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Foreword (no one reads it anyway) 

While writing the book, we, the authors, met regularly in Hannover’s bar 
scene for the purpose of discussing mechanics, for brainstorming and 
especially for other reasons. The most fundamental part was: Every evening a 
new bar. We were able to derive stimulation for a non-academic presentation 
of mechanics from these work-related meetings, some of which lasted until the 
wee hours. We would like to express our thanks to each buyer of this book: We 
hope, by means of the well-deserved profits, to be able at some point to pay the 
huge number of remaining open bar tabs. 

But yet another book about the basics of Technical Mechanics. Why?
This book has been a long time in coming! In the forewords of “the others”, 
“simple access to mechanics” has been proclaimed as well as "getting rid of 
academic rigority" and “giving the reader simple access to the basic ideas of 
mechanics”. What many such authors dream of in their greatest fantasies has 
become reality in this book! The authors have rigorously eliminated any 
theoretical blow upsa. The fact is often disregarded that mechanics is simply 
the mathematical description and generalization of everyday observations. On 
the following pages, the fundamentals of mechanics are presented in a manner 
that makes them understandable for almost everybody. And again, most 
importantly: Reading this book should be fun! The examples, supported by a 
lot of cartoons, help to learn by associations and practical experiences. A 
similar textbook has not existed before - the terms "Technical Mechanics" and 
"Fun" have always been contradictious. Here, we would like to organize a 
quick tour through the “building of mechanics” in the most enjoyable manner 
possible, one that emphasizes the entire beauty and simplicity of the conceptual 
construction.

Furthermore, in view of the actual worldwide reorganization of lectures in 
engineering studies (Batchelor & Master instead of various Diploma, Degrees 
or Graduates), this book contributes well to the international harmonization of 
learning. The value of other textbooks is, however, in no way to be diminished 
here. On the contrary: The reading of more advanced academic books is 
strongly suggested to anyone who would like to get an idea of the solid 
foundations of the construction and the lovely arrangement of the details. 

a...which Dr. Hinrichs, regarding the work in question here, often realized with his face 
contorted in pain. 
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One more thing needs to be made clear here: We did not develop contexts 
ourselves in this book. We have simply ripped off the content (as far as 
mechanics is concerned). The sources listed in the bibliography served as a 
model. The ideas for the exercises are mostly based on the holdings of the 
Institute for Mechanics at the University of Hannover. But what is new is... 
well, you’ll see! Another external source had to be used for the translation of 
the book from the original very successful German edition. This work has been 
done by the native English speaking engineer Joe Steen as well as by Jennifer 
L. Jenkins and Carola Kasperek…hey Joe and Mrs. Jenkins, Mrs Kasperek, 
…thanks for that!

If some of the readers get the feeling that we, the authors, react in a 
somewhat allergic manner to one another over the course of the book and try as 
often as possible to get the best of one another, then... really now,... it’s most 
certainly not meant that way!b,c

And finally, here is a short request: This book is still in an experimental 
phase. We and the Postal Service always appreciate comments, criticism and 
suggestions!

Hannover (sometime early in the morning),     

Dr. Oliver Romberg 
Dr. Nikolaus Hinrichs 

b Dr. Hinrichs would like to expressly emphasize here that despite everything, he finds Dr. 
Romberg a very sociable, funny short guy. 
c Dr. Romberg regrets that he is not able to exactly return this flattering compliment, but he 
would like to emphasize that he considers Dr. Hinrichs a boring remarkable scientist. 
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Why don’t you tell the boy
that you’re talking about 

the mean value ?! 

1.  In Full Possession of Our Mental Forces And Moments: 
Statics

Imagine yourself sitting somewhere in a train compartment of the 
InterRegional Express between the German towns of Aurich and Visselhövede 
(the latter, located between Hannover and Bremen, can be pronounced much 
easier after a few shots of tequila, but Dr. Hinrichs can also manage this 
without the help!). 
 After spending a few hours in the same position in this cramped seating 
arrangement, a slight pain in your posterior region will involuntarily manifest 
itself. This can be attributed to a compressive force. Despite the pain, your 
willpower to keep from moving within the chosen coordinate system (e.g. rail 
car No. 234) actually triumphs! And already we have a static system! Statics is 
namely the science dealing with the action of forces on bodies at rest. And 
since we didn't have to wait around for Einstein to know that a body under 
uniform motion can also be considered at rest, the laws of statics can also be 
applied to bodies or systems moving at constant speed, such as in our example 
with the train (assuming that it is moving considerably slower than the speed of 
light).
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Figure 1: Above) One Newton pulling, below) Two Newtons pulling 

In all areas of mechanics, even the most elementary relationships can 
sometimes be a real poser because in some way or another they seem to elude 
our power of imagination. Another reason is the fact that we always try to 
solve a problem on the basis of our own experience combined with supposed 
logic. In this respect, mechanics can play some pretty nasty tricks on us (Dr. 
Hinrichs professes not to have experienced this phenomenon.)  

Let's have a look at Fig. 1 (above). It shows a firmly fastened (fixed), 
massless rope whose free end is being pulled by exactly one Newton (a force of 
one Newton (1N) corresponds to the force needed to hold up approximately 0.1 
kg). Here the rope is assumed to be massless so that we do not have to take any 
vertical forces into account. The same rope is shown in Fig. 1 (below), but at 
its other end we now see another Newton (perhaps his equally strong brother) 
pulling with all his might. Therefore two are pulling. The question now is: In 
which case must the rope withstand more force? Or in a more mechanical 
sense: In which of the two cases is the rope subject to a greater tensile force?  

According to surveys, those unfamiliar with mechanics are equally 
divided on this question. One side says that the rope with the two Newtons 
must withstand more force since, after all, here it is being pulled twice as hard. 
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The others are convinced that the rope has to absorb the same force in both 
cases, and that is precisely right! If you cannot grasp that, think about this 
question: How is the rope in our example supposed to know that in case 1 
(below) it is being held at one end by Sir Isaac Newton’s brother and not 
wrapped around a rusty old bollard? The whole thing can also be expressed 
another way. In case 1 (below) Newton’s brother simulates the bollard, having 
to make quite an effort to keep from being pulled across the lawn by the other 
Newton. To do so, he must exert the same force as his brother, or as the bollard 
in the other case. But if this were indeed as obvious as we think it is, then they 
would not have used four horses to quarter criminals in the Middle Ages but 
instead would have used just three nags and a tree.

Dr. Romberg, who likes to play hobby philosopher on evenings which 
turn out to be much too long, asks at this point: 

What is a force anyway? 

One discovers very quickly that this question is impossible to answer. But it’s 
just great to philosophize about. In science, if something cannot be explained, 
it is either defined, or dismissed as nonsense for a few decades or centuries. 
The famous Italian painter, illustrator, sculptor, architect, scientist, technologist 
and engineer (study hard!) Leonardo da Vinci (1452 1519) has the following 
definition of force on hand for us [16]:

“I submit that force is an incorporeal faculty, an invisible power occasioned by 

incidental, external strength, introduced and instilled throughout bodies which 

appear flattened and shrunken through its use, imparting to them active life of 

wonderful power; it impels all things of creation to transformations in their 

shape and situation, rushes impetuously to its desired death, altering itself 

according to cause; made great by delay, weak by swiftness, it is born of 

strength, and freedom is its demise .” 

You really could add the unregistered trademark “poet” to the above list. 
For the mere mechanical engineer, a force is by definition a phenomenon 
which either causes motion or deformation, or restrains it.
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Let’s imagine, for instance, someone pressing their nose quite 
emphatically against the side panel of a heavy, free-standing cabinet. At some 
point in time the test person will begin to detect deformation, or even motion, 
namely at the moment when the cabinet with its blood-splattered side panel 
suddenly tips over. This is all due to a force being applied (as mechanical 
engineers say) by the nose to the cabinet and simultaneously by the cabinet to 
the nose. When determining the forces at work here, it does not matter which 
side of the problem we deal with: The forces on the side panel and nose are 
basically equal in magnitude but act in exactly opposite directions. Voilà! We 
have already grasped the first and most important “axiom” of statics: 

Action = reaction (force = counterforce). 

Did you at last finish your 
work, Newton? Remember 

our research contract! 

In mechanics this axiom is also known as “Newton 3”: “The forces of action 
and reaction are always equal, or the resultant forces of two interacting bodies 
are always equal in magnitude and opposite in direction.” 
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(The only exception to this is when Dr. Hinrichs winks at some dolled-up 
babe...).

If the rope example (Figure 1) is treated professionally as a simple 
exercise in statics, it first has to be drawn in a simplified manner. We simply 
symbolize the tugging figure by an arrow. Because a force is actually a vector, 
i.e. you have to specify not only its amount (here: F = 1 N) but also the 
direction in which it acts. The action of a force is thus a function of its 
magnitude and direction. 

Figure 2: Equivalent system for “Newton pulling a rope” 

Instead of the stationary bollard, we now use an equivalent mechanical model: 
the fixed support. Figure 2 thus shows a complete equivalent mechanical model 
for the system: “One Newton pulling on a fastened rope.” 

1.1 The Most Important Thing of All... 

The most important thing in the life of mechanics students of both sexes starts 
with an “F” and ends with a “g”. Something you simply can’t get out of your 
mind! Unfortunately, it is practiced far too little and only in very few cases is it 
performed with the necessary care and love, thus leading to all sorts of 
problems. But it does not have to be that way if you learn how to do it properly 
from the very start: free-body drawing, that is.



6

Drawing a free-body diagram means isolating a system (here the rope) 
from all figures, bollards, levers, weights, etc. and replacing them with arrows 
(forces and moments). Here you want to make sure that the system no longer 
has any contact with its surroundings when the free-body diagram is finished.  

So – much like using a pair of scissors – we cut the rope free of all 
connections, isolating it from its surroundings (bollard and person). And 
wherever we cut through material (here the rope) we have to draw in (at least) 
one force. We are allowed to cut wherever we want! Thus we can determine 
the forces at any point of a body (even within it), provided that they have been 
correctly indicated. Here the choice of direction of the forces is not crucial. It is 
much more important to consider whether the point at which we have cut is 
acted upon by a horizontal and/or vertical force and/or a moment (discussed 
later). If anything is overlooked in this regard, then the determination of forces 
and moments goes down the drain. Thus, success in solving a problem or 
exercise in mechanics rises and falls with taking a close and precise look at it.

So if we remove the Newton figure, we must then replace it “right away” 
with an arrow (force) to keep the rope from going slack. This has already been 
done in Figure 2. But the same also holds true for the bollard or for the other 
Newton. When drawing a free-body diagram it makes no difference whether 
the forces are applied externally (person) or “originate” in the system (bollard, 
or even better: support). When dealing with externally applied forces you 
should make sure to note carefully the direction of the arrow from the start. For 
a rope the direction is simple, since a rope can transmit tensile forces only. This 
is clear to anyone walking their dog who has ever tried to push it with the 
leash. For the forces originating in the system, which are the ones we are 
usually interested in, the sense of arrow direction does not really matter for the 
moment. The mathematics of the calculation will let us know if we have drawn 
it correctly! 

So isolating the two cases in Figure 1 results in the same free-body 
diagram (see Figure 3) because both systems are mechanically identical:



7

Figure 3: Free-body diagram of “Newton pulling a rope” 

In statics, 90% of the more complicated systems differ from one another 
only in that they comprise more forces (generated by figures, weights and other 
force providers), moments (coming up next) or supports, and that they have to 
be treated in terms of two or three dimensions. So for each direction, all arrows 
must cancel each other out as a whole, since nothing is supposed to be moving 
(statics). Forces and moments are just summed up completely independent of 
one another. That's all. 

The paradoxical thing about the free-body method is that it is simply not 
taken up and applied by beginning students of mechanics. The reason for this is 
one of the last great mysteries in elementary mechanics. 

1.2 Just a Moment ! 

A body can be acted upon by not only forces but also by moments, which tend 
to cause a turning (rotational) motion instead of a linear (Dr. Hinrichs prefers 
to call it "translational") one. The best way to imagine a moment is to think of 
it as a force pulling or pushing on a lever. One and the same force can result in 
completely different moments, depending on the length of the lever (lever 
arm). The unit of moment is 1 Nm, due to the fact that the magnitude of the 
force is multiplied by the lever arm. When determining the moment on the fly 
without using vector calculation (coming up later), remember that force and 
lever must be perpendicular to one another. 

In statics, the process of determining the moment almost always involves 
nothing more than applying the "law of levers", which is also well-known to 
Mr. and Mrs. Moms everywhere, except that sometimes more than just one 
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lever and two forces are involved. Important: Forces and moments in a system 
are added up independently of one another. It has become standard practice in 
vector representation to have the direction of the moment stand perpendicular 
to the plane opened up by the force and lever. If you imagine the fingers of 
your right hand pointing in the direction in which the force is trying to turn the 
lever, then the moment points in the direction of your thumb when giving a 
Michael Schumacher-like “thumbs up” sign1 ("right-hand rule"). 

Dr. Hinrichs would like to point out that the drawing of the moment in 
Figure 4 is not quite right, for when a moment M is replaced by a force F and a 
lever L, all of a sudden you have a resultant force. That is not supposed to 
happen in statics, otherwise something will start moving.  

Lever

Figure 4: Moment 

Here mechanical engineers would say that the equation for the equilibrium of 
forces (  F = 0, still to come) has not been satisfied (Dr. Hinrichs, however, 
finds his greatest satisfaction in equations, which is something you will just 
have to accept. He was a little too much into science friction). A moment is 
therefore, if it occurs at all in a test problem, replaced by a couple, see Fig. 5. 

1 Note: Giving the Rockefeller “finger” is not much help here! 
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Figure 5: Couple of forces = moment 

Here both forces cancel each other out, since a moment by itself does not cause 
any translational motion. The effect of the moments, however, remains the 
same. This relationship will become clearer when you start working through 
the first simple examples below. 

For the most beautiful 
moments in live!

1.3 First, Find a Common “Denominator” 

Before we really launch into statics, let's first explain a few fundamental 
concepts and make a couple of simplifications so that we can conduct an 
“intelligent” discussion of the problems involved. 
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1.3.1 The Rigid Body

As is the case in almost all scientific approaches to the (apparently)2 real world 
around us, one resorts to models in order to reduce the formulation of the 
problems and related questions to their bare essentials.  

There is only 
one chance, Sir! We 
have to neglect the 

gravity!

3

No system, no matter how simple, can be grasped in its entirety by 
scientific methods. For to do that you would not only have to know the 
coordinates of all elementary particles at any given time, but also all 
temperatures, emissions, specific motions, transformations, etc. If you really 
wanted to establish such knowledge definitively, you would be better off 

2 The term in parentheses were added at the express behest of Dr. Romberg. 
3 At this point the editor would like to make the important note that the sun as drawn in its low 
position has an oval deformation.... 
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joining some harmless religious community! But if you want to describe 
nothing more than just the forces and moments acting on a system, then you 
can leave out almost everything else. A model is perfectly sufficient for 
approximating reality. 

One such model is the rigid body. Being infinitely stiff and firm, it cannot be 
deformed even under the greatest of forces. In the technical field, this is usually 
an admissible and extremely sensible simplification for working with any 
stable structural component. In reality members do deform when subjected to 
forces, and that means that the points where the forces are applied shift as well, 
which in turn means that the relationship of forces acting upon a body can 
change. This unfortunate condition is completely disregarded for a rigid body. 
We will therefore assume that the geometry of the system remains constant no 
matter which forces are acting on it. 

Hey  !

Yes, my super -
spouse ?

I’m glad that you are not a 
rigid body!
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1.3.2 The Geometry of Forces 

The site upon which a force acts is called the point of (force) application. This 
point, in conjunction with the direction of force, defines a line which is referred 
to as the line of action. In statics, it is permissible to shift a force back and forth 
along this line of action without altering the system, as long as the direction 
and magnitude of force are maintained.  

Line of ac tion

Force

Rigid body

Point of action 

If you wish, you can test this with a simple experiment: Place any rigid body, 
such as a vase or simply a drinking glass, on a shelf against the wall (support). 
Now press against the middle of the body with your finger, making sure it does 
not slip to either side, thus ensuring that it remains at rest due to the acting 
forces of the finger and the wall (!). Mechanical engineers would say that the 
body is in a state of equilibrium.

The object will still be at equilibrium, with the resultant action and even 
the forces remaining the same, if we decide to shift the external finger force to 
another position along its line of action. To do so, we simply take a shaft of any 
length, for example, an examiner’s car antenna which has accidentally broken 
off a pencil, holding its length between our finger and the object. By 
maintaining the same magnitude and direction of forces, the effect 
(equilibrium) on the original object remains the same. 

In statics, equilibrium means that a body does not move as a result of the 
forces and moments which may be pushing or tugging at it from all directions. 
The forces and moments just cancel each other out in all directions. In the case 
of a rigid body acted on by only two forces, the two forces must lie on the same 
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line of action, be equal in magnitude and opposite in direction. These 
conditions are precisely satisfied in our example of the glass against the wall. 

The three forces of a central force system can always be summed up by 
what is referred to as a force polygon (which for you science fiction freaks does 
not refer to a character from Star Wars!).

Figure 6: Force polygon 

If three forces act on a rigid body, they must – besides obeying the law of 
“mutual cancellation in every direction” – intersect at a single point. Exception: 
They are parallel (in which case they make contact with each other in infinity4). 
If a number of forces pull or press upon a body, the outcome can be 
represented either graphically (e.g. parallelogram of forces) or geometrically 
(vectors) by a resultant (see Fig. 7). In statics the resultant must comprise all 
forces emanating from the “zero vector”. 

Figure 7: Resultant force 

4 Dr. Hinrichs thinks this is very romantic... 
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A resultant force has the same external effect on a rigid body as all of the 
combined forces it comprises. Thus it is possible to replace a bunch of forces 
by their resultant. 

A Cremona diagram (used mostly for trusses, which we will discuss 
later) refers to a closed chain of force vectors obtained from an arbitrary 
number of external forces acting on a system in equilibrium. For three forces of 
a central force system this corresponds to the force polygon. 

1.3.3 Supports in Plain 

In addition to the rigid body, there are other little models in mechanics which 
make life a lot easier for the experienced math whiz. The structural 
components we have been considering, which keep a loaded object in 
equilibrium and consequently exert reaction forces of their own, can be 
regarded as various kinds of supports. The easiest kind of support to imagine is 
the pinned support (which is not a new wonder bra for the chastity-minded!). 
So, for example, if you nail your mouse (computer mouse, this is just an 
imaginary model!) to your desk, it can no longer execute any translational 
movements, but just rotate. When lateral pressure is applied, the nail can then 
transmit two force components in the x and y directions. It is a two-
dimensional support. 

The one-dimensional roller support can compensate forces in one 
direction only. Like a smooth wall, it can support an object but cannot keep it 
from sliding to either side. An object placed on a roller support can slide 
around like a piece of soap on the floor of a men's shower room where, after 
taking special safety precautions, you have to bend over to pick it up. A roller 
support can also be thought of as a displaceable pinned support which, 
depending on its location, can transmit the loaded forces in one direction.

The third most important support in a plane is the built-in support, a fixed 
support secured to keep from rotating. This arrangement can be regarded as a 
rod whose one end is tightly secured on the edge of a table with a C-clamp. 
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The rod can neither be displaced in a translational manner nor rotate around the 
support. It can therefore not only transmit forces in the x and y directions but 
also compensate for any moments which might occur.

Study by Leonardo da Vinci for  
a (displaceable) fixed support [16] 
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It therefore has a three-force value. This type of support can also be rendered 
as a so-called sliding sleeve, as a roller support restrained from rotating, or 
even as a moment support, which transmits only moments which arise (hard to 
imagine and hardly ever occurs).
The following table provides a quick rundown of the force values and symbols 
of the most important supports introduced above: 

                 Symbol:                   Free-body diagram:        Force value: 

Table 1: Commonly used supports 

1.3.4 Other Helpful Models

Rod: A rod is the model idea of a thin, rigid bar with a pinned joint located at 
each of its ends. This kind of pinned joint is practically like a pinned or roller 
support, but which never has to be attached anywhere. The end of another rod 
can just as well be located at this often free-floating joint.

A number of rods which are always connected to each other by their 
pinned joints will give you a truss (we’ll get to that later). If forces only act on 
the joints, the rod can transmit only one force in the direction of its longitudinal 
axis, with the direction of force at the supports already being determined 
(verrrrry important!). In contrast to a beam (see below) a rod is a structure 
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which can transmit only tensile and compressive forces. You can also think of 
it as a frozen rope. A rod has a completely one-track personality, something 
which can distribute only tension or pressure. (Taken originally from the word 
“staff”, it is most likely a derivation of “staff officer”.) 

Pendulum support: A rod that has been built-in somewhere and is 
subjected to forces only at its ends is called a pendulum support.  

Fig. 8: Rod 

Have you guys never 
heard about a pendulum 

support ? 
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A pendulum support can basically only absorb forces in the direction of its 
longitudinal axis, which means that the direction of force at its ends (joints) is 
known.
So if a pendulum support is built-in somewhere, all you have to do to 
determine the direction of force at the isolated rod (and at the intersecting face 
of the counterforce (action = reaction)) is simply draw a straight line between 
the end points of the (perhaps even crooked) rod. 

Beams: A beam can be acted on by forces and moments at any point and 
can also be supported at any point or built-in somewhere. In statics, this model 
is also rigid, which means it is not deformed by forces and moments. However, 
internal stress (internal forces and moments) can be calculated by isolating it in 
an appropriate free-body diagram. One model of a beam which is frequently 
used is the cantilever, whose one end is a fixed support, with its other end 
projecting obscenely out into space. The best example of an (elastic) cantilever 
is the diving board at the swimming pool with its common shower room. 

Pulley: In statics, a frictionless pulley merely serves the purpose of 
getting some forces around a corner. For example, with a pulley you can 
deflect the weight force into the horizontal or in another direction (see the 
following figure). 

In the following, we will be dealing exclusively with rigid bodies which, 
due to the forces and moments acting on them, are in a state of 
equilibrium. For simplicity’s sake, we’ll first consider systems in a single 
plane, or in two dimensions (3D functions analogously).  
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A force vector thus has only two components (direction segments), in 
the x and y directions (plane of the page), which can be considered 
independently of one another. In the case of a plane there is, in addition to 
the two aforementioned translational directions x and y, the possibility of 
rotation in the direction of angle . A moment that rotates around 
“points” in the z-direction (out of the plane of the page, the third 
coordinate axis in the Cartesian 3D system). 

So, did we lose you?... Dr. Hinrichs is foaming at the mouth again... but 
now we’ll slow things down a little. 

Hi! I’m a 
cantilever beam! 

Oh really? Then 
beam me up, please! 

1.4 Thou Shalt Determine Support Reactions

In almost all cases, the first thing you have to do is calculate the exterior 
support forces and support moments, in short the “support reactions” of a 
system involving externally applied forces and moments, which are usually 
known. In our first example (see Fig. 9) we see a welder’s apprentice 
struggling with a rusty bolt at the free end of a massless cantilever having 
length L. Fortunately, he is being provided with expert support by his foreman, 
a certified engineer (in mechanical engineering).
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O. K. … listen! German Industrial 
Standard DIN 8593, to screw: to 
assemble by pressing with self-

locking threads by means of 
screwing on, screwing in, screwing 

tightly, bolting together…

Fig. 9 

Here we have made the bold assumption that the steel girder is massless. One 
thing you should know is that in the technical “sciences” you are allowed to 
make all sorts of arbitrary assumptions as long as you have a good reason for 
doing so. Our reason here is that we do not (yet) know where a possible weight 
force of the girder might act.  

To determine the support reactions in the next step, we must first isolate 
the system and draw in all forces and moments correctly, or in other words, we 
must first draw an accurate free-body diagram. For determining the support 
reactions we must first and foremost draw a free-body diagram. The most 
important thing at the very start is to draw a correct free-body diagram.  

Before we even start to consider the problem further, we first draw a free-
body diagram. We first draw an intelligent free-body diagram before we start 
calculating the support reactions. At the start of every statics problem you first 
draw a free-body diagram. The first thing we do is to isolate the system! We 
draw a free-body diagram. Even before we have really understood the problem 
in the first place! The first thing we do is draw a free-body diagram. At the 
start of every statics problem we therefore draw a correct free-body diagram. 
First we isolate the system by cutting it free. Isolate  the most, and we mean 
the very most, important thing of all...  
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So in order to make the aforementioned free-body diagram, we replace 
our welder with a simple weight force F, which is known to act in a downward 
direction and tends to take everything else down with it: 

As already mentioned above, we have simplified the system by making 
the girder massless. Now let’s imagine a pair of scissors, or even better, a flex, 
and, to the energetic protest of the two specialists shown, cut the girder free, 
isolating it from its support. The girder, now suspended in mid-air, is ready to 
crash any moment due to the weight of the welder (the girder itself does not 
weigh anything, of course). However, we can instantly calm the specialists’ 
protest by replacing the support with equivalent support forces. In reference to 
Table 1, we take the equivalent support force reactions, three in number, and 
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draw them at the point where we cut out the system. Now the system is the 
same as it was before, at least in terms of statics.  

Fig. 10: Free-body diagram for the externally loaded girder 

But when drawing a free-body diagram, you must be extremely careful not to 
forget a force. If you use a Cartesian, or rectangular, coordinate system, the x 
axis usually coincides with the horizontal forces. As pointed out a number of 
times already, the conditions of equilibrium demand that the summation of 
forces and moments must cancel out for every direction.

We first consider the x direction and ask ourselves the following question: 
How large does the horizontal (index H) support reaction FH = Ax have to be 
in order to cancel the summation of forces in the x direction? Answer: “zero!” 
(you dope...). For the vertical forces (index V), one comes to the conclusion 
that FV = Ay must have the exact magnitude as the weight force F of the 
welder. The fixed end moment M, in terms of its magnitude, can only be F 
times L. Only a few forces are involved in this system, and since they also 
correspond to the coordinate directions, it is pretty easy to determine the 
reactions without having to write down the individual summations. But to 
avoid making casual mistakes, it's a good idea if you start getting into the habit 
of formulating for any system, no matter how simple, the equations for the 
force summations (  ) of each direction according to the following method 
(but not until you have drawn a free-body diagram, first comes the free-body 
diagram! (see Fig. 10)). 
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In terms of the coordinate system, all forces which point in the coordinate 
direction are considered positive (+), while all forces which point in the 
opposite direction are given a minus sign ( ). 

Thus, the force summation for the x direction (horizontal) is: 

Fx = Ax  = 0 = FH   =>  FH = 0 ;

and for the y direction (vertical): 

 Fy = 0 =  F  + Ay   =>  Ay  = F = FV.

For determining the momentum we have to establish not only the “rotational 
direction” but also decide on a point of reference around which the “rotation” 
takes place. Here the point may lie somewhere in the universe (i.e. in the two-
dimensional case somewhere in the infinity of the planes...). But it always 
makes sense to put the point of reference in the system under investigation. 
Here’s a good trick you can use: 

Choose the point of reference so that as many unknown forces as possible do 
not have a lever arm (usually a support)!  

Reason: The moments of forces having no lever arm are zero and therefore do 
not have to be included when summing up the moments. So, these unknown 
forces don’t appear in the equation of moment summation. All moments 
pointing in the z direction, or out of the plane of the page (“right-hand rule”), 
are counted as being positive. We thus form the summation of moments around 
the support point A, because this is where the lever arm for the most unknown 
forces disappears: 

 Mz
(A) = 0 = F L  + M   =>   M =  F L. 

The minus sign in front of the term F L tells us that in our free-body diagram 
we drew the fixed end moment M the “wrong way around”, which of course 
we didn’t know at the time. That doesn’t matter! It's no mistake! The 
mathematical expression will tell us which way it has to go. Having the 
solution, we now know that the fixed end moment has to turn the other way 
around in order to keep the girder with the welder on top on an even keel. The 
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direction of the support reactions in the free-body diagram is neither here nor 
there.

Taking a different point of reference, we also arrive at the same result. 
For instance, let’s take the midpoint of the beam: 

 Mz
(midpoint) = 0 = F  0.5 L  +  Ay  0.5 L  + M . 

The lever arm is already included in the fixed end moment M, i.e. we do not 
necessarily have to draw in this external moment directly at the point of 
restraint, although that is where it provides us with the most useful overview. 
We could equally well assume the moment M to be in the vicinity of never-
never-land, provided that it (in our case) is located on the same plane as the 
beam. An external moment may be shifted arbitrarily in the plane, a curiosity 
which for beginning students really takes a while to get used to, like so much in 
mechanics. This possibility of shifting is best illustrated by the fact that the 
moment in the “rotational equation” is just written as the letter M, with no 
reference made to its location. The forces, however, are locally dependent on 
the lever arm, which itself is dependent on the center of rotation (reference 
point). And it really does work this way: If you start to drill through a board 
that’s tightly fastened to a workbench with a screw clamp or even nailed to it, 
the moment exerted on the screw clamp, or the force transmitted to the nails, is 
completely independent of the actual location of the drill bit (external 
moment)! 

Let’s go back to our beam and its new reference point:
Since FV = Ay = F (see above), it follows that: 

  F  L  + M = 0   =>  M =  F L. 

As an advanced student of mechanics, you often run short of an equation and 
things don’t sum up. But don’t be fooled. Selecting a new point of reference 
does not provide you with a new equation! On the other hand, you can also 
determine such a system by using two moment equations and one force 
equation. But in that case the two points of reference may not be located on a 
line lying in the direction of the substituted force equilibrium. It’s even 
possible to use three moment equations. In this case the points of reference 
may not be collinear at all. Of course, this is something you can try out if you 
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are in the mood to do so, or as in the case of Dr. Hinrichs, this puts you in the 
mood in the first place (!). 

The example we have just dealt with is pretty straightforward, since the 
few forces involved all point in the direction of the coordinates. But normally, 
due to given natural situations or the sadistic designers of mechanics problems, 
this cannot be assumed. So now let’s look at an example where forces act in 
“skewed” directions, meaning that they have to be resolved in their coordinate 
directions. Figure 11 shows a frying pan (mass m, frying radius R) hanging on 
point A by its massless handle (length L=2R) and held in place at point B by a 
rope S. The pan is also acted upon by a large, known, and thus given, force F in 
the manner shown. 

rope 

Fig. 11: Hanging frying pan  

This example has been specially selected so that you can get used to the deeper 
meaning of these kinds of exercise problems as early as possible. We want to 
figure out the force acting on the point of suspension A. So here we are back to 
calculating support reactions. And to find these, we must first isolate the 
system, correctly drawing in all forces and moments, or in other words, we 
have to first draw the right free-body diagram. In order to determine the 
support reactions, the very first thing we do is draw the proper free-body 
diagram. Before we even start to consider the problem further, we first draw a 
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free-body diagram. We first draw an “intelligent” free-body diagram before we 
start calculating the support reactions. At the start of every statics problem you 
first draw a free-body diagram. 

The first thing we do is isolate the system! We draw a free-body 
diagram. Even before we have read through the problem a second time! The 
first thing we do is draw a free-body diagram. At the start of every statics 
problem we therefore draw a correct free-body diagram. First we isolate the 
system by cutting it free. Isolate  the most, and we mean the very most, 
important thing of all.  

When isolating a free-body diagram for determining external reaction 
forces, it makes no difference at all what the system looks like internally 
(reeeaaallly important). There may be ropes, springs, hinges and all sorts of 
soft tissues built into it. In effect, you can just throw a black cloth over the 
system and then start isolating it at your leisure. This is allowed when 
determining external forces, since the system in equilibrium has assumed 
precisely this form as a result of the action exerted on it by precisely these 
forces. (<= It’s probably best to read through this sentence one more time). 
Anyone who does not understand this can always take refuge in more elegant 
scientific wording, postulating that “this demonstrates the principle of 
rigidity... ahem, ahem...”.  

Fig. 12: Free-body diagram of the hanging frying pan 
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Figure 12 shows the free-body diagram of the system. Here we really do have 
to isolate the pan from its entire surroundings. This means cutting away 
everything around it (360°) and substituting the corresponding forces. Make 
sure you do not forget the weight force, which in this case should act exactly 
from the middle of the burger torture device (the handle is massless). Again we 
arrive at three unknown values: AX, AY and Bx and therefore need 3 equations 
once again. But what about By ? (watch out!). We already know, of course, that 
a rope can transmit only tensile forces in its own direction. So the direction of 
force at support B is already clear. In situations like this you have to do a real 
Columbo number every now and then, but after all, we’re academicians, or at 
least want to be (or have to be? “...think of your future, my child!!!”... “Yes... 
mom!”).

Hence  the force of reaction B can only act in the direction of the rope 
(thus: Bx). This case comes up quite a lot and should be something that you 
should by all means have in your “little bag of tricks”. We then resolve the 
reactions at the two-force support A into their respective coordinate directions 
x and y. Again we write out our three summation equations for two-
dimensional statics (you should not only read the following equations, but 
follow along by writing them down with paper and pencil):
for the x direction (equation I): 

 Fx = 0 =  Bx + Ax  F cos .    (I) 

“  F cos ” is the element of applied force F acting in the x direction, the so-
called “x component of force F” (please note its negative sign!!!). 

The question often arises: sine or cosine? Here it is helpful to see what 
happens when  = 0°. When  = 0°, F pulls completely in the x direction and 
must therefore enter completely into the “x equation (I)”. And since the cosine 
of  = 0° is one, the cosine must be used here. The angle  of force F follows 
from the geometric consideration that the line of action of F is perpendicular to 
the middle line of the pan, which itself is inclined at an angle  to the wall and 
thus to the y axis. These are things you’ll just have to practice until you get the 
hang of it. After about 50 exercises you’ll be able to make these kinds of 
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connections immediately (according to Dr. Hinrichs, he himself only needed 
about 40 exercises). 

You should have a bit 
more respect for the 

signs! 

So, on we go... for the y direction (equation II): 

 Fy= 0 =  Ay  + F sin  mg ,    (II) 

where “F sin ” is the y component of force F and “mg” describes the weight 
force which always results from the product of the mass and the acceleration 
due to gravity g (ca. 10 m/s2). (Dr. Hinrichs can only calculate this using at 
least two decimal places, i.e. g = 9.81 m/s2.) In the unit of acceleration, time t is 
squared! ...? This is no cause for alarm, much less for anything unnatural. Even 
in the field of mechanics, the totally inadequate, but usually arrogant 
“scientist” can conceive of time only in terms of a one-dimensional entity 
(although according to Dr. Romberg, it, like space, likewise has a number of 
easily comprehended dimensions). The expression “s2” is in the denominator of 
the unit simply because here one is dealing with a change in velocity per 
second, or in other words, acceleration. You might say: The unit of 
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acceleration a, which plays a major role in dynamic systems (see Chapter III), 
is expressed as meters per second... per second, thus m/s2... it’s really quite 
simple, isn’t it? 

But now back to our equation (III) (summation of moments). What would 
be our best choice for the point of reference? F is known... mg is known... 
hmm... the most unknown forces are excluded at point A, plus we can then let 
the entire force F “rotate”, because it just happens to be perpendicular to its 
lever arm (otherwise we would have to calculate force components here as 
well). So let’s choose A as the reference point. Equation (III) is therefore: 

 Mz
(A) = 0 = mg(L+R)sin   + Bx(L+R)cos  F(L+2R). (III) 

“(L+R)sin ” is the perpendicular lever arm of force mg around point A, 
“(L+R)cos ” is the perpendicular lever arm of force BX . Knowing from above 
that L=2R, we can calculate the unknown force BX from the moment equation 
(III) and from equation II we immediately get AY:

  Bx= F 4/(3cos )  mg tan ,
  Ay = mg  F sin  . 

By putting Bx into equation (I), we then get, after simple transformation: 

  Ax = (cos  4/(3cos ))F  + mg tan .

In order to put a tricky spin on these kind of exercises, nasty little questions are 
often asked, such as: “What is the minimum magnitude of force F needed to 
take the slack out of rope S?” The panic released by such questions – slowly 
creeping up ice-cold from the base of your spine, fighting its way to your neck 
and, despite its ghastly chill, forcing sweat out of every pore – can be smashed 
by a simple yet highly effective trick (in short: “It takes ‘the P’ out of your 
face!”). So when faced with such exercises or test questions, proceed as 
follows: After taking a deep breath, twist the corner of your mouth in a slightly 
contemptuous grin aimed in the direction of your nearest despairing classmate, 
then ask yourself the following two questions. 

  1) Can I equate anything here? 
  2) Can I equate anything here to zero? 
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In over 95% of all cases you’ll be able to answer one of these two questions 
with “Yep, sure can!” For the remaining 5% or so, go on to the next question 
and get ready to pick up your loser ticket. 

Let’s try out this trick on the above problem about the slack rope and the 
magnitude of force resulting from it. Can you equate anything for a slack rope? 
Can you equate anything to zero for a slack rope? Yep, sure can! Namely, the 
cable force! When the rope is slack, it transmits no force to support B. This 
means that we can equate force Bx to zero in all equations, provided that it 
arises in the first place. Hence, force F is obtained directly from the momentum 
equilibrium (Equation III) for a rope at the point where it slackens as 

  F = 3/4 mg sin  . 

So the answer to the above question is that force F must possess at least 3/4 mg 
sin  to keep the rope taut. 

1.5 Determinedly Statically Determinate... Right? 

In the examples we have been working with up to now, we have always had the 
exact number of equations at our disposal to cover the unknown forces in the 
problem to be solved. Unfortunately, this is not always the case, for there also 
happen to be systems which cannot be dealt with on the basis of equilibrium 
conditions alone. This can happen, for example, if you have more unknown 
forces than available equations. For exam questions you can usually assume 
that “the calculation will tally”. It is said that there are even people who coolly 
calculate ignorance for the rest of the cases.5 But particularly in practical 
applications you will often have a few supports too many, something referred 
to as a statically indeterminate(redundant, s.u.) system. These are the sort of 
things we would now like to take a closer look at. 

