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A Special Preface:
Laudatio for Professor Wei-Shou Hu

This is a special preface for the topical volume ‘‘Genomics and Systems Biology
of Mammalian Cell Culture’’ in the Series Advances in Biochemical Engineering/
Biotechnology. The Series Editor, Professor Thomas Scheper, suggested dedi-
cating this volume as a ‘‘surprise gift’’ to the co-editor of the volume, Professor
Wei-Shou Hu, on the occasion of his 60th birthday in November 2011. It is our
distinct honor and pleasure to follow this suggestion and provide this laudatio.
Dr. Wei-Shou Hu is currently a Distinguished McKnight University Professor at
the Department of Chemical Engineering and Materials Science, University of
Minnesota, USA. As a former research associate (Weichang Zhou) and a visiting
scientist (An-Ping Zeng) in his laboratory, we have interacted with Dr. Wei-Shou
Hu for the last twenty years in various aspects, and witnessed many of his
remarkable achievements as a researcher, an educator and a leader in our com-
munity. We have great admiration for his leadership, boundless energy, and out-
standing contributions in broad biochemical engineering fields.

Dr. Wei-Shou Hu is one of the internationally most respected biochemical
engineering educators, researchers, and leaders. He is especially recognized for his
landmark achievements spanning multiple biochemical engineering fields includ-
ing cell culture engineering, metabolic engineering, genomics and systems biol-
ogy, tissue and stem cell engineering, and his tireless service to students,
colleagues, and the profession. He is truly a ‘‘Founding Father’’ of modern
mammalian cell culture engineering as well as a visionary leader in applied
genomics as exemplified by his forming of an academic-industrial consortium to
decipher the Chinese hamster genome.

Wei-Shou Hu studied Agricultural Chemistry at the National Taiwan University.
After obtaining his B.S. degree, he went to the US and studied Biochemical
Engineering at the Massachusetts Institute of Technology. There he obtained his
Ph.D. degree under the supervision of Professor Daniel Wang in 1983. Thereafter,
he joined the Department of Chemical Engineering and Materials Science,
University of Minnesota, as an Assistant Professor. He was promoted to an
Associate Professor in 1989, became a full Professor in 1994, and was named a
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Distinguished McKnight University Professor in 1998. Prof. Hu has had an out-
standingly productive professional career that includes over 270 publications and 8
issued patents. In addition to 47 Ph.D. and 24 M.S. students who have graduated
from his laboratory, a large number of postdocs, visiting scientists and international
students have worked in his laboratory. Furthermore, over two thousand biotech-
nology professionals have passed through his well-known training course on cell
culture engineering. In the following sections, we briefly summarize his key
research accomplishments, contributions to the training of the next generation of
biochemical engineers, leadership, and services to the profession.

I. Research Excellence

Dr. Wei-Shou Hu’s research has focused on applying engineering fundamentals to
the analysis of biological systems and to the advancement of biotechnological
innovations. In addition to his core area of cell culture engineering, he has culti-
vated diverse research interests in microbial and plant systems as well as in tissue
engineering and stem cell culture engineering. He always thrives on combining his
intimate understanding of cell physiology and classical chemical reaction engi-
neering to break new ground in biochemical engineering. An experimentalist by
nature, Dr. Hu brings a characteristic research approach to every area he touches.
He is never hesitant to apply unfamiliar new tools for systematic quantification to
his research. He always reaches out to colleagues in theoretical and computational
arenas to expand intellectual boundaries. His key research contributions include:

A. Cell Culture Engineering

Cell culture processes were largely an art form until the mid 1980s. They are now
the workhorses of the biotechnology industry and account for over 50 billion
dollars of annual product sales. Dr. Hu’s pioneering injection of biochemical
engineering fundamentals into cell culture processes has contributed in no small
measure to the rapid advancement of this field of endeavor. His key accom-
plishments in cell culture engineering include:

1. Dr. Hu was amongst the first to introduce engineering quantification to cell
culture technology. In his early work, he introduced the concept of distributed
properties of cells and microcarrier size for optimization of the growth of
anchorage-dependent cells in scalable bioreactors. He demonstrated that despite
the complexity of the animal cell’s structure and growth requirements,
achieving steady states with one and only one growth rate limiting substrate is
possible. He also was the first to demonstrate irrevocably the applicability and
limitations of the Monod type model, and he correctly argued that it would be
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possible to have steady state multiplicity when different metabolisms are
imposed on the cell culture system, leading to the use of cybernetic models to
describe that phenomenon. Since each of these steady states represents varying
levels of productivity, the implications of these findings on commercial process
optimization are enormous. Recently he again applied reaction engineering
analysis to glycosylation pathways and presented ways that uniform glycans
can be synthesized through cell engineering.

2. Dr. Hu has been a leader in introducing novel research tools to address fun-
damental issues in cell culture engineering. Through a combination of process
insights and awareness of modern analytical techniques, he has introduced new
methodologies to advance cell culture engineering. He first applied flow
cytometry to measure population heterogeneity and linked that to understand-
ing and optimizing culture productivity. He also first demonstrated the power of
confocal imaging and optical sectioning techniques in revealing the structural
characteristics of 3D cell supports and the behavior and functional activity of
cells’ interiors. Dr. Hu again was among the first to apply the tools of tran-
scriptome and proteome analysis in cell culture engineering. Through these
analyses, his research group became the first to discover the role of epigenetic
regulations, specifically gene silencing, in cells employed for bioprocessing.
The insights gained from this global analysis also prompted Dr. Hu to articulate
that the complex trait of hyperproductivity can be attributed to global and subtle
alterations in gene expression. Knowing that the vast process data in modern
production plants are untapped resources for knowledge discovery, Dr. Hu’s
group has introduced modern data mining techniques to bioprocess data. The
analysis of Genentech’s Vacaville plant will lead the way for a new phase of
knowledge discovery in cell culture processing.

3. Dr. Hu has been the leading advocate for the incorporation of process engi-
neering fundamentals into cell culture processes. As the biotechnology industry
matures, it is increasingly moving towards high cell density, high viability fed-
batch and simple continuous culture production systems. The optimal perfor-
mance of those systems requires metabolic state estimation and dynamic
feeding of nutrients. Dr. Hu, as usual, foresaw this need and initiated research
in this area before the need became apparent in the wider community. His
research illustrates many guiding principles that have led to better performance
in industrial processing. Over the years, his research has involved many
industrial partners including American Home Products, Sandoz, Boehringer
Mannheim, Protein Design Labs, Eli Lilly, Pfizer, Roche, Schering-Plough,
Sankyo, Genentech, Centocor, Novartis, and others. More recently, he orga-
nized the Consortium for Chinese Hamster Ovary Cell Genomics under the
auspices of the Society for Biological Engineers and together with the Bio-
processing Technology Institute of Singapore. Once again, with the genomic
tools developed through the consortium, Dr. Hu and his colleagues are
expanding the horizon of cell culture engineering by injecting biology funda-
mentals into the research of this economically important cell line.
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B. Microbial Physiology and Regulation

Dr. Hu’s research on natural product biosynthesis was amongst the first to identify
the rate-limiting step in the production of cephalosporin by using theoretical
prediction. This finding was elegantly exploited nearly two decades ago by using
genetic modifications to alleviate the bottleneck in production, one rare example of
utilized predictions from a kinetic model leading to successful metabolic engi-
neering of the producing organism. His work on demonstrating the temporal and
spatial distribution of secondary metabolism in a mycelial system is another
example of elegant application of new research tools (confocal microscopy and
visualization with green fluorescent protein) to bioengineering research. Recently,
he again demonstrated his intellectual leadership by applying genomic tools to
decipher the regulatory network of secondary metabolism using Boolean algo-
rithms. He took a bold move to construct a whole genome DNA microarray of
Streptomyces coelicolor and, using support vector machine, exploited time-series
dynamics of transcriptome profiles to reveal regulatory structure and transcrip-
tional unit organization. He and his colleagues combined quantitative transcrip-
tome and proteomic analyses and demonstrated that nearly 15% of genes have
different mRNA and protein expression dynamics, an important insight that will
bear much importance in gene expression analysis. Finally, his mastery of classical
reaction engineering is best illustrated by the demonstration of bistable behavior in
convergent gene pair regulatory switches in two different microbial species of
Streptomycetes and Enterococcus, one involved in antibiotic production, and the
other in antibiotic resistance. His ability to bridge traditional microbiology and
chemical engineering is amply illuminated.

C. Tissue and Stem Cell Culture Engineering

In this field, Dr. Hu is best known for his development of a bioartificial liver
device for sustaining the life of liver failure patients. He is among the few bio-
chemical engineers who have successfully applied their reactor engineering skills
to a medical device and led a multidisciplinary team to progress to clinical trials
under FDA approved IND. His invention has spurred many similar efforts around
the world. He has been a major force in fostering the employment of self-
assembled tissue-like 3D structures for tissue engineering applications. His dem-
onstration of bile acid transport and cell polarization in such self-assembled liver
tissue-like structures is a masterpiece of engineering 3D tissue in vitro. His work
on bioreactor culture of human embryonic stem cells has attracted much attention
in a short while. The successful differentiation of rodent and human stem cells into
liver cells has led to over 500 citations. Through transcriptome analysis, he and
colleagues have defined the signature of the adult pluripotent stem cells. Once
again, this accomplishment demonstrates Dr. Hu’s ability to operate at the frontiers
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of biochemical engineering. In plant tissue engineering, he introduced quantifi-
cation of morphological features into the development of plant tissue cultures of
somatic embryos of carrots and the economically important Douglas fir. He was
one of the few biochemical engineers engaged in multi-dimensional complex data
analysis long before its importance was recently recognized in genomics and DNA
microarray applications. Together with his computer science colleagues, Dr. Hu
recently combined protein-protein-interaction network and transcriptome data
from human and mouse in a meta-analysis to shed light on the pluripotency of
stem cells. Again Dr. Hu is leading the way to open a new avenue for biochemical
engineering in stem cell culture. His conviction that a robust stem cell process
hinges on engineers’ ability to control cell fate through a better understanding of
cellular regulatory network will ring true.

II. Education

A. Textbook and Short Courses

Dr. Hu was instrumental in attracting Dr. Paul Belter (after his retirement from the
Upjohn Company) to the University of Minnesota. They collaborated with
Prof. Ed Cussler to develop a course which resulted in the first textbook on
‘‘Bioseparations’’. The publication of that book was timed perfectly to meet the
burgeoning educational needs of a rapidly expanding biotechnology industry.
He also authored a laboratory manual and developed a videotape entitled
‘‘Microcarrier Culture Techniques’’, both of which are widely used as teaching
aids. He created the international short course on Cell Culture Reactor Engineering
in 1986 at the infancy of utilizing cell culture for recombinant protein production.
This course has facilitated the career transition of many biotechnologists previ-
ously engaged in microbial fermentation to new opportunities in protein produc-
tion by mammalian cell culture. This course, which has been offered annually for
the last 25 years in the United States and periodically in other regions of the world
as well as on-site in industrial institutions (including Amgen, Merck, MedImmune,
Centocor, Genentech, Roche (Germany) and Novozymes (Australia)), has trained
well over 2000 professionals. It has also catalyzed the injection of biochemical
engineering fundamentals into industrial practice, which was generally regarded as
an art. The monograph (Cell Culture Technology for Pharmaceutical and Cellular
Therapy (2006)) he edited with Dr. Sadettin Ozturk is widely used by cell culture
professionals around the world.
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B. Students and Mentees

Dr. Hu has graduated 47 Ph.D. and 24 M.S. students. In addition, he has hosted
over 30 postdoctoral fellows or visiting scientists from abroad in his labs. All have
developed successful careers in various industrial and academic organizations.
Those devoted to education and research are all very proactive members of the
community, including Prof. Jorge Gonzalez (Argentina), Prof. Qin Meng
(Zhejiang University, China), Prof. Jae Hoe Kim (KAIST, Korea), Prof. Jonghan
Park (KAIST, Korea), Prof. Sarika Mehra (IIT-Bombay, India), Prof. Ziomara
Gerdtzen (University of Chile, Chile), Prof. Chang-Chun Hsiao (Chang Gung
University, Taiwan), Prof. Chetan Gadgil and Prof. Mughda Gadgil (NCL, Pune,
India), Prof. David Umulis (Purdue University), Prof. Manolis Tzanakakis (SUNY
Buffalo), and Prof. An-Ping Zeng (Hamburg University of Technology, Germany).
Many are now in leadership positions in the US and international pharmaceutical
and biotechnology companies including Abbott, Bayer, Biogen-IDEC, Bristol-
Myers Squibb, Centocor, Dupont, Eli Lilly, Genencor, Genentech, Genzyme,
Glaxo Smith Kline, Invitrogen, Merck, and Pfizer. Some of the industry notables
who have trained with Prof. Hu include Mr. Tim Dodge (Staff Scientist,
Genencor), Ms. Emily TY Tao (Senior Director, Genzyme), Mr. Matthew Scholz
(Corporate Scientist at 3M), Dr. Vaughn Himes (former VP of Operations,
Targeted Genetics, VP of Worldwide Manufacturing, Corixa; currently Executive
VP, Seattle Genetics), Dr. Hugo Vits (Director General, Shell Research Center,
Bangalore, India), Dr. M. V. Peshwa (former VP of Process Sciences, Dendreon;
currently Executive VP, Maxcyte, Inc.), Dr. Weichang Zhou (former Associate
Director of Fermentation and Cell Culture at Merck, currently Senior Director of
Commercial Cell Culture Development at Genzyme), Dr. Derek Adams
(Executive Director, Alexion Pharmaceuticals) and Mr. Stephane Bancel (CEO,
BioMerieux). The breadth of contributions of Prof. Hu’s former students is
certainly noteworthy: from design and construction of modern biotech manufac-
turing facilities to development of large-scale manufacturing processes for
production of antibodies, viral vaccines and vectors, engineered cell and tissue
products, as well as biologically engineered materials. Some of his students are
also actively working as physicians and surgeons at hospitals including Dr. Scott
Nyberg (Mayo Clinic), Dr. Wen-Je Ko (National Taiwan University Hospital), and
Dr. Bryce Pierson (Fairview Hospital).

III. Leadership and Service

A. Organization of Conferences

Dr. Hu was a co-founder of the Engineering Foundation Conference on Cell
Culture Engineering in 1988. Since its inception, the Cell Culture Engineering
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Conference series has served as the leading forum for the dissemination of cell
culture engineering knowledge and technology. Effectively using that forum,
Dr. Hu and his colleagues have taught the biotechnology community that cell
culture is no more difficult than microbial fermentation if fundamental biochemical
engineering principles are applied to design, operate and control cell culture
processes.

Dr. Hu also helped to organize numerous national and international conferences.
One meriting particular attention is the Engineering Foundation Biochemical
Engineering Conference X, Kananaskis, Alberta, Canada in 1997. This Conference
Series had been dwindling in attendance since the late 1980s. The late Professor Jay
Bailey took the helm of the Conference Series in 1995 to rejuvenate it. To ensure
that it would subsequently retain its vigor, Prof. Bailey and the advisory committee
recruited Dr. Hu to organize the 10th conference in 1997. The 1997 offering was a
resounding success in fundraising, in attracting international attendance, in
balancing academics and industrial participation, and in bringing biochemical
engineering fundamentals back into the program. This is another example of
Dr. Hu’s dedication to serving the community and his ability to lead with vision and
unequaled determination.

B. Professional Community

Dr. Hu served as the vice chair and chair of Division 15 (Food, Pharmaceutical,
Biotechnology and Bioengineering) of American Institute of Chemical Engineers
(AIChE). As in his other endeavors, we witnessed Dr. Hu leading the transfor-
mation of an organization in crisis with energy and vision. To streamline the
organization of the technical program for the national meeting, Dr. Hu has pro-
moted website information dissemination to allow for better coordination and
discussion. He devoted tremendous energy to revert the decline of division
membership. He helped steer the formulation of the Division’s relationship with
and the creation of the Society for Biological Engineers (SBE), and coordinated
the San Francisco AIChE annual meeting in 2003, then its most successful annual
meeting in many years. His devotion and energy was evident in the vitality of the
division during his stewardship. More recently, he, Prof. Miranda Yap and June
Wispelwey organized the Consortium for Chinese Hamster Ovary Cells Genomics.
The industrial members of the consortium also joined SBE as corporate sponsors,
thus financially stabilizing SBE in its critical early years. His contribution was
recognized by the distinguished service awards from both Division 15 and SBE.
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C. International Support

One of Dr. Hu’s passions is the promotion of international cooperation and
understanding. He is one of the most active biochemical engineers from the US in
the international arena. As one of the principal organizers of the Cell Culture
Engineering and Biochemical Engineering Conferences, he promoted conference
participation by scientists from emerging Pacific Rim countries. He has also
helped many academic institutions in Asian countries to establish or expand
research programs (e.g., Osaka University, National University of Singapore, King
Mongkut’s Institute of Technology, Thailand, Vietnam National University at Ho
Chi Minh City, and University of Sydney, Australia). Recently he organized the
cell culture training course at IIT Bombay, which attracted all key players in
India’s biotechnology industry.

Dr. Hu has distinguished himself by his research accomplishments, his lead-
ership and services to the profession. His un-rivaled contributions in the bio-
chemical engineering profession, in particular cell culture engineering, have had
far-reaching impact on academic research and the biotechnology industry. We had
the good fortune to be former members of his laboratory. Like his former and
present students and co-workers, we are grateful to him for his guidance and
friendship, not only during the time we spent in his laboratory, but also throughout
our entire careers. We have all benefited from his sharp scientific instinct, sound
judgment, his enthusiasm for applying engineering principles in solving modern
biology problems, and of course his boundless energy. As members of the
biotechnology industry and academic research institutions, we wish to thank
Wei-Shou sincerely for his seminal contributions and honor his outstanding
achievements in our profession. We wish him all the best and continued success in
his pursuit of applying engineering principles and fundamental approaches at the
frontiers of biochemical engineering and biotechnology.

Framingham, Massachusetts, USA, September 2011 Weichang Zhou
Hamburg, Germany, September 2011 An-Ping Zeng
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Preface

Mammalian cell cultures are the dominating production system of today’s bio-
pharmaceutic products. The increasing emphasis on product quality and the
demand for greater cost-efficiency and process robustness call for better funda-
mental understanding on cell, process and product. Whereas physiological
manipulation and bioprocess renovation have played a pivotal role to the success
of cell culture biomanufacturing in the past, genomic and systems approaches will
drive the next innovations in mammalian cell culture technology. Genome-wide
analysis of the genetic information, gene expression, signaling network and
metabolism, along with the integration of vast experimental data and mathematical
tools will afford a holistic and quantitative understanding of cellular processes and
lead to quality products and robust processes. Although somewhat lagging behind
life sciences and biomedicine, systems biology application to cell culture tech-
nology is gaining its momentum.

In this volume, we have gathered nine chapters written by authors from both
academia and industry which present recent development and different facets of
genomic and systems-biological approaches applied to mammalian cell cultures.
The first two chapters by Stahl et al. and by Castro-Melchor et al. deal with
transcriptomic analysis and methodologies of systems biology analysis of static
and dynamic gene expression data, respectively. Examples of their uses in
mammalian cell cultures are presented. The next two chapters by Gerdtzen and by
Niklas and Heinzle describe strategies and available tools for the modeling of
metabolic pathways and networks of mammalian cells, especially the method of
metabolic flux analysis. The following chapter by Schaub et al. presents an
interesting framework of advanced data analysis consisting multivariate data
analysis, metabolic flux analysis and pathway analysis for mapping of large-scale
gene expression data. This integrated data analysis approach was successfully
applied to the analysis and improvement of cultures of Chinese hamster ovary cells
in an industrial bioproduction process. For the production of recombinant phar-
maceuticals in mammalian cells the glycosylation of the recombinant proteins is of
paramount importance for their functions and efficacy. The next two chapters by
Berger et al. and by Hossler review the recent developments of analytic tools for

xix



the characterization of protein glycolylation, strategies for protein glycosylation
control in production processes and perspectives of genomics and systems biology
for understanding and enhancing protein glycolsylation control. For glycosylation
and many other key cellular processes in mammalian cells intracellular transport
and compartmentation are two key aspects which are however still not well
understood, at least not quantitatively and in mathematical models. The chapter by
Jandt and Zeng summarizes recent developments in simulation methods and
frameworks for describing intracellular transport processes. In the last chapter of
this volume Botezatu et al. describes methods for targeted genetic perturbation of
mammalian cells which is an essential part of an utmost systems biology approach,
namely the iterative process of perturbation, data generation, modeling, hypothesis
generation and verification by perturbation again. The authors go a step beyond
this by combining a synthetic biology approach for targeted and predictable
modification of cellular networks. Indeed, a combined systems analysis and syn-
thesis approach will lead to the next level of advances of mammalian cell cultures.

We thank the authors for their excellent contributions and hope that this volume
will give some impulse and inspiration to the genomics and systems biology of
mammalian cell cultures.

Winter 2011 Wei-Shou Hu
An-Ping Zeng
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Transcriptome Analysis

Frank Stahl, Bernd Hitzmann, Kai Mutz, Daniel Landgrebe,
Miriam Lübbecke, Cornelia Kasper, Johanna Walter
and Thomas Scheper

Abstract Transcriptome analysis technologies are important systems-biology
methods for the investigation and optimization of mammalian cell cultures con-
cerning with regard to growth rates and productivity. For the production of
recombinant proteins, knowledge of the expression conditions of the influencing
genes is a major issue in the improvement of cell lines by means of genome
engineering. This chapter presents two main techniques for transcriptome analysis:
microarray technology and next-generation sequencing. Protein-based methods are
also briefly outlined. Furthermore, the impact of these technologies on mammalian
cell culture improvement is discussed.

Keywords Cell culture � Transcriptome � Systems biology � Microarray � Next
generation sequencing

Contents

1 Introduction.......................................................................................................................... 2
2 Transcriptome Analysis Using Microarray Technology .................................................... 3

2.1 Fabrication of DNA Microarrays ............................................................................... 4
2.2 Design of Microarray Experiments............................................................................ 5
2.3 Principle of Microarray Technology.......................................................................... 7

3 Data Analysis....................................................................................................................... 8
3.1 Microarray DataAnalysis............................................................................................ 8
3.2 Exploratory Analysis .................................................................................................. 11

4 Transcriptome Analysis Using Next-Generation Sequencing............................................ 12
4.1 SOLiD System ............................................................................................................ 14
4.2 454 Sequencing System.............................................................................................. 15
4.3 Illumina/Solexa Sequencing Technology................................................................... 15

F. Stahl (&) � K. Mutz � D. Landgrebe � M. Lübbecke � C. Kasper �
J. Walter � T. Scheper
Institute for Technical Chemistry, Leibniz University,
Hannover Callinstr. 5, 30167 Hannover, Germany
e-mail: stahl@iftc.uni-hannover.de

B. Hitzmann
Fg Prozessanalytik und Getreidetechnologie, Universität Hohenheim,
Garbenstr. 23, 70599 Stuttgart, Germany

Adv Biochem Engin/Biotechnol (2012) 127: 1–25
DOI: 10.1007/10_2011_102
� Springer-Verlag Berlin Heidelberg 2011
Published Online: 28 September 2011



4.4 RNA-Seq ..................................................................................................................... 16
4.5 Applications ................................................................................................................ 16

5 Protein Microarray Technologies........................................................................................ 17
6 Impact of Transcriptome Analysis on Strain Improvement .............................................. 19

6.1 High-Producing Cells ................................................................................................. 20
6.2 Cell Cycle Studies ...................................................................................................... 20

7 Concluding Remarks ........................................................................................................... 21
References ................................................................................................................................. 22

1 Introduction

Several sophisticated technologies for genome-wide expression monitoring are
available and widely used since the development of microarray technology in the
1990s and the complete sequencing of the human genome. The technical and
experimental possibilities for studying gene expression offer a snapshot of the
entire genome with a resolution that would have been inconceivable some years
ago. The transcriptome displays a complete collection of messenger RNAs present
under defined conditions. RNA synthesis is a central process in the flow of genetic
information in eukaryotic and prokaryotic cells, and isolated RNA has therefore
become the target for many analytical and diagnostic techniques. The availability
of simple and efficient systems for the production of synthetic RNA has likewise
led to the development of techniques for studying the interactions of biomolecules
with defined RNA sequences. There is also an increasing interest in the clinical use
of nucleic acids. The in vitro generation of randomized RNA transcripts has led to
breakthroughs in the generation of high-throughput screens to identify sequences
that may have enzymatic or therapeutic applications.

Traditional gene expression analysis involves techniques such as:

• RT-PCR
• Northern blotting
• Nuclease protection assay.

More progressive techniques are:

• Differential display
• Substractive hybridization
• Representational difference analysis (RDA)
• Expressed sequence tags
• cDNA fragment fingerprinting
• Serial analysis of gene expression (SAGE)

These methods enable the discovery of unknown differentially expressed genes.
The bottleneck of the traditional methods is the limitation in the number of genes
which can be analyzed in parallel. While conventional methods focus on the
examination of single genes, a DNA chip experiment delivers a complete gene
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expressions pattern of the cell. This high degree of parallelization of biochips
displays a great advantage over classic molecular biological methods. During the
last decade, more and more microarrays containing probes for each annotated gene
in the genome have become commercially available for completely sequenced
organisms. For metagenomes and for unsequenced genomes, transcriptome analysis
by new-generation sequencing (e.g. 454 or Solexa) is state of the art. Therefore, this
chapter describes microarray technology and next-generation sequencing in detail.
The impact of transcriptome analysis on cell culture techniques and improvement
of productivity will be discussed from the user’s point of view.

2 Transcriptome Analysis Using Microarray Technology

DNA microarrays, developed to determine gene expression levels in living cells,
have revolutionized the way scientists study gene expression [1–3]. Since they
enable the analysis of the mRNA levels of a large number of genes in a single
assay, DNA microarrays have become standard tools for gene expression profiling.
For the understanding of biological systems with up to 30,000 genes, the mea-
surement of the complete set of transcripts of an organism is necessary. Thus, an
ideal tool for such measurements is the DNA microarray technology, a large-scale
and high-throughput application utilizing amino-modified oligonucleotides or PCR
products arrayed on silylated microscope slides with high-speed robotics. These
microscope slides containing many immobilized DNA samples—so-called tar-
gets—are typically hybridized with fluorescently labelled cDNA probes. This
results in a highly parallel, addressable, and miniaturized format, in contrast to
traditional molecular-biology methods.

Applications for this technology include, amongst others, the monitoring of
gene expression [4, 5], mutation detection [6, 7], clone mapping, drug develop-
ment [8], tailored therapeutics, single nucleotide polymorphism (SNP) research,
detection of genetically modified organisms (GMO) [9], and high-throughput
screening in general. DNA microarrays can considerably simplify and accelerate a
number of expensive diagnostic methods and have a profound impact on biological
research [4], industrial production [4], medicine [10], diagnostics [11], environ-
mental research [12, 13], bioprocess optimization [14, 15], and pharmacology [8],
and will likely be used as the biosensors of the future. Microarray technology
represents a powerful tool that allows researchers to link hypothesis testing and
data. The data generated by microarray experiments can provide a large amount of
information about important cellular pathways and processes.

The complete DNA sequences of various microorganisms which have been
determined in the past few years can be applied to optimize strains as well as
recombinant protein production. Strain optimization involves measurement of
genome-wide mRNA levels in wild-type and mutant strains using DNA micro-
arrays. Furthermore, microarray analysis can help to identify unknown genes
required for recombinant protein production.
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Bioprocess optimization using microarrays facilitates metabolic control analy-
sis, modeling, and molecular biology methods to create new mutants and strains,
e.g. with an optimized protein production rate [16]. Microarrays allow the inves-
tigation on a genomic scale enabling the qualitative and quantitative character-
ization of the cell metabolism. A better understanding of the impact of recombinant
protein production can thereby be achieved using the generated ‘‘snapshot’’ of the
actual cellular composition and activity. Additionally, the knowledge of the
interaction of host cell metabolism with recombinant protein production is
improved and contributes to process optimization.

By applying high-throughput screening technologies, it is possible to screen
large numbers of strains that are produced by random mutagenesis and to deter-
mine the valuable ones containing beneficial mutations. By going through several
rounds of random mutagenesis on the one hand and screening for the desired
phenotype on the other, this process will thus identify those strains with consid-
erably improved properties for production.

Microarrays play a pivotal role in modern biological sciences. They enable the
utilization and analysis of a great amount of genetic information, for example
derived from the human genome project. As a result, microarrays facilitate the
understanding of gene regulation and gene function. The microarray technology
enables the simultaneous analysis of complex genetic changes (the so-called
‘‘differential gene regulation’’) by its high degree of parallelization. This can be
achieved by parallel measurements of thousands of interactions between mRNA-
derived molecules and genome-derived target molecules, thereby producing large
amounts of raw data.

2.1 Fabrication of DNA Microarrays

Microarrays use modified glass slides as substrate enabling high spot density (spot
diameter\200 microns). Various methods for the automated production of DNA
microarrays are used at present. The oligonucleotides can either be generated
directly in situ on the microarray surface in a so-called on-chip synthesis or can be
synthesized separately followed by an immobilization to the surface using a so-
called DNA arrayer. There are three primary technologies: photolithography, ink
jetting, and contact printing, and variants thereof. Each of these manufacturing
technologies has specific advantages and disadvantages.

The photolithographic approach relies on the in situ synthesis of 20–30mer
oligonucleotides using photomasks (Fig. 1.1) [17–19]. By utilization of photolabile
protection groups, each probe is individually synthesized on the surface of the
microarray at a high density. Photolithography was developed by Fodor et al. [17]
and commercialized by Affymetrix.

Affymetrix uses several 25mer oligonucleotides per gene in a perfect match and
a mismatch manner, whereas Agilent uses one 60mer oligonucleotide per gene.
In contrast, the ink jetting and contact printing methods attach pre-synthesized
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DNA probes to the chip surface. While the in situ probe synthesis requires
sophisticated and expensive equipment, the contact and non-contact dispensing
methods have made DNA microarrays affordable for academic research labora-
tories. In addition, the direct synthesis on the chip is less precise and the products
cannot be sufficiently validated. In contrast, pre-synthesized oligonucleotides can
be validated and thus produced at a high quality.

Since 1996, many DNA arrayers have become commercially available.
Currently, the glass slide DNA microarrays represent the most popular format for
gene expression profiling experiments.

2.2 Design of Microarray Experiments

The design of scientific experiments is an art of balancing several considerations
including cost, equipment, and accuracy. For a given experiment, there would not
be one ‘right’ design. Instead, different designs for the same scientific question
may be chosen. Nevertheless, some commonsense principles are broadly accepted
[20].

First of all, depending on the nature of the starting material, both, biological and
technical replicates are to be selected. The biological variability of a given pop-
ulation needs to be calculated to enable conclusions from the investigation of a
single measured effect on the entire target population of interest. Concretely, this
means that, for example, investigating a nutritional supplement in a given animal
model requires the measurement of several different animals (biological repli-
cates), whereas the same effect in HepG2 cells can be tested on technical
replicates.

Secondly, microarray experiments can be performed as single-component
(colour) or two-component (colour) assays. Experimental standard designs of two
colour assays are the so-called dye swap design (Fig. 1.2a), where the

Fig. 1.1 Photolithographic process for the in-situ synthesis of oligonucleotides on microarrays
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hybridization is repeated with a reverse labelling and the dye effect can therefore
be minimized, and the so-called common reference design (Fig. 1.2b), where for
every hybridization the same reference is always labelled with one dye and the
samples of interest (e.g. different patients, cell lines or different time points) are
labelled with the other dye. The most economic design, because a minimum
number of chips is needed, is the so-called loop design (Fig. 1.2c). Here each
sample is hybridized to each of two various different samples with different dye
combinations [21–23].

The advantage of the two-component system is its independence of the absolute
amount of the fixed DNA, as only the relative ratios of the Cy3 versus Cy5 signal
intensities are analyzed for each spot separately. In contrast, one-component

Fig. 1.2 Design of microarray experiments in two-component systems. Competitive hybridization
of two labelled cDNA samples to the same microarray. The two mRNA targets are reverse
transcribed into cDNA, labelled with different fluorescent dyes (usually green fluorescent
dye, Cyanine 3 (Cy3, dye 1) and a red fluorescent dye, Cyanine 5 (Cy5, dye 2) mixed in equal
proportions and hybridized to the spotted DNA probe molecules on the microarray surface.
a Dye-swap design. b Common reference design. c Loop design
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systems (e.g. Affymetrix GeneChips) require larger numbers of hybridizations
because of their higher array-to-array variance.

2.3 Principle of Microarray Technology

On a single microarray chip, a large set of genes is arrayed in a compact and
regular manner. Due to the small size of the spots (\200 lm) several thousands of
different oligonucleotides can be immobilized on one single slide. Each of these
so-called probes binds to the complementary nucleic acid (‘‘target’’) isolated from
the test and/or reference sample. The comparison of the binding efficiencies
between two samples provides an easy and efficient survey of gene transcript level
changes for numerous genes in a single experiment. Total or messenger RNA is
used as starting material for target preparation. RNA isolation is one important
step in the array experiment. Low quality RNA leads to poor hybridization results.
In order to prepare the target for hybridization, first-strand cDNA is synthesized
enzymatically from total RNA using oligo-d(T) primer or random primer.
To exclude interference within the labelling reaction and during hybridization,
DNAse I digestion of the isolated RNA is strongly recommended after RNA
extraction. During reverse transcription a fluorescently labelled nucleotide
(Cy3-dC/UTP or Cy5-dC/UTP) is incorporated into the nascent first-strand cDNA.
Subsequently, the template RNA is degraded by chemical treatment and the first-
strand cDNA is separated from primers, unincorporated nucleotides, and RNA
debris. Two sets of differently labelled cDNAs can be further combined and
co-hybridized to the same array under stringent conditions. After hybridization, the
unbound and non-specific bound cDNA is removed from the array by thorough
washing. After subsequent scanning of the array with a confocal array scanner, the
fluorescence intensity of each individual spot is determined and converted to
grayscale values. Following normalization of individual grayscale values for each
spot, the expression ratio of each gene on the array can be calculated semi-
quantitatively. Data normalization is performed by using non-linear regression
procedures.

A simple array experiment consists of five basic steps (Fig. 1.3):

1. The oligonucleotides are designed and spotted onto a substrate.
2. The sample RNA is isolated.
3. The cDNA is synthesized, a procedure that also involves fluorescent labelling

for later detection.
4. The labelled cDNA target molecules are hybridized to the probe oligonucleo-

tides on the substrate.
5. The hybridization results are imaged and analyzed.
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3 Data Analysis

3.1 Microarray Data Analysis

Microarrays promise dynamic snapshots of cell activity, but microarray results are
unfortunately not straightforward to interpret. The generation of complicated data
sets and the difficulty of interpreting them requires a sound experimental design
and particularly a coordinated and appropriate use of statistical methods [24, 25].
Tools for the efficient integration and interpretation of large datasets are needed.
Despite the vast amount of literature available on microarray analysis, there is still
a lack of standards for comparing and exchanging such data. Therefore, Minimum
Information About a Microarray Experiment (MIAME) standards [26] have
been established as a prerequisite for the worldwide comparability of gene
expression data, and there are several URLs where these standards are available
(e.g.http://www.ncbi.nlm.nih.gov/geo/).

For the planning and evaluation of microarray experiments, bioinformatics
supply various procedures and algorithms [27]. One reason for the diversity is that
the microarray experiments themselves are not performed in a consistent way but
in different ways, depending on the objective of a project. In Fig. 1.4 the different
contributions of bioinformatics are presented for the planning and evaluation of
microarray experiments. They will be discussed below in detail. During all these
steps, a fault detection and treatment is performed, which will not be discussed

Fig. 1.3 Interaction of labelled cDNA target molecules with molecules immobilized on a glass
array
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here. The first step is the design of the DNA microarray experiment. Here, for
example, bioinformatics algorithms are used to select the sequence of oligonu-
cleotides, to ensure that they exhibit high specificity for one single mRNA of the
whole transcriptome. Software is used to specify the positioning of spots on the
chips, in order to indentify the corresponding gene in the evaluation procedure.
Sometimes just the effect of an active pharmaceutical ingredient on a cell is
investigated. In this case, a single chip experiment can be performed, where the
transcriptomes of untreated and treated cells are compared to each other. However,
to eliminate the influence of the dye, the dye-swap experiment is carried out, as
discussed above. If replicates of spots are used, the positions of these replicates on
the chip have to be considered carefully, to get the maximum information. All
these issues are specified during the design of the microarray experiment.

After the microarray has been hybridized it must be scanned to acquire the raw
data for further evaluation. The scanning is performed for the two dyes separately,
measuring the fluorescence signal for each dye and obtaining two grayscale images
for evaluation. The first step in analysis is the detection of the spots. Here, different
segmentation procedures such as fixed circle, adaptive circle and adaptive shape
segmentation can be applied. In the first and second procedures, a circle with a
fixed or a variable radius is located optimally around a spot and the pixel intensity
in the inner circle area is used to quantify it. The adaptive segmentation procedure
does not postulate a circle shape but an arbitrary shape to locate the spot area for
quantification [28]. To take into account changes of in the background over the

Fig. 1.4 Typical tasks and techniques of bioinformatics for the evaluation of microarray
experiments
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chip, this can be usually determined for each spot separately by using a kind
ofo-ring around a spot whose inner radius is clearly larger than the radius of the
spot area. The outer radius is chosen, so that the ring will not interfere with other
spots. The intensity in the ring will represent the background of the corresponding
spot. For the quantification of the background and spot intensity different quan-
tities can again be used, such as median, modal or mean values of the intensity.
The difference between spot intensity and background intensity is a measure of the
expression degree of the corresponding gene. In this way systematic variations in a
DNA microarray experiment such as slide heterogeneity, spotting variation,
changing background signals etc. can be compensated for. Image analysis software
such as imaGeneTM and GenePixTM software can be used for this evaluation.
However, due to the fact, that there are many variabilities from the harvesting of
the mRNA to this quantified value, the degree of expression degree obtained
cannot be regarded as an absolute measure. Therefore, at least two states of cells
are investigated simultaneously (e.g. treated and untreated) whose mRNAs are
labelled differently. The values obtained are evaluated relative to each other.
Because the mRNAs obtained are treated almost in the same way (except for the
dye used for labelling), the ratio of the values gives a relative measure to each
other, i.e. the expression change.

However, the labelling as well as the fluorescence intensities of the two dyes are
not exactly the same. A normalization procedure is therefore required, which is
one of the most important steps during the evaluation. Applying normalization
procedures, results from different experiments are made comparable and technical
imperfections are compensated for. If housekeeping genes are available, they can
be used for normalization. Housekeeping genes are genes whose products are
necessary for fundamental cell maintenance and which are transcribed at an almost
constant level. Therefore, it can be assumed that they will not change their
expression grade under the situations investigated. For these genes the expression
as well as the quantified expression grades must be the same. Thus, all expression
values of one evaluated image can be transformed by using a multiplication factor
in such a way that after normalization the expression values of the housekeeping
genes of the two images (representing the transcriptomes of treated and untreated
cells) are the same. Then the ratio of the corresponding grade should give the
correct change in expression.

If a whole genome chip is under investigation, another normalization procedure
can be carried out. Under the assumption that the overall expression of the mRNA
is the same for the treated and untreated cells, the sum of the expression grade of
all genes must be the same for both cases. Therefore, each expression grade is
divided by the sum of the expression grades of all corresponding genes (as a
consequence, the sum of the transformed grades will then be 1). After the trans-
formation, the individual ratios are calculated as mentioned before and will give
the change in expression.

If the expression change is calculated in this way, it has the disadvantage that a
twofold upregulated (ratio = 2) and a twofold downregulated (ratio = 0.5) gene will
be characterized by different numerical data. If the logarithm with respect to the
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base 2 is calculated, then for a twofold upregulated gene the ratio is 1 and for a
twofold downregulated gene the ratio is -1. The absolute values are the same for
both cases. A symmetric distribution for up-and downregulated genes is therefore
obtained. The log2(ratio) obtained with the normalized expression grades are used
as expression levels.

A further normalization procedure based on logarithms is frequently used. Here
a special xy plot is considered, called an MA plot. In this plot the ordinate values
represent the logarithm of the ratio of the corresponding expression grades and the
abscissa values represent the logarithm of the multiplied corresponding expression
grades. Then a linear regression or alternatively a locally linear regression
(LOWESS regression) is carried out with the data. The theoretical values of the
regression curve are subtracted from the ordinate values, so that afterwards
the MA plot is more symmetric to the abscissa. Further normalization procedures
are described in the literature [29].

After all normalization procedures are performed, the log2(ratio) is evaluated to
give expression levels. Here, further analysis depends on whether replicates of
spots have been considered or not. If the expression of a gene is represented by a
single spot, then the twofold rule is applied, which should be considered just as an
auxiliary release. Using the twofold rule an expression level greater than 1 is
considered as upregulated, and an expression level less than -1 is considered as
downregulated. However, this is difficult to interpret if the expression grades of
both states (from treated and untreated cells) are small. Replicates should be
therefore be performed. This offers the possibility of applying the t-test for the
decision of a differently expressed gene.

If the response of cells to different conditions (for example whether they
respond to different concentrations of an active pharmaceutical ingredient) is under
consideration, then, as described above, replicates should be performed and
multivariate evaluation techniques such as cluster analysis, principal component
analysis (PCA) or self-organized maps (SOM) should be applied to elucidate the
information gained from the chips. If replicates are available, then analysis of
variance (ANOVA) is the best choice.

All these multivariate data evaluation techniques do not require explicit
knowledge of transcriptome data analysis and will not be discussed here in detail,
but can be found in general statistical textbooks.

3.2 Exploratory Analysis

The next step in the analytical pipeline is usually gene expression clustering: a
preliminary examination of data to confirm that groups are homogeneous. Many
studies aim to find unknown co-regulated genes. Such studies using multi-
dimensional scaling and clustering can be summarized as exploratory analysis.

Various clustering techniques can be applied for the identification of patterns in
gene expression data [30]. Several software tools for cluster analysis have been
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developed, such as GeneSightTM from Biodiscovery or Eisen-cluster. Most cluster
analysis techniques are hierarchical, where the classification results in nested
classes resembling a phylogenetic tree. Non-hierarchical clustering techniques
involve partitioning of objects into different groups, such as k-means clustering.

The concluding section of analysis deals with methods and problems in deter-
mining differentially expressed genes between groups of samples, covering for
example t-tests or different multiple-testing corrections as well as analysis of var-
iance. The purpose of finding differently expressed genes can be achieved by sta-
tistical tests rather than cluster analysis. Finally, the results as well as an additional
indication of the statistical reliability are given in order to allow further, more
precise studies of gene expression (e.g. qRT-PCR) or the publication of these
microarray results as evidence for changes in gene abundance. In general, it is
difficult to analyze data from low-density microarray experiments with commer-
cially available programs. Low-density microarrays consist of a choice of a few
relevant genes, thus offering the possibility of a very individual chip design in order
to investigate specific experimental questions. One disadvantage of low-density
microarrays is that the data analysis cannot be performed by commercial software.

Following the data analysis, k-means clustering could be conducted depending
on the experimental design. Furthermore, the resulting files include not only
information about the microarray analysis but also about the pathways of known
genes on the microarray coming from the KEGG (Kyoto Encyclopedia of Genes
and Genomes) database.

4 Transcriptome Analysis Using Next-Generation
Sequencing

Microarray technology has begun to reach its limitations [31]. It shows a relatively
small dynamic range due to background, and a limited spot density. In addition,
mismatches and cross-hybridization significantly affect the results [32]. Further-
more, the comparison between different experiments usually needs complex bioin-
formatical normalization algorithms [33]. In contrast to microarrays, which provide
only relative mRNA levels, sequencing methods have major advantages with regard
to true quantification and they offer statistically complex data analysis [34, 35].

In the past, genetics was only an observational science. But the invention of the
DNA sequencing technique was a revolutionary point for this biological science
and represents the starting point for modern genomics which can enable mecha-
nistic understandings. DNA sequencing means the assignment of the sequence of
nucleotides in a DNA molecule. To date, the genomes of over 1,000 different
organisms have been analyzed1 in total and enhancements in DNA sequencing
methods are increasingly used for transcriptome analysis to replace DNA

1 http://www.ncbi.nlm.nih.gov/guide/genomes/.
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microarray technology. Today, various methods for the achievement of sequence
information are well established. Most of them are based on the dideoxy method
drafted by Friedrich Sanger in the 1970s [36], which uses an enzymatic reaction.
Starting from a short known primer, DNA polymerase elongates the comple-
mentary strand. The use of four differently labelled dideoxy-nucleotides leads to
the identification of the unknown DNA sequence.

Recent developments in sequencing technology have led to a new key tool for
transcriptomics: the pyrosequencing technology [37], which offers opportunities for
accelerated sequencing by highly parallel approaches (Fig. 1.5). In analogy to Sanger
et al., pyrosequencing-based next-generation sequencing methods use a DNA
polymerase for synthesis of the complementary DNA strand. The incorporation of
nucleotides during DNA sequencing is monitored by bioluminescence in real time.
A luciferase-based multi-enzyme system generates visible light after nucleotide
binding, which can be detected. The four different nucleotides are added succes-
sively, so that only the binding of the compatible nucleoside triphosphate generates a
light signal. This shows whether a known nucleotide is incorporated or not.

The pyrosequencing technology was invented in 1986 based on the idea of
following nucleotide incorporation by using released pyrophosphate (PPi) to
generate a signal.

Fig. 1.5 Pyrosequencing is a genetic analysis based on sequencing by synthesis. It delivers
explicit sequence data within a few minutes
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The release of an equimolar amount of PPi is a natural process during the
binding of a nucleotide to the 30 end of the primer, which is used as the starting
point of sequencing. The multi-enzyme system mentioned above consists of DNA
polymerase, ATP sulfurylase, luciferase and apyrase. After incorporation and
release of PPi, ATP sulfurylase catalyses the conversion of the PPi to ATP in a
quantitative reaction.

The luciferase uses the ATP for catalyzing the conversion of luciferin to
oxyluciferin. Within this reaction visible light is emitted, which can be detected by
a CCD camera [37]. A special computer program displays the recorded data as
peaks in a diagram. Free ATP and nucleotides are degraded by the apyrase. This
disables light emission and regenerates the reaction solution. The complete
enzymatic process can be performed in a single well, offering a fast reaction time
of approximately 20 min per 96-well plate [37]. It is possible to determine the
DNA sequence by computer-assisted analysis of the detected light signals, because
of the consecutive addition of the four different dNTPs comparable to the well-
known Sanger protocol [38]. Besides Sanger sequencing, pyrosequencing is the
only method which is currently commercially available [39]. Pyrosequencing is
applied in the analysis of single-nucleotide polymorphisms (SNPs), as well as tag
sequencing and whole genome sequencing [37]. Beyond microarrays, next-gen-
eration sequencing is pushing transcriptomics further into the digital age [40].

Although those next-generation technologies generate many short DNA frag-
ments with reduced time and costs [41], sequencing of a whole vertebrate genome is
still an extensive task. Transcriptome sequencing of cDNA has the advantage that
the templates are of relative small size. This enables high-throughput applications
of gene expression profiling, genome annotation or discovery of non-coding RNA.
Miscellaneous data offer a parallel analysis of gene expression, genomic loci
structures and, e.g. SNPs [42]. At present, three popular next-generation platforms
support gene expression profiling: SOLiD, Solexa and 454 Sequencing System
[40]. In the following section these platforms are presented in detail.

4.1 SOLiD System

SOLiD is the acronym for ‘‘Sequencing by Oligonucleotide Ligation and Detec-
tion’’ and is available from Applied Biosystems, Inc. (Foster City, CA, USA). The
underlying principle is sequencing by ligation. In this method, DNA fragments of
the sample to be sequenced, modified with internal and external adapters, are
coupled to magnetic microparticles. The adapters are cleaved and DNA rings are
formed by ligation of the adapter ends. The rings are then split again at defined
positions at the left and right domain of the adapter. The first few bases of the
adherent end domains are sequenced afterwards and new corresponding adapters
are ligated to the ends. The new adapters allow the subsequent attachment of the
fragments to the microparticles and amplification by emulsion PCR. After accu-
mulation of the particles, octamer degenerated oligonucleotides are hybridized to
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the particles. These oligonucleotides are each labelled with a different fluorescent
dye after the 5th base. Detection then takes place, followed by elimination of the
last three bases after the analyzed nucleotide. By repeating this procedure in
further cycles, the 10th and 15th bases will be identified. Other steps with shorter
primers lead to the detection of the positions 4, 9, 14 and so on.2

4.2 454 Sequencing System

The 454 sequencing technology is the primary next-generation method in trans-
criptomics. The 454 Sequencing System by Roche Diagnostics Corporation
(Branford, CT, USA) is an ultra-high-throughput system. It is the first next-
generation sequencing technology released to the market [42] and can be described
as pyrosequencing in high-density picoliter reactors. DNA fragments received by
shearing are attached to streptavidin beads captured into separate droplets in an
emulsion PCR. The droplets form small amplification reactors [43]. Then, any
bead is transferred into a picoliter plate and analyzed by pyrosequencing. The
instrument can sequence up to 120 million bases in a time of about 10 h. Limited
by the pyrosequencing chemistry used, the single reading frames (250 nt) are
considerably shorter than with Sanger technology (600 nt), but up to 400,000
reactions can be performed in parallel. With more than 100 research publications
[42], it is the most widely published next-generation platform.3

4.3 Illumina/Solexa Sequencing Technology

This technique is based on a two-step mechanism, where amplification takes place
first. Shear-stressed DNA fragments are tagged with different so-called ‘‘dense
lawn’’ primers as adapters at both ends of their chain. Together with both com-
plementary primers, all molecules are immobilized randomly to the surface of flow
cell channels. DNA fragments hybridize with the complementary primers in a
bridging way to start solid-phase bridge amplification immediately and the frag-
ments become double-stranded. With further steps consisting of denaturation,
renaturation and synthesis, a high density of equal DNA fragments is generated in
an extremely small area. Several million of these dense clusters of double-stranded
DNA are synthesized.

The second step is the real sequencing reaction. All four dNTPs labelled with
different dyes and primers are added and successively incorporated by a DNA
polymerase. After washing steps, a high-definition image is generated by laser

2 www.appliedbiosystems.com.
3 www.454.com.
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excitation from each cluster. The identity of the first base is recordable. The
elimination of the 30 blocked terminus and the dyes follows. Within each new
cycle, the DNA chain is elongated and more images are recorded for analysis. Here
the reading frame is tenfold smaller (30 nt) than with common pyrosequencing.
The whole system has is closely related to the method from Helicos BioScience.

Applications of this method are sold by both Illumina, Inc. (San Diego, CA,
USA) as well as Solexa, Inc. (Hayward, CA, USA). Today the Genome Analyzer
IIx is available on the market. It can be used for common DNA sequencing as well
as for transcriptome analysis such as RNA-Seq, tag profiling or microRNA
discovery.4

4.4 RNA-Seq

The transcriptomics alternative to pyrosequencing technology is called short-read
high-throughput sequencing or RNA-Seq [41]. In recent years, RNA-Seq has
rapidly emerged as the major quantitative transcriptome profiling system [13, 44].
RNA-Seq has been used, for example, for the global profiling of expression levels
in human embryonic kidney and B cells [45], or for identification of differently
expressed genes in mouse embryonic stem cells [46] and also for quantification of
the whole mouse transcriptome [47]. Moreover, structural information or alter-
native splicing forms can be detected with this method [41].

Unlike microarrays, RNA-Seq can evaluate absolute transcript levels and detect
novel transcripts and isoforms. As a consequence, it can be used to determine
expression levels more precisely than microarrays [48]. Microarrays, on the other
hand, have the power to measure the expression of thousands of genes in parallel,
but they are not able to display the coding sequences of the transcripts. The results
are calculated from indirect hybridization data, which is gives rise to reproduc-
ibility and comparability problems [42]. One great advantage of RNA-Seq com-
pared to microarrays is the possibility of capturing transcriptome dynamics across
different cell culture conditions without normalization of data sets. Therefore,
RNA-Seq is the method of choice in projects for transcript discovery, especially
the analysis of metagenomes.

4.5 Applications

The major application area for next-generation sequencing technologies is bio-
medical research associated with key goals like ‘‘the USD1000 genome’’ [49].
Next-generation sequencing is used for the detection of sequence variations within

4 www.illumina.com.
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an individual genome such as SNPs, deletions, insertions, or structural changes
[50]. Here, RNA-Seq is typically used for the analysis of non-coding RNAs as
crucial regulators [51].

Secondary next-generation sequencing was adopted for high-throughput
research performed mostly by microarrays. To date, it has been possible to gen-
erate transcriptome sequencing libraries for important cell cultures for recombi-
nant protein production, e.g. Arabidopsis thaliana, Caenorhabditis elegans and
human cell line transcriptomes were successfully interrogated with 454 technology
[52]. For HeLa cells Illumina technology was used [53]. The understanding of
whole transcriptional networks was also enabled by RNA-Seq. Examination of
small non-coding miRNAs allows a global view of the transcriptome [48].

A major focus of systems-biotechnology work is the quantitative understanding
of molecular principles behind protein synthesis, modification and secretion
derived from basic production strains as well as mutants and rationally engineered
strains. Next-generation sequencing provides the tools for rationalize inverse
metabolic engineering approaches so that they can be implemented in future into
rational system-wide modeling and optimization strategies [54]. The functional
complexity of a transcriptome cannot be fully elucidated with expressed sequence
tags and microarrays. RNA-Seq can reveal more precisely the boundaries of
untranslated regions at single nucleotide resolution and is useful for analyzing
complex transcriptome and sequence variations, e.g. alternative splicing or gene
fusion [55].

Additionally, metagenomics is an area of biological sciences concerned with
acquisition of the whole genomic information of a biotope. Several microorgan-
isms cannot be cultivated in a laboratory. To identify them without a cultivation
process, metagenomic approaches can be performed. This can enhance knowledge
of biodiversity or could lead to new biotechnological and pharmaceutical products
[56]. Thus, next-generation sequencing can also raise metagenomics to a new level
[56]. In this context, future analysis of mRNA levels under different conditions or
in different cell types can be assessed by analysis of hybridization intensities and
by application of methods using sequenced cDNA fragments, and both techniques
will help to improve production output of cell cultures by optimizing cell growth
and genetic activity.

5 Protein Microarray Technologies

Since the determination of the complete DNA sequences of a number of organ-
isms, from bacteria to man, and the invention of new techniques like microarrays
for monitoring biomolecular interactions, important milestones have been
achieved in genomic and proteomic research. The results of such high-throughput
screening approaches can change our fundamental understanding of life’s cellular
processes on a molecular level. However, gene expression analysis is not sufficient
to predict the function of a protein. Monitoring protein interactions is an extremely
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complex issue because the proteome is the quantitative representation of the
complete protein expression pattern of a cell, tissue, organ or organism under
exactly defined conditions.

Ideally, the analysis of the proteome delivers the complete available set of all
proteins currently present in an organism. This data cannot be obtained on the
transcriptome level, since no straightforward correlation exists between the
amount of mRNA and the actual amount of protein. Parameters like mRNA sta-
bility, protein degradation, posttranslational modifications and others prevent a
statement of the actual amount of protein based on transcriptome analysis. How-
ever, this information is of utmost importance, making a high-throughput analysis
of the proteome necessary. One attractive method is the use of protein microarrays,
which consist of a solid support, e.g. glass or synthetic material, with a modified or
coated surface. Using special printers (preferably non-contact printing heads),
capture probes—which may be proteins, peptides, receptors, enzymes or anti-
bodies—are transferred to this surface in the form of micro spots (\200 lm) in a
regular manner. Every micro spot contains only one kind of capture probe (in most
cases, antibodies). These immobilized capture probes are able to bind their cor-
responding target molecule from a complex solution.

Different formats of protein microarrays are available. In the forward phase
format, antibodies immobilized on the microarray surface are used as capture
probes for their target. Since it is possible to immobilize many different antibodies
on one single microarray, the forward phase format enables the parallel detection
of many different targets within a complex sample. One disadvantage of the for-
ward phase format is the necessity to label the target proteins. This labelling
procedure may alter the composition of the sample, different proteins are labelled
with varying labelling efficiencies, and the labels introduced may mask the pro-
teins’ epitopes essential for binding to the immobilized antibody.

In contrast, the reversed phase microarray offers the possibility of detecting
unlabelled proteins. In this format, the protein of interest is directly immobilized
onto the microarray surface and probed with fluorescently labelled detection
antibodies. While this method allows the detection of the protein of interest in
hundreds of different samples in parallel, its major limitation is the binding
capacity of the microarray surface, resulting in a low dynamic range of the assay.

In the so-called sandwich format, capture antibodies are immobilized on the
microarray surface and the binding of the corresponding protein is detected via
labelled detection antibodies (Fig. 1.6). Therefore, for each target protein, two
antibodies binding to different epitopes of the target are required. Sandwich-based
microarrays avoid the difficulties associated with labelling reactions and exhibit
high sensitivity [57]. Moreover sandwich assays are known to be highly specific,
since the target must be recognized by two different antibodies.

The direct extrapolation of DNA microarray techniques to protein microarrays
is limited due to the sensitive nature of the printed antibodies, which have to keep
their native conformation in order to maintain activity. The fabrication of protein
arrays is therefore particularly challenging and protein arrays lag behind in
development because of the instability of the immobilized protein [58]. One
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approach to overcoming this restriction is the utilization of a three-dimensional
matrix for immobilization of the capture antibodies [59, 60]. In this structural
environment, proteins are more likely to maintain their active configuration than
on planar glass supports [58, 61]. Nitrocellulose membranes have shown their
suitability for protein immobilization in Western blotting and the long-term sta-
bility of immobilized proteins on this support is known from immuno-diagnostic
tests [62, 63]. Nitrocellulose membranes are therefore becoming the microarray
substrate of choice in protein microarray applications [64, 65].

Another approach to overcoming the limitations caused by the low stability of
immobilized antibodies is the utilization of more stable capture probes. In this
context, aptamers have been investigated as an alternative to antibodies [66].
Aptamers are short single-stranded synthetic DNA or RNA oligonucleotides that
can bind to a wide range of target molecules, including proteins.

As nucleic acids, aptamers can undergo denaturation, but the process is
reversible. As a result of this stability and the possibility of automated selection of
aptamers via systematic evolution of ligands by exponential amplification (SE-
LEX), these oligonucleotides are highly promising capture molecules for protein
microarrays.

6 Impact of Transcriptome Analysis on Strain Improvement

Mammalian cells in culture can be differentiated into two groups: primary and
secondary cells. The latter ones are also known as immortal cells or cell lines.
Primary cells are isolated directly from blood or tissue samples. These cells have a

Fig. 1.6 Comparison of DNA, antibody and aptamer microarrays. An aptamer microarray
consists of spotted DNA probes as capture molecules for protein detection
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restricted life span due to the fact that they undergo only a limited number of cell
divisions. Primary cells better represent the tissue from which they are taken and
are normally heterogeneous. These cells could be used for R&D applications,
particularly for in vitro tests of new drugs and toxicity tests. Continuous cell lines
rarely occur spontaneously from primary tissue cells; mostly they are developed by
transformation with carcinogenic substances or viral genes. Besides their infinite
growth, cell lines have further advantages including faster growth and the ability to
be cultured in suspension. This makes them suitable for the production of
recombinant proteins in large-scale cultivation [67]. Primary cells as well as cell
lines are available as test systems for gene expression analysis, but there are a few
drawbacks to both cell types. Primary cells display inter-individual differences,
e.g. caused by age and gender of the donor, and the widely used cell lines are
limited in their metabolic function because some pathways are different from those
in normal tissues [68].

One important aim of strain improvement is to understand and characterize the
functional heterogeneity in a given population at the cellular and molecular level.
Another aim is to identify and isolate high-producing cells from the entire population
and use them in production processes. Combining flow cytometric analysis and
sorting of live cells with transcriptome analysis aids in relating molecular regulation
processes within cellular subpopulations to the dynamics of the whole cell popula-
tion [69]. Transcriptome analysis can thus be used to improve cell growth and to
increase the productivity of mammalian cell cultures, e.g. by gene optimization.

6.1 High-Producing Cells

Numerous methods exist for developing high-producing populations via fluores-
cence activated cell sorting (FACS) and gene expression profiling of sorted sub-
populations [70]. Co-expression of green fluorescent protein (GFP) is common.
Cells which show high GFP fluorescence can be separated to obtain desired
populations due to the fact that GFP expression is correlated with high productivity
[71]. Simple surface staining is also accomplished [72]. In addition to this method,
cultivation at lower temperature and treatment with chemicals such as butyrate can
be used to increase the productivity of a cell line. Up to several hundreds of genes
are upregulated in high producers; these genes may be involved in the secretory
pathway including the Golgi apparatus and cytoskeleton, and may also include
genes responsible for product formation [73].

