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Preface 

This book is an introduction to nuclear principles with special emphasis 
on engineering applications. Topics such as neutron physics, nuclear 
structure and radiation interactions are illustrated through numerous 
examples that include detailed solutions and links to theory. The reader will 
find plenty of descriptive easy-to-grasp models and analogies with rather 
simplified mathematics. A mathematical formula says little unless we 
understand the physical context. Hence, priority is given to developing 
physical intuition rather than mathematical formalism. 

Nuclear engineering is a broad discipline that requires knowledge (of 
reasonable depth) in physics, mathematics and computation. The discipline 
is grounded in the scientific understanding of the subatomic realm and 
energy-matter processes that are taking place at the ferntometer range (10-l5 
meter). Several areas of application are driving a renaissance in nuclear 
engineering including, but not limited to, new safe nuclear reactor 
development, a revolution in nuclear medicine, nuclear space propulsion, 
and homeland security. 

This book offers background and a basis for technology development in 
inherently safe reactors, medical imaging and integrated cancer therapies, 
food technology, radiation shielding, and nuclear space applications. It is 
intended to be a resource for practicing engineers and a text for university 
students in science and engineering. 

Tatjana Jevremovic, Ph.D. 
School of Nuclear Engineering 

Purdue University 
West Lafayette 
February 2005 



Foreword 

Nuclear Principles in Engineering is an appropriate starting point for the 
new series Smart Energy Systems: Nanowatts to Terawatts. Not only 
because the nuclear universe stands at the boundary of human knowledge 
with respect to scale, but also, and most importantly, because nuclear ideas 
have a largely untapped potential for new sources of energy. When viewed 
in this light, nuclear principles offer renewed hope for energy innovation 
much needed by a global community confronting the inescapable 
environmental and geological limitations of fossil fuels. 

The realm of nuclear processes occupies tiny microscopic dimensions, in 
the range of lo-'' meter or femtometer. It is a realm inaccessible by our 
senses, yet intelligible through the power of Modern Physics. The book 
brings the nuclear universe into clear view for the benefit of technical 
pedagogy and technological development. A plethora of existing 
technologies can be traced to the fruitful application of nuclear principles, 
including, but not limited to, weaponry, atomic and nuclear energy, medicine 
and instrumentation. The number is likely to grow as innovations are needed 
in smart materials, nanostructures, space, homeland security and biomedical 
engineering. 

In recent years few books have appeared articulating nuclear principles 
for engineers. The enthusiasm of the 1950's and 60's (the Atomic Age) gave 
way to a much impeded if not diminished interest. But nuclear principles are 
far from fading hues of past scientific theories. Witnessing a renaissance in 
applications of nuclear technology, the book is aimed at engineering students 
who need material in a compact and easily digestible form. Professionals and 
students of science may benefit as well. 



xviii Foreword 

With nuclear principles, energy shares the view that much is yet to be 
gained from converting tiny specks of matter into useful work. This book 
appears on the centennial of Einstein's famous formula E = rnc2. A century 
of Modern Physics and half a century of accrued technical experience with 
nuclear power strongly support a renewed optimism on the technological 
potential of nuclear ideas. Professor Jevremovic's book presents principles 
that have stood the test of time and open new vistas for future energy. 

Lefteri H. Tsoukalas, Ph.D. 
School of Nuclear Engineering 

Purdue University 
West Lafayette 
February 2005 
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Chapter 1 

NUCLEAR CONCEPTS 
From nano-watts to tera-watts 

"The dreams of ancient and modem man are written in the same language as the 
myths whose authors lived in the dawn of history. Symbolic language is a language 
in which inner experience, feelings and thoughts are expressed as if they were 
sensory experiences, events in the outer world. It is a language which has a different 
logc from the conventional one we speak in the daytime, a logic in which time and 
space are not the ruling categories but intensity and association." Erich From (The 
Forgotten Language, 1937) 

1. INTRODUCTION 

Early 2oth century marked tremendous and fascinating discoveries in 
physics and chemistry. For the first time in human history hard evidence was 
produced supporting the existence of atoms. In his book Imagined Worlds, 
the eminent astrophysicist Freeman Dyson calls the changes in physics that 
occurred in the 19207s, a concept-driven revolution; theory had primacy over 
experiment. Quantum mechanics and the theory of relativity explained 
atomic and nuclear structures. Yet, the technology for accessing the atomic 
and subatomic level remained rather primitive. It was not until decades later 
that serious technological applications appeared. 

The middle of the 2oth century marked the advent of nuclear technology. 
First weaponry, which left a trace of fear and apprehension in the meaning of 
the world "nuclear." After all, the press release for the new technology 
became Hiroshima and Nagasaki. Nuclear power for naval and terrestrial 
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applications, nuclear medicine, radiochemistry, imaging and space 
exploration came later. 

Significant institutional development took place concomitantly to 
regulate and protect the public and the environment from the deleterious 
effects of radiation. National authorities such as the Nuclear Regulatory 
Commission in the U.S., and international bodies such as the UN 
International Atomic Energy Agency as well as trade and professional 
organizations were formed. Nuclear technology cannot be developed and 
deployed without serious technical and institutional safeguards. 

TERRESTRIAL NUCLEAR ENERGY 

A major requirement for sustaining human progress is to adequately 
provide, generate and distribute energy. In the last fifty years we have seen 
nuclear energy grow to become an important source of carbon free 
electricity. Concerns about global climate change and energy supplyldemand 
imbalances bring renewed attention to nuclear energy. The unparalleled 
safety record of light water reactors (LWR) and the high capacity factors 
achieved by nuclear generators give plenty of motivation for new nuclear 
power expansion. Whereas in the 1990's, nuclear power plants were 
considered expensive dinosaurs, there is a growing world wide interest in 
new generation with US utilities clamoring for permission to build new 
plants. There is every indication that the successes of LWRs, global 
warming, and growing worldwide energy challenges, generate a unique 
confluence of reasons for a serious reexamination of the nuclear option. 

Nuclear power comes mainly from the fission of uranium, plutonium or 
thorium. The fission of an atom of uranium produces several million times 
more energy than the energy produced by the combustion of an atom of 
carbon in fossil fuels, giving nuclear power an extraordinary advantage in 
power density. Energy released in fission is converted into electric energy 
(this type of electricity represents eighty percent of the electricity generated 
in France and over twenty two percent in the United States). More than four 
hundred nuclear power plants produce over 15% of the world's electricity. 
Having accumulated over 12,000 years of operational experience with 
civilian nuclear power, mankind is becoming more confident about the 
economic, safety and environmental benefits of nuclear power generation. 

For the vast majority of nuclear reactors the fuel is slightly enriched 
uranium, material which is relatively abundant and ubiquitous. Nuclear 
power plants typically use enriched uranium in which the concentration of 
2 3 5 ~  is increased from 0.7% (as found in nature) to about 4% to 5%. At 
present, global reserves of uranium are deemed sufficient for at least one 
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hundred years. In the very long term, however, breeder reactors are expected 
to be used to breed new fuel. Breeder reactors can generate nearly 100 times 
as much fuel as they consume. 

One of the main issues with nuclear power is the problem of nuclear 
waste. Significant technical progress has been made in this area and a 
number of countries, including the U.S., move towards addressing the 
political aspects of the problem. It is important to note that nuclear power 
takes full responsibility for its waste. Radioactive waste coming from 
nuclear power reactors is small in quantity and could be turn into useful 
nuclear fuel with known chemical processes. 

The nuclear industry is developing and upgrading reactor technologies 
for nearly fifty years. Future reactor designs focus on safety, economics and 
proliferation resistant fuel cycles. Great attention is paid to fuel 
improvements targeting, for example, the capability of light water reactors to 
burn plutonium, hence, reducing the amount of radioactive waste. 

3, SPACE EXPLORATION AND NUCLEAR POWER 

Radioisotope generators in space have been providing electrical power 
for a variety of spacecrafts. For example, Cassini, the first craft ever to orbit 
Saturn, is powered by a radioisotope thermoelectric generator (RTG). After 
six years of travel to the Saturn Rings, Cassini reached its destination in 
2004 and is scheduled to remain in orbit until 2008. RTGs is proven 
technology for missions to distant space destinations. They consist of a 
radioisotope (for example 2 3 8 ~ ~ ,  a non-weapon-grade material, because of its 
long half life - 87 years) and a thermoelectric conversion system. Heat 
produced from the radioisotope is converted directly to electricity using 
thermocouples. For example, Cassini is powered by three RTGs (with nearly 
33 kg of plutonium) that produce 750 W of power. The power generated 
diminishes somewhat with time due to the exponential decline of 
radioactivity. At the end of the 1 lth year of operation the Cassini system will 
produce close to 630 W of power. The development of such systems by the 
U.S. Department of Energy generated astonishing success for missions to 
Moon, Neptune, and even beyond the Solar system. Famous spacecrafts such 
as Pioneer 10 and 1 1, Apollo, Galileo, and Voyager were powered by RTGs. 
Thus far, 44 RTGs have powered 24 U.S. space vehicles. Russia has also 
developed RTGs using 21%'o. There are currently two Russian generators in 
orbit powering satellites. RTGs using short-lived radionuclides can power 
small devices deployed in remote areas on earth or other planets. Such 
systems could stay intact and power instrumentation for collecting data that 
includes climate variables, chemical composition of air or soil, salinity, 
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ozone, and temperature. After a gap of several decades, there is new interest 
in U.S. and Russia for nuclear power in space missions. In 2002, NASA 
announced the Nuclear Systems Initiative for space code-named Project 
Prometheus. It focuses at space mission design enabling nuclear-powered 
manned missions to Mars and distant planet exploration. 

The Jupiter Icy Moon Orbiter (JIMO) is a spacecraft currently in 
development, powered by a nuclear reactor to explore Jupiter's dark and 
cold satellites. A major limiting factor for long term space travel or manned 
mission to distant planets is radiation protection for the crew and the 
electronics. Nuclear principles will be used for the design of light but 
effective radiation shield. 

4. MEDICINE AND NUCLEAR PRINCIPLES 

Soon after the German physicist Wilhelm Conrad Roentgen discovered 
them, X rays revolutionized medicine. A century later advanced 
three-dimensional imaging, computerized treatment planning and high 
energy X ray machines have revolutionized the diagnostics and treatment of 
heart disease, cancer, and surgery. A remarkable application of nuclear 
principles has been the use of gamma ray narrow beams to irradiate small 
tumors with high precision, an instrument called the gamma knife. 

In 1932 Chadwick discovered an electrically neutral constituent of the 
nucleus which he called the "neutron." Few years later it was recognized that 
neutron interactions producing short range highly ionizing particles could be 
used to treat cancer. In the early 19407s, Neutron Capture Therapy (NCT) 
was proposed. This is a bimodal radiotherapy utilizing directed uptake of 
neutron absorbing isotopes in tumor tissue and subsequent neutron 
irradiation. Neutron interaction products deposit most of the energy from 
highly exothermic capture reactions in relatively small space. This is in the 
order of cellular dimensions thus delivering to tumor cells a far greater dose 
than what is incurred in surrounding healthy tissue. NCT has a great 
advantage particularly if the tumor is not imagable or difficult to spatially 
define. It has been applied clinically as a post-operative sterilization of 
potentially remnant brain tumors. The most prominent element used in NCT 
is 'OB, which undergoes a neutron interaction producing alpha particle and 
7 ~ i .  The potential for other elements has been also studied. Gadolinium, 
lithium, and uranium can strongly absorb thermal neutrons and hence they 
are considered for NCT. The products of neutron capture in ' 5 7 ~ d ,  for 
example, are quite different than neutron capture with other isotopes creating 
a mixture of prompt and cascade-induced photons and electrons. A novel 
application of the nuclear principles upon which NCT is based is application 
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to breast and lung cancer. Recent literature points to novel ways of 
combining the NCT principles with the identified genomic signature of 
specific cancers. For example, it has been shown that thirty percent of breast 
cancers over-express certain proteins, a fact that can be exploited for custom 
made treatments. Monoclonal antibodies (MABs) are currently used as part 
of chemotherapy for metastatic and late stage breast cancer. A recent study 
explores the possibility and effectiveness of using the MABs as a targeting 
vehicle for boron to breast cancer cells. This approach is called targeted 
(radiation) therapy. In such therapies the radiation or drug agent is brought 
directly to the cancer cells. This radioimmunotherapy combines 
radionuclides with MABs to deliver radiation to designated areas where it 
produces high irradiation effects. 

A startling new picture of how cells respond to radiation is beginning to 
emerge from microbeam studies in which individual cells are targeted with a 
precise dose of radiation. Cells damaged by radiation communicate with 
neighboring cells using messenger molecules (cytokines) that can be 
transmitted between the cells. As a result, cells not hit by radiation, called 
bystander cells, generate molecular and cellular responses similar to cells 
that are irradiated. Study of bystander-cell effects will have profound 
implications in planning for radiation therapy and also for the assessment of 
health risks of low radiation doses. On the other hand, the precise and 
non-invasive nature of microbeams is useful in radiobiology, cell and 
biomolecular diagnostics, and intracellular micromanipulations. For 
example, biological tissues are mostly transparent to photon radiation giving 
the unique possibility to act on cell structure without changing the features 
or disturbing the vital functions. Recent advances in tissue and molecular 
engineering call for new technologies to analyze and possibly modify cell 
and tissue behavior while minimizing undesirable signaling (contamination) 
in the broader cellular environment. 

Neutrons offer powerful tools for the investigation of macromolecular 
structures, such as the structure of proteins, membranes, polymers and other 
complex biological materials. The use of cold neutrons rather than thermal 
neutrons improves the detection limits of miniscule amounts of light 
elements such as hydrogen. They are widely used as a microscopic probe in 
fields ranging from elementary physics to biological science. Cold neutrons 
are finding a fabulous application in depth profiling of light element spatial 
deposition; for example, mapping the spatial distribution of boron atoms in a 
tumor region (thus providing information that may profoundly advance 
BNCT). Cold neutrons are of great interest since they are noninvasive and a 
sample can be reused for other profiling tests by different techniques. 
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5. BOOK CONTENT 

This book offers an overview of basic nuclear principles in engineering 
including, but not limited to physical processes in radiation interaction with 
matter, neutron transport and reactor physics, nuclear and atomic structure, 
and radioactive decay. The understanding of principles is essential in 
developing engineering applications. For example, prediction of nuclear 
parameters in reactors or accurate radiation treatment in medicine are both 
based on principles of radiation interactions with matter. They share the 
same tools for predicting energy deposition along different pathways. 

The book material is organized as follows: 

- Atomic structure principles are described in Chapter 2. This knowledge 
is important in analyzing the probabilities of interaction leading to 
ionization of a medium (of extreme importance in biological tissues) and 
in understanding the energy levels and electronic configuration of atoms. 

- The majority of nuclear interactions involve electron clouds or nuclei of a 
medium. For example, in a reactor we find interactions of neutron with 
nuclear fuel and structure materials. Understanding these interactions is 
of great importance in predicting reactor power, achieving reactor control 
and selecting fuel characteristics. In order to predict such parameters with 
high accuracy, knowledge of the nature of particle interactions and the 
structure of nucleus are of great importance and are described in Chapter 
3. In addition, a brief overview of Quantum Mechanics starting from the 
concept of Planck's quanta and the de Broglie wavelength through 
Heisenberg principle and Schrodinger equation is provided in this 
chapter as well. 

- Radioactivity, a phenomenon discovered at the end of lgth century, has 
found applications in many scientific and engineering approaches 
(radioactive dating, radioisotope generators, nuclear medicine) and is 
described in detail in Chapter 4. 

- The interaction of various particles with matter is described in Chapter 5. 
The concept of stopping power, range of interactions, and the attenuation 
of radiation beam are essential aspects in particle transport and 
applications of radiation effects. 

- Chapter 6 focuses at description and analysis of the cross sections for 
neutron interactions; the nature of neutron interactions; and, basic 
principles of the fission process. 

- Reactor steady-state and kinetic physics are described in Chapter 7. The 
basic principles of neutron diffusion theory, reactor power, fission chain 
reaction, critical mass, spatial distribution of neutron flux and reaction 
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rates are described with details needed to pursue analysis of reactor 
behavior giving a solid background for understanding time-dependent 
physics parameters of thermal reactors. 

- Aspects of reactor control, the effects of neutron poisoning as well as 
temperature coefficients of reactivity are summarized in Chapter 8. 



Chapter 2 

ATOMIC THEORY 
Basic Principles, Evidence and Examples 

"Among all physical constants there are two which will be universally admitted to 
be of predominant importance; the one is the velocity of light, which now appears 
in many of the fundamental equations of theoretical physics, and the other is the 
ultimate, or elementary, electrical charge", Robert MiUikan (1868 - 1953) 

1. INTRODUCTION 

Around the 5" century BC, Greek philosopher Democritus invented the 
concept of the atom (from Greek meaning "indivisible"). The atom, eternal, 
constant, invisible, and indivisible, represented the smallest unit and the 
building block of all matter. Democritus suggested that the varieties of 
matter and changes in the universe arise from different relations between 
these most basic constituents. He illustrated the concept of atom by arguing 
that every piece of matter could be cut to an end until the last constituent, is 
reached. Today the word atom is used to identify the basic component of 
molecules that create all matter, but it is now known that the atom itself is 
made up of particles even more fundamental, some of which are elementary. 
The first theoretical and experimental models of the structure of matter came 
as late as the 19" century, which is the time marked as the beginning of 
modern science. At that time a more empirical approach, mainly in 
chemistry, opened a new era of scientific investigations. 

The work of Democritus remained known through the ages in writings of 
other philosophers, mainly Aristotle. Modern Greece has honored 
Democritus as a philosopher and the originator of the concept of the atoms 
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through their currency. The 10-drachma coin, before Greek currency was 
replaced with the euro, depicted the face of Democritus on one side, and the 
schematic of a lithium atom on the other (see Fig. 2-1). 

Figure 2-1. Greek 10-drachma coin featuring Democritus and the lithium atom (Courtesy of 
the Bank of Greece) 

This chapter introduces the structure of atoms and describes atomic 
models that show evidence for the existence of atoms and electrons. 

2. ATOMIC MODELS 

2.1 The Cannonball Atomic Model 

All matter on Earth is made from combination of 90 naturally occurring 
different atoms. Early in the 19' century, scientists began to study the 
decomposition of materials and noted that some substances could not be 
broken down past a certain point (for instance, once separated into oxygen 
and hydrogen, water cannot be broken down any further). These primary 
substances are called chemical elements. By the end of the 19' century it 
was implicit that matter can exist in the form of: a pure element, chemical 
compound of two or more elements, or as a mixture of such compounds. 
Almost 80 elements were known at that time and a series of experiments 
provided confirmation that these elements were composed of atoms. This led 
to a discovery of the law of definite proportions: two elements, when 
combined to create a pure chemical compound, always combine in fixed 
ratios by weight. For example, if element A combines with element B, the 
unification creates a compound AB. Since the weight of A is constant and the 
weight of B is constant, the weight ratio of these two will always be the 
same. This also implies that two elements will only combine in the defined 
proportion; adding an extra quantity of one of the elements will not produce 
more of the compound. 
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Example 2.1: The law of definite proportion 
Carbon (C) forms two compounds when reacting with oxygen (0): carbon 

monoxide (CO) and carbon dioxide (C02) 

The two compounds are formed by the combination of a definite number of 
carbon atoms with a definite number of oxygen atoms. The ratio of these two 
elements is constant for each of compounds (molecules): C:O = 3:4 for CO, and C:O 
= 3:8 for COz. 

The first atomic theory with empirical proofs for the law of definite 
proportion was developed in 1803 by the English chemist John Dalton 
(1766-1844). Dalton conducted a number of experiments on gases and 
liquids and concluded that, in chemical reactions, the amount of the elements 
combining to form a compound is always in the same proportion. He showed 
that matter is composed of atoms and that atoms have their own distinct 
weight. Although some explanations in Dalton's original atomic theory are 
incorrect, his concept that chemical reactions can be explained by the union 
and separation of atoms (which have characteristic properties) represents the 
foundations of modern atomic physics. In his two volume book, New System 
of Chemical Philosophy, Dalton suggested a way to explain the new 
experimental chemistry. His atomic model described how all elements were 
composed of indivisible particles which he called atoms (he depicted atoms 
like cannonballs, see Fig. 2-2), and that all atoms of a given element were 
exactly alike. This explained the law of definite proportions. Dalton further 
explained that different elements have different atoms and that compounds 
were formed by joining the atoms of two or more elements. 

Figure 2-2. Cannonball atomic model (John Dalton, 1803) 

In 181 1, Amadeo Avogadro, conte di Quaregna e Ceretto (1776-1856), 
postulated that equal volumes of gases at the same temperature and pressure 



12 Chapter 2 

contain the same number of molecules. Sadly, his hypothesis was not proven 
until two years after his death at the first international conference on 
chemistry held in Germany in 1860 where his colleague, Stanislao 
Cannizzaro, showed the system of atomic and molecular weights based on 
Avogadro' s postulates. 

Example 2.2: Avogadro's law 
As shown in Example 2.1, the ratio of carbon and oxygen in forming C02 is 3:8. 

Here is the explanation of this ratio: since a single atom of carbon has the same mass 
as 12 hydrogen atoms, and two oxygen atoms have the same mass as 32 hydrogen 
atoms, the ratio of the masses is 12:32 = 3:8. This shows that the description of the 
reaction is independent of the units used since it is the ratio of the masses that 
determines the outcome of a chemical reaction. Thus, whenever you see wood 
burning in a fire, you should know that for every atom of carbon from the wood, two 
oxygen atoms from the air are combined to form C02; the ratio of masses is always 
12:32. 

It follows that there must be as many carbon atoms in 12 grams of carbon as 
there are oxygen atoms in 16 grams of oxygen. This measure of the number of 
atoms is called a mole. The mole is used as a convenient measure of an amount of 
matter; similarly as "a dozen" is a convenient measure of 12 objects of any kind. 
Thus, the number of atoms (or molecules) in a mole of any substance is the same. 
This number is called Avogadro's number (NA)  and its value was accurately 
measured in the 20" century as 6.02 x loz3 atoms or molecules per mole. 

For example, the number of moles of hydrogen atoms in a sample that contains 
3.02 x lo2' hydrogen atoms is: 

21 3 . 0 2 ~ 1 0  atoms H 
Moles of H atoms = =5.01~10-~moles H 

23 6 . 0 2 ~  10 atoms / mole 

2.2 The Plum Pudding Atomic Model 

Shortly before the end of the 19 '~  century, a series of new experiments 
and discoveries opened the way for new developments in atomic and 
subatomic (nuclear) physics. In November 1895, Wilhelm Roentgen (1845- 
1923) discovered a new type of radiation called X rays, and their ability to 
penetrate highly dense materials. Soon after the discovery of X rays, Henri 
Becquerel (1852-1908) showed that certain materials emit similar rays 
independent of any external force. Such emission of radiation became 
known as radioactivity. 
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During this same time period, scientists were extensively studying a 
phenomenon called cathode rays. Cathode rays are produced between two 
plates (a cathode and an anode) in a glass tube filled with very low-density 
gas when an electrical current is passed from the cathode to the high voltage 
anode. Because the glowing discharge forms around the cathode and then 
extends toward the anode, it was thought that the rays were coming out of 
the cathode. The real nature of cathode rays was not understood until 1897 
when Sir Joseph John Thomson (1856-1940) performed experiments that led 
to the discovery of the first subatomic particle, the electron. The most 
important aspect of his discovery is that cathode rays are a stream of 
particles. Here is the explanation of his postulate: from the experiment he 
observed that cathode rays were always deflected by an electric field from 
the negatively charged plate inside the cathode ray tube, which led him to 
conclude that the rays carried a negative electric charge. He was able to 
determine the speed of these particles and obtained a value that was a 
fraction of the speed of light (one tenth the speed of light, or roughly 30,000 
kmlsec or 18,000 milsec). He postulated that anything that carries a charge 
must be of material origin and composed of particles. In his experiment, 
Thomson was able to measure the charge-to-mass ratio, elm, of the cathode 
rays; a property that was found to be constant regardless of the materials 
used. This ratio was known for atoms from electrochemical analysis and by 
comparing the value obtained for the electrons he could conclude that the 
electron was a very small particle, approximately 1,000 times smaller than 
the smallest atom (hydrogen). The electron was the first subatomic particle 
identified and the fastest small piece of matter known at that time. 

In 1904, Thomson developed an atomic model to explain how the 
negative charge (electrons) and positive charge (speculated to exist since it 
was known that atoms were electrically neutral) were distributed in the atom. 
He concluded that the atom was a sphere of positively charged material with 
electrons spread equally throughout like raisins in a plum pudding. Hence, 
his model. is referred to as the plum pudding model, or raisin bun atom as 
depicted in Fig. 2-3. This model could explain 

The neutrality of atoms 
The origin of electrons 
The origin of the chemical properties of elements 
However, his model could not answer questions regarding 
Spectral lines (according to this model, radiation emitted should be 
monochromatic; however, experiments with hydrogen shows a series of 
lines falling into different parts of the electromagnetic spectrum) 
Radioactivity (nature of emitted rays and their origin in the atom) 
Scattering of charged particles by atoms. 
Thomson won the Nobel Prize in 1906 for his discovery of the electron. 
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He worked in the famous Cavendish Laboratory in Cambridge and was one 
of the most influential scientists of his time. Seven of his students and 
collaborators won Nobel Prizes; amongst them his son who, interestingly, 
won the Nobel Prize for proving the electron is a wave. 

Figure 2-3. Plum pudding atomic model (J. J. Thornson, 1904) 

2.3 Millikan's Experiment 

In 1909 Robert Millikan (1868-1953) developed an experiment at the 
University of Chicago to measure the charge of the electron. The experiment 
is known as the "Millikan oil-drop experiment." 

Millikan determined the mass of the electron based on his experimentally 
measured value of the electron charge, 1.60 x 10-l9 C, and Thomson's 
charge-to-mass ratio, 1.76 x lo8 C/g. He found the electron mass to be 9.10 x 

g (about 2000 times smaller than that of hydrogen, the lightest atom); 
the presently accepted value is 9.10939 x g. 

How was the charge of an electron measured from oil drops? Millikan's 
experimental apparatus consisted of a chamber with two metal plates placed 
at the top and the bottom. The plates were connected to a voltage source and 
oil droplets were allowed to fall between (see Fig. 2-4). In the absence of 
voltage (electrical field, E, equal to zero) droplets were allowed to fall until 
they reached their terminal velocity (when the downward force of gravity, 
mg, is balanced with the upward force of air resistance). By measuring the 
terminal velocity he was able to determine the mass of the oil droplets. By 
introducing an electrical field, the forces (gravitational and electrical) could 
be balanced and the drops would be suspended in mid-air. The resulting 
force is zero, because the gravitational force is equal to the electrical force 

where the total charge of the oil droplet, q = Nee, is an integer times the 
charge of one electron (because the electron cannot be divided to produce a 
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fractional charge). By changing the electric charge of oil droplets (irradiating 
them with X rays known at that time to ionize the molecules), Millikan 
noticed that the charge was always a multiple of the same number, 
-1.6 x 10-l9 coulombs. Robert Millikan was awarded the Nobel Prize in 
1923 for this work. 

Oil Droplets @ 

Charged 
Metal 
Plate 

Figure 2-4.  Schematics of Millikan's oil drop experiment (1909) 

2.4 The Planetary Atomic Model 

2.4.1 Disproof of Thomson's Plum Pudding Atomic Model 

Thomson's atomic model described the atom as a relatively large, 
positively charged, amorphous mass of a spherical shape with negatively 
charged electrons homogenously distributed throughout the volume of the 
sphere, the sizes of which were known to be on the order of an Angstrom 
(1 A = lo-' cm = 10-lo m). In 191 1 Geiger and Marsden carried out a number 
of experiments under the direction of Ernest Rutherford (1871-1937) who 
received the Nobel Prize in chemistry in 1908 for investigating and 
classifying radioactivity. He actually did his most important work after he 
received the Nobel Prize and the 1911-experiment unlocked the hidden 
nature of the atom structure. 

Rutherford placed a naturally radioactive source (such as radium) inside 
a lead block as shown in Fig. 2-5. The source produced a particles which 
were collimated into a beam and directed toward a thin gold foil. Rutherford 
hypothesized that if Thomson's model was correct then the stream of a 
particles would pass straight through the foil with only a few being slightly 
deflected as illustrated in Fig. 2-6. The "pass through" the atom volume was 
expected because the Thomson model postulated a rather uniform 
distribution of positive and negative charges throughout the atom. The 
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deflections would occur when the positively charged a particles came very 
close to individual electrons or regions of positive charges. As expected, 
most of the a particles went through the gold foil with almost no deflection. 
However, some of them rebounded almost directly backwards - a 
phenomenon that was not expected (see Fig. 2-7). The main challenge was to 
explain what caused such a large deflection angle and what caused other 
particles to go through the atom without noticeable scattering. 

Scintillation Screen 

Collimator 

Figure 2-5. Schematics of the Rutherford's experiment (191 1) 

Figure 2-6. Expected scattering of a particles in Rutherford's experiment 

Rutherford explained that most of the a particles pass through gold foil 
with little or no divergence not because the atom is a uniform mixture of 
positive and negative charges, but because the atom is largely empty space 
and there is nothing to interact with the a particles. He explained the large 
scattering angle by suggesting that some of the particles occasionally collide 
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with, or come very close to, the "massive" positively charged nucleus that is 
located at the center of an atom. It was known at the time that the gold 
nucleus has a positive charge of 79 units and a mass of about 197 units while 
the a particle has a positive charge of 2 units and a mass of 4 units. The 
repulsive force between the a particle and the gold nucleus is proportional to 
the product of their charges and inversely proportional to the square of the 
distance between them. In a direct collision, the massive gold nucleus would 
thus be hardly moved by the a particle. The diameter of the nucleus was 
shown to be about 11105 the size of the atom itself or around 10-l3 m. 
Clearly these ideas defined an atom very different from Thornson's model. 

Figure 2-7. Actual scattering of a particles in Rutherford's experiment 

Ernest Solvay (1838-1922), a Belgian industrial chemist who made a 
fortune from the development of a new process to make washing soda 
(1863), was known for his generous financial support to science, especially 
physics research. Among the projects he financially supported was a series 
of international conferences, known as the Solvay conferences. The First 
Solvay Conference on Physics was held in Brussels in 1911 and it was 
attended by the most famous scientists of the time. Rutherford was one of 
them; he announced the discovery of the atomic nucleus and explained the 
structure of the atom. According to his explanation, the electrons revolve 
around the nucleus at relatively great distances. Since each electron carries 
one elementary charge of negative electricity, the number of electrons must 
equal the number of elementary charges of positive electricity carried by the 
nucleus for the atom to be electrically neutral. The visual model is similar to 
the solar planetary system and is illustrated in Fig. 2-8. 
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Figure 2-8. Planetary atomic model (Rutherford, 191 1) 

2.4.2 Idea of a Nucleus in the Center of an Atom 

Rutherford's scattering experiment showed that a positive charge 
distributed throughout the volume of Thomson's atom could not deflect the 
a particles by more than a small fraction of a degree. A central assumption 
of Thomson's atomic model was that both the positive charge and the mass 
of the atom were distributed nearly uniformly over its volume. The electric 
field from this charge distribution is the field that must scatter the a 
particles, since the light-weight electrons would have a negligible impact. 
The expected deflection of an a particle from the gold nucleus according to 
Thomson's atomic model is shown in Fig. 2-9. The thickness of the gold foil 
used by Rutherford was about 400 atoms (or - 5 x m). The gold atom 
has a positive charge of 79e (balanced by 79 electrons in its normal state). 
Neglecting the electrons, the maximum electric force the a particle would 
encounter is that at the surface of the positively charged sphere. 

Johannes Kepler was first to mathematically formulate Tycho Brahe's 
precise measurements of the motion of planets, showing that the orbit of the 
planets around the sun is elliptical. Newton later proved that these elliptical 
orbits are a consequence of the attractive gravitational force ( ~ r n ~ / r ' ) .  He 
also established that the motion of heavenly bodies in the field of a central 
attractive force with a -llr2 dependence (such as the gravitational field of 
the sun) is always a conical section, depending on the initial conditions: a 
hyperbola (body has sufficient kinetic energy to avoid capture by the 
gravitational field), an ellipse (the body is captured), and a parabola (a 
limiting case between these two). The scattering of particles in the electric 
field follows the same law that describes the motion of bodies in a 
gravitational field, except that the force can be both attractive and repulsive 
(the latter being the case for a particles and a positively charged nucleus). 
These two forces, electric and gravitational, are generated according to 
modern quantum physics by the exchange of a massless particle (or field 
quantum). In the case of the electric force the field quantum is a photon and 
in the case of the gravitational force the field quantum is called a graviton. 



ATOMIC THEORY 19

Plum pudding atomic model Planetary atomic model

Figure 2-9. Trajectory of the  particle in the electric field of an atom in Rutherford’s 
experiment according to the plum pudding and planetary atomic model 

If the mass of an  particle is m with charge q = 2e, and the charge of the 
gold foil nucleus is Q = Ze = 79e, then the electric force acting on the 
particle (a Coulomb repulsion force due to the positively charged nucleus) is 
written as 

2 2
(79 )(2 )kQq k e eF

r r
 (2-2) 

where k is the Coulomb force constant, 1 / (4 0) = 8.99 x 109 Nm2/C2.
Assuming the atom to be represented by a sphere of radius 10 10 m, Eq. (2-2) 
gives the repulsive force that acts on the incoming  particle as 3.64 x 10 6

N. The assumption that only the Coulomb force acts on the  particle was 
shown to be correct since the  particles never penetrated the gold nucleus 
and Rutherford’s theoretical explanation agreed with the experimental 
measurements for all cases. 

Due to the nature of the Coulomb force acting on the  particle (inverse 
square law), the  particle follows a hyperbolic trajectory (see Fig. 2-9) that 
is characterized by the impact parameter, b. The impact parameter 
represents the distance from the nucleus perpendicular to the line of 
approach of the incident  particle. The angle of deflection, , of any 
particle is related to the impact parameter through the following relation 

( )( ) (79 )(2 )
tan( / 2) tan( / 2)

k Ze ze k e eb
T T

 (2-3) 

where T denotes the kinetic energy of the incident  particle. It follows 
that the impact parameter is smaller for larger scattering angles and larger 
energy of the incident particle. Table 2-1 illustrates dependence of the 
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impact parameter on scattering angle as measured in Rutherford’s 
experiment. 

Table 2-1. Impact parameter and scattering angle of  particles in Rutherford’s experiment 
Impact parameter, b (10 15 m) Scattering angle,  (degrees) 
81.1 40 
35.2 80 
17.0 120 
 5.2 160

From the distribution of the  particle’s scattering angles, Rutherford 
concluded that the structure of an atom most likely mimics the solar 
planetary system. The size of the nucleus at the center of the atom was 
estimated based on the kinetic energy, T, of the incident  particle and its 
potential energy at the point of closest approach, d. The closest approach 
occurs in the case of a head on collision in which the  particle comes to 
rest before it bounces back at an angle of 180 degrees (see Fig. 2-10). At that 
point the kinetic energy is zero, and the potential energy equals the initial 
kinetic energy 

(79 )(2 )k e eT
d

 (2-4) 

Impact 
Parameter, b

Nucleus 

Figure 2-10. Deflection of  particle by the gold nucleus (of radius R)

Knowing the kinetic energy of the incident  particles, the closest 
approach of an  particle to any nucleus in the gold foil (on the order of 
10 14 m) and the approximate size of the gold nucleus (on the order of 10 15

m) may be determined. The unit of 10 15 m is designated as a Fermi, fm. The 
small volume of the nucleus implies its high density and the need for a 
strong attractive force in the nucleus to overcome the Coulomb repulsive 
force. It was also understood that this attraction must be of a very short 
range.
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Example 2.3: Size of the gold nucleus in Rutherford's experiment 
In Rutherford's experiment the kinetic energy of the incident a particles was 7.7 

MeV. Estimate the upper limit size of the gold nucleus and comment on the effect of 
increased energy of the incident a particles in the experiment. 

According to Fig. 2-10 the point of closest approach will determine the size of 
the nucleus. For the head-on collision it follows from Eq. (2-4) 

k(79e)(2e) (79)(2)keL (79)(2)(l .#MeV . fm) = 30 fm 
d <  - - - - 

7.7MeV 7.7MeV 7.7MeV 

This implies that the gold nucleus has radius smaller than 30 fm (the actual 
measurement is about 8 fm). 

If the incident energy of the a particles in Rutherford's experiment is increased, 
some of the a particles would penetrate the nucleus; first in the head-on collisions 
and then for smaller angles as the energy is further increased. The limiting kinetic 
energy for the incident a particle above which the Rutherford experiment would not 
agree with theoretical explanation 

where R represents the radius of the gold nucleus. 

2.4.3 Rutherford's Scattering Formula 

Rutherford's experiment eliminated Thomson's plum pudding atomic 
model on the base of large-angle scattering. Relatively heavy a particles 
could not be turned around by much lighter electrons or by the combined 
mass of positive and negative charges if this mass were distributed 
uniformly over the whole volume. The electrostatic repulsion would only be 
strong enough to deflect incoming a particles through such large angles if 
the positive charge is concentrated (as he proposed in a central nucleus). 
This scattering of charged particles by the nuclear electrostatic field is called 
Rutherj5ord scattering. The probability of large-angle scattering is very small 
due to the extremely small size of the nucleus relative to the whole atom 
(radius of 10-l~ m versus lo-'' m); indeed, according to Rutherford's 
experiment, only 1 out of 8000 events resulted in large-angle scattering. 

Based on his planetary model of the atom, Rutherford was able to define 
the angular distribution of the scattered a particles. A particle with an impact 
parameter less than b will be scattered at an angle larger than 0 (see Fig. 2- 
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10). Therefore, all particles hitting the gold foil through the area nh2 (where 
b is the radius), will scatter at an angle 8or  larger (see Fig. 2-1 1). Assuming 
that the incident beam is made of N alpha particles and has a cross sectional 
area A, the number of particles scattered by 8 or larger is n h 2 / ~ .  Thus, the 
number of particles scattered through an angle of 8 or larger by one gold 
atom in the foil is 

N scatt - [$I 
-- 

atom 

The number of atoms encountered by the beam of particles in the gold is 

where t is the target (foil) thickness and n is the number of atoms per unit 
volume. 

i Impact 
i Parameter, b 

Figure 2-11. Correlation between the deflection angle of a particle and its impact parameter 

Therefore, it follows from Eqs. (2-5) and (2-6) that the total number of a 
particles scattered through an angle 8 or larger by the gold foil in 
Rutherford's experiment is 
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where T is the kinetic energy of the a particle. The number of particles 
that emerge between Band 6 +  dB is obtained by differentiating Eq. (2-8) 

At some distance s  from the gold foil (where the detector is located) 
particles with a deflection angle between 6 and 6 + d 6  pass through the 
annulus as shown in Fig. 2-12 and are uniformly distributed over the surface 
area 

Aria, = ( 2 n s  sin 6) ( s  d 6) 

Figure 2-12. Detection of a particles after scattering through 0 

The number of particles per unit area that pass through the annulus at 
distance s  and at angle 6 is 

This is called the Ruthe$ord scattering formula or inverse square 
scattering formula. According to this formula, the number of particles 
scattered at a certain angle is: proportional to the thickness of the foil and to 
the square of the nuclear charge of the foil, and inversely proportional to the 
incident particle kinetic energy squared and to the fourth power of sin (6'2). 
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This was confirmed in all of the experiments with gold foil. Rutherford 
derived the above formula (2-11) assuming that the only force acting 
between the nucleus and a particle is the Coulomb repulsive force, and since 
all of the experimental data agreed, this assumption was valid (see Example 
2.3). However, some years later he repeated the experiment using aluminium 
foil. The experimental results for small angle scattering agreed with his 
formula, but large angle scattering departed from it. Rutherford deduced that 
in the large-angle scattering that corresponded to a closer approach to the 
nucleus, the a particle was actually striking the nucleus. This meant that the 
size of the nucleus could be obtained by finding the maximum angle for 
which the Rutherford formula is valid, and finding the incident particle's 
closest approach to the center of the nucleus. 

2.4.4 Stability of the Planetary Atomic Model 

The Rutherford planetary atomic model could not explain: 
How are the electrons (negatively charged bodies) held outside the 
nucleus (a positively charged body) despite the attractive electrostatic 
force? According to the planetary model electrons are revolving around 
the nucleus like planets around the sun, though planets are electrically 
neutral and thus stay in their orbits. According to classical 
electromagnetic theory any charge placed in circular motion will radiate 
light (electromagnetic energy), which means that electrons orbiting 
around the nucleus would spiral inwards and collapse into the nucleus 
due to the loss of kinetic energy. This would produce extremely unstable 
atoms. 
The radiated energy of photons from spiralling electrons would change in 
frequency during the deceleration process and produce a continuous 
spectrum; however, at that time, the spectra of some of the elements were 
known to show specific discrete lines. 
What holds the positive charges in the nucleus together in spite of the 
repulsive electrostatic forces? 

2.5 The Smallness of the Atom 

Rutherford's gold foil experiment was the first indication and proof that 
the space occupied by an atom is huge compared to that occupied by its 
nucleus. In fact, the electrons orbiting the nucleus can be compared to a few 
flies in a cathedral. As a qualitative reference, a human is about two million 
times "taller" than the average Echerichia coli bacterium; Mount Everest is 
about 5000 times taller than the average man; and a man is about ten billion 
times "taller" than the oxygen atom. If the atom were scaled up to a size of a 
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golf ball, on that same scale a man would stretch from Earth to the Moon. 
Atoms are so small that direct visualization of their structure is impossible. 
Today’s best optical or electron microscopes can not reveal the interior of an 
atom.  

The picture shown in Fig. 2-13 was taken with a scanning transmission 
electron microscope and shows a direct observation of cubes of magnesium 
oxide, but details of the atoms cannot be seen. 

Figure 2-13. Magnesium oxide crystallites as seen with scanning transmission electronic 
microscope produced at the Institute of Standards and Technology in the USA (Courtesy 

National Institute of Standards and Technology) 

At the National Institute of Standards and Technology (NIST), however, 
the Nanoscale Physics Facility is used to manipulate and arrange atoms, one 
by one, into desired patterns.  

The image shown in Fig.2-14 represents an eight nanometer square 
structure with cobalt atoms arranged on a copper surface. Such arrangements 
of atoms are used to investigate the physics of ultra tiny objects. The 
structure shown below was observed with a scanning tunneling microscope 
at a temperature of 2.3 Kelvin (about 455 degrees Fahrenheit): the larger 
peaks (upper left and lower right) are pairs of cobalt atoms, while the two 
smaller peaks are single cobalt atoms. The swirls on the copper surface 
illustrate how the cobalt and copper electrons interact with each other. 
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Figure 2-14. Nanoscale structure of cobalt and copper atoms produced at the Institute of 
Standards and Technology in the USA (Courtesy of J. Stroscio, R. Celotta, A. Fein, E. 

Hudson, and S. Blankenship, 2002) 

2.6 The Quantum Atomic Model 

2.6.1 Quantum Leap 

In 1913 Niels Bohr (1885-1962), developed the atomic model that 
resolved Rutherford's atomic stability questions. His model was based on 
the work of Planck (energy quantization), Einstein (photon nature of light), 
and Rutherford (nucleus at the center of the atom). 

In 1900 Max Planck (1858-1947) resolved the long-standing problem of 
black body radiation by showing that atoms emit light in bundles of radiation 
(called photons by Einstein in 1905 in his theory of the photoelectric effect). 
This led to formulation of Planck's radiation law: a light is emitted as well 
as absorbed in discrete quanta of energy. The magnitude of these discrete 
energy quanta is proportional to the light's frequency Cf, which represents the 
color of light), as shown in Eq. (2-12) 

where h is Planck's constant (h = 6.63 x J s), c is the speed of light 
and A is the wavelength of the emitted or absorbed light. 

Bohr applied the quantum theory of light to the structure of the electrons 
by restricting them to exist only along the certain orbits (called the allowed 
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orbits) and not allowing them to appear at arbitrary locations inside the 
atom. The angular momentum of the electrons is quantized and thus 
prohibits random trajectories around the nucleus. Consequently the electrons 
cannot emit or absorb electromagnetic radiation in arbitrary amounts since 
an arbitrary amount would lead to an energy that would force the electron to 
move to an orbit that does not exist. Electrons are thus allowed to move from 
one orbit to another. However, the electrons never actually cross the space 
between the orbits. They simply appear or disappear within the allowed 
states; a phenomenon referred to as a quantum leap or quantum jump. 

For his theory of atoms that introduced the new discipline of quantum 
mechanics in physics, Bohr received a Noble Prize in 1922. He was also a 
founder of the Copenhagen school of quantum mechanics. One of his 
students once noticed a horseshoe nailed above his cabin door and asked 
him: "Surely, Professor Bohr, you don't believe in all that silliness about the 
horseshoe bringing good luck?" With a gentle smile Bohr replied: "No, no, 
of course not, but I understand that it works whether you believe it or not". 

2.6.2 Absorption and Emission of Photons 

In Bohr's atomic model, an electron jumps to a higher orbit when the 
atom absorbs a photon, and back to a lower orbit when the atom emits a 
photon. In other words, a quantum leap to a higher orbit requires energy, 
while a quantum leap to a lower orbit emits that energy (see Fig. 2-15). 

Bohr's atomic model resolved the problem of atomic instability (Section 
2.4.4) by changing the classical mechanics into quantum mechanics. This 
explains the existence of discontinuities in the absorpti,on and emission of 
energy which is determined by the allowable electronic states in atoms. 
These allowed orbits are also called stationary orbits or stationary states. 
Since the orbits are discrete and quantized, so are their energies. The 
electrons in an atom can thus only have discrete energies. According to 
Bohr's theory, in an electrically neutral atom, an electron is in its stationary 
state and does not radiate energy as long as it is not disturbed. This 
explained the stability of atoms but does not explain why electrons don't 
radiate energy while orbiting along their stationary trajectories. The theory 
also explained the reason for the discontinuities in the atomic spectra. When 
an electron jumps to higher orbit a photon must be absorbed and its energy is 
equal to the energy difference of the two orbits. Conversely, a photon is 
emitted when an electron drops to a lower orbit and the photon energy is 
again equal to the energy difference of the two orbits (see Fig. 2-15) 
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Both the emission and absorption of energy by an atom thus correspond 
to electron transition, which is the movement of an electron from one level 
to another. The electrons of an electrically neutral atom are normally all in 
the lowest possible energy levels. The addition of energy excites the 
electrons and the resulting atom is in an excited state (absorption of energy 
by an atom). Generally the electrons remain in this excited state for a short 
duration and soon return to a more stable, lower energy level by releasing 
the extra energy (emission of energy by an atom).  

hf

Lower Orbit, Em

Higher Orbit, En

hf

Photon is absorbed Photon is emitted

hf

Lower Orbit, Em

Higher Orbit, En

hf

Photon is absorbed Photon is emitted

Figure 2-15. Schematic representation of a quantum leap of electrons in the quantum atomic 
model (Niels Bohr, 1913) 

2.6.3 The Bohr Model of the Hydrogen Atom 

According to the Bohr atomic model, the hydrogen atom consists of an 
electron of mass m and charge –e, which orbits around a nucleus of charge 
+e (see Fig. 2-16). For simplicity, it is assumed that the electron orbits the 
nucleus in a circular motion and that the nucleus is fixed in its position 
(since the hydrogen nucleus consists of one proton that is much heavier than 
the electron, this assumption does not affect the final result). 

The only force that is thus acting on the electron is the attractive 
Coulomb force from the positively charged nucleus 

2

2
keF
r

 (2-14) 

where k is the Coulomb force constant, k = 1/4 0 = 8.99 x 109 Nm2/C2,
and 0 = 8.8542 x 10-12 C2/Nm2 is the permittivity of free space. 