5 At this point the obligatory protest is made by Dr. Hinrichs. 
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What does “statically determinate” mean? Memorize the following 
sentence: A system whose support reactions can be determined solely from the 
conditions for static equilibrium is considered to be statically determinate. 
Conversely, it follows that a system in which the conditions for static 
equilibrium are not sufficient for determining the unknown support reactions is 
statically indeterminate.   

So let’s take a look at the following system (Figure 13):  

Figure 13: Beam with fixed supports at both ends  

Figure 13 shows a schematic drawing of a rigid, massless beam which lies on 
two fixed supports. What kind of support reactions can we expect here? Stop!!! 
What is the first thing you do in statics before formulating any other thoughts? 
We must first isolate the system, drawing in all forces and moments correctly, 
or in other words, we first have to draw the right free-body diagram. The first 
thing we do in determining the support reactions is to draw a free-body 
diagram. At the start it is very important to draw a proper free-body diagram. 
Before we think of anything else we first have to draw a free-body diagram. 

We first draw an intelligent free-body diagram before we start calculating the 
support reactions. At the start of every statics problem you first draw a free-
body diagram. The first thing we do is isolate the system! We draw a free-body 
diagram. Even before we scribble down the first equations! The first thing we 
do is draw a free-body diagram. At the start of every statics problem we 
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therefore draw a correct free-body diagram. First we isolate the system by 
cutting it free. Isolate  the most, the very most (yawn) important thing of all... 
We really like free-body diagrams. So what we are doing first is looking for the 
appropriate free-body diagram. The corresponding free-body diagram is 
illustrated in Figure 14. 

Figure 14: Free-body diagram of the beam with fixed supports at both ends  

You can see at once that there are four unknown forces here, while for the two-
dimensional world only our three famous equations are available to us. From 
the force equilibrium in the y direction and the summation of moments around 
an arbitrary point (one of the supports is the best choice) we first obtain 

   Ay = By = 1/2 F . 

By now everyone should be able to work that out on their own. If not, close the 
book and start reading from the beginning tomorrow! But what about 
horizontal forces AX and BX? All of the Nobel laureates6 in mathematics in the 
world together could not calculate these two forces without further 
information. The only thing we know from the force equilibrium in the x 
direction is that the two forces must cancel out: 

  Ax =  Bx . 

6 Important note by the editor: “There is no such thing as a Nobel Prize for mathematics!” 
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These two forces may be of any magnitude without altering anything in the 
mechanical character of this rigid beam. To anyone asking about where these 
unknown forces are supposed to come from, it should be pointed out that this 
beam could have been squeezed, even with considerable force, between the 
supports without being deformed at all. This can generate some pretty mean 
forces in the horizontal direction (x). The system is statically indeterminate, 
and even in the most literal sense of the word it is probably more indeterminate 
than next week’s lottery numbers. Mechanics call this system statically 
redundant. You can also say: The system is jammed. This is exactly why such 
beams, rods, shafts, bridges, etc. in practice are always, as a matter of principle, 
and everywhere  mechanical engineers know this  provided with a fixed 
support and a roller support. This arrangement gives you tension-free bearing 
and the horizontal force is zero as long as no external forces come into play. 
And even if they do, the fixed support just absorbs them. 

The bright loser will certainly be able to imagine what a statically 
underdeterminate system might look like here. The slightest external force 
component would send the beam in Figure 13 with two roller supports for a 
ride, since any support reaction is lacking. A statically redundant system, on 
the other hand, means that there are simply too many support reactions present, 
or too few equations. This means that we need more equations to calculate a 
statically redundant system. 

Additional equations can be obtained from so-called intermediate 
conditions. These are based on the following idea: It is basically permissible to 
isolate even individual members of a body or system. For example, we can cut 
away a corner of any body and draw in at the resulting interface – very 
“quickly”, before the corner “notices” anything – the corresponding (unknown) 
forces and moments, which otherwise hold the body together exactly at this 
point. But this step does not do us any good unless it provides us with more 
equations than the new and uninvited unknown forces and moments revealed at 
the interface. But how is that done? As a rule when working in two dimensions, 
whenever we cut through a body at any point, we have to draw in three 
reactions: two force components (horizontal and vertical), and a moment, 
which hold the body together exactly at this point before anything has been cut 
off. But by doing so, we also obtain only three new equations (we’ll see how 
and why in just a minute).  
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But now comes the trick:  
If we isolate exactly at a joint, we only need to draw in two force 

components, since a moment of reaction can never get a grip on an ideal 
frictionless joint. 
Let’s turn to the following example:  

Figure 15: Beam with intermediate joint  

In the illustrated constrained and massless beam with an intermediate joint (see 
Fig. 15), the other end is not free but supported by a roller support. 

You can always spot a real mechanics person by their instinctive reaction 
at the sight of such an ideal structure: They grab (slobber, tremble) paper and 
pencil – or a notebook and the latest version of Corel – and draw an 
“intelligent” free-body diagram. Remember, we must first isolate the system 
and correctly draw in all forces and moments, or in other words, we first draw 
the correct free-body diagram. For determining the support reactions we must 
first and foremost draw a free-body diagram. The most important thing at the 
very start is to draw a correct free-body diagram. Before we even start to 
consider the problem further, we first draw a free-body diagram. We first draw 
an intelligent free-body diagram before we start calculating the support 
reactions. At the start of every statics problem you first draw a free-body 
diagram. The first thing we do is to isolate the system! We draw a free-body 
diagram. Even before we have really understood the problem in the first place!  

We start by drawing a free-body diagram. At the start of any statics 
problem we draw a great free-body diagram. First we cut free and isolate. 
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Cutting free  say goodbye to Loserville! The corresponding free-body 
diagram of the massless beam looks like this: 

Figure 16: Free-body diagram of beam with intermediate joint 

Here we now have the case where too many forces are acting without any 
justification... we still don’t know how roller support B and fixed-end share the 
load between them. The system appears to be statically redundant. We have 
four unknown reactions but only three equations. 

Now for the trick with the intermediate condition and the bold cut right 
through the joint. The result is two individual free-body diagrams, with the 
intermediate reactions occurring between the two free-body diagrams always 
having to fulfill the action = reaction axiom. This means that the intermediate 
forces for both free-body diagrams are equal in magnitude but labeled with the 
opposite signs.

Figure 17: Cut through the intermediate joint 
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The beauty of this is that we now have three equations for each of the two sub-
systems.  

From the summation of moments about the intermediate support G of the 
sub-system on the right, it immediately follows that: 

  B = 0 . 

Now we can relax and go back to our over-all system, since there are only three 
unknown reactions left, which we can bring to light with three equations!  

The joint that saved the day is known as a Gerber joint. The entire beam 
is called a Gerber beam. The beam, which at first appeared to be statically 
redundant, has been “made statically determinate” by the joint, i.e. we have 
adapted the system. (There are also other ways of handling statically redundant 
systems, see Chapter 2) 

This system (Gerber beam) was just meant to demonstrate how helpful 
intermediate conditions can be to you. Of course, in practice you are not 
allowed to start drawing in a joint somewhere just to better cope with a 
statically indeterminate system. But when dealing with a (rather complicated) 
system, if you’re a sharp looker (wow!) you’ll usually find a convenient place 
somewhere to make a surgical free-body cut that gives you an elegant 
intermediate condition, thus providing you with all sorts of new independent 
equations to your heart's delight. At this point, however, we would like to limit 
ourselves to the detection of statically indeterminate systems. 

Since the pragmatic and technically “gifted” engineer (aren't they all?) 
must always have a definition or formula at hand for testing a hypothesis (Dr. 
Hinrichs knows this), there is also a kind of “counting rhyme” for testing 
statical determinacy. Although you really do not need this formula – since in 
the few cases where statical indeterminacy might pop up, you can also use 
common sense for a change – we decided to present it here for the sake of 
completeness.  

Hence, a system of equations can only be solved if the number of 
unknowns matches the number of equations. A (necessary) condition for 
statical determinacy in two dimensions meets the following equation: 

  D = 0 = a + z  3n , 
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where:

 D =  defect  

 a =  number of reactions (valency) per support 

 z =  number of reactions per intermediate condition  

 n =  number of members separated by joints (intermediate 
supports).

Unfortunately, this condition has a small catch: It is merely a necessary7, but 
not a sufficient8 condition. 

This condition must be met in a statically determinate system; but you 
should not conclude from this condition alone that the system is actually 
statically determinate. OK, once again. The above equation is a necessary 
condition, i.e. for a statically determinate system the defect D is always zero. 
But under certain unfavorable circumstances it can also be zero for a statically 
indeterminate system too, so watch out! But a system where D  0 is inevitably 
statically indeterminate.  

It’s  not enough to 
have it here… 

You should have it here, 
too! 

7Incidentally, Dr. Hinrichs is not necessary. 
8Please note: Dr. Romberg often demonstrates he is not sufficient!  
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For three-dimensional systems, the “3” is substituted by a “6”. (The possibility 
of rods in space rotating on their axes does lead to statical indeterminacy, 
which you shouldn’t take too seriously, since such systems can be calculated 
anyway.) Here are two tips for setting up the above equation: 

The number z of intermediate conditions of a joint connected to n 
members is 2(n  1) (e.g. Gerber beam: n = 2, z = 2)! 

Systems that exhibit a maximum of one force acting at each and 
every one of its supports are always statically indeterminate.  

Now is a good opportunity to go back over the examples covered in this section 
using our “counting rhyme”... have fun! 

Despite the energetic protest of Dr. Hinrichs, it is highly recommended 
that you check any system suspected of being statically indeterminate with the 
unscientific “wobble method”. This is quite simple: Pretending that the system 
being analyzed really exists as rigid structural members, we grab it with an 
imaginary hand and shake... if there is anything that somehow might be able to 
wobble, then statical indeterminacy is present. Dr. Hinrichs objects that you 
should not take it to heart if every now and then something is not really stable, 
this happens a lot and is perfectly normal! (?) If the system is still stable after 
giving it a shake, it can still be statically redundant. In this case, where the 
structural member remains solidly in position, we’ll take another careful look 
and consider whether anything might be jammed (statically redundant). 
Hopefully, the illustrated examples will make this clear. In the example in 
Figure 18, at the very top left, defect D = 0 (a = 3, n = 1, z = 0) but the system 
is nevertheless statically indeterminate. But this is only because it “jams” and 
“wobbles” simultaneously. If that is the case, defect D may cancel out but we 
still have a statically indeterminate system. This correlation9 will hopefully be 
verified by the other examples in Figure 18. 

9 Dr. Romberg notes that this is the first time this correlation has been mentioned as formulated 
here and he would therefore like to claim the “Defect-free Coinciding Wobble Clip (DCWC)“ 
as his own discovery. 
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Figure 18: Some examples of statically (in)determinate systems 
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1.6 Distributed Loads 

Forces do not act necessarily at a single point, as has been demonstrated 
up to now. If we imagine, for instance, someone lying lazily stretched out on a 
plank bed (see Figure 19 a, b, c), the bed will be subjected to different loads 
along practically its entire length, depending on the anatomy of the person. 
Summing up the resultant of this distributed load generally requires 
mathematical integration. Here the distributed load q is specified as a function 
q(x) which describes a force per unit length (newtons per meter). 

a)

b)

c)

Figure 19 a, b, c: Differently loaded plank beds 
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Usually, however, you can also employ another very simple way of looking at 
the center of gravity. If you know the “mid-point” (center of gravity) of a 
distributed load, then you just have to imagine the “sum force” (integrated by 
length) as acting precisely at this point. The support reactions are calculated as 
usual. But where does the point of application for this force lie? First of all, let 
us consider how to calculate the center of gravity. 

1.7 Center of Gravity 

In the following we will assume homogenous, rigid bodies. A homogenous 
body has the same (physical) properties at every point. With respect to the 
center of gravity, this means that a homogenous body exhibits uniform density 
so that the center of gravity ultimately depends on the shape of the body alone. 
The center of gravity is then identical to the geometric mid-point of the body’s 
volume. When working with two dimensions, which is the case in 90% of all 
problems, we’re simply dealing with the sum mid-point of all surfaces. So once 
again, let’s make a few more or less intelligent assumptions so that we can at 
least get some kind of grip on a problem. Let’s take a close look at the figures 
in Figure 19 (all three, please):

In the first case (Fig. 19a) we have a classic muscle freak, regular patron 
of your local fitness studio (uggghh!). There is definitely no homogeneity here, 
since in reality his head is of significantly less density (  0) than his biceps. 
But we shall make the bold assumption that here we are also dealing with a 
homogenous body.  

The body in Fig. 19b (“wow!”  quote from Dr. Hinrichs) is 
homogenous. Here, too, there is an unequal distribution of mass across the 
plank bed (length L). In the case of the electrical engineer in Fig. 19, there is 
also a significant imbalance.  

But how exactly is the plank bed loaded? Where is the point at which the 
resultant weight force acts, which we need to know in order to calculate the 
support reactions? The magic word here is: modeling. Machines or building 
structures are too complicated to calculate their center of gravity exactly. But 
you can approximate reality fairly well through clever modeling.  
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The obvious thing to do here is to split the body into smaller shapes 
whose “centers of gravity” are known. We will view the three figures as being 
two-dimensional, modeling them by using squares, circles and triangles.

Figure 20 shows the so-called “equivalent system” for each body, each 
one comprising just these simple geometric forms (Dr. Hinrichs has insisted on 
the finer details for Body b). 

a)

b)

c)

Figure 20 a, b, c: Equivalent systems for the bodies 
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The important thing now is that we know the centers of gravity of the 
individual parts. The centers of gravity of circles, squares and rectangles are 
known to every head loser or loose head. For triangles and semicircles it’s a 
little different. The center of gravity of a homogenous triangular plate of 
uniform density is the point at which the median lines intersect. If height H is 
defined from an arbitrary base of the triangle, then it holds true for the center of 
gravity xs that:  

  xs = H/3. 

The overall center of gravity, or centroid10, is then formed from the weighted 
average of all distances of the partial centers of gravity: 

  xs = (  xsi Ai) / (  Ai).

For our bodybuilding freak from Fig. 19a, applying this first for the summation 
of the weighted partial centers of gravity in the x direction, we get: 

 xsi Ai = b/3 bh/2 + (L  a/2) ad .... 

But this leaves us with one small problem. Since the two geometric shapes 
overlap in the middle, we would be exaggerating the forces in the genital 
region of this typical mechanical engineer. The small shaded triangle (see the 
equivalent system) appears twice in our calculation, so we’ll have to subtract it 
once from the summation of the weighted partial centers of gravity. The correct 
calculation would then look like this: 

 xsi Ai = b/3 bh/2 + (L  a/2) ad  ((L a)+(b (L a))/3) (d (b (L a))/2),

with the term in italics representing the product obtained from the center-of-
gravity coordinate of the small triangle in the middle and its area. Try working 
through this once more on your own! Now all we have to do is divide this 
expression by the overall area  and you got it!!!. This is easier to see if we set 
up the equivalent system differently (see. Fig. 21). However, here you should 
obtain the same result for the center-of-gravity coordinate xs... give it a try!!!  

10Incidentally, for a semicircle, the distance from its center of gravity to the sectional edge is 
ys=4R/3 .
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Figure 21: Alternate equivalent system for bodybuilding freak  

The centers of gravity for the other two bodies can be determined the same 
way. For a three-dimensional model you just make the same calculation for 
each of the three coordinates. 

1.8 3-D Statics 

For three dimensional systems, you either have to determine the summation of 
forces and moments for each coordinate direction, or resort to vector 
calculation. For the first method you will need a good sense of three-
dimensional structures, as well as little bit of time and intuition (so that nothing 
gets left out). For the second method all you need is a good dose of engineering 
pragmatism (despite the fact that engineers, who are well-known leaders in 
aesthetic taste, consider this the more “elegant” method). So let’s look at the 
following simple example: 

A certified engineer (mechanical) is interested in developing the “idea” of 
having the visor of the familiar Rapper cap supported by a thread (see Fig. 22). 
The problem forcing itself upon the engineer is how to size the thread, thus 
presenting the question concerning the force of the thread FS at the given 
weight of the visor G. 



45

Figure 22: Visor cap with thread 

Again the first thing we need to do is to find the appropriate equivalent system. 
Departing from reality, let’s consider the visor as a two-force homogeneous 
plate whose weight force G acts upon the center of gravity S. After a series of 
talks with industrial designers flown in from Milan (the buffet was OK, but oh 
how they skimped on the carpaccio! Porca la miseria!) we came to the 
conclusion that the suspension point A was placed in a “corner” of the visor at 
the origin of the coordinate system (see Fig. 23). 

Figure 23: Equivalent visor system  

What do we do next? We isolate! Figure 24 shows the free-body diagram of 
our equivalent system. 
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Figure 24: Free-body diagram of the visor  

Instead of calculating the equilibrium equations for each coordinate direction 
individually, we’ll apply the much more efficient vector method of calculation 
here, assuming, of course, that the reader is already familiar with vector 
calculation. (Since three-dimensional statics in general, and even in particular, 
are rarely asked in test problems, you can also skip over this section, uh, oh but 
now I hear angry protests coming from Dr. Hinrichs... Chin up, Doc!) 

A look at the free-body diagram shows the following force vectors (in the 
following, vectors are printed in boldface):

 weight force:   G = 
0
0
G

  ,

 cable force:   FS = 
L

L
L
/ 2  2/(3L) FS ,

 support A:   A =
A

A

x

z

0  ,
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 support B:   B =
B
B
B

x

y

z

 . 

Here, FS is the magnitude of the yet unknown cable force. The factor in front of 
this magnitude is the “standard” value of the force vector calculated from its 
geometry (see Fig. 24). Based on this free-body diagram, the equilibrium 
conditions expressed as vectors are 

for the forces: 

F = 0 = G + FS + B + A , 

for the moments: 

 M =  (r  F) = 0

L / 2
0
0

0
0
G

+
L

L / 2
0

 2/(3L) FS

L
L
L
/ 2   +   

0
2

0
L /  

A

A

x

z

0   +
0

2
0

L /
B
B
B

x

y

z

   = 0.

The second component of this vector equation leads directly to the cable force 

  FS = ¾ G    . 

In three dimensions, a moment is formed by the cross product of force vector 
and lever arm, since these two vectors, of course, do not necessarily need to be 
orthogonal to one another. At the sight of this vector equation Dr. Hinrichs 
cannot repress an ecstatic gaze of rapture, while Dr. Romberg apologizes for 
both.
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1.9 Now There’s Going to Be Some Friction... 

1.9.1 Frictional Forces and Coefficients of Friction 

Up to now, everything has certainly been going smoothly. But friction itself is 
a very important topic (and not only in mechanics). What would the world be 
like without friction? It’s a lot of fun to think this idea through to its logical 
conclusion. In a world where only interlocking connections were possible, you 
would even have a pretty hard time just moving forward, for instance. 

Friction is practically everywhere. Let’s consider the following 
experiment: If you pull a coffee cup across the table, you will notice a 
resistance that’s always pointed in the direction opposite to the motion. If we 
now attach a rubber band to the handle, we can observe the acting friction force 
as a function of the level of coffee in the cup (weight force) by looking at the 
expansion of the rubber band as we pull the cup lightly and effortlessly across 
the table (the only other thing which is easier to pull something over on is Dr. 
Hinrichs himself, but that’s another story). 

We see that the more coffee there is in the cup, the longer the rubber band 
stretches at the start of the movement or while the cup slides across the table. 
And something else can be clearly seen: The rubber band is always stretched 
the longest right at the start of the movement, i.e. static friction is greater than 
the sliding friction. Since no other forces act in the direction of pull at constant 
velocity or at rest, force FG in the rubber band must correspond exactly to 
frictional force FR. The best way to visualize this is – naturally – to make a 
free-body diagram of the cup being pulled across the table. 

We have already established that the tensile force (=frictional force FR)
increases with increasing weight (coffee). If you conduct this experiment under 
“laboratory” conditions, you will see that the tensile force is directly 
proportional to the weight force G. 



49

Figure 25: Free-body diagram of coffee cup with rubber band 

In our example this corresponds to normal force FN (thus: G = FN). Being 
proportional means that the relationship between two variables is constant. It 
therefore holds that: 

  FR / FN  =  const. 

Here we restrict ourselves to the simple Coulomb friction model, which 
describes two different states: adhesion (velocity v=0) and sliding (v  0). In 
the case of sliding, this constant factor of proportionality is referred to as the 
coefficient of kinetic (or sliding) friction , thus 

  FR = FN   . 

Before there is any motion, the frictional force FR is indeterminate, only 
fulfilling the unbalanced equation  

   | FR | 0 FN  , 

with 0 being the coefficient of static friction. When you slowly start pulling 
the slack rubber band11 without initiating the sliding process, you can easily 
imagine that, in terms of any given direction, the resultant of the two forces FR
and FN will be located within a cone, the so-called cone of friction. One-half of 
the cone angle 0 of the cone of friction is calculated as 

 tan 0 = 0 . 

11 This does not refer to the drawing on the next page but to the rubber band tied to the coffee 
cup.
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Or to put it more simply: If we tip an incline with a block on it until the block 
starts to slip at angle 0, we then obtain tan 0 = 0 . As kinetic friction occurs, 
the corresponding tan  =  applies, with the resultants of both forces forming 
something like an envelope of the cone of friction. The important thing to 
remember here is that the friction force FR is independent of the support 
surface and that it depends only on the normal force FN and the coefficient of 
friction  or 0.

According to the Coulomb friction model, friction force depends only on the 
material mating ( ) and the normal force. Consequently, there are no other 
parameters of influence involved. Even good old Leonardo conducted 
experiments on this and came up with precisely the same conclusion. Figure 26 
shows da Vinci's original drawings of his friction experiments.  

Figure 26: Da Vinci’s friction experiments [16] 
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In test questions involving problems of friction, the main thing to know at the 
start is that a friction force must be drawn in somewhere in the free-body 
diagram. But here you can use a really simple engineer’s trick: Wherever in the 
formulated problem a µ or 0 is drawn in at the interface between the object to 
be isolated and its surroundings, the thing to do is draw in the friction force 
(but after making the free-body diagram!!!). You then have one more 
unknown... but – watch out! – you also have one more equation that needs to 
be satisfied, namely: 

  FR = (0)FN  , 

where up to the point at which motion occurs this usually involves the 
maximum possible friction force, thus turning the unbalanced equation into a 
legitimate equation.  

Let's examine the following example: 

Figure 27: Tug-of-war on ice 

We already met Sir Isaac Newton (overall mass m) at the start. Now the iron 
pumper (overall mass M) from the section on distributed loads (see Fig. 19) has 
challenged our Sir Isaac to a tug-of-war contest on ice. For this, let's consider 
Figure 27. The coefficient of static friction between the ice and the shoe soles 
is 01 for Newton's ornate rococo galoshes, and 02 for the high-quality 
maximum anti-skid Adidas tennis shoes of his opponent. 
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Here Newton employs a trick to outfox his adversary. In order to raise his 
friction force, he straps on a backpack. The question now is: How heavy must 
the backpack be in order that he can start pulling his opponent across the ice? 
Or to put it differently: At what backpack mass mR does the friction force FR2
on Newton's shoe soles reach precisely the value of FR1 (Adidas soles)?  

To solve this problem, we isolate the free-body diagram! We must first 
isolate the system, drawing in all forces correctly, or in other words, we first 
have to draw the correct free-body diagram. The first thing we do in 
determining the support reactions is to draw a free-body diagram. At the start it 
is very important to draw a proper free-body diagram. Before we think of 
anything else we first have to draw a free-body diagram. We first draw an 
intelligent free-body diagram before we start calculating the support reactions.  

If I calculated the friction 
coefficient accurately, you’ll should

come in twelve seconds ! 
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At the start of every statics problem you first draw a free-body diagram. The 
first thing we do is isolate the system! We draw a free-body diagram. Even 
before we have even scratched our head in desperation! The first thing we do is 
draw a free-body diagram. At the start of every statics problem we therefore 
draw a correct free-body diagram. First we isolate the system by cutting it free. 

Cut it free, the only way to be. 
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Figure 28: Free-body diagram of the two warriors on ice. 

We therefore determine: 

 Fx = 0 = FR1  FR2

   FR1 = FR2 

01 FN1 = 02 FN2.

From the summation of forces in the y direction it then follows: 

01 Mg = 02 (m + mR)g. 

This gives the mass of the backpack as: 

  mR = ( 01/ 02)M  m. 

That’s about all for this question  but now on to another source of friction. 

1.9.2 Rope Friction 

One special case, which nevertheless is frequently encountered in practical 
applications, is the friction between a rope and a pulley. Here, too, a distinction 
is made between the states of static and kinetic friction, although for the acting 
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forces it doesn’t matter whether the rope or the pulley moves in the case of 
kinetic friction. Let’s first consider the case of static friction, i.e. where no 
relative motion occurs between rope and pulley. A pulley is shown in the 
following Figure. It is driven, held fast or braked by a crank (mechanics say 
that the action of a moment is present in an instantaneous center of rotation).

It is quite easy to imagine that the two rope tensions are not just deflected here 
but instead, depending on the static friction, that a certain ratio of the two 
tensions S1 and S2 is present. For example, if you glue the rope to the pulley, 
one of the two ropes can go completely slack while the other one is about to 
snap. If static friction is present, you can get the rope to glide in one direction 
or the other after a certain ratio is reached. This ratio can be derived from the 
free-body diagram of an infinitesimal, really, really tiny section of the rope on 
the pulley surface. The interested reader The diligent student Hot-shots will be 
able to calculate this relatively short and simple derivation on their own or find 
it in any “good” mechanics textbook. The interval of the tension ratio at the 
point of impending sliding, depending on the direction of net tension, leads to

  e (- 0 )   S1/S2  e ( 0 ) . 

To keep from getting confused, it is recommended to note, depending on the 
direction of the acting drive, braking or retaining moment, which of the two 
tensile forces is greater. Analogous to the explanations given for static friction, 
the following can be applied to kinetic friction: 

  S1  = S2 e ( ) , 

where here you should “think along” with respect to the magnitude and 
direction of forces.
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“Yeah, great”, says the interested loser, “but which of the two limits is 
decisive?” In order to answer this fair question, we shall now – with Dr. 
Hinrichs leading us safely by the hand – take a little stroll through the 
wonderful world of exponential functions. These beautiful yet dangerous 
entities have namely the following properties: 

  e x < 1 for x < 0 , 

  e x = 1 for x = 0 ,

  e x > 1 for x > 0 . 

If you determine by means of a driving, braking or retaining moment which of 
the two tensions is greater, you will see whether the quotient S1/S2 is less than 
1 (then the left limit is relevant) or greater than 1 (then the right limit is 
relevant). 

1.10 Trusses 

Now we come to the so-called “in your sleep” problems, which bring joy to the 
hearts of those who are still in the loser rankings. With trusses you can earn a 
lot of points. As already mentioned above, a truss is made up of rods, which 
can transmit forces only at their ends and in their longitudinal direction. These 
rods are connected at their ends exclusively by ideal joints (where no moment 
is involved). External forces and supports can therefore only arise at these 
joints. Such a truss does not exist at all in reality, but that does not matter to us 
right now. The relative error arising for welded or riveted joints in actual 
gridwork or trelliswork is said to be about only 5%. In the following we shall 
assume statical determinacy  

When calculating trusses you can either take a very pragmatic approach 
(using reliable but tedious and yawn-evoking methods ), or you can use winner 
tricks which lead you straight to the goal. When working with trusses you also 
have to construct a free-body diagram (Dr. Hinrichs likes to refer to the 
isolation of a free-body as the “Divine Method”). 
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Let us recall: You are allowed to cut through, or free, a (non-living) body 
from its surroundings at any point you like. But you have to make absolutely 
sure that you draw in all stress values  and this means all forces and moments 

 which occur at the plane (or edge) of the cut. Once you have grasped that, 
your loser days are behind you!!! 

Figure 29: Truss 

Let’s take the example illustrated above (Fig. 29) and treat it in two ways. Here 
we are looking for force S7 in rod 7 (see Fig. 29). At the start of every truss 
problem the first thing to do is calculate the support forces:  

This gives us (after making the correct free-body diagram) and Fjoint I = A, Fjoint

VII = B: 

  A = 4/3F,  Bx =  1/3F,  By =  2F . 
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1.10.1 Slowly But Surely (Method of Joints) 

In this reliable method we isolate the free-body diagram joint by joint and, 
keeping Newton’s Third Law in mind (action = reaction), draw in all forces, 
gradually moving hand over hand to the rod whose inner force “interests” us. 
Here we observe the convention that at first all rod forces are indicated as 
directed away from the rod. These therefore represent tensile forces (pulling at 
the joints and the rod), resulting in a positive sign (+) in the calculation. In 
keeping with this convention, compressive forces are calculated with a 
negative sign ( ), i.e. after we have calculated a rod force and the result has a 
negative sign, the rod in question is subject to compression.

Note: normally,      
a locomotive provides 
tensile forces! It is 
negative for it to 
generate pressure 

forces!

To make this calculation easier, we can take advantage of a cool trick here as 
well. Consider the free-body diagram of joint II (see Fig. 30):  

Due to their orthogonal relationship (being perpendicular to one another) 
the forces S1 and S4 will never be able to cancel each other out. But joint II 
(see Fig. 29) is at rest, isn’t it!? Nevertheless, the equilibrium of forces in both 
directions for a body at rest is not fulfilled here... unless: Both forces are zero 
(0), not present, the rods are “empty” and not necessary at all. In this case we 
refer to them as being zero-force rods, which can save you a lot of time, in 
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contrast to some colleagues who are a big zero, such as Dr. Romberg from time 
to time.  

An unloaded isolated corner (such as joint II in Fig. 29, for instance) or 
even an unloaded T-piece (for example joint V) always indicates zero-force 
members. Even if member 9 happened to be joined to member V at an oblique 
angle (oblique T-piece), member 9 would still be a zero-force member because 
members 6 and 10 cannot compensate the x-component of any force in member 
9, for even their forces act only along the direction of the members. 

Figure 30: Isolated joints (for joint numbers, see Figure 29) 



60

If we take a close look, we’ll see that this trick can indeed be applied to 
member 9: The truss forces S6 and S10 have no components in the “member 9 
direction”, and can thus not compensate for S9. The force equilibrium for joint 
V in the y direction can only be achieved if truss force S9 disappears. Thus, 
member 9 is also a zero-force member, which we can remove.  
The equations for joint I are: 

 x direction:     S3/ 2  =   A =  4/3F, 
 y direction:     S2 =  S3/ 2  . 

The equations for joint III (after all, joint II is no longer around) can be 
formulated in the same manner:  

 x direction:     S5 =  S7/ 2 , 
 y direction:     S2 = S6 + S7/ 2  . 

The same applies for joint IV: 

 x direction:     S5 =  S3/ 2 , 
 y direction:     S8 =  S3/ 2  , 
 etc... etc... 

After all joint analyses have been set up, there are enough equations on hand to 
calculate all truss forces. Naturally, these include the truss force S7 that we’re 
looking for. But this reliable method, which achieves its goal pretty 
determinably in cases of statical determinancy, is very tedious and in exam 
situations it can only be recommended to cool-headed calculating whizzes. 
This is where you can use a much more practical method : 

1.10.2 Get to the Point: the Ritter-Cut 

The Ritter-cut method lets you find the truss force in question with a single, 
skillful blow (isolating cut). It also offers you the chance to check critical joints 
quite quickly.



61

What have 
you done ??!! 

May you can buy an 
armature … this would 

attract less attention … 

Furthermore, this method allows you to “eliminate” those “non-essential” parts 
right away, thus putting you closer to your target joint from the very start. 
Again we take advantage of the wonderful fact that we, like hobby surgeons 
the world over, can make a cut anywhere. Which even means right through the 
entire system. 
That would look something like this: 

Figure 31: Truss with sectional cut 
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With criminal acuity (Dr. Hinrichs, go fetch the getaway car!) we first form the 
summation of moments at the lower remaining sub-system around joint VI, for 
this then gives us only one unknown to deal with. The moment summation 
results in

  S6 = 5/3F. 

Now all we have to do is make the force summation in the x direction, which 
immediately gives us: 

  S7 = 2 /3 F. 

Since this trick lets you solve this problem in just a few minutes, you have 
plenty of time to get up in the middle of an exam and leisurely go for some 
coffee while the others are sweating it out. It’s cool! However, when making 
the cut, you must always cut through three members only, but these may not be 
all fixed to the same joint. You’ll get the hang of it after some practice! 

The Ritter-cut is superbly suited for determining internal forces and 
moments as well. Whenever we isolate a piece from a body we have to supply 
all the forces and moments in place of this isolated piece so that nothing 
changes in the original system (yawn). So why do we need internal forces? 
Quite simple: Internal forces and moments in elastic bodies result in all sorts of 
deformations (and possible damage). We shall now take a look at internal 
forces and moments, so-called internal forces (and moments) but still using 
rigid bodies. 

1.11 Stress Factors 

Let’s recall the cantilever (the beam fixed at one end) that projects out into 
space and whose support reactions for a special case of loading we calculated a 
few pages back. The cantilever in Figure 32 is also considered to be massless at 
first. We can observe a force 2 F and a moment M*, which exert a load on the 
beam, causing not only support reactions at the fixed support. There are also 
forces (and moments) acting along the beam. This is quite easy to imagine if 
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you try holding a safe (mass m) or any other appropriately heavy object (F = 
mg) in your hand with your arm outstretched. After a while, it is not only your 
shoulder (support) that hurts! 

Figure 32: Cantilever loaded by force and moment 

How is it possible to determine the so-called inner forces and moments, also 
known as stresses? Well, what do we do when we are supposed to analyze the 
action of forces and/or moments? We rejoice and draw a free-body diagram 
(drool!! slobber!! scribble!!) and soon half the battle is already won. So let’s 
first calculate the support reactions. 

Fig. 33: Free-body diagram of the loaded cantilever 

After drawing the correct free-body diagram, the following support reactions 
emerge: 

  Ax =  F,  Ay = F,   M = M*  2Fa . 

Now we determine the stresses, first for the beam section having 0 < x < a 
(thus resolving the system into subsystems whose borders represent the points 
of external forces and moments). To do so, we simply cut through the left part 
of the beam somewhere in this section and at the isolated part “very quickly” 
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draw in the forces and moments which in reality hold the beam together there. 
In this way, the mechanical system does not “notice” anything about the cut, 
since all reactions are still present. Here, however, we have to observe the 
Gentlemen’s Mechanics’ Agreement that stipulates the direction of the 
reactions projecting from the gaping cut surface (see Fig. 34 and commit it to 
memory! The directions of the forces and moments used here are henceforth 
binding).

Figure 34: Free-body diagram of the left part of the cantilever (positive section) 

A beam is acted upon by a normal force N (tensile or compressive stress), a 
transverse force Q (shear forces), and a bending moment Mb. These quantities 
can now be viewed as a function of a particular location (i.e. of x) (much in the 
same way that Dr. Hinrichs is a function of certain locales). 
Given that  Fx = 0,  Fy = 0 and M = 0,  the stress values for the left part of 
the beam can be calculated as: 

Normal force: N(x) =  Ax = F, 

Shear force: Q(x) = Ay = F, 

Bending moment: Mb(x) = Ayx  +  M = Ayx + M*  2Fa = F(x  2a)+M*. 

In this case and for this part of the beam, only the bending moment Mb is a 
function of the location x. For determining the bending moment curve, we form 
the respective summation of moments about the instantaneous cross-sectional 
point. Now let’s have a look at the middle beam section at (a < x < 2a). The 
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corresponding free-body diagram is shown in Fig. 35. The stress values for this 
range are: 

Figure 35: Free-body diagram of the middle beam part (positive section) 

 Normal force:  N(x) = F, 
 Shear force:  Q(x) = F, 
 Bending moment: Mb(x) = Fx + M*  2Fa  M*  =  F(x  2a) . 

In terms of force, nothing has changed for the two sections, since nothing in 
terms of force happens in the range 0 < x < 2a. A force is first introduced at x = 
2a. But a jump occurs in the bending moment curve Mb(x) at x = a, because 
here is just where the moment M* is introduced into the beam. The best way to 
visualize the introduction of a moment is to imagine that someone has just 
applied a ratchet or a wrench at exactly this point.  

Figure 36: Free-body diagram of the right beam part (positive section) 
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What happens in the right part of the beam? If we take a practical look at this 
free end, it really should be quite clear that no stresses can be generated here 
anyhow. After all, this right part is not clamped or jammed anywhere... so let’s 
see. First, the free-body diagram: the related stresses: 

 Normal force:  N(x)  = F 2 F/ 2  = 0, 
 Shear force:  Q(x)  = F 2 F/ 2  = 0, 
 Bending moment: Mb(x)  = Fx + M  M*  F(x  2a) 

     = Fx + M*  2Fa.  M*  F(x  2a) = 0. 

Well what do you know! All stress values turn out to be zero (0)! So here there 
is indeed (what does “indeed” mean anyway?) a jump in the curve of normal 
force and shear, for the very reason that a shear and a normal force are 
introduced at x = 2a.

But there is a much easier way for us to arrive at the result for the free 
end, namely by resorting once again to a great trick that saves us a lot of time 
and calculating effort: Since we are allowed to isolate wherever we wish, we 
can simply cut off the free end and draw in the section’s stress values. But here 
you have to draw in the section forces the other way around (action = reaction), 
as was also the case with intermediate conditions (key word: Gerber joint). The 
common mechanics person also refers to this as the “negative section”:

Figure 37: Free-body diagram of the free end (negative section) 

So based on the isolated beam end we now just “calculate” the stress values by 
means of the negative section. With  Fx = 0,  Fy = 0 and M = 0 the direct 
result for Fig. 37 is: 
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  Normal force:   N(x) = 0, 
  Shear force:   Q(x) = 0, 

  Bending moment:  Mb(x) = 0. 

