t) and φ2 = φ2(t) in the CV centers. The initial
conditions are φ1(0) = 2 and φ2(0) = 1. (i) Discretize the system with the
θ-method. (ii) Compute φ1

1 = φ2(Δt) with the time step size Δt = 2.

7

Solution of Algebraic Systems of Equations

The discretization of steady or unsteady problems with implicit time integra-
tion, either by finite-volume or finite-element methods, results in large sparse
systems of algebraic equations. The solution procedure for these equation sys-
tems is an important part of a numerical method. Frequently, much more
than 50% of the total computation time is required for the numerical solution
of these systems. Therefore, in this chapter we will deal in some detail with
solution methods for such systems, considering first the linear and afterwards
the nonlinear case.

We will give examples of some typical solution procedures in order to high-
light the characteristic properties of such methods, particularly with respect
to their computational efficiency. A large variety of methods exist, some of
which are specially designed for certain classes of systems. For these we refer
to the corresponding literature (e.g., [11]).

7.1 Linear Systems

The linear equation systems to be solved are of the following general form:

ai
Pφi

P −
∑

c

ai
cφ

i
c = bi

P for i = 1, . . . , K , (7.1)

where the summation index c runs over the nodes in the neighborhood of node
P, which are involved in the corresponding discretization. In matrix notation
we denote the system (7.1) as

Aφ = b . (7.2)

The structure of the system matrix A is determined mainly from the nu-
merical grid and from the discretization scheme employed (see, for instance,
the examples in Sect. 4.8). The dimension K of the matrix is defined by the
number of unknown nodal values.

168 7 Solution of Algebraic Systems of Equations

The system matrices resulting from the discretization methods that were
discussed are, after consideration of boundary conditions, usually non-singular
(under certain requirements for the discretization), such that the equation
systems possess a unique solution. In principle there are two possibilities for
the numerical solution of the systems:

direct methods,
iterative methods.

The characteristic of direct methods is that the exact solution of the system
(neglecting rounding errors) is obtained by a nonrecurring application of an
algorithm, whereas with iterative methods an approximative solution is suc-
cessively improved by a repeated application of a certain iteration rule. In the
following we will exemplify typical variants for both classes of methods.

7.1.1 Direct Solution Methods

The only method for the direct solution of matrix equations that is of interest
for the problems in the present context is the Gauß elimination or variants of
it. Also in practice, especially for structural mechanics FEM computations,
these are still frequently employed. Applied to general matrices the Gauß
elimination has an important interpretation as a multiplicative decomposition
of the given matrix A into lower and upper triangular matrices L and U (LU-
decomposition):

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 · · · 0

l2,1 · · ·
· · · · ·
· · · · ·
· · · 0

lK,1 · · · lK,K−1 1

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

L

⎡⎢⎢⎢⎢⎢⎢⎣
u1,1 u1,2 · · · u1,K

0 · · ·
· · · · ·
· · · · ·
· · · uK−1,K

0 · · · 0 uK,K

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

U

,

where the coefficients li,j and ui,j have to be computed anyway in the course of
the usual elimination procedure (see, e.g., [20] for details). Having computed
the decomposition, the solution of the system – if necessary, also for different
right hand side vectors – can be determined by a simple forward and backward
substitution process. Here, first the system

Lh = b

is solved by forward substitution for h and afterwards the final solution φ is
determined from

Uφ = h

by backward substitution.

7.1 Linear Systems 169

If A is a band matrix, as is usually the case for the discretizations of
the problems of interest here (see, e.g., Sect. 4.8), the matrices L and U are
also band matrices (with the same band width as A). The property that
A is only sparsely filled within the band (sparse matrices), however, does
not transfer to L and U, which usually are full within the band. This is a
crucial disadvantage of direct methods when they are applied to two- and, in
particular, three-dimensional problems. We will return to the consequences of
this “fill-in” effect with respect to the efficiency of the Gauß elimination in
Sect. 7.1.7. For one-dimensional problems, for which the discretization result
in for instance tridiagonal or pentadiagonal matrices, this effect plays no role
(already the band of A is full, but narrow), such that in this case the direct
solution with the Gauß elimination is quite efficient. For tridiagonal matrices
the Gauß elimination in the literature is known as TDMA (tridiagonal matrix
algorithm) or Thomas algorithm.

It should be noted that for symmetric positive definite systems there exists
a symmetric variant of the Gauß elimination called Cholesky method. Here,
all operations can be performed on, for instance, the lower triangular matrix,
which reduces the memory requirements by a factor of two. Additionally, the
Cholesky method is less sensitive to rounding errors than the usual Gauß
elimination (see, e.g., [24]).

7.1.2 Basic Iterative Methods

Iterative methods start from an estimated solution φ0 of the equation system,
which then is successively improved by the multiple application of an iteration
process P:

φk+1 ← P(φk) , k = 0, 1, . . .

The Jacobi method and the Gauß-Seidel method belong to the simplest itera-
tive solution methods. In the Jacobi method an improved solution is achieved
by inserting the (“old”) values φk in the sum term of the algebraic equa-
tion (7.1), i.e., the “new” value at node P is determined by an averaging of
the “old” values in the neighboring nodes involved in the discretization. The
corresponding iteration rule reads:

φi,k+1
P =

1
ai
P

(∑
c

ai
cφ

i,k
c + bi

P

)
.

Figure 7.1 illustrates the procedure for a problem resulting from a two-
dimensional finite-volume discretization. Contrary to many other methods
(see below), the properties of the Jacobi method are completely independent
from the numbering of the unknowns.

The convergence of the Jacobi method can be accelerated if one exploits
the fact that when computating the new value at node P for some of the

170 7 Solution of Algebraic Systems of Equations

φi,k+1
P

φi,k
E

φi,k
N

φi,k
W

φi,k
S

φi,k
NE

φi,k
SE

φi,k
NW

φi,k
SW

Fig. 7.1. Iteration rule for
Jacobi method

neighboring nodes involved in the discretization (depending on the numbering
of the nodes) already some new (improved) values are available. This leads to
the Gauß-Seidel method:

φi,k+1
P =

1
ai
P

(
∑
c1

ai
c1

φi,k
c1

+
∑
c2

ai
c2

φi,k+1
c2

+ bi
P) ,

where the index c1 runs over the nodes that are not yet computed and the
index c2 over the nodes for which already “new” values are available. Figure 7.2
illustrates the procedure for the case of a lexigraphical numbering of the nodes
(first from west to east, then from south to north).

φi,k+1
P

φi,k
E

φi,k
N

φi,k+1
W

φi,k+1
S

φi,k
NE

φi,k+1
SE

φi,k
NW

φi,k+1
SW

Fig. 7.2. Iteration rule for Gauß-
Seidel method with lexicographi-
cal numbering of nodes

A sufficient (but not necessary) criterion for the convergence of the Jacobi
and Gauß-Seidel methods is the essential diagonal dominance of the coefficient
matrix, i.e., for all i = 1, . . . , K the inequality

|ai
P| ≥

∑
c

|ai
c|

is fulfilled, where the strict inequality “>” has to be fulfilled at least for one
index i. This property is also known as weak row sum criterion. For instance,

7.1 Linear Systems 171

for a conservative discretization the convergence is ensured if all coefficients
ai

c have the same sign. In this case “=” is fulfilled for all inner nodes and “>”
for the nodes in the vicinity of boundaries with Dirichlet conditions.

The rate of convergence of the Gauß-Seidel method can be further im-
proved by an underrelaxation, resulting in the SOR method (successive over-
relaxation). Here, first auxiliary values φk+1

∗ are computed according to the
Gauß-Seidel method. They are then linearly combined with the “old” values
φk to give the new iterate:

φk+1 = φk + ω(φk+1
∗ − φk) ,

where the relaxation parameter ω should be in the interval [1, 2) (in this case,
the convergence is ensured if the matrix A fulfils certain requirements, see,
e.g., [11]). For ω = 1 again the Gauß-Seidel method is recovered. In summary
the SOR method can be written as follows:

φi,k+1
P = (1 − ω)φi,k

P +
ω

ai
P

(∑
c1

ai
c1

φi,k
c1

+
∑
c2

ai
c2

φi,k+1
c2

+ bi
P

)
.

For general equation systems it is not possible to specify an optimal value
ωopt for the relaxation parameter ω explicitly. Such values can be theoretically
derived only for simple linear model problems For these it can be shown that
the asymptotic computational effort for the SOR method is significantly lower
than for the Gauß-Seidel method, i.e., with the relatively simple modification
the computational effort may be reduced considerably (we come back to this
issue in Sect. 7.1.7). Frequently, the optimal value for ω for the model problems
also provides reasonable convergence rates for more complex problems.

There are numerous variants of the SOR method, mainly differing in the
order in which the individual nodes are treated: e.g., red-black SOR, block
SOR (line SOR, plane SOR, . . .), symmetric SOR (SSOR). For different ap-
plications (on different computer architectures) different variants can be ad-
vantageous. We will not discuss this issue further here, but refer to the corre-
sponding literature (e.g., [11])

7.1.3 ILU Methods

Another class of iterative methods, which became popular due to good con-
vergence and robustness properties, is based on what is called incomplete LU
decompositions of the system matrix. These methods, which meanwhile have
been proposed in numerous variants (see, e.g., [11]), are known in literature
as ILU methods (Incomplete LU). An incomplete LU decomposition – like
a complete LU decomposition (see Sect. 7.1.1) – consists in a multiplicative
splitting of the coefficient matrix into lower and upper triangular matrices,
which, however, compared to a complete decomposition, are only sparsely
filled within the band (as the matrix A). The product of the two triangular

172 7 Solution of Algebraic Systems of Equations

matrices – again denoted by L and U – should approximate the matrix A as
best as possible:

A ≈ LU ,

i.e., LU should closely resemble a complete decomposition.
Since the product matrix LU only constitutes an approximation of the

matrix A, an iteration process has to be introduced for solving the equation
system (7.2). For this the system can be equivalently written as

LUφ − LUφ = b − Aφ

and the iteration process can be defined by

LUφk+1 − LUφk = b − Aφk .

The right hand side is the residual vector

rk = b − Aφk

for the k-th iteration, which (in a suitable norm) is a measure for the accuracy
of the iterative solution. The actual computation of φk+1 can be done via the
correction Δφk = φk+1 −φk, which can be determined as the solution of the
system

LUΔφk = rk .

This system can easily be solved directly by forward and backward substitu-
tion as described in Sect. 7.1.1.

The question that remains is how the triangular matrices L and U should
be determined in order for the iteration process to be as efficient as possible.
We will exemplify the principal idea by means of a 5-point finite-volume dis-
cretization in the two-dimensional case for a structured quadrilateral grid with
lexicographical node numbering (see Sect. 4.8). In this case one can demand,
for instance, that L and U possess the same structure as A:

A ≈
0

0
0︸ ︷︷ ︸

L

0

0
0

︸ ︷︷ ︸
U

The simplest possibility to determine L and U would be to set the corre-
sponding coefficients to those of A. This, however, usually does not lead to

7.1 Linear Systems 173

a good approximation. When formally carrying out the corresponding matrix
multiplication one can see that in comparison to A the product matrix LU
contains two additional diagonals:

LU =
0

0

0

0

=
0

0

0

0

︸ ︷︷ ︸
A

+

0

0

0

0

︸ ︷︷ ︸
N

. (7.3)

The additional coefficients correspond (for our example) to the nodes NW and
SE in the numerical grid (see Fig. 7.3).

NW

W

N

P

S

E

SE
Fig. 7.3. Correspondance of grid points and coef-
ficients in product matrix of ILU decomposition

The objective should be to determine L and U such that the contribution
of the matrix N, which can be interpreted as the deviation of LU from the
complete decomposition, becomes (in a suitable sense) as small as possible.
A (recursive) computational procedure for the coefficients of L and U can
be defined by prescribing coefficients of N, for which there are a variety of
possibilities. The simplest one is to require that the two additional diagonals
in N vanish, i.e., the diagonals of A correspond to that of LU, which results
in the standard ILU method (see [11]). The corresponding procedure is similar
to that for a complete LU decomposition, the only difference being that all
diagonals within the band, which are zero in A, simply are set to zero also in
L and U.

Stone (1968) proposed approximating the contributions of the additional
diagonals by neighboring nodes:

φi
SE = α(φi

S + φi
E − φi

P) and φi
NW = α(φi

W + φi
N − φi

P) . (7.4)

Again the coefficients of the matrices L and U can be recursively computed
from (7.3) by taking into account the approximation (7.4) (see, e.g., [8]). The
resulting ILU variant, which is frequently employed within flow simulation
programs, is known as SIP (strongly implicit procedure). The approximations

174 7 Solution of Algebraic Systems of Equations

defined by the expressions (7.4) can be influenced by the choice of the param-
eter α, which has to be in the interval [0, 1). For α = 0 again the standard
ILU method results.

There are many more variants to define the incomplete decomposition.
These variants are also for matrices with more than 5 diagonals as well as for
three-dimensional problems, and even for system matrices from discretizations
on unstructured grids. These differ in, for instance, the approximation of the
nodes corresponding to the additional diagonals in the product matrix or by
the consideration of additional diagonals in the decomposition (see, e.g., [11]).

7.1.4 Convergence of Iterative Methods

All the iterative methods described so far can be put into a general framework
for iteration schemes. We will briefly outline this concept, since it also provides
the basis for an insight into the convergence properties of the schemes.

With some non-singular matrix B the linear system (7.2) can be equiva-
lently written as:

Bφ + (A − B)φ = b .

An iteration rule can be defined by

Bφk+1 + (A − B)φk = b ,

which, solving for φk+1, gives the relation

φk+1 = φk − B−1(Aφk − b) = (I − B−1A)φk + B−1b . (7.5)

Depending on the choice of B different iterative methods can be defined.
For instance, the methods introduced above can be obtained by

− Jacobi method: BJAC = AD,

− Gauß-Seidel method: BGS = AD + AL,

− SOR method: BSOR = (AD + ωAL)/ω,

− ILU method: BILU = LU,

where the matrices AD, AL, and AU are defined according to the following
additive decomposition of A into a diagonal and lower and upper triangular
matrices:

A = ai,j

0

0

︸ ︷︷ ︸
AD

+
ai,j

0

︸ ︷︷ ︸
AL

+

ai,j

0

︸ ︷︷ ︸
AU

7.1 Linear Systems 175

The convergence rate of iterative methods defined by (7.5) is determined
by the absolute largest eigenvalue λmax (also denoted as spectral radius) of
the iteration matrix

C = I − B−1A .

One can show that the number of iterations Nit, which are required to reduce
the initial error by a factor ε, i.e., to achieve

‖φk − φ‖ ≤ ε‖φ0 − φ‖ ,

is given by

Nit =
C(ε)

1 − λmax
(7.6)

with a constant C(ε), which does not depend on the number of unknowns.
With ‖ · ‖ some norm in IRK is denoted, e.g., the usual Euclidian distance,
which for a vector a with the components ai is defined by

‖a‖ =

(
K∑

i=1

a2
i

)1/2

.

If (and only if) λmax < 1 the method converges, the smaller λmax is, the
faster it converges. Due to the above properties, the matrix B should fulfil
the following requirements:

B should approximate A as “good” as possible in order to have a small
spectral radius of C, i.e., a low number of iterations,
the system (7.5) should be “easily” solvable for φk+1 in order to have a
low effort for the individual iterations.

Since both criteria cannot be fulfilled optimally simultaneously, a compro-
mise has to be found. This is the case for all the methods described above.
For instance, for the Jacobi method, since BJAC is a diagonal matrix, the
solution of (7.5) just needs a division by the diagonal elements. However, the
approximation of A just by its diagonal might be rather poor.

In Sect. 7.1.7 we will use the above considerations for an investigation
of the convergence properties and the computational effort of the iterative
methods introduced above for a model problem.

Let us mention here an approach which can be used in the context of
iterative equation solvers to obtain a simpler structure of the system matrix
or to increase its diagonal dominance. The idea is to treat matrix entries
which should not be considered in the solution algorithm (e.g., contributions
due to non-orthogonality of the grid, see Sect. 4.5, or flux-blending parts of
higher order, see Sect. 4.3.3) as source terms (explicit treatment) by allocating
the corresponding variable values with values from the preceding iteration.

176 7 Solution of Algebraic Systems of Equations

Formally, this approach can be formulated by an additive decomposition of
the system matrix of the form

A = AI + AE

into an “implicit” part AI and an “explicit” part AE. The corresponding
iteration rule reads:

BIφ
k+1 + (AI − BI)φk = b − AEφk ,

where BI is a suitable approximation of AI. For instance, when using the ILU
method from Sect. 7.1.3, not A, but AI is (incompletely) decomposed, such
that the matrices L and U get the (simpler) structure of AI. A consequence
of such an approach is that it usually results in an increase in the number of
iterations, but the individual iterations are less expensive.

7.1.5 Conjugate Gradient Methods

A further important class of iterative linear system solvers is gradient methods.
The basic idea of these methods is to solve a minimization problem that is
equivalent to the original equation system. There are numerous variants of
gradient methods which mainly differ in how the minimization problem is
formulated and in which way the minimum is sought. We will address here
the most important basics of the conjugate gradient methods (CG methods),
which can be considered for our applications as the most important gradient
method (for details we refer to the corresponding literature, e.g., [11]).

Conjugate gradient methods were first developed for symmetric positive
definite matrices (Hestenes and Stiefel, 1952). In this case the following equiv-
alence holds:

Solve Aφ = b ⇔ Minimize F (φ) =
1
2

φ · Aφ − b · φ .

The equivalence of both formulations is easily seen since the gradient of F
is Aφ − b, and the vanishing of the gradient is a necessary condition for a
minimum of F .

For the iterative soluton of the minimization problem, starting from a
prescribed starting value φ0, the functional F is minimized successively in
each iteration (k = 0, 1, . . .) in a certain direction yk:

Minimize F (φk + αyk) for all real α.

The value αk, for which the functional attains its minimum, results according
to

d
dα

F (φk + αyk) = 0 ⇒ αk =
yk · rk

yk · Ayk
with rk = b − Aφk

7.1 Linear Systems 177

and defines the new iterate φk+1 = φk + αkyk. The direction yk, in which
the minimum is sought, is characterized by the fact that it is conjugated with
respect to A to all previous directions, i.e.,

yk · Ayi = 0 for all i = 0, . . . , k − 1 .

For the efficient implementation of the CG method it is mandatory that yk+1

can be determined by the following simple recursion formula (see, e.g., [11]):

yk+1 = rk+1 +
rk+1 · rk+1

rk · rk
yk .

With this, in summary, the CG algorithm can be recursively formulated as
follows:

Initialization:

r0 := b − Aφ0 ,

y0 := r0 ,

β0 := r0 · r0 .

For k = 0, 1, . . . until convergence:

αk = βk/(yk · Ayk) ,

φk+1 = φk + αkyk ,

rk+1 = rk − αkAyk ,

βk+1 = rk+1 · rk+1 ,

yk+1 = rk+1 + βk+1yk/βk .

The CG method is parameter-free and theoretically (i.e., without taking into
account rounding errors) yields the exact solution after K iterations, where
K is the number of unknowns of the system. Thus, for the systems of interest
here, the method would, of course, be useless because K usually is very large.
In practice, however, a sufficiently accurate solution is obtained with fewer
iterations. One can show that the number of iterations required to reduce the
absolute value of the residual to ε is given by

Nit ≤ 1 + 0.5
√

κ(A) ln(2/ε) , (7.7)

where κ(A) is the condition number of A, i.e., for symmetric positive definite
matrices the ratio of the largest and smallest eigenvalue of A.

The CG method in the above form is restricted to the application for sym-
metric positive definite matrices, a condition that is not fulfilled for a number
of problems (e.g., transport problems with convection). However, there are dif-
ferent generalizations of the method developed for non-symmetric matrices.
Examples are:

178 7 Solution of Algebraic Systems of Equations

generalized minimal-residual method (GMRES),
conjugate gradient squared (CGS) method,
bi-conjugate gradient method (BICG),
stabilized BICG method (BICGSTAB), . . .

We will omit details of these methods here and refer to the corresponding
literature (e.g., [11]). It should be noted that for these generalized methods
the type of algebraic operations in each iteration is the same as for the CG
method except that the number is larger (approximately twice as high). A
complete theory concerning the convergence properties, available for the clas-
sical CG method, does not exist so far. However, experience has shown that
the convergence behavior is usually close to that of the CG method.

7.1.6 Preconditioning

The convergence of CG methods can be further improved by a preconditioning
of the equation system. The idea here is to transform the original system (7.1)
by means of an (invertible) matrix P into an equivalent system

P−1Aφ = P−1b (7.8)

and to apply the CG algorithm (or correspondingly generalized variants in
the non-symmetric case) to the transformed system (7.8). P is called the
preconditioning matrix and the resulting method is known as preconditioned
CG (PCG) method.

The preconditioning can be integrated into the original CG algorithm as
follows:

Initialization:

r0 := b − Aφ0 ,

z0 := P−1r0 ,

y0 := z0 ,

β0 := z0 · r0 .

For k = 0, 1, . . . until convergence:

αk = βk/(yk · Ayk) ,

φk+1 = φk + αkyk ,

rk+1 = rk − αkAyk ,

zk+1 = P−1rk+1 ,

βk+1 = zk+1 · rk+1 ,

yk+1 = zk+1 + βk+1yk/βk .

7.1 Linear Systems 179

One can observe that the additional effort within one iteration consists in the
solution of an equation system with the coefficient matrix P. The number of
iterations for PCG methods according to the estimate (7.7) is given by:

Nit ≤ 1 + 0.5
√

κ(P−1A) ln(2/ε) .

According to the above considerations, for the choice of P the following criteria
can be formulated:

the condition number of P−1A should be as small as possible in order to
have a low number of iterations,
the computation of P−1φ should be as efficient as possible in order to have
a low effort for the individual iterations.

As is the case in the definition of iterative methods by the matrix B
(see Sect. 7.1.4), a compromise between these two conflicting requirements
has to be found.

Examples of frequently employed preconditioning techniques are:

classical iterative methods with P = B (Jacobi, Gauß-Seidel, ILU, . . .),
domain decomposition methods,
polynomial approximations of A−1,
multigrid methods,
hierarchical basis methods.

For details we refer to the special literature (in particular [1] and [11]).

7.1.7 Comparison of Solution Methods

For an estimation and comparison of the computational efforts that the dif-
ferent solution methods require, we employ the model problem

− ∂2φ

∂xi∂xi
= f in Ω,

(7.9)
φ = φS on Γ ,

which we consider for the one-, two-, and three-dimensional cases, i = 1, . . . , d
with d equal to 1, 2, or 3. The problem domain Ω is the unit domain corre-
sponding to the spatial dimension (i.e., unit interval, square, or cube). The
discretization is performed with a central differencing scheme of second order
for an equidistant grid with grid spacing h and N inner grid points in each
spatial direction. The result of using the usual lexicographical numbering of
the unknowns is the known matrix with dimension Nd having the value 2d in
the main diagonal and the value −1 in all occupied subdiagonals. The model
problem is well suited for the present purpose because all important proper-
ties of the solution methods can also be determined analytically (e.g., [11]).
The eigenvalues of the system matrix A are given by

180 7 Solution of Algebraic Systems of Equations

λj = 4d sin2

(
jπh

2

)
for j = 1, . . . , N . (7.10)

For the three considered classical iterative methods one obtains from (7.10)
for the spectral radii of the iteration matrices:

λJAC
max = 1 − 2 sin2

(
πh

2

)
= 1 − π2

2
h2 + O(h4) ,

λGS
max = 1 − sin2(πh) = 1 − π2h2 + O(h4) ,

λSOR
max =

1 − sin(πh)
1 + sin(πh)

= 1 − 2πh + O(h2) .

The last equation in each case is obtained by Taylor expansion of the sinus
functions. In the case of the SOR method the optimal relaxation parameter
is employed. For the model problem this results in

ωopt =
2

1 + sin(πh)
= 2 − 2πh + O(h2) .

Since N ∼ 1/h, the outcome of the spectral radii together with (7.6) is that
with the Jacobi and Gauß-Seidel methods the number of iterations required
for the solution of the model problem are proportional to N2 and with the
SOR method are proportional to N . One can also observe that the Jacobi
method needs twice as many iterations as the Gauß-Seidel method. For ILU
methods a convergence behavior similar to that of the SOR method is achieved
(see, e.g., [11]).

The condition number of A for the model problem (7.9) results from (7.10)
in

κ(A) ≈ 4d

4d sin2(πh/2)
≈ 4

π2h2
.

Together with the estimate (7.7) it follows that the number of iterations re-
quired to solve the problem with the CG method is proportional to N .

The asymptotic computational effort for the solution of the model problem
with the iterative methods simply is given by the product of the number of it-
erations with the number of unknowns. In Table 7.1 the corresponding values
are indicated together with memory requirements depending on the number
of grid points for the different spatial dimensions. For comparison, the cor-
responding values for the direct LU decomposition are also given. One can
observe the enormous increase in effort with increasing spatial dimension for
the LU decomposition, which is mainly caused by the mentioned “fill-in” of the
band. For instance, if we compare the effort of the SOR method with that for
the direct solution with the LU decomposition, one can clearly observe the ad-
vantages that iterative methods may provide for multi-dimensional problems

7.1 Linear Systems 181

(in particular in the three-dimensional case). Note that also for the various
variants of the Gauß elimination (e.g., the Cholesky method) the asymptotic
effort remains the same.

Table 7.1. Asymptotic memory requirement and computational effort with
different linear system solvers for model problem for different spatial dimen-
sions

Memory requirements Computational effort

Dim. Unknows Iterative Direct JAC/GS SOR/ILU/CG Direct

1-d N O(N) O(N) O(N3) O(N2) O(N)
2-d N2 O(N2) O(N3) O(N4) O(N3) O(N4)
3-d N3 O(N3) O(N5) O(N5) O(N4) O(N7)

While the asymptotic memory requirements are the same for all itera-
tive methods, a significant improvement can be achieved with regard to the
computational effort when using the SOR, CG, or ILU methods instead of
the Jacobi or Gauß-Seidel methods. An advantage of ILU methods is that the
“good” convergence properties apply to a wide class of problems (robustness).
However, owing to the deteriorating convergence rate, the computational ef-
fort also increases disproportionately with grid refinement for the SOR, CG,
or ILU methods.

Let us look at a concrete numerical example to point out the different
computing times that the different solvers may need. For this we consider
the model problem (7.9) in the two-dimensional case with N2 = 256 × 256
CVs. In Table 7.2 a comparison of the computing times for different solvers
is given. Here, SSOR-PCG denotes the CG method preconditioned with the
symmetric SOR method (see, e.g., [11]). The multigrid method, for which
also a result is given, will be explained in some more detail in Sect. 12.2.
This two-dimensional problem already has significant differences in computing
times of the methods. For three-dimensional problems these are even more
pronounced. Multigrid methods belong to the most efficient methods for the
solution of linear equation systems. However, iterative methods, such as the
ones discussed in this chapter, constitute an important constituent also for
multigrid methods (see Sect. 12.2).

From the above considerations some significant disadvantages of using di-
rect methods for the solution of the linear systems, which arise from the
discretization of continuum mechanics problems, become obvious and can be
summarized as follows:

In order to achieve an adequate discretization accuracy the systems usually
are rather large. In particular, this is the case for three-dimensional prob-
lems and generally for all multi-dimensional problems of fluid mechanics.
With direct methods the effort increases strongly disproportionately with

182 7 Solution of Algebraic Systems of Equations

Table 7.2. Asymptotic computational effort and com-
puting time for different linear system solvers applied
to two-dimensional model problem

Method Operations ≈ Computing time

Gauß elimination O(N4) 1 d
Jacobi O(N4) 5 h
SOR,ILU,CG O(N3) 30 m

SSOR-PCG O(N5/2) 5 m
Multigrid O(N2) 8 s

the problem size (see Table 7.1), such that extremly high computing times
and huge memory requirements result (see Table 7.2).
Due to the relatively high number of arithmetic operations, rounding errors
may cause severe problems in direct methods (also with 64-bit word length,
i.e., ca. 14-digits accuracy). The influence of rounding errors depends on
the condition number κ(A) of the coefficient matrix, which for the matrices
under consideration is usually quite unfavorable (the finer the grid, the
worse condition number).
In the case of non-linearity in the problem, an iteration process for the
solution anyway is necessary. Therefore, no exact solution of the equation
system (as obtained with direct methods) is demanded, but a solution
which is accurate to some tolerance is sufficient. The same applies if the
matrix needs to be corrected due to a coupling (see Sect. 7.2).

So, for larger multi-dimensional problems it is usually much more efficient, to
solve the linear systems by iterative methods.

7.2 Non-Linear and Coupled Systems

For the numerical solution of non-linear algebraic equation systems, as they
arise, for instance, for fluid mechanics or geometrically and/or physically non-
linear structural mechanics problems an iteration process is basically required.
The most frequent approaches are successive iteration (or Picard iteration),
Newton methods, or quasi-Newton methods, which we will briefly outline. As
an example we consider a non-linear system of the form

A(φ)φ = b , (7.11)

to which an arbitrary non-linear system can be transformed by a suitable
definition of A and b.

The iteration rule for the Newton method for (7.11) is defined by

φk+1 = φk −
[

∂r(φk)
∂φ

]−1

r(φk) with r(φk) = A(φk)φk − b .

7.2 Non-Linear and Coupled Systems 183

Thus, in each iteration the Jacobian matrix ∂r/∂φ must be computed and
inverted. For a quasi-Newton method this is not carried out in each iteration.
Instead, the Jacobi matrix is kept constant for a certain number of itera-
tions. On the one hand, this reduces the effort per iteration, but on the other
hand, the convergence rate may deteriorate. The Newton method possesses a
quadratic convergence behavior, i.e., in each iteration the error ‖φk−φ‖ is re-
duced by a factor of four. A possible problem when using the Newton method
is that the convergence is ensured only if the starting value φ0 already is suf-
ficiently close to the exact solution (which, of course, is not known). In order
to circumvent this problem (at least partially), frequently an incremental ap-
proach is applied. For instance, this can be done by solving problem (7.11)
first for a “smaller” right hand side, which is then increased step by step to
the original value b.

The Picard iteration for a system of the type (7.11) is defined by an iter-
ation procedure of the form:

φk+1 = φk − Ã(φk)φk+1 + b̃

with suitable iteration matrix Ã(φ) and right hand side b̃ (these can be equal
to A(φ) and b, for instance). In this method no Jacobian matrix has to be
computed. However, the convergence behavior is only linear (halving the error
in each iteration). The choice of the starting value is much less problematic
than with the Newton method.

As seen in Chap. 2, for structural or fluid mechanical problems one usually
is faced with coupled systems of equations. As an example for such a coupled
linear system we consider:[

A11 A12

A21 A22

]
︸ ︷︷ ︸

A

[
φ1

φ2

]
︸ ︷︷ ︸

φ

=
[
b1

b2

]
︸ ︷︷ ︸

b

. (7.12)

Such systems either can be solved simultaneously or sequentially. For a si-
multaneous solution the system is solved just in the form (7.12), e.g., with
one of the solvers described in Sect. 7.1. For a sequential solution the sys-
tem is solved within an iteration process successively for the different vari-
ables. For instance, for the system (7.12) in each iteration (starting value φ0

2,
k = 0, 1, . . .) the following two steps have to be carried out:

(i) Determine φk+1
1 from A11φ

k+1
1 = b1 − A12φ

k
2 ,

(ii) Determine φk+1
2 from A22φ

k+1
2 = b2 − A21φ

k+1
1 .

In Fig. 7.4 the course of the iteration process with the corresponding compu-
tational steps is illustrated graphically.

For a simultaneous solution all coefficients of the system matrix and the
right hand side have to be stored simultaneously. Also, auxiliary vectors, which

184 7 Solution of Algebraic Systems of Equations

�

�

�
�
φk+1

1k → k + 1 (Outer iterations)

Solve for φk+1
2 Compute A22,A21φ

k+1
1 ,b2

Solve for φk+1
1Compute A11,A12φ

k
2 ,b1

Fig. 7.4. Sequential solution of coupled equation systems

are needed for the corresponding solution method, are of the full size of the
coupled system. For a sequential solution the coefficients of the individual
subsystems can be stored in same arrays and the auxiliary vectors only have
the size of the subsystems. A disadvantage of the sequential solution is the
additional iteration process for coupling the subsystems. With a simultaneous
solution (also in the case of an additional non-linearity), there is, as a result of
better coupling of the unknowns, a faster convergence of the necessary outer
iterations than with the sequential method. The combination of linearization
and variable coupling usually leads to an improvement in the convergence.

In conclusion, we note that for non-linear and coupled systems the above
considerations suggest the following two combinations of solution strategies:

Newton method with simultaneous solution: high effort for the computation
and inversion of the Jacobi matrix (reduction by quasi-Newton methods),
high memory requirements, quadratic convergence behavior, starting value
has to be “close” to the solution, Jacobian matrix is available (e.g., for
stability investigations).
Successive iteration with sequential solution: less computational effort per
iteration, less memory requirements, decoupling of the individual equa-
tions is possible and can be combined with the linearization process, linear
convergence behavior, less sensitive compared to “bad” starting values.

Depending on the actual problem, each variant has its advantages.