The Coulomb force of attraction is equal to the electron’s centripetal 
force and according to Newton’s second law it can be written as 
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where v 2 / r  is the centripetal acceleration. Equation (2-15) can be 
rewritten as follows 

and according to classical mechanics, this indicates possible values for 
electron velocity and its distance from the nucleus that range continuously 
from 0 to - . The electron's kinetic energy is T = mu2 / 2 and its potential 
energy in the field of the proton is U = -ke2 l r  . By convention the potential 
energy is zero ( U  = 0 )  when the electron is far away from the nucleus 
( r  -+ w) .  For an electron in a circular orbit around a positively charged 
nucleus kinetic and total energy are 

Electron 

I I 
\ Nucleus I 
\ I 
\ I 

Figure 2-16. Circular motion of an electron in the Bohr model of the hydrogen atom 

The negative value for the total energy indicates that the electron is 
bound to the nucleus and cannot escape to infinity. Since the distance from 
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the nucleus ranges from 0 to infinity, it follows from Eq. (2-18) that the 
electron's total energy can have values between - - and 0. 

The above analysis is based on classical mechanics and does not show 
that the energy of the electron is quantized. Bohr's hypothesis was that the 
electron's angular momentum (L = rnvr ) was quantized in multiples of 
Planck's constant (this is because Planck's constant has a unit of angular 
momentum) and for circular orbits 

where h = h / 2n  = 1.055 x 1 o - ~ ~  JS (read as "h bar"). 
Combining Eqs. (2- 18) and (2- 19) 

Eq. (2-20) gives quantized values for the radius of the electron's orbit. In 
addition, it defines the so-called Bohr radius, a0 

From the possible electron orbit radii the possible energy levels are 
calculated as follows 

1 1 ke2 n2h2 E=T+U=-U=---  and r =-- - n2a0 gives 
2 2 r ke2m 

The energy of the photons that are absorbed or emitted from the 
hydrogen atom during electronic transitions between orbits n and m ( n  > m, 
see Fig. 2-15) can be now determined 



ATOMIC THEORY 3 1 

In the chapters that follow this equation is explored further and connected 
to the work of Rydberg. 

2.7 Atomic Spectra 

A spectrum is defined as the distribution of light (electromagnetic 
radiation) as a function of its frequency or wavelength. Newton performed 
the first light color spectrum experiment in 1666 by shining white light 
through a glass prism. The experiment produced a rainbow of colors and 
showed that what we observe as white light is a mixture of many different 
colors. In 1814 a German physicist, Joseph von Fraunhofer, noticed a 
multitude of dark lines, indicating that certain colors are missing in the solar 
light spectrum. These dark lines were caused by the absorption of some of 
the solar light's components by the gases in the sun's outer atmosphere. A 
series of experiments followed and by the middle of the 19" century it was 
understood that gases absorb light (specific frequencies of light) that are 
characteristic of the gas constituents. 

Absorption spectrum 

Emission spectrum 
Figure 2-17. Absorption and emission spectra of atomic hydrogen 

If white light is shone through a gas that consists of only one kind of 
atom, the gas will absorb light of frequency (energy) that is characteristic to 
that atom. If the light is then subsequently transmitted through a glass prism, 
the resulting spectrum will lack the colors corresponding to the absorbed 
frequencies. This spectrum is called the absorption spectrum and the dark 
lines correspond to the absorbed frequencies (see the hydrogen absorption 
spectrum in Fig. 2-17). By 1859 Robert Bunsen discovered that sufficiently 
heated gases also emit light and an emission spectrum is observed when the 
emitted light is transmitted through a glass prism (see the hydrogen emission 
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spectrum in Fig. 2-17). The emission spectrum's bright lines correspond to 
the dark lines in the absorption spectrum. At the same time, his colleague, 
Gustav Kirchhoff, while analysing the spectra of sunlight and heated 
sodium, realized that the dark lines in the solar spectrum represented the 
light frequencies that were absorbed by the sodium atoms in the solar gases. 

The emission and absorption spectra thus represents a "signature" of an 
atom. The Kirchhoff-Bunsen discovery was not fully understood until Bohr 
explained the transition of electrons between strictly defined orbits (energy 
levels), but it represents the beginning of the science of spectroscopy. By 
1870 spectroscopy became a tool that was used to analyse the chemical 
compositions of the sun and stars. 

2.7.1 The Balmer-Rydberg Formula 

In 1885 a Swiss school teacher, Jakob Balmer (1825-1898), analysed the 
hydrogen atomic spectral data and showed that the observed wavelengths 
correlate to the formula 

where R is a constant with a dimension of inverse length, according to 
Balmer equal to 0.01 10 nm-' for the hydrogen spectrum, and n is an integer 
with values of 3, 4, 5 and 6 that correspond to the four observed hydrogen 
spectral lines. Balmer correctly assumed that this dependence could not be a 
random coincidence and that other lines must exist (n can be greater than 6). 
The Balmer formula can be rewritten in the form 

Johannes Rydberg later extended Balmer's work to include all lines in 
the hydrogen atom emission spectrum 

where n and m are both integers. Equation (2-26) is called the Rydberg 
formula and R the Rydberg constant. At the time when this formula was 
developed, it only represented empirical data and no explanation was given 
as to why the spectral lines obey such regularities. In 1913, Neils Bohr 
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developed an atomic model that explained this nature of absorption and 
emission spectra of atoms. Rewritten in terms of photon energy, the Rydberg 
formula becomes 

1 
E Y = h ~ l A a n d - = R ~ - ~  ( n > m )  give [d nl ]  

Recall from Section 2.6.3 (Eq. 2-23) the energy of emitted or absorbed 
photons according to the Bohr atomic model 

From last two relations it can be seen that Bohr's model predicts Rydberg 
formula and gives the value for the Rydberg constant 

which is in perfect agreement with the measured values. The term, hcR is 
called the Rydberg energy, ER 

Thus, the allowed energies of the electron in a hydrogen atom can be 
expressed in terms of the Rydberg energy 

and the energies of the photons emitted or absorbed by the hydrogen 
atom are given by 
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2.7.2 Properties of the Hydrogen Atom According to Bohr's Atomic 
Model 

Bohr's model of the atom correctly predicts: 

Possible electron energies in a hydrogen atom are quantized and with 
values of E, = -ER l n 2  where n = 1,2,  3, . . . 
The lowest possible energy level corresponds to the ground state for 
which n = 1 and E, = -ER = -13.6eV . 
A minimum energy of +13.6eV is needed to completely remove the 
electron from a hydrogen atom. This energy is called the binding energy 
of the hydrogen atom and it is in perfect agreement with the empirical 
value. 
The radius that corresponds to the ground state of a hydrogen atom is 
equal to the Bohr radius, r, = a, = 0.0529nm which agrees well with 
measured values of the size of the hydrogen atom. 
The radius of the nth circular electron orbit is rn = n2a,. 
The orbits with radii greater than the ground state radius are called the 
excited states of an atom. There are infinitely many levels and all are 
between the ground state and the zero energy level. For the hydrogen 
atom, the energies of excited states are E2 = -ER 14 = -3.4eV, 
E, = -ER I 9  = -1.5eV ... These energy levels are generally plotted as 
illustrated in Fig. 2-18 in a format commonly referred to as energy-level 
diagrams. The transition from the ground state (n  = 1 )  to the n = 2 energy 
level is called the first excitation level, and the energy required to raise 
the hydrogen atom to that level is E, - E2 = 10.2eV . 

The spectral lines of the hydrogen atom (see Fig. 2-19) are given names 
based onthe names of the scientists who discovered them: 

1 .  Lyman series: transition to the ground state m = 1 
2. Balmer series: transition to the level rn = 2 
3. Paschen series: transition to the level m = 3 
4. Bracket series: transition to the level rn = 4. 
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Figure 2-18. Energy-level diagram of the hydrogen atom 

Figure 2-19. Spectral lines in hydrogen atom 

Example 2.4 Electron transitions in a hydrogen atom 
Calculate the wavelength and energy of the light emitted when the electron in a 
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hydrogen atom falls from the first excited state to the ground level. 
According to the Balmer formula 

2 2

1 1 1
( )R n m

m n

Therefore, the wavelength of the emitted light is 

2 2 1

1 1 1 3 4 4
121

4 31 2 (3)(0.0110 )
R R nm

R nm

and the required energy of this transition is 

2 2

1 1 3 3
(13.6 ) 10.2

4 41 2R RE E E eV eV

Example 2.5 Orbiting velocity of the electron in a hydrogen atom 
Calculate the highest velocity, the smallest orbit radius and the time it takes for 

an electron to complete one revolution in a hydrogen atom. 
The electron has its highest velocity and smallest orbit radius while in the 

ground state. The ground state radius in the hydrogen atom corresponds to the Bohr 
radius, 1 0 0.0529r a nm . The highest velocity is thus 

1 1 1 0 1m r n r a n
34 2

6
1 31 9

0

1.05 10 /
2.1 10 /

(9.31 10 )(0.0529 10 )
kgm s

m s
ma kg m

The time it takes for a ground state electron to complete one revolution around 
the nucleus is 

160

1

2
1.52 10

a
t s

2.7.3 Ionization and Excitation 

Ionization or excitation of atoms occurs when a photon or a charged 
particle (electron, , proton) collides with an orbital electron; thereby 
transferring energy to and changing the energy level of the electron. 
Ionization refers to the case in which the transferred energy causes the 
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ejection of an electron, while in the case of excitation the electron simply 
moves to a higher energy orbital. This is an important concept in health 
physics as it represents the mechanism through which energy is transferred 
from radiation to tissue. 

The ionization energy (also called the ionization potential, IP) of an atom 
is the amount of energy required to remove the least tightly bound electron 
from the atom. To remove a second electron requires remarkably more 
energy and the removal of each subsequent electron becomes increasingly 
more difficult. For most elements, the first ionization potential is on the 
order of several eV (see Table 2-2). The first ionization potential of the 
hydrogen atom is calculated in Section 2.7.2. When a photon with energy 
greater than the ionization energy collides with a bound electron of an atom, 
the photon vanishes and the electron is ejected from the atom with a kinetic 
energy, Epe, equal to the difference between the photon's initial energy and 
the ionization potential 

This mechanism is called the photoelectric effect and is described in 
more detail in Chapter 5. 

Table 2-2. First ionization potential (IP) for the first few atoms 
Atom IP(eV) 
Hydrogen 13.6 
Helium 24.6 
Lithium 5.4 
Beryllium 9.3 
Boron 8.3 
Carbon 11.3 
Nitrogen 14.5 
Oxygen 13.6 
Fluorine 17.4 
Neon 21.6 
Sodium 5.14 

Example 2.6 Excitation of the hydrogen atom 
Sketch the excitation of the hydrogen atom for the corresponding absorption and 

emission of light of energy 10.2 eV. 
The absorption of a photon with energy 10.2 eV will move the electron from its 

ground state to orbit n = 2. Conversely, the jump back to ground state will emit a 
photon of energy 10.2 eV (Fig. 2-20). 



Chapter 2 

Energy is absorbed and the electron jumps from the 
ground level (n = 1) to its excited state in a higher 

orbital(n = 2) 

Energy is emitted and the electron falls from its excited 
state (n = 2) back to the ground level (n = 1) 

Figure 2-20. Excitation and de-excitation of the hydrogen atom 

Example 2.7 Ionization potential (ZP) 
For a photon of wavelength m striking the outer orbital electron of a sodium 

atom, calculate the kinetic energy of the photoelectron (ejected electron). What is 
the maximum photon wavelength (minimum energy) required to ionize the sodium 
atom? The IP for sodium is given in Table 2-2. 

The energy of the photon of wavelength m is calculated by 

The kinetic energy of the photoelectron is E,=hf - IP = 12.4 eV - 5.14 eV = 7.26 
eV. The maximum photon wavelength (minimum energy) required for the ionization 
of a sodium atom is then 

The electron is ejected because the wavelength of the photon is less than the 
required maximum wavelength (i.e. the photon energy exceeds the ionization 
potential). 
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2.7.4 Hydrogen-Like Ions 

The Bohr's atomic model was valid for the hydrogen atom. Any attempt 
to generalize it for atoms having multiple electrons was unsuccessful until 
quantum mechanics development took place in 1925. Bohr's model can, 
however, be applied to all atoms that are like hydrogen, that is atoms that 
have lost all but one of their electrons. In such atoms (ions) the remaining 
electron revolves around the nucleus of charge +Ze in the same way as the 
electron in a hydrogen atom. All of the formulas developed for the hydrogen 
atom in previous sections are thus applicable to these ions, with the 
exception that the e2 term is replaced by Ze2. Therefore, 

The radius of an electron moving around a nucleus of charge Ze is 
inversely proportional to Z 

The potential energy of the electron in a hydrogen-like ion is 

The total energy of the electron in a hydrogen-like ion is: 

The allowed energies for the electron in a hydrogen-like ion are Z2 times 
the corresponding energies in hydrogen atom: 

The energies of the photons emitted and absorbed by the electron in 
hydrogen-like ions are: 
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Example 2.8 Helium ion and reduced mass correction 
Calculate the ratio of the allowed energies in the helium ion to that in the 

hydrogen atom taking into account the effect of nuclear motion. 
The assumption that the electron orbits around a fixed nucleus is not entirely 

correct. In reality, they both revolve around the common center of mass. Since the 
nucleus is much heavier than the electron, the center of mass is close to the nucleus, 
which is therefore almost stationary. In the equations for allowed energies as well as 
for the Rydberg energy, the electron mass, rn, must be corrected for the motion of 
nucleus (mass = M). This is done by replacing the electron mass with the so-called 
reduced mass, p, which is defined as 

The reduced mass is always less than the actual mass of the electron. In a 
hydrogen atom, the nucleus consists of a single proton and rn / M - 111800. The 
helium ion (He') nucleus is four times heavier than that of the hydrogen atom and 
thus rn 1 M is four times smaller. 

When nuclear motion is accounted for, the ratio of allowed energy levels in the 
helium ion to that of hydrogen increases from exactly 4 to 4.0017. This small 
difference is observed in the measurements of atomic and ionic spectra. 

2.7.5 Empirical Evidence of Bohr's Theory 

Although Bohr's theory was shown to be almost completely valid for the 
hydrogen atom, great success was also achieved when it was used to 
describe hydrogen-like ions (as discussed in Section 2.7.4). Bohr's theory 
also proved to be valid for calculating the allowed energy levels of the 
innermost electron in multi-electron atoms. The latter application 
approximates the charge of the outer electrons to be uniformly distributed in 
a sphere surrounding the innermost electron. It follows that, due to the 
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spherical symmetry of the electric field, the innermost electron experiences 
no net force from the outer electrons. The only force acting on the innermost 
electron is the electrostatic force from the positively charged nucleus (Ze). 
The allowed energies for the innermost electron in multi-electron atoms are 
given by Eq. (2-36) 

For example, the energy required to remove the innermost electron from 
its ground state orbit (n = 1) in an iron atom (Z = 26) is 

For heavier atoms the energy needed to remove the innermost electrons is 
on the order of thousands of eV and thus photons emitted or absorbed in 
such transition are in the range of X rays (see Chapter 3). Henry Moseley 
(1887 - 1915), a British physicist (killed at the age of 27 in World War I), 
was measuring the wavelengths of X rays emitted by various atoms when he 
discovered that the dependence on atomic number exactly followed Bohr's 
theory. His explanation of characteristic X rays was that if an innermost 
electron (n = 1) is ejected, the vacancy created is filled by an outer electron. 

The transition of the outer electron to the inner shell will produce the 
emission of a characteristic photon with energy that is equal to the difference 
in allowed energies of the levels involved in the electron jump. For example, 
in the transition of an electron from level n = 2 to level n = 1, traditionally 
called K,, the energy of the emitted photon is given by Eq. (2-37) 

Moseley measured the frequencies of emitted photons for about 20 
different elements and found that frequency changes with the square of the 
atomic number Z. He then plotted the square root of the frequencies as a 
function of known values of Z and verified that it is a linear function. This 
helped in the identification of the atomic numbers of several elements that 
were not known at the time (one of which was technetium, Z = 43, which 
does not occur naturally and was produced artificially in 1937). 

The plot shown in Fig. 2-21 indicates that the line does not start from the 
origin as the relation would suggest. After detailed examination of the plot, 
Moseley concluded that the line crosses the Z-axis at a point close to Z = 1, 
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implying that 
characteristic X 

0 = (2 - 1) or E,  = (Z - 112. The prediction that 
rays are emitted with frequencies proportional to Z2 was 

based on the assumption that inner electrons experience a force due to the 
positive charge of nucleus (+Ze), but are not affected by the charges of the 
other (outer) electrons in the atom. 

In reality, however, the inner electrons do experience a force from the 
outer electrons in the form of a screening of the nuclear attraction force; that 
is, the attractive force of the nucleus is somewhat diminished due to the 
presence of the outer electrons. This so-called screening factor, a, is usually 
close to unity and the energy of emitted (or absorbed) Ka X rays is 

, I I I , I I 3 I I I I I  1 
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Atomic Number, A 

Figure 2-21. Plot of K,X ray characteristic lines known at the time of Moseley's experiments 

Example 2.9 Characteristic K ,  line 
Estimate the wavelength of the characteristic Ka X ray from niobium, which has 

atomic number Z = 41. Assume that the screening factor is approximately equal to 1. 
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Example 2.10 Cascade of vacancies 
Calculate the wavelength and determine the spectral region for a krypton atom 

(Z = 36) when an electron from n = 2 fills a vacancy in the n = 1 level. What 
happened to the n = 2 level when the electron fell to the n = 1 level? 

Allowed energies for these two levels, taking into account the screening effect, 
are 

The energy of the emitted photon in this transition is 12,495 eV and the 
corresponding wavelength is 0.099 nm, which belongs to the X-ray region of the 
spectrum. After the n = 2 electron falls to the n = 1 level, an n = 3 or an n = 4 
electron fills this orbital and emits another photon. 

2.8 Atoms of Higher Z 

2.8.1 Quantum Numbers 

The light spectra of atoms with more than one electron are much more 
complex than that of the hydrogen atom (many more lines). The calculations 
of the spectra for these atoms with the Bohr atomic model are complicated 
by the screening effect of the other electrons (see Section 2.7.5). 
Examination of the hydrogen spectral lines with high resolution 
spectroscopes shows these lines to have very fine structures, and the 
observed spectral lines are each actually made up of several lines that are 
very close together. This observation implied the existence of sublevels of 
energy within the principal energy level, which makes Bohr's theory 
inadequate even for the hydrogen atomic spectrum. 

Bohr recognized that the electrons are most likely organized into orbital 
groups in which some are close and tightly bound to the nucleus, and others 
less tightly bound at larger orbits. He proposed a classification scheme that 
groups the electrons of multi-electron atoms into "shells" and each shell 
corresponds to a so-called quantum number n. These shells are given names 
that correspond to the values of the principal quantum numbers 

n = 1 (K shell) can hold no more than 2 electrons 
n = 2 (L shell) can hold no more than 8 electrons 
n = 3 (M shell) can hold no more than 18 electrons, etc. 
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Moseley's work (described in Section 2.7.5) contributed to the 
understanding that the electrons in an atom existed in groups visualized as 
electron shells, and according to quantum mechanics, the electrons are 
distributed around the nucleus in probability regions also called the atomic 
orbitals. 

In order to completely describe an atom in three dimensions, Schrodinger 
introduced three quantum numbers in addition to the principal quantum 
number, n. There are thus a total of four quantum numbers that specify the 
behaviour of electrons in an atom, namely 

principal quantum number, n = 1,2,3,  . . . 
azimuthal quantum number, 1 = 0 to n - 1 
magnetic quantum number, m = -1 to 0 to +1 
spin quantum number, s = -112 or +1/2. 
The principal quantum number describes the shells in which the 

electrons orbit. The maximum number of electrons in a shell n is 2n2. 
The sub-energy levels (s, p, d, etc. ..) are the reason for the very fine 

structure of the spectral lines and result from the electron's rotation around 
the nucleus along elliptical (not circular) orbits. The azimuthal quantum 
number describes the actual shape of the orbits. For example, 1 = 0 refers to a 
spherically shaped orbit, 1 = 1 refers to two obloid spheroids tangent to one 
another, and 1 = 2 indicates a shape that is quadra-lobed (similar to a four 
leaf clover). For a given principle quantum number, n, the maximum number 
of electrons in an 1 = 0 orbital is 2, for an 1 = 1 orbital it is 6, and an 1 = 2 
orbital can accommodate a maximum of 10 electrons. 

The magnetic quantum number is also referred to as the orbital quantum 
number and it physically represents the orbital's direction in space. For 
example when 1 = 0, m can only be zero. This single value for the magnetic 
quantum number suggests a single spatial direction for the orbital. A sphere 
is uni-directional and it extends equally in all directions, hence the reason 
for a single m value. If 1 = 1 then m can be assigned the values -1, 0, or + I .  
The three values for m suggest that the double lobed orbital has three 
distinctly different directions in three-dimensional space into which it can 
extend. 

The spin quantum number describes the spin of the electrons. The 
electrons spin around an imaginary axis (as earth spins about the imaginary 
axis connecting the north and south poles) in a clockwise or counter 
- clockwise direction; for this reason there are two values, -112 or +1/2. 

The allowed combination of quantum numbers is given in Fig. 2-22. 

Example 2.11 Quantum numbers of the hydrogen atom 
Write the quantum numbers of the ground and first excited level of the electron 

in a hydrogen atom. Comment on the values of angular momentum of the ground 
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state atom using Bohr’s atomic model. Use an energy-level diagram to indicate the 
quantum levels. 

From Fig. 2-22 it follows that for the ground level, n = 1. The only possible 
value for the azimuthal quantum number is then zero (l = 0), indicating that the 
ground state of a hydrogen atom has zero angular momentum. This in turns gives 
only one value for the magnetic quantum number, m = 0. According to Bohr’s 
atomic model, the ground state of a hydrogen atom has an angular momentum equal 
to 1L . However, the Schrödinger equation (see Chapter 4) predicts that L = 0. 

 For the first excited level, n = 2, which gives two values for the azimuthal 
quantum number; namely l = 0 and l = 1. When l = 0, the only possible value for m
is zero. However, when l = 1, m assumes three values, m = 1, 0, or -1 and this results 
in three possible orientations for the angular momentum. In summary: 

Ground state: n = 1, l = 0, m = 0 
First excited level: n = 2, l = 0 or l = 1, m = 0 or m = 1, 0 or -1. 
The energy-level diagram is shown in Fig. 2-23. 
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Figure 2-22. Allowed combinations of quantum numbers 

2.8.2 The Pauli Exclusion Principle 

Quantum numbers describe the possible states that electrons can occupy 
in an atom. Additional rules are required to define how the electrons occupy 
these available states and thus explain the structure of multi electron atoms 
and the periodic system of elements. An atom in its ground state has the 
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minimum possible energy and electrons are distributed among the available 
and allowed states according to the principle formulated by the Austrian 
physicist Wolfgang Pauli (1900 - 1958). This principle, called the Pauli 
Exclusion Principle, states that no two electrons in any atom can share the 
same set of four quantum numbers. As an analogy, consider the fact that a 
single seat in the bus can be occupied by only one passenger and not by all 
the passengers. The electron states for the first three elements are used to 
describe the Pauli Exclusion Principle. 

Figure 2-23. Energy-level diagram for the hydrogen atom including the quantum numbers 

Hvdronen, the first and simplest atom, has a nuclear charge of +1 (2  = I), 
and thus only one electron. The principal quantum number must be 1. 
Therefore, 

n = 1 , l  =O, m = O , s = +  112or- 112 
Since there is only one electron, the spin orientation can be either of the 

two values. 
Helium, the second element, has 2 orbital electrons and positive nuclear 

charge of +2 ( 2  = 2). The first electron in a helium atom may have the same 
set of quantum numbers as the electron in a hydrogen atom, but the second 
electron must differ. Since there are two possible values for spin orientation, 
these two electrons will have different spin quantum numbers (see Fig. 
2-24). Thus, 

For the first electron: n = 1, 1 = 0, m = 0, s = + 112 
And for the second: n = 1,1= 0, m = 0, s = - 112 
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The second electron in a helium atom exhausts all possibilities for n = 1. 
The anti-parallel orientation of the spins in the 1s state results in a zero 
magnetic moment, which is observed for the helium atom in its ground state, 
thus providing proof of the exclusion principle. If the spins of these two 
electrons were parallel (forbidden states), this would produce a non-zero 
magnetic moment, which has never been observed. 

Forbidden Allowed 

Figure 2-24. The ground state of a helium atom according to the Pauli Exclusion Principle 

In an excited helium atom as shown in Fig. 2-25, one electron can be in 
the 1s state and the other in 2s. In this case, according to Pauli Exclusion 
Principle, the spins of the two electrons can be parallel, which would give a 
non-zero, magnetic moment, or anti-parallel, in which case the magnetic 
moment is zero. Both cases have been observed in reality and thus contribute 
evidence of the exclusion principle. 

Allowed Allowed 

Figure 2-25. The lowest excited states of a helium atom 

Lithium, which has three orbital electrons and atomic number Z =3. The 
first two electrons occupy the I s  level with anti-parallel spins. The 1s level 
is thus filled and cannot accommodate any more electrons (all seats are 
taken!). Thus, the third electron, according to the exclusion principle, must 
occupy the next higher energy level and thus have a principal quantum 
number equal to 2. The lowest level in this state is the 2s level (see Fig.2- 
26). This orbital may be circular or elliptical, i.e. the azimuthal quantum 
number may be either 0 or 1 : 
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i f l=O=>m=O;  
i f1=1 =>m=-l ,Oor+l .  
Each of these states may contain 2 electrons, with each electron having a 

spin of +1/2 or -112. 

Figure 2-26. The ground state of a lithium atom 

The Pauli Exclusion Principle also applies to any electron-like particle, 
i.e. a particle with a half-integer spin. For example, neutrons, like the 
electrons, have a half-integer spin and the arrangement of neutrons inside 
the nucleus is similar to that of the electrons in their orbits around the 
nucleus (see Chapter 3). 

2.8.3 The Aufbau Principle 

The quantum numbers and the Pauli Exclusion Principle define the 
maximum number of electrons that can be found in each of the electron 
orbits of an atom and also explain how the electrons are arranged. The 
aufbau principle (German meaning "to build up") explains the order in 
which the electrons occupy the orbitals. According to this principle the 
lowest energy orbitals in an atom are filled before those in the higher energy 
levels. This explains the regularities in the chemical properties of the 
elements and the periodic table of elements as described in the following 
section. 

2.9 The Periodic Table and Properties of the Elements 

By the mid 19 '~  century, several chemists had discovered that when the 
elements are arranged by atomic mass they demonstrate periodic behaviour. 
In 1869, while writing a book on chemistry, Russian scientist Dmitri 
Mendeleev (1834 - 1907) realized this periodicity of the elements and he 
arranged them into a table that is today called the periodic table of elements. 
The table, as first published, was a simple observation of regularities in 
nature; the principles that defined this periodicity were not understood. 
Mendeleev's table contained gaps due to the fact that some of elements were 
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yet unknown. In addition, when he arranged the elements in the table he 
noticed that the weights of several elements were wrong. 

In the modern periodic table, the elements are grouped in order of 
increasing atomic number and arranged in rows (see Fig. 2-27). Elements 
with similar physical and chemical properties appear in the same columns. A 
new row starts whenever the last (outer) electron shell in each energy level 
(principal quantum number) is completely filled. Properties of an element 
are discussed in terms of their chemical or physical characteristics. Chemical 
properties are often observed through a chemical reaction, while physical 
properties are observed by examining a sample of a pure element. 

Group 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 

2 

3 
'F1 .- 
& 4 
& 

5 

6 

7 

. . 

Figure 2-27. The periodic table of elements 

The chemical properties of an element are determined by the distribution 
of electrons around the nucleus, particularly the outer, or valence, electrons. 
Since a chemical reaction does not affect the atomic nucleus, the atomic 
number remains unchanged. For example, Li, Na, K, Rb and Cs behave 
chemically similarly because each of these elements has only one electron in 
its outer orbit. The elements of the last column (He, Ne, Ar, Kr, Xe and Rn) 
have filled inner shells and all except helium have eight electrons in their 
outermost shells. Because their electron shells are completely filled, these 
elements cannot interact chemically and are therefore referred to as the inert, 
or noble, gases. Each horizontal row in the periodic table of elements is 
called a period. The first period contains only two elements, hydrogen and 
helium. The second and third periods each contain eight elements, while the 
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fourth and fifth periods contain 18 elements each. The sixth period contains 
32 elements that are usually arranged such that elements from Z = 58 to 71 
are detached from main table and placed below it. The seventh and last 
period is also divided into two rows; one of which, from Z = 90 to 103, is 
placed below the second set of elements from the sixth period. The vertical 
columns are called groups and are numbered from left to right. The first 
column, Group 1, contains elements that have a closed shell plus a single s 
electron in the next higher shell. The elements in Group 2 have a closed shell 
plus two s electrons in the next shell. Groups 3 to 18 are characterized by the 
elements that have filled, or almost filled, p levels. Group 18 is also called 
Group 0, and contains the noble gases. The columns in the interior of the 
periodic table contain the transition elements in which the electrons are 
present in the d energy level. These elements begin in the fourth period 
because the first d level ( 3 4  is in the fourth shell. The sixth and the seventh 
shells contain 4f and 5f levels and are called lanthanides, or rare earth 
elements, and actinides, respectively. 

The elements are also grouped according to their physical properties; for 
instance, they are grouped into metals, non-metals, and metalloids. 
Elements with very similar chemical properties are referred to as families; 
examples include the halogens, the inert gases, and the alkali metals. The 
following sections only focus on those atomic properties that are closely 
related to the principles of nuclear engineering. 

2.9.1 Electronic Configuration 

The most common way to illustrate the electronic structure of the atoms 
in their ground states is to use energy-level diagrams (like these shown in 
Fig. 2-24 and 2-26) or notations as shown in Table 2-3. 

Table 2-3. Electron configuration of the first 18 elements 
First Shell Second Shell Third Shell 
Hydrogen, H-1: 1s' Lithium, Li-3: ls22s1 Sodium, Na-I 1 : ls22s22ph3s1 - - 
Helium, He-2: ls2 Beryllium, Be-4: ls22s2 Magnesium, Mg-12: 

Boron, B-5: ls?2s22p1 Aluminium, A1-13: ls22s22p63s23p' 
Carbon. C-6: ls?2s22.u2 silicon. ~ i -  14: l s ? 2 ~ ~ 2 ~ ~ 3 s % . u ~  
~ i t r o ~ e i ,  N-7: ls?2si2p3 phosphor, P- 15: 1 s?2si2p63si3p3 
Oxygen, 0-8: ls22s?2p4 Sulphur, S-16: ls22s?2p63s23p4 
Fluorine, F-9: 1 s22s?2p5 Chlorine, C1- 17: ls22s?2p63s23p5 
Neon, Ne- 10: l s?2s22p6 Argon, Ar-18: l s22s22p%23p6 

Example 2.12 Electronic configuration 
For Na and Li, write the electronic configurations in short notation based on the 

previous completed electron shell. 
From Table 2-3 it follows: 
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Lithium, Li-3: ls22s1 = [He] 2s' 
Sodium, Na-11: = [Ne] 3s' 

2.9.2 Atomic Radius 

The size of an atom, expressed as the atomic radius, represents the 
distance between the nucleus and the valence, or outermost, electrons. The 
boundary between the nucleus and the electrons is not easy to determine and 
the atomic radius is therefore approximated. For example, the distance 
between the two chlorine atoms of C12 is known to be nearly 2A. In order to 
obtain the atomic radius, the distance between the two nuclei is assumed to 
be the sum of the radii of two chlorine atoms. Therefore the atomic radius of 
chlorine is -1A (or 100 pm, see Fig. 2-28). 

H He 
e Atomic radius > 0 
37 decreases 3 1 

Group 1 2 13 14 15 16 17 18 

Figure 2-28. Trends of atomic radii (listed in picometers) in the periodic table 

The atomic radius changes across the periodic table of elements and is 
dependent on the atomic number and the electron distribution. Since 
electrons repel each other due to like charges, the overall size of the atom 
increases with an increase in the number of electrons in each of the groups 
(see Fig. 2-28). For example, the radius of a hydrogen atom is smaller than 
the radius of the lithium atom. The outer electron of lithium is in the n = 2 
level, so its radius must be larger than the radius of hydrogen which has its 
outermost electron in the n = 1 level. 
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However, in spite of the increase in the number of electrons, the atomic 
radius decreases when going from left to right across the periodic table. This 
is a result of the increase in the number of protons for these elements, which 
all have their valence electrons in the same quantum energy level. Since the 
electrons are attracted to the protons, the increased charge of the nucleus 
(more protons) binds the electrons more tightly and draws them closer to the 
nucleus, causing the overall atomic radius to decrease. For example, the first 
two elements in the second period of the periodic table are lithium and 
beryllium. The radius of a beryllium atom is 112 pm, which is smaller than 
that of lithium (152 pm). In beryllium, Z = 4, the fourth electron joins the 
third in the 2s level, assuming their spins are anti-parallel. The charge is thus 
larger and this causes the electrons to be bound more tightly to the nucleus; 
as a result the beryllium radius is less than the lithium radius. The effect of 
the increased charge should, however, be seen in the context of the quantum 
energy levels. For example, cesium has a large number of protons but it is 
one of the largest atoms. The valence electrons are furthest from the nucleus 
and the inner electrons shield them from the positive charge of the nucleus, 
thus the valence electrons experience a reduced effective nuclear charge and 
not the total charge of the nucleus. The effect of the increase in the nuclear 
charge thus only plays a role in the periods from left to right, e.g. from 
sodium to argon in the third period, since the additional valence electrons (in 
the same quantum energy level) are exposed to a greater effective nuclear 
charge along the period. 

2.9.3 Ionization Energy 

Another important property that shows a trend in the periodic table is the 
ionization energy (the energy required to remove an electron from an atom). 
An atom has as many ionization energies as there are electrons. By 
definition, the first ionization energy is the energy required to remove the 
most outer electron from a neutral atom (see Table 2-2) 

The second ionization energy is the energy required to remove the next 
outer electron from the singly charged ion 

Each successive removal of an electron requires more energy because, as 
more electrons are removed, the remaining electrons experience a greater 
effective attraction. 
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0 2 4 6 8 10 12 

Atomic Number, A 

Figure 2-29. Ionization potential of the first ten elements 

The first ionization potential increases across a period (see Fig. 2-29), 
which is a direct result of the decrease in atomic radius (see Fig. 2-28). As 
the atomic radius becomes smaller the electrons feel a greater attraction from 
the nucleus. As the force of attraction increases, more energy is required to 
remove the electrons. The larger nuclear charge in helium (Z = 2) that is 
responsible for the smaller radius (31 pm) results in a higher ionization 
potential (24.6 eV) compared to that of hydrogen (radius 37 pm and 
ionization potential 13.6 eV). Lithium, however, has one more electron than 
helium and this electron is at a higher quantum energy level. The lithium 
radius is thus greater and the ionization potential is less. The outermost 
electron in lithium is located in the 2s level, which is outside the 1s level 
occupied by the first two electrons. The 2s electron is screened by the other 
two and experiences a charge on the order of one. Thus, the ionization 
energy of this electron can be estimated to be nearly that of the 2s hydrogen 
state (which is 3.4 eV). The observed lithium ionization potential, however, 
is 5.4 eV (see Table 2-2). The value is larger because the outer electron is 
not perfectly shielded by inner electrons and the effective charge is greater 
than the assumed value of one. Because lithium has such small ionization 
energy it is a chemically active element. Next to lithium is beryllium. Due to 
the larger charge, the radius is smaller (see Fig. 2-28) and the ionization 
potential is thus larger. Next is boron; the first four electrons occupy the Is  
and 2s levels and the fifth electron is in 2p level. The increased charge 
causes the electrons in the new energy level to be more tightly bound, but 
the new energy level is further away from the nucleus and the valence 
electron is thus bound with a slightly weaker force. Consequently, the radius 
is reduced; the ionization potential is also reduced. Although there is an 
anomaly in the overall trend of ionization potential values across the period, 
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the differences are small (the ionization potentials of beryllium and boron 
are 9.3 eV and 8.3 eV, respectively). In the next elements leading up to 
neon, the electrons occupy the 2p level (maximum of six electrons). The 
increasing charge decreases the atomic radius (see Fig. 2-28) and ionization 
potential increases as indicated in Fig. 2-29. The next period starts with 
sodium. Since the valence electrons of neon fill the 2p level, the sodium 
valence electron can only occupy the higher 3s level. This accounts for the 
larger atomic radius and smaller ionization potential. 

The small drop in ionization potential of oxygen compared to nitrogen is 
due to the arrangement of electrons. In nitrogen, two electrons occupy the 1s 
level and two others occupy the 2s level. The remaining three electrons 
occupy the 2p level. These three electrons occupy three available and 
distinct orbitals (2p level accommodates three orientations of the electron's 
orbital, see Section 2.8.1). This keeps them well separated and reduces the 
repulsion between them. This in turn makes nitrogen relatively stable with 
relatively large ionization energy. In oxygen, the fourth electron occupies the 
2p level and must share one of the orbitals (with opposite spin). These two 
electrons thus overlap in the orbital they share which increases the repulsion 
between them and decreases the ionization potential relative to nitrogen. 

Examples of the periodic behaviour of the elements is evident from the 
similarities between helium and neon (both very stable, with large ionization 
potential and small radii), or lithium and sodium (both with very low 
ionization potential and very large radii). 

Example 2.13 First ionization potential 
Explain which element from the list has the larger first ionization energy and 

why: Mg, Na, or Al. 
Magnesium (Mg), when compared to sodium (Na), has a larger first ionization 

potential because the first ionization energy tends to increase across a row of the 
periodic table from left to right (period 3, see Fig. 2-27). Mg also has a larger 
ionization potential than aluminum (Al) even though Al is to the right of Mg in the 
periodic table. The electron configurations for Mg and A1 are (see Table 2-3) 

Mg (12 electrons): ls2 2s2 2p6 3s2 
Al (13 electrons): ls2 2s2 2p6 3s2 3p' 
The outermost electron of Al (in the 3p level) is further away from the nucleus 

than the outermost Mg electrons which are in the 3s level. Less energy is thus 
required to remove the outermost A1 electron. 

2.10 Atomic Parameters 

Atomic mass is given in either the absolute unit of grams or in a relative 
unit called the atomic mass unit (u or amu): 
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1 mole of any substance contains 6.02 x molecules (Avogadro's 
number), N, 
The weight in grams of 1 mole of a substance is numerically equal to its 
molecular weight 
The unified atomic mass unit is exactly one twelfth of the mass of a C 
atom (C-12), i.e. the atomic mass of carbon-12 is equal to 12 amu 

m 
1 amu = ~ = 1 . 6 6 1 ~ 1 0 - ~ ~ k ~ = 9 3 1 . 5 ~ e ~ l c ~  

12 

Example 2.14 Number of atoms 
How many 12c atoms are there in 12 g of carbon? What is the mass of one atom 

of carbon in kg? 
Number of atoms in 12 g of carbon is 

1% = 6 . 0 2 ~  atoms 
(1.661 x g/amu)(12amu/atom) 

Since the molar mass of carbon-12 is 12 g, the mass of one atom of carbon 12 
can be found by dividing the molar mass by Avogadro's number 

12glmol 
= 1.993 x glatom = 1.993 x kglatom 

6.02 x atomslmol 

The chemical properties of atoms are determined by the distribution of 
electrons (see Section 2.9), and the number of electrons is called the atomic 
number and is usually denoted by 2. The number of protons in an atomic 
nucleus is also equal to 2, which is a requirement for electrical neutrality. 
When a neutral atom loses some of its electrons the atom becomes positively 
charged and is called a positive ion. For example, ca2+ is a calcium atom that 
has lost two of its electrons. An atom can, however, gain electrons and thus 
become a negative ion. For example, C1- is a chlorine atom that gained one 
electron. The atomic mass number, A, is an integer that is almost equal to the 
atomic mass in amu. It is equal to the number of nucleons in the nucleus; 
that is, it is equal to the sum of the number of protons (2) and the number of 
neutrons (N). Atoms (the elements of the periodic table) are denoted as 
follows: 

Atoms with the same atomic number Z (for example 3 5 ~ r ,  3 8 ~ r ,  4 0 ~ r )  are 
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called the isotopes of that element (argon). A naturally occurring sample of 
any element consists of one or more isotopes of that element and each 
isotope has a different weight. The relative amount of each isotope 
represents the isotope distribution for that element, and the atomic weight is 
obtained as the average of the isotope weights, weighted according to the 
isotope distribution. 

Example 2.15 Atomic weight 
Chromium (atomic weight 5 1.996) has four naturally-occurring isotopes. Three 

of these are: 5 0 ~ r  with isotopic weight 49.9461 and abundance 4.31%, 5 2 ~ r  with 
isotopic weight 51.9405 and abundance 83.76%, and 5 4 ~ r  with isotopic weight 
53.9389 and abundance 2.38%. Determine the isotopic weight of the fourth isotope. 

M~~ = 52.9237 with an abundance of 9.55 %. 

Example 2.16 Mass of an atom 
Calculate the mass in grams of a 5 2 ~ r  atom. The atomic mass is 5 1 1 amu. 
A mole contains N, number of same particles (atoms or molecules), thus 

52(g/mol) 
M ( ~ ~ c ~ )  = = 8.638~10-~~g/atom 

6 . 0 2 ~  (atomslmol) 

However, knowing the atomic mass as given in the problem, the more precise 
mass of the atom is obtained as follows 

M ( ~ ' c ~ )  = 
5 1.9405(g/mol) 

= 8.628 x g/atom 
6.02~10" (atomslmol) 

Example 2.17 Atom number density 
Calculate the molecular weight of water and then determine the atom density of 

hydrogen in water. 
The molecular weight of water is 
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2AH + A,, = 2x  1 + 16 = 18 giving the molecular density of water 

The molecular weight of hydrogen is 

PROBLEMS 

2.1 Write the electron configuration for: potassium, lanthanum, copper, bromine. 

2.2 Name the elements whose electron configuration is: 
(a) ls2 2s2 2p6 3s2 3p6 4s2 3d3 
(b) ls2 2s2 2p6 3s2 3p6 4s2 3d104p6 5s2 4d9 
(c) ls2 2s2 2p6 3s2 3p6 

2.3 How many electrons are in an atom specified by ls2 2s' 2p6 3s' 3p4? 

2.4 (a) The attractive electrostatic force of the positively charged atomic nucleus 
forces the negatively charged electron of the hydrogen atom to a circular motion. 
Write the equation that describes this statement. 
(b) Knowing that only orbital radii are allowed for which angular momentum is 
an integer multiple of hl(2@ and using the equation from (a) develop the relation 
for the allowed radii. 

2.5. (a) Express the relation for the frequency of revolution of the electron in 
hydrogen atom for n = 1. 
(b) For this case show that vlc = (ke2)(2@/hc = 11137 that is called the fine 
structure constant, a. 

2.6 Starting from the Bohr's equation for the energy of the n - th state of an 
electron in hydrogen atom, write the equation describing the frequency of light 
given off when an electron makes a transition from an initial to a final state. 
From there derive the value for Rydberg constant. 
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2.7 Calculate the largest velocity, lowest energy level and smallest orbit radius 
for the electron in hydrogen like atoms. When the orbit becomes infinite what is 
the value of energy? 

2.8 Calculate how many times in second an electron in hydrogen atom orbiting 
at the level n = 30 goes around the nucleus? 

2.9 What is the excited state of sodium atom? What is the excited state of 
hydrogen atom? 

2.10 Knowing that the first excited state of sodium atom is at 2.1 eV above 3s
level, determine the wavelength and frequency of the photon emitted in the 3p

 3s transition. 

2.11 The ground state of hydrogen atom has one electron in the 1s level with its 
spin pointing either way. Calculate the energy of the electron in this orbit using 
Bohr’s theory. What is the value of the ionizing energy? 

2.12 The ground state of helium atom has two electrons and both in 1s level. 
How are their spins oriented? The first ionization potential is found 
experimentally to be 24.6 eV. Calculate the effective charge, Zeff.

2.13 Calculate the value of Rydberg constant for the hydrogen atom taking into 
account the effect of reduced mass. 

2.14 For heavy hydrogenic ions how the reduced mass changes and 
consequently what is the value of Rydberg constant? 

2.15 Calculate the wavelengths of Balmer lines in hydrogen atom. 

2.16 Explain departure from Rutherford formula. Give an example. 

2.17 Calculate the first ionization potential of hydrogen helium atom. 

2.18 Draw possible trajectories of an  particle in Rutherford experiment for 
different impact parameters and scattering angles. 

2.19 For a gold (assuming to have a nuclear radius about 7fm and atomic radius 
of about 0.13nm) foil used in Rutherford experiment what is its maximum 
thickness that would not produce the multiple scattering of  particles? 

2.20 For an ion of 23Mg write the number of protons, neutrons, and electrons. 
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2.21 Study the Millikan's experiment. Knowing that the oil droplets were 
produced such to have a radius of 1 p, and that the voltage between plates 
positioned at the distance of 0.042 m was recorded whenever the droplets 
become stationary, using data provided show that the charge difference is always 
the integral multiples of 1.602 x C. Assume that the density of oil is 900 
kg/m3. The voltage as measured in Millikan's experiment is: 391.49 V, 407.80 
V, 376.43 V, 337.49 V, 362.49 V, 376.43 V. 

2.22 What is the difference between the atomic weight and atomic mass? Give 
an example. 

2.23 Show that mass of a hydrogen atom is 1.6735 x grams, and that of the 
oxygen atom is 2.6561 x grams. 

2.24 If naturally occurring carbon consists of 98.892 % I2c and 1.108 % I3c 
what is the average mass (in amu) of carbon? 

2.25 Calculate the molecular mass of methane ( C h ) .  What is the percentage by 
mass of the elements in this compound? 

2.26 Using Eq. (2-3) write the computer code to plot the 7.7 MeV a particle's 
trajectories as a function of impact parameters and angles of deflection. Indicate 
the points of closest approach. 

2.27 Use the Bohr's atomic model and write the computer code to calculate the 
orbiting velocity of the electron in hydrogen atom (see Example 2.5), helium 
ion, lithium ion, and boron ion. Comment on the results. 

2.28 To the computer code developed for the Problem 2.27 add the calculation 
of the time it takes for an electron to complete one revolution in hydrogen atom 
and ions of helium, lithium and boron. How does the time change with the orbits 
moving further away form the nucleus? Comment on the results. 

2.30 Write the computer code to reproduce the spectral lines shown in Fig. 2-19. 

2.3 1 Plot the Rydberg energy for hydrogen atom, and first 1 1 ions from the table 
of elements. Comment on the results. 

2.32 Calculate the ratio of allowed energies in the helium and lithium ion to that 
in the hydrogen atom taking into account the effect of nuclear motion (see 
Example 2.8). 
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NUCLEAR THEORY 
Basic Principles, Evidence and Examples 

"The dazzling complexity of the material world can, for almost all purposes, be 
reduced to a simple trinity: the proton, the electron, and the neutron. The neutron, 
a component of the nucleus of every atom except that of hydrogen, was the last of 
the trinity to be discovered, in 1932. Had they all been a little younger, the scientist 
who uncovered the neutron might have met on the battlefields of World War 11." 
Brian L. Silver, ("The Ascent of Science" ,1998) 

1. INTRODUCTION 

Atomic physics is the science of atoms, their structure and their behavior. 
To discuss the properties of atoms we need to know about the number of 
electrons and their configuration (see Chapter 2). In this context the 
information related to the atomic nucleus is not of great interest except to 
know that a neutral atom caries Z protons and A - Z neutrons (where Z 
represents the atomic number and A the atomic mass number). 

Nuclear physics is the science of nuclei. Atomic and nuclear physics use 
similar laws to describe the motion of electrons and the constituents of a 
nucleus (protons and neutrons). However, innovative approaches had to be 
developed to describe the forces that hold protons and neutrons in a nucleus. 
A theoretical understanding of the forces acting inside the nucleus is not yet 
complete. 