Finding the right free body is something quite wonderful ( )!

You must be from the 
other side ! 

Naturally you can calculate the other parts of the beam proceeding from the 
negative section. This can be done by anyone who feels like it (Dr. Hinrichs 
already has pencil and paper in his hand, which is what he always has in his 
hands unless he happens to be sitting in one of those I’m-really-not-hungry-or-
thirsty-at-all-but-it-can-be-something-pretty-expensive-anyway type of bistro, 
nipping a pretentious, colorful drink and smiling at conceited, stuck-up ladies... 
and, well... with those of them having no taste sometimes smiling back.). 

If a number of supports are present, their reactions are calculated as usual 
beforehand, with the corresponding values being further treated as external 
forces. To get the big picture, it is very helpful to plot the stress values across 
the entire length of the beam. Here, too, there are conventions to be observed, 
e.g. that positive values point downward. Figure 38 shows the gradients of the 
three stress values across length x. 
Another important tip, especially for oral exams: 

With a little practice (Dr. Hinrichs believes that this is possible without 
any practice), the stresses can be plotted spontaneously with the help of the 
known threshold values. 
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Figure 38: Stress gradients across the loaded cantilever from Fig. 32 

The threshold values are given by such forces as support reactions, introduced 
forces and moments, or free ends. So if you know that the gradients between 
the introduced forces are constant, and also know that the shear force gradient 
represents the first derivation of the moment gradient, and that introduced 
moments cause a jump in moment, then you have been a loser long enough! 
When working with distributed loads, however, you do have to watch out a 
little, as shown in the following example. Nevertheless, you have nothing to 
fear from mechanics if you are consistent, methodical and really cool in 
applying what you have already learned - and if you set up the right free-body 
diagram.  

We will now apply the method of stress determination to a real cantilever 
having mass (weight G) with a simple fixed end. The actual case in question 
involves a one-meter diving board (length L) of the municipal recreational 
facility complete with a large shower room. Dr. Hinrichs (weight 2G) has been 
standing for quite some time at a distance b from the fixed end. Despite the 
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encouraging shouts from the thronged crowd below (swimming class of the 
Delmenhorst Water Fleas) he is still afraid to jump. We first draw the free-
body diagram, where we can neglect the fluctuating load of the force exerted 
by Dr. Hinrichs’s trembling knees.: 

Figure 39: Free-body diagram of a real cantilever (diving board) 

The distributed load (weight) q(x) = q0 acts on the entire beam (length L). The 
resultant weight force is thus G = Lq0. This impinges at centroid x = xs. Along 
with the additionally exerted force F = 2G, which acts at x = b, this yields the 
following support reactions: 

  Ax = 0,  Ay = 3 G,  M = G(xs + 2b) . 

Now we draw the free-body diagram for the left part (positive section, x < b) of 
the diving board: 

Figure 40: Free-body diagram of the left part of the diving board 
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Here the stresses to the left of Dr. Hinrichs (x < b) are: 

Normal force: N(x)  = 0, 
Shear force: Q(x) = Ay  q0x (distributed load q0 acting on length x) 
  = 3G  q0x , 
Bending moment: Mb(x) = 3Gx  1/2q0x2 . 

Where does the right-hand term in the bending moment equation come from? 
Take a look at the free-body diagram!!!12 The center of gravity and thus the 
lever arm of the resultant distributed load acting on the isolated portion lies at 
xs = x/2. This gives us the factor 1/2 or x2, since the resultant distributed load is 
q0x. Bingo? 

For the right side of the diving board we will use the left-hand section to 
make things easier, for here there is no Dr. Hinrichs, green in the face (from 
fear) and blue in the lips (from cold). Besides, this is where we don’t need to 
calculate any applicable support reactions. Thus the free-body diagram of the 
right side: 

Figure 41: Free-body diagram of the right side of the diving board 

First of all, here it is worthwhile to introduce a new coordinate x which points 
in the opposite direction of x from the end of the board. Thus: x  = L  x. This 

                                                
12 In the case of Dr. Hinrichs we prefer not to cut away his trunks in our free-body diagram. 
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therefore results in the following stress gradients for the end of the board to the 
right of Dr. Hinrichs: 

 Normal force:  N(x) = 0, 
 Shear force:  Q(x) = q0 x = q0(L  x), 
 Bending moment: Mb(x) =   1/2q0 x2 =  1/2q0(L  x)2 . 

Naturally, the gradients can be represented in graphic form here as well. Have 
fun!

Well, enough rigidity  now it’s time for some real action, where things bend, 
pull, hack, wear, tear, shear and squeeze. In other words: “strength of 
materials”. 
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Hey, Cydos! Here I found again 
such a waste carbon-unit… 

Switch off that 
crap! They just 
make errors! 

2. Enough Rigid Thinking: Elastostatics  

Here’s a little joke about our friends in mathematics: 
How does a mathematician catch at least one lion? By driving three posts into 
the ground, putting a fence around them, placing himself inseide and then 
defining himself as being on the outside!

Well, now we’ll have to dump quite a bit of what we’ve learned up to this 
point. This is because one basic assumption from Chapter 1 has to be 
disregarded entirely. From now on, bodies are no longer rigid, but elastic. 
We’re getting closer to something approaching reality here. Taking an 
everyday and easily understandable example, let’s imagine a pierced nipple, 
which has a number of weights on it to enhance the arousal factor. Going by 
Chapter 1, we can calculate the forces and moments acting upon the breast 
but now we want to determine the lengthening of the breast as well. 

Guided by the elementary foundations of mechanics, we again postulate 
another brutal assumption: We will assume that the support reactions and the 
stresses calculated for the rigid body deviate only very slightly from those of 
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the elastic body! This is not an obvious step. Consider the cantilever loaded by 
a weight force. The stress calculation has shown that no normal force acts on 
the cross section of the beam. When there are significant deformations  take 
an elastic ruler for verification of this  the end of the beam tilts in the 
direction of the weight force. The greater the angle of inclination means that a 
greater normal force is introduced into the beam! We will ignore this 
influential factor in the following. 

2.1   The “Who is Who” of Material Strength:  
 Stress, Strain and Modulus of Elasticity  

Up until now the cross-sectional dimensioning of our members, for example 
the nipple, has not come into play. We will now put an end to that. And since 
there is not always a breast at hand for experimenting on your own and since 
this book has to pass the critical eye of the Juvenile Protection Board (and the 
even more critical eye of Dr. Hinrichs’s mommy), instead of the breast we’ll 
concentrate in the following on three bungee jumpers, who have not read the 
small print in the “Jet and Jump offer”, where there is obviously no legal clause 
covering the subsequent rescue of the customer.  

We would like to take another look at the respective stresses in terms of 
material strength. From statics we still know that normal force FN = mg acts on 
the small isolated rope element. In statics, we left the cross-section of the 
members out of our calculations. However, there is no denying the fact that the 
cable exhibits spatial elongation in its cross-sectional area A  and that this 
cross-sectional area does indeed have a decisive influence on our pulse rate 
before the jump, i.e. the loading of the cable really does have something to do 
with the cross-sectional area!  

The normal force FN has to act somewhere at a point in this face  but 
where exactly? Well, everywhere of course, thus with N small forces having 
the magnitude FN / N, yielding a total sum of FN. So we can actually 
accommodate an infinite number of forces (N ) in the cross-sectional area 
(with small forces FN / N = ...). 
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Thus the concept of forces is no longer adequate for describing the processes 
occurring in the cross-sectional area. The load exerted on the surface is 
apparently a function of the surface area on the one hand, and of the applied 
force on the other. Here we will have to introduce a new unit of quantity: 

  stress:  =
F
A

   [N/mm²] . 

Explanation:
This funny symbol at the beginning is not some new Pokémon figure, but 
rather the symbol for stress. It’s pronounced “sigma”, meaning that it is a 
Greek s!
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It thus follows that the load exerted on the cord remains the same if the mass of 
the bungee jumper (or even better, dangler) is doubled for a cord having twice 
the cross-sectional area.  
Since the small force-arrows in the cross-sectional area are all perpendicular, 
and thus “normal”, to the surface area, this type of stress is also referred to as 
normal stress  this system of notation thus corresponds to the designation of 
the normal force, which is of course the resultant stress factor in our cord. 
Normal stress always has the effect of lengthening (or shortening) of a small 
element of the body, which in our example results in the lengthening of the 
cord.

The magnitude of the tension thus indicates the actual load acting on the 
member. The smallest particles or molecules of a jumbo jet and those of a 
needle, both subjected to the same stresses, will therefore be put under the 
strain of equal load forces. In this case, these very different members will even 
exhibit the same deformation  as well as the same risk of a malfunction....  

Let us now turn to deformations, which apparently have something to do 
with stresses: 
Back to our bungee jumpers, who are “hanging around together” (Dr. Romberg 
is good at hanging around even without a bungee cord!). The cord of the 
featherweight beauty (weight force G) is deformed to an appreciably lesser 
extent (i.e. lengthened by the amount x) than that belonging to the hefty regular 
of the iron-pumping shop.  

Precise measurements made under laboratory conditions will then show 
that if two beauties (weight force 2 G) jump together on one cord, it will 
undergo a double lengthening 2x. A scientific evaluation of this gives the 
following resulting-diagram-chart-plot-evaluation: 

In the diagram of tensile force F plotted with respect to lengthening x, we 
can see the range corresponding to this linear proportionality (double tensile 
force ==> double elongation). 

The funny sign in front of the L at the end of the x axis is neither a tent 
nor a triangle, but a “delta”. It describes the change in length, thus L = L(N) 
L0 (change in length = length at normal force N minus unloaded initial length). 
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damage 

Figure 42: Tensile force F as a function of lengthening L

This proportionality is valid until the cord snaps or somebody’s skull 
smashes onto the asphalt  then we lose experimental control. We also lose 
control of our shrewd calculations, so we must therefore limit ourselves to the 
linear range. This is all normally summed up in the theory of springs, also 
called Hooke’s Law:

  F = c L.

Since the preceding has been pretty understandable to any house(man)wife 
with a high-school diploma, it’s time to rev up the scientific fog machine:  
Experience shows that

 the doubled weight (F = 2G) results in the doubled hanging length, 
i.e. we deduce with razor-sharp acumen: L  F (one reads: The 
change in length L is proportional to (tensile) force F), 

 if we double the length L of the rubber band, the lengthening is also 
doubled: L  L, 
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 doubling the cross-section A of the rubber band (or two rubber 
bands) for the same weight results in only half of the lengthening, 
i.e. L  1/A, 

 the stiffer the material used in the rubber band, the less excursion is 
caused by the weight force. Here we refer to the stiffness of the 
material as ... here ... as ... well, let’s just take ... E, so therefore 

L  1/E. 

So for the excursion L (according to simple linear mass law) is can be shown 
that:

L =
FL
EA

  .   

Instead of force, we now use stress as the reference value: 

 = 
F
A

      [N/mm²]    . 

Stress therefore indicates the force per surface element of the tension member 
or cord. Instead of the lengthening L we will now make things even more 
foggy by introducing tennnnnnsion, or the lengthening per portion of the cord: 

 = 
L

L
     [1]. 

In the diagram we have given the spring constant c (in terms of a length) a 
really complicated name: the modulus of elasticity E (or, among friends, the E-
modulus). Sounds good, huh?  

The scientific fog machine has really picked up steam here: The technical 
subject matter has remained the same, as you can see from the identical 
illustrations  but the designations used now require a small dictionary for the 
inexperienced still-loser.  
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damage 

Figure 43: As in Fig. 42, but now with ultra-scientific axis notation 

As a result of altering the units with the introduction of  and  the unit of the 
proportionality constants has also changed: The elasticity modulus E is 
expressed by the unit N/mm². This is a material-specific constant, i.e. its value 
is given for each material upon purchase, regardless of color, chosen 
diameter..., and is thus simply a function of the material itself. Now you can 
quickly transform the spring theory: The previous equations can be expressed 
as

 = E . 

The model according to which deformation (tension ) is dependent on loading 
(stress ) is called mass law  in the case at hand we applied a linear mass law 
to a linear elastic range and that’s the way it’s going to stay! 

A nesting of the equations reveals the following “vital” facts: The 
equivalent stiffness of an elastic body can also be calculated from its material 
and geometric data: 

L = 
FL
EA

 ,  

  cequi = 
EA
L

 . 
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You violated 
again the mass-
law, didn’t you?

To be honest we should note here that we have not only achieved the desired 
“fogginess” in the original spring theory but also a definite advantage:

According to the simple spring theory, a thin cord naturally has a different 
stiffness than a thick one. A long rubber band elongates more under the same 
weight than a short one. . . . With the help of the new equations you can 
dimension a member if you know its geometry and the elasticity module E as 
its material constant. Now that’s something, isn’t it? 

2.2  Stress and Tension Under Normal Force and Simultaneous 
Warming

As everyone knows, mechanical engineers from the South possess somewhat 
more fiery temperaments than those from the cool North. So naturally this is 
something we have to take a critical look at: Under the high temperatures in the 
sweltering South, the same tensions between people have graver consequences. 
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In the meantime our bungee dangler is pretty well hung in the midday heat of 
the next day  he is no longer able to really notice the rise in temperature (his 
bloody hands are the result of his many desperate climbing efforts). But the 
cord definitely notices the change in temperature: It becomes longer when 
heated. So in our formula for the lengthening of the cord we will also have to 
account for the cord’s “temperament” under the influence of increased 
temperature: 

L =
FL
EA

  + L     
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where :  coefficient of thermal expansion. This is a 
material-specific constant describing the 
sensitivity (temperament) of the cord to a 
rise in temperature, 
the change in temperature. 

 Pretty obvious here: The more it heats up, 
the longer it gets! 

However, the development of a rather rank smell creates another problem for 
the bungee jumper – our calculations must now account for the vultures which 
are comfortably perched on the cable. The experienced statics engineer will 
immediately recognize that the normal force FN is no longer constant but 
increases across the length (with increasing number of vultures). This means 
that we cannot use our formulas  and , since they do not allow us to 
calculate with a normal force dependent on a specific location. 

But since none of this is really all that complicated, we would like to 
generalize this example somewhat: In the following, our cord, in addition to the 
weight of the bungee-dangler, will also be loaded with its own weight, thus a 
distributed load. The entire apparatus is then warmed up – of course not 
uniformly in all places. That much is clear. Oh, yeah: We’ll additionally 
assume that, for some inexplicable reason, the cross-sectional area and the 
coefficient of expansion of the rubber band are not constant along its length. 
This happens quite regularly in actual practice!  
The magic formula is now: 

L =
0

L
(

( )
( )
x

E x
 + x x)) dx  ,    

where

(x) =
N x
A x

( )
( )
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designates the stress that we’re now sufficiently acquainted with. Whoever 
refuses to believe this formula... will just have to believe it anyway, because 
we’re always right, of course (after all, we are erudite scholars.). 
So that’s not bad at all, is it? But watch out: One thing you must always check 
is which assumption has been made in the formulation of the problem, 
otherwise you’ll be stuck with much more work than necessary: 

case 1: constant load, constant cross-section, no warming 
 ==> equation  

case 2: load, cross-section, warming and expansion coefficient constant   
 ==> equation  

case 3: everything is open 
==> equation  

Here’s a tip from Dr. Hinrichs for the hot-shots: Of course you can always beat 
cases 1 and 2 using the more general case 314...

So let’s nail down these three cases right away with some examples: 
Hanging downward L+ L by his tie (cross-sectional area A, E-modulus E, 
specific gravity15 , coefficient of thermal expansion ) is a suicide (cadaver 
mass G, flunked mechanics finals three times in a row).

a)  The rope (noose) is massless ( =0).
b)  The own weight of the rope is to be accounted for. 
c)  The temperature of the rope increases from an ambient temperature 

of 40 degrees in spring to 70° in summer. 
By what amount L did the rope lengthen? 
Given: G, , A, E, L. 

14 Dr. Romberg thinks that you would be just as well off beating yourself up! 
15 Or weight of unit volume. 
16 Here the editor would like to point out that according to the Industrial Standards, in effect for 
the last 25 years or so, the term unit weight has been replaced by specific gravity. 
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Nothing to it, right?! For problem part a) we immediately decide to take case 1, 
and thus equation . But this provides us right away  without any great 
calculating work and by simple copying  with the solution: 

L =
GL
EA

 . 

b) We first have to deal once more here with statics, since here, only the 
normal force is needed for the rope. This is G at the lower end of the rope, 
while due to the rope’s own weight the normal force at its upper end is G 
+ AL. Well, and what about in between? Here the normal force increases in 
linear fashion, since with every centimeter of rope, the weight of each 
additional centimeter exerts an additional pull on the rope, thus resulting in  

  N(x) = G+ Ax.

Now we'll have to work our way through the integral equation :

L = 
0

L
( G+ Ax /EA) dx = 

GL AL
EA

2 2/
 . 
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c) Finally, the whole thing all over again in short form for the additional 
warming: 

(x)  = 15° 
x
L

L  =  
0

L
 (G+ Ax)/(EA) + x)) dx   

         = 
GL AL

EA

2 2/
  +  L/2  . 

Here the positive mathematical sign in the temperature term indicates a 
lengthening of the rope as a result of the rise in temperature! Bonus question 
from Dr. Romberg: How warm does it have to get at a given hanging height H 
for the suicide attempt to fail?  

In this spirit you can now think up all sorts of great problems that yield 
somewhat complicated mathematical terms and integrals, but that really do not 
mean much in the way of providing new knowledge for the average loser: 
variable cross-sections (e.g. thick ropes tied to each other with a knot), wildly 
fluctuating temperatures with an additional fire under the ass) .... 

2.3  Stressed Out in All Directions: the Circle of Stress

2.3.1 The Single-Axis Model: Rod under Normal Force Stress  

Let’s play “Battleship”. You take a pencil with a pointed end and an eraser at 
the other end. If you place the pencil upright with its eraser on a sheet of paper 
and press on its tip (but be verrry careeeeful: It’s pointed, man!), then a force F 
will act on its tip, or at a point.  
While continuing to exert force we now tilt the pencil at an angle  to the 
vertical. Of course the first thing we have to do is to hold the sheet of paper 
under the pencil in place, otherwise the entire experimental apparatus will slip 
off sideways.
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Here, Dr. Romberg would like to 
postulate, that this “finger” was drawn by 
Dr. Hinrichs! 

Figure 44: Battleship: initial position 

Figure 45: Battleship: final position 
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In addition to the shortening of the eraser due to normal stress, another effect is 
also taking place under the altered experimental conditions: a lateral migration. 
In accordance with the support reactions, see Chap. 1, force F can be broken 
down into the components FH and FV. In this example, the horizontal force 
(that's the frictional force) is also generated on the contact surface. Based on 
the same argumentation used for justifying the introduction of a normal stress, 
it is now necessary to introduce a tangential or shear stress  [N/mm²] to 
describe the stress exerted tangentially to the contact surface and whose effect 
is a tangential displacement or the obstruction of such displacement.  

Actually, the more you look at these experiments the more perplexed you 
get: In both experimental variants, the external load on the rod (pencil) is 
identical: A force F is applied in the direction of the rod’s axis, thus generating 
a normal force with magnitude F. In the first case this load is compensated by a 
normal stress, in the second case by an appropriate combination of normal and 
shear stress. This actually functions analogously to the resolution of a force 
into a force couple, see Statics in Chapter 1.

  a)      b) 

Figure 46: Internal forces of the pencil for a) =0 and b) 0

So if anybody asks us about the stresses in the pencil, the only thing we can 
really say is: It just depends on your point of view. Perpendicular to the axis of 
the pencil we have a normal stress, but from a different point of view, or angle 
of cut, we have a combination of shear stress and normal stress, each of which 

F
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is just large enough in magnitude to keep the external force in equilibrium. But 
this, of course, is somewhat vague. 

As in statics, we would like to calculate the exact stresses for our pencil. 
But to do so, we make the cut of our section at two different angles: 
Case 1: as usual, thus perpendicular to the rod axis, and case 2: rotated from 
the normal cut by angle 17.
Note: Surprisingly, the rod here, in contrast to the usual drawings encountered 
in statics, is turned upside down or rotated. This is not due to a mental blackout 
of the “draftsman” but is rather a deliberate analogy to our pencil experiment. 

Having passed the chapter on statics with flying colors, the well-trained 
loser will of course immediately see that the stresses are found by  

  FN  =  F cos

  FQ  =  F sin

Plotting the resulting stresses as a function of the cut angle , you get. . . the 
following circle: 

18

Figure 47: Normal force and shear force as a function of cut angle 

17 What follows is an elegant mathematical deduction of Mohr’s Circle, the author naturally 
being Dr. Hinrichs. Helpful tip from Dr. Romberg: Open up a nice cold beer, relax and resume 
reading tomorrow a few pages further on. 
18 This circle is a bit too oval for the editor! 
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Now we have to include the sectional area of the rod in our calculations, since 
it of course varies according to different cut angles. A complicated linear 
mathematical operation, dividing by the sectional area, turns the calculated 
force into a stress: 

) = FN/AS

and

( ) = FQ/AS  . 

Figure 48: Mohr’s circle 

If a baguette is sliced at an angle, the slices of bread are larger. In the same 
manner, the cut sectional area AS is dependent on angle  of the executed cut. 
It follows that if  

  AS   = A/cos

then
) = FN/AS   
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   = F cos²  / A

   = F
A2

 (1 + cos2 )

and
( )  = FQ/AS   

   = F sin  cos  / A

   = F
A2

 sin2 .

This results in a circular-shaped figure, which we would like to glorify 
somewhat with the scientific term of Mohr’s circle! 

See how easy it can be to calculate your way through the horrors of 
materials strength? This has been done here for the pure normal force stress, 
the so-called single-axis stress .  
In the case of our loaded pencil, the circle has the following characteristics: 

 1) center:  M  = 
F
A2

, M = 0 

 2) radius:   R  = 
F
A2

 I like both   
 the tensile and the 

shear stresses!  
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 3) maximum normal stress:  

max = 
F
A

  for  = 0 

 (you probably could have guessed this result without any 
calculations, couldn’t you?!) 

 4)  maximum shear stress: 19

max = 
F
A2

    at  = 45°    

So, pay close attention here: When a cut is made through a loaded body, the 
stresses of the sectional area are dependent on the angle of the cut. The normal 
stresses at those points of Mohr’s circle where the shear stress disappears, i.e. 
the points of the circle that intersect with the axis, are also referred to as 
principal stresses (in our example with the pencil: I = 0, II =  F/A ). 
Maximum stress occurred in the direction of the only loading factor. 
Perpendicular to the loading direction, the load is zero. But this has been pretty 
clear to us all along: For = 90° we determine the tension parallel to the side 
surface of the rod, thus slicing open the pencil in its longitudinal direction... 
Since these surfaces are not longitudinally loaded, there is no reason for any 
stresses to be present here.  

The case we have just examined involves what is referred to as single-axis 
stress. In the case of two- (three-) axis stresses, there are two (three) loads 
having components in two (three) directions.

Properties of Mohr’s circle (Part I) 
1)  The centers of any stress circle lie on the  axis! 
2)  The angle  at the member is plotted in the stress circle under the 

angle 2
3)  Determining positive and negative signs: 

19 (Here a small tip for the experienced practician or materials scientist: It is for this reason that 
tensile test samples of ductile = free-flowing materials tear at an angle of 45° to the rod axis 
when the maximum shear stress is exceeded. When brittle materials exceed the maximum 
normal stress, their fracture surface lies perpendicular to the rod axis.)  



91

a)  Positive normal stresses correspond to tensile stresses, negative 
normal stresses correspond to compressive stresses. 

b)  Shear stress is plotted in Mohr’s circle as follows: The normal stress 
points out of the sectional area... If you have to rotate the latter 
clockwise in order to make it coincide with the shear stress , then  is 
positive. Otherwise  is negative. 

4)  The principal stresses are sorted according to magnitude:  
   I > II (> III, three axial case) 
5)  The theorem of associated shear stresses:  
   “The shear stresses in two perpendicular sectional areas have the same 

value.”
     For the experienced Mohr’s circle freak, this is a trivial point, since 

these points must of course lie opposite one another in the circle 
(2 * 90° = 180°). 

Experience has shown that the greatest, but most easily avoided, source of error 
is actually point 3) concerning positive or negative signs. 

If we know that the stresses involved can be plotted in the form of Mohr’s 
circle, there is no longer any need to use the previous equations at all. To 
construct Mohr’s circle, it is quite sufficient to know just two points of the 
circle, for instance, knowing: 

a)  the principal stresses II=0 and I where  =0 (for single-axis stress), 
or
b)  that for any partial area of the member, the normal and shear stress 

acting on this area are known for single-axis stress. 

Here’s a quick example: 
Dr. Romberg has to have a tooth (cross-sectional area A) pulled. As a result of 
the tensile forces acting on the tooth (and also due to his inflamed smoker’s 
gums) Dr. Romberg is in great pain. The shear stress  and normal stress  act 
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on the root of the tooth at an angle , as shown in Figure 4920. (The forces 
(stresses) in the lateral areas of the tooth can be disregarded, according to 
information provided by the dentist.) 

a) After assessing the pain-inducing stresses  and  Dr. Romberg tries 
unsuccessfully to assess the maximum shear stress acting in the tooth. Can Dr. 
Romberg be helped?21

Solution:     No. 

b) With what tensile force F does the dentist pull on the tooth?22

Given:  = 200 N/mm²,  = 100 N/mm², A = 20 mm². 

Figure 49: Tooth under angle 

20 Another thing Dr. Romberg still can’t get out of his head is the idea that the Americans never 
landed on the moon but instead staged the landing on a Hollywood film set. We’ll probably 
never be able to escape it – during discussions on this topic he loves to provide detailed 
contradictory evidence, for example that the light reflecting off the studio space ship was set at 
the wrong angle  
21 Here we’re only asking about help in the CALCULATIONS – any other kind of help would 
be too late anyway! 
22 Altered formulation of the problem: How hard does Dr. Hinrichs have to pull on the tooth in 
the given example for Dr. Romberg to experience a maximum pain load at the impending tooth 
extraction? 
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With the known points P1 and P2 we can now fiddle around with the Mohr’s 
circle...

Figure 50: Mohr’s circle (well, anyway) 

The maximum shear stress and the principal stress practically jump out at us:  
I  =  250.000000000043175 N/mm², 

max  =  125.0000000000000002143 N/mm².  

Since it would take a more sophisticated drawing for us to read any more 
decimal places, we will supply the calculated solution here: 

  = arctan (100 N/mm² / 200 N/mm²)  , 
max = R = 100 N/mm² / sin(2 ) , 

I = 2 R . 

The tensile force on the tooth is then found by

  F = I A = 5.0 kN . 
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2.3.2 Biaxial Stress

Once you have understood the principle of single-axis stress, then the case of 
biaxial stress should not be much of a problem either.  

The only difference is that the second principal stress I (or II) is no 
longer identical to zero. This means that in the case of biaxial stress, the center 
of the Mohr’s circle is shifted. For instance, in addition to tensile force F, 
another normal stress can be applied to the lateral surface, thus “zooming” the 
circle in the direction of the “pull”, i.e. the center shifts in the positive 
direction, with one principal stress remaining where it was in the case of 
single-axis stress. 

Figure 51: a) FBD of a “four wheeler” (i.e. two axles)   b) Mohr’s circle 
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Simple, right? Unfortunately, for this type of stress one can think up problems 
that are much more devious than this, see Chapter 4.2. 

2.3.3 The triaxial model

As we have seen, the single-axle model is a special case of the biaxial one. 
Exactly the same applies to triaxial stress, which should be old hat by now. 
Here you can always observe the actual conditions on an arbitrary surface of a 
body by analyzing a cuboidal element of it  but as in the case of biaxial stress 
these can be represented as a circle. 

In order to examine all three spatial dimensions, we have to look at three 
faces of the cube  that is, three stress circles. So the resulting figure then looks 
like the following: 

Understandably, the circles abut one another, giving us the three principal 
stresses I, II and III. That’s all we need. 

Figure 52: Triaxial stress

As a special treat  in his opinion  Dr. Hinrichs has even drawn up a nice little 
table! 
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Properties of the Mohr’s circle (Part II) 
Type of stress 

single axle biaxial  triaxial  
Principal stress I I or II  0,  

e.g. F/A 
0 0

II 0 0

III 0
Radius R I/2 or II/2 I II)/2 R1=( I III)/2

R2=( I II)/2 
R3=( II III)/2

Center M R= I/2 II+R M1 III+R1

M2 II+R2

M3 I+R3

After this pretty dry stuff sorry !  the next 10 pages will unfortunately also 
stay just as dry. So stick to this motto: BITE THE BULLET!

Let’s go back to our pierced nipple with its additional S&M load. Here 
the S&M practitioner, experienced with frequently changing partners, knows 
that everyone reacts differently to different stimuli  while one partner may 
really get off on small compressive or tensile forces  another one might need 
tensile forces combined with heavy-handed caresses with the whip for his or 
her ultimate turn-on. So in the following we’ll take a look at the influencing 
variables of various loads on members.  

As hard as it may be for Dr. Hinrichs at this point  we’re going back to 
our mechanical members in the next section. 
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2.4 Comparative Stresses

Some structural members exhibit highly sensitive reactions to a normal stress, 
i.e. they fail when a critical normal stress is exceeded. Others reach the climax 
of inner tear when a critical shear stress is surpassed. And again others take a 
more middle-of-the-road approach. So for the design of these members there 
naturally have to be different criteria that reflect these sensibilities and 
preferences of the material involved.  

A material failure (a tear or crack) of the structural member caused by 
exceeding the admissible normal stress for so-called brittle materials is referred 
to as a brittle fracture, which always runs perpendicular to the load direction, 
thus perpendicular to the maximum normal stress. 
The most elementary evaluative model would involve the following procedure: 

1) Since the magnitude of the maximum occurring normal force is always 
at least as large as the maximum shear stress, we simply compare the 
maximum normal stress with the maximum allowed stress specified for the 
material (and hope that the shear stress does not upset our calculations). This is 
what a scientist always means when he refers to a normal stress theory. 

2) For a second group of materials (try a piece of chewing gum some 
time!) the fracture occurs along a surface extending at a 45° angle to the 
direction of the maximum normal stress  these are ductile materials that fail 
when the maximum permissible shear stress is exceeded. (Maximum shear 
stress in Mohr’s circle rotated by 90° to the principal stress, by 45° as a 
fracture.) 

 And between the two there are all sorts of in-between kinds of things: 
those which are ductile to a greater or lesser degree, etc. We therefore have to 
think of some sort of criterion for evaluating the occurring stresses. And then 
apply that in determining a “comparative stress” V, put together from the 
shear and normal stresses, so we can then compare it with the admissible stress 
for the chosen material. But since this seems pretty complicated even to us, we 
will just copy things down here and believe the not-so-new theories:  
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3) Trescasche's flow criterion: Here we try to find the maximum difference 
between an arbitrary combination of principal stresses, thus 

V = max(| II I|, | III II |, | III I |) 

4) The deformation theory (sounds so good we’ll even add something to it: 
also called the HUBER-MISES-HENKY flow criterion) 

V= ])()()[(5.0 222
IIIIIIIIIIII

Did you never hear about 
the “Huber-Mises-Henky-

flow-criterium”? 

Figure 53: Stresses at perpendicular faces  
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The disadvantage of these formulations is that the principal stresses must be 
provided or calculated. With a lot of trigonometry you can also determine these 
comparative stresses at two surfaces rotated by 90°  the mechanics are the 
same! 

2a)  Normal stress hypothesis  

V = 0.5 | a + b| + 0.5 ( ) ² ²a b 4

3a) Shear stress hypothesis 

V = ( )² ²a b 4

4a) Deformation hypothesis 

V = a b a b² ² ²3

This manner of representation makes it even more obvious that the occurring 
normal and shear stresses in each hypothesis are evaluated differently. On the 
other hand, of course, these are all model calculations which hopefully have a 
lot in common with reality.  

We trust that you are convinced by now that deformations occur in a 
tension rod as a result of the normal forces and stresses occurring in the rod 
and that these deformations are manifested in the lengthening or shortening of 
the rod. As you already know, in addition to normal forces, shear forces and 
bending moments can occur as potential stress factors in a member. In the 
following we will take a closer look at the influence of these load factors on the 
resulting deformations. 

2.5 Bending of Beams 

We would like to study the limiting quantities of geometrical and material 
parameters on deformation in a simple experiment. 
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2.5.1 The Geometrical Moment of Inertia 

Taking an elastic ruler, you hang a weight (e.g. the coffee cup) from one of its 
ends by a string. At the other end of the ruler, your hand will simulate a built-in 
support by bringing the ruler into a horizontal position (with your hand 
introducing a force and a bending moment into the support). If you then apply 
the weight force on this cantilever in doses while hoping that the bending stress 
in the support does not exceed the maximum admissible stress, then you can 
conduct the following series of experiments: 
Cases of loading, when: 

1) the ruler is held like a “diving board”, i.e. with horizontal 
orientation of the broader side, 

2) the ruler is rotated 90° about its longitudinal axis, 
3) a position at an arbitrary angle between the two extreme positions 

1) and 2) is chosen! 

It can be seen that the bending in load case 1) is much greater than that in load 
case 2), although of course we didn’t change anything concerning the material 
data or geometry of our support. While the practitioner will not be surprised by 
the results of tests 1) and 2), he will be puzzled by test 3) where the support not 
only bends in the direction of the weight force but is also bent horizontally, i.e. 
it migrates sideways. Of course this does not surprise an experienced 
mechanical engineer (after making a few calculations)  this is old hat: skewed 
bending. But since we are all novice mechanical engineers, let’s make the 
fictive assumption that for now skewed bending does not occur in practice.23

Elongation under pure tension (see Section 2.1) is of course proportional to the 
cross-sectional area of the support. But the bending of the support does not 
appear to be directly dependent on its area. But then which influential quantity 
is responsible for greater deflection in case 2?  

Here’s another experiment: If you try to lay a piece of paper between the 
edges of two tables, the paper will sag quite considerably. Even successful 

                                                
23 For all hot shots: Refer to the textbooks and/or study the problem on skewed bending in 
Chapter 4. 
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learning processes during early childhood development suggest that this paper 
support will stay in place better if it is fan-folded a few times.  
 a)     b) 

Schnitt A-B:
Figure 54: Deflection of a a) non-folded and  

b) folded sheet of paper24

Now for the prize question: What is better about the folded sheet of paper than 
the smooth one? If you take a look at the cross-sections of the two paper 
supports, you will notice the main difference is that the material in the case of 
the folded paper has been brought out further away from the drawn middle line. 
But why does it seem to be better when the material is arranged further out? 
Here is another small sketch showing a model of a small element of our paper: 

 a) unloaded    b) loaded 

Figure 55: Paper: a) unloaded  and b) loaded, e.g. by its own weight 

                                                
24 Here we have purposely neglected any compacting of the paper resulting from the folds. 

paper
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 a)    b) 

 c)     d) 

Figure 56:  Model of a small paper element:  
     a) unloaded, not folded,  
     b) loaded, not folded,  
     c) unloaded, folded 
     d) loaded, folded 

The three horizontal lines of the model designate a paper fiber on the top side, 
in the middle and on the bottom side of the paper. Naturally the top and bottom 
sides of the folded paper are further away from the middle. If the sheet of paper 
is then bent downwards, the paper fiber on the bottom side of the sheet is 
pulled apart, while the paper fiber on the top side is pressed together (this is 
best seen if you apply a strong load to the paper). Somewhere in the middle 
there will be a fiber that doesn’t change in length. In the following we’ll refer 
to this fiber as... the neutral fiber, or something like that.  

The respective lengthening and shortening of fibers are necessary in order 
to compensate for the bending moment, which of course acts as the internal 
force in the support. But here the folded support has two advantages: 
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1) Due to the greater distance d in the folded support, the same twisting of 
the support’s cross sections results in a greater tensile force (compressive 
force) in the spring at the bottom side (top side) of the support, F  d. 

2) The lever arm d of this generated reaction (tension / compression) to 
bending is likewise greater in the folded support,  M BACK  F d  d². 

So to put everything in a nutshell: 
Bending seems to depend on the square of the distance d of the sectional area 
elements A from the middle line (the neutral fiber). The quantity we would like 
to model this effect is referred to as the geometrical moment of inertia I with I 

 A d²  [mm4]25.
In a somewhat more realistic support, such as a beam, the individual 

springs shown in Figure 56 blur into an infinite number of small springs. The 
stress distribution resulting from bending then looks something like this: 

Tensile stress 

Compressive 

stress 

Figure 57: Stress distribution across the beam’s cross section 

Also of importance in some applications is the so-called “section modulus W”, 
which makes it possible to calculate the maximum stress “furthest out”. This is 
defined as follows: 

W x
I x
z

( )
( )

| |max
 , 

                                                
25 (The word inertia comes from the Latin iners, or “inert”, an apt description of the brain 
activity of students when first introduced to this concept.) 
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where I(x) is the geometrical moment of inertia and |z|max the point of 
maximum tensile stress furthest out on the loaded member (where the first 
fracture occurs). |zmax| is usually the radius of a circular cross-section or half 
the width or height of some body... but you can get by without it. 