Exercises for Chap. 7

Exercise 7.1. Given is the linear equation system⎡⎣ 4 −1 0
−1 4 −1

0 −1 4

⎤⎦⎡⎣φ1

φ2

φ3

⎤⎦ =

⎡⎣ 3
2
3

⎤⎦ .

(i) Determine the solution of the systems with the Gauß elimination method.
(ii) Determine the condition number of the system matrix and the maximum
eigenvalues of the iteration matrices for the Jacobi, Gauß-Seidel, and SOR
methods, where for the latter first the optimal relaxation parameter ωopt is

7.2 Non-Linear and Coupled Systems 185

to be determined. (iii) Carry out some iterations with the CG, Jacobi, Gauß-
Seidel, and SOR methods (the latter with ωopt from (ii)) each with the starting
value φ0 = 0, and discuss the convergence properties of the methods taking
into account the values determined in (ii).

Exercise 7.2. Consider the linear system from Exercise 7.1 as a coupled
system, such that the first two and the third equation form a subsystem, i.e.,
φ1 = (φ1, φ2) and φ2 = φ3. Carry out some iterations with the starting value
φ0

3 = 0 acccording to the sequential solution approach defined in Sect. 7.2.

Exercise 7.3. Given is the matrix⎡⎢⎢⎢⎢⎢⎢⎣
4 −1 0 0 −1 0

−1 4 −1 0 0 −1
0 −1 4 −1 0 0
0 0 −1 4 0 0

−1 0 0 0 4 −1
0 −1 0 0 −1 4

⎤⎥⎥⎥⎥⎥⎥⎦
(i) Determine the complete LU decomposition of the matrix. (ii) Determine
the ILU decomposition following the standard ILU approach and the SIP
method with α = 1/2.

Exercise 7.4. Given is the non-linear equation system

φ1φ
2
2 − 4φ2

2 + φ1 = 4 ,

φ3
1φ2 + 3φ2 − 2φ3

1 = 6 .

(i) Carry out some iterations with the Newton method with the starting values
(φ0

1, φ
0
2) = (0, 0), (1, 2), and (9/5, 18/5). (ii) Transform the system suitably

into the form (7.11) and carry out some iterations according to the successive
iteration method with Ã = A, b̃ = b, and the starting value (φ0

1, φ
0
2) = (0, 0).

(iii) Compare and discuss the results obtained in (i) and (ii).

8

Properties of Numerical Methods

In this chapter we summarize characteristic properties of numerical methods,
which are important for the functionality and reliability of the corresponding
methods as well as for the “proper” interpretation of the achieved results and,
therefore, are most relevant for their practical application. The underlying ba-
sic mathematical concepts will be considered only as far as is necessary for
the principal understanding. The corresponding properties with their implica-
tions for the computed solution will be exemplified by means of characteristic
numerical examples.

8.1 Properties of Discretization Methods

When applying discretization methods to differential equations, for the un-
known function, which we generally denote by φ = φ(x, t), at an arbitrary
location xP and an arbitrary time tn the following three values have to be
distinguished:

the exact solution of the differential equation φ(xP, tn),
the exact solution of the discrete equation φn

P,
the actually computed solution φ̃n

P.

In general, these values do not coincide because during the different steps of
the discretization and solution processes errors are unavoidably made. The
properties, which will be discussed in the following sections, mainly concern
the relations between these values and the errors associated with this.

Besides the model errors, which we will exclude at this stage (see Chap. 2
for this), mainly two kinds of numerical errors occur when applying a numer-
ical method:

the discretization error |φ(xP, tn) − φn
P|, i.e., the difference between the

exact solution of the differential equation and the exact solution of the
discrete equation,

188 8 Properties of Numerical Methods

the solution error |φ̃n
P −φn

P|, i.e., the difference between the exact solution
of the discrete equation and the actually computed solution,

Most important for practice is the total numerical error

en
P = |φ(xP, tn) − φ̃n

P| ,
i.e., the difference between the exact solution of the differential equation and
the actual computed solution, which is composed of the discretization and
solution errors. The solution error contains portions resulting from a possibly
only approximative solution of the discrete equations. These portions are usu-
ally comparably small and can be controlled relatively easily by considering
residuals. Therefore, we will not consider it further here.

For the relations between the different solutions and errors, which are
illustrated schematically in Fig. 8.1, the concepts of consistency, stability, and
convergence, in particular, play an important role. As an illustrative example
problem we consider the one-dimensional unsteady transport equation

ρ
∂φ

∂t
+ ρv

∂φ

∂x
− α

∂2φ

∂x2
= 0 (8.1)

with constant values for α, ρ, and v for the problem domain [0, L]. With the
boundary conditions φ(0) = φ0 and φ(L) = φL for t → ∞ the problem has
the analytical (steady) solution

φ(x) = φ0 +
exPe/L − 1

ePe − 1
(φL − φ0)

with the Peclet number

Pe =
ρvL

α
,

which represents a measure for the ratio of convective and diffusive transport
of φ.

8.1.1 Consistency

A discretization scheme is called consistent if the discretized equations for
Δx,Δt → 0 approach the original differential equations. Thus, the consistency
defines a relation between the exact solutions of the differential and discrete
equations (see Fig. 8.1). The consistency can be checked by an analysis of the
truncation error τn

P , which is defined by the difference between the differen-
tial equation (interpreted by the Taylor series expansions of derivatives) and
the discrete equation, if the exact variable values are inserted there. If the
truncation error goes to zero with grid refinement, i.e.,

lim
Δx,Δt→0

τn
P = 0 ,

8.1 Properties of Discretization Methods 189

Model
error

Exact solution
differential equation

φ(xP, tn)

Computed
solution

φ̃n
P

Exact solution
discrete equation

φn
P

D
is
cr

et
iz
at

io
n

D
is
cr

et
iz
at

io
n

er
ro

r
C
on

si
st
en

cy

C
om

putation

Solution
error

Stability

Convergence

Total numerical error

Fig. 8.1. Relation between solutions, errors, and properties

the method is consistent.
Let us consider as an example the discretization of problem (8.1) for an

equidistant grid with grid spacing Δx and time step size Δt. Using a finite-
volume method with CDS approximation for the spatial discretization and
the explicit Euler method for the time discretization, the following discrete
equation is obtained:

ρ
φn+1

P − φn
P

Δt
+ ρv

φn
E − φn

W

2Δx
− α

φn
E + φn

W − 2φn
P

Δx2
= 0 . (8.2)

To compare the differential equation (8.1) and the discrete equation (8.2) a
local consideration at location xP at time tn is performed (the discrete solution
is only defined locally). Evaluating the Taylor expansion around (xP, tn) of
the exact solution at the points appearing in the discrete equation (8.1) yields:

φn+1
P = φn

P + Δt

(
∂φ

∂t

)n

P

+
Δt2

2

(
∂2φ

∂t2

)n

P

+ O(Δt2) ,

φn
E = φn

P + Δx

(
∂φ

∂x

)n

P

+
Δx2

2

(
∂2φ

∂x2

)n

P

+
Δx3

6

(
∂3φ

∂x3

)n

P

+
Δx4

24

(
∂4φ

∂x4

)n

P

+ O(Δx5) ,

190 8 Properties of Numerical Methods

φn
W = φn

P − Δx

(
∂φ

∂x

)n

P

+
Δx2

2

(
∂2φ

∂x2

)n

P

− Δx3

6

(
∂3φ

∂x3

)n

P

+
Δx4

24

(
∂4φ

∂x4

)n

P

− O(Δx5) ,

Inserting these relations into (8.2) and using the differential equation (8.1),
one gets for the truncation error τn

P the expression:

τn
P = ρ

(
∂φ

∂t

)n

P

+ ρv

(
∂φ

∂x

)n

P

− α

(
∂2φ

∂x2

)n

P

+

ρΔt

2

(
∂2φ

∂t2

)n

P

+
ρvΔx2

6

(
∂3φ

∂x3

)n

P

− αΔx2

12

(
∂4φ

∂x4

)n

P

+ TH =

= Δt
ρ

2

(
∂2φ

∂t2

)n

P

+ Δx2

[
ρv

6

(
∂3φ

∂x3

)n

P

− α

12

(
∂4φ

∂x4

)n

P

]
+ TH =

= O(Δt) + O(Δx2) ,

where TH denotes higher order terms. Thus, τn
P → 0 for Δx,Δt → 0, i.e., the

method is consistent. The consistency orders are 1 and 2 with regard to time
and space, respectively.

For sufficiently small Δx and Δt a higher order of the truncation error also
means a higher accuracy of the numerical solution. In general, the order of the
truncation error gives information about how fast the errors decay when the
grid spacing or time step size is refined. The absolute values of the solution
error, which also depend from the solution itself, usually are not available.

To illustrate the influence of the consistency order on the numerical results
we consider problem (8.1) in the steady case. Let the problem domain be the
interval [0, 1] and the boundary conditions given by φ(0) = 0 and φ(1) = 1.
As problem parameters we take α = 1kg/(ms), ρ = 1kg/m3, and v = 24m/s.
We consider the following finite-volume discretizations of 1st, 2nd, and 4th
order:

UDS1/CDS2: 1st order upwind differences for convective fluxes and 2nd
order central differences for diffusive fluxes,
CDS2/CDS2: 2nd order central differences for convective and diffusive
fluxes,
CDS4/CDS4: 4th order central differences for convective and diffusive
fluxes.

For the 4th order method, in points x1 und xN adjacent to the boundaries
the 2nd order CDS method is used. Figure 8.2 represents the dependence of
the error

eh =
1
N

N∑
i=1

|φ(xi) − φ̃i|

8.1 Properties of Discretization Methods 191

on the grid spacing Δx = 1/N for the different methods. One can observe the
strongly varying decrease in error when the grid is refined according to the
order of the methods (the higher the order, the more rapid). The slope of the
corresponding straight line (for small enough Δx) corresponds to the order of
the method.

1/41/81/161/321/641/128
Grid spacing dx

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
rr

or

UDS1/CDS2 (order 1)
CDS2/CDS2 (order 2)
CDS4/CDS4 (order 4)

Fig. 8.2. Dependence of error on grid spacing for different discretization methods
for one-dimensional transport equation

8.1.2 Stability

The concept of stability serves in the setting up of a relation between the
actually computed solution and the exact solution of the discrete equation
(see Fig. 8.1). A variety of different definitions of stability, which are useful
for different purposes, exist in the literature. We will restrict ourselves here to
a simple definition that is sufficient for our purpose. We call a discretization
scheme stable if the solution error |φ̃n

P − φn
P| is bounded in the whole problem

domain and for all time steps.
The general idea in proving the stability is to investigate how small pertur-

bations (e.g., caused by round-off errors) influence the subsequent time steps.
The important question here is, whether these perturbations are damped by
the discretization scheme (then the method is stable) or not (then the method
is unstable). Such a stability analysis can be performed by various methods,
the most common being: the von Neumann analysis, the matrix method, and
the method of small pertubations (perturbation method). For general problems

192 8 Properties of Numerical Methods

such investigations, if they can be done analytically at all, usually are rather
difficult. We omit here an introduction of these methods (for this see, e.g.,
[12, 13]), and restrict ourselves to a heuristic consideration for our example
problem (8.1) to illustrate the essential effects.

Two important characteristic numbers for stability considerations of trans-
port problems are the diffusion number D and the Courant number C, which
are defined as

D =
αΔt

ρΔx2
and C =

vΔt

Δx
.

These numbers express the ratios of the time step size to the diffusive and
convective transports, respectively.

Let us first consider an approximation of problem (8.1) with a spatial finite-
volume discretization by the UDS1/CDS2 method and a time discretization
by the explicit Euler method leading to the following discrete equation:

φn+1
P = Dφn

E + (D + C)φn
W + (1 − 2D − C)φn

P . (8.3)

A simple heuristic physical consideration of the problem requires an increase
in φn+1

P if φn
P is increased. In general, such a uniform behavior of φn

P and φn+1
P

is only guaranteed if all coefficients in (8.3) are positive. Since C and D are
positive per definition, only the coefficient (1− 2D−C) can be negative. The
requirement that this remains positive leads to a limitation for the time step
size Δt:

Δt <
ρΔx2

2α + ρvΔx
. (8.4)

Note that a corresponding stability analysis according to the von Neumann
method (cf., e.g., [12]) leads to the same condition.

In particular, from the relation (8.4) for the two special cases of pure
diffusion (v = 0) and pure convection (α = 0) the time step limitations that
follow are

Δt <
ρΔx2

2α
and Δt <

Δx

v
,

respectively. The latter is known in the literature as CFL condition (cf.
Courant, Friedrichs, and Levy). Physically these conditions can be interpreted
as follows: the selected time step size must be small enough, so that, due to
the diffusive or convective transport, the information of the distribution of φ
in one time step does not advance further than the next nodal point.

Chosing the CDS2/CDS2 scheme instead of the UDS1/CDS2 space dis-
cretization one gets the approximation:

φn+1
P = (D − C

2
)φn

E + (D +
C

2
)φn

W + (1 − 2D)φn
P .

8.1 Properties of Discretization Methods 193

A von Neumann stability analysis for this scheme yields the time step size
limitation (see, e.g., [12])

Δt < min
{

2α

ρv2
,
ρΔx2

2α

}
.

While in the case of pure diffusion the same time step limitation as for the
UDS1/CDS2 scheme results (the discretization of the diffusive term has not
changed), in the case of pure convection the CDS2/CDS2 method is always
unstable regardless of the time step size. In Fig. 8.3 the relation between the
time step limitation for stability and the grid spacing for the UDS1/CDS2
and CDS2/CDS2 methods (for a mixed convection-diffusion problem) is illus-
trated.

0 Grid spacing dx

0

T
im

e
st

ep
 s

iz
e

dt

UDS1/CDS2
CDS2/CDS2

unstable

stable

un
sta

ble

sta
ble

Fig. 8.3. Relation between time
step limitation and grid spacing for
convection-diffusion problem using
the explicit Euler method with
UDS1/CDS2 and CDS2/CDS2
space discretizations

Before we turn to the consequences of violating the time step limitation
by means of an example, we first consider the case of an implicit time dis-
cretization. Using the implicit Euler method, we obtain with the UDS1/CDS2
scheme for problem (8.1) a discretization of the form

(1 + 2D + C)φn+1
P = Dφn+1

E + (D + C)φn+1
W + φn

P .

All coefficients are positive, such that no problems with respect to a non-
uniform change of φ are expected. A von Neumann analysis, which in this
case requires an eigenvalue analysis of the corresponding coefficient matrix,
also shows that the method is stable independent of the time step size for all
values of D und C.

To illustrate the effects occurring in connection with the stability we con-
sider our example problem (8.1) without convection (v = 0) with the boundary
conditions φ0 = φ1 = 0 and a CDS approximation for the diffusive term. The
exact (steady) solution φ = 0 is perturbed at xP and the perturbed solution is

194 8 Properties of Numerical Methods

used as starting value for the computation with the explicit and implicit Euler
methods for two different time step sizes. The problem parameters are chosen
such that in one case the condition for the time step limitation (8.4) for the
explicit Euler method is fulfilled (D = 0.5) and in the other case it is violated
(D = 1.0). In Fig. 8.4 the corresponding course of the solution for some time
steps for the different cases are indicated. One can observe damping behavior
of the implicit method independent of the time step, while the explicit method
damps the perturbation only if the time step limitation is fulfilled. If the time
step is too large, the explicit method diverges.

In view of the above stability considerations we summarize again the most
essential characteristic properties of explicit und implicit time discretization
schemes with respect to their assets and drawbacks. Explicit methods limit
the speed of spatial spreading of information. The time step must be adapted

tn

tn+1

tn+2

· · · xW xP xE · · ·

Euler implicit
D = 0.5, stable

Euler implicit
D = 1.0, stable

tn

tn+1

tn+2

· · · xW xP xE · · ·

Euler explicit
D = 0.5, stable

tn

tn+1

tn+2

· · · xW xP xE · · ·

Euler explicit
D = 1.0, unstable

tn

tn+1

tn+2

· · · xW xP xE · · ·

Fig. 8.4. Development of perturbation for discretization with explicit and implicit
Euler methods for different time step sizes

8.1 Properties of Discretization Methods 195

to the spatial grid spacing to ensure numerical stability. The requirements on
the time step size can be quite restrictive. The admissible time step size can be
estimated by means of a stability analysis. The limitation in the time step size
often constitutes a severe disadvantage (particularly when using fine spatial
grids), such that explicit methods usually are less efficient. With implicit
methods all variables of the new time level are coupled with each other. Thus,
a change at an arbitrary spatial location immediately spreads over the full
spatial domain. Therefore, there is no (or at least a much less restrictive)
limitation of the admissible time step size. The time steps can be adapted
optimally to the actual temporal course of the solution according to the desired
accuracy. The increased numerical effort per time step, owing to the required
resolution of the equation systems, is mostly more than compensated for by
the possibility of using larger time steps.

8.1.3 Convergence

An essential requirement for a discretization method is that the actually com-
puted solution approaches the exact solution when the spatial and temporal
grids are refined:

lim
Δx,Δt→0

φ̃n
P = φ(xP, tn) for all xP and tn .

This property is denoted as convergence of the method. The items consistency,
stability, and convergence are closely related to each other. For linear problems
the relation is provided by the fundamental equivalence theorem of Lax. Under
certain assumptions about to the continuous problem, which we will not detail
here (see, e.g., [12]), the theorem states:

For a consistent discretization scheme, the stability is a necessary
and sufficient condition for its convergence.

Based on the Lax theorem an analysis of a discretization scheme can be per-
formed as follows:

Analysis of consistency: one gets the truncation error and the order of the
scheme.
Analysis of stability: one gets information about the error behavior and
the proper relation of the time step size to the spatial grid size.

This yields the information about the convergence of the method, which is
the essential property.

For nonlinear problems, in general, the Lax theorem does not hold in
this form. However, even in this case stability and consistency are essential
prerequisites for a “reasonably” working method.

196 8 Properties of Numerical Methods

8.1.4 Conservativity

A discretization method is called conservative if the conservation properties of
the differential equation, i.e., the balance of the underlying physical quantity,
are also represented by the discrete equations independently from the choice
of the numerical grid. If the discrete system is of the form

aPφP =
∑

c

acφc + bP , (8.5)

for a conservative method the relation

aP =
∑

c

ac (8.6)

has to be satisfied. However, not all methods satisfying (8.6) are necessar-
ily conservative. As already pointed out elsewhere, the finite-volume method
per definition is conservative because it directly works with the flux balances
through the CV faces. Thus, the method automatically reflects the global
conservation principle exactly.

For finite-element or also finite-difference methods conservativity is not
ensured automatically. We illustrate the consequences for an example of a
non-conservative finite-difference discretization. Consider the one-dimensional
heat conduction equation

∂

∂x

(
κ

∂T

∂x

)
= 0 (8.7)

for the interval [0, 1] with the boundary conditions T (0) = 0 and T (1) = 1.
Applying the product rule, (8.7) can equivalently be written as

∂κ

∂x

∂T

∂x
+ κ

∂2T

∂x2
= 0 . (8.8)

For the discretization we employ a grid with just one internal point, as
shown in Fig. 8.5, such that only the temperature at x2 has to be determined.
The grid spacing is Δx = x2−x1 = x3−x2. Approximating the first derivatives
in (8.8) with 1st order backward differences and the second derivative with
central differences yields:

κ2 − κ1

Δx

T2 − T1

Δx
+ κ2

T3 − 2T2 + T1

Δx2
= 0 .

Resolving this for T2 and inserting the precribed values for T1 und T3 gives:

T2 =
κ2

κ1 + κ2
. (8.9)

Now we consider the energy balance for the problem. This can be expressed
by integrating (8.7) and applying the fundamental theorem of calculus as
follows:

8.1 Properties of Discretization Methods 197

x1

0 = T1

x2

T2

x3

T3 = 1

Δx Δx
Fig. 8.5. Grid for example of one-
dimensional heat conduction

0 =

1∫
0

∂

∂x

(
κ

∂T

∂x

)
dx = κ

∂T (1)
∂x

− κ
∂T (0)

∂x
. (8.10)

Computing the right hand side of (8.10) using forward and backward differenc-
ing formulas at the boundary points and inserting the temperature according
to (8.9) yields:

κ3
T3 − T2

Δx
− κ1

T2 − T1

Δx
=

κ1(κ3 − κ2)
(κ1 + κ2)Δx

.

Thus, in general, i.e., if κ2 �= κ3, this expression does not vanish, which means
that the energy balance is not fulfilled.

Note that the conservativity does not directly relate to the global accuracy
of a scheme. A conservative and a non-conservative scheme may have errors of
the same size, they are just distributed differently over the problem domain.

8.1.5 Boundedness

From the conservation principles underlying continuum mechanical problems
there result physical limits within which the solution for prescribed bound-
ary conditions should be. These limits also should be met by a numerical
solution. For example, a density always should be positive and a species con-
centration always should take values between 0% and 100%. This property of
a discretization scheme is denoted as boundedness. Boundedness frequently is
mixed up with the stability (in the sense described in Sect. 8.1.2). However,
the boundedness concerns not the error development, but the accuracy of the
discretization.

Let us consider the example problem (8.1) for the steady case with φ0 < φL

for the boundary values. From the analytical solution it is easily seen that for
φ the boundedness condition

φ0 ≤ φ ≤ φL (8.11)

is satisfied in the problem domain [0, L], i.e., in the interior of the problem do-
main the solution may not take smaller or larger values than on the boundary
(this is also evident physically if (8.1), for instance, is interpreted as a heat
transport equation). Now, to be physically meaningful the condition (8.11)
should also be fulfilled by the numerical solution. One can show that for a
discretization of the form (8.5), a sufficient condition for the boundedness is
the validity of the inequality

198 8 Properties of Numerical Methods

|aP| ≥
∑

c

|ac| . (8.12)

For conservative methods, owing to the relation (8.6), this is fulfilled if and
only if all non-zero coefficients ac have the same sign.

In general, the adherence of the boundedness of a discretization method
for transport problems poses problems if the convective fluxes are “too large”
compared to the diffusive fluxes. The situation becomes worse with increasing
order of the method. Among the finite-volume methods considered in Chap. 4
only the UDS method, which is only of 1st order, is unconditionally bounded.
For all methods of higher order in the case of “too coarse” grids some coef-
ficients may become negative, such that the inequality (8.12) is not fulfilled.
An important quantity in this context is the grid Peclet number Peh, the dis-
crete analogon to the Peclet number Pe defined in Sect. 8.1. For our example
problem (8.1) the grid Peclet number is given by

Peh =
ρvΔx

α
.

For instance, from the coefficients ac in (8.2) it follows that the CDS2/CDS2
method with equidistant grid for problem (8.1) is bounded if

Peh ≤ 2 or Δx ≤ 2α

ρv
. (8.13)

For the QUICK method one obtains the condition Peh ≤ 8/3. Thus, the
requirement for the boundedness for higher order methods implicates a lim-
itation of the admissible spatial grid spacing. This can be very restrictive in
the case of a strong dominance of the convective transport (i.e., ρv is large
compared to α).

If a solution is not bounded, this often shows up in the form of non-physical
oscillations that can easily be identified. These show that the used grid is too
coarse for the actual discretization scheme. In this case one can either choose a
method of lower order with less restrictive boundedness requirements or refine
the numerical grid. The question, what is preferable in a concrete case cannot
be generally answered because this closely depends on the problem and the
computing capacities available.

It should be noted that the condition (8.12) is sufficient, but not nec-
essary, in order to obtain bounded solutions. As outlined in Sect. 7.1, the
condition (8.12) also is of importance for the convergence of the iterative so-
lution algorithms. With some iterative methods it can be difficult to get even
a solution for high Peclet numbers.

To illustrate the dependence of the boundedness on the grid spacing,
we consider problem (8.1) with the problem parameters α = ρ = L = 1,
v = 24 (each in the corresponding units) and the boundary conditions
φ0 = 0 und φ1 = 1. We compute the solution for the two grid spacings

8.2 Estimation of Discretization Error 199

Δx = 1/8 and Δx = 1/16 with the UDS1/CDS2 and the CDS2/CDS2 meth-
ods (see Sect. 8.1.2). The corresponding grid Peclet numbers are Peh = 3
and Peh = 3/2, respectively. The criterion (8.13) is fulfilled in the second
case, but not in the first. In Fig. 8.6 the solutions computed with the two
methods for the two grid spacings are indicated together with the analytical
solution. One can see that the CDS method gives physically wrong values for
the coarse grid. Only for sufficiently small grid spacing (i.e., if Peh < 2) are
physically meaningful results obtained. This effect does not occur if the UDS1
discretization is used. However, the results are relatively inaccurate, but they
systematically approach the exact solution when the grid is refined.

0.7 0.8 0.9 1
Spatial coordinate x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
ol

ut
io

n
ph

i

UDS, dx=1/8
CDS, dx=1/8
UDS, dx=1/16
CDS, dx=1/16
exact

Physically
meaningful
range

Fig. 8.6. Analytical solution and solutions with different discretization methods for
Δx = 1/8 and Δx = 1/16 for one-dimensional transport equation

8.2 Estimation of Discretization Error

As outlined in the preceding sections, the discretization principally involves a
discretization error. The size of this error mainly depends on

the number and distribution of the nodal points,
the discretization scheme employed.

For a concrete application the number and distribution of the nodal points
must be chosen such that with the chosen discretization scheme the desired
accuracy of the results can be achieved. Of course, it also should be possible to

200 8 Properties of Numerical Methods

solve the resulting discrete equation system within a “reasonable” computing
time with the computer resources available for the computation.

We now turn to the question of how the discretization error can be es-
timated – an issue most important for practical application. Since the exact
solution of the differential equation is not known, the estimation must proceed
in an approximative way based on the numerical results. This can be done by
employing numerical solutions for several spatial and temporal grids whose
grid spacings or time step sizes, respectively, are in some regular relation to
each other. We will outline this procedure below and restrict ourselves to the
spatial discretization (the temporal discretization can be handled completely
analogously).

Let φ be a characteristic value of the exact solution of a given problem
(e.g., the value at a certain grid point or some extremal value), h a measure
for the grid size (e.g., the maximum grid point distance) of the numerical grid,
and φh the approximative numerical solution on that grid. In general, for a
method of order p one has (for a sufficiently fine grid):

φ = φh + Chp + O(hp+1) (8.14)

with a constant C that does not depend on h. Thus, the error eh = φ− φh is
approximatively proportional to the p-th power of the grid size. The situation
is illustrated in Fig. 8.7 for methods of 1st and 2nd order.

�

�

Grid

1st order

Error

h 2h 4h

φ2h–φh

φ4h–φ2h

�

�

�

�

�

�

Grid

2nd order

Error

h 2h 4h

φ2h–φh

φ4h–φ2h

�
�

�

�

..
.....................

.................
...............

.............
............
............
...........
...........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
..........
..........
..........
...........
...........
...........
............
...........

Fig. 8.7. Error versus grid size for discretization schemes of 1st and 2nd order

If the solutions for the grid sizes 4h, 2h, and h are known, these can be used
for an error estimation. Inserting the three grid sizes into (8.14) and neglecting
the terms of higher order one obtains three equations for the unknowns φ, C,
and p. By resolving this for p, first the actual order of the scheme can be
estimated:

8.2 Estimation of Discretization Error 201

p ≈ log
(

φ2h − φ4h

φh − φ2h

)
/ log 2 . (8.15)

This is necessary if one is not sure that the grid sizes employed are already
in a range in which the asymptotic behavior, on which the relation (8.14) is
based, is valid (i.e., if the higher order terms are “small enough”). Knowing
p, the constant C results from (8.14) for h and 2h in

C ≈ φh − φ2h

(2p − 1)hp
,

such that for the error on the grid with grid size h (again from (8.14)) one
gets the approximation

eh ≈ φh − φ2h

2p − 1
.

With this, a grid independent solution can be estimated:

φ ≈ φh +
φh − φ2h

2p − 1
. (8.16)

This procedure is known as Richardson extrapolation.
In general, numerical simulations always should be done with at least

one (better yet two, if there are doubts concerning the order of the method)
systematic grid refinement (e.g., halving of grid spacing or time step size) in
order to verify the quality of the solution with the above procedure.

Let us consider as a concrete example for the error estimation a bouyancy
driven flow in a square cavity with a temperature gradient between the two
side walls. The problem is computed for successively refined grids (10×10 CVs
to 320×320 CVs) with a finite-volume method employing a 2nd order CDS
discretization. The Nußelt numbers Nuh (a measure for the convective heat
transfer) that result from the computed temperatures for the different grids
are given in Table 8.1 together with the corresponding differences Nu2h−Nuh

for two “subsequent” grids.

Table 8.1. Convergence of Nußelt num-
bers for successively refined grids

Grid Nuh Nu2h−Nuh p

10×10 8.461 − −
20×20 10.598 -2.137 −
40×40 9.422 1.176 −
80×80 8.977 0.445 1.40

160×160 8.863 0.114 1.96
320×320 8.834 0.029 1.97

202 8 Properties of Numerical Methods

First the actual convergence order of the method is determined from the
values for the three finest grids according to (8.15):

p ≈ log
(

Nu2h − Nu4h

Nuh − Nu2h

)
/ log 2 = log

(
8.863 − 8.977
8.834 − 8.863

)
/ log 2 = 1.97 .

Table 8.1 also indicates the values for p when using three coarser grids. One
can see that the method for a sufficiently fine grid – as expected for the CDS
scheme – has an asymptotic convergence behavior of nearly 2nd order. Next, a
grid independent solution is determined with the extrapolation formula (8.16)
using the solutions for the two finest grids with 160×160 and 320×320 CVs:

Nu ≈ Nuh +
Nuh − Nu2h

2p − 1
= 8.834 +

8.834 − 8.863
21.97 − 1

= 8.824 .

In Fig. 8.8 the computed values for Nu and the grid independent solution
(dashed line) are illustrated graphically.

By comparison with the grid independent solution the solution error on all
grids can be determined. Representing the error depending on the grid size in
a double-logarithmic diagram (see Fig. 8.9), for sufficiently fine grids one gets
nearly a straight line with slope 2 corresponding to the order of the method.
Further, one can observe that when using the coarsest grid one is not yet in
the range of the asymptotic convergence. An extrapolation using this solution
would lead to completely wrong results.

8.3 Influence of Numerical Grid

In Chap. 3 several properties of numerical grids were addressed that have
different influences on the flexibility, discretization accuracy, and efficiency of

10x10 20x20 40x40 80x80 160x160 320x320
Number of control volumes

8.5

9.0

9.5

10.0

10.5

N
us

se
lt

nu
m

be
r

Extrapolated value

Fig. 8.8. Nußelt number
depending on the number
of CVs and extrapolated
(grid independent) value

8.3 Influence of Numerical Grid 203

10
−3

10
−2

10
−1

Grid spacing

10
−3

10
−2

10
−1

10
0

E
rr

or
 (

N
us

se
lt

nu
m

be
r)

Grid independent
solution

Slope=2

Fig. 8.9. Error for Nußelt number
depending on grid spacing

a numerical scheme. Here we will summarize the most important grid prop-
erties most relevant to practical application involving the properties of the
discretization and solution methods.

It should be stated again that, in general, compared to triangular or tetra-
hedral grids (for comparable discretizations) quadrilateral or hexahedral grids
give more accurate results because portions of the error on opposite faces
partially cancel each other. On the other hand the automatic generation of
triangular or tetrahedral grids is simpler. Thus, for a concrete problem one
should deliberate about which aspect is more important. The grid structure
should also be included in these considerations – also with respect to an effi-
cient solution of the resulting discrete equation systems. Structured triangular
or tetrahedral grids usually do not make sense because quadrilateral or hexa-
hedral grids can also be employed instead. In general, the error and efficieny
aspects are more important for problems from fluid mechanics (in particular
for turbulent flows), while for problems from structural mechanics mostly the
geometrical flexibility plays a more important role.

Besides the global grid structure there are several local properties of the
grids which are important for the efficiency and accuracy of a computation. In
particular, these are the orthogonality of the grid lines, the expansion rate of
adjacent grid cells, and the ratio of the side lengths of the grid cells. We will
discuss these in connection with a finite-volume discretization for quadrilateral
grids. Analogous considerations apply for finite-element discretizations and
other types of cells.

The orthogonality of a grid is characterized by the intersection angle ψ
between the grid lines (see Fig. 8.10). A grid is called orthogonal if all grid
lines intersect at a right angle.

204 8 Properties of Numerical Methods

P

ψ
Fig. 8.10. Intersection angle between grid lines
for definition of grid orthogonality

If the connecting line of the points P and E is orthogonal to the face
Se, then only the derivative in this direction has to be approximated (see also
Fig. 4.14). As outlined in Sect. 4.5, if the grid is non-orthogonal, the computa-
tion of the diffusive fluxes becomes significantly more complicated. Additional
neighboring relations between the grid points have to be taken into account
and by the appearance of coefficients with opposite signs the diagonal dom-
inance of the system matrix can be weakened. This may cause difficulties in
the convergence of the solvers. The same applies if the additional neighboring
values are treated explicitly in the way described in Sect. 7.1.4. Therefore, an
attempt should always be made to keep the numerical grid as orthogonal as
possible (as far as this is possible with respect to the problem geometry).