In this chapter the basic principles and laws of nuclear theory are 
presented. 
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2. THE NUCLEUS 

The nucleus of an atom is composed of two types of particles, protons 
and neutrons, collectively called nucleons. The nucleus depicted in Fig. 3-1 
is currently understood to be a quantum system composed of nucleons of 
nearly equal mass and the same intrinsic angular momentum (spin) of %. 
The neutron, an electrically neutral particle, was discovered by the British 
physicist Chadwick in 1932. Its presence in the nucleus accounts for the 
difference between the atomic number and the atomic mass number and also 
supplies forces that hold the nucleus together. The proton, a positively 
charged particle, was discovered by Ernest Rutherford in 1919. In addition 
to its atomic number and atomic mass number, a nucleus is characterized by 
its size, shape, binding energy, angular momentum, and stability. 

Figure 3-1. Schematic representation of a 'OB nucleus (N - neutrons, P - protons) indicating 
the size of the atom, nucleus and nucleons 

2.1 Size, Shape and Density of Nucleus 

As described in Chapter 2 (Section 2.4) Rutherford's experiment showed 
that it was possible to determine the size of a nucleus by bombarding a gold 
foil with a beam of a particles. According to the evidence from his 



NUCLEAR THEORY 63 

experiments, it was understood that an atom has a large radius in comparison 
with the size of its nucleus. At that time, a particles were used because they 
were easily attainable as a product of radioactive decay of unstable nuclei 
(see Chapter 4). Currently, experiments designed to probe the shapes and 
sizes of nuclei utilize accelerated beams of electrons, protons and a 
particles. One of the best ways to determine the size of a nucleus is to scatter 
high-energy electrons from it. From the angular distribution of the scattered 
electrons, which is dependant on the proton distribution in the nucleus, the 
shape and an average radius of a nucleus are determined. 

Data from these types of experiments indicates that most nuclei have a 
spherical shape; though some (for example those with Z between 56 and 71) 
have ellipsoidal shapes with eccentricities of less than 0.2 (departure from 
spherical shape). Figure 3-1 shows the nucleus of a Boron-10 atom which 
consists of 5 protons (which give the nucleus a charge of +5) and 5 neutrons 
(giving it a total mass number of 10). Since departure from spherical shape is 
usually minimal, most theoretical models assume that the nucleus is 
spherical. 

The nuclear radius of known elements ranges from 2 fm (helium) to 7 fm 
(uranium). The radius of any nucleus can be approximated using the Fermi 
model: 

where A represents the atomic mass number, and Ro = 1.07 fm. Since the 
volume of a sphere of radius R is proportional to R ~ ,  it follows from Eq. 
(3-41) that the nuclear volume is proportional to A, i.e. to the total number of 
nucleons: 

Thus, if the volume of a nucleus is proportional to A, it is clear that the 
volume per nucleon, Vo is approximately the same for all nuclei. In other 
words, the density of nucleons (nuclear density) is the same for all nuclei as 
is the degree of packing of nucleons for all nuclei. 

Example 3.1 Nuclear density 
Compare the nuclear densities of "C and 2 3 5 ~ .  

The radii of these nuclei are 
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Knowing that a mass of 12c atom is 12 amu and of 2 3 5 ~  atom is 235 amu, (see 
Chapter 2, Section 2.10) it can be shown that the nuclear density is a constant value 

whereV, = 5 . 1 3 ~ 1 0 ~ ~ m ~ .  Thus 

The obtained density inside the nucleus is some 14 orders of magnitude greater 
than the density of ordinary matter like solids or liquids. For example the density of 
water at standard temperature and pressure is 1000 kg/m3. 

Investigation of nuclear size and structure took place in 1950's producing 
several Nobel Prizes. For example, for his pioneering studies of electron 
scattering in atomic nuclei and for his discoveries concerning the structure of 
the nucleons Robert Hofstadter (1915 - 1990) was awarded the Nobel Prize 
for physics. He shared the prize with Rudolf Mossbauer. Robert Hofstadter 
is the father of the cognitive scientist and philosopher Douglas R. Hofstadter 
best known for his 1980 - Pulitzer Prize winning book, Godel, Escher, 
Bach: an Eternal Golden Braid. 

2.2 Equivalence of Mass and Energy 

Albert Einstein in his special theory of relativity postulated that the 
velocity of light in vacuum is the upper limit of speed in the universe. 
According to his theory, the mass of a moving body is not constant (as 
classical mechanics would predict) but is a function of velocity. The relation 
between mass and velocity of a moving body indicates that as the velocity 
increases, the mass of a body increases 
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where 
rn - mass of a moving body (called also the variable mass) 
mo - rest mass of a body (velocity is zero) 
v - velocity of a moving body 
c - speed of light. 
The ratio, z? / c2 is usually denoted as p. Thus 

Similarly, the relativistic energy of a body moving with velocity v is 

In the relativistic case, velocity increase due to additional energy is 
smaller than in the non-relativistic case, because the additional energy 
serves to increase the mass of the moving body rather than its velocity. 
Equation (3-45) suggests that: 

The more energy an object has, the heavier it is. 
The closer the velocity of a moving body is to the speed of light, the 
larger the force needed to accelerate the body. 
An infinite force is needed to accelerate a material object to the speed of 
light, which is not physically possible. The only particle that travels at 
the speed of light is a photon (that has a zero mass). It is also assumed 
that the graviton moves at the speed of light but there is still no evidence 
of its existence. 
Mass and energy are equivalent. In other words, all matter contains 
potential energy by virtue of mass. 
A body at rest (v = 0 + P = 0) (non-relativistic approximation) 
possesses energy given by the famous Einstein equation 

In terms of momentum and mass 
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22
0

22 )()( cmpcE  (3-47) 

Graphically, the three terms in Eq. (3-47) can be represented as the sides 
of a right triangle (see Fig. 3-2).  The energy momentum equation is 
therefore often referred to as the “Pythagorean relation”. 

Figure 3-2. Graphic representation of the relativistic energy-momentum relation: (a) when  
pc < m0c2 the total energy is mostly rest energy, (b) when pc > m0c2 the total energy is mostly 

kinetic energy of the moving particle 

Example 3.2 Rest energy of nuclear fuel 
How much energy can be obtained from 1 gram of nuclear fuel? 

2 10 2 20 13
0

20 14 7

(1 )(3 10 / ) 9 10 9 10

(9 10 )(2.78 10 / ) 2.5 10

E m c g cm s erg J

erg KWh erg KWh

The result suggests 
A small amount of mass corresponds to a large amount of energy (because the 
speed of light is large). 
In nuclear reactions an atomic nucleus of initial mass M is transformed into a 
nucleus of mass M’ and the difference in mass is released as energy 

2E M M c  (3-48) 

Example 3.3 Electron volt (eV) 
Show that the energy given to an electron (of charge e =  1.6 x 10 19 coulomb) 

by accelerating it through 1 volt of electric potential difference called 1 eV is equal 
to 1.60 x 10 19 J.
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The work needed to move one electron through a voltage drop of 1 volt is 
e V = (  1.6 x 10-19 coulomb) (  1 volt) = 1.602 x 10 19 J = 1 eV

Example 3.4 Rest mass of an electron 
Calculate the rest energy of an electron in eV and its mass in eV / c2 if its mass is 

9.109 x 10 31 kg.
The rest energy is 

2 31 10 2 15
0

15 5
19

(9.109 10 )(3 10 / ) 81.98 10

1
(81.98 10 )( ) 5.11 10 0.511

1.602 10

E m c kg cm s joules

eV
J eV MeV

J

Thus, m0 = 0.511 MeV / c2.

Example 3.5 Relativistic momentum of an electron 
Prove the energy momentum relation given in Eq. (3-47) 

2 2 2 2
0( ) ( )E pc m c

By definition, momentum can be described as a function of the mass and 
velocity of a moving body 

0

2

2
1

m
p m

c

(3-49)

Squaring equation (3-45) 

2 4 2
2 2 4 2 4 2 40

02 2

2

2 4 2 2 4 2 2 2
0

1
1

m c
E m c m c m c

c
c

m c E m c m c

where p = m , thus 

2 2 2 2
0( ) ( )E pc m c

For a massless particle (like a photon) it follows that the total energy depends on 
its momentum and the speed of light: E = pc. This aspect will be discussed in greater 
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detail in later sections. 

Example 3.6 Transition of masses  
Assume a peace of solid matter initially weighs 6 grams. Following a reaction, 

the mass of the products is one half of the initial mass. Calculate the energy (in J)
released in this mass “transition”. 

From equation (3-48) 

2 3 3 8 132(6 10 3 10 )(3 10 / ) 27 10
2
M

E M c kg kg m s J

2.3 Binding Energy of a Nucleus 

Since an atom contains Z positively charged particles (protons) and  
N (= A Z) neutral particles (neutrons), the total charge of a nucleus is +Ze
where e represents the charge of one electron. Thus, the mass of a neutral 
atom, Matom, can be expressed in terms of the mass of its nucleus, Mnuc, and 
its electrons, me

npnucenucatom mZAZmMZmMM )(  (3-50) 

where mp is the proton mass, me the mass of an electron and mn the mass 
of a neutron.  

For example the mass of the rubidium nucleus, 87Rb, which contains 37 
protons and 50 neutrons, can be calculated as 

amuRbM nuc 7025.87008665.150007277.137)(87  (3-51) 

The atomic mass, indicated on most tables of the elements, is the sum of 
the nuclear mass and the total mass of the electrons present in a neutral 
atom.  In the case of 87Rb, 37 electrons are present to balance the charge of 
the 37 protons.  The atomic mass of 87Rb is then 

87 87( Rb) ( Rb)
87.7025 37 0.00055 87.7228
atom nuc eM M Zm

amu
 (3-52) 

From the periodic table, the measured mass of a 87Rb atom is found to be 
)(87RbM measured

atom = 86.909187 amu. These two masses are not equal and the 
difference is given by 
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amuRbMRbMm measured
atomatom 813613.0)()( 8787  (3-53) 

Expanding the terms in Eq. (3-53) shows that the difference in mass 
corresponds to a difference in the mass of the nucleus 

( )

measured
atom atom

measured
p e n nuc e

m M M

Zm Zm A Z m M Zm
 (3-54) 

which reduces to 

( )

measured
atom atom

measured measured
p n nuc nuc nuc

m M M

Zm A Z m M M M
 (3-55) 

Thus, when using atomic mass values given by the periodic table, the 
mass difference between the measured and calculated is given by 

measured
atomnep

measured
nucnuc MmZAZmZmMMm )(  (3-56) 

Notice also that

Hep ZmZmZm  (3-57) 

where mH is a mass of  the hydrogen atom. 
From this and other examples it can be concluded that the actual mass of 

an atomic nucleus is always smaller than the sum of the rest masses of all its 
nucleons (protons and neutrons). This is because some of the mass of the 
nucleons is converted into the energy that is needed to form that nucleus and 
hold it together. This converted mass, m, is called the “mass defect” and the 
corresponding energy is called the “binding energy” and is related to the 
stability of the nucleus; the greater the binding energy, the more stable the 
nucleus. This energy also represents the minimum energy required to 
separate a nucleus into protons and neutrons.  The mass defect and binding 
energy can be directly related, as shown in Eqs. (3-58) and (3-59) 

amuMeVmBE /5.931   or (3-58)

2( ) measured
p e n atomBE Zm Zm A Z m M c  (3-59) 
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Since the total binding energy of the nucleus depends on the number of 
nucleons, a more useful measure of the cohesiveness is the binding energy 
per nucleon, Eb

( ) 931.5( / ) /nucleon
(nucleons)b

BE m amu MeV amuE MeV
A A

 (3-60) 
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Figure 3-3. Variation of binding energy per nucleon with the atomic mass number 

The binding energy per nucleon varies with the atomic mass number, A,
as shown in Figure 3-3. For example, the binding energy per nucleon in a 
rubidium nucleus is 8.7 MeV, while in helium it is 7.3 MeV. The curve 
indicates three characteristic regions:  

Region of stability  A flat region between A equal to approximately 35 
and 70 where the binding energy per nucleon is nearly constant. This 
region exhibits a peak near A = 60. These nuclei are near iron and are 
called the iron peak nuclei representing the most stable elements. 
Region of fission reactions  From the curve it can be seen that the 
heaviest nuclei are less stable than the nuclei near A = 60, which suggests 
that energy can be released if heavy nuclei split apart into smaller nuclei 
having masses nearer the iron peak. This process is called fission (the 
basic nuclear reaction used in atomic bombs as uncontrolled reactions 
and in nuclear power and research reactors as controlled chain reactions). 
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Each fission event generates nuclei commonly referred to as fission 
fragments with mass numbers ranging from 80 to 160. Fission is 
described in detail in Chapter 6. 
Region of fusion reactions - The curve of binding energy suggests a 
second way in which energy could be released in nuclear reactions. The 
lightest elements (like hydrogen and helium) have nuclei that are less 
stable than heavier elements up to the iron peak. If two light nuclei can 
form a heavier nucleus a significant energy could be released. This 
process is called fusion, and represents the basic nuclear reaction in 
hydrogen (thermonuclear) weapons. 

2.4 Stability of the Nucleus 

Nuclei that have the same number of protons and different number of 
16 

neutrons are called isotopes. For example, two isotopes of oxygen, ,0, 
and1;og, both have eight protons, but one has eight neutrons while the other 

14 has nine. Nuclei with the same mass number such as ,C, and ';N, are 
called isobars, while isotones are nuclei with the same number of neutrons, 
for example, ':c, and ';N, . 

0 20 40 60 80 100 120 140 

Number of Neutrons (N) 

Figure 3-4. Nuclear stability curve (see also Chapter 4) 

The naturally occurring elements have atomic numbers (Z) between 1 
and 92 with neutron numbers (N) between 0 and 146. If the number of 
protons is plotted against the number of neutrons for all nuclides existing in 
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nature as shown in Fig. 3-4, the following tendencies are observed: 
For light nuclei (A 140) ,  Z and  are nearly equal. This tendency of 
Z - N is called the symmetry effect and is characteristic of stable nuclei. 
As a result of the fundamental similarity between protons and neutrons, 
an unstable nucleus will transform a proton into a neutron or vice versa 
in order to reach the stable Z - N arrangement. 
For heavier nuclei more neutrons are needed to form a stable 
configuration and the ratio of N to Z approaches 1.5 for the heaviest 
nuclei. The tendency for N to be bigger than Z is due to the electrostatic 
repulsion force acting between the protons. If a nucleus has too many or 
too few neutrons it is unstable and may spontaneously rearrange its 
constituent particles to make a stable formation. Isotopes of atoms with 
unstable nuclei are called radioisotopes and are said to be radioactive 
(see Chapter 4). 
A preference for Z and N to be even is observed in the majority of nuclei. 
When the numbers of neutrons and protons are both even numbers, the 
isotopes tend to be far more stable than when they are both odd (see 
Table 3-1). This tendency is the result of a pairing effect that is described 
in Section 2.7. 

Table 3-1. Configuration of stable nuclei 
Z N Number of stable nuclei 
Even Even 148 
Even Odd 5 1 
Odd Even 49 
Odd Odd 4 

2.5 Protons and Neutrons 

In 1919 Ernest Rutherford discovered a new particle, that he called a 
proton (the first particle known to be a constituent of every nucleus). He was 
investigating the effect of a particles interacting with nitrogen gas and 
noticed signs of hydrogen in the detectors. Rutherford postulated that this 
hydrogen could have come only from the nitrogen, and therefore that 
nitrogen contains hydrogen nuclei. At that time it was known that hydrogen 
had an atomic number equal to 1; thus he suggested that the hydrogen 
nucleus itself was an elementary particle and he named it proton using the 
Greek word for "first", protos. From this experiment it was understood that 
the proton carries a positive electrical charge equal in magnitude to the 
negative charge of an electron because the number of protons in a nucleus 
was found to be the same as the number of electrons surrounding it for an 
atom in its neutral state. 

In 1932 Rutherford's colleague James Chadwick discovered another 
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constituent of the nucleus which he named the neutron. Neutron carries no 
electrical charge and thus can pass through material without being deflected 
by electrical forces. 

Protons and neutrons are approximately equal in mass (each roughly 
2,000 times heavier than an electron) and are both composed of up and down 
quarks whose fractional charges (213 and -113) combine to produce the 0 or 
+1 charge of the neutron and proton respectively. 

2.5.1 Protons and Proton Decay 

The positive charge of the nucleus of any atom is due to the presence of 
protons. Every atomic nucleus contains at least one proton and the total 
number of protons (atomic number) is different for every element. The basic 
characteristics and constituents of the proton are summarized in Fig.3-5. 

The possibility that the proton may have a finite lifetime has been under 
experimental investigation for the last decade. The latest experimental 
evidence suggests that the lower boundary for proton lifetime is over 

years (many times the present age of the universe, which is estimated to 
be on the order of 15 x lo9 years). How is it possible to detect a time that is 
longer than the existence of the universe? 

"up17 quark + (213) e @ g "down" quark -(1/3) e 

Proton mass = 1.6726 x 10" k g  
= 938.27231 BIev/e2 
= 1.00727647 amu 

Figure 3-5. Nuclear properties of proton 

Obviously it is not possible to watch one proton for years to see if it 
decays; however, protons can be observed for one year with a 50-50 
probability that one proton out of will decay. There are two laboratories 
equipped for this experiment; one in Minnesota and the other in Japan (the 
Super-Kamiokande). The dominant mode of proton decay is into a positron 
and a neutral pion: p + e' + no. A positron is an anti-electron; a particle 
with the same mass and same charge as an electron, but with the opposite 
charge sign (i.e. a positively charged electron). The pion (or "n meson") is 
the collective name for three subatomic particles, no, n' and n-. The 
Super-Kamiokande detector has the capability to observe this mode of 
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proton decay. Using a huge pool of water as a source of protons, a proton 
from either hydrogen or oxygen may decay into a positron and a neutral 
pion. Upon contact with an electron, the positron is destroyed in a process 
known as electron-positron annihilation (see Chapter 5). Upon contact, the 
positron and electron destroy each other, producing two 51 1 keV photons. 
The .no has a mass of 135 M ~ V / C ~  and decays into two photons with a very 
short half life of 84 x 10-'~seconds. The experiments look for these 
electromagnetic showers as an indication of proton decay. To date, proton 
decay has not been observed at either facility. 

2.5.2 Neutrons and Neutron Decay 

Geiger Counter 

Beryllium 

Figure 3-6. Experimental setup that led to the discovery of a neutron (1932) 

From the time of Rutherford it has been known that the atomic mass 
number A of nuclei is more than twice the atomic number Z for most atoms 
and that almost all of the mass of the atom is concentrated in its center, i.e. at 
the nucleus. However, it was presumed that the only fundamental particles 
were protons and electrons. Rutherford had speculated that the nucleus was 
composed of protons and proton-electron pairs tightly bound together and 
the fact that an atom was neutral in charge required that somehow a number 
of electrons were bound in the nucleus to partially cancel the charge of the 
protons. Quantum mechanics, however, indicated that there was not enough 
energy available to contain electrons in the nucleus (see Section 5.4). An 
experimental breakthrough came in 1930 when Bothe and Becker 
bombarded a beryllium target with a particles emitted from a radioactive 
source. The experiment produced neutral radiation that was observed to be 
highly penetrating but non-ionizing. In the following years Curie and Joliot 
showed that when paraffin (a material rich in protons) is bombarded with 
this neutral radiation it ejects protons with energy of about 5.3 MeV (see 
Fig 3-6). Bothe and Joliot - Curie each explained that the radiation was high 
energy gamma rays. This, however, proved to be inconsistent with what was 
known about gamma ray interactions with matter (see Chapter 5). 

In 1932 Chadwick performed a number of experiments using different 



NUCLEAR THEORY 7 5 

target materials to discover that the emitted radiation was actually a stream 
of new particles that he named neutrons. The discovery proved that there is a 
neutral particle in the nucleus, but also that there are no free electrons in the 
nucleus as Rutherford had speculated. Amazingly, once free from the 
nucleus, neutrons are unstable and decay with a half life of about 15 minutes 
into a proton, an electron, and an antineutrino. 

The a-Be reaction in the experiment shown in Fig. 3-6 was explained by 
Chadwick 

where i ~ e  represents the a particle. He argued that if a photon interacts 
with a proton in the paraffin target and transfers 100 MeVlc of recoil 
momentum, the photon itself must have had a momentum of nearly 50 
MeV/c, which corresponds to an energy of 50 MeV (see Section 2.2). As the 
energy of the a particles striking the beryllium target was only about 5 MeV, 
it was impossible that 50 MeV gammas were being emitted. Instead, 
Chadwick suggested a new particle with approximately the same mass as a 
proton, which solved the contradiction related to the energy of the assumed 
photons. In the collision of two particles of equal masses, the incident 
particle (neutron) can transfer all of its kinetic energy to the target particle 
(proton). Thus for the observed momentum of 100 MeVIc, the kinetic energy 
of the neutron was T = P2 / 2m = (100 ~ e ~ / c ) ~  / (2 x 938 M ~ V I C ~ )  = 5.3 
MeV. 

0 %p" quark 

0 v 1  downvv quark 

mass = 1.6749 x lo2' kg 
= 939.5656 M ~ V I C ~  

Figure 3-7. Properties and composition of the neutron 

By examining the interactions of neutrons with various materials, 
Chadwick determined the actual mass of the neutron to be between 
1.005 amu and 1.008 amu, or 938 +/- 1.8 MeV. The presently accepted 
value is 939.57 MeV (see Fig. 3-7). 

The following is the original note Chadwick sent to Nature in February 
of 1932 describing the arguments for the existence of a neutron. Chadwick 
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was awarded a Noble Prize for his discovery in 1935. 

Possible Existence of a Neutron 
James Chadwick, Nature, p. 312 (Feb. 27, 1932) 

It has been shown by Bothe and others that beryllium when bombarded by a- 
particles of polonium emits a radiation of great penetrating power, which has an 
absorption coefficient in lead of about 0.3 (cm)-'. Recently Mme. Curie-Joliot 
and M. Joliot found, when measuring the ionization produced by this beryllium 
radiation in a vessel with a thin window, that the ionization increased when 
matter containing hydrogen was placed in front of the window. The effect 
appeared to be due to the ejection of protons with velocities up to a maximum of 
nearly 3 x lo9 cm per sec. They suggested that the transference of energy to the 
proton was by a process similar to the Compton effect, and estimated that the 
beryllium radiation had a quantum energy of 50 x lo6 electron volts. 

I have made some experiments using the valve counter to examine the properties 
of this radiation excited in beryllium. The valve counter consists of a small 
ionization chamber connected to an amplifier, and the sudden production of ions 
by the entry of a particle, such as a proton or a particle, is recorded by the 
deflexion of an oscillograph. These experiments have shown that the radiation 
ejects particles from hydrogen, helium, lithium, beryllium, carbon, air, and 
argon. The particles ejected from hydrogen behave, as regards range and 
ionizing power, like protons with speeds up to about 3.2 x lo9 cm. per sec. The 
particles from the other elements have a large ionizing power, and appear to be 
in each case recoil atoms of the elements. 

If we ascribe the ejection of the proton to a Compton recoil from a quantum of 
52 x lo6 electron volts, then the nitrogen recoil atom arising by a similar process 
should have an energy not greater than about 400,000 volts, should produce not 
more than about 10,000 ions, and have a range in air at N.T.P. of about 1.3 mm. 
Actually, some of the recoil atoms in nitrogen produce at least 30,000 ions. In 
collaboration with Dr. Feather, I have observed the recoil atoms in an expansion 
chamber, and their range, estimated visually, was sometimes as much as 3 mm at 
N.T.P. 

These results, and others I have obtained in the course of the work, are very 
difficult to explain on the assumption that the radiation from beryllium is a 
quantum radiation, if energy and momentum are to be conserved in the 
collisions. The difficulties disappear, however, if it be assumed that the radiation 
consists of particles of mass 1 and charge 0, or neutrons. The capture of the a- 
particle by the ~e~ nucleus may be supposed to result in the formation of a cI2 
nucleus and the emission of the neutron. From the energy relations of this 
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process the velocity of the neutron emitted in the forward direction may well be 
about 3 x lo9 cm per sec. The collisions of the neutron with the atoms through 
which it passes give rise to the recoil atoms, and the observed energies of the 
recoil atoms are in fair agreement with this view. Moreover, I have observed that 
the protons ejected from hydrogen by the radiation emitted in the opposite 
direction to that of the exciting a-particle appear to have a much smaller range 
than those ejected by the forward radiation. This again receives a simple 
explanation of the neutron hypothesis. 

If it be supposed that the radiation consists of quanta, then the capture of the a- 
particle by the ~ e '  nucleus will form a c ' ~  nucleus. The mass defect of c ' ~  is 
known with sufficient accuracy to show that the energy of the quantum emitted 
in this process cannot be greater than about 14 x lo6 volts. It is difficult to make 
such a quantum responsible for the effects observed. 

It is to be expected that many of the effects of a neutron in passing through 
matter should resemble those of a quantum of high energy, and it is not easy to 
reach the final decision between the two hypotheses. Up to the present, all the 
evidence is in favor of the neutron, while the quantum hypothesis can only be 
upheld if the conservation of energy and momentum be relinquished at some 
point. 

J.  Chadwick. 
Cavendish Laboratory, 
Cambridge, Feb. 17. 

2.6 Nuclear Forces 

Electrons are held in their orbits around the positively charged nucleus by 
the electrostatic (Coulomb) force of attraction. Within the nucleus, however, 
there reside only neutral particles (neutrons) and positively charged particles 
(protons). Therefore the only electrostatic force that acts within the nucleus 
is a repulsive force between protons. Furthermore, the gravitational force 
that acts on all matter regardless of charge is too weak to hold the nucleus in 
tact, as illustrated in Example 3.7. 

Example 3.7 Gravitational force within the nucleus 
Use Bohr's atomic model for hydrogen to show that it is impossible to find an 

atom on the quantum level bound by gravity. Also, show that the gravitational force 
can not hold nucleons in the nucleus. 

According to Coulomb's law, which has the same form as Newton's universal 
law of gravity, the electrostatic and gravitational forces acting between an electron 
of mass m and charge q and a proton of mass M and charge Q are 
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where 11 2 9 22 26.67 10 /  and 8.99 10 /G Nm kg k Nm C .
According to Bohr’s atomic model the energy of an electron in its ground state 

in hydrogen atom is 
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 Equation (3-64) can be rewritten as 
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If the force that bound electrons to the atom was gravitational, Eqs. (3-62), 
(3-63), and (3-65) yield 
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Recall that according to Bohr’s atomic model, the lowest possible energy level 
corresponds to the ground state for which n = 1 and E1 = 13.6 eV.

The ratio of the gravitational and electrostatic forces shown in Eq. (3-67) (which 
is independent of distance between the particles) shows that the gravitational force is 
too weak to overcome the repulsion between the protons and thus hold the nucleons 
together in the nucleus. In the following equation, the masses are those of two 
protons: 
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Figure 3-8. Strong nuclear force and force carrier (meson) 

The force that holds the nucleus together is called the nuclear force (or 
the strong force since it must overcome the electrostatic force of repulsion 
between the protons) and is the strongest of the four known natural forces 
(gravitational, electrostatic, nuclear and weak). The force is transferred 
between nucleons through force carrier particles called mesons,  (see  
Fig. 3-8). The exchange of mesons can be understood in analogy to having a 
ball constantly being thrown back and forth between two people. The strong 
nuclear force has a very short range, and thus the particles must be extremely 
close (about 1 to 2 x 10 15 m; approximately the diameter of a proton or 
neutron) in order for meson exchange to take place. When a nucleon gets 
closer than this distance to another nucleon, the exchange of mesons can 
occur, and the particles will bond to each other. When nucleons cannot come 
within this range, the strong force is considered to be too weak to keep them 
together, and the competing force (the electrostatic force of repulsion) 
causes the particles to move apart. Additionally, at distances less than 1 fm, 
the electrostatic force will overcome the strong nuclear force and the 
nucleons will repel one another (see Fig. 3-8). In other words, when two 
nucleons are separated by a distance of approximately 1 fm they are bound 
to each other by the strong nuclear force. Inside of that distance, the 
electrostatic force becomes dominant and outside of that distance the nuclear 
force is too weak to bind the nucleons.

As explained in Section 2.3, the mass of any nucleus is always smaller 
than the sum of the rest masses of its individual nucleons. This difference in 
mass is a result of the conversion of some mass into the binding energy 
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needed to hold the nucleus together, which is a measure of the strength of 
the strong nuclear force. This same energy must be applied in order to 
separate a nucleus into its constituents. 

The nuclear density is constant for all nuclei (see Section 2.1) because it 
is limited by the short range repulsion. The maximum size of a nucleus (see 
Chapter 2) is limited by the fact that the attractive force dies away 
exponentially with distance between nucleons. 

2.7 The Pauli Exclusion Principle and the Symmetry 
Effect 

Nuclei tend to be more stable for nearly equal numbers of neutrons and 
protons especially for elements with small atomic mass numbers (see 
Section 2.4), a phenomenon known as the symmetry effect. Protons and 
neutrons, like electrons, obey the Pauli Exclusion Principle (see Chapter 2), 
which states that no two identical particles, i.e. no two protons or two 
neutrons, can occupy the same quantum level. According to this principle, 
however, a single neutron and a single proton mav occupy the same quantum 
level. 

A nucleus, like an atom, can be found in the ground state (the lowest 
energy level) and in excited states. The ground state corresponds to the 
arrangement of all nucleons in their lowest energy levels and according to 
the Pauli Exclusion Principle: 

Such arrangements forbid the nucleons to be involved in interactions that 
would lower their energy, because there are no lower energy states they 
can move to. Thus the scattering from an incident particle which raises 
the energy of a nucleon is an allowed interaction, but scattering that 
lowers an energy level is blocked by the Pauli Exclusion Principle. 
A dense collection of strongly interacting nucleons would assume the 
high probability of constant collisions resulting in redirection and 
perhaps loss of energy for the nucleons. The Pauli principle however 
blocks the loss of energy because only one nuclear particle can occupy a 
given energy state (with spin 112). In this dense collection of matter, all 
of the low energy states will fill up first. 
It is important to mention here that the Pauli principle is applied only to 

define the behavior of so-called fermions. The fermions are particles which 
form anti-symmetric quantum states and have half-integer spin: protons, 
neutrons and electrons. Particles like photons and gravitons (called bosom) 
do not obey the Pauli Exclusion Principle (they form symmetric quantum 
states and have integer spin). 

The ground state structures of the nuclei of three isobars (':c, , ' 7 2 ~ ~  
and ' :B,)  are illustrated in Fig. 3-9. From the arrangement of nucleons, 
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following the Pauli Exclusion Principle, it can be seen that the seventh 
neutron in ': B, must occupy a higher quantum energy level compared to the 
arrangement in ':c, and thus the total energy of the ':B, nucleus is higher. 
Similarly, the seventh proton in ' ;N, must occupy a higher quantum energy 
level than any of the nucleons in ':c, and thus has a greater total energy. 
This example leads to the conclusion that among any set of isobars (nuclei 
having the same number of nucleons) the nucleus with equal numbers of 
protons and neutrons will have the lowest total energy. It can be seen from 
Fig. 3-4 that if a nucleus possesses more energy than the neighboring isobar 
it will have a tendency to move toward the lowest and most stable energy 
configuration. This process, as indicated in Fig. 3-4, is called P decay and is 
explained in Chapter 4. 

Figure 3-9. Arrangements of protons and neutrons in their ground states for three isobars with 
the atomic mass number of 12 

NUCLEAR MODELS 

3.1 The Liquid Drop Model and the Semi-empirical 
Mass Formula 

As explained in Section 2.3, the binding energy, BE, of a nucleus is a 
measure of the strong nuclear force and represents the energy required to 
separate the nucleus into its constituent protons and neutrons; therefore, the 
greater the binding energy, the more stable the nucleus. The nuclear binding 
energy is large enough to cause a difference in the mass of a nucleus and the 
sum of the separate masses of protons and neutrons, which is given in terms 
of the binding energy as discussed in Section 2.3, Eq. (3-59) 

Theoretically, the total binding energy may be directly measured by 
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completely separating all components of the nucleus; this process, however, 
is seldom possible. It is much easier to determine the binding energy of a 
single nucleon, for example a neutron (EbN)

1NbN BEBEE  (3-68)

where BE is the binding energy of the nucleus and BEN 1 is the binding 
energy of the remaining nucleus once a single neutron has been removed. 

Example 3.7 Binding energy of a single nucleon 
The binding energies of 16

8 8O  and 17
8 9O  are 127.6 MeV and 131.8 MeV,

respectively. Determine the energy required to separate the neutron from 17
8 9O .

1 131.8 127.6 4.2bN NE BE BE MeV

The liquid drop model was proposed by Bohr and Wheeler to explain the 
structure and shape of the nucleus. In this model, a nucleus is described in 
analogy with a drop of incompressible liquid. This is a crude model that does 
not explain all of the properties of nuclei, but can easily account for the 
spherical shape of most nuclei and explain the process of fission (see 
Chapter 6). The liquid drop model considers the nucleus as a homogeneous 
mixture of nucleons that interact strongly with each other and maintain a 
spherical geometry due to surface tension. Mathematical analysis of the 
model produces a semi empirical equation that can be used to predict the 
binding energy of a nucleus as a function of Z, N and A. An empirically 
refined form is presented here. The formula is also called the Weizsaecker 
semi empirical formula: 

The binding energy of a nucleus is proportional to the number of 
nucleons, A: there are two reasons for this tendency. First, the strong 
nuclear force as discussed in Section 2.6 acts only within a very small 
distance between nucleons (up to ~ 2 fm; see Fig 3-10), which means that 
each nucleon is bound to only a fraction of the other nucleons. The 
second reason is that the nuclear density as described in Section 2.1 is 
approximately constant for all nuclei, which means that the degree of 
packing of nucleons is also nearly equal for all nuclei, and consequently 
each nucleon is bound to roughly the same number of neighboring 
nucleons. Thus the average binding energy for each individual nucleon is 
the same in all nuclei and the total binding energy is proportional to the 
total number of nucleons, A. Furthermore, the total number of nucleons, 
and therefore the total binding energy, is proportional to the volume of 
the nucleus. This is expressed mathematically using a volume term
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BE - BE,,, = a,,,A 

where a,,/ is a constant such that aVol > 0. 
Surjiace nucleons tend to reduce the total binding energy of a nucleus: 
Nucleons near the surface of a nucleus are less tightly bound because 
they have fewer neighboring nucleons (see Fig. 3-10). The number of 
surface nucleons is proportional to the surface area of a nucleus, which is 
related to the total number of nucleons by the Fermi model 

Thus the total binding energy of a nucleus is reduced by a factor 
proportional to A2I3 

where a,su,.. is a constant such that 0. 

Figure 3-10. Distribution of nucleons in the interior of a nucleus (each nucleon is bound only 
to the nucleons within the short range of - 2fm) 

Electrostatic (Coulomb) repulsion forces between protons tends to 
reduce the total binding energy of a nucleus: this reduction is equal to the 
potential energy of the total nuclear charge, which is given by the 
following equation, assuming that the total charge of Ze is uniformly 
distributed within the sphere 
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The total binding energy of a nucleus is thus further reduced by a factor 
proportional to Z2 l A " ~  

The exact value of acoul,b is dependent on the real shape of the nucleus 
and the approximation of Eq. (3-73) is thus valid for spherical nuclei. 
Due to the symmetry effect the total binding energy of a nucleus tends to 
decrease as the quantity Z - N increases: as discussed in Section 2.7 a 
nucleus with Z = N has the highest binding energy (and greatest 
stability). As the nuclei depart from this equality (as Z - N increases), the 
total binding energy decreases. This phenomenon is accounted for 
mathematically as follows 

The pairing effect (described in next section) affects the total binding 
energy of a nucleus: as described in Chapter 2, a nucleus having an even 
number of both protons and neutrons tends to have the greatest stability, 
and therefore greater binding energy. This preference requires a 
correction to the total binding energy of the form 

where apui, is a constant and 6is dependant upon nuclear configuration as 
shown in Table 3-2. 

From the Weizsaecker semi-empirical formula it can be concluded that 
the total binding energy of a nucleus depends primarily on A, which is why 
BE is usually discussed in terms of binding energy per nucleon (Section 2.3). 

Table 3-2. Correction term for the semi-empirical binding energy formula 
6 Z N 
1 Even Even 
0 Even or Odd Odd or Even 
-1 Odd Odd 



NUCLEAR THEORY 85 

The five constants of the formula are determined empirically so as to fit 
as many experimentally measured binding energies as possible. For those 
nuclides that are difficult to measure experimentally, the following set of 
values is generally used to approximate the binding energy (all values are 
given in MeV) 

Example 3.8 Prediction of nuclear binding energy from the 
Weizsaecker semi-empirical formula 

Calculate the total binding energy for 8737~b50 and compare with the measured 
value of 757853.053 +I- 2.487 keV. 

The liquid drop model also permits the development of a semi-empirical 
formula for the prediction of nuclear masses. 

where the values of A are given in Table 3-3. 

Table 3-3. Correction term for the semi-empirical nuclear mass formula 
A Z A 
- 0.036 / A3I4 Even Even 
+0.036 / A3" Odd Even 
0 Odd 

Example 3.9 Prediction of a nucleus mass from the Weizsaecker 
semi-empirical formula 

Calculate the nuclear mass for 8737~b50 and compare with the measured value of 
86.909 1835 +- 0.0000027 amu. 
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3.2 The Shell Model 

An alternative to Bohr and Wheeler's liquid drop model of the nucleus is 
the shell model, according to which the various nucleons exist in certain 
energy levels within the nucleus (see Fig. 3-9). Each nucleon is identified by 
its own set of quantum numbers similar to electrons in their orbits. In this 
manner, nuclear energy levels containing successively 2, 8, 20, 50, 82, and 
126 nucleons exhibit a very high level of stability due to completely filled 
energy levels. For this reason, as with atoms that have a full valence electron 
shell, nuclei containing these magic numbers of nucleons are inert in the 
nuclear sense. For example, these nuclei do not readily react when 
bombarded with neutrons. Table 3-4 illustrates the atomic and nuclear 
closed-shell numbers. 

Table 3-4. Atomic and nuclear closed-shell numbers 
Atomic closed-shell numbers 2, 10, 18, 36,54, 86 
Nuclear closed-shell numbers 2, 8,20,28, 50, 82, 126 
(magic numbers) 

Nuclei which have both a magic number of neutrons and protons are 
particularly stable and are labeled "doubly magic" 

The existence of the magic numbers and the shell structure of a nucleus 
are confirmed through many observations 

1. Nuclei with a magic number of neutrons or protons tend to have more 
stable isotopes. For example, (a) tin (50Sn) has ten stable naturally 
occurring isotopes: 1 1 2 ~ n  (0.97%), l14Sn (0.65%), l15Sn (0.34%), ll6Sn 
(14.54%), 1 ' 7 ~ n  (7.68%), l18Sn (24.22%), 'l9Sn (8.58%), 120Sn (32.59%), 
' 2 2 ~ n  (4.63%), ' 2 4 ~ n  (5.79%); (b) isotones with N = 82 have seven stable 
isotopes. 

2. The stable elements at the end of the naturally occurring radioactive 
series (see Chapter 4) all have a magic number of neutrons or protons. 
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The thorium, uranium and actinium series decay to lead, which has a 
magic number of 82 protons, while the neptunium series ends with 
bismuth, which has a magic number of 126 neutrons. 

3. The neutron absorption cross section (see Chapter 6) for nuclei with a 
magic number of neutrons is much lower than that for the neighboring 
isotopes. The closed neutron shells increase the stability of the nuclei 
making them less likely for neutron interactions. 

4. The binding energy of the last neutron in nuclei with a magic number 
plus one drops rapidly when compared to that of a nucleus with a magic 
number of neutrons. 

Example 3.10 Separation energy of the last neutron 
Compare the separation energy of the last neutron in 40Ca20 with its binding 
energy per nucleon. What is the separation energy of the last neutron when one 
neutron is added to the nucleus of 40Ca20.
The masses are 
m(40Ca20) = 39.9625912 amu; m(39Ca19) = 38.9707177 amu; mn = 1.008665 amu;
mp = 1.007277 amu; m(41Ca21) = 40.9622783 amu

The separation energy of the last neutron in 40Ca20 is 

(38.9707177 1.008665 39.9625912) 931.5 15.6bnE MeV MeV

The binding energy per nucleon is (see Section 2.3 and 3.1) 

2

2

( ( ) )

(20 1.007277 20 0.00055 20 1.008665 39.9625921)

342.1

measured
p e n atomBE Zm Zm A Z m M c

c
MeV

/ 40 8.6BE MeV

The separation energy of the last neutron is almost twice the average nucleon 
binding energy in the doubly magic isotope of calcium 20. 
When one neutron is added, according to the Pauli principle and shell structure 
of the nucleus, the nucleons must begin to fill a new shell.  

The separation (or the binding) energy of that neutron is thus much less 

(39.9625912 1.008665 40.9622783) 931.5 8.3bnE MeV MeV
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5. The excitation energy from the ground energy level to the first excited 
energy level is greater for the closed-shell nuclei. An interesting 
observation to point out is that the discrete energy levels of the electrons 
in an atom are measured in eV or keV, while the energy levels of a 
nucleus are on the order of MeV. Nuclei, like atoms, tend to release 
energy and return to the ground state following excitation. The excitation 
energies for the even-A nuclei of lead are shown in Fig. 3-1 1. The 
histogram indicates that the required energy is dramatically larger for the 
nucleus with a magic number of neutrons. 

202 204 206 208 210 212 

Even-A Lead Nuclei 

Figure 3-1 1. First excited energy level in even-A nuclei of lead 

4. PLANCK'S THEORY OF QUANTA 

In 1900 Max Planck developed the theory that energy is absorbed and 
emitted in small energy packets that he called quanta. The size of quanta of 
low frequency (red) light is smaller than the size of quanta of high frequency 
(violet) light. In 1905, Albert Einstein published his famous paper on the 
photoelectric effect postulating the quantum nature of light (for which he 
received the Nobel Prize in 1921). According to Einstein's theory (see 
Chapter 5), light is composed of particles (which he called photons) such 
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that a beam of light is analogous to a stream of bullets. Thus, ultraviolet 
(UV) light having a frequency of 1016 Hz consists of a stream of photons 
each having 100 times the energy of photons of infrared (IR) light having a 
frequency of 1014 Hz. That is why UV light can cause skin cancer while IR 
has no significant effect on the skin. 

The energy of an atom, as discussed in Chapter 2, can be increased only 
in discrete values, just as American money cannot be counted in units less 
than cents. The energy of the quanta (E) is proportional to the frequency (f) 
of oscillation of the light wave. Therefore the total energy can be equal only 
to an integer number of quanta (similar to the fact that one can have 3 dollars 
and 20 cents, but can not have 3 dollars and 20.5 cents). The size of the 
energy quantum is given by 

where h is Planck's constant equal to 6.626 x Js. 

1 : wavelength indicating the 
distance between two wave crests 
(the longest are radio waves) 

f : frequency describing how many 
crests pass a given point each 
second 

u : velocity = Z / j 

Figure 3-12. Definition of a wave 

It is important to note that increasing the intensity of a light source 
increases the rate at which photons are emitted. If the frequency of emitted 
light has not changed, the energy of the emitted photons has also not 
changed. The relationships between frequency, wavelength, velocity and 
energy of a light wave are sketched in Fig. 3-12. 

4.1 Black Body Radiation 

At the beginning of the 20' century it was known that heat causes the 
molecules and atoms of matter to oscillate and that any body with a 
temperature greater than absolute zero radiates some energy. It was also 
observed that the intensity and frequency distribution of the emitted 
radiation depended on the detailed structure of the heated body. The model 
analyzed for more than 40 years in order to explain the dependence of 
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emitted radiation energy on wavelength was the "black body" model, (see 
Fig. 3-13). A black body is a hypothetical object that absorbs 100 % of all 
radiation that it is exposed to. 

Figure 3-13. Black body 

Figure 3-14. Black body radiation spectrum (not to scale) 

At normal temperatures such a body reflects no radiation and thus 
appears to be perfectly black. When heated, the radiation emitted by a black 
body is called black body or cavity radiation and is characteristic of this 
body only and is not dependent upon the type of incident radiation. In 
practice no material has been found to exhibit the exact properties of this 
model. A black body may be thought of as a furnace with a small hole in the 
door through which heat energy can enter from the outside. Once inside the 
furnace, the heat is entirely absorbed by the inner walls, which may emit 
radiation to be absorbed by another part of the furnace wall or to escape 
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through the hole in the door. The radiation that escapes from a black body 
may contain any wavelength. 

The black body radiation spectrum (Fig. 3-14), which represents the 
intensities of each of the wavelengths of radiation emitted from a black body 
as a function of the energy of radiation, indicates that 

A black body radiates energy at every wavelength, while energy 
decreases exponentially as wavelength increases. 
A black body emits most of its radiant energy at a peak wavelength. For 
example, at 5000 K the peak wavelength is about 5 x 10-'m (500 nm) 
which is in the visible light (yellow-green) region. 
At each temperature a black body emits a standard amount of energy 
represented by the area under the curve. A hotter body thus emits 
radiation with shorter wavelengths. For example, black bodies at higher 
temperatures are blue, and those at lower temperatures are red. 
As the temperature increases, the peak wavelength emitted by a black 
body decreases and begins to move from the infra-red to the visible end 
of the spectrum. Since none of the curves cross the x-axis it follows that 
radiation is emitted at every wavelength. 
As the temperature increases, the total energy emitted increases 
nonlinearly (the total area under the curve increases in uneven steps). 

4.2 Wein's Displacement Law 

When the temperature of a black body increases, the overall emitted 
energy increases and the peak of the radiation curve moves to shorter 
wavelengths (see Fig. 3-14) as defined by the Wein's displacement law 

where A,,,,, is the wavelength at which the energy of the emitted radiation 
is maximum, and T is the temperature in Kelvin. 

Wein's displacement law is used to evaluate the temperatures of any 
radiant object whose tefnperature is far above that of its surroundings (such 
as stars, for example). Wilhelm Wein was awarded the Nobel Prize in 
Physics in 191 1 for his work in optics and radiation. 

Example 3.11 Wein's displacement law 
Use Wien's displacement law to calculate the temperature (in K) of a star whose 

maximum wavelength is 3.6x10-'m (an X ray star). 
From Eq. (3-77) 
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max T = 2.8898 10-3 mK                          T = 8.03 x 105 K

4.3 The Stefan-Boltzmann Law 

According to the Stefan-Boltzmann law the energy, E, radiated by a 
black body per unit time and unit area (energy flux or emissive power) is 
proportional to the fourth power of the absolute temperature, T

E= T4 (3-78)

where is the Stefan Boltzmann constant equal to 5.67 x 10 8 W m 2

K 4.
The Stefan Boltzmann law gives the total energy that is emitted at all 

wavelengths from a black body (which corresponds to the area under the 
black body radiation spectrum, Fig. 3-14) and explains the increase in the 
height of the curves with temperature. The increase in energy is very abrupt, 
since it is proportional to the fourth power of the temperature. 

Example 3.12 Stefan Boltzmann law 
Calculate the ratio of radiated energy from the sun to that of the earth assuming 

their temperatures are 6000 K and 300 K, respectively. Determine the maximum 
wavelengths of the emitted radiation. 

According to Stefan Boltzmann law, Eq. (3-78) 
Esun = 5.67 x 10-8 Watts m-2 K-4 (6000 K)4 = 7.3 x 107 Watts m-2

Eearth = 5.67 x 10-8 Watts m-2 K-4 (300 K)4 = 459 Watts m-2

Esun / Eearth = (6000 K)4 / (300 K)4 = 1.6 x 105

According to Wein’s displacement law: 
Sun: max = 2.8898 10-3 mK / 6000 K = 0.48 m
Earth: max = 2.8898 10-3 mK / 300 K = 9.6 m

4.4 The Rayleigh Jeans Law 

At the beginning of the 20th century a major problem in physics was to 
predict the intensity of radiation emitted by a black body at a specific 
wavelength. Wien’s displacement law (see Section 4.3) could predict the 
overall shape of the black body spectrum, but at long wavelengths the 
predictions disagreed with experimental data. Rayleigh and Jeans developed 
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a theory that the radiation within a black body is made up of a series of 
standing waves. They argued that electromagnetic radiation was emitted by 
atoms oscillating in the walls of the black body. The oscillating atoms emit 
radiation that creates a standing wave moving back and forth between the 
walls. Their formula is shown in Fig. 3-15. 