We can determine the geometrical moment of inertia I and thus the 
section modulus W with more or less complicated integral calculation  but 
why reinvent the moment of inertia of the wheel. The easiest way is to look it 
up in the appropriate table, e.g.:  

Cross section Geometrical moment of 
inertia  

Section modulus 

        Iyy = 
12
bh 3

,

        Izz =
b h3

12

      Wy = 
bh2

6

      Wz = 
6
hb2

        Iyy = 
36
ah 3

,

        Izz = 
48

ha 3

      Wy = 
24
ah 2

      Wz = 
24
ha 2

Iyy=Izz=
4

  ( R4 r4 ) 

small wall thickness :

Iyy = Izz = 
8

3d m

(full circle: r = 0) 

      Wy = Wz =

4

4 4R r
R

small wall 
thickness :

Wy = Wz = 
4

2d m

(full circle: r = 0) 
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And now for a little quiz to test your progress. Please close any other books, 
place your schoolbag under your desk and remove the batteries from your 
calculator... 

The test question is:

Drawn in the following sketch (by Dr. Hinrichs) are cross-sections of a number 
of supports, where the rectangles are supposed to be equal in area. Please sort – 
while completely ignoring the “J’s” (?) in the “drawings” – the geometrical 
moments of inertia for bending about the sketched axis X-X from greatest to 
lowest.

Figure 58: Different? geometrical moments of inertia I (!) 

Solution: The rule of thumb is as follows: The greater the areas and the further 
these elements are located from the X-X axis, the less bending will occur (after 
all, the springs in Fig. 56 are located further from the X-X axis), thus giving a 
greater geometrical moment of inertia. This means that: 

I4 > I3 > I1 (I1= I2) > I5 .

This rule of thumb is also practiced in steel constructions, where supports are 
naturally not made using thin sheets of rolled steel, but instead with so-called I-
beams, for example, where as much steel as possible can be arranged further 
out:

X X

               I1                 I2                 I3                   I4                           I5
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60-90-60…  
    Why? 

L = 180 
  E = 106

  I = 2 105 … 

Of course, we can obtain the geometrical moment of inertia for such a body 
from the manufacturer or from the Bureau of Industrial Standards: IXX = 1140 
N/cm4 (IPBv 100, DIN 1025). 

Figure 59: I-beam 

But what do we do if we’ve just lost this information or if we happen to be in 
Egypt  with only the book Don’t Panic – It’s Only Mechanics in our bags 
and want to build a pyramid using I-beams? In this case we could grossly 
simplify and use rectangles to compose the I-beam, which we could then find 
in our table for geometrical moments of inertia.  
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Figure 60: Equivalent model 

For bending of the upper rectangle I around axis C1-C1 we apply: 

  II, C1C1 = 
Bh3

12
 .  

But oh no! Now we’re not going to bend the upper rectangle around its middle 
axis C1-C1, but instead around axis C-C running through the centroid of the 
beam. Here we can refer to the Huygens-Steiner theorem: 

  ICC = IC1C1 + A d². 

So when the neutral fiber is displaced by the distance d, the geometrical 
moment of inertia increases in accordance with the term A d2, familiar to us 
from our exercise with the folded sheet of paper.  

The bending of this partial body I about the C-C axis running through the 
centroid is expressed by the Steiner theorem: 

II, CC  = II, C1C1 + A d2 =
Bh3

12
 + Bh (H/2 h/2)2.

For rectangle II we can go right to the table for its value: 

  III, CC  = s (H 2h)3 / 12 . 
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The total geometrical moment of inertia is then obtained from the sum of the 
individual “Is”:

  ITOTAL = II, CC + III, CC + IIII, CC

  = 2 (
Bh3

12
 + Bh (H/2 h/2)2) + s (H 2h)3 / 12. 

For the sake of completeness we might also note that the result (where 
B=106 mm, H=120 mm, h=20 mm, s=12 mm ==> I = 1125 cm4) fairly 
approaches the “exact” result for the actual standard beam IPBv100 (I = 1140 
cm4), although some rounding-off in our calculations wasn’t taken into 
account.

And now something to memorize: 

When employing the so-called “Steiner’s share”, always make sure that the 
bending axis is always shifted from the mid-point (for homogenous bodies: 
center of mass). The geometrical moment of inertia is minimal for the bending 
axis through the mid-point!  
So if you want to make an arbitrary shift of a reference bending axis, you first 
have to make a shift toward the center of mass (negative Steiner’s share) and 
then a shift from that point (positive Steiner’s share), otherwise the result is 
complete applesauce!  

Please, can you  
 tell me, how to solve 
    that problem?   

No, sorry,  
         I can’t…   

You should try it  
with private lessons, 

Professor! 

Examination 
Begin:   

Since there’s not much that can shock us well-seasoned Steiner practitioners, 
it’s time for an advanced crash course:  
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Figure 61: Sketch illustrating Steiner’s theorem 

Assuming that we know the geometrical moment of inertia of a body with 
respect to the X-X axis, we now want to find the same with respect to the Y-Y 
axis, see Figure 61.  
Dr. Hinrichs still has not gotten over an incident that happened during his days 
as a young college seminar instructor when he presented the following 
equation, practically dripping with errors – he still frequently wakes up at night 
screaming, with terrible and unintelligible curses on his lips. But he still refuses 
to undergo any corrective therapy.
The equation he presented was:

  IYY = IXX + A d2 .  

Well, if you haven’t detected the mistake, there is one little thing you have not 
quite understood yet: As mentioned a few sentences above in italics, Steiner’s 
theorem only applies when measuring from an axis running through the center 
of gravity (and back to this axis as well). The correct calculation should 
therefore be: 

  IYY = IXX  A c2 + A (c + d)2  . 

And that is unfortunately something quite different that the result of the first 
clumsy attempt at finding a solution  otherwise the binomial theorem would 
have to be reformulated26. So remember: With Steiner always calculate away 
from and back to the centroid! 

26 Only Dr. Romberg would be able to keep working with his old version of the binomial 
theorem. 
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So that pretty much takes care of the geometrical moment of inertia, which in 
the following  and of course in practice as well  will always turn up in the 
given values.

But now we would like to go back to our original formulation of the 
problem: Which factors influence the bending of a support? 

2.5.2 Bending

Leonardo da Vinci (1452 1519) already investigated the most important 
influencing parameters: 

a)                 b)                                          c) 

Figure 62: Experimental sketch by Leonardo da Vinci 

Signore da Vinci not only experimented with various geometrical moments of 
inertia (see Fig. 62 b) and c)), but also with the length of the loaded supports. 
Here it should be clear to anyone that a long beam (Fig. 62b)) with a load is 
subjected to greater bending than a short beam (Fig. 62a)). Beam bending w is 
therefore a function of beam length L: w = f(L).  

Besides length L and the geometrical moment of inertia J, we can also 
nail down the modulus of elasticity, familiar to us from Chapter 2.1, as another 
parameter influencing the bending of a support. In our beam model from Fig. 
56, E can be compared with the stiffness of the springs. Mechanics also refer to 
the bending function from the x coordinate of the beam function as the elastic 
line. So where do we get this elastic line? We take one of those nice tables for 
load types and look up everything in the table which looks “interesting”: 
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Table of load types and their elastic lines 

Load cases  Elastic line 
equation

Bending Inclination 
at beam end 

w(x) =
F
EI

Lx
x
L6

32
w(L) = 

FL
EI

3

3
tan =

FL
EI

2

2

w(x<L/2) = 

FL
EI

x
L

x
L

3 3

316
4
3

w(L/2) = 

FL
EI

3

48

tan =
FL

EI

2

16

That’s pretty practical, isn’t it?  

As you can see, all of the results are dependent only on L, EI and, of 
course, load F or distributed load q. And for other load cases all you have to do 
is page through those great books listed in the bibliography.With the help of 
the table, we now can actually model every possible load case... Despite the 
apparently simple procedure of copying down the formulas, quite tricky 
problem exercises can be created from them, see Chap. 4.2. Unfortunately, not 
all load cases can be found in textbook tables! Here one might strongly suspect 
that such exceptions are much more frequent in exam questions than in actual 
practice, where as an engineer you can improvise a lot more in your 
calculations.  
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You must know … I am  
looking for a job, where I have much 
to do with computers … or at least
                  with people …     

In the following we would like to explain how to derive the elastic line from 
arbitrary stress gradients.

For those of you who have had enough at this point, you are welcome 
to join Dr. Romberg in taking the shortcut to Chapter 2.6, marked by a

!
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2.5.3 Integration of the Elastic Line 

If we go back to the model in Fig. 56 then it should be quite clear to us from 
statics that a bending moment is acting on the right and left side of each of 
these small elements  the internal forces (and moments). If we now take this 
imaginary little chain in hand, we can not only shift the chain in its horizontal 
position from top to bottom (displacement w), but also tilt it as a whole at an 
angle to the horizontal (angle w´). 

Figure 63: Models for bending of a beam 

It is also possible for us to bend the chain by twisting our hands in opposite 
directions holding each end of the chain  we must introduce a bending 
moment into the support. The magnitude of this bending moment seems to be 
proportional to the “twisting” of the support. But the radius of the emerging 
curved shape is described by w´´ (the second derivative based on point x). Thus 
for the entire support we get 
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  w´´(x)  MB (x) . 

Since the dependent variables derived for the folded paper support must still 
remain valid, the radius of the emerging curved shape will probably decrease 
with increasing modulus of elasticity E and increasing geometrical moment of 
inertia I. The complete formula is thus: 

  w´´(x) = 
M x
EI x

B ( )
( )

  . 

So in order to determine the elastic line w(x) of a support we have to doubly 
integrate the known right side of the equation and obtain the desired w(x), thus 

  w´(x)  = dx
)x(EI
)x(M B + C1,

  w(x) = dx
)x(EI
)x(M B dx  + C1x + C2 . 

Too bad you can’t see Dr. Hinrichs right now: slightly feverish with a lustful 
look, trembling hands, and foaming at the mouth. The formula looks very 
promising  but how’s it supposed to be used? Here’s a little recipe: 

1) Determine the internal force moment MB(x) (no problem after 
Chapter 1) 

2) Insert MB(x) into the above equations and integrate (trivial (?) 
mathematical problem) 

3) But: Where do the constants C1 and C2 come from?  

For determining two unknowns you always need two equations, which we 
obtain from the boundary conditions. There are geometric (position and slope, 
depending on the given geometry) and dynamic conditions (curvature, change 
in curvature). The latter depend on the applied loads.

Here a few examples: 
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 geometric 
 boundary condition 

dynamic boundary 
condition

Type of boundary 
condition

w w´ w´´ M w´´´ Q

pinned and roller support 

0 0 0 0

built-in support 

0 0 0 0

free beam end 

0 0 0 0

displaceable support 

0 0 0 0

Got that? You should try to visualize these values. For example, for a built-in 
support: Assuming that the mason has walled in our support correctly, then it 
regardless of its load  should project from the wall horizontally (w´=0). The 
wall under it should also not give (w=0). The support is held in place by the 
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shear force provided by the wall (Q w´´´ 0) and the bending moment 
(M w´´ 0).
Now we will try to run through the whole procedure to make sure that those 
old hands have provided the correct elastic line in Table 3. 

The sketched plank (cantilever with length L, flexural strength EI) is loaded on 
its free end by force F (the weight of a captain going into a very brief 
retirement). Determine the elastic line of the support without looking at the 
table “Load cases and their elastic lines”! 
Given: F, L, EI. 

Figure 64: Cantilever 

First the internal force moments: It follows that  

  MB(x) = F ( x  L ) . 

The equation for the elastic line is provided by
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  w´(x)  = 
F L x

EI
dx

( )
+ C1,

   = 
1
EI

 F(Lx x2/2) + C1.

From the table of boundary conditions we take 

  w´(0) = 0,  

thus C1 = 0. The next integration gives 

  w(x) = w´ (x) dx + C2

   = 
1
EI

 F(Lx2/2 x3/6) + C2.

From the table (w(0) =0) we take C2 = 0 and we can specify the elastic line for 
load case 1: 

  w(x) = 
1
EI

 F(Lx2/2 x3/6)   , w(L) = FL
EI

3

3
We can therefore confirm the result in the table “Load cases and their elastic 
lines”. The method we have just used can now be employed for all kinds of 
courses of moments and boundary conditions. This will sometimes result in 
terms longer than those in the example, and integration may have to be 
performed for individual regions (in case stresses have been introduced 
somewhere), or the integration constants do not happen to cancel out 
arbitrarily, see sample problems in Chapter 4.2. But the actual procedure is 
always the same as shown in the cantilever example above. 

For the sake of completeness it should be pointed out here that of course you can always carry 
out the integration for a shear force Q or distributed load q: 

  w´´´(x) = Q(x)/(EI) , 

  w´´´´(x) = q(x)/(EI) . 

However, it makes sense to us to choose a consistent method for the solution when working 
with known stress gradients. Here we recommend solving all such problems by starting at 
w´´(x) = MB(x)/(EI). 

So now we are able to calculate magnificent, aesthetically pleasing elastic 
lines. But let’s go back once more to our stresses here. Stresses arise in 
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structural members not only due to tensile forces or heat expansion (Chap. 2.1  
f.), but also in conjunction with bending. 

2.5.4 Stress Due to Bending 

Let’s now go back to our simple model of a small beam section: The springs 
above the non-stretched neutral fiber are pressed together (compressive stress) 
while those below are pulled apart (tensile stress).  

Since the stress for the examples considered here is linearly dependent on 
the z coordinate, we can also describe its diffusion with the linear equation  

(x) = 
M x

I
B ( )

 z   

Neutral fiber 

Compressive 

stress 

Tensile 

stress 

Figure 65: Stress distribution 
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in the bending beam. If an external normal force is now simultaneously 
superimposed on the bending stress, we simply add up the stresses: 

Tensile stress                  +      bending stress         =           overall stress 

Figure 66: Superposition of a normal force load by a bending stress  

The appropriate formula is thus: 

 = 
A
F   +

M x
I

B ( )
 z  . 

“Any questions, Romberg?” “Yes, Hinrichs! When will we finally get through 
all this crap?” 

2.5.5 Shear Stress Due to a Shear Force 

It is just incredible when you think about everything that takes place during 
bending. We will consider the next effect for two slightly different support 
structures27.

I)

27 Comment by Dr. Romberg: “No idiot’s going to be interested in that...” 
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II)

Figure 67: Shear stress due to a shear force 

In example I two flat bars are laid on top of each other and loaded by force F. 
Because of the bending the end faces of the flat beams will of course no longer 
lie flush to one another. The situation is different in example II, where the two 
flat bars are glued to one another. Since the bars are glued together, their ends 
remain flush despite the induced deformation. The same effect can be achieved 
by increasing the friction between the two bodies. We would now like to put on 
a little peepshow of the friction contact between the two pliable, supple bodies: 
Oooooaaaaahhhhhhh!

I)
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II)

Figure 68: Peepshow of elastic, pliable bodies 

Acting in the area of contact in example I is only a more or less constant 
distributed load q(x). The distance between the two contact points P and Q of 
the non-deformed support increases during deformation. The bottom side of the 
upper support is of course elongated due to the bending stress (Q ==> Q´), 
while the upper side of the other support is shortened due to bending stress (P 
==> P´). But in the second example, the glue or the friction keeps the two 
points together even during deformation. This happens on account of the 
strength of the glue. (In our experiments we employed Elmer's, a dependable, 
high-performance glue  we don’t know if other glues are just as suitable). 
Since the strength of the glue acts as a large frictional force, we have 
designated it as FR. This glue force thus counteracts the deformation induced 
by bending. In the contact surface we must now refer to this result of bending 
as a shear stress, since the frictional forces act in the direction of the surface. 
But what happens in a support with the same dimensions as support II, but 
made of a single piece? Naturally the same thing happens. So for the record: 

Bending stress entails simultaneous shear stress. And we can calculate 
this with the following formula 

(x,z) = 
Q x S z

I b z
( ) ( )

( )
 . 
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Again, you will just have to take our word on this formula if you want to keep 
up with the times! 

Shear stress is therefore dependent on the shear force Q(x) (and thus on 
the derivative of the bending moment MB(x) ). Since the shear force reverses 
the sign at the point where the force is introduced, the direction of the frictional 
forces FR marked in the sketch also changes at this point. Furthermore, the 
shear stress depends on those ominous parameters S(z) and b(z), which in turn 
are dependent on the distance z from the neutral fiber. Here it’s quite easy to 
determine the value b(z): It designates the width of the support as a function of 
the z coordinate. But for S(z) we again have to reach deep into our bag of 
tricks: S(z) designates the moment of force. Well that's just great! But what is 
it?

Here we direct our attention to the profile in Figure 69. We want to 
determine S(z) for the cross-section at point z0. Now we only need the area 
Arest of the cross-section lying below z0 and the centroid coordinate zS,rest of 
this area. This gives us S(z) = zS,rest Arest.

Cross-sectional area 

Neutral fiber 

Figure 69: Moment of force 
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For the rectangular profile (B H) taking

  zS,rest = z+(H/2 z)/2

 and  Arest = B(H/2 z)
 thus S(z) = B[z(H/2 z)+(z2 Hz+H2/4)/2]. 

Note: As can be seen in the example of the two glued beams, the calculated 
shear tension acts along the glue surface in the longitudinal direction of the 
beams. As a result of the theorem of associated shear stresses the same shear 
stress also acts in the z direction in the beam cross-section.  

And now something for all hot shots. For example in the drawing of the 
open U-beam (Figure 70) the sketched shear stress acts in the cross-section. 
However it induces a torsion moment around the centroid of the cross-sectional 
area and the longitudinal beam axis, which unfortunately results in a twisting 
of the cross-section and a lateral migration of the beam. This effect can be 
compensated by shifting the line of action of force F by d (see Fig. 70). We 
wish you a very pleasant day, and have a nice scientific trip! 

Figure 70: Skewed bending in non-skewed execution 
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Go on from here

2.6 The Frankfurter Formula 

The moment has finally arrived when you can take the old frankfurter out of 
the fridge, where hopefully you have been storing it. We throw the pink thing 
into boiling water until it splits open. But look: The frankfurter has split 
lengthwise (in all other cases the sausage would probably be thicker than it is 
long  yuuuck. But even then, there is more tension in the direction of the 
width than axially.) All we need now is the right formula tool.  

Take one frankfurter: The sausage skin splits with a hiss and shower of 
grease due to the expansion of its contents. In the field of boiler sciences this is 
referred to as a skin with interior pressure. Experience shows that the sausage 
splits lengthwise  if mommy/daddy have not taken the precaution of 
puncturing the rated splitting point with a fork.  

Stop! Stop! Stop!   
Wrong! Wrong! Wrong! 
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Now to more technically sophisticated objects: Dr. Romberg’s beer belly can 
be simplified as a boiler (wall thickness s, radius R, s<<R).28 As a result of a 
beer pressure-refueling, his belly, or boiler, is pressurized with the internal 
pressure pi. Something which is known to every backyard barbecue cook is 
referred to by mechanical engineers as follows: 

The longitudinal stress, which by the way is

z = 
R p p

s
i a( )
2

  , 

is half as great as the circumferential stress: u = 2 z

Figure 71: Model of the boiler 

Dr. Romberg’s demise due to continual pressure refuelings will be signaled 
either by liver failure or a longitudinal split of the abdominal wall. That’s all, 
folks!

28 However, the precondition of some sort of “longitudinal direction” similar to that of a boiler 
for Dr. Romberg’s gut is a very bold assumption indeed! The following formulas are actually 
invalid for spherical bodies! 
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Figure 72: Stresses in Dr. Romberg’s abdominal (boiler) wall 
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2.7 Torsion 

Now we must turn to a completely novel kind of stress: torsion. To illustrate 
this, we take a piece of paperboard and cut off a strip about 1 inch wide. If we 
now twist the ends of the strip in opposite directions by the angle , well, 
then we have torqued the strip. Great, huh? 

Figure 73: Torsion 

As in the case of our bending beam, we can model a small element of the 
paperboard which we can use to study the process of torsion.

Even in this small sketch you can see that the springs in the cross-sections 
must be deflected laterally. The effect of torsion is thus a cross-sectional shear 
stress, which increases outwardly from the neutral fiber ( =0). The twist of the 
cross-sections caused by a torsional moment depends on the following 
variables:
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the stiffness of the model’s springs, thus a variable similar to the 
modulus of elasticity E, but now for shearing action: shear 
modulus G, 

the distance of the springs, and thus of the sectional areas from the 
neutral fiber. Analogous to the model for the geometrical moment 
of inertia for bending, here we can also define a torsional 
geometrical moment of inertia It, which is also called “polar 
moment of inertia of an area”, 

the length of the support. 

Neutral 

fiber 

Figure 74: Elemental model for supports under a torsional load 

As you probably know, you can solve any problem if you have the right 
formula and know the correct way to use it. 

Here are some formulas for torsion: 
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 circular section 
(exact solution) 

closed thin-walled 
section  

(approximate solution 

open thin-walled  
section 

(approximate solution) 

example with 
associated

stress
distribution 

(n piecewise-constant 
wall thicknesses) (n piecewise-constant 

wall thicknesses) 
maximum 

shear stress  max=
M
W

t

t

where r = Ra b(s) ==> min. where b(s) ==> max. 

twist
=

d
dx

M
GI

t

t

torsion 
 = ( )x dx

L

0

cross sections, 
Mt, G=const. 

M L
GI

t

t

geometrical 
moment of 
inertia It

It  =  

2
4 4( )R Ra i

It =
4 2

1

A
s
b

m

i

ii

n

(2. Bredt’s formula)  

It = 
1
3

3

1
b si i

i

n

moment of 
resistance

 Wt

Wt =
I
R

t

a
 = 

)RR(
R2

4
i

4
a

a

Wt = 2 Am bmin
(1. Bredt’s formula) 

Wt = It / bmax

=
1

3
3

1b
b si i

i

n

max

(Am: Area enclosed by the center line) 

Geometrical moments of inertia and moments of resistance 

We can find everything our heart desires in this table (as far as torsion is 
concerned). But since it is not entirely self-explanatory, here’s an example for 
each case: 
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A built-in support with the circular cross-section (length L, shear modulus G, 
radius r) is loaded by torsional moment Mt in another direction than the plank. 
Determine the torsion  of the beam end. 

Figure 75: Torsion of a beam. Given: L, G, Mt, r. 

First we have to determine the torsional geometrical moment of inertia It:

  It = r4/2  . 

The torsion is then found according to  

 = 
M L
GI

t

t
 = 

2
4

M L
G r

t  . 

Now we do the same for the sketched thin-walled box girder with a rectangular 
cross section (width B, height H, wall thickness tB, tH):
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Figure 76: Hollow rectangular section 

We’ll use “the second board” here! For the torsional geometrical moment of 
inertia we obtain 

  It  = 4Am
2 / 

4

1i i

i

b
s

 = 
4 (BH)2

2 2
B
t

H
tB H

 . 

Torsion is then  

22
t

HB2G
LM B

t
H
tB H

 . 

Now let’s look at a third section: a thin-walled circular section, which is not slit 
in case a) and slit in case b). Now the prize question: Which section will be 
twisted more as a result of the torsional moment? 
The practical-minded among you will probably guess that the slit section 
exhibits a “softer behavior”. Well, let’s see: 
For the closed thin-walled pipe, the table gives us

  It,a  = 
4

2

2 2( )R
R
t

M

M
 = 2 tRM

3 , 

the slit pipe leads to  
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  It,b  = 
1
3

 t3 2 RM   . 

Figure 77: Slit circular section 

The torsion thus results in 

a  = 
M L
GtR

t

M2 3  resp. b  = 
3

2 3

M L
Gt R

t

M
  . 

Also interesting is the result for the ratio of displacements: 

a

b M

t
R

2

23
<< 1,  since thin-walled section, t  << RM´.

Our calculations thus confirm the practical-minded approach mentioned above. 
And that’s just about it as far as torsion is concerned! 

After this exhausting ascent across rugged terrain to the heights of the 
strength of materials, we would now like to take a well-deserved break  and 
with Dr. Hinrichs not wishing to let the time go by without being put to good 
use, he will cast a sweeping look at what we have reached so far. Here he is 
greeted by the following overwhelming panorama: 

 Elongation:  L  =  N x
EA x

( )
( )

dx
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 Torsion:    =  
M x
GI x

T

T

( )
( )

dx

 Bending:  w´  =  -
M x
EI x

B ( )
( )

dx

   w = -
M x
EI x

B ( )
( )

dx

From such a paramount position, it occurs to Dr. Hinrichs that the stress 
variables (N(x), MT(x) or MB(x)) are always found in the numerator. In the 
denominator there first appears a material constant (E, G), closely followed by 
a characteristic quantity (A, I, IT) having something to do with the cross-
sectional geometry of the maltreated rope, rod or beam.  

But for now we would to leave it at that and turn to a problem of stability. 

2.8 Buckle Up 
Let’s take our elastic ruler, rest one end on the top of the table and load the 
other end by pressing it down with a finger.
If the ruler has been manufactured with 100% precision, the table is perfectly 
smooth and level, and we are able to exert 105% of the force precisely along 
the axis of the ruler... we could then keep pressing the ruler into the table 
without it having a sharpened point.

But general experience shows that the ruler will “bow” before that 
happens. If the ruler is still straight under a small load, we can still make it 
assume its bowed position by snapping a finger against the middle of the ruler 
without changing the exerted load. Ordinarily we cannot restore the bowed 
ruler to its original straight position by lightly snapping it. The seasoned 
mechanics veteran also refers to this as a stability problem. We have three 
possible positions of the loaded ruler:  

 a straight ruler under a pressure load. This state is unstable, as we 
can readily determine by lightly snapping it with our finger, 

 a ruler that is bowed to one side (either to the right or left).  
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Figure 78: Buckling 

These states are considered stable, since even after such a state is disrupted 
(with a light snap of the finger) it can be restored once more.   

One usually tries to avoid this rather unsightly buckled state when 
dimensioning a support under this kind of load. Mechanics have been grappling 
with the calculation of this phenomenon for quite some time. The following 
table is the result of their sleepless nights and provides you with everything 
you need for buckling. However, the hard part in solving problems concerning 
buckling is to pick out the correct type of load. Just to test you: What type of 
load is involved in the case of the leg of the chair you are sitting on? You see, 
here we go again. Let’s say we first decided on case 3. To simplify things, let’s 
imagine a very soft chair leg made of rubber. The point of contact of the chair 
leg on the floor is the roller support as long as the chair leg remains in contact 
with its original position during buckling! 
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 Type of load Buckling load 
Fcrit

1 EI
L

2

24

2

EI
L

2

2

3

2 0457
2

2.
EI

L

4
4

2

2
EI

L

The ability of the roller support to slide suggests that during deformation the 
distance between the seat and the floor gets smaller. If the chair leg, due to 
insufficient friction with the freshly polished floor, slips to the side or if the 
seat is displaced horizontally while the chair leg maintains its point of contact 
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with the floor, then we’re dealing with case 1. The chair leg has a built-in 
support at the seat, i. e. even when the leg buckles it emerges perpendicularly 
from the underside of the seat. But we do hope that at the moment you are not 
buckling under and that the legs of your chair, couch or bed will hold out at 
least until you have read the last chapter before the problem exercises. The next 
chapter is going to get pretty dynamic! Things will start to move, rotate, slide 
and roll without skidding until they too get lost in boring equations – with the 
authors unable to do anything about it... or can they?... We’ll see... 

I need a new user 
interface ! 

Then go to a  
hairdresser!! 
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3. Everything in Motion: Kinematics and Kinetics  

“The more you know, the more you know what you don’t know!” [Loose 
translation of Confucius] 

The by now fairly clever reader of chapters 1 and 2 can already do some 
pretty cool things like calculating the forces in rigid bodies that move with a 
constant velocity. As well as the strain that should occur at some point after the 
introduction of a load  only, of course, in the linear, elastic domain.  

In order to inflate our gigantic understanding of the world even more we 
now want to turn our attention in the following sections to the processes of 
motion. So as not to exaggerate their general validity: We will observe only the 
uniform, accelerated or delayed motions of rigid bodies. 

Let’s take a rollercoaster ride as an example (Dr. Romberg knows exactly 
what he is talking about here, following the excessive enjoyment of beer again 
and again in his “own” room at night):  

The breakneck ride begins (1) with the initial ascent, during which the coaster 
and its riders are raised to the maximum height. Then comes the most exciting 
part of the whole ride: The coaster moves rapidly downhill, the pulse races, Dr. 
Hinrichs starts to scream in front of us… almost a free fall (2)! Then it goes 
directly into the loop (3). Finally, we close our eyes and wait until the coaster 
slowly taxis to a standstill on the final even stretch (4). Now for the high point: 
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We’re not gonna say: “Wheee..., great..., one more time, honey?“ No, no, no 
we’ll spare ourselves such emotional outbreaks and try instead to evaluate the 
ride with our hip expressions. “Oh yeah! That´s pretty cool! Heh heh. Heh heh 
heh.“ [Butthead] 

3.1 Kinematics

(This comes from Kine: Knowing Is Not Everything...)
First we have to determine the respective position on the rollercoaster. Various 
descriptions for this can be found in everyday speech:  

 “Yiiiiikkkessss, whoooaaahhhhhh!“                                                         

Here the scientist chooses the height H above the ticket stand as a coordinate. 
A further determination of position could sound like this: 

 “I could puke already, but we’re only halfway through...“  

Now we’ll choose the path coordinate s (the already traveled part). Or does the 
sufferer mean one half of the ride time? Doesn’t matter  we could also use 
this as a description. Let’s call it t as in time.  

In the curve we can choose – pretty complicated  the angle  as the 
midpoint of the curve as a coordinate. The different types of descriptions and 
the used variables are dependent on each other: For example, the traveled arc s 
can be calculated with s =  R. So if, let’s say, a bicycle tire (radius R) has 
turned three times (3 x 360°  3 x 2 ), then we’ve covered the distance 3 x 2
x R. 

To make things even more difficult, there is often some wild mixing 
going on between the different coordinates a, H, , s, t and the derivations of 
time, e.g. the velocity v = s  and the acceleration a = s . This obvious course of 
action – designating the position with the help of any given coordinate – is 
mysteriously referred to as kinematics. More official definitions sound like 
this:
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What’s important here is that in all reflections on kinematics, no knowledge of 
forces is necessary. So now all statics and strength of materials drop-outs can 
attempt a grand comeback!!!! 

Very smart mechanics switch over to polar- or cylinder coordinates in 
daring maneuvers – this is said to simplify the whole thing drastically. 

We prefer polar 
co-ordinates! 
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But let’s first of all determine the different descriptive quantities: 

3.1.1.  The “Who is Who“ of Kinematics:     
 Variables of Description 

The height H doesn’t present us with any problems  pretty much everyone 
knows how to deal with it (except for Dr. Romberg, who's not always at the 
height of information). The same goes for the distance x, which we’ll use to 
describe the traveled distance of a rectilinear motion. “As the crow flies“, so to 
speak. This type of motion is known as translational.

We still need the opposite of a translational motion: a rotation. We’re 
now talking about a rotary motion, pretty logical, huh? We’ll use the angle of 
rotation 30 to describe it.  

To describe a general motion we need coordinates for the translation (x, 
y, H, s,...) as well as for the description of the rotation (point / central axis 
around which is rotated, angle of rotation  and radius R). 

Is this enough info to clearly describe the motion? 
Let us just for a moment engage in a conversation with two tanned buff guys at 
the bar: 

“My car went 58.3 kilometers in 17.5 minutes!“ “Then you’re the one who was 
holding up traffic... I did 436,6 kilometers in 2 hours und 11 minutes.“ A man 
has to ask himself... who was faster? And yes, this conversation usually goes 
like this: 

                                                
30 Dr. Hinrichs insists on noting here that you can think of every rectilinear motion as a 
rotation around a point lying at an infinite distance in space – we give him our warm thanks for 
this important pointer! 
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“My car does 200 kilometers an hour.“ “Hey, mine too. So you bought the new 
Audi too?“ (Dr. Hinrichs, this attracts the moolah... !) 

So you take a reduced quantity  the traveled distance per time , the velocity 
v, unit m/s (you have to pronounce the letter v for approximately 10 seconds, 
then you’ll know why it’s used for velocity!). ((This sounds to Dr. Romberg 
more like a desperate motorized attempt to change the velocity from v = 0 to v 
> 0: "vowvowvowvowvowvow... huh?")). 

And then you can boast about how quickly you recently sped from the 
traffic light. “I did zero to eighty in five seconds,“ for example. But when you 
want to trump that, you unfortunately read in the automotive catalogues only 
about the acceleration time from 0 to 100 kilometers an hour (but what for, 
really – when the traffic light turns green? On the freeway after the traffic jam 
ends?). The scientific solution to this dilemma is supplied here by the 
acceleration a, which as the reduced quantity represents the change in velocity 
per time, unit v/t = m/s² (the letter ahh describes the admiring exclamations of 
the pedestrians observing one of the above-mentioned acceleratory events). 

The same thing surely goes for the angle of rotation... Here you have 
analogously the angular velocity  =  or  (both a Greek w, the latter 
character is also used for a tragic ending, which is visited upon many students 
of mechanics) and the angular acceleration .

3.1.2 Some Examples of Kinematics

We can practice making connections between the separate coordinates (and 
their derivatives) with the help of a few very intricate examples: 

1) A cylinder rolling on a stationary base without slipping (chosen coordinates: 
motion x of the center of gravity and angle of rotation  of the cylinder). 
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Figure 79: Rolling cylinder 

There are some pretty sneaky considerations involved here. The cylinder 
touches the stationary base on line A. If the cylinder adheres to the base  i.e. 
rolls without slipping, then the cylinder must possess a velocity of zero at the 
point of contact. Tricky, huh?  

If we look at a snapshot of the rolling, non-slipping cylinder at any given 
point in time, the cylinder moves around this point A. So the center of gravity 
moves at this particular point in time in circular path around point A! Whoever 
doesn’t want to believe this should go back to 1) [see above] or just memorize 
the following sentence: 

If a body rolls without slipping, then the point of contact of the body with 
the (stationary) base is at rest and the center of the body moves (for this 
given moment) in an orbit around the point of contact!

Of course, this applies only to the exact moment of our observation. However, 
in general it is the case that the roll path and thus the traveled distance of the 
cylinder is x = R . So x = R  is also the arc through the body’s center and the 
point of contact. The same goes for x R  as well, naturally. For the very 
stupid: novices: The point above a coordinate signifies the temporal derivative. 
So once more: 
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path of rotation (=x) = angle of rotation (= )  radius of rotation (=R). 

2) The rolling cylinder on a belt (chosen coordinates: motion x of the center of 
gravity, angle of rotation  of the cylinder and the motion y of the belt)  

Figure 80: Rolling cylinder on a belt 

For the driving wheels we have indicated the rotation with a  for the angular 
velocity. But let’s begin first with the angle of rotation . If we turn the driving 
wheel by angle , the belt will move by y = R. Then, if we establish the time 
derivative of this relationship, we get y R . But the derivative of the angle of 
rotation results in the angular velocity, , so that you end up with y R .
Now, in order to bring the rolling cylinder into play, it’s best to use a trick: 
First, we’ll look at two special cases where we’ll separate the obviously 
different motions from one another: 

a) The cylinder moves with the belt and doesn’t rotate ( ). In 
this special case it’s immediately clear that x y R  has to 
apply to the velocities. 

b) The belt doesn’t move, but the cylinder rolls 
(y R 0 0). This was the case in example 1). The result 
is x R3 . So in both cases together we end up with... 

( )x y R R3 3 .
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3) The cable pull:  
A block hangs on the pulley (Figure 81) with mass m. The ends of the cable are 
moved by x und y. Calculate  and z.

Figure 81: Cable pull 

Perhaps you see the kinematical relationship z = (x+y)/2 right off the bat here. 
But let’s take a more formal approach: We’ll divide the motion once again into 
two special cases: 

a) x = 0. What we’ve got here is the case of a rolling wheel again. 
The wheel rolls without slipping down thread x. In this case, z 
= R , y = 2R , so z = y/2. 

b) y = 0. Now the whole thing in reverse. z = R , x = 2R so
z = x/2. 

The overlay of both types of motions results in z = (x+y)/2 and  = (y x)/2R. 
This is how sneaky kinematics can be! 



 146

One puke,
mass m 

3.1.3 Special Motions

3.1.3.1. Circular Motion with Constant Velocity 

We’re not going to use the learning process that often causes people to run 
around in circles as an example in this section (Dr. Romberg knows about that 
well enough; Dr. Hinrichs for his part admits to being a disciple of translational 
learning). 

Instead, we’ll go back to our roller-coaster and observe the depicted loop. 
Let’s do something completely different here and make an assumption that has 
nothing to do with reality. We’ll assume that we move through the loop at a 
constant velocity v. In the acceleratory thrill of a luxury coaster with a couple 
of loops you will notice that given the same beginning velocity, it takes much 
longer to go through the bigger loop than through the smaller one. In both 
cases, an angle of 360° around the center of the loop must be traveled. So this 
must mean that the angular velocity for the bigger loop has to be smaller, 
right? We can sum up this correlation with the following formula: 

  v =  R . 
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Figure 82: Acceleration during a circular ride 

If we remove a part of the loop’s track  without being inhabitants of the car 
ourselves  then the next set of riders will of course experience a slightly 
different ride route: Without that piece of track the car won’t follow the loop, 
but will instead be tangentially shot out of the curve.  

On the other hand, you could naturally deduce from this purely academic 
(!) consideration that with the presence of a track, the path of the car must be 
“bent” by the track in the direction of the circular path. In other words, the 
trajectory velocity of the car takes a different direction at every point of the 
loop. So the direction of the velocity vector, which is always tangentially 
aligned with the circular motion, is constantly changing. And this “bending” 
leads at every point in time to a radial velocity change an, also known as 
“centripetal acceleration“. At every point in time the radial velocity component 
of the car changes to the direction of the center of the circle by the change in
velocity (acceleration) an. This centripetal acceleration amounts to 

  an = 
v
R

R
2

2,
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and as such is quadratically dependent on the velocity at which the loop is 
traveled.