As we have already seen in Sect. 4.4, the truncation error of a discretization
scheme also depends on the expansion ratio

ξe =
xE − xe

xe − xP

of the grid (see Fig. 8.11). In the case of a central difference discretization of
the first derivative, for instance, for a one-dimensional problem the truncation
error at the point xe becomes:

τe =
(

∂φ

∂x

)
e

− φE − φP

xE − xP
=

=
(1 − ξe)Δx

2

(
∂2φ

∂x2

)
e

+
(1 − ξe + ξ2

e)Δx2

6

(
∂3φ

∂x3

)
e

+ O(Δx3) .

where Δx = xe − xP. The leading error term, which with respect to the grid
spacing is only of 1st order, only vanishes if ξe = 1. The more the expan-
sion rate deviates from 1 (non-equidistance), the larger this portion of the
error becomes – with a simultaneous decrease in the order of the scheme.
Corresponding considerations apply for all spatial directions as well as for a
discretization of the time interval in the case of time-dependent problems.

In order not to deteriorate the accuracy of the discretization too much,
when generating the grid (in space and time) it should be paid attention
that the grid expansion ratio should not be allowed to become too large (e.g.,

8.3 Influence of Numerical Grid 205

xw xe xeexP xE

xe − xP xE − xe� �� �
Fig. 8.11. Definition of
expansion ratio between
two grid cells

between 0.5 and 2), at least in areas with strong variations of the unknown
variables in direction of the corresponding coordinate.

A further important quantity, which influences the condition number of
the discrete equation system (and therefore the efficiency of the solution al-
gorithms, see Sect. 7.1), is the ratio λP between the length and height of a
control volume. This is called the grid aspect ratio. For an orthogonal CV, λP

is defined by (see Fig. 8.12)

λP =
Δx

Δy
,

where Δx and Δy are the length and height of the CV, respectively. For non-
orthogonal CVs a corresponding quantity can be defined, for instance, by the
ratio of the minimum of the face lengths δSe and δSw to the maximum of the
face lengths δSn und δSs.

Δx

Δy
P E

N

� ��

�

Fig. 8.12. Definition of aspect
ratio of grid cells

The values for λP particularly influence the size of the contributions of the
discretization of the diffusive parts in the off-diagonals of the system matrix.
As an example, let us consider the diffusive term in (8.1) for an equidistant
rectangular grid. Using a central difference approximation one obtains for the
east and north coefficients the expressions

aE = α
Δy

Δx
=

α

λP
and aN = α

Δx

Δy
= αλP.

Thus, the ratio between aN and aE amounts to λ2
P. If λP strongly deviates

from 1 (in this case one speaks of anisotropic grids), it, in particular, neg-
atively influences the eigenvalue distribution of the system matrix, which –
as outlined in Sect. 7.1 – determines the convergence rate of the most com-
mon iterative solution algorithms. The larger λP is, the slower the conver-
gence of the iterative methods. It should be noted, however, that there are
also specially designed iterative solution methods (e.g., special variants of the

206 8 Properties of Numerical Methods

ILU method), which possess acceptable convergence properties for strongly
anisotropic grids. Thus, when generating the grid, moderate aspect ratios of
the grid cells should be ensured, i.e., in the range 0.1 ≤ λP ≤ 10, or, if this is
not possible, a corresponding special linear system solver should be employed.

In practical applications, it is usually not possible to satisfy all the above
grid properties in the whole problem domain simultaneously in an optimal
way. This makes it necessary to find an adequate compromise.

8.4 Cost Effectiveness

Besides the accuracy, also the cost effectiveness of numerical computations,
i.e., the costs that have to be paid to obtain a numerical solution with a
certain accuracy, for practical applications is a very important aspect that
always should be taken into account when employing numerical methods. As
is apparent from the considerations in the preceding sections, the accuracy
and cost effectiveness of a method depends on a variety of different factors:

the extent of detail in the geometry modeling,
the structure of the grid and the shapes of the cells,
the mathematical model underlying the computation,
the number and distribution of grid cells and time steps,
the number of coefficients in the discrete equations,
the order of the discretization scheme,
the solution algorithm for the algebraic equation systems,
the stopping criteria for iteration processes,
the available computer, . . .

Since issues of accuracy and cost effectiveness usually are in a disproportionate
relation in close interaction with each other, it is necessary to find here a
reasonable compromise with respect to the concrete requirements of the actual
problem. For example, approximations of higher order are generally more
accurate than lower order methods, but sometimes they are more “costly”.
This is because, for instance, the iterative solution of the resulting equation
systems on the available computer system is much more time consuming, so
that the use of a lower order method with a larger number of nodes might be
advantageous. Here, practical experience has shown that for a large number
of applications 2nd order methods represent a reasonable compromise.

Exercises for Chap. 8

Exercise 8.1. The differential equation φ′ = cos φ for the function φ = φ(t)
is discretized with an implicit time discretization according to

2φn+1 + aφn + bφn−1

Δt
= cos φn .

8.4 Cost Effectiveness 207

For which real parameters a and b is the method consistent? What is the
leading term of the truncation error in this case?

Exercise 8.2. For the one-dimensional convection equation (ρ and v constant,
no source term) the discretization scheme

(1 + ξ)φn+1 − (1 + 2ξ)φn + ξφn−1

Δt
= θL(φn+1) + (1 − θ)L(φn)

with a central differencing approximation L(φ) for the convective term and
two real parameters ξ and θ is given. (i) Determine the truncation error of
the scheme. (ii) Discuss the consistency order of the method depending on ξ
and θ.

Exercise 8.3. A discretization of an unsteady two-dimensional problem yields
for the unknown function φ = φ(x, y, t) the discrete equation

φn+1
P = (1 + α)φn

P + αφn
E + (1 − α2)φn

W + φn
S + (4 − α2)φn

N

with a real parameter α > 0. Discuss the stability of the scheme depending
on α.

Exercise 8.4. Given is the steady one-dimensional convection-diffusion equa-
tion (ρ, v, and α constant, v > 0, no source term). (i) Formulate a finite-
volume discretization using the flux-blending scheme of Sect. 4.3.3 (with the
UDS and CDS methods) for the convective term. (ii) Check the validity of
condition (8.6) for the conservativity of the method. (iii) Determine a condi-
tion for the admissible grid spacing ensuring the boundedness of the method.

Exercise 8.5. Consider the unsteady one-dimensional convection-diffusion
equation with the spatial discretization of Exercise 8.4. Formulate the explicit
Euler method and determine a condition on the time step size for the stability
of the resulting method.

Exercise 8.6. Given is the steady one-dimensional convection-diffusion equa-
tion (ρ, v, and α constant, no source term) on the interval [0, 1] with boundary
conditions φ(0) = 0 and φ(1) = 1. Let the problem be discretized according
to the UDS1/CDS2 and CDS2/CDS2 finite-volume methods with equidistant
grid spacing Δx. (i) Consider the ansatz φi = C1 + C2b

i for the discrete solu-
tion φi in the node xi = (i−1)/N (i = 0, 1, . . . , N +1) and determine for both
discretization methods the constants C1, C2, and b, such that φi solves the
discrete equation exactly and φ0 and φN+1 fulfill the boundary conditions. (ii)
Compare the result of (i) with the analytical solution of the differential equa-
tion and discuss the behavior of the discrete solution for α → 0 and Δx → 0.

Exercise 8.7. A finite-element discretization results in the discrete equation
system [−1+α 1−α

5α 1−2α

] [
φ1

φ2

]
=

[
18α
−α

]
.

208 8 Properties of Numerical Methods

For which values of the real parameter α is the scheme in any case bounded?

Exercise 8.8. For the function φ = φ(x, y) the integral I =
∫

Se
φdS over the

face Se of the square control volume [1, 3]2 has to be computed. (i) Determine
for the approximation I ≈ φ(3, α)Δy the leading term of the truncation error
and the order (with respect to the length Δy of Se) depending on the real
parameter α ∈ [1, 3]. (ii) Compute I for the function φ(x, y) = x3y4 directly
(analytically) and with the approximation defined in (i) with α = 2. Compare
the results.

Exercise 8.9. A finite-volume discretization results in the discrete equation

αφP = 2φE + φW + βφS − 2φN .

For which combinations of the two real parameters α and β the method is (i)
definitely not conservative? (ii) in any case bounded?

Exercise 8.10. A finite-element computation on equidistant grids with the
grid spacings 4h, 2h, and h gives the solutions φ4h = 20, φ2h = 260, and φh =
275. (i) What is the order of the method? (ii) What is the grid independent
solution?

Exercise 8.11. Discretize the steady two-dimensional diffusion equation (α
constant, Dirichlet boundary conditions) with the 2nd order CDS method
for the finite-volume grids shown in Fig. 8.13. Determine in each case the
condition number of the system matrix and the spectral radius of the iteration
matrix for the Gauß-Seidel method and compare the corresponding values.

9 m

3 m

� ��

�

3 m

�

�

1 m 1 m

3 m

�� ��

�

�

Fig. 8.13. Numerical grids for Exer-
cise 8.11

9

Finite-Element Methods in Structural
Mechanics

The investigation of deformations and stresses in solids belongs to the most
frequent tasks in engineering applications. In practice nowadays the numeri-
cal study of such problems involves almost exclusively finite-element methods.
Due to the great importance of these methods, in this chapter we will address
in more detail the particularities and the practical treatment of correspond-
ing problems. In particular, the important concept of isoparametric finite el-
ements will be considered. We will do this exemplarily by means of linear
two-dimensional problems for a 4-node quadrilateral element. However, the
formulations employed allow in a very simple way an understanding of the
necessary modifications if other material laws, other strain-stress relations,
and/or other types of elements are used. The considerations simultaneously
serve as an example of the application of the finite-element method to systems
of partial differential equations.

9.1 Structure of Equation System

As an example we consider the equations of linear elasticity theory for the
plane stress state (see Sect. 2.4.3). To save indices we denote the two spa-
tial coordinates by x and y and the two unknown displacements by u and
v (see Fig. 9.1). Furthermore, since different index ranges occur, for clarity
all occuring summations will be given explicitly (i.e., no Einstein summation
convention).

The underlying linear strain-displacement relations are

ε11 =
∂u

∂x
, ε22 =

∂v

∂y
, and ε12 =

1
2

(
∂u

∂y
+

∂v

∂x

)
, (9.1)

and the (linear) elastic material law for the plane stress state will be used in
the form

210 9 Finite-Element Methods in Structural Mechanics

tb

n

ub

Ω

Γ1

Γ2

�

� �

�

x, u

y, v

Fig. 9.1. Disk in plane stress state with notations

⎡⎣T11

T22

T12

⎤⎦
︸ ︷︷ ︸

T

=
E

1 − ν2

⎡⎣ 1 ν 0
ν 1 0
0 0 1−ν

⎤⎦
︸ ︷︷ ︸

C

⎡⎣ ε11

ε22

ε12

⎤⎦
︸ ︷︷ ︸

ε

. (9.2)

Here, exploiting the symmetry properties, we summarize the relevant com-
ponents of the strain and stress tensors into the vectors ε = (ε1, ε2, ε3) and
T = (T1, T2, T3). As boundary conditions at the boundary part Γ1 the dis-
placements

u = ub and v = vb

and on the boundary part Γ2 the stresses

T1n1 + T3n2 = tb1 and T3n1 + T2n2 = tb2

are prescribed (see Fig. 9.1).
As a basis for the finite-element approximation the weak formulation of the

problem (see Sect. 2.4.1) is employed. We denote the test functions (virtual
displacements) by ϕ1 and ϕ2 and define

ψ1 =
∂ϕ1

∂x
, ψ2 =

∂ϕ2

∂y
, and ψ3 =

1
2

(
∂ϕ1

∂y
+

∂ϕ2

∂x

)
.

The weak form of the equilibrium condition (momentum conservation) then
can be formulated as follows:

Find (u, v) with (u, v) = (ub, vb) on Γ1, such that
3∑

k,j=1

∫
Ω

Ckjεkψj dΩ =
2∑

j=1

⎛⎝∫
Ω

ρfjϕj dΩ +
∫
Γ2

tbjϕj dΓ

⎞⎠
for all test functions (ϕ1, ϕ2) with ϕ1 = ϕ2 = 0 on Γ1.

(9.3)

Employing the problem formulation in this form, further considerations are
largely independent of the special choices of the material law and the strain-
stress relation. Only the correspondingly modified definitions for the material

9.2 Finite-Element Discretization 211

matrix C and the strain tensor ε have to be taken into account. In this way also
an extension to nonlinear material laws (e.g., plasticity) or large deformations
(e.g., for rubberlike materials, cp. Sect. 2.4.5) is quite straightforward (see,
e.g., [2]).

9.2 Finite-Element Discretization

A practically important element class for structural mechanics applications
are the isoparametric elements, which we will introduce by means of an ex-
ample. The basic idea of the isoparametric concepts is to employ the same
(isoparametric) mapping to represent the displacements as well as the geome-
try with local coordinates (ξ, η) in a reference unit area. The mapping to the
unit area (triangle or square) is accomplished by a variable transformation,
which corresponds to the ansatz for the unknown function.

As an example, we consider an isoparametric quadrilatral 4-node element,
which also is frequently used in practice because it usually provides a good
compromise between accuracy requirements and computational effort. How-
ever, it should be noted that the considerations are largely independent from
the element employed (triangles or quadrilaterals, ansatz functions). The con-
sidered element can be seen as a generalization of the bilinear parallelogram
element, which was introduced in Sect. 5.6.4. The procedure for the assembling
of the discrete equations is analogous to a large extent.

A coordinate transformation of a general quadrilateral Qi to the unit
square Q0 (see Fig. 9.2) is given by

x =
4∑

j=1

N e
j (ξ, η)xj and y =

4∑
j=1

N e
j (ξ, η)yj , (9.4)

where Pj = (xj , yj) are the vertices of the quadrilateral (here and in the
following we omit for simplicity the index i on the element quantities). The
bilinear isoparametric ansatz functions

N e
1(ξ, η) = (1 − ξ)(1 − η) , N e

2(ξ, η) = ξ(1 − η) ,

N e
3(ξ, η) = ξη , Ne

4(ξ, η) = (1 − ξ)η

correspond to the local shape functions, which were already used for the bi-
linear parallelogram element. For the displacements one has the local shape
functions representation

u(ξ, η) =
4∑

j=1

N e
j (ξ, η)uj and v(ξ, η) =

4∑
j=1

N e
j (ξ, η)vj (9.5)

with the displacements uj and vj at the vertices of the quadrilateral as nodal
variables. By considering the relations (9.4) and (9.5) the principal idea of the

212 9 Finite-Element Methods in Structural Mechanics

� x

�
y

QiP1

P2

P3

P4

� ξ

�
η

P̃1 P̃2

P̃3 P̃4

Q0

0

1

1

Fig. 9.2. Transformation of arbitrary quadrilateral to unit square

isoparametric concept becomes apparent, i.e., for the coordinate transforma-
tion and the displacements the same shape functions are employed.

According to the elementwise approach to assemble the discrete equation
system described in Sect. 5.3, we next determine the element stiffness ma-
trix and the element load vector. As a basis we employ a weak form of the
equilibrium condition within an element with the test functions (N e

j , 0) and
(0, N e

j) for j = 1, . . . , 4. In order to allow a compact notation, it is helpful to
introduce the nodal displacement vector as

φ = [u1, v1, u2, v2, u3, v3, u4, v4]T

and write the test functions in the following matrix form:

N =

[
N e

1 0 N e
2 0 N e

3 0 N e
4 0

0 N e
1 0 N e

2 0 N e
3 0 N e

4

]
.

As analogon to ψ = (ψ1, ψ2, ψ3) within the element we further define the
matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N e
1

∂x
0

∂N e
2

∂x
0

∂N e
3

∂x
0

∂N e
4

∂x
0

0
∂N e

1

∂y
0

∂N e
2

∂y
0

∂N e
3

∂y
0

∂N e
4

∂y

1
2

∂N e
1

∂y

1
2

∂N e
1

∂x

1
2

∂N e
2

∂y

1
2

∂N e
2

∂x

1
2

∂N e
3

∂y

1
2

∂N e
3

∂x

1
2

∂N e
4

∂y

1
2

∂N e
4

∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The equilibrium relation corresponding to (9.3) for the element Qi now reads

3∑
k,l=1

∫
Qi

CklεkAlj dΩ =
2∑

k=1

⎛⎝∫
Qi

ρfkNkj dΩ +
∫

Γ2i

tbkNkj dΓ

⎞⎠ (9.6)

9.2 Finite-Element Discretization 213

for all j = 1, . . . , 8. Γ2i denotes the edges of the element Qi located on the
boundary part Γ2 with a stress boundary condition. If there are no such edges
the corresponding term is just zero.

Inserting the expressions (9.5) into the strain-stress relations (9.1) we get
the strains εi dependent on the ansatz functions:

ε1 =
4∑

j=1

∂N e
j

∂x
uj , ε2 =

4∑
j=1

∂N e
j

∂y
vj , ε3 =

1
2

4∑
j=1

(
∂N e

j

∂y
uj +

∂N e
j

∂x
vj

)
.

With the matrix A these relations can be written in compact form as

εj =
8∑

k=1

Ajkφk for j = 1, 2, 3 . (9.7)

Inserting this into the weak element formulation (9.6) we finally obtain:

8∑
k=1

φk

3∑
n,l=1

∫
Qi

CnlAnjAlk dΩ =
2∑

k=1

⎛⎝∫
Qi

ρfkNkj dΩ+
∫

Γ2i

tbkNkj dΓ

⎞⎠
for j = 1, . . . , 8. For the components of the element stiffness matrix Si and
the element load vector bi we thus have the following expressions:

Si
jk =

3∑
n,l=1

∫
Qi

CnlAnjAlk dΩ , (9.8)

bi
j =

2∑
k=1

⎛⎝∫
Qi

ρfkNkj dΩ +
∫

Γ2i

tbkNkj dΓ

⎞⎠ (9.9)

for k, j = 1, . . . , 8.
In the above formulas, for the computation of the element contributions

the derivatives of the shape functions with respect to x and y appear, which
cannot be computed directly because the shape functions are given as func-
tions depending on ξ and η. The relation between the derivatives in the two
coordinate systems is obtained by employing the chain rule as:⎡⎢⎢⎣

∂N e
k

∂x

∂N e
k

∂y

⎤⎥⎥⎦ =
1

det(J)

⎡⎢⎢⎣
∂y

∂η
−∂y

∂ξ

−∂x

∂η

∂x

∂ξ

⎤⎥⎥⎦
︸ ︷︷ ︸

J−1

⎡⎢⎢⎣
∂N e

k

∂ξ

∂N e
k

∂η

⎤⎥⎥⎦

with the Jacobi matrix J. The derivatives of x and y with respect to ξ and η
can be expressed by using the transformation rules (9.4) by derivatives of the

214 9 Finite-Element Methods in Structural Mechanics

shape function with respect to ξ and η as well. In this way one obtains for the
derivatives of the shape functions with respect to x and y:

∂N e
k

∂x
=

1
det(J)

4∑
j=1

(
∂N e

j

∂η

∂N e
k

∂ξ
− ∂N e

j

∂ξ

∂N e
k

∂η

)
yj ,

(9.10)
∂N e

k

∂y
=

1
det(J)

4∑
j=1

(
∂N e

j

∂ξ

∂N e
k

∂η
− ∂N e

j

∂η

∂N e
k

∂ξ

)
xj ,

where

det(J) =

⎛⎝ 4∑
j=1

∂Ne
j

∂ξ
xj

⎞⎠⎛⎝ 4∑
j=1

∂Ne
j

∂η
yj

⎞⎠−
⎛⎝ 4∑

j=1

∂Ne
j

∂ξ
yj

⎞⎠⎛⎝ 4∑
j=1

∂Ne
j

∂η
xj

⎞⎠ .

Thus, all quantities required for the computations of the element contributions
are computable directly from the shape functions and the coordinates of the
nodal variables.

For the unification of the computation over the elements the integrals are
transformed to the unit square Q0. For example, for the element stiffness
matrix one gets:

Si
jk =

3∑
n,l=1

∫
Q0

CnlAnj(ξ, η)Alk(ξ, η) det(J(ξ, η)) dξdη . (9.11)

The computation of the element contributions – different from the bilinear
parallelogram element – in general can no longer be performed exactly because
due to the factor 1/det(J) in the relations (9.10) rational functions appear
in the matrix A (transformed in the coordinates ξ und η). Thus, numerical
integration is required, for which Gauß quadrature should be advantageously
employed (see Sect. 5.7). Here, the order of the numerical integration formula
has to be compatible with the order of the finite-element ansatz. We will
not address the issue in detail (see, e.g., [2]), and mention only that for the
considered quadrilateral 4-node element a second-order Gauß quadrature is
sufficient. For instance, the contributions to the element stiffness matrix are
computed with this according to

Si
jk =

1
4

3∑
n,l=1

4∑
p=1

CnlAnj(ξp, ηp)Alk(ξp, ηp) det(J(ξp, ηp)) (9.12)

with the nodal points (ξp, ηp) = (3 ± √
3/6, 3 ± √

3/6) (cf. Table 5.12). The
computation of the element load vector can be performed in a similar way
(see, e.g., [2]).

We again mention that corresponding expressions for the element con-
tributions of other element types can be derived in a fully analogous way.

9.3 Examples of Applications 215

Having computed the element stiffness matrices and element load vectors for
all elements, the assembling of the global stiffness matrix and the global load
vector can be done according to the procedure described in Sect. 5.6.3. We
will illustrate this in the next section by means of an example.

In practical applications in most cases one is directly interested not in
the displacements, but in the resulting stresses (T1, T2, T3). For the consid-
ered quadrilateral 4-node element these are not continuous at the element
interfaces and advantageously are determined from (9.2) by using the repre-
sentation (9.7) in the centers of the elements (there one gets the most accurate
values):

Tj =
8∑

k=1

3∑
n=1

CnjAnk(
1
2
,
1
2
)φk . (9.13)

A further quantity relevant in practice is the strain energy

Π =
1
2

3∑
n,j=1

∫
Ω

Cnjεnεj dΩ , (9.14)

which characterizes the work performed for the deformation. With (9.7) the
strain energy is obtained according to

Π =
1
2

∑
i

8∑
k,j=1

3∑
n,l=1

4∑
p=1

CnlAnj(ξp, ηp)Alk(ξp, ηp)φkφj det(J(ξp, ηp)) ,

where the first summation has to be carried out over all elements Qi.

9.3 Examples of Applications

As a simple example for the approach outlined in the previous section we
first consider an L-shaped device under pressure load, which is clamped at
one end. The problem configuration with all corresponding data is indicated
in Fig. 9.3. At the bottom boundary the displacements u = v = 0 and at
the top boundary the stress components tb1 = 0 und tb2 = −2 · 10−4 N/m2

are prescribed. All other boundaries are free, i.e., there the stress boundary
condition tb1 = tb2 = 0 applies.

For the solution of the problem we use a discretization with only two
quadrilatreal 4-node elements. The elements and the numbering of the nodal
variables (uj , vj) for j = 1, . . . , 6 are indicated in Fig. 9.4. After the compu-
tation of the two element stiffness matrices and element load vectors (using
the formulas derived in the preceding section), the assembling of the global
stiffness matrix and load vector S and b, respectively, can be done in the
usual way (see Sect. 5.6.3). With the assignment of the nodal variables given
by the coincidence matrix in Table 9.1, S and b get the following structure:

216 9 Finite-Element Methods in Structural Mechanics

�x

�y

tb2 = −2 · 104 N/m2

E = 2·1011 N/m2

ν = 0.3

�

�

�

�

��

��

2m

1 m

2 m

1 m

� � � � � � � � �

Fig. 9.3. L-shaped device under pres-
sure load

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
∗
0
0
0
∗
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where “∗” denotes a non-zero entry.

�x

�y

(u1, v1) (u2, v2)

(u3, v3)

(u4, v4)

(u5, v5)

(u6, v6)Q1

Q2

Fig. 9.4. Discretization of L-shaped device
with two quadrilateral 4-node elements

9.3 Examples of Applications 217

Table 9.1. Assignment of nodal values and ele-
ments (coincidence matrix) for L-shaped device

Local nodal variable
Element φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

1 u1 v1 u2 v2 u4 v4 u3 v3

2 u3 v3 u4 v4 u6 v6 u5 v5

Next the geometric boundary conditions have to be taken into account,
i.e., the equation system has to be modified to ensure that the nodal variables
u1, v1, u2, and v2 get the value zero. According to the procedure outlined in
Sect. 5.6.3 this finally leads to a discrete equation system of the form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

u6

v6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
∗
0
0
0
∗
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Figure 9.5 shows the computed deformed state (in 105-fold magnification)
as well as the (linearly interpolated) distribution of the absolute values of
the displacement vector. In Table 9.2 the maximum displacement umax, the
maximum stress Tmax, and the strain energy Π are given. Besides the values
obtained with the two quadrilateral 4-node elements, also the corresponding
results when using two quadrilateral 8-node elements and four triangular 3-
node elements are given. The associated element and node distributions are
indicated in Fig. 9.6. For an appraisal of the different results in Table 9.2, the
values of a reference solution also are given, which has been obtained with a
very fine grid, as well as the corresponding relative errors.

Several conclusions, which also have some universal validity, can be drawn
from the results. One can observe that – independent from the element type –
the error is smallest for the strain energy and largest for the stresses. Generally,
owing to the rather low number of elements, of course, the errors are relatively
large. Comparing the results for the 4-node and 8-node quadrilateral elements,
one can observe the gain in accuracy when using a polynomial ansatz of higher
order (biquadratic instead of bilinear). The results for the 4-node element –
with the same number of nodal variables (i.e., with comparable computational
effort) – are significantly more accurate than for the triangular 3-node element.

218 9 Finite-Element Methods in Structural Mechanics

Fig. 9.5. Deformation and distribution of
absolute value of displacement vector for
L-shaped device

Q1

Q2

Q1

Q2

Q3

Q4

Fig. 9.6. Discretization for L-
shaped device with quadrilateral
8-node elements (left) and trian-
gular 3-node elements (right)

Table 9.2. Comparison of reference and numerical solutions with different
elements for L-shaped device

Displacement [m] Energy [Ncm] Stress [N/mm2]

Element type umax Error Π Error Tmax Error

4-node quadrilateral 2,61 35% 1,75 28% 0,12 50%
8-node quadrilateral 2,96 26% 1,90 22% 0,16 33%
3-node triangle 1,07 73% 0,94 61% 0,06 75%

Reference solution 4,02 – 2,43 – 0,24 –

To illustrate the convergence behavior of the 4-node quadrilateral elements
when increasing the number of elements, Fig. 9.7 gives in a double-logarithmic
diagram the relative error of the maximum displacement umax for computa-
tions with increasing number of elements. One can observe the systematic
reduction of the error with increasing element number, corresponding to a
quadratic convergence order of the displacements. As outlined in Sect. 8.2,
this behavior can be exploited for an error estimation.

As a second, more complex example we consider the determination of
stresses in a unilaterally clamped disk with three holes under tensile load.
The configuration is sketched in Fig. 9.8 together with the corresponding
problem parameters. A typical question for this problem is, for instance, the
determination of the location and value of the maximum occurring stresses.

9.3 Examples of Applications 219

2 8 18 74 162
Number of 4−node elements

1

10

R
el

. e
rr

or
 o

f m
ax

. d
is

pl
ac

em
en

t [
%

]

Fig. 9.7. Relative error
of maximum displacement
depending on number of el-
ements for L-shaped device

� � � � � � � � �

tb2 = 2 · 104 N/m2

E = 2·1011 N/m2

ν = 0.3
d = 2m

��

��

��

�

�

�

�

�

�

�

�

�

�

��

	
�

	
�

	
�

5d

9d/2

d

d

d

d

d

d

d

d

2d

Fig. 9.8. Pierced disk under tensile load

For the discretization again the isoparametric quadrilateral 4-node element
is employed. We consider three different numerical grids for the subdivision
into elements: a largely uniform grid with 898 elements, a uniformly refined
grid with 8,499 elements, and a locally refined grid with 3,685 elements. The
coarser uniform and the locally refined grids are shown in Fig. 9.9. The gen-
eration of the latter involved first an estimation for the local discretization
error from a computation with the coarse uniform grid by using the stress
gradients as an error indicator, which then served as criterion for the local
refinement at locations where large gradients (i.e., errors) occur. More details
about adaptive refinement techniques are given in Sect. 12.1.

In Fig. 9.10 the deformed state (106-fold enlarged) computed with the lo-
cally refined grid is shown together with the distribution of the normal stress

220 9 Finite-Element Methods in Structural Mechanics

Fig. 9.9. Numerical grids for pierced disk

T2 in the y-direction. The maximum displacement umax is achieved at the up-
per boundary, while the maximum stress Tmax is taken at the right boundary
of the left hole. The values for umax and Tmax, which result when using the dif-
ferent grids, are given in Table 9.3 together with the corresponding numbers
of nodal variables corresponding to the numbers of unknowns in the linear
equation systems to be solved. One can observe that already with the coarse
uniform grid the displacements are captured comparably accurately. Neither
the uniform nor the local refinement gives here a siginficant improvement.
Differences show up for the stress values, for which both refinements still re-
sult in noticeable changes. In particular, the results show the advantages of
a local grid refinement compared to a uniform grid refinement. Although the
number of nodal variables is much smaller – which also means a correspond-
ingly shorter computing time – with the locally refined grid comparable (or
even better) values can be achieved.

Table 9.3. Numerical solutions with different element subdi-
visions for pierced disk

Grid Elements Nodes umax [m] Tmax [Ncm2]

uniform 898 2 008 1,57 9,98
uniform 8 499 17 316 1,58 9,81
locally refined 3 685 7 720 1,58 9,76

9.3 Examples of Applications 221

Fig. 9.10. Computed deformations and
stresses for pierced disk

Exercises for Chap. 9

Exercise 9.1 Compute the element stiffness matrix and the element load
vector for the plane stress state for a quadrilateral 4-node element with the
vertices P1 = (0, 0), P2 = (2, 0), P3 = (1, 1), and P4 = (0, 1).

Exercise 9.2 Derive an expression corresponding to (9.8) for the element
stiffness matrix for the triangular 3-node element. Compute the matrix for
the element 1 of the triangulation shown in Fig. 9.6

Exercise 9.3 Determine the isoparametric shape functions Nj = Nj(ξ, η)
(j = 1, . . . , 8) for the quadrilateral 8-node element.

Exercise 9.4 Determine the shape functions and the element stiffness matrix
for the three-dimensional prism element with triangular base surface.

10

Finite-Volume Methods for Incompressible
Flows

In this chapter we will specially address the application of finite-volume meth-
ods for the numerical computation of flows of incompressible Newtonian fluids.
This subject matter is of particular importance because most flows in prac-
tical applications are of this type and nearly all commercial codes that are
available for such problems are based on finite-volume discretizations. Spe-
cial emphasis will be given to the coupling of velocity and pressure which
constitutes a major problem in the incompressible case.

10.1 Structure of Equation System

The conservation equations for the description of incompressible flows for
Newtonian fluids have already been presented in Sect. 2.5.1. Here, we restrict
ourselves to the two-dimensional case, for which the equations can be written
as follows:

∂(ρu)
∂t

+
∂

∂x

[
ρuu−2μ

∂u

∂x

]
+

∂

∂y

[
ρvu−μ

(
∂u

∂y
+

∂v

∂x

)]
+

∂p

∂x
= ρfu , (10.1)

∂(ρv)
∂t

+
∂

∂x

[
ρuv−μ

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂y

[
ρvv−2μ

∂v

∂y

]
+

∂p

∂y
= ρfv , (10.2)

∂u

∂x
+

∂v

∂y
= 0 , (10.3)

∂(ρφ)
∂t

+
∂

∂x

(
ρuφ − α

∂φ

∂x

)
+

∂

∂y

(
ρvφ − α

∂φ

∂y

)
= ρfφ . (10.4)

The unknowns in the equation system are: the two Cartesian velocity compo-
nents u and v, the pressure p, and the scalar quantity φ, which denotes some
transport quantity that – depending on the specific application – additionally

224 10 Finite-Volume Methods for Incompressible Flows

has to be determined (e.g., temperature, concentration, or turbulence quan-
tities). The density ρ, the dynamic viscosity μ, the diffusion coefficient α, as
well as the source terms fu, fv, and fφ are prescribed (maybe also depending
on the unknowns).

The equation system (10.1)-(10.4) has to be completed by boundary con-
ditions and, in the unsteady case, by initial conditions for the velocity com-
ponents and the scalar quantity (no boundary and initial conditions for the
pressure!). The types of boundary conditions have already been discussed in
Sect. 2.5.1 (see also Sect. 10.4).

In general, the equation system (10.1)-(10.4) has to be considered as a
coupled system and, therefore, also has to be solved correspondingly. Summa-
rizing the unknowns in the vector ψ = (u, v, p, φ), the structure of the system
can be represented as follows:⎡⎢⎢⎣

A11(ψ) A12(ψ) A13 A14(ψ)
A21(ψ) A22(ψ) A23 A24(ψ)
A31(ψ) A32(ψ) 0 0
A41(ψ) A42(ψ) 0 A44(ψ)

⎤⎥⎥⎦
⎡⎢⎢⎣

u
v
p
φ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
b1(ψ)
b2(ψ)

0
b4(ψ)

⎤⎥⎥⎦ , (10.5)

where A11, . . . , A44 and b1, . . . , b4 are the operators defined according to (10.1)-
(10.4). Looking at (10.5), the special difficulty when computing incompressible
flows becomes apparent, i.e., the lack of a “reasonable” equation for the pres-
sure, which is expressed by the zero element on the main diagonal of the
system matrix. How to deal with this problem will be discussed in greater
detail later.