6.2 Cell Cycle Studies

Cytometry is also applicable for cell cycle studies, since it is possible to stain DNA
whose content can be correlated with the cell cycle. DNA replication occurs
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exclusively during the S phase, such that G2-phase cells have twice the cellular
DNA content of G1 cells [74]. For further analysis the cells can be synchronized
into similar phases. This is achieved by various methods based on biological or
physical effects. Due to the fact that the cell size changes during the mitosis, a
separation by cell size is one of the practical physical methods. This separation can
be performed by FACS or the centrifugal elutriation technique [75, 76]. After-
wards the cells grow in a synchronized cell cycle. This enables transcriptome
analysis to search for genes involved in regulating the cell cycle or other cell-
cycle-dependent gene activities like productivity rates [77]. The productivity of
recombinant products depends on the cell cycle phase and the product. For
recombinant proteins produced in CHO cells, it was ascertained that the produc-
tivity maximum occurs in the G1 phase [78].

7 Concluding Remarks

The development of microarrays with DNA probes for gene expression analysis or
antibody probes for proteomic applications based on hybridization processes
(DNA probes) as well as on the immunological binding process (antibody probes)
opens new horizons for biomolecular research. It can result in the production of
new proteins, changes in membrane formation and various other alterations con-
cerning cellular assembly [32].

Sequenced genomes are the basis for constructing DNA microarrays repre-
senting the common genes in a genome. Furthermore, they enable the synthesis of
labelled cDNA from mRNA templates allowing high-throughput detection of
transcript levels [33]. Various high-density oligonucletide microarrays are now
available commercially.

DNA microarrays have therefore already changed the way scientists study gene
expression, but the real challenge starts with determining the function of all the
genes discovered within the organisms. DNA microarrays are applied in industrial
analytics and biomedical diagnostics, as well as in criminology. They can con-
siderably simplify and accelerate a number of expensive diagnostic methods.
Although conventional biosensors work well, their function can be validated and
perhaps improved through a functional genomics study in which the induction of
several thousand genes is detected simultaneously. Specifically, the use of
microarrays can accomplish the following goals:

• Compare the time course of a sensor signal with the actual genomic response.
• Identify genes that respond earlier or more specifically to toxins.
• Identify gene induction patterns that can identify one toxin versus another

(which can in turn be incorporated into multichannel sensors).

In the last few years, functional transcriptomics has been advanced by both
microarray technology and genome sequencing. Certainly microarray technology
has achieved its technical limits and is more and more complemented by
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high-throughput next-generation sequencing technologies. Unlike microarrays,
transcriptome sequencing (RNA-Seq) can evaluate absolute transcript levels, and
detect novel transcripts and isoforms. Microarrays have the power to measure the
expression of thousands of genes in parallel, but they are not able to reveal the
coding sequences of the transcripts. The derived results are calculated from
indirect hybridization data, which poses reproducibility and comparability prob-
lems. In fact, studies using both microarrays and RNA-Seq show a good corre-
lation between the different data so that it is possible to compare results from one
technology with the other [79], and both techniques help to improve production
output of cell cultures by optimizing cell growth and genetic activity.
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Transcriptome Data Analysis for Cell
Culture Processes

Marlene Castro-Melchor, Huong Le and Wei-Shou Hu

Abstract In the past decade, DNA microarrays have fundamentally changed the way
we study complex biological systems. By measuring the expression levels of thousands
of transcripts, the paradigm of studying organisms has shifted from focusing on the
local phenomena of a few genes to surveying the whole genome. DNA microarrays are
used in a variety of ways, from simple comparisons between two samples to more
intricate time-series studies. With the large number of genes being studied, the
dimensionality of the problem is inevitably high. The analysis of microarray data thus
requires specific approaches. In the case of time-series microarray studies, data anal-
ysis is further complicated by the correlation between successive time points in a series.

In this review, we survey the methodologies used in the analysis of static
and time-series microarray data, covering data pre-processing, identification of
differentially expressed genes, profile pattern recognition, pathway analysis, and
network reconstruction. When available, examples of their use in mammalian cell
cultures are presented.
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1 Introduction

In the past decade, genome science has drastically changed our approaches
to studying biosciences and broadened our ability to harness the potential of
industrial organisms for technological applications. Importantly, genome-wide
gene expression profiling using DNA microarrays has become widely employed
in biotechnological research. Through DNA microarrays, we are able to look at
the dynamics at the transcript level of the entire set of genes in order to explore the
intricate relationships among the biochemical reactions, the signaling and regu-
lation, the physiological events in the cells, and the global gene expression. In the
next few years, we anticipate a greatly expanded reach of transcriptome analysis in
cell culture research due to the dramatic advances in sequencing technology. Until
recently, the application of transcriptome analysis in cell culture bioprocess has
been rather limited because the genome sequence information available for the
most commonly used cells, Chinese Hamster Ovary (CHO) cells, is not extensive.
With the cost of DNA sequencing drastically reduced compared to even three
years ago and the readily accessible sequencing services, one can expect that
genome sequences for reference species will become available in the very near
future. Furthermore, we can also expect that sequencing the genome of individual
cell lines will become commonplace in a few years. Therefore, the affordability
of high-throughput sequencing technology will push DNA microarrays to the
forefront of cell culture bioprocess characterization, along with many routinely
used quantitative tools such as HPLC and ELISA. However, unlike the conven-
tional variables typically measured in a cell cultivation process, transcriptome data
is unique in its high dimensionality: each time point of measurement yields up to
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tens of thousands of transcript level data. In some ways, the examination of the
data is like looking for patterns in a starry sky; the comparison of different datasets
is as if comparing the skies in different seasons or on different days.

In this review, we summarize commonly used microarray platforms and
experimental designs, and review methods used in differential expression
analysis, profile pattern recognition, pathway analysis, and network reconstruction.
In each section, an overview of the basic methodology is provided, followed by a
sequence of specific modifications and associated software. Finally, several
examples are presented in which the methodology has been successfully applied.
When available, examples using antibody-producing recombinant cell lines are
emphasized.

2 Platform Overview

Several microarray platforms are currently available, each of them offering certain
advantages. As new platforms are introduced, a reduction in cost and an increase in
flexibility have been observed. Microarray platforms are generally classified into
two-dye or single-dye, referring to the number of fluorescently labeled samples
applied to each chip.

2.1 Two-Dye Microarrays

Two-dye microarrays were first used by Schena et al. [1] to measure the expression
level of 45 Arabidopsis genes, and were soon followed by studies at the genome-
wide level in yeast [2]. Two-dye cDNA arrays are prepared by immobilizing long
([500 nucleotides [nt]) cDNA probes prepared by PCR amplification onto a glass
slide. cDNA microarrays allow the direct comparison of genes in two samples,
each labeled with a different fluorescent dye. The native intensities of the two dyes
are indicative of the transcript levels in each sample. The probes can be designed
against the genome sequence of the organism to minimize the segments which
may cause cross-hybridization with transcripts from other genes. However, for
mammalian cell applications, the large number of probes renders this approach
very costly, as specific primers have to be designed for the amplification of specific
segments of a sequence. Thus universal primers that amplify the entire cDNA
region of an expressed sequence tag clone are more frequently used. However,
they are prone to non-specific hybridization, especially for alternatively spliced
transcripts. cDNA microarrays also suffer from imprecise control of the amount of
DNA immobilized on the surface, making it difficult to compare the levels of
different genes in the same sample.

With the much reduced cost in oligonucleotide synthesis, cDNA microarrays are
now used less frequently. In the past few years, many synthetic oligo-DNA-based
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microarrays have evolved to be suitable for use as either single-dye or two-dye
arrays. One such platform that can be used as either single-dye or two-dye is that
by Agilent [3]. Similar to cDNA microarrays, short (*60 nt) oligonucleotides
synthesized in situ are printed onto a glass surface. As little as individual slides
are available for unique custom designs. Multiplexing, that is, the availability
of testing multiple samples in a single slide, is also available in Agilent’s
microarrays.

2.2 Single-Dye Microarrays

In contrast to two-dye arrays, single-dye arrays are designed to provide ‘‘absolute’’
measurement of the relative transcript level of each gene within a sample. With a
‘‘relative’’ measurement in two-dye arrays, a multiple sample comparison is
cumbersome, requiring either a myriad of pairings of samples or the use of a
common reference. With an absolute measurement and one sample for each array,
even meta-analysis using hundreds of microarrays can be performed.

An example of a single-dye array is that by Affymetrix, Inc. [4], which uses a
photolithographic process for printing probes. Gene expression is interrogated by
probe sets, which consist of eight to eleven probe pairs. Each probe pair consists of
two 25-mers, one being a perfect match, the other containing a mismatch at the
13th base pair. The photolithographic process, however, requires the creation of a
set of masks for each array design (essentially four masks for each base position,
thus each 25-mer will require 100 masks). The cost of generating a new set of
masks limits the frequency of modifying or updating probes.

Probes on another single-dye platform, commercialized by Roche NimbleGen,
Inc., are synthesized by photo-mediated chemistry using a proprietary Maskless
Array Synthesizer [5]. The use of digital mirrors creates ‘‘virtual masks’’, allowing
for flexible designs that can be easily modified. With their ability to control the
area of probe to be very small, a very large number (in the millions) of probes can
be placed on a single slide. This presents an advantage for large genomes, such as
those of mammalian species. For smaller genomes or with a subset of genes, array
multiplexing, i.e., using a single array for multiple samples, can be implemented.
Furthermore, without the use of a mask, the cost of production is reduced. Making
an array for only a small number of samples and frequent updating of probe design
thus becomes affordable.

2.3 Other Platforms and Technologies

In addition to the glass-slide chip-based microarrays, other types of arrays have
been developed. One such technology is Illumina’s BeadArray, which uses three-
micron silica beads that self-assemble in microwells with uniform spacing. In this
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capture technology, each bead is covered with thousands of copies of specific
oligonucleotides.

With the rapid advances in DNA sequencing technologies and the decrease in
sequencing cost, transcriptomes can now be analyzed by direct cDNA sequencing.
In RNA-Seq, a population of RNA is converted to a cDNA library, which is then
fragmented and sequenced using high-throughput technologies [6]. The abundance
level of a particular sequence fragment is indicative of the abundance level of the
transcript from which it is derived. Unlike DNA microarrays which can be used
only to probe the expression of genes represented on the arrays, RNA-Seq detects
all RNA species, including novel RNAs and alternative transcripts. It can also
identify transcript boundaries, and has a much wider dynamic range, over several
orders of magnitude ([8,000 fold), as there is no saturation of highly expressed
transcripts.

3 Static Studies vs Time-Series Studies

Although microarrays can be used to probe transcript profiles of a large array of
genes in a cell sample, most applications involve the comparison of different cell
samples, either the same cell line under different conditions or different cell lines.
In other words, most studies involve two or more cell samples. The use of DNA
microarrays in the study of cell culture processes can be categorized into static or
dynamic (time-series) types according to how samples are taken and compared.

Static studies compare two samples to identify differences in gene expression
between them. The samples may be different cells or tissues, such as when
comparing cell lines of different levels of antibody production [7]. In other cases,
different process variables or culture conditions might be under study. The fol-
lowing studies using NS0 cells include examples of the use of microarrays to
assess the effect of cell density [8], to study cell proliferation in protein-free media
[9], and to analyze the effect of hypoxic stress [10].

Cell culture process is intrinsically a time-evolving event, entailing various
stages of culture, from early exponential and exponential phases followed by a
transition to stationary phase. In most cases, the environmental conditions change
over time, either due to the culture’s self-evolution or due to process-imposed
culture condition alterations such as temperature or pH shift. The gene expression
profiles thus inevitably change with culture time. Static studies offer rich infor-
mation on the difference in gene expression between two conditions or two cell
populations but only as a snap-shot frozen at a point of a long process.

Time-series studies sample over different time points along the duration of the
culture and aim at capturing the trends in gene expression changes originated by
regulatory events and fluctuations in environmental conditions. Furthermore, the
temporal information held in time-series microarray data also enables one to infer
causality in gene regulatory networks. An aim of time-series data analysis is thus
to identify genes which have different dynamic behaviors over time in the same
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sample or to identify the same genes whose transcripts follow different time trends
under different treatments [11]. Time-series studies are particularly relevant for
cellular processes exhibiting periodic behaviors, such as cell cycle and circadian
clock, as well as other intrinsically dynamic processes such as development and
differentiation. Although this type of studies is abundant in yeast, C. elegans, and
stem cells, fewer examples have been demonstrated in antibody-producing
mammalian cells. In one example, gene expression time-profiles were compared
between fed-batch processes yielding high and low titers using the same CHO cell
line [12]. Dynamic regulation of transcription in a Human Embryonic Kidney
(HEK) cell line in protein-free batch and fed-batch cultures was also unraveled
[13]. In addition, time-series transcriptome data was explored to elucidate cellular
mechanisms leading to an increase in productivity in CHO cells under sodium
butyrate treatment and temperature shift [14].

In DNA microarray studies of mammalian cell cultures, the number of differ-
entially expressed genes and the degree of their differential expression are often
lower than typical changes observed in other systems such as in developmental
processes or in microbial cultures [12]. Using a fold-change cut-off of 1.4–2.0, and
a p-value cut-off of 0.05–0.1, it is common to identify much less than 10% of the
genes as significant. This number often decreases sharply when the fold-change
cutoff is raised above 2.0. For example, in studying the productivity of antibody-
producing cell lines, a relative small number of genes are consistently different
between high- and low-productivity clones [7]. These modest changes in gene
expression thus require careful experimental design and subsequent data analysis.
This situation contrasts with most cases found in bacteria undergoing changes
in nutritional or other environmental conditions, and stem cells under directed
differentiation in which often a large number of genes change their expression and
many show large differences in gene expression levels.

4 Experimental Design

Microarray and RNA-Seq studies can provide a wealth of information. However,
even with the decrease in cost in the past few years, they are still not bargain-price.
The number of conditions to be tested and the number of samples for each
condition have to be planned. When single-dye microarray platforms are used,
there is no limitation to which comparisons among multiple samples are made.
For two-dye arrays, however, the experimental design is crucial. With two-dye
microarray platforms, one aims to measure the ratio of each gene’s transcript level
between two samples. When only two samples are involved, direct comparison is
obtained using a single chip. With three samples, loop designs in which three
arrays are used to obtain direct pair-wise comparison of the three sample pairs
(1–2, 2–3, 3–1) can be applied [15]. An alternative, often referred to as reference
design, is to hybridize each of the three samples to a common reference, and
obtain indirect comparisons for each sample pair in the experiment. An often-used
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reference is a pool of RNA, either from all samples, to ensure that the transcripts of
all genes on the array are present, or from sample(s) external to the experiment.
An internal reference, for instance the first sample, can also be used to directly
compare some of the pairs (1–2 and 1–3) and infer comparisons for the others
(in this case 2–3). The amount of available reference sample might limit the
number of arrays that can be done.

Time-series microarray studies present additional experimental design chal-
lenges. Frequently, the comparison is not only among data from different time
points within the same treatment but also among series under different treatments.
The number of samples to be collected and their distribution in time will define the
ability of the experiment to capture the gene expression dynamics. The sample
collection frequency should be high enough to capture the dynamics of genes with
periodic behaviors or propensity for sudden changes in expression. This, however,
might result in a very large number of samples, which is not always feasible due to
cost or the amount of work involved [16]. If critical changes are suspected between
the time points originally analyzed, additional microarrays can be performed.
This is possible if samples were collected at intermediate time points. Another
possibility is to fill these gaps using quantitative PCR measurements of transcripts
of the target genes.

The general steps in analyzing gene expression data from microarrays are
shown as a flowchart in Fig. 1. First, raw data is filtered to eliminate absent probes

Fig. 1 General analysis process of microarray data. Raw expression data are often filtered to
eliminate absent probes. The filtered data is subsequently normalized and processed using
different methods if necessary. Genes exhibiting differential expression are identified using
statistical tools. In addition to clustering, further analysis can be performed in a pathway/network
context to finally interpret the biological meaning of differential expression
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using intensity and/or detection p-value cutoffs. Filtered data is further normalized
to generate a baseline for comparison across samples. Time alignment, log
transformation, and scaling can be performed if necessary. Once the data has been
properly processed, genes exhibiting differential expression can be identified using
multiple statistical approaches. These significant genes are often further analyzed
in a pathway/network context or by using clustering tools to infer the biological
meanings of differential expression.

5 Data Pre-Processing

5.1 Normalization, Transformation, and Scaling

Gene expression levels measured using DNA microarrays are subject to a number
of systematic biases, and hence should be globally adjusted (or normalized) to
attain a common basis for all the microarrays to be compared. These variations in
gene expression measures are often the result of differences in starting amounts of
RNA, labeling, hybridization, and scanning efficiency [17]. Normalization is thus a
necessary step regardless of the platform, or whether the experiment involves
static or time-series samples. Different normalization methods (based on different
sets of assumptions) often give different quantifications. Most normalization
methods assume that the microarray contains a large and random set of genes.
Furthermore, the number of differentially expressed genes is considered to be
relatively small compared to the total number of genes present on the array. As a
result, this differential expression does not affect the overall distribution of gene
expression levels in each sample.

Linear and quantile normalization are most commonly used in microarray data
processing. Linear normalization is often applied when gene expression measures
in all arrays have similar distributions but different median values. Given the
assumption that equal amounts of RNA are used in each sample, a normalization
factor is calculated as the ratio of the median gene expression levels in two
samples [17]. All gene expression measures are subsequently scaled using this
factor such that these two samples have the same median gene expression level
after normalization. A target median value can also be defined to linearly scale
multiple samples. Linear normalization is thus conceptually simple, yet applicable
to most cases in which the assumptions stated above are satisfied. However,
possible lack of linearity between fluorescence intensity and the amount of DNA
or RNA hybridized could introduce errors when linear normalization is applied.

Quantile normalization, on the other hand, assumes that all samples have the
same gene expression level distribution [18]. Gene expression measures are
adjusted such that each sample follows the same distribution, which is assumed to
be the average distribution of all samples. This normalization method is frequently
used to correct the gene expression level distribution in single-dye and two-dye
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arrays when genomic DNA is used in one channel. Sometimes, a drastic change in
cell physiology may occur, causing a major shift in gene expression profiles.
In such cases, the use of quantile normalization might not be appropriate.
For example, as stem cells differentiate or cells enter different phases of growth,
their transcriptional responses or cellular RNA composition may change drasti-
cally. Large variations in cellular RNA composition among samples violate the
assumption that all samples have the same gene expression level distribution.

It is important to note that, in most experimental protocols, the amount of total
RNA (in the case of prokaryotic samples) or poly(A)-tailed transcripts (in the case
of eukaryotic samples) applied to each array is kept equal, and thus normalization
methods only adjust the data to equal quantities of RNA. However, the RNA
content per cell does not always remains constant under different conditions.
Fast-growing cells have far more RNA than cells in the stationary phase, and thus
total RNA content per cell varies. It is therefore important to know whether
differential expression calls are based on per cell or per unit amount of RNA.

After normalization, the data is usually log-transformed. The variance, which is
inherently large in microarray data, is reduced in log-transformed data. Normal-
ized gene expression values can also be scaled to a mean or median value of zero.
This is equivalent to centering the gene expression level distribution over zero
(mean- or median-centering). Additionally, a standard deviation of one can be
achieved using z-transformation. These data pre-processing steps can be performed
using several software including Expressionist, GeneSpring, and R packages such
as affy, limma, beadarray and oligo. Although data normalization, transformation,
and scaling have become routine, these steps remain vital to all subsequent stages
along the analysis pipeline of gene expression data.

5.2 Time Alignment

When comparing time-series experiments, it is important to control the starting
cell population in different treatments to be identical, or at least as similar as
possible. Under some conditions, variability is difficult to eliminate, resulting in
somewhat different kinetic profiles even among biological replicate cultures.
When applying microarrays to time-series studies, the aim is to identify the genes
whose transcript dynamics change beyond the fluctuations in biological replicate
cultures, and where the change can be attributed to experimental treatment.
In assessing the similarity or difference between two cultures under different
treatments, a direct comparison of time profiles is an obvious first approach. This is
sound in the cases where the trends of growth and other growth-related variables
(such as chemical profiles) are mostly identical. Often growth and other culture
indicators reveal a difference, strongly hinting that the identical time points in two
cultures may not correspond to identical ‘‘culture stage’’. In other words, the time
frame of one culture has shifted from the reference time frame of the other culture.
Direct comparison of time profiles of gene expression may give rise to many
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falsely identified genes with different kinetic behaviors. Time alignment aims to
identify potential time misalignments and correct them.

The change in time dynamics could be global, i.e., all the transcripts change
their temporal profiles similarly. This change may also be segmented and local,
i.e., only some sets of genes change coordinatedly apart from the rest of the genes
or different sets of genes which change their dynamics differently. Such asyn-
chronous behaviors need to be dealt with using some form of time alignment.
Asynchronization between transcriptome time profiles appears in multiple forms,
which can be largely divided into four types: frame shift, elastic compression or
expansion, and time flip [19]. Frame shift occurs when one of the series experi-
ences a lag phase with respect to the others. If the growth rate differs significantly
between the series, their gene expression profiles may display elastic compression
or expansion. Examples of frame shift and expansion are shown in Fig. 2a. These
types of asynchronization are often adjusted globally. In addition, changes in a few
subsets of genes can result in a flip in time order between different subsets of genes

Fig. 2 Possible forms of
time asynchronization in
different series. a Expression
profile of gene ga in three
different series. The
expression profile in series 2,
ga2, shows a frame shift with
respect to series 1, ga1. The
expression profile in series 3,
ga3, shows an expansion with
respect to ga1. These types
of asynchronization can be
adjusted globally.
b Expression profiles of two
genes, ga and gb, in two
different series. Gene ga

displays the same expression
profile in the two series.
The peak observed in the
expression profile of gene gb

in series 1 appears earlier in
series 2. This time flip often
requires local adjustment
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(Fig. 2b). This time flip suggests the existence of multiple biological clocks
controlling varied cellular processes in the experimental system and thus requires
local alignment. As a result, when multiple treatments are being compared, gene
expression data sets should be examined and, if necessary, properly aligned before
subsequent analyses can be performed.

Conceptually, aligning time-series microarray data entails matching two
patterns by locally compressing, expanding, or translating one with respect to the
other such that their similar characteristics are aligned without altering the
ordering of each sample. This can be performed on either the continuous repre-
sentation of each series or the discrete values of gene expression. The alignment
between time series can be achieved at a global level or at a local level to allow
different subsets of genes to follow varied biological clocks.

An example of global alignment is the B-spline-based alignment method, which
presents each gene expression profile as a spline curve of multiple low-degree
polynomials [20]. To align different time series, one of the series is chosen as the
reference, and the time points of the other series are mapped to the reference
series by stretching and shifting the continuous representation of gene profiles.
This method is particularly suited for long time series (e.g., C10 time points) [21].
The use of B-splines for alignment was demonstrated by aligning three yeast time
series that begin in different phases and occur in different time scales [20].

A second example of global alignment, dynamic time warping (DTW), involves
non-linear mapping between discrete time points of two series along the time
dimension such that the distance between them is minimized [22]. In the case of
transcriptome time series, the overall distance between the two series is computed
as the weighted sum of distances contributed by all genes. The use of a weighting
factor for each gene allows higher contribution to the overall distance measure to
be given to genes with consistent expression profiles across two treatments, or to
genes important to the biological activities being considered. In Fig. 3, the

Fig. 3 Alignment of gene
expression profiles using
DTW. Two genes (ga and gb)
are shown in two different
series. For each gene, discrete
time points in series 1 are
mapped to those in series 2.
The weighting factors
(wa and wb) indicate the
contribution of each gene to
the final global adjustment.
Gene ga with a relatively flat
profile is given a lower
weight (wa \ wb). The same
alignment is imposed on
both genes
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algorithm is exemplified with two genes (ga and gb) in two different series.
The weighting factors (wa and wb) indicate the contribution of each gene to the
final adjustment. ga with a less dynamic profile thus has a lower weighting factor
(wa\wb). In addition to alignment of transcriptome data, DTW has also been used
to synchronize offline and online data of batch processes [23, 24].

Global alignment algorithms assume that all genes share the same alignment,
that is, that all genes were affected in the same manner. The existence of multiple
biological clocks within the same cell, however, can result in sets of genes being
affected independently. In other words, genes in one set correspond to genes that
follow a particular biological clock, sharing the same alignment, but they need to
be warped separately from the rest of the genes. Recently, Smyth et al. [25] have
proposed an algorithm capable of identifying sets of genes that present similar
alignments when aligned independently. The resulting sets include genes that
follow similar warpings, even though their expression profiles might be very
different.

6 Identification of Differentially Expressed Genes

After transcriptome data has been pre-processed, a number of statistical approa-
ches can be used to identify differentially expressed genes. Commonly used
analytical methods for static transcriptome data include t-tests, ANalysis Of
VAriance (ANOVA), Significance Analysis of Microarray data (SAM), and LInear
Models for MicroArray data (limma). These methods are not all directly applicable
for dynamic studies involving a chronological set of samples collected over time
since a change in the time order will result in a different statistical inference [26].
Recently several methods based on regression, ANOVA, and Bayesian models
have been adapted to handle time-series microarray data. In addition, a distance
calculation approach has also been proposed for identification of kinetically dif-
ferentially expressed genes.

6.1 Statistical Analysis of Gene Expression Data

The estimates of gene expression levels provided by microarray data are generally
prone to two types of errors—systematic and random errors. Systematic error
resulting from several factors such as RNA concentration measurement or dye-
labeling efficiency can give rise to a systematic bias in the expression level estimates
of all genes on the same array. This bias is often corrected using one of the
normalization methods presented in the previous section on data pre-processing.
Random error in the measurement of gene expression levels arises from random
fluctuations in other steps, for instance array scanning. Inferential statistics is used to
ensure that the observed change in gene expression did not occur by random chance.
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Inferential statistics is applied to microarray data by invoking a null hypothesis.
The null hypothesis holds true when all samples have the same average expression
value for the gene of interest. Conversely, if the gene is expressed at a different
level in at least one sample, the alternative hypothesis becomes valid. In order to
assess the validity of either hypothesis, a test statistic is often estimated as the ratio
between the change in a gene’s expression values among samples and the vari-
ability in those measurements. Furthermore, a p-value computed using this test
statistic is compared to an acceptable significance level a. The smaller the p-value
is compared to a, the stronger the evidence is against the null hypothesis, and in
support of the gene being differentially expressed in at least one sample.

In a typical microarray experiment, tens of thousands of genes are tested simul-
taneously, and a large number of them are likely to be identified as differentially
expressed. Even with a small p-value, such as 0.01 that is normally considered to be
rather stringent, a significant number of those genes identified as differentially
expressed might be by random chance. For example, if 1,000 genes out of 10,000 in
total are identified as differentially expressed, each with a p-value\0.05, then 500 of
these 1,000 genes might have been identified by chance. One way to control the
potentially high error rate is to set each gene’s p-value to an n-fold lower significance
level, a/n, where n is the total number of genes. This is often referred to as the
Bonferroni correction for the family-wise error rate—(FWER) [27]. However,
this correction imposes an extremely stringent criterion. In the previous example, the
p-value will have to be set at less than 0.000005. This would likely result in failure to
identify the majority of genes that are indeed differentially expressed. An alternative
is to control the number of false positives among the number of genes declared as
differentially expressed rather than the total number of genes. This statistic, referred
to as false discovery rate (FDR), is less stringent than the FWER and thus offers more
power than the FWER to detect differential expression [28]. Therefore, in multiple
hypothesis testing, FDR is often used in place of p-value.

6.1.1 Statistical Analysis of Static Gene Expression Data

A variety of methods are available for hypothesis testing. A t-test is often used when
only two samples are compared for differential gene expression. When three or more
samples are involved, ANOVA is recommended to avoid performing multiple t-tests,
which will most likely result in an increased false-positive rate. Both methods
assume the expression levels of a gene in different samples follow a normal distri-
bution. When this assumption does not hold true, non-parametric tests including the
Wilcoxon rank-sum test and permutation-based test are often the methods of choice.

t-Test

t-Tests are considered the simplest statistical methods to identify differentially
expressed genes. A t-statistic is calculated as the ratio between the difference in
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gene expression levels of two samples and the pooled variance. Furthermore, a
degree of freedom is calculated from the sample sizes—with more penalties if
the two samples have unequal variances (Welch’s t-test), and no penalties if the
assumption of equal variances holds true (Student’s t-test). A p-value, which can
be obtained using the t-statistic and the degree of freedom, is compared to a
pre-defined significance level a to detect differential expression. t-Tests can be
easily performed in Microsoft Excel, several R packages, and a variety of software
including Spotfire and Expressionist.

Gene expression responses during metabolic shift in a hybridoma cell culture
have been investigated using the Student’s t-test on cDNA microarray data [29].
123 probes were identified as changing their expression levels (fold-change C1.4
and p-value B0.1) when the cells shifted to a lactate consumption state. Another
example involves the survey of global gene expression changes in a recombinant
antibody-producing CHO cell line and a mouse hybridoma cell line under sodium
butyrate treatment [30]. Using a fold-change cutoff of 1.4 and a p-value cutoff of
0.05, most transcripts were found to be expressed at similar levels in both cell
lines, indicating that the transcriptional responses under exposure to sodium
butyrate are rather conserved.

Analysis of Variance

When more than two samples are involved, single-factor ANOVA is often used.
The overall variance in gene expression among different samples is partitioned into
separate sources of variations. The total variation, as evaluated by sum of squares
(SSTotal), arises from two sources—the actual differential expression among these
samples (SSTreatment) and the random error (SSError). The means sum of squares
(MS) for treatment and error can be estimated by dividing each SS by the
corresponding degree of freedom. The quotient of these two MSs is taken as the
F-statistic, which further provides a p-value for inference of differential expression.

When the experiment involves several factors (or variables; in ANOVA they
are referred to as ‘‘factors’’), and one wishes to segregate the effects of those
factors, multiple-factor ANOVA is used. Based on the same working principles
described above, multiple-factor ANOVA also partitions the total variation into
different sources—the actual effect of each experimental factor, their interactions,
and the random error. A p-value for each term can be derived similarly, and
whether these factors significantly affect the change in gene expression can thus be
concluded. Both single-factor and multiple-factor ANOVA can be performed
easily using Microsoft Excel, as well as several R packages.

Variation in gene expression within and between two populations of the genus
Fundulus was uncovered using ANOVA on log2-normalized microarray data on 907
genes [31]. 161 genes were differentially expressed among individuals within a
population, whereas only 15 genes differed between populations, suggesting that
substantial natural variation exists in gene expression. A linear ANOVA model was
also fitted to the expression levels of more than 3,000 genes expressed during
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embryonic development of six Drosophila species [32]. More than 80% of genes best
fit to models incorporating stabilizing selection, and maximal similarity is observed
during mid-embryogenesis rather than early or late stages of development. This
result thus supports the developmental hourglass model, and the theory that natural
selection acts to conserve gene expression patterns during the phylotypic period.

Significance Analysis of Microarray (SAM)

Similar to t-tests, SAM also calculates a ‘‘relative difference’’ (d), which resembles
the ratio between difference in average gene expression values and the pooled var-
iance in two treatments for each gene [33]. The expression levels in all replicated
samples of these two treatments are then permuted, and an average ‘‘relative dif-
ference’’ over these permutations (dE) is estimated. For the majority of genes, which
are assumed not to be differentially expressed, the average difference obtained from
permutation (dE) is largely the same as the observed one (d). If the discrepancy
between dE and d exceeds a threshold, the gene is considered differentially expressed.
In order to calculate the FDR for each gene, two horizontal cutoffs are defined—one
as the smallest observed difference of up-regulated genes, and the other as the least
negative of down-regulated genes. The average number of genes with dE exceeding
these cutoffs in all permutations can be considered as the number of false positives,
and is used to assess FDR. A convenient Microsoft Excel add-in for SAM is avail-
able, and the packages siggenes and samr in R are also publicly accessible.

The advantage of SAM over other statistical methods was demonstrated when
examining the transcriptional responses of human lymphoblastoid cells under
irradiation [33]. 34 genes were identified as significant at an FDR of 12% using
SAM compared to more than 60% using other methods. In another example, SAM
was used to identify about 400 genes contributing to the impaired differentiation
capacity of murine neural stem cells (NSCs) defective in p53 and PTEN genes
[34]. The majority of genes involved in cell cycle regulation were also found to be
significantly down-regulated when HeLa cells were transfected with siRNA
against PHF8, an H4K20me1 demethylase [35].

Linear Models of MicroArray data

In this approach, a linear hierarchical model with arbitrary coefficients and con-
trasts across multiple samples for each gene is developed [36, 37]. Furthermore,
marginal distributions of the observed statistics are used to estimate the hyper-
parameters under consistent and closed forms. In addition, the ordinary t-statistic
can be replaced by a moderated one, which implicitly results in shrinkage of
all gene-wise variances into a common value. This moderate t-statistic follows a
t-distribution with augmented degrees of freedom, and thus can be extended for
multiple-sample comparisons by using the corresponding F-statistics. The R
package limma is publicly available.
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Transcriptional responses upon restoration of p53 in adenocarcinomas were
revealed using limma [38]. p53-restored samples were shown to cluster with
adenomas rather than carcinomas, suggesting that adenocarcinoma cells can be
specifically removed from the tumors. limma was also used to compare gene
expression signatures between cultured thymic epithelial cells (TECs) and multi-
potent hair follicle (HF) stem cells [39]. 119 genes were identified as being dif-
ferentially expressed between these two samples with a fold-change cut-off greater
than four and a p-value less than 0.001.

6.1.2 Statistical Analysis of Dynamic Gene Expression Data

Time-series transcriptome data offer a great advantage when exploring transcrip-
tion as a dynamic process, yet their analysis is more complicated than analyzing
multiple samples unrelated in time. Transcriptional responses at a certain time
point often carry information about cellular behaviors in previous stages. Thus
samples within a series are mutually dependent, and should not be analyzed using
traditional statistical approaches. Rather, methods taking this interdependency into
consideration such as Extraction of Differential Gene Expression (EDGE),
Microarray Significant Profiles (maSigPro), ANalysis Of Variance–Simultaneous
Component Analysis (ANOVA-SCA), and multivariate Bayesian models are more
suitable. The number of time points in each series, the number of series, and the
availability of replicates will guide the selection of algorithm to use in data
analysis. This analysis can become even more challenging if the sampling
frequency is not uniform across multiple series.

Extraction of Differential Gene Expression (EDGE)

In EDGE, differential analysis is also approached as a hypothesis-testing problem.
The null hypothesis is that a gene’s expression does not change both over time
within a single treatment and across multiple treatments [26, 40]. The expression
profile of each gene is modeled using a p-dimensional basis, usually a pth-order
polynomial, or a natural cubic spline function. The parameters of these functions
are then estimated by minimizing the sum of squared errors (SSE) between the
model-fitted expression values and the corresponding actual ones. The parame-
terization of gene expression profiles allows the hypothesis testing to be performed
by comparison of the fitted parameters. As such, an F-statistic is calculated for
each gene to reflect the relative difference in SSE of the model-fitted gene
expression profiles under the null and the alternative hypotheses, respectively. This
statistic is used alongside a null distribution generated using a resampling method
to estimate a q-value, which accounts for the FDR incurred in multiple hypothesis
testing [41].

The open-source software EDGE [42] has facilitated the use of this method-
ology in analyzing time-course gene expression data. Differential expression can
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be surveyed along the time axis within each treatment or across multiple
treatments. EDGE was used to define the transcriptomic signatures of aging in
several tissues in Drosophila melanogaster [43]. In a mouse model, a complex
transcriptional hierarchy comprising more than one thousand genes regulated
during endocrine differentiation was also identified using EDGE [44].

Microarray Significant Profiles (maSigPro)

Microarray Significant Profiles, maSigPro [45], uses a two-step regression
approach to identify differentially expressed genes in time-series microarray data.
Single or multiple time series can be analyzed, with multiple time series being
analyzed directly instead of performing multiple pair-wise analyses. This meth-
odology not only detects kinetically differentially expressed genes, but also
uncovers changes in gene expression trends. In the first step of gene selection,
expression data is fitted using a global regression model which considers all
experimental variables and their interactions. If there are n groups, (n - 1) dummy
variables are defined. Each dummy variable allows the distinction between each
group and the reference group. Furthermore, an ANOVA table is generated for
each gene. If the gene shows differences between any group and the reference
group, the regression coefficients will be statistically significant as determined by
an F-statistic and its associated p-value. In the second step of variable selection,
the best model for each gene is obtained using a stepwise regression approach. The
variables that best fit the data represent the time effects and their interactions with
the dummy variables. For finding those genes with significant differences in group
x with respect to the reference series, the genes with significant coefficient for the
dummy variable (x - 1) are selected.

The package maSigPro is available in R and includes several tools for result
visualization. In addition, it is part of the oneChannelGUI package [46], which
provides a graphical interface for the analysis of Affymetrix microarrays, and was
included in the popular software Gene Expression Pattern Analysis Suite (GEPAS)
[47]. An extension of maSigPro, maSigFun [48], is used to fit regression models
for genes with the same functional class and for the functional assessment of time-
course microarray data. maSigPro has also been implemented in Corra [49], an R
package devoted to the analysis of LC–MS-based proteomics. maSigPro has been
used to analyze data from intrinsically dynamic processes such as spatial differ-
entiation in fungi [50], and plant development [51–53], as well as periodic
responses such as the rhythmically expressed genes in mouse distal colon [54].

ANOVA-SCA

ANOVA-SCA (or ASCA for short) is considered a combination of a statistical
method (ANalysis Of VAriance, ANOVA) and a dimensionality reduction
approach (Simultaneous Component Analysis, SCA) [55–57]. ANOVA-SCA is
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particularly useful when two or more quantitative variables are involved, such as
time and dose. In the first step, an ANOVA model is applied for each gene
expression measure to separate the variability caused by these two different
variables. The model parameters obtained for all genes under each experimental
condition are subsequently organized into a matrix form. The second step involves
applying principal component analysis simultaneously on all matrices obtained
under all experimental conditions. A number of constraints can be further imposed
such that the resulting matrices are mutually independent. Such constraints on
orthogonality enable the ASCA model parameters to be estimated independently
by solving a simple least-squares optimization problem. Statistical significance of
these experimental variables and their interactions can be further inferred using a
permutation approach [58]. In particular, all experimental conditions are permu-
tated to obtain a no-effect distribution, thus providing a baseline to conclude
whether the observed effect is indeed significant.

One of the earliest applications of ASCA was for analyzing a metabolomics
experiment in which the effects of time and vitamin C dose on the NMR spectra of
guinea pig urine samples were delineated [55]. Individual variations caused by
time and doxorubicin dose on metabolite mass spectrometry profiles were also
uncovered using ASCA in a toxicology study on rats [59]. Given the intrinsic
generalizability of ASCA, it is not surprising to find this approach extended into
discovery of kinetically differentially expressed genes [60]. Two statistics—SPE
(Squared Prediction Error) and leverage—were proposed to evaluate the goodness
of fit of the ASCA model, and the degree of agreement with which a gene
profile follows the main expression patterns, respectively. This adapted version of
the original algorithm, ASCA-genes, has been implemented in the R language.
Furthermore, ASCA-fun was devised to perform functional analysis on time-series
microarray data [48]. In this method, genes ranked according to their correlation to
the principal time components identified by ASCA were used to assess functional
enrichment in the dataset following Gene Set Analysis (GSA) procedures.

Bayesian Approaches

A multivariate empirical Bayes model was applied to time-series microarray data
by Tai and Speed [11]. The algorithm, implemented in the R package timecourse,
however, requires replicates of the full time-series. This algorithm calculates
multivariate versions of the log-odds, or B-statistic (MB-statistic), and the
Hotelling statistic (~T2). When the numbers of replicates are the same for all genes,
the MB-statistic is equivalent to the ~T2-statistic. The algorithm can be used in one-
treatment problems and multi-treatment problems. Although this method ranks the
genes, it does not provide a significance cutoff.

A fully Bayesian approach for microarray analysis was implemented in clus-
tering [61] and later for the analysis of time series [62]. This fully Bayesian
approach can handle short series, non-uniform sampling and missing data and does
take into consideration the temporal structure of the time series. Gene expression
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profiles are modeled with Legendre or Fourier polynomials, and the coefficients
and the degrees of these polynomials are estimated using a Bayesian approach.
The differentially expressed genes identified in this Bayesian multiple-testing
procedure are ranked, and their expression profiles are estimated. This estimation
allows the visualization of each gene expression profile as a single smooth curve.

The fully Bayesian approach was demonstrated when analyzing the time series
obtained by stimulating human breast cancer cells with estradiol after different
time periods. The algorithm is implemented in the Bayesian user-friendly software
for Analyzing Time Series (BATS) [63], a graphic user interface written in Matlab.
The BATS package requires 5–6 time points and replicates are recommended but
not required. At the moment, however, BATS can only handle one treatment time
series. Its extension to multiple time series is under development.

6.2 Calculation of Distances Between Gene Expression Profiles

Just as in the calculation of the geometrical distance between any two vectors, a
distance value can be computed to quantitatively describe the difference between
two expression profiles of the same gene. By condensing all distance measures
between the corresponding time points, the comparison of these two profiles is
reduced into a single number. Two frequently used metrics are Euclidean distance
and Pearson’s correlation (Fig. 4). Euclidean distance, also known as L - 2 norm,
assesses the absolute difference between two time profiles. As a result, genes with
the highest Euclidean distance between two treatments are often the ones with high
expression levels, and are most likely to be identified as differentially expressed
despite having similar expression trends in these treatments. Gene expression data
can then be mean-centered or z-transformed to alleviate the dominance of these
high-abundance transcripts. On the other hand, Pearson’s correlation quantifies the
overall similarity between the two trends regardless of the absolute values of
gene expression. Small fluctuations in gene expression between low-abundance
transcripts can thus be manifested as being markedly different since only
expression trend is considered.

The choice of distance metric therefore depends on the question being asked.
If the absolute values of expression measures are critical, the Euclidean metric
is often preferred. Alternatively, the Pearson’s correlation coefficient is a more
suitable similarity measure if the overall trend of expression is pertinent to
the analysis. A combination of both metrics is therefore recommended to integrate
the differences in absolute expression magnitude and expression trend.

Following selection of a proper metric and distance calculation, a distribution
of this representative difference can be plotted, and a threshold is often set to
declare differential expression. Genes having distance measures between their
expression profiles in two treatments above a certain threshold are considered to be
differentially expressed. Manual inspection of gene expression profiles is often
recommended to confirm the differential expression. In addition, if both treatments
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are replicated, a statistic can be derived by permuting replicated samples between
the two treatments. An average distance over all permutations is calculated, and
compared to the actual distance to infer a statistical significance level. However,
optimizing the difference threshold between the average and the actual distance
can be indeed challenging.

This approach was used in a number of studies conducted in Streptomyces
coelicolor. Genes involved in regulatory circuits related to antibiotic production
were identified using Euclidean distance as criterion for differential expression
[19]. Euclidean distance was also used in conjunction with principal component
analysis (PCA) to reveal genes kinetically perturbed when the Streptomyces
coelicolor sigma-like protein AfsS was disrupted [64]. In a recent study, more than
900 genes were identified as differentially expressed in an antibody-producing
CHO cell line between the butyrate-treated 33�C culture and the non-treated
culture [14].

Fig. 4 Calculation of distance between the expression profiles of a gene in two series.
The distance between the expression profiles of gene ga in three series can be measured using
different metrics. The Euclidean metric quantifies the absolute geometric distance between the
profiles, whereas the Pearson metric evaluates the correlation of trends in expression. Thus even
though the Euclidean distance of ga between series 1 and series 3 (Eucl (ga1, ga3)) is much higher
than that between series 1 and series 2 (Eucl (ga1, ga2)), their Pearson correlations (Corr(ga1, ga2)
and Corr(ga1, ga3)) are indeed the same
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7 Profile Pattern Recognition

Microarray data, with their large size and high dimensionality, are inherently
complex. Compared to the number of genes (i.e., dimensionality), the number of
samples is almost always small, making it difficult to find an answer to the
question being asked. Often, an objective in a microarray experiment is to identify
genes with a certain profile or pattern. Sometimes, however, which patterns are
present in the data are not even known. In order to identify patterns that exist
in the data, two types of techniques can be used: unsupervised and supervised
algorithms.

7.1 Unsupervised Classification Methods

Unsupervised pattern recognition consists of organizing data based on the prop-
erties of the data themselves without reference to additional information [65].
Mathematical algorithms determine the search for natural patterns existing in the
data [66]. The goal of unsupervised pattern recognition is to identify small subsets
of genes that display similar expression patterns [67]. Instead of clustering genes,
clustering samples based on their expression profiles can also be a goal in clus-
tering analysis. In this case samples with similar expression profiles might help
identifying groups, or labels, that can be given to those samples.

Although the term unsupervised pattern recognition is commonly used as a
synonym for clustering, it actually encompasses other techniques, such as
non-negative matrix factorization (NMF) and principal component analysis (PCA).

7.1.1 Dimensionality Reduction Techniques

Because microarray data is often obtained from only a small number of samples
and entails thousands of genes, dimensionality reduction can be helpful for visu-
alization, clustering, and classification. When transcriptome data is represented as
an n by m matrix, in which n is the number of genes and m the number of samples
(n � m), dimensionality reduction techniques can be used to identify a smaller
number of principal gene expression patterns k (Fig. 5). This can be done by
factorizing the original gene expression matrix (A) into two sub-matrices: one
containing eigenarrays (W) and the other containing k eigengenes (H). The
expression level of each gene in these m samples can be represented as a linear
combination of the k eigengenes. Similarly, the overall expression pattern in each
sample can be represented as a linear combination of the k eigenarrays.

In PCA, the data is transformed into a new set of variables called principal
components (PCs). The principal components are uncorrelated, and, furthermore,
they are ranked so that the first PCs contain most of the variation present in all of
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the original variables [68]. Since the first few PCs capture most of the variation in
the original data, it is customary to use only the first few PCs [69]. When the data
are projected along the first few PCs (most commonly the first two or three), in
many cases it is possible to identify groups.

In PCA, the gene expression values can be reconstructed by a weighted sum of
the eigengenes; however, there is no restriction on the sign of the weights. This can
cause some variability due to cancellations, if eigengenes with both negative and
positive weights are added. In a similar technique, NMF, the coefficients are forced
to be non-negative, which ensures that the contributions from principal gene
expression patterns are positive and thus additive [70, 71].

Both techniques, PCA and NMF, have been used in the identification of bio-
markers; for an example see [72]. PCA has been used to characterize the gene
expression of stem cells in different phases [73] and different types of stem cells
[74]. As NMF has been found superior to PCA in reducing microarray data [75], it
has been used more extensively in the identification of cancer molecular patterns
for gene expression data [70, 76, 77].

7.1.2 Clustering

Clustering is one of the most widespread tools for grouping transcripts in micro-
array data. The concept of clustering is based on the simple idea of grouping
similar objects. The goal is to maximize the similarity between objects in the same

Fig. 5 Matrix factorization in dimensionality reduction techniques: NMF and PCA. Microarray
data is organized into a matrix (A) with each row representing the expression levels of a gene in
m samples. This original matrix can be decomposed into two sub-matrices: one containing
k eigenarrays (W), and the other containing k eigengenes (H). The expression levels of each gene
in these m samples can be represented as a weighted combination of the k eigengenes. Similarly,
the overall gene expression pattern in each sample can be represented as a weighted combination
of k eigenarrays
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cluster, and minimize the similarity of objects in different clusters. How similarity
is measured is thus a key part of clustering algorithms. In the case of microarray
data, the expression profile of a gene, made up by the different samples, is seen as a
series of coordinates that define a vector [78]. Distance metrics can thus compare
the similarity of the direction and/or magnitude of two or more vectors.

Traditional clustering algorithms have existed since the 1950s and have been
applied to a number of problems, including image analysis, marketing, for docu-
ment classification (such as books), and for population studies. These traditional
algorithms have also been used to cluster transcriptome data. In addition, spe-
cialized clustering algorithms have been developed for time-series data.

Clustering for Static Sampling

In the case of static sampling, transcriptome data can be represented as a matrix,
with each row representing a gene, and each column representing a single con-
dition. The data can thus be represented as vectors and the distance between these
vectors can be determined. Note that there are two ways to organize the data. One
is to take the expression value of each gene across different samples as a vector.
The other one is to take the expression of all genes in a sample as a vector.
Clustering can thus be used to find genes behaving similarly in different samples or
samples which are ‘‘similar’’ in overall gene expression. In the following section,
all examples are illustrated as clustering genes with similar transcriptional
behaviors in different samples. The alternative of classifying samples based on
their overall gene expression data is demonstrated in the supervised classification
topic.

A distance measure (such as Euclidean, Manhattan, Chebyshev, Mahalanobis,
Pearson, cosine, Spearman, or Kendall) is used to assess similarity and the data is
then organized into clusters according to clustering rules. These clusters can be of
fixed size, the number of clusters determined a priori) or natural clusters can be
discovered in the data. The most commonly used clustering algorithms broadly
correspond to two categories: hierarchical clustering and partitional clustering.

Hierarchical clustering can be bottom-up, starting with single-gene clusters and
joining the most similar clusters until a single cluster with all genes is obtained; or
top-down, starting with all genes in a single cluster and dividing them into smaller
clusters [79]. In both cases, the result is represented as a hierarchical tree, or
dendrogram. Most commonly, the bottom-up approach is used (Fig. 6). Initially,
two closest genes (1 and 2; then 3 and 4) are joined using one of the distance
metrics. In the next iteration, a linkage or amalgamation rule is needed to join
these multiple-gene clusters [80]. This rule can be single linkage, complete link-
age, or average linkage. In single linkage (also known as nearest neighbor), the
similarity of these two clusters is the shortest distance of all pair-wise comparisons
of the genes in one cluster to the other; in this example, the distance between gene
1 and gene 3. In complete linkage (also known as furthest neighbor), the similarity
of these two clusters is defined as the largest distance of these pair-wise
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comparisons; in this case, the distance between gene 2 and gene 4. In average
linkage, the distance between these two clusters is that between their centroids
[65]. In this instance, the centroid of the first cluster is a hypothetical gene ‘‘in the
middle of’’ gene 1 and gene 2, and thus its expression level is taken as the average
expression level of these two genes.

Hierarchical clustering has been used extensively to compare cell types and
tissues, including diseased vs. healthy cells, and drug effects, for example [81–85].
Hierarchical clustering has also been used to classify proteomic profiles of serum,
plasma, and modified media supplements used in cell culture [86], and meta-
bolomic profiles of extracellular metabolites in recombinant CHO fed-batch cul-
tures [87].

In partitional clustering, data points are separated into a pre-defined number of
clusters. In the first step of these iterative algorithms, data points are randomly
assigned to clusters. The distance between individual data points and the cluster is
then calculated and used to reassign the data points to the cluster to which they are
closest. This process continues until all data points are assigned to the closest
cluster [88]. K-means clustering, Self-Organizing Maps (SOM), and Fuzzy
C-means (FCM) clustering are among the best known clustering algorithms in this
category. One limitation of these algorithms is that the number of clusters has to be
fixed from the beginning, and thus the results are dependent on it [89].

In k-means clustering [90], k is the number of clusters, and is a required input.
k random points are used as cluster centers (or means) at initialization. All data

Fig. 6 Hierarchical clustering. The algorithm starts with each gene belonging to its own cluster,
followed by joining the two closest genes: 1 and 2. Subsequently, individual genes or multi-gene
clusters are joined using single linkage, complete linkage, or average linkage. In this case, single
linkage is used, i.e., the distance between two clusters is taken as the shortest distance between
any two members of the clusters. Thus the distance between cluster 1–2 and cluster 3–4 is the
distance between genes 1 and 3. The two closest clusters are joined accordingly, in this case
cluster 1–2 and cluster 3–4. This grouping is continued until all genes are joined into one cluster,
and the whole process can be visualized as a dendrogram
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points are assigned to these initial clusters by finding the one with the closest
distance. In iterative steps, the mean of each cluster is recalculated and the data
points reassigned to new clusters [91]. This process continues until the assignment
does not change markedly. As the value of k greatly influences the final outcome,
several algorithms include a procedure to determine the best k. k-means clustering
has been used to analyze transcriptome data of cancer cells [92] and stem cells
[74, 93] among others.

Similar to k-means clustering, in the case of SOMs [94], the number of clusters
is also a required input. In addition, their geometry must be specified (grid size).
Thus not only the number of clusters but also their geometry has an effect on the
final clustering result. A seed vector is first assigned to each cluster, and data
assigned to these clusters in an iterative process. In each iteration, randomly
selected gene expression data is compared to the seed vectors. The gene is
assigned to the cluster that has the more similar seed vector. The value of the seed
vector is updated, so that it is more similar to the expression of the gene used in the
comparison. Because the cluster centers are part of a grid, the values of the other
seed vectors are also modified, although to a lower extent. SOMs have been used
to analyze monolayers of cultured rat hepatocytes [95], to study hematopoietic
differentiation [96], to investigate saline osmotic tolerance in yeast [97], and to
investigate hepatic differentiation [98], among others.

Whereas k-means and SOM assign each gene to a single cluster (hard clus-
tering), FCM [99] links each gene to all clusters using a series of values. Values
close to one indicate strong association to a cluster, and values close to 0 indicate
absence of association. These indexes define the membership of each gene with
respect to all clusters [100]. In addition to the number of clusters, the fuzziness
parameter is also a required input. Kim et al. [101] have reported that the fuzziness
parameter is sensitive to the normalization method used, and thus the clustering
results vary with the normalization method. Recently, a method for the determi-
nation of the optimal parameters for FCM has been proposed [102]. FCM has been
used to analyze gene expression profiles in high-grade gliomas [103] and in tumor
sample classification [104].

Clustering for Dynamic Sampling

Clustering algorithms such as hierarchical clustering, k-means, and SOM are also
commonly used to analyze time-series data. However, these algorithms do not take
into account the sequential aspect of time-series data [105]. Thus clustering of time
series requires specialized algorithms. Some of the specialized algorithms require
long series ([10 time points), whereas others have been developed specifically for
short time series.

B-splines [20, 106, 107], linear splines [108], ordered restricted inference [109],
hidden Markov models [110], and gene expression dynamics using regression
[111] are examples of clustering algorithms that can be used for long time-series
data. Fuzzy C-Varieties with Transitional State Discrimination preclustering
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(FCV-TSD) [112], ASTRO and MiMeSR [105], and Short Time-series Expression
Miner (STEM) [113] are examples of clustering algorithms developed specifically
for short time-series data.

STEM selects a set of potential expression profiles, each representing a
unique pattern. Each gene is then assigned to the profile that best represents it.
The significance of each profile is determined using hypothesis testing. The
number of genes assigned to each profile under the true ordering is compared to
the average number of genes assigned to each profile when permutated data is
used. The significant profiles can then be analyzed independently or grouped into
clusters. STEM has been used to cluster time-course microarray data collected in
the study of egg development in Drosophila melanogaster [114], salt stress in
Medicago truncatula [115], and muscle differentiation [116].

Biclustering takes clustering algorithms a step further. It consists of simulta-
neous clustering of both genes (rows) and conditions (columns) [117]. The goal in
biclustering is to find submatrices [118], that is, to identify subgroups of genes
and/or subgroups of conditions with highly correlated behaviors. Thus biclustering
can find correlations in certain datasets where other algorithms cannot. Biclusters
can be of constant row, constant column, or both constant row and column.

Among the software that can perform biclustering are Gene Expression Mining
Server (GEMS) [119], Expression Analyzer and DisplayER (EXPANDER) [120],
Phase-shifted Analysis of Gene Expression (PAGE) [121], Biclustering Gene
Expression Time Series (BIGGEsTS) [122], Biclustering algorithm and Visuali-
zation (BiVisu) [123], and Biclustering Analysis Toolbox (BicAT) [124], which
integrates several biclustering algorithms.

7.2 Supervised Classification Methods

Unsupervised classification methods are used for the identification of naturally
existing clusters within the data. Supervised approaches, on the other hand, are
designed to address the following question: given a set of samples categorized into
pre-defined groups (training set), can we use the gene expression data of these
samples to construct a rule, or a function, to differentiate these groups? This also
implies the ability to use this rule for classification of new, uncategorized samples
(test set) based on their expression data.

Since the classification rule is built upon the training set, it may fit this dataset
‘‘too well’’ and thus have poor performance on unclassified samples in the test set
(Fig. 7a). In this example, the high producer clones (blue circles) and the low
producer clones (black squares) can be simply separated by a linear model (solid
line), allowing several samples to be misclassified (outliers). Yet the model
can become over-complicated (dashed line) when trying to classify correctly all
outliers and thus often results in a higher error rate in classifying regular samples.
This is known as ‘‘overfitting’’, and ideally should be assessed using an
independent test set. However, in situations where acquiring additional data is
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expensive or not feasible, various cross-validation schemes can be used.
The leave-one-out scheme allocates one sample for testing whereas the rest are
used to train the classification model. In the hold-out scheme, the data is split into
two equal sets—one is used for training, and the other for testing. Another fre-
quently used method is the k-fold cross-validation, in which the data is divided into
k sets—the first (k - 1) sets are used for training, and the last one for testing
(Fig. 7b). This process is repeated until all data have been used for testing.
Commonly used supervised classifiers for gene expression data include K-Nearest
Neighbors (KNNs), decision trees, Artificial Neural Networks (ANNs), and
Support Vector Machines (SVMs). These algorithms have been implemented in
several code libraries and various downloadable packages in Matlab and R.

7.2.1 K-Nearest Neighbors

KNN is among the simplest and most fundamental classification methods, and is
often the first choice when prior knowledge about the dataset is minimal. Given that a
set of samples have been classified into different groups, a new sample will be
assigned into the group whose members constitute the majority in the neighborhood
of the sample [125, 126]. The choice of distance metric thus becomes vital in this case
––a new sample can be assigned to a different group when a different distance metric
is applied. In addition, if a certain group is dominant in size compared to the others,

Fig. 7 Overfitting of training data and k-fold cross-validation scheme. a High producer clones
(blue circles) and low producer clones (black squares) can be separated using a linear model
(solid line) with a few outliers. Yet the model can become complex (dashed line) when all
outliers are taken into consideration. This overfitted model will have a high error rate when
classifying new samples. b The data is split into k subsets: (k - 1) subsets are used for training the
model, and testing is performed on the kth subset. This process is repeated k times until all data
have been used for testing
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a bias in assigning new samples into that group is likely to occur. One way to
circumvent this problem involves giving each ‘‘neighbor’’ a weight inversely
proportional to its distance to the new sample. Furthermore, the distance threshold
and the number of ‘‘neighboring’’ samples k also have an effect on the final classi-
fication, and thus should be optimized using cross-validation.

In the FDA MicroArray Quality Control (MAQC) project, a KNN data
analysis protocol was developed to predict the clinical outcome of about 500 new
neuroblastoma patients [127]. These KNN models were built using a large gene
expression dataset obtained from approximately 700 breast cancer, neuroblastoma,
and multiple myeloma samples. In another example, gene expression signatures
from 4413 probes in 37 colorectal cancer samples were also used to train a KNN
model which was further validated using a leave-one-out scheme [128].
This model successfully classified these samples into serrated and conventional
colorectal cancer samples using the expression data of 10 genes.

7.2.2 Decision Trees

Decision trees are built using an iterative scheme in which a question about
the gene expression signatures of the training samples is posed at each node
[126, 129–131]. The entire tree is obtained by repeated splitting of those samples
into two or multiple descendant subsets. The training samples will guide the choice
of splitting rules such that each terminal node of the tree, i.e., leaf, is assigned a
group label. Thus decision trees are often more interpretable than other classifiers,
and naturally support multiple-group assignment. Furthermore, multiple decision
trees can be combined into an ensemble, e.g., random forest, to increase the
classification accuracy [132, 133]. When applying decision trees, it is critical to
control the complexity of the tree, i.e., avoid overfitting the training data.
In addition to using cross-validation, one can also prune the tree by collapsing
several internal nodes into one leaf, or stop branching the tree when there is no
substantial improvement in the homogeneity of the final group assignment.

Fig. 8 Support Vector
Machines with soft margin.
Binary SVM algorithms
search for a separation hyper-
plane that maximizes the
margin (or distance) between
two groups: in this case, high
producer clones and low
producer clones. Samples on
the margins are referred to as
‘‘support vectors’’. A few
samples can be misclassified
in order to obtain a maximal
margin (‘‘soft margin’’)
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Several decision-tree algorithms were applied to 869 genes differentially
expressed in earthworms in response to explosive compounds TNT or RDX [134].
354 genes were subsequently selected by these algorithms as classifiers, and
ranked according to their significance in the assembled tree. In another application,
hierarchical clustering results of gene expression data from three different cohorts
of 481 breast cancer samples were further analyzed using decision trees [135].
Four groups with different expression levels of osteopontin (OPN), activated
leukocyte cell adhesion molecule (ALCAM), human epidermal growth factor 2
(HER2), and estrogen receptor (ER) were found. Patients with high OPN and low
ER, HER2 and ALCAM were placed in a particularly high-risk group.

7.2.3 Artificial Neural Networks

ANNs were developed based on the computation principles occurring in the
network of neurons within the human brain [126, 136, 137]. An ANN model can be
considered as an assembly of interconnected nodes in which all input sources, in
this case the expression values of all genes on the array, are weighted and com-
bined. This weighted average is compared to a threshold, yielding an output value
based on a step function. If the average exceeds the threshold, the output value will
be one, corresponding to one group; zero, which corresponds to the other group.
During the training process, the weighting factors and the threshold can be esti-
mated iteratively, and a linear decision boundary (i.e., separating hyper-plane) can
be obtained. Yet when the data are not linearly separable, hidden layers of inter-
mediate nodes can be added to the network. A partial classification is performed at
each layer, and assembled to achieve the final classification at the output node.
Furthermore, alternative functions such as sigmoid or linear model can be utilized
in place of the simple step function in these feed-forward neural networks.