But now, the question of centrifugal acceleration or centrifugal force 
directly imposes itself on us. This is what the man on the street calls the force 
that presses us down onto the seat in the loop. Strictly speaking, we aren’t 
being pressed onto the seat, but rather the seat is being taken under our “seats” 
in a different direction. But our mass would rather stay at rest or complete a 
uniform motion. It is inert. It’s the turning around that requires the force that 
we then feel. If the coaster is thrown out of the loop and flies straight, then this 
force suddenly disappears. So the source of this force is the inertia of our 
carcass. Dr. Hinrichs likes to refer to this phenomenon as the county-fair-
paradox. (For more on such inertial forces see chapter 3.3) 

So that’s everything on uniform circular motion..., but of course you’ll 
complain right away that the coaster in the loop is not driven and, for reasons 
unknown up to this page, it becomes slower with increased height in the loop. 
Correct, correct! So now we come to general circular motion: 

3.1.3.2 Circular Motion with Variable Velocity 

In the case of circular motion with variable velocity the coaster still has to be 
accelerated in the direction of the center of the circle, naturally, so that it 
doesn’t break out of the course. So the following still applies: 

  v =  R,   an = 
v
R

R
2

2.

But when the velocity of the coaster changes, it results in a change in the 
angular velocity  as well. So, in addition, the coaster is accelerated or slowed 
tangentially to the orbit. The tangential acceleration at amounts to 

  at = v  = R  = R .

Both of these acceleratory components can be added together vectorially and 
thus give us the resultant acceleration a:  
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Figure 83: Acceleration during a circular run 

3.1.4 The Velocity Pole 

It really doesn’t matter for our riding pleasure whether we move in the coaster 
through the loop or whether we weld the coaster to a Ferris wheel with the 
radius of the loop and propel the Ferris wheel with the calculated angular 
velocity . So you can regard the motion in the loop as a rotation around the 
axis of the Ferris wheel or the central point of the loop. This applies universally 
to any given motion:  

Every motion can be understood as a rotation around a point. 

Of course, the central point of the outlined general motion is not fixed like on 
the Ferris wheel, but rather moves along a curve. And the corresponding radius 
R(t) is also a function of time. As described earlier, the same motion is 
produced at the moment of observation when we weld the moving body onto 
the edge of a disk with radius R and central point M. But the velocity of a 
circular element decreases linearly in the direction of the center of the circle as 
outlined.
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Figure 84: Trajectory with velocity pole 

In the center of the disk the velocity is zero. We refer to this point in the 
following sections as the velocity pole of motion! 

 I’m going as a non-
velocity pole … 
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A velocity pole of a motion is the point in a body that is at rest for the 
moment of our observation and around which the body rotates at this 
particular moment. 

As in our example with the rollercoaster, this velocity pole doesn’t have to be a 
point within the moving body.  
Let’s look now at a random body that rotates around its velocity pole Q: 

Figure 85: Velocity profile of a rotating rigid body 

We know from the circular motion that the velocities of the body points A and 
B result in the following: 

 vA = RA ,  vB = RB  . 

Furthermore, what is striking here is that all velocities of the body stand 
vertically on the connecting lines AQ and BQ. This must be the case, since  if 
it weren’t  the distance from A to Q would change. And this would mean that 
the body would be torn apart.
But the problem is often the reverse: For a predetermined course like that of 
our rollercoaster, for example, it is the velocity pole Q(t) that is sought. 

Let’s throw together some recipes from the previous deliberations: 
Construction of the velocity pole
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a) from two given body points A and B with the velocity directions: 

Figure 86: Determination of the velocity pole from two known velocities 

The velocity pole emerges as the intersection of the straight lines 
vertical to the velocities in points A and B: 

Figure 87: Determination of the velocity pole from two known velocities 

Here we have a special case: the straight lines are parallel, i.e. they intersect in 
infinity. However, this means that in this borderline case you don’t have a 
rotation, but rather a translation. 
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Figure 88: Velocity pole with translational motion 

b)  from the amounts of two velocities vA and vB, when both stand 
vertically on the connecting line of the corresponding points A and 
B.

Figure 89: Determination of the velocity pole from two known absolute values 
of velocity 

The velocity pole emerges as the intersection of the connecting lines 
of the points A and B and of the apexes of the arrowheads of the 
vectors.
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Figure 90: Determination of the velocity pole from two known absolute values 
of velocity 

c)  from the given velocity vA and the angular velocity  in the body 
point A

Figure 91: Determination of the velocity pole from a velocity and the angular 
velocity 

The velocity pole lies on the perpendicular to the velocity vector 
through point A; the distance R is determined by R=v/

Note: The direction in which we have to move from A on the perpendicular 
clearly emerges from the given !
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Figure 92: Determination of the velocity pole from a velocity and the angular 
velocity 

Here’s an example: 
The sketched driving crank 1 turns in the position shown at the angular 
velocity
a) Determine the velocity poles of rods 1 through 3! (That’s an order!) 
b) Can you determine the angular velocities of rods 2 and 3 in the position 
shown? 
(No! And thus I have answered the question absolutely correctly...)
c) For which position are the angular velocities of rods 2 und 3 the same?  
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Given: , c, L= 4c, a=10c, b=2c, r=3c 
a) From rules a)  c) the velocity poles Q1, Q2 and Q3 result: 

b) For velocity vA and rod 1 the following applies: vA =  r. The same thing 
naturally goes for rod 2, so that the joint doesn’t fly apart:  

  vA = 2 (a r)

 =>  2 = r /(a r)=3 /7

You do the same for rod 3, and end up with: 

 vB = L 3 = (L B) 2 ,  => 3 = 3 /14

So the point here is that you often equate the velocities of two components on 
the connecting joint and calculate these velocities in two different ways by 
means of two angular velocities! 

c) Yep, a little playing around... and voilà: There’s the solution... 

(Dr. Hinrichs maintains that it also has to work without the “playing around“...)  

What we’ve completely neglected up to now is the dependence of the variables 
x, v, a, H, , ... on time. 
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To put it more clearly: All of the deliberations in the thick pile of pages that 
you’ve worked through already relate to just one moment in time  a snapshot. 
But now for the fun stuff. We are going to turn our attention towards motion 
within a longer period of time. Our long-term goal will be to also consider the 
forces that lead to the motions, and influence them. And so we come to 

K i n e  t  i C   S
!

3.2 Kinetics 

3.2.1 The Energy Theorem 

The energy theorem is really just common knowledge in scientific packaging: 
Everything that goes in must come out. Everyone knows about this from 
observing their wallets.

The same balance applies for our nutrition: Everything that we consume 
in the course of a week  

 a) is transformed into energy, i.e. physical activity or simply warmth,31

                                                
31 Dr. Hinrichs interjects that it doesn’t necessarily have to do with sports. 
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 b) widens our waists,32

 c) is excreted in fluid or solid form.33

So if we add up the energy of the consumed food with the Kilojoules like when 
you’re on a diet, and weigh or estimate the amount given by c), then we can 
actually calculate how much work we’ve done in a)!

With such a balance, we can then… well, balance for longer periods of 
time! And everybody knows that you either have to eat less, exercise more (not 
exactly Dr. Rombergs hobby), or have the fat sucked out (hobby of the face-
lifted ladies with whom Dr. Hinrichs is seen now and again in El Arenal). 

Now, on to the processes of motion: Everything that goes into our 
animated bodies has to stay somewhere or come out again. An example: If we 
throw a ball into a sandbag, then the energy of the throw is completely 
transformed into the deformation of the sandbag. But if the ball lands on the 
lawn at a sporting event after flying for 20 meters, then the energy of the throw 
will cause a small crater at first. The residual energy is then used up by friction 
and the deformation of blades of grass while the ball is rolling over the lawn. 
The sum of the deformation energy (crater, blades of grass) and the energy 
consumed by the frictional processes during the roll results in the original 
energy of the throw (Dr. Hinrichs also makes reference to the air resistance).   

So, the total energy remains constant during the entire process of motion. 
But it doesn’t matter to the crater at all whether it is created by the ball’s fall 
from a tower with height H (meaning the result of so-called potential energy in 
the earth’s gravitational field), by the launching of the ball with a slingshot (the 
potential energy of a spring) or by the initial speed of the throw (kinetic 
energy).

In order to be able to make calculations at all with such a balance, you 
first have to set up a table with the energies in the most varied forms (kind of 
like the dietary table where for each type of food the number of calories is 
indicated, that those meandering through a diet excrete). Voilà, here it is: 

                                                
32 Dr. Hinrichs interjects that it’s not only the waist that is widened. 
33 Dr. Romberg interjects that some excretions can also be in gas form. 
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Type Cause Symbol Calculation 

general E= W = Fdx

   

gravitational 
field
here: 

Choose the 
proper 

reference 
level 

(Epot= 0)! 

Epot =U = mgH 

potential 
energy:

Epot = U 

special
cases

spring, elastic 
deformations

Epot = U = 
1
2

2c x ,

torsion spring:  

Epot=U =
1
2

2c

   

gravitation
Epot= U = 

Mm
r

mit = 6,672 .10-11

[m³/(kg s²)]

pure translation  
(linear motion) Ekin = T = 

1
2

2m x
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kinetic 
energy:

Ekin = T 
pure rotation Ekin = T 

=
1
2

2J Q

translation and rotation

Ekin =T = 
1
2

2J Q

or
Ekin=

1
2

1
2

2 2J mxC

consumed 

(dissipated) 

energy:

forces 

against the 

direction of 

motion 

F=const.,

z. B. 

Coulombian 

friction with 

F =  FN

Ediss = F s 

Ediss < 0  plastic 

deformations, 

F= f(x)
Ediss = Fdx

input:  

Ezu > 0 Forces in the direction of 

motion 

Ezu = Fdx

The energy theorem for condition 1 and a later condition 2 would then be as 
follows: 

Epot,1 + Ekin,1 + [ Ediss + Ezu ] = Epot,2 + Ekin,2 . 

The energy changes given in brackets are the result of active forces during the 
motion from 1 to 2. The energies at moments 1 und 2 generally consist of 
potential and kinetic energy.

The infernal formula reads like this: The energy at moment 2 (index 2) 
corresponds to the energy at moment 1, increased by the input during the 
motion from 1 to 2. One should notice that energy is always extracted by the 
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friction, i.e. Ediss  0. Many problem formulations assume that during a motion 
no energy is consumed and added  an assumption that would support the 
notion that there is a perpetual motion machine!!! 

Whoever thinks about this knows that there isn’t such a thing. Such 
systems are referred to as „conservative“ (lat.: “to not think“). In such cases, 
you can use the following simplification of the energy theorem: 

  Epot,1 + Ekin,1 = Epot,2 + Ekin,2 = Eges = const . 

It’s often simply written like this: 

  T1 + U1 = T2 + U2 , 

where the T’s represent the kinetic and the U’s the potential energy. The 
subscripts also refer here to before (1) and after (2). With potential energy it is 
very important to choose an appropriate zero level. It usually makes sense here 
to „set to zero“ one of the two expressions for potential energy (U). 

Even though almost all of us know (except for Dr. Romberg, who hasn’t 
yet completed research on the subject) that there is no perpetual motion 
machine, mechanics experts maintain that one type exists, since the small 
addition can be found „frictionless“ or undamped in the problem formulation. 
For this special case, the total energy of the system Eges remains constant. We 
will now turn our attention towards a typical application: 

3.2.1.1  The Matter of the Free Fall 

Let’s imagine the Starship Enterprise as it flies at warp 23 through the galaxy. 
As a result of zero gravity and the vacuum no propulsion is needed once 
„cruising speed“ has been reached and Captain James T. Kirk doesn’t have to 
register any slowing meteorite showers (Dr. Romberg points out that the 
danger of a wormhole does exist here) into the logbook. The trip would lead 
more or less straight into Nirvana until the end of time (a further remark by Dr. 
Romberg: In his opinion  from which Dr. Hinrichs would like to emphatically 
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distance himself at this point until proof of the opposite has been established 
space is temporally warped).34

It looks different if, in terrestrial regions, one chucks a body with an 
initial speed of v1 from the height y = y1 in the direction of the ground or sky 
(condition 1). As is generally known, these flying objects usually detonate after 
finite time with a velocity of v2 on the ground again (height y2 = 0, condition 
2). Let’s now examine this kind of flying motion more closely: We can very 
quickly derive the energies that come into play for this motion from our energy 
table: At the point of the throw (condition 1) kinetic energy results from the 
initial speed, and potential energy from the earth’s gravitational field. From the 
energy theorem follows: 

  Eges  = Epot,1 + Ekin,1 = m g y1 + 
1
2 1

2m v  = Ekin,2

   = m g y2 + 
1
2 2

2m v  = 
1
2 2

2m v .

This formula applies whether or not the flying object is thrown up or down! 
But why? Because  when it’s thrown up  the flying body also has to come 
down again at some point... and because of the conservation of energy, it goes 
past the place of the throw at the same velocity with which it was thrown. 

So now we can calculate for every throw height y1 above the ground the 
corresponding velocity or the maximum altitude: At the highest point of the 
flight path the velocity is zero  otherwise the object would keep on flying. 
We’ll simply relocate condition 2 to the highest point of the flight path, so that 
y 2 = 0 applies. Thus, according to the formula above, the following applies to 
the special case y1 = 0 (i.e. we’ll let the y-coordinate start counting at the place 
of the launch): 

  y2 = ymax = H = 
v

g
1
2

2
 . 

                                                
34 It would seem that the authors have touched a sore spot in the proof reader's past: Original 
sound byte: “The proof is being used today by anyone who has ever used a GPS-watch. With 
the satellites, the time dilatation has to be taken into consideration on account of the earth’s 
mass(!), otherwise the location is incorrectly calculated.“ Dr. Romberg’s answer: “You see, Dr. 
Hinrichs! ...But what does the faculty have to do with the earth’s mass?“ 
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And in the case of the bottle rocket every little boy will annoy the clever 
mommy or the clever daddy with the question of how long it takes for the 
rocket to arrive at the highest point. In order to answer that, we have to retreat 
(feign a cough attack or the need to relieve oneself) and make a few little 
calculations (here a little warning: This is going to be difficult, so leave the 
little boy outside!) 

A little girl asks her dad, who has a doctorate in (mechanical) 
engineering:
“Hey Dad, why didn’t Beethoven finish his last symphony?“ 
“Um.... not sure...“ 
“Hey Dad, what do sociologists do?“ 
“Um... let’s see... you know, I don’t know that either, I don’t know 
any...“
“Hey Dad, why are there sometimes so many locusts in Africa and 
sometimes not?“ 

“Well... uh... I’ve heard of that ... dunno... but I must say: You ask 
really good questions. Keep on asking, because questions help you 
learn!“

So we know that the total energy during the flight remains constant: 

  Eges = m g y + 
1
2

2m y  . 

But if we derive this equation according to time (hey!), then follows  

d
dt

 Eges = 0 = m g y  + 
1
2

2 m y y (chain rule differentiation). 

We divide this by y  und convert: 

y  =  g  . 

It’s crazy! We’ve found out that only the acceleration due to gravity g (usually 
g = 10 m/s² is enough, for Dr. Hinrichs: g = 9.81 m/s² (dependent on the 
location on earth and on the distance to the center of the earth)) affects the 
body in free fall (better: in „free ascent“). Great. But before we can let the 
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screaming and door-scratching youngster back into the room again, we still 
have to figure out from the acceleration y  velocity y  and the height coordinate 
y with dependence on time: 

( )y t y
t

0
(t) dt = g t + v0

 with v0:= initial speed for t=0 

 and y(t) = y
t

0
(t) dt = 

1
2

 g t2 + v0 t + y0

 with y0:= launch height for t=0 .

Or, how aptly the ancient heroes of mechanics formulated it [8]: 

If a body is cast upwards, then the uniform gravity pours forces into it, and 

extracts from it velocities proportional to time. The time of ascent to the greatest 

height acts proportionally to the velocities to be extracted and those altitudes, like 

the velocities and time together, or they stand in double ratio to the velocities. 

The motion of a body, thrown along a straight line that must emanate from the 

launch, is added to the motion that arises from gravity. 

Got it? 
For the calculation of the flight time tmax up to height ymax you get from  

y (tmax) = 0 

  tmax = 
v
g
0  . 

Alright, let the little guy in... (Of course, if he asks about the initial speed of the 
bottle rocket, our condolences. And anyway, the rocket becomes faster and 
faster at the beginning, so an acceleratory force is involved, bad example!) At 
this point Dr. Romberg likes to show off his scars and tells a story from his 
childhood, when he developed a multi-stage rocket from two screwed-together 
bottle rockets connected to one another by a fuse  unfortunately, the second 
stage ignited only after the upper reversal point... 
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Now an example of the energy theorem: 
In a shaft of height H a stone falls vertically downwards. After time T you hear 
a short suffocated scream at the shaft opening (velocity of sound c). 
a) Determine height H! 
b) How big is the relative error H/H, if you interpret time T as purely fall 
time? 
Given: T = 15 s, g = 9.81 m/s², c = 330 m/s. 

a)  The formula for the launch motion results in  

  x(tfall) = H = 
1
2

 g t2 + v0 t + x0

with  v0 = 0 and x0=0

  ==>  tFall =
2H
g

 . 
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The sound spreads out by x(t) =  c t from the impact surface, so 

  tsound = 
H
c

 . 

The total time T results from the sum of both times: 

  T = tfall + tsound  . 

  ==>  15 = 
2H
g

+
H
c

 , 

  ==>  H + c 
2
g

H  15 c = 0 . 

With the p-q-formula (Dr. Hinrichs would rather use Vieta’s theorem here) you 
get

H 1,2 = c
g

1
2

1
2
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g
c c  , 

the only sensible solution is with the given numeric values: 

  H  = 782,3 m . 

b) Disregard of the necessary time for the sound leads to 

  tfall = T = 
2H
g

 , 

 so H* = T² g / 2 = 1103,6 m 

H = H*  H = 321,3 m 

 ==> relative error:  H / H = 321,3 / 782,3 = 0.41  .

(Anyone who calculated a different relative error has to look for an absolute 
error in his/her solution.) 
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Debugging 

We have foisted on you, as the basic assumption for what we’ve said here, that 
the throw or rather the free fall of our flying object always ensues nicely in the 
direction of acceleration due to gravity. But naturally, this restriction is just as 
unacceptable for all possible throw motions as if one were to open a zoo just 
for anteaters. We thus proceed now to the more general case, the so-called 
skewed throw. 

3.2.1.2 Skewed Throw 

Some famous heads have already wrestled with the problem of another special 
form of throw motion, a horizontal toss [8]: 

If an object A, by virtue of the throw motion alone, could at one given time 

follow the straight line AB, and by virtue of the falling motion alone at the same 

time travel height AC, then at the end of that time, if one completes the 

parallelogram ABDC with combined motion, it will be at point D. Curve AED, 

which it follows, is a parabola. 

A B

C

E

D
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Although the facts have been made clear by this, here are some additional 
explanations:

With a horizontal throw from point A the thrown object will hit the 
ground just as fast at point D as when it’s dropped from point A and lands at 
point C. So the general parabola of the throw is an overlap of the motions: 

horizontal motion with constant velocity vx:

  ax = 0,  vx = const,   x = vx t 

vertical motion with acceleration as a result of the acceleration due to 
gravity:

  ay = g,  vy = g t ,  y = 1
2 g t2 . 

Easy, huh? So the horizontal throw is described by the same equations in the 
same manner as the vertical throw  just through the addition of motion in a 
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horizontal direction. You can imagine the whole thing as somewhat akin to the 
„Tom and Jerry“ cartoons, where Jerry runs straight off of a cliff with a raging 
Tom breathing down his neck, stands still in the air, dares to look down and 
then  with horror in his eyes, falls vertically downwards: Reality is indeed 
different, but the result’s the same (Dr. Romberg would have found the pair 
Wile E. Coyote and the Roadrunner (beep! beep!) more appropriate here). 

Skewed litter 

In the following sections, we’ll occupy ourselves with a favorite free time 
occupation of mechanics: cherry pit tennis. Assuming you wanted to spit a 
cherry pit from height H to a goal at distance L at height h: how to do it, how 
much speed and which spitting slope ?



 170

Here, too, we can first take apart the two motions: 
The initial speed amounts to: 

  vx = v0 cos

  vy = v0 sin  . 

However, with these velocity components we can continue to separately 
calculate for the x- and y-directions in a familiar manner: 

  x(t) = vx t = v0 cos t  ,

y(t) = vy t  0.5 g t2 + H = v0 sin t  0.5 g t2 + H . 

At point in time t* the cherry pit should arrive at the goal. The following 
applies: 

  x(t*) = L = v0 cos t*,  

  y(t*) = h = v0 sin t*  0.5 g t*2 + H . 

A manual laborer is locked in a cave for a week with a can of fish 
after that week, the whole wall has been demolished by the throws of the 
workman  can open, manual laborer lives! 

Then an engineer undergoes the same procedure  after the week’s 
up, the whole wall is full of equations (throw parabola!), a part of the 
wall is damaged, can opened at the calculated spot, engineer lives. 

And then the mathematician: After that week the whole cave is 
covered in writing, the mathematician is dead with a satisfied smile on 
his lips  on the ceiling is written: „Assumption: The can is supposed to 
be open …“. 

So now we have two equations with the unknowns  and v0 at our disposal. 
We’ll leave the solving of this rather mathematical problem up to the 
volunteers among you, who want to emulate Dr. Hinrichs. And for the first hot 
shots who send us correct answers, we’re giving away an asbestos suit to their 
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relatives. For all the others: The important thing here is the principle of overlap 
 and if you’ve gotten that much, the rest is a cinch! 

And now another important trick: The choice of the coordinates’ zero 
position is up to you. This applies for example to the zero position of x, y and t. 
With the right choice, you can save yourself a lot of work in the form of pages 
of algebraic reformulations. It doesn’t make sense to begin the time axis with 
Dr. Romberg’s loss of virginity; who knows when that was (or with that of Dr. 
Hinrichs; who knows when it will be). Similarly, it doesn’t please the person 
asking if we begin at the North Pole when describing the way to the bakery 
even though by so doing, we would present all the necessary information. And 
in the same manner, certain textbooks seem incapable of making mechanics 
accessible. Sure, you can theoretically achieve this goal with them, but...

S o  p a y  a t t e n t i o n :   
Always at the starting - or target state 

set the zero position of the coordinates! 

For the last example this means:  
Time begins counting at t = 0, when the cherry pit leaves the mouth. The 
coordinates x(t=0) = 0 and y(t=0) = H  h describe the spitting position. This 
choice of the y-coordinate’s zero position has the advantage of producing y(t*) 
= 0 at the goal !!!

By the way  no mass turns up in these equations. So the calculated result 
is independent of what material the spat out object is made out of. Thus, if you 
don’t have a cherry pit handy... 

3.2.1.3 The Energy Theorem during Rotation 

Here, a few more words on rotation: Until now, we have only calculated the 
kinetic energy for translational (a reminder: free of spin) motion with Ekin = 
0.5 mx2  (For those who don’t know where the 0.5 comes from: It’s another 
way of writing 1

2  [or one-half]).  
Unfortunately, it sometimes happens that a body rolls. In this case, the 

body doesn’t just rotate  then it would stay in the same place. The rolling of a 
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cylinder, for example, means rather a translational motion of the center of 
gravity and additional rotation. Let’s begin first with pure rotation.

Following example: 
Dr. Romberg (mass mR: 72,5 kilograms + 2,5 kilograms emergency-liquor) sits 
at distance r from the rotational axis on a merry-go-round. After some hard 
propulsion work by Dr. Hinrichs (Dr. Romberg is athletic only in rare cases) he 
brings the merry-go-round to an angular velocity R,1.

Dr. Romberg leans back with obvious enjoyment in order to be alone with a 
bottle of beer at distance r (radius of merry-go-round) from the center of 
rotation. His kinetic energy (index R) is: 

  ER = 1
2  mR vR

2 = 1
2  mR R,1

2 r2 , 
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Dr. Hinrichs just can’t stop messing around with this equation and comes up 
with:

  ER = 1
2  mR R,1

2 r2 = 1
2  mR r2

R,1
2 = 1

2  JR R,1
2 ,

By doing so, he stumbles upon a new quantity, JR, also called moment of 
inertia. You can’t deny a certain analogy with the mass during translation. In 
the same way that mass represents a kind of resistance to motion, the moment 
of inertia represents a sort of resistance to rotation. The result of Dr. Hinrichs’s 
messing around, namely 

   JR= mR r2

shows in all its beauty what the moment of inertia is about, and that’s first of 
all mass itself (otherwise there wouldn’t be any inertia) and secondly on the 
distance of the mass to the rotational axis. But the latter also reveals something 
else: The moment of inertia is clearly dependent on the point of reference! 
So now you calculate the energy ER according to 

  ER = 1
2  JR R,1

2 , 

if you disregard the mass of the merry-go-round!!! This formula is set up 
pretty similarly to the one for translational motion.  

1) So the J, which is also referred to as moment of inertia, corresponds to 
mass m for the translational motion during rotation. Dr. Hinrichs will now say 
that in Dr. Romberg’s example the inertia will be infinitely large35.

It is essential for the observation of the energy, where the connoisseur has 
taken a seat: If he sits on the rotational axis, then he’s very easily set into 
rotation (=>(moment of) inertia J small, energy small). But if he’s hanging in a 
seat at distance r = 1 km from the rotational axis, then the merry-go-round will 
only be accelerated by a large expenditure of energy ( => moment of inertia J 
large, energy large). The moment of inertia then also depends, of course, on the 

                                                
35Dr. Hinrichs also maintains, on the other hand, that Dr. Romberg is the only object in the 
entire universe that possesses a bit of mass, but no energy.   
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location of the center of rotation. So the same mass can cause different 
moments of inertia. The moment of inertia JR depends  corresponding to the 
geometrical moment of inertia  quadratically on radius r: 

  JR = (mR + mliquor) r² . 

2) The angular velocity  =  for the rotation corresponds to the velocity 
for translational motion. This goes  corresponding to velocity with 
translational energy  quadratically into the calculation of energy. With that 
equation, Dr. Hinrichs can additionally calculate the energy that he’s provided 
to Dr. Romberg. 

Following this calculation time of about fifteen seconds, Dr. Hinrichs 
(mass M = 97,5 kilograms + 2,5 kilograms scientific literature) also gets onto 
the merry-go-round from a state of rest at distance r, because he  for scientific 
reasons, naturally  wants to experience the feeling of a centripetally 
accelerated body. And what happens?  

Of course  the merry-go-round slows down. The reason for this is that 
Dr. Romberg’s energy is now being used by both people (You could also say: 
Dr. Hinrichs is sponging on others). So energy E1 divides itself up into ER
(Romberg) und EH (Hinrichs): 

  E1  = E2  = ER + EH

   = 1
2  JR ( R, 2)2 1

2  JH ( H, 2)2      .

As a compulsory condition for the fact that both are sitting on the same merry-
go-round, the following still applies:

R, 2 = H, 2 = 2 .

While Dr. Romberg occupies himself even more intensely with his next bottle 
of beer, Dr. Hinrichs calculates to what extent the velocity of the merry-go-
round has decreased. 
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And now for a little alternative: Of course, as a theoretician you can 
assume that both of the academic bodies fuse together into one  naturally just 
theoretically. So you’re really just acting as if the bodies become one with each 
other; the reality is obviously different. In this case we can formulate energy E2
more simply: 

  E2 = 1
2  JG 2

2 .

For the total moment of inertia of the fused bodies the following applies: 

  JG = (mR + mH + mS + mL) r2

One more important little note: It doesn’t matter at all in looking at the energy 
whether:

a) The erudite scholars Romberg36 and Hinrichs are sitting on the 
same seat on the merry-go-round or on opposite seats, 

b) Dr. Hinrichs is sitting straight up at distance r from the rotational 
axis or is lying in an arc with radius r at a distance from the 
rotational axis. 

In the following, a personal tragedy comes to pass for Dr. Romberg: As a result 
of his increasingly erratic grip, he loses a full bottle of beer in a radial 
direction. While Dr. Romberg is close to tears and comforts himself with the 
last remaining beer bottle, Dr. Hinrichs investigates the „Mechanics of 
Tragedy“. He’s especially interested in what happens to the angular velocity of 
the merry-go-round shortly after his “lapse“ with the bottle. Does the angular 
velocity of the merry-go-round diminish, since energy is being taken away by 
the bottle flying away? 

We already know from circular motion that the circumferential velocity is 
v =  R. At this velocity v the body is tangentially shot out of the circular path. 
Now the equations for the balance of energy pass before Dr. Hinrichs’s mind’s 
eye:
                                                
36 Those “in the know“ suspect that Dr. Romberg “acquired“ his title through scurrilous 
channels.
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 E2   =  E3

1
2  JG 2

2  =  1
2 (JG  mbeer bottle R2 ) 3

2 + 1
2  mbeer bottle v2.

And when Dr. Hinrichs then plows through the equations, it turns out, 
strangely enough, that 2 = 3. But that’s obvious: 

For the state of motion in question, it doesn’t matter whether the beer 
bottle in state 2, meaning before the tragedy, is connected to the mouth of Dr. 
Romberg  or, with no connection to the merry-go-round, floats on an invisible 
rod (at radius R with angular velocity 2) around the rotational axis in front of 
Dr. Romberg’s red nose. But then the motion of the merry-go-round doesn’t 
have to change, if at some point the bottle comes loose from the rod and 
shatters on the ground.

Or the other way around: Dr. Hinrichs got on the merry-go-round from a 
state of rest, and thus had to be supplied with energy by the merry-go-round, 
while the beer bottle does not change the state of motion or the energy. 

So this is another example demonstrating the differing choices of frame 
of reference: We first viewed Dr. Romberg and Dr. Hinrichs as separate 
systems, then the fusing of both and finally the fusing without the beer bottle 
as one system and the beer bottle as a second system. 

But now back to moment of inertia again. The distance of the mass from 
the rotational axis must play a decisive roll in the rotational energy. This 
dependence (and the chosen letter J) strongly allude to the geometrical moment 
of inertia in chapter 2.  

In the following sections we will denote the moment of inertia of a body 
with JQ relative to a (stationary) center of rotation Q. The center of rotation can 
always be found in the following by the J in the upper right corner, and the 
signs at bottom right denote the rotational axis. The unit for moment of inertia 
is [kg m2].

For some standard objects the moment of inertia can also be represented 
in table form (see the table below)  but you’ll search for the merry-go-round 
with the beer bottle in vain. 
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The most important moments of inertia: 

cylinder & disk: 

(short solid 

cylinder, h=0, r=0) 

annulus: (short 

hollow cylinder, 

h=0, r=R) 

Thin rod

cuboid

Jxx = Jzz = 
m

R r
h

4 3
2 2

2

 Jyy = 
1
2

2mR

Special case: rolling cylinder on 
stationary base: 

J yy
Q  =

3
2

2mR , Q: support ’point’ 

2C
zz

C
xx mh

12
1JJ ,

 Jyy = 0, 

2A
zz

A
xx mh

3
1JJ

J m h lxx
C 1

12
2 2( )

(J yy
C  and J zz

C  are calculated 

analogously) 

And if a body moves around all weird, e.g. rolls, then we can always ascertain 
the velocity pole of the body and then determine the kinetic energy for pure
rotation around the velocity pole: 

  Ekin = 
1
2

 JQ 2 .

But oh no! How do we calculate for the given moments of inertia the moments 
of inertia around a point displaced at distance d? (For example, the moment of 
inertia of a rolling cylinder relative to its point of support, i.e. to its velocity 
pole?) 
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As with the geometrical moment of inertia, Steiner’s theorem aids us here! 

J xx
Q  = J xx

C  + m d2 . 

Hey, Steiner! … 
here’s your share! 

For the rolling cylinder you then get

   J yy
Q  = J yy

C  + m R2 = 
3
2

2m R .

(For practice, one might verify the result in the table for the rolling cylinder 
and the rod tilting around A and C!) 
For practice, you shall also verify the result in the table for the rolling cylinder 
and the rod tilting around A and C!!! 

Whew, that was hard stuff! For pedagogical and didactic reasons, Dr. 
Hinrichs has deemed it very worthwhile at this point to come up immediately 
with a nice example. Original sound byte: “That rounds off the matter 
amazingly!“  

The problem stems from Dr. Romberg’s past (don’t worry, we’re not 
going to get into the darkest chapters here). The object of examination will be 
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the college interfraternity games, at which Dr. Romberg was able to garner 
more success than was the case with his attempts at achieving academic 
success. Subject: “Extreme Tea Bag Pitching”, which is a sport in East-Frisia, a 
widely unexplored coast area in Germany, where Dr. Hinrichs where found 
many years ago by a brave missionary.  

Figure 93: Extreme Tea Bag Pitching 

What is sought is the toss length xmax at given R = 1 m, s, toss height H 
= 1.5 R, toss angle g = 10 [m/s²]

First, we set up the energy theorem for the moments directly before and 
after the toss of the tea bag, in order to figure out the toss velocity: 

Esought = 1
2

2 1
2

2 2J mgH mR mgH  (before) = (after)
1
2

2mv  +mgH . 

After extensive conversions we get v = R = m/s. Great! We already knew 
that from circular motion. So, much ado about nothing.  
Now, quickly, the toss equations (zero-point of the y-coordinate: goal ground, 
zero-point x-coordinate: place of toss, zero point time axis: toss, arrival on 
ground t*): 

  x(t*) = vx t* = v cos t* = xmax ,

  y(t*) = vy t*  0.5 g t*2 + H = v sin t*  0.5 g t*2 + H = 0 . 
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Resolving results in ... t* = 0.623 s and xmax = 0.4405 m.37

The next thing we want to do is to focus our attention a bit more on forces. 
And so we come to the principles of the illustrious Sir Isaac Newton: 

3.3 Laws of Motion 

In statics, we assumed that a body is „static“, that is to say that it’s at rest or 
moves at a constant velocity when the sum of the forces acting upon it is zero. 
It’s also clear that  in the case of a force imbalance or a „force surplus“  there 
occurs a change in motion. Old Newton discovered the way in which these 
changes in motion can be quantified: 

Change in motion is proportional to the impact of the moving force and 

occurs in the direction of the straight line upon which that force acts.

Please memorize and never forget: 

F = m a = m x  or m y  .  (Newtonian axiom)38

And here’s another important tip from the old hand:

Be careful with the signs! Always pin down the coordinates x, y with 
directions, and then collect and sum up the forces moving in this direction with 
a positive sign and those going against these directions with a negative sign. If 
you end up with a positive sum, there will follow an acceleration in positive 
coordinate direction und vice versa! 

37 Dr. Romberg’s commentary: “I threw further back then at my interfraternity games. My tea 
bag probably had less mass.“ 
Oh geeeeeezzzz!!!!!!!! A request to the reader not to store this unqualified remark: Mass has 
nothing to do with it, Dr. Romberg !!!!!!!!!!!!!!!!!!!!!!!!!! (  yeah, yeah, enough) Dr. 
Romberg insists: “My dear Dr. Hinrichs! It is perfectly clear that you can throw a tea bag 
further than a safe!“ 
Dr. Hinrichs’s reply: “Come now, Dr. Romberg! We don’t want to forget the base assumption 
of a v0 presumed to be equal in both cases!!!“ 
38Some maintain: “Newton and Leibniz overtook the religions with the sciences“ – and with 
this book, according to Dr. Romberg, the sciences have also been overtaken! 
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The Newtonian axiom renders statics as a special case: Since the acceleration 
here is a = 0, then  F = 0. Or we read the equation the other way around: If the 
sum of the forces is zero, then acceleration is also zero! But if the sum of the 
forces is not zero, then we can calculate the acceleration on the right side of the 
equation.

Strictly speaking, we have already successfully examined the change in 
motion caused by an acting force: During a free fall, only the weight G = mg 
acts upon a body. With the equations describing the motion in free fall, we 
ended up with a(t) = y (t) = g as the result of acceleration. But we have 
already derived this with some difficulty from the energy theorem. 

We’ll use the example of the cherry pit in free fall once again: 

Figure 94: Free body diagram of the cherry pit  

If you haven’t deleted your entire knowledge of statics in the meantime with 
the usual C2H5OH-programs again like Dr. Romberg, then you can now 
immediately determine the acceleration of the cherry pit with the help of the 
new equation, in which the y-coordinate points up. So, sum up all of the forces 
in the direction of the coordinate (here y): 

 F = G = mg = ma = m y ,  ==> y  =  g   .

Even if Dr. Hinrichs denies it: This is much simpler than in chapter 3.2.1.1! 
With these kinds of accelerated or delayed motions you first have to practice 
the art of drawing a free body diagram like in statics. A very basic procedure of 
mechanics is engaged: the method of drawing such a diagram. Without this 



 182

procedure we can’t go any further here, thus the drawing of a free body 
diagram is of special importance here.  

The “force of acceleration“ (m y ) is   
n o t entered into the free body diagram!    

So the next step is the creation of a free body diagram. Subsequently, we will 
apply the so-called Newtonian axiom. 

And here’s an example: 

For some reason the pants pictured above have suddenly become heavier.39, 40

The question is now, when the sliding pants will arrive at the bottom. Little tip: 
leg length: 1 m, mass of the pants: m = 1 kg, normal force between pants and 
legs by elastic: FN = 10 N, average friction coefficient between pants and legs: 

 = 0.25 (additionally occurring sliding effects will be disregarded here). So: 
the free body diagram and the application of the Newtonian axiom according to 
the following recipe (this is how one should always proceed, in order to avoid 
the sign problems):  

39 Similarities of the depicted person with Dr. Romberg have been retouched by him on 
purpose during drawing. 
40 Here too, one must simply be generous and overlook Dr. Hinrichs’s “humor“. 
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First, the “acceleration term“ (here my ) is written on the left side of the 
equal sign. On the right side the forces are summed up, and those that 
point in the direction of the coordinate are counted positively!