The Rayleigh-Jeans formula agreed with the experimental data for long 
wavelengths, but in the region of short wavelengths the disagreement with 
measured values was extreme. According to the Rayleigh-Jeans formula, the 
radiation intensity becomes infinite as wavelength approaches zero. When 
compared to the radiation energy distribution as a function of temperature 
and wavelength of the emitted light (see Fig. 3-14) it can be observed that 
the peak wavelength was not predicted by the Rayleigh-Jeans law. This 
failure to account for the decrease in energy emitted at short wavelengths 
(the UV wavelengths) is known as the ultraviolet catastrophe. 

At a meeting of the German Physical Society in October of 1900, Max 
Planck presented his theory that radiation is emitted in discrete portions, 
quanta, and showed that his formula fit all experimental data. 

Frequency 
a , , ,  Rayleigh-Jeans Distribution (Classical) - Plank Distribution (Quantum) 

Figure 3-15. Rayleigh-Jeans law of black body radiation 
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4.5 Planck's Law 

Planck explained that the oscillating electrons of the surface atoms of a 
black body emit radiation according to Maxwell's laws of electromagnetism. 
At that time, classical mechanics predicted that such radiation could have 
any value of energy. 

Planck postulated that the energy is emitted or absorbed only in discrete 
amounts because the frequencies of the oscillating electrons could have only 
specific discrete values. Since the energy of electromagnetic radiation is 
proportional to frequency (E = hf), it, too, can be available only in discrete 
amounts 

E = 0, hf, 2hf, 3hf, ... (3-79) 

Equation (3-79) defines Planck's law which represents the basic law of 
quantum theory. According to this law the energy of electromagnetic waves 
is restricted to quanta radiated or absorbed as a whole with magnitude 
proportional to frequency. 

THE WAVE PARTICLE DUALITY 

The ultimate belief and tendency in modern physics is toward a large 
overview that will incorporate all laws of nature into one unified theory. 
This theory would bring together the laws of the subatomic world and laws 
of galaxies and everything in between; a concept that Einstein called the 
ideal limit of knowledge. 

Kepler, Galileo, Copernicus, and Newton where the first to develop the 
theory of the universe, according to which the universe was infinite in all 
directions and light travelled at infinite or near infinite speed. With the 2 0 ~  
century came Einstein's theories of quantum mechanics and the 
understanding of physics from the macro-world to the subatomic realm 
changed. 

A quantum is a discreet quantity and mechanics is the study of motion; 
thus quantum mechanics describes a nature to consist of small, discreet parts 
(quanta) and is applied to describe events on the subatomic scale. Newtonian 
(classical) physics is applicable to the macro-world, but is not applicable to 
the subatomic realm. 

Newton's laws are based on every day observations and predict events 
such as ball trajectory or the velocity of celestial bodies. Quantum 
mechanics is based on subatomic experiments and predicts probabilities. 
Subatomic phenomena cannot be observed or detected directly, as an atom 
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or subatomic particle can not be seen by the same means as macro objects. 
Using Newton's laws of motion, the future or the past of a moving object 
can be easily predicted given initial conditions. For example, if the present 
positions and velocities of the earth, the moon, and the sun are known, it is 
possible to predict where the earth has been or will be in relation to the 
moon and the sun. For example, the space program would not be possible 
without Newtonian calculations of the movements of spacecraft relative to 
the movements of the earth and moon. 

The ability to predict the future and the past based on knowledge of the 
present and Newton's laws of mechanics suggests that from the moment the 
universe was created and set into motion, everything that was to happen 
within the universe was already determined. However, according to quantum 
mechanics, it is not possible to know enough about the present to make a 
complete prediction of the future. A prediction or observation of the 
subatomic world requires a decision as to which of aspects must be known, 
because the laws of quantum mechanics forbid precise knowledge of more 
than one of them at the same time. 

This section introduces the basic aspects of the quantum mechanics 
concept, describes the evidence for the wave-particle duality nature of 
subatomic constituents, explains the uncertainty principle, and gives a brief 
introduction to the Schrodinger wave equation. 

The scope of the presented theories is directly related to applications in 
nuclear engineering disciplines. 

5.1 De Broglie's Hypothesis 

The development of quantum mechanics began in 1900 with Planck's 
study of black body radiation (see Section 4.1.). Planck found that the 
energy of oscillation of electrons that produce the radiation is absorbed and 
emitted in discrete amounts, quanta, given by E = nhf, where n is an integer 
value and h is Planck's constant which value was determined from the black 
body radiation spectra. However, Planck was not able to explain why the 
energy would be quantized, because at that time radiated energy was 
considered to be wave-like. This theory was derived from the Thomas 
Young's double-slit experiment (see Section 5.2) that in 1803 demonstrated 
the interference pattern of light. 

In 1905, Einstein explained the photoelectric effect that proved Planck's 
discovery of quanta, and showed not only that energy absorption and 
emission are quantized, but that the energy of light itself is quantized. With 
this explanation he introduced a new concept of light; theorizing that light 
quanta are particle-like (photons) and that light, therefore, behaves as a 
series of particles. This was a confrontation to classical physics and the two 
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sets of (repeatable by demand) experiments (the photoelectric effect and the 
double-slit experiment) were proving different natures of light. 

The idea that light could behave as a wave and as a particle created a new 
question: does an electron have particle-wave properties or, in a larger 
frame, is the dual particle-wave nature of light a property of all material 
objects as well. 

The answer to this question was given by Prince Louis de Broglie in his 
Doctoral thesis of 1923 in which he argued that all material objects can 
behave, like light, both as a particle and as a wave at the same time. 
Equation (3-76) 

was difficult to apply to particles with finite mass. It describes a total, 
kinetic or total relativistic energy (as all are identical) of light. 

However, the relationship of momentum, p, to wavelength 

is valid for any particle or material object. 
De Broglie suggested (without any experimental evidence) that for any 

particle with non-zero mass (such as electrons, protons, or bowling balls) 
moving with momentum p, there is an associated wave of wavelength A 
related to momentum as 

The wavelength of a moving particle calculated from this equation is 
called the de Broglie wavelength. 

Example 3.13 De Broglie wavelength 
Calculate the de Broglie wavelength for: ( 1 )  an electron moving at 

3.0 x lo6 d s e c  (= 0.01c), and (2 )  a 1000-kg car travelling at 100 kdhr .  

( 1 )  A= h / p  = 6.6 x JS / [(9.ll x lom3' kg) (3.0 x lo6 d sec ) ]  = 2.4 x 10. '~ m 
Since the wavelength of the electron is comparable to atomic dimensions, the 

effect of its wave nature is important. 

(2 )  A = h / p  = 6.6 x JS / [(I000 kg) (100 x lo3 d3600sec)l  = 2.4 x m 
The wave character of the car is much smaller than the car itself; hence the 

wave-like motion of the car (or of any macro object, for that matter) is not evident. 



NUCLEAR THEORY 97 

Using the analogy of sound waves (known to vibrate at discrete 
frequencies when confined to a finite region such as an organ pipe), de 
Broglie argued that the quantization of electron energy in an atom can be 
explained as the quantization of electron-wave frequency (for an electron 
confined inside the atom), which would explain the quantization of the 
angular momentum of an electron in a hydrogen atom. 

De Broglie pictured the electron wave oscillating along the circular orbit 
of Bohr's atom (see Fig. 3-16) such that its circumference is equal to the 
finite integral number of wavelengths 

Replacing the wavelength of the electron wave with the de Broglie 
relation of Eq. (3-81), it follows 

For a circular orbit, rp represents the angular momentum, L. 
Combining last equation it gives 

the Bohr quantization condition was obtained (see Chapter 2). 

Figure 3-16. Electron wave in Bohr's atom according to the de Broglie representation 
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5.2 Double-Slit Experiment 

In 1803, the British physicist, physician, and Egyptologist, Thomas 
Young (known for deciphering the Rosetta stone), carried out a very simple 
but unique experiment known as the double-slit experiment. The goal of this 
experiment was to understand the nature of light. He analyzed the pattern 
created by light while passing through two slits (either through one or both). 

In order to understand the nature of such an experiment we start with a 
brief review of the properties of waves. The best analogy for understanding 
the wave property of light is to consider the water waves created at the 
entrance of a harbour. For example, if the mouth of the harbour is wide 
enough the waves move straight through it. This is because the distance 
between the crests, the wavelength, is smaller than the size of harbour 
entrance as illustrated in Fig. 3-17 (a). However, if the mouth of the harbour 
is small (smaller than or equal to the wavelength) the waves spread out into 
semicircles, a phenomenon called the difSraction of waves. Diffraction of 
waves is illustrated in Fig. 3-17 (b). 

It was assumed that since light is a wave it should behave the same way 
when passing through slits of sizes smaller or larger than its wavelength. 

If light passes through the cut-out screen as shown in Fig.3-18 (a), it will 
behave as the ocean waves passing through the large harbour entrance, since 
the opening in the slit is large compared to the wavelength. 

When the slit opening is small (see Fig. 3-18 (b)) the light diffracts and 
there is no sharp boundary between the bright and dark area at the screen 
where the image is projected. 

Knowing this, Thomas Young developed an experiment as shown in Fig. 
3-19. He analyzed the patterns that are created by the light on the wall screen 
depending on the size of the slits and whether one or both are opened. 

Young observed that when one slit was closed the image obtained at the 
wall indicated light diffraction (like that shown in Fig. 3-18 (b)). However, 
when both slits were opened, the expected image of a simple sum of the light 
waves did not appear. Instead, the pattern showed bands of light and dark 
areas (see Fig. 3-19), a phenomenon called light inteq5erence. 

Since the spacing of the maxima and minima in the interference pattern 
depend on light wavelength, changing the wavelength (color) of light will 
change the location and number of bright and dark bands on the screen. If 
the distance between the slits is increased more bands of light will be created 
on the screen. 

This experiment showed that light has a wave-like property because only 
waves can show interference. However, 100 years later, Einstein proved that 
light also exhibits the properties of a particle. 
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(b) d - il 
Figure 3-17. Patterns that water waves create while passing through a harbor entrance of 

different sizes: (a) the entrance is larger than the wavelength of water waves; (b) the entrance 
is smaller than the wavelength of water waves 

Assuming light to be a stream of particles, the double-slit experiment 
can be analyzed in a very interesting way. When both slits are opened, 
photons "red from the light gun one at the time" will hit the screen (wall) 
at particular areas and there will be places where the photons will never land 
(otherwise there would be no dark areas and the image would be the same as 
when there is only one slit). 
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light source 
Wall 
scree 

(a) Size of the slit larger than light wavelength 

light source 

Wall 
scree 

(b) Size of the slit comparable to light wavelength 

Figure 3-18. Patterns created by light passing through slits of various sizes 



NUCLEAR THEORY 

light double slit wall 
source 

-sun- - 
Figure 3-19. Thomas Young's double slit experiment (1803) 

Now the question is how the photons know where to land and where not 
to land or how the photons know that there are two slits and that both are 
opened? If one of the slits is closed there will be no interference and the dark 
bands will disappear (the whole wall becomes illuminated including areas 
that are dark when both slits are opened). When only one slit is opened, the 
future of the event can be easily predicted because the laws governing the 
phenomenon are known, as well as the initial conditions (the origin of light, 
its speed and its direction). Using Newton's laws of motion it is possible to 
determine where the photons will land on the wall surface. The initial 
conditions for each case (one slit or two) are identical. However, in the case 
when both slits are opened, Newton's laws of motion will give exactly the 
same results as in the previous case, which will be wrong. In other words, 
two photons having exactly the same initial conditions, in two different 
experiments, will not go to the same location. In the second experiment it 
can be understood that a wave pattern is created on the screen by a large 
group of photons. In that pattern it is not possible to know where a single 
photon will land. All that can be known is the probability of finding a single 
photon in a given location. What determines WHERE a single photon will 
land? 

According to quantum mechanics there is only a probability which 
guides a photon to a particular area. The experiment can be viewed once 
again considering the light as a particle, as a wave, or as a wave-particle: 

Linht as a particle - if light is considered as a stream of particles we may 
ask why the photons avoid making spots on certain areas of the screen when 
both slits are open. Every particle has two opportunities, two slits to pass 
through. These two opportunities interfere with each other since the image 
obtained at the wall shows the bands of light and dark areas. The 
interference can be explained by saying that the particles are controlled in 
such a way that each particle passes through a slit alone. The particles do not 
bump into each other and two particles never pass through one slit at the 
same time. The next question is how to explain this interference using 
quantum mechanics. 
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High probability that 
( the particle is here. 

Low probability that ) 
the particle is here. 

Figure 3-20. Wave-particle duality 

Light as a wave - if light is considered to behave as a wave it can reach 
both slits at the same time, which a particle can not do. The wave can then 
break up into two waves and each would pass through each slit individually. 

This phenomenon is seen when a real wave (at a harbour, for example) 
comes to two openings (like the space between piers). Two waves can travel 
separate paths, go through separate slits, and reach the wall where they can 
interfere with each other. Waves are made of moving hills and valleys (see 
Fig. 3-12); if at some point on the wall the valley of one wave meets the hill 
of another wave, these two waves cancel out at that point. This easily 
explains the light and dark bands at the wall when both slits are opened. If 
one slit is closed, then there would be no reason for the wave to split into 
two parts and the wave will reach the screen unimpeded. 

This consideration seems to solve the problem by stating that the 
possibilities always interfere with each other if an object behaves as a wave. 
It could be concluded that there were no particles in the stream of light, and 
that the stream was simply a wave. However, when the waves arrive at the 
screen they do not land everywhere like waves reaching the beach shore, 
indicating that light does not always behave like a wave. 

L i ~ h t  as a particle and a wave - Waves reach the screen in a series of 
points. Since the real waves can not do that, it can be concluded that a 
particle always leaves a track while travelling as a wave through the space. 
This statement can explain that waves are particles and that particles are the 
waves. 

Such behaviour of particles when confronted with two or more 
possibilities is called wave-particle duality (see Fig. 3-20). Although it is 
still not known why subatomic matter behaves in this way, the laws of 
quantum mechanics can explain the phenomena (lasers, microchips, 
photocells, nuclear reactors, long-range deepspace communication 
devices, transistors, materials at very low temperatures). 
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5.3 Experimental Evidence for the Wave Particle
Duality

De Broglie’s hypothesis as discussed in Section 5.1 explained that matter 
waves were not evident in the macroscopic world because the wavelength 
was much smaller than the size of the objects. His equation, however, 
indicated that because the size of subatomic particles is smaller than the 
wavelengths of their associated waves the wave properties are noticeable. 
For example, for a non relativistic particle of mass m and kinetic energy  
E = p2 / 2m, the de Broglie wavelength can be expressed as 

mE
h

2
(3-85)

This relation clearly indicates that particles of lower mass have longer 
wavelengths. It follows that the particle wave behaviour of the lightest 
known particle, the electron, should be easy to detect. By expressing the 
kinetic energy of an electron in eV and placing its mass of 9.109 x 10 31 kg
into Eq. (3-85), the de Broglie wavelength for an electron is 

)(5.1 nm
E

(3-86)

For example, an electron with energy 1.5 eV has a wavelength of 1 nm,
while an electron with energy 15 keV has a wavelength of 0.01 nm. Since the 
distances between the atoms in crystalline structures of solid matter are in 
the order of electron wavelengths for electron energies in the range of eV to 
keV, electrons are expected to be diffracted by crystal lattices. In 1926, just 
two years after de Broglie presented his hypothesis, C. J. Davisson and L. H. 
Germer, at the Bell Telephone Laboratories, were able to verify the wave 
property of electrons in crystal diffraction experiments. Davison used 
electrons with energy of 54 eV and wavelength of 0.167 nm which were 
diffracted from a nickel coated surface. In 1927 G. P. Thomson used 
electrons with energy of approximately 40 keV and wavelength 0.006 nm to 
demonstrate diffraction by micro crystals.  

In the Davisson-Germer experiment the electrons were of low energy and 
thus they did not penetrate very far into crystal. To analyze the experimental 
data and show evidence of the wave nature of electrons, it is sufficient to 
assume that the diffraction took place in the plane of atoms on the surface of 
the nickel. From independent X ray diffraction data available at that time it 
was known that the spacing between the rows of atoms in a nickel crystal 
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was 0.091 nm. Therefore, according to Bragg's law (knowing that the 
maximum angle of diffraction was measured to be B= 65'1, the wavelength 
of the diffracted electron was 0.165 nm (see Fig. 3-21). This value, when 
compared with the de Broglie wavelength of 0.167 nm, provides strong 
evidence for wave-like behavior of electrons. 

Incident ray Diffracted ray 

o \yo o o ., spacing between ae 

0 0 0 0 0 n is the order of diffraction 
maximum. The maxima for n > 1 

0 0 0 0 0 are weak. Usually the only 
important diffraction is n = 1 

Figure 3-21. The Bragg's law 

Example 3.14 Electron diffraction from crystal planes 
Electrons accelerated through a voltage of 100 V are diffracted from a crystal 

with a plane distance of d = 2 x 10.'' m. Calculate the electron scattering peaks for 
the first three orders of diffraction. 

The electron wavelength can be obtained as follows 

Using Bragg's law (see Fig. 3-21) the scattering peaks for the first three orders 
of diffraction are: 

nil 
2d sin 6 = nA + 8 = sin-' - = sin-'(0.30699n) + 

2d 

Since these first experiments of particle diffraction many more were 
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carried out to confirm the wave-particle duality of protons, neutrons, atoms 
and molecules. Additionally, the double-slit interference experiment was 
performed with electrons (1989), neutrons (1991) and even atoms (1991) 
and molecules (1999). The double-slit interference experiments with 
electrons demonstrated that a very weak source of electrons (only one 
electron passing through the slits at any given time) generated the pattern of 
waves on the screen. Such experiments showed that particles of matter are 
not classical solid particles with well predicted and defined trajectories, but 
that they behave as waves whenever there is a choice of more than one 
possibility (such as in the double-slit experiment). In other words, in the 
double-slit experiment every particle is given two trajectories. In a wave 
form the particle travels along both trajectories arriving at a random point on 
the screen causing the interference pattern. In all experiments with all types 
of particles, the pattern consists of bands with a spacing of AL / a, where a is 
the separation between the slits, L is the distance between the slits and the 
screen, and A is the de Broglie wavelength (see Fig. 3-19). 

Figure 3-22. Single slit diffraction pattern 

Example 3.15 Single slit diffraction 
For red light (660 nm) impinging on slits of width a = 0.05 mm and a = 0.2 mm 

placed L = 1 m away from the screen, determine the angular separation 19 between 
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the center line and the first minimum of the resulting diffraction pattern and its 
distance from the first maximum, y (see Fig. 3-22). 

y = L tan 0 +' y(0.05mm) = 13.2mm; y(0.2mm) = 3.3mrn 

5.4 The Uncertainty Principle 

The double-slit experiment considering photons as both particles and 
waves is discussed in Section 5.2. In order to introduce the uncertainty 
principle associated with the subatomic realm, we will analyze this 
experiment using electrons as shown in Fig. 3-23 (a). In the experiment it is 
assumed that all electrons coming from the "gun" have nearly the same 
energy. The electrons behave in the same way as photons (as discussed in 
Section 5.3) and produce interference pattern on the screen. The question is 
can we "watch" each of the electrons to see their trajectories and thus 
understand which slit they go through and at which point on screen they 
land. 

In order to do this, two modifications are made to the experimental setup: 
(1) a light source is placed directly behind the slit screen and (2) a detector 
or an array of detectors is placed on the wall. As each electron passes 
through a slit, the light emitted from the source is reflected such that the 
observer may determine which slit the electron passed through. 

The detectors then indicate where the electron struck the wall. Thus 
every electron that arrives at the screen is placed into one of two categories: 
those that passed through slit one and those that passed through slit two. 
From the number of events recorded in each category, we obtain the 
probabilities, P'l and P'2, respectively, of each event. The distribution of 
these probabilities as a function of distance from the centreline is shown in 
Fig. 3-23 (b). When the light source is in place we "watch" each electron 
passing through the screen; we obtain the expected result: each electron 
passes through only one slit regardless of the number of open slits. In this 
case, when both slits are open, the probabilities of each event simply add to 
determine the total probability, P'12 = PI1 + P'2, and no interference is 
observed. However, if the light source is removed, interference is once again 
observed (P12) as in the original experiment. The conclusion is that the 
observation of the electron trajectories via the light source somehow changes 
the distribution of electrons at the screen. When a photon from the light 
source is reflected, or scattered, by the electron, the motion of the electron is 



NUCLEAR THEORY 107 

changed such that it may fall into a different part of the probability 
distribution (a minima instead of a maxima, or vice versa). This is why 
interference is observed. 

(a) 

Wall Screen 

Figure 3-23. (a) Double-slit experimcnt with electrons and (b) the results of the experimcnt 
when electron trajectories are "watched" by shining a light on the electrons 

The next question then becomes what will happen to the probability 
distribution if the intensity of the light source is reduced? Remember, 
however, that when the intensity is reduced, the energy (quanta) of the 
photons is not changed; only the rate at which they are emitted from the 
source. Thus when the source of light is dim, we may not see each electron 
trajectory and must now record the events into three categories: those 
electrons that passed through slit one, those that passed through slit two, and 
those that were not seen, but were registered at the detector. The 
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probabilities of these events are P'l,  P'2, and P12, respectively. Those 
electrons that are not seen cause interference, which is understandable 
because when we do not see the electron, it means there were no photons to 
disturb its trajectory (to change the direction and speed of motion), and when 
we do see it, there is a photon disturbing it (changing the direction and the 
speed of motion). We now come naturally to the last question: is there any 
way we can see the electrons without disturbing them? 

The momentum carried by a photon is p = h / A, implying that in order to 
disturb electrons only slightly, not the intensity, but the frequency of the 
light source should be changed. Using a light of lower frequency (for 
example red light), i.e. longer waves, the interference pattern at the screen 
will be restored. If the interference pattern is restored, however, we are no 
longer able to see where the electron hits the screen. The conclusion from 
this experiment is that it is impossible to design an apparatus such that it can 
be used to distinguish which slit the electron passed through without 
disturbing the electrons enough to destroy the interference pattern. This 
introduces the basic characteristic of subatomic wave-particle duality, 
known as the uncertainty in measuring more than one of the particle's 
parameters. 

In the above experiment there was a reason why we have chosen a light 
source (photons) to monitor the trajectories of the electrons. In the macro 
world the objects we are able to see is due to the reflection of light from 
those objects. For example, a lamp in the night emits photons that travel 
through space and interact with the surrounding objects. The reflected 
photons travel back toward our eyes where we detect the image. Therefore, 
the interaction of the photons with the objects around us is the core of the 
process; if an object can be observed, it must have undergone interactions 
with light (photons). In the macro world, where Newtonian physics applies, 
the interactions of photons with measured objects are ignored since such 
interactions will not affect the motion of macro objects (a table in a room 
will not move when the light is turned on). Thus in the macro world the act 
of measurement does not affect the object being measured. From the 
double-slit experiment, however, we have seen that the motion of subatomic 
particles & affected by observation and measurement. The very important 
conclusion is that every measurement taken on a quantum scale has an effect 
on the system. 

Werner Heisenberg, after earning his Doctoral degree in Munich, 
Germany, worked with Bohr and Born in the emerging field of quantum 
mechanics. He developed the Heisenberg uncertainty principle as an 
explanation for the uncertainty in measuring parameters of the subatomic 
particles. The principle states 

(uncertainty in position) x (uncertainty in velocity) > h / m 
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where rn is the mass of the particle and h is Planck's constant. The 
uncertainty in position, Ax, represents the error made in measuring the 
position of the particle, and the uncertainty in velocity, Av, refers to the error 
made in measuring the velocity of the particle. Thus, if we choose to 
measure the position of the particle we will introduce an uncertainty in the 
velocity and vice versa. That is why the product of these two measured 
values is not equal to zero. In other words, as the uncertainty in one variable 
becomes smaller and smaller, the uncertainty in the other becomes larger and 
larger in order to maintain a constant product. At the conceptual limit, if we 
could know the exact location of a particle in the subatomic realm, we would 
not know anything about its velocity; or, if we knew the exact speed of the 
particle, we would not be able to know where the particle is. The uncertainty 
principle applies not only to position and velocity, but to all parameters of a 
subatomic particle. For example, if we want to measure the energy of a 
quantum system we will need a certain amount of time, At, to take the 
measurement. During this time the energy of the system may change, AE, 
without our knowledge. The uncertainty principle describing the relation 
between the energy of a quantum system and the time needed to measure it 
is given by 

The principle states that if a particle has a definite energy (AE = 0), then 
At must be infinite. In other words, a particle with definite energy is 
localized in the same region for all time. Such states are called the stationary 
states corresponding to Bohr's stationary orbits as discussed in Chapter 2. If 
a particle does not remain in the same state forever, At is finite and therefore 
AE is not zero and the energy of the particle must be uncertain. An example 
of this condition is an unstable atom or nucleus. As mentioned previously, an 
unstable atom or nucleus will eventually rearrange in order to reach a stable 
condition, thus At is finite and the energy of an unstable atom or nucleus has 
a minimum uncertainty given as 
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Finally, the uncertainty principle can be expressed in terms of particle 
momentum, p, and particle position, knowing that p = mu 

Example 3.16 Uncertainty in the position and energy of an electron 
confined in a nucleus and an atom 

If the size of an atom is lo-'' m, and the size of a nucleus is 10,000 times 
smaller, calculate the momentum and energy of an electron confined in an atom and 
in a nucleus. Compare these to the binding energy of an electron in a hydrogen 
atom. 

For an electron confined in the nucleus 

The energy of an electron localized in a volume comparable to that of a nucleus 
is very large when compared to the binding energy of the electron in a hydrogen 
atom (see Chapter 2). 

This implies clearly that an electron can not be localized to such a small volume 
in the atom. 

For an electron confined in an atom 

( A ~ ) '  (5.27 x 1 kgm l s)' E = - -  - = 1 . 5 3 ~ 1 0 - ' ~ ~ ~  = 0.95eV lev 

2m 2(9.1 x kg) 1.6x10-'~ J 

The energy of an electron localized in a volume comparable to that of an atom is 
comparable to the binding energy of the electron in a hydrogen atom. 
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SCHRODINGER EQUATION 

6.1 Interpretation of Quantum Mechanics 

A quantum system is divided into two parts: (a) the observed system, and 
(b) the observing system. For example, the observed system in the 
double-slit experiment is a photon. The observing system represents the 
environment that surrounds the observed system including the experimenter 
(observer). The observed system travels according to a physical law called 
the Schrodinger wave function. This wave function refers to probabilities, 
e.g. the probability of finding a subatomic particle in one location rather than 
another (see Fig. 3-20). In the macroscopic world it is intuitive that every 
event exists in three dimensions and in time. For example, a wave function 
associated with two particles will be written in six spatial dimensions (three 
for each particle). If the wave function represents the probability associated 
with 20 particles, it will exist in 60 spatial dimensions. Thus when an 
experiment with subatomic particles is carried out their multi-dimensional 
reality is reduced to three dimensions in order to be compatible with our 
macroscopic world. The wave-particle duality that employs the concept that 
an entity simultaneously possesses localized (particle) and distributed (wave) 
properties has been introduced in order to account for observations in 
experiments with subatomic particles. The dominant view of this approach is 
that quantum probabilities become determinate by the act of measurement. 
Thus it is said that the wave function is collapsed when an observer looks at 
the system. In the double-slit experiment, according to classical physics, a 
photon emitted from the light source travels from the source to the slit, 
passes through the slit, and travels to the screen where it is detected. Thus its 
location at the screen can be determined. However, according to quantum 
mechanics, there is no real particle that travels between the source and the 
screen. There is only a wave function and the probability that the photon will 
pass though one slit or the other. The photon is detected only when the 
observer looks at the screen. In other words, the quantum reality is not 
described until an act of measurement takes place, at which point the wave 
function collapses to a single possibility. 

In the autumn of 1927, the 5th Solvay Conference was held in Brussels, 
Belgium. The conclusion of this meeting became known as the Copenhagen 
interpretation of quantum mechanics. During this Conference Bohr and 
Einstein conducted their famous debate: 

"I  shall never believe that God plays dice with the world!" questioning 
the probabilistic nature of quantum theory. And Bohr's answer: 
"Einstein, stop telling God what to do!" 
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The Copenhagen interpretation of quantum mechanics, for the first time, 
acknowledged that a complete understanding of reality lies beyond the 
capability of a rational thought. 

In 1957 Hugh Everett, John Wheeler and Neil1 Graham proposed another 
explanation of the quantum wave functions called the many worlds 
interpretation of quantum mechanics. According to this theory the wave 
function is real, and all possibilities that it predicts are real. This theory can 
also be demonstrated by analyzing the double-slit experiment. Suppose that 
when a photon goes through slit one, you run up the stairs. When a photon 
goes through slit two you run down the stairs. According to the Copenhagen 
interpretation of quantum mechanics, these two possibilities are mutually 
exclusive because it is not possible for you to run up and down the stairs at 
the same time. However, according to the many worlds interpretation of 
quantum mechanics, at the moment the wave function "collapses" the 
universe splits into these two worlds. In one of them you run upstairs, and in 
another one you run downstairs. There are two editions of you doing 
different things at the same time; but each of these two editions is unaware 
of the existence of the other. These two editions of you will never meet, as 
these worlds remain forever separated branches of reality. 

6.2 Standing Waves 

De Broglie's hypothesis (Section 5.1) that each material object has a 
wave property opened new developments in quantum mechanics. It 
immediately pointed to a much more natural way of understanding atomic 
phenomena than Bohr's model of the atom. Bohr's model of hard, spherical 
electrons that orbit the nucleus at specific distances and specific energy 
levels, emitting photons by jumping between the orbits, explained the 
spectrum of simple atoms. However, it did not explain why each shell 
contains a certain number of electrons or how electrons move between 
shells. Austrian physicist Erwin Schrijdinger postulated that electrons are not 
spherical objects, but rather patterns of standing waves. 

The standing wave can be explained in analogy with a rope tied to one 
pole at one end and then flicked sharply upward and downward from the 
other end, forming a hump, or a wave, that appears to travel between the two 
ends. By sending a series of waves down the rope, a pattern of standing 
waves as shown in Fig.3-24 is generated. The simplest pattern is that of a 
single standing wave, shown in Fig. 3-24 with n = 1. This pattern is formed 
by the superposition of two waves travelling in opposite directions. In 
reality, it is not the rope that is moving, but the pattern; these stationary 
patterns are called standing waves. Regardless of the length of the rope, the 
rope will always show a pattern of a whole number of standing waves (i.e. 
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one wave, two waves, three waves, etc.) that must divide the rope evenly 
into whole sections. The number of wavelengths or half-wavelengths that 
will fit on the rope is determined by its length. The first three possible 
standing waves are shown in Fig.3-24. The lowest frequency is called the 
fundamental frequency or the first harmonic, and the higher frequencies are 
called overtones. Integer multiples of the fundamental frequency (the 1'' 
harmonic) are labelled as the 2"d harmonic, 3'* harmonic, etc. 

antinodes 

n= 3 L = 3 (2) - 
2 

nodes 

Figure 3-24. Standing waves and electron's orbits around the nucleus 

In 1925 Schrodinger proposed that standing waves of subatomic particles 
are "quantized, similar to the waves in the rope. For example, an electron 
orbiting a nucleus must travel a certain distance around the nucleus, which 
can be thought of as the length of the rope; therefore, only a whole number 
of standing waves, never a fraction of one, can form the length of orbiting 
electrons. Schrodinger developed the complex equation (now called the 
Schrodinger equation) to describe the quantum wave function of subatomic 
particles. The equation can be solved exactly only for the simplest structure, 
the one-proton and one-electron structure of atomic hydrogen. The reason 
that the Schrodinger equation cannot be solved exactly for an atom which 
contains more than one electron is a mathematical problem that also appears 
in other areas such as astronomy: there is no exact solution to the equations 
describing the motion of more than two mutually interacting bodies. No 
exact solution of the Schrodinger equation is possible for any of the atoms 
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heavier than hydrogen, but methods of successive approximations can be 
used to obtain solutions. The solution of the Schrodinger equation gives the 
energies an electron should have in an atom. Since light is emitted or 
absorbed by an atom when an electron moves from one permitted location to 
another, knowledge of the energies of the various levels available to an 
electron also gives the emission and absorption spectra of the atom. 

The electrons are confined to the space surrounding the nucleus in similar 
to the way in which the waves of a guitar string are controlled within the 
string. The tautness of the string forces it to vibrate with specific 
frequencies, as an electron can only vibrate with specific frequencies (see 
Chapter 2). In the case of an electron, these frequencies are called 
eigenfrequencies and the states associated with these frequencies are called 
eigenstates or eigenfunctions. The set of all eigenfunctions for an electron 
form a mathematical set called the spherical harmonics. There is an infinite 
number of spherical harmonics, with no in-between states. Thus an atomic 
electron can only absorb and emit energy in specific quanta. It does this by 
making a quantum leap from one eigenstate to another. This term has been 
introduced in Chapter 2. 

Shortly before Schrodinger's discovery, another Austrian physicist, 
Wolfgang Pauli, discovered that no two electrons in an atom can be exactly 
the same (as described in Chapters 2 and 3). In terms of Schrodinger's 
standing wave theory, Pauli's Exclusion Principle means that once a 
particular wave pattern forms in an atom, it excludes all others of its kind. 
Schrodinger's equation shows that there are only two possible wave patterns 
in the lowest orbit of Bohr's atomic model and therefore there can be only 
two electrons existing in that orbit. There are eight different standing wave 
patterns possible in the next energy level; therefore there can be only eight 
electrons, and so on. Although Schrodinger was sure that electrons were 
standing waves, he was not sure what was waving. He was however 
convinced that something was waving and that he called "psi" (Y), a 
quantum wave finetion. 

6.3 General Characteristics of the Quantum Wave 
Function 

Each particle is represented by a wave function, Y(x,t), which is 
obtained by solving the Schrodinger equation 

where i is the square root of negative 1, ti is Plank's constant divided by 



NUCLEAR THEORY 115 

2n, and U(x,t) is the potential energy field. This equation plays the role of 
Newton's law of conservation of energy in classical mechanics. The 
equation predicts the probability of future behaviour of dynamic quantum 
subatomic systems; given a large number of events, it predicts the 
distribution of probabilities. Specifically, the square of the wave function 
represents the probability amplitude for finding a particle at a given point in 
space at a given time. In order to represent a physically observable system 
the wave function must satisfy the following constraints: must be a solution 
to the Schrodinger equat'ion, must be normalized implying that the total 
probability over all x is unity, must be a continuous function of x and must 
have a continuous slope. Basic steps in developing the fundamental quantum 
mechanics equation are as follows: 

Conservation of energy: 

where E is the total energy, T ( r n d 2  = p2/2rn) is the kinetic energy and U 
is the potential energy of a particle with mass rn. 

De Broglie hypothesis: for a free particle with momentum p, the 
wavelength, A, is equal to hlp. If we write: k = 2dA, where k is called a 
wave number, then it follows 

Combining Eqs. (3-92) and (3-93), the kinetic energy of a free particle to 
which a de Broglie wave is associated can then be written as 

which bears a clear resemblance to the kinetic energy term (first term) of 
the Schrodinger equation. 

Continuous solution: a solution concerning the location or state of motion 
of a particle should not show discontinuity (the particle can not appear 
and disappear at different locations in a system). 

Single-valued solution: a solution should give only one probability for 
the particle to be in a specific location at a specific time. 
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5. Linear solution: solution must be linear in order to assure that de Broglie 
waves will have the superposition property expected for waves. 

The following sections will explore the time-independent Schrodinger 
equation where the time-dependant solution is assumed to be separable in 
the following form 

The partial derivatives in the Schrodinger equation may now be 
transformed into two absolute derivatives under the assumption that the 
potential field is not a function of time 

In this technique, a separation constant, E is introduced representing the 
particle energy state. The time-dependant portion is easy to solve and has 
the following general solution 

iEt -- 
f (t) = Ce 

The remaining time-independent portion will now be analyzed for some 
specific potential energy distributions. 

6.4 Wave Function for a Particle in an Infinite Well 

Perhaps the simplest case to analyze is that of a single particle in an 
infinite well, namely 

0, f o r o l x l a ,  
U ( x )  = 

m, otherwise 

An illustration of this distribution is shown in Fig. 3-25. 
For this case, the wave function takes a zero value outside of the well 

because the infinitely high walls confine the particle within. Therefore, 
inside the well, the time-independent Schrodinger equation reduces to 
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or, equivalently 

d 2 W )  2 -- JGZ 
- -k y(x), where k = -. 

dx2 A 

Figure 3-25. Infinite square well potential distribution 

In this form, it is clear that the general solution is the same as that for the 
classical simple harmonic oscillator 

y(x) = A sin(kx) + B cos(kx) for 0 I x I a, (3-101) 

where A and B are constants to be determined using boundary conditions 
for wave function continuity at the boundaries 

Imposing the first boundary condition implies that B must be zero and the 
solution reduces to 

Imposing the second boundary condition implies that the argument of the 
sine function must be zero. Sine is a periodic function which takes a zero 
value when evaluated at integers multiples of n, therefore 
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J 2 m ~  
ka=-=nn, where n=1,2,3 ,.... 

A 

This gives a result for energy which can take only discrete values unlike 
the classical case where energy is continuous 

The full solution for this case is the product of the time-dependant and 
time-independent components 

where the two constants have been combined into a single constant, A. 
Now, to determine the constant A, we must normalize the integral of the 

square of the wave function to one as explained in Section 6.3. 

)IY (x,t)12 dxdt = [Y (x,t)Y* (x, t)dxdt = 1, (3-107) 

where Y* is the complex conjugate of the wave function. Expanding the 
conjugate product reveals that the time-dependant terms cancel each other 
leaving only a simple integral with respect to x. Evaluating this integral 
gives = 2  / a ,  and the full solution is, therefore 

This wave function may now be used to determine the probability that 
the particle will be located at any position x and time t within the infinite 
well. 

6.5 A Wave Function for a Free Non - Relativistic 
Particle 

In this case, the particle is assumed to be totally free, namely U(x) = 0 for 
all x. Upon insertion of this potential distribution, the time-independent 
Schrodinger equation takes the same form as inside the infinite square well 
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and has a solution in the following form 

( ) sin( ) cos( ).x A kx B kx (3-109)

At this point in solving the infinite well problem, we applied the 
appropriate boundary condition which determined the allowed values for k
and therefore, E. However, in this case there are no such boundary 
conditions to restrict the value of the k because the particle is totally free.  
However, upon closer inspection of the definition of k, the allowed energies 
may be found to be 

2 2

,
2

kE
m

(3-110)

which is precisely the same as the energy predicted by the De Broglie 
hypothesis for a free particle. One important thing to note is that due to the 
lack of a restriction on k, the energy values are not quantized, meaning that a 
free particle can possess any energy value. 

Another interesting note about this solution, is that it is not normalizable, 
namely the integral of | (x,t)|2 is infinite. Thus, the wave function can never 
be normalized and the wave function obtained here may not be used to 
predict probabilities. 

6.6 Hydrogenic Wave Functions 

As mentioned before, the Schrödinger equation is analytically solvable 
only for the simplest case of the hydrogen atom consisting of a single proton 
and a single electron. In this case, the only relevant force is the attractive 
force between these two particles. However, when more particles are 
introduced into the system, like for instance a helium atom, the problem 
becomes increasingly more difficult. There are now additional force terms 
representing the repulsion of like particles as well as additional attractive 
terms for the newly introduced particles. You can imagine that if one were to 
try and solve this problem for a high Z atom such as uranium how complex 
the system would be. 

There are however some special cases other than hydrogen where a 
solution may be obtained. These are known as hydrogenic atoms, literally 
meaning atoms which are like hydrogen. The simplest example is that of a 
singly ionized helium atom. In this case, the nucleus contains two protons as 
compared to the one in hydrogen and there in only one orbital electron. The 
actual solution of such cases is outside the realm of this text, however a list 
of recommended literature is provided if a more in depth study if desired.
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NUMERICAL EXAMPLE 

Wave Function States in Infinite Square Well 
As described in Section 6.4, the wave function of a particle in an infinite 

square well is represented by Eq. (3-108). At time = 0, plot the first three 
probability distribution functions for an electron trapped in an infinite well 
of width equal to twice the Bohr radius (ro = 0.0529nm). Also, compute the 
energy of these three states. 

Distance N o d t d  to a 

Distance Normaked to a 

Distance N o d e d  to a 

Figure 3-26. Probability distributions for first three states on an electron trapped in an infinite 
well of width twice the Bohr radius. 

Solution in MATLAB: 

clear all 
a = 2*(0.529*1OA-10); % m 
m = 9.109*10A-31; % kg 
hbar = 6.626*10A-34 / (2*pi); % J*sec 
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x = linspace(0,a); 
for n = 1:3 
    E(n) = (n^2*pi^2*hbar^2 / (2*m*a^2)) / (1.602*10^-19); %eV 
    for i = 1:100 
        phi(n,i) = (sqrt(pi/a)*sin(n*pi*x(i)/a))^2; 
    end 
    subplot(3,1,4-n) 
    plot(x/a,phi(n,:),'k') 
    xlabel('Distance Normalized to a)') 
    ylabel('Probability Density') 
end
disp(E)

PROBLEMS 

3.1. If the radius of a nucleus is given by Eq. (3-41), calculate the density of 
nuclear matter in g/cm3 and in nucleons/fm3. Assume the mass of a nucleon is 
1.67 x 10-24 g.

3.2. Use the Eq. (3-41) to calculate the radius of 3H, 60Co and 239Pu.

3.3. Show by expanding [1  ( /c)2]1/2 in powers of ( /c)2 that the kinetic energy 
can be written as: 

...
8
3

2
1

2

4

0
2

0
c

mmT

Does non-relativistic formula m0
2/2 overestimate or underestimate the kinetic 

energy of particle with the rest mass m0 and speed ?

3.4. An electron and proton are each accelerated from rest by a total potential of 
500 million volts (500 MeV). Calculate the increase in mass and fractional 
increase in mass of each of these particles as well as their final speeds. 

3.5. Calculate the total binding energy and the binding energy per nucleon for 
32P17 (atomic mass = 31.975697 amu).

3.6. Calculate how much energy would be absorbed or released if two atoms of 
12C were fused together to create one atom of 24Mg12 (A = 23.985042 amu).  

3.7. Calculate the amount of energy needed to dissociate one atom of 12C into 
three atoms of 4He (atomic mass = 4.002603 amu).
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3.8. Calculate the magnitude of the Coulomb and gravitational potential energy 
between adjacent protons using the radius of a nucleus as the separation 
distance. Compare these two energies with the binding energy per nucleon of 
32P17. Use the Eq. (3-41) to calculate the radius of a nucleus. 

3.9. How much energy is required to remove a proton from 40Ca20 (atomic mass
= 39.962589 amu)? 

3.10. Find the energy released in the reaction: 238
92 U 234

90 Th + 4
2 He. 

M(238
92U) = 238.050786 amu , M( 234

90Th) = 234.043583 amu , M(4
2He) = 

4.002603 amu.

3.11. The radius of a heavy nucleus is ~ 10-12 cm. When the velocity of neutron 
becomes large enough that /2  is of the same order of magnitude as the nuclear 
radius, the neutron can be diffracted about the nucleus what is known as shadow 
scattering. Show that at neutron energy of ~0.21 MeV this effect becomes 
important [h = 6.62 x 10-27 erg-sec; neutron mass = 1.675 x 10-24 g]. 

3.12. Show that on average 200 MeV is released when one atom of 235U fissions 
by capture of a thermal neutron? In fission usually two fission fragments are 
released. Use Fig.3-3 to estimate the average binding energy of fission 
fragments. What is the binding energy of a captured neutron? 

3.13. Calculate the wavelength of a proton needed to excite an electron in Li2+

from the state n = 2 to the state n = 5. 

3.14. Calculate the minimum de Broglie frequency of the neutron that is capable 
of exiting an electron in He+ from the ground state to the state n = 3. What is the 
wavelength of the X ray emitted when electron falls back to its ground state? 

3.15. Starting from the Bohr’s atomic model show that the energy (kinetic plus 
potential) corresponding to the circular orbit of the mass m in a three-
dimensional harmonic oscillator potential is mkn / .

3.16. Calculate the de Broglie wavelength of the electron and proton with the 
kinetic energy of 50 MeV.

3.17. Show that the minimum mass using the semi-empirical formula (3-75) is 
obtained for  

3/2015.02
)(min

A
AmassZ
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3.18. Using the solution of the Eq. (3-75) for minimum mass show that for light 
stable nuclei Z ~ A/2 and give few examples. Also, show that for stable heavy 
nuclei Z ~ A1/3/0.015. 

3.19. The two red stars are observed to be part of a binary star system. What can 
be concluded about their temperatures? 

3.20. What is the ratio of temperatures of two starts which spectral peaks are 
observed at 3,500 A and at 7,000 A.

3.21. It takes about 1 Mev of energy to produce a positron and an electron. Use 
the uncertainty principle to estimate for how long can this energy exist before 
the positron and electron annihilate each other? 

3.22. For a particle that lives for 6 × 10 22 s what will be a mass-energy 
uncertainty? 

3.23. A 1, 5 and 15 kg mass attached to a spring with the constant k = 400 N/m is 
undergoing simple harmonic motion on a frictionless surface with an amplitude 
of A = 10 cm. Assuming that the energy levels are quantized according to the 
Planck’s relation E = nhf , calculate the corresponding quantum number n for all 
of three masses? Comment on the results calculating the energy difference 
between the states n and n+1. [The total energy associated with the system of 
mass m is kA2/2]. 

3.24. Suppose light of wavelength  = 8x10 7 m is used to determine the 
position of an electron. What is the minimum uncertainty in electron’s speed? 

3.25. Following the numerical example shown above calculate and plot the first 
three probability distribution functions for an electron trapped in an infinite well 
of width equal to the Bohr radius (a = 0.0529nm). Compare the results when the 
width is increased to two and three Bohr radii. 

3.26. For the free particle in the box with infinite walls, the probability for 
finding it inside the box is equal to one. Write the condition for normalization 
for the time-independent wave function and solve it for the one-dimensional 
wave function. [Since the probability must be one for finding the particle 
somewhere, the wave function must be normalized]. You should obtain the 
equation as (3-108) but without the time dependent term. 

3.27. Treating the system as a photon like entity the time dependent wave 
equation is written in the form 
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Assuming the solution to be: 

E(x, t) = E, cos(kx - a )  show that the energy of a photon is E = pc. 

3.28. The Schrodinger time-dependent one dimensional equation for an electron 
can be written in the following form 

Assuming the potential energy to be constant (U = Uo) and that the solution of 
the above wave equation can be expressed as 

show that the total energy of the electron is a summation of potential and kinetic 
energy 

3.29. Based on the wave particle duality in one dimension (the de Broglie's 
relation between wavelength and momentum and the Planck's relation between 
frequency and energy) show that the Schrodinger equation for free particle (like 
electron for example) 

-- =ih- ay(x't) has the following solution 
2m ax2 at 

3.30. A particle of energy E that is smaller than the height of barrier (potential 
energy Uo) according to classical mechanics is forbidden to penetrate inside the 
region (see figure below). The wave function associated with the free particle 
must be continuous and thus there is a finite probability that the particle will 
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tunnel through the barrier. For a particle approaching the barrier, a wave 
function for free particle can be used. However when a particle reaches the 
barrier, it must satisfy the Schrodinger equation in the form 

( x )  which has a solution 
2m ax2 

Calculate the tunneling probability for the a particle described in Example 4.6 
(Chapter 4). 