Using gene expression data obtained from 63 training samples of small, round
blue cell tumors (SRBCTs), 3750 ANNs have been constructed and cross-
validated [138]. Without overfitting, these models successfully classified the
samples into four diagnostic categories of tumors. ANNs have also proven efficient
in tracking transcriptional changes responsible for progression from the chronic
stage to a highly aggressive acute stage of adult T-cell leukemia (ATL) [139].
Using gene expression data from more than 44,000 probe sets and 10-fold cross-
validation on 37 samples, 44 ‘‘predictor’’ genes could be identified, offering the
possibility of diagnosing different ATL stages.

7.2.4 Support Vector Machines

In binary SVM, two groups (for example, high producer clones and low producer
clones) are separated in such a way that the distance between the training
samples and the decision boundary is maximized [126, 140, 141] (Fig. 8). This
optimization process results in the construction of a separating hyper-plane, i.e., a
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linear line in 2-dimensional space, which maximizes the margin between the two
groups. In several cases where the samples are not linearly separable in the original
space, a kernel function can be chosen to transform the data to a higher-dimensional
space in which a ‘‘linear’’ hyper-plane can be found. Furthermore, a few anomalous
samples are often allowed to be misclassified to achieve a larger margin. Thus a cost
function has to be selected and optimized such that the size of this ‘‘soft’’ margin is
balanced with the allowable degree of hyper-plane violation.

Gene expression data from 97,802 clones was used to construct several SVM
models using the simple dot-product kernel and validated through the leave-one-out
scheme [142]. 31 human tissue samples were successfully classified by these models
into cancerous ovarian and normal tissues. Interestingly, an SVM model was also
built using gene expression profiles from seven high and four low recombinant
IgG-producing NS0 cell lines. Through the leave-one-out cross-validation process,
the transcriptomic differences between these high and low producers were indeed
highlighted, supporting the molecular basis of productivity trait [143].

8 Pathway Analysis

Microarray analysis results in a list of differentially expressed genes or genes with
a dynamic trend over time. It is possible that the transcriptional changes seen on
those genes might not be independent, but rather have occurred in a coordinated
manner. Thus understanding the physiological relevance of these changes requires
analysis in a biological context, beyond what differential expression analysis can
determine. Furthermore, examining genes in each pathway as a whole allows one
to detect subtle, yet consistent, transcriptional changes that would otherwise be
neglected by differential gene expression analysis.

Pathway analysis involves mapping the list of differentially expressed genes
onto known pathways in order to elucidate a whole chain of events which might
have occurred during the experiment. Depending on the microarray platform,
probe identifiers can be linked to different sources of annotation, for instance,
Gene Ontology (GO) [144], Kyoto Encyclopedia of Genes and Genomes (KEGG)
[145], and Gene Map Annotator and Pathway Profiler (GenMAPP) [146]. This
retrieval of pathway information allows all differentially expressed genes in a
certain pathway to be highlighted. However, statistical tests need to be performed
to confirm whether the entire pathway is indeed enriched or under-represented
rather than occurring by random chance. A number of methods and software have
been developed to assess the statistical significance of this functional enrichment/
under-representation, including Ingenuity’s IPA [147], GeneGo’s MetaCore [148],
GenMAPP’s MAPPFinder [146], Gene Set Enrichment Analysis (GSEA) [149],
and Gene Set Analysis [150]. Those methods differ in the calculation of the
enrichment score and the corresponding significance level, usually p-value or
FDR. For illustrative purposes, two representative methods, MAPPFinder and
GSEA, are described in the following section.
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8.1 MAPPFinder

In order to assess the degree of enrichment for each pathway (or gene set),
MAPPFinder calculates a z-score using the number of differentially expressed
genes in the set, the number of genes in the set, the number of differentially
expressed genes in total, and the total number of genes on the array [151–153].
A high positive z-score indicates that the pathway of interest is significantly
enriched, and an extreme negative z-score suggests that it is under-represented.
Furthermore, if a p-value is desired, a z-score of 1.96 or -1.96 can be converted to
a p-value of 0.05 given that the data strictly follows a hyper-geometric distribu-
tion. It is important to note that, similar to several other pathway analysis tools,
MAPPFinder also requires a pre-defined list of differentially expressed genes. This
is sometimes challenging since the list can vary considerably depending on the
selected fold-change and the p-value cutoff.

Prickett et al. have demonstrated the use of MAPPFinder in uncovering several
immune-system pathways affected in chicken infected with a protozoan parasite
[154]. 1,175 genes, accounting for about 10% of the total unique Ensembl
genes present on the array, were mapped to 85 inferred chicken pathways in
GenMAPP, 18 of which were either up- or down-regulated at a p-value cut-off
of 0.05. In another study, functional enrichment information obtained from
MAPPFinder was linked automatically to the original gene expression data to
calculate the average intensity or ratio of all differentially expressed genes in each
pathway [155]. This quantitative evaluation of dose- and time-dependent micro-
array data in rats exposed to toxicants thus allows one to calculate an effective
dose (ED50) for each pathway, which plays an important role in risk assessment.

8.2 Gene Set Enrichment Analysis

GSEA is a powerful tool for pathway analysis which calculates gene set enrich-
ment using all genes present on the array instead of a pre-defined set of differ-
entially expressed genes [149, 156, 157]. An ordered list is first generated by
ranking all genes in the dataset based on their signal-to-noise ratio (Fig. 9). This
ratio is often the quotient between the difference in average expression levels and
the overall variability of measurement. In the second step, a running-sum statistic
is measured for each pathway (or gene set S) by travelling down the ordered list.
If the gene encountered is a part of the gene set of interest, the statistic is
increased; otherwise it is decreased. The magnitude of this change is set to be
proportional to the signal-to-noise of that gene and the size of the gene set it
belongs to. The maximum deviation from zero of the running-sum statistic is
chosen as the enrichment score (ES), and an associated statistical significance
(p-value) can be calculated using a permutation scheme. Concurrently, a leading-
edge subset of genes which are key contributors to enrichment of the function
represented by the gene set can also be exported.
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Deregulated functional categories in Ewing’s sarcoma family tumors (ESFT)
cell lines under hypoxia were identified by applying GSEA with three different
gene sets [158]. Hypoxia-related functions such as angiogenesis, vasculature
development, and glucose metabolism were shown to be up-regulated under
hypoxic conditions. GSEA was also used alongside other pathway analysis tools to
investigate the biological relevance of transcriptional differences between neuro-
fibromatosis type 1 (NF1)-haploinsufficient lymphoblastoid cell lines (LCLs) and
mouse B lymphocytes [159]. Despite the modest changes in gene expression
detected using the t-test, several pathways were shown to experience perturbations
including cell cycle, DNA replication and repair, transcription and translation, and
immune response.

9 Network Reconstruction

Gene network inference attempts to reconstruct gene networks reflecting their
interactions from high-throughput data, especially microarray data. Network
reconstruction is a challenging task as gene interactions are dynamic and mem-
bership of particular elements in a network is not always permanent. In this regard,
the use of microarray data compiled under a wide range of conditions, or from a
variety of mutants, can help unveil interactions. Also, time-series microarray data
is of particular relevance in reverse engineering regulatory networks. In addition to
algorithms for constructing regulatory networks using static gene expression data,
special algorithms have also been developed for data obtained from time-series
microarrays.

Fig. 9 Gene Set Enrichment Analysis (GSEA). Genes are ranked based on their signal-to-noise
ratios to create an ordered list. A running sum statistic is calculated by walking down this list.
If the gene encountered is part of the gene set of interest, the running sum statistic is increased;
otherwise, it is decreased. The enrichment score (ES) of each gene set (S) is chosen as the
maximum deviation of this statistic from zero. Genes with key contributions to the enrichment of
the gene set are listed in the leading-edge subset
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9.1 Network Reconstruction From Static Gene Expression Data

9.1.1 Information Theoretic Methods

Several methods based on information theory have been used for reverse
engineer cellular networks from microarray expression profiles. These methods
calculate mutual information (MI) between pairs of gene expression profiles.
An advantage of MI over other measures of relatedness is that it can detect
non-linear interactions. Although these algorithms can be used on time-series
data, the sequential aspect is lost, as each sample time point would be considered
a different condition.

The original algorithm, relevance networks (RELNET) [160], infers an inter-
action if MI for a pair is larger than a threshold. RELNET has been applied to
reconstruct networks in yeast [160], in cancer cell lines [161], in human hepatoma
cells [162], and to identify hub cancer genes [163]. This approach, however, can
result in many false positives, and thus extensions which discriminate between
direct and indirect interactions have been developed.

Extensions to RELNET proceed in two steps. The first is common to all
methods, and consists of calculating MI between pairs of gene expression profiles.
In the second step the MI values are assessed and compared, and interactions
inferred. The second step is unique to each method.

Context Likelihood of Relatedness (CLR) [164] is an algorithm that removes
false correlations by comparing MI for each pair with a background distribution of
MI scores. CLR was used to reconstruct parts of the transcriptional regulatory
network of the pathogen Salmonella typhimurium [165].

A second algorithm based on relevance networks, the Algorithm for the
Reconstruction of Accurate Cellular Networks (ARACNE) [166–168], eliminates
indirect relationships by using data process inequality (DPI), a characteristic of
mutual information. ARACNE has been used in reverse engineering the regulatory
networks of human B cells [166], in the identification of the targets of the
transcriptional repressor BCL6 [169], in the reconstruction of red blood cell
metabolism from metabolic data [170], and in the genome-wide reconstruction of
the regulatory networks of Streptomyces coelicolor [171], an antibiotic producer.
CLR and ARACNE were both used to identify genes regulated by Nrf2 in response
to oxidative stress [172], and to infer the connectivity of phosphorylation sites in
receptor tyrosine kinases [173].

A third algorithm, Minimum Redundancy Networks (MRNET) [174], performs
a series of maximum relevance/minimum redundancy (MRMR) selection proce-
dures for each gene and selects the genes having the highest MI with the target.

RELNET, CLR, ARACNE, and MRMR are included in the R package minet
(Mutual Information NETwork inference) [175]. The networks resulting from
these algorithms can be visualized using the R package Rgraphviz [176].
In addition, the Java implementation of ARACNE includes Cytoscape [177] for
network visualization.
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9.1.2 Bayesian Networks

Bayesian networks have recently emerged as promising approaches for inferring
gene regulatory networks using microarray data. These methods are particularly
suitable for the reconstruction of cellular networks due to their ability to capture
the stochastic nature of gene regulation and allow causality inference [178, 179].
Furthermore, prior knowledge can be incorporated to improve the accuracy of the
final network structure.

A Bayesian network can be represented as a directed acyclic graph, in which each
node is a gene, and the edge between two nodes denotes the dependency between
two corresponding genes [180, 181]. A joint probability for the network is thus
calculated as a product of multiple conditional probabilities for each gene, given that
it is regulated by a defined set of parent genes. These probability functions can be
either discrete, e.g., binomial distributions, or continuous, e.g., normal density
function. Among the several possible networks being reconstructed, an optimal
network can be chosen by maximizing the corresponding posterior probability.

Bayesian predictive networks have been constructed using gene expression in
combination with genotypic, transcription factor binding site, and protein–protein
interaction data in yeast [182]. These networks were shown to successfully predict
regulators causing hot spots of gene expression activity in a dividing yeast
population. Molecular mechanisms underlying transcriptome reprogramming in
cyanobacteria under altered environments were also revealed using Bayesian
networks [183]. A large number of genes in the core transcriptional response
(CTR) are associated with oxidative stress under most perturbations, indicating the
important role of reactive oxygen species in the regulation of these genes.

9.2 Network Reconstruction from Dynamic Gene Expression Data

9.2.1 Information Theoretic Method: TimeDelay-Aracne

Some of the algorithms originally used for network reconstruction using
static sampling data have been extended to take advantage of the dependency
information contained in time-series data. One such example is an extension of
ARACNE. This extension, implemented in the TimeDelay-ARACNE algorithm
[184], uses time-course data to retrieve time statistical dependencies between gene
expression profiles. This algorithm considers the possibility that the expression of
a gene at a certain time could depend on the expression level of another gene at an
earlier time point; that is, it detects time-delayed dependencies. The algorithm
performs three steps: firstly, it detects the time point of the initial changes in
the expression for all genes; secondly, it constructs networks by calculating
time-dependent MIs; and thirdly, it performs network pruning using DPI.
TimeDelay-ARACNE, which has been implemented in R, also attempts to infer
edge directionality.
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9.2.2 Dynamic Bayesian Networks

Built upon Bayesian networks, Dynamic Bayesian Networks (DBNs) also
calculate a joint probability using the conditional probability of each gene, and
select the optimal network based on the posterior probability. DBNs further
allow time delay and modeling of feedback loops by incorporating temporal
information associated with time-series data. For instance, the cyclic regulation
among genes ga, gc, and gd shown in Fig. 10a can be represented by allowing
these genes to cross-interact from time point i to time point (i + 1) (Fig. 10b).
To further enhance the prediction accuracy and reduce the computational
complexity of DBNs, a number of modifications have also been proposed
[185]. For example, potential regulators are limited to those genes with either
preceding or simultaneous expression changes. Transcriptional time lags
between regulators and target genes can also be estimated, and statistical
analysis is thereby restricted within that time frame to improve the accuracy of
the prediction.

DBNs have been used successfully to construct gene regulatory networks in
yeast using cell cycle time-series microarray data in two independent studies
[179, 185]. Main regulatory nodes in the S.O.S DNA repair network in E. coli were
also extracted using DBNs [186]. Compared to other methods for inferring gene
regulatory networks such as Granger causality and probabilistic Boolean network,
DBNs consistently displayed enhanced performance. This was especially the case
for short time series, as exemplified with data obtained from muscle development
in fruit fly [187], normal and infected Arabidopsis leaves [188], and food intake
effect on human blood [189]. Furthermore, the causality inference power of DBNs
was substantially improved when time-series gene perturbation data was also
incorporated [190].

Fig. 10 Gene regulatory network with feedback loop deciphered using DBN. A regulatory
network containing four genes (ga, gb, gc, and gd), three of which form a feedback loop (ga ? gc

? gd ? ga). a The feedback loop among ga, gc, and gd is deciphered by allowing cross-
interactions along the time axis. b The expression level of gc at time point (i + 1) is dependent on
that of ga at time point i. Similarly, the expression level of gd at time point (i + 1) is dependent on
that of gc at time point i. The loop is closed by allowing gd’s expression level at time point i to
have an effect on that of ga at time point (i + 1). Note that each gene’s expression level at a certain
time point is always dependent on its own expression level at the previous time point
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10 Concluding Remarks

In this review, methods for the analysis of microarray data are summarized, with a
focus on their use in mammalian cell culture. Whereas specific algorithms used for
each step depend on the type of data and the question being asked, the general
steps for microarray data analysis remain valid. These steps include data
pre-processing followed by identification of differentially expressed genes at a mini-
mum, but greater biological insight can be gained by using other types of analysis such
as profile pattern recognition, pathway analysis, and network reconstruction.

Even though transcriptome studies of antibody-producing cell lines have been
few compared to other cell types, the next few years will see an increase in the
resources available for studying genomes and transcriptomes, and this will greatly
benefit the understanding of these relevant cell lines.
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Modeling Metabolic Networks
for Mammalian Cell Systems: General
Considerations, Modeling Strategies,
and Available Tools

Ziomara P. Gerdtzen

Abstract Over the past decades, the availability of large amounts of information
regarding cellular processes and reaction rates, along with increasing knowledge about
the complex mechanisms involved in these processes, has changed the way we
approach the understanding of cellular processes. We can no longer rely only on our
intuition for interpreting experimental data and evaluating new hypotheses, as
the information to analyze is becoming increasingly complex. The paradigm for the
analysis of cellular systems has shifted from a focus on individual processes to
comprehensive global mathematical descriptions that consider the interactions of
metabolic, genomic, and signaling networks. Analysis and simulations are used to test
our knowledge by refuting or validating new hypotheses regarding a complex system,
which can result in predictive capabilities that lead to better experimental design.
Different types of models can be used for this purpose, depending on the type and
amount of information available for the specific system. Stoichiometric models are
based on the metabolic structure of the system and allow explorations of steady state
distributions in the network. Detailed kinetic models provide a description of the
dynamics of the system, they involve a large number of reactions with varied kinetic
characteristics and require a large number of parameters. Models based on statistical
information provide a description of the system without information regarding structure
and interactions of the networks involved. The development of detailed models for
mammalian cell metabolism has only recently started to grow more strongly, due to the
intrinsic complexities of mammalian systems, and the limited availability of experi-
mental information and adequate modeling tools. In this work we review the strategies,
tools, current advances, and recent models of mammalian cells, focusing mainly on
metabolism, but discussing the methodology applied to other types of networks as well.
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1 Systems Biology Overview

Metabolic engineering aims at modifying an organism or a cell line with new or
augmented pathways, for the production of specific compounds or the utilization
of alternative substrates [1]. This can be achieved by altering the relative rates of
some reactions, controlling the external conditions, or by introducing genetic
modifications into the cell. The numerous applications of this methodology in the
biotechnology and pharmaceutical industries require a deep understanding of
the biological processes involved. There has been a growing interest in addressing
the study of biochemical networks and cellular processes in a comprehensive way.
This approach, often referred as a systems approach, arises as a promising option
for a detailed analysis of these complex networks [2].

In a systems biology approach the aim is to examine the structure and dynamics
of the different cellular functions instead of focusing on the characteristics of the
individual cellular components. The complexity of cellular systems, especially of
mammalian cells, cannot be understood as a detailed inventory of genes, proteins,
and metabolites. A comprehensive understanding of the systems characteristics
requires insight into its networks, components and interactions, dynamic behavior,
control and regulation, and observable characteristics [3]. A systems approach
assumes that the behavior of a system can be described as a direct consequence of
the interactions of its components, and considers all the components and reactions
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involved in a particular cellular process. Those reactions, ranging from DNA,
RNA, protein synthesis and their regulation to biochemical conversions, form
complex interaction networks. Modeling, computation, and experimental research
data from metabolomics, genomics, and proteomics can be combined to generate a
meaningful description of a cellular process or biochemical network.

This type of approach can be applied to identifying key control points in a
metabolic network, limiting steps in a reaction pathway, and candidate genes for
metabolic and cell engineering. This can be achieved by using large-scale
screening techniques and a mathematical framework for processing this infor-
mation. All these components store and control different levels of information:
long-term in the genome, short-term in the proteome, and information retrieval and
control in the transcriptome and metabolome [4]. These different levels of infor-
mation are integrated in complex networks of interactions, in order to generate
cellular functions and responses. This is illustrated in the complexity pyramid in
Fig. 1. An organism can be described as a combination of a series of genes,
metabolic networks, and regulatory networks, interacting with each other at

Fig. 1 A set of genes, metabolites, and proteins, with a specific copy number or concentration,
defines the physiology of an organism (level 1). These components form genetic-regulatory
motifs or metabolic pathways (level 2), which are the building blocks of functional modules
(level 3). Nested modules generate a hierarchical architecture (level 4). Characteristics at many
different levels can be conserved among organisms. Heterogeneity in physiology is likely due to
different relative concentrations of these components. Adapted from [4] with permission
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different levels. Although the main individual component distribution may be
unique for a given organism, there are a significant number of genes and proteins
which are homologous and highly conserved among organisms. In addition, a large
number of metabolites as well as the topological properties of cellular networks
are commonly shared by different species. Hence, differences in cellular physi-
ology are most likely due to different relative concentrations of these biological
components as a result of disparate regulatory mechanisms. Thus, not only are the
main components essential for characterizing an organism, but also the connec-
tions, interplay, and regulation of these components are essential in defining the
final properties observed. The study of these complex networks and interactions is
currently possible due to the advances in recent decades in analytical methods,
genome sequencing, and high-throughput experimental methods and software
development, which allow us to obtain comprehensive sets of data on a system’s
performance and gain insight into the specific molecules involved in each process.
Integrative models provide system-level insights into the mechanisms by which
each component interacts with the rest of the network, generating predictions and
providing knowledge regarding perturbed networks. This methodology can be
used to identify and study emergent properties of a system such as robustness and
redundancy, in order to understand the underlying characteristics of the system.
This system-level information has potential applications in medicine, agriculture,
biofuels production, and many other areas [5].

2 The System: Mammalian Cells

Mammalian cells are complex compartmentalized cellular systems that perform a
large number of biochemical reactions simultaneously, subject to a series of
thermodynamic constraints. These cells have significant differences in character-
istics with respect to other cellular systems such as bacteria or plants. Some of
these differences are illustrated in Table 1.

The complexity of the intracellular environment in mammalian cells is the
result of a large genome, with ten times more genes than bacteria and an even
larger number of transcripts and proteins, as well as other elements such as lipids,
sugars, and nucleotides. In this environment a large number of interactions can
take place. This crowded intracellular environment facilitates the interactions
between components located near to each other, reduces movement and transport
of molecules by diffusion, and promotes protein folding and aggregation. There is
a high level of internal spatial complexity in mammalian cells, since intracellular
components and therefore component interactions are not distributed homoge-
neously inside the cell. The characteristics of this intracellular environment also
change continuously as a result of cellular activity; e.g. the relative proportions of
RNA, DNA, and protein are also related to cellular growth rate. In Escherichia coli
the RNA-to-protein ratio increases with growth rate while the DNA-to-protein
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ratio decreases [6]. Hence, parameters related to protein and RNA synthesis rate
should be estimated as a function of growth rate.

The first step in developing a mathematical model is identifying the
components of the system to be modeled. Then, key interactions among these
components as well as the directionality of these interactions need to be assessed.
The characteristics of the model will depend on the nature and amount of infor-
mation available on the system. Based on the interactions identified, a set of
reactions is obtained which represents the interactions of each of the components
in the network. From these reactions a mathematical description of the system is
constructed. Some of the parameters required by the model may be fitted, some of
them measured experimentally, and some obtained from the literature or databases.
Mammalian cell physiology is well studied and documented for many cell lines,
and sufficient information for constraining, refining and validating mathematical
models for these cells can be obtained. Details can be found in the following
section.

Metabolism is a dynamic process as organisms are continuously exposed to
environmental changes to which they must react and adapt by triggering changes
in intracellular conditions. Regarding metabolic networks, there is a vast amount
of knowledge with respect to the reactions that take place within mammalian cells,
which has become available in the last decade as a result of the development of
omics (genomics, proteomics, metabolomics, transcriptomics, interactomics, etc).
However, there are a large number of factors that affect the occurrence and the
dynamics of intracellular processes and reactions. One key factor is macromo-
lecular crowding. The very high total concentration of molecules such as proteins,
nucleic acids, and complex sugars leads to a crowded and compact environment.
This macromolecular crowding has energetic consequences for cellular processes

Table 1 Characteristics of animal cells versus E. coli

Characteristic Mammalian cell E. coli

Diametera 18�20 lm 0:8�2:0 l m

Volumeb � 10; 000 lm3 � 1lm3

Cell generation timeb 20 h—non dividing � 30 min to h

Genome sizeb 3:0 109 bp 4:6 106 bp

Number of genesc; d � 25; 000�30; 000 3,200

RNA contenta; e � 25 lg=106 cell 20�211 l g=109 cell

RNA lifetimeb 2–5 min � 10 min�10 h

DNA contenta; e � 10 l g=106 cell 7:6�18 l g=109 cell
Protein contenta; e � 250 l g=106 cell 25�130 l g=109 cell

Proteins=cellb � 41010 � 4106

Diffusion time of protein across cellb � 100 s � 0:1 s

Carbohydrate contenta; e; f � 150 l g=106cell 4:4�26 l g=109cell

Lipid contenta; e; f � 120 l g=106cell 3�17:3 l g=109cell
Compartmentalization Yes No

a[6], b[7], c[8], d[9], e[10], f[11]
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as it can affect protein binding and hence enzymatic reaction rates, reduce
diffusion rates, affect the formation of protein aggregates, and result in the
confinement of macromolecules in small compartments [12]. Hence, many of the
properties and parameters determined in vitro in dilute solutions, especially
regarding kinetic parameters for enzymatic reactions, may not apply in the cellular
biochemical network if the reaction rate is limited by substrate diffusion or by the
stability of protein complexes. This issue is particularly significant in the processes
of protein and nucleic acid synthesis as well as intermediary metabolism and cell
signaling, which depend on variables affected by intracellular crowding such as
non-covalent associations of molecules and conformational changes [13].

Integrated frameworks for the analysis of the underlying structure and
properties of cellular processes have emerged as a result of the sequencing and
characterization of genomes, the development of technologies for high-throughput
identification of cellular components and interactions, the emergence of different
modeling approaches, and the reduction of computational costs [9, 10]. For per-
forming this type of analysis, the system’s network must be assembled. The
assembly process can be performed by collecting experimental data or by in-silico
identification of binary interactions between components and known pathways.
Proteomic and transcriptomic information can be accessed from public data
repositories. For most organisms, information regading cellular components,
cellular interactions, metabolic reactions, and pathways present in an organism, as
well as genomic and kinetic data for organisms that have been sequenced, are
freely available on public databases. Currently there is a large number of these
resources focused on mammalian cells; some of them are listed in Table 2.

This information about the cell’s genomic characteristics, metabolic and
signaling pathways, and biological component interactions can be used for
the assembly of an in-silico network that represents the system of interest. The
development of a mathematical model provides the means for the organization of
all the information available at different levels (genomic, proteomic, metabolomic)
in a coherent structure that provides a framework for the qualitative and quanti-
tative analysis of the integrated system, as illustrated in Fig. 2, in order to
understand the system’s structure and dynamics. A mathematical description
allows the identification of the relative relevance and impact of each one of the
components, identification of new properties that emerge from the topology of the
system’s integrated network, identification of key points that can be manipulated
for modifying and modulating this complex system, and testing of hypothesis that
cannot be verified experimentally with the current technology available.

3 Modeling Strategies

Systems biology is expected to provide deep insight into the underlying
characteristics of metabolic, regulatory, and signaling networks of complex living
organisms on the organism as a whole. A major goal of systems biology is to relate
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genomic, proteomic, and metabolomic data to cell physiology and the observed
cellular phenotype. This requires the identification of the components of the net-
works involved, their interactions in the system, and the incorporation of this
information into a mathematical model. Information obtained from high-throughput
methods can span several levels, from network components, component interactions,
spatial distribution of components, and potential adaptive changes the network can
undergo [41]. Network components correspond to genes with functional annotation,
or functionally related proteins and their interactions. The interactions between these
components can be associated with a biological context for the network. The final
levels of information correspond to the location of the network components in the
different cellular compartments and the identification of thermodynamic properties
that define directionality of the reactions in the network.

For the detailed analysis of a cellular system, a mathematical representation of the
system is required. There are a number of different representations of metabolism
that can be used, which vary in the level of detail, the level of available information,
and the type of predictive capacity of the model. It is essential to define beforehand
the purpose and scope of the model; if it is to understand the integration of each
component of the system or to predict the system’s behavior in response to external

Fig. 2 Several data sources provide the information required to define metabolic networks.
A comprehensive list of the cellular components is found in the genome’s sequence. Literature
provides information on biochemical characterization of enzymes. Physiological data are
required to validate the reconstruction. Phylogenetic data can be useful to infer characteristics of
organisms that are not well studied. Databases contain a vast amount of data about gene function
and associated metabolic activities. Cellular localization is crucial when multiple compartments
are considered. Adapted from [41] with permission
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perturbations, to what degree: qualitative or quantitative, and what are the
assumptions and restrictions to be considered. Accurately identifying biochemical
components in a metabolic network is crucial for the accuracy of subsequent
predictions of network properties generated through a mathematical model. The
modeling strategy to be followed depends on the final objective of the analysis, the
characteristics of the experimental data, and the available details of the structure of
the network. Other approaches for the development of qualitative and quantitative
models applying other methodologies such as graph theory, topology analysis,
regulatory motifs, and module interactions, as well as the use of deterministic, sto-
chastic, and hybrid models, for the development of predictive models for mammalian
cells are reviewed in [42]. General strategies for model development are discussed in
the following section.

3.1 Physicochemical Models

Physicochemical models are able to describe the different kinds of molecular
transformations that occur in biological systems, such as association, translocation,
and modification through reactions. These models use standard tools in bio-
chemistry, chemistry, and physics and consider information regarding the system’s
properties, behavior, and observable characteristics. Given the nature of this type
of model, each of the equations in the model can be associated to a specific process
in the system and hence each of the parameters can be assigned a physical
interpretation.

For well-studied organisms, a high level of detail is available in terms of the
components that form a pathway and how they interact. In this case, a mechanistic
type of model can be constructed to capture the properties of the system. First,
a detailed list of cellular components and their interactions needs to be assembled.
These interactions are translated into reactions and then into equations, as illus-
trated in Fig. 3. In this case the mathematical model is only a translation of the
physical description of the system into equations. A mechanistic model can be
used for exploring hypotheses in cases where the interactions amongst the different
components in the system are too intricate to allow an intuitive evaluation of the
system’s response. Even though mechanistic models require making assumptions
regarding how interactions take place, this type of model greatly expedites the
process of hypothesis testing.

The type of analysis performed on the model will depend on the characteristics
of the biological knowledge available and the modeling objectives. Once the initial
conditions for the dynamic representation of a system are specified, responses to a
variety of external and internal perturbations can be predicted. These initial con-
ditions can be obtained from literature or experimentally, e.g. from representative
measurements of the intracellular and extracellular cellular environment under
steady-state conditions. For a steady-state analysis only the network’s structure is
required and no information on rate constants is needed. For instance, flux balance
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analysis has been used to predict the metabolic switch that E. coli undergoes for
different nutritional conditions, using only the metabolic network’s structure.
Results for this theoretical analysis have also been validated experimentally [43].

Simulation, stability, and sensitivity analysis can be performed to test the
system’s dynamic response to perturbations, if information on rate constants is
available. In this case each differential equation represents the production and
consumption rates of a particular species or component in the network. Reaction
rates are often nonlinear functions and can be expressed in a simplified equation,
either empirical or mechanistic. The effect of the variables involved in a reaction
can be represented in different ways: by a mass-action form which considers all the
mechanistic steps of the reaction, in a rate-law form as in Michaelis–Menten
models and Hill kinetics, or by using power law and lin-log approximations or
thermokinetic considerations [44, 45]. An extensive review on the formulation and
analysis of kinetic models can be found in [46].

Once a detailed mechanistic model is available, specific characteristics of the
system can be assessed. Bifurcation analysis can be used to evaluate the existence
of multiple steady states that the system can achieve for the same extracellular
conditions, given a different culture history or parameter values [47]. For instance,
cell cycle regulation was studied for different cell types including mammalian
cells, using a generic model of eukaryotic cell cycle control and bifurcation
theory [48]. The conditions required for a balance between cell cycle progression
and overall cell growth, as well as for cell homeostasis were identified. Other
characteristics such as robustness, the ability of the system to maintain its char-
acteristics despite perturbations and changes in its environment, can be assessed by
observation of the properties exhibited by the system. These includes the system’s
adaptation to environmental changes, its sensitivity to parameter changes, and the

Fig. 3 Stages for the development of a mechanistic model for a signaling network: identify
elements, generate diagram, translate into reactions, assumptions and approximations, differential
equations
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slow loss of function upon damage. This can be achieved by the utilization of
different strategies such as system control strategies and separation of components
into modules with redundancy of these modules, as well as an intrinsic structure
stability analysis associated to the network’s design. Cloutier et al. [49] studied the
application of these strategies for the control of energy metabolism, using a
generic mathematical model of glycolysis and oxidative phosphorylation. This
study resulted in the identification of essential control components (proportional,
derivative, integral) and structures (feedback, feed-forward) in energy metabolism.

3.2 Statistical Models and Tools

When data are abundant but intricate or difficult to manage, and there is a scarce
amount of information available about the structure of the system (i.e. the system’s
components, interactions, and regulation), experimental data can be used to obtain
some insight into the system using data-driven statistical modeling.

In this case, given the lack of information about the system’s structure,
no assumptions can be made regarding the underlying mechanisms involved.
Hence, the objective is not to represent the characteristics of the processes that
occur in the system but to mathematically identify relevant variables or dimen-
sions in the system and extract them from the data space. This permits an intuitive
understanding of data and reveals interesting unexpected information about the
system’s characteristics by introducing a new quantitative perspective that could
not be obtained from data alone. Statistical tools are useful in functionally con-
necting different layers of cellular information, filling the gaps in our knowledge of
kinetic and regulatory phenomena. The main limitation of these models is that they
are restricted in their predictive power and biological representativity by the scope
of the data they are based on and the dimensions identified as relevant.

For instance, network reconstruction involves infering the characteristics of the
network from observed gene expression and metabolic data. In the work of Ma and
Zeng [50], the metabolic networks of 80 sequenced organisms are reconstructed in
silico from genome data and a bioreaction database. A recent work presents a
method that integrates multiple inference methods and experiments using multi-
objective optimization [51]. This method was applied for modeling E. coli acid
stress and in-vivo tumour development. For networks with a more limited amount
of experimental data and knowledge available, the use of an integral additive
model for yeast cell cycle has been proposed [52]. A comprehensive protocol
describing the necessary steps to build a high-quality genome-scale metabolic
reconstruction was developed by Thiele and Palsson, including instructions for all
stages of the reconstruction process, the use of genome annotation, phylogeneti-
cally close organisms, and gap filling, as well as available resources and a con-
fidence scoring system [53].

A common methodology for the initial analysis of large data sets is data
clustering. This methodology allows the identification of natural organization
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patterns into groups based on similarities among data. Cluster analysis identifies
subgroups in multivariate data, in such a way that objects in the same cluster
resemble each other, while objects belonging to different clusters are dissimilar.
In this case similarity is defined as a distance in the n-dimensional data space,
e.g. Euclidean distance. Based on this distance, a proximity matrix gives pair
distances or similarities between data points, following either a partitional or an
agglomerative algorithm for grouping data. It has been applied, for instance, to
transcriptional microarray data to identify groups of genes that behave similarly
and hence may be co-regulated [54].

Principal component analysis (PCA) can be used for data condensation and
identification of a reduced coherent set of variables. With this methodology, a large
number of independent variables can be systematically condensed in fewer
dimensions that capture the data variance. The original dataset can be projected onto
a reduced dimension space formed by combinations of the original variables pro-
viding an additional physical interpretation of the data [55]. From PCA, principal
component regression (PCR) can be performed to predict the relationship of one
variable with a set of inputs, e.g. correlating a given phenotype with a certain
metabolic profile.

Artificial neural networks are multi-layered statistical models that represent the
variation in a complex response variable to a collection of input variables. This is a
supervised learning algorithm that attempts to approximate the description of a
phenomenon by mathematical models deduced from observation of cases using
regression arguments. The reader is referred to De Iorio et al. [56] for a more
detailed review of these methods, and a discussion on data preprocessing,
extraction, and discrimination procedures.

3.3 Modeling Stages

The following stages for model construction are identified in the scheme proposed
by Wiechert et al. [57]: (i) definition of the elementary units of the system;
(ii) characterization of connectivity and interactions between units; (iii) associa-
tion of a biochemical rate equation to each interaction. These stages in model
construction are followed by (iv) model validation with experimental data and
model interrogation for emergent properties and predictions.

3.3.1 Requirements, Construction, and Initial Analysis

Prior to modeling, the assumptions that will be considered for describing the
system must be stated. The amount and type of experimental data available must
be assessed to obtain parameter values and operation range, as well as initial
conditions for the simulation. For instance, the values of a representative cellular
state can be used as the initial point for the simulation. Alternatively, if the system

Modeling Metabolic Networks for Mammalian Cell Systems 83



is to be perturbed, the natural steady state of the model can be used as an initial
condition.

In order to develop a mathematical model for a biological system or process,
the individual components that are to be considered in the systems structure must
be defined for the level of detail outlined in the scope of the model. These com-
ponents are the variables that characterize the state of the system. The relevant
biological interactions among components must then be identified. For these two
steps, besides experimental data, information available on the resources like the
ones listed in Table 2 can be of use. As a result, all the available knowledge
regarding a specific system can be translated into a list of components and
interactions, or reactants and reactions. Putting together all these elements for
the reconstruction of the network’s structure also requires expert knowledge of the
available data, in order to reduce errors and inconsistencies from the literature.

A general form of a dynamic mass balance for metabolites j inside a cell can be
represented by:

dCj

dt
¼ SrðC; pÞ ð1Þ

where C is the concentration vector (n� 1), Cj is the concentration of metabolite j,
r is the vector of metabolic reaction rates (m� 1) which is a function of the
metabolite’s concentration vector (n� 1) and a parameter vector p, and S is
the stoichiometric matrix that contains the stoichiometric coefficients which relate
the n species in the m reactions that form the network. This generates a system of n
differential equations and m unknown time-dependent fluxes.

Once the general characteristics of the interactions among components, such as
directionality and stoichiometry, are formalized, initial exploration of the system’s
qualitative properties can be performed. Since not all species in the system are
independent, the stoichiometric matrix is not full rank, and since metabolites often
participate in multiple reactions, the number of reactions is greater than the
number of metabolites. Therefore rankðSÞ\n\m. This is due to constraints
associated with structural conservations such as conserved moieties (mainly
enzymes and cofactor). Therefore the model can be reduced to

Cd ¼ L0Cd þ T

dCi

dt
¼ SRrðCi;Cd; pÞ

ð2Þ

where the superscript refers to dependent d and independent i species. SR corresponds
to a reduced stoichiometric matrix and L0 is the link matrix that relates dependent and
independent variables in conservation constrains up to a total in vector T [58].

The stoichiometric matrix (S), consisting of n rows and m columns, can provide
a large amount of information regarding the structure of the system and its
properties, independent of the parameters and expressions for reaction rates and
other biomolecular interactions. The stoichiometric matrix S can provide good
insight into the basic topological characteristics of the network, such as highly
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connected nodes and shortest metabolic pathways, through simple analysis.
Stoichiometric matrices are generally sparse as only a few compounds participate
in each reaction. The elementary topological properties are determined from their
nonzero entries. The sum of all nonzero entries in a column j corresponds to the
number of compounds involved in the reaction j. The sum of all nonzero entries in
a row indicates the number of reactions in which a compound i is involved, and it
is a measure of the node’s connectivity. A highly connected node is expected to
have a greater influence on the network behavior [59].

The Left null space L of S is formed by a set of n-rank(S) linearly independent
row vectors such that LS ¼ 0. These vectors correspond to all the conservation
relationships, or time invariants, that a network contains, e.g. mass conservation of
atomic elements, molecular subunits, or chemical moieties.

The Null space N of S is formed by a set of m-rank(S) linearly independent
column vectors that contains all the steady-state flux through the network repre-
sented by S; SrðC; pÞ ¼ 0: The analysis of N(S) allows exploration of the steady-
state behavior of the system. This is of particular interest in an initial analysis since
this permits assessment of the quality of the model through the verification of
compliance with thermodynamic constrains for equilibrium and the correspon-
dence of the allowable steady states with the characteristic equilibrium states of
the experimental system.

An assembled network structure will evolve as new experimental data becomes
available, the components used for network assembly are reassessed, and the
genome annotation is updated. High-throughput data such as transcriptomic,
proteomic, and metabolomic information provides a context that allows the
evaluation of inconsistencies between the model simulation results and experi-
mental data. In this way the model can be used as a tool to determine the coherence
of data sets from different types and sources in the context of a specific biological
system and additional hypothesis can be generated that drive experimental
discovery.

Computer-assisted methods for automated reconstruction have emerged in the
past few years based on genome sequence data available on public databases. Only
a few of these efforts are focused on mammalian cells, specifically human [60] and
mouse [61]. Since the first attempts to model cell metabolism, there have been
important developments in genetic tools, computer hardware, and high-throughput
analysis techniques. These advances have provided more information than ever
before regarding the cellular state and cell metabolism. Recently, a resource for the
high-throughput generation and analysis of genomic models, Model SEED, was
developed [62]. This methodology allows the production of detailed and quanti-
tative predictions of organism behavior. Biomass reactions are also included, along
with stoichiometric coefficients. If data for obtaining these coefficients are not
available, a set of rules for obtaining approximate coefficients for each reaction is
applied. In addition, a minimal set of reactions that must be added to each model is
identified through an optimization algorithm.

Several automated reconstructions have been generated with Pathway Tools
and are available through BioCyc [16]. Pathway Tools is a program for automated
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network reconstruction using metabolic reactions that are associated with Enzyme
Commission numbers and/or enzyme names from one-dimensional genome
annotation. It uses known metabolic pathways to evaluate reactions and pathways
in a reconstruction [63]. Defined pathways are evaluated and scored by the pro-
gram and included in the reconstruction based on the number of enzymes in a
pathway that are found in the annotation. Pathway Tools also completes the
pathway by including missing reactions if a significant fraction of the other
enzymes in the pathway are present [64]. Other available software tools and
databases available for model implementation are listed in Table 3.

Automated reconstructions for metabolic networks are often not suitable for
modeling since additional details and manual curation are required in order to
obtain a higher quality assembled network and get meaningful results. Recon-
struction efforts have successfully targeted many organisms, including E. coli and
yeast [65–67], and genome-scale reconstructions for over 30 organisms have been
published [53]. A high-quality network would include specific biochemical and
physiological data regarding reaction reversibility, cofactor usage, transport
reactions, cellular compartments, and biomass composition. Hence, only well-
studied organisms for which this information is available are considered suitable
for modeling. The model for Mus musculus developed by Sheikh et al. [61] was
based not only on annotated genomic data and pathway databases, but also on
currently available biochemical and physiological information. This is one of the
first attempts to collect and characterize the metabolic network of a mammalian
cell in an automated manner. It considers compartmentalization between the
cytosol and mitochondria, transport between compartments, and over 1,200
reactions. The level of compartmentalization considered implies a number of
assumptions about the system. A structured model implies a variety of species
located in different compartments, each of them with its one characteristic time-
scale. Transport between compartments can generate spatial heterogeneity in the
intracellular environment.

4 Calibration and Revision

In order to perform a detailed dynamic analysis of the system, each of the reaction
rates and interactions must be formally described. For this, the kinetic parameters
such as half saturation constants, turnover rates, and inhibition constants associ-
ated with the expressions for the reaction rates rk must be identified. Experimental
data and literature resources such as BRENDA and others listed in Table 2, are key
at this point to determine the value of these parameters. To estimate model
parameters by regression on empirical data, large amounts of high-quality
experimental data are needed. Alternatively, an exploration of the parametric
space can be performed using literature values as a reference starting point. If the
model complexity is such that it cannot be solved numerically, additional
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Table 3 Modeling resources and databases for systems biology research in mammalian cells

Name Web addressand description Reference

BioModels biomodels.net—model collection in SML format. Includes data
resources and publication references. Supports model
visualization

[131]

CellDesigner http://www.celldesigner.org—diagram editor for drawing gene-
regulatory and biochemical networks. Models are stored in
SBML format

[132]

Cellerator http://www.cellerator.org—mathematical package for automatic
generation of differential equations of biochemical networks

[133]

CellNetAnalyzer http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html—
Matlab-based software package for structural and functional
analysis of networks based on their topology

[134]

CellWare http://www.bii.a-star.edu.sg/achievements/applications/cellware
—grid-based tool for modeling, simulation, parameter
estimation, and optimization

[135]

COBRA systemsbiology.ucsd.edu/downloads/COBRAToolbox— Matlab
package for quantitative prediction of cellular behavior using
a constraint-based approach

[136]

COPASI http://www.copasi.org—supports models in the SBML standard.
Uses ODEs or Gillespie’s stochastic simulation algorithms

[137]

DOQCS doqcs.ncbs.res.in—database of quantitative cellular signaling.
Repository of models of signaling pathways. It includes
reaction schemes, concentrations, and rate constants, as well
as annotations on the models

[138]

E-Cell http://www.e-cell.org—software platform for modeling,
simulation and analysis of complex systems

[139]

JDesigner http://www.sys-bio.org—visual network design tool for systems
biology

[129]

Metatool pinguin.biologie.uni-jena.de/bioinformatik/networks—program
for calculating elementary modes, compatible with octave and
Matlab. Distributed with CellNetAnalyzer

[140]

OptFlux http://www.optflux.org—tools for in-silico metabolic engineering [141]
Pathway analyser sourceforge.net/projects/pathwayanalyser—software for

flux-based analyses and simulations on SBML models
SBRT http://www.ieu.uzh.ch/wagner/software/SBRT—systems biology

research tool. Software platform for analyzing stoichiometric
networks

[142]

SNA http://www.bioinformatics.org/project/?group_id=546—toolbox
for steady-state analysis of metabolic networks

[143]

STOCKS http://www.sysbio.pl/stocks—software for stochastic simulation
of biochemical processes with Gillespie algorithm. Supports
SBML

[144]

Virtual cell http://www.vcell.org—web-based computational environment for
modeling and simulation of cell biology

[145]

WebCell webcell.kaist.ac.kr—integrated simulation environment for the
analysis of cellular networks over the web

[146]

YANAsquare yana.bioapps.biozentrum.uni-wuerzburg.de—software package
for the analysis of metabolic networks. It incorporates
database extraction and visualization tools

[147]
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assumptions will be required in order to simplify the model to allow the problem to
be solved numerically.

After the network reconstruction process, which is based on genomic and
biochemical evidence, network gaps may have occurred as a result of missing
components that have not been identified or have not been reported in literature.
These gaps can be identified through the verification of the capacity of the network
to produce essential components such as amino acids, and the verification of
growth capabilities and requirements. The resulting phenotypic behavior after
genetic perturbation under given growth conditions can be used to assess the
capacity of a metabolic network. The addition of reactions required to fill the gaps
is supported by empirical observation or by the identification of putative genes in a
related organism. If the gap occurs due to genomic annotation information, these
could be revised. If the gaps are the consequence of biochemical data, this indi-
cates incomplete metabolic knowledge and should be explored further to improve
the model. In addition, computational tools such as flux-coupling analysis [68] or
Pathway Tools [63] can be used for identifying dead-end metabolites isolated from
the rest of the network. A key point is that network functionalities obtained from
the model must be in correspondence with observable phenotypic characteristics.

5 Validation and Testing

Results obtained from simulations must be compared to biological, biochemical,
and physiological information. At this point expert interpretation of the results and
manual error correction must be performed, in order to verify that the model
equations accurately represent the system’s behavior observed experimentally. The
model should also evaluated for its ability to perform predictions that can be
verified experimentally. Other tests are also performed such as robustness, sensi-
tivity to parameter values, bistability, and evaluation of simplicity versus accuracy
of the model. Data used for validation should be different from data used for
parameter calibration. If data availability is limited, the bootstrap method can be
applied to combine data sets in order to generate different groups of data for
calibration and validation [69].

6 Limitations and Challenges

One of the main considerations to be taken into account is the applicability of the
model beyond the region considered valid under the assumptions used for its
construction. The model is valid for capturing and predicting the system’s
behavior under the assumptions, conditions, and ranges of the experimental data
used to define the system structure, and calibrating its parameters. Although an
empirical model could perform well under conditions not previously considered,
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a case-by-case analysis is required when extrapolating to other conditions for
prediction, due the fact that some changes may occur when modifying operational
conditions. This is something to consider if simulation is going to be performed to
predict the behavior of the system under conditions that cannot be achieved
experimentally.

One of the main challenges in model development is associated with their
construction. The quality and hence the results obtained from modeling a meta-
bolic network are directly dependent on the quality of the model development
process. Hence, the development of efficient methods for collecting information,
specifically for mammalian cells, and translating it into network structures is
crucial for the further progress of the modeling field in systems biology applied to
mammalian cells. The ability to gather and analyze good quality data is also
crucial, as multidimensional experimental data is essential for model construction,
calibration, and validation. Another important point lies in the preliminary phase
of model construction. A more detailed model will have a broader scope, with
added complexity which makes numerical solution more difficult. A compromise
between scope and level of detail must be achieved.

The development of mathematical models for mammalian cells is of great
importance for the characterization of intracellular networks and to drive experi-
mental design and improve process development. Models can be used, for
instance, for the identification of genes whose function remains unknown, iden-
tification of molecular cell components that have not been determined or char-
acterization of kinetic properties still unknown. In addition, mathematical models
which have been developed using a systems approach permit testing for knowl-
edge completeness and assist in experimental design, synthetic network design and
devising strategies for system control. The latter requires methods of analyzing
large mathematical models, model reduction techniques, and an improvement in
the understanding of control mechanism for intracellular networks.

7 Mathematical Descriptions of Cell Metabolism

Mathematical models of mammalian cell metabolism allow the organization of the
information available for a system, in order to simulate and predict the behavior of
the system for the optimization of production conditions, testing of hypothesis,
data integration, and process design and control. The rapid development of
sequencing projects has set a challenge to incorporate this information, along with
the phenotypic information, into detailed genome-based models or mechanistic
metabolic models. Once the structure of the network is defined, a topological
analysis can be performed to identify pathways, redundancies in the network, and
connectivity properties. Once a detailed model is available, simulation of
metabolism can be used to decipher the system’s phenotypic response for a given
structure or genotype under a set of environmental conditions. Two main modeling
approaches are generally applied for modeling metabolic networks. A mechanistic
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kinetic approach or a constraint-based stoichiometric approach, which are
reviewed in detail in [70, 71]. An overview of these approaches and their appli-
cations to mammalian cell modeling is given in the following section.

7.1 Steady-State Models

The simplest way to mathematically describe a metabolic network, Metabolic Flux
Balance Analysis, is based on the fundamental law of mass conservation [72]. This
methodology provides a framework that is independent of reaction kinetics and
thermodynamics. This method gives information on the steady-state rates of a
reaction network, but does not provide any insight into their dynamics. The first
step in metabolic flux analysis is the determination of the metabolic network
structure and the definition of its stoichiometry. Mass balances are then applied to
the intracellular metabolites involved in the network by considering metabolic
demands. Steady-state values for the accumulation rates of extracellular metabo-
lites are experimentally determined and used to calculate the intracellular fluxes,
considering a stoichiometric model for the main intracellular reactions under a
pseudo-steady-state assumption [58].

The main input of these types of models is measured extracellular fluxes, and
the output is the net flux map of the cell including estimated steady-state rates for
each reaction. Metabolic flux analysis (MFA) provides a measure of the influence
of the various pathways on the overall cellular functions and metabolic processes.
The results obtained from these balances depend strongly on the reactions included
in the network and the stoichiometry constraints. Several systemic properties can
be identified from the stoichiometric matrix, such as metabolite connectivity and
systemic reactions [73]. Metabolite connectivity refers to the number of reactions a
given metabolite participates in. Systemic reactions represent the overall or
dominant types of chemical transformation in a given network [59].

Considering the general form of a dynamic mass balance intracellular metab-
olites in Eq. 1

dCj

dt
¼ SrðC; pÞ

and assuming a steady state for the intracellular metabolite concentrations, the
mass balances become:

Sr ¼ 0 ð3Þ

This assumption is based on the fact that the characteristic time of metabolite
concentration changes is much smaller that the cellular process changes [58].
To complement this analysis, steady-state flux distributions can be estimated or
measured by 13C labeling [74].
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If the number of metabolite rates is greater than the number of equations
(N [ R) the system of equations defined in Eq. 3 is underdetermined. In this case
many solutions for the reaction ratesrisatisfy the balance equations. Additional
constraints need to be introduced in order to uniquely determine the values of the
reaction rates. This can be done by adding mass balance equations, making
assumptions on the system, or obtaining additional information on the internal
fluxes. The unconstrained system considers all possible behaviors of the system,
defining a large feasible solution space. By imposing constraints such as physi-
cochemical constrains (thermodynamic or conservation restrictions) or biological
constraints (external environment, enzyme capacity, regulatory constraints) a
smaller allowable solution space is defined [73]. However, the addition of con-
straints reduces the allowable solution space, but usually not to a single point
(exact solution). For an underdetermined system, a solution can also be obtained
by using linear programming (LP) to optimize a particular network function such
as growth rate or biomass production, following the methodology known as flux
balance analysis (FBA) [75, 76]. An alternative approach based on FBA is the
minimization of metabolic adjustment (MOMA), which attempts to determine
more realistic flux distributions by calculating intermediate profiles that are
intermediate between the base case and the perturbed system, based on the
hypothesis that perturbed metabolic fluxes undergo a minimal redistribution [77].

If the number of measured fluxes is grater than the number of unknown fluxes,
the system is overdetermined. In this case a regression analysis method must be
used in order to minimize the error between the calculated fluxes from the mass
balance equations and the measured extracellular fluxes [72]. The additional
information available can be used to improve the values obtained for the calculated
fluxes and the measured ones [58]. As a result, an exact solution or a range of
allowable solutions can be found. This approach is limited by the availability of
measurable fluxes and the uncertainty of experimental measurements. The
advantage of this approach lies in the fact that it is a relatively simple and easy to
understand method, which can give an estimate of the relative order of magnitude
of the reactions in a pathway. It also permits the exploration of the metabolic
capabilities of an organism without specific biochemical data. Its predictive power
when modifications on the fluxes and different growth conditions are introduced
has been shown by Varma and Palsson for E. coli [76]. However, one must
consider that the calculated flux distribution is extremely sensitive to errors in the
measurement of the extracellular rates.

Among the many applications of the Metabolic Flux Balance methodology are
studies of metabolic physiology [78], simulation and interpretation of experi-
mental data, metabolic engineering, bioprocess design and monitoring [79], and
determination of the production capabilities of a given strain [76]. The availability
of genomic information makes this a useful method for understanding the geno-
type–phenotype relationship. Different gene expression levels can be associated
with different steady-state values for the reaction rates, making this a good tool for
analyzing, interpreting, and predicting the possible phenotypic response of a given
strain, based on its genotype [72, 80]. This method gives valuable information
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about the net flux distribution at steady state, but provides no insight into the
dynamics of the process. This approach is also limited by the assumption of
optimal behavior of the organism. The integration of flux, concentration and
kinetic variables in a single unified framework allows an increase in the quanti-
tative predictive capacity of flux balance analysis. In Fleming et al. [81], experi-
mental and theoretical bounds on thermodynamic and kinetic variables are
included to ensure the thermodynamic as well as biochemical feasibility of the
predicted steady-state fluxes in E. coli. Computational resources for metabolic flux
and flux balance analysis are listed in Table 3. A hybrid strategy was proposed by
Carinhas et al. [82] to link estimated metabolic fluxes with measured productivities
in an insect cell line. This tool was shown to be useful for metabolic identification
and quantification in incomplete or ill-defined metabolic networks such as those
with complex products. The ill-defined part of the network is substituted by a
statistical sub-model based on empirical data.

A detailed discussion of the metabolism of mammalian cells in culture and a
review of the methods for flux analysis and their application to mammalian cells
can be found in Bonarius et al. [83]. This text also covers isotope distribution
modeling, redox balances and formulation of objective functions for linear opti-
mization techniques for flux analysis. The flux network and confidence intervals
for each flux in a carcinoma cell line was determined by Metallo et al. [84] using
13C labeled glucose and glutamine tracers. A more recent article by Queket al.
discusses the advances in conventional and constraint-based metabolic flux anal-
ysis for the study of the metabolic phenotype of mammalian cells, the use of tracer
analysis for network model validation and the advances in these two fields towards
large-scale 13C metabolic flux analysis for mammalian cells [85]. Examples for
cultures of hybridoma and CHO cells are presented.

There are only a few works associated with metabolic models of mammalian
cells. This can be attributed to the complexity of mammalian cell metabolism,
reduced availability of information about the system, and difficulties in measuring
in-vivo metabolic fluxes in mammalian cells. In Llaneras et al. [86], a method is
presented to compute the ranges of possible values for non-calculable flux,
resulting in a flux region. The method was applied to the CHO cell metabolic
network proposed by Provost et al. [87], which describes the metabolism con-
cerned only with glucose and glutamine. MFA has also been used in CHO cells to
investigate cellular metabolism in cultures containing glucose and galactose as a
carbon source [88, 89].

In other cell lines, MFA has been applied to HEK293 cells, to determine the
best conditions to perform adenovirus infection and determine metabolic changes
upon infection [90, 91]. Different culture conditions at low glutamine concentra-
tions have been compared using a simple metabolic network for HEK293 cells
[92]. Zupke et al. [93] applied a stoichiometric balance to estimate intracellular
fluxes and to study energy metabolism of hybridoma cells. Flux estimates were
validated with labelling experiments, with good agreement [93]. Xie and Wang
applied material balance analysis to an hybridoma cell stoichiometric reaction
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network. The roles of essential and non-essential amino acids, together with the
metabolism of glucose and lactate as well as ATP production rates, were assessed
[94, 95].

A reconstruction of the cellular metabolic network of Mus musculus was
presented recently by Sheikh et al. [61]. This reconstruction is based on annotated
genomic data, pathway databases, and currently available biochemical and phys-
iological information from the Kyoto Encyclopedia of Genes and Genomes
(KEGG). This is the first genomic reconstruction of a mammalian metabolic
network. The reconstruction captures carbon, energy, and nitrogen metabolism in a
compartmentalized setting, including transport reactions between the compart-
ments and the extracellular medium. It considers 872 internal metabolites and
1,220 reactions. As part of an initial in-silico analysis, metabolic flux analysis of
the reconstructed network was performed based on the mass balances for all
metabolites and a pseudo-steady-state assumption on metabolite concentrations.
Since the system is underdetermined, a solution was found by linear programming
considering three objective functions: maximization of cell growth, minimization
of substrate uptake rate, and maximization of production of monoclonal antibody.
The model predicts growth, lactate, and ammonia production given glucose,
oxygen, and glutamine uptake, but it fails to predict alanine production, illustrating
the limitations of the model. This model was improved by Selvarasu et al. [96] to
include biomass and monoclonal antibody (mAb) synthesis as well as updated
lipid, amino acid, and nucleotide metabolic pathways. The resulting model is
capable of producing alanine, aspartate, and glutamate. The model was used for in-
silico analysis of a fed-batch hybridoma culture, allowing the study of the phys-
iological and metabolic states of hybridoma cells during fed-batch culture. As a
result of the analysis, the utilization of feed media without glutamate and alanine,
maintaining a low glucose concentration during culture, and controlled glutamine
concentration were identified as strategies for increased cell density and mAb
productivity. The genome-scale mouse metabolic model was further improved and
expanded by the same group, including additional information on gene–protein-
reaction association, and improved network connectivity through lipid, amino
acid, carbohydrate, and nucleotide biosynthetic pathways, based on integrated
biochemical and genomic data of Mus musculus [97]. The improved model was
used for additional studies using constraints-based flux analysis, and the evaluation
of the structural and functional characteristics of mouse metabolism.

Metabolic flux analysis of CHO cells was recently performed by Zamorano
et al. [98] using a detailed metabolic network involving 100 reactions which
considers the main pathways of mammalian cell metabolism. The model was used
to assess the efficiency of flux analysis when using a small set of extracellular
measurements without using isotopic tracer methods. This contribution showed
that for this underdetermined mass balance system, narrow intervals are found for
most fluxes [98]. A comparison of flux estimates from MFA with a simplified
model and 13C glucose and 2D-NMR spectroscopy was performed by Goudar et al.
[99] for CHO cells in perfusion culture. In the reduced space, there is good
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agreement between measurements and estimations in the glycolytic, TCA cycle,
and oxidative phosphorylation fluxes. These results corroborate the fact that MFA
provides a good representation of cellular metabolism and can be used for process
development and metabolism characterization, which is of great importance
especially for CHO cells, as they are widely used in the pharmaceutical industry
for recombinant protein production. A stoichiometric model for CHO cells was
used by Sengupta et al. [100] in combination with steady-state isotopomer bal-
ancing to evaluate flux distribution in the late non-growth phase. This model
allowed the evaluation of redox balances in the system and comparison of flux
distribution for growth and non-growth phases. Ahn et al. [101] studied CHO cells
at the growth phase and early stationary phase in fed-batch culture, using isotopic
tracers and mass spectrometry and a compartmentalized metabolic network model
of CHO cell metabolism. Significant changes in metabolic fluxes were identified as
the culture progressed. At the exponential phase, there was a high flux of gly-
colysis from glucose to lactate. At the stationary phase, the flux map was char-
acterized by a reduced flux of glycolysis and net lactate uptake, with similar fluxes
of pyruvate dehydrogenase and TCA cycle compared with the exponential phase.
The key influence of the oxidative pentose phosphate pathway and anaplerosis
fluxes was identified. In a recent work, Famili’s group presented a validated
computational metabolic modeling platform based on a genome-scale metabolic
model for CHO cell metabolism [102]. This platform has been applied to process
design and novel media formulation, improving product titers and reducing
byproduct accumulation. This illustrates how MFA and mathematical models,
coupled with experimental techniques, can help understand and elucidate the
changes that cells undergo in culture, and improve culture productivity.