So, (y points up):

my  =  F =  m g +  FN = -1 .10 + 0.25 . 10 kg m/s²  

  ==> y  = 7.5 m/s² 

  ==> y =  0.5 . 10 . t² + 1 m with y(t*) = 0 

  ==> t* = 1
5  s = 0.4472 s 

So sometimes you can be caught with your pants down faster than you think! 

Well, in principle I don't weigh myself except in
elevators... And even then, only at beginning of 

the way down. 
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Unfortunately, the turbo formula “Newtonian axiom“, with which we’ve been 
able to accomplish a lot, only applies to translational motions  but what do 
you do when you want to describe a rotary motion? 

Also in this case an expansion of the equations of statics applies in 
kinetics  we still remember from statics that the sum of moments must be 
zero. If this is not the case, we leave statics and a motion is brought into action: 
in this case a rotation. While for the translation the sum of the forces was 
proportional to acceleration (and still is, with the proportionality factor mass 
m), the sum of the factors is proportional to angular acceleration . The 
proportionality factor is in this case the moment of inertia J, which we already 
know (and in Dr. Hinrichs’s case also love) from the observation of energy and 
can gather from the tables. 

The so-called theorem of twist reads as follows  please memorize and 
never forget: 

   JP  = P    (theorem of twist) 

Here some important tips from the old hand:  
1) The same point of reference P has to apply to both sides of the 
equation!!! Careful with the signs! Always pin down the coordinates x, y, 
with directions first, then write the J -term on the left (analogous translation), 
and finally, on the right side, sum up the factors in this direction (of turn) with 
positive signs, and those going against this direction with negative signs. If you 
get a positive sum as a result, there will follow a circular acceleration in 
positive coordinate direction and vice versa! 

2) This formula is to be enjoyed AT YOUR OWN RISK, since it is only 
applicable under certain conditions. The choice of point of reference for the 
theorem of twist is of great significance while using the formula (since the J 
and the sum of the factors is dependent on it). You can’t go wrong, even 
without higher knowledge, if you: 

)  choose the body’s center of gravity as point of reference,
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)  choose a point as point of reference for which the connecting 
line to the center of gravity is vertical to the acceleration of the 
center of gravity.  

You choose between ) and ) according to the point upon which fewer 
unknown forces are acting. 
One should always first check the velocity pole and the center of gravity as 
possible points!!! 

We now recommend reading the previous lines at least 10 times, since 
that’s half the battle  the rest is the accurate drawing of a free body diagram, 
beloved by all.

Here’s an example to illustrate the point: the reserve beer keg rolling 
down into Dr. Romberg’s cellar: 

Figure 95: Rolling beer keg  

Here’s some more info: The beer keg can be understood as a rolling 
homogenous cylinder. The free body diagram represents the first difficulty 
here, which we will surely overcome. 

But now to the choice of point of reference for our theorem of twist: 
According to rule 1) the center of gravity, i.e. the roll’s center, can always be 
used; according to rule 2) the point of contact of the beer keg on the inclined 
plane could also be chosen (the center of gravity is accelerated in the direction 
of the inclined plane, which just this once is entered with aS into the free body 
diagram. So the connecting line from the point of reference according to 2) to 
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the center of gravity is vertical to the acceleration aS). We’ll begin by going 
against our rule, i.e. against our better judgment, with the center of gravity as 
point of reference: 

Figure 96: Free body diagram of the rolling beer keg 

 JS  = S FR R with JS = 0.5 m R²  (gathered from the table). 

Unfortunately FR is still unknown, so Newton will help us again in determining 
the unknowns: 

  m x  =  Fx =  FR + m g sin30°   . 

Unfortunately x  is still unknown, so we’ll use kinematics: 

x R   . 

Now we have to unite the three equations with the three unknowns FR, x  and 
... We get the following result: 

 = g
R3  . 

If, according to our recommendations, the choice of reference point according 
to either ) or ) is chosen according to where more unknown forces are 
acting, then the choice falls on the point of contact of the beer keg on the plane, 



 187

since at this point two unknown forces FN, FR act. The point of contact is 
simultaneously the velocity pole of the beer keg  and is therefore denoted by 
Q.
Now the calculation mania begins: The theorem of twist reads in this case as 
follows:  

  JQ  =  MQ = m g R sin30°

 with  JQ =  0.5 m R²   +  m R² 
  (gathered from table   +  Steiner's share) 

  ==>  = g
R3  .    

And that’s it. By choosing the correct point of reference you can save yourself 
a lot of work. Whoever understands this can file away the horror topics 
theorem of linear momentum (Newton) and theorem of twist for good. Just a 
couple tricky geometries and free body diagrams (see the problems in chapter 
4.3) can shock us now (Dr. Hinrichs would like to emphasize that this wouldn’t 
in any way shock him in the least)! 

Let’s take this opportunity to rest a little following this difficult ascent 
through extremely difficult terrain and gaze in wonder upon the panorama that 
presents itself to us. The following overwhelming view of a wonderful analogy 
offers itself here: 

translation      rotation 

path x=s     angle 

velocity x  = v     angular velocity  = 

acceleration x  = a    angular acceleration  = 

mass m     moment of inertia J 

force F      moment M 

theorem of linear momentum m x  =  Fx theorem of twist JP  =  MP

kinetic energy Etrans = ½ m x 2   kinetic energy Erot = ½ J 2
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After the loser has collected himself a bit, the expression “It’s that easy...“ 
spontaneously crosses his lips. But last but not least, we now come to a further 
topic: impact! 

3.4 Impact 

Impact is defined as the momentary collision of two bodies. During the very 
short impact duration t, very large forces are at work  other forces (e.g. 
weight) are negligible in comparison  and the position of the bodies involved 
in the impact does not change. [4] 

A scientific discussion of the picture’s content leads to the following result: 
The fist moves in the direction of the face and exerts forces onto it during 
contact. As a result of the contact forces the whole effort is directed onto parts 
of the face: Deformations appear, things are turned inside out, the teeth fall 
out,... If the face belongs to a portly gentleman, he’ll probably stay standing 
where he was. But a pipsqueak will more or less be moved. He might even do a 
backwards somersault. You’ll get some technical terms in a bit that you can 
impress with at the boxing ring: The backwards somersault takes place because 
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the blow is not directed at the center of gravity. This is also referred to as an 
eccentric impact.41 But if the blow penetrates deep into the stomach area, 
about where the center of gravity should lie, the professional speaks of a 
STRIKE centric impact (Dr. Hinrichs interjects that his own center of gravity 
lies elsewhere). 

It will certainly be of interest to the mechanic to know how much of the 
blow is absorbed by the head and at what velocity the affected body then falls 
to the ground (backwards). The laws of impact provide the appropriate 
equations for this: 

First, we have to alter the Newtonian axiom by integrating it (we aren’t 
the first ones who’ve ever done it; we’re copying again!): 

F
t

0

*
 dt  = mx

t*

0
 dt 

  F
t

0

*
 dt = m x (t=t*)  m x (t=0) 

  F
t

0

*
 dt = m v2  m v1 . 

You can interpret the whole thing like this: With this new formula (the so-
called momentum theorem in integral form) we can determine the change in a 
quantity of motion through the acting of a force in a time interval of t = 0 to t = 
t*. However, this quantity of motion is in a till now unusual form: m v. This 
quantity of motion is also referred to as momentum. So, with the momentum 
theorem described we can determine the change in momentum as a result of a 
force acting upon a body. The equation teaches us furthermore that without the 
exertion of a force (or for forces that are zero in the mean time!), the body’s 
momentum must remain the same42:

  m v2 = m v1.

41 By the way: Dr. Romberg also has a slightly eccentric impact! 
42Original sound byte of Dr. Romberg: “We have to detextbookify this part a bit more!“ Dr. 
Hinrichs’s remark: “I detextbookify – you detextbookify – he, she, it will have 
detextbookified...“ 
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We can immediately apply this new knowledge to the face demolished by the 
punch. We draw a free body diagram of one of the involved bodies  either the 
hand or the face. The force progression on this body part will have the 
following characteristics over time (figure 97): 

Figure 97: Characteristics over time of the force during momentum 

For the elastic face and fist the force in the area has a symmetrical progression 
of contact. The fist goes into the face and bounces back out. On the way out the 
force of contact decreases. In the case of elasticity SI = SII applies to the 
change in momentum (momentum = integral F over time t, i.e. the hatched area 
under the curve). If the face is fully plastic, as if it were made out of plasticine, 
then SII = 0 and the fist’s contour remains in the face after the blow. If the face 
is partly plastic, then SI > SII. In order to ascertain the “impact plasticity“, the 
impact figure e is introduced: 

  SII = e SI .

Yup, and that means: 

   elastic impact:  e = 1 
   partly plastic impact: 0 < e < 1 
   fully plastic impact: e = 0 
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And what good is all this? Well, now, with the impact figure you can not only 
apply the momentum theorem in integral form to one body, but you can also 
illustrate the impact process between two bodies with it. In the textbooks in our 
bibliography wonderful aggra derivations are depicted that, for the case of the 
central impact of two bodies, lead to the following equations: 

before impact after impact 

Figure 98: Impact of two elastic bodies 

So the following concerns two bodies with masses m1, m2, that have the 
velocities v1 and v2 before and the velocities V1 und V2 after the impact. So 
now  please just believe it (Dr. Hinrichs murmurs: “Believing is not 
knowing“, amateur theologian Dr. Romberg reassures: “Believing is 
trusting...“):
You can determine the impact figure e from the velocity differences: 

e
V V
v v

1 2

1 2
  . 

For the velocities after the impact the following applies: 

  V1 = 
1

1
1 2

1 2 1 2 2m m
m e m v e m v( ) ( )  , 

  V2 = 
1

1
1 2

1 1 2 1 2m m
e m v m e m v( ) ( )   . 

Energy loss during the impact: 

T = 
1

2

2
1 2

1 2
1 2

2e m m
m m

v v( )  . 
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The simplified equations for the impact of body 1 against rigid wall 2 
(borderline case m2 = , v2 = 0) can save you as well: 

  V1 =  e v1 ,  T = 
1

2 1 1
2e

m v
²

.

That was hard stuff! On the other hand, the application of these equations is 
relatively easy, since it follows the same old scheme! 

What are you blathering 
about? e=1? I'll take iron 4! 

Two quick examples: 
In order to determine impact figure e, a ball is dropped from height H onto a 
plane. After the impact with the plane the ball reaches a maximum altitude h. 
How big is impact figure e ? 

For this we of course need the velocities directly before and after the impact. 
They are: 
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  mgH = 1
2 m v1

2  (energy theorem) 

  ==> v1 = 2gH , the same holds for V1 = 2gh     , 

  from V1 =  e v1 follows e  = 
h
H

  . 

And here’s the next problem: 
In the men’s shower, a bar of soap (mass m, vm=0) is lying on the slippery 
floor ( =0) at distance L from the wall. During a game of soap soccer a second 
bar of soap (mass M = 4 m) is kicked at the first bar at velocity vM. Where will 
the bars of soap hit each other the second time, if the impacts between the bars 
are elastic (e = 1: hard soap  because it really does have to be harrrrrrd)? 

And now on to the soap equations: following the first impact: 

VM =  
1

1 1 0
M m

M e m v mM( ) ( )  = 
1

5
3

m
m vM  = 

3
5

 vM

Vm  = 
1

1 1 0
M m

M v m e MM( ) ( )  = 
1

5
8

m
m vM  = 

8
5

 vM

Condition for the second impact: The traveled distances from M until the next 
impact at ximpact = the traveled distance from m to the wall and back to ximpact:

  xM (timpact)  = ximpact 

  xm (timpact) = L + L  ximpact = 2L  xM

Vm timpact = 2L  VM timpact

8
5

 vM timpact = 2L 
3
5

 vM timpact  



 194

==> timpact = 
10

11
L

vM
  ==> ximpact = 6/11 L . 

Unbelievable ... that’s all for the theory – or was it “feary”?

Since we know that the half-life of mechanics knowledge can sometimes be 
very short43, please put on the sweatbands: It’s time for some exercises! 

Patent Office 

 Let me through!  
My model's getting out  

of date! 

43 In Dr. Romberg’s case a single evening under the right circumstances is enough for a 
blackout with complete reset. 
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4. Practice Makes the Loser a Winner 

Clever education psychologists have discovered that the average loser retains 
on the average

  10% through reading 
  20% through hearing 
  30% through seeing 
  50% through hearing and seeing 
    and  90% through „falling flat on his/her face“. 

So now you can raise your degree of efficiency phenomenally by applying 
what you’ve read to the following exercises. However, in this case, the 
annoyance is already predetermined on your side.  

„There is most likely nary a field in the engineering sciences in which one, 
after having ostensibly understood the theory, is as deceived and disappointed 
as in mechanics when it comes to solving practical problems“ [23], see also 
the commentaries of all the losers during the announcement of the exam 
results.

But before you spontaneously burn this book after not being able to solve the 
first two exercises: The learning success sets in right at the point at which you 
can’t get any further with an exercise (because if you had been able to solve the 
problem with no difficulty, you wouldn’t have to calculate, since you've had it 
already. So you can always gleefully anticipate despairing over a problem. 
Completely savor the point of sheer desperation, try several solution paths, 
which may all lead into a morass and result in different answers. And then, 
after reading and dealing with the model solution, let ‘er rip – that’s what you 
call a learning success.45

                                                          
45 Of course you’ll complain about the too-difficult exercises. Dr. Hinrichs let himself get 
carried away by his sadism while choosing the problems. Dr. Romberg thinks that though he 
himself has no desire for difficult problems, you can learn the most from difficult, practically 
unsolvable exercises. 
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You’ll find a chapter number with every exercise. This tells you to which 
chapter (inclusive) you need to have read in order to make any sense to start 
working on the problem.  

You’ll also see a symbol before each exercise that gives the degree of 
difficulty of the problem, namely 

: The exercises marked with this symbol are an absolute must! You 
should be able to at least partially solve these problems on your own 
following the reading of the indicated chapters – after studying the 
solution, the mistakes in your own answer should become clear.  

: These exercises are not to be underestimated – they make an impact 
(like a bomb), sometimes with destructive results. 

:  These exercises are a private source of joy for Dr. Hinrichs – but at 
the same time also very dangerous for the ego, such that one must be 
warned before attempting them. Following a most probably failed, but 
still important attempt at solving the problem on one’s own, the 
outlined solutions should be studied, since they contain interesting 
mechanical tricks. 

: This is how exercises are marked that shock the loser – even after 
reading the book – so much that they could kill him.46

:  For the sake of completeness, we’ve added exercises containing 
fundamentals of mechanics that aren’t described in chapters 1 to 3. 
Attempting to solve them on your own is pointless – but studying the 
solution as a first introduction seems to make more sense to us than 
studying the secondary literature, if you simply want to be able to 
keep up with the conversation. 

For the problems that are guaranteed to crop up while you’re solving the 
exercises, you should differentiate between problems with setting up the 
equations (meaning problems with the mechanics) and problems with solving 
the hard-won equations (these are problems with the math). The former are 

                                                          
46 By the way: There are no such exercises! 
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desired and must, as previously mentioned, be overcome. The latter are pretty 
insignificant. Well, not really. But you don’t get a handle on these problems by 
reading this or other mechanics books several times. So, if you come across a 
somewhat adventurous integral or four equations with four unknowns, then the 
mechanics of the exercise has been taken care of and you can be content! 

And now, just a few little tricks that result in a big success, with which 
you can simplify mechanics life.  

- In statics, the geometry and acting quantities of force are often 
given with angle  (e.g. a block on an inclined plane at angle ). 
Experience shows here that the sine often becomes a cosine in the 
solution. This can be avoided by not choosing an angle  in the 
proximity of 45° in the sketch of the free-body diagram (for =45°,
the opposite angles of an equilateral triangle can’t be distinguished 
from one another), but rather a distinctly smaller (or larger) angle! 

- When checking the achieved result, you should conduct a test of 
plausibility. Using the example of the sloped plane, it’s always 
good to insert the extreme values ( =0, =90°) once. Then, if for 

=0 the determined grade resistance Fgr = G cos  corresponds to 
the weight, then something’s not right! 

- You can save yourself a lot of frustration when the results come out 
for the elementary test in Czech mechanics by running a unit check 
on the obtained result at the end of an exercise – and then slightly 
correct if need be. 

- In a correct result, all of the quantities given in the text of the 
problem should be present. An innovative solution with new 
quantities is usually rewarded with a special deduction. 

And now – knock ‘em dead! 
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4.1 Statics Exercises  

Exercise:  1 Chapter: 1.4,     Degree of Difficulty: 

Dr. Romberg made a discovery, an „After-Five-Invention“ (see Foreword, pp. 
VI): Instead of using a motor he hangs a magnet in front of his car to pull it, 
with the intent that the vehicle moves forwards. 

Question: Can something like this work? 

Solution

Of course not! Common sense (in some people more, in others less developed) 
already tells us that something’s fishy here. Let’s try it more formally: We 
could cut the car of the original question free from the magnet (cutting free 
always makes a good impression!) 

Yes, there is a magnetic attraction at work on the vehicle. But it’s devastating 
for the inventor that the magnet naturally has to prop itself up above the beam 
on the car. 
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Unfortunately there’s an opposing force to the magnetic attraction at work 
here. And the sum of the horizontal forces equals zero, so the car doesn’t 
move. (Otherwise this exercise wouldn’t be in the statics section and you’d 
have a perpetual motion machine). It would be more helpful to bind a donkey 
to the car and to hold a carrot in front of it just out of reach (but this isn’t a 
perpetual motion machine either, since you have to provide food and water to 
the donkey)! 

In order to save the invention, you could use an additional magnet.  

And for constructive reasons we’ll put both magnets in the car.  
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Now the question presents itself: If the invention is supposed to function, in 
which direction does the car move? (Dr. Hinrichs is already becoming 
impatient and has had his hand in the air the whole time waiting to be called 
on! Dr. Romberg responds to this gesture with his middle finger...) [cf. 30] 

Exercise:  2 Chapter: 1.4,     Degree of Difficulty: 

Dr. Romberg, friend of animals and herbivore, offers a home to some vermin 
in an old bottle. 
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In the closed bottle, insects lie spread out on the bottom, while others are 
taking a flight around the bottle. For pseudoscientific purposes, the bottle is put 
on a scale (see also [30]). 

Is the bottle 

a)  heavier when all of the flies are on the bottom? 
b)  heavier when all of the flies are flying around in the glass?  
c)  heavier at the moment when all of the flies, startled by external noise and 

knocks, fly from the bottom into the air? 

Solution

The weight remains the same regardless of whether the flies sit on the bottom 
or fly around. Because when the flies are in the air, we can make a nice free-
body diagram for one of the flies: 

Air stream 
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In order for the fly to retain its state of suspension and not to hit the bottom, the 
fly’s weight has to be counteracted by a force with a corresponding weight. 
And where does this come from? Out of thin air, so to speak! The air exerts a 
force on the fly (this is where the air friction on the fly’s body, the fluid 
mechanics, the boost and such come into play). When the fly flaps with its 
wings, it sets an air stream in motion that is directed towards the bottom of the 
bottle and hits it. And in the end the air must exert exactly the same weight on 
the bottom of the bottle as on the fly. As mechanics we can regard bottles in 
statics as black boxes. 
The condition for these considerations is, however, that the bottle is in a 
stationary state – this means that all flies remain approximately in the same 
flying altitude and the movement of the air is also relatively constant. But it’s a 
different matter if we observe a nonstationary state (cf. c). This is now no 
longer a matter of statics – but common sense (or chapter 3) is of help here: Of 
course the flies push off from the bottom – at this moment a larger force is 
acting upon the scale. Stated differently: The bottle’s center of gravity moves 
slightly upwards. And a change in the center of gravity can only be achieved 
by a force. This force must be exerted from the scale onto the bottle. What’s 
important here is: In the mean time, the weight remains constant – since the 
flies sometimes fly against the cap or slow down beforehand. 

In order to better understand the whole thing, you can also imagine a rotating 
propeller that’s attached to a cap on the inside of a closed container. It makes 
no difference what degree of efficiency the propeller has, but the container will 
never fly into the air, even though a propulsive force is acting upwards on the 
cap. This is, however, annulled by the air masses blown downwards. So you’d 
have to remove the bottom of the container and perforate the cap (because of 
the air supply)... Then you’d have something like a simple engine that, 
structured in this manner, could actually fly (amazement!) 
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Exercise:  3 Chapter: 1.4 (3),     Degree of Difficulty: 

Dr. Romberg would like to lift a vat of apple juice47 (mass M =100 kg) to the 
height of 1 m. In order not to overburden his circulation, he wants to roll the 
vat over an inclined plane of length L = 2m instead of lifting it. 

With what force does the vat have to be “rolled up” the plane? Additional 
question for chapter 3 experts: Determine the necessary force by way of the 
energy theorem! 

Solution

First the easy way, i.e. without the energy theorem: You first have to apply at 
least the force which pulls the barrel down  

  F = Mg sin 

                                                          
47 Dr. Hinrichs’s remark: “That is completely absurd!“  
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where g  10 m/s2 and 

  sin  = 1 / 2    , 

so F = 500 N.

Alternatively, the energy theorem results in: 

 M g h = Fds  = F 2m - F 0m  ... => F = 500 N   . 

This exercise is pretty simple, but it demonstrates an interesting basic 
principle:

With an extension of the stretch from 1m (pure lifting) to 2m (inclined plane) 
we’ve attained a reduction of the necessary force. This basic principle is also 
the underlying principle of the pulley. 

In cases involving a pulley, this bisection of force must also be compensated 
by a doubling of the stretch over which the rope has to be pulled. While statics 
with the equilibrium of forces seems to point to differing active principles 
(inclined plane: equilibrium of forces, pulley: free-body diagram for the pulley-



 205

wheel in motion, equilibrium of moments around the velocity pole P of the 
wheel in motion, try it out!), the above stated energy balance explains 

  EPOT = Fds

the circumstances for both cases: 

In the case of the same potential energy to be attained, the doubling of the 
stretch goes along with a bisection of the force! 

Exercise:  4 Chapter: 1.4,     Degree of difficulty: 

The homogenous cylinder W (weight G) is held in a state of rest on the 
inclined plane (angle of inclination ) by weight G via a weightless rope. What 
is the normal force between plane and cylinder? 
Given: G, =30°.



 206

Solution

Free-body diagram: 

Equilibrium of forces on the weight: S = G 
Force parallelogram for the cylinder: 

The rest is pure geometry:   
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  G cos  = N sin

  G sin   = N cos  - G 

  cos      = N sin G = 
N
G2

  sin  = N cos /G - 1 = 
N

G
3

2
 - 1 

  sin2 cos2 N
G

N
G

N
G

2

2

2

24
3
4

3

N
G

N
G

3 0

Solutions: 1) N = 0 , doesn’t make sense!!! 
  2) N = 3G  

Exercise:  5 Chapter: 1.4,     Degree of Difficulty: 

The sketched friction-free system is burdened with force F. 
Determine the reaction forces! 
Given: a, F. 
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Solution

Free-body diagrams: 

Note:  The rods to the right and left are pendulum supports, and as such 
can only absorb forces lengthwise.

 The sum of the horizontal forces for the free-body diagram to 
the right and the considerations of the symmetry (above = 
below) results in longitudinal force F 2 /2.

Middle free-body diagram: 

Symmetry or MP:  A = C 
MP for a pendulum support: A = 2F 

Complete system:  FH= 0 ==> BH = F, FV= 0 ==> BV = 0 

Exercise:  6 Chapter: 1.4,     Degree of Difficulty: 

A beer can can be regarded as an open, circular sheet metal cylinder (diameter 
D, height H, sheet thickness s, s<<D, s<<H). Since the beer glass is empty 
once again and the replenishment is taking a while, Dr. Romberg combats his 
boredom with a scientific experiment: 
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The beer glass is unilaterally lifted on the lower edge. What is the maximum 
size that h1 can attain without causing the container to fall over? 
Given: G, D, H, s, s<<D, s<<H. 

Solution

Center of gravity in the x-y system of coordinates: 
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  xs  = D/2  (symmetry) 

  ys  = 
s HD s s D D s H

D s s D D s H
2 4

2
2 4

2 2

4
2

4
2 2

2 2
2 2

( ) ( ( ) )
( ) ( ( ) )

       =  
H DHs
D s DHs
/

/
2 0

42  = 
2

4

2H
D H

  tan = ys/xs = 4
4

2

2

H
D HD

Unstable balance („just before tipping“ and/or „tipping just beginning“): The 
center of gravity is direct, i.e. vertical, above the point of contact:  

 = 90° 

  h1 = D sin(90°- ) = D cos D
1

1 2tan

Exercise:  7 Chapter: 1.4,     Degree of Difficulty: 

In a depression (width a, depth a), a homogenous beam with a uniform cross-
section of weight G rests as depicted. The system is frictionless. 
What is the maximum length L the beam can possess for it not to slide out of 
the depression? 
Given: a, G. 
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Solution

Free-body diagram: 

Beginning of the slide with A2 = 0: central force system  
Procedure: 1) construction of the intersection A1 - B 
 2) central system of forces for the center 

of gravity vertically above the intersection 
(only then is the sum of the factors around 
the intersection zero!) 

    ===> L = 4 2  a 

Exercise:  8 Chapter: 1.4,     Degree of Difficulty: 

A tractor (weight including driver G, center of gravity S) drives without the 
back drive wheels sliding at a constant speed up the slope (gradient angle ).
In addition, the tractive force F is acting upon the tractor. 

a) At which force F does the tractor tip over? 
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b) At least how big does the friction coefficient between the driving wheels and 
the plane have to be for the tractor not to slide before it tips over? 

Given: a, G, .

Solution

The tractor begins to tip over as soon as the axial force between front wheel 
and plane equals zero! 

a) Free-body diagram:
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 MA:   - Fa + Ga (cos  - sin

F = G (cos sin )

Alternative solution: a central system of forces:

  ==> F = G 
sin( )

sin
45

45
 = 2  G sin(45°- )

  (That’s the same as in the first solution!!!) 

b)   
A
A

R

N
tan45° = 1 

  (  doesn’t make any sense as far as the physics are concerned!) 

Exercise:  9 Chapter: 1.4,     Degree of Difficulty: 

The depicted body (a thin homogenous triangular sheet with a massless rod) is 
to be held fast by force F in the diagrammed situation.  
Determine the point of load incidence, the direction and the quantity of force F 
in the case of the smallest possible force. How large then is the resulting 
bearing reaction in bearing A? 
Given: G, a. 
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Solution

Consideration:  -  for minimization, the force must stand vertically on the 
lever arm 

  - The lever arm must be at the maximum 
From this, we deduce: 
  F has to act on the upper corner of the triangle and stand 

vertically on the connecting line between the apex and 
bearing A – in this case, the lever arm of force is at 
maximum! 

Quantity of force: MA:  3 G a 16 92 2a a  F = 0   

  ==> F = 
3
5

 G 

Force parallelogram with forces F, A and G: A = 
4
5

 G 

Exercise:  10 Chapter: 1.8,     Degree of Difficulty: 

An engineer noggin hollow cube of uniform wall thickness (inner edge length 
a) hangs on a rope that is fastened to a corner of the cube. A sphere (weight G, 
diameter d<a) lies frictionless in its interior. 
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How big are the supporting forces acting on the sphere as regards quantity and 
slope in relation to the vertical? 
Given: a, d, G. 

Solution

Approach 1: System of coordinates in the direction of the cube edges: 

N
N

N
G0

0

0

0

0
0

1
3

1
1
1

   ==> N = 
G
3

Approach 2: Angle between the cube diagonals and edge: 

   cos  = 
a

a a a2 2 2

1
3
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   Each wall carries 1/3 of the weight: 

   N cos  = 
G
3

      

                              =>  N = 
G
3

Exercise:  11 Chapter: 1.9,     Degree of Difficulty: 

A steamroller (weight G) possesses a front roller (radius r) and two rear drive 
rollers. The rollers are frictionlessly supported on their axes. The vehicle is to 
roll from the depicted situation over the step. 

At least how big does the coefficient of static friction 0 between the road and 
the rollers have to be? 

Given: L, r, G, 
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Solution

Free-body diagram: 

Beginning of the motion: FNV = 0 

Normal force: MP:  FN (L+x) - G (L/2 + x) = 0  with x = r sin 

    FN  = G 
L r

L r
/ sin

sin
2

Friction force: FH, FV: FR  = FSV tan  = (G-FN) tan

G tan L
L r

/
sin
2

Coefficient of friction:   0
F
F r L

R

N

tan
sin /1 2

Exercise:  12 Chapter: 1.9,     Degree of Difficulty: 

A body that is welded together from two disks (each of weight G, diameter D) 
and a weightless connecting rod is lowered to the ground with two equal 
winches W at a constant speed. 
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What is the bending moment in the middle of the connecting rod if the 
coefficient of friction  acts between each disk and the corresponding rope? 

Given: G, D, .

Solution

Free-body diagram left disk:   
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(From the free body diagram results that neither normal nor lateral force acts 
inside the beam connecting both disks!) 

Rope friction:    
S
S

1

2
 = e

FV:     S1 + S2 = G 

    ==> S2 = 
G
e1

 , S1 = G
e

e1

MM:     M  = 
D
2

 (S1 - S2) = GD e
e2

1
1

Exercise:  13 Chapter: 1.9,     Degree of Difficulty: 

A belt drive (coefficient of friction ) is pre-stressed with the depicted 
apparatus by weight G. What is the maximum output torque MAB that can be 
transferred without causing the belt on one of the two pulleys to slide? 
Given: d, D=4d, L=3d, , G. 
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Solution

Geometry: 

     sin  = 
D d

L2
0 5.

    ==>  = 30° (corresponds to /6)

Angle of enlacement:  = 2 arcsin  = 
2
3

Free-body diagram driven pulley: 
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  F1 + F2=
G

cos30
 = 

2
3

 G 

  F1 - F2 = 
2
D

M ab

  F1max  = F2 e  = F e2

2
3

==>  MAB = 
GD e

e3
1

1

2
3

2
3

Exercise:  14 Chapter: 1.9,     Degree of Difficulty: 

A frame (weight G) hangs as sketched by a thread on a nail. 
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At least how big does the coefficient of friction  between the nail and the 
thread have to be for the picture to hang horizontally if the suspension points 
on the frame are at different distances a and b from the picture’s center of 
gravity? 

Hint: The diameter of the nail can be disregarded for a and b, the same goes for 
the friction of the picture on the wall! 

Given: a, b, a>b, G. 

Solution

Free-body diagram, geometry: 

FH:  S1 sin  = S2 cos

 ==> tan  = S2 / S1     (I) 

Geometry: tan  = a/h = h/b  ==> tan2  = a/b (II) 

 I u. II: 
S
S

a
b

2

1
  >  1
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Rope friction: 
S
S

e
a
b

2

1

2

 ==> 
b
aln1

Exercise:  15 Chapter: 1.10,     Degree of Difficulty: 

The depicted supporting structure in the margin consists of weightless rods and 
a homogenous triangular plate of uniform thickness and with weight G. 

How large are the forces in the rods 1 to 3? Are we dealing here with tie rods 
or struts? 

Given: a, G, F=G. 

weight G 

Solution

The sum of the moments around the right bearing (reaction force at upper left 
bearing is called A):   

  F 4 a - A 3 a + G 2
3

 2 a = 0 

 ==> A = 
16
9

 G 

Ritter-cut:  
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MC:  S1 = G     (tie rod) 

MD:  S2 = 
1
2

2
8
9

2A G   (strut) 

ME: 2  a S3 - A a + F 2a = 0 

  S3 =
1
9

2 G   (strut) 

Exercise:  16 Chapter: 1.10,     Degree of Difficulty: 

In the depicted rod construction, all of the rods except for vertical rod 5 possess 
length a.
How large is the force in rod 3 with the load marked F? Are we dealing with a 
tie rod or a strut?

Given: a, F.
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Solution

Support: AH = F, MA = 0 = Fa 3/2 - B a 3/2 

  B = F / 3 = - AV

Ritter-cut: 

FV = S3 3/2 + F/ 3 = 0 

  S3 = - 2F/3 

Exercise:  17 Chapter: 1.10,     Degree of Difficulty: 

The rods 1 to 4 of the sketched system possess length r and are connected to 
one another by joint M. M is simultaneously the center of the sector, comprised 
by rods 5 to 8. 

How large is the force in rod 9? 

Given: F, r, angle see sketch. 
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Circle!!! 

Radius R 

Solution

Trick: In the case of the crooked rods, we are dealing with pendulum supports. 
To clarify the directions of force of these pendulum supports, they will be 
replaced with straight rods, so what follows is a system of substitution: 

Support: FV:  BV = F 

MB:  A r - Fr 
3

2
 = 0 

   ==> A = BH = 
3

2
 F 
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Balance of junction points:  C: S5 = S6 = -F 

    D: S5 = S7 = -F 

     S1 = -S5 = F 

    M: S4 = S1 = F 

    B: FV:  S3 = 0 , S3 =S2 => S2 = 0 

FH: S9 = 
3

2
 F  (strut) 

Exercise:  18 Chapter: 1.10,     Degree of Difficulty: 

The depicted truss is acted upon by two single forces F. How large are the 
forces of rods 1, 2 and 3? Are we dealing here with tie rods, struts or zero-force 
rods? 
Given: a, F. 

Solution

Support: AV = B = F 
Ritter-cut:     
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MP:  3a F - a F - 2a S3 = 0 

  S3  = F  (tie rod) 

MQ:  -S3 a - S1x a - S1y a + F a + F a = 0 

  S1V  = 2 S1H ,  S1H = F/3,  S1
2 = S1H

2 + S1V
2 = 5 S1H

2

  S1H   = 
S1

5

 ==> S1   = 
5
3
F

  (tie rod) 

MPoint of load incidence:    

  F 2a + S2y a + S2x a = 0

 with  S2y = S2 / 5  and S2x = 2S2  / 5

 ==> S2 = - 2 5 F / 3 

Exercise:  19 Chapter: 1.10,     Degree of Difficulty: 

The sketched flat truss bears a plate (weight G). How large are the rod forces 1 
to 4? Are we dealing with tie rods or struts? 

Given: a, G. 
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weight G 

Solution

The disk’s center of gravity:   

     xs = 

a a a
a

a a

2 2

2 2
2 4

3
4

2
3

4

 = 0.7 a 

Zero-force rod: S2 = 0    (reason: left joint of rod 2 cannot have a 
force in rod direction (where should the reaction force come from?))  
Ritter-cut: 
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MQ:  S1 = 1.7 2  G  
MP:  S4 = -2.7 2  G 
FH:  S3 = G

Exercise:  20  Chapter: 1.10,     Degree of Difficulty: 

The pictured wall crane (all parts are massless) is loaded with weight G in the 
manner depicted. The rope is wound on the frictionless very small pulley R and 
hinged at the wall slightly above point A.

How large are the forces in rods 1 to 4? Are we dealing with traction or 
compressive forces? 

Given: G, a, R. 

Solution

Zero-force rod: S3 = 0 (right joint of rod 3 cannot have a force in rod 
direction) 
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Bearing force A in horizontal rod (sum of moments around bearing left below):

  A = 2
3

G   (traction) 

Ritter cut: MA :   S4 = 3 2  G   (strut) 

MB :   S1 = 4
3

2  G   (tie rod) 

FV:   S2 = 2
3

 G   (tie rod) 

Exercise:  21  Chapter: 1.11,     Degree of Difficulty: 

Two rigidly welded beams are acted upon by line load q0 and force F.  
Determine the bending moment Mb(x) for the area 0 < x < 2a and sketch the 
course of moment for the horizontal beam. 
Supply the largest occurring bending moment! 
Given: a, F, q0.
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Solution

Determination of the reaction forces: MB =F2 a + 2 a q0 5a - Az 6a = 0 
    ==>  Az  = F / 3 + 5 q0 a / 3 
Lateral force for 0 < x < 2a:   Q  = Az - q0 x 

Bending moment for 0 < x < 2a: MA  = Mb (x) - Q x - 
x

xdqx
0

0  = 0 

    ==> Mb(x)  = Az x - q0 x2 + 0.5 q0 x2

      = Fx/3 + 2q0a2 5
6 2

2x
a

x
a

Maximum bending moment:  Mb,max= Mb(2a) + F2a = 8Fa/3 + 

4q0a2/3

(Step in the course of moment, since in this place a factor is introduced by the 
beam protruding upwards at a slant.) 

Exercise:  22  Chapter: 1.11,     Degree of Difficulty: 

A rotor (diameter d, D) of homogenous material with weight G is supported as 
shown.
Sketch the courses of the lateral force and the bending moment according to 
the dead weight and supply the values at the position a and in the middle of the 
rotor!
Given: a, d, D=2d, G. 
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Solution

Weight per length: 

  4q 2a + 2q a = G,   ==>  q = 
G

a10
Line load: 

Course of lateral force: 

Course of bending moment: 
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Exercise:  23  Chapter: 1.11,     Degree of Difficulty: 

It’s five minutes to nine. Determine the course of the bending moment and its 
maximum value for the big hand of the church clock, assuming the hand 
(weight G) possesses uniform thickness and is triangular in shape. 
Given: L, b, G. 

Solution

Course of bending moment:  MB(x) = 
1
6

3

GL
x
L

Maximum value at x = L:  Mbmax = - G sin30° L/3 = - GL
6
1
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4.2 Elastostatics

Exercise:  24  Chapter: 2.2,     Degree of Difficulty: 

A brake drum turns at constant angular velocity . The brake cable (cross-
sectional area A) is stretched by means of the depicted mechanism.  
What is the maximum possible weight G for the allowable tension allow of 
the cable to not be exceeded? 
Given: a, b, , A, allow.