If the material parameters in the mass and momentum equations do not
depend on the scalar quantity φ, first the equations (10.1)-(10.3) can be solved
for u, v, and p, independently of the scalar equation (10.4). Afterwards φ can
be determined from the latter independently of (10.1)-(10.3) with the veloc-
ities determined before. However, in the general case all material parameters
are dependent on all variables, such that the full system has to be solved
simultaneously.

10.2 Finite-Volume Discretization

For the finite-volume discretization of the system (10.1)-(10.4) we apply the
techniques introduced in Chap. 4. The starting point is a subdivision of the
flow domain into control volumes (CVs), where we again restrict ourselves to
quadrilaterals. For coupled systems it is basically possible to define different
CVs and nodal value locations for different variables. For simple geometries,
which allow the usage of Cartesian grids, incompressible flow computations in
the past frequently were carried out with a staggered arrangement of the vari-
ables, where different CVs and nodal value locations are used for the velocity
components and the pressure. The corresponding arrangement of the variables
and CVs is indicated in Fig. 10.1. The u- and v-equations are discretized with

10.2 Finite-Volume Discretization 225

respect to the u- and v-CVs, and the continuity and scalar equations with
respect to the scalar CVs. The major reason for this procedure is to avoid
an oscillating pressure field. However, for complex geometries the staggered
variable arrangement appears to be disadvantageous. We will return to these
issues in Sect. 10.3.2, after we have dealt a bit closely with the reasons for the
pressure oscillations.

Scalar-CV v-CV

u-CV

↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑

→ → → → → →

→ → → → → →

→ → → → → →

→ → → → → →

→ u

↑ v

p,φ

Fig. 10.1. Staggered
arrangement of vari-
ables and CVs

In the following we assume the usual (non-staggered) cell-oriented variable
arrangement and use Cartesian velocity components – also on non-Cartesisan
grids (see Fig. 10.2). With grid-oriented velocity components the balance equa-
tions would lose their conservativity, since the conservation of a vector only
ensures the conservation of its components if they have a fixed direction. In
addition, the momentum equations would be significantly more complex, such
that their discretization, in particular for three-dimensional flows, would be-
come more involved.

� u

�v

p, φ

�

�

�

�

�

��

�

�

��

�

Fig. 10.2. Non-staggered
variable arrangement on non-
Cartesian grids with Cartesian
velocity components

We consider a general quadrilateral CV with the notations introduced in
Sect. 4.1 (see Fig. 4.5). The finite-volume discretization of the scalar equa-
tion (10.4) has already been described in detail in Chap. 4, so we will not
separately consider this in the following. The balance equation for a CV result-

226 10 Finite-Volume Methods for Incompressible Flows

ing from the discretization of the continuity equation (10.3) can be formulated
with the mass fluxes through the CV faces as follows:

ṁe

ρe
+

ṁw

ρw
+

ṁn

ρn
+

ṁs

ρs
= 0 . (10.6)

Using the midpoint rule the following approximations result for the mass
fluxes:

ṁe = ρeue(yne − yse) − ρeve(xne − xse) ,

ṁw = ρwuw(ysw − ynw) − ρwvw(xsw − xnw) ,

ṁn = ρnvn(xne − xnw) − ρnun(yne − ynw) ,

ṁs = ρsvs(xsw − xse) − ρsus(ysw − yse) .

For the discretization of the mass fluxes the values of velocity components u
and v at the CV faces have to be approximated. The usual linear interpolation
for ṁe, for instance, yields the approximation

ṁe = ρe (γe1uE + γe2uP) (yne − yse) − ρe (γe1vE + γe2vP) (xne − xse)

with suitable interpolation factors γe1 and γe2 (see, e.g., (4.11)). For equidis-
tant Cartesian grids with the grid spacings Δx and Δy we obtain for (10.6)
with this approach the approximation

(uE − uW)Δy + (vN − vS)Δx = 0 .

As we will see later (see Sect. 10.3.2), the above seemingly obvious linear in-
terpolation rule will turn out to be unusable, since it leads to (non-physical)
oscillations in the numerical solution scheme. Before giving a detailed expla-
nation of this effect, we first deal with the discretization of the momentum
equations.

The discretization of the convective fluxes in the momentum equations
can be carried out in a manner analogous to that for the general transport
equation (see Sect. 4.5), if one first assumes that the mass flux is known.
This way a linearization of the convective term is achieved. Formally, this
corresponds to a Picard iteration, as introduced in Sect. 7.2 for the solution
of non-linear equations. We will see later how this can be concretely realized
within an iteration process involving the continuity equation.

Using the midpoint rule for the approximation of the surface integrals, for
instance for the convective flux FC

e in the u-equation through the face Se,
yields

FC
e =

∫
Se

ρ(un1 + vn2)u dSe ≈ [ρeue(yne − yse) − ρeve(xne − xse)]︸ ︷︷ ︸
ṁe

ue .

For the approximation of ue we use the flux blending technique according
to (4.8) introduced in Sect. 4.3.3 with a combination of the UDS and CDS
methods:

10.2 Finite-Volume Discretization 227

ṁeue ≈ ṁeu
UDS
e + β(ṁeu

CDS
e − ṁeu

UDS
e)︸ ︷︷ ︸

bu,e
β

, (10.7)

where

ṁeu
UDS
e = max{ṁe, 0}uP + min{ṁe, 0}uE =

{
ṁeuP if ṁe > 0
ṁeuE if ṁe < 0

and

uCDS
e = γe1uE + γe2uP .

Using the coefficient bu,e
β defined in (10.7) we have altogether for the convective

flux the following approximation:

FC
e ≈ max{ṁe, 0}uP + min{ṁe, 0}uE + bu,e

β .

To shorten the notation we summarize the bβ-terms for all CV faces in the u-
and v-equations each into a single term:

bu
β = bu,e

β + bu,w
β + bu,n

β + bu,s
β and bv

β = bv,e
β + bv,w

β + bv,n
β + bv,s

β .

In the iteration procedure to be described in the next section these terms
will be treated “explicitly”, i.e., the corresponding variable values are com-
puted with known values according to the technique described at the end of
Sect. 7.1.4. In principle the blending factors for the u- and v-equations can be
different. However, due to missing decision criteria the same value is usually
chosen.

Also the discretization of the diffusive fluxes in the momentum equations
can be done largely analogous to the procedure described in Sect. 4.5. One
should note that the momentum equations (10.1) and (10.2) involve additional
diffusive terms compared to the general scalar transport equation (10.4). For
instance, for the diffusive flux in the u-equation through the CV face Sc one
has

FD
c = −

∫
Sc

μ

[
2
∂u

∂x
n1 +

(
∂u

∂y
+

∂v

∂x

)
n2

]
dSc . (10.8)

The additional terms

−
∫
Sc

μ

(
∂u

∂x
n1 +

∂v

∂x
n2

)
dSc

only vanish (due to the continuity equation) if μ is constant over the flow
domain.

The approximation of the diffusive flux (10.8), e.g., for the face Se, gives

228 10 Finite-Volume Methods for Incompressible Flows

FD
e ≈ D1

e (uE−uP) +D2
e (une−use) +D3

e (vE−vP) +D4
e (vne−vse)︸ ︷︷ ︸

bu,e
D

(10.9)

with

D1
e =

μe

[
2(yne − yse)2 + (xne − xse)2

]
(xne − xse)(yE − yP) − (yne − yse)(xE − xP)

,

D2
e =

μe [2(yE − yP)(yne − yse) + (xE − xP)(xne − xse)]
(yne − yse)(xE − xP) − (xne − xse)(yE − yP)

,

D3
e =

μe(xne − xse)(yne − yse)
(yne − yse)(xE − xP) − (xne − xse)(yE − yP)

,

D4
e =

μe(xne − xse)(yE − yP)
(xne − xse)(yE − yP) − (yne − yse)(xE − xP)

.

The values of the velocity components at the vertices of the CV can be ap-
proximated as described in Sect. 4.5 by linear interpolation from the four
neighboring nodes (cf. Fig. 4.15). Analogous expressions result for the other
three CV faces and for the v-equation.

The term denoted in (10.9) by bu,e
D , as well as the corresponding terms

for the other CV faces and in the v-equation, also can be treated “explicitly”
within an iteration procedure (as the terms bu

β und bv
β), i.e., they can be

interpreted as diffusive flux sources at the corresponding CV face. Again, for
a compact notation we summarize all the corresponding terms:

bu
D = bu,e

D + bu,w
D + bu,n

D + bu,s
D and bv

D = bv,e
D + bv,w

D + bv,n
D + bv,s

D .

The source terms ρfu and ρfv in the momentum equations can be ap-
proximated, for instance by using the midpoint rule for volume integrals, as
outlined in Chap. 4:∫

V

ρfu dV ≈ (ρfu)P δV = bu
f and

∫
V

ρfv dV ≈ (ρfv)P δV = bv
f .

The pressure terms in the momentum equations, due to the relation∫
V

∂p

∂xi
dV =

∫
S

pni dS (10.10)

resulting from the Gauß integral theorem, can be approximated either as
volume or surface integrals. In the case of a Cartesian grid both methods
produce the same approximation. In the general case only the approximation

10.2 Finite-Volume Discretization 229

via the surface integral is strictly conservative. Applying the midpoint rule to
the surface integral, for instance, the pressure term in the u-equation can be
approximated by∫

S

pn1 dS ≈
∑

c

(pn1)c δSc = pe(yne − yse) − pw(ynw − ysw) + bu
p

with

bu
p = ps(yse − ysw) − pn(yne − ynw) .

The expression for the pressure term in the v-equation follows analogously.
To express the pressure terms by values in the CV centers, the values at

the CV faces have to interpolated. With linear interpolation one obtains, e.g.,
for pe, the approximation

pe = γe1pE + γe2pP ,

where γe1 and γe2 are the corresponding interpolation factors.
For unsteady flows the time discretization of the momentum equations,

can basically be carried out with all of the methods introduced in Chap. 6 for
this purpose. With the implicit Euler method, for instance, one obtains for
the time derivative term in the u-equation the approximation:∫

V

∂(ρu)
∂t

dV ≈ (ρu)n+1
P − (ρu)n

P

Δtn
δV =: au

t un+1
P − bu

t

with

au
t =

ρn+1
P δV

Δtn
and bu

t =
ρn
PδV

Δtn
un

P ,

where we have assumed that the size of the CV does not change with time.
The values with index n are known from the previous time step.

To summarize, the discretization of the momentum equations for each CV
results in algebraic equations of the form:

au
PuP =

∑
c

au
c uc + bu − pe(yne − yse) + pw(ynw − ysw) , (10.11)

av
PvP =

∑
c

av
cvc + bv − pn(xne − xnw) + ps(xse − xsw) . (10.12)

Using the approximations outlined exemplarily above, the coefficients, for in-
stance, for the u-equation read:

230 10 Finite-Volume Methods for Incompressible Flows

au
E = −D1

e − min{ṁe, 0} , au
W = −D1

w − min{ṁw, 0} ,

au
N = −D1

n − min{ṁn, 0} , au
S = −D1

s − min{ṁs, 0} ,

au
P = au

E + au
W + au

N + au
S + au

t + ṁe + ṁw + ṁn + ṁs ,

bu = bu
f − bu

D − bu
β − bu

p + bu
t .

The coefficients for the v-equation are given analogously. If β = 0 (pure UDS
method), the term bu

β vanishes. For time dependent problems the values for u
and v in (10.11) and (10.12) have to be interpreted as values at the “new” time
level tn+1 (whereas the coefficients and source terms only involve values at
the “old” time level tn). For steady problems the terms au

t and bu
t vanish, and

the sum of the mass fluxes in the coefficient au
P is zero due to the continuity

equation (the latter also applies in the case of a spatially constant density).
If the grid is Cartesian, the term bu

p vanishes.
For CVs located at the boundary of the problem domain, the coefficients

have to be suitably modified. Before turning to this topic, however, we will
first discuss possible solution methods for the coupled discrete equation system
(10.6), (10.11), and (10.12).

10.3 Solution Algorithms

As already mentioned, the computation of the pressure constitutes a par-
ticular problem for incompressible flows. The pressure only appears in the
momentum equations, but not in the continuity equation, which in a sense
would be available for this purpose. There are several techniques for dealing
with this problem. One possibility of involving the continuity equation in the
computation of the pressure is offered by what is called pressure-correction
methods, which can be derived in different variants and are mostly used in
actual flow simulation programs. We will give some important examples in
the next section.

Alternatively, there are artificial compressibility methods, which are based
on the addition of a time derivative of the pressure in the continuity equation:

1
ρβc

∂p

∂t
+

∂u

∂x
+

∂v

∂y
= 0

with an arbitrary parameter βc > 0, with which the portion of the artifi-
cial compressibility can be controlled. The “proper” choice of this parameter
(possibly also adaptively) is crucial for the efficiency of the method. However,
obvious criteria for this are not available. The solution techniques employed
together with artificial compressibility are derived from schemes developed for
compressible flows (which usually fail in the borderline cases of incompressibil-
ity). Although systematic comparisons are missing, the author believes that

10.3 Solution Algorithms 231

these methods, which are rarely used in actual flow simulation codes, are less
efficient than pressure-correction methods. Therefore, these methods will not
be considered further here (details can be found, e.g., in [12]).

It should be mentioned that pressure-correction methods, which originally
were developed for incompressible flows, also can be generalized for the com-
putation of compressible flows (see, e.g., [8]).

10.3.1 Pressure-Correction Methods

The major problem when solving the coupled discrete equation system consists
in the simultaneous fulfillment of the momentum and continuity equations
(the coupling of the scalar equation usually does not pose problems). The
general idea of a pressure-correction method to achieve this is to first compute
preliminary velocity components from the momentum equations and then to
correct this together with the pressure, such that the continuity equation is
fulfilled. This proceeding is integrated into an iterative solution process, at the
end of which both the momentum and continuity equations are approximately
fulfilled. We will consider some examples of such iteration procedures, which
at the same time involve a linearization of the equations.

In order to describe the basic ideas and to concentrate on the special
features of variable coupling, we will first restrict ourselves to the case of an
equidistant Cartesian grid. Although it will prove to be unsuitable, we will
describe the principal ideas by using a central difference approximation for
the pressure terms and the continuity equation. In this way we will also point
out the problems that arise. Afterwards we will discuss how to modify the
method in order to circumvent these problems.

First we introduce an iteration process

{uk, vk, pk, φk} → {uk+1, vk+1, pk+1, φk+1} ,

which is based on the assumption that all matrix coefficients and the source
terms in the momentum equations are already known. The iteration procedure
is defined as follows for each CV:

au,k
P uk+1

P −
∑

c

au,k
c uk+1

c +
Δy

2
(pk+1

E − pk+1
W) = bu,k , (10.13)

av,k
P vk+1

P −
∑

c

av,k
c vk+1

c +
Δx

2
(pk+1

N − pk+1
S) = bv,k , (10.14)

(uk+1
E − uk+1

W)Δy + (vk+1
N − vk+1

S)Δx = 0 , (10.15)

aφ,k
P φk+1

P −
∑

c

aφ,k
c φk+1

c = bφ,k . (10.16)

The task now is to compute the values for the (k+1)-th iteration from these
equations (all quantities of the k-th iteration are assumed to be already com-

232 10 Finite-Volume Methods for Incompressible Flows

puted). In principle the equation system (10.13)-(10.16) could be solved di-
rectly with respect to the unknowns uk+1, vk+1, pk+1, and φk+1 in the above
form. However, since the pressure does not appear in (10.15), the system is
very ill-conditioned (and also rather large), such that a direct solution would
mean a relatively high computational effort. It turns out that a successive
solution procedure, which allows for a decoupled computation of uk+1, vk+1,
pk+1, and φk+1, is more appropriate.

In the first step we consider the discrete momentum equations (10.13)
and (10.14) with an estimated (known) pressure field p∗. This, for instance,
can be the pressure field pk from the k-th iteration or also simply p∗ = 0.
In the latter case the resulting methods are also known as fractional-step
methods (or projection methods). We obtain the two linear equation systems
(considered over all CVs)

au,k
P u∗

P −
∑

c

au,k
c u∗

c = bu,k − Δy

2
(p∗E − p∗W) , (10.17)

av,k
P v∗

P −
∑

c

av,k
c v∗

c = bv,k − Δx

2
(p∗N − p∗S) , (10.18)

which can be solved numerically with respect to the (provisional) velocity
components u∗ and v∗ (e.g., with one of the solvers described in Sect. 7.1).
The velocity components u∗ and v∗ determined this way do not fulfill the
continuity equation (this has not yet been taken into account). Thus, setting
up a mass balance with these velocities, i.e., inserting u∗ and v∗ into the
discrete continuity equation (10.15), yields a mass source bm:

(u∗
E − u∗

W)Δy + (v∗N − v∗
S)Δx = −bm. (10.19)

In the next step the velocity components vk+1 and vk+1 that actually have to
be determined as well as the corresponding pressure pk+1 are searched, such
that the continuity equation is fulfilled. For the derivation of the corresponding
equations we first introduce the corrections

u′ = uk+1 − u∗ , v′ = vk+1 − v∗ , p′ = pk+1 − p∗ .

By respective subtraction of (10.17), (10.18), and (10.19) from (10.13), (10.14),
and (10.15) one gets the relations

au,k
P u′

P +
∑

c

au,k
c u′

c = −Δy

2
(p′E − p′W) , (10.20)

av,k
P v′

P +
∑

c

av,k
c v′

c = −Δx

2
(p′N − p′S) , (10.21)

(u′
E − u′

W)Δy + (v′N − v′
S)Δx = bm . (10.22)

10.3 Solution Algorithms 233

A characteristic approach for pressure-correction methods is that now the
sum terms in the relations (10.20) and (10.21), which still contain the unknown
velocity corrections in the neighboring points of P, are suitably approximated.
There are different possibilities for this, the simplest of which is to simply
neglect these terms:∑

c

au,k
c u′

c ≈ 0 and
∑

c

av,k
c v′

c ≈ 0 .

This approach yields the SIMPLE method (Semi-Implicit Method for Pressure-
Linked Equations) proposed by Patankar und Spalding in 1972. We will first
continue with this assumption and discuss alternative approaches later.

Solving for u′
P and v′

P after neglecting the sum terms in (10.20) and (10.21)
gives the relations:

u′
P = − Δy

2au,k
P

(p′E − p′W) , (10.23)

v′
P = − Δx

2av,k
P

(p′N − p′S) . (10.24)

Inserting these values into the continuity equation (10.22) yields[
− Δy

2au,k
P,E

(p′EE − p′P) +
Δy

2au,k
P,W

(p′P − p′WW)

]
Δy

+

[
− Δx

2av,k
P,N

(p′NN − p′P) +
Δx

2au,k
P,S

(p′P − p′SS)

]
Δx = bm , (10.25)

where, for instance, au,k
P,E denotes the central coefficient in the u-equation for

the CV around the point E. Summarizing the terms suitably, the following
equation for the pressure correction p′ results from (10.25):

ap,k
P p′P = ap,k

EEp′EE + ap,k
WWp′WW + ap,k

NNp′NN + ap,k
SS p′SS + bm (10.26)

with

ap,k
EE =

Δy2

2au,k
P,E

, ap,k
WW =

Δy2

2au,k
P,W

, ap,k
NN =

Δx2

2av,k
P,N

, ap,k
SS =

Δx2

2av,k
P,S

and

ap,k
P = ap,k

EE + ap,k
WW + ap,k

NN + ap,k
SS .

Considering (10.26) for all CVs, one has a linear equation system from which
the pressure correction p′ can be determined. If this is known, the velocity

234 10 Finite-Volume Methods for Incompressible Flows

corrections u′ and v′ can be computed from (10.23) and (10.24). With these
corrections the searched quantities uk+1, vk+1, and pk+1 can finally be deter-
mined.

The last step is the determination of φk+1 from the equation:

aφ,k+1
P φk+1

P −
∑

c

aφ,k+1
c φk+1

c = bφ,k+1 . (10.27)

The index k + 1 on the coefficients indicates that for their computation the
“new” velocity components can already be used. If the coefficients also depend
on φ, the values of φ from the k-th iteration are used.

This completes one iteration of the pressure-correction method and the
next one starts again with the solution of the two discrete momentum equa-
tions (10.17) and (10.18) with respect to the provisional velocity components.
The course of the overall procedure is illustrated schematically in Fig. 10.3.
Within the scheme one generally can distinguish between inner iterations and
outer iterations.

Convergence?
No Yes� STOP

�

Linearized
scalar equations

�� Linear system solver

�

Correction of pressure
and velocity

�

Equation for
pressure correction

�� Linear system solver

�

Linearized
momentum equations

�� Linear system solver�
�

Initializations

Fig. 10.3. Schematic
representation of pres-
sure-correction method

The inner iterations involve the repeated implementation of a solution al-
gorithm for the linear equation systems for the different variables u, v, p′, and
φ. During these iterations the coefficients and source terms of the correspond-
ing linear system remain constant and only the variable values change. Of
course, when using a direct solver these iterations do not apply. The methods
described in Sect. 7.1 are examples of iteration schemes that can be employed,
although different methods can be used for different variables (which can make

10.3 Solution Algorithms 235

sense since the pressure-correction equation, for instance, is usually “harder”
to solve than the others).

The outer iterations denote the repetition of the cycle, in which the coupled
discrete equation system for all variables is solved up to a prescribed accuracy
(for each time step in the unsteady case). After an outer iteration the coeffi-
cients and source terms are usually updated. Due to the non-linearity of the
momentum equations and the coupling between velocity and pressure, such
an outer iteration process is always necessary when solving the incompressible
Navier-Stokes equations (as well as when using other solution algorithms). As
convergence criterion for the global procedure, for instance, it can be required
that the sum of the absolute residuals for all equations – normalized with
suitable norming factors – becomes smaller than a prescribed bound.

10.3.2 Pressure-Velocity Coupling

We turn next to a problem mentioned earlier, which arises when for the de-
scribed method a central differencing approximation for the mass flux compu-
tation in the continuity equation is used. Equation (10.26) corresponds to an
algebraic relation for the pressure correction, which one would obtain when
discretizing a diffusion equation with a central finite-difference scheme of sec-
ond order, but with a “double” grid spacing 2Δx and 2Δy (see Fig. 10.4). This
means that the pressure at point P is not directly linked with its nearest neigh-
bor points (E, W, N, and S). Thus, four discrete solutions exist (all correctly
fulfilling the equations), which are completely independent from each other.
Consequently, oscillatory solutions may occur when applying the scheme in
the given form. For a problem actually having a constant pressure distribu-
tion as a correct solution, an alternating solution as illustrated in Fig. 10.5
can result with the scheme.

We will clarify the above issue in another way by means of a one-
dimensional example. We will consider a problem for an equidistant grid that
has the alternating pressure distribution shown in Fig. 10.6 as correct solu-

P EEWW

NN

SS

Fig. 10.4. Neighboring relations
for pressure corrections with cen-
tral difference approximation

236 10 Finite-Volume Methods for Incompressible Flows

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

3 3

3 3

3 3

4 4

4 4

Fig. 10.5. Decoupled solutions for two-
dimensional problem with constant pres-
sure distribution

tion. For the pressure gradient in the momentum equations one obtains with
linear interpolation:

pe − pw =
1
2
(pE + pP) − 1

2
(pP + pW) = 0 .

Thus, this pressure distribution produces no contribution to the source term
in the (discrete) momentum equation in the CV center, i.e., there is no result-
ing pressure force there (which is physically correct). If there are no further
source terms in the momentum equations, this yields the velocity field u = 0.
Using this for the computation of the velocities at the CV faces these also are
zero. However, this does not represent the correct physical situation, since by
the given pressure distribution there is a pressure gradient, i.e., a resulting
pressure force, at the CV faces, so that a velocity different from zero should
result.

�x

�

-1

1

W w P e E

Fig. 10.6. Alternating pressure distribution for one-dimensional problem

It should be noted that the depicted problem is not specific to finite-volume
methods, but also occurs in a similar way when finite-difference or finite-
element methods are used. In the finite-difference case methods analogous to
those decribed below for finite-volume methods can be employed to circumvent
the problem. In a finite-element setting a compatibility condition between
the ansatz functions for the velocity components and the pressure has to
be ensured. This is known as LBB condition (after Ladyzhenskaya-Babuska-
Brezzi) or inf-sup condition (see, e.g., [16]).

10.3 Solution Algorithms 237

We now turn to the question of how to avoid the depicted decoupling of
the pressure within the iterative solution procedure. Several approaches have
been developed for this since the mid-1960s. The two most relevant techniques
are:

use of a staggered grid,
selective interpolation of the mass fluxes.

The possibility of using staggered grids, as proposed by Harlow and Welch in
1965, was already mentioned in Sect. 10.2 (see Fig. 10.1). For a Cartesian grid
in this case the variable values necessary for the computation of the pressure
gradients in the momentum equations and of the mass fluxes through the CV
faces in the continuity equation are available exactly at the locations where
they are needed. The result is a pressure-correction equation, which again cor-
responds to a central difference discretization of a diffusion equation, but now
with the “normal” grid spacings Δx and Δy so that no oscillations due to a
decoupling arise. However, the advantages of the staggered grid largely vanish
as soon as the grid is non-Cartesian and no grid oriented velocity components
are used. The situation is pointed out in Fig. 10.7. For instance, in the case of
a redirection of grid lines by 90o, the velocity components located at the CV
faces contribute nothing to the mass flux. When using grid-oriented velocities
the advantages of the staggered grid could largely be maintained, since only
the velocity component located at the corresponding CV face contributes to
the mass flux (see Fig. 10.7). However, as already mentioned, in this case the
momentum equations become much more complex and lose their conservative
form. Last but not least, staggered grids for complex geometries also are diffi-
cult to manage with respect to the data structures. In particular, if multigrid
algorithms (see Sect. 12.2) are used for the solution of the equation systems,
it is advantageous if all variables are stored at the same location and only one
grid is used.

�

�

�

�
�

�

�

� u

�v

p, φ

�

�

�

�

�

�

�

Fig. 10.7. Staggered variable ar-
rangement with Cartesian (left)
and grid-oriented (right) velocity
components

The possibility of avoiding the decoupling of the pressure also on a non-
staggered grid offers the technique known as selective interpolation, which
first was proposed by Rhie and Chow (1983). Here, the velocity components
required for the computation of the mass fluxes through the CV faces are

238 10 Finite-Volume Methods for Incompressible Flows

determined by a special interpolation method that ensures that the veloc-
ity components at the CV faces only depend from pressures in the directly
neighboring CV centers (e.g., P and E for the face Se).

The discretized momentum equations (10.13) and (10.14) can serve as a
starting point for a selective interpolation. Solving for uP, for instance, the
discrete u-equation (still without pressure interpolation) reads:

uP =
∑

c au
c uc + bu

au
P

− ΔxΔy

au
P

(
∂p

∂x

)
P

. (10.28)

For the determination of ue all terms on the right hand side of this equation are
linearly interpolated except for the pressure gradient, which is approximated
by a central difference with the corresponding values in the points P and E:

ue =
(∑

c au
c uc + bu

au
P

)
e

−
(

Δy

au
P

)
e

(pE − pP) . (10.29)

The overbar denotes a linear interpolation from neighboring CV centers. For
the considered face Se, for instance, these are the points P and E, i.e., we have(

Δy

au
P

)
e

= γe1

(
Δy

au
P

)
E

+ γe2

(
Δy

au
P

)
P

(10.30)

with γe1 = γe2 = 1/2 for an equidistant grid. For the value vn at the face Sn

one correspondingly obtains:

vn =
(∑

c av
cvc + bv

av
P

)
n

−
(

Δx

av
P

)
n

(pN − pP) , (10.31)

where the interpolation denoted by the overbar now has to be carried out
with respect to the points P and N. The equations (10.29) and (10.31) can
be interpreted as approximated momentum equations for the corresponding
points on the CV faces.

According to the methodology described in Sect. 10.3.1 for the derivation
of the SIMPLE method (i.e., neglection of sum terms), for the faces Se and
Sn, for example, the following expressions for the velocity corrections result:

u′
e = −

(
Δy

au,k
P

)
e

(p′E − p′P) and v′
n = −

(
Δx

av,k
P

)
n

(p′N − p′P) . (10.32)

Inserting these values into the continuity equation (10.6) yields:⎡⎣−(
Δy

au,k
P

)
e

(p′E − p′P) +

(
Δy

au,k
P

)
w

(p′P − p′W)

⎤⎦Δy

(10.33)

+

⎡⎣−(
Δx

av,k
P

)
n

(p′N − p′P) +

(
Δx

av,k
P

)
s

(p′P − p′S)

⎤⎦Δx = bm .

10.3 Solution Algorithms 239

The algebraic equation for the pressure correction gets the form

ap,k
P p′P = ap,k

E p′E + ap,k
W p′W + ap,k

N p′N + ap,k
S p′S + bm (10.34)

with the coefficients

ap,k
E =

(
Δy2

au,k
P

)
e

, ap,k
W =

(
Δy2

au,k
P

)
w

, ap,k
N =

(
Δx2

av,k
P

)
n

, ap,k
S =

(
Δx2

av,k
P

)
s

and

ap,k
P = ap,k

E + ap,k
W + ap,k

N + ap,k
S .

Therefore, one now obtains a discrete Poisson equation with “normal” grid
spacings Δx and Δy (see Fig. 10.8). Considering once again the one-dimen-
sional example of the alternating pressure distribution from Sect. 10.3.2 (see
Fig. 10.6), one can see that the velocity computed according to (10.32) is no
longer zero because now the pressure gradient is computed from the values
pP and pE. Thus, a force acts on the face Se, which is physically correct for
the given pressure distribution. Thus no oscillatory effects occur.

P EW

N

S
Fig. 10.8. Neighboring relations for pressure
corrections with selective interpolation

It should be noted that only the values of the velocities at the CV faces
fulfill the continuity equation. For the nodal values, in general, it is not possible
to guarantee this (it is also not necessary). The nodal values can be corrected
analogous to the relations (10.32). The mass fluxes are also corrected this way
so that they are available in the next outer iteration for the computation of
the convective fluxes at the CV faces.

For non-Cartesian grids, the process of setting up the pressure-correction
equation is basically the same as in the Cartesian case, except that the cor-
responding expressions become a bit more complicated. So, the interpolation
according to (10.30) may require the incorporation of additional nodal values,
e.g., the six neighboring values P, E, N, S, NE, and SE (see Fig. 10.9). For
further details we refer to [8].

10.3.3 Under-Relaxation

For steady problems (or in the unsteady case for large time step sizes) a
pressure-correction method in the described form will not simply converge.

240 10 Finite-Volume Methods for Incompressible Flows

e

P

E

N

S

NE

SE

Fig. 10.9. Computation of values in
CV face midpoints for non-Cartesian
grids for selective interpolation

This is due to the coupling within the equation system and the fact that strong
variation of one variable may immoderately influence the others causing the
iteration process to diverge (in practice this is often the case). To obtain
a converging scheme an under-relaxation may help. It can be introduced in
different variants into an iterative solution procedure. Generally, the objective
of an under-relaxation is to reduce the change of a variable from one iteration
to the other. The principle approach is the same as that employed for the
derivation of the SOR-method from the Gauß-Seidel method for the solution
of linear equation systems (see Sect. 7.1.2). However, in the latter case a
stronger change in the variable (over-relaxation) constitutes the objective.

We first describe an under-relaxation technique, which can be traced back
to Patankar (1980) and which generally can be used for each transport quan-
tity (in our case these are the velocity components u and v as well as the
scalar quantity φ). As an example, we consider the transport equation for the
scalar quantity φ. Note that the application of this technique is not limited to
finite-volume methods, but can be used in an analogous way for finite-element
or finite-difference methods as well.

The starting point is the algebraic equation resulting from the discretiza-
tion of the continuous problem:

aφ
PφP =

∑
c

aφ
c φc + bφ. (10.35)

Let an iteration process for the computation of φk+1
P be defined from already

known values φk
P (e.g., the pressure-correction method as described in the

previous section or an iterative linear system solver). The “new” value φk+1
P

now is not computed directly with the given iteration rule, but by a linear
combination with a certain portion of the value from the k-th iteration:

φk+1
P = αφ

∑
c aφ

c φk+1
c + bφ

aφ
P

+ (1 − αφ)φk
P (10.36)

10.3 Solution Algorithms 241

with the under-relaxation parameter 0 < αφ ≤ 1. Equation (10.36) can again
be put into the form (10.35), if the coefficients aφ

P and bφ are modified as
follows:

aφ
P

αφ︸︷︷︸
ãφ
P

φn+1
P =

∑
c

aφ
c φn+1

c + bφ + (1 − αφ)
aφ
P

αφ
φk

P︸ ︷︷ ︸
b̃φ

.