7.2 Dynamic Models

Kinetic models result from the combination of stoichiometric equations derived
from mass balances and kinetic expressions for the reaction rates. They have been
employed for a long time in chemical reaction systems, which are relatively simple
and well defined. Biological systems, however, are highly regulated and complex,
so a detailed knowledge not only of the kinetics but also of the regulation and
interaction of the components involved is required for simulation of the system’s
behavior. In addition, for the development of a mechanistic kinetic model, rate
equations and their associated parameters are required for all reactions. In a system
where this type of detailed knowledge is available, elaborated mechanistic models
can be developed. Several approaches to developing dynamic cellular models have
been formulated, based on the rate equations for the individual reactions that form
the network. Van Riel utilized a combination of metabolic flux analysis and
Michaelis–Menten enzyme kinetics to model the central nitrogen metabolism of
S. cerevisiae [103]. Van Dien and Keasling [104] developed a dynamic model of
the E. coli phosphate-starvation response. The model includes phosphate transport,
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detection at the cell surface, signal transduction cascade, and mRNA translation.
This model integrates a large amount of biological information regarding this
system and it was applied to the overexpression of heterologous genes. A struc-
tured extension of this model was also developed, incorporating differences in
gene regulation among cells of the population and the heterogeneity of their
response, as well as ATP synthesis and utilization [105]. This is a good example
of the capability of detailed kinetic models to explore the dynamic response of
cellular and metabolic processes.

To develop a dynamic mechanistic model, an accurate estimation of the
mechanistic equation parameters is required, keeping in mind that in-vitro
obtained kinetic parameters might not be valid in the invivo situation. Rizzi
developed a compartmentalized model of glycolysis in S. cerevisiae based on
invitro determined mechanistic rate equations with invivo estimated parameters.
Metabolic flux analysis was used to obtain steady state fluxes from glycolysis and
the TCA cycle, assuming the macromolecular composition for a given growth rate
was known [106]. This kind of dynamic formulation requires solving a large
number of coupled ordinary differential equations simultaneously. It also involves
a large number of parameters. The main advantage of kinetic models is that they
capture the dynamics of the metabolic processes, allow their simulation, and, since
they may consider regulatory effects, they are more likely to predict the system
response under different conditions. Regulation of enzyme activity can be included
easily in the model via augmented kinetic expressions for the reaction rates.

The main difficulty associated with the development of kinetic models for
mammalian cells has been that large amount of data are required to parameterize
large-scale models, making them experimentally intractable. One of the first large-
scale models published was the red blood cell model developed by Jamshidi et al.
[107]. This model is based on mass balances for metabolites in the red blood cell
and consists of kinetic expressions for 35 enzymes, six transport channels, sodium
and potassium leak fluxes, and the NaþKþ ATPase pump. The kinetic expressions
for enzymatic reactions used in this model were obtained from the literature.
Changes in metabolite concentrations and enzyme fluxes were simulated over
time.

Detailed enzyme kinetic data such as kinetic parameters are scarce and their
acquisition is costly, prone to error, and not always feasible under physiological
conditions. In spite of that, models based on this type of data are convenient for
the characterization of the kinetic mechanism of enzyme-catalyzed reactions.
A random sampling methodology of kinetic parameters has been proposed to
bypass the need to characterize detailed kinetic parameters. This technique has
proved to be well suited to handling uncertainty in parameters for metabolic
kinetic model construction [108, 109].

Different aspects of mammalian systems, such as transcriptional profiles, bio-
chemical reactions in the cell or in a bioreactor, cell growth, and population
changes, can be described by a set of differential equation using their reaction
kinetic and thermodynamic properties. The time-dependent behavior of the system
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can be obtained by solving the resulting system of differential equations, provided
with a set of initial conditions. However, in this case changes of state are assumed
to be continuous and deterministic, and describe the average properties of a
population. Population models as well as single cell models and their attributes are
carefully described in Sidoli et al. [110]. A quantitative comparison between a
number of unstructured hybridoma cell growth and death models which consider
glucose or glutamine as limiting substrates was presented by Portner et al. [111].

However, this approach cannot be applied to all systems. In a population, the
behavior of individuals has a random component, which is averaged out in a large
population. As the population size becomes small, continuous functions do not
accurately describe the system’s behavior. When reactants that are few in number
or are in a restricted location such that the perfectly stirred assumption often used
in single cell models cannot be applied, reactions cannot be described by mass
action laws. Position and thermal motion effects make reactants interact with one
another in a probabilistic manner which is referred to as a stochastic reaction.
Cellular processes such as binding of transcriptional regulators to specific sites for
gene expression regulation and many cell signaling processes are stochastic phe-
nomena. In that case stochastic descriptions are more suitable, and could be
coupled with kinetic models in a hybrid model that considers both deterministic
and stochastic reactions to generate a biologically realistic representation.

Boolean models are a discrete modeling approach formed by a system of
interconnected binary elements. The interactions between elements are governed
by logical rules and each element in the system can only be in one of two states
(On or Off). The state of the network at any time t can be evaluated as the state of
all the elements. The output state of any element at any time t þ 1 can be com-
puted from the input states at time t. Therefore, for any given initial condition, the
successive states of the network can be computed. To calculate each successive
state, the elements can be updated sequentially or randomly, which may alter the
final steady-state solution obtained. An application of this approach to a complex
protein interaction network is presented by Faure et al. [112]. A generic model of
mammalian cell cycle control was translated into a logical framework and
implemented as a boolean model using a regulatory graph, identifying the logical
parameters of the system and specifying the updating assumptions. Different
strategies and assumptions were applied to explore its dynamic properties and
assess its asymptotic behavior.

Petri nets are special graphs with two types of nodes, called places and tran-
sitions. Places, represented as circles, usually describe passive elements of the
system such as conditions, states, or compounds, and can take discrete or con-
tinuous values. Transitions on the other hand, represented as boxes, describe active
elements of the system, such as events, actions, and reactions. They can also
take discrete or continuous values and fire at discrete intervals of time defined by
the parameter assigned to them. Arcs connect nodes of different types and describe
the causal relation between active and passive elements [113]. Petri nets have
been used to represent molecular interactions and mechanisms of signaling
pathways [114]. In addition, a simulation method for determining some of the
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characteristics of the interactions is proposed in this work, and the overall strategy
is illustrated in the apoptosis signaling pathways. In Peleg et al. [115], Petri net
formalisms and tools are applied to the modeling and simulation of a variety of
biological systems. For illustration purposes, three case studies which encompass
most of the features of biological systems are tested: a cellular-level process,
molecular-level functions involved in a protein translation process, and a molec-
ular-level interaction process.

For mammalian cells, many of the available dynamic models correspond to
macroscopic bioreaction models rather than detailed mechanistic physicochemical
models [116–118]. Provost et al. [119] designed an unstructured dynamic biore-
action model for CHO cells in culture based on measurements of extracellular
species. This model is aimed at the design of on-line algorithms for process
monitoring, control, and optimization. The model was validated experimentally
and takes into account the metabolic changes that cells undergo in culture due to
substrate availability. An unstructured, unsegregated, deterministic model for
describing mAb production in hybridoma cells was developed by Jang and
Barford [120]. The model considers the anabolism of cellular macromolecules and
the dependence of protein concentration on gene expression. Kontoravdi et al.
[121] presented a single unstructured model structure for describing the cell
growth kinetics and metabolism of HEK293 and CHO cells, by applying minor
changes in the model for the two cell lines such as growth rate expressions and
dependence of cell death on metabolite concentrations. The network considered is
consistent with the information available in literature sources and the pathways
available in KEGG. Model simulation results are in good agreement with exper-
imental data [121].

Hybrid models have been introduced in an attempt to simulate whole-cell
mammalian cell dynamics which combine steady state flux analysis and kinetic
rate expressions. These models have to deal with the complexity of describing all
extracellular reactions with concentration-dependent rate equations and maintain
sufficient constraints to allow flux calculations. A dynamic metabolic model for
hybridoma cells was constructed by Gao et al. by combining stoichiometric and
dynamic mass balances, and using Monod-based kinetic expressions. To reduce
the size and complexity of the system, significant intracellular fluxes were
identified using MFA, and distinct characteristics were assigned to the different
phases of the culture. The model is capable of predicting glucose and glutamine and
the key amino acid concentrations as well as product formation [122]. This model
was taken by Baughman et al. [123] to illustrate an optimization-based technique for
the estimation of kinetic parameter values in dynamic models of cell metabolism,
based on algebraic approximations of continuous differential equations. Reported
results in [123] show an improvement in the agreement of experimental and sim-
ulated results and the ability to solve the unsimplified variant of the model.

Recently, a very detailed kinetic model for CHO cells was developed by Nolan
and Lee [124], based on a network of reactions collected from the KEGG database
for the hamster analog mouse. Linear pathways were collapsed for simplification
while preserving stoichiometric relationships between metabolites. The model was
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compartmentalized into the cytosol and mitochondria for NADH transport.
Cytosolic enzyme-catalyzed reactions were described with kinetic rate expres-
sions, where metabolite uptake rates are controlled by several intracellular reac-
tions, rather than a single transporter. The effect of temperature and the redox state
of the cell was also accounted for. In Nolan and Lee [125] the effects of tem-
perature shift, seed density, specific productivity, and metabolite concentrations
on viable cell density (VCD), antibody, lactate, asparagine, and the redox state
were studied by considering a detailed kinetic model of CHO cell metabolism.
A metabolic network similar to the one in previous works was used, with a novel
framework for simulating the dynamics of metabolic and biosynthetic pathways,
where rate expressions are used to calculate pseudo-steady-state flux distributions
and extracellular metabolite concentrations at discrete time points for fed-batch
cultures. The model provides time profiles for all metabolites in the reactor and
successfully predicts the effects of several process perturbations on cell growth and
product titer.

8 Modeling Resources

Dynamic models of metabolic networks involve large sets of highly nonlinear
differential equations, which are solved numerically due to their complexity. These
equations can be solved using any pertinent algorithm implemented in any
numerical computing and programming language such as Mathematica, Scilab or
Matlab. Hence the availability of suitable software is crucial for the development
of systems biology research. Many simulation software packages have been
developed to provide specific analysis and computing packages similar to the ones
used in engineering and other disciplines, but without a universal standard to
enable integration of these resources.

8.1 Systems Biology Markup Language (SBML) and Systems
Biology Workbench (SBW)

The Systems Biology Markup Language (SBML) arose as a result of the
observation that there is a large number of software tools that researchers use for
different needs, which generate results that are not easily compatible and cannot be
shared. SMBL provides a standard that enables models to be exchanged between
software tools, and allows simulation and analysis results in systems biology to be
shared through a common model exchange language. SBML uses a machine-
readable format for representing computational models in systems biology and can
be used as a common exchange format for transferring, for instance, computational
models of biochemical reactions between different software tools [126, 127]. For
the model to be useful it should be sufficiently characterized and accompanied by a
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minimum amount of information, as outlined in Minimum Information Requested
In the Annotation of biochemical Models (MIRIAM) [128].

The systems biology workbench (SBW) is a software framework built on
SBML that permits sharing computational resources and applications associated
with different programming languages and running on different platforms in a
simple, high-performance, open-source software infrastructure [129].

There is a large number of software tools and databases freely available on
the web that can simplify the implementation of such models or provide
information regarding structure and parameters of the network. These resources
are listed in Table 3. Other resources and tools for systems biology (genome
information and analysis, transcriptome and proteome databases, metabolic
profiling and metabolic control analysis, metabolic and regulatory information
databases, and software for computational systems biology and simulation) are
reviewed in [130].

8.2 Metabolic Engineering Tools

Currently there are many tools available for the analysis of stoichiometric net-
works, such as the COBRA Toolbox, CellNetAnalyzer, PathwayAnalyser [148],
Metatool [140], YANAsquare, SNA and OptFlux. Some of these programs require
a specific programming environment, such as Matlab or Mathematica, as indicated
in Table 3.

CellNetAnalyzer is a comprehensive software tool that runs in the Matlab
environment, and allows performance of analyses for metabolic engineering such
as FBA on metabolic, regulatory, and signalling networks in a user-friendly
environment [134]. COBRA is a Matlab package for performing flux and pathway
analysis, either with or without experimental data. In addition to standard pathway
analysis, SBRT includes other capabilities such as data analysis tools [136]. Other
tools for stoichiometric analysis are YANAsquare and SNA which are focused
mainly on elementary flux mode analysis. YANAsquare provides a framework for
rapid network assembly, visualization, and elementary flux mode analysis [147].
SNA is a Mathematica toolbox for elementary flux mode analysis. It also supports
steady-state analysis by linear programming [143]. These two applications lack
algorithms for the identification of potential metabolic engineering targets and
model visualization tools.

OptFlux is a software designed to support in-silico metabolic engineering.
It incorporates the identification of metabolic engineering targets for strain
development and allows phenotype simulation and flux space determination of
stoichiometric metabolic models using FBA, MOMA, MFA and elementary flux
mode analysis, and it also includes visualization tools [141]. The main charac-
teristics of this software which make it interesting for metabolic engineering
applications are that it is open-source, user-friendly, modular, and compatible with
SBML.
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8.3 Diagrammatic Simulation Tools

To date there are a large number of mathematical packages for simulating cellular
networks that take the user interface to an visual level. In this format, models are
represented as network diagrams drawn on a canvas, with connections associated
with the reactions between components. The user only requires knowledge of the
components of the network, interactions, rate expressions, and parameters.
Knowledge of programming, differential equations and numerical integration
methods is not required as the diagram generated is converted seamlessly into a
mathematical representation for simulation. Examples of such tools include
CellDesigner, Cellware, JDesigner and Virtual Cell (see Table 3). Some of these
tools are reviewed and compared in [149].

JDesigner is an open-source network design tool which allows the drawing of
biochemical networks and exporting them in SBML format. It also acts as a
simulator via SBW [129]. Cellware provides a modeling and simulation envi-
ronment for models of multiple levels such as gene regulatory networks, signal
transduction, and metabolic pathways. It includes stochastic and deterministic
algorithms based on ordinary differential equation solvers, and hybrid algorithms
for a flexible architecture. It also provides parameter estimation and optimization
tools in a user-friendly intuitive environment [135].

CellDesigner is a modeling and simulation tool that allows visualization,
modeling, and simulation of gene-regulatory and biochemical networks. The main
characteristics that define the utility of this tool for creating and transferring
models are its comprehensive graphical representation of network models and the
fact that it is based on SBML, which facilitates model transfer. It is integrated with
SBW-enabled simulation and analysis modules, and with the SBML ODE Solver
library [150].

8.4 Other Simulation Tools

Models of drug metabolism are an essential element used by pharmaceutical
companies in preclinical pharmacokinetic studies and to maximize the efficiency
of lead compound selection, facilitating drug discovery while reducing the need
for animal testing. In this direction, a biosimulation tool based on yeast as a model
organism was proposed by Pieper et al. [151]. This approach is restricted to drugs
metabolized by enzymes in the central carbon metabolism.

Pharmaceutical as well as specialized companies provide simulation tools and
services for cellular as well as whole-organ systems. Entelos developed Physio-
Lab, a platform of mathematical models that integrates genomic, proteomic,
physiological, environmental, and behavioral data to represent the physiology of a
disease and its response to treatment. This tool allows the optimization of trial
design by simulation on virtual patients, and has been applied to develop a model
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for diabetes [152]. In order to predict the toxicity of potential drug candidates,
Strand Life Sciences developed a virtual liver system based on mathematical
modeling of the kinetics of essential biochemical pathways involved in liver
homeostasis. On a cellular scale, Genomatica provides an integrated metabolic
engineering and bio-process development platform, which combines predictive
computational modeling with experimental lab technology to design and test
highly-optimized organisms in order to accelerate process development and
production.

For general cellular model development, Virtual Cell is a computational
environment for analysis, modeling, and simulation of cell biology that allows the
development of a full range of models. These models can range from simple
descriptions used for evaluating hypotheses or interpreting experimental data, to
models used to test the predicted behavior of complex, highly non-linear systems.
It integrates molecular mechanisms, such as reaction kinetics, diffusion, flow,
membrane transport, etc., and allows the development of spatially explicit models.
Components can be uniquely identified and annotated following the MIRIAM
standard. It features a web-based Java interface to specify compartmentalized
topology and geometry, molecular characteristics, and relevant interaction
parameters. The biological description obtained is automatically translated into a
corresponding system of ordinary or partial differential equations to be solved
numerically. For model simulation, both deterministic and stochastic algorithms
are supported. For simulations of combined reaction, diffusion, and advection in
complex geometries, a partial differential equation solver is available [145].

9 Final Remarks

The progress in experimental biology from the molecular level to the systems level
has modified the way we understand biological systems and cellular processes,
leading to knowledge integration from different fields. This paradigm change in
understanding of these complex systems has also modified the way we address
modeling of mammalian cell systems. Detailed quantitative models are required to
capture the mechanisms of the underlying processes involved from a physico-
chemical point of view, in order to increase our understanding of these systems.
In spite of the current accomplishments, systems biology still has challenges to
face. For instance, in the recombinant protein production field, since the molecular
and physiological factors involved in high protein production in mammalian cell
lines are not well understood, identification of differentially expressed genes in
high producers could enrich the development of models in order to improve
heterologous protein production by providing an understanding of the regulatory
layer behind the observed effects. The understanding of these elements on a sys-
tem-wide level is of great importance, as recombinant protein production has
recognized effects on the host organism.
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Nowadays information is becoming available at a faster rate, allowing the
development of detailed predictive models of mammalian cells. Therefore, since
the metabolic network modeling field has grown significantly in the past decade,
and will continue to do so, it is expected that in the next decade the knowledge of
specific genetic characteristics and the analysis and modeling of empirical data
will continue to help predict the response and behavior of mammalian cell systems
for application in production processes as well as in the medical field.

On the other hand, mathematical models can assist in strain design and com-
plement metabolic methods in order to increase productivity. However, many of
the models currently available have limitations in their description of the system
due to the scope of the solutions and availability and accuracy of the data used on
their construction. Further improvements are needed to overcome these problems
and to obtain a global view of mammalian cell systems, in order to provide a better
understanding of their metabolic responses due to perturbation and during protein
production. In order to address new biological applications, the further develop-
ment of dynamic and genome-based models for mammalian cells will require
abundant high-quality experimental data, and new software, algorithms, and
visualization techniques.
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Metabolic Flux Analysis in Systems
Biology of Mammalian Cells

Jens Niklas and Elmar Heinzle

Abstract Reaction rates or metabolic fluxes reflect the integrated phenotype of
genome, transcriptome and proteome interactions, including regulation at all levels
of the cellular hierarchy. Different methods have been developed in the past to
analyse intracellular fluxes. However, compartmentation of mammalian cells,
varying utilisation of multiple substrates, reversibility of metabolite uptake and
production, unbalanced growth behaviour and adaptation of cells to changing
environment during cultivation are just some reasons that make metabolic flux
analysis (MFA) in mammalian cell culture more challenging compared to
microorganisms. In this article MFA using the metabolite balancing methodology
and the advantages and disadvantages of 13C MFA in mammalian cell systems are
reviewed. Application examples of MFA in the optimisation of cell culture pro-
cesses for the production of biopharmaceuticals are presented with a focus on the
metabolism of the main industrial workhorse. Another area in which mammalian
cell culture plays a key role is in medical and toxicological research. It is shown
that MFA can be used to understand pathophysiological mechanisms and can assist
in understanding effects of drugs or other compounds on cellular metabolism.
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Metabolite balancing � Production � Therapeutic proteins
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1 Introduction

Systems biology has become an increasingly exciting field in biological science.
An increasing number of research institutions and groups are focusing on this field,
and various public and private funding agencies and companies are substantially
supporting research in this field. The major reasons for this substantial investment
are the anticipated increase in understanding the functioning of biological systems
that is expected to strongly support the creation of new and improved therapies,
drugs as well as biotechnological processes [1, 2]. The enormous booming of this
area is heavily driven by the breathtaking progress in molecular biology combined
with the development of large-scale experiments whose data collection and
analysis only became possible with the new bioinformatic methods and tools.
Bioinformatics has made it possible to store relevant data on databases that are
quickly accessible by everybody at any time on a global scale. In parallel, tech-
niques of mechanistic modelling are evolving that permit structured development
of mathematical models and their solution on a larger scale. It is primarily these
models that are essential in the process of conceptual clarification and that allow
testing power of prediction.

Mammalian cells are model organisms that are used to help understanding
diseases like cancer or neurological diseases [3] and identifying suitable drug
targets. Mammalian cells, particularly human cells, are of increasing relevance for
testing the metabolism and toxicity of drug candidates [4–6]. Another major
application of mammalian cells is in the production of biopharmaceuticals [7],
especially of proteins such as antibodies, but also of vaccines and viral carriers for
gene therapy [6, 8, 9]. Here a solid systems understanding will assist in improving
product quality, e.g. correct human glycosylation and product titers, e.g. by sys-
tems-supported media design or model-driven genetic modifications. Engineering
of producing cells will be supported by a new discipline, synthetic biology [7], that
helps designing new biological systems or elements thereof, e.g. new promoters,
switches or sensors [10, 11].

In order to understand and improve production processes or to understand toxic
effects, methods are needed that can describe the different phenotypes of the cells
under different conditions. Metabolic fluxes or intracellular reaction rates represent
an endpoint of a metabolic network reflecting all types of network events including
regulation at different levels, i.e. gene, protein and metabolic interactions [12, 13],
making it a very powerful method for systems biology research (Fig. 1).

The analysis of metabolic fluxes has been employed extensively in the past to
understand, design and optimise a number of cell types and biological processes
[12, 14, 15]. Metabolic flux analysis (MFA) provides a quantitative description of
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in vivo intracellular reaction rates in metabolic networks describing activities of
intracellular enzymes and whole pathways [16]. Fluxes can be quantified either by
using metabolite balancing, often also called flux balance analysis (FBA), or by
13C MFA, which involves the use of 13C isotope-labelled substrates [17]. Table 1
presents methodological milestones that contributed to the development and
improvement of MFA methods.

Flux analysis using metabolite balancing for microorganisms was described as
early as 1978 [18]. It has been and still is the most commonly applied method for
the analysis of the metabolism of mammalian cells [5, 15, 19, 20]. The accuracy of
flux estimates can be improved compared to pure metabolite balancing by using
13C tracers in metabolic flux studies and later incorporation of the resulting

Fig. 1 Interactions on the various levels of the cellular hierarchy
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labelling information stored in the metabolites into the flux calculation. Different
mathematical methods that have been developed in the past have significantly
contributed to the applicability of 13C flux analysis. Zupke and Stephanopoulos
introduced the concept of atom mapping matrices (AMM) for the modelling of
isotope distributions in metabolic networks [21]. A following important
advancement was the introduction of isotopomer mapping matrices (IMM) by

Table 1 Methodological milestones in MFA method development

Flux estimation
method

Year of
introduction

Principle Applications References

Metabolite
balancing

1978 Measure substrate and
product conversion
rates

Prokaryotes, yeast,
Aspergillus,
Penicillium,
mammalian cells

[18]

13C labelling,
atom
mapping
matrices

1994 Measure fractional
labelling of individual
metabolite carbon
atoms or of average
using NMR or GC-MS

Various [21]

13C labelling,
isotopomers,
isotopomer
mapping
matrices

1997 Systematic description of
carbon isotopes in any
network

Whole network
isotopomer flux
estimations in
prokaryotes and
eukaryotes

[22]

Local flux split
ratio
estimation

1997 Calculate local flux split
ratios based on local
mass isotopomer
balances

Local calculations, flux
constraints
combined with
metabolite
balancing

[24, 25]

Link to mass
isotopomers

1999 Correction for natural
isotopes using matrix
approach

Whole network
isotopomer models
and mass
spectrometric
analysis

[29]

Cumomers 1999 Explicit solution of large
isotopomer networks

Whole isotopomer
networks

[30]

Flux screening
on a
microtiter
scale

2003 Miniaturised cultivation
methods combined
with mass
spectrometry

Investigation of mutant
libraries

[26, 44,
45]

EMUs-
elementary
metabolite
units

2007 Systematic simplification
of isotopomer network
for improved
estimation

Particularly useful for
dynamic isotopomer
models

[31]

FRET
metabolite
nanosensors

2009 FRET sensors detect
conformational
change of reporter
proteins caused by
binding of a metabolic
ligand, e.g. glucose

Dynamic measurement
of individual
metabolite
concentration in
cellular
compartments

[32]
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Schmidt et al. [22], which allowed using the complete information of the iso-
topomer distributions of metabolites and the elegant use of matrices for solving
complex isotopomer models. Another method is based on local isotopomer bal-
ances and allows the estimation of local flux split ratios [23–25]. This method is
generally very suitable for high throughput because of its easy calculation. Flux
split ratios can be used directly and interpreted biologically, or can serve as
additional constraints for FBA. Metabolic flux screening on a miniaturised scale
using mass spectrometry was shown to be a promising method for high-throughput
analysis of cellular phenotypes [26]. Whereas earlier labelling patterns were
mostly analysed by NMR [27, 28], in the late 1990s GC-MS was proposed to be a
possible competitive technique, and mass isotopomer distributions obtained from
GC-MS measurements can be sufficient for detailed analysis of metabolic fluxes
[29]. In 1999 Wiechert et al. provided an elegant procedure for solving isotopomer
balances and introduced the concept of cumulative isotopomers (cumomers) [30].
Another significant improvement for flux calculation was presented by Anton-
iewicz et al. [31]. They introduced an efficient decomposition algorithm that
identifies the minimum amount of information needed to simulate the isotopic
labelling in a reaction network. This so-called elementary metabolite unit (EMU)
framework significantly reduces the computation time needed for flux estimation.
Another milestone especially for studying compartmented systems is the intro-
duction of specific fluorescence resonance energy transfer (FRET) techniques [32].
The determination of individual departmental concentrations by using FRET
nanosensors that can be combined with 13C flux analysis might allow studying
even fluxes between compartments and different cells, providing deeper insights
into metabolic compartmentation in eukaryotic cells in future studies.

As can be seen in the literature, MFA was mostly applied in biotechnology to
increase the productivity of producing microorganisms [33–35]. In mammalian
cells, it is still less established owing to their higher complexity, particularly
concerning compartmentation, complex medium requirements and unbalanced
growth behaviour. However, there have been a number of interesting studies
applying MFA in the past, mainly in the areas of cell culture technology and
toxicology/medicine [5, 36–39]. These studies are mostly performed under the
assumption of metabolic steady state, which is a prerequisite for stationary MFA.
In mammalian cells the question remains of whether a true steady state and bal-
anced growth behaviour can be achieved. Especially in batch cultures, in which the
medium composition is changing and the cellular metabolism has to adapt to a
changing environment, true metabolic steady state will not be achieved. Mam-
malian cells change their metabolism as a response to different substrate con-
centrations, e.g. low and high glucose concentrations [40]. There are different
possibilities to deal with this challenge of usually unbalanced growth. In most
cases mean fluxes are calculated for the exponential growth phase of the cells, and
during this phase metabolic steady state is assumed, which is often a fair
assumption [5, 20]. Another possibility is to examine metabolism and flux dis-
tributions over time using dynamic approaches [41, 42]. If specific short time
effects on the metabolism were to be investigated, e.g. effects of certain
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compounds, transient 13C flux analysis would be an interesting but still very
sophisticated method [37]. For reliable 13C metabolic profiling in mammalian cell
culture processes, which usually takes several days, a special medium design could
be an option to come close to metabolic and isotopic steady state allowing sta-
tionary 13C flux analysis [43]. In this article different methods for MFA in
mammalian cells will be reviewed and then application examples will be
presented.

2 Theoretical Aspects: Methods for MFA

Different MFA methods are available as discussed before. A typical workflow of a
stationary 13C MFA is depicted in Fig. 2. If metabolite balancing is applied
without the use of any tracers, only the measurement of labelling patterns would be
excluded from the workflow. Another main difference between metabolite bal-
ancing methodology and 13C MFA is computation. Flux calculations can be
straight forward using metabolite balancing as described in Sect. 2.1. In 13C MFA
(Sect. 2.2) metabolite balancing is extended by carbon isotopomer balances,
resulting in a nonlinear least squares problem. This can be solved for example by
using efficient numerical optimisation techniques [46, 47].

Fig. 2 Exemplary workflow of an experiment for metabolic flux analysis
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2.1 Stoichiometric Models and Metabolite Balancing
in Mammalian Cells

The metabolite balancing or flux balancing technique is the MFA method that has
been applied most often for the analysis of animal cell metabolism. The stoichi-
ometric models used for flux balancing can also be applied for in silico prediction
of network characteristics (e.g. maximal yields, optimal pathways, minimum
substrate requirements) [48–50] or prediction of optimal genetic modifications
using different algorithms [51–55]. The importance of these targeted optimisation
approaches is rapidly increasing, which is also caused by an increasing availability
of genomic information as well as genome-scale models of different mammalian
species [56–58]. The general metabolite balancing methodology is depicted in
Fig. 3.

The first step is to set up a network that is describing the part of the metabolism
that should be investigated. Metabolic network models of the central metabolism
of mammalian cells have been described and applied in a number of studies [5, 15,
20, 38, 49]. As an example a model of the human central metabolism is presented
in Fig. 4. An important database that can be used to set up metabolic networks is
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database
(http://www.kegg.com). If a metabolic network consists of N fluxes and M internal
metabolites, it has F = N – M degrees of freedom, meaning that F fluxes have to
be measured to determine all remaining fluxes [59]. The calculation of metabolic
fluxes in an overdetermined network (more measurements than necessary) results
in a set of calculated fluxes that represents a least squares solution. In this case it
can also be checked if measurements are consistent, meaning that the balance
around each metabolite is zero. The network is underdetermined if not enough
measurements are available, which can also be seen by calculating the rank of the
stoichiometric matrix. If the rank is lower than the number of internal metabolites,
the network is underdetermined. In this case the network has to be simplified or
specific fluxes must be assumed a priori. If insufficient fluxes are measured, this
can sometimes be easily solved by measuring extra rates. Other options exist to
calculate fluxes in underdetermined parts of the network, which would extend the
metabolite balancing method. Thermodynamic constraints can be used, indicating
that certain reactions do not take place or can only proceed in one direction [60].
Expression data or measurements of in vitro enzyme activities can be used to
exclude specific reactions in the network [49, 61–63]. Another possibility is to use
specific objective functions such as for example maximising energy production to
find flux distributions that optimise the applied objective function [64, 65]. The
probably best possibility is the use of labelled substrates (13C tracers) and analysis
of resulting labelling patterns in metabolites providing additional information
about cellular metabolism. The labelling of specific metabolites can be used for
example to get information about fluxes at branch points like the glycolysis/
pentose phosphate pathway (PPP) split [66]. 13C MFA is further explained in the
next paragraph.
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The metabolic network model in Fig. 4 for flux balancing in human cells and
general aspects of modelling metabolic networks in mammalian cells will be explained
in this section. The metabolic network can be divided into the following parts:

Central energy metabolism The main pathways of the energy metabolism are
represented, i.e. glycolysis, oxidative decarboxylation, TCA-cycle, electron
transport chain and oxidative phosphorylation. Since it is not known for some
reactions in the model whether NADH or NADPH take part, and due to possible
activity of nicotinamide nucleotide transhydrogenases, NADH and NADPH were
lumped together. The excess of NAD(P)H and FADH2 considering their

Fig. 3 Procedure of metabolic flux analysis using the metabolite balancing technique. BM
biomass, M metabolite, S substrate, P product, r reaction rates, A stoichiometric matrix, (A)#

pseudo inverse of the matrix
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consumption and production in all reactions permits estimating the total ATP
excess. However, the P/O ratio, which is the amount of ATP formed per NADH
oxidised, is usually not exactly known. In the literature different P/O values were
assumed or estimated [49, 67–69]. The calculated ATP excess in the presented
model example (Fig. 4) represents an estimate of the amount of ATP that is needed

Fig. 4 Exemplary stoichiometric metabolic network model of a human cell. ETC electron
transport chain, OP oxidative phosphorylation, PPP pentose phosphate pathway, TCA
tricarboxylic acid, AcC acetyl coenzyme A, AKG a-ketoglutarate, ATP adenosine triphosphate,
ATPtot total ATP, ATPwOP ATP without oxidative phosphorylation, Carbo carbohydrates, Cit
citrate, F6P fructose 6-phosphate, FADH2 flavin adenine dinucleotide, Fum fumarate, G6P
glucose 6-phosphate, GAP glyceraldehyde 3-phosphate, Gal galactose, Glc glucose, Lac lactate,
Mal malate, NADH nicotinamide adenine dinucleotide, OAA oxaloacetate, P5P pentose
5-phosphate, Pyr pyruvate, SuC succinyl coenzyme A, standard abbreviations for amino acids.
Indices: m mitochondrial, ex extracellular
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in the cell, e.g. for maintenance and transport reactions, but also for so-called
substrate or futile cycles [70].

Pentose phosphate pathway The PPP consists of an oxidative and a nonoxi-
dative branch. The split between glycolysis and PPP and the reversible reactions of
the non-oxidative part cannot be resolved by metabolite balancing alone. There-
fore, PPP is usually assumed to be responsible only for nucleic acid synthesis in
pure metabolite balancing studies, and the nonoxidative part is neglected. How-
ever, there are possibilities for obtaining some information concerning the gly-
colysis/PPP split by using additional 13C tracer experiments [66], which can be
included in the metabolic flux calculation.

Amino acid metabolism The metabolism of proteinogenic amino acids is usually
modelled by selected degradation pathways. Where several pathways are possible,
the most probable and suitable pathway can be chosen, or additional experiments
(e.g. enzyme activity measurements) can be performed to evaluate this. Since
metabolite balancing can only be used to calculate net fluxes, there are no data
concerning reversibility as for example in the synthesis and degradation of non-
essential amino acids such as alanine and glutamate. The degradation flux of
essential amino acids should usually be close to zero or higher, but never below
zero. Values below zero would indicate that there are errors in the metabolite
measurement or the applied anabolic demand.

Further reactions The reactions catalysed by the enzymes malic enzyme
(cytosolic and mitochondrial), phosphoenolpyruvate carboxykinase and pyruvate
carboxylase represent parallel or reversible pathways and also cannot be distin-
guished by pure metabolite balancing. Again this can be solved by assuming
activities for some of these enzymes or by taking data from other experiments or
lumping all these reactions together into one reaction representing the sum of all
these fluxes converting malate/oxaloacetate to pyruvate, as was done in the model
in Fig. 4.

Synthesis of biomass Fluxes to biomass can be represented as five fluxes to the
major macromolecules of the cell, namely proteins, carbohydrates, DNA, RNA
and lipids. Hereby the lipid fraction also contains the cholesterol part of the cells.
These anabolic fluxes are calculated using the specific anabolic demand of the
cells, which is derived from the biomass composition of the cells. In most flux
studies the biomass composition is assumed constant. The macromolecular com-
position (Table 2) and amino acid composition (Table 3) of Hep G2 cells are
shown as an example. This was applied in a metabolite balancing study in which

Table 2 Macromolecular
composition in Hep G2 cells
[5]

Macromolecule fraction (%)

DNA 3.9
RNA 2.4
Carbohydrates 3.4
Lipids 18.0
Proteins 61.4
Rest/ash 10.9
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constant composition was assumed [5]. However, in detailed studies concerning
cellular biomass dynamics, it was shown that this composition and also the total
biomass of the cells (e.g. dry weight) can vary during cultivation or at different
growth conditions [71, 72]. The methods that are usually used to determine cellular
macromolecules are, however, time-consuming and require relatively large
quantities of sample material, making it usually not possible to determine the
biomass composition in every flux analysis experiment, which would, strictly
speaking, be required.

2.2 13C Metabolic Flux Analysis

In mammalian cells, relevant information can be obtained already by the metab-
olite-balancing methodology since the number of measurable uptake and pro-
duction fluxes of metabolites is large. However, there are several cases in which
the balancing technique is insufficient. Particularly certain circular pathways,
reversible reactions and alternative pathways cannot be resolved (Fig. 5). Most
important, underdetermined parts in the metabolic network of mammalian cells are
typically the PPP split, the anaplerotic/gluconeogenic fluxes around pyruvate/
phosphoenolpyruvate/malate/oxaloacetate and reversibility of uptake and pro-
duction of substrate metabolites. Specific metabolic compartmentations, such as
for example different intracellular pools of metabolites as suggested for pyruvate
[73], are other parts that cannot be resolved just by balancing.

In some situations it might be possible to use well-defined constraints to solve
some underdetermined parts. Mass balances of cofactors, e.g. ATP and NAD(P)H,

Table 3 Amino acid
composition of total cellular
protein in Hep G2 cells [5]

Amino acid fraction (%)

Alanine 8.5
Arginine 4.7
Aspartate/asparagine 10.6
Cysteine 2.6
Glutamate/glutamine 12.3
Glycine 12.7
Histidine 1.4
Isoleucine 2.5
Leucine 7.2
Lysine 12
Methionine 1.3
Phenylalanine 2.8
Proline 4.6
Serine 6.6
Threonine 3.7
Tryptophan 0.8
Tyrosine 2.6
Valine 3.3
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irreversibility of reactions or specific objective functions have been proposed and
reviewed as additional constraints [74]. However, balancing of the energy metab-
olites [ATP, NAD(P)H] does not seem generally applicable since this would require
knowing all energy-producing and -consuming reactions as well as all conversion
reactions between the energy metabolites [75]. In addition the P/O ratio can vary and
can usually not be determined precisely [76], substrate or futile cycles might impair
results, e.g. in the anaplerosis [77], and for some reactions it is just not known which
co-metabolite, NADH or NADPH is used. For example malic enzyme and isocitrate
dehydrogenase enzymes can utilise NADH or NADPH (http://www.kegg.com). In
case of PPP split, it would be possible to get some estimates about its activity by
balancing NADPH. However, transhydrogenation reactions can occur in the cells,
transferring reducing equivalents between NADPH and NADH, which would falsify
PPP estimates. In a study comparing results obtained by metabolite balancing with
those from 13C MFA, discrepancies were found concerning PPP split [78].

All the shortcomings and limitations of the metabolite balancing method can be
overcome by getting more information through application of isotopically labelled
13C tracers. These tracers are 13C labelled substrates that are taken up by the cell,
and the labelled carbon atoms are distributed through the cellular metabolism in a
clearly defined way (Fig. 6). Depending on the activity of enzymes and metabolic
pathways, this will result in specific labelling patterns in metabolites. These
chemically identical compounds with different isotope composition are referred to
as isotopomers. As depicted in Fig. 6, labelling in extracellular and intracellular
metabolites can be measured, but also the labelling in macromolecule building
blocks, e.g. amino acids in proteins provide equivalent information. Extracellular
metabolites can be easily measured since these are directly present in the medium,

Fig. 5 Cases in which the metabolite-balancing technique is limited and examples in the
metabolism
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usually at high abundance. However, measurement of intracellular metabolites
requires reliable quenching of the metabolism and appropriate extraction methods.
This is fairly established for adherent cells [79, 80], but still much more com-
plicated for suspension cells [81]. Measurement of the labelling in monomers of
macromolecules, as is often done in studies on prokaryotes [33], is usually not
suitable for flux analysis in mammalian cells. This is because mammalian cells
generally have much lower growth rates than microorganisms and therefore slow
macromolecule turnover and slow labelling incorporation.

The measurement of labelling patterns in metabolites can be performed by
nuclear magnetic resonance (NMR) measurements, gas chromatography mass

Fig. 6 13C tracer experiment. The labelling of the tracer is distributed through the metabolism,
resulting in specifically labelled intracellular metabolites (Mint), extracellular metabolites (Mext)
and biomass (BM) components. Measurement of labelling patterns can be performed directly in
intracellular or extracellular metabolites, but also in macromolecule building blocks of biomass
constituents
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spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), [16,
25, 29, 82–87], matrix-assisted laser desorption ionisation-time of flight mass
spectrometry (MALDI-ToF MS) [88, 89], capillary electrophoresis MS [90] or
membrane inlet MS [91]. Recently it was demonstrated that gas chromatography-
combustion-isotope ratio mass spectrometry (GC–C–IRMS) is another interesting
method for labelling quantification in 13C MFA with a low labelling degree of
tracer substrate, which is interesting for performing MFA in larger scale cultiva-
tions like industrial pilot scale fermentations [92, 93].

Compared to NMR, MS seems to be more attractive, which is mainly due to
higher sensitivity and rapid data accumulation [94]. Certain potential problems of
MS that would impair flux analysis, like isotope effects or naturally occurring
isotopes particularly in atoms other than carbon, can be solved efficiently using
specific correction methods [29, 92, 95–99].

For 13C MFA the carbon atom transitions in the metabolic network of the cell
have to be modelled. The concept of AMM, which is a systematic formulation of
atom transfers [21], was further expanded by the IMM concept [22]. This allowed
to calculate mass and NMR spectra directly from isotopomer abundance [100].
The introduction of cumomers [30] and later EMUs [31] improved computation of
fluxes. The computational part in 13C MFA can be performed by using available
software packages [101–103]. Further description of 13C MFA can also be found in
several review articles [13, 16, 29, 45, 75, 100].

13C MFA can be further divided into stationary and dynamic approaches, which
both have been applied successfully in mammalian cells [80, 104, 105]. Metabolic
steady state is a prerequisite for stationary 13C MFA. This is still a challenge, espe-
cially for suspension cells used in industrial production. Appropriate medium design
can be an option also enabling detailed 13C MFA in suspension cells during expo-
nential growth [43]. For adherent cells the problem of instationarity can be nicely
overcome using transient 13C MFA as demonstrated on hepatic cells [37, 79, 80].

The tracers that are mostly applied in 13C MFA on mammalian cells are dif-
ferent glucose and glutamine tracers since these metabolites are the main sub-
strates of mammalian cells [106]. Depending on the question of the study and the
applied metabolic network structure, different tracers or combinations of tracers
will be best suitable [105].

3 Application of MFA in Systems Biology
of Mammalian Cells

3.1 Application of MFA in Optimisation
of Cell Culture Processes

Mammalian cells are extensively applied for the production of vaccines [9] and
therapeutic proteins requiring specific post-translational glycosylation [8, 107].
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The number of biopharmaceuticals available for treatment of severe diseases as
well as the quantity produced is steadily growing [108]. Therapeutic proteins are
mainly expressed in Chinese hamster ovary (CHO) cells, but also other cell lines
are commonly employed, such as murine myeloma, hybridoma, baby hamster
kidney (BHK) or human embryo kidney cells (HEK-293) [8, 109]. Newly engi-
neered human cell lines also represent very promising production systems, for
example the cell lines AGE1.HN [42] and PER.C6 [110]. Vaccine production is
conventionally carried out in embryonated chicken eggs. However, especially in
the last decade several cell culture-derived vaccines have been established [9].

Much effort has been made to optimise cell culture processes to increase pro-
ductivity and product quality. This includes on the one hand optimisation of the
cultivation and on the other hand targeted engineering of the cell. Different cellular
pathways that are associated with superior characteristics concerning cell growth
and production were engineered. This includes central metabolism, protein syn-
thesis and secretion, protein glycosylation, post-translational modifications, cell
cycle control and apoptosis [107, 111, 112].

Optimisation of the metabolism of the producer cell is mandatory for different
reasons. On the one hand efficient energy metabolism is important. Particularly the
production of recombinant proteins requires a great deal of energy. On the other
hand final product titres are directly dependent on integral viable cell density and
lifespan of the culture, which can be increased when the substrate usage of the cell
is very efficient. In an optimum scenario this would mean that the cell does not
accumulate toxic waste products, which would decrease the lifespan of the culture,
and substrates are taken up just to fulfil the cellular demand.

Analysis of the metabolism and metabolic flux studies has significantly con-
tributed in the past to understanding and optimising the metabolism of mammalian
cells. In this section we will review metabolic flux studies in hybridoma and
myeloma cells, CHO cells and cell lines that are applied for vaccine production.

3.1.1 MFA in Hybridoma and Myeloma Cells

Hybridoma and myeloma cells are widely applied for the production of mono-
clonal antibodies [109]. In many studies MFA was used to understand the
metabolism of these cells. Savinell and Palsson [64, 65] applied linear optimisation
theory to understand the influences of fluxes on overall cell behaviour and to
analyse limitations. They concluded that neither antibody production nor main-
tenance demand for ATP limited cell growth. Medium design represents one of the
most important issues in optimising cell culture processes, which is also reflected
by many metabolic flux studies in this area. Xie and Wang [113, 114] presented a
balancing approach to design culture media for fed batch cultures that integrated
substrates, products, pH, osmolarity and cell growth. They also estimated stoi-
chiometric ATP production in batch and fed batch cultures of hybridoma cells
[69]. Another interesting study focussed on regulation of fluxes in the central
metabolism of myeloma cells [63]. By determining fluxes and enzyme activities in
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the central metabolism, the regulation of metabolic fluxes could be shown to occur
mainly through modulation of enzyme activity. Determination of metabolic fluxes
for multiple steady states in hybridoma continuous culture indicated that the
performance could be improved by inducing specific cellular metabolic shifts,
leading to favourable flux distribution [115]. Europa et al. [116] performed fed
batch cultivations that were then switched to continuous mode. This approach
enabled reaching a more desirable steady state with higher concentrations of cells
and product. Additionally from analyses of hybridoma cells at different physio-
logical states it was reported that the amino acid metabolism is very important for
reducing lactate production [117]. In an earlier metabolite balancing study using
additional constraints to resolve underdetermined parts in the metabolic network,
Bonarius et al. [19] found that around 90% of the glucose was channelled through
PPP, which was very surprising. In a following study using 13CO2 mass spec-
trometry in combination with 13C lactate NMR spectroscopy and metabolite bal-
ancing, it was found that just 20% is channelled through PPP [118]. This shows
that different methods can yield very different results. As mentioned before,
cofactor balance constraints must be used very carefully. Especially for estimation
of PPP, constraints based on 13C labelling might be much more realistic since the
labelling measurement is usually very accurate and carbon transition in the reac-
tions is exactly determined. Another interesting aspect that was analysed by
Bonarius et al. [119] using MFA was the cellular response to oxidative and
reductive stress. They reported that particularly dehydrogenase reactions produc-
ing NAD(P)H were decreased under oxygen limitation. In a recent study it was
reported that antibody production in hybridoma cells could be increased by
enhancing specific fluxes through the addition of specific metabolites to the
medium [120]. Fluxes between malate and pyruvate were increased by the addition
of the intermediates pyruvate, malate and citrate, resulting in increased ATP and
antibody production. This is a very nice example showing how metabolic flux data
can be used to improve the metabolic phenotype in a cell culture process.

Another important step is the construction of mathematical models that can be
used to predict growth, metabolism and product formation during the cultivation.
Dorka et al. [121] utilised an approach based on MFA to model batch and fed
batch cultures of hybridoma cells. Genome-scale modelling and in silico simula-
tions for fed batch cultures of hybridoma cells were recently carried out, sug-
gesting that in the future the applied methodology might serve as a valuable tool
for targeted optimisation [122].

3.1.2 MFA in CHO Cells

CHO cells [123] represent the main workhorse for the industrial production of
biopharmaceuticals [109]. In several studies the metabolism of these cells under
different conditions was analysed. CHO cells are often cultured in media sup-
plemented with specific hydrolysates that contain many peptides, which makes
MFA more complicated. Nyberg et al. [124] reported that these potential substrates
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must be balanced for accurate metabolic flux estimates. In another study, meta-
bolic effects on the glycosylation of recombinant protein were reported. Particu-
larly glutamine limitation seemed to influence glycosylation remarkably [125].
Altamirano et al. [126–128] published several results on medium design and
favourable fed-batch strategies for CHO. MFA was performed particularly to
understand lactate consumption in CHO cells grown on galactose. It was found
that lactate was not used as a fuel in the TCA cycle [126]. A very important aspect
in mammalian cell culture processes is the optimisation of the bioreactor opera-
tion. Goudar et al. [129] presented an approach for quasi real-time estimation of
metabolic fluxes. Cellular physiology and metabolism can be monitored by
combining on-line and off-line data to calculate metabolic fluxes. This method-
ology can help in optimising the cultivation process. Recently the same group
analysed metabolic fluxes of CHO cells in perfusion culture by applying metab-
olite balancing and 2D-NMR spectroscopy [104]. Flux data obtained by metabolite
balancing were in this case in good agreement with flux information from
2D-NMR spectroscopy. Recently a study was published in which MFA was per-
formed for the late non-growth phase in CHO cultivation [130]. In this case a
combination of metabolite balancing and isotopomer analysis was used. The most
surprising finding in this study was that almost all of the consumed glucose was
channelled through PPP. This result is in contrast with several publications [39, 66,
80, 104, 105, 131] that determined different flux distributions in the growth phase
of CHO or other cells.

3.1.3 MFA in Cell Lines for Production of Vaccines and Viral Vectors

Another promising and important application of mammalian cell culture is the
production of vaccines [9, 132]. A number of cell lines were identified to be
suitable for high-yield vaccine manufacturing [133], such as for example madin
darby canine kidney (MDCK) cells [134], HEK-293 cells [135] or specifically
engineered cell lines such as PER.C6 or AGE1.CR [110, 136]. Optimisation of cell
culture processes for vaccine production is still mainly done by trial and error.
Detailed metabolic studies might help substantially to understand cell culture-
based vaccine production [137] and enable targeted optimisation.

Wahl et al. investigated an influenza vaccine production process in MDCK cells
using a segregated growth model for distinct growth phases in the batch process.
Comparison of observed metabolic fluxes with theoretical minimum requirements
revealed large optimisation potential for this process [49]. Flux analysis of MDCK
in glutamine-containing media and media in which glutamine was replaced by
pyruvate was presented in another publication [20]. Ammonia and lactate release
were remarkably reduced in a high-pyruvate medium without further dramatic
changes in the central metabolism.

Henry and co-workers [138] showed that MFA can provide a basis to develop a
feeding strategy for perfusion cultures of HEK-293 cells for production of ade-
novirus vectors. Martinez et al. [139] compared metabolic states of HEK-293 cells
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during growth and adenovirus production to optimise media according to the
cellular demand. Higher cell densities and increased adenovirus production were
achieved.

3.2 MFA in Medical Research

MFA was mostly applied in the past by bioengineers to understand phenotypes of
producer cells. But another very important field in which MFA can contribute
substantially is the medical sector.

Defects in mitochondrial function contribute to many physiological diseases.
Ramakrishna et al. [140] stated that FBA of mitochondrial energy metabolism
might be a useful methodology to characterise the pathophysiology of mito-
chondrial diseases. The strength of metabolic flux data as mentioned in the
beginning of this review and shown in Fig. 1 is the integration of all interactions at
different levels of the cellular hierarchy. Therefore, specific flux patterns that
reflect a certain physiological response might be very nice indicators for specific
diseases or genetic defects.

Lee et al. [141] proposed that MFA could be a very useful tool for tissue
engineering. By applying MFA, it is possible to obtain a very comprehensive
view of the metabolic state, and flux estimates under different conditions can be
used to monitor and optimise tissue function. Forbes and co-workers [36, 142]
described an interesting method that uses isotopomer path tracing to quantify
fluxes in metabolic models containing reversible reactions and applied MFA to
analyse the effects of estradiol on breast cancer cells. Metabolic fluxes were
calculated from extracellular fluxes and isotope enrichment data generated by
NMR. They observed that breast cancer cells are dependent on PPP and gluta-
mine consumption for estradiol-stimulated biosynthesis and concluded that these
pathways might be possible targets for estrogen-independent breast cancer
therapy.

Brain function and especially physiological and pathophysiological regulation
of neural metabolism were investigated in several metabolic studies. Zwingmann
et al. [143] investigated glial metabolism using 13C-NMR. They concluded that the
observed metabolic flexibility of astrocytes might buffer the brain tissue against
extracellular cytotoxic stimuli and metabolic impairments. In another study the
coupling between metabolic pathways of astrocytes and neurons was modelled and
investigated by FBA [144]. By using the reconstructed model, effects of hypoxia
could be fairly well predicted. This shows nicely how stoichiometric models can
be used in medical metabolic flux modelling. Teixeira et al. [145] investigated the
metabolism of astrocytes by combining 13C-NMR spectroscopy and MFA. In a
following study the method was applied to analyse metabolic alterations induced
by ischaemia in astrocytes [146].
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3.3 MFA in Toxicology

The analysis of effects of drugs and chemicals on cellular metabolism is
another very promising application of MFA and highly relevant for toxico-
logical research. Toxicity of drugs is one of the leading causes of attrition at all
stages of the drug development process [147] and is mainly detected late in the
pipeline where also most of the costs are incurred [148]. Identification of
toxicity early in the drug development process would save much money.
Metabonomics is a system approach for studying in vivo metabolic profiles and
has emerged in the last decade as a very powerful technique for studying drug
toxicity, disease processes and gene function [149–151]. MFA, which provides
potentially more information than metabolic profiling, is however still not
routinely used in toxicity studies, which might be mainly due to its presently
low throughput. Some studies have focussed on developing and adapting MFA
methods and setups for high-throughput screening [23, 26, 45, 152–154].
Balcarcel et al. [154] presented a method called High-Throughput Metabolic
Screening that can be used for faster screening of the overall activity of
metabolic pathways in mammalian cells. In a recent study it was shown that
MFA can be applied in a high-throughput setup to analyse subtoxic drug effects
[5]. Several changes in the metabolism of Hep G2 cells could be detected upon
exposure to subtoxic drug levels. In the future it might be possible to use MFA
in a high-throughput format to detect specific metabolic signatures or flux
patterns that are associated with specific toxicity mechanisms. Other studies
analysed effects of different compounds on cellular metabolism without
focussing on high-throughput application of the applied methods. Srivastava
and co-workers [38] applied MFA to identify the toxicity mechanism of free
fatty acids and metabolic changes in Hep G2 cells. They observed that free
fatty acid toxicity is associated with the limitation of cysteine import causing
reduced glutathione synthesis. Another very promising MFA method was
implemented by Maier et al. [37] to quantify statin effects on hepatic choles-
terol synthesis. Transient 13C flux analysis was applied to study effects of
atorvastatin at a therapeutic concentration.

Summarising this section, it can be seen that there have been some interesting
applications of MFA to identify toxicity mechanisms and metabolic effects of
compounds. However, these methods must be applicable in high-throughput
format to be attractive for larger scale toxicity screening. Additionally the
analysis has to be more detailed, calling for improved analytical methods.
Specific flux patterns and signatures for different toxicity mechanisms must be
identified and clearly defined in the future, which would lead to a better
understanding of toxicity at the metabolome level; then it might be possible to
elucidate possible side effects of compounds early in the drug development
process.
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4 Conclusion and Future Perspectives

MFA is a very important method for understanding the metabolism of mammalian
cells under various conditions. The acquired knowledge can be used to optimise
cell culture media and cellular phenotypes, to define favourable feeding strategies
as well as to understand mechanisms of toxicity and diseases. In suspension cells
that are employed in industrial production, mainly MFA using metabolite bal-
ancing was applied. 13C MFA cannot be directly applied in industrially relevant
processes since metabolic steady state is not reached. As presented in some
studies, continuous cultures are an option to enable detailed stationary 13C flux
studies. Dynamic methods are very promising tools to describe the dynamic and
adaptive behaviour of the cells during batch and fed-batch processes, but they are
still fairly complex and laborious. Therefore they are not yet widely applied. 13C
MFA is relatively established in tissues and adherent cells where the flux exper-
iment can be performed at a short time scale and metabolic and isotopic steady
state may be reached very fast. Transient 13C flux analysis represents a very
interesting method that may in many cases solve the problem of changing
metabolism during cultivation of mammalian cells. The application examples
presented in this review indicate that MFA can contribute significantly in many
areas in which the metabolism of mammalian cells is of interest. However, MFA
method development has to be intensified in the future to enable broader appli-
cation in mammalian cell culture and to permit robust and realistic studies.
Compartmentation of the metabolism is an issue that is often only rudimentarily
considered in metabolic flux studies but is very important, especially for 13C MFA.
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Advancing Biopharmaceutical Process
Development by System-Level Data
Analysis and Integration of Omics Data

Jochen Schaub, Christoph Clemens, Hitto Kaufmann and
Torsten W. Schulz

Abstract Development of efficient bioprocesses is essential for cost-effective
manufacturing of recombinant therapeutic proteins. To achieve further process
improvement and process rationalization comprehensive data analysis of both
process data and phenotypic cell-level data is essential.

Here, we present a framework for advanced bioprocess data analysis consisting
of multivariate data analysis (MVDA), metabolic flux analysis (MFA), and path-
way analysis for mapping of large-scale gene expression data sets. This data
analysis platform was applied in a process development project with an IgG-
producing Chinese hamster ovary (CHO) cell line in which the maximal product
titer could be increased from about 5 to 8 g/L.

Principal component analysis (PCA), k-means clustering, and partial least-
squares (PLS) models were applied to analyze the macroscopic bioprocess data.
MFA and gene expression analysis revealed intracellular information on the
characteristics of high-performance cell cultivations. By MVDA, for example,
correlations between several essential amino acids and the product concentration
were observed. Also, a grouping into rather cell specific productivity-driven and
process control-driven processes could be unraveled. By MFA, phenotypic char-
acteristics in glycolysis, glutaminolysis, pentose phosphate pathway, citrate cycle,
coupling of amino acid metabolism to citrate cycle, and in the energy yield could
be identified. By gene expression analysis 247 deregulated metabolic genes were
identified which are involved, inter alia, in amino acid metabolism, transport, and
protein synthesis.
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1 Introduction

Today, important biopharmaceuticals such as monoclonal antibodies can be
produced in mammalian cell culture with final product concentrations above 5 g/L.
Development of efficient bioprocesses requires high-producer cell lines, powerful
cell culture media, and adequate process control strategies [1–3]. Besides product
quality attributes (e.g., glycosylation), the achieved product titers, respectively
productivities are crucial due to their direct impact on the overall process
economics in large-scale manufacturing.

For further process improvement and process rationalization, the generation,
analysis, and interpretation of bioprocess data play a key role. An integrated
analysis comprising both process data and phenotypic cell-level data is essential.
The increasing availability of omics technologies such as transcriptomics, pro-
teomics, metabolomics, and fluxomics can provide intracellular data on the state
of a biological system in a cell cultivation environment and promise to contribute
towards the goal of a more rational cell culture process development using high-
yielding mammalian cell lines [4, 5].

Currently, bioprocess development mainly relies on macroscopic data. In the
development of mammalian cell culture processes, typically, time course data of
viable/total cell concentration, viability, recombinant product concentration,
metabolite concentrations of glucose, lactate, ammonium, and amino acids as well
as osmolality and pCO2 are determined and used for the design of improved
processes. On-line measurements usually are available for temperature, dissolved
oxygen, and pH. Conversion of time course concentration data into uptake
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and excretion rates provides additional information. The computation of charac-
teristic stoichiometric ratios, such as lactate/glucose, is also useful for analysis of
cellular metabolism, for example, in the investigation of metabolic shift phe-
nomena [6, 7]. Acquisition and analysis of such macroscopic data sets is the first
step in bioprocess development.

With an increasing number of fermentation experiments to be performed,
bioprocess data analysis is becoming more elaborate. However, comprehensive
data analysis is necessary to extract as much information as possible both from a
single fermentation experiment and from comparison with other fermentations. For
the purpose of bioprocess design, the data need to be appropriately analyzed and,
with recourse to bioprocess knowledge, transformed into information. By means of
comprehensive data analysis, in the end, also the number of fermentation exper-
iments can be reduced.

The generation and analysis of bioprocess data is also brought forward in the
process analytical technology (PAT) guidance launched by the Food and Drug
Administration (FDA) in 2004. The PAT initiative promotes the implementation of
modern process monitoring concepts using on-line and/or at-line analysis of key
process variables in biomanufacturing in order to achieve a predefined product quality
[8–12]. By detailed analysis of the process data, critical quality attributes (CQAs) with
respect to the product properties can be identified and, finally, a quality by design
(QbD) approach can be implemented [13]. For on-line bioprocess monitoring mainly
fluorescence and spectroscopic techniques are discussed in the PAT context. How-
ever, application in the biopharmaceutical industry is currently limited [11], mainly
due to the complexity of the signals and the signal data processing, and due to changes
in the cultivation environment in a bioreactor over process time which can hamper
robust on-line monitoring. Also, the physiological relevance of the signals as to
mechanistic information is considered to be rather low [8].

Here, we report on a bioprocess development project with an IgG-producing
Chinese hamster ovary (CHO) cell line in which the maximal product titer could
be increased from about 5 to 8 g/L. Starting from a total of 45 fermentations, a
reduced set of high-performance cultivations was identified and selected for
in-depth bioprocess analysis. In addition to standard bioprocess data analysis (e.g.,
viable cell concentration, viability, product titer, glucose/lactate, glutamine/
glutamate) advanced data analysis methods were developed and applied. The
established data analysis platform currently comprises multivariate data analysis
(MVDA), the mechanistic framework of metabolic flux analysis (MFA), and
pathway analysis for mapping of large-scale gene expression data sets to metabolic
and signaling pathways. The MVDA tools principal component analysis (PCA)
and k-means clustering were used to reduce the number of 45 fermentations to nine
high-performance processes that were further grouped into three classes. Partial
least-squares (PLS) models were used to analyze the macroscopic data of these
high-performance processes in more detail. Distribution of intracellular metabolic
fluxes was computed by MFA for representative fermentation runs. Finally, gene
expression analysis was performed for one of the high-titer runs. The results of the
application of our data analysis workflow will be described and the use of
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comprehensive data analysis tools for the analysis and the design of high-titer
industrial bioprocesses will be discussed.