Solution

Force in the vertical section of the cable:   

  SV = G 
a b

a
Force in the horizontal section of the cable:   

  SH = SV e

Tension: allow = 
S
A

G a b e
aA

H ( ) /2

 ==> G = zul a Ae
a b

/2
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Exercise:  25  Chapter: 2.1,     Degree of Difficulty: 

The compression stress 0 acts on the top side of the depicted truncated 
pyramid (edge length top side a, bottom side b, height h, E-module E). The 
dead weight of the truncated pyramid should be disregarded in the following. 
a) How large is the tension U on the bottom side? 
b) By what amount is the stump shortened? 
Given: a, b, h, 0, E. 

Solution

a) Force on the top side:  

  F = 0 a2

 Force on the bottom side:  

  F = U b2 ==> U  = O
a
b

2

2

b)  h = 
( )x
E

dx
h

0
  with  x) = 

F
A x( )

      A(x) = s2(x)
      edge length s(x) = a + x (b a) / h 
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h = 0
2

0

a
A x E

dx
h

( )
 = 0

2

2
0

a
s x E

dx
h

( )
 = 0

2a
E

h
a b a x b a h

h

( ) ( ) /
1

0

      (cf. Bronstein) 

   ==>  h = 0ah
Eb

 . 

Exercise:  26  Chapter: 2.2,     Degree of Difficulty: 

The stress-free mounted rod (length L, density , cross-section A, E-module E, 
thermal expansion coefficient ) lies at point P on a base. How small is the 
friction coefficient  at point P, if the rod, as a result of heating it by  is 
elongated by L.
Given: L, A, E, L, g

Solution

Here’s the solution in short form: 
Statics:  friction force    

  FR  = ALg
2

Elongation:    
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L  = 
EA2

gAL2
 + L

Solve for :   

 = 
gL

LLE
2

)(2

Exercise:  27  Chapter: 2.2,     Degree of Difficulty: 

The configuration shown consists of a rigid beam and two rods (E-module E, 
cross-sectional area A, thermal expansion coefficient ) that were mounted 
backlash- and stress-free at room temperature.  
Which force acts in rod 1 if the ambient temperature is changed by ?
Given: E, A, a, b. 

Solution

Normal forces in rods, balance of moments at the beam: 

  N1 a  =  N2 b 

Geometry for change in angle of beam:  

L1 b  = - L2  a 
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Elongation of the rods:   

L1  = 
N L
EA

1  + L 

L2  = 
N L
EA

2  + L 

i.e. four equations with the unknowns:  N1, N2, L1, L2

==>  N1 =  EA ( )a b b
a b2 2  . 

Exercise:  28  Chapter: 2.2,     Degree of Difficulty: 

A conical rod with a circular cross-section lies backlash- and stress-free 
between two rigid walls. The rod is uniformly heated by .
How large is the occurring maximum tension in the rod now? 
Given: d, D, L, E, , , (L>>D). 

Solution

L = 
L

0
dx

E)x(A
N  with  L = 0, 

     Cross section:  A(x) = r2(x)
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r(x) =  1
2

 (d + 
D d

L
 x) 

==> N = 
LE

A x
dx

1
( )

   with 
1

A x
dx

( )
 = 

L
dD

       (e.g. [Bronstein]) 
 ==> N = E dD

 ==> max = 2min d
N4

A
N  = E

D
d

  . 

Exercise:  29  Chapter: 2.2,     Degree of Difficulty: 

A screw joint consists of a socket (cross-sectional area AH, E-module EH,
thermal expansion coefficient H) and a screw (cross-sectional area AS, E-
module ES, thermal expansion coefficient S, pitch h). The nut is tightened by 
a sixth of a turn. How large is the normal force in the bolt if the joint is heated 
by ?
Given: ES, EH, AS, AH, S H h, L.
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Solution

The difficulty with this exercise is (besides having to confront your innermost
fears) neither statics nor the theory of strength of materials, but rather just the 
concept of what’s actually going on here. A little trick: You’ll comprehend this 
best if you keep the following special cases in mind: 

1) That the socket is rigid: This would mean that the screw would have to 
be elongated by h/6 as a result of the bracing of the screw joint, i.e. LS
= h/6. 

2) That the screw is rigid: This would mean that the socket would have to 
be shortened by h/6 as a result of the bracing of the screw joint, i.e. 

LH = h/6. 

So if both parts are elastic, then both deformations overlap one another: 
h
6

  = LS - LH . 

We can still determine the unknowns LS and LH:

LS = 
NL

E AS S
  + S  L, 

LH = 
NL

E AH H
 + H  L.  

  (Note: negative normal force in the socket, pressure load!) 

Now we have to quickly run the three equations obtained through the 
mathematical mill, i.e. pack everything up and solve for N, get a common 
denominator.... This results in 

  N = [ 
h
L6

 + ( H - S) ]
E A E A

E A E A
S S H H

S S H H
 . 

Finito!
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Exercise:  30  Chapter: 2.3,     Degree of Difficulty: 

The depicted component is stressed by the tensions a, b and  as shown. The 
part has weld seams A and B that are inclined by relative to the edge of the 
object. Determine the acting direct- and shear stresses A, B and AB in the 
weld seams. 
Given: a = -2 kN/cm2, b = 6 kN/cm2, kN/cm2  = 52°. 

Solution

Construction of Mohr's circle of stress: 

1) Plotting of point Pa ( a ; - ) (note sign , cf. sign convention, chapter 2) 
2) Plotting of point Pb ( b ; ) (note sign , cf. sign convention, chapter 2) 
3) Pa and Pb lie twisted at 90° relative to one another on the component 

==> in Mohr’s circle of stress, these points lie on opposite sides ==> the 
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intersection of the connecting line of Pa and Pb with the  - axis forms 
the center of Mohr’s circle of stress ==> draw the circle of stress around 
the center through Pa (and/ or Pb)

4) Plotting of PB: From area b (this is the area where b acts) you reach 
area A in the component through a clockwise turn by angle =52° ==> in 
Mohr’s circle of stress, we also have to turn clockwise, but by angle 2  = 
104° and get point

    PA (3.95 kN/cm2; - 4.6 N/cm2)

5) Point PB lies opposite point PA in Mohr’s circle of stress (2x90°=180°). 
Stated differently: We come from area b to section B by turning 
counterclockwise by 90° -  = 38°, i.e. turning counterclockwise in 
Mohr’s circle of stress by 2x38°=76° from Pb....

6) A reading of the coordinates leads to  
    PB (0.1 kN/cm2, 4.6 kN/cm2)

(Based on the illustration, exact values can also be calculated by way of the 
angular and circular relationships) 
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Exercise:  31  Chapter: 2.3,     Degree of Difficulty: 

A thin sheet metal strip is strained as shown by an unknown tensile stress 0.
In section A-A, turned by angle  = 22.5° relative to the unstrained edge, the 
direct stress n = 10.25 N/mm² appears. In section B-B, turned by angle 3
relative to the unstrained edge, the same shear stress results as in A-A. What is 
the tension 0?
Given: n = 10.25 N/mm². 

Solution

Mohr's circle of stress:  
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==>  R = M

M = n + R cos 45° 

M = n

1 0 5 2.

0 = 2 M = 2 n

1 0 5 2.
 70 N/mm² 

Exercise:  32  Chapter: 2.3,     Degree of Difficulty: 

In a tensile test (rod cross-section A), the shear stresses in two intersecting 
planes inclined towards one another by angles 2  differ only in sign. How 
large is force F if the measured shear stresses amount to m?
Given: m, A, .

Solution

  sin2  = m / R ==> R = m / sin2

I = 2R = F/A 

  F = 2AR = 
2

2
A m

sin
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Exercise:  33  Chapter: 2.4,     Degree of Difficulty: 

The tensions a ( a=0) and b ( b=0) act on the sketched tip of a thin plate. 
Determine from the given tension a the direct stress b and the equivalent 
stress according to the hypothesis of the largest modification of shape energy. 
Given: a.

Solution

  sin =
3

2 a / R 
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==>  R = 
2

3
a , b = I = R + R cos60° = 3 a

II = I 2R = 
1
3 a

V  = 0 5 3
1
3

3
1
3

2
2

2

. a   
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   = 
13
3 a

Exercise:  34  Chapter: 2.4,     Degree of Difficulty: 

The tensions 1, 2, 3, 1, 2 act on the sketched intersections of a body. 

a) How large is angle ?
b) How large are the principle stresses? 
c) How large is the equivalent stress according to Tresca? 

Given: 1= 60 N/mm2, 2= 10 N/mm2, 3= -85 N/mm2, 1= 30 N/mm2,

2= 20 N/mm2.

Solution

Well – we suggest a graphic solution here!!!! 
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By means of reading off the drawing or through a mathematical solution, we 
get:

  R  =  10 13 N/mm2,

I =  (4+ 13 ) 10 N/mm2,

II =  (4 13 ) 10 N/mm2,

III =  85 N/mm2,

 = 78,5°, 

Maximum shear stress criterion = I III N/mm2  . 

For the following exercises, the tables for the different bending cases, 
supplied in the literature, can be used. The following table is taken as an 
example from the formula collection of the Institute of Mechanics, 
University of Hannover, Germany [4]. The enumeration of the bending 
cases in the solutions of the exercises refers to the enumeration of the 
bending cases in the following table: 
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Load case Equation of deflection line Deflection Slope

holds for 

for
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Exercise:  35  Chapter: 2.5,     Degree of Difficulty: 

Two contact points (laminated springs with contact support) are arranged as 
shown. By what distance f would you have to vertically displace foot B of the 
right contact spring from the powerless situation depicted in order to produce 
the stipulated contact force F? 
Given: F, L, EI. 

Solution

Loading case 1:  Displacement of the left beam end: fleft = flinks = 
FL

EI

3

3

 Displacement of the right beam end: fright = frechts = 
FL

EI

3

3
Total displacement in B:  fTOT = fleft + fright

   ==>  fTOT = 
2
3

3FL
EI

Alternative approach:
Substitute model of the cantilever beam: 

Springs each with spring stiffness csubstitute = 3
3

EI
L

Connection of both springs:  Spring deflections add up to
     total displacement,  
     normal force equal in both springs  
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 ==> Series connection 

SUBSTITUTESUBSTITUTETOT c
1

c
1

c
1 , ... cTOT = 3

2 3

EI
L

  F = cTOT  fTOT ==> fTOT = 
2
3

3FL
EI

Exercise:  36  Chapter: 2.5,     Degree of Difficulty: 

In the depicted system of beams 1 and 2 (weight per length q, E-module E, 
square cross-sections with edge length b) the elongation A is measured 
longitudinally on the underside of the beam at point A. With which tractive 
force S must be pulled on beam 2 in C so that A=0? 
Given: F, q=F/2a, E, A, a, b. 

cross section of the beam 

Solution

Statics: Bending moment in beam 1 at A:   
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  MBA = 
5
4

Fa

Tension on beam’s underside:  

A = 
M

I
z S

A
BA  = 0 with  A = b2

      I = b4/12
      zDMS = b/2 

 ==> S = 
15
2

a
b

 F 

Exercise:  37  Chapter: 2.5,     Degree of Difficulty: 

The depicted system is acted upon by force F. How large is the displacement of 
the point of load incidence? 

Given: L, F, EI.

Solution 

FKB joint ==> force in left and right beams, resolution of force: 

  F = Fleft + Fright

Displacement left: loading case 1:   

  fleft =  
F L

EI
links

3

3
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Displacement right: loading case 1... !...:  

  fright =  
F L

EI
rechts ( )2

3

3

Since the beam doesn’t rip apart at the joint, you have f = fleft = fright, i.e. 

F L
EI

links
3

3
 = 

F L
EI

rechts ( )2
3

3

,   

 ==>  Fleft = 8 Fright = 
8
9

 F. 

You can use this to determine the displacement: 

  f = 
8
27

3FL
EI

 . 

Alternative approach: 
Substitute the cantilever beam with springs Determination of the rigidities of 
the substitute springs: 

  csubstitute, left =
3

3

EI
L

  csubstitute, right = 3
8 3

EI
L

Wiring of the springs:   same paths,  
     sum of the forces in the springs 
     ==> parallel connection of the springs 

  cTOT = csubstitute, left + csubstitute, right  = ....  = 27
8 3

EI
L

  F  =  cTOT  f 

  f  =  
8
27

3FL
EI

Exercise:  38  Chapter: 2.5,     Degree of Difficulty: 

A laminated spring of sheet metal with uniform thickness d for a truck is to be 
assembled in a manner such that for the given load, the maximum tensions in 
each cross-section equal the allowable tension allow.
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Supply the width of the spring as a function of location. 
Given: F, L, d, allow.

Solution

(For reasons of symmetry only the left side is taken into account here.) 
Course of the bending moment for 0<x<L:  

  MB(x) = 
F

x
2

Maximum tension:    

max = allow =
M x

I x
zB ( )

( ) max

     with  I(x) = 
b x d( ) 3

12
,

      zmax = d/2 

 ==>  b(x) = 
3

2
Fx
dzul

Exercise:  39  Chapter: 2.5,     Degree of Difficulty: 

A laminated spring with uniform square cross-section (width B, thickness D, 
E-module E, length L>>D) is to be bent as shown into a circular ring. 
a) Of which type does the load have to be? 
b) How large is the maximum occurring tension? 
Given: B, D, E, L>>D. 
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Solution

a) The radius of the bending line must be uniform, i.e. w’’(x) = unif, i.e. MB(x)
= unif. So a bending moment is triggered on the ends of the laminated spring. 

  w’’(x) = 1/R = 2
L

 = 
M
EI

B  ==> MB = ( ) 2 EI
L

b)   max = 
M

I
zB

max  with zmax = (-) D/2 

 ==> max = ED
L

Exercise:  40  Chapter: 2.5,     Degree of Difficulty: 

A glass tube (specific weight , inner diameter d, outer diameter D) is 
supported as shown.

What is the maximum length L the tube may have in order that the allowable 
tension allow under a load is not transgressed by the dead weight? 

Given: d, D, , allow.

R

X
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Tube cross section 

Solution

Section measures:  maximum factor for x = L/2:  

  Mmax = 
G L G L GL
2 2 2 4 8

 with G = 
1
4

2 2D d L

Maximum bending stress:   

max = 
M

I
zmax

max      with   zmax = D/2

      and  I = 44 dD
64

max = L D
D d

2

2 2( ) allow

 ==> L ( )D d
D

zul
2 2

Exercise:  41  Chapter: 2.5,     Degree of Difficulty: 

The sketched wheel set is loaded with axle load F.  
a) On which part of the axle does the largest tension occur? 
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b) At least how big does the axle’s diameter d have to be in order for the 
allowable tension allow not to be transgressed? 
c) For the chosen diameter d, how large is the deflection of the axle in the 
middle between the wheel disks? 
d) At which angle  do the wheel disks slant as a result of the load? 
Given: F, s, L, allow, E. 

Solution

Hint:  In the middle between the wheels we found bending case 6 of the table 
of bending cases with 

   M1 = M2 = F s L( )
4
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a) At the point of the maximum absolute value of bending moment, i.e. in the 
middle between the wheels. Upper edge: max. tensile stress, lower edge: max. 
compression stress. 

b) Bending moment in the middle between the wheels:   

  MB,max  = 
F
4

 (s-L) 

    Tension as a result of bending:   

  = 
M

I
zB,max

max allow

 ==> allow      = 
4

4 4
F L s

r
r

( )

 ==> d = 2r   =  2   
F L s

zul

( )
3  . 

c) cf. bending case 6:  

  fmax  = 
F s L s

EI
( ) 2

32

    = 2 2

4

F s L s
E d
( )

d) cf. bending case 6:  

  tan    = 
EI8

s)Ls(F

Exercise:  42  Chapter: 2.5,     Degree of Difficulty: 

The beam (bending rigidity EI, length 2L) is supported as shown by the rod 
(longitudinal rigidity EA, height h, thermal expansion coefficient ). At room 
temperature, the system is free of tension. The rod is heated by . By what 
amount h does point P shift as a result of the heating of the rod? 
Given: L, I, A, h, 
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Solution

Cantilever beam:  loading case 4:  

h  = 
F L

EI
FL

EI
( )2
48 6

3 3

Rod:   

h  = 
Fh
EA

 + h 

Introduction of F:    

h  = 3EAL
hEI6 h + h 

h  = 
h

I h
AL

1
6

3

Exercise:  43  Chapter: 2.5,     Degree of Difficulty: 

The beam (length L, side length a, wall thickness s) carries load F. How big is 
the maximum tension as a result of bending the beam? 
Given:  L=10m, F=200kN, s=10mm, a=300mm. 
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Solution

1) Determination of the maximum bending moment:   

  Mmax = 
2
9

 FL     (location of the force transmission!) 

2) Moment of inertia of the box section:  

  I = 
a a s4 4

12
2

12
( )

3) Moment of resistance

  W= 
I

zmax
 = 

2I
a

4) Maximum tension:     

max = 
M

W
max
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5) Numerical value:      

max = 409,5 N/mm²  

Exercise:  44  Chapter: 2.5,     Degree of Difficulty: 

The diagram shows the simplified assembly of a force measurement device 
with strain gauges (DMS) 1 und 2. By means of the strain gauges, the 
difference of the extensions 2 1 is measured. 

How large is force F? 

Given: a, b, s, 2 1, E. 
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Solution

Substitute model:   

Tensions on the edge:   

2,1 = 
N
A

M
I

sB  with I = 2bs3 / 3 

Difference of extension:    

2 - 1 = ( 2 1) / E = 
2 3

2 2

M s
EI

Fa
Ebs

B

Sought force:    

  F = 
2

3

2Ebs
a

 ( 2 - 1)

Exercise:  45  Chapter: 2.5,     Degree of Difficulty: 
 ------ AN ABSOLUTE MUST!!! , BE SURE TO LOOK AT THIS !!!  ------ 

The exercises for determining the bending line that go beyond a simple reading 
from the table can be divided up into the following groups of exercises: 
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a) The overlapping of two bending cases on a component 

The depicted beam (homogenous beam, mass m, bending rigidity EI, length L) 
is in addition to its weight acted upon by force F. How big does force F have to 
be in order for the dinting at the point of force transmission to disappear? 
Given: m, EI, L. 

Solution

Here, it’s a matter of picking out the correct loading cases and browsing the 
right place in the table. The load due to concentrated force F represents 
bending case 4, so that

 wF(L/2)  = - 
FL

EI

3

48
is no big secret. Additionally, the beam’s mass represents a line load of  
q = mg/L. This is where we find bending case 7, which leads to  

 wm (L/2)  = 
5
384

4qL
EI

,

the total dinting results from the overlapping of the individual cases, such that 

 wTOT  = - 
FL

EI

3

48
 + 

EI384
qL5 4

 = 0 . 

You can determine the required force F from this equation: 

 F   = 
5

8
mg

 . 

Too easy? O.K. Take this! 
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b) Overlapping of the bending cases on several beams 

The depicted beam (bending rigidity EI, length of the sections each L) is acted 
upon by force F. How large is displacement u of the point of action in the 
direction of force F? 
Given: F, L, EI. 

Solution

In this exercise, the loading cases are camouflaged somewhat better: First, 
we’ll assume that the horizontal section of the beam is rigid. The beam is fixed 
in such a way on bearing A that it runs vertically upwards in any case. So an 
incline of the vertical section is avoided; a horizontal and vertical displacement 
of the beam at point A is avoided by the chosen mounting. If we regard the 
cutting reactions of the vertical section at point A, there is a lateral force and a 
bending moment here! To make a long story short: The load of the vertical 
section is represented by loading case 1. So, for the displacement of the loading 
point you get 

 uI = 
FL

EI

3

3
 . 

In step two we’ll assume that the vertical section is rigid while the horizontal 
beam is elastic. Now, however, a factor M=FL acts upon support A on the 
horizontal section that maltreats the beam according to loading case 6 such that 
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 tan 1
FL

EI

2

3
    . 

But the still-rigid vertical section then slants by angle 1. As a result, the point 
of action shifts by 

 uII = L tan 1 = 
FL

EI

3

3
 , 

and the sought total displacement amounts to  

 u = uI + uII =  
FL

EI

3

3
 + 

FL
EI

3

3
 = 

2
3

3FL
EI

  . 

So that was still too easy? In that case... no more Mr. Nice Guy! 

) Statically overdetermined systems (special cases for a) and b)!) 

The beam supported as shown (length 2L, bending rigidity EI) is acted upon by 
force F. Determine the displacement of the point of action. 
Given: F, L, EI. 

Solution

Well, now you’re looking pretty clueless, huh? This loading case is 
unfortunately not included in our table. And then, to make matters worse, the
fact that the system is statically undetermined is thrown into the bargain!!! 
Can anyone solve an exercise like this at all? Not just anyone, but we can: 
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First we’re going to play dumb (something that’s not so difficult for Dr. 
Romberg) and ignore the floating bearing on the left side! Sure, here you get 
(loading case 1)

  wI(L)  = 
FL

EI

3

3
 ,  

tan  = 
FL

EI

2

2
  wI(2L) = wI(L) + L tan 

   = 
FL

EI

3

3
 + 

FL
EI

3

2
   

=
5
6

3FL
EI

And now for the climax: We simply substitute the floating bearing with force 
Q – whose size we don’t know – yet. If we now forget about force F for a little 
bit, then the beam bends as a result of Q according to 

  wII(L)     =  
5
6

3QL
EI

 ; wII(2L) = - 
Q L

EI
( )2
3

3

 . 

It’s now imperative for wTOT(2L) = 0 to remain intact, as long as the floating 
bearing serves its function. From 
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  wTOT (2L) =  wI(2L) + wII(2L) = 0 

you can determine the unknown bearing force Q and substitute the statically 
undetermined system with a statically determined system: 

  Q = 
5

16
  F . 

The dinting of the beam then results from the overlapping of both loading 
cases:

  wTOT(L) = wI(L) + wII(L) = 
7
96

3FL
EI

 . 

(You could’ve gotten this in an easier way, cf. e.g. instruction manual). 

Exercise:  46  Chapter: 2.5,     Degree of Difficulty: 

The depicted beam (length L, bending rigidity EI) is loaded with a line load q0
and a factor M. How large is the dinting at point x = L/3? 
Given: q0, M, L, EI.
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Solution

Overlapping (superposition) of load cases 6 und 7: 

  wTOT(x)  =  w6(x) + w7(x)

   with w6(x)  =  
ML

EI
x
L

x
L

2 3

36

  w7(x)   = 
q L

EI
x
L

x
L

x
L

0
4 2 3

24
1 2

 ==> wTOT(x=L/3) = 
11

972
4
81

0
4 2q L

EI
ML

EI

Exercise:  47  Chapter: 2.5,     Degree of Difficulty: 

A beam with uniform bending rigidity EI is loaded as shown with factor M. 
How large is the bearing force in bearing B? 
Given: a, M, EI. 
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Solution

Overlapping (superposition!) of the partial loads: 

I: Loading case 6:   

  tan 1  =  
2
6

a
EI

M

  fI =  
Ma

EI

2

3

II: Loading case 8: (Surprise! And a bit of reflection... ) 
Agreed? If not, then choose the approach 
with the combination of cases 1 und 6!) 

  fII = 
F a

EI
a
a

a
a

B 8
3 2

1
2

3 2

   =  
F a

EI
B

3

No displacement of the bearing

 ==> fI  =  fII
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 ==> FB = 
M
a3

Exercise:  48  Chapter: 2.5,     Degree of Difficulty: 

The depicted cantilever (E-module E, diameter d, length a) is acted upon at its 
free end with force F and factor M. 
How big is the maximum deflection and the largest bending stress according to 
amount? 

Given: a, d, E, F, M=2Fa/3. 

Solution

Overlapping (superposition) of bending cases 1 and 2: 

  w(x) = 
F
EI

ax
x
a6

32 M
EI

x
2

2  = 
Fax

EI
x
a

2

6
1

   with I = 
64

4d

Minimal deflection:   
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  w’(xmin) = 0 = 2 a xmin - 3 xmin
2

 ==> xmin =  
2
3

a

 ==> wmax = w(xmin) = 
128
81

3

4
Fa
Ed

The bending moment diminishes linearly in the direction of the bearing point

(MB(x=0)= Fa/3).  

Maximum bending moment:   

  Mbmax = 
2
3

Fa

Bending stress:    

bmax = 
M

I
zB

max = 
64
3 3

Fa
d
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Exercise:  49  Chapter: 2.5,     Degree of Difficulty: 

Given below is a supported beam jointed on both sides under a linear load. 
What is the equation of the bending line? 
Given: q1, q2, EI, L. 

Solution

By the way: Looking it up in the instruction manual is not allowed here! 

1) Line load:  

  q(x) = q1 + (q2-q1)
x
L

2) Bearing reactions.  

  Fright =
L
6

q1 + 
L
3

 q2  , Fleft = 
L
3

 q1 + 
L
6

q2

3) Course of bending moment:  

  MB(x) = Fright x 
q

x
q q

L
x1 2 2 1 3

2 3

Yep, and then always integrate nicely... Boundary conditions: w(0)=0, w(L)=0 

 ==> w(x)  =
1

360
3 10 72 1

4 5

5

3

3

( )q q L
EI

x
L

x
L

x
L
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   + 
1

24
21

4 4

4

3

3

q L
EI

x
L

x
L

x
L

Exercise:  50  Chapter: 2.5,     Degree of Difficulty: 

A supported beam jointed on both sides carries a load parabolically distributed 
over the length (peak value in the middle of the beam). Supply the equation of 
the bending line and calculate the dinting in the middle of the beam. 
Given: q0, L. 

Solution

1) Line load:    

  q(x)  = Ax2 +Bx + C,

 Determination of A, B, C from q(0)=q(L)=0 and q(L/2)=q0

  q(x)= 4 q0
x
L

x
L

2

2

2) Support:    

  FV  = 
1
3 0q L

3)  Bending moment:    
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  MB(x) = F x q x xdxV

x
( )

0

   = FV x + 4 q0
x

L
x
L

2 3

22 3

Yep, and then integrate nicely again, boundary conditions w(0) = w(L) = 0 

..... ==> w(L/2) = 
61

5760
0

4q L
EI

Exercise:  51  Chapter: 2.5,     Degree of Difficulty: 

A beam (length 3L, bending rigidity EI) is supported at A, B and C. 
How large is the reaction in B if the beam is acted upon by force F as shown? 
Given: L, EI, F. 

Solution

System statically overdetermined, so bearing B is substituted with vertical 
force B. 
Superposition:  I) system without B with force F at x = L 
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   II) system without F with force B at x = 2L 

These are both bending case 5, B has to be fiddled with in the sum of the 
individual bendings in such a manner that for the dinting at the place of the 
bearing wTOT(x=2L)=0:

 wI(x=2L)  = 
F L

EI
L
L

L
L

L L
L

L
L

L L
L L

( ) ( )3
6

2
3 3

3 2
3

1
3 2 3

2

3 2 2

   = 
EI
FL3

18
7

 wII(x=2L) = 
F L

EI
L
L

L
L

( )3
3

2
3 3

3 2 2

=
4
9

3BL
EI

wI(x=2L) + wII(x=2L) = 0   

==> B = 
7
8

 F 

Exercise:  52  Chapter: 2.5,     Degree of Difficulty: 

The depicted beam (length L, bending rigidity EI) is additionally supported by 
a spring. How large is the spring power? 
Given: F, a, c = EI/a3.

Solution

Deformation only by F without spring:  
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  wF(a)  = 
1
6

F
EI

 2a a2 3
2
a
a

 = 
5
6

Fa
EI

3

Deformation only by force FF  acting at the place of the spring: 

  wc(a)  =
1
3

F a
EI
F

3

 . 

If the bending line of the total system is described by wTOT, then the spring 
power is 
  FF = c wTOT,

so  wc(a) = 
1
3 EI

awc 3
TOT  = 

1
3

 wTOT

Overlapping of the load by the spring and force F: 

  wTOT(a) = wF(a) + wc(a) = 
5
6

Fa
EI

3 1
3

 w TOT

 ==> wTOT(a) = 
15
24

Fa
EI

3

 ==> FF    = c wTOT(a) = 
5
8

 F . 

Exercise:  53  Chapter: 2.5,     Degree of Difficulty: 

The depicted square beam (length L, bending rigidity EI, width B, height H), 
tightly clamped at angle  is acted upon on its free end by force F. Determine 
the horizontal displacement of the point of load incidence. 
Given: L, H, B, , E
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Solution

Let’s do first what we’ve always done: We’ll get the geometrical moments of 
inertia for bending around the axes of symmetry y and z from table 2: 
  Iy = BH3/12 ,  Iz = HB3/12 . 

In statics, we combined two forces into one, the resulting force. Now we’re 
going to do the opposite: We’ll divide force F into two force components Fy
and Fz:

  Fy = F sin ,  Fz = F cos
Since it doesn’t matter to the beam whether it’s acted upon by resulting force F 
or by the two force components, we have now with this little trick transformed 
the bending around any given axis in such a manner that we get two bendings 
around the principle axes y and z. We can then work this out with the standard 
load cases: 

  wy(L) = 
F L
EI
y

y

3

3
,  wz(L) = 

F L
EI
z

z

3

3
 . 

Now we can throw the equations together and recalculate the displacements in 
y and z-direction into the displacement in u-direction: 
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  wu(L)  = wy(L) cos  - wz(L) sin

4 1 13

2 2

FL
EBH B H
sin cos

2 2 1 13

2 2

FL
EBH B H

sin

(Complementary to the vertical displacement: 
  wv(L) = wy(L) sin  + wz(L) cos

   = 4 3 2

2

2

2

FL
EBH B H

sin cos  .  ) 

(Interesting here is the control of:  
   1)  straight bending, i.e. =0°or =90°
   2)  straight bending for any given  and B=H,  

i.e. point symmetric bodies, sin2 +cos2 =1)
So, through the utilization of statics, the skewed bending is strictly speaking 
nothing new. 

Exercise:  54  Chapter: 2.5,     Degree of Difficulty: 

The sketched profile is acted upon by force F. How large is distance d of force 
F from the center of gravity of the profile's surface if the profile, as a result of 
shear stress, is not twisted by the lateral force? 
Given: a, t, t<<a. 
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Solution

First, we’ll get points by doing what we already can: calculating the 
geometrical moment of inertia: 

  I = 
t a( )2

12

3

 +  2 (a2  a t ) + 
at 3

12
 . 

In the following, we’ll leave out the last term, since for t<<a it can be 
disregarded relative to the other addends: 

  I = 
8

3

3ta

The resulting shear stress distribution looks like this: 

          

This now has to be calculated! In order to do so, we’ll first put two coordinate 
systems into our profile: the coordinate z counting down from the center of 
gravity, as well as – for the horizontal profile components – the coordinate s. 
For the shear stress in the vertical and horizontal parts of the profile you now 
get
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(z) = 
)z(Ib
)z(QS  resp.  (s) = 

QS s
Ib s

( )
( )

 . 

With the known geometrical moment of inertia, b(z) = b(s) = t and Q = F we’re 
only missing the static factor. This results from the following: 
vertical part:      horizontal webs: 

Arest,1 = t a + ( a  z ) t    Arest,2  = t s 

zrest,1 = 
 t a a +  (a -  z) t (z + (a - z) / 2)

A rest,1
  zrest,2 = a 

S(z) = t a a + (a z) t (z+(a-z)/2)   S(s) = a t s 

 = 0.5 t (3a2  z2)

(z)  = 
3

16
Q

ta
(3 - z / a )2 2

(s) = 32 at8
Qats3

Now we can calculate the acting forces from the shear stress: 
It follows for forces F1, F2 in the horizontal web of the profile  

  Fi  = dA = t ds= ... = 
3
16
F

 . (i=1,2)

The direction of these forces corresponds with the directions of the shear 
stresses so that the horizontal forces are canceled out.
The resulting force F3 of the thrusts in the vertical part of the beams results 
analogously:

  F3 = dA = t dz =  ... = F 

So the resulting force of the three concentrated loads yields the lateral force!!! 
The forces give rise to a factor around the center of area ys = 0.25 a: 

  M = 
3
16
F

 a + 
3
16
F

 a + 
F
4

  a = 
5

8
Fa

This factor has to be balanced out with the force acting at distance d from the 
center of gravity: 

  F d = M ==> d = 
5
8

 a. 
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By the way, the point of load incidence calculated in this way is also called 
shear center. 

AND NOW FOR EVERYONE (EXCEPT DR. HINRICHS): Actually, you 
can forget the whole calculation!!! You should just take note of the fact that 
there exists a phenomenon like shear center. 

Exercise:  55  Chapter: 2.6,     Degree of Difficulty: 

For the depicted boiler the wall thickness s should be dimensioned in such a 
way that in the case of excess pressure p, the larger of the principle stresses 
does not transgress the highest permitted value allow. How large is the 
maximum shear stress? 
Given: p, allow, d 

Solution

Tension in z-axial direction:   

z = 
s4
pd

Tension in circumferential direction:  

u = 
pd
s2

 > z

 ==>   u allow
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 ==> s
pd

zul2

 = u 4

Exercise:  56  Chapter: 2.7,     Degree of Difficulty: 

A twisting moment Mt acts upon axle 1 of the sketched gear. Axle 1 (diameter 
d1, shear modulus G) with a gear wheel (number of teeth z1) rests above a 
further gear (number of teeth z2) and is connected to the tightly clamped axle 2 
(diameter d2, shear modulus G). What is the contorsion  of axle 1 at the point 
at which Mt is introduced into the axle? 
Given: Mt, G, L1, L2, z1, z2, d1, d2.

Solution

Twisting moment axle 2:   

  Mt2 = Mt
z
z

2

1

Contorsion axle 2:    
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2 = 
M L

G d
t2 2

2
4 32/

Contorsion gear wheel 1:   

1 = 2
z
z

2

1

Total contorsion:    

TOT  = 1 + 
M L

G d
t 1

1
4 32/

    = 4
1

1
4
2

2
2
1

2
2t

d
L

d
L

z
z

G
M32

Exercise:  57  Chapter: 2.7,     Degree of Difficulty: 

A beam of length L that has an e-shaped profile (mean diameter D, wall 
thickness b<<D) is acted upon by factor M. 

a) What is the maximum shear stress caused by M? 

b) At what angle are the end cross-sections of the beams contorted against one 
another?

Given: L, D, b, b<<D, M, G. 
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Solution

Torsion of a thin-walled slotted hollow section,

effective length of cross-section:   

  s =  D + D = ( +1) D 

Geometrical moment of inertia of torsion:  

  It = 
( )1

3
3Db

a) Maximum shear stress:   

max = 
M
I

b M
Db

T

t

3
1 2

b) Contorsion:    

  =  
M L
GI

T

t

   = 3
1 3

ML
GDb

Exercise:  58  Chapter: 2.7,     Degree of Difficulty: 

A road sign mounted on a vertical post (thin-walled tube, outer diameter D) 
with the help of a frame is acted upon by wind power F as shown.
At least which wall thickness s must the post possess in order that – at the point 
of the maximum strain – the equivalent stress according to the hypothesis of 
the modification of shape energy doesn’t transgress the permitted tension 

allow?
Hint: Dead weight and shear stresses as a result of the lateral force are to be 
disregarded.
Given: a, h, D, F, allow.
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Solution

Maximum bending moment acts at the foot! 

  Mt  = Fa   MB,max  = F h 

max  = 
2
D

I
Fa

t
 = 2a 

F
D s2  , max  = 

Fh
I

D
2  = 4h 

F
D s2

Hypothesis of the modification of shape energy:   

V  = 2 23

allow
F
D s

h a2
2 216 12

 ==> s 
2

4 32
2 2F

D
h a

zul

Exercise:  59  Chapter: 2.7,     Degree of Difficulty: 

A milling cutter, consisting of the shaft (radius r) and the cutter head (radius 
R), and clamped tightly in the chuck, is acted upon by force F during the 
cutting process at distance L from the tight clamping. 
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How large is the equivalent stress according to the hypothesis of the 
modification of shape energy at the point of the maximum load? (Hint: Shear 
stresses as a result of the lateral force are to be disregarded.) 
Given: F, r, R=2r, L = 4r. 

Solution

Overlapping:     Torsion with Mt = F R
   and  bending moment as a result of F. 
Maximum load at the point of the maximum bending moment, i.e. at the place 
of tight clamping. 
Bending stress:   

 = F L r / I = 4 
FL
r

F
r3 216

Torsional stress:    

 = Mt r / It  = 2 
FR
r

F
r3 24

Even state of stress: 

V = 2 2 +  3  = ... =
4

192
F
r
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Exercise:  60  Chapter: 2.7,     Degree of Difficulty: 

A coil spring (radius R) is coiled from a wire (radius r, shear modulus G) with 
n coils lying close to one another. In an unburdened state it can be 
approximately assumed with R>>r that for the angle of inclination of the coils 

. How large is the spring constant c of the coil spring? 
Given: n, R, r, G. 

Solution

This is not so easy! And if we don’t know at all what to do, we always start 
with a free-body diagram. And for the first coil it looks like this: 
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The cross-sections are burdened by a twisting moment Mt = F R. With this 
torsion, however, we can arrive at the classy torsion formula for the circular 
section:

d
M

G r
t2
4  ds , 

where s is the coordinate that goes in the direction of the wire. In the free-body 
diagram, the resulting deformation d  is drawn with a hatched line. The 
displacement of the endpoint dx results from 

  dx = R d  . 

The elongation L of the total spring results then by way of 

L = R
2

4
0

M

G r
dst

L
 = 

2 2
4

FRR Rn
G r

 . 