There is a close relationship between this under-relaxation technique and
methods that solve steady problems via the solution of unsteady equations
(pseudo-time stepping, see Sect. 6.1). Discretizing the unsteady equation cor-
responding to (10.35) with the implicit Euler method, for instance, one gets:(

aφ
P +

ρPδV

Δtn

)
︸ ︷︷ ︸

ãφ
P

φn+1
P =

∑
c

aφ
c φn+1

c +
(

bφ +
ρPδV

Δtn
φn

P

)
︸ ︷︷ ︸

b̃φ

,

where n denotes the time step and Δtn the time step size. With an under-
relaxation as described above, the coefficient aφ

P is enlarged by the division
with αφ < 1, whereas this occurs with the pseudo-time stepping by the addi-
tion of the term ρPδV /Δtn. The following relations between Δtn and αφ can
easily be derived:

Δtn =
ρPαφδV

aφ
P(1 − αφ)

or αφ =
aφ
PΔtn

aφ
P Δtn + ρPδV

.

Thus, a value of αφ constant for all CVs corresponds to a time step size Δtn
varying form CV to CV. Conversely, one time step with Δtn can be interpreted
as an under-relaxation with αφ varying from CV to CV.

Depending on the choice of the approximation of the sum terms in (10.20)
and (10.21), it might be necessary to also introduce an under-relaxation for the
pressure in order to ensure the convergence of a pressure-correction method.
The “new” pressure pk+1 is corrected only with a certain portion of the full
pressure correction p′:

pk+1 = p∗ + αpp
′ ,

where 0 < αp ≤ 1. This under-relaxation is necessary if in the derivation
of the pressure-correction equation strong simplifications are made, e.g., the
simple neglection of the sum terms in the SIMPLE method or the neglection
of terms due to grid non-orthogonality.

It should be pointed out that neither of the under-relaxation techniques
has an influence on the finally computed solution. In other words, no matter
how the parameters are chosen, in the case of convergence one always gets the
same solution (only the “approach” to this is different).

242 10 Finite-Volume Methods for Incompressible Flows

It can be shown by a simple analysis (see [8]) that for the SIMPLE method
with

αp = 1 − αu , (10.37)

where αu is the under-relaxation parameter for both momentum equations, a
“good” convergence rate can be achieved. The question that remains is how
the value for αu should be chosen. In general, this is a difficult issue because
the corresponding optimal value strongly depends on the underlying problem.
A methodology that would allow the determination of the optimum values
for the different under-relaxation parameters in an adaptive and automatic
way is not yet available. On the other hand, however (in particular for steady
problems) the “right” choice of the under-relaxation parameter is essential
for the efficiency of a pressure-correction method. Frequently, only by a well-
directed change of these parameters is it possible to get a solution at all.
Therefore, under-relaxation plays an essential role for practical application
and we will discuss the interactions of the parameters in more detail.

We will study the typical convergence behavior of the SIMPLE method
depending on the under-relaxation parameters for a concrete example prob-
lem. As problem configuration we consider the flow around a circular cylinder
in a channel, which is already known from Sect. 6.4. As inflow condition a
steady parabolic velocity profile is prescribed, corresponding to a Reynolds
number of Re = 30 (based to the cylinder diameter). The problem in this
case has a steady solution with two characteristic vortices behind the cylin-
der. Figure 10.10 displays the corresponding streamlines for the “interesting”
cut-out of the problem domain (the asymmetry of the vortices is due to the
slightly asymmetrical problem geometry, cf. Fig. 6.11). The numerical solu-
tion of the problem is computed with different relaxation parameters for the
velocity components and the pressure for the grid shown in Fig. 10.11 with
1 536 CVs.

Fig. 10.10. Streamlines for steady
flow around circular cylinder

In Fig. 10.12 the number of required pressure-correction iterations de-
pending on the relaxation parameters is shown. The results allow for some
characteristic conclusions that also apply to other problems:

The optimal values for αu and αp mutually depend on each other.

10.3 Solution Algorithms 243

Fig. 10.11. Block-structured grid for computation of flow around circular cylinder

Slightly exceeding the optimal value for αu leads to the divergence of the
iteration. With an undershooting of this value the iterations still converge,
but the rate of convergence decreases relatively strongly.
The larger αp, the “narrower” the “opportune” range for αu.
If αu is close to the optimal value, αp has a relatively strong influence on
the rate of convergence. If, in this case, the optimal value for αp is slightly
exceeded the iterations diverge. An undershooting of this value leads to
only a slight deterioration in the convergence rate (except for extremely
small values).
If αu is distinctly smaller than the optimal value, one obtains for arbitrary
αp (except for extremely small values) nearly the same convergence rate
(also for αp = 1).

For the SIMPLE method typically “good” values for αu are in the range of
0.6 to 0.8 and according to (10.37) correspondingly for αp in the range of 0.2
to 0.4. For a concrete application one should first try to compute a solution

0.0 0.2 0.4 0.6 0.8 1.0

Under−relaxation factor alpha_u

0

200

400

600

800

1000

N
um

be
r

of
 it

er
at

io
ns

alpha_p=0.2
alpha_p=0.8

0.0 0.2 0.4 0.6 0.8 1.0

Under−relaxation factor alpha_p

alpha_u=0.4
alpha_u=0.7

Fig. 10.12. Number of required pressure-correction iterations depending on under-
relaxation parameters for velocity and pressure

244 10 Finite-Volume Methods for Incompressible Flows

with values out of these ranges. If the method diverges with these values, it is
advisable to check with a computation with very small values for αu and αp

(e.g., αu = αp = 0.1) if the convergence problems really are due to the choice
of the under-relaxation factors. If this is the case, i.e., if the method converges
with these small values, αu should be decreased successively (in comparison
to the initially diverging computation), until a converging method results.
Hereby, αp should be adapted according to (10.37).

Usually, the under-relaxation parameters αu, αp, and αφ are chosen in
advance and are kept at these values for all iterations. In principle, a dynamic
adaptive control during the computation would be possible. However, suitable
reliable criteria for such an adaption are hard to find.

10.3.4 Pressure-Correction Variants

Besides the described SIMPLE method there are a variety of further vari-
ants of pressure-correction methods for the pressure-velocity coupling. We will
briefly discuss two of these methods, which are implemented in many actual
programs. Again we concentrate on a non-staggered variable arrangement in
connection with the selective interpolation technique described in Sect. 10.3.2.

As outlined in Sect. 10.3.1, the SIMPLE method results by the neglection
of the sum terms ∑

c

au,k
c u′

c and
∑

c

av,k
c v′

c

in (10.20) and (10.21). The idea of the SIMPLEC method (the “C” stands
for “consistent”), proposed by Van Doormal and Raithby (1984), is to ap-
proximate these terms by velocity values in neighboring points. It is assumed
here that u′

P and v′
P represent mean values of the corresponding values in the

neighboring CVs (see Fig. 10.13):

u′
P ≈

∑
c au,k

c u′
c∑

c au,k
c

and v′
P ≈

∑
c av,k

c v′
c∑

c av,k
c

.

Inserting these expressions into (10.28) (and the corresponding equation for
v), results in the following relations between u′, v′, and p′:

u′
P = − ΔxΔy

au,k
P −∑

c au,k
c

(
∂p′

∂x

)
P

, (10.38)

v′
P = − ΔxΔy

av,k
P −∑

c av,k
c

(
∂p′

∂y

)
P

. (10.39)

Analogously, one obtains by insertion of the velocity components result-
ing from the selective interpolation into the continuity equation a pressure-
correction equation with the following coefficients:

10.3 Solution Algorithms 245

ap,k
E =

(
Δy2

au,k
P −∑

c au,k
c

)
e

, ap,k
W =

(
Δy2

au,k
P −∑

c au,k
c

)
w

,

ap,k
N =

(
Δx2

av,k
P −∑

c av,k
c

)
n

, ap,k
S =

(
Δx2

av,k
P −∑

c av,k
c

)
s

,

ap,k
P = ap,k

E + ap,k
W + ap,k

N + ap,k
S .

After the pressure-correction equation is solved for p′, the velocity corrections
can be computed according to (10.38) and (10.39).

u′
P u′

Eu′
W

u′
N

u′
S

�

�� �

Fig. 10.13. Approximation of velocity cor-
rections in SIMPLEC method

For the SIMPLEC method an under-relaxation of the pressure is not nec-
essary (i.e., αp = 1 can be used). The velocities, however, in general also have
to be under-relaxed in this case. If bu,k and bv,k vanish, the SIMPLEC and
SIMPLE methods become identical, if in the latter the under-relaxation factor
for the pressure is chosen according to

αp = 1 − αu .

For problems, for which bu,k and bv,k have a big influence, the SIMPLEC
method usually is more efficient than the SIMPLE method (at comparable
computational effort per iteration). For non-orthogonal grids there are also
some disadvantages, which, however, we will not discuss further here.

A further variant of the SIMPLE method is the PISO method proposed
by Issa (1986). With this the first correction step is identical to that for
the SIMPLE method, such that the same pressure and velocity corrections
p′, u′, and v′ are obtained first. The idea of the PISO method now is to
compensate the simplifications of the SIMPLE method when deriving the
pressure-correction equation by further correction steps. For this, starting
from (10.20) and (10.21), further corrections u′′, v′′, and p′′ are searched. In
a way analogous to the first corrections, one gets the relations:

u′′
e =

(∑
c au,k

c u′
c

au,k
P

)
e

−
(

Δy

au,k
P

)
e

(p′′E − p′′P) , (10.40)

246 10 Finite-Volume Methods for Incompressible Flows

v′′
n =

(∑
c av,k

c v′
c

av,k
P

)
n

−
(

Δx

av,k
P

)
n

(p′′N − p′′P) . (10.41)

From the continuity equation one gets:

ṁ′′
e

ρe
+

ṁ′′
w

ρw
+

ṁ′′
n

ρn
+

ṁ′′
s

ρs
= 0 . (10.42)

Inserting the expressions (10.40) and (10.41) for u′′ and v′′ into (10.42), a
second pressure-correction equation of the form

ap,k
P p′′P =

∑
c

ap,k
c p′′c + b̃m (10.43)

results. The coefficients are the same as in the first pressure-correction equa-
tion and only the source term is defined differently:

b̃m =

(
Δy

∑
c au,k

c u′
c

au,k
P

)
e

−
(

Δy

∑
c au,k

c u′
c

au,k
P

)
w

+

(
Δx

∑
c av,k

c v′
c

av,k
P

)
n

−
(

Δx

∑
c av,k

c v′
c

av,k
P

)
s

.

The fact that the coefficients of the first and second pressure-correction equa-
tions are the same can be exploited when using, for instance, an ILU method
(see Sect. 7.1.3) for the solution of the systems, since the decomposition has
to be computed only once.

Having solved the system (10.43), the velocity corrections u′′ and v′′ are
computed according to (10.40) and (10.41). Afterwards one obtains uk+1,
vk+1, and pk+1 by:

uk+1 = u∗∗ + u′′ , vk+1 = v∗∗ + v′′ , pk+1 = p∗∗ + p′′ ,

where u∗∗, v∗∗, and p∗∗ denote the values obtained after the first correction.
Basically, further corrections are possible in a similar way in order to put

the approximations of each of the first terms in the right hand sides of (10.40)
and (10.41) closer to the “right” values (i.e., same velocities on left and right
hand sides). However, rarely more than two corrections are applied because
it is not worthwile to fulfill the linearized momentum equations exactly and
since the coefficients have to be newly computed anyway (due to the non-
linearity and the coupling of u and v). The PISO method also does not need
an under-relaxation of the pressure (but for the velocity components).

The assets and drawbacks of the PISO method compared to the SIMPLE
or SIMPLEC methods are

The number of outer iterations usually is lower.

10.4 Treatment of Boundary Conditions 247

The effort per iteration is higher, since one (or more) additional pressure-
correction equations have to be solved.
To compute the source term b̃p for the second pressure-correction equation,
the coefficients from the two momentum equations as well as the values of
u′ and v′ must be available. This increases the memory requirements.

Which method is best for a certain problem strongly depends on the problem.
However, the differences are usually insignificant.

10.4 Treatment of Boundary Conditions

The general proceedings for the integration of different boundary conditions
into a finite-volume method have already been described in Sect. 4.7. Since
these can also be employed for corresponding boundary conditions for flow
problems, we will address here only particularities that arise for the flow
boundary types (see Sect. 2.5.1). The conditions for the scalar quantity φ as
well as for the two velocity components in the case of an inflow boundary do
not need to be discussed since there no particularities arise.

As an example we consider a general quadrilateral CV whose south face
Ss is located at the boundary of the problem domain (see Fig. 10.14). We
decompose the velocity vector v = (u, v) at the boundary into normal and
tangential components vn and vt, respectively:

vs = vnn + vtt ,

where n = (n1, n2) and t = (t1, t2) are the unit vectors normal and tangential
to the wall, respectively (see Fig. 10.14). We have t = (−n2, n1), such that vn

and vt are related to the Cartesian velocity components u and v by

vn = un1 + vn2 and vt = vn1 − un2 .

Let us consider first the boundary conditions at an impermeable wall. Due
to the no-slip conditions the velocity there is equal to the (prescribed) wall
velocity: (u, v) = (ub, vb). Since there can be no flow through an impermeable

�x

�y

�
�

s

w
e

n
PP̃W

E

N

n

t Fig. 10.14. Quadrilateral
CV at south boundary with
notations

248 10 Finite-Volume Methods for Incompressible Flows

wall, the convective fluxes for all variables are zero there. This can easily be
taken into account by setting the convective flux through the corresponding
CV face to zero.

The treatment of the diffusive fluxes in the momentum equations deserves
special attention. Since the tangential velocity vt along a wall is constant, its
derivative vanishes in the tangential direction:

∂vt

∂x
t1 +

∂vt

∂y
t2 = 0 . (10.44)

Writing the continuity equation (10.3) in terms of the tangential and normal
components yields:

∂vn

∂x
n1 +

∂vn

∂y
n2 +

∂vt

∂x
t1 +

∂vt

∂y
t2 = 0 . (10.45)

From the relations (10.44) and (10.45) it follows that at the wall, besides
(u, v) = (ub, vb), the normal derivative of vn also must vanish:

∂vn

∂x
n1 +

∂vn

∂y
n2 = 0 . (10.46)

Physically this means that the normal stress at the wall is zero, and that the
exchange of momentum is transmitted only by the shear stress, i.e., the wall
shear stress (see Fig. 10.15).

�

�
n t

vt

vn

Wall Fig. 10.15. Course of tangential and normal
velocity at wall boundary

Condition (10.46) will not be satisfied automatically by a discrete solu-
tion and, therefore, (in addition to the Dirichlet wall condition) should be
considered directly when approximating the diffusive fluxes in the momentum
equations. This can be done by using the correspondingly modified diffusive
flux as a basis for the approximation. Otherwise, since vn does not vanish in P,
a value different from zero would result for the approximations of the normal
derivative of vn. The modified diffusive flux for the boundary face Ss in the
u-momentum equation with a possible approximation, for instance, reads:

−
∫
Ss

μ

(
∂vt

∂x
n1 +

∂vt

∂y
n2

)
t1 dSs ≈ μs

vt,P̃ − vt,s

|xP̃ − xs| t1δSs ,

10.4 Treatment of Boundary Conditions 249

where vt,s = vbn1 − ubn2 is determined by the prescribed wall velocity and
the point P̃ is defined according to Fig. 10.14. If the non-orthogonality of the
grid is not too severe, vt,P̃ simply can be approximated by vt,P. Otherwise it
is necessary to carry out an interpolation involving further neighboring points
(depending on the location of P̃). One obtains a corresponding relation (with
t2 instead of t1) for the v-momentum equation. For the actual implementation,
vt can be expressed again by the Cartesian velocity components.

At a symmetry boundary one has the conditions

∂vt

∂x
n1 +

∂vt

∂y
n2 = 0 and vn = 0 .

Since vn = 0, the convective flux through the boundary face is zero in this
case also. For the diffusive flux, since in general

∂vn

∂x
n1 +

∂vn

∂y
n2 �= 0 ,

compared to a wall one has a reversed situation: the shear stress is zero and
the exchange of momentum is transmitted only by the normal stress (see
Fig. 10.16). Again this can be considered directly by a modification of the
corresponding diffusive flux. For the u-equation and the boundary face Ss, for
instance, one has

−
∫
Ss

μ

(
∂vn

∂x
n1 +

∂vn

∂y
n2

)
n1 dSs ≈ μs

vn,P̃

|xP̃ − xs| n1δSs ,

where for the approximation of the normal derivative the boundary condition
vn = 0 has been used. Also vn can be expressed again by the Cartesian velocity
components. The values of the velocity components in the symmetry boundary
points can be determined by suitable extrapolation from inner points.

�

�
n t

vn

vt

Symmetry
boundary Fig. 10.16. Course of tangential and normal

velocities at symmetry boundary

An outflow boundary constitutes a special problem for flow computations.
Here, usually no exact conditions are known and have to be prescribed “artifi-
cially” in some suitable way. Therefore, in general an outflow boundary should

250 10 Finite-Volume Methods for Incompressible Flows

be located sufficiently far away from the part of the flow domain in which the
processes relevant for the problem take place. In this way it becomes possible
to make certain assumptions about the courses of the variables at the outflow
boundary without influencing the solution in the “interesting” parts of the
domain. A usual assumption for such a boundary then is that the normal
derivatives of both velocity components vanish:

∂u

∂x
n1 +

∂u

∂y
n2 = 0 and

∂v

∂x
n1 +

∂v

∂y
n2 = 0 .

These conditions can be realized, for instance, for the face Ss by setting the
coefficients au,k

S and av,k
S to zero. The boundary values us and vs can be

determined by extrapolation from inner values, where a subsequent correction
of these values ensures that the sum of the outflowing mass fluxes equals the
inflowing ones.

A special case with respect to the boundary conditions is the pressure-
correction equation. If the values of the normal velocity components are pre-
scribed, as is the case for all boundary types discussed above (also at an
outflow boundary, via the above correction), this component needs no correc-
tion at the boundary. This must be taken into account when assembling the
pressure-correction equation by setting the corresponding term for the correc-
tions in the mass conservation equation to zero. This corresponds to a zero
normal derivative for p′ at the boundary. As an example, we will explain this
briefly for the face Ss for the Cartesian case. Due to v′

s = 0 with

v′
s = −

(
Δy

au,k
P

)
s

(p′s − p′P) ,

we have p′s = p′P for the pressure correction at the boundary. The pressure-
correction equation for the boundary CV reads:

(ap,k
E + ap,k

N + ap,k
W)︸ ︷︷ ︸

ap,k
P

p′P = ap,k
E p′E + ap,k

N p′N + ap,k
W p′W + bm ,

i.e., the coefficient ap,k
S vanishes. In order for a solution for the p′-equation

system theoretically to exist, the sum of the mass sources bm over all CVs
must be zero. This condition is fulfilled if the sum of the outflowing mass fluxes
equals the inflowing mass fluxes. This has to be ensured by the aforementioned
correction of the velocity components at the outflow.

The use of non-staggered grids for the assembly of the discrete momentum
equations requires pressure values at the boundary. However, the pressure can-
not be prescribed at the boundary since it already is uniquely determined by
the differential equation and the velocity boundary conditions. The required
pressure values can simply be extrapolated (e.g., linearly) from inner values.
There is also the possibility of prescribing the pressure instead of the veloci-
ties. For the corresponding modifications in the pressure-correction equation
we refer to [8].

10.5 Example of Application 251

10.5 Example of Application

For illustration we will retrace the course of a pressure-correction procedure
for a simple example, for which the individual steps can be carried out “man-
ually”. For this we consider a two-dimensional channel flow as sketched in
Fig. 10.17. The problem is described by the system (10.1)-(10.3) (without the
time derivative term) with the boundary conditions

u = 0 , v = 0 for y = 0 and y = H,

∂u

∂x
= 0 ,

∂v

∂x
= 0 for x = L ,

u(y) =
4umax

H2

(
Hy − y2

)
, v = 0 for x = 0 .

Let the problem data be given as follows:

ρ = 142 kg/m3 , μ = 2kg/ms , umax = 3m/s , L = 4m , H = 1m .

The problem possesses the analytical solution

u =
4umax

H2

(
Hy − y2

)
, v = 0 , p = −8μumax

H2
x + C

with an arbitrary constant C.

�x

�y

0

H

L

Δy

�

�
� � Δx� �Δx

u1, v1, p1 u2, v2, p2

CV1 CV2

Inflow Outflow

Wall

Wall

Fig. 10.17. Two-dimensional channel flow with discretization by two CVs

To clarify the principles of the pressure-correction procedure we can re-
strict ourselves to the following two equations (mass and u-momentum con-
servation, setting all terms with v to zero):

∂u

∂x
= 0 and ρ

∂(uu)
∂x

− μ

(
∂2u

∂x2
+

∂2u

∂y2

)
= −∂p

∂x
.

For the discretization of the problem domain we use two CVs as shown in
Fig. 10.17 with Δx = L/2 and Δy = H. As pressure-correction method we

252 10 Finite-Volume Methods for Incompressible Flows

use the SIMPLE method with selective interpolation. Note that the latter for
the considered example would not be necessary since both CVs are located di-
rectly at the boundary. However, we will use it to exemplify the corresponding
interpolations. As starting values for the iteration process we choose

p0
1 = p0

2 = 0 and u0
1 = u0

2 = 1 .

By integration and application of the Gauß integral theorem the u-
momentum equation yields the relation

ρ
∑

c

∫
S

ρuun1 dS − μ
∑

c

∫
S

(
∂u

∂x
n1 +

∂u

∂y
n2

)
dS = −

∑
c

∫
S

pn1dS .

With the midpoint rule the following general approximation results:

ṁeue + ṁwuw −μΔy

[(
∂u

∂x

)
e

−
(

∂u

∂x

)
w

]
(10.47)

−μΔx

[(
∂u

∂y

)
n

−
(

∂u

∂y

)
s

]
= −(pe − pw)Δy .

The convective fluxes through the faces Sn and Ss vanish due to the boundary
condition v = 0 at the channel walls.

Let us consider first the CV1. For the convective flux through the face Sw

we obtain from the inflow condition

ṁwuw = −ρu2
maxΔy

and for the face Se the UDS method leads to the approximation:

ṁeue ≈ ṁeu
UDS
e = max{ṁe, 0}uP + min{ṁe, 0}uE .

We determine the mass flux ṁe by linear interpolation from the starting values
for u in the neighboring CV centers (linearization), such that the following
approximation results (with ṁ0

e > 0):

ṁeue ≈ ṁ0
eue ≈ ρΔy

2
(
u0

1 + u0
2

)
uP .

The discretization of the diffusive fluxes and the pressure by central differences
results in: (

∂u

∂x

)
e

≈ uE − uP

Δx
,

(
∂u

∂x

)
w

≈ uP − uw

Δx/2
,

(
∂u

∂y

)
n

≈ un − uP

Δy/2
,

(
∂u

∂y

)
s

≈ uP − us

Δy/2

10.5 Example of Application 253

and

(pe − pw)Δy ≈
[
1
2
(pP + pE) − 1

2
(3pP − pE)

]
Δy = (pE − pP)Δy ,

where for the determination of the boundary pressure pw a linear extrapolation
from the values pP and pE was employed. Inserting the above approximations
in (10.47) results with uP = u1, uE = u2, pP = u1, and pE = u2 in the
equation: [

3μ
Δy

Δx
+ 4μ

Δx

Δy
+

ρΔy

2
(
u0

1 + u0
2

)]
u1 − μ

Δy

Δx
u2 =

(10.48)
(ρumaxΔy + 2μ

Δy

Δx
)umax − (p2 − p1)Δy .

Writing (10.48) as usual in the form (the index 1 refers to the CV, the index
u is omitted)

a1
Pu1 − a1

Eu2 = b1 − (p2 − p1)Δy (10.49)

and by inserting the corresponding numbers we get the following values for
the coefficients:

a1
P = 3μ

Δy

Δx
+ 4μ

Δx

Δy
+

ρΔy

2
(
u0

1 + u0
2

)
= 161 ,

a1
E = μ

Δy

Δx
= 1 ,

b1 =
(

ρumaxΔy + 2μ
Δy

Δx

)
umax = 1284 .

For the CV2 from the discretized u-momentum equation we obtain in a
similar way first the expression(

μ
Δy

Δx
+ 4μ

Δx

Δy
+ max{ṁw, 0} + ṁe

)
u2

−
(

μ
Δy

Δx
− min{ṁw, 0}

)
u1 = −(p2 − p1)Δy .

At the face Se the outflow boundary condition ∂u/∂x = 0 was used as follows:
from a backward difference approximation at xe follows ue = uP = u2, such
that the convective flux through Se becomes ṁeu2, and the diffusive flux
directly from the boundary condition becomes zero. Since the mass flux ṁw

of the CV2 must be equal to the negative of the mass flow through the face
Se of the CV1, we employ the approximation

ṁw ≈ ṁ0
w = −ρΔy

2
(
u0

1 + u0
2

)
,

254 10 Finite-Volume Methods for Incompressible Flows

and ṁe is approximated from the staring value u0
2 according to

ṁ0
e ≈ ρΔyu0

2 .

Of course, for the special situation of the example problem it could be ex-
ploited that ṁe is the outflow mass flux, which should equal the inflow mass
flux ρu2

maxΔy. However, because this is not possible in general, we will also
not do it here. Written in the form

−a2
Wu1 + a2

Pu2 = b2 − (p2 − p1)Δy (10.50)

the coefficients of the equation for CV2 become:

a2
P = μ

Δy

Δx
+ 4μ

Δx

Δy
+ ρΔyu0

2 = 159 ,

a2
W = μ

Δy

Δx
+

ρΔy

2
(
u0

1 + u0
2

)
= 143 ,

b2 = 0 .

For the first step of the SIMPLE method, i.e., for the determination of the
preliminary velocities u∗

1 and u∗
2, the two equations (10.49) and (10.50) are

available. Introducing an under-relaxation (with under-relaxation factor αu)
as described in Sect. 10.3.3 yields the modified system

a1
P

αu
u∗

1 − a1
Eu∗

2 = b1 − (p∗2 − p∗1)Δy +
a1
P(1 − αu)

αu
u0

1 , (10.51)

−a2
Wu∗

1 +
a2
P

αu
u∗

2 = b2 − (p∗2 − p∗1)Δy +
a2
P(1 − αu)

αu
u0

2 . (10.52)

Taking αu = 1/2 and using the starting values with p∗1 = p0
1 and p∗2 = p0

2 gives
the following two equations for the determination of u∗

1 and u∗
2:

322u∗
1 − u∗

2 = 1445 and − 143u∗
1 + 318u∗

2 = 159 .

The resolution of this systems yields:

u∗
1 ≈ 4.4954 and u∗

2 ≈ 2.5215 .

Next the velocity at the outflow boundary uout (i.e., ue for the CV2) is
determined. This is needed for setting up the pressure-correction equation.
From the discretization of the outflow boundary condition with a backward
difference, which has been used in the discrete momentum equation for the
CV2, it follows that uout = u∗

2. One can see that due to umax �= uout with this
value the global conservativity of the method is not ensured:

10.5 Example of Application 255

ṁin = ρumaxΔy �= ρuoutΔy = ṁout .

If one uses this value for uout, the pressure-correction equation, which we set
up afterwards, would not be solvable. Thus, according to the requirement of
global conservativity we set

uout = umax = 3 ,

such that the condition ṁin = ṁout is fulfilled.
In the next step the pressure and velocity corrections are determined by

taking into account the mass conservation equation. The general approxima-
tion of the latter with the midpoint rule yields:∫

V

∂u

∂x
dV =

∑
c

∫
Sc

un1 dSc ≈ (ue − uw)Δy = 0 . (10.53)

With the selective interpolation introduced in Sect. 10.3.2 we obtain after
division by Δy for the velocity at the common face of the two CVs:

ue,1 =uw,2 =
1
2

(
a1
Eu2 + b1

a1
P

+
a2
Wu1 + b2

a2
P

)
− 1

2

(
Δy

a1
P

+
Δy

a2
P

)
(p2 − p1) .

With this, using uw,1 = umax and ue,2 = uout, the following discrete continuity
equations result for the two CVs:

1
2

(
a1
Eu2+ b1

a1
P

+
a2
Wu1+ b2

a2
P

)
− 1

2

(
Δy

a1
P

+
Δy

a2
P

)
(p2 − p1) − umax = 0 ,

uout − 1
2

(
a1
Eu2+ b1

a1
P

+
a2
Wu1+ b2

a2
P

)
+

1
2

(
Δy

a1
P

+
Δy

a2
P

)
(p2 − p1) = 0 .

By inserting the preliminary velocity and pressure values the mass sources for
the two CVs become:

b1
m = umax − 1

2

(
a1
Eu∗

2+ b1

a1
P

+
a2
Wu∗

1+ b2

a2
P

)
− 1

2

(
Δy

a1
P

+
Δy

a2
P

)
(p∗2 − p∗1) ,

b2
m =

1
2

(
a1
Eu∗

2+ b1

a1
P

+
a2
Wu∗

1+ b2

a2
P

)
+

1
2

(
Δy

a1
P

+
Δy

a2
P

)
(p∗2 − p∗1) − uout .

Inserting the numbers gives:

b1
m = −b2

m ≈ −3.0169 .

Subtraction from the corresponding “exact” equations (see Sect. 10.3.1,
Eqs. (10.20)-(10.22)) and involving the characteristic approximations for the
SIMPLE method

256 10 Finite-Volume Methods for Incompressible Flows

a1
Eu′

2 ≈ 0 and a2
Wu′

1 ≈ 0

gives for the corrections u′ = u1 − u∗ and p′ = p1 − p∗ (the index 1 denotes
the value to be computed from the first SIMPLE iteration) at the faces of the
two CVs:

u′
e,1 = u′

w,2 =
1
2

(
Δy

a1
P

+
Δy

a2
P

)
(p′1 − p′2) and u′

w,1 = u′
e,2 = 0 . (10.54)

Inserting these values into the continuity equation for the corrections, which
in general form is given by

u′
e − u′

w = bm , (10.55)

leads to the following equation system for the pressure corrections:

1
2

(
Δy

a2
P

+
Δy

a1
P

)
p′1 −

1
2

(
Δy

a2
P

+
Δy

a1
P

)
p′2 = b1

m , (10.56)

−1
2

(
Δy

a1
P

+
Δy

a2
P

)
p′1 +

1
2

(
Δy

a1
P

+
Δy

a2
P

)
p′2 = b2

m . (10.57)

It is obvious that these two equations are linearly dependent, which actually
must be the case since the pressure is uniquely determined only up to an
additive constant. In order for the system to be solvable, the condition

b1
m + b2

m = 0

must be fulfilled, which in our example is the case (if we had not adapted
the outflow velocity, this condition would not be fulfilled!). The pressure can
thus be arbitrarily prescribed in one CV and the value in the other can be
computed relative to this. We set p′1 = 0 and obtain from (10.56) with the
concrete numerical values:

p′2 =
−2 b1

ma1
Pa2

P

Δyαu (a1
P + a2

P)
+ p′1 ≈ 482.69 .

With this, the velocity corrections at the CV faces from (10.54) become

u′
e,1 = u′

w,2 ≈ 3.0169 .

Of course, both corrections must be equal, since the face Se of CV1 is identical
to the face Sw of CV2.

For the correction of the velocity values in the CV centers relations that
are analogous to (10.54) are used:

10.5 Example of Application 257

u1
1 = u∗

1 +
Δy

a1
P

(p′2 − p′1) ≈ 7.4935 ,

u1
2 = u∗

2 +
Δy

a2
P

(p′2 − p′1) ≈ 5.5573 .

Choosing the relaxation factor αp = 1/2 for the pressure under-relaxation, we
obtain for the corrected pressure:

p1
2 = p∗2 + αpp

′
2 ≈ 241.345 .

This completes the first SIMPLE iteration. The second iteration starts
with the solution of the system

a1
P

αu
u∗

1 − a1
Eu∗

2 = b1 − (p1
2 − p1

1)Δy +
a1

P (1 − αu)
αu

u1
1,

−a2
W u∗

1 +
a2

P

αu
u∗

2 = b2 − (p1
2 − p1

1)Δy +
a2

P (1 − αu)
αu

u1
2

with respect to u∗
1 and u∗

2. What then proceeds is completely analogous to the
first iteration. In Fig. 10.18 the development of the absolute relative errors
with respect to the exact values u1 = u2 = 3 and p2 = −48 are given in the
course of further SIMPLE iterations.

0 5 10 15 20 25 30 35
Number of SIMPLE iteration

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

R
el

at
iv

e
er

ro
r

u_1
u_2
p_2

Fig. 10.18. Convergence behavior for velocity and pressure for computation of
channel flow example with SIMPLE method

258 10 Finite-Volume Methods for Incompressible Flows

Exercises for Chap. 10

Exercise 10.1. Consider the example from Sect. 10.5 with the given finite-
volume discretization. (i) Carry out one iteration with the SIMPLEC method
and with the PISO method (with two pressure corrections). (ii) Formulate the
discrete equations as a coupled equation system (without pressure-correction
method). Linearize the system with the Newton method and with successive
iteration and carry out one iteration in each case. (iii) Compare the corre-
sponding results.