2 Overview of System-Level Data Analysis and Omics Data

2.1 Multivariate Data Analysis

Besides data-mining techniques employing pattern recognition, clustering, artifi-
cial neural networks (ANN), decision trees (DT), and support vector machines
(SVM) [14–17], multivariate statistical process monitoring [18] and control [19],
the framework of multivariate data analysis (MVDA), has become an important
tool in bioprocess data analysis [20, 21]. MVDA is also applied in the context of
design-of-experiments approaches (DoE) [22].

2.1.1 Principal Component Analysis (PCA)

A widely applied MVDA method is PCA. Besides reducing the dimensionality of a
data set (i.e., removal of redundant information), one aim of performing PCA in
bioprocess analysis is the assignment of certain classes or groups in screening
of process data and to uncover the discriminable structure in complex data sets.
Other applications of PCA refer to the establishment of multivariate calibration
models for on-line monitoring of bioprocesses by different spectroscopic
techniques such as near infrared (NIR), mid infrared (MIR), 2D fluorescence, and
dielectric capacitance spectroscopy, and to statistical process control [11, 19, 23].

2.1.2 Clustering

Use of clustering algorithms is well established in large-scale gene expression
analysis, with hierarchical clustering, k-means clustering, and self-organizing maps
(SOM), being the most widely used clustering methods [24]. Besides application in
other omics areas such as metabolomics [25], clustering methods are also used for
mining of bioprocess data [16] and data-based bioprocess modeling [17].

2.1.3 Partial Least-Squares (PLS) Models

Partial least-squares models are based upon multiple regression methods that can
cope with several collinear input and output variables and can consider the
covariances in the data [26]. In bioprocessing, PLS is used to establish chemo-
metric models (multivariate calibration due to collinear variables) for bioprocess
monitoring using on-line fluorescence and infrared spectroscopy [8, 11, 27–29]
and for design of experiments [22].
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Given a large number of bioprocesses to be compared and large amounts of
bioprocess data to be analyzed, MVDA should be the second step in advanced
bioprocess analysis after completion of basic macroscopic data collection and
analysis. However, the limitation of MVDA is that it is solely based upon statis-
tical calculations. Since MVDA does not contain any process, bio(techno)logical,
or mechanistic knowledge, interpretation is not straightforward and detailed pro-
cess understanding is required to draw appropriate conclusions.

Nowadays, large-scale omics data sets are generated and exploited to analyze
and optimize mammalian cell culture processes both with respect to strain and to
process improvement [4].

In the following section the acquisition of cell-level data is described. These
data are analyzed by using mechanistic models of cell metabolism and knowledge
of biological pathways and functions.

2.2 Omics Approaches

2.2.1 Metabolic Flux Analysis (MFA)

In contrast to MVDA methods, the MFA methodology enables mechanistic
analysis of cellular metabolism, i.e., the quantification of intracellular metabolic
fluxes. The framework of MFA is well established [30] and widely accepted in the
analysis and the optimization of microbial production strains (metabolic engi-
neering) and production processes [31–35]. Different modeling and simulation
tools such as stoichiometric MFA (here defined as metabolite balancing without
use of additional 13C labeling information), 13C MFA (isotopic stationary versus
isotopic instationary), and flux balance analysis are available [36, 37]. In short, the
application of these methods depends on the available analytical data (e.g., 13C
labeling patterns), the structure of the metabolic network model (e.g., over- versus
underdetermined model), and the size of the metabolic network to be analyzed
(e.g., central carbon metabolism versus genome-scale models). In mammalian cell
culture, mainly stoichiometric MFA is used for quantitative analysis of metabo-
lism. In hybridoma, for example, stoichiometric MFA was applied in metabolic
screening [38], to analyze the effects of different cell culture media [39] and
oxidative/reductive stress [40], to investigate the phenomenon of steady state
multiplicity [41], to analyze distinct physiological states [6, 7], and to optimize
perfusion processes [42]. MFA in hybridoma was also achieved by 13C MFA [43].
In CHO, for example, the metabolic redistribution upon glutamate feeding [44]
and the effect of galactose supplementation on the lactate metabolism [45] were
examined by stoichiometric MFA. Also for CHO, Goudar [46] presented a stoi-
chiometric MFA model suitable to perform quasi real-time MFA in an industrial
cell culture process.

Clearly, application of MFA in mammalian cell culture is more challenging than
in microbial systems. Essentially, this is due to cell compartmentation, the use of
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complex cell culture media (and associated analytical challenges), as well as
changes in cell size and in viable cell fraction over cultivation time. Relevant
aspects of the application of MFA in mammalian cell culture were recently
reviewed by Niklas [47] and Quek [48], and the importance of MFA in pharma-
ceutical production was reviewed by Boghigian [49]. Application of 13C MFA
provides a more detailed and accurate picture of metabolism than stoichiometric
MFA and can, for example, resolve parallel and circular pathways, but it comes
currently at the cost of elaborate (and expensive) additional analyses and a limi-
tation to central carbon metabolism. At present, a suitable approach for use of MFA
in mammalian bioprocess development is the application of stoichiometric MFA
using a metabolic network model that was validated by 13C MFA [48, 50]. By this
means, costs for laborious analyses of 13C labeling patterns in metabolites by gas
chromatography–mass spectrometry (GC–MS), liquid chromatography–mass
spectrometry (LC–MS), or 2D correlation spectroscopy (COSY) nuclear magnetic
resonance (NMR) can be reduced, and the intracellular flux distribution can be
computed only on the basis of measured metabolite uptake and production rates.

2.2.2 Gene Expression Analysis

Although the industrially important CHO cell still lacks genome sequence infor-
mation, the technically most mature omics approach in mammalian cell culture,
currently, is gene expression profiling using either customized DNA chips or next
generation sequencing [51–53]. CHO genome sequencing projects are already
foreseeable for the near future and can be expected to have a major impact on
CHO cell genomics.

Gene expression analysis has been widely applied to investigate different cell
culture technology aspects such as metabolic process conditions [54], cell culture
media [55–57], clone selection [58], glycosylation [59], apoptosis [60, 61], specific
productivity related topics such as osmotic stress [62, 63], temperature shift [64, 65],
or sodium butyrate treatment [66], and even process characterization [67].

2.2.3 Proteomics

Proteomic technologies aim to comprehensively characterize protein products.
Properties that are not accessible by genomic methods such as post-translational
modifications need to be examined on the protein level. Yet, proteomic studies in
CHO presently rely on protein sequence information of related organisms. Com-
pared with gene expression analysis, proteomics approaches are currently more
limited in cell culture applications [4].

Proteomics approaches have been used to investigate proteome changes during
the time course in fed-batch processes for recombinant IgG production [68], to
investigate the phenomenon of metabolic shift in recombinant antibody-producing
CHO cell lines [69, 70], to study differential protein expression in CHO upon a
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temperature shift [71], to investigate the correlation between the abundance of
intracellular proteins and specific mAb productivity in engineered mammalian cell
lines [72], to analyze the protein secretion pathways in high-producing mammalian
cell lines [73], to study the effects of the insertion of the apoptosis inhibitor Bcl-xL

[74, 75], and to profile host cell proteins for analysis of potential implications to
downstream protein purification [76].

2.2.4 Metabolomics

Metabolomics is the most recent omics technology. It allows the analysis of the
observed phenotype which is the ultimate result of all hierarchical cellular regu-
lation processes due to genetic or environmental changes.

Because of the diverse chemical structures of metabolic intermediates GC–MS
and LC–MS methods are typically applied. For microbial systems, analytical
platforms have been developed that enable the analysis of a considerable number
(about 380) of metabolites [77]. Focus of the application of metabolomics in
mammalian cell culture, so far, is the analysis of extracellular metabolites for the
purpose of medium optimization [78–80]. Besides spent medium analysis, intra-
cellular metabolite analysis is increasingly used in mammalian cell culture to
identify possible metabolic bottlenecks, for example, in central carbon metabolism
in recombinant protein-producing CHO cell lines [81]. Because of the relatively
instable cell membrane and the associated risk of a leakage of intracellular
metabolites into the supernatant, special attention has to be directed to the
development of suitable quenching and extraction protocols for intracellular
metabolites. Currently, such sampling protocols are developed for application in
mammalian cell culture [82, 83].

2.2.5 Integrated Omics Approaches

Combined approaches consisting of gene expression profiling and proteomics are
applied, for example, to examine the effects of temperature shift, butyrate treat-
ment, and different specific growth rates on antibody-producing CHO cell lines
[84–87].

Gene expression profiling has the advantage that experimental and analytical
platforms are well established, whereas more recent proteomics technologies
currently are much more laborious and intricate to perform. However, potential
biases in gene expression analysis, for example, due to post-translational modifi-
cations, can be reduced when proteome data are also available. In fact, transcript
and proteome data provide complementary information. But the number of
proteins that can be identified at present is much smaller than for gene expression
analysis. For example, Carlage [74] identified roughly 400 proteins in a high-
producer CHO cell line. In contrast, application of next generation sequencing
technology enables the identification of more than 13,000 genes in CHO [51].
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3 A Framework for Advanced Data Analysis and
Its Application

3.1 General Description and Components of the Framework

3.1.1 Overview

The established data analysis platform currently consists of the MVDA methods
PCA and k-means clustering. These are applied to reduce data complexity and to
group data of large numbers of fermentation runs. PLS models are used to analyze
the macroscopic data of identified high-performance processes in more detail.

Mechanistic insights provide the omics tools MFA (intracellular flux distribu-
tions) as well as gene expression profiling and pathway analysis (mapping of large-
scale gene expression data sets to metabolic/signaling pathways and biological
functions). The details of the developed framework are described in the following
sections.

3.1.2 Principal Component Analysis (PCA)

The aim of PCA [88] is the reduction of the dimensionality in a given data set
without a significant loss of information contained in the data. PCA was performed
by using the software Spotfire (Decision Site 9.1.1, TIBCO Spotfire, Somerville,
MA, USA). In short, by PCA a high-dimensional set of correlated variables is
transformed into a lower-dimensional space of orthogonal, uncorrelated variables
called the principal components (PCs). The PCs are linear combinations of the
original data set and maintain most of the variance in the data. The first PC contains
the maximum variance of the original data set and as much of the remaining
variance in the data as possible is collected in the subsequent PCs. As a linear
transformation method, use of PCA might not be adequate in the case of highly non-
linear process variables and non-linear statistical techniques should be applied [89].

Here, for PCA about 3,400 time course process data (e.g., cell count and cell
viability, metabolite concentration data, specific uptake, and excretion rates),
on-line data not included, were used. In a second PCA only time course product
titer data were considered.

3.1.3 Clustering

Clustering analyses were performed by using the software package Spotfire
(Decision Site 9.1.1, TIBCO Spotfire, Somerville, MA, USA). Non-hierarchical
k-means clustering was applied since some studies indicate that it outperforms
popular hierarchical clustering [24]. The former partitioning method groups data
points into a predetermined number of clusters on the basis of similarity in an
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iterative process until no more data points change membership to a certain cluster
in a further round of iteration. It has to be noted that both the cluster algorithm and
the chosen similarity measure significantly affect the clustering results. Therefore,
clustering results should be replicated by different methods. Here, k-means clus-
tering was used for time course product titer measurements. Two cluster initiali-
zation methods (data centroid-based search, evenly spaced profiles) and four
similarity measures (euclidean distance, correlation, cosine correlation, city block
distance) were used. Also the maximal number of clusters was varied.

3.1.4 Partial Least-Squares (PLS) Models

Partial least-squares is a method to relate two matrices X (containing the input
variables) and Y (containing the output variables) to each other by a multivariate
linear PLS model. The method can be regarded as a multiple regression approach
that can deal with a complex data structure consisting of several collinear input
and output variables, and that takes the covariances into account (for details on the
methodology the reader is referred to textbooks on MVDA, e.g., [26]). Like PCA,
PLS models are based upon data projection methods but, by correlating the input
and output matrices X and Y, PLS exceeds PCA.

Here, the commercially available software package SIMCA-P+ 11 version
11.0.0.0 (Umetrics AB, Malmö, Sweden) was used for MVDA and PLS modeling.
Briefly, using the Simca terminology, for the X and Y matrices the corresponding
spaces are constructed where each X and Y variable constitutes a (scaled) coor-
dinate axis. Every observation in a data set is represented in both the X and Y
space. The data are mean-centered and the projection coordinates (or scores) t1
(for X, t are linear combinations of X) and u1 (for Y, u are linear combinations of Y)
are then computed such that they (i) give a good approximation of the shape of X
and Y data, and (ii) maximize the correlation between X and Y. A second PLS
component is calculated in the same way (associated with a second set of score
vectors t2 and u2). In doing so the projection coordinates are replaced by model
planes (the second projection coordinate t2 in the X space being orthogonal to the
first t1). By this means, both the approximation and correlation can be improved.
Usually, the strongest correlation structure is kept in the first score vector pair (i.e.,
t1, u1). The weights w (for X) and c (for Y) are important variable-related
parameters and a result of a PLS analysis. The PLS weights give information about
how the X variables combine to form the scores t. Simplified, the weights w for the
X variables indicate how much they (relatively) contribute to the modeling of Y.
In a loading (w*c) plot this relationship between X and Y can be visualized in order
to evaluate the relative importance and influence (positive or negative) of the X
variables on Y. Regression coefficient plots show the influence (extent, sign) of
each variable for a chosen response. For analysis of a PLS model with a large
number of components and responses, the computation of the so-called variable
influence on projection (VIP) vector is useful. The VIP values represent the
importance of the terms in the model with respect to both Y (correlation to all the
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responses) and X (the projection). Thus, by pooling over all components and all
responses, VIP gives a more condensed view for PLS model analysis and inter-
pretation than coefficient plots (pooling over all components).

3.1.5 Metabolic Flux Analysis (MFA)

A comprehensive metabolic network model of CHO metabolism was recon-
structed by using a commercial software package for in silico modeling and
simulation of cellular metabolic networks. The compartmented model (compart-
ments for cytosol, mitochondria, and endoplasmic reticulum; stoichiometry/
mechanism of transport steps between compartments is considered; metabolites
involved in inter-compartmental transport are balanced in each compartment
separately) includes 44 metabolic pathways (e.g., carbohydrate metabolism with
glycolysis, pentose phosphate pathway (PPP), citrate cycle, amino acid metabo-
lism, energy metabolism, lipid metabolism, nucleotide metabolism, and synthesis
of macromolecules such as DNA, RNA, biomass, cell protein, and recombinant
product protein) and comprises 338 balanced compounds. The total number of
outer degrees of freedom was 31, the number of measured specific uptake and
excretion rates was 33. The model was overdetermined and observable. Intracel-
lular metabolic fluxes were calculated by metabolite balancing. For short time
intervals of one cultivation day steady state conditions were assumed. Validity of
the metabolite balancing approach was verified by isotopic stationary 13C MFA
(IS-13C MFA) [90] using 13C mass isotopomer labeling patterns in metabolic
intermediates from central carbon metabolic pathways glycolysis, PPP, and citrate
cycle (data not shown). The framework of MFA is well established and described
in detail, for example, by Stephanopoulos and Nielsen [30].

Specific rates of substrate uptake and (by-)product excretion were calculated on
the basis of two consecutive off-line measurements and averaged cell counts.
Additionally, specific rates estimates were approximated by polynomial fitting (3rd
or 4th order regression) to the cumulative consumption/production curves of cells,
metabolites, and nutrients over process time. Smoothed specific rates for each time
point could then be computed from the first derivative of the polynomial equation
and division by the cell count.

3.1.6 Gene Expression and Pathway Analysis

Sampling, extraction of RNA, microarray hybridization, and data processing were
performed as described previously [55]. Time-series gene expression was profiled
over different process phases (cultivation days (d) 0, 4, 6, 8, 11). Gene expression
analysis was done for process A only. In short, the Qiagen RNeasy Kit (Qiagen
GmbH, Hilden, Germany) was used according to the manufacturer’s protocol, the
extracted cRNA was hybridized on a custom-made CHO-specific Affymetrix
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microarray containing 22,827 probe sets, the samples were scanned on an
Affymetrix GeneChip Scanner 3000 system (Affymetrix, Inc., Santa Clara, CA),
and the MAS 5 algorithm was applied for raw data normalization. Fold changes
(FCs) were calculated as log2-transformed ratios relative to the control (d0). Signal
intensities below 80 were discarded as noise. Genes were considered to be dif-
ferentially expressed over process time if FC C |2| for at least one sample (d4/d0,
d6/d0, d8/d0, or d11/d0) and if p B 0.05 (d6/d0).

Pathway analysis was performed by using Ingenuity Pathway Analysis (Inge-
nuity Systems, Inc., Redwood City, CA) and the curated sequence database Ref-
Seq for gene annotation [91].

3.2 Cell Cultivation and Data Generation

3.2.1 Cell Line and Cell Cultivation

The same recombinant IgG-producing CHO cell line was used in all fermentations.
The viable inoculation cell concentration was 3.0 9 105 cells/mL. Cultivations
were performed in fed-batch mode in controlled bioreactors with 5.5-L start vol-
ume. Temperature was controlled at 37 �C, pH at physiological optimum, and
dissolved oxygen concentration at 60% air saturation by adaptation of stirrer speed
and oxygen fraction in the nitrogen/oxygen gas mixture. Basal and fed-batch
media (proprietary chemically defined, serum-free media) as well as process
control schemes were adjusted in order to optimize bioprocess performance.

3.2.2 Fermentation Experiments

Over the course of a bioprocess development project a total of 45 fermentation
runs were performed. Using the same BI HEX� CHO cell line, we increased the
maximal product titer from 4.7 g/L (data not shown) to 7.9 g/L. By application of
our data analysis workflow the number of fermentation runs to be analyzed in more
detail was successively reduced on the basis of bioprocess performance and the
advanced data analysis methods as described. By this means, nine high-performing
fermentation experiments (three process generations A, B, and C) were selected
for in-depth analysis.

3.2.3 Analytical Methods

Metabolite concentrations in the fermentation supernatant and process state vari-
ables were measured off-line on a daily basis. Cell concentration and cell viability
were determined by the trypan blue exclusion method using a CEDEX automated
cell analyzer (Roche Innovatis AG, Bielefeld, Germany). Recombinant IgG
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antibody concentration was quantified by surface plasmon resonance detection of
an antibody–antigen complex (Biacore C instrument, GE Healthcare Europe
GmbH, Germany). An YSI 2700 analyzer (YSI Incorp., Yellow Springs, USA)
was used for quantification of glucose, lactate, glutamine, and glutamate in the
fermentation supernatant. Ammonium was enzymatically determined according to
assay instructions (ammonia test kit, 11112732035, Roche Diagnostics GmbH,
Mannheim, Germany) on a Konelab 20i (Thermo Fisher Scientific, Waltham,
USA). Amino acid concentrations were quantified by gas chromatography
(6890 N GC, Agilent Technologies, Waldbronn, Germany) after derivatization
(EZ:faast, Phenomonex, Torrance, CA, USA). Off-line pH, pCO2, and pO2 were
determined on a blood gas analyzer (RAPIDLab 348 System, Siemens Healthcare
Diagnostics GmbH, Eschborn, Germany). Osmolality of the fermentation super-
natant was measured by the freezing point depression method (Osmomat auto,
Gonotec GmbH, Berlin, Germany). Oxygen and carbon dioxide fractions in the
off-gas were measured on-line by a process mass spectrometer (ProMaxion,
Ametek GmbH, Meerbusch, Germany).

4 Results and Discussion

4.1 Principal Component Analysis

Out of 45 fermentation runs nine high-performing fermentation experiments were
selected for further analysis. For these nine fermentation runs the PCs as shown in
Fig. 1a were computed to reduce the dimensionality of the data set (about 3,400
data). Whereas all fermentations followed the same trajectory until cultivation day
6, a separation of generation B processes (B1, B3) and generation C processes (C1, C2)
could be observed for subsequent cultivation days. Generation A processes (A2,
A3) diverged during fermentation (days 7–13) from each other and then converged
again (days 14–17). Process A1 was similar to process A2 for days 10–13 but
different for the last 2 days of cultivation (days 14 and 15) compared with A2 and
A3. Process B2 was comparable to B1 and B3 until day 10, and then more similar
to process C3, however, at a different timescale as the achieved product titers show
(Fig. 2a). The PCA time course of process C3 was different from processes C1 and
C2 for cultivation days 7–12 but comparable for cultivation days 13, 14, and 17.
PCs of process C3 at cultivation days 18 and 19 were similar to those of processes
B1 and B3 at cultivation days 17 and 18.

When time course product concentration data were used in the PCA (the
product titer eigenvector was characterized by the largest contribution to the PCs;
normalized data), a separation of the process generations A–C into three different
quadrants could be observed (Fig. 1b). Yet, it has to be noted that PCA results
depend on the amount and structure of the input data and should be repeated with
different settings to strengthen the significance of the obtained results.
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4.2 Clustering

k-means clustering was performed for product titer time course data in order to
reproduce the assignment of the fermentation experiments (that reflect the
achieved progress in the course of process development) as identified by PCA.
Three out of eight k-means clusterings resulted in the same grouping as in the
PCA. The results are shown in Fig. 2. The application of two clustering

Fig. 1 Principal component analysis for process (a) and for product titer (b) data. a In the
projection of the bioprocess data the time course was maintained (note that the marker size
increases with run time). The first two principal components contained about 67% of the
variability in the data set (normalized data); the process variables associated with growth and
product formation contributed the most to the eigenvectors of PC1 and PC2. b The time course
product concentration data were projected into one value per fermentation run. About 91% of the
data variability was preserved in PC1 and PC2 (the largest loadings were observed from day 9
on). The legend is depicted in b; different processes use different symbols (squares process A,
runs A1–A3; circles process B, runs B1–B3; triangles process C, runs C1–C3); the same color/
shading is used in both graphs

Advancing Biopharmaceutical Process 145



approaches (evenly spaced profiles/correlation and evenly spaced profiles/cosine
correlation) gave only two clusters (versus three as in the other methods). In three
clusterings one A process was clustered to the C processes and vice versa. The
results indicate that replication of cluster analysis is necessary for process clas-
sification even when a reduced data set (here time course product titer data) is
used.

For this reason, we followed a dual approach in the pursuit to (i) reduce
dimensionality in a data set with minimal loss of information and (ii) identify
patterns/groupings in the data. First, different MVDA methods (such as PCA and
k-means clustering) were applied for verification of clustering results. Second, the
same data set was analyzed on different complexity levels (from large-scale bio-
process data with about 3,400 entries to a reduced set of key process data such as
product titer with about 150 values).

4.3 Partial Least-Squares Models

With the obtained data set adequate PLS models in terms of both goodness of fit
(R2) and goodness of predictive ability (Q2) could be computed and two PLS
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Fig. 2 k-means clustering of product titer time course data for the nine high-performing
fermentation runs (a). The clustering into processes A (A1–A3), B (B1–B3), and C (C1–C3) is
shown in figures b–d. The legend is shown in a; the same coloring/shading and symbols are used
as in Fig. 1
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components were sufficient to obtain a R2Y(cum) [ 0.95 and a Q2(cum) [ 0.95.
The loading plot shown in Fig. 3 gives a summarized overview of the relative
importance of the main process variables (X), e.g., concentrations and rates, on the
product titer (Y). The same data are visualized in Fig. 4 in a coefficient plot and in
a VIP plot. While the coefficient plot gives information on the extent and the sign
of a correlation, the VIP plot gives a more concentrated view of the data without
information about the sign of a relationship but provides an additional measure of
statistical significance for data ranking. The analyses demonstrate the correlation
between several amino acids and the product titer. As shown in the VIP plot
(Fig. 4b) the essential amino acids methionine, threonine, histidine, phenylalanine,
and arginine had the largest influence on the product concentration; also the non-
essential amino acids serine, aspartate, glycine, glutamate, and asparagine showed
a significant relationship. This correlation structure could be consistently observed
and was independent from the applied analysis method (loading plot, coefficient
plot, or VIP plot). However, the influence of glycine and glutamate appeared
questionable when based on the coefficients considering the 95% confidence
intervals for these two amino acids. Similarly, tryptophan had a VIP value of about
1.15 and a moderate correlation in the loading plot but the coefficient for
tryptophan was not significant. Conversely, a negative correlation of the lactate
concentration on the product titer can be assumed when the analysis is based upon
the coefficient plot; however, the VIP value is only about 0.7.
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To put it more generally, most of the process variables that were identified to be
significant in the VIP plot were also found to be important in the coefficient plot
and in the loading plot; however, the contrary was not always the case as shown.
This points out that not only the setup of an adequate PLS model is essential, but it
is also advisable to use different analyses methods in MVDA to evaluate the
complex correlation structure contained in bioprocess data sets. Furthermore,
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mainly the concentration data were found to be significantly related to the product
titer. Obviously metabolic rate data are less correlated to the product concentra-
tion, but one needs to keep in mind that metabolite uptake and excretion rates
contain important information (e.g., different metabolite concentrations in the
fermenter often result in the same rate). Ideally, multivariate data analyses should
also consider the cell specific productivity and the product quality attributes.

The processes A–C were analyzed in more detail considering both the product
titers and the cell specific productivities. The coefficients for the product
concentration (cp) and the cell specific productivity (qp) are shown in Fig. 5.
Consistent coefficients were observed for both cp and qp in processes A–C.
Noticeable is the positive coefficient of qp on cp in process A, which is less distinct
in process B and not significant in process C (Fig. 5a). In contrast, the significance
of the titer coefficients for important metabolite concentrations such as glucose and
lactate decreased from processes B and C, to process A. Similarly, more amino
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Fig. 5 Coefficients for a product titer and b cell specific productivity for processes A (top row),
B (middle row), and C (bottom row). Note that the coefficients are shown only for those variables
that were significantly different from zero in at least one of the three processes based on 95%
confidence levels. Scaled and centered data were used for calculation of the coefficients
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acids coefficients were significant in processes B and C than in process A. Analysis
of the coefficients for qp (Fig. 5b) of process A revealed significant positive cor-
relations mainly for the amino acids rates (which are associated with cell protein
and recombinant protein synthesis). Coefficients of amino acids concentrations and
metabolite concentrations and rates were not significant in process A. In process B
the relevant coefficients shifted from the amino acids rates to the amino acids
concentrations, whereas no significant coefficients were identified in process C.
The coefficients of the stoichiometric metabolite ratios such as lactate/glucose for
cp and qp were small except for process B.

Taken together the coefficients might be an indication that process A is rather qp

driven, whereas process C is rather process driven, i.e., in process C the process
performance is mainly governed by the process control and feeding scheme
ensuring an optimal metabolic and nutritional environment for product formation
(qp is the same in processes A and C, data not shown).

It has to be noted that all MVDA results are solely based upon statistical
computations without incorporating any mechanistic, cell biological, biochemical,
or bioprocess knowledge. Though undoubtedly useful, these results have to be
handled with care in terms of interpretation. Generally, to avoid drawing mis-
leading conclusions, results from MVDA always need to be interpreted by taking
recourse to process knowledge. To give a very basic example, a low viability does
not result in increased product titers, instead the negative coefficient of the via-
bility for cp (Fig. 5a) simply refers to the fact that the product concentration
increases over process time while the cell viability typically declines.

Furthermore, so far only extracellular macroscopic data were considered in the
analyses. By application of mechanistic and omics approaches and integration of
intracellular information additional insights can be obtained and a more cell-
centered bioprocess analysis and design can be achieved as described in detail in
the following section.

4.4 Metabolic Flux Analysis

In addition to the analysis of the metabolic rates of nutrient uptake and (by-)
product excretion, the computation of intracellular flux distributions gives further
insight into the metabolism of the employed production cell line for different
process setups and over the time course of a fermentation run. Since the required
input data (i.e., the metabolic rates) are typically determined within a bioprocess
development project, no further experimental analyses need to be performed.
Thus, MFA can be considered as a means of advanced bioprocess data analysis
using already available data sets. Prior to the computation of intracellular fluxes by
MFA, a statistical chi-square test was performed to detect potential gross mea-
surement errors [92, 93], and to validate the suitability of the CHO metabolic
network model. For process A, the average (days 4–11) chi-square value was 68%,
for process B 84%, and for process C 73%, indicating the validity of the model.
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4.4.1 Upper Glycolysis and Pentose Phosphate Pathway

The phenomenon of overflow metabolism from glucose to lactate is well known in
mammalian cell cultivation [94]. Since accumulation of the by-product lactate in
the fermentation broth to high concentrations has adverse effects on the process
performance, both metabolic engineering approaches were applied and fed-batch
process control and nutrient feeding strategies were designed to achieve low
lactate concentrations [2, 95]. By MFA it could be shown that even in a process
phase associated with a strong increase in viable cell concentration (about culti-
vation days 4–8), the glycolytic flux exceeds the flux entering the PPP by far
(Fig. 6a, b). This means, that the metabolic demand for PPP intermediates (e.g.,
D-ribose 5-phosphate) that are required for nucleotide synthesis in biomass for-
mation should be easily met by the glucose metabolism. Even when the cells are
shifted by the process control scheme to a more efficient nutrient use (about days
5–7), which is characterized by a decrease in the glycolytic flux (Fig. 6a), the PPP
flux is initially maintained and then decreases with decline in specific growth rate
l. Accordingly, the split ratios between glycolysis and PPP changed from about
90%:8% (day 4) to 97%:2% (day 11). These split ratios were confirmed by IS-13C
MFA (data not shown). Interestingly, the glycolytic flux profile of the generation C
process showed a relatively high glycolytic flux profile in the early process phase
(similar to the generation B process) but then switched to a lower glycolytic flux
state as in the generation A process.

Since intracellular flux distributions strongly depend on the specific cell line,
the recombinant product, the fermentation system (e.g., shake flask versus con-
trolled bioreactor, cultivation scale), the cultivation mode (batch, fed-batch, con-
tinuous, or perfusion), the process control scheme, and the applied cell culture
media, comparisons with literature data are usually difficult. Applying metabolite
balancing Altamirano found in recombinant CHO cell lines that over 90% of the
flux entered glycolysis, whereas less than about 10% entered the PPP [44, 45].
In perfusion CHO cultivation processes Goudar [46] observed a partitioning of
about 70% glycolysis and about 20% PPP by applying metabolite balancing; in
another CHO study fractions of 55% glycolysis and 41% PPP were determined by
use of metabolite balancing and 2D COSY NMR spectroscopy [50].

4.4.2 Lower Glycolysis, Lactate Formation, and Citrate Cycle

Glycolysis and PPP pathways merge again at the D-glyceraldehyde 3-phosphate
branch point. The flux profile for the lower glycolytic part is shown in Fig. 6c for
the conversion of phosphoenolpyruvate to pyruvate by the enzyme pyruvate
kinase. The small PPP fractions of the carbon fluxes resulted in a flux pattern quite
similar to the upper part of glycolysis. Note that the approximate doubling of the
flux values is due to the fact that C6 molecules (e.g., glucose) are split into two C3
molecules (e.g., pyruvate). The pyruvate node is an important branch point of the
central carbon metabolism in mammalian cells since, on the one hand, pyruvate
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marks the entry point into the citrate cycle (TCA) and, on the other hand, pyruvate
can be converted to lactate in one step by the enzyme L-lactate dehydrogenase and
is then excreted into the fermentation broth. Although the glycolytic flux in the
generation C process was relatively high in the early process phase, lactate for-
mation via L-lactate dehydrogenase (Fig. 6d) was comparable to the generation A
process at day 4 but significantly lower in the following days (about days 5–7),
almost zero at day 8, and lactate formation even turned into lactate uptake from

(a) Upper glycolysis (b) Pentose phosphate pathway

       D-glucose 6-phosphate  D-fructose 6-phosphate D-glucose 6-phosphate  D-glucono-1,5-lactone 6-phosphate 

0
10
20
30
40
50
60
70
80
90

100
110

day [-]

flu
x 

[µ
m

ol
/1

09
ce

lls
/h

]

Process generation A Process generation B Process generation C Process generation A Process generation B Process generation C

Process generation A Process generation B Process generation C Process generation A Process generation B Process generation C

Process generation A Process generation B Process generation C Process generation A Process generation B Process generation C

0

10

20

30

40

day [-]

flu
x 

[µ
m

ol
/1

09
ce

lls
/h

]

(c) Lower glycolysis (d) Pyruvate overflow
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Fig. 6 Rates of intracellular metabolic fluxes as computed by MFA. Flux values for important
metabolic branch points and enzymatic reactions of the central carbon metabolism are shown.
Positive values denote a flux in the direction as indicated in the figure caption (e.g., a negative
rate in d indicates that intracellular pyruvate is converted to lactate by the enzyme L-lactate
dehydrogenase and excreted into the fermentation supernatant)
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day 9 on in the generation C process. Similar to process B (and in contrast to
process A), the generation C process was characterized by a large fraction of the
lower glycolytic flux entering the TCA cycle from the pyruvate node (Fig. 6e).
This fraction increased from about 65% (day 4) to more than about 80% (day 7).

Reported values for the flux fraction entering the TCA in CHO range from 17 to
49% [46, 50], and from 39 to 79% [44]. The dependency of flux results on cell line,
process, and media was already emphasized in the previous paragraph.

4.4.3 Glutaminolysis

Besides glycolysis the TCA cycle is fueled by glutaminolysis, and the complex
interplay between these two major pathways [94] plays an important role in
optimizing mammalian cell culture, mainly because of undesired accumulation of
ammonium [96]. Essentially, in glutaminolysis one molecule of ammonium is
formed in the conversion of glutamine to glutamate by the enzyme glutaminase;
the second ammonium molecule is released when glutamate is enzymatically
converted into 2-oxoglutarate by glutamate dehydrogenase. Alternatively, the
formation of 2-oxoglutarate from glutamate can proceed via aspartate transami-
nase where the amino group is transferred from glutamate to oxaloacetate to yield
aspartate. Also, it has to be noted that glutamate is not only converted to
2-oxoglutarate but is involved in several other reactions, for example, in alanine
transaminase or asparagine synthetase reactions, indicating that detailed meta-
bolic models are needed for quantitative analysis. Here, the ratio between
glycolysis and glutaminolysis was about 80%:20% and larger (based on the
glycolytic flux entering the TCA cycle versus the summarized glutamate flux that
is converted to 2-oxoglutarate). By reducing the glutaminolysis to a proportion
below about 20%, ammonium concentrations of less than 100 mg/L could be
obtained in the bioreactor. Goudar observed in CHO a glutaminolysis fraction
larger than about 30% [46], whereas Altamirano reported values between 15 and
25% [44], and of about 30% [45]. Again, the experimental conditions were not
comparable.

4.4.4 Coupling of Amino Acid Metabolism and Citrate Cycle

Amino acids are important, with respect to the essential amino acids necessary,
cell culture media components. As amino acids provide the building blocks for the
synthesis of the recombinant proteins to be manufactured, they are of major
importance in bioprocess development and both their concentration levels and
concentration ratios need to be stoichiometrically adjusted for optimal product
yields. In this regard, a quantitative knowledge of the amino acid demands
required for the synthesis of cell protein, of recombinant protein, and of the fluxes
between TCA and amino acid metabolism supports such rational media design
strategies.
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By MFA this interconnection between TCA and amino acid metabolism could
be analyzed in detail. Acetyl-CoA and the TCA intermediates 2-oxoglutarate,
succinyl-CoA, fumarate, and oxaloacetate are connected with the amino acid
metabolism (anabolism and catabolism). The highest fluxes were determined
between 2-oxoglutarate and glutamate (glutamate is further interconnected with
the amino acids arginine, glutamine, histidine, and proline). In processes A and C
the TCA intermediate 2-oxoglutarate was used in anabolic reactions of amino
acids at days 5 and 6 (process A), or day 5 (process C), whereas process B was
characterized by amino acid catabolism at a relatively high level throughout the
fermentation run (Fig. 6f). Fluxes between amino acid metabolism and the cor-
responding TCA branch point metabolites acetyl-CoA, succinyl-CoA, and oxa-
loacetate were below 10 lmol/109 cells/h, and between amino acid metabolism
and fumarate below 5 lmol/109 cells/h. For glucose uptake rates of about 60 and
71 lmol/109 cells/h, Altamirano [44] reported metabolic rates in the range of
about 1 lmol/109 cells/h between amino acid metabolism and corresponding TCA
metabolites.

Citrate is not only catabolized in the TCA but also transported from the
mitochondria into the cytosol and converted to acetyl-CoA by ATP citrate (pro-S)-
lyase for biosynthesis of fatty acids and cholesterol. The coproduct oxaloacetate is,
inter alia, further converted to malate by cytosolic malate dehydrogenase and, in
turn, is either transformed to pyruvate (cytosolic malic enzyme) or shuttled into the
TCA. Here, only a relatively small citrate metabolic flux from the mitochondria to
the cytosol of about 5 lmol/109 cells/h was determined by MFA. Altamirano [44]
reported values between about 1 and 2 lmol/109 cells/h.

Summarizing, a relatively high incorporation of acetyl-CoA into the TCA, i.e.,
a high glycolytic flux entering the TCA cycle from the pyruvate node, was
observed whereas TCA depletion by citrate outflow was rather low. Accordingly,
TCA replenishment by glutaminolysis likewise was rather moderate. Thus, a
truncation of the citrate cycle was observed only to a minor extent. However, in
CHO cell cultivation a partially truncated TCA cycle was suggested on the basis of
intracellular and extracellular measurements of the citrate concentration, the latter
being up to tenfold higher [81].

4.4.5 Energy Yield

The ATP energy yield is a quite informative, comprehensive value to assess the
overall metabolic state in a cell culture process. Protein synthesis is an energy-
intensive process for the cell and, thus, renders the ATP energy yield to an
important value to evaluate the process performance in recombinant protein
production. As in Stouthamer [97], it is assumed here that four high-energy
phosphate bonds are required to incorporate one amino acid into cell or recom-
binant protein (one ATP is converted into one AMP in amino acid activation and
two GTP are converted into two GDP in ribosomal peptide bond formation).
However, as ATP is involved in many reactions throughout cell metabolism, this
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value is difficult to determine, requiring a detailed analysis of the metabolic
reaction network. Even for the relatively simple case of ATP generation from
glutamine entering the TCA, the use of alternative pathways results in quite dif-
ferent ATP energy yields [94].

MFA was applied to compute the ATP energy yields based on the established
CHO metabolic model. As shown in Fig. 7, in processes B and C higher ATP
energy yields, indicating an energetically more efficient metabolic state, were
achieved compared with process A. For example, in process C an energy yield
above 20 mol ATP/mol substrate was obtained from day 6 on, in process B from
day 7 on, and in process A from about day 9 on. Maximal ATP production rate in
process A was about 2.5 mmol/109 cells/h, whereas maximal values of about
3.1 mmol/109 cells/h were attained in processes B and C. In CHO an ATP pro-
duction rate of about 0.39 mmol/109 cells/h was determined by Goudar [50]. For
an IgG-producing hybridoma cell line grown in continuous culture Gambhir [7]
calculated ATP production rates between about 1.1 and 2.4 mmol/109 cells/h
(l = 0.031–0.033 h-1) depending on the achieved metabolic states. It has to be
noted that calculation of ATP rates depends on the level of detail of the applied
metabolic model but also, for example, on the assumptions for the P/O ratio in the
conversion of NADH and FADH to ATP.

Summarizing, MFA can translate measured metabolic exchange rates between
the cell and the fermentation environment into intracellular metabolic flux dis-
tributions. By this means, bioprocess analysis can be performed down to the level
of cell metabolism. This approach enables the design of stoichiometrically bal-
anced cell culture media, optimized feeding strategies, and advanced process
control schemes. It also supports the identification of improved process conditions
for a desired phenotype, e.g., minimal accumulation of unwanted by-products such
as lactate. To circumvent the limitations of the metabolite balancing approach,
currently a suitable approach for application of MFA in bioprocess development is
the use of the metabolite balancing concept and a metabolic network model that
was validated in its core structure by IS-13C MFA as was done here.
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Fig. 7 ATP energy yields in processes A–C as calculated by MFA. The ATP energy yield was
calculated as the ratio of the ATP net production rate and the sum of the measured extracellular
glucose and amino acid uptake/excretion rates by using the established CHO metabolic model as
described. In the model about 50 biochemical reactions (enzymatic reactions, polymerization of
macromolecules, transport steps) involve ATP
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4.5 Gene Expression and Pathway Analysis

In gene expression analysis of process A out of a total of 22,827 sequences 8,593
sequences had signal intensities above 80 and displayed a significant change over
the time course of the fermentation run (p B 0.05 for d6/d0). Out of these 8,593
sequences 2,052 sequences had FC C |2| for at least one sampling point. The
potential of gene expression profiling for cell culture process analysis and design is
shown in Fig. 8. In metabolism, 247 genes were found to be deregulated (note that
single gene products can be involved in several metabolic pathways). Interestingly,
a large number of genes were associated with amino acid pathways (synthesis,
metabolism, and degradation) and transport (Fig. 8a). Since gene expression
analysis in metabolic pathways is close to bioprocess design issues, it provides
useful information for process optimization, e.g., for rational media improvement [55].
Mapping of deregulated genes to biological functions gives a more comprehensive
overview on intracellular processes (Fig. 8b). The biological functions cell cycle/
cell cycle control, cell death, and cellular growth/proliferation were characterized
by a large number of deregulated genes although the cell viability decreased only
moderate to 89% at cultivation day 11 (data not shown). Gene expression and post-
translational modification were further biological functions with many deregulated
genes. Though smaller in number, the functions protein synthesis, protein traf-
ficking, and protein degradation obviously are relevant with respect to recombi-
nant protein production.

Mapping of gene expression data to metabolic pathways (Fig. 8c) facilitates the
biological analysis of the data as shown for the example of the citrate cycle (TCA)
of process A. The TCA genes encoding the enzymes isocitrate dehydrogenase 1,
NADP+, soluble (gene IDH1) and succinate dehydrogenase complex, subunit A
(gene SDHA) were found to be significantly upregulated over the process time.
FCs for IDH1 increased considerably from 1.7 (d4/d0) to 2.8 (d11/d0) and for
SDHA slightly from 1.8 (d4/d0) to 2.1 (d11/d0). If a less conservative cutoff of
FC C |1.4| [54, 64, 66] is applied another five TCA genes could be analyzed.
These genes encode ATP citrate lyase, citrate synthase, dihydrolipoamide dehy-
drogenase, dihydrolipoamide S-succinyltransferase, and fumarate hydratase (data
not shown). The gene OGDH encoding 2-oxoglutarate dehydrogenase/lipoamide
(EC 1.2.4.2) is also spotted on the customized CHO chip but had signal intensity
values below the noise threshold in this specific experiment. As for MFA, com-
parisons with literature data are hardly possible. For example, in a recombinant
IgG-producing recombinant CHO cell line the IDH1 gene (encoding isocitrate
dehydrogenase 1) was not found to be deregulated upon a temperature shift from
37 to 33 �C [64]. When four mAb-producing CHO cell lines (two cell lines, each
fast versus slow growing) were cultivated, a downregulation (slow versus fast
growing) of IDH3A was observed in both cases.

For further analysis, omics data such as gene expression data should be ana-
lyzed in the context with other data sets to identify targets for bioprocess opti-
mization. In this specific example, it was found that the metabolic flux through the
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Fig. 8 Number of differentially expressed genes in process A over the time course of the
fermentation run that are associated with a metabolism and b biological functions. Note that the
mapping of single genes is not unique, i.e., a gene product can play a role in different biological
functions (e.g., cell death and apoptosis). c Mapping of gene expression data to metabolic pathways.
Citrate cycle genes IDH1 (encoding isocitrate dehydrogenase 1) and SDHA (encoding succinate
dehydrogenase complex, subunit A) were found to be significantly upregulated in process A over
fermentation time. Note that only gene expression data with FC C |2| and p B 0.05 are shown
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TCA increased with process time (compare Fig. 6e). When compared with gene
expression data, a consistent upregulation of the TCA genes IDH1 and SDHA
could be observed which results in a more detailed picture of the metabolism.

Ultimately, such integrated, data-driven analyses will support the identification
of metabolic bottlenecks.

5 Conclusion and Outlook

Bioprocess development is increasingly science and data driven. Currently, two
trends can be observed that generate large-scale bioprocess data sets that both bear
the potential to provide novel information for rational process development.

On the one hand, at-line instruments and on-line sensors (e.g., infrared spec-
troscopy, 2D fluorescence, dielectric spectroscopy) are becoming more established
in bioprocess analysis, development, and monitoring [11] in addition to standard
bioprocess analytics. By application of the favored in situ monitoring tools mainly
process data are obtained. However, elaborate chemometric models are required to
analyze the complex data sets and the mechanistic information contained in the
data is often limited.

The second trend refers to genome-scale technologies [4] such as transcriptomics,
proteomics, metabolomics, and fluxomics which are increasingly used in both aca-
demia and industry. These tools provide large-scale intracellular data sets that enable
cell-level bioprocess analysis and contribute to the development of high-producer
mammalian cell lines. Though expected soon, the genome sequence for these tech-
nologies currently do not provide complete information with respect to mammalian
cell culture applications (e.g., the genome sequence for the industrially relevant CHO
cell is not published up to now), the application of these tools has already given
profound insight into cell culture processes and can be expected to advance rapidly,
for example, with respect to CHO genome sequencing or recent progress in meta-
bolomics approaches in mammalian cell culture [78, 81]. Finally, the integration of
these omics tools will support data-driven, rational biopharmaceutical process
development ranging from cell line development to bioprocess monitoring.

With respect to both trends, advanced data analysis is key to fully exploiting
the information contained in measured bioprocess data and to generating novel
process knowledge. Efficient and comprehensive data analysis becomes even more
important if large numbers of processes have to be analyzed in order to identify,
for example, correlations associated with specific cell lines, products, process
modes, cell culture media, process performance, or product quality attributes.

In this contribution, a framework consisting of MVDA and systems biotech-
nology tools was established and the potential of these technologies was presented.
It was exemplarily shown how these methods can be used to address important
aspects of biopharmaceutical process development in the pursuit to develop high-
performance processes. It will be interesting to see how these novel technologies
will change the way bioprocess development is performed in the near future.
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Protein Glycosylation and Its Impact
on Biotechnology

Markus Berger, Matthias Kaup and Véronique Blanchard

Abstract Glycosylation is a post-translational modification that is of paramount
importance in the production of recombinant pharmaceuticals as most recombi-
nantly produced therapeutics are N- and/or O-glycosylated. Being a cell-system-
dependent process, it also varies with expression systems and growth conditions,
which result in glycan microheterogeneity and macroheterogeneity. Glycans have
an effect on drug stability, serum half-life, and immunogenicity; it is therefore
important to analyze and optimize the glycan decoration of pharmaceuticals.
This review summarizes the aspects of protein glycosylation that are of interest to
biotechnologists, namely, biosynthesis and biological relevance, as well as the
tools to optimize and to analyze protein glycosylation.
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1 Introduction

More than 200 protein pharmaceuticals have been approved by authorities for
therapeutic use and many more are in the development phases of clinical trials [1].
In 2009, the biopharmaceutical market was estimated to be worth $99 billion
worldwide. Antibody-based products, which are glycosylated, represent more than
a third of the market and five of the top ten sellers are antibody-based biophar-
maceuticals [1]. The global market for protein-based therapeutics is estimated to
grow by about 15% annually in the coming years [2, 3], and glycosylation is
associated with 40% of all approved biopharmaceuticals. In view of the fact that
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glycosylation has a high impact on the activity and pharmacokinetics of thera-
peutics, academic and industrial research laboratories have been working on the
improvement of therapeutic applications of glycosylation.

This review will first focus on the structure and biological significance of
glycans. Then, the main strategies to optimize recombinant protein glycosylation
will be examined. Finally, a brief overview of the techniques to analyze protein
glycosylation will be given.

2 Structure and Biosynthesis

As constituents of glycoproteins and glycolipids, glycans play a central role in many
essential biological processes (Fig. 1) [4, 5]. Glycoconjugates can be grouped into
glycoproteins, e.g., serum glycoproteins (immune globulins), membrane-bound
glycoproteins (cell adhesion molecules such as integrins or receptors), cytosolic
proteins such as heat shock protein 70, lipid-linked glycoproteins (gangliosides,
glycosylphosphatidylinositol-anchored proteins), and proteoglycans. They consist
of a protein backbone which is heavily glycosylated with disaccharide repeating
units (glycosaminoglycans), for instance, decorin, which forms one of the major
components of the extracellular matrix. Over 50% of all proteins are glycoproteins
and it is estimated that 1–2% of the genome encodes for glycan-related genes [6, 7].

Fig. 1 Overview of the glycoconjugates present in eukaryotic systems: glycoproteins, e.g., serum
glycoproteins, membrane-bound glycoproteins, cytosolic proteins, lipid-linked glycoproteins, and
proteoglycans. GPs glycoproteins, GPI glycosylphosphatidylinositol, green circles mannose,
yellow circles galactose, blue squares N-acetylglucosamine, yellow squares N-acetylgalactos-
amine, red triangles fucose, purple diamonds N-acetylneuraminic acid
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2.1 Carbohydrate Diversity

Carbohydrates (Cx(H2O)y) can be defined as polyhydroxyaldehydes and poly-
hydroxyketones, the simplest ones found in nature being monosaccharides and
disaccharides (‘‘saccharide’’ is derived from saccharon, the Latin word for
‘‘sugar’’). Glycans are composed of monosaccharides and are classified as oligo-
saccharides (two to 20 monosaccharides) or polysaccharides (more than 20
monosaccharides). The family of monosaccharides consists of 367 different
members [8], which are named according to their number of carbon atoms
(‘‘triose’’ for three carbon atoms or ‘‘hexose’’ for six carbon atoms), their func-
tional group (‘‘aldose’’ for aldehydes and ‘‘ketose’’ for ketone), their ring size
(‘‘pyranose’’ for a six-membered ring and ‘‘furanose’’ for a five-membered ring),
and their anomeric carbon atom (orientation of the hydroxyl group on the
asymmetric center: D or L, a or b). After incorporation into glycoconjugates,
oligosaccharides can be posttranslationally modified by phosphorylation, sulfation,
or acetylation. The most abundant monosaccharide, glucose (Glc), is the repeating
unit of the most widespread biopolymers. Glc polymers are the biggest resource of
biomolecules. They mostly occur in nature in the form of cellulose (b1,4 linkage)
and in the form of starch (a1,4 and a1,6 linkages). Their main function is to
provide the host organism with energy. The most common monosaccharides
found in N-glycans and O-glycans of higher animals are hexoses [galactose (Gal),
mannose (Man)], deoxyhexoses [fucose (Fuc)], hexosamines [N-acetylglucosamine
(GlcNAc) and N-acetylgalactosamine (GalNAc)], and sialic acids [N-acetylneu-
raminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc)]. N-acetylation at
the C-2 position of Glc and Gal leads to GlcNAc and GalNAc. Deoxyhexoses lack a
hydroxyl group at the C-6 position, and sialic acids have a backbone of nine carbon
atoms and have a carboxyl group at C-1 (Fig. 2).

2.2 Glycoprotein Glycosylation

N-Glycans are covalently attached to the side chain of asparagine residues of
glycoproteins via a GlcNAc. They share a common core structure, which consists
of two GlcNAc followed by three Man residues. Further additions and trimming
leads to three different N-glycan classes, namely high-Man, hybrid, and complex
-N-glycans (Fig. 3). Protein glycosylation is initiated in the endoplasmic reticulum
by a common consensus sequence motif, Asn-X-Ser/Thr, where X is any amino
acid except Pro.

O-glycosylation of serine or threonine residues of glycoproteins occurs in the
Golgi apparatus. Consensus sequences have not been reported yet, but some bioin-
formatics tools such as NetOGlyc allow O-glycosylation sites to be predicted [9].
NetOGlyc compares sequences with databases combining in vivo O-glycosylation of
mammalian glycoproteins as well as the structure around the O-glycosylation sites.
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In contrast to N-glycans, O-linked glycans are classified by eight different core
structures starting with a GalNAc residue (Fig. 3). Other types of O-glycosylation
have been reported and occur as O-GlcNAc, O-Glc, O-Fuc, and O-Man at serine or
threonine residues [10]. C-mannosylation [11] and phosphoserine glycosylation [12]
are some of the newest types of protein glycosylation reported; phosphorylated
serines are linked to GlcNAc, Man, Fuc, or xylose through the phosphodiester bond,
and C-mannosylation occurs at tryptophan residues.

2.3 N-Glycan and O-Glycan Biosynthesis

The biosynthesis of N-glycans and O-glycans begins in the cytosol of vertebrates
with the formation of activated monosaccharides as dolichol phosphate (Dol-P)
or nucleotide derivates. The activated monosaccharides [Dol-P-Man, uridine
diphosphate (UDP)–Gal, UDP-GlcNAc, UDP-GalNAc, guanosine diphosphate
(GDP)–Man, GDP-Fuc, cytidine monophosphate (CMP)–Neu5Ac] are transported
to the endoplasmic reticulum and Golgi apparatus, where the stepwise biosynthesis
of the glycans occurs (Figs. 4, 5) [6]. It is a complex process which involves many
enzymes from different pathways. To date, about 700 glycan-related genes have
been identified [13]. These genes code for the so-called glycosylation machinery

Fig. 2 Most common monosaccharides found in N-glycans and O-glycans of higher animals.
The differences between hexoses are marked. Since 2005, most glycobiologists have adopted the
symbol and color code proposed by EUROCarbDB to represent glycans (http://relax.organ.su.
se:8123/eurocarb/home.action)
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such as kinases and epimerases in nucleotide biosynthesis, transporters, glyco-
syltransferases, glycosidases, glycan-modifying enzymes (e.g., glycan sulfation),
and carbohydrate-binding proteins (lectins) [13]. The stepwise biosynthesis starts
in the cytosol with the formation of a heptasaccharide on a lipid-linked precursor,
Dol-P, consisting of two GlcNAc and five Man. After a ‘‘fliplike’’ mechanism
from the cytosol into the endoplasmic reticulum lumen, the precursor is finalized
to the common Glc3Man9GlcNAc2 precursor and transferred via the oligosac-
charide transferase complex to the polypeptide [14]. At this early stage, the correct
folding undergoes a glycan-based quality control. Calnexin and calreticulin, two
chaperone-like glycan-binding proteins, attach to and detach from proteins and
recognize proper folding [15]. Once proteins are correctly folded, three Glc res-
idues and one Man residue are cleaved by specific glycosidases and the newly
formed glycoproteins enter the Golgi apparatus via vesicles [16] (Fig. 4). The
glycan precursors are degraded to Man5GlcNAc2 structures. This deglycosylation
is the starting point of the final glycoprotein processing, which is the provision
and the transfer of UDP-GlcNAc, UDP-Gal, CMP-Neu5Ac, and GDP-Fuc
residues by a subset of Golgi nucleotide transporters, glycosyltransferases, and
glycosidases (Fig. 5) [17].

O-Glycan processing is initiated by the transfer of GalNAc to serine and
threonine residues via a GalNAc transferase. Nascent O-glycan chains are
further elongated by glycosyltransferases that transfer activated monosaccha-
rides [18, 19].

Fig. 3 Structure and linkage of N-glycans and O-glycans to the protein backbone. a N-Glycans
linked to an asparagine residue of the polypeptide chain (the core structure is marked). The
three types of N-glycans are shown below (high-mannose type, hybrid type, complex type).
b O-Glycans linked to a serine or threonine residue of the polypeptide chain. For O-glycans, there
is no common core structure, but eight different core structures known. Green circles mannose,
yellow circles galactose, blue squares N-acetylglucosamine, yellow squares N-acetylgalactos-
amine, red triangle fucose, purple diamonds N-acetylneuraminic acid. R1 and R2 are polypeptide
chains, R3 is H (serine) or CH3 (threonine)
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2.4 Sialic Acid Biosynthesis

Sialic acids, derived from neuraminic acid, consist of a backbone of nine carbons
with an amino group at position C-5 and constitute the classic terminal acidic
monosaccharide of glycoprotein glycans. They belong to a family of more than 50
members differing in the substitution types (e.g., acetyl, methyl, sulfate, phos-
phate) and positions (C-4, C-5, C-7, C-8, C-9) [20]. Sialic acids are characterized
by a carboxyl group at position C-1 that confers strong acidity (pK 2.2) [21, 22].
The biosynthesis of sialic acids begins with UDP-GlcNAc, which enters the
pathway by de novo synthesis starting with fructose 6-phosphate or by the salvage
pathway via activation of GlcNAc from degraded glycoproteins [23]. UDP-
GlcNAc is converted by the bifunctional enzyme UDP-N-acetylglucosamine
2-epimerase/N-acetylmannosamine kinase (GNE) into N-acetylmannosamine
6-phosphate. After condensation with phosphoenolpyrovate by Neu5Ac 9-phos-
phate synthase and dephosphorylation by Neu5Ac 9-phosphate phosphatase, free
Neu5Ac is synthesized. Thus, Neu5Ac is the only monosaccharide, which is
activated in the nucleus [24, 25]. After activation with cytidine triphosphate by
CMP-Neu5Ac synthase, CMP-Neu5Ac is released in the cytosol. The activated
neuraminic acids enter the Golgi apparatus, where they are transferred to the
terminal position of glycoconjugates [26] or act as a negative-feedback inhibitor
for GNE and consequently reduce the synthesis of neuraminic acids [27].

Fig. 4 Processing of the precursor for N-glycans in the endoplasmic reticulum. Dol-P dolichol
phosphate, ER endoplasmic reticulum, GDP guanosine diphosphate, mRNA messenger
RNA, UDP uridine diphosphate green circles mannose, blue circles glucose, blue squares
N-acetylglucosamine
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3 Biological Impact of Protein Glycosylation

3.1 Stability and Serum Half-Life

The most obvious function of protein glycosylation is to facilitate protein solu-
bility and stability. For instance, if fibrinogen and human granulocyte colony-
stimulating factor are de-N-glycosylated and de-O-glycosylated, respectively,
aggregates are formed, which results in biological inactivity [28, 29]. Glycosyla-
tion also ensures the protection of proteins against proteases by masking cleavage
sites [30, 31]. Rudd et al. [32] suggested that the steric protection of the peptide
moieties by the neighboring N-glycans is due to hydrogen bonding between the
hydrophilic amino acids and glycans.

Another well-known function of sialylated glycans is to prolong circulation of
glycoproteins in serum. When glycans of glycoproteins are terminated in Gal and
not sialic acids, they are recognized by the asialoglycoprotein receptor (ASGPR),
which results in a drastic reduction of serum half-life [33]. The ASGPR, located on
the surface of hepatocytes [34, 35], is not able to recognize fully sialylated gly-
coproteins, but, during blood circulation, terminal sialic acids are cleaved off by
unspecific sialidases. Subsequently, the ASGPR recognizes Gal and GalNAc,
which are not capped anymore by sialic acids. Hence, glycoproteins are inter-
nalized and degraded [36–38].

Fig. 5 cis-Golgi, media-Golgi, and trans-Golgi network with cytosolic UDP, GDP, and cytidine
monophosphate (CMP) nucleotides and specific transmembrane transporters with the corre-
sponding color code. Glycosyltransferases and glycosidases are not depicted. Green circles
mannose, yellow circles galactose, blue squares N-acetylglucosamine, red triangles fucose,
purple diamonds N-acetylneuraminic acid
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3.2 Signal Transduction and Cell Adhesion

It has been established that bisecting GlcNAc, which is b1,4-linked to the Man
residue located at the base of the trimannosyl core (Fig. 6), and core Fuc are involved
in signal transduction and cell adhesion by regulating the function of glycoproteins.
Wand et al. [39] and Saito et al. [40] showed that core fucosylation is essential for the
binding of epidermal growth factor to its receptor, whereas bisecting GlcNAc favors
the endocytosis of its receptor. The importance of bisecting GlcNAc and core Fuc
was also established for recombinant antibodies that are used to treat various types of
diseases such as cancer and autoimmune diseases [1]. It was shown that the absence
of Fuc and the presence of bisecting GlcNAc at asparagine 297 in the Fc region
enhance the effector functions of antibodies by up to 100-fold [41].

3.3 Immunogenicity

Human cells produce exclusively sialic acids of the Neu5Ac-type, whereas mamma-
lian cell lines, used to produce biopharmaceuticals, express Neu5Ac as well as the non-
human Neu5Gc. This monosaccharide is formed by CMP-Neu5Ac hydroxylase,

Fig. 6 a Chemical drawing with composition and linkage information, b Most frequently
used simplified carbohydrate drawing (GlycoWorkbench) [119]. Green circles mannose, yellow
circles galactose, blue squares N-acetylglucosamine, red triangles fucose, purple diamonds
N-acetylneuraminic acid
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which is absent in humans since a knockout mutation occurred about three million
years ago [42]. As a consequence, Neu5Gc is immunogenic to humans [43] and
recombinant glycoproteins from mammalian sources can bear Neu5Gc. Chinese
hamster ovary (CHO) cells are the most widely used expression system for the pro-
duction of FDA-approved recombinant therapeutics such as erythropoetin (EPO)
(Epogen, Amgen) [44–46]. Glycoproteins expressed in CHO cells are usually highly
sialylated and are decorated with a2,3-linked Neu5Ac as well as minor amounts of the
immunogenic Neu5Gc (up to 3%) [47, 48]. Some human cells, such as stem cells, are
grown with animal products such as serum or feeder layers during the culture [49]. The
use of stem cells for regenerative therapies is therefore affected as well; the incorpo-
ration of Neu5Gc cannot be excluded and may result in immunological risks [50].