A comparison with the spring condition F = c L yields a spring rigidity 

  c = 
Gr
R n

4

34
 . 

Exercise:  61  Chapter: 2.7,     Degree of Difficulty: 

Two axles (diameter d1, d2, length L) are tightly clamped as depicted and are 
connected to one another free of backlash on the right side by two gear wheels 



 290

(diameter D1, D2). How large is the contorsion of gear wheel 1 as a result of 
factor M? 
Given: M,L, d1, d2, D1, D2, G. 

Solution

Central problem of the exercise: The cutting free of the gear wheels shows that, 
naturally, the same force F is acting upon the teeth of both gears. For axle 1 
you then get: 

  M  =  Mt1 + F D1 / 2 with F = 2 M2 / D2

   = 
GI

L
t1

1 + M2
2

1
D
D

   = 
GI

L
t1

1 + 
GI

L
D
D

t2
1

1

2

2

   = ...   = 1 1
4

2
4 1

2

2

32
G

L
d d

D
D



 291

Exercise:  62  Chapter: 2.7,     Degree of Difficulty: 

In order to adjust a bent sheet metal gutter (length L>>R, relationship of 
radiuses R/r=10, uniform thickness d, shear modulus G) the end cross-sections 
are momentarily rotated against one another by 90°. Which twisting moment is 
necessary for this and which maximum shear stress occurs here? 
Given: L, r, R=10r, d, G, =90°.

Solution

Torsional moment of inertia: 

  It  = 
L

03
1 d3 (s) ds mit L = 13 r

   = 13 rd3/3

Cross section 
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Twisting moment: 

  Mt = 
GI

L
rd

L
t 13

6

2 3

G

Shear stress: 

max = Mt / Wt = 
G d

L2

Exercise:  63  Chapter: 2.7,     Degree of Difficulty: 

The cone tightly clamped on one side (shear modulus G, circular cross-section) 
is acted upon by twisting moment Mt at point x=L. 
By what angle  does the free end of the cone rotate as a result of the load? 
Given: d, L<<d, G, Mt.

Solution

Rotation:   

 = 
M
GI

dxt

tL

L2
 = 

32
4

2M
G

dx
D x

t

L

L

( )
 with D(x) = d 

x
L

 = 
32 4

4 4

2M L
Gd

dx
x

t

L

L
 = ... = 28

3 4

M L
Gd

t
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Exercise:  64  Chapter: 2.7,     Degree of Difficulty: 

The beam (round bar steel diameter d) tightly clamped at B is burdened by 
uniform line load q0. How large is the vertical displacement of the beam’s 
endpoint? 
Given: q0, d, L, E, G. 

Solution

Geometrical moment of inertia: 

  I = 
d
64

4

Torsional moment of inertia: 

  It = 
d
32

4

Overlapping of three load cases: 
1)  Torsion beam I: 

 = 
t

t
GI

LM

   = 
q L

GIt

0
3

2
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 ==> displacement of the endpoint:   

  wt  = 
q L

GIt

0
4

2
2) Bending of beam I: load case 1: 

   wI  = 
q L

EI
0

4

3
3) Bending of beam II: load case 3: 

  wII = 
q L

EI
0

4

8
Fumbling around results in: 

  wTOT = 
q L

d
0

4

4
16 88

3G E

Exercise:  65  Chapter: 2.8,     Degree of Difficulty: 

A pillar (round bar, diameter d, length L0) is brought from the depicted 
tension-free position (angle 0) through the shifting of the lower bearing into 
a vertical position ( =0°). 
What is the maximum length L0 possible here for the pillar in vertical position 
not to buckle? 
Given: d, L=30d. 
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Solution

Buckle case 2: F  = - EI 2 / L2

Elongation:  = (L-L0) / L0 = 
F

EA
 =  - EI

L EA

2

2

 ==> L - L0 =  - L0
AL

I
2

2

 ==> L0 = L
I
L A

1
2

2

    with I = d4

64
 and A = d

4

 ==> L0  = 30.02 d 

Exercise:  66  Chapter: 2.8,     Degree of Difficulty: 

The push rod of a diesel motor’s valve control is maximally acted upon by 
force F. The tube should be measured in such a way as to not transgress the 
maximum compression stress allow, and there should additionally be a triple 
security against buckling. 
How large do the inner diameter r and outer diameter R of the tube need to be? 
Given: F, E, L, allow.
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Solution

Compression stress:    

allow  = 
F
A

 = 
F

R r( )2 2

Buckle case 2:  

  F  = 
E

L

2

23 4
4 4( )R r

I.e. two equations, two unknowns, solvable! 

  r = 
1

2
12 2L

E
Fzul

zul

...  R = 
1 2F

r
zul

  . 

Exercise:  67  Chapter: 2.8,     Degree of Difficulty: 

The depicted system consists of beam 1 (length L) and three equal, slim rods 2, 
3 and 4 (each length L, bending rigidity EI). 
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At which point x of beam 1 does vertical force F have to act, if rods 2 and 3 are 
to have the same security against buckling? 
(Hint: Deformations take place exclusively in the plane of projection!) 
Given: L, EI. 

Solution

Rod 2: Buckle case 2:   

  Fcrit2 = 
2

2
EI

L
Rod 3: Buckle case 3:   

  Fcrit3 = 2 0457
2

2.
EI

L
M around the point of load incidence, rod 1:  

  Fcrit2 x = Fcrit3 (L-x) 

 ==> x = 
F

F F
Lkrit

krit krit

3

2 3
 = 

2 0457
1 2 0457

.
.

 L 
2
3

 L

Exercise:  68  Chapter: 2.8,     Degree of Difficulty: 

The depicted system is acted upon by force F. 
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How do the diameters d1 and d2 of the round bars have to be dimensioned in 
order for both bars to have the same security against buckling? 
Given: L, E, F. 

Solution

Rod 1: normal force:     
  F1 = 2  F 
Buckle case 2:    

  Fcrit1 = 
EI

L
1

2

22( )
Rod 2: normal force:  
  F2 = F 
right of the guide mechanism: buckle case 1, 
left of the guide mechanism: buckle case 2 
==>  right critical point:  

  Fcrit2 = EI
L
2

2

24

 ==> 
F
F

F
F

k k1

1

2

2
 ,  

I
I

2

1
2

 ==> 8

1

2 2
d
d

Exercise:  69  Chapter: 2.8,     Degree of Difficulty: 

Two round bars with the same diameter are acted upon by force F as shown. 
The longer bar is supported in the middle by a thin rigid frictionless perforated 
metal plate. 
a) How large is the buckle security of the system? 
b) What buckle security does the system have if the perforated plate is 
removed? 
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Given: EI, a, F. 

Solution

a) The horizontal bar can be regarded as two bars of length a with buckle 
case 2. So we have three instances of buckle case 2 here. The slanted bar is 
more at risk here, since it is loaded with a larger normal force and is longer 
(3a/2) than either of the horizontal candidates for buckling

(a) Buckle security:   

  Sk = 
F

F
EI

a F
krit 4

9

2

2

b) Horizontal bar:   
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  Sk = 
F

F
EI

a F
k

1
2

2

23
3
6

4
9

 > 
3

6
,

i.e. the horizontal bar buckles first!

Exercise:  70  Chapter: 2.8,     Degree of Difficulty: 

The depicted system of two rigid beams and two round bars (diameter d, E-
module E) is acted upon by force F. 
a) How large can F become while still allowing for triple buckling security? 
b) What is the elongation of the tie rod with this load? 
Given: a, d, E, d<<a. 
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Solution

Statics: Cutting free of both bars: Normal force left is A, right is B. 
M upper beam:    

  Aa + B2a + F2a = 0, 
M lower beam:    

  A2a + Ba = 0, 

 ==> A = 
2
3

 F (tie rod),   B = 
4
3

 F (strut) 

Strut: buckle case 2:    

B  =
4
3

 F =
1
3

 Fcrit = 
1
3

E
L

d2

2

4

64

 ==> Fmax = 
E d

a

3 4

2256
 . 

Tie rod:  

L = 
EA
Na   with N = 

2
3

 Fmax

      and  A = 
d 2

4

 ==> L = 
2 2

96
d
a

Exercise:  71  Chapter: 2.8,     Degree of Difficulty: 

The sketched connecting rod made from round material (length L, bending 
rigidity EI) is acted upon in operating direction by force F. Which distance a of 
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bearing A should be chosen in order to achieve the highest possible resistance 
to buckling? 

How large at most may F become in this case? 

Given: L, EI. 

Solution

Now you’ve got that under your buckle... But how? First the load cases: In area 
I left of bearing A we have load case 4, in the right section II of the beam 
we've got load case 3. Now there’s sure to be some protest. But we’re sticking 
to our guns. And we also have an argument that will hopefully convince: The 
supposition often expressed by students and professors that we’re dealing with 
cases 3 and 2 here would apply if the beam were interrupted by a joint at point 
A! For the continuous beam, a bending moment is transmitted at point A that 
must be included in the table for the chosen bearing form. Convinced? 
The formulas from the table yield: 
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 Fcrit, I = 2.0457 
EI

a

2

2  , Fcrit, II = 2

2

)aL(
EI  . 

The bearing is positioned best when the buckling load for both sections is 
equal:

 2.0457 
EI

a

2

2  = 
EI

L a

2

2( )
 . 

Solving the equation that is quadratic in a yields after much scribbling 
 a  = 0.59 L   , 
and now the load can be determined that will cause the beam to buckle: 

 Fcrit, I = Fcrit, II = 5,9 
EI

L

2

2    



 304

4.3. Kinetics-Kinematics 

Exercise:  72  Chapter: 3.3, Degree of Difficulty: 

An old problem – perplexing theses [30]: 

a)  If force is always equal to counterforce, then no horse could ever pull a 
buggy, since the force of the horse, strictly speaking, would have to be 
canceled by the force on the horse. The buggy pulls the horse backwards 
with the same force as the horse pulls the buggy forwards.

b)  But the horse definitely can pull the buggy forwards, since, as a result of 
losses, the horse pulls the buggy forwards with minimally more force 
than the buggy pulls the horse backwards. 

c)  Due to the limited reaction time of the buggy, the horse pulls the buggy 
forwards before the buggy can build up a counterforce. 

d)  The horse can only pull the buggy forwards if it is heavier than the 
buggy.

Which of the theses is/are correct? 

Bad luck, guys! 
Actio = re-actio!
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Solution

None of the given theses are correct. Action is indeed equal to reaction - so the 
force that the horse exerts on the buggy is just as large as the force that the 
buggy exerts on the horse. But that’s the only thing that’s equal between the 
subsystems of horse and buggy. The force “wants to” cause a motion. The 
horse presses its hooves hard against the earth, since the force exerted by the 
buggy wants to pull the horse backwards. If its legs don’t buckle or the horse 
doesn’t slip (buggy too heavy), then the force would have to turn the entire 
earth backwards a bit. It will only have an infinitesimally small success in 
doing so. But the buggy is supported above the earth on wheels so that the 
force acting on the buggy only has to move the mass of the buggy! 

Stated differently: If you observe the total system of buggy and horse, you will 
see that only the power exerted by the mud on the hooves (and the disregarded 
rolling friction of the wheels) acts on it in horizontal direction. And this causes, 
from a mechanical standpoint, the motion – of course, the horse has its part in 
the whole thing as well. 

Exercise:  73  Chapter: 3.1,     Degree of Difficulty: 

Hinrichs, the scientist, lives completely isolated in his ivory tower that is 
represented here in simplified form as a box. The assumption is that the box 
moves at a constant velocity.

Dr. Romberg also isolates himself more and more – his box obviously rotates 
in a circle (thus he’s attempting to balance out the rotation resulting from his
dazed balance organ.) 
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Dr. Hinrichs                                                   Dr. Romberg 

Is it possible, with no contact with the outside world, to determine the state of 
motion of each box, for example the velocity [30], from inside the box? 

Solution

Only the rotating gentleman can determine his state of motion. For example, if 
he lets his bottle fall, it will keep on moving tangentially to the circular path 
and thus won't land vertically under the drop point. The bottle lacks centripetal 
acceleration, or a force triggering a bending of the motion. If the acceleration is 
increased enough, the nausea detector in the stomach will make itself noticed at 
some point. 

Dr. Hinrichs's box, however, is not accelerated. There are no forces at work 
here that are determined by the form of motion. Therefore, determining the 
form of motion is not possible. Even if you could look out of the box and see 
that the surroundings are moving in relation to the field of view, you couldn't 
say for sure whether you yourself are moving, whether your surroundings are 
being moved or whether both are shifted against one another. Anybody who's 
ever ridden on a train has experienced this. If the box were stopped or 
accelerated or shaken, you could feel the motion or test it with the impact test. 
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As a result, we become aware that:  
A body either at rest or uniformly translationally moved is free of force, i.e. the 
acting forces cancel each other out. 

Exercise:  74  Chapter: 3.2,     Degree of Difficulty: 

Two bike riders ride towards each other at a constant speed of 10 km/h. When 
they are exactly 20 km away from each other, a bee flies from the front tire of 
the right bicycle at an absolute velocity of 25 km/h directly to the front tire of 
the other bicycle. It quickly kisses the front tire (?), turns around in negligibly 
short time, and returns at the same velocity back to the first bicycle, kisses its 
front tire, turns around,... and keeps flying back and forth until both front tires 
crash into one another and the bee is squished.

What is the total distance (sum of the trips back and forth) that the bee has 
covered from the starting point on the front tire until the end of its life [30]? 
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Solution

The solution for this exercise is really easy – if you follow the correct 
approach:

20 km at 2 x 10 km/h => Bicyclists' ride time: 1 h 
Flight time of the bee: 1h 
Velocity of the bee: 25 km/h => Flight distance: 25 km! 

Exercise:  75  Chapter: 3.2,     Degree of Difficulty: 

Using pseudo-scientifically optimized methods, Dr. Hinrichs practices fetching 
with his dog. To do so, he goes walking for 15 minutes (walking speed 5 km/h) 
and throws a stick at a throw velocity of 10 km/h 
 a) to the side, 
 b) forwards, 
 c) backwards. 
Once the dog has fetched the stick (running velocity of the dog: 15km/h), the 
whole things starts over again. 

Which of the three variations does Dr. Hinrichs have to choose so that 
Alexander von Humboldt48 will run as long as possible [30]?  

Solution

Oh, how nasty of us! Since it was mentioned in the exercise that the whole 
thing takes 15 minutes, Dr. Hinrichs can throw whichever way he wants – the 
dog still runs for 15 minutes. (The whole thing would've been different if we 

                                                          
48 The name of Dr. Hinrichs's poor dog (Dr. Romberg has no comment) 
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had asked for which variation the dog runs the longest distance. But we didn't.) 
Here's a little tip for exams: Always think several times about what exactly is 
being asked! And when you're done, make sure that you've answered all parts 
of the question [30]! 

Exercise:  76  Chapter: 3,     Degree of Difficulty: 

An Amtrak train speeds along at 400 cm/s despite a delay. Dr. Romberg, who 
"lost" his driver's license long ago, stumbles through the train in the direction 
of travel to the train's dining car (relative velocity to the train: 100 cm/s). 
While doing so, he stuffs without pause a hot dog into his mouth (feed rate of 
hot dog 5 cm/s). An ant walks along on the hot dog and, because of the alcohol 
fumes, flees from Dr. Romberg's mouth at a velocity of 2 cm/s. (see also [30]). 
What is the velocity of the ant relative to the track? 

Variation:

Dr. Romberg relieves himself at vURINE = 300 cm/s perpendicularly to the 
direction of travel through the hole in the toilet directly onto the track. How 
high is the velocity at which the stream collides with the ties (air resistance 
disregarded)? 

Solution

First, to the intake of food:

The velocities of the train, the hot dog eater and the ant are rectified and can be 
added. The velocity of the hot dog is opposed to these velocities and thus has 
to be subtracted from the above-mentioned sum. So, for the absolute velocity 
you get 
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  400 cm/s + 100 cm/s + 2 cm/s - 5 cm/s = 497 cm/s  

We observe: Rectified velocities can be added or subtracted. 

Now on to the release of liquid: 

In this case, the velocities aren't rectified. Here, the velocities have to be added 
vectorially.

So we look for the hypotenuse in a right triangle, where one leg corresponds to 
the train's velocity and the other leg corresponds to vURINE.
For the absolute velocity, you end up with

  v = 400 3002 2 cm/s = 500 cm/s 

Exercise:  77  Chapter: 3.3,     Degree of Difficulty: 

A boulder and a little stone of the same material fall the same height H with 
negligible air resistance. Which of the two objects flies for a longer time? 

Solution

You can't say it often enough: Both require the same amount of time! This 
would be a good time to scribble out a free-body diagram. It's true that for the 
boulder, the accelerating force is much larger – but that’s because a mass larger 
by the same factor has to be accelerated. Stated differently: If you crush the 
boulder into many little stones and let the whole heap fall, then nothing 
changes as far as the flying time is concerned. Thus, the resulting acceleration 
is equal in both cases.  
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Despite this fact, you hear again and again diverging commentary like, for 
example, while skiing: You got down to the bottom faster because you're 
heavier. This is generally not true. However, very precise investigations have 
shown that the friction relationships in the snow can be dependent on the 
normal force and really heavy skiers experience other friction relationships. 
But are these taken into consideration in the après-ski bragging? 

Exercise:  78  Chapter: 3.4,     Degree of Difficulty: 

A stone is thrown into a muddy marsh. It penetrates 5 cm into the marsh. How 
fast does it have to be thrown in order to achieve a depth of penetration of 20 
cm? (For all hardcore mechanics: The assumption is that the marsh consists of 
homogenous mud!) [30] 

Solution

We only have to (surprisingly?) throw twice as fast. Common sense possibly 
leads us astray here. One could easily think: Four times the depth of 
penetration, i.e. four times the velocity. Humbug!  

For four times the depth of penetration 4h, you need four times as much 
energy. You could also cut the marsh into 4 disks of the thickness h = 5 cm and 
requires the same amount of energy for each disk. The energy can be 
determined by  

  E = Fds  = F h , 
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since in the case of the homogenous mud, the marsh's force of resistance 
remains constant. And where does the energy come from? From the kinetic 
energy E = 0.5mv2 of the stone, of course. But this depends quadratically on 
the velocity. So: Four times the depth of penetration means double the 
velocity!

Exercise:  79  Chapter: 3.4,     Degree of Difficulty: 

A rubber ball and a steel ball both have the same size, velocity and mass. Both 
are thrown against a shaky block [30]. 
a) Which of the balls is more likely to knock the block over?
b) Which ball causes more damage to the block? 
(For all minimalists: A grounded explanation could also be very interesting!) 

Solution

Before the ball's impact, the momentums of the various balls are equal. But the 
block's momentum is zero. After the impact of the ball, the steel ball and the 
block have a common (infinitely small) velocity. Here, the steel ball acts upon 
the block with a temporary blow of force.  

In the case of the rubber ball, the momentum change is the same but up to two 
times as big as the momentum change of the steel ball, since the velocity 
doesn't just have to be slowed down, but also accelerated in the opposite 
direction. For this reason the rubber ball is much more likely to knock the 
block over. You could ask yourself: „But if I wanted to trash something, 
wouldn't I use a steel ball instead?“ Yes, but for different reasons: 
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As far as the damage to be done to the block is concerned, let's examine our 
energy balance for a sec. The kinetic energy of the ball before the impact has to 
correspond to the kinetic energy of the ball after the impact as well as to the 
deformation energy of the block (and of the ball). In the simplest case, the 
energy at the same velocity turns back around from the block (ideal rubber 
ball). For the kinetic energy the sign of the velocity doesn't matter. For the 
energy balance, it means that no energy remains for the deformation of the 
block. With the steel ball, it's different: Here, the kinetic energy is used up, 
namely in the form of plastic deformations of the ball and of the block. Thus, 
the steel ball causes more damage in the form of plastic deformations! 

Exercise:  80  Chapter: 3.3,     Degree of Difficulty: 

Two people stand on a rotating disk (angular velocity ). One person throws a 
ball at velocity v directly in the direction of the second person. At the moment 
of the throw, the second person is just passing a goal [30]. 
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a) Does the ball hit the second person? 
b) Does the ball hit the goal? 

Solution

Unfortunately, we have to answer both questions with „No“. If we determine 
the velocity of the ball, we find that it possesses velocity v in the direction of 
the center of the circle – and velocity R tangential to the disk as a result of 
the first person's rotation, where R signifies the distance of the thrower from 
the center of the circle. So, the ball flies further to the right than anticipated – 
and thus, to the right of the person as well as to the right of the goal. And to 
complicate the situation: In the time during which the ball – in the case of a 
correct throw directed further to the left that would arrive at the goal – the 
second person has already gone a bit further during the flight time. So hitting 
the second person is not that easy – that's why we'll also spare ourselves the 
calculation for the correct throw angle, ok? 

If you observe the actual curve of the throw in the rotated subsystem’s 
coordinate system – for example from the viewpoint of both people – then the 
ball apparently flies in a curved path. The observation of this deflection is all 
the more amazing if you don't notice that you are rotating (e.g. as inhabitants of 
locations other than the North and South Poles). The deflection is named after 
its discoverer Coriolis. If you wanted to devise a straight course in spite of this 
effect, you'd have to throw the ball into a tube extending between both people. 
The walls would bend the path's curve straight, exerting a force (coriolis force) 
onto the ball. 

Exercise:  81  Chapter: 3.1,     Degree of Difficulty: 

Crank 1 turns at constant angular velocity . The rod rests on point P on the 
edge and does not lift away from the edge for the entire duration of the motion. 

a) Determine the velocity pole for the depicted position. 
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b) Determine the angular velocity of rod 2 for =45°.
c) At which angles  does rod 2 execute translational motions for a short time? 

Given: , r. 

Solution

a) For the construction of the velocity pole, we know two velocity directions 
on object 2:

The velocity of the joint v1 is vertical to the driving crank. Since rod 2 on the 
edge can neither lift off nor penetrate into the edge, v2 is only possible in rod 
direction at point P. Following the rule according to Chap. 3.1, you get the 
velocity pole Q as the intersection of the perpendicular to v1 and v2.
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b) From the sketch analogous to a) for =45° yields

that the velocity pole lies in P. For the joint, which is a point on rod 2, the 
velocity v1 is given by the crank via v1 = r .
But this point has – from the velocity pole of rod 2 – the distance

  d = ( cos ) ( sin )2 45 2 452r r r r  = ... r (4 2 )/ 2

So you get: 
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2 = v1 / d = 2 /(4 2 )  

c) A translational motion is given, when two velocities are aligned parallel to
one another. In the given case it means that the crank must move in the 
direction of the rod. This is given for the depicted extreme positions I and II. 

So we're dealing here with the situations for which the rod is tangentially 
oriented to the circle described by the crank endpoint. From the angular 
relationships, you get: 

  cos  = r / (2 2 r ) = 1/(2 2 )      ===>    =  69,3° 

I,II = 45° ,

I = 114,3°, II =  24,3° 

Exercise:  82  Chapter: 3.1,     Degree of Difficulty: 

The sketch show the drive unit of a steam engine that moves at velocity v0.
The wheels roll without slipping. 
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a) Determine for the sketched position the location of the connecting rod's 
velocity pole in the given coordinate system. 
b) Determine the relative velocity of the piston relative to the cylinder. 

Given: R, r = 
1
2

2 R, v0, L,  = 45°.

Solution

a)  xQ = L,  yQ =  L / tan  = L

piston rod
connecting
rod



 319

b)   vrel = vK  v0 with vK: velocity of the piston rod 

  vK = S (R+L), 

S = vS / d with d = r + 2  L = 
2

2
 (R + 2L) 

wheel = 
v
R

v
r
S0   ==> vS = 

r
R

 v0 = 
2

2
 v0

 ==> S  = 
v

R L
0

2

 ==> vK = 
R L

R L2
 v0

 ==> vrel = 
L

R L2
 v0

Exercise:  83  Chapter: 3.2,     Degree of Difficulty: 

A homogenous thin rod (length L, mass m) is first unstably balanced as shown 
and then falls over as a result of a slight disturbance. 

What is the velocity vend of the free rod end at the point in time at which the 
rod passes the stable balanced state (rod hangs downwards)? 

Given: L, g. 
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Solution

energy theorem (zero level: bearing): 

  mgL = 0.5 J 2    with  J  =  1
3 m L2

      and vend =  L 

 ==> vend = gL6

Exercise:  84  Chapter: 3.2,     Degree of Difficulty: 

From a tower of height H, within the earth’s gravitational field a ball is thrown 
vertically upwards at initial velocity v0. Determine 

a) the maximum throw height Hmax and the rise time tmax,
b) the time tE until the ball hits the earth again. 
Given: H = 5 m, v0 = 10 m/s, g = 9,81 m/s². 

Solution

a)  ( )max maxy t gt v0 0  ==> tmax = v0 / g = 1,02s 

  y(tmax) = 
1
2

2
0gt v tmax max  = 5,1 m,  

  Hmax = y(tmax) + H = 10,1 m 

b)  y(t)  = 
1
2

2
0gt v tE E = 

==> tE
2 2 0v

g
 tE

2H
g

 = 0 

 ==> tE  = 2,45 s.



 321

Exercise:  85  Chapter: 3.3,     Degree of Difficulty: 

A cylinder (mass m, radius R) lies on a horizontal plane. The friction 
coefficient between plane and cylinder is 0 = 0.1. The cylinder is set in 
motion by means of the depicted force F = 0.1 mg.  
a) Does the cylinder roll or slip? 
b) What is the acceleration of the cylinder? 
Given: m, R, F=0.1mg, 0 = 0.1. 

Solution

Free-body diagram:  
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Determination of FN:

Fy = m y = 0 = F + FN - mg, ==> FN = 0.9 mg 

Fx  = m x = FR

MC: JC  = F R - FR R  with JC = 0.5 m R2

Assumption:  The cylinder rolls! (assumption valid if FR <  FN ) 

 ==>  x  = R 
Connecting the equations together:

 ...  FR = 2
3  F <  FN

==> Assumption valid ! 
Determination of angular acceleration: 

 = (F R - FR R) / J C = 
2

30
g
R

y  = R  = 1
15

 g 

Exercise:  86  Chapter: 3.2,     Degree of Difficulty: 

After enjoying some local delicacies, Dr. Romberg leaves the mountain cabin. 
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On the way back, the doctor, in high spirits, reaches the depicted position in his 
car (mass m, velocity v0), turns his complete attention to the stars, shifts into 
neutral and rolls... after distance L into a wall (spring constant c).  
What it the maximum force exerted on the wall? 
Given: c, m, g, L, , v0.

Solution

Choice of the zero level49: maximum downward deflection of spring of the 
wall.
Energy theorem (x is the downward deflection of spring of the elastic wall): 

  m g (L+x) sin m v0
2 = 0.5 c x2

Engineer-like simplification: x << L 

 ==> x =  
2 0

2mgL mv
c

sin

  F = c x = c mgL mv( sin )2 0
2  . 

Exercise:  87  Chapter: 3.3,     Degree of Difficulty: 

A ball (mass m, radius R) lies on a block (mass 2m) that lies frictionlessly on a 
plane. The block is accelerated by force F – simultaneously, the ball begins to 
roll. What is the friction force between the ball and block? 

Given: m, R, F. 

                                                          
49 (Note: Dr. Romberg’s level: ZERO is independent of the location) 
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Solution

First, the free-body diagrams: 

Dr. Romberg starts practicing first with the egg-holder on a book: „This is 
hilarious – first it turns backwards and then in the other direction! Funny, 
huh?“ 

Theorem of linear momentum for the subsystems: 

Fx, ball  =  m x C,ball  = FR



 325

Fx, block  =  M x block  = F FR

Theorem of twist for ball: 

Mball
C = Jball

C  = FR R with Jball
C = 2

5
2mR  

Kinematics: 

x block = x C,ball +  R 

And now combine everything (4 equations, four unknowns): 

 ....  FR = F / 8 

Exercise:  88  Chapter: 3.3,     Degree of Difficulty: 

A ball (mass m, radius R) that turns at angular velocity 0 is set on a plane 
(friction coefficient ).
a) How long does it take before pure rolling begins? 
b) Which horizontal velocity has the ball reached by that point? 
Given: m, R, 0, .

Solution

Theorem of linear momentum for the ball that has been cut free: 
 F = m x  center of gravity l = FR =  mg 

Theorem of twist for the ball around the center of gravity: 

 M = J  =  - FR R with J =  2
5  m R2

==>  = - 
F R

J
R  = const 

 ==> t) = 0 + t  = 0
F R

J
R  t 

Condition for the transition into rolling state: 
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x  =  gt = t) R ...  ==>  t = 
2
7

0R
g

     ==> x 2
7 0 R 

(Dr. Hinrichs can also calculate the energy that’s lost in rolling, i.e. not 
converted into motion: It’s supposedly 5/7 of the initial energy) 

Exercise:  89  Chapter: 3.3,     Degree of Difficulty: 

A pendulum (length L) suspended from a massless string and possessing mass 
m is let go from the depicted horizontal position. The string breaks at the point 
in time at which the string force is FF = Fcrit = 1.5 mg. What velocity does the 
mass possess at this point in time? 
Given: m, Fcrit = 1.5 mg, L, g. 

Solution

Free-body diagram: 

Theorem of linear momentum in string direction: 
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 F =  FF - mg sin m 2 L 

Energy theorem: 

  0.5 (mL2) 2   =   mgL sin    

Combine with one another:   

 = 30°, v = gL

Exercise:  90  Chapter: 3.3,     Degree of Difficulty: 

A cylinder (mass m, radius r) rolls (almost) with no initial velocity down the 
depicted hill. At angle 0 the cylinder begins to slip. 
What is the static friction coefficient ?
Given: m, r, R, 0.

Solution

Free-body diagram: 
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Theorem of twist around the center of gravity:  

  0.5 m r2 = FR r 

Theorem of linear momentum:  

 Fx : m r  = mg sin  - FR
Combine: 

R  = 1
3  mg sin 

Theorem of linear momentum : 

 Fy : FN - mg cos  = - m 
v
R

2

Energy theorem with roll condition: 

  g R (1-cos )  = 1
2  m v2 + 1

2
1
2  m r2

v
r

2

2 = 3
4  m v2

Combine: 

  FN  = 1
3  mg  ( 7 cos  - 4 ) 

Law of friction at the point in time of the transition from rolling to slipping: 

  FR =  FN

 ==>  sin 0 =  ( 7 cos 0 - 4 ) 

 ==>  =
sin

cos
0

07 4
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Exercise:  91  Chapter: 3.3,     Degree of Difficulty: 

Dr. Romberg has once again enjoyed himself immensely during an evening in 
his favorite bar. He is subsequently carried home in a trailer attached to Dr. 
Hinrich's car. Determine the force in the rod connecting car and trailer 
coupling during a downhill stretch with the brakes engaged, assuming that all 
of the wheels are still rolling without slipping. (mass car + Dr. Hinrichs: m1,
mass trailer, Dr. Romberg + beer bottles: m2)
Given: m1, m2, g, , 1 2.

Solution

Dr. Hinrichs’s free-body diagram: 



 330

Dr. Romberg’s free-body diagram: 

First, we will adhere to the daring basic assumption that Dr. Romberg’s mass 
remains constant during the entire ride. 
Theorem of linear momentum for the total system: 

 Fx  = ( m1 + m2) g sin m1g cos 1 m2 g cos 2
   = (m1 + m2) x

 ==> x     =  g sin
m

m m
1

1 2
g cos 1

21

2
mm

m g cos 2

Theorem of linear momentum , e.g. for mass 1: 

 Fx = - S + m1 g sin m1g cos 1  =   m1 x
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Application of x : 

 ==> S = 
m m

m m
1 2

1 2
 ( 2 1 ) g cos   . 

Exercise:  92  Chapter: 3.3,     Degree of Difficulty: 

A Ferris wheel (radius R) rotates at the constant angular velocity . Dr. 
Hinrichs’s female love interest (mass m) sits in the lower gondola, and Dr. 
Romberg’s old flame (mass M = 2m) is in the upper gondola. For inexplicable 
reasons, both are sitting on a scale. How fast (sought: ) does the Ferris wheel 
have to turn in order for both scales to show the same weight in the depicted 
position?50

Given: g, R. 

Solution

Here’s a little note for your confusion: The gondolas move ONLY 
translationally, even though they’re moving in a circle... Go ahead and rack 
your brain over that!!! (Little tip: Sketch the velocity directions for two points 
of a gondola as opposed to a radial rod.) 
The free-body diagram looks like this: 

                                                          
50 This exercise seems to be taken from real life, doesn‘t it? 
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Sum of the forces: 

Fy = FN1  mg = m y  with y  = 2 R 

  resp. Fy = FN2  Mg = M y  with y  = - 2 R  

Condition: FN1 = FN2 

 => m 2 R + m g = M g  M 2 R 

Solution:  = 
g
R3

Exercise:  93  Chapter: 3.3,     Degree of Difficulty: 

Dr. Hinrichs, riding a bicycle (common center of gravity C, total mass m, 
velocity v0), has to brake suddenly (friction coefficient of street + tires: ),
since the drunk Dr. Romberg has sat down in the middle of the street.  
How long is the brake path if Dr. Hinrichs only uses the back wheel brake and 
the back wheel is not yet at the point of locking?  
Given: m, g, v0,
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Solution

Free-body diagram: 

Theorem of linear momentum : 
  Fx = m x = -  FN2
  Fy = m y = 0 = FN1 + FN2  mg 
Theorem of twist around the center of gravity: 
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  0  =  3a FN1 +  2a FN2 + 4 a   FN2
Combine: 

 ==> FN2 = 
3

5 4
mg

 ==> x  = 
3

5 4
g

Course of velocity: 
  v(t) = v0 + x t ==> tstop =   v0 / a 

  s(tstop) = v tstop + 
x

t stop2
2 = 

v
a

0
2

2
 = 

( )5 4
6

0
2v

g

Exercise:  94  Chapter: 3.4,     Degree of Difficulty: 

A ball falls vertically onto an inclined plane (number of collisions e). What 
does the angle of inclination of the plane have to be in order for the ball to fly 
away horizontally after the impact? 
Given: e. 

Solution

Velocity components before the impact:  
1) Normal to the plane:   
  v 1N = v cos
2) Tangential to the plane:  
  v 1T = v sin
Velocity components after the impact:  
1) Normal to the plane:  
  v 2N = -e v cos

2) Tangential to the plane: 
  v 2T = v sin
Determination of the component in vertical direction: 
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  v 2V = v2N cos  v2T sin
Condition for ball to fly away horizontally: 
  v 2V   =  0 =   -e v cos cos  + v sin sin
Reformulate with  

  cos2  = 1  sin2

  an2  = 
sin

sin

2

21
 => tan   = e

Exercise:  95  Chapter: 3.4,     Degree of Difficulty: 

The fist of a karate fighter, mass m = 0.05 kg, chops a board of mass M = 5 kg 
in two. The impact velocity v0 is 600 m/s, the fist leaves the board at velocity v 
= 150 m/s. The board can be shifted frictionlessly on the base.  
a)  What is the velocity V of the board after the chop? 
b)  How much energy is lost in the damaging of the board? 
Given: m = 0.05 kg, M = 5 kg, v0 = 600 m/s, v = 150 m/s. 
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Solution

Conservation of momentum must apply:  

  m v0 = m v + M V   

 => V = m (v0 - v) / M  = 4.5 m/s 

Energy balance: 

  .5 m v0
2 = 0.5 m v2 + 0.5 M V2 + Ebroken

 ===> Ebroken = 0.5 m v0
2 0.5 m v2 + 0.5 M V2 ) = 8386,9 kgm2/s2

Exercise:  96  Chapter: 3.4,     Degree of Difficulty: 

A pendulum consists of a massless string and a mass M = 1 kg attached to the 
string at a distance of L = 2 m. The pendulum is released from the initial 
deflection 0 = 30 ° and collides at  = 0 with another pendulum (mass m = 
0.5 kg, e = 1) with a length of only L/2.
How far does the shorter pendulum swing following the impact? 
Given: M = 1 kg, m = 0.5 kg, L = 2 m, 0 = 30°, e = 1, g = 10 m/s². 
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Solution

Velocity before the impact: 

   g L (1-cos 0) = 0.5 J 2  with J = M L2

 =>   = 2 1 0g(
L
cos )  , v =  L = ... = 2.3149 m/s 

Velocity of the second pendulum after the impact: 

  V = 1
m M

 [(1+e) M v ] =  ... =  3.0866 m/s,    

 ==> 2 = 2V/L 
Energy theorem after the impact: 

  0.5 J2 2
2 = m g L (1-cos max) / 2  with J2 = m L2 / 4 

Solve for max:

max = arccos
mgL
J1

3
22  . 

Combining of the equations, apply: 

max  =  58,4 ° 

Exercise:  97  Chapter: 3.4,     Degree of Difficulty: 

A bouncing ball strikes at points P1, P2, P3, P4 .. against a (ideally smooth) 
plane. The distance between the impact points P1 and P2 is the same as the 
distance between points P2 and P4. What is the number of collisions e?
Given:  | P1 P2 | = | P2 P4 | . 
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Solution

The x-component of the velocity remains constant during the impacts (vx0 = 
const); in y-direction, the equations for the free fall can be used: 
  y(t) = vy0 t - 0.5 g t2

Time between two impacts:   

  y(T) = 0 ==>  T = 
2 0v

g
y

Distance d between two points of impact:  

  d = 2 
v v

g
x y0 0

Neighboring distances:  
  dn+1 = e dn

  dn+2 = e2 dn
  | P1 P2 |  = | P2 P4 | 
  dn  =  dn+1 + dn+2

  1  =  e      + e2

 ==> e = 0.618 
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