UO= 29 MeV 

E =  8.954 MeV 

Incomi~gpurticIe wave but reduced probability 
jfincdion 

3.3 1. Shells and orbits of the electron in Bohr's atomic model are quantized and 
so are the lengths of the waves of de Broglie's electrons in each shell. As the 
electron moves further away from the nucleus, the wavelength becomes longer 
(because electron's velocity is reduced when the radius of shell is increased). 
Capture this dependence by plotting the bar-like diagram showing on the one 
the velocity and on the other the wavelength. 

3.32. The resolving power of an electron microscope is assumed to be equal to 
the wavelength of the used light. Calculate the required kinetic energy of 
electrons in order to be able to "see" an atom. The required resolving power is 
lo-'' m. 

3.33. Find the probability function for the wave described as 
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3.34. Determine the change in wavelength of the 2p 1s photon when a hydrogen 
atom is placed in a magnetic field of various intensities: 3T, 5T, 10T and 30T.
Comment on the results. 

3.35. Use Eq. (3-45) to write a computer code to calculate and plot the 
dependence of a mass of a moving body and its energy. 

3.36. Use the Planck’s law to write a computer code that will calculate the black 
body radiation as a function of light frequency. 

3.37. Plot the dependence of de Broglie wavelength and the velocity of motion 
for an electron, proton and a 1000 kg body moving at non-relativistic speeds. 

3.38. Calculate the nuclear density of the smallest and the largest nucleus in the 
periodic system of elements. Comment on the results. 

3.39. Calculate the separation energy of last neutron in first ten nuclei in the 
periodic system of elements. Comment on the result. 

3.40. Select an even-A nuclei and plot the excitation energy of the first excited 
state. Compare with the Fig. 3-11 and discuss the differences.  

3.41. Plot the Eq. (3-76). What can you conclude from the slope of the plot? 

3.42. Compare the size of the nuclei (calculated using the Fermi model) and the 
size of the corresponding atoms across the periodic system of elements. What is 
your observation? How would you explain the change in nucleus size analyzing 
the number of nucleons, nuclear forces, Coulomb forces, and nuclear density? 

3.43. Show that when two deuterons react they form tritium with the net gain in 
binding energy of the system of 4.02 MeV.

3.44. Calculate the binding energy per nucleon of 238U. What is an approximate 
gain in the binding energy of the system if 238U splits into two equal nuclei? 
What would be the corresponding amount of energy released in this reaction? 
Compare with the values discussed in Chapters 6 and 7. 

NOTE: Some of the problems listed are adopted from the web site developed by 
Dr. C. N. Booth,   http://www.shef.ac.uk/physics/teaching/phy303/ .
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RADIOACTIVE DECAY 
Radioactivity, Kinetics of Decay, Examples 

"It can be thought that radium could become very dangerous in criminal hands, and 
here the question can be raised whether manhnd benefits from knowing the secrets 
of Nature, whether it is ready to profit from it or whether this knowledge will not 
be harmful for it. 

The example of the discoveries of Nobel is characteristic, as powerful explosives 
have enabled man to do wonderful work. They are also a terrible means of 
destruction in the hands of great criminals who are leading the people towards war. 
I am one of those who believe with Nobel that mankind d drive more good than 
harm from new discoveries." Pierre Curie (1859 - 1906), 1903 Nobel Prize 
address. 

1. INTRODUCTION 

Nuclides exist in two main forms, stable and unstable. A nuclide is 
considered to be stable if there is no proof of its spontaneous transformation 
into another nuclide. The probability of transformation is characterized by 
the half-life, which is defined as the time needed for half of the starting 
amount of an unstable nuclide to transform. Elements above lead are all 
unstable and have very long half-lives (order of 10' to 10" years) compared 
to the age of the atom (assumed to be formed some 10 billion years ago). 

If, for example, a stable nucleus of 5 9 ~ o  with 27 protons and 32 neutrons, 
receives one neutron (which must possess an energy of 7.5 MeV), the newly 
formed nucleus 6 0 ~ o  is artificial (does not exist in nature), unstable and in an 
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excited state. The instability is caused by the addition of a new particle (with 
its associated energy) that requires rearrangements of nucleons inside the 
nucleus. The process nuclei undergo in order to return to the ground state is 
called radioactive decay. In the case of 6 0 ~ o  the radioactive decay scheme is 
sketched in Fig. 4-1. 

Figure 4-1. Radioactive decay scheme for 6 0 ~ o  

None of the artificially created isotopes are stable; all are radioactive and 
decay with half-lives in the range of microseconds to years. However, based 
on the quantum mechanics (see Chapter 3) it is expected that it is possible to 
create isotopes in a new "island" of stability (see Fig. 4-2). 

The most stable nuclides are those whose protons and neutrons close the 
shells (energy levels). These are nuclides with a magic number of protons, 
neutrons or both. 

The next proton magic number is 114 (beyond those already known to 
exist). The best estimate for the number of neutrons needed to overcome the 
proton-proton repulsion in such a nucleus is at least 184 neutrons, and 
perhaps as many as 196. It is not easy to bring together two nuclei that 
would give both the correct number of protons and the necessary neutrons 
with a half-life long enough to be detected. Element 114 was experimentally 
observed in 1998 at Russia's Joint Institute for Nuclear Research in Dubna. 
Their very complex experiments showed the possibility to create short-lived 
heavy nuclei around the new "island" of stability. By accelerating atoms of 
48 Ca into a target of 2 4 4 ~ ~ ,  atoms of element 114 (with a nuclear weight of 
289) were detected through their decay into element 112 

24494pu + 4 8 2 0 ~ a  + 2891 1 4 ~ u q  + 3 In 175 neutrons 

24494pu + 4 8 2 0 ~ a  + 2881 14Uuq + 4 'n 174 neutrons 
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The lifetimes of elements 114 and 112 are 30 sec and 280 msec, 
respectively. 

This chapter focuses on the laws of physics governing the mechanisms, 
kinetics and types of radioactive decays. 

No stable isotopes with Z > 83 

Existing line of stability 

of stability 

100 120 1 40 160 180 200 220 

Number of Neutrons (N) 

Figure 4-2. The new "island" of stable super-heavy nuclides 

2. MECHANISM OF RADIOACTIVE DECAY 

Radioactivity is defined as the spontaneous nuclear transformation of an 
unstable element resulting in the formation of a new one. The process of 
radioactive decay is statistical and therefore random in its nature. For 
example, whether a radioactive uranium atom will or will not decay at any 
given instant is purely a matter of probability. There is no physical 
difference between uranium atom that is decaying and one that is not 
decaying. 

In 1895 Wilhelm Conrad Roentgen discovered a new phenomenon that 
he called the X rays. Soon after, Henri Becquerel decided to study the 
correlation between newly discovered X rays and the fluorescence 
phenomena of uranium salts. Once exposed to ultraviolet photons (sun light), 
the uranium salts radiate visible light (the fluorescence phenomenon). 
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However, due to bad weather in Paris, Becquerel was not able to expose the 
samples to sun light for a few weeks, during which time he left them in a 
closet. Later he found that the plates were exposed and concluded that a new 
type of radiation was emitted from the non-fluorescence uranium and 
correctly speculated that some materials at rest emitted radiation in a 
spontaneous fashion without the addition of any external energy. Becquerel 
called this new radiation "U rays", later renamed radioactivity. Pierre and 
Marie Curie worked on radioactivity and demonstrated that thorium also 
exhibited radioactive properties. In July of 1898, they succeeded in isolating 
a new material, a million times more radioactive than uranium, that Marie 
Curie called "polonium." From pitchblende ore, they were able to extract by 
hand a few milligrams of another new material, 2.5 million times more 
radioactive than uranium, which they called radium. For this discovery, 
Pierre and Marie Curie received the physics Nobel Prize in 1903. Some 
years later, Marie, alone since the death of Pierre in 1906, isolated metallic 
radium with an electrolytic procedure for which she received the Noble prize 
for Chemistry in 191 1. In 1934, Irene and Frederic Joliot-Curie discovered 
artificial radioactivity, making a great step toward the use and control of 
radioactivity. For this discovery, they received the Nobel Prize in chemistry 
in 1935. Neither Marie Curie nor her daughter Irene, both Nobel Prize 
winners, were members of the French Academy of Science (an oddity 
probably having more to do with gender than scientific accomplishment). 

The spontaneous nuclear transformations are accomplished by the 
emission of an alpha (a) particle, a beta (j3-) particle or a positron (P') as 
well as by orbital electron capture, neutron emission (n) or proton emission 
(p). Each of these reactions may or may not be accompanied by gamma 
radiation (y). Radioactivity is a nuclear process that originates in the nucleus 
and is therefore not determined by the chemical or physical states of the 
atom. As discussed in Chapters 2 and 3, an isotope of a given element is an 
atom that contains the same number of protons and has the same electronic 
structure, but differs in the number of neutrons. Most elements have several 
isotopes; chlorine, for example has two: 75.4% 3 5 ~ ~  and 24.6% 3 7 ~ l .  A few 
radioisotopes arise naturally; however, most of them are created artificially. 
There are more than 2930 known isotopes, but only 65 are naturally 
occurring and exist either as a product of cosmic radiation in the atmosphere 
( 3 ~ ,  7 ~ e  and 14c) or are products of radioactive decay of primordial isotopes 
( 4 0 ~  and 2 3 8 ~ ) .  

The exact mode of radioactive decay depends on two factors: 
1. The particular type of nuclear instability (whether the neutron-to-proton 

ratio is too high or too low), and 
2. The mass-energy relationship among the parent nucleus, daughter 

nucleus and the emitted particle. 
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Radioactive decay of a nucleus changes the arrangement of its nucleons. 
This change usually influences the entire atom by affecting the electron 
cloud. The change can even propagate further and affect the molecule. The 
decay, however, obeys a series of physical laws of conservation. The 
conservation laws are a direct consequence of the symmetries in nature that 
require certain variables to stay unchanged. The following conservation laws 
must be satisfied for radioactive decay to exist: 
1. Conservation of mass - energy: radioactive decay of a nucleus changes 

mass into energy. In other words, in the process of radioactive decay the 
total mass is reduced but the energy is increased. The difference in 
masses before and after the decay is emitted as energy of the emitted 
particles in the decay. It can be shown that conservation of mass and 
energy holds for the radioactive decay as a consequence of symmetry in 
time. Every experiment will give the same decay results for the same 
nucleus no matter when it was performed. 

2. Consewation of momentum: the sum of the momentum before and after 
the decay must be the same. This law is a direct consequence of the 
symmetry in space. Namely, all points in Euclidian space are equivalent 
and thus the physical laws are the same for all points in space. 

3. Consewation of angular momentum: the sum of angular momentum and 
spins must remain the same before and after the decay. Angular 
momentum describes the degree of rotation of a system. Since in space 
all directions are equally probable, the physical laws are independent of 
orientation of motion of a system in space. 

4. Consewation of charge: the sum of charges before and after the decay 
remains the same. The charge can only be redistributed between the 
particles and can not be lost in the process of radioactive transformations. 
For example, this law says that an electron can not appear or disappear 
on its own. In order for an electron to disappear there should exist its 
counterpart; a positron. Interaction of these two particles will result in the 
annihilation of both (see Chapter 5). The fact that an electron can not 
change its appearance without its opposing particle (positron) assures the 
stability of the electron and thus the stability of matter. 

5. Consewation of nucleons: the total number of nucleons for any decay 
mode must be conserved. This law forbids neutrons (and protons) 
confined within a nucleus to decay into other particles and assures the 
stability of matter. 



132 Chapter 4 

3. KINETICS OF RADIOACTIVE DECAY 

3.1 Decay Constant 

Radioactive decay although a random process that occurs at a 
characteristic rate can be predicted. The length of time, the number of steps 
required completing the transformation, and the kinds of radiation released 
at each step of the decay are well known. 

The decay constant, A, represents the probability that a radionuclide will 
decay in a unit time. Thus, the probability that a radionuclide will decay in 
time dt is Adt. The characteristics of the decay constant confirmed 
experimentally are: 

The decay constant is the same for all nuclei of a given atom. It cannot be 
changed by ambient pressure or temperature. 
The decay constant does not depend on the age of nuclides, i.e., it does 
not change with time. 

3.2 Radioactive Decay 

If the probability for a nucleus to decay in time dt is 

then from the total number of nuclei N, in time dt, the number of nuclei 
that will decay, dN, can be calculated as 

Since the decay constant is not dependent on time (as explained in 
Section 3.1), the solution of the above equation is simply 

where No is the starting number (amount) of nuclei, and N represents the 
amount of nuclei that did not decay after time t. As Fig. 4-3 shows, the 
amount of the initial radionuclide decreases exponentially with time. 
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3.3 Activity 

3.3.1 Definition 

Activity, A, is the number of nuclei decaying per unit time. If the 
probability for a nucleus to decay is A, and there are N nuclei present, the 
average number of decaying nuclei is NA, and is defined as activity 

Figure 4-3. Radioactive decay 

Thus, from Eq. (4-1 13) 

Radiation detectors do not usually measure the total activity, that is, the 
total number of decays per second, but some fraction of this called the count 
rate (see Problems 4.6. - 4.8.). In any given situation, if all else is kept 
equal, the count rate is proportional to the activity 

R=kA  where k 5 1  (4- 1 16) 
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Therefore the decay equation can be expressed in terms of count rate 

3.3.2 Units 

The Becquerel, Bq, is a unit used to measure radioactivity. One 
Becquerel is, by definition, one nuclear decay or nuclear transformation per 
second. Often radioactivity is expressed in larger multiples of this unit such 
as: thousands (kBq), millions (MBq) or even billions (GBq) of Becquerel. 

The curie, Ci, is the original unit used to measure radioactivity and is, by 
definition, 37,000,000,000 transformations in one second. This is roughly 
the activity (the rate of disintegration) of 1 gram of the radium isotope, 2 2 6 ~ a  
(see Problem 4.1). Radioactivity is often expressed in smaller multiples of 
this unit such as: thousandths (mCi), millionths (pCi) or even billionths 
(nCi) of a curie. 

As a result of having one Becquerel being equal to one transformation 
per second, there are 3.7 x 10" Bq in one curie. 

Example 4.1 Disintegration of 6 0 ~ o  
Determine the number of disintegrations released per one curie of 6 0 ~ o  (see 

Fig. 4-1). 
From the decay scheme shown in Fig. 4-1, it can be seen that each disintegration 

of a 6 0 ~ o  nucleus releases one beta particle and two gamma rays. Therefore, the total 
number of radiations is: 3 x 3.7 x 10" = 11.1 x 10" per second per curie 6 0 ~ o .  

3.4 Half-Life 

The half-lij"e, of a nuclide is the time needed for half of the atoms 
present to decay. Half-lives can range from less than a millionth of a second 
to millions of years. After one half-life, the level of radioactivity of a 
substance is halved; after two half-lives it is reduced to one quarter; after 
three half-lives to one-eighth, and so on (see Fig. 4-3). The products of 
radioactive decay are the particles emitted and the remaining nucleus called 
the daughter of the decaying atom. Radioactive decay proceeds 
exponentially, as does the growth of the daughter product. 

The decay constant and the half-life of a given nuclide are related. The 
quantitative relationship can be found by setting 
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Example 4.2 Activity of radium 
Calculate the percent of 2 2 6 ~ a  that will decay during a period of 1000 years if the 

half-life is 1600 years. 

The percent that decayed away during 1000 years is 100 % - 64.8 % = 35.2 %. 

Example 4.3 Estimate of decay constant and half-life for radium 
Calculate the decay constant and half-life for 2 2 6 ~ a  if one microgram emits 

3.65 x lo4 alpha particles per second. 
The number of radium atoms per microgram of radium, N, is 

No (atoms/mole) x M (g) 
N =  - 

A (glmole) 

(6.02 x 1 o~~ atomdmole) x (1 o - ~  g) 
= 2 . 6 6 ~  lot5 atoms 

226(g/mole) 

The decay constant is thus obtained from the known number of radium nuclei 
that decayed and the number of radium nuclei that did not decay per unit time 

-dN / N  (3.65 x lo4atoms) / ( 2 . 6 6 ~ 1 0 ' ~  atoms) 
- d N = N A d t  s a = - = -  3 

d t  1 sec 

This gives the half-life 

ln 2 T =-= ln 2 
112 = 1627 yrs / Z  4.26x10-~ 
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which is very close when compared with the measured value of 1600 yrs (see 
Example 4.2). 

Example 4.4 Specific activity of a radioactive nuclide 
A sample of Il31n has a mass of 2 yg and a physical half-life of 1.6582 hours. 

Calculate: 
a) The number of lI31n atoms present. 
b) The number of I l 3 h  atoms remaining after 4 hours. 
c) The activity of the sample (in Bq and Ci) after 4 hours. 
d) The specific activity of the I l 3 h  sample. 

a) Number of atoms present in the 2 yg sample is 

Na (atoms/mole) x M (g) 
No = 

A(glmo1e) 

- - (6.02 x loU atoms/mole) x (2 x lo-") 
= 1.065 x 10" atoms 

1 13(g/mole) 

b) Number of atoms that remain after 4 hours is 

In 2 -- x4 

N = ~ , e - "  = (1.065 x 10~%toms)e = 2 . 0 0 ~  loL5 atoms 

c) Activity of the sample after 4 hours is 

A = Nil = ( 2 . 0 0 ~  10" atoms) - = 8.36 x l0I4 atomsh 
(1 .:::2h) 

atoms h 
A = ( 8 . 3 6 ~ 1 0 ' ~  -)(- ) = 2.32~10"Bq 

h 3600sec 

d) The ratio of nuclide activity to the total mass of the element present is known as 
the specific activity of the sample, SA (see also Problem 4.9) 
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3.5 Radioactive Decay Equilibrium 

Most radioactive decay schemes contain more than one member, and it is 
therefore interesting to analyze the relation between the radioactivities and 
the number of nuclei that disintegrate per unit time in such a series. For 
example, the radioactive chain in which the parent, A, decays into a daughter 
nucleus, B, which is also radioactive is written as: 

The equilibrium of radioactive decay is attained when the ratio between 
the activities of the successive members in the series remains constant. 
Considering only the first two members in the above chain, as shown in 
Fig. 4-4, the rate of change is: 

Rate of change of parent nuclide 

Rate of change of daughter nuclide (= rate of production - rate of decay) 

Figure 4-4. Two successive members in radioactive chain 

Eqs. (4-1 19) and (4-120) are a system of first-order linear differential 
equations whose solution is 
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According to the relation between the activity and number of atoms that 
decay, Eq. (4-1 14), it follows that 

The second term in the above activity equation represents the residual 
daughter product activity from that present at t = 0. This equation is known 
as the Bateman equation. 

The general behaviour of the parent and daughter activities described by 
this equation is shown in Fig. 4-5. The correct assumption is usually that the 
initial activity of the daughter nuclide is zero, Nd (0) = 0. AS expected, the 
activity and the number of daughter nuclides will start building up with the 
decay of the parent nuclide. After some time the activity will peak and 
eventually start to decay. 

The time when the daughter nuclide reaches its maximum activity can be 
estimated as follows 

\.- Build up and decay 

' - of daughter nuclide 

Figure 4-5. General trend of activity change with time according to the Bateman equation 
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which gives / Z  e-ap'max = ~ ~ e - ~ ' - ~  . Solving for time (see Fig. 4-5) 
P 

Thus, the time when the activity of the daughter nuclide reaches its 
maximum value depends only on the decay constants of the parent and 
daughter nuclides. 

The Bateman equation is usually analyzed for the following cases 

1. The daughter nuclide is stable, Ad = 0: assuming that Nd (0) = 0, 
Eq. (4- 120) becomes 

The decay of a parent and accumulation of a stable daughter nuclide is 
shown in Fig. 4-6 for the decay of 6 0 ~ o  to stable 6 0 ~ i  (decay scheme of 
6 0 ~ o  is given in Fig. 4-1). 

0 2.108 4.108 6 ,108 8.108 1.18 
Time (5) 

Figure 4-6. Serial decay of parent to stable daughter ( m ~ o  to 6 0 ~ i )  

2. The half-lge of the parent nuclide is shorter than that of the daughter, 
Tlnp < Tlnd: in this case the daughter nuclide builds up faster than it 
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decays. Essentially all parent nuclei transform into daughter nuclei and 
the activity of the sample comes from the daughter nuclide only. This 
condition is called no equilibrium. One example is the decay of 2 1 0 ~ i  into 
21 %'o as shown in Fig. 4-7. 

3. The half-life of the parent nuclide is longer than that of the daughter, 
TIDp > Tlnd: the change (decrease) of the activity of the parent nuclide 
becomes negligible. This case is called a transient equilibrium and is 
schematically depicted in Fig. 4-8. Examples include 13?e (78 hours) 

132 decaying to I (2.3 hours) and l13sn decaying to 113m~n (1.7 hours). 
However, the best example is the 9 9 ~ o  (65.94 hours) parent - 99"'Tc 
(6.01 hours) daughter relationship. The Bateman equation reduces to the 
following form 

The ratio of the rate change of parent to daughter nuclides thus becomes 

21OBi 

\ 
1.1615 MeV 

-moo MeV 

PO 

/ 
5.4075 MeV 

100.00% 

1°'8031 
0.0000 MeV 

206pb 

Figure 4-7. No equilibrium decay of 2 1 0 ~ i  (TI/?= 5.013 days) to 2 1 0 ~ o  (TIl2= 138.376 days) 
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4. The half-life of parent nuclide is much longer than that of the daughter,
T1/2p >> T1/2d: For example, 226Ra with a half-life of 1600 years decays 
into 226Rn, which has a half-life of only 4.8 days. The observation period 
is therefore very small compared to the 1600-year half-life of 226Ra. From 
Eq. (4-127) 

dp
p

pd

d

p

tN
tN
)(
)(

it follows 

)()()()(
)(
)(

tAtAtNtN
tN
tN

dpddpp
p

d

d

p   (4-128) 

The activity of the parent and daughter are the same and total activity of 
the sample remains effectively unchanged during the time of observation.  
This is called a secular equilibrium and the example for 226Ra 226Rn is 

shown in Fig. 4-9 (see also Problem 4.11). The half life of long lived
nuclides can be estimated knowing that they are in a secular equilibrium. 
Knowing the atomic composition of a mixture of two radionuclides that are 
in a secular equilibrium, such as 226Ra and 238U in uranium ore, the decay 
constant or half-life of one nuclide can be determined given the half-life for 
the other using Eq. (4-128).  

Figure 4-8. Transient equilibrium decay when T1/2p > T1/2d
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Parent aciivity 

Figure 4-9. Secular equilibrium decay: buildup of daughter activity when >> 

Example 4.5 9 9 ~ 0  (65.94 hours) parent - 9 9 m ~ c  (6.01 hours) daughter 
relationship 

Sketch a diagram of the activity change in time for the transient equilibrium of 
these two nuclides and find the time at which the daughter reaches a maximum 
activity. From the decay of 9 9 ~ o  it is known that 87% decays into 9 9 m ~ c .  Assume 
that the activity of the parent nuclide at t = 0 is 1 Ci. 

20 40 60 80 100 
Time (hours) 

Figure 4-10. Activity change for "MO and 9 9 m ~ c  



RADIOACTIVE DECAY 143

Starting from the Bateman equation and assuming that the activity of the 
daughter nuclide at t = 0 was zero, 

( ) (0) p dt td
d p

d p

A t A e e

and rearranging it into the form of the ratio of the activities 

( )

(0)
( ) ( )

1
( ) ( )(0)

p d

d p

p

t td
p

td pd d d
t

p p d pp

A e e
A t A t

e
A t A tA e

it follows 

1 1ln 2 ln 2
0.01051h 0.11531h

65.94h 6.01hp d

0.1048

0.1048

0.01051 0.1048

0.11531
( ) 0.87 ( ) 1

0.11531 0.01051

0.957 ( ) 1

0.957 (0) 1

t
d p

t
p

t t
p

A t A t e

A t e

A e e

The time when the daughter reaches its maximum activity is obtained by 
differentiating the above equation (Fig. 4-10) 

max

( )
0 22.8h (22.8h) 0.684Cid

d

dA t
t A

dt

3.6 Production of Radioisotopes 

The activity of isotopes irradiated in nuclear reactors or accelerators 
changes according to secular equilibrium of radioactive decay. If a nuclear 
reaction produces an isotope with concentration N2 from N1 atoms at a rate R
= 1 N1(0), then assuming the activity of the isotope that is produced by this 
reaction at t = 0 is zero 
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tt eeNtN 21

12

1
12 )0()( (4-129)

The production of radioisotopes is constant (similar to secular 
equilibrium in which the half-life of a parent is much longer than the half-
life of daughter) 
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(4-130)

However, since the decay constant of the isotope that is irradiated is 
much smaller than the decay constant of the produced isotopes, the exponent 
term, 1te  ~ 1 and the above equation reduces to 

teRtA 21)(2 (4-131)

This equation is called the activation equation (see Fig. 4-11). Initially, 
when t is small, the activity of the produced radioisotope increases almost 
linearly due to the behaviour of 21 te . After some time the activity 
reaches its saturated value. At an irradiation time equal to one half-life of the 
radioisotope, half of the maximum activity is formed. It is easy to realize 
that the activity of the produced isotope will saturate and therefore 
irradiation times that exceed twice the half life are usually not worthwhile. 

Figure 4-11. Activation curve  production of radioisotopes 
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4. ALPHA DECAY 

4.1 Mechanism of Alpha Decay 

An alpha (a) particle is a highly energetic helium nucleus consisting of 
two protons and two neutrons. Whenever a nucleus has too many protons, 
causing excessive repulsion, it is unstable and has a tendency to decay by 
emitting an a particle, which reduces the repulsive force. Most a emitters 
are towards the end of the periodic table. 

2.3 MeV 

24 d 
1 0.3 MeV I 

7.5x104 y 
4.8 MeV 

4.9 M ~ V  

5.6 MeV 

1.2 MeV 

Figure 4-12. Uranium series 

The products of the decay are called a radioactive series, and there are 
four natural a radioactive series: (1) uranium series, (2) thorium series, (3) 
actinium series and (4) neptunium series. The uranium series starts with the 
2 3 8 ~  isotope, which has a half-life of 4.5 x lo9 years, and is shown in 
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Fig. 4-12. Because of the very long half-life of the parent nuclide, this chain 
is still present today. The thorium and actinium series are also present today, 
whereas the parent nucleus of the neptunium series, 23793~p ,  has a half-life 
of 2.2 x lo6 years and has already disappeared. However, it is possible to 
produce this element artificially and thus determine the half-lives of the 
series. 

Alpha particles do not exist as such inside the heavy nuclei. Instead, they 
form, exist for some time, disintegrate, form and disintegrate again. 
Occasionally, some of them have enough energy to overcome the potential 
barrier of the nucleus; this results in a net decrease in mass of the nucleus 
and consequently an energy release. 

The emission of an a particle leads to the formation of a more stable 
nuclear configuration. The daughter product, however, may also be unstable 
and continue to decay. Emitted a particles may have energies ranging from 4 
to 7 MeV. There are almost no a particles with energies below 2 MeV since 
the probability for an a particle to cross the potential barrier decreases 
exponentially with energy. One example is the decay of 2 3 2 ~ h  into 2 2 8 ~ a  with 
the energies of emitted a particles shown in Fig. 4-13. 

232 ~h 
40828 MeV 

t 
0.0000 MeV 

2 2 8 ~ a  

Figure 4-13. a decay of 2 3 2 ~ h  + " ' ~ a  and energies of the emitted a particles 

Energy (keV) 
4012 3 
3947 2 
3811 1 

The half-lives of a emitters range from microseconds to 1017 years. 
The half-life of an a emitter is directly dependent on the energy of the 

emitted a particle. For example, the half-life of 'I3po is 4.2 psec and the 
energy of a particle emitted in the decay is 8.37 MeV. Thorium-232 emits a 

lntens~ty 
78 2 
21 7 

0 069 
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particles of energy around 4 MeV with a half life of 1.405 x 1010 years, 
while 218Th emits  particles of energy of about 10 MeV and has a half-life 
of only 0.11 sec. To further illustrate this point, the energy and half lives
of the 238U decay series (shown in Fig. 4-12) are plotted in Fig. 4-14 
indicating similar correlation between energy of the  particle and half lives
of the nuclides. Why in some cases  decay takes billions of years when it is 
driven by the process involving the  particle energy of the order of MeV? 

The mechanism of  decay as well as the observed relation is explained 
by considering the  particle as being bound in the potential of the nucleus 
(see Fig. 4-15). Alpha particles in a level with negative energy cannot 
penetrate the Coulomb barrier, but those in a positive energy level may have 
enough energy to overcome the barrier and exit the nucleus. The region 
between -a and +a in Fig. 4-15 represents the inner part of the nucleus where 

 particles are bound by a strong nuclear potential. The regions left and 
right are governed by the Coulomb repulsive potential between the charge of 
the  particle, +2e , and the charge of the remaining nucleus, +(Z  2)e.

238U

214Po
1.E-05

1.E-02

1.E+01

1.E+04

1.E+07

1.E+10

1.E+13

1.E+16

1.E+19

4 4.5 5 5.5 6 6.5 7 7.5 8
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H
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Figure 4-14. Geiger Nuttall plot of the energy of emitted  particles versus the half lives of 
nuclides in 238U decay series 

The three energy levels shown in Fig. 4-15 are not to scale and are shown 
only to illustrate the mechanism of  decay. Namely, if an  particle has 
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energy corresponding to energy level one, the energy is depicted as negative 
in order to indicate that it cannot exit the nucleus, and thus no a decay is 
expected to take place. However, if an a particle has an energy 
corresponding to levels two or three, then it may penetrate the potential 
barrier via the tunnel effect and a decay will happen. The following 
example illustrates how the potential energy can be estimated. 

I Energy 

Figure 4-15. Coulomb potential of an a particle in a nucleus 
(simplified one-dimensional representation) 

Example 4.6 Coulomb potential barrier in a decay 
Calculate the Coulomb potential at the nuclear surface felt by an a particle 

emitted by the parent nucleus "'PO, and compare with the decay energy of 8.954 
MeV. 

Approximate the daughter nucleus as well as the a particle as uniformly charged 
spheres and plot energy versus center-to-center separation. Also, estimate the 
velocity of the particle inside the nucleus and the frequency of hitting the wall of the 
Coulomb potential. See problem 3.30 for definition of tunneling probability. 

The Coulomb repulsion potential energy, Vo (also known as the height of the 
potential barrier), when two spheres just touch is given by (see illustration in 
Fig. 4- 16) 
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where the radius, R, is estimated by the Fermi model (see Chapter 3 )  

Ene 

Figure 4-16. Coulomb potential barrier in " 2 ~ o  cx decay 

The distance at which the Coulomb potential becomes equal to the energy of the 
observed decay of 2 1 2 ~ o  is 

Thus the width of the 2 ' 2 ~ o  Coulomb barrier seen by the a particle is 
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For the known a particle energy, its velocity, v, moving inside the nucleus, and 
the frequency,f, of hitting the wall of the potential barrier may be estimated as 

4.2 Kinetics of Alpha Decay 

Generally, for a particle emission to happen, the following conservation 
equation must be satisfied 

where Q represents the energy released in the a decay. 
If there is no y ray emission, the Q value is distributed between the a 

particle and the daughter, which recoils after the a particle is emitted. 
As discussed in Section 2, certain conservation laws apply to radioactive 

decay. 
From the law of conservation of energy it follows that 

while from the law of conservation of momentum it follows 

M a  ' a  = daughter 'daughter 

When combined, Eqs. (4-134) and (4-1 35) lead to: 

where T represents the kinetic energy of the a particle. 
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From the above equation describing the kinetics of a decay, it is 
understood that the spontaneity condition for the decay is Q > 0. 

Example 4.7 Kinetics of a decay 
Find the energy released in the decay of 2 3 8 ~  

Calculate the energy of the emitted a particle and the recoil nucleus, if 

The energy released in the reaction is obtained from the mass difference between 
the nuclei and particle involved (see Chapter 3) is 

This energy is also equal to 

which gives the energy of the emitted a particle 

The energy released in the reaction is also equal to the energy of emitted a 
particle plus the energy of recoil nucleus. 

It follows 
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5. BETADECAY 

5.1 Mechanism of Beta Decay 

Beta decay is a process that involves nucleon transformation and 
therefore is a unique decay mode. Beta unstable nuclei can decay in one of 
the following three modes: 

p- particle (electron) emerges in a weak decay process where one of the 
neutrons inside nucleus decays to a proton, an electron and an anti- 
electron-type neutrino: n + p + e- + % 
pf particle (positron) emerges in a process where a proton decays into a 
neutron, a positron and an electron-type neutrino: p + n + e+ + v, 
Nuclei having an excess number of protons may capture an electron from 
one of the inner orbits which immediately combines with a proton in the 
nucleus to form a neutron and an electron-type-neutrino: p + e- + n + v, 
All of these reactions are a result of restructuring the nucleus within an 

unstable nuclide in order to approach the region of stability as discussed in 
Chapter 3. In all of these decay modes, the laws of conservation as described 
in Section 2 must be satisfied. In order to determine which nuclei are P 
emitters, it is useful to compare the masses of the isobars, ,AM 

Z"M>Z;M possible P- decay Z + Z + l  

;M<,;M + E, possible orbital electron capture Z  + 1  Z  

A , M + 2m,c2 >,$M possible P+ decay Z + l + Z  

Beta-minus decay will occur if an atom of higher Z  has a smaller mass. 
Orbital electron capture requires the mass difference to be greater than the 
binding energy of the electron to be captured. Beta-plus decay is possible 
only in the case when the mass difference is greater than two electron rest 
masses. An example that illustrates the conditions for various beta decay 
modes is shown in Table 4-1 for six isobars with atomic mass number 
A = 90 (Zr). It can be seen that the even-even nucleus, ;:Zr has the smallest 
mass and the highest binding energy. This is the only stable element among 
the six listed isobars. Masses of all other nuclei, up and down from the ::Zr, 
are increasing. This is illustrated in Fig. 4-17. Nuclei left of ;:Zr decay by 
p- forming a decay chain whereas those to the right decay either through P+ 
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or electron capture and also form a decay chain. Since beta decay is caused 
by the difference in the masses of the two isobars, there are no two stable 
neighbouring isobars. 

Table 4-1. Decay modes of six isobars with A = 90 
Nuclide Mass (amu) BE (MeV) Decay mode Half-life 
g O ? n ~ r  89.9195238 773.217 13- 32.32 s 
90 ; ; ~ b  89.9148089 776.826 b- 158 s 
90 
3xsr 89.9077376 782.631 F 28.79 years 

90 
39y  89.9071514 782.395 F 64.00 h 

9040~r 89.9047037 783.892 stable stable 
9041~b 89.91 12641 776.999 P' 14.60 h 
90 

42M0 89.9139362 773.728 5.56 h 

Figure 4-1 7. Isobars with A = 90 

The energy spectrum of every beta emitter is continuous up to a 
maximum finite value. Every emitted electron or positron particle is 
accompanied by the emission of an antineutrino or neutrino, whose energies 
are equal to the difference between the kinetic energy of the beta particle and 
the maximum energy of the spectral distribution for the beta decay of that 
nuclide. The antineutrino and neutrino have no electrical charge and have a 
small mass that is usually neglected in analyzing the kinetics of the decay. 
The energy released in P- decay is distributed between the emitted particles: 
electron, neutrino, and the recoil nucleus, which usually has negligibly small 
energy and is not taken into account. Therefore 
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E m  
Kinetic Energy (-MeV) 

Kinetic Energy (-MeV) 

(b) 
Figure 4-18. Energy spectrum of electron (P-) decay (a) general P energy spectrum and (b) 

complex P energy spectrum 

The electron spectrum is asymmetric, with a higher population of emitted 
electrons at lower energies and the average energy of around (0.3)Em,. A 
general P energy spectrum is shown in Fig. 4-18 (a). Beta-minus decay does 
not often lead to only one element, but a series of nuclides that all decay by 
fl emission. In such cases, the electron energy spectrum is complex and 
consists of a number of partial energy spectrums (see Fig. 4-18 (b)). 

The positron energy spectrum is similar to the electron energy spectrum 
except it is shifted to a higher energy region with the average energy of 
around (0.4)Em,. Every positron, once emitted, annihilates very rapidly in 
collision with its material counter-particle, the electron, creating two 
photons each with energy 0.51 1 MeV (see Chapter 5). A general trend of the 
positron energy spectrum is shown in Fig. 4-19. 

When P decay leaves the residual nucleus in an excited state, the nucleus, 
in order to achieve stability, may either emit a y ray or transfer the excitation 
energy to an electron. The latter is called internal conversion and is an 
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alternative mechanism for an excited nucleus to relax into the ground state. 
It is an interaction in which a tightly bound electron interacts with the 
nucleus, absorbs the excitation energy and is ejected from the atom (see 
Section 5.5). A list of the most commonly used P emitters (sources) is shown 
in Table 4-2. 

E m ,  
Kinetic Energy (-MeV) 

Figure 4-19. Energy spectrum of positron (r) decay 

Table 4-2. Most commonly used P emitters 
Nuclide Half-life Em, (MeV) Production 
3~ 12.33 years 0.019 '~e (d ,  2a) 

6 ~ i ( n ,  a )  
I4c 5730 years 0.156 I3c(d, p) 

I4N(n, p) 
3 2 ~  14.262 d 1.711 3 1 ~ ( n ,  y) 

32 

44 
S(n, P) 

4 5 ~ a  162.61 d 0.257 Ca(n, Y) 
9 0 ~ r  28.79 years 0.546 fission 

64.00 h 2.280 "s~+"Y, fission 
210Bi 5.013 d 1.163 209 Bib, y) 

5.2 Kinetics of Beta-Minus Decay 

Beta-minus decay produces an electron, an antineutrino that always 
accompanies the decay, and the daughter atom that is left in an ionized state. 
The electron and antineutrino move away from the nucleus and the residual 
nucleus has one more proton than did the parent. Since an atom gains a 
proton during P- decay, it changes from one element to another. For 
example, after undergoing P-decay, an atom of carbon (with six protons) 
becomes an atom of nitrogen (with seven protons). 
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Beta minus decay preserves the total number of nucleons, A. The beta 
decay process is a nucleon transformation that can be written as follows: 
n + p + e - + %  (seeSection5.1). 

For beta emission to be energetically possible, the exact nuclear mass of 
the parent, MParent, must be greater than the sum of the exact masses of the 
daughter nucleus, Mhughter, and the ,8 particle, me 

parent = daughter + me + Q 

If atomic masses are used the above equation reduces to 

parent = daughter + Q 

The energy of P decay, Q, appears as kinetic energy of the P particle and 
is equivalent to the difference in mass between the parent nucleus and the 
sum of daughter nucleus and P particle. An extremely small part of the 
released energy is dissipated by the recoil nucleus, since the ratio of beta 
particle mass to that of the recoil nucleus is very small. The following 
example illustrates the energy conservation of P-decay and explains how 
atomic masses may be used in a calculation instead of nuclear masses 
(masses of nuclei only). 

Example 4.8 Kinetics of beta-minus decay 
Calculate the energy released in the P decay of 3 2 ~ .  The atomic mass of the 

parent nucleus is 31.9739072 amu. The daughter product is 3 2 ~  with an atomic mass 
of 3 1.9720707 amu. 

The reaction is 

Although it was explained in Chapter 3 (Section 2.3) that the atomic masses can 
be used as nuclear masses, here again is a summary of this explanation based on the 
example of phosphorus decay. From the reaction equation it follows that the mass 
balance equation (neglecting the mass of antineutrino) is 

However, the tabulated masses are the atomic masses, thus 
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Adding the same number of electron masses to both sides for the reaction 
equation 

It can now be seen that the masses obtained are equal to the atomic masses. 
Thus, for P' decay the energy equation becomes 

This energy corresponds to the maximum energy of the 3 2 ~  P spectrum and is 
exactly equal to the measured value as shown in Table 4-2. For example, if the 
energy of the emitted electron is 650 keV, the energy of the antineutrino will be 1.06 
MeV. As discussed, an extremely small part of the P decay energy is observed in the 
recoil nucleus, because the ratio of p particle mass to the recoil nucleus mass is very 
small. In this example it is 0.00055/31.9720707 = 0.000017. 

5.3 Kinetics of Beta-Plus Decay 

When the neutron-to-proton ratio is too low and a emission is not 
energetically possible, the nucleus may reach stability by emitting a positron. 
During P' decay, a proton in the nucleus transforms into a neutron, emitting 
a positron and neutrino. The positron and neutrino move away from the 
nucleus, and the residual nucleus has one less proton than the parent nucleus. 
Since the atom loses a proton during P+ decay, it changes from one element 
to another. For example, after undergoing P+ decay, an atom of carbon (with 
6 protons) becomes an atom of boron (with 5 protons). The beta-plus decay 
preserves the total number of nucleons, A. The decay process is a nucleon 
transformation and as discussed in Section 5.1 can be written as follows: p 
3 n + e+ + v,. The reaction equation in the form of nuclear masses is 
identical to that for P-decay given in Eq. (4-138) 

parent = daughter + me + Q 

If the atomic masses are used the above equation becomes 

parent = daughter + 2me + Q 
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The following example illustrates the energy conservation of P+ decay 
and again illustrates that atomic masses can be used instead of nuclear 
masses. 

Example 4.9 Kinetics of beta-plus decay 
Calculate the energy released in the P+ of ' 3 7 ~  given the following masses: M ( ' ~ ~ N )  = 

13.0057386 amu, M(I36C) = 13.0033548 m u ,  me = 0.00055mu. 
Starting from the reaction 

From the above reaction equation it follows that the mass balance equation 
(neglecting the mass of neutrino) is 

However, the tabulated masses are atomic masses, thus 

Adding the same number of electron masses to both sides for the reaction 
equation 

It can now be seen that the masses obtained are equal to the atomic masses if 

Thus 

The positive Q value indicates that the decay is possible, i.e. that 1 3 7 ~  is unstable 
and decays by positron emission. 
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5.4 Kinetics of Orbital Electron Capture 

The energy balance equation for positron emission 

parent = daughter + 2me + Q (4-141) 

indicates that if a neutron-deficient atom is to attain stability by positron 
emission, it must exceed the weight of its daughter by at least two electron 
rest masses. If this requirement cannot be met, then the neutron deficiency is 
overcome by a process called electron capture or K-capture. In this 
radioactive transformation, one of the lowest positioned (K-shell) electrons 
is captured by the nucleus and combines with a proton to produce a neutron 
and a neutrino (see Section 5.1): p + e- 3 n + v,. A schematic of this decay 
mode is shown in Fig. 4-20. 

Figure 4-20. Orbital electron capture (K-capture) 

The energy conservation for K-capture is therefore 

where Eb is the binding energy of the captured electron and the masses 
are nuclear masses. The following example illustrates the kinetics of the 
K-capture decay mode. 

Example 4.10 Kinetics of orbital electron capture (K-capture) 
For the decay shown in Fig. 4-21, determine the energy of the orbital electron 

capture decay mode. The K-shell binding energy of " , , ~ a  is 1.0721 keV, and the 
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atomic masses of 22
11Na and 22

10Ne are 21.9944368 amu and 21.9913855 amu, 
respectively.

Figure 4-21. 22
11Na decay scheme 

In order to calculate the decay energy from the equation that is expressed in 
nuclear masses 

parent e daughter bM m M E Q

it is necessary to translate them into atomic masses to be able to use the values 
as given in the problem. The daughter nucleus has one nucleon less than the parent 
and thus if Z denotes the atomic number of the parent it follows 

( 1) ( 1)parent e e daughter e bM m Z m M Z m E Q

For the decay of  22
11Na it follows 

22 22
11 10

22 22
11 10

( Na) (11 1) ( Ne) (11 1)

( Na) ( Ne)
nucleus e e nucleus e b

atom atom b

M m m M m E Q

M M E Q

The Q-value is 

22 22
11 10( Na) ( Ne) 2.841MeVatom atom bQ M M E

From the decay shown in Fig. 4-21 it can be seen that a photon is emitted 
with energy of 1.2746 MeV. Thus, the excess energy is equal to 2.841 MeV 

 1.2746 MeV = 1.567 MeV. The recoil energy associated with the emission 
of a gamma ray photon is insignificantly small; therefore the excess energy 
is carried away by the neutrino. In order to conserve energy, whenever 
radioactive decay involves the capture or emission of an electron, a neutrino 
must be emitted. In the middle of the periodic table, the isotopes that are 
lighter than the most stable isotopes tend to decay by electron capture, and 
the heavier ones decay by beta-minus emission. One example is silver, 
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which has two stable isotopes: one of lower mass which decays by electron 
capture and one of greater mass which decays by beta emission. 

5.5 Kinetics of Internal Conversion 

Internal conversion is an alternative mechanism for an excited nucleus to 
release excess energy and return to its ground state. It is an interaction in 
which a tightly bound electron interacts with the nucleus, absorbs the 
excitation energy which is emitted as a gamma ray, and is then ejected from 
the atom. Internally converted electrons are monoenergetic, and the kinetic 
energy of the converted electron, E,, is equal to the difference between the 
energy of the gamma ray emitted from the nucleus, E, and the binding 
energy of the converted electron of the daughter element, Eb 

Notice that in this process, the emitted electron was previously one of the 
orbital electrons, whereas the electron in beta decay is produced by the 
decay of a neutron from the nucleus. 

Since the internal conversion process can interact with any of the orbital 
electrons (from K, L, M, N . .  . shells), which all have different binding 
energies, the energy spectrum consists of many lines (see Fig. 4-22). 

5.6 Auger Electrons 

In the process of internal conversion and orbital electron capture, an 
electron leaves its atomic orbit and the vacancy is soon filled. There are two 
competing processes, emission of an X ray due to the transition of an 
electron from an outer shell to the vacancy in a shell closer to the nucleus, 
and another process that is similar to internal conversion in which the energy 
difference between two orbits is not released as an X ray but rather is used to 
knock another electron from the orbit. For example, if a vacancy in the 
K-shell is filled in with an electron from the L-shell, then the energy 
difference is enough to remove another electron from the L- or M-shell 
which causes another vacancy to form. This process is called Auger electron 
emission and can consist of a number of vacancies and thus emitted 
electrons. However, the entire process is not longer than seconds. The 
Auger process is more probable in light nuclei, while emission of X rays is 
more probable in heavy nuclei. Auger electrons have energy in the range of 
100 eV to a few keV. The kinetic energy of the Auger electron corresponds 
to the difference between the energy of the initial electronic transition and 
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the ionization energy of the shell from which the Auger electron was ejected. 
These energy levels depend on the properties of the atom. 

Energy 

Figure 4-22. Internal conversion electron spectrum (not to scale) 

This effect was discovered independently by both Lise Meitner and 
Pierre Auger. The discovery made by Meitner was published in 1923 in the 
Journal Zeitschrift fur Physik, two years before Auger discovered the same 
effect. However, the English speaking scientific community adapted Auger's 
name for the process. 

6. GAMMA DECAY 

6.1 Mechanics of Gamma Decay 

Gamma (y) decay follows a and P decay. The most common y sources 
are p radioactive isotopes because they are easy to produce and have higher 
y ray intensity than a emitters. Very penetrating y rays were discovered in 
1900 by Paul Villard, a French physicist. They are similar to X rays, but are 
emitted from the nucleus and generally have much shorter wavelengths. 
Gamma rays are the most energetic form of electromagnetic radiation, with 
more than 10,000 times the energy of visible light photons. 

In y decay, a nucleus rearranges its constituent protons and neutrons in 
order to transition from a higher energy state to a lower energy state through 
the emission of electromagnetic radiation. The number of protons and 
neutrons in the nucleus does not change in this process, so the parent and 
daughter atoms are the same chemical element. The emitted y ray is 
monoenergetic having energy equal to the energy level difference less the 
small fraction transferred to the recoil nucleus (see Fig. 4-1). Gamma decay 
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is a fast process with half-lives that are usually in the range of seconds 
to days. The most common sources of y radiation are listed in Table 4-3. 