Mammals, with the exception of Old World monkeys, apes, and humans,
express an a1,3-galactosyltransferase and accordingly add Gal residues to galac-
tosylated glycans [51]. Humans only express a functional b1,4-galactosyltrans-
ferase, the a1,3-galactosyltransferase gene being a dysfunctional pseudogene [52].
As a consequence, glycans with a1,3 Gal residues are immunogenic to the human
immune system, which prevents, for instance, xenotransplantations of pig organs
[53, 54]. Murine NS0 or Sp2/0 cell lines used for the production of monoclonal
antibodies (CD 20 antibody, ofatumumab, GlaxoSmithKline, IL-2R antibody,
daclizumab, Hoffman-LaRoche) [55–57] may also contain traces of this epitope;
therefore, the glycosylation of recombinant glycoproteins expressed in non-human
systems, which may lead to hypersensitivity reactions when patients are injected
with them, should particularly be controlled [58, 59].

4 Glycoengineering: Strategies to Influence Protein
Glycosylation

More than half of the commercially available biopharmaceuticals that result from
genetic engineering are glycoproteins [1]. Therefore, a major concern of bio-
pharmaceutical laboratories is to monitor and tune glycosylation carefully. An
optimal glycosylation is usually considered to be complete galactosylation (b1,4)
and sialylation (a-linked Neu5Ac); in the following sections we review different
‘‘glycoengineering’’ or ‘‘glycodesign’’ approaches to influence glycan macrohet-
erogeneity (site occupancy) as well as microheterogeneity (nature of glycans
attached at a specific site) in order to modulate the degrees of galactosylation,
fucosylation, and sialylation (Fig. 7).

4.1 Modifications of Glycan Biosynthetic Pathways

Each glycosyltransferase, glycosidase, and transporter involved in the biosynthetic
pathway of the activated monosaccharides is a potential target to modulate the
glycosylation machinery of a production cell line and therefore the glycosylation
pattern of a biopharmaceutical.
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The key enzyme of the sialic acid pathway is the bifunctional GNE. The epi-
merase domain is regulated by a negative-feedback mechanism through the end
product of the pathway, the activated sialic acid, CMP–sialic acid. A knockout of the
epimerase domain results in a loss of the negative-feedback mechanism. Feeding the
cell culture medium with N-acetylmannosamine, a sialic acid precursor, enhances
sialylation via salvage pathways [60, 61]. On the basis of a pathological background
in humans, it was shown that a mutant of GNE causes sialuria. Sialuria is a rare inborn
disorder that is characterized by an excessive renal clearance of sialylated glyco-
proteins on the gram scale. This is due to a mutation within the epimerase domain,
which results in a defective feedback inhibition process. This mutation has suc-
cessfully been inserted in CHO cells and led to the production of highly sialylated
recombinant EPO [62]. Another way to increase sialylation is to insert human
a2,6-sialyltransferase in CHO cells as these cell lines produce a2,3-linked but no
2,6-linked Neu5Ac [63]. This insertion results in the production of humanized gly-
coproteins bearing both a2,3-linked and 2,6-linked Neu5Ac [64, 65]. A successful
example of the knockout strategy is the reduction of the fucosylation by knocking out
corresponding fucosyltransferases. In CHO cells, the FUT8 gene was knocked out
and this resulted in the production of antibodies devoid of core Fuc that had a higher
antibody-dependent cell-mediated cytotoxicity [41, 66]. An alternative defucosy-
lation strategy is the decrease of the substrate availability, the reduction of GDP-Fuc.
This is achieved by deflecting the Fuc de novo pathway using a highly effective
prokaryotic enzyme [67].

A similar approach has been successfully established which combines a human-
like glycosylation with high yields obtained using yeast and plant-based systems

Fig. 7 Strategies to optimize glycoprotein glycosylation, so-called glycodesign. The choices
regarding the expression system and parameters influence the resulting glycosylation. Various
strategies, including in vitro glycosylation, modification of the biosynthetic pathways, and
addition of N-glycosylation, are able to modulate glycoprotein glycosylation. Glc glucose,
Neu5Ac N-acetylneuraminic acid
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(‘‘humanization’’ of the glycosylation machinery). Yeast glycoproteins are deco-
rated with high-Man structures (Fig. 8), which are generally quickly recognized by
the Man-binding receptor and removed from blood circulation [68]. In Pichia pas-
toris, nineteen yeast-specific enzymes were knocked out and glycosyltransferases
from different biological sources were knocked in. This resulted in the production
of antibodies having human-like sialylated biantennary structures [69, 70]. Plant
glycosylation consists of trimannosyl chitobiose structures bearing two additional
epitopes, namely, b1,2-xylose and core a1,3-fucose, that are immunogenic to
mammals (Fig. 8). Plant glycosylation has recently been humanized by several
research groups [71–73], resulting in the expression of diantennary digalactosylated
N-glycan structures that are free from plant carbohydrate antigens [72].

4.2 Insertion of Additional N-Glycosylation Sites

An interesting approach to increase glycan macroheterogeneity is to raise the
number of N-glycosylation sites of a given protein. The enhanced glycosylation

Fig. 8 Overview of different expression systems and their main types of glycosylation. Plant
glycans contain xylose, which is antigenic for humans. Yeast glycoproteins bear exclusively
high-mannose-type glycans and therefore recombinant products have a short half-life in serum.
Insects produce only pauci-mannose structures, whereas the glycosylation machinery of
mammals produces mainly complex glycans. Human cell lines express complex glycans
containing N-acetylneuraminic acid but no N-glycolylneuraminic acid. Depending on the origin
of the cell lines, their glycosylation machineries may be different (the different glycosylation
patterns are shown below the type of tissue). Green circles mannose, yellow circles galactose,
blue squares N-acetylglucosamine, yellow squares N-acetylgalactosamine, red triangles fucose,
purple diamond, N-acetylneuraminic acid, white diamond N-glycolylneuraminic acid
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and thus the increased sialylation should protect the biopharmaceutics against
early degradation by the ASGPR. It is relatively easy to clone N-glycosylation
motifs into the respective nucleic acid sequence. Generally, the Asn-X-Thr motif is
more efficiently glycosylated than Asn-X-Ser. Studies have revealed that the
occupancy of a particular glycosylation site additionally depends on the amino
acid in the second position, the position of Asn-X-Ser/Thr in the three-dimensional
structure, and the flanking structural confirmations [74]. Therefore, it is very
important to locate the new glycosylation sites with the restrictions mentioned
above and to avoid placing them in the functionally important domains of the
protein. A very prominent and successful example is darbepoetin alfa (Amgen)
[34, 75]. This genetically engineered EPO bears two additional N-glycosylation
sites. Darbepoetin alfa is characterized by a 3 times prolonged serum half-life of
32 h compared with recombinant human EPO. Human alpha interferons are a
family of cytokines that inhibit cell proliferation and viral infections. Recombinant
human alpha interferon is an FDA-approved therapeutic used in the treatment of
cancer and chronic viral diseases [76–78]. It is not glycosylated, which results in a
short circulatory half-life in humans of about 4–8 h [79]. Four N-glycosylation
sites were introduced by site-directed mutagenesis; the glycoengineered cytokine
was posttranslationally modified with trisialylated and tetrasialylated N-glycans
[80], resulting in a 25-fold increase in the half-life and a 20-fold decrease in
the systemic clearance rate compared with the non-glycosylated cytokine [81].
The same strategy has been used for other recombinant glycoproteins, such as
follicle-stimulating hormone [82]. In principle, this method can be used for all
N-glycosylated glycoproteins and for non-glycosylated serum proteins as well.
The location of the additional glycosylation sites (‘‘design’’ strategy) is facilitated
if information about the active site of the protein of interest is available (X-ray,
nuclear magnetic resonance data). But its success depends on the quality of
information available about the amino acids and domains that surround the new
N-glycosylation sites during biosynthesis. Thus, effective N-glycosylation cannot
be guaranteed because a proper protein folding is highly dependent on the first
glycosylation steps in the endoplasmic reticulum. Proteins can be misfolded and
degraded or additional glycosylation sites may not systematically modify the
serum half-life.

4.3 Cell Culture Parameters

Cell culture parameters have been reported to influence significantly the glycan
microheterogeneity of recombinant glycoproteins [83–87]. Temperature, pH, dis-
solved oxygen, and medium content such as ammonia content are paramount
parameters to control in order to minimize charge-to-charge variations. The
accumulation of ammonia has been correlated with significant loss of sialic acids
on both N-glycans and O-glycans [86, 88]. Shear stress influences the glycosyla-
tion of recombinant glycoproteins [89]. Fucosylation was shown to increase with
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the percentage of dissolved oxygen during the production of EPO in CHO cells
[84]. It was also demonstrated that pH variations (below 6.9 and above 8.2) lead
to a decrease of the overall protein glycosylation [90]. Temperature variations may
also result in altered glycosylation. Temperature decrease correlates with an
increase in polylactosaminylation [91] and an increase in site occupancy [85],
which may be due to the longer transit time of the nascent glycoproteins in the
Golgi apparatus. Manganese and iron supplementation increases the site occu-
pancy of human recombinant tissue plasminogen activator without interfering with
cell growth or protein productivity [87].

4.4 In Vitro Glycosylation

In vitro glycosylation consists of the addition of carbohydrate moieties to the
recombinant glycoproteins after the expression, which is performed either
enzymatically or chemically. Raju et al. [92] extended the N-glycan chains of gly-
coproteins using b1,4-galactosyltransferase, a2,3-sialyltransferase, and the corre-
sponding sugar nucleotides, which is time-consuming and quite costly. Fernandes
et al. [93–95] chemically coupled polysialic acids to asparaginase and catalase,
which enhanced their serum half-lives. Another example is the chemical coupling via
oxime chemistry of mannose 6-phosphate to recombinant acid a-glucosidase, which
is used in the treatment of Pompe disease [96]. The glycoengineered recombinant
glycoprotein showed a higher affinity for the mannose 6-phosphate receptor,
resulting in better uptake of the drug by muscle cells [97].

5 Glycoanalytics

5.1 Glycomics Compared with Genomics and Proteomics

If the sequence of a gene is elucidated, it is possible to predict the amino acid
sequence of the resulting protein but not the glycans attached to it. DNA and
proteins are linear molecules and, from an analytical point of view, are relatively
easy to analyze compared with glycans, which are branched. Each hydroxyl group
of a monosaccharide is potentially a new branching point of a glycosidic bond,
which creates a new stereogenic center (Fig. 6). A peptide with three amino acids
can build 33 (27) tripeptides. All peptides are linear and have the same type of
linkage. Because of the structural diversity described above, three monosaccha-
rides can theoretically result in 38,016 different trisaccharides calculated by
[(permutation of sequence) 9 ring size 9 anomeric carbon atoms 9 linkages] or
En 9 2r

n 9 2a
n 9 4n-1 (linear forms) ? En x 2r

n 9 2a
n x 6n-2 (branched forms)

where E is the library of monosaccharides and n is the oligomeric size [98].
A calculation with the nine most common monosaccharides in a human system
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results in more than 15 million possible tetrasaccharides. If one relates this to
hexasaccharides, there are 1015 theoretical possible structures from 20 monosac-
charides compared with 206 hexapeptides from 20 proteinogenic amino acids and
46 possible hexanucleotides from four nucleotides [99, 100]. Such figures are quite
high but nature does not synthesize all the possible combinations; therefore, glycan
analysis is complex but not unmanageable.

Ongoing glycomic studies are interested in solving structure–function rela-
tionships between sets of glycans and in certain biological contexts. For that,
national and international networks and research groups are coming together to
unify the different carbohydrates syntaxes and to establish a public database for
glycans which can be provided by data from different analytical methods, e.g.,
mass spectra and chromatograms, such as the Consortium for Functional Glyco-
mics (USA; http://functionalglycomics.org), the Kyoto Encyclopedia of Genes and
Genomes (Japan; http://www.genome.jp/kegg/glycan) and the European initiative
EUROCarbDB (http://www.eurocarbdb.org). In 2003, the first data mining
revealed 6,296 glycan structures [101]; in 2008, 23,118 distinct glycan structures
were listed in the Complex Carbohydrate Structure Database (Complex Carbo-
hydrate Research Center), which is the largest public glycan-related database
[102]. This indicates that the calculated complexity of glycans does not match the
analyzed structures and that glycan analysis is really sophisticated and difficult.
In comparison with genomics and proteomics, about three billion base pairs and
about 25,000 genes were sequenced and identified by the Human Genome Project
during the same time period [103]. This discrepancy is due to the fact that glycan
analysis is not as automated as genomics and proteomics are.

5.2 Glycan Analysis

As described in the previous sections, glycoengineering or ‘‘glycodesign’’ strate-
gies as well as process parameters affect the glycan content of biopharmaceuticals.
This may result in a modification of the efficacy of the end products. Therefore,
international guidelines on the quality control of recombinant glycoproteins [104]
recommend determining the glycan content of pharmaceuticals exhaustively. The
methods used to analyze glycoproteins are part of the proteomics analysis reper-
toire and involve glycan-specific techniques to unravel structural complexity.

Clone screening can be performed using lectins. Lectins are (glyco-)proteins
that bind specifically to monosaccharides or small carbohydrate domains mostly
comprising disaccharides and/or trisaccharides [105]. They have been widely used
to purify, enrich, or obtain a general overview of the glycosylation [106, 107].
They are useful for clone screening, but they are not used during the control of the
quality of end products.

Each glycoprotein is unique with regard to its structural conformation, number
of disulfide bridges, and sites of N- and O-glycosylation. This implies that a
quantitative release of the glycans is always glycoprotein-dependent. As a
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consequence, the so-called glycan release is the most difficult and critical step in a
glycoanalytical route. Information about the protein sequence (potential protease
cleavage sites), the host organism (bacterial, plant, mammalian, human), the nature
of the sample (supernatant, kind of media), the biological constitution (purified
supernatant, serum, tissue), the kind of glycosylation, the combination of N- and
O-glycosylation, and finally the specific questioning are prerequisites to develop
an analysis scheme. Owing to the different features of applied analytical methods,
it is always advisable to combine several types of analyses to obtain consistent
and reliable results. The broad methodical spectrum ranges from chromatographic
and/or electrophoretic techniques to mass-spectrometric techniques (Fig. 9).
N-Glycans and O-glycans are usually cleaved off the proteins, isolated, and finally
characterized.

The nature and the total content of each carbohydrate constituent can be
investigated by monosaccharide analysis, which provides general information
about the type of glycans (high-Man, complex, hybrid). To this end, samples are
hydrolyzed and the resulting monosaccharides are analyzed by high-performance
anion-exchange chromatography coupled with pulsed amperometric detection
(HPAEC-PAD) [67]. This technique is based on the separation of molecules
according to their acidic properties. Monosaccharides, even neutral ones, are very
weak acids and also weak anions in basic solutions. At pH 12, chromatographic
separation of substances having very similar pKa values, e.g., Glc (pKa 12.28) and
Gal (pKa 12.39), can be achieved. Furthermore, HPAEC-PAD can also be used to
profile and fractionate glycan pools [108]. This technique is very broadly used in

Fig. 9 Simplified overview of glycoanalytical methods
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the biopharmaceutical industry because PNGase F digests can be directly analyzed
without any chemical derivatization. Another advantage is that isomer separation
may be achieved in a single run.

The other techniques require chemical labeling of the reducing end for detec-
tion purposes. The well-established method of high-performance liquid chroma-
tography (HPLC) is applied for the profiling and, if necessary, the fractionation of
glycans. They are separated according to their antennarity (biantennary, trianten-
nary, tetraantennary structures) or according to their charge (sialic acids, phos-
phorylation, sulfation) [109, 110]. Besides HPLC, a relatively recent method for
the analysis of glycans is capillary electrophoresis (CE) [111, 112]. Both methods
have the same time-consuming labeling step in common (2-aminobenzamide is
used in HPLC, and 8-aminopyrene-1,3,6-trisulfonate is used in CE) but differ with
respect to their time per run (20–30 min for CE, and 1–2 h for HPLC). CE, which
separates glycans according to their charge to size ratio, is able to differentiate
between structural isomers (core and antennary Fuc for instance). For migration
purposes, 8-aminopyrene-1,3,6-trisulfonate, containing three negative charges, is
the preferred method. Sialylated glycans, migrating too fast, are eluted almost
simultaneously. Taking this technical principle into consideration, one obtains
quantitative and fast CE results but loses information about the sialylation degree
because of the necessary desialylation.

Mass spectrometry is one of the key tools for glycobiologists in the same way
as it is in the field of proteomics [113–117]. The difference is that peptides are
always ionized better than glycans; it is therefore necessary to separate glycans
from peptides before performing analyses. To meet this challenge, each glycan
preparation step, starting with denaturation and progressing to change of buffer
conditions, desalting, enzymatic or chemical glycan cleavage, separation of pep-
tides from glycans or glycopeptides, enrichment, and finally the purification of
glycans, has to be performed very carefully to ensure the purity of glycan samples
prior to mass-spectrometric analyses. The last and equally important working step
is the interpretation of the resulting chromatograms, electropherograms, and
spectra. As mentioned before, there is unfortunately no automated one-step
analysis with online prediction of molecules. Semi-automatic tools are already
available [118, 119] but most of the electrospray ionization data have to be
assigned manually with a calculator.

6 Conclusion

Biotechnology is a relatively new branch in the pharmaceutical industry that has
developed rapidly in the last three decades. As post-translational modifications
have modulating effects on protein stability, prolonged half-life, and bioactivity,
glycoengineering (or ‘‘glycodesign’’) tools have been developed to enhance the
bioactivity and to suppress the potential immunogenicity of pharmaceuticals.
In the field of glycan analysis, robust methods are now available, but automation is
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still being developed. Future advances will probably focus on the increase of
productivity as well as the minimization of therapeutic doses in order to meet the
growing demand.
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Protein Glycosylation Control
in Mammalian Cell Culture: Past
Precedents and Contemporary Prospects

Patrick Hossler

Abstract Protein glycosylation is a post-translational modification of paramount
importance for the function, immunogenicity, and efficacy of recombinant
glycoprotein therapeutics. Within the repertoire of post-translational modifica-
tions, glycosylation stands out as having the most significant proven role towards
affecting pharmacokinetics and protein physiochemical characteristics. In mam-
malian cell culture, the understanding and controllability of the glycosylation
metabolic pathway has achieved numerous successes. However, there is still much
that we do not know about the regulation of the pathway. One of the frequent
conclusions regarding protein glycosylation control is that it needs to be studied on
a case-by-case basis since there are often conflicting results with respect to a
control variable and the resulting glycosylation. In attempts to obtain a more
multivariate interpretation of these potentially controlling variables, gene
expression analysis and systems biology have been used to study protein glyco-
sylation in mammalian cell culture. Gene expression analysis has provided
information on how glycosylation pathway genes both respond to culture envi-
ronmental cues, and potentially facilitate changes in the final glycoform profile.
Systems biology has allowed researchers to model the pathway as well-defined,
inter-connected systems, allowing for the in silico testing of pathway parameters
that would be difficult to test experimentally. Both approaches have facilitated a
macroscopic and microscopic perspective on protein glycosylation control. These
tools have and will continue to enhance our understanding and capability of
producing optimal glycoform profiles on a consistent basis.
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CDC Complement-dependent cytotoxicity
CHO Chinese hamster ovary cells
CMP-NeuAc Cytosine monophosphate-N-acetylneuraminic acid
DO Dissolved oxygen
EPO Erythropoietin
ER Endoplasmic reticulum
Fuc Fucose
FucT Glycoprotein 6-a-L-fucosyltransferase
Gal Galactose
GalNAc N-Acetylgalactosamine
GalT b-N-Acetylglucosaminyl glycopeptide b-1,4-galactosyltransferase
GDP-Fuc Guanidine diphosphate-fucose
GlcNAc N-Acetylglucosamine
GnT I a-1,3-Mannosyl-glycoprotein 2-b-N-acetylglucosaminyltransferase
GnT II a-1,6-Mannosyl-glycoprotein 2-b-N-acetylglucosaminyltransferase
GnT III b-1,4-Mannosyl-glycoprotein 4-b-N-acetylglucosaminyltransferase
GnT IV a-1,3-Mannosyl-glycoprotein 4-b-N-acetylglucosaminyltransferase
GnT V a-1,6-Mannosyl-glycoprotein 4-b-N-acetylglucosaminyltransferase
GS Glutamine synthetase
IFN-c Interferon-gamma
Man Mannose
Man I Mannosyl-oligosaccharide 1,2-a-mannosidase
Man II Mannosyl-oligosaccharide 1,3-1,6-a-mannosidase
ManNAc N-Acetylmannosamine
NeuAc N-Acetylneuraminic acid (sialic acid)
NeuGc N-Glycolylneuraminic acid
PK Pharmacokinetics
PCA Principal component analysis
tPA Tissue plasminogen activator
SiaT b-Galactoside a-2,3/6-sialyltransferase
UDP-Gal Uridine diphosphate-galactose
UDP-GlcNAc Uridine diphosphate-N-acetylglucosamine
UPR Unfolded protein response
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1 Introduction

It has been deduced that more than half of all catalogued proteins are actually
glycoproteins, with varying levels of glycosylation characterization [1]. Due to
their ubiquity in nature and in recombinant protein expression, protein glycosyl-
ation is a post-translational modification that is of paramount interest to the bio-
pharmaceutical industry. Glycosylation has been proven to affect various
physiochemical properties of glycoprotein therapeutics, including protein folding
[2], solubility [3], binding [4], and stability [5]. The contributing factors that help
shape the final glycoform profile have been reviewed [6], and include the cell
expression system, the glycoprotein structure itself, the activity and specificity of
enzymes involved in the metabolic pathway, as well as the various cell culture
environmental variables. Understanding the dependence of the final glycoform
profile on these parameters is of ongoing interest to the biopharmaceutical
industry.

Due to the nature of the metabolic pathway and its inherent dependence on a
multitude of factors, there is typically a diverse array of asparagine linked (N-) and
serine/threonine linked (O-) glycans across the various glycosylation sites on the
protein product. The heterogeneous glycan structures that are observed at a par-
ticular glycosylation site on different glycoprotein molecules is termed micro-
heterogeneity, whereas the differences in glycan site-occupancy at different
glycosylation sites across different glycoprotein molecules is termed macroheter-
ogeneity. Microheterogeneity exists for a variety of reasons, with reports showing
a direct relationship to cell culture conditions, and to the particular cell line.
Macroheterogeneity also exists for a variety of reasons, including protein folding.
Since hundreds of different N- and O-glycan species have been described to date,
numerous nomenclature systems have been devised to facilitate better classifica-
tion and communication. Though no completely standard naming convention has
been adopted, a common convention is highlighted in Butler et al. [7] as well as
the convention established by the Consortium for Functional Glycomics [8]
(Fig. 1). In order to make the pathway more computer-representation-friendly,
there have been efforts towards development of an XML notation for glycan
structures as well [9,10].

An extensive survey of the various glycan structures, their structural and
functional roles on the molecule, and the biological processes they modulate has
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been documented [11,12]. The presence of individual N- and O-glycan structures
has been shown to have important roles in the immune system [13], and can affect
clearance rate [14] and antigenicity [15] of the glycoprotein therapeutic. For
example, the heavy chains of monoclonal antibodies typically contain at least one
N-linked glycosylation site, which facilitates two N-glycans per fully assembled
antibody molecule. These glycans have been shown to be essential for both
interactions with Fc receptors (FcR) and their accompanying effector functions,
including antibody-dependent cellular cytotoxicity (ADCC) and complement-
dependent cytotoxicity (CDC) [16,17].

Despite a typically diverse glycoform profile, there is no fundamentally ideal
glycoform profile ubiquitous for all glycoproteins. Some glycans have been found

Fig. 1 Comparison of commonly used N- and O-glycan abbreviated nomenclature. a Consortium
for functional glycomics (CFG) text nomenclature for N-glycans; principal types of N-glycans
are shown for representative purposes. b CFG symbolic nomenclature for N-glycans; common
core pentasaccharide structure are shown in boxes. c Symbolic nomenclature of N-glycans
consistent with Butler et al. [7]. d CFG text nomenclature for O-glycans; eight principal types of
O-glycans are shown for representative purposes. e CFG symbolic nomenclature for O-glycans;
eight different core structures are shown in boxes. f Symbolic nomenclature of O-glycans
consistent with Butler et al. [7]. g Monosaccharide symbol legend
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to be more ideal depending upon the function of the glycoprotein they are attached
to. In other cases, there is a relative insensitivity towards the particular glycan on
the resulting glycoprotein function [18]. Thus, there is sufficient evidence in the
literature and other sources to necessitate at least the evaluation of this potential
effect and for biopharmaceutical companies to adequately characterize the
expressed glycoform profile to ensure it lies within the assigned acceptability
limits. Typically, a consistent spectrum of product glycans is targeted in industry,
since in most cases it is not possible to fully characterize or predict the in vivo
effect of every particular glycosylation pattern [19]. To achieve consistency during
manufacturing, all efforts in upstream and downstream process development are
controlled as tightly as possible.

Since there is a relatively large repertoire of product glycans, controlling their
relative amounts in production cell culture often proves difficult to understand.
Reports of glycosylation control have centered on either the cell culture process
environment, or at the genetic level through overexpression or suppression of key
glycosylation enzymes. Two additional tools that have been applied recently
towards the understanding and control of protein glycosylation include genomics
and systems biology. The gene expression studies conducted to date have high-
lighted the diverse responses towards cell culture environments which have helped
elucidate the regulation of this important metabolic pathway. Systems biology has
facilitated our understanding of the protein glycosylation pathway as a system with
direct and indirect relationships whose ultimate controllability is dependent upon
our understanding of these relationships, and their inherently complex nature.
Through continual use of these tools, a more thorough understanding of the
regulation and control of protein glycosylation should continue to be realized.

2 Metabolic Pathway

Protein glycosylation is characterized by two main forms depending on the amino
acid the oligosaccharides are added onto, including asparagine-linked glycans
(N-glycans) and serine/threonine-linked glycans (O-glycans). The processing of
N- and O-glycans occurs through a series of monosaccharide removal and chain
elongation reactions within the endoplasmic reticulum (ER) and Golgi. This
sequential series of reactions forms a metabolic pathway that is linear in some
stages, in that each reactant produces only one glycan product. In other stages the
pathway is branched, in which a glycan reactant is capable of producing multiple
glycan products (Fig. 2). As a result, the glycan processing pathways can diverge
at multiple processing steps, which eventually become increasingly convergent as
the terminal glycan processing steps (galactosylation and sialylation) are met.

N-glycosylation is initiated by the en bloc transfer through an oligosaccharyl-
transferase enzyme (OST) from a pre-formed 9-mannose glycan attached to
dolichol on asparagine residues of glycoprotein molecules with an Asn–X–Thr/Ser
(where X represents any amino acid but proline). This processing step occurs
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shortly around the time of initial protein folding in the lumen of the ER. A trimer
of glucose sugars on this N-glycan are removed in a step-wise fashion, while
concomitantly binding to the calnexin and calreticulin lectins, which ensure proper
protein folding and serve as a quality control step within the ER before transport to
the Golgi [20]. Should improper folding or attenuated removal of these glucose
monosaccharides exist, a signal is provided that directs the glycoprotein towards
proteasomal degradation. The high-fidelity mechanism of glycan processing that
exists inside the ER ensures the N-glycans are approximately uniform. However, a
similar mechanism does not exist inside the Golgi. After some initial mannose

Fig. 2 A portion of the N-glycan biosynthetic pathway with hypothetical preferential pathway
highlighted in red. Subset A: Metabolic network representation of the glycosylation pathway
highlighting a systems level perspective with arbitrary glycan numbering. Subset B: Adjacency
matrix representation of glycosylation network; allowed reactions between reactant and product
N-glycans are assigned a value of 1
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removal reactions in the ER, the N-glycans are transported to the Golgi apparatus
where a series of additional mannose removal steps precedes a highly diverse
series of step-wise additions of a small number of monosaccharides that facilitates
a potentially large number of product glycan structures. The innate substrate
specificity of the enzymes towards their substrate glycans, as well as the relative
concentrations of enzymes and nucleotide-sugars across the various cisternae of
the Golgi, control the final glycoform profile. The diverse array of contributing
factors towards protein glycosylation have been documented [6]. As a result of
differences in the extent of Golgi processing, three N-glycan types have been
categorized. High mannose glycans are the least processed, complex type glycans
are the most processed, and hybrid type glycans are intermediately processed with
structural attributes of both high mannose and complex glycans (Fig. 1a–c).

In contrast to N-glycosylation, O-glycosylation begins with the transfer of a
single monosaccharide (GalNAc), compared to a pre-formed oligosaccharide
attached to dolichol. GalNAc is transferred from its cognate sugar-nucleotide
UDP-GalNAc onto the hydroxyl group of Ser or Thr residues of glycoproteins.
They are then further modified by sialic acid, fucose, galactose, xylose, and/or
polylactosamine additions (Fig. 1a–c). The cellular compartment in which the
pathway is initiated has been found to be either the ER or Golgi [21]. In contrast to
N-glycans, which have a common core pentasaccharide structure, O-glycans have
up to eight different core structures which make their study and experimental
measurement more difficult (Fig. 1d–f). O-glycans have also been shown to have
an intricate role in the physiochemical properties of glycoproteins. A good over-
view of the metabolic pathway and the effects of O-glycans on proteins can be
found in Van den Steen et al. [22].

The monosaccharide source for addition onto N- and O-glycans comes from a
common pool of nucleotide-sugars transported into the lumen of the ER and Golgi
organelles either from de-novo biosynthesis, or from the recycling of monosac-
charides through proteins degraded in the lysosome. All nucleotide-sugars are
generated in the cytosol, except CMP-sialic acid which is generated in the nucleus.
An excellent review highlighting the details of nucleotide-sugar transporters is
given in Ishida and Kawakita [23].

3 Established Methods for Protein Glycosylation Control

3.1 Expression Host

Glycosylation varies frequently between and even within each species. This is
especially true in immunoglobulin G (IgG), which is the backbone molecule of
most of today’s monoclonal antibodies [24]. A comparative study of IgG between
various species (human, rhesus, dog, cow, guinea pig, sheep, goal, horse rat,
mouse, rabbit, cat, and chicken) revealed differences in neutral oligosaccharides
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and NeuAc/NeuGc content, as well as isomer differences, suggesting not only
differences in glycan processing, but also enzymatic specificities [25]. Even with
knowledge of human glycoform profiles for a particular glycoprotein, matching
those attributes on the recombinantly expressed biologic is not trivial. Human
serum erythropoietin (EPO) has been shown to be significantly different from
recombinantly expressed EPO [26]. It is due to these potential differences that the
choice of host cell expression system is very important, and one of the principal
reasons for the biopharmaceutical industry’s focus on a few established mam-
malian cell lines. The choice of host cell expression system and the resulting
protein glycosylation has been extensively reviewed [27, 28].

Some monosaccharides present on N- and O-glycans from mammalian cells are
undesirable. Human cells, for example, do not normally express a(1, 3)GalT due to
a frameshift mutation [29], and are able to mount an immune response to the
attached a(1, 3)Gal. Numerous mouse expression systems, including hybridomas
producing humanized antibodies, do add them on secreted glycoproteins. How-
ever, other commonly used expression systems, such as NS0 and CHO cells, do
not add this monosaccharide and as a result there is usually not a problem with the
expressed proteins [28]. N-Glycolylneuraminic acid (NeuGc) is another mono-
saccharide that is generally undesirable for recombinant therapeutic glycoproteins.
Adult human cells typically have terminal NeuAc on their glycans. However, other
mammals sometimes have terminal NeuGc, which differs from NeuAc by the
incorporation of one additional hydroxyl group through the action of the CMP-
NeuAc hydroxylase enzyme. Thus recombinant proteins expressed by rodent
species, including mouse and hamster, can have terminal NeuGc within the gly-
coform profile. NeuGc has been detected on the glycans attached to glycoproteins
derived from NS0 [30], as well as CHO [31].

Frequently the choice of mammalian expression host has an effect on the
resulting glycoform profile due to a different complement of functionally
expressed protein glycosylation enzymes. For example, a(2, 6)SiaT activity varies
50–100-fold in various rat tissues [32], but cell lines such as CHO and BHK both
lack a functional a(2, 6) SiaT, and make exclusively a(2,3) linked NeuAc.
In another example, CHO cells do not typically have detectable levels of GnT III,
while human and other mammalian cell lines do [33].

Mammalian cells glycosylate proteins that are on average more consistent with
humans than non-mammalian cells. Some of the more common non-mammalian
host cell expression systems for recombinant glycoproteins include insect, plant,
and yeast systems. These cells all have been shown to glycosylate expressed
proteins; however, in the majority of the cases their glycoform profiles are either
different from that observed in human, or are not optimal. Insect cell lines have
been used as host cells for glycoproteins, including monoclonal antibodies.
However, the glycoproteins expressed are typically hybrid, high-mannose, or
paucimannose glycans [34]. Some insect cell lines have also been shown to add
non-human a(1,3) Fuc, which is potentially immunogenic. Plant cell lines have
also been used as expression systems for glycoproteins, but typically lack Gal and
NeuAc, and instead add xylose and a(1,3) Fuc. Yeast expression systems have
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become more common for glycoproteins, especially Pichia pastoris because of
robust expression as well as scalable fermentation. However, yeast systems also
hypermannosylate the expressed proteins. As a result of this, efforts have been
made to successfully humanize glycosylation in these cells, as well as to incor-
porate human glycosylation characteristics, including sialylation [35]. Although
there have been a few very successful attempts to ‘‘humanize’’ glycosylation
patterns in these cells, in the majority of the cases mammalian cell lines are still
the preferred host expression system towards the production of recombinant
glycoprotein therapeutics with human-like glycosylation characteristics.

3.2 Cell Culture Process Conditions

The effect of cell culture environmental conditions on the resulting protein gly-
cosylation has been well-documented. Different culture conditions frequently
facilitate differences in the resulting protein glycosylation. The choice of biore-
actor production mode, process control variables, as well as culture media and
respective nutrient levels have all been documented to elicit an effect on the
resulting protein glycosylation. Previous reviews have described in detail these
potential effectors of glycoform profiles [19].

Different production bioreactor modes and vessels have been shown to cause
differences in protein glycosylation using the same cell line and culture media.
In Kunkel et al. [36], even with the same cell line expressed under the same
process conditions, but with different bioreactor controller platforms, differences
were observed in the final glycoform profile. In another study it was shown that
with CHO-derived human IFN-c cultured in a perfused, fluidized-bed bioreactor
attached to macroporous microcarriers there was an increase in the proportion of
tri- and tetrasialylated N-glycans, along with a decrease in monosialylated and
neutral N-glycans after 210 h in culture [37]. In contrast, cells that were cultured in
a stirred tank bioreactor showed similar sialylation time profiles until late-stage,
where a decrease in overall sialylation was observed as the cells began to die,
potentially due to extracellular degradation. In another study the three main
glycoforms from a cytokine fusion protein were expressed from BHK cells, and
showed subtle differences across different culture platforms, and at different times
in a fixed bed bioreactor with continuous perfusion [38].

Process variables that are typically monitored and/or controlled during the
course of a typical mammalian cell culture process have been documented to have
a major role in modulating the final glycoform profile. Dissolved oxygen (DO)
levels, bioreactor pH, and culture temperature are three process parameters
commonly controlled in any cell culture process. All three variables have been
shown to have an appreciable effect on protein glycosylation in at least some
instances [19]. Butler [6] provides a very good review of the relationship between
process control variables and the resulting protein glycosylation. The results
published to date all point to the absolute necessity of mapping the acceptable

Protein Glycosylation Control in Mammalian Cell Culture 195



operating ranges (AORs) for each of these variables to ensure glycosylation
consistency in a good manufacturing practice production environment.

Dissolved oxygen levels have a proven role in modulating glycoform profiles.
In one study, it was reported that high dissolved oxygen levels were correlated
with a higher NeuAc content on recombinant follicle simulating hormone (FSH)
[39]. In another study, low levels of DO caused little change in the glycosylation
of tPA from CHO cells [40]; however, a change was observed in the case of the
glycosylation of an IgG1 antibody in mouse hybridomas which demonstrated
decreased galactosylation with decreases in DO levels [41]. The above results
suggest that DO does play a role in glycosylation, but the effect is likely cell- and
protein-specific, and relationships need to be investigated on a case-by-case basis.

Process temperature has also shown mixed results with respect to protein
glycosylation. Shifts in temperature setpoints during production bioreactor cultures
is a common practice for increasing final product titers. In numerous studies,
temperature shifts have been shown to preserve product quality compared to
non-shifted cultures. A fourfold increase in specific productivity was elicited by a
temperature shift from 37 C to 33 C from CHO-derived EPO [42]. The sialic acid
profiles from both process conditions were in fact comparable, with at most a few
percent differences in composition. Reducing the culture temperature from 37 C to
33 C in a CHO cell line expressing human granulocyte macrophage colony
stimulating factor saw little change in protein glycosylation and terminal sialy-
lation, but did enhance specific productivity [43]. Interestingly, even the glyco-
sidase enzymes between temperature-shifted and non-temperature-shifted cultures
were reported to be similar. A temperature shift from 37 C to 34 C over an 8-day
time period caused intracellular sialidase activity to spike immediately after
inoculation for both cultures, followed by a decay over time that was roughly
similar to that of a non-temperature-shifted culture [44]. Despite these results,
other researchers have reported differences in the final glycoform profile on
shifting temperature. In one investigation, EPO-Fc expressed by CHO cells
facilitated a 20–40% decrease in sialylation with a shift to a lower temperature
[45]. In yet another study, it was found that a temperature shift at a later stage of a
CHO cell culture facilitated a 59% decrease in NeuGc levels compared to when
the temperature shift occurred earlier [31]. These results suggest that the
commonly used temperature shift strategy to enhance productivity is generally a
safe practice from a protein glycosylation perspective, but glycoform profile
changes have been reported in at least some instances.

pH is also an important process control variable with a proven role in con-
trolling glycoform profiles. In one study, different pH levels were shown to affect
the final glycoform profile of a monoclonal antibody in hybridoma cultures [46].
At lower pH levels (6.9 and 7.2), relatively higher levels of agalacto and
monogalacto complex type N-glycans were measured, compared to higher pH
levels (7.4) which facilitated the highest degree of galactosylation as well as the
highest NeuAc/NeuGc ratio. Typically, base is added into a production bioreactor
to control pH. In one study it was found that the base type can have an important
role on the resulting protein glycosylation [31]. In CHO cell cultures expressing
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glycoprotein B1 it was found that using sodium hydroxide as the base instead of
sodium carbonate facilitated a 33% decrease in NeuGc levels.

The harvest criteria for a production bioprocess is frequently determined by cell
culture viability, which is monitored throughout the duration of the culture. The
fractional amount of non-viable cells is an important process variable because of
the proven role of extracellular glycosidases which can accumulate in the media
from lysed cells, and step-wise remove monosaccarides from the glycan. Promi-
nent amongst these is sialidase, which has been shown to accumulate in cell
culture media, and is active at neutral pH [47, 48]. Other glycosidases found to
date include b-galactosidase, b-hexosaminidase, and fucosidase found in 293,
NS0, and hybridoma cells. Interestingly, the sialidase activity found in cultures of
these other cells is much lower than that found in CHO cell culture [49].

Metabolic waste products have been shown to affect the resulting protein
glycosylation in mammalian cells. In particular, the effect of ammonia on the
resulting glycosylation has been well documented. Ammonium chloride has been
shown to prevent terminal glycosylation of immunoglobulins in plasma cells
without affecting secretion [50]. Ammonia has also been reported to decrease
terminal sialylation in both N- and O-glycans. For example, ammonium ion
concentrations above 2 mM resulted in reduced a(2, 6) NeuAc attached to
O-glycans on granulocyte colony stimulating factor (GCSF) produced by recom-
binant CHO cells [51], and excess ammonia supplemented to CHO cells
expressing EPO also caused a decrease in terminal sialylation [52]. The extent of
glycosylation has also been shown to decrease over time in batch culture [53],
potentially due to the lack of sufficient nutrient availability in late-stage culture, or
the accumulation of toxic metabolites such as ammonia. Indeed, this was proven
by Borys et al. [54], where increased ammonium ions reduced the extent of
recombinant placental lactogen N-glycosylation in CHO cells. The reason for
these effects of ammonia is not completely known, but it has been observed that
ammonium chloride causes an increase in intracellular pH [55].

3.3 Cell Culture Media

Cell culture ‘‘core’’ media components (glucose, trace metals, and amino acids)
have been shown to modulate the resulting protein glycosylation profile. The
glucose concentration in culture, in particular, has been shown to affect the gly-
cosylation of monoclonal antibodies produced by human hybridomas in batch
culture and of IFN-c produced by CHO cells in continuous culture [56–58].
Studies have also shown mixed results with respect to low glucose levels and the
resulting impact on glycosylation. There was reported to be little change observed
with continuous cultures of BHK-21 cells producing a recombinant IgG-IL2 fusion
protein, where nutrient limitations (glucose, glutamine) caused microheterogeneity
to be largely unchanged [59]. However, in another report it was found that the
fraction of fully processed N-glycans attached to CHO-expressed IFN-c was higher
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during culture periods of glucose excess [56]. A potential reason for these changes
in protein glycosylation as a result of low nutrient levels may be explained through
another study where glucose- and glutamine-limited CHO cell cultures led to a
significantly lower intracellular pool of UDP-GlcNAc and UDP-GalNAc [60].

Metal ions have also been shown to have an important role towards the
resulting protein glycoform profile. Many glycosylation enzymes are dependent on
metal ions for activity. Manganese in particular has been shown to have a
prominent role in increasing galactosylation [61]. CMP-sialic acid synthetase
(the enzyme responsible for CMP-sialic acid biosynthesis) has been shown to be
dependent on metal ions for activity, including manganese which facilitated
optimal activity at neutral pH, and magnesium which facilitated optimal activity at
pH 9.5. Interestingly, lower activity levels for this enzyme were demonstrated with
the addition of copper, and no effect on activity levels were observed upon the
addition of iron, zinc, and strontium, suggesting that the increase in activity is
likely to be specific [62].

Amino acids have also been shown to affect the resulting protein glycosylation
profile. One study showed how the supplementation of key amino acids (cysteine,
isoleucine, leucine, tryptophan, valine, asparagines, aspartate, and glutamate)
facilitated an increase in a lower sialylated fraction of recombinant EPO expressed
in CHO [61]. Whether or not this was due to the resulting increase in productivity
elicited as a result of the amino acid addition which exceeded the reactive capa-
bility of the glycosylation enzymes remains to be seen.

Commonly added media supplements have also been shown to modulate the
resulting protein glycosylation. Although serum is used less nowadays in pro-
duction of biologics, researchers have evaluated the effect of fetal calf serum on
the oligosaccharide profile on IL-Mu6 glycoproteins secreted by BHK cells in both
suspension and microcarrier cultures [63]. Decreases in sialylation levels in both
cultures upon the incorporation of 2% serum were observed, as well as large
changes in the relative amounts of complex type N-glycans. In another study,
researchers supplemented CHO batch and fed-batch cultures expressing IFN-c
with Primatone RL tissue hydrolysate and found decreased sialylation at each of
the two glycosylation sites [64]. There have been a few case studies that have
explored the effect of sodium butyrate addition on the resulting glycosylation. In
one study, CHO cells expressing tPA were cultured under conditions of decreased
growth rate by supplementing with sodium butyrate and/or quinidine which
resulted in a glycoform profile with increased site occupancy of Asn-184 [65]. In
another report, it was found that the addition of sodium butyrate decreased the
NeuGc levels on glycoprotein B1 expressed by CHO cells by 50–62% [31].

The addition of nucleotide-sugar precursors to cell culture media is an estab-
lished method of modulating the final glycoform profile. In one published study, it
was found that supplementing ManNAc into a CHO cell culture expressing IFN-c
resulted in an increase in sialylation on oneN-glycan site associated with a 30-fold
increase in the intracellular levels of CMP-sialic acid [66]. In another study,
Baker et al. [30] supplemented glucosamine, uridine, and ManNAc to GS-CHO
and GS-NS0 cells expressing tissue inhibitor of metalloproteinases 1 (TIMP-1).

198 P. Hossler



The glucosamine- and uridine-supplemented cultures increased N-glycan anten-
narity in CHO, but not NS0. Sialylation also decreased in this case. In the case of
ManNAc addition, there was no change in the resulting sialylation in either CHO
or NS0 despite an increase in intracellular CMP-sialic acid levels. In another study,
researchers investigated the effect of intracellular glycosylation on various feeding
strategies of nucleotide-sugars in shake flask cultures of CHO cells expressing
IFN-c [67]. The addition of galactose ± uridine, glucosamine ± uridine, and
ManNAc ± cytidine enabled a 12%, 28%, and 32% increase in sialylation,
respectively, compared to untreated control cultures. These results were partially
attributable to the *20-fold increase in UDP-hexose, 6–15-fold increase in UDP-
HexNAc, and 30–120-fold increase in CMP-NeuAc observed between the above
conditions. An overall conclusion made by the researchers was that the addition of
nucleotide-sugar precursors to the cultures had a prolonged effect on the resulting
increased levels of intracellular nucleotide-sugars with the resulting behavior
observed up to 48 h post-supplementation.

The collective information of the effects of cell culture media components and
supplements on the resulting protein glycosylation suggests that studies need to be
conducted on an individual glycoprotein and process basis to ascertain any
potential role in glycomodulation. This had led some to attempt to incorporate
high-throughput screening technologies to study the effect of these cell culture
conditions, as well as the incorporation of high-throughput glycan measurements
via lectin arrays [68], and high-throughput HPLC [69].

3.4 Cell Line Engineering and Selection

Innate differences in glycoprotein processing inherent in the use of different
mammalian cell lines is typically associated with a different repertoire of active
glycosylation enzymes inside the ER and Golgi. In addition, these enzymes have
overlapping specificities for multiple glycans as potential substrates. Relative gene
expression amongst the glycosyltransferases and glycosidases are furthermore not
similar for all mammalian cells. Thus, potential changes in the glycoform profile,
either through biosynthesis or degradation, are expected, and are dependent upon
the relative enzyme amounts directly or peripherally related to protein glycosyl-
ation. Researchers have attempted to utilize this by increasing or decreasing the
gene expression profile of various genes through cell line engineering. To date
there has been a considerable amount of work on the cell line engineering of
individual protein glycosylation enzymes. The information gleaned from these
studies suggests that glycosylation of proteins expressed in mammalian cell lines
does typically respond to changes in gene expression of glycosylation enzymes
and nucleotide-sugar transporters.

There have been many successful attempts at modulating the protein glyco-
sylation profile through the genetic manipulation of individual protein glycosyl-
ation genes. These attempts have included the introduction of new active enzymes,
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as well as the targeted increase and decrease in enzyme expression. Many research
attempts have targeted maximizing NeuAc content, through either maximizing the
addition onto N-glycans, or precluding its removal. A high NeuAc, low NeuGc
content on glycoproteins is frequently targeted, since it has been found to promote
a longer circulatory half-life [70]. In Weikert et al. [71], a(2, 3) SiaT was over-
expressed in CHO cells expressing a TNFR-IgG fusion protein and tPA resulting
in a significant increase in NeuAc content, and a significant decrease in N-glycan
microheterogeneity. a(2, 6) SiaT is not typically expressed in hamster cells such as
CHO and BHK; however, researchers have been successful in stably transfecting
this enzyme into both cell types, with the EPO protein having a(2, 6) NeuAc
content [72, 73]. In Ferrari et al. [74], researchers took the opposite approach and
attempted to maximize sialic acid content by reducing its removal. The researchers
used antisense RNA technology to significantly knock-down expression of siali-
dase in CHO cells expressing Dnase, which resulted in a higher sialic acid content
since its removal was attenuated. Another strategy towards increasing NeuAc
content is to increase the supply of CMP-NeuAc, the nucleotide-sugar donor for
NeuAc addition onto N-glycans. In Wong et al. [75], researchers reported the
transfection of a hamster CMP-NeuAc transporter. Transfection and overexpres-
sion of the transporter in a CHO cell line producing recombinant human IFN-c
resulted in single clones that had 2–20-fold increase in total CMP-NeuAc trans-
porter expression at the transcript level and 1.8–2.8-fold increase in CMP-SiaT at
the protein level when compared to untransfected CHO IFN-c-expressing cells.
The overexpression of this transporter facilitated a 4–16% increase in site sialy-
lation of IFN-c. As mentioned previously, NeuGc is the sialic acid type that is
generally undesirable within the final glycoform profile. Cell line engineering
studies have also targeted the enzyme responsible for its formation. In one report,
CHO cells were transfected with antisense CMP-sialic acid hydroxylase, which
resulted in an 80% reduction in hydroxylase activity [76]. The targeted maximi-
zation of NeuAc and minimization of NeuGc will likely be of continued interest in
the years ahead.

Additional protein N- and O-glycosylation enzymes have been successfully
overexpressed or knocked-down in mammalian cell lines. GnT III adds a bisecting
GlcNAc on N-glycans (Fig. 2) in many mammals, but not CHO [33]. Umana et al.
[77] successfully introduced this enzyme in CHO cells expressing a chimeric
IgG1antibody. At various levels of expression, the researchers found that the
enzyme could support a final glycoform profile with approximately 50% bisected,
complex-type N-glycans. Additional studies have also shown the successful
introduction of this gene into CHO cells expressing an IgG [78]. Other notable cell
line glycoengineering studies include Mori et al. [79], who used siRNA against
FucT VIII in CHO cells, which facilitated an increase in ADCC, and Potvin et al.
[80], who transfected a(1, 3) FucT into CHO and found activation of the previ-
ously silent host enzyme which supplemented the activity of the newly transfected
enzyme. The targeted cell line glycoengineering of mammalian cell lines has
indeed had many success stories.
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Mammalian cell lines with targeted enzyme knock-outs as well as mutations
that allow for non-functional protein glycosylation genes have been reported
in the literature. In particular, there have been numerous reports on the isolation of
CHO mutants defective in various components of the protein glycosylation
pathway whose characterization has significantly increased our knowledge of
the protein glycosylation pathway in general, and in CHO cells in particular [25].
In Yamane-Ohnuki et al. [81], a FucT VIII CHO knockout was generated,
resulting in a significant decrease in fucose content and a significantly higher
ADCC. In another report, researchers reported a CHO mutant line, MAR-11,
which was selected using lectin affinity for decreased levels of cell surface sialic
acid relative to wild-type CHO cells [82]. These particular cells expressed a
truncated version of the CMP-NeuAc transporter which facilitated recombinantly
expressed IFN-c devoid of sialic acid.

The introduction, suppression, or knockout of protein glycosylation genes is a
proven method for protein glycosylation control in mammalian cells. The studies
to date have shown an appreciable sensitivity of the final glycoform profile to the
corresponding gene expression levels of the enzymes and nucleotide-sugar
transporters involved. However, the genetic perturbation of these enzymes on an
individual basis does underscore the need for better understanding of the regula-
tion of the pathway, how it can be optimized further, and also to better answer the
degree to which the pathway can be further controlled. Genomics studies on
protein glycosylation have been attempted, and the information gleaned from these
studies has begun to provide a more comprehensive perspective of the pathway, its
regulation, and the cellular response to different culture environments.

4 Contemporary Prospects for Understanding and Enhancing
Protein Glycosylation Control

4.1 Genomics

One central theme throughout the established methods for protein glycosylation
control is that these control points often have mixed results, and that a case-
by-case study is generally required for understanding glycosylation control. In
addition, most of these studies are univariate in nature, in that they have targeted
one process variable, media component, or protein glycosylation enzyme at a time.
Through the advent of genomics and large-scale gene expression analysis tools,
researchers have been able to take a more multivariate approach to the under-
standing of the protein glycosylation pathway, and its relationship to other
biological pathways. These results highlight some interesting conclusions that
have in fact advanced our understanding of the protein glycosylation pathway, its
relationship to other metabolic pathways, and its relative sensitivity to the systems
investigated. The information generated through these case studies has begun to
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permit the transition of the current status of protein glycosylation control from a
purely heuristic exercise to that of better process and cellular understanding.

The effect of elevated metabolic waste products on the resulting protein gly-
cosylation gene expression has been evaluated. In Chen and Harcum [83], the
effect of elevated ammonia was evaluated via quantitative real-time reverse-
transcriptase polymerase chain reaction (qRT-PCR) on 12 genes in CHO cells.
In general, the authors found that numerous cytosol- and ER-localized genes
associated with early glycosylation steps were insensitive to ammonia levels, in
contrast to the later glycan processing steps in the Golgi which were sensitive.
Specifically, the authors found that a(1, 3) FucT and sialidase did not change over
time with elevated ammonium levels. In contrast, the UDP-Gal transporter, b(1,4)
GalT, and a(2, 3) SiaT genes were found to have lower expression over time in
those cultures with elevated ammonium levels. CMP-NeuAc transporter and UDP-
glucose pyrophosphorylase were found to be sensitive towards ammonium levels,
but not culture time. Only one gene, the UDP-Gal transporter, was found to be
expressed at a higher level in the higher ammonium cell culture condition. Since
the gene expression profile for a(2, 3) SiaT was significantly lower in the elevated
ammonium-treated cultures, and the CMP-NeuAc transporter profile was modestly
lower, the authors concluded that this effect on gene expression elicited by ele-
vated ammonium is at least partially responsible for the commonly observed
decrease in NeuAc content under elevated ammonium. Sialidase levels were not
significantly different regardless of ammonium levels in the culture media,
suggesting that NeuAc addition was attenuated, and there was no elevated NeuAc
removal from the tPA glycoprotein analyzed. This case study is a fine example of
how glycosylation gene expression information complements the understanding of
protein glycosylation control.

The effect of cell culture media components and supplement levels has also
been evaluated on glycosylation gene expression. As mentioned previously,
sodium butyrate is a commonly added supplement to target increases in product
titer levels, as it is a known modulator of chromatin structure and has been
extensively studied for its role in increasing cellular specific productivity [84, 85].
In an interesting study, researchers added sodium butyrate to both hybridoma and
CHO cell cultures and measured the gene expression relative to control cultures
via mouse and CHO cDNA microarrays [86]. The addition of sodium butyrate was
shown to cause differential expression of a modest number of protein glycosylation
genes in both the hybridoma and CHO cell cultures. These results suggest that
commonly used cell culture media supplements can have a significant role in
modulating the protein glycosylation gene expression profile. Although differential
expression was observed, it is uncertain whether the glycoform profiles from these
cultures changed. However, it was shown in other reports that the addition of
sodium butyrate does not appreciably change the glycoform profile of expressed
proteins [87].

In another study highlighting the effect of culture media conditions on gene
expression levels, Korke et al. [88] cultured hybridoma cells in continuous bio-
reactor cultures in the presence of controlled low glucose levels which facilitated
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low lactate production. Using a mouse cDNA and oligonucleotide microarray,
the researchers evaluated the gene expression profiles at different metabolic states.
In particular, they reported no differentially expressed protein glycosylation genes
in the low-lactate-producing cells. In another study, researchers cultured primary
fibroblasts with tunicamycin as well as glucose-limited cultures and measured the
resulting relative gene expression [89]. The authors found a much higher fold
change in expression ([2-fold) with cells cultured with tunicamycin compared to
glucose-limited cultures. Hence, in these two particular cases it appears that low
nutrient levels do not cause a significant change in protein glycosylation gene
expression. The effect of cell culture media conditions on the resulting protein
glycosylation gene expression profiles will likely be of continued interest in the
years ahead.

The supplementation of nucleotide-sugar precursors in cell culture media is an
established method for protein glycosylation control. Researchers have utilized a
microarray with glycosylation-pathway-specific genes and qRT-PCR to analyze 79
protein glycosylation-related genes to study in-depth the effect on intracellular
glycosylation of feeding various nucleotide-sugars in shake flask cultures of CHO
cells expressing IFN-c [67]. This analysis enabled both an intracellular and
extracellular perspective on protein glycosylation control. Gene expression results
indicated a significant upregulation of genes involved in CMP-NeuAc biosynthesis
for the cultures supplemented with galactose and uridine. In each of the conditions
evaluated, however, there was no significant change in the expression of the
nucleotide-sugar transporters. Similar to previously discussed studies, genes
involved in early glycan processing were not significantly changed in the various
cultures; however, those involved in glycan branching and terminal processing
(galactosylation and sialylation) were. GnT II and GnT IV were upregulated for
those cultures with glucosamine ± uridine and N-acetylmannosamine ± cytidine.
Lysosomal sialidase and cytosolic sialidase were upregulated for the glucosamine
± uridine and N-acetylmannosamine ± cytidine supplemented cultures. Another
interesting result from this study was that the addition of the nucleotide-sugar
precursors had a consistent response in the downregulation of protein-folding
genes, including chaperones (BiP), as well as calnexin, calreticulin, and protein
disulfide isomerase. Hence, the relationship between protein glycosylation and the
other protein-processing steps in the secretory pathway is indeed a connected one.

In an investigation evaluating the effect of bioreactor culture time on the
resulting protein glycosylation, researchers targeted 24 N-glycosylation genes for
expression analysis through qRT-PCR during the exponential, stationary, and
death phases of a fed-batch culture of CHO cells expressing IFN-c [90]. The genes
investigated included those involved in N-glycan chain extension, glycan
branching, terminal sialylation, nucleotide-sugar synthesis and transport, and
N-glycan degradation. The researchers found that 21 of the 24 genes evaluated
were either up- or downregulated throughout the time course of the experiment.
It was observed that as the culture progressed there was a decreased expression of
CMP-NeuAc biosynthesis genes (UDP-GlcNAc-2-epimerase), as well as increased
expression of sialidases which correlated to the decrease in sialic acid measured on
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the secreted product (*13% increase in asialo glycan structures). Sialyltransferase
gene expression increased in expression throughout the culture, indicating that
abrogated biosynthesis of CMP-sialic acid, as well as the increase in sialic acid
removal, were more likely the reason for the decrease in sialic acid attached to the
protein. Nucleotide-sugar transporter gene expression did not significantly change
over time. Biantennary glycans were found to increase over time at the expense of
tri- and tetra-antennary glycans, which correlated to the relatively higher GnT II
expression measured. The authors further analyzed the gene expression of low-
glutamine controlled CHO fed-batch bioreactor cultures and found that GnT V was
upregulated and GnT IV was downregulated, which was consistent with the
N-glycan measurements which reflected a decrease in tetra-antennary glycans, and
an increase in tri-antennary glycans. At low glutamine levels there was also a
reduction in sialylation levels, which was consistent with the measured decrease in
expression of UDP-GlcNAc-2 epimerase (a ManNAc biosynthesis gene required
for CMP-sialic acid biosynthesis), as well as a(2, 3) SiaT genes. The above results
highlight the more in-depth understanding afforded through the use of microarrays
and gene expression applications in general, since the relative expression results
and the resulting glycosylation results were in alignment in this particular study.

Maintaining high cell-specific productivity conditions is certainly the goal of
any production bioreactor. A supporting goal, however, is to ensure that this does
not come at the expense of product quality. A case study on the effect of 11
different GS-NS0 cell clones operating at different IgG productivity levels on the
resulting differential gene expression has been recently described [91]. In this
study, differential expression was evaluated using an oligonucleotide mouse
microarray. The extensive statistical analysis revealed significant differential
expression of numerous genes involved with post-translational protein processing
as a direct result of the different productivity levels. It would be interesting to see
what if any glycoform profile differences were observed amongst the cell lines
investigated. Whether the glycosylation machinery compensates for increases in
specific productivity with concomitant increases in expression, or alternatively the
fraction of non-fully processed N- and O-glycans increases as a result of expres-
sion and/or enzyme activity not compensating fast enough, remains an open
question. However, reports have shown both direct and inverse relationships
between protein synthesis rates and the resulting protein glycosylation. In one
study, lowering the protein synthesis rate by cycloheximide improved the glycan
site occupancy of recombinant prolactin from C127 cells [92]. Similarly,
decreasing culture temperature to 21 C in HL-60 cells to decrease secretory
pathway activity resulted in a 30–50% increase in the presence of N-acet-
yllactosamine repeats [93]. However studies on tPA synthesis in CHO cells sug-
gest that the protein synthesis rate has little effect on protein glycosylation [94].
In a study using BHK and CHO cells producing glycoproteins, similar glycan
profiles were observed even after a 200-fold increase in productivity [95].

The glycosylation gene expression results from cell culture studies to
date suggest that the terminal glycan-processing enzymes are more sensitive to
culture environment changes compared to earlier glycan-processing enzymes.
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Comelli et al. [96] probed the relative gene expression profile of glycosylation-
related genes using mammalian tissues and have confirmed this. The researchers
developed an oligonucleotide microarray with 436 genes to focus on glycosyla-
tion-related genes, including human and murine glycosyltransferases, nucleotide
sugar transporters, nucleotide synthesis, glycosidases, proteoglycans, and glycan-
binding proteins. The relative expression profiles of nine murine tissues were
investigated. The biosynthetic enzymes responsible for the core regions of N- and
O-linked oligosaccharides were ubiquitously expressed in the tissues evaluated;
however, the enzymes for the addition of terminal sugars were expressed in a more
tissue-specific manner. These enzymes included families of sialyltransferases and
fucosytransferases. These gene expression results show that most of the diversity
at the gene expression level is more typically associated with the terminal sugar
additions, that is, those that are localized in the Golgi, rather than at the initial
stages of protein glycosylation in the ER.