Exercise 10.2. The flow of a fluid with constant density ρ in a nozzle with
length L with cross section A = A(x) under certain assumptions can be de-
scribed by the one-dimensional equations (mass and momentum balance)

(Au)′ = 0 and ρ(Au2)′ + Ap′ = 0

for 0 ≤ x ≤ L. At the inflow x = 0 the velocity u0 is prescribed. Formulate the
SIMPLE method with staggered grid and with non-staggered grid with and
without selective interpolation. Use in each case a second-order finite-volume
method with three equidistant CVs.

11

Computation of Turbulent Flows

Flow processes in practical applications are in most cases turbulent. Although
the Navier-Stokes equations introduced in Sect. 2.5 are valid for turbulent
flows as well – as we will see in the following section – due to the enormous
computational effort that would be related to this, it usually is not possible
to compute the flows directly on the basis of these equations. Therefore, it
is necessary to introduce special modeling techniques to achieve numerical
results for turbulent flows. In this section we will consider this subject in an
introductory way. In particular, we will address statistical turbulence models,
the usage of which mostly constitutes the only way to compute practically
relevant turbulent flows with “reasonable” computational effort. Again we
restrict ourselves to the incompressible case.

11.1 Characterization of Computational Methods

A distinguishing feature of turbulent flows is chaotic fluid motion, which is
characterized by irregular, highly frequent spatial and temporal fluctuations of
the flow quantities. Therefore, turbulent flows are basically always unsteady
and three-dimensional. As an example, Fig. 11.1 shows the transition of a
laminar into a turbulent flow.

In order to be able to fully resolve the turbulent structures numerically,
very fine discretizations in space and time are required:

the spatial step size has to be smaller than the smallest turbulent eddies,
the time step size has to be smaller than the shortest turbulent fluctua-
tions.

Following the pioneering work of Kolmogorov (1942) by dimensional analysis
for the smallest spatial and temporal scales the expressions lk = (ν3/ε)1/4 and
tk = (ν/ε)1/2 can be derived, respectively, with the dynamic viscosity ν and
the dissipation rate of turbulent kinetic energy ε. The latter is related to large
scale quantities by ε ∼ v̄/L, where v̄ and L are characteristic values of the

260 11 Computation of Turbulent Flows

Fig. 11.1. Example of a turbulent flow (from [27])

velocity and the length of the underlying problem. Involving the Reynolds
number Re = v̄L/ν, it follows that lk ∼ Re3/4 and tk ∼ Re1/2. Thus, the
larger the Reynolds number, the smaller the occuring scales and, therefore,
the finer the spatial and temporal resolution has to be. Since the relations are
strongly over proportional, the numerical effort tremendously increases with
the Reynolds number. In Table 11.1 the resulting asymptotic dependence of
the memory requirements and the computing effort from the Reynolds number
are given for the cases of free and near-wall turbulence.

Table 11.1. Asymptotic memory requirement and comput-
ing effort for computing turbulent flows

Free turbulence Near-wall turbulence

Memory ∼ Re2.25 ∼ Re2.625

Computing time ∼ Re3 ∼ Re3.5

We will explain the above issue by means of a simple example and quantify
the corresponding computational effort. For this, let us consider a turbulent
channel flow with Reynolds number Re = ρv̄H/μ = 106 (see Fig. 11.2). Sub-
sequently, characteristic quantities related to the numerical solution of the
model equations given in Sect. 2.5 are given:

the size of the smallest eddies is around 0.2mm,
the resolution of the eddies requires 1014 grid points,
to get meaningful mean values around 104 time steps are necessary,
solving the equations requires about 500 Flop per grid point and time step,
the total number of computing operations is about 5 · 1020 Flop,

11.2 Statistical Turbulence Modeling 261

on a high-performance computer with 1010 Flops the total computing time
for the simulation would be around 1600 years.

One can observe that even for this rather simple example the possibility of
such a direct computation, also denoted as direct numerical simulation (DNS),
is out of reach.

�

�

H = 1m

Air

U = 1 m/s

Fig. 11.2. Turbulent channel flow with Re = 106

A DNS nowadays can only be carried out for (geometrically) simpler turbu-
lent flows with Reynolds numbers up to around Re = 20 000 spending months
of computing time on the fastest supercomputers. For a practical application
it is necessary to employ alternative approaches for computing turbulent flows.
For this, one can generally distinguish between two approaches:

the large eddy simulation (LES),
the simulation with statistical turbulence models.

We will address the basic ideas of both approaches in the following, where we
start with the latter as being the most relevant for engineering practice today.

11.2 Statistical Turbulence Modeling

When using a statistical turbulence model, (temporally) averaged flow equa-
tions are solved with respect to mean values of the flow quantities. All turbu-
lence effects are taken into account by a suitable modeling. The starting point
is an averaging process, where each flow variable, which we generally denote
by φ, is expressed by a mean value φ and a fluctuation φ′. The mean value
can either be statistically steady or statistically unsteady (see Fig. 11.3).

In the statistically steady case one has

φ(x, t) = φ(x) + φ′(x, t) , (11.1)

where the mean value can be defined by

φ(x) = lim
T→∞

1
T

t0+T∫
t0

φ(x, t) dt

262 11 Computation of Turbulent Flows

�φ

�t
φ = φ(x)

�φ

�t
φ = φ(x, t)

Fig. 11.3. Averaging statistically steady (left) and statistically unsteady (right)
flows

with the averaging time T . If T is sufficiently large, the mean value φ does
not depend on the point of time t0 at which the averaging is started. For
statistically unsteady processes also the mean value is time-dependent, i.e.,
in (11.1) φ(x) has to be replaced by φ(x, t) and the mean value must be
defined by ensemble averaging:

φ(x, t) = lim
N→∞

1
N

N∑
n=1

φ(x, t) .

N can be interpreted as the number of imaginary experiments (each under
the same conditions), which are necessary to obtain mean values that are
independent of the fluctuations, but time-dependent.

Inserting the expressions (11.1) for all variables into the corresponding
balance equations for mass and momentum (2.70) and (2.71) and then av-
eraging the equations results in the following averaged equations, which are
denoted as Reynolds averaged Navier-Stokes (RANS) equations (or Reynolds
equations):

∂vi

∂xi
= 0 , (11.2)

∂(ρvi)
∂t

+
∂

∂xj

[
ρvi vj + ρv′

iv
′
j − μ

(
∂vi

∂xj
+

∂vj

∂xi

)]
+

∂p

∂xi
= ρfi . (11.3)

The energy equation (2.72) or other scalar equations can be handled in a fully
analogous way.

On the one hand the averaging simplifies the equations, i.e., the mean val-
ues are either time-independent or the time dependence can be resolved with
a “justifiable” number of time steps, but on the other hand some new un-
knowns arise, i.e., the averaged products of the fluctuations v′

iv
′
j , which repre-

sent a measure of the statistical dependence (correlation) of the corresponding
quantities. If these terms vanish, the quantities would be statistically inde-
pendent. However, this is normally not the case. The terms ρv′

iv
′
j are denoted

11.2 Statistical Turbulence Modeling 263

as Reynolds stresses. In order to be able to solve the equation system (11.2)
and (11.3) with respect to the mean values (in practice this is usually the only
information required), the system has to be closed by employing suitable ap-
proximations for the correlations. This task is known as turbulence modeling
and the corresponding models are denoted as RANS models. Numerous such
models exist, the most important of which are:

algebraic models (zero-equation models),
one- and two-equation models,
Reynolds stress models.

Algebraic models model the Reynolds stresses just by algebraic expressions.
With one- and two-equation models one or two additional differential equa-
tions for suitable turbulence quantities (e.g., turbulent kinetic energy, dissi-
pation rate, . . .) are formulated. In the case of Reynolds stress models trans-
port equations are formulated directly for the Reynolds stresses, which in the
three-dimensional case leads to 7 additional differential equations: 6 for the
components of the (symmetric) Reynolds stress tensor and one, for instance,
for the dissipation rate.

In order to exemplify the special features which arise with respect to nu-
merical issues when using a statistical turbulence model, we consider as an
example the very popular k-ε model. This model belongs to the class of two-
equation models, which frequently represent a reasonable compromise between
the physical modeling quality and the numerical effort to solve the correspond-
ing equation systems.

11.2.1 The k-ε Turbulence Model

The basis of the k-ε model, which was developed at the end of the 1960s
by Spalding and Launder, is the assumption of the validity of the following
relation for the Reynolds stresses:

ρv′
iv

′
j = −μt

(
∂vi

∂xj
+

∂vj

∂xi

)
+

2
3
ρ δijk , (11.4)

which is also known as Boussinesq approximation. μt denotes the turbulent
viscosity (or also eddy viscosity), which, contrary to the dynamic viscosity μ,
is not a material parameter but a variable depending on the flow variables.
The assumption of the existence of such a quantity is known as eddy viscosity
hypotheses. k is the turbulent kinetic energy, which is defined by

k =
1
2
v′

iv
′
i .

The relation (11.4), which relates the fluctuations to the mean values, has a
strong similarity with the constitutive law for the Cauchy stress tensor in the
case of a Newtonian fluid (see (2.64)).

264 11 Computation of Turbulent Flows

With the relation (11.4) the problem of closing the system (11.2) and (11.3)
is not yet solved, since μt and k also are unknowns. A further assumption of
the k-ε model relates μt to k and a further physically interpretable quantity,
i.e., the dissipation rate of the turbulent kinetic energy ε:

μt = Cμρ
k2

ε
. (11.5)

Cμ is an empirical constant and the dissipation rate ε is defined by:

ε =
μ

ρ

∂v′
i

∂xj

∂v′
i

∂xj
.

The relation (11.5) is based on the assumption that the rates of production
and dissipation of turbulence are in equilibrium. In this case one has the
relation

ε ≈ k3/2

l
(11.6)

with the turbulent length scale l, which represents a measure of the size of the
eddies in the turbulent flow. Together with the relation

μt = Cμρ l
√

2k ,

which results from similarity considerations, this yields (11.5).
The task that remains is to set up suitable equations from which k and

ε can be computed. By further model assumptions, which will not be given
in further detail here (see, e.g., [17]), for both quantities transport equations
can be derived, which possess the same form as a general scalar transport
equation (only the diffusion coefficients and source terms are specific):

∂(ρk)
∂t

+
∂

∂xj

[
ρvjk −

(
μ +

μt

σk

)
∂k

∂xj

]
= G − ρε , (11.7)

∂(ρε)
∂t

+
∂

∂xj

[
ρvjε −

(
μ +

μt

σε

)
∂ε

∂xj

]
= Cε1G

ε

k
− Cε2ρ

ε2

k
. (11.8)

Here, σk, σε, Cε1, and Cε2 are further empirical constants. The standard values
for the constants involved in the model are:

Cμ = 0, 09 , σk = 1, 0 , σε = 1, 33 , Cε1 = 1, 44 , Cε2 = 1, 92 .

G denotes the production rate of turbulent kinetic energy defined by

G = μt

(
∂vi

∂xj
+

∂vj

∂xi

)
∂vi

∂xj
.

11.2 Statistical Turbulence Modeling 265

Inserting the relation (11.4) into the momentum equation (11.3) and defin-
ing p̃ = p+2k/3, the following system of partial differential equations results,
which has to be solved for the unknowns p̃, vi, k, and ε:

∂vi

∂xi
= 0 , (11.9)

∂(ρvi)
∂t

+
∂

∂xi

[
ρvivj−(μ+μt)

(
∂vi

∂xj
+

∂vj

∂xi

)]
= − ∂p̃

∂xi
+ ρfi , (11.10)

∂(ρk)
∂t

+
∂

∂xj

[
ρujk −

(
μ+

μt

σk

)
∂k

∂xj

]
= G − ρε , (11.11)

∂(ρε)
∂t

+
∂

∂xj

[
ρujε −

(
μ+

μt

σε

)
∂ε

∂xj

]
= Cε1G

ε

k
− Cε2ρ

ε2

k
(11.12)

with μt according to (11.5). By employing p̃ instead of p in the momentum
equation (11.10) the derivative of k does not appear explicitly (p can be com-
puted afterwards from p̃ and k).

11.2.2 Boundary Conditions

An important issue when using statistical turbulence models for the compu-
tation of turbulent flows is the prescription of “reasonable” boundary condi-
tions. We will discuss this topic for the k-ε model, but note that analogous
considerations have to be taken into account for other models as well.

At an inflow boundary vi, k, and ε have to be prescribed (often based on
experimental data). The prescription of the dissipation rate ε poses a partic-
ular problem, since this usually cannot be measured directly. Alternatively,
an estimated value for the turbulent length scale l introduced in the pre-
ceding section, which represents a physically interpretable quantity, can be
prescribed. From this ε can be computed according to ε = k3/2/l. Usually,
near a wall l grows linearly with the wall distance δ as

l =
κ

C
3/4
μ

δ , (11.13)

where κ = 0, 41 is the Kármán constant. In areas far from walls l is constant.
If no better information is available, the inflow values for l can be estimated
by means of these values. Often, no precise inflow data are available for k as
well. From experiments or experience sometimes only the turbulence degree
Tv is known. With this k can be estimated as follows:

k =
1
2

T 2
v v2

i .

If Tv is also not known, just a “small” inflow value for k can be used, e.g.,
k = 10−4 v2

i .

266 11 Computation of Turbulent Flows

In most cases inaccuracies in the inflow values of k and ε are not that
critical. This is because in the equations for k and ε frequently the source
terms dominate so that the production rate downstream is relatively large
and thus the influence of the inflow values becomes small. However, in any
case it is recommended to perform an investigation on the influence of the
estimated inflow values on the downstream results (by just comparing results
for computations with different values).

At an outflow boundary for k as well as for ε a vanishing normal derivative
can be assumed. For the same reasons as above, the influence of this assump-
tion to the upstream results is usually minor. The same condition also can be
used for k and ε at symmetry boundaries.

The most critical problem consists in the treatment of wall boundaries – a
matter that principally applies to all turbulence models. The reason is that in
the area close to the wall a “thin” laminar layer (viscous sublayer) with very
steep velocity gradients exists (see Fig. 11.4) in which the assumptions of the
turbulence models are no longer valid. There are basically two possibilities to
tackle this problem:

The layer is resolved by a sufficiently fine grid accompanied by an adap-
tion of the turbulence model in the near wall range (known as low-Re
modification).
The layer is not resolved, but modeled by using special wall functions.

Both approaches will be discussed briefly in the following.

vn

�

δl

Wall

Laminar
sublayer

Fig. 11.4. Laminar sublayer at wall
boundary

Resolving the layer by the grid means that at least a few (say 5) CVs are
located in normal wall direction within the layer. In this case at the wall the
boundary conditions

vi = 0 , k = 0 , and
∂ε

∂xi
ni = 0

can be chosen. The necessary modification of the model in the near wall range
can be accomplished by controling the turbulence model effects, for instance,
in the transport equation for ε and the relation for the eddy-viscosity μt by
special damping functions:

11.2 Statistical Turbulence Modeling 267

∂ (ρε̃)
∂t

+
∂ (ρvj ε̃)

∂xj
=

∂

∂xj

[(
μ +

μt

σε

)
∂ε̃

∂xj

]
+ Cε1f1P

ε̃

k
− Cε2ρf2

ε̃2

k
+ E ,

μt = Cμρfμ
k2

ε̃
,

where the quantity ε̃ is related to the dissipation rate ε by

ε = ε̃ + 2
μk

ρδ2
(11.14)

with the wall distance δ. The corresponding models, which have been proposed
in numerous variants, are known as low-Re turbulence models. Utilizing, for
instance, the Chien approach as a typical representative of such a model, the
damping functions f1, f2, and E are chosen to be

f1 = 1, f2 = 1−0.22e−(ρk2/6ε̃μ)2

, fμ = 1−e−0.0115y+
, E = −2

με̃

δ2
e−0.5y+

,

where y+ denotes a normalized (dimensionless) distance to the nearest wall
point defined by

y+ =
ρuτδ

μ

with the wall shear stress velocity

uτ =
√

τw

ρ
,

where

τw = μ
∂vt

∂xi
ni

denotes the wall shear stress. vt is the tangential component of the mean
velocity. The model constants in this case change to Cμ = 0.09, Cε1 = 1.35,
and Cε2 = 1.80. A survey on low-Re models can be found, for instance, in
[28].

The thickness δl of the laminar layer decreases with the Reynolds number
according to

δl ∼ 1√
Re

.

Therefore, for larger Reynolds numbers its resolution by the numerical grid
becomes critical because this would result in very high numbers of grid points.
As an alternative, wall functions can be employed which in some sense can
“bridge” the laminar layer. The physical background of this approach is that
in a fully developed turbulent flow a logarithmic wall law is valid, i.e., the

268 11 Computation of Turbulent Flows

velocity beyond the laminar layer logarithmically increases in a certain range
(see also Fig. 11.5):

v+ =
1
κ

ln y+ + B . (11.15)

Here, B = 5.2 is a further model constant and v+ is a normalized quantity
for the tangential velocity vt defined by

v+ =
vt

uτ
.

Normalized wall distance y+

N
or

m
al

iz
ed

ve
lo

ci
ty

u
+

0

20

40

1 10 102 103 104

�� ��Viscous
layer

Logarithmic
layer

v+ =y+

v+ =
1

κ
ln y++B

Fig. 11.5. Velocity distribution in turbulent flow near wall (logarithmic wall law)

Under the assumption of a local equilibrium of production and dissipation
of turbulent kinetic energy and constant turbulent stresses, for the wall shear
stress velocity uτ the expression

uτ = C1/4
μ

√
k

can be derived, which is valid approximately in the range

30 ≤ y+ ≤ 300 .

Using the wall law (11.15) one gets:

τw = ρu2
τ = ρuτC1/4

μ

√
k =

vt

u+
ρC1/4

μ

√
k =

vtκρC
1/4
μ

√
k

ln y+ + κB
. (11.16)

This relation can be employed as a boundary condition for the momentum
equations. On the basis of the last term in (11.16) the wall shear stress can
be approximated, for instance, by:

11.2 Statistical Turbulence Modeling 269

τw = −vP

δP

κC
1/4
μ

√
kPρδP

ln y+
P + κB︸ ︷︷ ︸
μw

, (11.17)

where the index P denotes the midpoint of the boundary CV. By introducing
δ in the nominator and denominator on the right hand side of (11.17) the
discretization near the wall can be handled analogously as in the laminar
case. Instead of μ in (11.17) just the marked quantity μw has to be used.

In addition to the above boundary condition in the transport equa-
tion (11.11) for k, the expression for the production rate G near the wall
must be modified because the usual linear interpolation for the computation
of the gradients of the mean velocity components would yield errornous re-
sults. Since in G the derivative of vt in the direction to the normal dominates,
the following approximation can be used:

GP = τw

(
∂vt

∂xi

)
P

ni = τw
C

1/4
μ

√
kP

κδP
.

For the dissipation rate ε normally no boundary condition in the usual form
is employed. The transport equation (11.12) for ε is “suspended” in the CV
nearest to the wall and ε is computed in the point P from the corresponding
value of k using the relations (11.6) and (11.13):

εP =
C

3/4
μ k

3/2
P

κδP
.

Note that for scalar quantities, like temperature or concentrations, there
also are corresponding wall laws so that similar modifications as described
above for the velocities can be incorporated also for the corresponding bound-
ary conditions for these quantities.

When using wall functions particular attention must be given to the y+-
values for the midpoints of the wall boundary CVs to be located in the range
30 ≤ y+ ≤ 300. Since y+ is usually not exactly known in advance (it depends
on the unknown solution) one can proceed as follows:

(1) determine a “rough” solution by a computation with a “test grid”,
(2) compute from these results the y+-values for the wall boundary CVs,
(3) carry out the actual computation with a correspondingly adapted grid.

It might be necessary to repeat this procedure. In particular, in connection
with an estimation of the discretization error by a systematic grid refinement
(see Sect. 8.2) the variation of the values of y+ should be carefully taken into
account.

270 11 Computation of Turbulent Flows

11.2.3 Discretization and Solution Methods

The discretization of the equations (11.9)-(11.12), each having the form of the
general scalar transport equation, can be done as in the laminar case. The
only issue that should be mentioned in this respect concerns the treatment
of the source terms in the equations for k and ε. Here, it is very helpful with
respect to an improved convergence behavior of the iterative solution method
to split the source terms in the following way:

−
∫
V

(ρε − G) dV ≈ −ρδV
εP

k∗
P︸ ︷︷ ︸

ak

kP +GPδV︸ ︷︷ ︸
bk

,

−
∫
V

(
Cε2ρ

ε2

k
− Cε1G

ε

k

)
dV ≈ −Cε2ρδV

ε∗P
kP︸ ︷︷ ︸

aε

εP + Cε1GPδV
ε∗P
kP︸ ︷︷ ︸

bε

.

The values marked with “*” can be treated explicitly within the iteration
process (i.e., using values from the preceding iteration). In the term with ak

the quantity k is introduced “artificially” (multiplication and division by kP),
which does not change the equation, but, owing to the additional positive
contribution to the main diagonal of the corresponding system matrix, its
diagonal dominance is enhanced.

The solution algorithm for the discrete coupled equation system (11.9)-
(11.12) can also be derived in a manner similar to the laminar case. The course
of the pressure-correction method described in Sect. 10.3.1 for the turbulent
case is illustrated schematically in Fig. 11.6. Again an under-relaxation is
necessary, where usually also the equations for k and ε have to be under-
relaxed. A typical combination of under-relaxation parameters is:

αvi
= αk = αε = 0.7 , αp̃ = 0.3 .

Additionally, the changes of μt also can be under-relaxed with a factor αμt

by combining the “new” values with a portion of the “old” ones:

μnew
t = αμtCμρ

k2

ε
+ (1 − αμt)μ

old
t .

Due to the analogies in the equation structure and the course of the solu-
tion process in the turbulent and laminar cases, both can be easily integrated
into a single program. In the laminar case μt is just set to zero, and the
equations for k and ε are not solved.

11.3 Large Eddy Simulation 271

Convergence?
No Yes� STOP

�

Linearized
scalar equations

�� Linear system solver

�

Linearized
equation for ε

�� Linear system solver

�

Linearized
equation for k

�� Linear system solver

�

Correction of pressure
and velocity

�

Equation for
pressure correction

�� Linear system solver

�

Linearized
momentum equations

�� Linear system solver

�

Computation of
turbulent viscosity

�
�

Initializations

Fig. 11.6. Pressure-cor-
rection method for flow
computations with k-ε
model

11.3 Large Eddy Simulation

The large eddy simulation in some way represents an intermediate approach
between DNS and RANS models. The basic idea of LES is to directly compute
the large scale turbulence structures, which can be resolved with the actual
numerical grid, and to suitably model the small scale structures (subgrid-
scales, SGS) for which the actual grid is too coarse (see Fig. 11.7). Compared
to a statistic modeling one has the advantage that the small scale structures
(for sufficiently fine grids) are easier to model, and that the model error – just
like the numerical error – decreases when the grid becomes finer.

For the mathematical formulation of the LES it is necessary to decompose
the flow quantities, which we again denote generally with φ, into large and
small (in a suitable relation to the grid) scale portions φ and φ′, respectively:

φ(x, t) = φ(x, t) + φ′(x, t) .

272 11 Computation of Turbulent Flows

Computation Modeling

Fig. 11.7. Treatment of
large and small scale turbu-
lence structures with LES

According to the formal similarity with the RANS approach we use the same
notations here, but emphasize the different physical meanings of the quantities
for LES. In the LES context φ has to be defined by a filtering

φ(x, t) =
∫
V

G(x,y)φ(x, t) dy

with a (low-pass) filter function G. For G several choices are possible (see,
e.g., [18]). For instance, the top-hat (or box) filter is defined by (see Fig. 11.8)

G(x,y) =
3∏

i=1

Gi(xi, yi) with Gi(xi, yi) =

{
1/Δi for |xi − yi| < Δi/2 ,

0 otherwise ,

where Δi is the filter width in xi-direction.

�

�

−Δi/2 Δi/2

xi−yi

Gi

Fig. 11.8. Box filter in one dimension

Filtering the continuity and momentum equations (2.70) and (2.71) yields:

∂vi

∂xi
= 0 , (11.18)

∂(ρvi)
∂t

+
∂ (ρvivj)

∂xj
=

∂

∂xj

[
μ

(
∂vi

∂xj
+

∂vj

∂xi

)]
− ∂τ sgs

ij

∂xj
− ∂p

∂xi
, (11.19)

11.3 Large Eddy Simulation 273

where

τ sgs
ij = vivj − vivj (11.20)

is the subgrid-scale stress tensor, which – as for the Reynolds stress tensor in
the case of RANS models – has to be modeled by a so called subgrid-scale
model to close the problem formulation.

There are a variety of subgrid-scale models available – similar to RANS
models – starting with zero-equation models and ending up with Reynolds
stress models. The most important property of the subgrid-scale models is
that they simulate energy transfer between the resolved scales and the subgrid-
scales at a roughly correct magnitude. Since only the small scales have to be
modeled, the models used in LES are more universal and simpler than the
RANS models.

The most frequently used subgrid-scale models are eddy-viscosity models
of the form

−τ sgs
ij = 2μtSij − 1

3
δijτ

sgs
kk , (11.21)

where the subgrid-scale stresses τ sgs
ij are proportional to the large scale strain-

rate tensor

Sij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
. (11.22)

Since the trace of the resolved strain-rate tensor is zero in incompressible
flows, only the traceless part of the subgrid-scale tensor has to be modeled.

One of the most popular eddy-viscosity subgrid-scale models is the Sma-
gorinsky model. Here, the eddy viscosity is defined as

μt = ρl2|Sij | with |Sij | =
√

2SijSij ,

where the length scale l is related to the filter width Δ = (Δ1Δ2Δ3)1/3 by

l = CsΔ

with the Smagorinsky constant Cs. The theoretical value of the Smagorinsky
constant for a homogeneous isotropic flow is Cs ≈ 0.16 (e.g., [18]).

Germano proposed a procedure that allows the determination of the
Smagorinsky constant dynamically from the results of the LES, such that
it is no longer a constant, but – being more realistic – a function of space
and time: Cs = Cs(x, t). The dynamical computation of Cs is accomplished
by defining a test filter with width Δ̂ which is larger than the grid filter width
Δ (e.g., Δ̂ = 2Δ has proven to be a good choice).

Applying the test filter to the filtered momentum equation (11.19), the
subtest-scale stresses τ test

ij can be written as

τ test
ij = v̂ivj − v̂iv̂j . (11.23)

274 11 Computation of Turbulent Flows

The subgrid-scale and subtest-scale stresses are approximated using the
Smagorinsky model as

τ sgs
ij − 1

3
δijτ

sgs
kk = −2CgΔ

2|S|Sij =: −2Cgα
sgs
ij , (11.24)

τ test
ij − 1

3
δijτ

test
kk = −2CgΔ̂

2|Ŝ|Ŝij =: −2Cgα
test
ij , (11.25)

where the model parameter is defined as Cg = C2
s .

The resolved turbulent stresses are defined by

Lij = v̂ivj − v̂iv̂j , (11.26)

which represent the scales with the length between the grid-filter length and
the test-filter length. Inserting the approximations (11.24) and (11.25) into
the Germano identity (e.g., [18])

Lij = τ test
ij − τ̂ sgs

ij (11.27)

yields

Lij = −2Cgα
test
ij + 2 ̂Cgα

sgs
ij . (11.28)

Employing the approximation

̂Cgα
sgs
ij ≈ Cgα̂

sgs
ij , (11.29)

which means that Cg is assumed to be constant over the test filter width, one
gets

Lij = 2Cg

(
α̂sgs

ij − αtest
ij

)
=: 2CgMij . (11.30)

Since both sides of (11.30) are symmetric and the traces are zero, there are five
independent equations and one unknown parameter Cg. Lilly (1992) proposed
to applying the least-squares method to minimize the square of the error

E = Lij − 2CgMij (11.31)

yielding

∂
(
E2

)
∂Cg

= 4 (Lij − 2CgMij) Mij = 0 , (11.32)

such that the model parameter finally becomes

Cg(x, t) =
LijMij

2MijMij
. (11.33)

The eddy viscosity then is evaluated by

11.4 Comparison of Approaches 275

μt = ρCgΔ
2|Sij | . (11.34)

The parameter Cg may take also negative values, which can cause nu-
merical instabilities. To overcome this problem, different proposals have been
made. For instance, an averaging in time and locally in space can be applied
or simply a clipping of negative values can be employed:

Cg(x, t) = max
{

LijMij

2MijMij
, 0

}
, (11.35)

The dynamic procedure can be used also together with other models than the
Smagorinsky model.

As for RANS models, LES also has the problem with the proper treatment
of the laminar sublayer at wall boundaries. Here, again, wall functions can be
applied. For this and for another problem with LES, i.e., the prescription of
suitable values at inflow boundaries, we refer to the corresponding literature
(e.g., [18]).

11.4 Comparison of Approaches

Comparing the three different approaches for the computation of turbulent
flows, i.e., RANS models, LES, and DNS, one can state that the numerical
effort from the simplest methods of statistical turbulence modeling to a fully
resolved DNS increases dramatically. However, with the numerical effort the
generality and modeling quality of the methods increases (see Fig. 11.9).

Modeling error

DNS LES RANS

Computational effort

Fig. 11.9. Relation of model quality and
computational effort for DNS, LES, and
RANS

As an example, in Table 11.2 the computing power and memory require-
ments for the different methods for aerodynamic computations of a complete
airplane is given. The Flop rate is based on the assumption that the “desired”
computing time is one hour in each case. Considering the numerical effort
for the different approaches, it becomes apparent, why nowadays almost only
RANS models are employed for practical applications (mostly two-equation
models).

In actual flow computation codes usually a variety of RANS models of
different complexity are available and it is up to the user to decide which
model is best suited for a specific application (usually a non-trivial task). The
assumptions made in the derivation of simpler RANS models, as for instance
in the k-ε model, provide a good description of the physical situation in highly

276 11 Computation of Turbulent Flows

Table 11.2. Effort for computing turbulent flow around
an airplane within one hour CPU time

Method Computing power (Flops) Memory (Byte)

RANS 109 - 1011 109 - 1010

LES 1013 - 1017 1012 - 1014

DNS 1019 - 1023 1016 - 1018

turbulent flows with isotropic turbulence (e.g., channel flows, pipe flows, . . .).
Problems arise, in particular, in the following situations:

flows with separation,
bouyancy-driven flows,
flows along curvilinear surfaces,
flows in rotating systems,
flows with sudden change of mean strain rate.

In such cases, with more advanced RANS models, like Reynolds stress models
or even LES, a significantly better modeling quality can be achieved so that
it can be worth accepting the higher computational effort.

12

Acceleration of Computations

For complex practical problems the numerical simulation of the correspond-
ing continuum mechanical model equations usually is highly demanding with
respect to the efficiency of the numerical solution methods as well as to the per-
formance of the computers. In order to achieve sufficiently accurate numerical
solutions, in particular for flow simulations, in many practically relevant cases
a very fine resolution is required and consequently results in a high computa-
tional effort and high memory requirements. Thus, in recent years intensive
efforts have been undertaken to develop techniques to improve the efficiency
of the computations. For the acceleration basically two major directions are
possible:

the usage of improved algorithms,
the usage of computers with better performance.

With respect to both aspects in recent years tremendous progress has been
achieved. Concerning the algorithms, adaptivity and multigrid methods rep-
resent important acceleration techniques, and concerning the computers, in
particular, the usage of parallel computers is one of the key issues. In this
chapter we will address the major ideas related to these aspects.

12.1 Adaptivity

A key issue when using numerical methods is the question how to select the
numerical parameters (i.e., grid, time step size, . . .) so that on the one hand a
desired accuracy is reached and on the other hand the computational effort is
as low as possible. Since the exact solution is not known, a proper answer to
this question is rather difficult. Adaptive methods try to deal with these issues
iteratively during the solution process on the basis of information provided
by the actual numerical solution.

The principle procedure with adaptive methods is illustrated schematically
in Fig. 12.1. First, with some initial choice of numerical parameters a prelimi-

278 12 Acceleration of Computations

nary “rough” solution is computed, which then is evaluated with respect to its
accuracy and efficiency. Based on this information the numerical parameters
are adjusted and the solution is recomputed. This process is repeated until
a prescribed tolerance is reached. The adaptation process, in principle, can
apply to any numerical parameters of the underlying scheme that influence
the accuracy and efficiency, i.e., relaxation factors, number of grid points and
time steps, and order of the discretization (see Sect. 8.4). One of the most
important numercial parameters in this respect is the local properties of the
numerical grids to which we will now turn.

Tolerance
reached?

Yes

No

STOP

�

�

�

�

�
�

Adjust
parameters

Evaluate
solution

Solve
problem

Initializations

Fig. 12.1. Schematic representation of
adaptive solution strategy

Important ingredients of a mesh adaptive solution strategy are the tech-
niques for adjusting the grid and for evaluating the accuracy of the numerical
solution. We will briefly address these issues in the following sections.

12.1.1 Refinement Strategies

For a local mesh adaptation one basically can distinguish between three dif-
ferent refinement strategies:

r-refinement: The general idea of this approach is to move the nodal vari-
ables in the problem domain to locations such that – for a given fixed
number of nodes – the error is minimized. On structured grids this can be
achieved by the use of control functions or variational approaches (see [5]).
A simple clustering technique has already been presented in Sect. 3.3.1.
h-refinement: In this approach the number and size of elements or CVs
is locally adapted such that the error is equidistributed over the problem
domain. Thus at critical regions, i.e., with high gradients in the solution,

12.1 Adaptivity 279

more elements or CVs are placed. An example of a locally conformingly
h-refined mesh can be seen in Fig. 9.9.
p-refinement: This approach consists in an increase of the order of approx-
imation in critical regions with high gradients.