Table 4-3. Most commonly used y emitters 
Isotope Half-life Em, > 5% (MeV) 
2 4 ~ a  14.9590 h 2.75 
7 2 ~ a  14.10 h 2.20 
I4'~a 1.6781 d 2.52 
llorn& 249.79 d 1 .52 
152,154EU 13.537 years, 8.593 years 1.40 
6 0 ~ o  1925.1 d 1.33 
187W 23.72 h 0.78 

In the case when lower energy photon radiation is required, the isotopes 
that decay by electron capture are used to produce X rays. A list of some of 
the isotopes that can be produced in a reactor and are X ray emitters is 
shown in Table 4-4. 

Table 4-4. Most commonly used X ray emitters 
Isotope Half-life E(K-shell) (keV) 
" ~ e  2.73 years 6.404 
6 5 ~ n  244.26 d 8.639 
7 5 ~ e  119.79 d 1 1.222 
I7O~m 128.6 d 50.741 
2 0 4 ~ 1  3.78 years 72.872 

6.2 Kinetics of Gamma Decay 

In the y decay of a nucleus, a y ray is produced by a transition between 
nuclear levels: 

where the excitation energy, E*, is shared between the y, E, and the 
kinetic energy of the recoiling nucleus, In general, the transition 
energy and y energy may be considered equal because the energy of the 
recoil nucleus is much smaller than the energy of the emitted y ray. Thus, the 
mass-energy equation for y decay reduces to: 
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7. NATURAL RADIOACTIVITY 

Since its creation, the world has been naturally radioactive. The level of 
radioactivity differs from area to area depending on the naturally occurring 
radioisotope concentration and their half-lives. Background radiation 
describes the total exposure to existing, natural radionuclides, which are 
found in air, water and soil, but also in human bodies and are divided into 
three general categories: 

Primordial radioisotopes that have existed since before the creation of the 
Earth, 
Cosmogenic radioisotopes that are formed as a result of cosmic ray 
interactions, and 
Those produced due to human actions. 
The primordial radionuclides are typically long lived, with half-lives 

often on the order of hundreds of millions of years: 
235 U (703800000 years): 0.72% of all natural uranium. 
2 3 8 ~  (4.468 x lo9 years): 99.2745% of all natural uranium 
2 3 2 ~ h  (1.405 x 10" years) 
226 Ra (1 600 years) 
2 2 2 ~ n  (3.8235 d) 
4 0 ~ ( 1 . 2 7 7 ~  109years). 
One example of a primordial nuclide that is a constituent of every living 

creature is 4 0 ~ .  The following example demonstrates the radiation level due 
to potassium decay in an average human. 

Example 4.11 How radioactive is a human body? 
Considering that there are about 140 g of potassium in a typical person's body, 

determine the total number of atoms of 4 0 ~  and its activity in the body. The 
abundance of 4 0 ~  is 0.01 17%. The atomic weight is 39.0983. 

The total number of 4 0 ~  atoms 

The activity is thus 
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Cosmic radiation can exist in many forms, from high-speed heavy 
particles to high-energy photons and muons. Cosmic radiation interacts with 
the upper atmosphere and produces radioactive nuclides. Although they can 
have long half-lives, the majority have shorter half-lives than the primordial 
nuclides. Three of the main cosmogenic radionuclides are: 

14c (5730 years): created by 1 4 ~ ( n ,  p ) 1 4 ~  
3~ (12.33 years): created through cosmic radiation interactions with N 
and 0 ,  or 6 ~ i ( n ,  CX)~H 
7 ~ e  (53.29 days): created through cosmic radiation interactions with N 
and 0 .  
The most interesting is the cycle of radiocarbon in nature (see Fig. 4-23) 

and is explained in more details as follows. From the known content 
(activity) of radiocarbon (14c) in organic matter it is possible to determine its 
age. This method is called the carbon dating and was developed after World 
War I1 by Willard F. Libby. It is used to determine the age of specimens (for 
example wood, charcoal, marine and freshwater shells) in archeology, 
geology, geophysics, and other branches of science. Carbon has many 
unique properties which are essential for life on earth. As sketched in 
Fig. 4-23, 14c is created in a series of events in the atmosphere that starts 
with cosmic radiation interactions in the upper atmosphere by removing 
neutrons from nuclei. These neutrons interact with ordinary nitrogen ( 1 4 ~ )  at 
lower altitudes, producing 14c. Unlike common carbon (12c), 14c is unstable 
and decays to nitrogen. Ordinary carbon is a constituent of the carbon 
dioxide (C02) in the air and is consumed by plants. Since plants are 
consumed by animals (including humans), carbon enters the food chain. 
Carbon-14 also combines with oxygen to form carbon dioxide (14c02), that 
follows the same cycle as the non-radioactive C02. The ratio of these two 
molecules of C 0 2  can be determined by measuring a sample of the air. The 

14 12 ratio C/ C is fairly constant in air, leaves, or the human body because 14c 

is intermixed with 12c. In living things the 14c atoms decay into 1 4 ~ ,  and at 
the same time living things exchange carbon with the environment, so that 
the ratio remains approximately the same as in the atmosphere. However, as 
soon as a plant or animal dies, the 14c atoms continue to decay but are no 
longer replaced. Thus, the amount of 14c decreases with time; in other 
words, the 1 4 ~ / 1 2 ~  ratio becomes smaller. The "clock" of radiocarbon dating 
thus starts ticking at the moment a living organism dies. Since the half-life of 
14 C is 5,730 years anything over approximately 50,000 years should 
theoretically have no detectable 14c. That is why radiocarbon dating cannot 
approximate an age of millions of years. 

Humans have used radioactivity for one hundred years, and through its 
use, added to the natural inventories. However, the amount of radionuclides 
created by humans is small compared to the natural amounts discussed 
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above. In addition, the majority of created radionuclides have short half- 
lives. Major radionuclides produced by humans and included into the chain 
food are fission products produced from weapons testing: 13'1 (8.0207 d), 
' 3 7 ~ s  (30.07 years), and 9 0 ~ r  (28.79 years). 

Buried matter: 

Collisionwith rn 14c Oceans contain 14c decays and is not 
atmosphere most of the 14c replacedwith fresh14c 

Figure 4-23. Carbon cycle 

Example 4.12 Radiocarbon dating 
The I4c content in a living things decreases after death with a half-life of 5730 years. 

If the I4c content of an animal bone is found to be 22.5% of that of an equivalent present- 
day sample, determine its age. Calculate the activity of the bone assuming the initial 
activity to be 15 dis per minute per gram. 

The age of the specimen is determined as follows 
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The activity of the specimen knowing that the rate of disintegration is constant, 
A(0) = 15 dislminlg, is 

NUMERICAL EXAMPLE 

Solution of the Bateman Equation 
Oxygen-20 decays by beta-minus according to the following decay 

scheme: 

Calculate the decay as a function of time for 200 as well as its daughter 
product 2% by numerical solution of the Bateman equations. Also, using 
Eq. (4-124), compute the time of maximum 2% concentration. 

Solution in MATLAB: 
clear all 
global lambda-p lambda-d 
Thalf-p = 13.5 1; %s half life of 0-20 
Thalf-d = 1 1.163; %s half life of F-20 
lambda-p = log(2)/Thalf-p; % sA- 1 
lambdad = log(2)lThalf-d; % sA-1 
% Numerical Solution 
[t,N] = ode45(@Bateman, [0 1001, [I  01); 
% Tmax calculation 
tmax = log(1ambda-dllambda-p) I (lambda-d - lambda-p) 
plot(t,N(:, l),'k') 
hold on 
plot(t,N(:,2),'k--') 
plot([tmax tmax],[O 11,'k:') 
xlabel(Time (s)') 
ylabel('Fracti0n Present') 
function dN = Bateman(t,N) 
global lambda-p lambda-d 
dN = zeros(2,l); 
dN(1) = -lambda-p*N(l); 
dN(2) = lambda-p*N(l) - lambda_d*N(2); 
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T i e  (s) 

Figure 4-24. Numeric solution of the Bateman equations for 200 decay 

PROBLEMS 

4.1. Write the decay of 2 2 6 ~ a  and show that the activity of 1 gram of pure radium is 
equal to one curie. Then calculate the activity of this sample 100 and 1000 years 
later. The half-life of 2 2 6 ~ a  is 1600 years. 

4.2. A solution with radioactive sodium of activity of 12,000 disintegrations min" 
was injected into the blood stream of a patient. After 30 hours the activity of 1 cm3 
of the blood was 0.5 disintegrations min-'. If the half-life of the sodium isotope is 15 
hours calculate the volume of blood in the body. 

4.3. A sample contains an isotope of magnesium, "Mg, which undergoes P decay 
with a half-life of 9.46 min. A Geiger-counter measured the activity of the sample 
to be 1.69 x lo2' Bq. Write the decay of this isotope. Calculate the decay constant. 
How many moles of the isotope are present in the sample? How many radioactive 
isotopes are present after one hour? What is the activity of the sample after 10 h? 

4.4. Use the nuclide table from http://atom.kaeri.re.kr/ton/nuc7.html and find the 
decay of "Mg. Sketch the decay scheme and find the energy of y rays emitted with 
the probabilities of 29 % and 71 %. 

4.5. A canister was found in a laboratory to contain 1,000,000 atoms of a certain 
isotope in 2004. The label on the canister showed that the number of nuclei in 1984 
was 2,000,000. Calculate the decay constant and half-life of this isotope. 
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4.6. The disintegrations of radioactive nuclides are detected by an appropriate 
counting apparatus. The efficiency of such equipment is determined as the ratio of 
counts per unit time (usually a minute) to the number of disintegrations per same 
unit of time. If dpm represents the number of disintegrations per minute, and cprn 
number of counts per minute then the efficiency of measurement is given with: 

ESficiency of measurement = [ cprn / dpm ] x 100 % 

Calculate the efficiency of measurement if a sample had 1000 disintegrations per 
minute while the counter recorded 800 counts per minute. 

4.7. Every measurement of sample radioactivity includes the background 
radioactivity caused by cosmic rays, natural radioactivity, radioactive fallout, and 
electronic noise in the circuitry of the equipment. Therefore the true value of the 
cprn of a sample must be reduced for the background value: sample cprn - 
background cpm. The efficiency of measurement is: 

Efficiency of measurement = [ (sample cprn - background cpm) / dpm ] x 100 
% 

Calculate the efficiency for the counts from Problem 4.7 if the background radiation 
is 15 cpm. 

4.8. A 0.01 yCi (1 pCi= 2.22 x lo6 dpm) source of 3 5 ~  = 87.51 days) was 
counted in a liquid scintillation counter after 200 days and was found to contain 
2600 cpm. Calculate the efficiency of the counting apparatus. 

4.9. Calculate the specific activity of 6 0 ~ o .  The half-life is 1925.1 days. 

4.10. Consider a decay chain C1 + C2 + C3 + . . . + C,,. Write the coupled system 
of decay equations. 

4.1 1. Use the nuclide table from http://atom.kaeri.re.kr/ton/nuc7.html to find the 
decay of 2 3 8 ~  and its half-life. Compare the half-lives of 2 3 8 ~  and its daughter 
nuclide and define the condition for secular equilibrium. Calculate the molar 
concentration of the daughter nuclide at secular equilibrium if the activity of 2 3 8 ~  is 
2.3 dprnlkg. 

4.12. Use the nuclide table from http://atom.kaeri.re.kr/ton/nuc7.html to find decay 
of 2 2 0 ~ a  and read the atomic masses of the parent and daughter nuclide. Calculate 
the Q value for the decay, kinetic energy of the a particle and the Coulomb barrier 
potential. 
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4.13. Use the nuclide table from http:Natom.kaeri.re.kr/ton/nuc7.html to find decay 
of " ~ i .  Calculate the decay energy, the maximum kinetic energy of the emitted P 
particle and the maximum kinetic energy of the anti-neutrino. The decay emits one y 
ray of energy 0.32 MeV. 

4.14. Show that the atomic mass of 2 5 2 ~ f  is 252.0816196 amu knowing that it decays 
by emission of a particle of energy 6.1 18 MeV. Show also that the decay energy is 
6.217 MeV. Use the nuclide table from http://atom.kaeri.re.kr/ton/nuc7.html to find 
the necessary data. 

4.15. A sample consists of mixture containing 2 3 9 ~ ~  and 240Pu. If the specific activity 
is 3.42 x 10' dpm per mg, calculate the proportion of plutonium in the sample. 

4.16. The half-life of 2 2 ~ a  is 2.6019 years. It decays with 89 % by positive electron 
emission and with 11 % by electron capture. Calculate the partial decay constants. 

4.17. Complete the decay schemes 

4.18. Calculate the time when the rock is solidified if the ratio of 4 0 ~  to 4 0 ~ r  was 
found to be 0.1. 

4.19. A rock sample of 200 g was found to contain 25 g of 4 0 ~ .  Determine the age of 
the rock sample. 

4.20. Estimate the age of the ore sample that contained 10.67 mg of 2 3 8 ~  and 2.81 g 
of 206~b .  

4.21. Calculate the age of a sample containing 25 g of carbon with I4c activity 
measured to be 4 Bq. Assume that ' 4 ~ / 1 2 ~  = 1.3 x 10-12. 

4.22. What is the age of a bone sample that is found to contain 1 mg of I4c. 

4.23. Write the equation of I4c decay. 
4.24. Define the unit of Bq and Ci. Explain the relation between these two units and 
correlate to the disintegration per minute. 

4.25. Explain the decay of tritium. 



RADIOACTIVE DECAY 171 

4.26. There are a number of sources containing a emitting radionuclides. One such 
case is an americium-beryllium source. Use the nuclide table from 
http:Natom.kaeri.re.kr/ton/nuc7.html to find decay of 2 4 ' ~ m .  What is the most 
probable energy of the emitted a particle? What is the a particle energy spectrum 
for this decay? 

4.27. What is the activity of 1 mCi of I4c after ten weeks? 

4.28. What is the activity of a sample of 250 pCi of 3 2 ~  after ten weeks? 

4.29. Calculate the density of water and standard gas in unit of molecules per liter, 
and comment on the density of ionization interactions in these two media. 

4.30. Explain what causes atoms to be radioactive. 

4.31. Explain how does the radioactivity take place and how stable atoms can 
become radioactive? What are the isotopes, and what are the isotones? 

4.32. Calculate the activity of 2 gram-mole of 4 0 ~  in 2005 and million years later? 
What is the number of atoms present in 2 gram-mole in 2005 and million years 
later? 

4.33. The biological removal of radioisotopes from the human body is taken into 
account through so called biological half-life. Very often, the radioactive half-life 
and the biological half-life are evaluated through the effective half-life 

Knowing that radioactive half-life for 13'1 is 8 days and its biological removal 
half-life is 120 days, calculate the effective half-life of 13'1. 

4.34. Knowing that after 500 years the activity of a sample containing 2 2 6 ~ a  was 
reduced to 80.4% of its original value, determine the half-life of 2 2 6 ~ a .  Compare the 
value you can find in the table of elements provided at 
http://atom.kaeri.re.kr/ton/nuc7.html. 

4.35. Calculate the maximum kinetic energy of a positron emitted in the decay of 
vanadium-48. 
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INTERACTIONS OF RADIATION WITH 
MATTER 
Basic Principles, Evidence and Examples 

"The social system of science begins with the apprenticeship of the graduate 
student with a group of his peers and elders in the laboratory of a senior scientist; it 
continues to collaboration at the bench or the blackboard, and on to formal 
publication - which is a formal invitation to criticism. The most fundamental 
function of the social system of science is to enlarge the interplay between 
imagination and judgment from a private into a public activity. The oceanic feeling 
of well-being, the true touchstone of the artist, is for the scientist, even the most 
fortunate and gifted, only the midpoint of the process of doing science". Horace 
Freeland Judson @. 1931) 

1. INTRODUCTION 

Radiation interaction with matter is generally analyzed by considering 
charged particles and electromagnetic radiation separately. As discussed in 
Chapter 4 the two types of charged particles emitted are a and P particles 
(electrons or positrons). The mass of these particles differ by many orders of 
magnitude and the types of nuclear interactions they undergo are thus 
dramatically different. Other important heavy charged particles that need to 
be considered are protons, deuterons and helium. The characteristics of 
electromagnetic radiation (y rays and X rays) interactions are quite different 
(photons are massless and travel at the speed of light) to that of charged 
particles and will be considered separately. This chapter discusses the 
mechanisms of interaction for both charged particles (a, protons and 
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electrons) and electromagnetic radiation (y rays and X rays). The 
characteristics and interactions of neutrons with matter are described in 
Chapter 6. 

2. INTERACTIONS OF CHARGED PARTICLES 

2.1 Types of Interactions 

An incoming charged particle may either interact with the atom's 
electron cloud or directly with the nucleus. The difference in size, mass and 
binding energy of the nucleus and electrons determine the type of interaction 
the incoming particle will undergo. In every collision energy is exchanged 
between the target and the incoming particle but the energy before and after 
the collision must be preserved (conservation of energy law). There are two 
types of collisions: elastic and inelastic scatterings which differ in energy 
distribution after the collision. Incoming particle bring kinetic energy into 
the system and the collision is elastic if none of this energy is transferred to 
the target. These collisions are conceptually similar to collisions between 
billiard balls. However, if a portion of the incoming kinetic energy imparted 
on the target atom then the collision is considered to be inelastic. 

2.1.1 Elastic Scattering of Charged Particles 

When a charged particle passes through matter there is a significant 
probability that an elastic scattering event will take place. In principle, there 
are no elastic interactions with the bound electrons in an atom because the 
electron subsequently transfers the energy to the nucleus and the collision is 
analyzed as a collision with the whole atom. Since the mass and charge of an 
atom is dominated by that of its nucleus, such a collision is generally 
considered as a direct collision between the charged particle and the nucleus. 
As described in Chapter 2, Rutherford's gold foil experiment uncovered 
many aspects of charged particle collisions with matter. For example, if a 
charged particle passes very close to the nucleus, the electron cloud 
distribution is nearly symmetric with respect to the incoming particle, and 
the electronic Coulomb forces are neglected. When the charged particle 
passes further away from the nucleus through the electron cloud, the 
electrons reduce the effect. Due to this screening effect, the analyses of such 
collisions require a correction to the total charge seen by the incoming 
particle, called the effective charge that is always less than the charge of the 
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nucleus, Zcf < Z. This allows the elastic scattering of a charged particle with 
an atom to be simplified as a direct interaction with a nucleus of charge Zefl 

bl 
-------------I--- : d = 2R = 2(6.2 fm) 

i 

Gold Nucleus 

Figure 5-1. Rutherford scattering of chargcd particle with the nucleus 

In the elastic collisions, also known as Rutherford scattering, the 
direction and the energy of the incoming charged particle may be changed. 
Since the interaction is strongly dependant on Coulomb forces it is also 
referred to as Coulomb scattering. 

The Rutherford scattering formula gives angular deflection probability of 
incident particle (see Fig. 5-1) usually discussed in terms of the cross 
section, i.e. the effective target area seen by the incident particle (see 
Chapter 6) as shown in Fig. 5-1. For a gold nucleus ( A  = 197), the radius can 
be estimated according to the Fermi model given in Eq. 3-1 

For example, if an a particle with kinetic energy, T = 6 MeV approaches 
the gold nucleus with the impact parameter, b, equal to the radius of a gold 
nucleus, it will be scattered at an angle of - 161" according to Eq. 2-3 
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Area : o = m 2  = n ( 6 . 2 ~ 1 0 - ~ ~ r n ~  =1 .21~10"~rn~  = 1.2lbarn 

Thus the cross section for scattering at the angle of - 161" is - 1.21 barns. 
The differential scattering cross section, o(9, is the probability of 

scattering the incident particles at a certain angle, 8, from a single nucleus, 
and is given by the Rutherford scattering formula 

where T = rnl d l 2  is the kinetic energy of an incoming charged particle with 
charge Zle, and Z2e is the charge of the target nucleus. The above relation 
indicates 

The probability of deflection is proportional to the square of the product 
of the charges of the incident particle and the target nucleus. That is, a 
larger deflection is obtained for incoming particles of greater charge or 
for heavier target nuclei. 
The incoming charged particle deflection is smaller if its energy is larger, 
since the probability of the angular distribution is inversely proportional 
to the square of the kinetic energy of the incoming charged particle. 
Smaller angles have a higher probability since the differential scattering 
cross section is inversely proportional to the fourth power of half the 
scattering angle, 81 2. 

The probability that an incoming charged particle will transfer all or part 
of its energy to a target nucleus (which is assumed to be at rest) depends on a 
number of factors and may be written as 

The probability of energy transfer is directly proportional to the charges 
of the incoming particle and the target nucleus squared. 
The probability of smaller energy transfer is inversely proportional to the 
energy of the incoming particle (energy that is to be transferred) squared. 
If the target is lighter, the transfer of energy is more probable since it is 
inversely proportional to the mass of the target nucleus (M). 
If the incident particle velocity (v) is small, it will deflect more and 
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transfer more energy since the probability of energy transfer is inversely 
proportional to the square of the incoming particle velocity. 

The maximum energy transfer, governed by the energy and momentum 
conservation laws, occurs during a head-on collision. It should, however, be 
mentioned that the head-on collision is a very rare event. The energy 
exchange depends directly on the masses of the incoming particle, m and the 
target, M, for example, when the mass of the incoming particle is smaller 
than the mass of the target nucleus the incoming particle is repelled 

where E is the particle energy before the collision and E' the particle 
energy after the collision. From this relation it can be seen that when two 
masses are equal, the energy difference of the incoming particle, before and 
after the collision, is zero. 

The incoming particle is thus stopped and all of its energy is transferred 
to the target nucleus. Conversely, if M >> m, the right hand side of Eq. 
(5-148) approaches unity and the energy of the incoming particle remains 
unchanged after the collision. Equation (5-148) suggests that in a collision of 
an a particle with a gold nucleus, as in Rutherford's experiment, the 
maximum energy that the a particle will lose is - 10%. The maximum 
energy that the target nucleus may receive (head-on collision) from an 
incoming charged particle of energy E is 

4Mm 
Et arg et = E 

(M + m)2 

Since the incoming particles are usually much lighter than the target 
nuclei, the collision leads to a change of their directions while the change of 
their energies can almost be neglected. 

2.1.2 Inelastic Scattering of Charged Particles with Electrons 

In an inelastic scattering, the incoming particle may transfer all or part of 
its energy to the electrons in an atom. The energy transferred to the electrons 
may cause excitation of the electron or ionization of the atom. The excitation 
and ionization processes are described in Chapter 2. If the energy of 
incoming charged particle is larger than the binding energy of the electron it 
interacts with, then the collision is similar to elastic scattering. In this case, 
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the probability of the angular deflection is proportional to the square of the 
target's charge. In the collision with an electron, the incoming particle is 
deflected at an angle which is a factor of l/Z2 smaller than in a direct 
collision with a nucleus of charge 2. 

2.1.3 Inelastic Scattering of Charged Particles with a Nucleus 

When passing close to the nucleus, charged particles are attracted or 
repelled by the Coulomb force. The acceleration of a particle, a,  is 
proportional to the charges of the nucleus and of the particle itself 

This acceleration causes the particle to deflect from the original 
trajectory (see Fig. 5-2). An electron will, for example, deflect towards the 
nucleus, while an a particle will deflect away from the nucleus because of 
the opposite signs of their respective charges. According to classical 
electrodynamics, every charged particle that accelerates emits 
electromagnetic radiation with an intensity that is proportional to the square 
of the acceleration. Thus: 

The intensity of electromagnetic radiation decreases for heavier particles. 
For example, the intensity of this radiation for the a particles is a million 
times smaller than for electrons. 
The intensity of radiation is greater for heavier target materials. 
This type of electromagnetic radiation is also called radiative loss, 

"bremsstrahlung" (German for braking radiation), or continuous X radiation. 
Quantum mechanics gives a correct interpretation of bremsstrahlung since it 
defines it as a quantum process in which an electron emits a photon. 
Bremsstrahlung photons have a continuous energy distribution that ranges 
from zero to a theoretical maximum that is equal to the kinetic energy of the 
p particle (electron). The emitted energy spectrum is in the range of 
X rays and the energy is higher for materials of higher Z. For example, since 
the use of light materials reduces bremsstrahlung, plexiglasa is often used to 
shield against P radiation. The greatest bremsstrahlung occurs when high 
energy P particles interact with high density materials such as lead. In 
general, the probability of bremsstrahlung production increases with the 
energy of the incoming charged particle and the mass (charge) of the target 
material. 

The bremsstrahlung hazard due to P particles of maximum energy E that 
interact with a target material with atomic number Z may be estimated from 
the following approximation 
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where f represents the fraction of incident p particle energy converted 
into bremsstrahlung photons. 

Electron 
I 

Figure 5-2. Bremsstrahlung radiation 

Example 5.1 Bremsstrahlung radiation 
A 1 mCi 6 0 ~ o  source is encapsulated in a spherical lead (atomic number 82) 

shield that has a thickness that is sufficient to stop all the P particles emitted by the 
source. Calculate the bremsstrahlung radiation flux as a function of distance outside 
the spherical shield. The maximum energy of emitted P particle is 0.3 179 MeV. 

The fraction of incident P particle energy that is converted into an X-ray in each 
decay of 6 0 ~ o  is 

The source energy (S) of the photons is determined from the assumption that the 
average p energy is one-third of the spectrum's maximum value, Ep,,, = 0.3179 
MeV. For the activity of the 6 0 ~ o  source of A = 1 mCi 

decayslsec 0.3 179MeVldecay 
Eum" = (O.OO9124) S = fA- 

3 c i 1 3 

It is important to mention that the maximum p energy spectrum value should be 
assumed for the photons whenever bremsstrahlung is considered in the radiation 
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exposure of humans In other cases it sufficient to assume that each photon receives 
the average (3 energy. Thus, the photon generation rate if the maximum P energy is 
taken can be expressed as 

Assuming a point 6 0 ~ o  source, the bremsstrahlung flux as a function of distance 
from the spherical shield is 

2.2 Loss of Energy 

The mechanisms by which charged particles transfer their energy in 
inelastic collisions with matter are expressed in one or more of the following 
forms: stopping power, relative stopping power, specific ionizations and loss 
of energy per ionization. 

2.2.1 Stopping Power (- dEldx) 

Stopping power is defined as the amount of energy, dE, which a charged 
particle loses along the length of its path through matter, dx. This quantity 
always represents the average energy loss per number of interacting 
particles. It is proportional to the square of the charge of the incoming 
particle, 212, and it is inversely proportional to its velocity; thus the stopping 
power increases as the particle velocity is decreased. 

The value of -dEldx along a particle track is also called specific energy 
loss, S, the rate of energy loss, or the linear energy transfer (LET). The 
classical formula that describes the specific energy loss is known as the 
Bethe-Bloch Formula, which is valid for all types of heavy charged particles 
with velocities that are large compared to orbital electron velocities. 

The Bethe-Bloch formula has different forms for heavy and light charged 
particles: 

For heavy charged particles (a  particles and protons): 
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v: velocity of the charged particle 
Ze: charge of the charged particle 
N: number density of the target 
me: rest mass of the electron 
I: experimentally evaluated average excitation and ionization potential 
(see Chapter 2) 
B: stopping number 

For light charged particles (electrons and positrons): 

For the charged particles with v cc c (non-relativistic particles) only the 
first term in the stopping number (B) equation is necessary. Equations 
(5-152) and (5-153) show that B varies slowly with particle energy and is 
proportional to the atomic number (2) of the absorber material. Thus the 
stopping power varies as ll$, or inversely with particle energy. 

The Bethe-Bloch formula also shows that higher-Z materials have 
greater stopping powers. The ionization/excitation parameter I is an 
experimentally determined value (see Section 2.2.4) and the ratio IIZ is 
approximately constant for absorbers with Z > 13. This ratio ranges from 10 
eV for heavy elements to 15 eV for light elements (see Fig. 5-3). 

The loss of energy due to ionization and excitation shows a general trend 
for all charged particles (see Fig. 5-4): 

For each charged particle, the maximum energy loss occurs at a 
characteristic incoming particle velocity. 
The stopping power then decreases to a minimum value on the order of 
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1 MeV for electrons and higher for heavier charged particles. 
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L 

Figure 5-3. Average ionization and excitation potential as a function of Z 

I 

Energy (in mc2) 

Figure 5-4. General trend of dEldx as a function of particle energy E 

2.2.2 Relative Stopping Power 

The relative stopping power for a charged particle that interacts with a 
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given material is defined as the ratio of particle energy loss per atom of the 
given material to the energy loss per atom that will be experienced by the 
same particle in standard material (air for P particles or aluminum for a 
particles) 

Relative linear stopping power (MeVIcm) 

Relative mass stopping power (MeVIg cm2) 

Pst (d' 1 d')material 
Sm = 

Pmaterial (d' 

Relative stopping power per atom (MeVIatom cm) 

Relative stopping power per electron (MeVIelectron cm) 

Figures 5-5 to 5-7 illustrate the stopping power of aluminum for 
electrons, a particles, and protons. 

2.2.3 Secondary Electrons 

As a charged particle passes through a medium it ionizes some of the 
atoms by ejecting the electrons. This involves a transfer of energy from the 
charged particle to the electrons, which may receive sufficient kinetic energy 
to cause further ionizations. This process is known as secondary ionization. 
The total ionization is thus the sum of both primary and secondary 
processes. 
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I 

1 .OE-02 1,OE-01 I .OEtOO I .OE+Ol I .OE+O2 1 .OEt03 

Energy (MeV) 

Figure 5-5. Total mass stopping power of electron in aluminum (National Institute of 
Standards and Technology tables) 

I a - particle in aluminum 

I.0E-03 I.0E-02 1.OE-01 1.OEtOO 1.OEtOI I.OEtO2 I.OEt03 

Energy (MeV) 

Figure 5-6. Total mass stopping power of a particle in aluminum (National Institute of 
Standards and Technology tables) 
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1 .OEt03 -- -" 
1 Proton in aluminum 

I I 

I.OErO3 1 .OE-01 I.OEtO1 I .OEt03 

Energy (MeV) 

Figure 5-7. Total mass stopping power of proton in aluminum (National Institute of Standards 
and Technology tables) 

The energy of secondary electrons ranges from zero to a theoretical 
maximum which depends on the mass and energy of the primary charged 
particle. 

For example, in a collision between an a particle with energy E and mass 
m, and an electron of mass me, the maximum energy that the a particle can 
transfer to the electron, Em,,,, is given by Eq. (5-149) 

4mume 
Et arg er = E 

(mu + 

Since the mass of an electron is significantly less than the mass of an a 
particle, the above equation reduces to 

4m me m 
E,,,,, = E+ = 4E-i- = 5 . 4 4 ~  lo4 E for a particles 

(ma > ma 

It follows that the maximum energy an a particle can transfer to an 
electron is 0.0544% of the energy before the collision. 

A 6 MeV a particle can transfer a maximum energy of 3.26 keV to an 
electron (where me = 0.51 1 M ~ V I C ~  and mu = 4 m~ = 4 x 940 MeV/ c2). In a 
collision between two electrons in which both leave the atom, it is 
impossible to distinguish the primary electron from the secondary one. By 
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convention, the secondary electron is considered to be the one with lower 
energy or with energy below 50 eV. In general, the secondary electron yield 
is greater for targets of high atomic number. Secondary electrons with 
energies greater than a few hundred electron volts are referred to as delta 
rays or delta electrons, 6. 

2.2.4 Specific Ionization and Ion Pairs 

Specific ionization (SI)  is defined as the total number of ionizations (ion 
pairs), both primary and secondary, formed per unit track length along a charged 
particle's path. In other words, it represents the number of ion pairs produced 
per unit track length. If W represents the average energy needed to create a 
single ion pair, the SI is defined as 

The unit of specific ionization is [number of ion pairs per unit track 
length] and W ranges from 22 eV to 46 eV. At high energies, W is nearly 
constant and has similar value for all incoming charged particles. For 
example, at 4 MeV a and j3 particles have nearly equal values for W. It has 
also been shown empirically that j3 particles have a constant W value for 
energies above a few keV. For a and j3 particles, the values for W increase at 
lower energies, since the probability for ionization is reduced. Table 5-1 
shows some measured W values. The ionization density produced by a single 
charged particle depends on its charge and velocity. For example, a slower 
moving particle spends more time in the vicinity of an atom or molecule 
thereby increasing the chance of ionization events. Thus, an a particle 
creates thousands more ion pairs per centimeter than an electron (P particle) 
of the same energy (approximately 100 ion pairs per cm). 

Table 5-1. Ion pair generation energy for different materials 
Material Ion pair generation energy, W (eV) 
Air 33.9 
Silicon (Si) 3.6 
Germanium (Ge) 2.8 
Silicon-oxide (SiOz) 17 
Hydrogen (H) 37 
Helium (He) 46 
Nitrogen (N) 36 
Oxygen ( 0 )  32 
Neon (Ne) 37 
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Example 5.2 Ion pair production from a particle interaction 
An a particle loses about 35.5 eV for each ion pair formed. 
Calculate the number of ion pairs produced by an a particle with a kinetic 

energy of 5.5 MeV. 
The number of ion pairs produced is 

5.5x106ev 
= 154,930 ion pairs. 

35.5eV 1i .p .  

2.2.5 Range of Interactions 

Heavy particles such as protons and a particles will deposit all their 
energies along a definite depth of penetration in a medium. This depth or 
distance is called the range of the particle and it depends on the energy and 
mass of the particle. 

The range is longer for particles of higher energy and shorter for heavier 
particles. For example, consider two particles with the same kinetic energy; 
the heavier particle has a shorter range. 

The range may either be defined as linear range (units of length) or the 
mass range (units of mass per area). 

Theoretically, the range of a charged particle in a medium may be 
obtained from the integration of the inverse of a particles energy loss per 
unit length, i.e. 

dE 
R(Ein)= % - 

dE l d x  

where dEldx represents the total stopping power and the final particle 
velocity is assumed to be zero. 

The evaluation of this term is complicated, especially for light charged 
particles (see Section 4.1), and its reciprocal is commonly assumed to go to 
zero at zero particle energy and increases linearly to the known value of least 
energy. The use of these assumptions in the calculation of range is referred 
to as the continuous slowing down approximation (CSDA). 

Figures 5.8 show the ranges of a proton, electron and an a particle 
passing through aluminum. This illustrates the tendency of the CSDA range 
and its difference for light and heavy charged particles. 



188 Chapter 5 

il 
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Electron in aluminum 

1 .OE-02 1 .OE-0 1 1 .OE+Oo 1 .OE+Ol 1 .OE+02 1 .OE+03 

Energy (MeV) 

Figure 5-8.a) CSDA range of electron in aluminum (National Institute of Standards and 
Technology tables) 

3 

a - particle in aluminum 

1 .OK03 1 .OE-02 1 .OE-01 1 .OE+Oo 1 .OE+Ol 1 .OE+02 1 .OE+03 

Energy (MeV) 

Figure 5-8. b) CSDA range of a particle in aluminum (National Institute of Standards and 
Technology tables) 
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1 .OE-03 1 .OE-02 1 .OE-01 1 .OE+OO 1 .OE+Ol 1 .OE+02 1 .OE+03 1 .OE+04 

Energy (MeV) 

Figure 5-8. c) CSDA range of proton in aluminum (National Institute of Standards and 
Technology tables) 

Example 5.3 Ion-pair density from a particle interaction 
If the range of an a particle is 10 cm, determine the average ion-pair density 

using data from Example 5.2. 
The ion pair density is obtained as the ratio of the number of ion pairs produced 

to the length of track of the ionizing particle 

154,930i.p. 
= 15,493 ion pairs per unit length (cm). 

1 0cm 

3. ALPHA PARTICLES AND PROTONS 

3.1 Mechanism of Energy Loss 

The a particles have a short range and high specific ionization due to 
their large mass. The range may be only few centimetres in air down to a 
few microns in tissue. This indicates that a simple shielding from an external 
a emitter would be a single sheet of paper. 
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Since a particles have a strong ionizing effect on the medium they are 
passing through (see Examples 5.2 and 5.3), they are used as a basic agent in 
damaging cancer cells in a method called neutron capture therapy see 
Chapter I). 

When an a particle interacts with an atom, its electric field ejects 
electrons to form an ion pair. On average, an a particle loses about 35.5 eV 
for each ion pair formed. For example, in order to ionize a hydrogen atom, 
13.6 eV energy is required. The excess energy, 21.9 eV, lost by the a 
particle is transferred to the electron as kinetic energy. Thus, the ejected 
electron is set into motion and can produce another ion pair or secondary 
electrons. 

A fast moving a particle may lose energy without causing ionization as it 
passes through a medium. In such cases, the electrons do not receive 
sufficient energy to be ejected and they simply change orbits (moving to 
higher energy levels). Thus, the a particle caused only excitation of the 
medium and not ionization. The fast moving a particle has less time for 
interactions and the specific ionization consequently decreases at higher 
energies (see Fig. 5-9). 

Energy (MeV) 10 

Figure 5-9. Specific ionization of a particle versus its energy 

In other words, the specific ionization of a high-energy a particle will 
increase as the velocity decreases. This tendency of increasing ionization 
probability with the continuous slowing down of the a particle towards the 
end of its range is known as the Bragg curve and is illustrated in Fig. 5-10. 
As soon as the energy of the a particle drops below the energy required for 
ionization of the atoms in a medium, its ionization efficiency abruptly 
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reduces to zero. The highest localized ionization energy deposition is 
expected around the ~ r a & ~ e a k .  

Range (penetration depth) 

Figure 5-10. Specific ionization of a particle versus its range 

3.2 Range - Energy Relationship 

The general expression for linear stopping power (linear energy loss) for 
a charged particle that is slowing down in a medium is the Bethe-Bloch 
formula (as discussed in Section 2.2.1). Since the energy loss is proportional 
to the square of the charge of the incoming particle, an a particle is expected 
to stop much faster than a proton in a given medium. 

Semi-empirical formulas express the range of charged particles as a 
function of kinetic energy. 

For a particles, the range in air at a temperature of 15°C and 760 mm 
pressure is given by the equations 

The range (expressed as density thickness) of an a particle in any other 
medium, R,, is given by 
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R ,  (cm) = 
0 . 0 0 0 5 6 ~ " ~  

Rair 
P, 

where A is the atomic mass number of the medium, Rair is the range of 
the a particle in air, and p,.is the density of the medium. 

The effective atomic composition of tissue is very similar to that of air 
and the Bragg-Kleeman rule (which states that the atomic stopping power is 
proportional to the square root of the atomic weight of the medium) gives 
the formula for the calculation of the range of a particles in tissue 

Rtissue Ptissue = Rair P a i r  

The density of air at standard pressure and temperature is 
1.293 x 10" @m3. 

The density of tissue is usually assumed to be that of water, i.e. 1.0 
g/cm3. 

The charged particle range is affected by the following factors 
Energy: 
The range is approximately linear with energy since the Bethe-Bloch 
formula for stopping power is inversely proportional to E. 
Mass: 
With the same kinetic energy, an electron is much faster than an a 
particle because of its smaller mass; therefore, incoming electrons spend 
less time near the orbital electrons. This reduces the effect of Coulomb 
interactions (consequently stopping power) and increases the range. 
Charge: 
Stopping power increases with charge while the range decreases. Range 
is inversely proportional to the square of the charge of the incoming 
particle. For example, a tritium particle with Z=1 will have ?A the 
stopping power of a 3 ~ e  particle with Z=2. 
Density: 
Stopping power increases with density. The range is inversely 
proportional to the density of the absorbing medium. 

The proton range in air is defined as 

E ,  (MeV) 
1.8 

for E ,  (few MeV - 200MeV) 

The range of protons in aluminum is given by the 

(5-164) 

semi-empirical 
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formula 

The rate of energy loss for a particles and protons and their ranges are 
shown in Tables 5-2 to Table 5-5 for different materials and particle 
energies. 

Data was taken from the National Institute of Standards and Technology 
ASTAR and PSTAR tables. 

Example 5.4 Range of an a particle and shielding 
Estimate the range of a 3 MeV a particle in air and tissue. 
Calculate the linear aluminum thickness required to totally stop these a particles. 

Investigate the accuracy of by comparing with Table 5-3. 
A density of aluminum is 2.7 &m3. 
The range of a 3 MeV a particle in air is 

RUir (cm) = 0.56(cm/MeV)E(MeV) = 1.68cm 

From Table 5-3 the range of 3 MeV a particle in air is 2.1 16 x 10" g/cm2 giving 
a linear range of 1.64cm. 

The range of a 3 MeV a particle in tissue is 

'air P u i r  - R,,,, = - - 1.293 x R,, = (1.293 x )(1.68cm) = 0.0022cm 
P,iss,e 

Table 5-2. Total stopping power (MeV cm21g) of a particles in different materials 
a particle Hydrogen Air Water Tissue Aluminum 
energy 
(MeV) 

0.001 1.264E+03 2.21 5E+02 3.27 1E+02 3.688E+02 1.305E+02 
0.005 1.136E+03 2.937E+02 3.667E+02 4.382E+02 2.095E+02 
0.01 1.292E+03 3.625E+02 4.304E+02 5.227E+02 2.790E+02 
0.05 2.746E+03 7.3 10E+02 8.230E+02 9.924E+02 6.444E+02 
0.1 4.123E+03 1.03 1E+03 1.15 1E+03 1.375E+03 9.056E+02 
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a particle Hydrogen Air Water Tissue Aluminum 
energy 
(MeV) 

0.5 8.220E+03 1.964E+03 2.184E+03 2.698E+03 1.300E+03 
1 7.167E+03 1.924E+03 2.193E+03 2.522E+03 1.226E+03 

1.5 5.654E+03 1.626E+03 1.898E+03 2.062E+03 1.100E+03 
2 4.593E+03 1.383E+03 1.625E+03 1.729E+03 9.859E+02 
3 3.354E+03 1.072E+03 1.257E+03 1.324E+03 8.217E+02 
4 2.678E+03 8.865E+02 1.035E+03 1.086E+03 6.991E+02 
5 2.244E+03 7.61 2E+02 8.855E+02 9.267E+02 6.053E+02 
10 1.284E+03 4.637E+02 5.344E+02 5.556E+02 3.762E+02 
15 9.200E+02 3.425E+02 3.930E+02 4.070E+02 2.809E+02 
20 7.245E+02 2.748E+02 3.146E+02 3.250E+02 2.272E+02 

Table 5-3. CSDA range (g/cm2) of a particles in different materials 
a particle Hydrogen Air Water Tissue Aluminum 
energy 

Table 5-4. Total stopping power (MeV cm21g) of protons in different materials 
Proton Hydrogen Air Water Tissue Aluminum 
energy 
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Proton Hydrogen Air Water Tissue Aluminum 
energy 
(MeV) 
10 1.019E+02 4.006E+01 4.567E+01 4.692E+01 3.376E+01 
15 7.239E+01 2.894E+01 3.292E+01 3.373E+01 2.466E+01 
20 5.679E+01 2.294E+01 2.607E+01 2.667E+01 1.969E+01 

Table 5-5. CSDA range (g/cm2) of protons in different materials 
Proton Hydrogen Air Water Tissue Aluminum 
energy 
(MeV) 
0.001 1.091E-06 9.857E-06 6.319E-06 5.418E-06 1.471E-05 
0.005 4.058E-06 2.891E-05 2.262E-05 1.825E-05 3.981E-05 
0.01 6.473E-06 4.400E-05 3.599E-05 2.857E-05 5.943E-05 
0.05 1.849E-05 1.152E-04 9.935E-05 7.769E-05 1.560E-04 
0.1 3.194E-05 1.842E-04 1.607E-04 1.268E-04 2.632E-04 
0.5 2.598E-04 1.021E-03 8.869E-04 7.801E-04 1.503E-03 
1 8.476E-04 2.867E-03 2.458E-03 2.270E-03 3.945E-03 
1.5 1.728E-03 5.479E-03 4.698E-03 4.410E-03 7.287E-03 
2 2.883E-03 8.792E-03 7.555E-03 7.147E-03 1.146E-02 
3 5.968E-03 1.737E-02 1.499E-02 1.429E-02 2.210E-02 
4 1.004E-02 2.839E-02 2.458E-02 2.355E-02 3.563E-02 
5 1.506E-02 4.173E-02 3.623E-02 3.481E-02 5.188E-02 
10 5.346E-02 1.408E-01 1.230E-01 1.191E-01 1.705E-01 
15 1.126E-01 2.899E-01 2.539E-01 2.467E-01 3.462E-01 
20 1.913E-01 4.855E-01 4.260E-01 4.147E-01 5.748E-01 

The tabulated value shown in Table 5-3 is 0.0018 cm. The aluminum thickness 
required to totally stop a 3 MeV a particle is 

This is in good agreement with the value given in Table 5-3 (0.002961 / 2.7 = 
0.001cm). 

Example 5.5 Range of proton 
Estimate the range of a 3 MeV proton in air and aluminum. 
Compare this value to the value given in Table 5-5. 
The range of 3 MeV proton in air is 
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The range of 3 MeV proton in aluminum is 

Table 5-5 gives a range of 13.4 cm in air and 0.0082 cm in aluminum for a 
3 MeV proton. 

4, BETA PARTICLES (ELECTRONS AND 
POSITRONS) 

4.1 Mechanism of Energy Loss 

The mechanism of energy loss and the type of interactions for P particles 
in matter are more complex than for a particles due to the smaller mass and 
higher speed. Beta particles are emitted during the decay of radionuclides 
with a continuous energy spectrum with a maximum energy that is 
characteristic of the radionuclide (see Chapter 4). This maximum value is 
taken as the total transition energy. The difference between this maximum 
value and the emitted p particle energy is carried off by an electrically 
neutral particle. The maximum energy for P radiation from the majority of 
radionuclides is in the range of 0.5 to 3.5 MeV. When passing through a 
medium, the p particles interact with atomic nuclei and electrons; the P 
particle range is not as well defined as for a particles. This is due to the 
combined effect of the continuous energy spectrum and the scattering 
characteristics. The characteristics of the range are described in Section 4.2. 

The loss of P particle energy in a medium consists of two components. 
The total stopping power (energy loss) is expressed as a summation of the 
two terms 

The collision term, (dEld~),,~~, represents the energy loss due to Coulomb 
interactions (ionization and excitation). 
The radiative term, (dEld~),~, accounts for the energy loss due to 
bremsstrahlung, Cerenkov radiation, or nuclear interactions. 
Therefore, the total stopping power (as illustrated in Fig. 5-1 1) is' written 

as 
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(5-166)

where the collision term is referred to as the linear energy transfer (LET), 
i.e. the linear rate of energy loss of a  particle due to ionization and 
excitation (see Section 2.2.1). The LET is related to the local energy 
deposition while the radiative stopping power takes into account the total 
energy loss due to bremsstrahlung radiation and the formation of secondary 
and  electrons. The collision term and total stopping power are nearly equal 
for heavy charged particles (see Figures 5-12 and 5-13). Notice that in the 
case of heavy charged particles, the collision stopping power is called 
electronic stopping power. It is also important to note that the nuclear 
stopping power is only significant for heavy charged particles and it 
represents an average rate of energy loss per unit path length due to the 
transfer of energy to recoiling atoms in elastic collisions.  

Except for highly relativistic electrons, ionization and excitation are the 
main forms of energy loss, which may therefore be calculated with the 
Bethe Bloch equation.

Figure 5-11. Components of total stopping powers for electrons in aluminum (National 
Institute of Standards and Technology tables) 
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Figure 5-12. Components of total stopping powers for  particle in aluminum (National 
Institute of Standards and Technology tables) 

Figure 5-13. Components of total stopping powers for proton in aluminum (National Institute 
of Standards and Technology tables) 

The general form of this equation is described in Section 2 for the 
different types of particles. The condensed form of this equation for the 
ionization and excitation energy loss of electrons can be written as 
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The equation illustrates the following: 

The collision energy loss is proportional to the electron density in the 
medium, and the ratio Z/A, where Z is the atomic number of a medium 
and A its atomic weight.  This ratio varies slowly with increasing Z (for 
example the ratio is 0.5 for low Z materials and reduces to ~ 0.39 for 
uranium). 
For electron energies up to 1 MeV, the collision term of the total 
stopping power decreases due to the increase of the  = /c term.  The 
collisional stopping power decreases as 1/  2 for increasing velocity until 
it reaches a minimum value at electron energy of about 1.5 MeV (see Fig. 
5-14).  For higher electron energies where  ~ 1, the energy loss due to 
ionization and excitation increases logarithmically (relativistic rise) until 
it reaches a constant value (Fermi plateau). 
As discussed in Chapter 2, the ionization potential (I) increases with Z;
but loses significance due to the logarithmic dependence in the collision 
stopping power equation.  However, as illustrated in Fig. 5-14, the loss of 
energy decreases with increasing Z of a medium. 