How a mammalian cell line responds to changes in glycosylation or protein
production rates is not fully understood. However, in yeast the cellular response
has been shown to involve internal cellular signaling networks that may provide
clues for mammalian cells. Several genomics studies have been reported for the
characterization of the cellular response to abrogation of glycosylation reactions
[89, 97] or analyzing mutants partially defective for N-linked glycosylation [98].
In the latter case, a good example can be seen in Cullen et al. [99]. In this study the
researchers used a yeast glycosylation mutant with a partial loss of function of
PMI40, an enzyme required for conversion of fructose-6-phosphate to mannose
6-phosphate (an early step in protein glycosylation). The major class of differen-
tially expressed genes could be considered part of the starvation response. These
included genes involved in the tricarboxylic acid and glyoxylate cycles, and
protein and amino acid biosynthesis. Expression profiling generated from this
study demonstrated that genes encoding structural proteins of two mitogen-acti-
vated (MAP) kinase pathways, and most of the genes that play a role in the
unfolded protein response (UPR), were also induced in response to this glyco-
sylation defect. Whether such a coordinated cellular response occurs in mamma-
lian cell lines is not clear at this time. Also not clear is what occurs when the
glycosylation rate is enhanced, rather than attenuated as the above references all
documented.

In another study with yeast, researchers studied the unfolded protein response
(UPR), which was found to have a direct interaction with the protein glycosylation
pathway [97]. The UPR is activated from the accumulation of unfolded proteins in
the ER, and the UPR facilitates changes which allows the cell to alleviate the
stress. The authors found multiple targets in protein glycosylation that changed as
a result. These included 17 genes in the ER and six genes in the Golgi, in addition
to numerous other genes involved in protein transport. The genes upregulated
as a response by the UPR included those involved in core oligosaccharide
synthesis, glycosyltransferases, glycosylphosphatidylinisotol anchoring, and
O-linked glycosylation, as well as vesicle trafficking in both anterograde and
retrograde fashion. It is uncertain whether a similar response in mammalian cells
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would exhibit these changes on the gene expression level as a result of a corre-
sponding change in the UPR. But it does show that the glycosylation pathway is
readily changed at the gene expression level as a result of other glycoprotein-
processing steps in secretory pathway organelles.

The protein glycosylation pathway has a proven role in interacting with
numerous other metabolic pathways. In a case study using yeast, Klebl et al. [98]
studied a mutant deficient in the synthesis of the lipid-linked oligosaccharide
precursor (the initiation step for protein glycosylation). Their results indicated that
this deficiency and the resulting perturbation of the N-glycosylation network
caused a dramatic reprogramming of various signaling and metabolic networks.
Some of these included genes involved in the mitogen-activated protein kinase
(MAPK) cascades, as well as phosphate, amino acid, carbohydrate, mitochondrial,
and ATP metabolism. This genomics study helped elucidate the protein targets
with which glycosylation interacts in peripheral networks, as well as revealing the
metabolic and cellular signaling and regulatory elements with which the pathway
has an interaction. More such studies are needed in mammalian cell lines to
understand better the intricate relationship between the protein glycosylation
pathway and other closely related pathways.

4.2 Systems Biology

The complex relationship between cell, process, and metabolic pathway parame-
ters shaping the final glycoform profile suggests that a more systems-level per-
spective is required to achieve a better understanding of glycosylation control.
As discussed earlier, the protein glycosylation pathways are highly complex, with
multiple routes possible towards the generation of each of the measured product
glycans. With additional glycan site-occupancy variability on the protein, and an
intricate relationship with nucleotide-sugar biosynthesis pathways, one can cer-
tainly appreciate the complexity of the system. The particular pathway(s) traversed
in generating a given glycoform profile is dependent on the relative concentrations
of the enzymes involved, the glycan accessibility on the protein to the various
enzymes, the spatial localization of these enzymes across the ER and Golgi
compartments, the relative nucleotide-sugar concentrations, the substrate speci-
ficity for each of the reactant glycans and their subsequent glycan products, as well
as the many other factors that have been shown to have some interaction with the
protein N- and O-glycosylation pathways. The above sections highlight some of
the studies that have identified the cell culture process variables which modulate
protein glycosylation, as well as the attempts to control the pathway into a more
idealized state.

The interpretation of how these parameters help modulate micro- and macro-
heterogeneity is difficult and indirect. Understanding how they interact with the
variables that have a direct role on the pathway is especially important. In addition,
for many of these successful attempts at modulating the glycosylation pathway, there
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are typically similar studies that have shown little to no affect on the resulting
glycosylation. As a result of the very interactive and case-by-case nature of these
variables, the non-linearity in the response and the complexity of the pathway itself
has led some to incorporate a more mathematical interpretation of the protein gly-
cosylation pathway and its relationship to the final glycoform profile. Attempts have
been made towards the systematic understanding of protein N- and O-glycosylation
with systems biology approaches and metabolic modeling. Numerous systems
biology approaches have been attempted to understand the protein N- and
O-glycosylation pathways. Though not typically viewed as such, protein glycosyl-
ation has begun to be looked at from a more network-based perspective (Fig. 2a, b)
that has typically been associated with other models of metabolism such as central
energy metabolism [100]. The information gleaned from these case studies has
reinforced our awareness of the pathway complexity, and has helped increase our
understanding of glycoform profile sensitivity to the various controlling parameters.

Some of the mathematical and statistical tools that are commonly used in
systems biology include metabolic kinetic models, sensitivity analysis, numerical
optimization, and principal component analysis. Sensitivity analysis evaluates the
measured or calculated response of a particular parameter as a result of a change in
an interacting variable. This change can be large or small, though small changes
are typically targeted. Numerical optimization attempts to determine the set of
target conditions that best allow for convergence of the response to a specified
criteria. In this analysis, an objective function of the various control variables is
defined in which the optimization routine attempts to find a local minimum or
maximum. Also required is an initial first guess at a particular set of target con-
ditions, since multiple convergent values are possible. Principal component
analysis (PCA) provides a quantitative measure of determining the relative
importance of control parameters towards a particular measured response. In this
procedure, the factors important for a response are correlated into a smaller
number of uncorrelated variables that account for the variability in the response
data. These mathematical and statistical tools have been used for the analysis of
metabolic pathways including the protein N- and O-glycosylation pathways.

In an early systems biology approach to protein glycosylation, Umana and
Bailey [101] developed a metabolic model of N-glycan microheterogeneity for 33
different N-glycans, including high-mannose, hybrid, and complex-type oligo-
saccharides. Using kinetic parameters obtained from the literature, the authors
were able to simulate the effect of perturbing the various model parameters on the
resulting glycoform profile. Included in this model were four discretely localized
Golgi compartments, differential glycosylation enzyme localization across these
four compartments, and intra-Golgi transport. The model was essentially a reac-
tion-transport system, where the ten Golgi protein glycosylation enzymes must
react upon the substrate glycan(s) to form the subsequent product glycan(s) before
transport to the next compartment occurs. Simulating the effects of increasing
specific productivity, the model predicted decreases in tri-antennary glycans, and
at sufficiently high levels decreases in bi-antennary glycans and increases in non-
fully processed high-mannose-type glycans. The reason for this is intuitive in that
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without concomitant increases in the levels of these enzymes to compensate for the
increase in protein traversing the system, a decrease in the degree of glycan
processing is to be expected. The researchers also simulated the effect of over-
expressing the GnT III enzyme, which due to its overlap in glycan substrate
specificity led to the preferential channeling of glycan fluxes towards bisected-
hybrid-type glycans and away from bisected-complex-type glycans. The formation
of bisected-complex glycans could be rescued through the mislocalization of GnT
III, or overexpression of GnT II and Man II so as to change the sequence of
enzymatic reactions to ensure the complex-type glycans are not restricted from
being formed. The model developed by the researchers provided an early glimpse
of the detailed glycosylation pathway understanding that could be achieved
through the use of systems biology.

Later work expanded this model by incorporating additional reactions involving
galactosylation, fucosylation, sialylation, and the incorporation of N-acetyllac-
tosamine repeats (see Fig. 1b), as well as the consideration of nucleotide-sugars in
the Golgi compartments [102]. Additional N-glycan substrate specificities were
included in this model. The final system considered 7,565 N-glycans involved in
22,871 enzymatic reactions. The researchers successfully applied nonlinear opti-
mization in their model for the estimation of enzyme concentrations requisite for
the matching of the predicted N-glycan profile with that of published data from
recombinant human TPO [103]. Simulating the effect of increasing specific pro-
ductivity, the researchers saw a steady decline in the degree of sialylation. The
researchers later applied their model to the prediction of enzyme concentrations
and UDP-GlcNAc levels needed for returning the predicted N-glycan profile for a
four-fold increase in specific productivity back to the glycoform profile observed
with control levels of specific productivity. Information gleaned from use of the
model supports its utility as a guidance tool for better understanding of glyco-
sylation, as well as an experimental guide for re-directing intracellular glycan
fluxes.

Hossler et al. [104] studied the protein N-glycosylation pathway in the Golgi,
and constructed two different metabolic models to describe the potential biosyn-
thesis of 341 N-glycans. One model described the Golgi maturation view of intra-
Golgi transport, and the other described the vesicular transport view. Which of
these two views is the most valid has been debated in the literature, with studies
providing evidence for both [105,106]. In the Golgi maturation model, the Golgi
cisternae have been described as relatively mobile and mature as they traverse
geographically within the cell along with their protein contents. In the vesicular
transport model, the cisternae are conceived as being relatively stationary, while
Golgi vesicles transport the protein contents in both directions through anterograde
and retrograde transport. Mathematically, these two systems were analyzed using a
system of 341 nonlinear ordinary differential equations which were solved
simultaneously for each of the reactant and product glycans. Reported glycan
substrate specificities for each of the ten enzymes considered were incorporated
into the respective models, as were the additional variables of preferential
enzyme localization across the Golgi cisternae [107], nucleotide-sugar levels, and
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intra-Golgi transport. The metabolic fluxes through the pathway and the glycan
distribution were visualized directly on the pathway itself through the GlycoVis
visualization program [108], previously written for the purposes of analyzing
glycan biosynthetic fluxes, as well as deducing preferential glycan biosynthetic
pathway specificities (Fig. 3).

Simulations using the Golgi maturation model revealed that the resulting
terminally processed glycan profile was particularly sensitive to a few key
enzymes, especially GalT which, due to the addition of Gal at particular key
branching steps, could have potentially dramatic effects on the resulting N-glycan
profile. The use of nonlinear optimization revealed that, although many terminally
processed glycans could be predicted to be formed in significantly high abundance,
not all of them could do so. That is, glycan uniformity could be achieved for some
glycans, but not all, due to the nature of the metabolic pathway and the location of
key branching points in the network. Controlling the order of monosaccharide
addition is thus an important variable in determining the resulting glycoform
profile. In addition, it was also found that, on incorporating a multi-compartmental
system in this Golgi maturation model, the appearance of early and intermediately
processed N-glycans was observed in the final glycoform profile. These results
agree well with reports from the literature where the appearance of high-mannose-
type glycans is frequently reported [109].

Simulations using the vesicular transport model revealed a wider spectrum of
intermediately processed N-glycans, rather than an over-representation of a few
glycans in abundance. This suggested to the authors that a purely vesicular
transport system as simulated using the chosen model parameters cannot com-
pletely predict experimentally measured glycan profiles without the incorporation
of additional model variables, including perhaps imperfect mixing of the enzymes
in each of the Golgi compartments, or selective transport perhaps through some
form of sorting mechanism. The results also pointed to the Golgi maturation model
as having a higher likelihood for modeling intra-Golgi transport, or perhaps a
hybrid mechanism involving both maturation and vesicular transport, a mechanism
whose possibility has been discussed elsewhere [110]. However, both models did
highlight a shared importance of the particular order of monosaccharide addition
in determining the final N-glycan profile. Using the compartmentalized Golgi
maturation model, glycan uniformity could be generated for each of the terminally
processed N-glycans (i.e., those not capable of reacting further). This could only
be achieved by mislocalizing the glycosylation enzymes so as to ensure the correct
sequence of processing occurred, to prevent enzymatic glycan substrate specific-
ities from channeling glycan fluxes away from the desired product N-glycans.
Glycosylation enzyme mislocalization has been documented in the literature,
suggesting that this glycoengineering strategy is a viable means of glycomodu-
lation [111].

In another systems biology approach to the study of microheterogeneity,
researchers derived an equation for the analysis of the degree of sialylation on a
generalized glycoprotein [112]. Assuming Michaelis–Menten-type kinetics for a
sialyltransferase enzyme with glycan substrate, the authors found that at
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sufficiently high concentrations of glycans, the amount of sialylation was depen-
dent on the enzyme concentration, enzymatic kinetic parameters, and the protein
residence time within the reaction compartment. However, under non-saturation

Fig. 3 In silico mapping of the glycoform profile (a, c, e) and glycan reaction rates (b, d, f) through
the protein N-glycosylation pathway in a simulated Golgi maturation model. Numbers reflect
normalized distance across a Golgi organelle at 25% (a, b), 50% (c, d), and 100% (e, f) traversal.
[reprinted from Hossler et al. [104], originally published under the license terms of The Public
Library of Science (PLoS) and the Creative Commons Attribution License (CCAL)]
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conditions of glycan substrate, the degree of sialylation was actually independent
of the amount of protein in the trans-Golgi network (TGN), and the reactant
glycans attached to it. Although this study concentrated on sialylation alone, these
mathematical results do point out to us a potential reason for the strong depen-
dence of the final glycoform profile on the many cell culture parameters reported
in the aforementioned sections. In a typical production bioprocess using a rela-
tively high-expressing cell line, the recombinant protein is either likely to be
transported through the secretory pathway relatively fast, the amount of glyco-
protein being transported is relatively high, or a combination of both. In each of
these scenarios it is expected that the cumulative glycan throughput is in an
elevated state, in which case the strong dependence on proven pathway control
parameters, such as relative enzyme amounts, is consistent with this study.

Macroheterogeneity of N-glycans has also been modeled using a systems
approach [113]. In this particular model the initiation of protein glycosylation in
the ER in the timeframe and space immediately after translation in the ER was
analyzed. The mathematical framework established provides some interesting
insights into the origins of glycan site-occupancy and macroheterogeneity. The
central hypothesis of this work is that the initial glycosylation event catalyzed by
the oligosaccharyltransferase (OST) enzyme takes place in a very defined region in
space in the ER lumen, which also competes with other processing events,
including protein folding. The translocation into the ER lumen proceeds at the
same rate as protein translation, which is modeled as a linear velocity parameter.
By incorporating a mass balance, the authors were able to derive various dimen-
sionless groups which describe their system as a function of the glycosylation
event, as well as the effects of incorporating protein folding. The main conclusion
from this work was that due to the competing nature of the first initial glycosyl-
ation event, and the protein folding that occurs in the ER of mammalian cells, there
is an optimal mRNA elongation rate one could expect to observe for achieving
maximum site occupancy. Though no study testing this experimentally could be
found in the literature, the modeling results do suggest that specific productivity
can indeed have a role in helping determine the glycan site occupancy.

The O-glycan biosynthetic pathway has also been examined through a systems-
level approach. In Liu et al. [114], researchers analyzed the formation of sialyl
Lewis-X (sLex) structures (see Fig. 1e) on P-selectin glycoprotein ligand-1
(PSGL-1), which has 71 potential O-glycan sites. Though not typically seen on
glycoproteins constituitively secreted from mammalian cells, this glycan attached
to the cell surface of leukocytes does have prominent biological roles, and the
approach and results from this study are nonetheless instructive in the analysis of
O-glycan pathways in general. The researchers’ goal was to combine various
modeling and analysis methods for the in silico determination of enzymatic
reaction rate constants which could be compared to experimental measurements
for comparison purposes. Lysates from human leukocyte (HL-60) cells were used
as the source material for the experimentally measured rate constants. Five gly-
cosyltransferases were included in their model, as well as the known product
glycans that had been reported elsewhere to generate a model of the diverse
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pathways potentially traversed from an initial reactant glycan to give rise to the
spectrum of product glycans. Subset pathways were subsequently focused on, due
to their more prominent role connecting the substrate and known product glycans.
Focusing on these subset pathways, the researchers applied a nonlinear optimi-
zation approach for the determination of the rate constants which facilitated the
optimal agreement between the predicted versus experimental O-glycan profile.
The various subset pathways which facilitated close agreement to the final profile
were analyzed using hierarchical clustering followed by principal component
analysis (PCA) to assign relative importances to the individual network reactions.
Assessing the relative importance of each of the individual glycosylation reactions
facilitated the determination of the most likely pathway traversed for the two sialyl
Lewis-X structures of interest. Sensitivity analysis was also used to find that final
sLex levels had a direct relationship with the expression of one particular sialyl-
transferase (a(2,3)ST3Gal-IV), and an inverse relationship with that of another
(a(2,3)ST3Gal-I/II). Through this very detailed and systematic approach to
O-glycan biosynthesis, the authors were able to conclude that the final O-glycan
profile is determined principally through individual enzyme activity, as well as
competition of the enzymes for the O-glycan substrates.

In a complementary case study, researchers combined gene expression mea-
surements with those of glycosyltransferase activity in an attempt to predict the
resulting O-glycoform of PSGL-1 expressed by HL-60 cells and neutrophils on
their cell surface [115]. Although distinct differences were observed by the
researchers in the enzyme activity between neutrophils and HL-60 cells, overall
there was a relatively close agreement between measured enzyme activities and
the corresponding enzyme gene expression (although the agreement was not
strictly linear). Differences observed between activity and expression results were
hypothesized to be due to gene expression changes manifesting rather quickly
compared to the intracellular enzyme levels, which have a more pronounced
turnover time. Whether or not protein glycosylation enzymes in mammalian cells
have slow intracellular turnover times in general remains to be seen, however. The
authors further found that enzyme activity measurements were more directly
correlated with the resulting O-glycan profile than with gene expression mea-
surements. For more accurate prediction of the final O-glycan profile utilizing gene
expression data, additional information including preferential enzyme localization
in the Golgi and additional glycan substrate specificities would need to be con-
sidered. This conclusion certainly points to the validity and utility of adopting
systems-level perspectives in predicting final glycoform profiles.

5 Discussion of Protein Glycosylation Control

Protein glycosylation is a fascinating pathway comprising both divergent and
convergent pathways characterized by a relatively small number of enzymes, but
with a potentially larger number of substrate and product glycans. The fact that not
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all these glycans are measured in a typical cell culture process suggests that a great
deal of control is manifested. There have been various reports in the literature of
researchers utilizing these controlling mechanisms for glycomodulation, either
directly through cell line engineering, or indirectly by controlling cell culture
process and media conditions. Many cell culture process and media conditions
have shown mixed results on glycosylation, with specific results sometimes being
observed, and sometimes not. These results suggest that understanding the effect of
cell culture process and media conditions requires a case-by-case analysis.
Attempts to control protein glycosylation through cell line engineering have
also had many successes. The N- and O-glycoform profiles from CHO cells appear
to be particularly responsive to these attempts. Many enzymes have been over-
expressed, silenced, or knocked-out completely in CHO and other industrially
relevant mammalian cell lines. The cumulative results of these studies indicates
that in most cases the targeted genetic manipulation of these cells does indeed have
the expected effect on the resulting N- and O-glycan profiles. Thus cell line
engineering remains a very viable means of attempting glycomodulation in cell
culture bioprocesses. It is likely that the effect of cell culture media components
and process conditions on protein glycosylation, as well as cell line engineering,
will be of interest to the biopharmaceutical industry for some time to come.
Despite the limitations in understanding from a glycosylation pathway perspective,
the reason for these potential changes has become more apparent.

The proven sensitivity of the protein glycosylation pathway to the various
parameters mentioned in this review highlights the difficulty in controlling this
pathway. The dependence of the pathway on cell culture process conditions,
relative enzyme and nucleotide sugar expression levels, and the expression host is
well-established. What is not understood as well in many cases, however, is the
reason for these changes at the glycosylation pathway level. Through the use of
tools such as genomics and systems biology, there is now even more appreciation
for the complexity of protein glycosylation. Gene expression analysis and systems
biology have provided additional information on the understanding of the pathway
as a whole, and its relationship to other pathways, in particular protein secretion.

Gene expression results have shown that the pathway is particularly sensitive to
the expression of the terminal processing enzymes, including galactosylation and
sialylation, as well as the nucleotide-sugar transporters responsible for nucleotide-
sugar import into the ER and Golgi organelles. Additional gene expression results
have shown that the resulting measured glycoform profile does not always cor-
respond exactly to the relative gene expression levels. This further suggests that
the enzyme expression and relative enzyme amounts and activities in the ER and
Golgi need to be investigated in parallel to provide a more comprehensive
understanding.

Systems biology studies of N- and O-glycan micro- and macroheterogeneity
have attempted to incorporate these various pathway considerations and have
revealed much about the protein glycosylation pathway as a result. In-silico pre-
diction of preferential pathway specificities needed for the prediction of glycoform
profiles that match those of experimentally measured glycans has shown that there
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is significant pathway redundancy even for the theoretical prediction of uniform
protein glycosylation. Enzyme concentration levels are necessary but not sufficient
for achieving uniform glycosylation for some terminally processed glycans.
In these particular cases, controlling the order of monosaccharide addition onto an
N- or O-glycan is required through the preferential localization of enzymes across
the Golgi compartments. The application of mathematical and statistical tools,
including optimization, PCA, and clustering have also permitted the theoretical
prediction of pathway specificities for the formation of experimentally measured
glycan profiles. Indeed, these systems-level approaches have allowed for the
theoretical analysis of the pathway requirements for producing uniform and/or
desired glycoform profiles. The use of these tools will continue to supplement and
guide experimental efforts at glycomodulation in the future.

The aforementioned case studies of genomics and system biology on protein
glycosylation in mammalian cells have certainly increased our awareness of the
complexity of the protein glycosylation pathway. We do not yet have the capa-
bility to fine-tune at will this pathway in mammalian cells. With time and con-
tinued incorporation of these relatively newer tools in mammalian cell culture, that
capability, as well as a clearer picture of protein glycosylation control, should
continue to emerge. Indeed these approaches will continue to contribute towards
our ultimate goal of producing optimal glycoproteins on a consistent basis in
mammalian cell culture.
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Modeling of Intracellular Transport
and Compartmentation

Uwe Jandt and An-Ping Zeng

Abstract The complexity and internal organization of mammalian cells as well as
the regulation of intracellular transport processes has increasingly moved into the
focus of investigation during the past two decades. Advanced staining and micros-
copy techniques help to shed light onto spatial cellular compartmentation and
regulation, increasing the demand for improved modeling techniques. In this chapter,
we summarize recent developments in the field of quantitative simulation approa-
ches and frameworks for the description of intracellular transport processes. Special
focus is therefore laid on compartmented and spatiotemporally resolved simulation
approaches. The processes considered include free and facilitated diffusion of
molecules, active transport via the microtubule and actin filament network, vesicle
distribution, membrane transport, cell cycle-dependent cell growth and morphology
variation, and protein production. Commercially and freely available simulation
packages are summarized as well as model data exchange and harmonization issues.
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1 Introduction

Within the past two decades, numerous improvements have been made in the
in-vivo and in-situ visualization and characterization of transport processes in
cells. Techniques such as confocal microscopy, stimulated emission depletion
(STED) microscopy [50, 118], dual color localization microscopy (2CLM) [42],
spectral position determination microscopy (SPDM) [76] and enhanced staining
[45, 108] allow for detailed and statistical analysis of translocation trajectories and
distribution of intracellular organelles or marked enzymes and enzyme complexes
down to the nanometer scale [26]. The number of spatiotemporally resolvable and
quantifiable intracellular transport processes is thus constantly increasing and the
complexity of the resulting network of cooperating and competing transportation
events is rising. Interaction between different cells such as clustering and quorum
sensing adds a further dimension of complexity.

The sheer complexity of such intra- and intercellular biological processes
increasingly drives the need for the development of sophisticated modeling tech-
niques in order to understand causalities and provide tools for the determination of
bottlenecks and optimization of biotechnological processes. The increasing amount
of available data combined with still exponentially growing computation power
allows speculation about the possibility of whole-cell simulations, i.e. the con-
struction of virtual cells in silico, in the not-so-remote future, an idea that has been
especially in vogue at the beginning of the millenium [130]. Computational impli-
cations of whole-cell simulation with respect to the complexity of intracellular
proteome and metabolome diversity, as analyzed in [119] and [6], suggest that it may
in principle be possible to perform a cell cycle of, e.g., E. coli within a couple of
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weeks on powerful computer clusters, provided that nanoscale (i.e. molecular)
effects are widely neglected. However, this holds only true if parallelization and
therefore high scalability can be provided, which is a non-trivial problem [6, 92].

In recent years, a multitude of specialized models for well-defined biological
questions have been published. Meanwhile, more generalized and multi-purpose
software packages have been developed in order to ease handling for non-specialists.
This chapter will address both aspects, with the focus on transportation processes
within cells. We start with simple free-diffusion compartmented models in Sect. 2, then
proceed to active intracellular transport (Sect. 3), to quantitative descriptions of vesicle
distribution (Sect. 4), and membrane transport (Sect. 5). We consider the influence of
cell morphology fluctuations and cell growth, as well as the impact of transport
variations during the cell cycle in unsynchronized cultures (Sect. 6), and the dynamics
of protein translation (Sect. 7). In the following section, the issue of standardized
model data interchange will be addressed, and finally various general-use software
packages for cell and/or biochemical reaction network simulation will be introduced.

2 Free Diffusion

Biochemical models, in their simplest form, assume that every compartment under
consideration is perfectly mixed and hence neglect transport processes exhibited
by the contributors to the biochemical reactions modeled . This can be a reasonable
approximation if transport and diffusion processes are considered to be fast
compared to the actual reactions. In many cases, however, due to the relatively
large volume of eukaryotic cells and their complex compartmentation, the spa-
tiotemporal motion dynamics of substrates, reaction products, co-factors, vesicles
or even the reaction sites themselves (e.g. fluctuating membrane-bound protein
complexes) cannot be neglected. For this purpose, it is necessary to incorporate a
reasonably resolved three-dimensional view of the cells and/or compartments
under investigation, e.g. obtained using confocal electron or light microscopy. The
numerical simulation of diffusion processes (Wiener process, Fick’s law) in
predefined three-dimensional geometries is within the scope of standard cell
simulation packages, which will be summarized in Sect. 9.

The limiting factor in free diffusion processes is denoted by the diffusion
coefficient in the cytosol, Dcyto;which can be given either in absolute units (e.g.
lm2=s) or as relative diffusion coefficient compared to water Dcyto=Dwater: The
diffusion coefficient strongly depends on the properties of the solute and solvent.
In general, this is defined by the Navier–Stokes equation:

D ¼ kBT

6pgR0
; ð1Þ

with kB denoting the Boltzmann constant (kB ¼ 1:3806504� 10�23J/K[93]),
T the temperature (in K), g the dynamic viscosity of the solvent, and R0 the
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hydrodynamic radius, or Stokes radius. In real processes, the Stokes radius is
roughly correlated with the molar mass [10], leading to generally rapid diffusion of
small solutes compared to solutes of high molecular weight. Due to their high
diffusion rates, small molecules or ions are therefore suitable to act as messengers
in intracellular signalling networks, which have been reviewed in [71].

The diffusion coefficients for numerous substances have been determined
empirically, usually by application of fluorescence recovery after photobleaching
(FRAP) [112, 129]. Experimentally derived diffusion coefficients of substrates of
different type and molar weight in numerous compartments have been reviewed in
[126]. It is noted that small solutes (BCECF, MW ¼ 550� 820 Da [61]) diffuse
approximately four times slower in the cytosol than in water, a finding similar to that
of FITC-dextrans and FITC-Ficolls up to a MW � 500 kDa; green fluorescent pro-
tein (GFP)ðMW � 27 kDa; DGFP;cyto ¼ 2:5� 3� 10�7cm2s�1Þ and very small
DNA fragments of not more than � 100 bp; i.e. MW � 70 kDa: In any case,
whenever the limiting molar mass of a specific substrate is exceeded, the diffusion
rate decreases in a highly non-linear fashion to almost zero [83], an effect which is
presumably mainly determined by the influence of the actin cytoskeleton [19].
Diffusion measurements of unconjugated GFP in mitochondria ðDGFP;mito ¼ 2�
3� 10�7 cm2 s�1Þ [106] indicate similar free diffusion characteristics, while the
apparent diffusion in the endoplasmic reticulum (ER) is decreased approximately
three-fold ðDGFP;ER ¼ 0:5� 1� 10�7 cm2 s�1Þ[21], which is suspected to be caused
mainly by the complex geometry of ER.

The a-priori prediction of free protein diffusion kinetics in aqueous solutions
according to their structure and conformation has been investigated in the past.
A numerical prediction model for protein diffusion coefficients in water was
proposed in [11]. It can be adapted to a wide range of protein surfaces. The model
was compared to conventional approaches of Einstein and [36] and yielded
comparably superior results with respect to experimental data of lysozyme and
tobacco mosaic virus. A more recent model based on the Yukawa potential was
published in [43].

The estimation of protein diffusion on charged membranes was the focus of the
work published in [70]. This model considers lipid lateral reorganization and
demixing when adsorbed charged macromolecules diffuse on membranes in a time
scale of microseconds, which is several orders of magnitudes faster than con-
ventional molecular dynamics (MD) approaches.

3 Active Transport

In eukaryotic cells, a significant portion of the intracellular transport of particles
and vesicles is facilitated by active transport along microtubules (MT) and/or actin
filaments (AF). This is necessary due to the size of eukaryotic cells and their
complicated compartmentation, which would make particle transport by pure
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diffusion very inefficient. The resulting process has similarities with ‘‘facilitated
diffusion’’ which can be found in other biological processes such as oxygen
transport by myoglobin [142, 143] and hemoglobin [88], rapid association of DNA
binding proteins with specific DNA sequences [47, 66], or ribosomal subunit
translocation [65, 69]. MT are polymers that are mostly formed by nucleation
starting on microtubule organization centers (MTOC) [82]. They exhibit a char-
acteristic fluctuation pattern throughout the cell cycle [100], usually distinguished
by growth, shrinking, and pause phases; and additionally occasional ‘‘catastrophe’’
events [16].

Simple compartmented models as described in Sect. 2 assume force-free dif-
fusion of particles and substances within each compartment. Hence, directed
transport is neglected. In recent years, increasing effort has been put into the
mathematical description of intracellular active transport processes. Special
attention has been laid on the non-continuous, but saltatory active movement of
particles (‘‘random walk’’), i.e. the fact that particles are usually transported for
distances of up to 5� 20 l m at more or less constant velocities, with intermediate
pauses of more than 1 s and even occasional reverse transport, depending on the
region within the cell [72]. An early publication [128] assumed different transport
velocities (fast anterograde, slow anterograde and retrograde), which were later
questioned [3]. The work of [123], based on improved intracellular movement
classification approaches [139], describes an analytical mathematical and one-
dimensional model of motor-assisted transport via MTs or AFs of intracellular
particles. It distinguishes between an unidirectional model with all filaments
having the same polarity, and a bi-directional model. It incorporates simple
kinetics for the association and dissociation of particles to and from MTs and/or
AFs. It allows for free diffusion of unattached particles and constant motion of
attached particles based on partial differential equations. The motion of particles
satisfies the one-dimensional transport equation

on0 x; tð Þ
ot

� D
o2n0 x; tð Þ

ox2
¼ � kþ þ k�ð Þn0 þ k0þnþ þ k0�n�

on� x; tð Þ
ot

þ v�
on� x; tð Þ

ox
¼ k�n0 � k0�n�;

ð2Þ

with n0 x; tð Þ denoting the density of free particles at distance x along the filament
at time t, and N� x; tð Þ the densities on right- and left-directed filaments. kþ and k�
are the first-order rate constants for binding to filaments, and k0þ and k0� for
detachment, respectively. The motor velocities are denoted by vþ and v�: The
particle flux J x; tð Þ consequently reduces to

J x; tð Þ ¼ �D
on0 x; tð Þ

ox
þ nþ x; tð Þvþ þ n� x; tð Þv�: ð3Þ

From these equations, one can derive the mean free-diffusion lifetime

soff ¼ kþ þ k�ð Þ�1; the mean free-diffusion path length loff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D= kþ þ k�ð Þ
p

; the
mean active transport lifetime s� ¼ 1=k0�; and the mean active transport path
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length l� ¼ v�j j=k0�: Under the assumption that free diffusion is absent, the mean
drift velocity due to active transport is equal to

v ¼ Kþvþ þ K�v�
Kþ þ K� þ 1

; ð4Þ

with K� � k�=k0�: The effective diffusion constant yields

D� ¼
Dþ Kþ vþ � vð Þ2=k0þ þ K� v� � vð Þ2=k0�

Kþ þ K� þ 1
: ð5Þ

The model of [123] considered diffusion as a one-dimensional process along each
MT/AF. If a rotationally symmetric distribution of MTs/AFs in the cell is assumed,
the extension to three dimensions is relatively straightforward. In the work of [34],
the model has been extended with respect to three-dimensional diffusion in a
cylindrical neighborhood of each MT or AF.

This, however, seems to show that pure analytical mathematical models are not
appropriate to cope with complex (i.e. non-symmetric and non-periodic) cell, MT,
and AF geometries, since the number of equations to solve would be hard to
handle when dealing with variable MT and AT construction and destruction
kinetics, non-linear MT and AF geometries, arbitrarily-shaped compartments etc.
Thus, numerical and hence spatiotemporally quantized models based on Monte
Carlo methods are becoming more prevalent in order to obtain more flexibility
with respect to the aforementioned model properties.

A computational model for quantification and analysis of the switching process
between MT and AF transport has been published by [122]. This model simulates
pigment transport in melanophores. Here, radial particle motion is classified as
three discrete states—movement to the MT plus end ðPþÞ; to the MT minus end
ðP�Þ; and pauseðP0Þ; with the corresponding transition rate constants k1�6:
Transport on AFs is considered as two-dimensional diffusion, and the transition
rates for the switching of a particle from MTs to AFs or AFs to MTs are denoted
by kMA and kAM; respectively. The cell geometry is idealized to a 2D circular
shape and MTs are considered to form an ideal radial array. The resulting set of
linear differential equations has been solved numerically, since analytical treat-
ment turned out to be impractical due to the fact that the unknown parameters enter
both the equations and boundary conditions. The numerical solution has been
obtained using the VirtualCell framework [121] (see also the introduction of
generalized cell simulation toolboxes in Sect. 9) on a mesh size of 0.5–0.55 lm:
The parameter fits found in this study (kAM 	 kMA during dispersion) suggest that
the transfer from MTs to AFs is almost irreversible during dispersion.

Intracellular transport processes for synthetic, i.e. non-viral, gene delivery
during transient gene transfection processes have been the subject of a simulation
approach published in [23], which is based on preceding works [24, 103, 123]. It
utilizes stochastic modeling in order to obtain the highest flexibility with respect to
arbitrary cell and nuclear morphology and intracellular organization. No model
fitting has been incorporated.
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A non-linear and saltatory MT dynamics model is included that utilizes
frequent growth and shrinkage cycles, as well as rare catastrophe, i.e. complete
MT destruction, events. In this model, the transfected plasmids, mediated by
polyplexes such as polyethylenimine (PEI), are internalized via endocytosis. The
endosomes generated can be subject to either diffusion or active transport along
MTs in the positive or negative direction. The contained plasmids can unpack from
the polyplex, underlie degradation, escape to the cytosol or transfer to lysosomes.
After leaving vesicles, the plasmids and/or polyplexes can only move passively
by diffusion. Cell division and mitosis are neglected, as well as cell growth.
The simulation results are compared to measured data of human skin normal
fibroblasts.

It has been proven by simulation that the results of in-vitro transfection opti-
mization cannot easily be transferred to in-vivo conditions. For example, the
transfection efficiency is highly dependent on the endosomal escape rate of plas-
mid vectors and/or polyplexes; overshooting the maximum can lead to an up to
1,000-fold reduction in delivery efficiency. It can be concluded that since cell
morphology plays a significant role in the transfection process, the stochastic
simulation scheme presented, though containing several simplifications, provides a
flexible and consistent quantitative description of intracellular transport processes
during gene delivery.

More detailed analyses of MT dynamics and transport have been performed in [2],
finding that the growth and shrinking behavior of freshly assembled MT differs
significantly from those close to the cell membrane. Based on this data, we derived a
detailed MT dynamics model that has been implemented in a stochastic model
developed in our group for the quantitative analysis of transient gene transfection
processes in mammalian cells. The MT model is two-fold: a strongly growth-favoring
variant for nascent MTs (phase I) with a length of less than 85% of the cell diameter is
implemented as a Gaussian distribution fitted to measured growth velocites
(Fig. 1a, with the mean velocity vI

l ¼ 16:6 lm min�1 and standard deviation vI
r ¼

13:0 lm min�1: For MTs in phase II, i.e. those which have exceeded 85% of the cell
diameter, a different distribution can be derived, as shown in Fig. 1b. The number of

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

-20 -10  0  10  20  30  40  50  60  70  80

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Growth velocity [μm/min]

Velocities of nascent MT
Gaussian fit

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-80 -60 -40 -20  0  20  40  60

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Growth velocity [μm/min]

Velocities of MT near surface
Gaussian fits

(b)

Fig. 1 Adaptation of microtubule (MT) dynamics for a two-stage model and Gaussian fits. a For
nascent MTs. b For MTs near the cell membrane (data adapted from [72])
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shrinking MTs is significantly higher, thus two combined Gaussian fits are
employed with vII

a;l ¼ �24:9 lm min�1; vII
a;r ¼ 11:4 lm min�1(shrinking), and

vII
b;l ¼ 17:4lm min�1; vII

b;r ¼ 5:4lm min�1: The fraction of MTs in rest, which has

been measured independently, is denoted by kI
0 for phase I and kII

0 for phase II. In rare
cases, MTs can collapse completely (catastrophe), an event defined by the mean
collapse frequency fc:

In a simulation framework describing transient transfection dynamics in
mammalian cells [63], the impact of active microtubule-facilitated polyplex
transport compared to pure passive transport can be simulated depending on the
cell geometry (nucleus-to-cell diameter ratio Unucl and eccentricity of the nucleus
�nucl), and on clustering of the cells, as visualized in Fig. 2. The transfection
efficiency increases by approx 9–10% in the range of Unucl ¼ 0:7 and centered
nucleus ð�nucl ¼ 0Þ; no matter whether cells are clustered or not. With the nucleus
being more off-center ð�nucl ! 1Þ; the improvement decreases to almost 0% in the
case of non-clustered cells, but increases to 37% in the case of clustered cells. This
effect is stronger for smaller nuclei sizes.

Further complications when considering active MT transport arise from the fact
that MTs usually do not really grow linearly and radially, as usually assumed.
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Fig. 2 Simulated improvement of lipoplex transfection efficiency in HEK293s cells by active
transport via MT, depending on nucleus-to-cell size ratio, off-centering of the nucleus and clustering
of cells. a Relative increase of with active transport based on MT (without cell clustering). b With
cell clustering. c Bottom plane: without clustering; top plane: with cell clustering
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A detailed analysis of MT bending characteristics within the microtubule array in
3T3 fibroblasts has been performed in [2], yielding the result that, although the
bending angle does usually not exceed 10� 15 
 within 5 lm; the amount of
strongly bent MTs rises with distance from the MTOC (60% at 10 lm distance
from the MTOC, and 75% at 20 lm:) Another issue to consider is the de-novo
formation of non-centrosomal MTs, which are evident in neurons [136], but have
also been discovered, e.g., in A498 cells [144].

4 Dynamics of Vesicle Distribution

The spatiotemporal distribution of vesicles, especially transport vesicles, in
eukaryotic cells is subject to a complex regulation system that is still not com-
pletely understood. A generalized theory of spatial patterns of intracellular
organelles has been reported in [22]. It describes the flow of organelles within
cells, which is mediated by three transport processes, driven by kinesin, dynein,
and myosin. Interactions between organelles are not considered.

The transport processes are denoted by s, with s ¼ 0 for free diffusion, s ¼ �1
and s ¼ þ1 for microtubule (MT)-mediated transport in the minus or plus direc-
tion, respectively, and s ¼ 2 for actin filament (AF) transport. The corresponding
attachment and detachment rates are ks and k0s; respectively, with the affinity
constant being Ks ¼ ks=k0s: The organelle density at time t at radial position r is
denoted by ~cs r; tð Þ:After nondimensionalization and approximation over all states
~c r; tð Þ ¼

P

~cs r; tð Þ; the model yields

P
oc

ds
� U

1o

n
cnð Þ
on
þ X

1o2

n
cnð Þ
on2 þ D

1o

non
n

oc

on

� �

; ð6Þ

with

n ¼ r=Rc; nN ¼ RN=RC; s ¼ tV=RC; c ¼ =C0;

P ¼ 1þ Kþ1 þ K�1 þ K2;U ¼ K�1 � Kþ1;D ¼ ~D2K2 þ ~D0;

X ¼ V

RC

Kþ1

k0þ1

1þ U
P

� �2

þK�1

k0�1

1� U
P

� �2

þK2

k02

U
P

� �2
 !

;

~D2 ¼ D2=VRC; and ~D0=VRc:

Directed motions on MTs are represented by U [ 0 (toward nucleus) and U\0
(away from nucleus), dispersive radial motions along MTs are represented by X;
and dispersive motions along the cell surface as a combination of cytosolic
diffusion and AF movement are denoted by D: The authors define two Péclet
numbers to quantify the relative contributions of each type of motion, leading to
a certain equilibrium spatial distribution. First, the one-dimensional Péclet number
Pe;1D ¼ U=X compares directed and diffusive motions on MTs. Secondly, the
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two-dimensional Péclet number Pe;2D ¼ U=D describes the the ratio of directed and
radial motion along MTs to diffusive motion along the cell surface. After solving
Eq. 6, four distinct limiting patterns can be determined: (1) &aggregation near
the cell center; (2) hyperdispersion which denotes the concentation of organelles
near the cell periphery; (3) areal dispersion, i.e. uniform distribution over the cell
surface area; and (4) radial dispersion, i.e. uniform radial distribution. A regime
map can be derived that provides a correlation between the two relevant transport
variables, Pe;2D and Pe;2D=Pe;1D ¼ X=D; and the resulting equilibrium spatial dis-
tribution. The computed patterns have been confirmed by experimental data [22].

5 Membrane Transport

Biomembranes are lipid bilayers with embedded proteins that serve as selectively
passable barriers between either the cell’s interior and its exterior or between
different compartments within the cell. The transport of solutes through biomem-
branes is facilitated by one or more of three distinct processes: passive diffusion,
facilitated diffusion and/or active transport. The composition of membranes and
embedded proteins is however highly specific and dynamic, a necessary prerequisite
for the correct trafficking of nutrients, lipids etc. in and out of the cell and into and
from the corresponding organelles. For an overview of the functional diversity of
membrane transport, the reader is referred to excellent reviews [48, 89].

5.1 Passive Diffusion

Pure lipid bilayers, i.e. synthetic membranes without proteins, enable small
molecules to diffuse passively through the membrane. This spontaneous and
concentration-balancing process is strongly dependent on molecule size and
polarization. Ions are virtually incapable of diffusion through membranes. The
passive diffusion velocity is proportional to the concentration deviation, hence the
diffusion can be described by a solute-dependent permeability coefficient P [cm/s].

The diffusion rate can therefore be expressed as

on

ot
¼ P A

oC

ox
; ð7Þ

with on=ot denoting the diffusion rate in mol s�1;A the considered membrane
surface area, and oC=ox the concentration gradient.

Typical permeability coefficients P vary in the range of, e.g., 4:0� 10�6cm s�1

for urea, 3:4� 10�3cm s�1 for H2O; and 2:9 cm s�1 for hydrochloric acid [137].
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5.2 Channels and Facilitated Diffusion

In free diffusion processes, the diffusion of small lipophobic or hydrophilic mole-
cules and ions through the membrane is enabled by membrane-bound channel or
port proteins with a hydrophilic interior, forming transmembrane pores. This can
either be performed without binding of the channel protein to the substrate, resulting
in high transport capacities of � 106 molecules or ions per second per channel (free
diffusion) or with binding and substrate-triggered conformation change of the porter
protein. Since the transport is passive, its direction is always from high to low
substrate concentration, resulting in a decrease of concentration gradient.

Unlike in passive diffusion as expressed in Eq. 7, the transport rate does not
increase linearly with increasing concentration gradient, but reaches a saturation
level determined by vmax in mol= cm3 sð Þ :

on

ot
¼ vmax

1þ K=
oC

ox

; ð8Þ

with K (in mol cm�4) determining the speed of saturation, i.e. the time elapsed
until 1=2 vmax is reached.

Crucial characteristics of channels and ports are their substrate selectivity and
their regulation properties, i.e. how the flux is maintained or interrupted depending
on external signals. These signals can be mediated by signal molecules, especially
ions, phosphorylation/dephosphorylation, voltage variations etc.

5.2.1 Aquaporins

AQP are special channel proteins dedicated to the active transport of water through
membranes [12]. They reach a transport capacity of up to 3� 109 water molecules
per seconds per channel [1] while preventing protons from moving through the
channel along the water molecule network using the Grotthuss mechanism [86],
which is essential for the conservation of electrochemical gradients. The single
channel water permeability of AQP1 is � 4:6� 11� 10�14cm3=s [114, 145].

The related sub-family of aquaglyceroporins are responsible for transport of other
small molecules, such as glycerol, ammonia and urea. Furthermore, aquaporins seem
to play a pivotal role in cell migration, e.g. of tumor cells [104, 135].

5.3 Active Transport

During active transport processes, the substrate molecules are transported against
the concentration gradient, thus consuming energy that is usually derived from the
cell’s metabolism. The transport is enabled by carrier proteins. The transportation
process can be suppressed via either competitive inhibitors that bind to the
transportation site of the carrier enzyme instead of the substrate, or via allosteric
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inhibitors that bind to elsewhere than the active site of the carrier, forcing it to
change its conformation.

If the transport of single substrate molecules is performed without the need for
any second substrate (primary transport), the carrier is described as a uniporter.
In this case, due to the need for active binding of the transporter protein or
cofactors to the substrate and their limited number, the transport velocity char-
acteristics is analogous to that of facilitated transport as denoted in Eq. 9. In the
case of coupled transport in coordination with a second substrate, the carrier is
referred to as a co-transporter. The coupled transport can either take place in the
same direction (symporter) or in the opposite direction (antiporter). In either case,
the passive transport of one substrate along its concentration gradient increases
entropy and therefore yields energy, which is in consequence used for the active
transport of the second substrate against the concentration gradient (secondary
active transport; see also [48]). For coupled transports, the flux can be approxi-
mated by the sigmoidal function

on

ot
¼ vmax

1þ K=
oC

ox

� �h ; ð9Þ

with h [ 1 denoting the degree of (positive) cooperativity (see also [73]).

5.4 Microdomains Within Membranes

In recent years, the view of the distribution of functional proteins such as trans-
porters along the membrane (especially cell membrane and ER) surface has
changed. Formerly regarded as a homogeneous fluid, it is now believed that there
are well organized sections of approx 50 nm lateral size with specialized functions,
so-called functional rafts [120]. They are formed in a highly dynamic manner with
contributions from sphingolipid and cholesterol [46, 78, 97], presumably in
coordination with the underlying actin-based cytoskeletal network [111].
Functional rafts are believed to play a pivotal role in protein sorting in the
endoplasmic reticulum (ER) and Golgi apparatus [51].

A common model assumption in the morphology of rafts is that they form
self-assembling dynamic lipid shells [4, 87], able to bind specific proteins. The
characterization of the motility of membrane-bound proteins has moved increas-
ingly into the focus of investigation, featuring confocal and two-photon micros-
copy as well as single particle tracking (SPT) with sophisticated tracking
algorithms (reviewed in [62, 77]). The ‘‘hop-diffusion’’ motion characteristics of
transmembrane proteins when shuffled between microdomains has been reviewed
in [20] and [111]. A common but not yet fully conclusive finding is that the
proteins are seemingly able to diffuse freely within a small area and sporadically
exhibit a ‘‘hop’’ to another region. A corresponding simulation approach therefore
implements a two-stage transmembrane protein diffusion model that involves
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reduced long-range diffusion by introducing barriers while short-range diffusion
remains unchanged [134].

6 Cell Cycle and Cell Morphology Dynamics

Most current intracellular transport modeling approaches neglect the effect of
transport variations during the progress of the cell cycle and the impact of cell
growth or cell morphology changes during the cell cycle. Since it is clear that cell
and compartment morphology as well as intracellular organization have a strong
influence on the individual transport processes and their balance [23], it is
worthwhile increasing model accuracy by including cell cycle-induced effects.

The dynamic implications of complex cell cycle regulation have been evaluated
based on general physiological properties of the most important regulatory mod-
ules of the CdK network regulating the cell division cycle, which have been
described in a generic computational model [18]. This model aims at a generic
representation of yeast, frog cell and human cell cycle regulation. It contains
numerous different control loops, which have been tentatively adapted to yeast and
mammalian cells by simplification of sub-networks and clustering. By means of
bifurcation analysis, the typical oscillatory behavior of the regulating enzymes can
be detected and analyzed. The increase in cell mass (and therefore cell volume)
during the cell cycle is presumably connected to the cell cycle control [25],1which
is incorporated in this model by defining the cytosolic synthesis rate of the reg-
ulatory proteins A, B, and E as proportional to the cell mass. The mass increase
during the cell cycle is assumed to be proportional to the cell size, leading to
exponential growth behavior, i.e. m tð Þ ¼ m0 et=l with 0� t\l ln 2ð Þ: This implies
an almost linear diameter growth d tð Þ ¼ d0 et= 3lð Þ � d0 ð1þ 0:3654tÞ; assuming
that growth is isotropic. However, growth is usually non-constant during the
progress of the cell cycle (reviewed in [40]), but can at least be considered linear
and isotropic in G1 phase.

A specialized and empirical model for the advance of the cell cycle in myeloma
cells has been proposed in [79]. If the cell cycle is denoted by ct/ ¼ ðt �c tdÞ=cs;
with t representing the simulated time point in s, ctd the time point of the last
division of cell c, and cs the cell’s cell cycle duration, the cell cycle phase X with
increasing ct/ according to [79] is defined as

X ¼
G1; 0� ct/\0:50
S; 0:50� ct/\0:82

G2M; 0:82� ct/\1

8

<

:

: ð10Þ

1 Controversial publications note that this may not hold true for every kind of eukaryotic cells;
e.g., proliferating Schwann cells seem to not need cell-size checkpoints [17]—further discussed
in [41]––a phenomenon which the authors speculate is valid for many mammalian cells as well.
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Using the aforementioned dynamics of the cell cycle and cell growth, the
impact and spatiotemporal transport processes can be estimated. In the transient
transfection simulation model described in [63], the retention times of transfected
plasmids in different compartments of HEK293s cells can be estimated depending
on cultivation and transport parameters, with and without growth (but with same
average volume). In this model, the volumetric growth is assumed to be expo-
nential during the G1 phase, and linear in S/G2M phases. Figure 3denotes the
corresponding trajectories in the different compartments (cytosol and vesicles
combined; nucleus). The (peak) number of plasmids delivered to the nucleus
reduces by approx 48% when no growth is assumed.

6.1 Cell-Cycle-Dependent Transport Variations

It has been well known for a long time [113] that significant intracellular transport
rate variations can occur during the progress of the cell cycle. Many of them may be
related to actin polarization as cells enter the S phase. For example, plasmid uptake
rates via endocytosis in synchronized D407 cells can vary by up to 60% [85].
In addition, the activity of nuclear import facilitated by the nuclear pore complex
(NPC) is altered drastically [84, 132]. Subsequent transport rate variations of
macromolecules between cytoplasm and nucleus have been reviewed in [15, 138].

7 Translation and Protein Transport

The protein translocation and secretion process in eukaryotic cells is highly
complex, selective and non-linear [74, 107] and is thus a worthwhile subject for
detailed quantitative analysis, especially for optimization of protein expression in
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Fig. 3 Influence of growth on transfection dynamics in HEK293s cells. Continuous lines with
volumetrically linear growth in G1 phases, dotted lines without growth and fixed averaged size.
a Percentage of plasmids, both complexed and pure, in cells outside of nucleus (accumulated for
vesicles and cytosol). b Percentage of plasmids in nucleus
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pharmaceutical protein production cell lines. However, the intracellular post-
translational transport of proteins in eukaryotes has not yet been the subject of
detailed mechanistic and spatiotemporally resolved models, unlike in bacteria, for
which protein traffic is quantitatively better understood [29]. It is thus desirable to
obtain a deeper mechanistic and quantitative understanding of translation and
&post-translational processes in order shed light on biological questions such as
quantification of the impact of mRNA degradation, protein folding and selection,
post-translational modification, glycosylation and the secretory pathway on the
expression level.

7.1 Overview and Limiting Factors

The protein transport and targeting during and after translation consists of multiple
steps which will be briefly mentioned in this section, with each of them potentially
influencing the overall protein production ability. For more detailed insight into
the numerous processes contributing to protein translocation, targeting and
secretion, the reader is referred to excellent reviews [44, 52, 64, 67, 109].

After transcription and mRNA export from the nucleus, the majority of proteins
are synthesized in the cytosol with the help of ribosomes which are either
suspended in the cytosol or bound to the rough endoplasmic reticulum (ER) or to
the nuclear envelope. The translocation into the ER is conducted in either
co-translational (mammalian cells) or post-translational fashion (mostly in yeast).
The protein remains in an unfolded or loosely folded state and is transferred across
the ER membrane through the translocon either completely (soluble proteins with
usually amino-terminal, cleavable signal sequences) or partially (with the hydro-
philic ends either crossing the membrane or remaining in the cytosol) [109].
The ER-bound proteins are translocated by a passive channel that associates with
three different types of partners to drive the force for translocation: with ribo-
somes (mostly used for secretory proteins and most membrane proteins) for
co-translational translocation, with the Sec62/Sec63 complex (a tetrameric mem-
brane-protein complex) or with the luminal chaperone binding immunoglobulin
protein (BiP) for post-translational translocation [44, 109, 110]. While in the
translocon, the signal peptidases are cleaved off [96], the nascent chain is
glycosylated by oligosaccharyltransferase (OST) and co-translational folding is
conducted. Assembly of multicomponent complexes may also occur co-transla-
tionally in some cases [64]. After release from the ribosome/translocon complex
and having almost reached the final conformation, oligomers are assembled in
three stages under the presence of three folding enzymes (BOX 2) [30]. Misfolded
proteins are identified in a three-stage process featuring molecular folding sensors
and chaperones [30] and possibly retrotranslocated into the cytosol via the tran-
slocon for degradation in the cytosol by the cytoplasmic proteasome [74, 133].
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7.2 FoldEx: ER Protein Export Model

A non-compartmented protein trafficking model called ‘‘FoldEx’’ describing the
folding-end export of proteins from the ER has been published in [141]. It
provides a quantitative description of the dynamics of the competing pathways
that are reponsible for ER import of the unfolded proteins facilitated by the
translocon; high-affinity (ATP-bound) and low-affinity binding to chaperones;
recognition of correct, incomplete or uncorrect folding; re-folding procedures;
and association to export or retranslocation pathways. An overview of the
model is given in Fig. 4 and Table 1. The pathways are implemented utilizing
Michaelis–Menten kinetics.

The authors conclude that the export efficiency of fast-folding (small) proteins
mainly depends on the relative activities of the export pathways and ERAD
(ER-associated degradation pathway), i.e. the corresponding concentrations ratio
cE=cR; while being largely constant with varying k8 at wide ranges. On the other
hand, the export efficiency of slow-folding proteins is more sensitive to folding
kinetics; thus even stable proteins may be degraded to a considerable extent when
they fold slowly (i.e. transmembrane proteins). Misfolded proteins may re-enter
the ER-assisted folding (ERAF) pathway to some extent, increasing the export
efficiency of proteins prone to misfolding.
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7.3 Protein Targeting

Although the prediction of protein localization from the amino acid sequence is
beyond the scope of this overview, some published methods are worth mentioning.
A mainly empirical method originating from experimental and computational
observations, called PSORT, has been developed since the beginning of the 1990s
[99] and is available at http://psort.ims.u-tokyo.ac.jp. More mechanistic approa-
ches, i.e. simulating the mechanism of cellular sorting, are MultiLoc [56] (avail-
able at (http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc), LOCtree
[98] (available at http://cubic.bioc.columbia.edu/services/loctree), and PLOC
[105] (available at http://www.genome.jp/SIT/plocdir).

Table 1 Desciption of pathways and rate constants in the protein export model according to
[141], as outlined in Fig. 4

No. Description c Val. Unit

1 Cotranslocational insertion of unfolded cytosolic protein ð~P0Þ into ER
facilitated by translocon (T)

k1 0.03 s�1

2 Direct release ofP0into ER when protein translocation is complete k2 0.03 s�1

3 P0 bound by high affinity (ATP-bound) chaperone(s)) TP0CATP k3 106 M�1s�1

4 Release from T k4 0.03 s�1

5 Turnover to low-bound state via ATP hydrolysis) P0C k5 1 s�1

6 Release of protein, releasing chaperone(s). Chaperone switches back to
high-affinity state via ATP binding

k6 100 s�1

7 If folding fails) rebinding to chaperone(s) possible k7 106 M�1s�1

8 Correct folding) Pþ k8 var. s�1

k08 var. s�1

9 Reversible association to export machinery (E) k9 106 M�1s�1

k09 0.1 s�1

10 Export to Golgi k10 1 s�1

11 Incomplete folding) reversible association to retranslocation
machinery (R)

k11 108 M�1s�1

k011 0.1 s�1

12 Export to cyotosol for proteolysis k12 1 s�1

13 Misfolding) P� k13 var. s�1

14 Rebinding to chaperone(s) possible for re-folding k14 106 M�1s�1

15 Reversible association to retranslocation machinery (R) k15 106 M�1s�1

k015 0.1 s�1

16 Export to cytosol for proteolysis k16 1 s�1

Notation: ~P0 denotes unfolded conformational ensemble in cytosol (before ER import), P0 during
and after import, T interaction with translocon, CATP chaperone(s) in high-affinity (ATP-bound)
state, C in low-affinity state, E denotes export machinery, at a nominal concentration of cE; cR for
retranslocation machinery, and cC for chaperones. ERAF ER-assisted folding (ERAF) pathways,
ERAD ER-associated degradation pathway
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8 Exchange of Model Data

In the last two decades, with the rapidly increasing number and complexity of
publicly available models, efforts have been made to introduce standards for the
flexible exchange and re-use of biological model descriptions between different
simulation packages. These efforts try to minimize the need for re-formulation of
model implementations when switching between different simulation and/or
analysis tools. They involve both the development of multi-purpose unified model
description languages (described below), as well as the need for the definition of
standards for the model architecture and implementation, such as the necessity for
a single reference description, the traceability of the choice of parameters, initial
conditions etc. [60]. A widely accepted standard is Minimum information
requested in the annotation of biochemical models (MIRIAM) [102]. Additionally,
published model implementations in public databases such as CellML are often
subject to increased requests for annotations and modification history documen-
tation. Also, equations and identifiers are unified or re-annotated if possible [81]
according to ontological frameworks [140].

The following sections will focus on the most important standard model
exchange formats. For further overviews of this topic, the reader is referred to
dedicated reviews [125]. A variety of modeling software packages will be sum-
marized in Sect. 9.

8.1 SBML

The systems biology markup language (SBML) was introduced in 2001 and
extended to SBML level 2 in 2002 [58], the most recent version 4 having been
published in 2008 [59]. It is based on XML (extensible markup language), a
widespread general hierarchical document description format. It provides a gen-
eralized description of biochemical reaction systems, e.g. cell signaling pathways,
metabolic pathways, biochemical reactions, gene regulation etc.

Since SBML is strictly standardized and commonly used, there is a variety of
helpful applications available in the web, e.g. an automated SBML validator that
checks for syntax and consistency (http://sbml.org/Facilities/Validator), a converter
into human-readable documentation formats (PDF, LaTeX etc., http://www.
ra.cs.uni-tuebingen.de/software/SBML2LaTeX/index.htm) [28], automated creation
of kinetic equations (http://www.ra.cs.uni-tuebingen.de/software/SBMLsqueezer) [27]
and others.

An increasing number (over 450 by August 2010) of peer-reviewed, quantita-
tive models of biochemical and cellular systems is collected in the BioModels
database (http://www.ebi.ac.uk/biomodels-main) [101]. To be accepted in Bio-
Models, the model must comply with MIRIAM [102]; additionally, the model
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components are annotated according to standard databases (UniProt, KEGG,
Reactome etc).

8.2 CellML

Another popular model description language is CellML [80], which has been
developed starting in 1998. The first specification was published in 2001 [49]. Like
SBML, it is XML-based; however, it is more general in that it is not restricted to
biological systems.

The CellML repository (http://www.cellml.org/models) currently holds over
480 models (as of August 2010), mostly derived from peer-reviewed literature,
covering a wide range of biological processes such as signal transduction path-
ways, metabolic pathways, electrophysiology, immunology, cell cycle, muscle
contraction, mechanical models and constitutive laws etc. [81].