Combinations of the methods are also possible (and sensible). As an example,
in Fig. 12.2 the three strategies are illustrated schematically for quadrilateral
finite elements. While r- and h-refinement can be used similarily for both
finite-element and finite-volume methods, the p-refinement is best suited for
the context of finite-element approximations.

Original
grid

r-refined

h-refined p-refined Fig. 12.2. Schematic
representation of grid
refinement strategies

In the case of a local h-refinement the interfaces between refined and non-
refined regions need special attention. In Fig. 12.3 examples of conforming
and non-conforming refinements of triangles and quadrilaterals are indicated.
In the non-conforming case the quality of the elements or CVs is better, but
hanging nodes appear. Here, either special transfer cells can be employed to
handle the transition conformingly (see Fig. 12.4) or the hanging nodes must
be taken into account directly in the discretization, e.g., by special ansatz
functions. The same applies for p-refinement where special ansatz functions
can be employed to handle the mixed approximation in interfacial elements.

Note that for time dependent problems also a mesh unrefinement is sen-
sible, i.e., in regions where a refined mesh is no longer needed, owing to the
temporal behavior of the solution the mesh can be derefined again.

280 12 Acceleration of Computations

Conforming Non-conforming

Fig. 12.3. Conforming and
non-conforming h-refinement
of triangles and quadrilaterals

Transfer
cells

Fig. 12.4. Transfer cells for confor-
ming h-refinement of triangles and
quadrilaterals

12.1.2 Error Indicators

The decision to refine an element or CV can be based on the natural require-
ment that the error is equidistributed over the whole problem domain. If one
requires that the global error eh is smaller than a prescribed tolerance εtol,
i.e.,

eh = ‖φ − φh‖ ≤ εtol ,

a criterion to refine the i-th element or CV can be

ei
h = ‖φi − φi

h‖ ≥ εtol

N
,

where ei
h is the local error in the i-th element or CV (for i = 1, . . . , N) and

N is the total number of elements or CVs.
The question that remains is how an estimation of the local errors ei

h in the
individual elements or CVs can be obtained. For this, so-called a posteriori
error indicators are employed, which usually work with ratios or rates of
changes of gradients of the actual solution. There is an elaborate theory on
this subject, especially in the context of finite-element methods, and a variety
of approaches are available, i.e., residual based methods, projection methods,
hierarchical methods, dual methods, or averaging methods. We will not discuss
this matter in detail here (see, e.g., [29]) and, as examples, just give two simple
possibilities in the framework of finite-volume methods.

12.2 Multi-Grid Methods 281

From a computational point of view, one of the simplest criteria is pro-
vided by the so-called jump indicator Ei

jump, which for a two-dimensional
quadrilateral CV is defined by

Ei
jump = max

{∣∣φi
e − φi

w

∣∣ , ∣∣φi
n − φi

s

∣∣} . (12.1)

Ei
jump measures the variation of φ in the directions of the local coordinate

system ξi defined by opposite cell face midpoints (see Fig. 12.5) and it is
proportional to the gradient of φ weighted with the characteristic size h of
the corresponding CV:

Ei
jump ∼ max

k=1,2

{
h

∣∣∣∣(∂φ

∂xk

)
P

∣∣∣∣} . (12.2)

s

w

e

n

φw

φe

φs

φn

ξ1

ξ2

V

P

Fig. 12.5. Illustration of jump error indicator

Another simple error indicator, which conveniently can be employed to-
gether with multigrid methods described in the next section, is based on the
difference of solutions at two different grid levels, i.e., φh and φ2h:

Ei
grid =

∣∣∣φi
h,P − (Ih

2hφ2h

)i

P

∣∣∣ , (12.3)

where Ih
2h is a suitable interpolation operator (see Sect. 12.2.3, in particular

Fig. 12.10).

12.2 Multi-Grid Methods

Conventional iterative solution methods – such as the Jacobi or Gauß-Seidel
methods (see Sect. 7.1.2) – for linear equation sytems, which result from a
discretization of differential equations, converge slower the finer the numerical
grid is.

In general, with this kind of methods the number of required iterations
to reach a certain accuracy increases with the number of grid points (un-
knowns). Since for an increasing number of unknowns also the number of

282 12 Acceleration of Computations

arithmetic operations per iteration increases, the total computing time in-
creases disproportionately with the number of unknowns (quadratically for
the Jacobi or Gauß-Seidel methods, see Sect. 7.1.7). Using multigrid methods
it is possible, to keep the required number of iterations mostly independent
from the grid spacing, with the consequence that the computing time only
increases proportionally with the number of grid points.

12.2.1 Principle of Multi-Grid Method

The idea of multigrid methods is based on the fact that an iterative solution
algorithm just eliminates efficiently those error components of an approximate
solution whose wavelengths correspond to the grid spacing, whereas errors
with a larger wavelength with such a method can be reduced only slowly.
The reason for this is that via the discretization scheme for each grid point
only local neighboring relations are set up, which has the consequence that
the global information exchange (e.g., the propagation of boundary values
into the interior of the solution domain) with iteration methods only happens
very slowly. To illustrate this issue we consider as the simplest example the
one-dimensional diffusion problem

∂2φ

∂x2
= 0 for 0 < x < 1 and φ(0) = φ(1) = 0 ,

which obviously has the analytical solution φ = 0. Using a central difference
discretization on an equidistant grid with N − 1 inner grid points, for this
problem one obtains the discrete equations

φi+1 − 2φi + φi−1 = 0 for i = 1, . . . , N − 1 .

The iteration procedure for the Jacobi method for the solution of this tridi-
agonal equation system reads (k = 0, 1, . . .):

φk+1
i =

φk
i+1+ φk

i−1

2
for i = 1, . . . , N − 1 and φk+1

0 =φk+1
N =0 .

Assuming that the two initial solutions φ0 as shown in Fig. 12.6 (top) for the
indicated grid are given, after one Jacobi iteration the approximative solutions
shown in Fig. 12.6 (bottom) result.

One can observe the different error reduction behavior for the two different
starting values:

In case (a) the iterative algorithm is very efficient. The correct solution is
obtained after just one iteration.
In case (b) the improvement is small. Many iterations are required to get
an accurate solution.

12.2 Multi-Grid Methods 283

Starting value (a)

one iteration

↓

Starting value (b)

one iteration

↓

Fig. 12.6. Error reduction with the Jacobi method for solution of one-dimensional
diffusion problem with different starting values

Normally, a starting value contains many different error components that are
superposed. The high frequency components are reduced rapidly, while the
low frequency components are reduced very slowly.

Quantitative assertions about the convergence behavior of classical itera-
tive methods can be derived by Fourier analysis (at least for model problems).
For a one-dimensional problem the error eih at the location xi can be expressed
as a Fourier series as follows:

eih =
N−1∑
k=1

ak sin(ikπ/N).

Here, k is the so-called wave number, h is the grid spacing, N = 1/h is the
number of nodal values, and ak are the Fourier coefficients. The components
with k ≤ N/2 and k > N/2 are denoted as low and high frequency errors,
respectively. The absolute value of the eigenvalue λk of the iteration matrix
(see Sect. 7.1) of the employed iterative method determines the reduction of
the corresponding error component:

“good” reduction, if |λk| is “close to” 0,
“bad” reduction, if |λk| is “close to” 1.

Let us consider as an example the damped Jacobi method with the iteration
matrix

C = I − 1
2
A−1

D A . (12.4)

Using this method for the solution of the above diffusion problem with N − 1
inner grid points results in an iteration matrix C for which the eigenvalues
are given analytically as

λk = 1 − 1
2

[1 − cos(kπ/N)] for k = 1, . . . , N − 1 .

284 12 Acceleration of Computations

In Fig. 12.7 the magnitude of the eigenvalues dependent on the wave number
is illustrated graphically. One can see that the eigenvalues with small wave
numbers are close to 1 and the ones for large wave numbers are close to 0,
which explains the different error reduction behavior.

1 N−1N/2
Wave number k

0.0

0.5

1.0

E
ig

en
va

lu
e

la
m

bd
a_

k

Fig. 12.7. Eigenvalue distribution of iteration matrix of damped Jacobi method for
one-dimensional diffusion problem

The idea of multigrid methods now is to involve a hierarchy of succes-
sively coarsened grids into the iteration process in order to reduce there the
low frequency error components. A multigrid algorithm transfers the compu-
tation after some fine grid iterations, where the error function afterwards is
“smooth” (i.e., free of high frequency components), to a coarse grid, which,
for instance, only involves every second grid point in each spatial direction.
Smooth functions can be represented on coarser grids without a big loss of
information. On the coarser grids the low frequency error components from
the fine grid – relative to the grid spacing – look more high frequency and thus
can be reduced more efficiently there. Heuristically, this can be interpreted by
the faster global information exchange on coarser grids (see Fig. 12.8).

The efficiency of multigrid methods is due to the fact that on the one hand
a significantly more efficient error reduction is achieved and on the other hand
the additional effort for the computations on coarser grids is relatively small
owing to the lower number of grid points.

12.2.2 Two-Grid Method

We will outline the procedure for multigrid methods first by means of a two-
grid method and afterwards show how this can be extended to a multigrid
method. In order to reduce the error of the fine grid solution on a coarser grid
an error equation (defect or correction equation) has to be defined there. Here
one has to distinguish between linear and nonlinear problems.

We first consider the linear case. Let

Ahφh = bh (12.5)

12.2 Multi-Grid Methods 285

Fig. 12.8. Relation between information exchange and grid size due to neighboring
relations of discretization schemes

be the linear equation system resulting from a discretization on a grid with
grid spacing h. Starting from an initial value φ0

h after some iterations with
an iteration procedure Sh a smooth approximation φ̃h is obtained, which only
contains low frequency error components:

φ̃h ← Sh(φ0
h,Ah,bh) .

φ̃h fulfils the original equation (12.5) only up to a residual rh:

Ahφ̃h = bh − rh.

Subtracting this equation from (12.5) yields the fine grid error equation:

Aheh = rh

with the error eh = φh − φ̃h as the unknown quantity. For the further treat-
ment of the error on a coarse grid (e.g., with grid spacing 2h) the matrix Ah

and the residual rh have to be transferred to the coarse grid:

A2h = I2h
h Ah and r2h = I2h

h rh .

This procedure is called restriction. I2h
h is a restriction operator, which we

will specify in more detail in Sect. 12.2.3. In this way an equation for the
error e2h on the coarse grid is obtained:

A2he2h = r2h . (12.6)

The solution of this equation can be done with the same iteration scheme as
on the fine grid:

ẽ2h ← S2h(0,A2h, r2h) .

As initial value in this case e0
2h = 0 can be taken, since the solution represents

an error which should vanish in case of convergence. The coarse grid error ẽ2h

286 12 Acceleration of Computations

then is transferred with an interpolation operator Ih
2h (see Sect. 12.2.3) to the

fine grid:

ẽh = Ih
2hẽ2h .

This procedure is called prolongation (or interpolation). With ẽh then the
solution φ̃h on the fine grid is corrected:

φ∗
h = φ̃h + ẽh.

Afterwards some iterations on the fine grid are carried out (with initial value
φ∗

h), in order to damp high frequency error components that might arise due
to the interpolation:

φ̃
∗
h ← Sh(φ∗

h,Ah,bh) .

The described procedure is repeated until the residual on the fine grid, i.e.,

r̃∗h = bh − Ahφ̃
∗
h ,

fulfils a given convergence criterion. The described procedure in the literature
is also known as correction scheme (CS).

Now let us turn to the nonlinear case with the problem equation

Ah(φh) = bh . (12.7)

For the application of multigrid methods to nonlinear problems there exist
two principal approaches:

linearization of the problem (e.g., with Newton method or successive iter-
ation, see Sect. 7.2) and application of a linear multigrid method in each
iteration.
Direct application of a nonlinear multigrid method.

In many cases a nonlinear multigrid method, the so-called full approximation
scheme (FAS), has turned out to be advantageous, and we will therefore briefly
describe this next.

After some iterations with a solution method for the nonlinear sys-
tem (12.7) (e.g., the Newton method or the SIMPLE method for flow prob-
lems) one obtains an approximative solution φ̃h fulfilling:

Ah(φ̃h) = bh − rh .

The starting point for the linear two-grid method was the error equation
Aheh = rh. For nonlinear problems this makes no sense, since the superposi-
tion principle is not valid, i.e., in general it is

Ah(φh + ψh) �= Ah(φh) + Ah(ψh) .

12.2 Multi-Grid Methods 287

Therefore, for a nonlinear multigrid method a nonlinear error equation has to
be defined, which can be obtained by a linearization of Ah:

Ah(φ̃h + eh) − Ah(φ̃h) = rh with eh = φh − φ̃h . (12.8)

The nonlinear error equation (12.8) is now the basis for the coarse grid equa-
tion, which is defined as

A2h(I2h
h φ̃h + e2h) − A2h(I2h

h φ̃h) = I2h
h rh .

Thus, to set up the coarse grid equation Ah, φ̃h, and rh have to be restricted
to the coarse grid (I2h

h is the restriction operator). As coarse grid variable
φ2h := I2h

h φ̃h + e2h can be used, such that the following coarse grid problem
results:

A2h(φ2h) = b2h with b2h = A2h(I2h
h φ̃h) + I2h

h rh . (12.9)

I2h
h φ̃h can be employed as initial value for the solution iterations for this

equation. After the solution of the coarse grid equation (the solution is denoted
by φ̃2h), as in the linear case, the error (only this is smooth) is transferred to
the fine grid and is used to correct the fine grid solution:

φ∗
h = φ̃h + ẽh with ẽh = Ih

2h(φ̃2h − I2h
h φ̃h) .

Note that the quantities φ2h and b2h do not correspond to the solution
and the right hand side, which would be obtained from a discretization of
the continuous problem on the coarse grid. φ2h is an approximation of the
fine grid solution, hence the name full approximation scheme. In the case of
convergence, all coarse grid solutions (where they are defined) are identical to
the fine grid solution.

12.2.3 Grid Transfers

The considerations so far have been mostly independent from the actual dis-
cretization method employed. Multigrid methods can be defined in an anal-
ogous way for finite difference, finite-volume, and finite-element methods,
where, however, in particular, for interpolation and restriction the correspond-
ing specifics of the discretization have to be taken into account. As an exam-
ple, we will briefly discuss these grid transfer operations for a finite-volume
discretization.

For finite-volume methods it is convenient to perform a CV oriented grid
coarsening, such that one coarse grid CV is formed from 2d fine grid CVs,
where d denotes the spatial dimension (see Fig. 12.9 for the two-dimensional
case). For the grid transfers the interpolation and restriction operators I2h

h

and Ih
2h have to be defined, respectively. Also the coarse grid equation should

be based on the conservation principles underlying the finite-volume method.

288 12 Acceleration of Computations

As outlined in Chap. 4 the matrix coefficients are formed from convective
and diffusive parts. The mass fluxes for the convective parts simply can be
determined by adding the corresponding fine grid fluxes. The diffusive parts
usually are newly computed on the coarse grid. The coarse grid residuals result
as the sum of the corresponding fine grid residuals. This is possible because the
coarse grid equation can be interpreted as the sum of the fine grid equations
(conservation principle). The variable values can be transferred to the coarse
grid, for instance by bilinear interpolation (see Fig. 12.9).

	 �

� �
Fine grid CV

Coarse grid CV

Fine grid variable

Coarse grid variable

Coarse grid flux

Fine grid flux

Fig. 12.9. Transfers from
fine to coarse grid (restric-
tion)

The interpolation from the coarse to the fine grid must be consistent
with the order of the underlying discretization scheme. For a second-order
discretization, for instance, again a bilinear interpolation can be employed
(see Fig. 12.10).

	
�

� �

Fine grid CV

Coarse grid CV

Fine grid variable

Coarse grid variable

Fig. 12.10. Transfers from
coarse to fine grid (interpola-
tion)

12.2.4 Multigrid Cycles

The solution of the coarse grid problem in the above two-grid method for fine
grids still can be very costly. The coarse grid problem, i.e., equation (12.6) in
the linear case or equation (12.9) in the nonlinear case, again can be solved by

12.2 Multi-Grid Methods 289

a two-grid method. In this way from a two-grid method a multigrid method
can be defined recursively.

The choice of the coarsest grid is problem dependent and usually is de-
termined by the problem geometry, which should be described sufficiently
accurately also by the coarsest grid (typical values are about 4-5 grid levels
for two-dimensional and 3-4 grid levels for three-dimensional problems). For
the cycling through the different grid levels several strategies exists. The most
common ones are the so-called V-cycles and W-cycles, which are illustrated
in Fig. 12.11. Using W-cycles the effort per cycle is higher than with V-cycles,
but usually a lower number of cycles are required to reach a certain conver-
gence criterion. Depending on the underlying problem there can be advantages
for the one or the other variant, but usually these are not very significant.

�

�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
V-cycle W-cycle

Coarsest grid

Finest grid

�

Fig. 12.11. Schematic course of V-cycle and W-cycle

In contrast to classical iterative methods the convergence rate of multigrid
methods is mostly independent of the grid spacing. For model problems it can
be proven that the solution with the multigrid method requires an asymptotic
effort which is proportional to N log N , where N is the number of grid points.
Numerically, this convergence behavior can be proven also for many other
(more general) problems.

For the estimation of the effort of multigrid cycles we denote the effort
for one iteration on the finest grid by W , and by k the number of fine grid
iterations within one cycle. For the effort of the V-cycle one obtains:

2-D: WMG = (k + 1)W
[
1 +

1
4

+
1
16

+ · · ·
]
≤ 4

3
(k + 1)W ,

3-D: WMG = (k + 1)W
[
1 +

1
8

+
1
64

+ · · ·
]
≤ 8

7
(k + 1)W .

For k = 4, which is a typical value, one V-cycle requires in the two-dimensional
case only about as much time as 7 iterations on the finest grid (approxi-
mately 6 in the three-dimensional case). However, the error reduction is bet-
ter by orders of magnitude than with single-grid methods (see examples in
Sect. 12.2.5).

290 12 Acceleration of Computations

For a further acceleration, for steady problems multigrid methods can be
used in combination with the method of nested iteration, which serves for the
improvement of the initial solution on the finest grid by using solutions for
coarser grids as initial guesses for the finer ones. The computation is started
on the coarsest grid. The converged solution obtained there is extrapolated
to the next finer grid serving as initial solution for a two-grid cycle there.
The procedure is continued until the finest grid is reached. This combination
of a nested iteration with a multigrid method is called full multigrid method
(FMG method). The procedure is illustrated in Fig. 12.12 for the case when
combined with V-cycles. The computing time spent for the solutions on the
coarser grids is saved on the finest grid because there the iteration process
can be started with a comparably good starting value. Thus, with relatively
low effort with the FMG method a further acceleration of the solution process
can be achieved. One obtains an asymptotically optimal method, where the
computational effort only increases linearly with the number of grid points.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Coarsest grid

Finest grid

�

Converged solution

V-cycles

V-cycles

V-cycles

Fig. 12.12. Schematic course of full multigrid method

An additional aspect of the FMG method, which is very important in
practice, is that at the end of the computation converged solutions for all grid
levels involved are available, which directly can be used for an estimation of
the discretization errors (see Sect. 8.4).

12.2.5 Examples of Computations

An example of the acceleration by multigrid methods for the solution of lin-
ear problems already has been given in Sect. 7.1.7 (see Table 7.2). As an
example for the multigrid efficiency for nonlinear problems, we consider the
computation of a laminar natural convection flow in a square cavity with a
complex obstacle (see Fig. 12.13). The cavity walls and the obstacle possess
constant temperatures TC and TH, respectively, where TC < TH. For the com-
putations a second-order finite-volume method with a SIMPLE method on a

12.2 Multi-Grid Methods 291

colocated grid (with selective interpolation) is employed. Here, the SIMPLE
method acts as the smoother for a nonlinear multigrid method with V-cycles
and bilinear interpolation for the grid transfers.

Cold wall

Hot
obstacleGravitation

Fig. 12.13. Problem configuration for
natural convection flow in square cavity
with complex obstacle

For the computation up to 6 grid levels (from 64 CVs to 65 536 CVs) are
employed. The coarsest and the finest grid as well as the corresponding com-
puted velocity fields are represented in Fig. 12.14. One can see, in particular,
that the coarsest grid does not exactly model the geometry and also the ve-
locity field computed there is relatively far away from the “correct” result.
However, as the following results will show this does not have an unfavorable
influence on the efficiency of the multigrid method.

In Table 12.1 a comparison of the numbers of required fine grid itera-
tions for the single-grid and multigrid methods each with and without nested
iteration is given. The corresponding computing times are summarized in Ta-
ble 12.2.

One can observe the enormous acceleration, which is achieved on the finer
grids with the multigrid method due to the nearly constant iteration number.
The necessity to use such fine grids with respect to the numerical accuracy
can be seen from Table 8.1: the numerical error in the Nußelt number, for

Table 12.1. Number of fine grid iterations for single-
grid (SG) and multigrid (MG) with and without nested
iteration (NI) for cavity with complex obstacle

Control volumes
Method 64 256 1 024 4 096 16 384 65 536

SG 52 42 128 459 1 755 4 625
SG+NI 52 36 79 269 987 3 550
MG 52 31 41 51 51 51
MG+NI 52 31 31 31 31 31

292 12 Acceleration of Computations

Fig. 12.14. Coarsest and finest grids and corresponding computed velocity fields
for cavity with complex obstacle

Table 12.2. Computing times for single-grid (SG) and
multigrid (MG) with and without nested iteration (NI)
for cavity with complex obstacle

Control volumes
Method 64 256 1 024 4 096 16 384 65 536

SG 3 7 70 902 13 003 198 039
SG+NI 3 10 54 590 8 075 110 628
MG 3 7 34 144 546 2 096
MG+NI 3 11 36 124 451 1 720

instance, on the 40×40 grid still is about 7%. Also the additional acceleration
effect due to the nested iteration becomes apparent. Although this also ap-
plies to the single-grid method the increase in the number of iterations with
the number of grid points cannot be avoided this way. In Fig. 12.15 the ac-
celeration effect of the multigrid method with nested iteration compared to

12.2 Multi-Grid Methods 293

the single-grid method (without nested iteration) depending on the grid size
is given graphically in a double logarithmic representation. One clearly can
observe the quadratic dependence of the effort for the single-grid method (line
with slope 2) in contrast to the linear dependence in the case of the multigrid
method (line with slope 1).

10
2

10
3

10
4

10
5

Number of grid points

100

101

102

103

104

105

C
om

pu
tin

g
tim

e
(s

ec
.)

 SG
 FMG

Slope 1

Slope 2

2.5 days

28 min.

Fig. 12.15. Computing times
versus number of grid points for
single-grid and multigrid meth-
ods for cavity with complex ob-
stacle

In general, the acceleration factors, which can be achieved with multigrid
methods, strongly depend on the problem. In Table 12.3 typical acceleration
factors for steady and unsteady laminar flow computations in the two- and
three-dimensional cases are given (each for a grid with around 100 000 CVs).

Table 12.3. Typical acceleration factors
with multigrid methods for laminar flow
computations (with around 100 000 CVs)

Flow 2-d (5 grids) 3-d (3 grids)

Steady 80-120 40-60
Unsteady 20-40 5-20

Also for the computation of turbulent flows with RANS models or LES
(see Chap. 11) significant accelerations can be achieved when using multigrid
methods. However, the acceleration factors are (still) lower.

Let us consider as an example the turbulent flow in an axisymmetric bend,
which consists of a circular cross-section entrance followed by an annulus in the

294 12 Acceleration of Computations

opposite direction connected by a curved section of 180o. Figure 12.16 shows
the configuration together with the predicted turbulent kinetic energy and
turbulent length scale when using the standard k-ε model with wall functions
(see Sects. 11.2.1 and 11.2.2). The Reynolds number based on the block inlet
velocity and the entrance radius is Re = 286 000.

Fig. 12.16. Predicted turbulent
kinetic energy (left) and turbu-
lent length scale (right) for flow
in axisymmetric bend (symme-
try axis in the middle).

The multigrid procedure is used with (20,20,20)-V-cycles with a coarsest
grid of 256 CVs for up to 5 grid levels (in Fig. 12.17 the grid with 4 096 CVs
is shown).

Fig. 12.17. Numerical grid for
flow in axisymmetric bend (the
bottom line is the symmetry axis)

In Fig. 12.18, the computing times and the numbers of fine grid iterations
are given for the single-grid and multigrid methods, each with and without
nested iteration, for different grid sizes. Although still significant, at least for
finer grids, the multigrid acceleration is lower than in comparable laminar
cases. The acceleration factors increase nearly linearly with the grid level. A
general experience is that the acceleration effect decreases with the complexity
of the model. Here further research appears to be necessary.

Another experience which is worth noting is that, in general, the multi-
grid method stabilizes the computations, i.e., the method is less sensitive with

12.3 Parallelization of Computations 295

1024 4096 16384 65536

Number of control volumes

100

1000

10000

100000
C

om
pu

tin
g

tim
e

(s
)

SG
SG+NI
MG
MG+NI

Fig. 12.18. CPU times for
single-grid (SG) and multi-
grid (MG) methods with
and without nested itera-
tion (NI) versus number of
CVs for turbulent bend flow

respect to numerical parameters (e.g., under-relaxation factors or grid distor-
tions) than is the corresponding single-grid method.

12.3 Parallelization of Computations

Despite the high efficiency of the numerical methods that could be achieved by
improvements of the solution algorithms in recent years (e.g., with the tech-
niques described in the preceding sections), many practical computations, in
particular flow simulations, still are very demanding with respect to comput-
ing power and memory capacity. Due to the complexity of the underlying
problems the number of arithmetic operations per variable and time step can-
not fall below a certain number. A further acceleration of the computations
can be achieved by the use of computers with better performance.

Due to the enormous advances that could be achieved concerning the pro-
cessor speeds (clock rates), the operating time per floating point operation
drastically could be reduced. This way a tremendous reduction in the total
computing times could be achieved where, in particular, the usage of vector-
ization and cache techniques has to be emphazised. To go beyond the principal
physical limitations for the acceleration of the individual processors (mainly
defined by the speed of light), the possibilities of parallel computing can be
exploited, i.e., a computational task is accomplished by several processors si-
multaneously, resulting in a further significant reduction of the computing
time.

In this section the most important aspects for using parallel computers for
continuum mechanical computations are discussed and typical effects arising
for concrete applications are shown by means of example computations. A
detailed discussion of the subject from the computer science point of view can
be found in [21].

296 12 Acceleration of Computations

12.3.1 Parallel Computer Systems

While at the beginning of the development of parallel computers, which al-
ready date back to the 1960s, quite different concepts for the concrete real-
ization of corresponding systems have been pursued (and also corresponding
systems were available on the market). Meanwhile so called MIMD (Multiple
Instruction Multiple Data) systems clearly dominate. The notation MIMD
goes back to a classification scheme introduced by Flynn (1966), in which
classical sequential computers (PCs, workstations) can be classified as SISD
(Single Instruction Single Data) systems. We will not detail further this clas-
sification scheme which has lost its relevance in light of the developments.
In a MIMD system all processors can operate independently from each other
(different instructions with different data). All relevant actual parallel com-
puter systems, like multiprocessor systems, workstation or PC clusters, and
also high-performance vector computers, which nowadays all possess multiple
vector processors, can be grouped into this class.

An important classification attribute of parallel computing systems for the
continuum mechanical computations of interest here is the way of memory
access. Here, mainly two concepts are realized (see Fig. 12.19):

Shared memory systems: each processor can access directly the whole mem-
ory via a network.
Distributed memory systems: each processor only has direct access to its
own local memory.

Typical shared memory computers are high-performance vector computers,
while PC clusters are typical representatives for distributed memory systems.
Shared memory systems with identical individual processors are also known as
symmetric multiprocessor (SMP) systems. A very popular architecture nowa-
days are clusters of SMP systems, which somehow represent a compromise
between shared and distributed memory systems.

Shared memory

Network

P1 P2 PP

M1 M2 MP

P1 P2 PP

Network

Fig. 12.19. Assignment of processors P1, . . . ,PP and memory for parallel computers
with shared memory (left) and distributed memory M1, . . . ,MP (right)

12.3 Parallelization of Computations 297

For the programming of parallel computers there exist different program-
ming models, the functionality of which, in particular, also is mainly deter-
mined by the possibilities of the memory access:

Parallelizing compilers: The (sequential) program is parallelized automat-
ically on the basis of an analysis of data dependencies of the program
(maybe supported by compiler directives). This works – at least fairly
adequately – only at the loop level for shared-memory systems and for
relatively small processor numbers. One does not expect a really fully au-
tomatic efficiently parallelizing compiler to be available sometime.
Virtual shared memory: The operating system or the hardware simulates
a global shared memory on systems with (physically) distributed memory.
This way, an automatic, semi-automatic, or user-directed parallelization
is possible, where the efficiency of the resulting program increases in the
same sequence. Such a concept is implemented by an extension of program-
ming languages (usually Fortran or C) by an array syntax and compiler
directives and the parallelization can be done by a generation of threads
(controlled by directives) that are distributed on the different processors.
Message passing: The data exchange between the individual processors is
performed solely by sending and receiving of messages, where correspond-
ing communication routines are made available via standardized library
calls. The programs must be parallelized “manually”, perhaps with the
help of supporting tools (e.g., FORGE or MIMDIZER). However, this way
also the best efficiency can be achieved. Meanwhile, as quasi-standards
for the message passing some systems such as Parallel Virtual Machine
(PVM) or Message Passing Interface (MPI), have been established and
are available for all relevant systems.

Note that programs that are parallelized on the basis of message passing
can be used efficiently also on shared-memory systems (the corresponding
communication libraries also are available on such systems). The converse
usually is not the case. In this sense, the message passing concept can be
viewed as the most general approach for the parallelization of continuum
mechanical computations. Thus, all subsequent considerations relate to this
concept and also the given numerical examples are realized on this basis.

12.3.2 Parallelization Strategies

For the parallelization of continuum mechanical computations almost exclu-
sively data decomposition techniques are applied, which decompose the data
space into certain partitions that are distributed to the different processors
and treated there sequentially and locally. If required, a data transfer to the
other partitions is carried out. The most important concepts for a concrete
realization of such a data decomposition are: grid partitioning, domain de-
composition, time parallelization, and combination methods. Grid partitioning

298 12 Acceleration of Computations

techniques are by far most frequently applied in practice, and we will therefore
address this in more detail.

Grid partitioning techniques are based on a decomposition of the (spatial)
problem domain into non-overlapping subdomains, for which certain portions
of the computations can be performed by different processors simultaneously.
The coupling of the subdomains is handled by a data exchange between adja-
cent subdomain boundaries. For the exemplification of the procedure, we re-
strict ourselves to the case of (two-dimensional) block-structured grids, which
provide a natural attempt for a grid partitioning (the principle – with cor-
responding additional effort – can be realized in an analogous way also for
unstructured grids).

The starting point for the block-structured grid partitioning is the geomet-
ric block structure of the numerical grid. For the generation of the partitioning
two cases have to be distinguished. If the number of processors P is larger than
the number of geometrical blocks, the latter are further decomposed such that
a new (parallel) block structure results, for which the number of blocks equals
the number of processors. These blocks then can be assigned to the individual
processors (see Fig. 12.20). If the number of processors is smaller than the
number of geometrical blocks, the latter are suitably grouped together such
that the number of groups equals the number of processors. These groups then
can be assigned to the individual processors (see Fig. 12.21).

B1 B2

B3

P1

P2

P3

P4

P5 P6 P7 P8

Fig. 12.20. Assignment of
blocks to processors (more
processors than blocks)

B1 B2

B3

P1 P1

P2

Fig. 12.21. Assignment of
blocks to processors (more
blocks than processors)

For the generation of the parallel block structure or the grouping of the
blocks several strategies with different underlying criteria are possible. The
simplest and most frequently employed approach is to take the number of
grid points, which are assigned to each processor, as the sole criterion. If
the numbers of grid points per processor are nearly the same, a good load

12.3 Parallelization of Computations 299

balancing on the parallel computer can be achieved, but other criteria such as
the number of neighboring subdomains or the length of adjacent subdomain
boundaries are not considered this way.

In order to keep the communication effort between the processors as small
as possible, usually along adjacent subdomain boundaries additional auxiliary
CVs are introduced, which correspond to adjacent CVs of the neighboring do-
main (see Fig. 12.22). When in the course of an iterative solution procedure
the variable values in the auxiliary CVs are actualized at suitable points in
time, the computation of the coefficients and source terms of the equation
systems in the individual subdomains can be carried out fully independently
from each other. Due to the locality of the discretization schemes only values of
neighboring CVs are involved in these computations, which are then available
to the individual processors in the auxiliary CVs. For higher-order methods,
for which also farther neighboring points are involved in the discretization,
corresponding additional “layers” of auxiliary CVs can be introduced. In gen-
eral, this way the computations for the assembling of the equation systems do
not differ from those in the serial case.