Figure 5-14. Energy loss of electrons due to ionization and excitation (collision term) in air, 
aluminum, lead and tissue                                                                                  

(National Institute of Standards and Technology ESTAR tables)  

For electron energies above a few MeV, an additional density effect
correction is required. This accounts for the reduction in the collision 
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stopping power due to the incident electron’s polarization of the medium.
Descriptions of the average radiative loss of electron energy in the form of 
bremsstrahlung radiation are only approximate. Although there are no 
adequate equations to express the radiative stopping power over a wide 
range of electron energies, a general equation can be used

),(2
2

ZEfcmE
A

Z
dx
dE

rade
rad

(5-168)

From this equation and the trends illustrated in Fig. 5-15 (radiative 
stopping power curves for various materials), the following is understood 
about the radiative stopping power 

It is proportional to Z2 and as a result the radiative stopping power 
becomes comparable to the collision term for higher Z.
It is proportional to the electron energy, E, and as a result it becomes 
comparable to the energy loss in ionization and excitation at specific 
electron energy values. At even higher energy values it begins to exceed 
these competing energy loss contributors. 

Figure 5-15. Energy loss of electrons due to radiative processes (radiative term) in, air, 
aluminum, lead and tissue (National Institute of Standards and Technology ESTAR tables) 

For relativistic electron energies the ratio of the radiative and the 
collision stopping power becomes 
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where E is in MeV and F has a value of 700 for lighter elements and 800 
for higher Z materials (see Example 5.6). The above relations can be 
generalized for any charged particle of rest mass M and energy E >> Mc2
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For example, this ratio is equal to one, that is the bremsstrahlung and 
ionization/excitation energy losses become equal, at electron energy of  
47 MeV in aluminum and 7 MeV in lead (see Fig. 5-16). 

Figure 5-16. Collision and radiative energy losses of electrons (National Institute of 
Standards and Technology ESTAR tables) in water 

Example 5.6 Energy loss of an electron to bremsstrahlung and 
ionization and excitation 

Estimate the energy at which an electron will start losing its energy equally in 
both bremsstrahlung and ionization/excitation while moving through lead (Z = 82) 
and water.  Compare the results with the Fig. 5-16. 

Lead
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which is in good agreement with - 10 MeV shown in Fig. 5-16. 
Water 

This is in good agreement with the value of - 52 MeV shown in Fig. 5- 16. 

4.2 Range - Energy Relationship 

As j3 particles travel through a medium, their interactions with atomic 
nuclei and electrons cause them to deflect from their initial trajectory. The 
resulting trajectory depends on the medium and the energy of the j3 particle. 
The range is defined as the average distance along the trajectory that the j3 
particle travels in the medium. Unlike heavy charged particles, light particles 
have no definite range. Since the mass of a j3 particle is much smaller than 
the mass of an atom, it is deflected considerably in elastic scattering with the 
atoms. The probability of deflection is inversely proportional to the square of 
the energy and as a result low-energy j3 particles are deflected more than 
high-energy. That is, P particles with energy above a few MeV will pass 
through material in almost a straight line. The deflection also depends 
strongly on material and is approximately proportional to z2. Thus, the j3 
particle trajectory is expected to be a nearly-straight line in light materials 
and very erratic line in heavy materials. It can be concluded that the 
trajectory of j3 particles 

is nearly a straight line for energies above 1 MeV. With decreased energy 
of p particles the deflection is more pronounced and particles start to 
diffuse in a medium. 
fluctuates along the trajectory more than heavy particles. 
the depth of penetration for most of the j3 particles is smaller than the 
length of range. 
The range of j3 particles in material is a complex function of their energy, 

the type and the atomic number of the absorber material. From the 
macroscopic point of view the absorption of j3 particles is a function of 
distance travelled and the density of material. It has been observed that the 
absorption (attenuation of j3 particle beam, see Fig. 5-17) in the absorber is 
approximately exponential function of the density of the absorber (p), 
distance through the absorber (x) and the absorbing property of the material 
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(p). Thus the absorption is approximately similar to that of photon beam: 
ln(I/I,,) = (xp)(,dp) However due to multicollision nature of P particle 
interactions with absorber the absorption curve does not follow exactly the 
exponential decline in beam intensity: 

The ionization caused by P particles falls off exponentially with distance. 
For thick absorbers the absorption curve (curve of activity versus the 
absorber thickness as sketched in Fig. 5-17) becomes almost horizontal 
indicating a nearly constant absorption, i.e, ionization occurs. Thick 
absorbers are expected to stop all incoming P particles while only a part 
of the p particle energy is lost in thin absorbers. 

Figure 5-17. Beta particles attenuation and the absorption curve 

The absorption depth (range) depends on P particle energy as well; for 
example, very high energy P particles can penetrate to a depth of about 
one centimeter in tissue. 
The "tail" at the end of the absorption curve indicates the presence of 
bremsstrahlung radiation. This is especially prevalent in materials with 
high atomic number such as lead. Even though high atomic number 
materials are the most effective in stopping high energy P particles, the 
presence of bremsstrahlung makes lighter materials such as Lucite or 
plywood a better choice as absorber materials. 
Although P particles do not have definite range it is possible to specify an 
absorber thickness that will reduce the ionization to a zero level. 
Given the complexity of P interactions and the P spectrum it is difficult 
to develop theoretical range-energy dependence. As a result 
experimental energy-range measurements are used to approximate the 
range of p particles. Fig. 5-18 shows the range-energy curve and 
equations that may be used to compute the range. The range is often 
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expressed in terms of the mass thickness rather than linear distance 
because mass thickness is independent of the material density. The mass 
thickness is given in mg/cm2. The linear thickness (range) in cm is 
obtained by dividing the mass thickness with the density of absorber. 

R = 412En mg/cm2 
n = 1.265 - 0.09541nE R = 530E - 106 mg/cm2 
0.01 < E < 3 MeV 1 < E < 2 0 M e V  

0.01 0.10 1.00 10.00 100.00 

Electron Energy (MeV) 

Figure 5-18. Range-energy curve for P particle transport 

Table 5-6. Total stopping power (MeV cm21g) for P particles in different materials 
Electron Hydrogen Air Water Tissue Aluminum 
energy 

The total stopping power and the CSDA range for electrons in various 
materials are shown in Table 5-6 and 5-7 respectively (data is from the 
ESTAR tables of the National Institute for Standards and Technology). 
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Table 5-7. CSDA range (g/cm2) for j3 particles in different materials 
Electron Hydrogen Air Water Tissue Aluminum 
energy 
(MeV) 
0.01 1.076E-04 2.884E-04 2.51 5E-04 2.512E-04 3.539E-04 
0.05 1.970E-03 4.913E-03 4.320E-03 4.324E-03 5.738E-03 
0.1 6.650E-03 1.623E-02 1.43 1 E-02 1.433E-02 1.872E-02 
0.5 8.480E-02 1.995E-01 1.766E-01 1.770E-01 2.260E-01 
1 .O 2.117E-01 4.912E-01 4.367E-01 4.385E-01 5.546E-01 
1.5 3.433E-01 7.901E-01 7.075E-01 7.110E-01 8.913E-01 
2 4.744E-01 1.085E+00 9.785E-01 9.839E-01 1.224E+00 
3 7.316E-01 1.658E+00 1.514E+00 1.523E+00 1.869E+00 
4 9.819E-01 2.208E+00 2.037E+00 2.050E+00 2.491E+00 
5 1.226E+00 2.740E+00 2.550E+00 2.566E+00 3 .092E+00 
10 2.383E+00 5.192E+00 4.975E+00 5.01 1E+00 5.861E+00 
15 3.470E+00 7.405E+00 7.21 9E+00 7.276E+00 8.328E+00 
20 4.5 10E+00 9.447E+00 9.320E+00 9.401 E+00 1 .056E+01 

Example 5.7 Range of P particles 
Calculate the distance a P particle will travel in aluminum (p = 2.7 g/cm3) as it 

slows down from 15 MeV to 0.5 MeV. What is the average linear stopping power? 
Table 5-7 gives the CSDA mass range values and the resulting linear distances 

are 

Thus the P particle travels 3.084 - 0.084 = 3.0 cm in aluminum while it deposits 
an energy of 14.5 MeV. The average stopping power is obtained as: 

Example 5.8 Energy deposition in tissue cell 
Using the data provided for the CSDA range for 1.5 MeV a and P particles in 

Tables 5-3 and 5-7 respectively, comment on the liner ranges in a human tissue cell. 
Assume the radius of a human cell is 15 pm with the density of 1 @m3. 

The ranges are: 
a particle 
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p particle 

It can be seen that a 1.5 MeV a particle travels only 7.84 pm and thus deposits 
all of its energy inside the cell volume, while the P particle leaves the cell and will 
deposit its energy over a much longer range. In boron neutron capture therapy for 
brain cancer treatments, the a particle emitted in boron-neutron interaction has the 
energy of nearly 1.5 MeV and because of its short range represents the key agent in 
killing the cancer cells. 

Example 5.9 Summation of ranges in different materials 
The range of an unknown P particle is measured to be 0.1 11 mm in aluminium. 

Calculate the energy of the P particle if the P emitter is placed in air at 1cm from the 
aluminium sheet and with a 1.7 mg / cm2 mica absorber between the counter and the 
aluminium sheet. 

Summation of ranges is allowed if the ranges are expressed as density 
thicknesses: 

Air 

Rair = 1 .293mg/cm3 x lcm = 1 .293mg/cm2 

Aluminum 

R,, = 2.7@rn3 x 0.01 1 lcm = 29.97mg/cm2 

Mica 

Thus, the total range is 

Fig.5-18 shows that this range corresponds to energy of 0.17 MeV. 
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5. PHOTONS (GAMMA AND X - RAYS) 

5.1 Exponential Absorption Law 

Many nuclear reactions, radioactive decays, and particle interactions 
result in the emission of gamma (y) rays, the highest-energy electromagnetic 
waves (or photons). Their energies range from thousands of electron volts 
(keV) to millions of electron volts (MeV) and their wavelengths are very 
short (lo-" m to 10-l3 m). These high-energy particles have found 
application in the medical profession, especially in cancer treatments. 

As explained in previous sections both a and P radiation can be 
completely absorbed by properly selected materials and their thicknesses. 
Gamma radiation, however, can only be reduced in intensity. This intensity 
reduction or attenuation is governed by the exponential absorption law 

where 
I: y-ray intensity transmitted through an absorber of thickness x 
Io: y-ray intensity at zero absorber thickness 
xl: linear absorber thickness 
pl: linear absorption coefficient. 

The linear absorption coefficient is related to the mass absorption 
coefficient, ,u,,,, through the density of the absorber materials, p 

If the mass thickness, x,, is defined as the mass per unit area obtained by 
multiplying the linear thickness xl by the density (xm = p xl ), then the 
exponential absorption law can be written in the following way 

and ,ul llp can be obtained from empirical measurements of lo, I and x. 
These values are tabulated for different materials and photon energies. 
Figures 5-19 a) and b) show the mass absorption coefficient for aluminum 
and lead, respectively. 

The total absorption coefficient or attenuation coefficient represents the 
fraction of they ray beam attenuated per unit thickness of absorber. 
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Figure 5-19.a) Mass absorption coefficient for  rays in aluminum  

Figure 5-19.b) Mass absorption coefficient for  rays in lead  

The atomic absorption coefficient, a, is the fraction of an incident  ray 
beam that is absorbed by a single atom, i.e. the probability that an absorber 
atom will interact with the  rays in the incoming beam. If N is the number 
of absorber atoms per cm3, the atomic absorption coefficient is 
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cm2 &=Y.o(-) 
N atom 

The atomic absorption coefficient has units of area and is thus referred to 
as the "cross section" of the absorber (for the discussion on the cross section 
see Chapter 6). The atomic absorption coefficient is called the microscopic 
cross section (d), while the linear absorption coefficient is called 
macroscopic cross section (C). The microscopic cross section may be 
expressed in barns (1 barn = cm2) while the unit of the macroscopic 
cross section is cm-'. These two cross sections are related as 

I cm2 atoms C.(cm- ) = o(-) x N(7 
atom cm 

1 

Thus the attenuation of y rays can be expressed in terms of cross sections 

Gamma ray interaction data is usually expressed as mass attenuation 
coefficients (examples shown graphically in Fig. 5-19 and values given in 
Table 5-8). Neutron interaction data are usually expressed as cross sections. 

Table 5-8. y rays mass attenuation (absorption) coefficients (cm21g) from the NIST X ray 
attenuation data base 
Photon Hydrogen Air Water Tissue Aluminum 
energy 

The energy absorption coefficients shown in Fig. 5-19 are the total 
absorption coefficients and they account for both primary and secondary 
radiation. Primary radiation considers the local energy deposition during the 
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photon interactions with matter, while secondary radiation considers the 
energy deposited elsewhere via secondary radiation such as Compton 
scattered photons, bremsstrahlung, fluorescence, and annihilation photons. 

For a mixture or composite materials, the mass attenuation coefficient, 
,u.,,,.,~~,~~, is the weighted average of the individual mass coefficients, hi: 

Example 5.10 Attenuation of y rays 
Calculate the linear and density thickness of aluminium and lead needed to 

transmit not more than 5 % of a 0.60 MeV y ray beam and compare the density 
thicknesses. The density of aluminium is 2.7 g/cm3 and the density of lead is 11.35 
g/cm3. The mass absorption coefficients are: 7.802 x lo-' cm2/g for aluminum and 
0.1248 cm2/g for lead. 

Aluminum linear thickness 

Density thickness 

Lead linear thickness 

p, (em-') = p,,,(crn2/g)~p(g/em3) = 0.1248~11.35 = 1.416cm-' 

Density thickness 

Example 5.11 Attenuation coefficient and cross section for y ray 
interactions 

Knowing that the linear absorption coefficient represents the macroscopic cross 
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section for y ray interactions that is predominantly with the electrons of an atom, 
calculate the microscopic cross section for lead if the mass attenuation coefficient 
for 0.6 MeV y ray is 0.1248 cm2/g (density of lead is 11.35 g/cm3). The atomic 
weight of the lead is 207.2. 

Example 5.12 Attenuation of y rays in a composite material 
The soft tissue can be approximated as a mixture of four elements: 10.1 174 % of 

hydrogen, 11.1 % of carbon, 2.6 % of nitrogen and 76.1826 % of oxygen. This 
composition gives a soft tissue density of 1 g/cm3. Determine the linear attenuation 
coefficient for 0.6 MeV y rays for which the mass attenuation coefficients in these 
four elements are: 0.1599 cm2/g in hydrogen, 0.08058 cm2/g in carbon, 
0.08063 cm2/g in nitrogen, and 0.08070 cm2/g in oxygen. 

The general definition for the total mass attenuation coefficient for the mixture 

5.2 Mechanism of Energy Loss 

Photons are energy quanta of electromagnetic nature and interact with 
particles that have electrical charge or, with smaller probability, with 
particles that behave as small magnets (possess magnetic momentum). The 
main interactions of photons with matter are with the electrons and nuclei 
through 
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Absorption of photons: in this interaction the initial photon disappears as 
it transfers all of its energy to an electron or nucleus. 
Scattering of photons: photon can be scattered through an elastic or 
inelastic interaction. In elastic scattering, the wavelength of the scattered 
photon is almost the same as that of the initial photon. If the interaction 
leads to interference, it is referred to as coherent scattering. In inelastic, 
incoherent scattering the initial photon transfers its energy to the matter 
and scatters with a longer wavelength. 
The types of photon interactions are summarized in Table 5-9 and show 

that photoelectric absorption and Compton scattering are interactions that are 
limited to the orbital electrons of the absorber. These interactions are 
probable for incident photon energies less than or not significantly higher 
than the energy equivalent of the rest mass for two electrons (1.022 MeV). 
Pair production dominates in the energy range above this threshold. 

Table 5-9. Types of photon interactions 
Interaction with Absorption Elastic scattering Inelastic scattering 
Electrons in atoms Photoelectric effect Rayleigh scattering Compton scattering 

Electromagnetic Pair production 
field of a nucleus or 
electron 

5.2.1 Photoelectric Effect (y + atom + e- + ion) 

In 1886, Heinrich Hertz discovered that photons in the ultraviolet region 
of the spectrum (wavelengths of 200-400 nm) could eject electrons from a 
metal surface (see Fig. 5-20). The experiment showed that the emission of 
electrons and the incoming light had certain dependencies 

The number of electrons emitted by the metal was found to directly 
depend on the intensity of the light, i.e. the number of emitted electrons 
increased with increasing light intensity. 
The emitted electrons moved faster if the light had a higher frequency. 
There was a cut-off frequency, f,, for the incident photons, below which 
no electrons were emitted. 
According to classical mechanics and the wave theory of light that was 

valid at the time, it was expected that the intensity of the emitted light would 
determine the kinetic energy of the ejected electrons. The experiments, 
however, showed that the kinetic energy of the ejected electrons depended 
on the incoming photon frequency instead of its intensity. The photon 
intensity thus only affected the number of ejected electrons and not their 
kinetic energies. This was the discovery of a new phenomenon called the 
photoelectric effect and it was defined as the emission of electrons from a 
metal surface exposed to photon radiation. The full physical explanation of 
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the phenomenon was given in 1905 by Albert Einstein who applied Planck's 
idea of energy quanta and additionally assumed that the light had particle 
properties. He proved that the incoming photon could be represented as 
discrete quanta of energy, hJ; where f is the photon frequency and h Planck's 
constant (see Chapter 3, Section 4). It thus follows that every photon carries 
a specific energy that is related to its frequency or its wavelength, such that 
photons of short wavelength (for example blue light) transmit more energy 
than long wavelength (for example red light) photons. Einstein's equation 
that explained the photoelectric effect based on the experimental 
observations is 

where W is called the work function and represents the minimum energy 
required to remove an electron from the metal surface, and me$/2 is the 
maximum kinetic energy of the emitted photoelectron. The work function 
for most metals is around 4.5 eV (see   able 5-10). 

Photo- 
cathode Anode 

I Vacuum Tube 

Figure 5-20. Schematics of the experiment for the photoelectric effect 

Example 5.13 Work function and photoelectric effect 
Using the data shown in Table 5-10, determine if green light with il = 505 nm 

can cause electrons to be ejected from cesium. 
The energy of the incoming photon 
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From Table 5-10 the work function for cesium is: 

~ = 2 . l e ~ = 2 . 1 x 1 . 6 x 1 0 - ' ~ ~ = 3 . 3 6 x 1 0 - ' ~ ~  

The photon of given energy will eject an electron from the surface of cesium 
metal and the energy of the ejected electron will be 0.36 eV. 

Table 5-10. Work function, W (eV), for some metals 
Element w (eV) 
Aluminum 4.08 
Beryllium 
Cadmium 
Calcium 
Carbon 
Cesium 
Cobalt 
Copper 
Gold 
Iron 
Lead 
Magnesium 
Mercury 
Nickel 
Niobium 
Potassium 
Platinum 
Silver 
Uranium 

Example 5.14 Cut-off frequency and photoelectric effect 
Calculate the cut-off frequency for cesium and plot the kinetic energy of ejected 

electron vs, frequency of photons. 
The cut-off (threshold) frequency is the lowest frequency, or longest 

wavelength, that permits photoelectrons to be ejected from the surface of a metal. At 
this frequency the photoelectrons have zero kinetic energy: 
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Since the kinetic energy of electrons is equal to the stopping potential, 
eVo, in the experimental measurements (see Fig. 5-21), Einstein's equation 
for the photoelectric effect can be written in the following alternative form 

Frequency 

Figure 5-21. Kinetic energy of the ejected electron vs. frequency of photons (the slope of the 
curve is always equal to the Planck's constant, h)  

Example 5.15 Stopping potential and photoelectric effect 
Assume that a potential of 0.54 V is required to stop all the electrons in a 

photoelectric experiment. Calculate the maximum electron kinetic energy and 
determine the material (comparing the work function with the values listed in Table 
5-10) if the incident photons have the wavelength of 360 nm. What is the longest 
wavelength that will eject any electron from this metal? 

A potential of 0.54 V stops all of the electrons and thus the maximum kinetic 
energy of the electrons must be equal to the kinetic energy equivalent of a potential 
of 0.54 V, that is 

The incident photons thus have energy of 
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The electrons then must have lost (3.44 - 0.54) eV = 2.9 eV which represents the 
work function of the metal or the electron energy lost leaving the metal. From Table 
5-10 it can be seen that the material is calcium. 

The longest wavelength that will eject an electron from this metal corresponds to 
the minimum energy needed to remove an electron from the material, i.e. the work 
function. W = 2.9 eV 

-8 Ejected 

X-ray 

Before: Atom After: Ion 

Figure 5-22. Photoelectric effect 

In the photoelectric effect, the incoming photon is absorbed through 
interaction with an orbital electron (for example the K-shell electron, see 
Chapter 2). The process can be sketched as shown in Fig. 5-22. If the photon 
energy is above the work function, the orbital electron will be ejected from 
an atom. The vacancy is then filled by an electron from an outer shell and 
this produces either fluorescence X rays (as indicated in Fig. 5-22) or Auger 
electrons. The probability for X ray emission is given by the fluorescence 
yield and, for K-shell electrons, varies from 0.005 for Z = 8 to 0.965 for Z = 
90. During the photoelectric absorption of light by an atom, one quantum 
(photon) is absorbed by one of the orbital electrons. The orbital electron is 
ejected such that the incoming photon energy, h j  and the binding energy of 
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electron, Eb, are distributed between the recoil atom and ejected electron 

Epe = hf – Eb (5-180)

Virtually all of this energy is carried away by the ejected electron (also 
called the photoelectron), Epe, because the electron has much smaller mass 
than the recoil atom.   

The electron binding energy, Eb, depends on its orbit (shell) and assumes 
discrete values (see Chapter 2) 

Eb = EK, EL1, EL2, EL3, EM1, ... (5-181)

Nearly all photoelectric events in light nuclei involve K shell electrons. 
Binding energy in the K shell varies from 13.6 eV for hydrogen to 7.11 keV 
for iron and 88 keV in lead. The cross section for the photoelectric effect 
thus depends on the binding energy of the electrons in different materials.  
Figure 5-23 illustrates the cross sections for various photon interactions in 
aluminum and lead.  

Figure 5-23. a) Scattering cross sections of photon interactions with aluminum 
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Figure 5-23. b) Photoelectric effect and pair production cross sections of photon interactions 
with aluminum 

Figure 5-23. c) Scattering cross sections of photon interactions with lead 
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Figure 5-23.d) Photoelectric effect and pair production cross sections of photon interactions 
with lead 

The probability for the photoelectric effect for a given orbital electron is 
maximum if hf = Eb and it is zero, that is the photoelectric effect can not 
occur, when hf < Eb. As the incident photon energy increases above Eb, the 
probability for the photoelectric effect decreases. This trend can be observed 
in Fig. 5-23 for any of the indicated edges (peaks). The edges correspond to 
the electron shells, K, L, M, etc. For energies below 150 keV, the cross 
section varies as (hf)-3. Above 150 keV but below 5 MeV, it varies as (hf)-2

and at energies above 5 MeV it becomes proportional to (hf)-1.
The atomic cross section for the photoelectric effect is proportional to Zm,

where m depends on the incident photon energy. For a 100 keV photon,  
m = 4 and for a photon energy of 3 MeV, m = 4.6. Thus, the cross section for 
the photoelectric effect is strongly dependent on the photon energy as well as 
on Z, the atomic number of the material 

5

7 / 2

4.5

 for low photon energies
( )

 for 0.1 MeV 5 MeV
( )

ph

Z
hf

Z hf
hf

 (5-182) 

Low energy photons will thus ionize the material they interact with 
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through the generation of photoelectrons. The range of a photoelectron is 
calculated in the same manner as that for a  particle (described in  
Section 4). 

5.2.2 Compton Effect (  + Atom  + e  + Ion) 

The Compton Effect, or Compton scattering, is an inelastic collision of a 
photon with an electron that is loosely bound to an atom or molecule.  Such 
an electron can be considered free if its binding energy is much smaller than 
the energy of the incident photon. Under such conditions, Compton 
scattering is more probable than the photoelectric effect. After the 
interaction, an electron is ejected from the atom along with the scattered 
photon. The energy of the scattered photon is less than that of the incident 
photon; that is, compared to the incident photon it has a longer frequency 
and a smaller wavelength. The Compton Effect is illustrated in Fig. 5-24. 
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Figure 5-24. Compton scattering 

This scattering experiment was performed by Compton in 1923 and 
showed that light had a corpuscular nature as well as wave like
characteristics. This conclusion was mainly due to the difference in 
wavelength between the incident and the scattered photon. This change in 
wavelengths could not be explained by the wave theory of light alone, since 
it does not predict this change in wavelength. Compton analysed the 
experimental results by adopting Planck’s hypothesis of considering light as 
an energy quanta, and assigned energy values of E = hf to the photons. 
Accordingly, the momentum of a massless particle is given by p = h / .
Consequently, Compton assumed the incident photon to be equivalent to a 
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particle with mass m = hf / c2. By the conservation of energy (see Fig. 5-24) 

'2 hfEcmhf e (5-183)

and by the conservation of momentum 

' ep p p (5-184)

where p = E / c for photons, and pe = me  for the electron. Squaring this 
equation and using the scalar product (see Fig. 5-25) gives 

2 2 2' ' ' 2 'cosep p p p p p p pp (5-185)

a

b

a

b
cosa  b   ab

Figure 5-25. Scalar product of two vectors

Multiplying the above equation by c2 and replacing the momentum of 
photons with p = E / c = hf / c, the momentum conservation equation 
becomes 

cos2 '2'222 hfhfhfhfcpe (5-186)

The energy conservation equation can be squared and rewritten in the 
following way 

' 2

2' ' 2 2 2 42

e

e e

hf hf m c E

hf hf hf hf m c E m c
(5-187)

Recall from Chapter 3, Eq. (3-7), the energy  momentum relation for a 
relativistic particle 

2222 cmcpE ee



222 Chapter 5 

Thus the above energy conservation equation can be written as 

p : ~ 2  = (hf )2 + (hf ' y  - 2(hf )(hf ')+ 2(hf - hf ' )nec2 (5-188) 

The left-hand sides of Eqs. (3-7) and (5-188) are equal and thus the 
right-hand sides must also be equal 

(hf )' + (hf ' )i - 2(hf )(hf ')cos 0 = 

(hf )2 + (hf ')2 - 2(hf )(hf ' )+ 2(hf - hf ')nec2 

Rearranging Eq. (5-1 89) 

Finally, the Compton scattering formula is 

I 1 - I - C O S ~  h 
or a' - A = A A = - ( 1 - C O S ~ )  (5-192) 

h f '  hf mec2 met 

This shows that the wavelength change of the incoming photon in a 
Compton scattering event depends only upon the scattering angle for a given 
target particle. The constant in the Compton formula above can be calculated 
explicitly as 

h hc - - ---- 1 24Oe Vnm 
= 0.00243nm (5-193) 

m,c mec2 0.51 1 x lo6 e~ 

and is called the Compton wavelength for the electron. It corresponds to 
the wavelength of a photon that has energy equal to the rest mass of an 
electron. With this taken into account, the Compton scattering formula for an 
electron can be written as 

h 
A' = A + Ail = A + - (1 - cos 8)  = A + 0.00243nm(l- cos 0) (5-1 94) 

mec 
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From this equation it can be concluded 
the change in wavelength, AA, does not depend upon the wavelength of 
the incident photon 
for higher-energy photons, the wavelength decreases such that the same 
change in wavelength corresponds to a larger difference in energies 
for low photon energies, the energy difference, (ha - (hf), is small, while 
for high photon energies (for example order of MeV) the electron may 
receive over 75 % of energy of the incoming photon 
the change in wavelength, AA, depends only on the electron scattering 
angle 
the change in wavelength, AA, is independent of the medium. 
The following relation between the scattering angles of the photon and 

the recoil electron may be determined from Fig. 5-24 

Example 5.16 Energy of Compton scattered photons 
For a photon of energy hf = 200 keV that is Compton scattered on electron 

through an angle of 45O, calculate the energy and frequency of the scattered photon 
as well as the energy and the momentum of the recoil electron. 

Applying the Compton scattering formula it follows 

h 
A' = A+ A/Z = A+ -(I- cos 8)  = A+ 0.00243nm(l- cos 8)  

1 1 (1 - cos 45") -- - + +, E' = (hf ' )  = 1 7 9 k e ~  
E' 200 keV 51 1 keV 

The frequency of the scattered photon is 



The energy given to a recoil electron 

Chapter 5 

The total energy and the momentum of the recoil electron 

The following is an analysis of some aspects of Compton scattering: 

1. The dependence of the scattered photon energy on incident photon 
energy and photon scattering angle (0: 

The energy of the scattered photon, ( E' = hf ' ) depends on the energy of 
incident photon, (E = hJ) and the scattering angle, (8)  as 

I 1 - 1 - C O S ~  
4 E ' =  

E (w2) 
hf '  hf mec2 m,c2 + E (1 - cos 8) 

If the ratio of energies, E ' / E ,  is plotted against the incident photon 
energy for various scattering angles (see Fig. 5-26), the following can be 
observed: 
For incoming photon energies smaller than - 50 keV, the energy of the 
scattered photon is nearly equal to that of the incident photon. At these 
low incident photon energies, Compton scattering is similar to Rayleigh 
(coherent) scattering in which the energy of the scattered photon remains 
unchanged (the scattered photon is only deflected). 

In the case of complete forward photon scattering ( 8 =  O), the energy of 
the incident photon is unchanged. 
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Figure 5-26. Ratio of scattered to incident photon energy vs. incident photon energy and 
photon scattering angle in the Compton Effect 

Compton scattering is an efficient interaction type for reducing photon 
energy at large scattering angles. The maximum reduction in photon 
energy is obtained for backscattering, at 9 = 1 80". 

2. The angular distribution of the scattered photons and recoil 
electrons: 

The scattering angle for the recoil electron varies from 0" to 90". The 
maximum energy that a recoil electron can obtain in Compton scattering 
is in a head-on collision in which the electron scatters at nearly zero 
angle (it continues its trajectory in straight line of the impact photon) and 
the photon is scattered backward at the angle of 180". The minimum 
energy that a recoil electron receives is during the collision in which the 
photon trajectory is constant (scattering angle of a photon is zero) while 
the electron scatters at nearly 90". The probability for an electron to be 
scattered at an angle of zero increases with incident photon energy as 
shown in Table 5-1 1. This table further shows that for a given photon 
scattering angle, the recoil electron scattering angle decreases with 
increasing incident photon energy. 

3. Cross section for Compton scattering: 

The cross section for the Compton scattering of photons with incident 
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energy hf, through a scattering angle 6, is given by the Klein-Nishina 
formula. In general, the formula suggests that the probability for the 
Compton Effect to occur for an element Z is proportional to Z/hf . If the 
incident photon energy is measured in the units of electron rest mass, 
i.e. a = hf / mec2, then the Klein-Nishina formula for total Compton 
scattering cross section (integrated over the photon scattering angle 0 to 
give the energy dependence of the cross-section per electron) can be 
written as 

where re is the classical electron radius, also called the Compton radius, 
and is defined as the radius, re, of a sphere which has charge e and 
electrostatic potential energy, U, equal to the rest mass energy of the 
electron. That is 

Table 5-11. Angular distribution of recoil electron (@) as a function of incident photon energy 
(h$) and photon scattering (8)  

h f 8= 8 = 8 = 8 = 8 = 8= 8= 8 = 

Solving for the electron radius 
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The total Compton scattering cross section plotted against incident 
photon energy is shown in Fig. 5-27. This shows that the probability of 
Compton scattering decreases with increasing incident photon energy. 

u 
0 2 4 6 8 10 

Incident Photon Energy Normalized to Electron Rest Mass 

Figure 5-27. Total Compton scattering cross section vs. incident photon energy 

5.2.3 Correction for Bound Electrons and Coherent (Rayleigh) 
Scattering 

Compton scattering is valid under the assumption that the electron is free. 
This assumption is only applicable when the binding energy of the electron 
is much smaller than the energy of the incident photon. When the incident 
photon energy is comparable to the electron binding energy, a more 
complicated, semi-empirical relation must be used to evaluate the 
incoherent scattering. Such scattering interactions occur for low incident 
photon energies, small photon scattering angles and highly bound electrons 
(electrons in the inner shells of an atom). Thus, the scattering cross section 
for bound electrons decreases at low photon energies. The dominant 
interaction at low photon energies is the photoelectric effect. The effect of 
electron binding energy thus becomes negligible at these energies and the 
error introduced by neglecting the binding energy is small. 

In competition with the incoherent scattering of photons by individual 
electrons is coherent (Rayleigh) scattering. When low energy photons scatter 
at a small angle in a high-Z medium, the energy transferred to an electron is 
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so small that even excitation of that atom is not possible. The energy is thus 
absorbed by the entire atom and even this small amount of energy will cause 
an atom to recoil. The energy loss of the incoming photon is considered to 
be negligible. Fig. 5-23 shows that coherent scattering cross sections greatly 
exceed the incoherent scattering at low photon energies in a h i g h 4  medium. 
In radiation shielding calculations, however, this type of scattering is usually 
neglected since the dominant method of energy attenuation is through 
photoelectric effect. 

5.2.4 Pair Production (y + Atom + e+ + e- + Atom) 

In this process, the incident photon is absorbed and an electron-positron 
pair is created (see Fig. 5-28). The photon generates this electron-positron 
pair in the Coulomb field of the nucleus and this interaction has a photon 
threshold energy that is equal to the rest mass energies of two electrons, 
2m,c2 = 1.022 MeV. The same interaction can occur in the Coulomb field of 
an electron, with a threshold energy of 4m,c2 = 2.044 MeV. The probability 
of pair production in the electric field of nucleus is however significantly 
higher and is the only interaction analyzed further. 

Electron 
'B 

Incident Photon 

-# 
Positron 

Before: Atom After: Atom 

Figure 5-28. Pair production 

In pair production 
The total charge is conserved: a photon with zero electric charge 
generates a pair which also has a total charge of zero (electron with 
negative charge and positron with positive charge) 
According to the energy conservation law: 
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Incident photon energy = Energy used to generate the pair + Kinetic 
energy of the positron + Kinetic energy of the electron 

hf = 2m,c2 + T+ + T-  = 1.022 + T+ + T-  (MeV) (5-200) 

According to the momentum conservation law: pair production cannot 
take place in an empty space because some third entity must absorb the 
momentum (p=WiZ =hf/c) of the initial photon. The photon momentum is 
usually absorbed by an atomic nucleus. The following example shows 
why it is impossible for a photon to transfer all of its energy to a free 
electron. Consider a photon of energy hf and momentum hflc. If the 
photon was to transfer all of its energy to an electron of mass m and 
velocity v, then from the conservation of energy 

and conservation of momentum 

Eliminating hf from these two equations gives 

which is an impossible result since no particle can travel faster than light. 
The electron and positron have energies equal to the difference between 

the initial photon energy and 2m,c2. The energy spectra of the emitted 
electron and positron are continuous and are very similar to one another. 
The scattering angles of the positron and electron as well as the angular 
dependence on photon energy are complex and not easy to describe. This is 
due to the involvement of the nucleus in the momentum distribution after the 
interaction. For very high photon energies, the average scattering angle of 
the electron and the positron is proportional to 0.51 1 ~ e V / h f  ( M ~ v )  . 

The total cross section for pair production per atom divided by z2 is 
graphically shown for various materials in Fig. 5-29. It can be observed that 
the cross section for all of the elements does not significantly change for 
incoming photon energies up to 10 MeV. For higher energies, the cross 
section for different materials starts to depart. The cross section for pair 
production in the electric field of an electron is also depicted in Fig. 5-23. 
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Figure 5-29. Cross section for pair production in different materials (cross section for pair 
production in the Coulomb field of the nucleus is divided by z2, cross section for the pair 

production in the Coulomb field of an electron is divided by Z) 

The cross section depends on Z of the material and thus it can be 
considered important for low-Z media. The cross section also increases with 
incident photon energy. This dependence is nearly logarithmic 
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The positron that is formed very quickly disappears in an annihilation 
process that involves another electron. Annihilation (e'e- + y), which is the 
inverse of pair production (y + e'e-), occurs when a positron encounters an 
electron. The energy conservation equation for an annihilation event is 

The first term represents the rest energy of the electron-positron pair, the 
second and third terms are the kinetic energies of the positron and electron 
before the collision, and the term on the right-hand side represents the 
energy of the two photons created in the reaction, each having the same 
frequency f and energy hf. According to the energy conservation law, the 
value of hf must be at least rn,c2 = 0.51 1 MeV. 

NUMERICAL EXAMPLE 

Photon Attenuation in Common Shielding Materials 
Aluminum and lead are two materials commonly used in high energy 

photon shielding. Using the data in Table 5-8, construct an attenuation plot 
of a 1 MeV photon beam passing through aluminum ( p  = 2.7 glcm3) and 
lead ( p  = 11.34 glcm3). Comment on the apparent effect of the material 
density on gamma attenuation. 

Solution in MATLAB 
clear all 
% Mass attenuation coefficients at lMeV 
mu-A1 = 0.06146; %cmA2/g 
mu-Pb = 0.0757; 
rho-Al = 2.7; %glcmA3 
rho-Pb = 11.34; 
mu = [mu-Al*rho-A1 mu-Pb*rho-Pb]; 
x = linspace(0,30); 
for j = l:2 

for i = 1:100 
I(ij) = exp(-mu(j)*x(i)); 

end 
end 
figure 
hold on 
plot(x,I(:, l),'k') 
plot(x,I(:,2),'k:') 
xlabel('Distance (cm)') 
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ylabel('Fractiona1 Intensity') 
legend('Aluminum','Lead') 

Results show that higher-;! materials are more effective as photon shields. 

Distance (cm) 

Figure 5-30. Attenuation of a I-MeV photon beam in aluminum and lead 

PROBLEMS 

5.1. Expain do a particles produce bremsstrahlung radiation? 

5.2. Estimate the source energy of bremsstrahlung radiation from the lead 
container shielding 5 mCi source of 3 2 ~  (maximum 0 energy is 1.71 MeV). How 
much heat will be deposited in the wall of the container? 

5.3. An energy of 35.5 eV is required to produce an ion pair. Estimate how many 
ion pairs are produced by a particle with a 1.0 MeV kinetic energy and how 
much total charge is produced? 

5.4. If the ionization potential of air is 33.9 eV, how many ion pairs are produced 
by an 5MeV a particle? How many ion pairs would produce a particle of the 
same energy? What would be the linear ranges of these two particles? 

5.5. Determine the range of 2 MeV a particle in aluminum. Compare the value 
with that given in Table 5-3. 
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5.6. The half-value shielding layer is 5 mm thick. Calculate the shiled thickness 
to attenuate 99.912 % of the incoming y radiation. 

5.7. Use the data from Table 5-8 to calculate the relative number of 1 MeV and 
0.1 MeV y rays that emerge from 15 cm thick water tank. Assume that the y rays 
beam consists of equal number of both when entering the water tank. 

5.8. Calculate the thickness of air, water and aluminum that will stop 20 % of a 
beam of 1.5 MeV y rays. 

5.9. In the table htt~://physics.nist.aov/PhysRefData/contents.html find the 
values needed to determine and calculate the fraction of energy in a 30 keV X- 
ray beam deposited in 5 mm of soft tissue. 

5.10. A yray (1.46 MeV) from 4 0 ~  is scattered through an angle of 30" and then 
again through an angle of 150'. Calculate the energy of y ray after second 
scattering. 

5.1 1. If the light of wavelength 400 nm is incident on a metal with a work 
function 5.5 V calculate the external voltage that must be applied to the metal to 
have the electrons be released from its surface? 

5.12. A completely ionized carbon nucleus is accelerated through a potential 
difference of 7000 V. What is the final kinetic energy of the carbon? 

5.13. If the work function of a material is 10 eV what is the lowest frequency 
photon that can cause electrons to be ejected? 
5.14. For a 200 keV Compton photon scattered at 45' calculate its energy and 
the magnitude and direction of the momentum of the recoil electron. 

5.15. Calculate and plot the linear and mass ranges of a particle, proton and 
electron as a function of energy in water, aluminum, lead and graphite. 

5.16. Determine the linear energy loss resulting from the passage of a 0.1 MeV P 
particle through the graphite (density = 2.25 g/cm3)? Calculate the mass stopping 
power and the relative (to air) mass stopping power. 

5.17. From http://physics.nist.~ovffhysRefData/co~~te~tshtml determine the 
minimum energy that a proton must have to penetrate 30 cm of tissue (density 1 
g/cm3), the approximate thickness of the human body. Using the same table 
calculate how much energy does an a particle need to penetrate 1 cm of the 
tissue layer? 
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5.18. In a Compton scattering experiment it is found that the fractional change in 
the wavelength is 1.0 % when the scattering angle is 60o. What was the 
wavelength of the incident photons, and what would be the wavelength of the 
photons scattered through an angle of 90o.

5.19. Plot the Compton scattering energy of scattered beam (hf’/hf), for the 
initial photon energies of 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 MeV as a 
function of photon scattering angle. 

5.20. Calculate the necessary shielding (glass with density of 2.23 g/cm3 and 
plastic with density of 1.03 g/cm3) to completely stop the  particles from 3H. 
The maximum  particles energy is 0.019 MeV and the average energy is 0.0057 
MeV.
Equation Section (Next)
5.21. Tabulate the cut-off frequency for elements given in Table 5-10. Calculate 
the kinetic energy of ejected electrons. 

5.22. Prove the Eq. (5-195). 

5.23. Write the computer code to compute the maximum range of a proton in 
aluminium, air, silicon and water for the range of energies from 0.001 eV to 1 
GeV.

5.24. Use the Bethe-Block formula and write the computer code to calculate 
energy loss of an  particle and proton in varying the ratio of particle velocity to 
the speed of light from zero to one.  

5.25. Repeat the previous problem with electrons. What can you conclude from 
the results? 

5.26. Discuss the head on collision of charged particles. 

5.27. Describe the inelastic scattering of charged particles with electrons. 

5.28. How inelastic scattering of charged particles take place with the nucleus? 
Compare the aspects of interactions with the Problem 5.27. 

5.29. Explain the bremsstrahlung radiation and define the bremasstrahlung 
hazard.

5.30. Explain the condition for electron positron annihilation process. 
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NEUTRON PHYSICS 
Interactions, Fission and Cross Sections 

" ... I feel that I ought to let you know of a very sensational new development in 

nuclear physics. In a paper in the Natunvissenschaften Hahn reports that he finds 
when bombarding uranium with neutrons the uranium breaking up into two halves 
giving elements of about half the atomic weight of uranium. This is entirely 
unexpected and exciting news for the average physicist. The Department of Physics 
at Princeton, where I spent the last few days, was like a stirred-up ant heap. Apart 
from the purely scientific interest there may be another aspect of this discovery, 
which so far does not seem to have caught the attention of those to whom I spoke. 
First of all it is obvious that the energy released in this new reaction must be very 
much higher than in all previously known cases. It may be 200 million (electron-) 
volts instead of the usual 3-10 million volts. This in itself might make it possible to 
produce power by means of nuclear energy, but I do not thmk that this possibility 
is very exciting, for if the energy output is only two or three times the energy input, 
the cost of investment would probably be too high to make the process 
worthwhile. Unfortunately, most of the energy is released in the form of heat and 
not in the form of radioactivity. 

I see, however, in connection with this new discovery potential possibilities in 
another direction. These might lead to a large-scale production of energy and 
radioactive elements, unfortunately also perhaps to atomic bombs. This new 
discovery revives all the hopes and fears in this respect which I had in 1934 and 
1935, and which I have as good as abandoned in the course of the last two years". . . 
Leo Szilard(1898 - 1964) in his letter to Luis Strauss on January 25th, 1939. 
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1. INTRODUCTION 

Neutrons together with protons are the constituents of atomic nuclei. The 
neutron was discovered after more than two decades of speculation that 
electrically neutral particles exist in atoms (see Chapter 3). Because the 
neutron is electrically neutral, it easily interacts with nuclei and does not 
interact directly with electrons. Since the nucleus of an atom is about one 
ten-thousandth the size of the electron cloud, the chance of neutrons 
interacting with a nucleus is very small, allowing them to travel long 
distances through matter. As a free particle, the neutron is an important and 
yet unique tool used for various applications: in medicine to initiate 
powerful nuclear interactions whose products can directly destroy cancer 
cells (neutron capture therapy for example), for research on physical and 
biological materials, for imaging through easy allocation of light atoms 
especially hydrogen, to investigate properties of magnetic materials 
(neutrons possess a magnetic moment and thus act as small magnets), to 
track atomic movement (thermal neutron energies almost directly coincide 
with the energies of atoms in motion), and to maintain the fission chain 
reaction in nuclear reactors. Free neutrons are unstable (see Chapter 3) and 
break up in short time by P- decay to a proton, electron and a neutrino. 
However, free neutrons will most likely interact with the surrounding matter 
and disappear through nuclear interactions long before they decay. 

2. NUCLEAR REACTIONS 

A nuclear reaction involves interactions between nuclear particles 
(nucleons, nuclei); the outcome of which are other nuclear particles or 
y rays. Assuming, for simplicity, only two initial and two produced particles, 
a nuclear reaction is usually written as follows (see Fig. 6-1) 

Every nuclear interaction must obey the following laws 
Conservation of nucleons: the total number of nucleons before and after a 
nuclear reaction is not changed 
Conservation of charge: the sum of the charges of all particles involved 
in the reaction before and after must be preserved 
Conservation of momentum: the total momentum of interacting particles 
before and after the reaction is not changed 
Conservation of energy: energy, including the rest mass energies of 
particles, is not changed by a nuclear reaction. 
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Figure 6-1. Schematics of a typical nuclear reaction 

The law of conservation of energy can be also used to predict whether a 
certain interaction is energetically possible. For the assumed interaction of 
particle A with particle B that produces two particles C and D, the sum of 
energies before and after the interaction takes into account the kinetic 
energies (T) and rest mass energies (me2) of each individual particle 

Equation (6-1) may be rewritten as 

showing that the change in kinetic energies of the particles involved in a 
reaction is equal to the change in their rest mass energies. The change in rest 
mass energies of the particles involved in the reaction is known as the 
Q-value of the reaction 

The sign of the Q-value defines the reaction 
Exothermic reaction for which Q > 0: nuclear mass is converted into 
kinetic energy and there is a net increase in kinetic energies of the 
particles 
Endothermic reaction for which Q < 0: kinetic energy is converted into 
mass and there is a net decrease in the energies of the particles. 

Example 6.1 Nuclear reaction 
Complete the following reaction, calculate the Q-value, and comment on its sign 
2 3 5 ~  (n, ?) 2 3 6 ~ .  The rest masses: rnz3~ = 235.0439231 amu, m, = 1.0086649 amu, 

m236 = 236.045561 9 amu. 
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The atomic number of 2 3 5 ~  is 92 and that of the neutron is zero. The sum of the 
atomic numbers of the incident particles is thus 92. Since the atomic number of 2 3 6 ~  

is also 92, it follows that the produced particle should have an atomic number equal 
to zero. The total atomic mass number of the incident particles is 235 + 1 = 236. The 
total atomic mass number of the produced particles must be the same. Since the 
atomic mass number of 2 3 6 ~  is 236 it follows that the additional particle has atomic 
mass number zero. It therefore follows that the other particle is a y ray: 

2 3 5 ~  (n, y) 2 3 6 ~  

For this reaction the Q-value is 

Q = [ (T~,  + m, ) - (in2,, + m,)]c2 = 0.007026 1 amu 

Q = 0.0070261 x 93 1.5 = 6.54 MeV > 0, thus the reaction is exothermic. 