As with SBML, a variety of helper tools is available for CellML, e.g. converters
to SBML: CellML2SBML [117] etc. A review of CellML-associated software can
be found in [37].

9 Cell Modeling Program Packages

A variety of simulation software packages is available for the facilitation of whole-
cell simulations or for solving specific biological questions without the need for
extensive programming and mathematical and numerical optimization efforts. This
overview concentrates on six different packages that are applicable to simulation
of mesoscale intracellular transport processes: VirtualCell, MCell, Bio-SPICE,
StochSim, COPASI and BioDrive. Not included in this overview are simulators for
multicellular systems [55], pure genomic network-based simulation environments
such as ECell [131]/ ECell2 [127] and CellDesigner [35], or tools that are dedi-
cated for neural simulation, e.g. NEURON [54] or GENESIS [8]. Also, simulation
suites for molecular dynamics simulations, such as CHARMM [9], AMBER [14]
and GROMACS [53], which are to some extent suitable for simulation of transport
processes at the nanoscale level [5, 68], are beyond the scope of this overview.

9.1 Virtual Cell

The Virtual Cell, or VCell, project, which was first published in [116], is devel-
oped at the National Institutes of Health (NIH). It is available from http://vcell.org.
It provides a framework for modeling biochemical, electrophysiological
and transport phenomena and allows the user to build complex models with a
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Java-based interface. Arbitrary (but temporally constant) compartment topologies
and geometries are supported. The computation is performed on-line on computing
clusters dedicated to VCell at the National Resource for Cell Analysis and
Modeling (NRCAM).

VCell biological models are composed of three components—a physiological
model containing the mechanistic hypothesis (i.e. reactions, fluxes, electrical
currents on membranes), an application with experimental conditions, geometry
and modeling approximations, and one or more simulations (Fig. 5). The under-
lying mathematics and physics as well as the working principles are described in
[94, 121]. For improved visualization of simulation results on physiological data, a
3D interactive visualization tool is integrated.

9.2 MCell

MCell, available at http://www.mcell.cnl.salk.edu, is a general Monte Carlo sim-
ulator of cellular microphysiology. It enables simulation of (intra-)cellular sig-
nalling in and around cells. The framework utilizes Monte Carlo random walk and
chemical reaction algorithms based on pseudo-random-number generation and is
thus capable of tracking the stochastic behavior of discrete molecules in space.
A prominent feature of the software is its ability to stop the simulation at arbitrary
time positions, change parameters and morphologies on-line and continue with the
simulation, which in principle allows for modeling of dynamic cell shape

Fig. 5 General VCell workflow: from general physiology, over specific structures and
applications, to simulation. a Physiology: topology and reactions/fluxes. b Application: structure
mapping and boundary conditions. c Simulation
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variations. The software utilizes a special model description language (MDL) and
currently does not provide an interactive interface.

Although originally having been developed for miniature endplate current
generation in the vertebrate neuromuscular junction [7], this software suite is
meanwhile generalized enough to be used for different biological questions, such
as Ca2þ dynamics in dendritic spines [33] and modulation of impulse propagation
in nodes of Ranvier depending on Naþchannel distribution [124]. The simulations
can be performed on distributed computing environments—the ‘‘grid’’ [32]—to
increase computation speed [13].

9.3 Bio-SPICE

Bio-SPICE is an open-source project (http://biospice.sourceforge.net), originally
developed at the Defense Advanced Research Projects Agency (DARPA) in 2002.
It is intended for modeling and simulation of spatiotemporal processes in living
cells. The toolbox combines different software from various vendors by integrating
them into the ‘‘Dashboard’’, the Bio-SPICE core application that provides a
consistent workflow for modeling, analysis and simulation. It is closely related to
the Systems Biology Workbench (SBW), a software framework that allows het-
erogeneous application components written in multiple programming languages on
different platforms [115].

9.4 StochSim

StochSim, a discrete stochastic simulator for chemical and biochemical reactions
[31], available at http://www.pdn.cam.ac.uk/groups/comp-cell/StochSim.html,
with a graphical user interface at http://www.ebi.ac.uk/lenov/stochsim.html, has
been developed as part of a study of bacterial chemotaxis [95]. This algorithm
considers chemical reaction partners as individual interacting objects. The
StochSim algorithm is in most cases more efficient than the older Gillespie [38, 39]
algorithm, especially when multi-state molecules are considered [92].

9.5 GEPASI and COPASI

For simulation and analysis of biochemical reaction networks with support of
recent model exchange standards such as SBML and CellML (Sect. 8), the
COmplex PAthway SImulator (COPASI) software suite has been developed
[57, 91] as a successor to the GEneral PAthway SImulator (GEPASI) [90] that was
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first published in the early 1990s. It is available for multiple platforms under
http://www.copasi.org. The software considers sensitivity and metabolic control
analysis methods as well as various optimization algorithms such as evolutionary
programming, Nelder–Mead, particle swarm, simulated annealing and others [91].

9.6 BioDrive

The BioDrive biochemical reaction and gene expression simulation software suite
has been developed by the group of Kyoda et al. since the late 1990s. The authors
emphasize its easy usability, or ‘‘biologist-friendliness’’, as well as its ability to
cope with multi-cellular organisms and extra-cellular processes. It is based on
ordinary differential equations and incorporates diffusion and spatiotemporal
patterning [75].

10 Conclusions

In the past two decades, significant efforts have been made to deliver more
in-depth insights into the dynamics of mesoscale intracellular transport processes
in eukaryotic cells and their impact on cell function. A large variety of general-use
biochemical simulation software is available, though only a subset (VCell, MCell,
Bio-SPICE) considers spatially resolved models. Active transport via, e.g., the
actin filament or microtubule network is not yet explicitly incorporated. The
influence of such processes has increasingly moved into the scope of research,
hence numerous more or less ad-hoc Monte Carlo methods have been imple-
mented and published. Unfortunately, the interchangeability of such models is
limited compared to standardized model description languages. The unification of
different models covering specialized aspects to more holistic approaches with a
perspective towards whole-cell simulations is therefore still a very cumbersome
process; however, the foundations for the necessary infrastructure are laid
(e.g. MIRIAM) and are being further extended.
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Genetic Aspects of Cell Line Development
from a Synthetic Biology Perspective

L. Botezatu, S. Sievers, L. Gama-Norton, R. Schucht,
H. Hauser and D. Wirth

Abstract Animal cells can be regarded as factories for the production of relevant
proteins. The advances described in this chapter towards the development of cell
lines with higher productivity capacities, certain metabolic and proliferation
properties, reduced apoptosis and other features must be regarded in an integrative
perspective. The systematic application of systems biology approaches in com-
bination with a synthetic arsenal for targeted modification of endogenous networks
are proposed to lead towards the achievement of a predictable and technologically
advanced cell system with high biotechnological impact.
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1 Introduction

Mammalian cell lines have been used for decades for the production of biophar-
maceuticals. To date, the development of producer cells mainly focuses on the
optimization of the features of the recombinant expression cassettes that encode
the biopharmaceutical proteins of interest. Highly potent promoter elements that
allow high levels of expression have been identified. In addition, protocols for
amplification of these cassettes have been developed. Recent approaches also
acknowledge the impact of the chromosomal integration site on the performance
of the recombinant expression cassettes.

However, due to the great complexity of mammalian cells and the multi-
factorial facets of cell productivity, it has so far been difficult to systematically
circumvent limitations that still affect the production of recombinant proteins.
There is growing evidence that high-producer cell clones must have not only
optimal design but also an appropriate chromosomal integration site of the
expression cassette. Cells often accumulate random, uncontrolled mutations that
render them better producer systems. On the other hand, considerable efforts have
been made to increase genomic stability and productivity by manipulating cellular
properties such as cell growth or apoptosis.

While the first example of a pure synthetic prokaryotic organism was given
recently [58], such an endeavor does not seem to be feasible for mammalian cells
in the near future. Due to the greater complexity of the mammalian cell, synthetic
approaches focus on modulation of selected pathways or networks. For this pur-
pose, strategies are required that allow us to specifically combine cellular networks
or to interfere with them. Examples of such approaches concern cellular metabolic
networks and cellular proliferation. While much data and information on relevant
pathways have been assembled, a deep systems-biology-based analysis of these
networks is not yet available. This is the focus of current work in the field.
A systems-biology-driven rational engineering of cells is expected to increase the
productivity of cell systems directly or indirectly.

To date, approaches for development of cell systems for production have not
been guided by systems biology analysis. They have been based on a patchy
knowledge of cellular processes. A consequent systems biology analysis as it is
carried out in this rapidly growing field will permit the expansion of these efforts
to new targets. In the first part of this review, the state of the art of methods
which allow controlled expression of genes is summarized. Genetic engineering
of cells is a prerequisite for rationally coupling or interfering with distinct cel-
lular pathways. This section is followed by one that describes selected approa-
ches to inducing specific expression phenotypes. Finally, approaches that have
been initiated to alter certain cellular phenotypes are described. The methods
presented here are perfect tools with which to intervene in all types of cellular
processes and are thus key for challenging or confirming new systems-biology-
driven networks.
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2 Approaches to Tuning Gene Expression
in Mammalian Cells

To control expression of genes in mammalian cells, regulatory circuits that are
largely independent of the cellular metabolism have been developed. These
comprise both transcriptionally regulated modules for tunable expression of
transgenes, and post-transcriptionally regulated elements such as the ones that
control protein stability. In addition, siRNA-based approaches are used to down-
regulate cellular genes. The basic principles of these approaches together with
examples will be discussed in the following paragraphs.

2.1 Transcriptional Control

In the last two decades, synthetic systems for controlling transcription in
mammalian cells have been developed [50, 119, 191]. These are based on the
principles that regulate transcription of synthetic prokaryotic gene-networks.
Generally, these systems rely on prokaryotic protein moieties that bind to their
cognate DNA operator sequences, an event that is necessarily modulated by
external signals (i.e. inducer molecules). In order to adapt these systems for
transcriptional control in mammalian cells, prokaryotic DNA binding moieties
are fused to eukaryotic protein domains, constituting a chimeric transactivating
protein with the capacity to activate or repress the activity of promoters. Further,
synthetic regulatable promoters are designed by combining a minimal eukaryotic
promoter with prokaryotic DNA elements (operators) that allow binding of the
cognate protein moiety. The transcriptional activator or repressor domain can
thereby be recruited to the synthetic promoter (Fig. 1a). For these complex
systems to be successfully employed in mammalian cells, the following
requirements have to be met:

• Binding of the transactivating protein to the promoter tunable in a dose-
dependent manner;

• Fast reversibility upon withdrawal of the inducer;
• No or low basal expression in the absence of the inducer;
• No or minimal interference with the host cell system and the endogenous gene

network.

In order to achieve controlled expression of a protein, initial approaches relied
on temperature-sensitive (ts) protein mutants displaying altered activities upon
shifting temperature. Today, different kinds of small-molecular-weight inducers
are used to achieve controlled expression. These include antibiotics, steroid
hormones, quorum-sensing molecules, urea, immunosuppressive and anti-diabetic
drugs, phloretin, biotin, L-arginine and volatile compounds like acetaldehyde. In
addition, light-induced systems have been employed in mammals [100, 203, 209].
For a comprehensive list of inducer molecules used in transgene expression
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regulatable systems, see Table 1. In the following, the principle of regulatory
synthetic modules will be exemplified by the ‘‘Tet-system’’. This system has been
shown to allow tight control of gene expression in many different biological
contexts, from diverse primary cells to animal models.

2.1.1 The Tet-System

The tetracycline regulation response in E.coli relies on the binding of a protein
(tetR) to its cognate operator sequences (tetO) located in the E.coli tetracycline
operon. Gossen and Bujard developed a fusion protein consisting of the tetR
binding domain and the transactivating domain of herpes simplex virus VP16 [63].

(a) (b)

(c)
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This fusion protein, called tTA, can transactivate synthetic promoters in which
the Tet operator sequences have been fused to a minimal eukaryotic promoter.
Transcription is thereby activated, leading to expression of the gene of interest
(GOI) (see Fig. 1a and b). The binding of tetracycline [or its derivatives such as
doxycycline (Dox)] to the tetR binding domain induces a conformational change
that leads to the release of the protein complex from the promoter, abrogating
transcription (Tet-off system). Reverse transactivators (rtTAs) have been developed
in which mutations in the prokaryotic domain reverse its binding properties.
In these mutants, the binding to the promoter is only achieved in presence of the
inducer Dox [64]. In order to increase the stringency of the expression system, these
mutants have been significantly improved [10, 183]. Moreover, new transactivator
variants have been developed that are optimized for human codon usage [114].
It was shown that HSV VP16 can outcompete binding of transcription factors,
thereby inhibiting transcription of cellular genes, an effect called transcriptional
squelching [59]. To overcome this side effect, a panel of different transactivating
domains from cellular activator proteins such as p65 and E2F4 have been func-
tionally fused to the Tet-binding domain [3, 62, 183, reviewed in 14].

Since the performance of inducible systems is limited by basal expression
levels, efforts to modify the Tet-dependent promoter have been undertaken.

Fig. 1 a Binary expression modules. Binary Tet-dependent expression modules consist of two
independent expression units: a constitutive promoter (Pconst) that drives expression of a
transactivator (tTA, rtTA) or a transrepressor (tetR, tTS) and a synthetic, inducible promoter
driving the gene of interest (GOI). The transacting proteins consist of a DNA binding moiety
derived from the bacterial tetR (tR) fused to a transactivating (TA) or silencing (TS) domain.
Binding of the transacting molecules to the tetO sequence in synthetic promoters is achieved by
the tetR binding domain tR or mutated variants tR*. The transactivating or repressing domains
are thereby directed to the synthetic promoters. Doxycycline (Dox) or tetracycline (depicted as a
star) binds to the transacting molecules and induces a conformational change that modulates
binding to the tetO sequence. While Dox inhibits binding of proteins harbouring the tR domain
(tTA, tTS and tetR), it is required for binding in the rtTAs that incorporate mutant tR* domains.
In Off-type expression cassettes, transcription is switched off on addition of Tet, while On-type
expression cassettes require Tet to be induced. b Autoregulated modules. In these modules, the
transacting protein is controlled by a Tet-responsive promoter, thereby generating a positive
feedback loop. This can be realized in two independent expression units for the transacting
proteins and the GOI, respectively. Expression of these two proteins can be linked in a bicistronic
message. Alternatively, bidirectional Tet-responsive promoters can be exploited for this purpose
(not depicted). Both On-type and Off-type designs can be realized. c Expression phenotypes
generated with binary modules result in gradual increase of expression upon administration of
increasing concentrations C of the inducer. This is observed on both the population level and the
cellular level. In contrast, autoregulated modules result in a stochastic activation of gene
expression. In this case, in individual cells expression is either ‘On’ or ‘Off’. Accordingly, two
distinct expression states can be maintained which are visible on the single cell level only.
Increasing concentrations of the inducer increase the probability that cells express the transgene.
This is exemplified for low concentrations of the inducer (clow) and high concentrations (chigh).
Stochastic gene activation results in hysteresis [90, 120]: while cells need a certain concentration
of inducer to switch gene expression on (blue arrow), lower concentration is needed to maintain
expression (red arrow)

b
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An increase of stringency in transgene regulatable expression has been achieved
by optimizing the Tet-responsive promoter through modifications of heptameric
tetO sequences [1] as well as by the use of other minimal promoter elements, such
as the ones from MMTV and HIV [31, 70, 166].

With these improvements, tight regulation of a plethora of transgenes has been
realized in various cell types. Moreover, simultaneous expression of several
transgenes was achieved on coupling these genes in multicistronic expression units
or with the help of a bidirectional promoter [9].

Table 1 Transcription regulatable systems

Inducers References

Antibiotics
Coumermycin Zhao et al. [215]
Macrolides (e.g. Erythromycin) Weber et al. [192]
Streptogramines (e.g. Pristinamycin) Fussenegger et al. [50]
Tetracycline (and derivatives) Gossen and Bujard [63]; Gossen et al. [64];

Urlinger et al. [183]
Steroids
Mifepristone Wang et al. [187]
Estrogen Braselmann et al. [24]
Ecdysone/Muristerone A No et al. [134]; Yao et al. [207]

Physiological molecules
NADH Weber et al. [192]
Urea Kemmer et al. [83]
Acetaldehyde Weber et al. [192]
Nicotine Malphettes et al. [111]
Vitamin H (Biotin) Weber et al. [192]; Weber et al. [195]
Arginine Hartenbach et al. [68]; Weber et al. [196];

Weber et al. [192]
Environmental signals
Temperature Boorsma et al. [20, 21]; Siddiqui et al. [163];

Weber et al. [193]
Light Wu et al. [203]; Yazawa et al. [209];

Levskaya et al. [100]
Hypoxia Binley et al. [16]
Radiation Mezhir et al. [123]
Metal ions (Zinc) Searle et al. [159]

Quorum sensing signals
Butyrolactone Weber et al. [194]
Acylated homoserine lactone Neddermann et al. [130]

Others
IPTG Hu and Davidson [73]
Cumate Mullick et al. [129]
Rosiglitazone Tascou et al. [176]
Electricity Weber et al. [197]
Phloretin Gitzinger et al. [60]
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Tet-induced repression of promoter activity. A reverse approach to the
activation of a minimal promoter consists in the repression of gene expression by
binding of a repressor moiety to the regulatable promoter. For this purpose, a
chimeric protein consisting of the Krueppel Associated Box (KRAB) domain of
the mammalian Kox1 gene and the TetR binding domain was generated [34, 112].
In the absence of the inducer, this protein binds to the tetO sequence of the
regulatable promoter and exerts its epigenetic silencing activity by inducing the
formation of heterochromatin. On administration of the inducer, the repressor
dissociates from the tetO site leaving it available for its activation. This strategy
was successfully employed for reduction of the basal activity of the Tet-inducible
promoter. Forster et al. combined the rtTA-dependent activation of the Tet-on
system with a specific repression of the uninduced state [45]. For this purpose, a
repressor is co-expressed that is inversely activated by the inducer. To avoid
heterodimerization of repressor and activator proteins, heterologous elements for
dimerization and DNA recognition are employed in the transactivator and
repressor proteins, respectively. Basal expression of the system could thereby be
reduced and tighter regulation was achieved. Freundlieb et al. employed the epi-
genetically modulating KRAB domain derived from the human kidney protein
Kid-1 for a fusion with the DNA binding moiety of the tetR binding domain to
establish a Tet-dependent silencer tTS [49]. This fusion represses basal expression
from the Tet-responsive promoter leading to a strong reduction of basal activity,
also in vivo [216]. Apart from these artificial fusion proteins that direct repressor
domains to synthetic promoters, the prokaryotic tetR protein itself can directly
impair transcription of a mammalian promoter [207].

Two-vector versus one-vector systems. Most synthetic transcriptional regulation
systems rely on two components: one ensures the expression of the transactivator
or repressor; the other contains the inducible cassette with the promoter and
the GOI. In most cases, these two elements are delivered by separate vectors
(two-vector system). As an alternative, one-vector systems were developed: in this
set-up all necessary components are assembled in one vector. The two components
might be oriented in the same or in opposite directions with regard to the tran-
scriptional activity. The major advantages of having both elements in one vector
are the single gene transfer step and the possibility of packaging in viral vectors.
However, the promoters can influence each other’s activity due to the close
proximity of the regulatory elements, which complicates the vector design.

Autoregulation. One elegant way to overcome promoter interactions is the use
of autoregulated systems in which the expression of both the transactivator and the
GOI are controlled by a single ligand-responsive promoter. This can be achieved
in multicistronic cassette designs or by the use of bidirectional promoters. Such
modules can be transduced by retroviral and lentiviral vectors [114, 121, 182].
Autoregulated systems depend on a low level of basal expression that is required
for inducibility. It is important to note that this basal expression is low and does
not necessarily induce a biological effect [116]. Autoregulated expression cassettes
have been shown to result in a stochastic, i.e. bimodal, type of expression. This is
in contrast to the classical systems which rely on constitutive transactivator
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expression and which give rise to gradual expression response [120]. For a
comprehensive distinction between the characteristics associated with autoregulated
and constitutive expression systems, the reader is referred to Fig. 1b. In addition,
it has been shown that autoregulated expression circuits are characterized
by increased expression stability and reduced sensitivity to noise-inducing
fluctuations [13].

2.1.2 Steroid-Inducible Systems

Another important group of transcription inducible systems are those relying on
steroids. In the human proteome, steroid hormone receptors constitute the largest
group of transcription factors. Activation of these cytosolic receptors depends on
binding to their cognate ligands, the steroid hormones, which easily cross plasma
membranes or epithelial borders. Upon binding, a conformational change is
induced that results in release of heat shock proteins and facilitates translocation of
the receptor to the nucleus where gene expression is induced by binding of the
receptors to their cognate promoters (see [135] for review).

Drawbacks are associated with this kind of system. The respective inducers
and/or repressors of GOI expression may modulate not only the transgene, but also
endogenous gene expression. Expression of endogenous genes is avoided by using
synthetic steroids that do not interact with the cellular machinery [26]. A number
of agonists and antagonists of synthetic progesterone receptors were identified and
their function as inducers was characterized in more detail [132].

2.2 Post-transcriptional Control Systems

2.2.1 Gene Silencing Via RNA Interference

A new regulatory mechanism of post-transcriptional gene silencing (PTGS) which
is based on RNA interference (RNAi) was discovered and explored in the last
decade (reviewed in [162]). In mammalian cells, this mechanism is endogenously
realized by so-called miRNAs, small RNAs that show homology to endogenous
mRNAs. Upon binding to cognate mRNA targets, they can specifically down-
regulate expression. miRNAs are encoded in hairpin structures of many cellular
mRNAs. This hairpin structure is processed by cellular enzymes Drosha/DGCR8
to pre-miRNAs and further cleaved by Dicer. The resulting short RNA molecule of
21–23 nucleotides (nt) can then bind to homologous sequences in their cognate
mRNA in a complex with Argonate proteins; this complex is called RISC, the
RNA-induced silencing complex. Depending on the extent of homology,
the consequence of this binding is either translational repression or degradation of
the mRNA, resulting in a specific gene silencing. The discovery and subsequent
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exploitation of this gene-silencing mechanism via RNAi has opened new avenues
towards specific manipulation of genes.

To down-regulate target genes, three different options can be followed.
Long-term down-regulation is achieved (a) by Pol II-dependent transcription of
miRNA encoding mRNAs, thereby exploiting the cellular pathway of processing
pre-miRNAs down to the short 21–23 nt entities, (b) by transducing Pol III-
dependent expression units to transcribe small hairpin RNAs that rely on cleavage
by Dicer to generate the single-stranded RNAs that bind to their cognate target
sequences or (c) by transient down-regulation through direct transfection of syn-
thetically produced short (21–23 nt) RNAs, so called siRNAs.

2.2.2 Steroid Receptor Fusion Proteins

Several studies have shown that the regulatory domains of steroid receptors
constitute a reversible molecular switch for the post-translational regulation of a
wide variety of cytoplasmic and nuclear proteins [140]. Control of gene expression
is achieved by exploiting steroid receptors such as the estrogen receptor and the
progesterone receptor. Here, the pre-existing protein is inactive and becomes
activated by the addition of the steroid. Indeed, it has been shown that upon fusing
the ligand-binding domain of steroid receptors to the GOI, nuclear translocation
can be controlled. Various examples have been reported. These include cell cycle
regulation proteins such as myc, fos and interferon regulatory factor-1 (IRF-1)
[38, 85, 172]. This principle has also been successfully employed to regulate
recombinases such as Cre, Flp and PhiC31 that allow site-specific DNA modifi-
cations including targeted integrations [42, 74, 107, 161].

Mutations in the hormone-binding domain allowed restriction of activation of
the fusion proteins to synthetic hormone analogues such as tamoxifen or mife-
pristone [82, 185]. Cross-activation by endogenous hormones is thereby overcome
and also allows application of this principle in vivo. It should be mentioned that
these compounds might still influence cell physiology: e.g., tamoxifen acts as an
estradiol antagonist.

2.2.3 Control of Protein Stability

Recently, a novel post-translational strategy for controlling the protein level has
been introduced [8]. Fusing the protein of interest to a specific destabilization
domain leads to rapid degradation of the protein. This degradation can be blocked
by administration of drugs that bind to the destabilization domain and thereby
shield the protein from degradation. This activity has been shown to be dose-
dependent. Meanwhile, a number of applications to various proteins highlight the
flexibility of this strategy [8, 61, 142].

A reverse approach was taken by Nishimura et al. [133]. Fusion proteins of the
GOI with Arabidopsis thaliana auxin/IAA transcription repressor 17 (Aid) are
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ubiquitinated and readily degraded by co-expressed TIR-1 in an auxin-dependent
manner. In this system, TIR-1 interacts with the mammalian ubiquitination com-
plex SCF. In the presence of auxin, a phytohormone, degradation is induced.

Apart from the obvious advantages for controlling expression of proteins that
negatively affect the cells, these strategies will also be of interest for perturbing
cells for a limited period of time.

3 Stable and Long-Term Expression of Synthetic Cassettes
in Mammalian Cells

Gene transfer is a prerequisite for modification of cells. For the implementation of
synthetic cassettes into mammalian cells, standard physicochemical transfection
methods can be used. Biotechnologically relevant cell lines such as BHK, Chinese
hamster ovary (CHO) and HEK 293 cells can also be robustly and reliably
manipulated using standard protocols for liposome-based transfer and electro-
poration-based protocols [138, 141, 198]. Other cell types and also many primary
cells require more efficient transduction systems. In particular, viral transduction
methods have been proven to efficiently transduce cassettes. This includes aden-
oviral vectors [186], adenovirus-associated viral vectors [25], and retroviral and
lentiviral vectors [11, 17, 115].

While most gene transfer procedures give rise to a transient expression period,
stable gene expression is less frequent. In most cases, it is achieved by integration
of the transgene into the chromosomal DNA of the host. Stable expression nor-
mally allows the cloning of transgenic cells and thus enables studies with
homogenous cell populations that can be further characterized. The following
section is focused on stable gene transfer and highlights gamma-retroviral and
lentiviral transduction as well as transposon-based methods for efficient and stable
genome engineering.

3.1 Gamma-Retroviral and Lentiviral Vectors

Gene transduction mediated by gamma-retroviral and lentiviral vectors is a highly
efficient method for stably modifying cells of different species [17, 165]. For
production of these vectors, safe packaging systems that rely on helper cell lines or
transient packaging systems have been established [57, 124, 157, 189]. For both
systems, so-called self-inactivating (SIN) vectors are available, in which the viral
promoter/enhancer activity is eliminated upon infection [94, 153, 214]. SIN
vectors allow the transduction of cassettes without potentially interfering viral
regulatory sequences; accordingly, these are the vector types of choice for trans-
duction of synthetic expression modules.
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Gamma-retroviral and lentiviral vectors can accommodate all elements neces-
sary for Tet-dependent expression. In particular, those encoding modules for
graded expression [70, 72, 105] have been described. Apart from this, autoregu-
lated modules have also been successfully transduced by gamma-retroviral
[96, 181] and lentiviral vectors [113, 114, 120]. Appropriate vector systems have
also been developed for the coumermycin system, a system that is similar to the
Tet system (see Table 1) [215]. Moreover by lentiviral transduction autoregulated
cassettes bimodal expression characteristics have been achieved [120].

3.2 Transposon-Mediated Integration of DNA

In recent years, transposon-mediated integration of transgene cassettes has
emerged as a highly efficient method of achieving long-term expression [78].
Various transposon-based systems have been described [48, 77, 88, 125]. Trans-
posable elements derived from natural transposons are non-viral gene delivery
vehicles capable of efficient genomic insertion. Briefly, they rely on a transposase
that efficiently recombines specific inverted repeat sequences that flank a plasmid-
based cassette, resulting in its integration into chromosomes. The transposase
integrates plasmid-based DNA into the chromosomal DNA through a precise,
recombinase-mediated mechanism. Long-term expression of the GOI is thereby
achieved. The transposase can be provided on the same plasmid (cis) or in another
plasmid (trans), but also can be transferred as mRNA or as protein. Different
methods can be employed to transfer the transposon plasmids to the cells. The
enzymatic efficiency of transposases has been recently improved, now reaching the
efficiency of viral transduction [78]. Recent reports include the successful appli-
cation of this method for the chromosomal integration of Tet-dependent expression
modules [70].

3.3 Episomal Vectors

As an alternative to genomic integration, extra-chromosomal maintenance of
replicating vectors can provide long-term gene expression, even in proliferating
cells. Such vectors are derived from viral entities such as Epstein–Barr virus but
can also be based on non-viral episomally replicating vectors (reviewed in [108]).
These episomal vectors can persist in the nucleus without integrating into the
cellular genome and are not thereby affected by position effects. Episomal vectors
comprising synthetic modules have been reported and shown to be efficiently
replicated with tightly controlled expression proprieties [7, 22]. In this regard,
they are an attractive tool for genetic engineering of cells, including therapeutic
applications [37, 202].
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3.4 Strategies for Predictable and Stable Expression
of Synthetic Modules in Mammalian Cells:
Targeted Integration

Most gene transfer protocols—including the above-mentioned protocols employing
viruses and transposons—rely on the stable integration of the modules into the
genome of the host cell via undirected, i.e. sequence-independent, illegitimate
recombination, which is a largely random process. Accordingly, the sites of inte-
gration are mostly spread all over the genome [204]. As a consequence, individual
cell clones are characterized by specific integration site(s) of the module(s).

Once integrated into the cellular DNA, transgenic modules are affected by
neighboring chromosomal elements that modulate promoters to a large extent
(see [199] for a recent review). Enhancers and silencers directly affect the synthetic
promoters of individual modules in cis. Besides this, chromatin-modeling elements
such as locus control regions and S/MARs significantly influence the transgene
expression level [18, 101, 199]. Finally, evidence has been provided that proximal
promoter elements can also interact with incoming promoters (promoter crosstalk)
resulting in their down-regulation (e.g. by promoter occlusion) or potentiation [66].
These interactions of the synthetic modules with the chromosomal flanking regions
can affect both the basal activity of a synthetic module and its regulation capacity, a
phenomenon described as ‘‘position effect’’. Thus, on random integration, indi-
vidual cell clones display a highly heterogeneous expression pattern of the synthetic
module and have to be screened for appropriate, i.e. tightly controlled, expression.
Accordingly, the reproducibility is often difficult on random integration of
expression cassettes. On the other hand, the heterogeneity might be of advantage if
infrequent phenotypes in individual cells have to be studied.

Homologous recombination is used in stem cells for targeting transgenes to
specific loci. This method allows the optimization of the performance of a
Tet-dependent cassette in a characterized integration site [167]. However, in dif-
ferentiated cells, homologous recombination is a very infrequent event. For these
cells, recombinase-based methods such as targeted integration or recombinase-
mediated cassette exchange (RMCE) (reviewed in [54, 200]) represent potent tools
for targeting individual chromosomal sites for various applications in order to
overcome the limitations of random integrations. Indeed, such approaches have
been successfully performed for reliable modification of the mouse genome
[136, 149]. In addition, it has been exploited for the generation of production cells
[55, 106, 131].

As an alternative to site-specific recombinases, strategies have been followed to
increase the frequency of homologous recombination by specific induction of
double-strand breaks. For this purpose, zinc (Zn) finger-based nucleases are
designed to induce DNA double-strand breaks at specific sites of the genome
[87, 184]. Triggered by this DNA break, co-transfected expression cassettes are
integrated through cellular repair enzymes. Targeted integration of cassettes into
virtually any chromosomal site can thereby be achieved.
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4 Expression Characteristics Created by Synthetic Modules

While pioneering work in prokaryotes and lower eukaryotes has provided proof of
concept for implementation of even complex synthetic systems [40], synthetic
networks have also been designed to create new functionalities in mammalian
cells. Strategies for establishing complex artificial circuits in mammalian cells
have been summarized in a number of excellent reviews [6, 65, 191, 192]. It is
anticipated that new functionalities that mimic endogenous functions can be
generated with the help of complex synthetic circuits. One example concerns the
engineering of signal transduction pathways. The challenges in specific engi-
neering of signal transduction pathways by synthetic tools have been highlighted
[84]. These concern (a) the fact that signalling transduction pathways are much
faster than transcriptional responses generated with synthetic circuits, as recently
reviewed [143], (b) the impact of subcellular localization of signalling proteins,
and (c) the inherent noise of genetic circuits in contrast to signalling molecules
whose actions are less stochastic due to the large number of molecules involved.

In Table 2, synthetic approaches are exemplified that allow the establishment of
defined expression characteristics. Here, we focus on several elegant studies.

One of the first synthetic circuits created was a synthetic three-step transcription
cascade. This was realized by interconnecting the regulatory modules responsive
to tetracyclines, erythromycin and streptogramin in a sequential manner [91]. This
cascade was shown to be controlled individually at the various levels and provided
four defined levels of expression in response to the three antibiotics. Furthermore,
functional coupling of endogenous signals and synthetic cassettes was recently
realized. In this cascade, hypoxic conditions induced translocation of endogenous
HIF-1alpha to the nucleus, which resulted in activation of an artificial multi-step
regulatory module initiated by a HIF-1-responsive artificial module [93].

By combining two antibiotic-dependent Off-type switches in a mutually
repressing manner, a biological toggle switch could be created [92]. In this study,
the authors used two independently controlled synthetic modules to express mutual
repressor proteins that switch off the other expression unit. For this purpose they
relied on the KRAB transrepressor that epigenetically silences the neighbouring
DNA region [127] (for details please consult Sect. 2). Binding of the KRAB
domain to the respective promoter was realized upon fusion of the KRAB domain
to the erythromycin- or pristinamycin-regulated protein domains, thereby directing
the KRAB domain to the respective synthetic promoter. This binding can be
impaired by addition of the respective small molecule drugs pristinamycin and
erythromycin. Upon releasing one of the repressors by addition of the antibiotic,
expression of the second regulatory module is initiated. This expression is main-
tained even in presence of the repressor, thus providing a toggle-switch-like
expression phenotype. Furthermore, with this setting a bimodal (On/Off) expres-
sion phenotype was created.

In the bimodal, ‘‘bistable’’ or ‘‘switch-like’’ expression pattern, the concentra-
tion of the inducer increases the probability that a gene will be expressed. Once it
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is turned on, expression is always maximal. Natural examples for this switch
include E2F activation of Rb [208] and the response of mouse embryonic stem
cells to leukemia inhibitory factor (LIF) [32]. Bimodally expressed genes in the
mouse genome were identified based on microarray data [41]. In an engineered
system, bimodal expression has been realized by implementing autoregulated
switches [90, 120].

Bimodal expression can result in stochastic activation of gene expression.
Moreover, such expression patterns have been shown to result in hysteresis.
In natural systems, hysteretic switches are considered to make gene expression
more robust and largely independent of noise. This is due to the fact that subtle
changes in the concentration of the inducers do not affect the expression pheno-
type. Indeed, such an expression pattern is also predicted by modelling approaches
based on stochastic mathematical tools [120].

More complex expression phenotypes are represented by oscillators. Oscillating
gene expression can be achieved by interconnecting positive and negative feed-
back loops. Periodic gene expression results in the proper timing of events in
periodic processes. The first oscillating gene network in mammalian cells has
recently been introduced [173]. This approach employed a tetR-based negative
feedback loop which was shown to be modulated by the length of the intronic
region preceding the tetR coding sequence. By increasing the intron size up to 16
kb, higher oscillation periods were created. A more recent study [177] combined a
positive feedback loop with a time-delayed negative feedback loop and could
thereby generate tunable and sustained oscillation as exemplified by expression of
fluorescent proteins. By adjusting the concentration of the inducer, periods could
be manipulated from 140 to 330 min. Significantly slower oscillation periods were
achieved by combining a tTA-dependent positive feedback loop with a delayed
negative feedback loop. This was realized by implementation of an intronically
encoded siRNA that negatively regulates expression of an autoregulated tTA loop.

Table 2 Switches in mammalian cells realized by synthetic cassettes

Synthetic switches References

Boolean gates: AND, OR,
NOR,…

Kramer et al. [92]; Rinaudo et al. [144]

Synthetic transcription cascade Kramer et al. [91]
Semi-synthetic transcription

cascade
Kramer et al. [93]

Coupled transcription/
translation cascades

Malphettes and Fussenegger [110]; Deans et al. [33]; Greber
and Fussenegger [65]

Toggle switch Kramer et al. [92]; Greber and Fussenegger [65]
Hysteresis May et al. [120]; Kramer et al. [93]
Semi-synthetic oscillator Toettcher [179]
Synthetic oscillator Swinburne et al. [173]; Tigges et al. [177]; Tigges et al. [178]
Epigenetic memory device Kramer et al. [92]; Greber and Fussenegger [65]
Time delay expression Weber et al. [192]

264 L. Botezatu et al.



Interestingly, in contrast to the above-mentioned rapid oscillation in this system,
prolonged periods of about 25 h were realized.

While the oscillatory examples are highly promising, to date they could only
be realized in transient expression systems. It seems that only a fraction of the
transduced cells react in the desired way because the composition of the individual
elements must match a certain stoichiometry. This has so far limited the
application.

5 Applications of Synthetic Modules for Alteration
of Cellular Function

To increase cellular productivity, a number of studies have been performed that
aim at the modification of certain cellular features that directly or indirectly reg-
ulate production of relevant biomolecules. This includes specific modulation of
cellular pathways such as metabolic pathways, proliferation or survival. Here, we
focus on strategies for controlling cell proliferation of immortalized cell lines as
well as novel approaches for controlled expansion by conditional immortalization.
In addition, we discuss approaches towards controlled product secretion.

5.1 Control of Cell Proliferation

Control of cell proliferation is of central interest in mammalian cell biotechnology.
The motivation for controlling cell cycle progression and cell proliferation
emerged for two different reasons. Firstly, fed-batch production schemes are
limited by the fact that ongoing cell proliferation and accompanying increase in
cell mass eventually leads to a cellular/system collapse and thus defines the end of
the production phase. Therefore, based on the fact that cell proliferation consumes
a significant portion of cellular energy, it was hypothesized that control of cell
proliferation would allow redirection of this energy to production of the desired
product, thereby increasing productivity.

Initial cell engineering strategies developed to increase cell-specific recombi-
nant protein production rate by manipulation of cell cycle progression remained
below expectations. The first evidence that recombinant protein production might
be uncoupled from cell proliferation was obtained in CHO cells and was described
20 years ago [69]. Since then, the development of strategies that lead to an increase
of cellular productivity by manipulating cell cycle progression has become a major
area in the metabolic engineering field. These first results opened avenues for
improvement of strategies that aim at a more balanced and controlled cell growth
in a biotechnological perspective, being an active area of cell engineering research
nowadays.
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5.1.1 Controlled Growth of Immortalized Cells

Proliferation control of immortalized cell lines has been accomplished by at least
three different main strategies. The first involves cell growth arrest based on the
engineering of molecular networks that control progression of the mammalian cell
cycle [51, 52, 56, 122]. The second is based on cultivation at sub-physiological
temperatures (i.e. below 37� C) [19, 46, 47, 81, 154, 210–213]. The third approach
consists in the retardation of proliferation by chemical induction of cell cycle
arrest [43, 71, 103].

The following paragraph describes approaches towards increased productivity
of recombinant proteins by engineering cellular pathways that control the cell
cycle progression of immortalized mammalian cell lines such as CHO or HEK293.

Early studies on the mammalian cell cycle and cancer research uncovered a
multitude of proteins whose function relies on negative effects on cell cycle
progression. The control of the cell cycle of immortalized cell lines predominantly
dealt with arrest at the G1 phase, considered to be the ideal time period in which
the productivity of the protein of interest can reach its maximal levels ([15, 28, 75,
170, 180, 210, 211] and [170] for a recent review). Nevertheless, other reports
described the production of recombinant proteins when the cell cycle is arrested in
S phase [47] or even irrespective of cell cycle phase [104].

One of the first studies aimed at controlling cell growth by genetic engineering
implicated the over-expression of IRF-1. Besides the pleiotropic effects of IRF-1
in activating several cellular genes (reviewed in [95]) ranging from IFN-b to
IFN-stimulated genes, it was shown that IRF-1 also acts as a tumor suppressor
[174, 175] and, importantly, acts as a negative regulator of cell proliferation
[85, 145]. It was shown that the downstream effects of IRF-1 converge, at least
partially, in the induction of anti-proliferative genes, such as p21 [137, 175] leading
to a G1 cell cycle-specific arrest. Thus, the control of cell cycle progression by
expressing IRF-1 can be regarded as a multigenic approach towards an increase of
recombinant protein production by modulating the cellular transcriptome.

The activation of IRF-1 function was achieved by transcriptional activation of
the IRF-1 transgene and by post-translational activation. Pioneering studies on
growth manipulation of recombinant mammalian cells were performed by estab-
lishing a murine C243-based cellular system in which proliferation was controlled
by inducible expression and activation of IRF-1 protein [89]. In this proof-
of-principle study, the transcription of IRF-1 is driven by a Tet-repressible
promoter and thus IRF-1 is expressed only in the absence of the inducer. Growth
inhibition could be demonstrated by omitting the inducer from the growth med-
ium. The second approach employed a fusion of IRF-1 to the estrogen receptor.
In this case, the function of the constitutively expressed IRF-1 fusion protein is
only activated by the addition of b-estradiol. The biotechnological relevance of
this achievement was later demonstrated by modulating the IRF-1-responsive
cellular system towards production of a relevant model protein [56]. The authors
showed that proliferation control of a BHK-derived cell line in a perfused
cell-culture process was effectively regulated for over 7 weeks. Moreover,
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heterodimeric IgG antibody productivity increased up to sixfold during growth
arrest triggered by inducible expression of IRF-1. The drawback of efficient and
rapid cell growth inhibition by IRF-1 over-expression in BHK-derived cells is
related to a decrease in the cell viability over time. In an attempt to keep cell
viability at satisfactory levels, it was shown that manipulation of cycles by
addition and removal of estradiol modulates IRF-1 activity, thus overcoming the
loss in cell viability of IRF-1 growth-arrested BHK cells [27].

Other studies were performed by over-expressing proteins that cause inter-
ventions in the cell cycle control. Such a ‘‘one gene metabolic engineering’’
approach was first performed and described by Bailey et al. [51], over-expressing
inhibitors of cell cycle progression transiently transfected into CHO-derived cells.
The authors achieved an enhanced productivity in CHO-derived cells upon tran-
sient expression of p21, p27 or the p53-derived mutant p53-175P, (mutant
showing specific loss of programmed cell death function, [146]). Importantly, the
expression of these genes was coordinated with expression of a model protein,
secreted alkaline phosphatase (SEAP), and expression of both genes was driven by
a Tet-repressible promoter. Upon triggering expression of each of these inhibitors
of cell cycle progression, growth arrest was achieved with concomitant increase in
recombinant protein production. Moreover, the growth capacity of the cell lines
was rescued when the expression of cell cycle inhibitor proteins was repressed.
The concept was further extended by modulating the ‘‘one gene metabolic engi-
neering’’ by constitutive expression of cytostatic genes [122]. The authors found
that conditional expression of these genes in stable clones does not entirely
recapitulate what was observed in transient expression settings [51]. Stable inte-
gration of p21 did not lead to generation of clones with growth arrest capacity and
p53-175P expression was related to induction of apoptosis in growth-arrested
cells. Nevertheless, the authors succeeded in generating CHO-derived clones
expressing p27 with cell growth arrest properties in a regulatable manner and with
a concomitant 10–15-fold increase in relevant protein production per cell.

Cell cycle control is an intricate network of cellular proteins that act in an
orchestrated manner in regulatory circuits. This includes some intervening mole-
cules that can be overcome by the function of other proteins. The redundancy of
such pathways in controlling cell cycle progression was believed to account for the
impairment in establishing stable integrated mutants with cell arrest properties on
inducible over-expression of certain cytostatic proteins such as p21 [122]. In an
attempt to circumvent this limitation, Fussenegger et al. described a ‘‘one-step
multigene metabolic engineering technology’’ in CHO cells [53] as a means to
regulate the multifactorial process of cell cycle progression. In order to increase
the levels of active p21 in the cells, the authors developed a strategy in which p21
was coordinatedly expressed with the transcription factor C/EBPa (a protein
that increases p21 production and protein half-life). Taking advantage of
Tet-controlled tricistronic expression vectors [52], the regulated and coordinated
expression of p21, C/EPBa and the model protein with concomitant cell cycle
arrest in stable cell clones were achieved [53]. The authors showed that regulation

Genetic Aspects of Cell Line Development 267



of cell cycle progression could be achieved in a multifactorial manner, confirming
that an individual cell is more productive in a cell-cycle-arrested state.

The concept of cell growth arrest by regulatable over-expression of cytostatic
proteins was further extended towards increase of recombinant protein production.
It proved to be applicable not only to other cell lines, and different regulation
systems but to expression of proteins with high potential application value
[75, 190]. The authors established a low-density batch culture of NS0-derived cell
line expressing p21 in an inducible manner. One of the major achievements in this
work was the use of a regulatable promoter whose expression is triggered by the
addition of an inducer (On-system). The authors describe the G1-phase arrest in
response to high levels of p21 expression and concomitant increase of IgG4
antibody by more than fourfold in the arrested state.

In another study, the approach described above was extended to a high-
cell-density continuous perfusion culture [75]. A multigenic manipulation of the
cell cycle was evaluated by expression of the p21 gene and the anti-apoptotic
protein Bcl-2. Although the authors could confirm the role of p21 in the arrest of
cell cycle progression and increased productivity, Bcl-2 expression had no effect
on cell viability of the arrested cells. The coordinated expression of anti-apoptotic
proteins (such as Bcl-2 and BclX1), cytostatic genes (p27, p21) and a GOI was
earlier described in CHO-derived cell lines [53]. The authors found that only
with coordinated expression of BclX1 and p27 cell cycle arrest was possible in
G1 phase. Stable cell clones with G1 growth arrest proprieties were generated and
no signs of apoptosis during growth-arrested periods were observed (for a further
detailed description of cellular engineering strategies that aim at the prolongation
of cell viability by over-expression of anti-apoptotic proteins, the reader is referred
to the Sect. 5.2).

The positive relationship between cell cycle arrest in the G1 phase and the
increase in recombinant protein productivity was found in different cell lines
[51, 53, 56, 75, 122, 190]. Importantly, the physiological basis of this effect
was revealed by different groups [15, 28, 104]. Bi et al. were able to show that in
CHO-derived cells expressing inducible p21, the increase in productivity of the
model protein (GOI) is related to an increased cell size, mitochondrial mass and
activity, and ribosome biogenesis [15]. Furthermore, they showed that these
alterations were uncoupled from the cell cycle, i.e. these physiological changes
occur in the cell despite the abolition of cell cycle progression and division.
Characterization of cellular metabolism of a CHO cell line over-expressing the
cytostatic p27 protein showed the same line of evidence [27]. The cell cycle arrest
in G1 phase was found to be related to an increase in cell protein content and
concomitantly with a higher expenditure of cell energy.

5.1.2 Conditional Cell Expansion

Many immortal cell lines have been either isolated from tumor tissue or have
resulted from spontaneous immortalization. In addition, cell lines have been
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successfully established by introduction of immortalizing genes into primary
cells. However, in many cases, such constitutively immortalized cells have
limited benefit. They often do not reflect the properties of the primary cells they
have been derived from. One issue concerns the expression of the immortali-
zation gene per se, which has a significant impact on the cellular phenotype.
In recent years, strategies have been followed aiming at a systematic construc-
tion of new cell lines from primary cells. The emphasis of these approaches is to
restrict expression of the immortalizing gene(s) to the period of cell expansion,
in other words controlled expansion of primary cells. This is achieved by
reverting or switching off the immortalizing genes (see Table 3 for an overview
of recent approaches). With such approaches, current limitations of immortalized
cells which are related to prolonged constitutive expression of the immortalizing
gene(s) causing changes in cellular properties might be overcome. The resulting
cells may be used for analytic issues, the production of recombinant proteins,
and gene and cell therapies.

Conditional cell expansion is achieved by conditional expression of specific
genes. One example concerns the gene encoding the simian virus 40 large
T antigen (TAg). TAg is a powerful oncogene able to inactivate cellular key tumor
suppressors like p53 and retinoblastoma proteins, and is therefore frequently used
in generation of immortalized cell lines. There is evidence that the transforming
potential of TAg is also attributed to an anti-apoptotic activity which is not related
to the activation of p53 [4]. In a pioneering study aimed at generating conditionally
immortalized cell lines, Jat et al. created a transgenic mouse called ImmortoMouse
for which they developed a thermo-labile mutant of the SV40 TAg [79].

Table 3 Conditional and reversible immortalization approaches

Immortalized cell lines Types of
immortalizations

Types of
switches

References

Murine
Embryonic fibroblasts Conditional Tet-system May et al. [116]
Ear fibroblasts (adult) Conditional Tet-system May et al. [118]
Lung microvascular

endothelial cells
Conditional Tet-system May et al. [121]

Myogenic clonal cell lines Conditional Temperature Morgan et al. [128]
Hepatocytes Conditional Temperature Yanai et al. [205]
Tissue specific microvascular

endothelial cells
Conditional Temperature Langley et al. [98]

Astrocytes Conditional Temperature Langley et al. [99]
Cardiomyocytes Reversible Cre-recombinase Rybkin et al. [147]
Hematopoietic cells Reversible Estrogen Ito et al. [76]; Wang

et al. [188]
Human
Umbilical vein endothelial

cells (HUVEC)
Conditional Tet-system May et al. [121]

Liver endothelial cells Reversible Cre-recombinase Salmon et al. [148]
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The thermo-labile mutant of SV40 TAg is inactive at the physiological body
temperature and permissive at 33 �C. In the ImmortoMouse the thermo-labile
mutant of SV40 TAg is under the control of the mouse major histocompatibility
complex H-2Kb promoter which is expressed in a broad range of tissues and is
induced by interferon. On isolation of cells from the ImmortoMouse, several
conditionally immortalized cell lines have been established, including myogenic
cell lines [128], hepatocyte cell lines [205], tissue-specific micro-vascular endo-
thelial cells [98] and, more recently, an astrocyte cell line [99]. In these cell lines,
permissive conditions (33 �C in the presence of medium containing interferon-c)
turn on the expression and activity of SV40 TAg leading to exponential prolif-
eration of the cells. Importantly, in this proliferative state the established cell lines
retained most of their tissue-specific morphological and biochemical properties.
When the cells were transferred to non-permissive temperatures (37 �C or higher)
they either ceased proliferation or started to differentiate.

While the cell lines developed from the ImmortoMouse gave first proof-
of-concept for de-novo establishment of growth-controlled cell lines, the approach
is limited to the temperature-labile mutant of SV40 TAg. Obviously, such an
approach is not generic or easily translatable to other immortalizing genes. Thus,
another approach was employed that makes use of specific excision of the
immortalizing gene(s) mediated by DNA recombinases such as Cre or Flp,
resulting in reversible expression of the immortalizing gene. Salmon et al. showed
that human liver endothelial cells were immortalized through lentiviral-mediated
gene transfer of SV40 large T and telomerase. Cre-mediated excision of the
immortalizing genes resulted in complete growth arrest within 2 days [148].

In a similar study, Rybkin et al. used TAg to create cardiomyocyte cell lines
capable of proliferating and reversibly withdrawing from the cell cycle [147].
Cre recombinase was used to switch the cells from a proliferative to a quiescent
state. Although the reversible Cre/loxP approach enables conditional immortali-
zation, this method is challenging since high transduction efficiency of the
recombinase is hard to achieve. In addition to this, the selection schemes must be
very strict to ensure a homogenously reverted cell line in which the non-transduced
cells are not overgrown [121].

However, recent developments in control of gene expression (see Sect. 2) have
allowed the principle of conditional expression to be employed in more generic
approaches. This was shown both for transcriptionally and post-transcriptionally
controlled approaches.

The estrogen receptor was used to construct a selective amplifier gene for
controllable expansion of genetically modified hematopoietic cells. Specifically, the
fusion of a steroid receptor hormone-binding domain to the growth factor G-CSF
exerts a reversible activation in a steroid-dependent manner [76]. Therefore, the
growth signal is active only upon estrogen treatment of the transduced murine
hematopoietic stem cells, and most of the cells expand even if some of them enter the
differentiation pathway. This strategy is applicable to the in vivo expansion of
genetically modified hematopoietic stem cells [97]. In another study, the principle of
estrogen receptor-mediated control was successfully applied to hematopoietic

270 L. Botezatu et al.



progenitor cells using tamoxifen-controlled expression of HoxB8 [188], giving rise
to expandable stem cells that are still susceptible to differentiation.

More recent studies have shown that cell proliferation control can be achieved
by an autoregulated, Dox-dependent transcriptional immortalization strategy
[116]. Autoregulation imposes a bimodal decision on the cells. Thus, only fully
induced cells receive the proliferation signal while non-induced cells remain
un-induced and are overgrown by the proliferating cells. The installation of the
positive feedback loop requires a low basal expression of the transactivator and is
initiated through administration of Dox. In the presence of Dox, the system is
turned on and the immortalizing gene is expressed, leading to the exponential
proliferation of cells [158]. In the absence of Dox, the induced effects are reverted
and the cells stop proliferating.

Through lentiviral transduction of the autoregulated expression cassette, a
broad range of cell types can be transduced. Lentiviral transduction is much more
efficient than plasmid transfer, thereby dramatically increasing the immortalization
efficiency up to 1,000-fold [121].

A series of such lentiviral vectors were constructed that can be distinguished by
the expression of the proliferator gene such as SV40 TAg, PymT, hTert and c-Myc.
This allows the simultaneous transduction of cells with different proliferator genes.
Indeed, the combination of such genes [86, 206] led to the expansion of cell types
that were not previously accessible (Table 1). Examples include lung micro-
vascular-derived and HUVEC-derived endothelial cells from mouse and human
origin [121]. Importantly, these cells expressed cell-type-specific markers and, in
the case of endothelial cells, showed de-novo vessel formation in vitro and in vivo.
Controlled proliferation was achieved due to strict co-regulation of these cells
which harbor several proliferator genes. Importantly, the conditionally immortal-
ized cells did not induce oncogenic transformation [118].

Proliferation-controlled fibroblast cells were used to express recombinant
erythropoietin (EPO) without any signs of degradation, while expression was
higher in the growth-arrested state [117].

5.2 Apoptosis

Apoptosis is a form of regulated or programmed cell death controlled by signaling
pathways in mitochondria, endoplasmic reticulum (ER), or cellular surface
death receptor(s). A series of cysteine proteases (caspases) execute the cell death
program [5, 109]. Apoptosis is an inherited property of cells derived from their
original function in the multi-cellular organism which is mostly non-beneficial in
technological cell culture. Many mammalian cell lines are susceptible to apoptosis
under conditions of typical bioreactor growth cultivation [139, 164], thereby
decreasing the overall productivity achievable. Inhibiting or controlling apoptosis
is thus a major target of cell engineering, e.g. by blocking pro-apoptotic mecha-
nisms or by over-expressing apoptosis-counteracting proteins.
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Apoptosis can be initiated by two general mechanisms, which are characterized
by extrinsic or intrinsic pathways. Extrinsically induced apoptosis is initiated
through the binding of ligands (e.g. FasL) to receptors of the tumor necrosis factor
(TNF) family. FasL binding induces the formation of the death-inducing signaling
complex (DISC) which contains the Fas-associated death domain (Fadd), caspase-
8 and caspase-10. The intrinsic mechanism of apoptosis initiation is the answer
to cellular stress. DNA damage, for instance, causes the activation of p53 which
induces the expression of pro-apoptotic members of the Bcl-2 family (Bax, Bak,
Bok, Bik, Bad, and Bid). These factors are responsible for the release of
cytochrome c from the mitochondria which binds to the protease activation
factor 1 (Apaf-1). Apaf-1 in turn is now able to activate procaspase-9.

Among the intrinsic factors leading to apoptosis, the ER stress-induced death
pathway is certainly of great significance in high-expression bioprocesses. It is
caused by an unfolded protein response (UPR), hypoxia, changes in intracellular
calcium levels or lack of glucose. Enhanced cell survival in bioreactors has been
achieved by the supplementation of chemicals (e.g. the polysulfated naphthylurea
Suramin) and certain recombinant proteins. Examples are the expression of the
insulin-like growth factor receptor along with its ligand IGF-I and transferrin
added to the medium [171], and elevated concentrations of amino acids which
have shown to protect cells from environmental stress [35].

Genetic strategies for preventing apoptosis in cell culture can be divided in the
over-expression of anti-apoptotic factors and the knockdown of pro-apoptotic
factors. The over-expression of anti-apoptotic genes like bcl-2 and bcl-xL in NS0,
CHO, BHK or hybridoma cells was shown to improve cell viability when exposed
to cellular stress such as starvation or toxins (see [5] for review). Caspases-9, -3
and -7 are targets of the X-linked inhibitor of apoptosis (XIAP) which can be used
for over-expression [151]. Cho et al. demonstrated that the over-expression of the
Ca2+-dependent enzyme transglutaminase 2 (TG2) inhibits apoptosis through
suppression of caspase-3 and -9 activities [29].

Since apoptosis is a complex biological program with redundancy, a combi-
nation of several factors involved in different stages of apoptosis is more
effective than the over-expression of a single one. This was demonstrated by the
co-expression of Bcl-XL and XIAPD in CHO and myeloma cell lines [150–152].
Dorai et al. have systematically tested the combination of a set of anti-apoptotic
genes in a CHO cell line. The best results in terms of viability and productivity
could be achieved by over-expression of either single anti-apoptotic genes (Bcl-2D
or Bcl-XL), or a combination of two or three anti-apoptotic genes (E1B-19K, Aven,
and XIAPD) [36].

The knockdown of pro-apoptotic factors represents another genetic engineering
strategy to circumvent apoptosis. Silencing Bax and Bak in CHO cells using
shRNA vectors was reported to increase cell viability and improve the production
of recombinant interferon-c in producer CHO cell clones [102]. Silencing
caspases-3 and -7 expression, but not caspase-3 alone, can improve cell viability
and recombinant thrombopoietin production in CHO cells following treatment
with sodium butyrate [168, 169]. Silencing the apoptosis-linked gene 2 (Alg-2) and
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the Zn-finger protein transcriptional factor Requiem in CHO cells was also
reported to improve cell viability and recombinant protein production [201]. The
disadvantage of these knockdown approaches is that usually less than 100% of the
target
mRNA is silenced, leading to a remaining pro-apoptotic function. Using Zn-finger
nucleases, Cost et al. established a double knockout of both genes Bak and Bax in a
CHO cell line and could improve the production of IgG up to fivefold under
starvation conditions and higher cell densities under normal conditions compared
to wild-type cells.

5.3 Secretion Engineering

The majority of therapeutic proteins which are produced by mammalian cells in
bioreactors are secreted into the medium. Consequently, efforts have been made to
improve cellular productivity by the introduction of biological modules which
enhance protein transport and post-translational modifications. All secreted
proteins are co-translationally targeted to the endoplasmic reticulum (ER) and then
translocated across the membrane of the ER to the Golgi apparatus. The proteins
are further processed within the trans-Golgi network before packed into secretory
vesicles.

The transport and modification of heterologous proteins through the secretory
machinery can be seen as a bottle-neck of protein production. In the ER, cellular
quality control of proteins is performed and only ‘‘perfect’’ products pass this
barrier [39]. Misfolded, unfolded or unassembled proteins will be degraded and
mechanisms are activated to lower the biosynthetic burden of the ER and to protect
it. As mentioned above, this unfolded protein response can induce apoptosis;
consequently, strategies have been developed to engineer cell lines by altering
processes in the ER [156].

Florin et al. generated stable CHO cell lines expressing heterologous ceramide
transfer protein (CERT) [44]. CERT mediates ATP-dependent ceramide transport
from the ER to the Golgi complex [67]. These cells showed significantly higher
specific productivities of the protein HSA and enhanced monoclonal antibody
secretion. The expression of the transcription factor X-box binding protein-1
(XBP-1) was shown to increase the ER content of a therapeutic antibody. This, in
turn, led to a 40% higher productivity of a CHO cell line [12]. XBP-1 regulates
this process by binding to the ER stress-responsive elements within the promoters
of a wide spectrum of secretory pathway genes, resulting in enhanced total protein
synthesis [160].

Chaperones have been linked to many ER functions such as protein translo-
cation, folding, and oligomerization [2, 155]. The lack of co-chaperones seems to
be rate-limiting. However, engineering chaperone systems by over-expression of a
single component of the ER secretion machinery has yielded mixed results
regarding productivity [80, 126]. It was possible to increase antibody productivity
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in a CHO line by over-expression of PDI, but this failed to increase thrombo-
poietin secretion. PDI is an ER enzyme that catalyses the formation
and breakage of disulfide bonds between thiol groups of cysteine residues using
the substrate glutathione. It operates as a chaperone to inhibit the aggregation
of misfolded proteins. Another group was able to demonstrate that the over-
expression of BiP, a member of the hsp70 family, decreased the secretion of a
recombinant antibody in CHO cells [23].

In contrast, over-expression of the calreticulin and calnexin chaperones was
found to nearly double the specific productivity of thrombopoietin in recombinant
CHO cultures [30]. The example of PDI over-expression demonstrates that the
engineering of complex systems such as the chaperone system may need more
sophisticated engineering to improve secretion rates.
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