Subdomain
interface

Auxiliary
control volumes

Fig. 12.22. Auxiliary CVs for data
exchange along subdomain interfaces

Usually, the only issue, where – from the numerical point of view – a paral-
lel algorithm differs from a corresponding serial one, is the solver for the linear
equation systems. For instance, ILU or SOR solvers are organized strongly re-
cursively (a fact that greatly contributes to their high efficiency), such that
a direct parallelization is related to a very high communication effort and in
most cases does not turn out to be efficient. For such solvers it is advantageous
to partially break up the recursivity by considering the grid partitioning that
leads to an algorithmic modification of the solver. Since this plays an impor-
tant role with respect to the efficiency of a parallel implementation, we will
explain this procedure briefly.

If the nodal values are numbered subdomain by subdomain, the equation
system that has to be solved gets a block structure corresponding to the grid
partitioning:

300 12 Acceleration of Computations

⎡⎢⎢⎢⎢⎢⎢⎣
A1,1 A1,2 · · · A1,P

A2,1 A2,2 · ·
· · · · ·
· · · · ·
· · · ·

AP,1 · · · · AP,P

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎣
φ1

φ2

·
·
·

φP

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

φ

=

⎡⎢⎢⎢⎢⎢⎢⎣
b1

b2

·
·
·

bP

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

b

, (12.10)

where P denotes the number of processors (subdomains). In the vector φi

(i = 1, . . . , P) the unknowns of the subdomain i are summarized and in bi

the corresponding right hand sides are summarized. The matrices Ai,i are
the principal matrices of the subdomains and have the same structure as the
corresponding matrices in the serial case. The matrices outside the diagonals
describe the coupling of the corresponding subdomains. Thus, the matrix Ai,j

represents the coupling between the subdomains i and j (via the corresponding
coefficients ac). If the subdomains i and j are not connected to each other by
a common interface Ai,j is a zero matrix.

Assuming that in the serial case the linear system solver is defined by an
iteration process of the form (see Sect. 7.1)

φk+1 = φk − B−1
(
Aφk − b

)
,

for instance, with B = LU in the case of an ILU method. For the parallel
version of the method, instead of B the corresponding matrices Bi are used for
the individual subdomains. For an ILU solver, for instance, Bi is the product
of the lower and upper triangular matrices, which result from the incomplete
LU decomposition of Ai,i. The corresponding iteration scheme is defined by

φk+1
i = φk

i − B−1
i (

p∑
j=1

Ai,jφ
k
j − bi) . (12.11)

The computation can be carried out simultaneously for all i = 1, . . . , P by the
individual processors, if φk is available in the auxiliary CVs for the computa-
tion of Ai,jφ

k
j for i �= j. In order to achieve this, the corresponding values at

the subdomain boundaries have to be exchanged (updated) after each itera-
tion.

Thus, with the described variant of the solver each subdomain during an
iteration is treated if it were a self-contained solution domain and the coupling
is done at the end of each iteration by a data transfer along all subdomain
interfaces. This strategy results in a high numerical efficiency, because the
subdomains are closely coupled, but requires a relatively high communication
effort. An alternative would be to perform the exchange of the interface data
not after each iteration, but after a certain number of iterations. This reduces
the communication effort, but results in a deterioration of the convergence

12.3 Parallelization of Computations 301

rate of the solver and thus in a decrease in the numerical efficiency of the
method. Which variant finally is the better one strongly depends on the ratio
of communication and computing power of the parallel computer employed.

Besides the local processor communication for the exchange of the subdo-
main interface data, a parallel computation always also requires some global
communication over all subdomains. For instance, for the determination of
global residuals for the checking of convergence criteria, it is necessary – after
the local residuals are computed within the subdomains by the corresponding
processors – to add these over all processors, such that the global residual
is available to all processors and in case the convergence criterion is fulfilled
all processors can finish the iteration process. As further communication pro-
cesses, at the beginning of the computation the required data for its sub-
domain have to be provided to each processor (e.g., size of subdomain, grid
coordinates, boundary conditions,...). For instance, these can be read by one
processor, which then sends it to the other ones. At the end of the computation
the result data for the further processing (e.g., for graphical purposes) must
be suitably merged and stored, which again requires global communication.

In Fig. 12.23, as an example, a flow diagram for a flow computation with
a parallel pressure-correction method is shown, which illustrates the paral-
lel course of outer and inner iterations with the necessary local and global
communication processes. Such a computation usually is realized following
the Single Program Multiple Data (SPMD) concept, i.e., on all processors the
same program is loaded and run, but with different data.

Start

�

�
Initializations

�

�� Distribute data

Assemble vi-equation

Solve for vi

�

�� Exchange vi

Assemble p′-equation

Solve for p′

�

�� Exchange p′

Correct vi and p

�

� Exchange vi

� Collect residuals

Converged?
No

Yes
�

� Collect data

Stop

Fig. 12.23. Flow diagram of
parallel pressure-correction
method for flow computation

302 12 Acceleration of Computations

12.3.3 Efficieny Considerations and Example Computations

For the assessment of the performance of parallel computations usually the
speed-up SP and the efficiency EP are defined:

SP =
T1

TP
and EP =

T1

PTP
, (12.12)

where TP denotes the computing time for the solution of the full problem with
P processors. The ideal case, i.e., SP = P or EP = 100%, due to the additional
effort in the parallel implementation, usually cannot be reached (exceptions
from this can occur, for instance, by the influence of cache effects). Of course,
a major objective of the parallelization must be to keep this additional effort
as small as possible. For computations parallelized with a grid partitioning
technique the loss factor can be split into the following three portions:

The processor communication for the data transfers (local and global).
The increase in the number of required arithmetic operations to achieve
convergence by introduction of additional (artificial) inner boundaries,
which are treated explicitly (modification of the solver).
The unbalanced distribution of the computing load to the processors, e.g.,
when the number of grid points per processor is not the same or when
there are different numbers of boundary grid points in the individual sub-
domains.

With respect to a distinction of these portions the efficieny EP can be split
according to

EP = Enum
P Epar

P Eload
P

with the parallel, numerical, and load balancing efficiencies, respectively, de-
fined as

Epar
P =

CT(parallel algorithm with one processor)
P · CT(parallel algorithm with P processors)

,

Enum
P =

OP(best serial algorithm on one processor)
P · OP(parallel algorithm on P processors)

,

Eload
P =

CT(one iteration on the full problem domain)
P · CT(one iteration on the largest subdomain)

.

Here OP(·) denotes the number of the required arithmetic operations and
CT(·) is the required computing time.

The numerical and parallel efficiency are influenced by the number of sub-
domains and their topology (coupling), and therefore are strongly problem
dependent. For the parallel efficiency, in addition, also hardware and operat-
ing system data of the parallel computer are important influence factors. The
load balancing efficiency only depends on the grid data and the partitioning

12.3 Parallelization of Computations 303

into the subdomains and, if the grid size is chosen appropriately in relation
to the processor number, it is relatively easy to achieve here a value close to
100%.

In order to illustrate the corresponding influences on the parallel com-
putation, in Fig. 12.24 the efficiencies for different grid sizes and numbers
of processors are given for the computation of a typical flow problem (again
the natural convection flow with complex obstacle from Sect. 12.2.5). Some
effects can be observed that generally apply for such computations. For con-
stant grid size the efficiency decreases with increasing numbers of processors,
because the portion of communication in the computation increases. For con-
stant numbers of processors the efficiency increases with increasing grid size,
because the communication portion becomes smaller.

1 2 4 8 16
Number of processors

60

70

80

90

100

E
ffi

ci
en

cy
 (

%
)

1024 CV
4096 CV
16384 CV

Fig. 12.24. Dependence
of efficiency on number of
processors for different grid
sizes for typical parallel
computation

The impact of the efficiency behavior on the corresponding computing
times – only these are interesting for the user, the efficiency considerations
are only a tool – are illustrated in Fig. 12.25, where also the ideal cases (i.e.,
efficiency EP =100%) are indicated. For a given grid an increase in the number
of processors results in an increasing deviation from the ideal case, which is
larger the coarser the grid is.

The above considerations have the consequence that from a certain number
of processors on (for a fixed grid) the total computing time increases. Thus, for
a given problem size there is a maximum number of processors Pmax which still
leads to an acceleration of the computation (see Fig. 12.26). This maximum
number increases with the size of the problem. So, from a certain number of
processors on, the advantage of the usage of parallel computers no longer is
to solve the same problem in a shorter computing time, but to solve a larger
problem in a “not much longer” time (e.g., to achieve a better accuracy).
If the convergence rate of the solver does not depend on the number of the

304 12 Acceleration of Computations

1 2 4 8 16
Number of processors

10

100

C
om

pu
tin

g
tim

e
(s

)

Ideal case
1024 CV
4096 CV
16384 CV

Fig. 12.25. Dependence of
computing time on number
of processors for different
grid sizes for typical paral-
lel computation

processors, as is the case, for instance, for multigrid methods, this means that
problems with a constant number of grid points per processor can be solved in
nearly the same computing time. For the considered example, which has been
computed with a multigrid method, this effect can be seen if one compares
the computing times for the three grids (quadruplication of number of CVs)
with 1, 4, and 16 processors (the black symbols in Fig. 12.25), respectively,
which nearly are identical.

�

�

Number of processors

C
o
m

p
u
ti
n
g

ti
m

e

Pmax Fig. 12.26. Maximum sensible number of
processors

For a concrete computation a corresponding “sensible” number of proces-
sors can be estimated – at least roughly – in advance by simple preliminary
considerations taking into account the parallel and load balancing efficiencies
(a mutual influence of the numerical efficiency usually is very difficult due to
the complexity of the problems). The load balancing efficiency can simply be
estimated by considering the numbers of grid points assigned to the individual
processors. For the parallel efficiency the time TK needed for a communication
has to be taken into account:

TK = TL +
NB

RT
,

12.3 Parallelization of Computations 305

where TL is the latency time (or set up time) for a communication process,
RT is the data transfer rate, and NB is the number of bytes that has to
be transferred. For a concrete computer system all these parameters usually
are known. For a specific solution algorithm the communication processes
per iteration can be counted and a model equation for the parallel efficiency
can be derived. While the times for the global communication (besides the
dependency on TK) strongly depend on the total number of processors P (the
larger P , the more costly), this is not the case for the local communication,
which can be done parallelly, and therefore mostly independent of P .

While the above described effects qualitatively do not depend on the ac-
tual computer employed, of course, quantitatively they are strongly deter-
mined by specific hardware and software parameters of the parallel system. In
particular, the ratio of communication and arithmetic performance plays an
important role in this respect. The larger this ratio, the lower the efficiency.
With respect to the parallel efficiency, in particular, a high latency time has
a rather negative influence. Parallel computers with fast processors can only
be used efficiently for parallel continuum mechanical computations – at least
for larger numbers of processors – together with a communication system of
corresponding performance.

As already mentioned, for the user in the first instance the computing
time for a computation is the relevant quantity (and not the efficiency!). In
this context the performance of the underlying numerical algorithms play an
important role. In order to point this out in Fig. 12.27 the computing times
for a single-grid and a multigrid method versus the number of processors is
shown (again for the natural convection flow with complex obstacle). The
deviation from the ideal case with increasing number of processors for the
multigrid method is much larger, i.e., the efficiencies for the multigrid method
are lower, because on the coarser grids the ratio of required communications
to the arithmetic operations that have to be performed is larger. However,
one can see that the computing times with the parallel multigrid method in
total still are significantly lower than with the parallel single-grid method.
This is an aspect which generally applies: simpler, numerically less efficient
methods can be parallelized relatively easily and efficiently, but usually with
respect to the computing time they are inferior to parallel methods which are
characterized also by a high numerical efficiency. By the way, the same applies
to the vectorization of computations, which, however, we will not discuss here.

From the considerations above several requirements for parallel computer
systems become apparent, in order for them to be efficiently used for contin-
uum mechanical computations. In order to keep the losses in efficiency as small
as possible the ratio of communication and computing performance should be
“balanced”. In particular, the ratio of the latency time and the time for a float-
ing point operation should not be “too large” (i.e., smaller than 200). Since, in
general, the portion of the communication time on the total computing time
increases with the number of processors, a given computing power should be
achieved with as few processors as possible. In order for these processors to

306 12 Acceleration of Computations

1 2 4 8 16
Number of processors

102

103

104

C
om

pu
tin

g
tim

e
(s

)

Multigrid
Single−grid
Ideal case

1132 s

29140 s

173 s

2090 s

Fig. 12.27. Computing times
for single-grid and multigrid
methods versus number of
processors (for 16 384 CVs)

be optimally be utilized, they should have sufficient memory capacity (i.e., at
least 1 GByte per GFlops). Furthermore, the computer architecture concep-
tually should be suited for future increased demands with respect to memory,
computing, and communication capacity, without larger modifications on the
software side becoming necessary.

With respect to the above requirements, MIMD systems with local mem-
ory appear to be a well suited parallel computer architecture. They are – at
least theoretically– arbitrarily scalable, and possess the most flexibility pos-
sible with respect to arithmetic and communication operations. They can be
realized with high processor performance (with commercial standard proces-
sors), with balanced ratio of communication and computing power, and with
reasonable price-performance ratio.

Exercises for Chap. 12

Exercise 12.1. Discretize the bar equation (2.38) with the boundary condi-
tions (2.39) with a second-order finite-volume method for an equidistant grid
with 4 CVs. The problem data are L = 4m, A = 1m2, u0 = 0, and kL = 2N.
Formulate a two-grid method (two coarse grid CVs) each with one damped
Jacobi iteration (12.4) for smoothing and compute one cycle with zero start-
ing value.

Exercise 12.2. Let the bar problem from Exercise 12.1 be partitioned with
the grid partitioning strategy from Sect. 12.3.2 into two equally sized subdo-
mains. Perform two iterations with the Gauß-Seidel method parallelized ac-
cording to (12.11). Compare the result with that for the Gauß-Seidel method
without partitioning.

List of Symbols

In the following the meaning of the important symbols in the text with the
corresponding physical units are listed. Some letters are multiply used (how-
ever, only in different contexts), in order to keep as far as possible the standard
notations as they commonly appear in the literature.

Matrices, dyads, higher order tensors
A general system matrix
B procedure matrix for iterative methods
C iteration matrix for iterative methods
C, Cij N/m2 material matrix
E, Eijkl N/m2 elasticity tensor
G, Gij Green-Lagrange strain tensor
L general lower triangular matrix
I unit matrix
J, Jij Jacobi matrix
P preconditioning matrix
P, Pij N/m2 2nd Piola-Kirchhoff stress tensor
S, Sij strain rate tensor
S, Sij stiffness matrix
Se, Se

ij unit element stiffness matrix
Sk, Sk

ij element stiffness matrix
T, Tij , T̃ij N/m2 Cauchy stress tensor
U general upper triangular matrix
δij Kronecker symbol
ε, εij Green-Cauchy strain tensor
εijk permutation symbol
τ sgs
ij N/m2 subgrid-scale stress tensor

τ test
ij N/m2 subtest-scale stress tensor

308 List of Symbols

Vectors
a, ai m material coordinates
b, bi load vector
b, b̃i N/kg volume forces per unit mass
be, be

i unit element load vector
bk, bk

i element load vector
c m/s translating velocity vector
d, di Nms moment of momentum vector
ei, eij Cartesian unit basis vectors
f , fi N/kg volume forces per mass unit
h, hi N/ms heat flux vector
j, ji kg/m2s mass flux vector
n, ni unit normal vector
p, pi Ns momentum vector
t, ti unit tangent vector
t, ti N/m2 stress vector
u, ui m displacement vector
v, vi m/s velocity vector
vg, vrmg

i m/s grid velocity
w, w̃i m/s relative velocity vector
x, xi m spatial coordinates
ϕ, ϕi test function vector
ω, ωi 1/s angular velocity vector

Scalars (latin upper case letters)
A m2 cross sectional area
Bn

i Bernstein polynomial of degree n
B Nm2 flexural stiffness
C Courant number
Cs Smagorinsky constant
Cg dynamic Germano parameter
D diffusion number
D kg/ms diffusion coefficient
D0 m2 unit triangle
Di m2 general triangle
G, Gi 1/m3, 1/m filter function
E N/m2 elasticity modulus
Ei

grid, Ei
jump error indicators

EP efficiency for P processors
Epar

P parallel efficiency for P processors
Enum

P numerical efficiency for P processors
Elast

P load balancing efficiency for P processors

List of Symbols 309

Fc flux through face Sc

FC
c convective flux through face Sc

FD
c diffusive flux through face Sc

G N/m2s production rate of turbulent kinetic energy
H m height
I m4 axial angular impulse
J Jacobi determinant
K Nm plate stiffness
L m length
M Nm bending moment
NB s data transfer time
N e

j shape function in unit element
N i

j local shape function
Nj global shape function
Nit number of iterations
P Nm potential energy
Pa Nm/s power of external forces
Q0 m2 unit square
Qi m2 general quadrilateral
Q Nm/s power of heat supply
Q N transverse force
R kg/m3s mass source
RT 1/s data transfer rate
R Nm/kgK specific gas constant
S m2 bzw. m surface or boundary curve
Sc control volume face
SP speed-up for P processors
T K temperature
T̃ K reference temperature
TL s latency time for data transfer
TK s data transfer time
Tv turbulence degree
TH higher order terms
V , Vi m3 bzw. m2 (control) volume or (control) area
V0 m3 reference volume
W Nm total energy of a body
W N/m2 strain energy density function

Scalars (latin lower case letters)
a m/s speed of sound
c species concentration
cp Nm/kgK specific heat capacity at constant pressure
cv Nm/kgK specific heat capacity at constant volume

310 List of Symbols

d m plate thickness
e Nm/kg specific internal energy
en
P total numerical error at point P and time tn

f general source term
f N/m3 force density
g scalar source term
g m/s2 acceleration of gravity
h m measure for grid spacing
fl N/m longitudinal load
fq N/m lateral load
k Nm/kg turbulent kinetic energy
kL N boundary force (bar)
l m turbulent length scale
m kg mass
ṁc kg/s mass flux through face Sc

p N/m2 pressure
q Nm/skg heat source
p′, p′′ N/m2 pressure correction
s Nm/kgK specific internal entropy
t s time
u m/s velocity component in x-direction
uτ m/s wall shear stress velocity
u+ normalized tangential velocity
v m/s velocity component in y-direction
vn m/s normal component of velocity
vt m/s tangential component of velocity
v̄ m/s characteristic velocity
w m deflection
wi weights for Gauß quadrature
x m spatial coordinate
y m spatial coordinate
y+ normalized wall distance

Scalars (greek letter)
α general diffusion coefficient
αφ under-relaxation factor for φ
α Nm/kg thermal expansion coefficient
αnum numerical (artificial) diffusion
α̃ N/Kms heat transfer coefficient
β flux-blending parameter
βc artificial compressibility parameter
Γ domain boundary
γ interpolation factor

List of Symbols 311

δ m wall distance
ε Nm/s dissipation of turbulent kinetic energy
εtol error tolerance
η, η̃ m spatial coordinate
θ K temperature deviation
θ control parameter for θ-method
κ N/Ks heat conductivity
κ condition number of a matrix
κ Kármán constant
λ N/m2 Lamé constant
λP aspect ratio of grid cell
λmax spectral radius
μ N/m2 Lamé constant
μt kg/ms turbulent viscosity
μ kg/ms dynamic viscosity
ν Poisson number
ν m2/s kinematic viscosity
Ω problem domain
ξ, ξ̃ m spatial coordinate
ξc grid expansion ratio
Π Nm strain energy
ρ kg/m3 density
ρ0 kg/m3 reference density
τ N/m2 stiffness
τw N/m2 wall shear stress
τn
P truncation error at point P and time tn

φ scalar transport quantity
φ filtered or averaged quantity φ
φ′ small scale portion or fluctuation of φ
ϕ virtual displacement
ψ N/m2s specific dissipation function
ψ general conservation quantity
ψ m2/s velocity potential
ω relaxation parameter for SOR method

Others
Ma Mach number
Re Reynolds number
Nu Nußelt number
Pe Peclet number
Peh grid Peclet number
δSc m or m2 length or area of control volume face Sc

δV m3 or m2 volume or area of V

312 List of Symbols

Δt s time step size
Δx m spatial grid spacing
Δy m spatial grid spacing
F discretization rule
H function space for test functions
Ih

2h interpolation operator
I2h

h restriction operator
L spatial discretization operator
S iteration method

References

1. O. Axelsson und V.A. Barker
Finite Element Solution of Boundary Value Problems
Academic Press, Orlando, 1984 (for Chap. 7)

2. K.-J. Bathe
Finite-Element Procedures
Prentice Hall, New Jersey, 1995 (for Chaps. 5 and 9)

3. D. Braess
Finite Elements
2nd edition, University Press, Cambridge, 2001 (for Chaps. 5 and 9)

4. W. Briggs
Multi-Grid Tutorial
2nd edition, SIAM, Philadelphia, 2000 (for Chap. 12)

5. T.J. Chung
Computational Fluid Mechanics
Cambridge University Press, 2002 (for Chaps. 3, 4, 6, 8, 10, 11, and 12)

6. H. Eschenauer, N. Olhoff, and W. Schnell
Applied Structural Mechanics
Springer, Berlin, 1997 (for Chaps. 2, 5, and 9)

7. G.E. Farin
Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide
5th edition, Academic Press, London, 2001 (for Chap. 3)

8. J. Ferziger und M. Perić
Computational Methods for Fluid Dynamics
3rd edition, Springer, Berlin, 2001 (for Chaps. 4, 6, 8, 10, and 11)

9. C.A.J. Fletcher
Computational Techniques for Fluid Dynamics (Vol. 1, 2)
Springer, Berlin, 1988 (for Chaps. 4, 6, and 10)

10. W. Hackbusch
Multi-Grid Methods and Applications
Springer, Berlin, 1985 (for Chap. 12)

11. W. Hackbusch
Iterative Solution of Large Sparse Systems of Equations
Springer, Berlin, 1998 (for Chap. 7)

314 References

12. C. Hirsch
Numerical Computation of Internal and External Flows (Vol. 1, 2)
Wiley, Chichester, 1988 (for Chaps. 4, 6, 7, 8, and 10)

13. K.A. Hoffmann und S.T. Chang
Computational Fluid Dynamics for Engineers I, II
Engineering Education System, Wichita, 1993 (for Chaps. 3, 6, and 8)

14. G.A. Holzapfel
Nonlinear Solid Mechanics
Wiley, Chichester, 2000 (for Chap. 2)

15. P. Knupp und S. Steinberg
Fundamentals of Grid Generation
CRC Press, Boca Raton, 1994 (for Chap. 3)

16. R. Peyret (Editor)
Handbook of Computational Fluid Mechanics
Academic Press, London, 1996 (for Chaps. 10 and 11)

17. S.B. Pope
Turbulent Flows
University Press, Cambridge, 2000 (for Chap. 11)

18. P. Sagaut
Large Eddy Simulation for Incompressible Flows
2nd edition, Springer, Berlin, 2003 (for Chap. 11)

19. J. Salençon
Handbook of Continuum Mechanics
Springer, Berlin, 2001 (for Chap. 2)

20. H.R. Schwarz
Finite Element Methods
Academic Press, London, 1988 (for Chaps. 5 and 9)

21. L.R. Scott, T. Clark, and B. Bagheri
Scientific Parallel Computing
Princeton University Press, 2005 (for Chap. 12)

22. R. Siegel and J.R. Howell
Thermal Radiation Heat Transfer
4th edition, Taylor & Francis, New York, 2002 (for Chap. 2)

23. J.H. Spurk
Fluid Mechanics
Springer, Berlin, 1997 (for Chap. 2)

24. J. Stoer und R. Bulirsch
Introduction to Numerical Analysis
3rd edition, Springer, Berlin, 2002 (for Chaps. 6 and 7)

25. S. Timoschenko und J.N. Goodier
Theory of Elasticity
McGraw Hill, New York, 1970 (for Chap. 2)

26. J.F. Thompson, B.K. Soni, N.P. Weatherhill (Editors)
Handbook of Grid Generation
CRC Press, Boca Raton, 1998 (for Chaps. 3 and 4)

27. M. van Dyke
An Album of Fluid Motion
Parabolic Press, Stanford, 1988 (for Chaps. 2 and 11)

References 315

28. D. Wilcox
Turbulence Modeling for CFD
DCW Industries, La Cañada, 1993 (for Chap. 11)

29. O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu
The Finite-Element-Method (Vol. 1, 2, 3)
6th edition, Elsevier Butterworth-Heinemann, Oxford, 2005 (for Chaps. 5, 9,
and 12)

Index

Adams-Bashforth method 156
Adams-Moulton method 160
ALE fomulation 48
angular acceleration 50
artificial compressibility method 230
artificial diffusion 87
axial geometric moment of inertia 34

backward substitution 168
balance of moment of momentum 19
balance of momentum 18
bar element 112
basis unit vectors 11
BDF-method 159, 163
beam bending 33
beam element 123
beam equation 34
bending moment 34, 39
Bernoulli beam 33
Bernoulli equation 23
Bernstein polynomial 59
Bezier curve 58
Bezier point 59
Bezier surface 59
biharmonic equation 38
bilinear parallelogram element 138
block structure

geometric 298
parallel 298

boundary condition
at a wall 247
at impermeable wall 44
at inflow 44, 265
at outflow 45, 249, 266

at symmetry boundary 97, 249
at wall 266
Cauchy 21
Dirichlet 21
essential 30
for beams 34
for coupled fluid-solid problems 48
for disk 36
for heat transfer problems 24
for hyperelasticity 42
for incompressible flow 44, 247
for inviscid flow 46
for linear elasticity 28
for linear thermo-elasticity 40
for membrane 22
for plate 38
for potential flow 23
for tensile bar 32
geometric 30
kinematic 23
natural 30
Neumann 21

boundary modeling 58
boundary nodal variable 136
boundary shape function 136
Boussinesq approximation 263
Bowyer-Watson algorithm 74
bulk modulus 27

caloric ideal gas 43
Cartesian coordinate system 11
Cauchy stress tensor 18, 42
CDS method 85, 199
central differencing formula 89

318 Index

central differencing scheme 85
centrifugal acceleration 50
CFL condition 192
CG method 176
Cholesky method 169
coincidence matrix 115, 118
complete polynomial ansatz 140
condition number 177, 182
configuration 13
conforming finite elements 111
consistency order 190
continuity equation 17
control volumes 78
convective flux 81
Coriolis acceleration 50
correction scheme 286
Courant number 192
Crank-Nicolson method 158, 163

data transfer rate 305
de Casteljau algorithm 59
deflection

of a beam 34
of a membrane 22
of a plate 38

deformation 13
deformation gradient 41
degree of freedom 111
density 16
diffusion number 192
diffusive flux 81
diffusive flux source 228
direct numerical simulation 261
discretization error 187
displacement 14
dissipation rate 264
distributed memory system 296
Donald polygon 78
drag coefficient 161
drag force 161
Duhamel-Neumann equation 40
dynamic viscosity 42, 259

eddy viscosity 263
eddy viscosity hypotheses 263
edge-swapping technique 75
efficiency 302

load balancing 302
numerical 302

parallel 302
elastic membrane 22
elasticity modulus 27
elasticity tensor 28
element load vector 116, 132, 134, 140,

213
element stiffness matrix 116, 132, 134,

140, 213
energy conservation 20
ensemble averaging 262
equation of motion 27
equation of state

caloric 43
thermal 43

essential diagonal dominance 170
Euler equations 46
Euler polygon method 154
Eulerian description 13
expansion rate 90
explicit Euler method 154, 194

modified 155

Fick’s law 25
filter function 272
filtering 272
first law of thermodynamics 20
flexural stiffness 34
flux-blending 88
FMG method 290
forward substitution 168
Fourier law 24, 39
fractional-step method 232
full approximation scheme 286
full multigrid method 290

Gauß elimination 168
Gauß integral theorem 17
Gauß quadrature 144
Gauß-Seidel method 169
geometrical linearization 15
global load vector 122, 127, 215
global stiffness matrix 121, 134, 215
Green-Cauchy strain tensor 15
Green-Lagrange strain tensor 14, 41
grid

adaptive 66
algebraic 68, 70
anisotropic 205
block-structured 64

Index 319

boundary-fitted 61
Cartesian 61
Chimera 61
elliptic 69, 70
equidistant 85
hierarchically structured 64
locally refined 219
orthogonal 93, 203
overlapping 61
staggered 224, 237
structured 62
unstructured 62

grid aspect ratio 205
grid expansion ratio 204
grid independent solution 201
grid partitioning 297
grid Peclet number 198
grid point clustering 69
grid velocity 48

h-refinement 278
heat conductivity 24
heat flux vector 20
heat sources 20
heat transfer coefficient 24
Hooke’s law 27

ideal gas 43
implicit Euler method 157, 163, 194,

229, 241
incompressible material 17
incompressible potential flow 22
infinitesimal strain tensor 15
initial condition 22, 150
interpolation factor 85
irrotational flow 22, 46
isoparametric elements 211
iteration matrix 175, 283

Jacobi determinant 13, 92, 130
Jacobi matrix 66, 213
Jacobi method 169, 282

damped 283
jump error indicator 281

Kármán constant 265
Kirchhoff hypotheses 37
Kirchhoff plate 37
Kronecker symbol 15

Kármán vortex street 162

Lagrange elements 141
Lagrangian description 13
Lamé constants 27
Laplace equation 21
large-eddy simulation 261
latency time 305
Lax theorem 195
Levi-Civita symbol 13
lift coefficient 161
lift force 161
linear strain tensor 15
linear triangular element 131
load vector 109
local coordinates 12
local description 13
local nodal variable 111
local time derivative 14
logarithmic wall law 267
LU decomposition

incomplete 171
LU-decomposition

complete 168

Mach number 44
mass 16
mass conservation theorem 16
material

hyperelastic 41
linear elastic 27
thermo-elastic 39

material coordinates 12
material description 13
material matrix 28
material time derivative 14
message passing 297
method of lines 151
method of weighted residuals 108
midpoint rule 82
MIMD system 296
moment of momentum vector 19
momentum vector 18
movement 13
multi-step method 153

Navier-Cauchy equations 28
Navier-Stokes equation 43
nested iteration 290
Newton methods 182

320 Index

Newtonian fluid 42
non-conforming finite elements 111
normal stresses 18
numerical diffusion 87
Nußelt number 201

one-step method 152

p-refinement 279
pathline 12
PCG method 178
Peclet number 188
permutation symbol 13
Picard iteration 182
PISO method 245
plane strain state 37
plane stress state 35, 209
plate stiffness 38
Poisson equation 21
Poisson ratio 27
position vector 12
potential energy

of a beam 35
of a body 30
of a tensile bar 32

power of heat supply 19
preconditioning 178
preconditioning matrix 178
predictor-corrector method 160
pressure 42
principle of causality 152
principle of virtual work 29
production rate 264
projection method 232
prolongation 286
pseudo time stepping 152

quadrilateral 8-node element 217
quadrilatral 4-node element 211
quasi-Newton methods 182
QUICK method 87, 198

r-refinement 278
RANS equations 262
RANS model 263
reference configuration 12
reference-based description 13
residual 108
restriction 285

Reynolds equations 262
Reynolds number 45, 260
Reynolds stresses 263
Reynolds transport theorem 16
Richardson extrapolation 201
Runge-Kutta method 155
Runge-Kutta-Fehlberg method 156

second Piola-Kirchhoff stress tensor
18, 41

selective interpolation 237, 255
Serendipity element 141
shape function

global 112, 113
local 111, 113, 120, 124, 139

shared memory system 296
shear stresses 18
shear-elastic beam 33
shear-rigid beam 33
shear-rigid plate 37
SIMPLE method 233, 242, 252
SIMPLEC method 244
Simpson rule 82
Smagorinsky model 273
solution error 188
SOR method 171
space conservation law 48
spatial coordinates 12
spatial description 13
species concentration 25
species transport 25
specific dissipation function 39
specific gas constant 43
specific heat capacity 24, 43
specific internal energy 19
specific internal entropy 39
spectral radius 175
speed of sound 44
speed-up 302
stiffness matrix 109
strain energy 215
strain energy density function 41
strain tensor 14
streamlines 23
stretching function 68
strongly implicit procedure 173
subgrid-scale model 273
subgrid-scale stress tensor 273
substantial coordinates 12

Index 321

substantial description 13
successive iteration 182
symmetric multiprocessor system 296

tensile bar 30
thermal expansion coefficient 40
thermal radiation 25
Thomas algorithm 169
time step limitation 192
Timoshenko beam 33
top-hat filter 272
total energy 19
total numerical error 188
transfer cell 279
transfinite interpolation 68
trapezoidal rule 82
triangular 3-node element 217
truncation error 188
turbulence degree 265
turbulent kinetic energy 263
turbulent length scale 264
turbulent viscosity 263

UDS method 86, 199
under-relaxation 240
under-relaxation parameter 241, 270
unit normal vector 17, 81
upwind differencing scheme 86

V-cycle 289
velocity vector 14
virtual displacements 29
virtual shared memory 297
volume modeling 58
Voronoi polygon 78

W-cycle 289
wall functions 266, 267
wall shear stress 248, 267
wall shear stress velocity 267
wave number 283
weak row sum criterion 170
weighted residual 108

Young modulus 27

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