3. NEUTRON SOURCES AND NEUTRON 
CLASSIFICATION 

Neutrons are produced from neutron sources such as a nuclear reactor, a 
radioisotope, or an accelerator-based source. A nuclear reactor is the most 
inexhaustible source for the production of neutrons of all energies. However, 
the complexity of a reactor and the systems involved as well as the cost 
make simple and broad use of reactors impractical for small scale industrial, 
medical, or research applications. On the other hand, radioisotope neutron 
sources are used in an innumerable amount of industrial applications and are 
ideal when a continuous source is needed. However, such a source is not 
appropriate for applications that require neutrons of a specific energy or 
emission of neutrons in specified time pulses. One example of a large 
accelerator-based neutron source is the Spallation Neutron Source under 
construction at Oak Ridge National Laboratory in the United States. Small 
scale accelerators and compact pulse neutron sources use nuclear reactions 
to produce neutrons. The most common are the deuterium-deuterium ( 2 ~  - 
2 H) and deuterium-tritium ( 2 ~  - 3 ~ )  reactions 

3~ ( 2 ~ ,  n) 4 ~ e  Q = 17.59 MeV 

2~ ( 2 ~ ,  n) 3 ~ e  Q = 3.27 MeV 

These reactions produce 14.1 MeV and 2.5 MeV neutrons, respectively. 
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Pulse neutron sources (also called pulse neutron generators) have found a 
number of applications in science, industry, medicine, and technology. To 
name a few 
- Real-time analysis of bulk materials: Materials such as cement and coal 

moving on conveyor belts are examples of bulk materials that are 
extensively examined by applying fast and thermal neutron beams for 
activation analyses. The purpose of such analysis is to measure the 
content and the amount of the elements present in the material. For 
example, the information obtained from neutron activation analysis of 
cement enables the optimal combination of raw material constituents as 
well as verification of chemical consistency. Another example is the 
application of neutron activation tests in on-line measurements of sulfur 
and the content of other elements in coal which are important for 
predicting its combustion efficiency and environmental impact. 

- Detection of explosive, chemical and nuclear materials: Such materials 
may be accurately detected for fast security checks of airline-cargo or 
other unknown packages. 

- Medical applications: An accurate and simple measurement of the 
body's fat is achieved using neutron pulse generators. The measurement 
is based on neutron interactions with carbon and oxygen. By examining 
the quantity and distribution of carbon and oxygen, it is possible to 
evaluate the health of individuals with respect to obesity, aging and 
cardiovascular disease. 
A very special interaction that results in a high production rate of 

neutrons of various energies is the interaction of an a particle with a 
beryllium atom: 

9 Be (a, n) I2c Q = 5.75 MeV 

Since the Coulomb repulsion force between the beryllium nucleus and 
the incoming a particle is not high, this reaction is very suitable for neutron 
production. The a particles are emitted through the radioactive decay of 
isotopes such as 2 2 6 ~ a ,  2 2 2 ~ n ,  21?o, 2 3 9 ~ ~ ,  and 2 4 1 ~ m .  Beryllium is the only 
naturally occurring isotope of beryllium and thus a neutron source utilizing 
this element is easy to realize. Namely, powders of both beryllium and the a 
emitter are mixed together in ratios from 20:1 to 300:l and the mixture is 
encapsulated. Such sources constantly emit neutrons and the energy 
spectrum is usually complex because decay products have different 
a energies and thus produce neutrons with different energies. Figure 6-2 
depicts the neutron energy spectrum emitted from an americium-beryllium 
(AmBe) neutron source. Neutrons can also be produced in the reaction of y 
rays with targets most commonly made of beryllium or deuterium (for 
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example heavy water). Such reactions are referred to as photoneutron 
sources. The binding energy of the neutrons in these light elements is low 
and a large amount of energy is therefore not required for the reaction to 
occur: 

9 ~ e  (y, n) 'Be Q = 1.63 MeV 

2~ (y, n) 'H Q = 2.23 MeV 

Neutrons produced by photodisintegration of nuclei are monoenergetic 
and such sources are reproducible (in terms of neutron energy). The most 
common sources of y rays used for these interactions are the y rays emitted 
in radioactive decays of 2 4 ~ a  (E, = 2.8 MeV, Tl12 = 15 hours) or ' 2 4 ~ b  
(E,= 1.67 MeV, = 60.9 days). 

Figure 6-2. Typical neutron spectrum from an americium-beryllium source 

Example 6.2 Nuclear reaction that revealed the existence of neutron 
As described in Chapter 3, Rutherford was the first to correctly predict the 

existence of a neutral particle as a constituent of the nucleus as early as 1920. That 
idea has inspired many scientists around the world to start the search for other 
constituents of nuclei. Two German scientists, Bothe and Becker, studied the 
interaction that is today commonly used to produce neutrons: ' ~ e ( a , n ) ' ~ ~ .  In their 
experiment they discovered that nearly 5 cm of lead reduced the radiation emerging 
from the reaction and attributed this phenomenon incorrectly to y rays. Now, 
consider the same interaction and assume that a neutron produced in that interaction 
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has an energy of 5.3 MeV. Calculate the energy of the recoil proton if such a 
neutron encountered a head-on collision with a paraffin block (assume the collision 
is with a proton only). 

Before the interaction, the neutron of mass mn had a velocity vnl while the 
velocity of the proton of mass m,, was zero. After the interaction, the neutron moves 
with velocity vn2 and the proton recoils with velocity v,. According to the law of 
conservation of energy 

The conservation of momentum for the head-on collision (see Chapter 3) gives 

Equations (6-4) and (6-5) can be simplified and combined assuming the mass of 
a proton is nearly equal to that of a neutron to give 

This result shows that in a head-on collision a neutron is stopped by a proton, 
transferring all of its energy to the target. In our example, therefore, the energy of 
the target proton after the reaction is equal to the energy of the incident neutron, or 
5.3 MeV. 

Neutrons are classified according to their energies because their 
interactions with matter are energy dependent. The most common classification 
is shown in Table 6-1. 

Table 6-1. Classification of neutrons 
Neutron energy Name 
0 - 0.025 eV Cold 
0.025 eV Thermal 
0.025 eV - 0.4 eV Epithermal 
0.4 eV - 0.6 eV Cadmium 
0.6 eV - 1 eV Epicadmium 
lev-10eV Slow 
10 eV - 300 eV Resonance 
300 eV - 1 MeV Intermediate 
1 MeV - 20 MeV Fast 
> 20 MeV Relativistic 
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4. NEUTRON ATTENUATION 

4.1 Concept of the Cross Section 

The quantitative description of nuclear interactions requires known neutron 
cross section data. A rate at which a particular neutron interaction with a given 
target material will occur depends on the neutron energy and speed, as well as the 
nature of the target nuclei. The cross section of a target material for any given 
reaction thus represents the probability of a particular interaction and is a 
property of the nucleus and incident neutron energy. In order to introduce the 
concept of a neutron cross section, consider a parallel monoenergetic neutron 
beam falling on thin target of thickness x and area A, as shown in Fig.6-3. The 
intensity of the incident neutron beam is described with the number of neutrons 
per unit volume, n, and their velocity, v, as 

The total number of nuclei in the target of atomic density N is 

Total number of nuclei in target = Nax 

Figure 6-3. Concept of neutron cross section 

The number of neutrons that collide with the target nuclei is proportional to 
the neutron beam intensity and the total number of nuclei in the target 

Number of neutron collisions per second in the whole target = d&ax (6-9) 

where do represents the number of neutron collisions with the single target's 
nuclei per unit time, and cr is referred to as the effective cross sectional area, 
frequently called the microscopic cross section. It follows 
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o= number of neutron collisions per unit time with one nucleus per unit 
intensity of the incident neutron beam 

The neutron microscopic cross section thus represents a visible area and for 
some interactions is closely equal to an actual area, d?' (see Example 6.3). The 
accepted unit of microscopic cross sections is the barn (b), which is equal to 

cm2. All neutron cross sections are functions of neutron energy and the 
nature of the target nucleus. The probability of a neutron undergoing an 
interaction in the target as sketched in Fig. 6-3 is equal to the ratio of the 
reaction area to the total area: 

Cx = [Reaction area] / [Total area] (6- 10) 

The reaction area of the target (of volume Ax) is defined as the number of 
nuclei in the target material, N h ,  multiplied by the area of each nucleus, a 

Thus, the relation between the microscopic (d) and macroscopic 
(Z) cross section is 

The number of nuclei in a target material made of a single element (also 
called the number density), N, is obtained from (see Chapter 2) 

where A is the atomic mass number and N, is Avogadro's number. 

Example 6.3 Microscopic and macroscopic cross sections for a single 
isotope 

Calculate the microscopic cross section based on geometrical area and estimate 
the macroscopic cross section for 5 4 ~ e ,  which has a density of 7.86 g/cm3. Use the 
following empirical relation to estimate the radius of the nucleus, R: 
R = (1 .4A)  x 10.'~ m. 

The microscopic cross section is estimated based on the nuclear radius 
calculated from the Fermi model of the nucleus (see Chapter 3) 
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Figure 6-4 shows the neutron microscopic cross sections for 5 4 ~ e  and 55Mn. It 
can be seen that the estimate is close to the measured value. The same empirical 
formula can be used for 55Mn to estimate the microscopic cross section. 

The number density of 5 4 ~ e  is 

The macroscopic cross section is thus 

Figure 6-4. Microscopic cross section for neutron elastic scattering on "Mn and 5 4 ~ e  
(reproduced using the ENDF plot and MCNP cross section data) 

Example 6.4 Microscopic and macroscopic cross section for a 
mixture of elements 

Calculate the microscopic and macroscopic absorption cross sections for natural 
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uranium if q 3 ~  = 681 b, and q 3 ~  = 2.7 b. The density of uranium is 19 
The abundances (e) of 2 3 8 ~  and 2 3 s ~  in natural uranium (neglecting small 

amounts of 2 3 4 ~ )  are 99.28% and 0.72%, respectively. Thus, the number densities 
are 

The macroscopic and microscopic cross sections of natural uranium are 

Z = N,,oZ3, + NZ3,o2,, = 0.367cm-' and o = = 7.64b 
N235 + N238 

4.2 Probability of Neutron Interactions 

Figure 6-5. Neutron travel in a homogeneous medium 

Neutrons travel with constant direction and speed until they interact with 
the medium. Considering only a homogeneous medium, the probability of a 
neutron interacting is a function of the distance at which a neutron will 
interact, x. This probability can be expressed as a MacLaurin series of 
distance x as 
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...)( 32 dxcxbxaxPreaction (6-14)

where a, b, c, d, … are the coefficients of expansion. Since the 
interaction of a neutron can not occur at zero distance, the first term is equal 
to zero. For a sufficiently small distance x (see Fig. 6-5), the series shown 
in Eq. (6-14) reduces to 

xbxPreaction )(   (6-15)

The probability that a neutron will not interact along the distance x is 

xbxP reactionnon 1)( (6-16)

Since every interaction is independent of the previous interaction, the 
probability that a neutron will not interact along the distance x + x can be 
written as a product of two probabilities 

( ) ( ) ( )
( )[1 ]

non reaction non reaction non reaction

non reaction

P x x P x P x
P x b x

(6-17)

Rearranging terms it follows 
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)()(

xbP
x

xPxxP
reactionnon

reactionnonreactionnon   (6-18) 

Taking the limit as x  0 and replacing the constant b with 
(macroscopic cross section) 

)(
)(

xP
dx

xdP
reactionnon

reactionnon (6-19)

Integrating Eq. (6-19) gives the probability that a neutron does not 
interact and the probability that a neutron will interact along the distance x

x
reaction

x
reactionnon

exP

exP

1)(

)(
(6-20)

The macroscopic cross section in the above equation is replaced with the 
linear attenuation coefficient ( l) in case of  ray attenuation (see Chapter 5). 
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Example 6.5 Probability of neutron interactions 
Calculate the probability that a neutron will travel 5 cm in a block of 5 4 ~ e  (see 

Example 6.3 for other data) without an interaction. What is the probability that the 
neutron will interact with the medium between 5 cm and 5.5 cm? 

From the Example 6.3, the macroscopic cross section for 5 4 ~ e  is C = 0.157 cm-'. 
The probability of traveling 5 cm without an interaction is 

In order to calculate the probability of having an interaction between 5 cm and 
5.5 cm, we first calculate the probability of traveling an additional 0.5 cm without 
interaction, or 

Thus the probability of a neutron interacting in the interval between 5 cm and 
5.5 cm is 

Alternatively, the product of two probabilities may be used: the probability that a 
neutron will not interact along the first 5 cm of travel and the probability that it will 
interact in the next 0.5 cm 

4.3 Neutron Mean Free Path 

The neutron mean free path is, by definition, the average distance that a 
neutron will travel in a medium without interacting. It can be obtained from 
the probability that a neutron will interact in the distance interval between x 
and x+dx. Thus, the probability is equal to the product of these two 
probabilities (see Section 4.2 and the Example 6.5) 

The probability that a neutron will not interact along the distance x 

The probability that a neutron will interact along the distance dx 
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The mean free path has a continuous value and can be obtained by 
integrating the product of probabilities assuming the length of neutron travel 
can span from zero to infinity 

Example 6.6 Neutron mean free path 
Calculate the mean free path and the time needed for a neutron with energy 

100 eV to have its first interaction in a block of 5 4 ~ e  (see Example 6.3 for other 
data). The neutron mass is 1.674927 I6 x lo-'' kg. 

The neutron mean free path is equal to the reciprocal of the macroscopic cross 
section of the medium, therefore 

The neutron velocity is obtained from its energy 

The time to the first interaction is therefore 

4.4 Reaction Rate and Concept of Neutron Flux 

In all situations involving the evaluation of neutron behavior the concern 
is to analyze neutron population as a whole and almost never the history of a 
single neutron. For the majority of applications (like neutron population 
behavior in nuclear reactors, transport of neutrons through shielding 
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materials or in biological media), it is important to determine neutron 
reaction rates. A neutron interacts with the nuclei of a medium through 
scattering from one nucleus to another until it is absorbed or it escapes the 
boundary of a system. The mean free path that a neutron travels before it 
interacts can be defined as the mean free path for scattering, As = l/C,y, and 
for absorption $ = I/&. The total mean free path is thus equal to: 
AOt = l/Cmt. The reaction rate per unit volume of the target material and unit 
time for an i" type of interaction is 

where @ represents the total distance that the neutron travels in unit time 
and unit volume of a given target material. This variable is also called the 
neutronflux and has units of number of neutrons per unit time and unit area, 
neutrons/cm2/s. 

If all neutrons have the same velocity v and the neutron density is n, then 
the neutron flux and neutron reaction rate may be written as 

When neutrons have different velocities, it is necessary to define the 
neutron density as a function of velocity distribution such that n(v)dv 
represents the number of neutrons having velocity between v and v + d v  

In this case, the neutron flux and reaction rate become integral values 
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If the average velocity of a neutron population 

is used, then the neutron flux is 

Also, it is possible to define the average microscopic cross section 

which gives the relation for reaction rate 

Example 6.7 Reaction rate and flux 
In a medium consisting of lo2' atoms of fissile material, a neutron flux is 

sustained at 5 x 1014 neutrons/cm2/s. If the reaction rate is 1.5 x 1013 reactions/cm3/s, 
calculate the macroscopic and microscopic cross sections of the medium. 

The cross sections can be obtained from the following relations 

4.5 Neutron Interactions 

Neutron interactions can be described in three steps: the condition before the 
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interaction when the neutron is approaching the nucleus, an intermediate stage 
when the incident neutron forms a compound nucleus with the target, and the 
condition after the interaction. In the intermediate stage, the neutron is 
incorporated into the nucleus and forms a compound nucleus that has an atomic 
mass number increased by one in comparison to the target nucleus. The 
formation of the compound nucleus also means that the incident neutron transfers 
all of its energy to the target nucleus. The time for the formation of the compound 
nucleus is approximately the time that an incident neutron needs to travel across 
the target nucleus (about sec). A newly formed compound nucleus is highly 
excited and unstable. It therefore decays after a relatively long period of time 
(typically from 10'19 to 10'15 second). Different types of neutron interactions are 
illustrated in Fig. 6-6. 

Before Intermediate After 

Scattering 

Elastic Scattering (4, ) - -- 
-Potential Scatteklg (up) 
-Resonance Scattering (ux) 
Inelastic Scattering (ub) 

Neutron Nucleus Compound nucleus Absorption 

Radiation capture j a, or 5 )  
Neutron - protron (up) 
Neutron - alpha (u*) 
Fission (up) 

Figure 6-6. Different types of neutron interactions 

One of the important and characteristic features of neutron interactions 
with matter that proceed through a compound nucleus formation is that cross 
sections exhibit maximum values at certain incident neutron energies. These 
maximum values are called the resonances (see example for neutron cross 
sections for different types of interactions with 5 6 ~ e  in Fig.6-7). Nuclei have 
various excited states that correspond to different configurations of the 
nucleons within the nucleus (see Chapter 3). An incident neutron and a 
target nucleus are more likely to combine and form a compound nucleus if - 
the energy of the incident neutron is such that the compound nucleus is 
produced in one of its excited states. These resonances appear in the cross 
section because it is necessary to form the compound nucleus before the 
interaction can proceed. The excitation energy of the compound nucleus is 
equal to the kinetic energy of the incident neutron plus the separation 
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(binding) energy of the neutron in the compound nucleus. 
In the following sections the reactions shown in Fig. 6-6 are discussed 

with the exception of the fission reaction, which is described in detail in 
Section 5. 

Figure 6-7. Cross section for various interactions of a neutron with '%e 

4.5.1 Elastic Scattering (n, n) 

There are two possible ways for a neutron to scatter elastically fiom a nucleus 
Resonance or compound elastic scattering: the neutron is absorbed by the 
target nucleus to form a compound nucleus followed by re-emission of a 
neutron, and 
Potential elastic scattering: the neutron is scattered away fiom the 
nucleus by the short range nuclear force. 
Potential scattering is the most common form of neutron elastic 

scattering and is schematically depicted in Fig. 6-8. The more unusual of the 
two interactions is resonance elastic scattering which is highly dependent 
upon initial neutron kinetic energy. The cross section for this interaction 
exhibits a resonance region as shown in Fig. 6-7. 
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Before Intermediate After 

Figure 6-8. Schematics of the elastic neutron scattering 

Potential elastic scattering is more common and can be understood by 
visualizing the neutrons and nuclei as billiard balls with impenetrable 
surfaces. Potential scattering in which the neutron never actually touches the 
nucleus and a compound nucleus is not formed takes place with incident 
neutrons of energies up to about 1 MeV. Neutrons are scattered by the short 
range nuclear forces as they approach the nucleus. The cross section is 
approximately constant (see Fig. 6-7) and is expressed by the relation 

ql (potential scattering) = 47rR2 (6-34) 

where R is the nuclear radius (see Chapter 3). 

Example 6.8 Potential elastic scattering 
Using the experimental elastic scattering data from Fig. 6-7, estimate the radius 

of the 5 6 ~ e  nucleus. 
From Fig. 6-7, the potential elastic cross section has a constant value of nearly 

12 b from about 0.03 eV to 0.6 MeV. Thus, 4 ~ 8 ~  = 12 x cm2. Solving for R, we 
obtain R = 9.77 x 10.'~ cm. 

An elastic scattering reaction between a neutron and a target nucleus does 
not involve energy transfer into a nucleus. Momentum and kinetic energy 
are, however, conserved and there is usually some transfer of kinetic energy 
from the neutron to the target nucleus. The target nucleus thus gains the 
amount of kinetic energy that the neutron loses and moves away at an 
increased speed. If the neutron collides with a massive nucleus it rebounds 
with almost the same speed and loses a negligible amount of energy. 
However, light nuclei will gain a significant amount of energy from such a 
collision and will therefore be more effective in slowing down neutrons. 

The largest energy transfer occurs for a head-on collision in which the 
neutron does not change its initial direction. Neutrons lose most of their 
incident energy when they interact elastically with light elements such as 
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hydrogen. This is because the hydrogen nucleus has a mass (of one proton) 
nearly equal to that of the neutron. 

Materials with a large content of hydrogen, such as water or paraffin, are 
therefore very important in the slowing down of neutrons (see Chapter 7). 
For example, in the case of hydrogen, the energy of a head-on scattered 
neutron will be zero, which means that the neutron transferred all of its 
energy to the hydrogen nucleus (see Example 6.2). 

4.5.2 Inelastic Scattering (n, n') 

In order for a neutron to undergo inelastic scattering with a nucleus its 
incident energy must be sufficient to place the target nucleus in an excited 
state. As a result, the inelastic cross section exhibits threshold energy (and is 
zero up to that energy). In general, the energy levels of the excited states of a 
nucleus decrease with increasing mass number. Elements of high and 
moderate mass number usually have minimum excitation energy in the range 
of 0.1 MeV to 1 MeV. Elements of lower mass number have increased 
nuclear excitation energies. This is why neutron inelastic scattering is more 
probable for heavier nuclei and thus the inelastic cross section is non-zero 
over a large energy region for heavier nuclei. 

Figure 6-9. Inelastic cross section for ' 3 X ~  (data plotted from ENDF) 

At energies well above the threshold value, the inelastic cross section is 
nearly equal to the elastic cross section. Three examples of inelastic cross 
sections in heavy, moderate and light elements are shown in Fig. 6-9 to 6-1 1. 
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For example, it can be seen that the threshold energy for oxygen is around 6 
MeV while for 2 3 8 ~  it is only 44 keV. Neutrons cannot undergo inelastic 
scattering in hydrogen or deuterium (see section 4.5.5). Magic numbered 
nuclei behave like light nuclei with respect to inelastic scattering for the 
same reason. 

Energy (MeV) 

Figure 6-1 0. Inelastic cross section for 56Fe (data plotted from ENDF) 

1 I - 2nd inelastic 

3rd inelastic n - 4th inelastic 

5 10 15 20 

Energy (MeV) 

Figure 6-1 1. Inelastic cross section for 2 3 8 ~ ,  56Fe and 1 6 0  (data plotted from ENDF) 
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Inelastic scattering proceeds in two steps as depicted in Fig. 6-12. The 
interaction involves formation of a compound nucleus as an intermediate 
stage of the interaction process. 

The compound nucleus is formed in an excited state due to the energy 
imparted to it by the incident neutron. In the next step, a neutron of lower 
kinetic energy is expelled from the nucleus leaving the nucleus in a lower 
exited state. The nucleus then regains stability, usually by emitting the 
excess energy in the form y rays. 

Before Intermediate After 

*-0 @ 8.. 
Neutron A + I ~  

*x 

Excited compound nucleus 

Emitted neutron 

Incident neutron 
=o 

Target nucleus 

Figure 6-12. Schematics of neutron inelastic scattering gamma ray 

The energy of the emitted y rays is equal to the excess energy of the 
excited state of the target nucleus. The total incident neutron energy, Eo, is 
distributed between the emitted y ray, E, and the expelled neutron, E, see 
Fig. 6-12 

4.5.3 Radiative Capture (n, y) 

Neutron capture (absorption of a neutron) is often called radiative capture 
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because y rays are produced in the majority of these reactions. In this 
reaction neutrons form an isotope with mass number increased by one from 
the original nucleus (see Fig. 6-13). 

The newly formed nucleus can be radioactive and will therefore decay. 
The neutron capture reaction does not require any specific neutron energy 
and the reaction can occur at any neutron energy level. These reactions are 
almost always exothermic (positive Q-value) because the binding energy of 
the newly formed nucleus is larger than the sum of the binding energies of 
the neutron and the original nucleus. 

Before Intermediate After 

Y .-0 o w  
Neutron A+ lx A,, 

Figure 6-13. Schematics of radiative neutron capture 

The radiative capture cross section is usually divided into three regions: 

In the low-energy region, for most nuclei, the radiative capture cross 
section varies as the inverse square root of incident neutron energy. Since 
the neutron speed is proportional to the square root of energy, the 
radiative cross section is said to vary as llv. Since the cross sections are 
usually plotted on a log-log scale the l l v  dependence appears as a 
straight line with a slope of -112, as can be seen from Fig. 6-14 to 6-17. 
Nuclei that do not show l l v  dependence are called non-llv absorbers. 
Above the l l v  region is a resonance region in the same energy range as 
the resonance region for elastic scattering (because the nucleus formed in 
radiative capture is identical to the compound nucleus formed in elastic 
scattering). The radiative capture cross section in the resonance region 
may be expressed using the Breit-Wigner formula. 
Above the resonance region (ending around 1 keV in heavy nuclei and at 
higher energies in lighter nuclei) the radiative cross section drops rapidly and 
smoothly to very small values, as shown in Fig. 6-14 to 6-17. 
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Figure 6-14. Radiative capture cross section for %e in comparison with its total and elastic 
scattering cross section 

Figure 6-15. Radiative capture cross section for 2 3 8 ~  
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Figure 6-16. Radiative capture cross section for 9 3 ~ b  

Figure 6-1 7. Radiative capture cross section for 5 6 ~ e  
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4.5.4 Charged Particle Emission (n, a), (n, p) 

A charged particle reaction usually leads to emission of an a particle or a 
proton from the nucleus (see Fig. 6-18); thus charged particle reactions with 
slow neutrons are rare. 

Before Intermediate After 

-0 
Neutron 

3 

-0 
Neutron 

4x 

Figure 6-18. Schematics of charged particle emission 

Examples of reactions in which the Q-value is positive (no incident 
neutron energy required) are 

'OB + n + "B* + 7 ~ i  + a: The cross section for this reaction is shown in 
Fig. 6-19. It can be observed that the cross section is very large at low 

10 neutron energies. For this reason, B is used as an absorber material for 
unwanted low energy neutrons. As neutron energy increases, the cross 
section decreases following l l v  dependence. The charged particles 
produced in this reaction are ejected in opposite directions with relatively 
high energies. They produce considerable ionization along a short range 
(see Chapter 5) and are capable of causing considerable damage to 
biological tissue. This reaction is the basic interaction upon which boron 
neutron capture therapy for the treatment of brain and skin cancers was 
developed. 
6 ~ i  + n 3 7 ~ i *  + 3~ + a: This reaction is similar to the previous one and 
also shows strong l l v  dependence. The remaining nucleus is tritium, a P- 
emitter and an isotope of special interest in fusion science. This reaction 
is used for the production of tritium. 
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160 + n + 1 6 ~  + p: is an endothermic reaction of interest in reactor 
design since it represents the source of radioactivity when water is used 
as a moderator. 
The majority of interactions involving charged particle emission, 

however, are threshold reactions requiring the neutron to posses a minimum 
amount of energy. The cross sections tend to be small, especially for heavy 
nuclei (see Fig. 6-20). 

Figure 6-19. Cross section for 'OB + n interaction 

4.5.5 Hydrogen and Deuterium 

Hydrogen and deuterium are present in a majority of nuclear reactors. 
These nuclei interact with the neutrons in a specific manner (see Fig. 6-21) 

interactions with neutrons do not involve the formation of a compound 
nucleus (these nuclei have no excited states because all states are filled 
for the given number of nucleons) 
there are no resonances (because there is no formation of a compound 
nucleus) 
elastic scattering cross section is constant up to 10 keV 
radiative capture cross section at all energies shows llvdependence, and 
inelastic scattering does not occur (because there is no formation of a 
compound nucleus). 

4.5.6 Cross Sections for Different Neutron Interactions 

The concept of microscopic, o, and macroscopic, C, cross sections is 
described in Section 4.1. The cross sections for any neutron interaction, i, are 
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related as follows 

C i  = N o i  

Chapter 6 

(6-36) 

0 5 10 15 20 

Energy (MeV) 

(b) 
Figure 6-20. Cross section for charged particle emission from neutron interaction with (a) 

' ' ~ e  and (b) Ig7Au 
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Figure 6-21. Neutron cross sections for (a) 'H and (b) 2~ 

The total macroscopic cross section for all interactions is a summation of 
individual values 

The values of both cross sections express the probability for neutron 
interaction to occur. If the material that a neutron interacts with consists of a 
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mixture of different atoms, the macroscopic cross section representing the 
summation of individual values will be used to determine the probability of 
interaction. For example, the macroscopic radiative capture cross section of 
the material is 

where Nj represents the number density 

(6-38) 

of nuclei of each constituent in a 
material. ~ b r  neutrons traveling in a material the probability of certain 
interactions is determined based on known macroscopic cross section values. 
For example, the probability for a neutron to be captured in the next collision 
with the atoms of material j is given by 

In the analysis of cross sections and interactions it is common to group 
similar interactions. For example, the absorption cross section relates to all 
interactions that terminate the neutron history: capture interaction, fission 
and charged particle interactions 

Example 6.9 Probability of neutron interactions in a homogeneous 
medium 

Estimate the probability of a neutron interacting with 2 3 5 ~  to be captured if the 
microscopic cross sections are: oy= 98.6 b, of= 582.2 b and o;. = 13.8 b. 

Since the medium is homogeneous and thus composed of only one type of atom, 
the probability can be computed using the microscopic cross section values. The 
probability that the neutron will be captured is 

Neutron reaction cross sections vary with neutron energy, neutron 
interaction type, and isotope type. Those interactions that do not exhibit 
threshold values, such as capture and fission in 2 3 5 ~  or capture in 2 3 8 ~ ,  have 
large cross sections at low neutron energy. A threshold interaction observes 
zero cross section values up to certain energy, such as fission in 2 3 8 ~  for 
which fission becomes significant only if the neutron energy is above 1MeV. 
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The energy of interest in reactor physics ranges from the high energy that 
fission neutrons are born with to thermal neutron energies in thermal nuclear 
reactors. Across this wide span of energies, the cross sections for different 
neutron interactions show different dependence. The mean value of the 
fission neutron spectrum (the energies with which fission neutrons are born 
– see Section 5) is around 2 MeV, while neutrons that are slowed to the 
thermal region have energies of 0.025 eV. The high energy neutrons are 
moving at a high speed relative to the nuclei in a medium; therefore the 
dominant interactions are scattering in which neutrons slow down. In 
materials that have a large scattering cross section (like hydrogenous 
medium) neutrons lose most of their energy after only a few interaction 
events and come into thermal equilibrium with the nuclei of the medium. 
Since the nuclei themselves are in thermal motion there is an exchange of 
momentum in scattering interactions. Such neutrons have a Maxwellian 
spectrum (see Section 4.6) dependent on the temperature of the medium. 
Therefore, the neutron population in a reactor has a complicated spectrum 
that is a mixture of fast, intermediate and slow neutrons. The particular 
spectrum characteristics are determined by the materials present in the 
medium. For example, in a medium with a high scattering to absorption 
cross section ratio, the spectrum of neutrons will fall predominantly in the 
thermal energy region. However, in the opposite case of a medium 
consisting of materials with high absorption to scattering ratios, the neutron 
spectrum will not differ much from the source spectrum.  

At low energies the total microscopic cross section for the non-threshold 
interactions behaves as 

E
CRtot

24 (6-41)

where C is a constant, E is the neutron energy and R represents the radius 
of a nucleus. 

The first term in the above equation represents the elastic cross section, 
while the second term gives the cross section for radiative capture or other 
exothermic reactions possible at that energy. If the first term dominates over 
the second term, then the total cross section is constant at low energies. An 
example is shown in Fig. 6-22 for 56Fe for which the total cross section is 
constant at low energies. If the second term dominates over the first term, 
the total cross section behaves as 1/ . An example is shown in Fig. 6-22 for 
239Pu for which the cross section varies with the inverse square root of 
neutron energy at low energies. Cross section data libraries usually give the 
capture and fission cross sections for thermal energy neutrons traveling at 
the speed of p = 2200 m/s (which corresponds to neutron energy  
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Ep = 0.025eV and temperature 293 K, as explained below). For the nuclei for 
which 1/  dependence of the absorption cross section is valid, the absorption 
cross section at any other energy of up to few eV can be estimated from 

p
paa

p
paa E

E
EE )()()()( (6-42)
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Figure 6-22. Total cross section dependence on neutron energy for 56Fe and 239Pu

In the resonance region, elastic scattering, radiative capture, and inelastic 
scattering, and thus total cross section, all exhibit resonance in same energy 
region. The cross section at the peak values can be as high as a few thousand 
barns. The resonances correspond to the discrete energy levels of the 
compound nucleus formed after neutron interaction. Neutrons with energy 
comparable to the energy levels of a compound nucleus have a high 
probability of interaction. The lowest energy at which resonances begin to 
appear is around 0.5 eV and the maximum is about 0.1 MeV. As can be seen 
from Fig. 6-22, as energy is increased the resonances become closer. All 
values for cross sections are obtained experimentally; however, in the region 
where resonances are too close together an experiment can not resolve them 
(region called the unresolved resonances). In the high energy region (0.1 
MeV and above), the total cross section becomes a smooth function of 
neutron energy. The cross section is small rarely reaching values greater than 
5 b. The charged particle reactions become significant (see Fig. 6-20). The 
elastic scattering cross section remains almost constant across the energy 
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region below the resonances for almost all isotopes. The average value for 
the cross section ranges between one and ten barns from one isotope to 
another over a wide energy range (see Fig. 6-23). 

Figure 6-23. Comparison of elastic scattering cross sections for 'H, 5 6 ~ e ,  2 3 5 ~  md 23%'u 

4.6 Maxwell-Boltzmann Distribution 

In a medium in which neutrons are not absorbed and from which neu- 
trons cannot escape, the only possible interaction is scattering with the nuclei 
of the atoms. The scattering interactions reduce the neutron energy. 
However, an endless slowing down process is not possible because of the 
thermal motion of the atoms. Due to that fact they cannot be assumed to be 
stationary, which is usual approximation in analysing neutron interactions. 
When neutron energy becomes comparable to the energy of thermal motion 
of the atoms, the neutrons come to a thermal equilibrium. It means that the 
probability that a neutron will gain or lose energy in a collision with the 
nuclei is equal. The average kinetic energy of thermal motion of the atoms 
(according to the kinetic theory of gases) is given by 

where k is the Boltzmann constant (1.380662 x JK), and T is 
temperature of the medium (in Kelvin). Therefore, in a thermal equilibrium 
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state, neutrons can gain or lose kinetic energy (md/2), i.e. exchange their 
kinetic energy with the nuclei of atoms in the medium. In an ideal medium 
without absorption and leakage, the neutron energy distribution will be the 
same as that of the atoms in thermal motion. The thermal neutrons, even at a 
specific temperature, do not all have the same energy or velocity. Such 
spectrum is called a Maxwellian-Boltzmann distribution, or referred as a 
Maxwellian distribution. Although such conditions are not satisfied in a real 
reactor system, it is useful to assume that neutrons become thermalized to 
the extent that they follow the Maxwellian distribution 

where: 
n thermal neutron population per unit volume 
m -- neutron rest mass 
T = temperature in K 
n(E) and n(v) = Maxwellian energy (or velocity) distribution of neutrons 
per unit volume and unit energy (or velocity) interval 
The left side of Eq. (6-44) represents the fraction of neutrons having 

energies (or velocities) within a unit energy interval (or velocity interval) 
and the right side represents the Maxwellian distribution curve as shown in 
Fig. 6-24. The most probable neutron velocity, v,, is found by setting the 
derivative of n(v) with respect to velocity equal to zero 

The most probable energy can be obtained in the same way to give kT/2. 
The kinetic energy of thermal neutrons with most probable velocity is 
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Figure 6-24. Maxwellian velocity distribution of neutrons 

Note that the most probable (as well as average) kinetic energy is 
independent of particle mass. For thermal neutrons at 20°C (or 293K) the 
most probable velocity and the corresponding kinetic energy are 

The values for microscopic cross sections provided on most charts and 
tables are measured for this neutron velocity (2200 mls), which corresponds 
to an ambient temperature of 68°F (see Section 4.5.6) and energy of 0.025 
eV. 

The average neutron velocity is obtained from 
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The ratio of the average velocity to the most probable velocity of 
neutrons in the Maxwellian spectrum is 

The cross section at these velocities changes accordingly and is shown as 
follows. The neutron flux for the Maxwellian distribution of neutrons is 
given by 

The average absorption cross section for this population of neutrons 
assuming 11 v dependence can be estimated 

As described in Section 4.4.6 for the 111.1 absorption cross section 
dependence, the following correlation between the cross sections holds 

a, ( E )  = a, (E,)  - where E,  = kT i: 
The average absorption cross section is then 
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The values for microscopic absorption cross sections at a higher 
temperature are lower than the tabulated value (which is generally for the 
most probable neutron velocity at ambient temperature) and any cross 
sections which involve absorption (fission, capture) must be corrected for 
the existing temperature. The average absorption cross section at the average 
neutron velocity and temperature, T, higher than the ambient is given by 

Example 6.10 Average and temperature corrected l lv  absorption 
cross section 

The absorption cross section for 2 3 5 ~  at the most probable neutron velocity and 
energy is 680.8 barns. Assuming the cross section follows the l l v  rule, determine 
the average cross section at the temperatures of 293K and 600K. 

The average absorption cross section at the most probable neutron energy is 

If the temperature of neutron population is increased to 600K, the average 
absorption cross section will change as 

However, the absorption cross sections of some materials important in reactor 
neutronic design do not exhibit exact l l v  dependence. Examples are 2 3 5 ~ ,  2 3 8 ~ ,  and 
2 3 9 ~ ~ .  In these cases, an empirical factor, g(T), based on actual cross section 
measurements is introduced to correct for the departure from I l v  behaviour. The 
actual thermal cross section corrected for the average absorption temperature is then 

Example 6.11 Average and temperature corrected non-llv 
absorption cross section 

The radiative capture cross section for 2 3 5 ~  at the most probable neutron velocity 
and energy is 98.81 barns. From the table of nuclides (http:Natom.kaeri.re.kr/), the 
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g(T) factor is found to be 0.9898. Calculate the average radiative capture cross 
section at energy 0.0253 eV. Calculate the value of the cross section at 600K? 

The average radiative capture cross section for a Maxwellian distribution of the 
neutron population is 

If the temperature of the neutron population is increased to 600K, the average 
radiative capture cross section becomes 

- - 

Actual 

- Distribution 

- 

- 

- 

Figure 6-25. Energy spectrum of thermal neutrons (departure from Maxwellian distribution) 

In thermal reactors, it is not possible to obtain a neutron spectrum that 
will follow exactly the Maxwellian distribution. The reasons for this are 
1. Neutrons produced by the fission process are high-energy neutrons that 

are (in thermal reactors) slowed down by primarily elastic collisions with 
moderator (light) nuclei. The proportion of neutrons of higher energy is 
greater than that required by the Maxwellian distribution (see Fig. 6-25). 
This is because neutrons that are absorbed or that leak out of the reactor 
do not have a chance to slow down. This shift of the neutron energy 
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spectrum from Maxwellian toward the high neutron energy region is 
called absorption hardening. 

2. In the low energy region, a real neutron spectrum approaches the 
Maxwellian distribution. The departure depends on the absorption and 
leakage (escape from the geometrical boundaries) rate in the system, as 
neutrons may either be absorbed or lost before they come to equilibrium 
with the moderator atoms. In this energy region, the absorption cross 
section is inversely proportional to the neutron speed. In spite of these 
facts, the neutron spectrum in the thermal region is usually approximated 
by the Maxwellian distribution at a temperature somewhat higher than 
the moderator temperature. This temperature is called an effective 
neutron temperature. 

4.7 Doppler Broadening 

Neutron Energy 

Figure 6-26. Doppler broadening 

Cross sections are commonly associated with neutron energy. However, 
they actually depend on the relative energy of the interacting neutron and 
nucleus. The relative energy is identical to the neutron energy only if the 
nucleus is at rest is. In reality, the nuclei in a solid are "vibrating" about 
fixed points, and this energy of vibration increases with temperature. At 
some given temperature, the vibration energies tend to follow a Maxwellian 
distribution over a wide range of the energy spectrum. Therefore, even for 
monoenergetic neutrons, the energies relative to the target nuclei vary over a 
wide range of values (below and above the incident neutron energy). This 
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phenomenon is called the Doppler Effect because of similarity with the 
change in wavelength observed with a moving source of light or sound of 
constant frequency. Since the vibration energies increase with temperature, 
the range of the neutron-nucleus relative energies also increases. As a result 
of the Doppler Effect, the width of a resonance peak increases with 
temperature (see Fig. 6-26), an effect known as Doppler broadening. The 
increase in the resonance width is accompanied by a reduction in resonance 
height, while the area under the resonance remains constant. The total rate of 
neutron absorptions in the resonance region (a product of neutron flux and 
cross section) increases with temperature. This aspect is important in 
analyzing the temperature reactivity coefficients in reactors. 

4.8 Neutron Beam Attenuation and Neutron Activation 

Neutron beam attenuation is determined from 

where: 
I. - initial intensity of the neutron beam 
C r macroscopic cross section (cm-') 
x - thickness (cm) of the attenuating material 
The above equation can be expressed in term of the attenuation factor, 

AF, given as 

Example 6.12 Thermal neutron attenuation factor 
Calculate the attenuation factor (AF) for thermal neutrons passing through a 

layer of water 2.5 cm thick. The macroscopic cross section for thermal neutrons is 
0.02 cm-'. 

From the definition of the neutron beam attenuation factor, it follows 

Materials exposed to a neutron flux will absorb neutrons in proportion to 
the cross section at that neutron energy. Once an atom absorbs a neutron it 
changes into a heavier isotope that is most likely radioactive (unstable). The 
absorption of neutrons by certain materials permits the production of sources 
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of radioactivity in a reactor, but also affects the structural components of the 
reactor core. The same principle is used to infer the level of neutron flux at 
points of interest in a reactor core using neutron-absorbing foils. The 
activity of the foils following irradiation is proportional to the neutron flux 
in which the foil was placed. For example, if an isotope formed in neutron 
flux, 4, is unstable, it will start to decay as soon as it is produced. Assuming 
there are N nuclei of a newly formed isotope and No nuclei of the original 
target isotope, the rate of change of new nuclei can be obtained from 

where 2 is the decay constant of the newly formed, unstable isotope. The 
above equation can be rearranged to obtain the first-order differential 
equation as 

the solution of which is of the form 

where C is a constant of integration. Equation (6-58) can be rearranged to 
obtain 

The constant of integration is obtained from the initial condition 

Thus 

The buildup of a radioactive isotope during irradiation in a neutron flux 
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is depicted in Fig. 6-27. The material will decay with its characteristic 
half-life once removed from the neutron flux. 

N 

Sample removed from 
, neutron flux decays with 
\ , its characteristic half-life -.. .. 

4 -. .. 
4 * 

t 

Figure 6-27. Buildup of radioactive isotope during irradiation in neutron flux 

Example 6.13 Neutron activation 
A cylinder made of 5 9 ~ o  has a volume of 1 cm3. It was placed in a reactor core 

with a flux of lo8 n/cm2/sec for one year. Calculate the activity of the sample on 
removal from the reactor, and the activity of the same sample one year following 
later. The temperature of the sample during irradiation was 200 OC. After the 
absorption of a neutron, 5 9 ~ o  forms 6 0 ~ o  in its isomeric state. The unstable 6 0 ~ o  
decays in two ways, either through internal conversion or beta minus decay as 
shown in Fig. 6-28. The density of a sample is 8.71 &m3. The atomic weight of 

5 9 ~ ~  + n - + 6 0 ~ o *  
Internal conversion tc60co, Tl = 10.5 minutes, rrl = 18 barns 

6"co*. 
p- decay to 6 0 ~ i ,  T2= 1925.1 days,02= 19 barns 

Figure 6-28. Neutron absorption by ''CO 

Let's first determine the decay constants for the two isomers (data are given in 
Fig. 6-24) 
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The number of target nuclei is 

V p N ,  (lcm3)(8.71g /cm3)(6.023x loz3 atlgr atom) 
No =- - - - 

A 5 8.94grlgr atom 

= 0 . 8 9 0 ~  10" 5 9 ~ o  atoms 

Since the temperature of the sample was higher than 293K, the average cross 
sections must be corrected 

The one-year irradiation period will saturate the short-lived isomer and the 
second term in Eq. (6-6 1) can be neglected to give 

N ,  = ~ . O ~ X I O " ~ C O  atoms 

The concentration of the longer-lived isomer is 
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N ,  = 3.48 x 1015 'OCO atoms 

The activity on removal is 

One year following removal from the reactor core, the activity of the sample will 
be the activity of the long-lived isotope since the short-lived will have decayed away 

5. FISSION 

5.1 Mechanism of the Fission Process 

Fission represents a class of nuclear interactions in which the original 
target nucleus splits into smaller nuclei. Fission also represents the class of 
neutron interactions that produces neutrons and energy and as such is a basic 
principle of nuclear power generation. Fission can be a spontaneous process. 
For example, 2 4 ~ ~  and 2 5 2 ~ f  decay by spontaneous fission; however, such 
nuclei are rare and the decay rate is very low. 

In the fission process, a neutron interacts with the target nucleus creating 
a compound nucleus that is unstable and splits into smaller nuclei releasing 
two or more neutrons and energy. The compound nucleus thus temporarily 
contains all of the charge and mass involved in the reaction and exists in an 
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excited state. The excitation energy added to the compound nucleus is equal 
to the sum of the binding energy of the incident neutron and its kinetic 
energy. A schematic of the fission process is illustrated in Fig. 6-29 for 
neutron interaction with 2 3 5 ~ .  The smaller nuclei formed after the compound 
nucleus decays are called fission products or fission fragments. They are 
usually radioactive and decay by P- decay. Not every interaction of a 
neutron with a nucleus leads to fission after forming the compound nucleus. 
Since the compound nucleus is in an excited state, it can reach stability by 
emitting y rays. Such reactions as explained in Section 4.5.3 are called 
radiative capture reactions. 

neutron Excited state 
Gamma 
rays 

Figure 6-30. Critical energy for fission 

If the excitation energy of the compound nucleus is greater than a certain 
critical energy, the compound nucleus may become dumbbell-shaped due to 
forces acting between the nucleons and eventually splits into smaller nuclei 
as shown in Fig. 6-29. The mechanism of fission can also be understood 
from the graphical representation of potential energy levels in a compound 
nucleus and in fission fragments as sketched in Fig. 6.30. At the extreme 



280 Chapter 6 

right, fission fragments are apart and the potential energy of the system is 
virtually zero. As fission fragments become closer, there is an increase in 
potential energy due to the electrostatic repulsion force acting between their 
positive parts. The potential energy reaches its maximum value when the 
fission fragments are in contact with one another. At this point, the attractive 
nuclear forces become dominant and the potential energy decreases up to a 
certain value that corresponds to the ground state of the compound nucleus. 
In order for fission to occur, the system must transition from the left to the 
right side in Fig. 6-30. The energy difference between the maximum value 
and the energy that corresponds to the ground state of the compound nucleus 
represents the critical energy (also called the activation energy) for fission. 
According to the liquid drop model, the critical energy for fission decreases 
as Z2/A increases. This is explained by the fact that repulsion between 
nucleons (which favours fission) increases with Z2, while the attraction force 
is nearly proportional to A: for Z ~ I A  < 35, the critical energy is so large that 
neutrons (or other particles) of high energy are required to cause fission; for 
z2/A > 35, the critical energy is on the order of the binding energy of the 
incident neutron and thus fission can be caused by even a low-energy 
neutron. 

5.2 Fission Rate and Reactor Power 

As described in Section 4.4, the rate of any interaction involving 
monoenergetic neutrons is equal to C.4. For fission reactions it follows 

Fission rate = Cf @ [fissionslm3/s] (6-62) 

where: 
Ef = Nof 
@ = n u  
N = number of fissile nuclei [nucleilm3] 
o j  fission cross section [m2/nucleus] 
n = neutron density [neutronslm3] 
u neutron speed [mls] 
In a reactor, neutrons are not monoenergetic, but rather cover a wide 

range of energies. Neutron flux and cross sections, and thus reaction rates, 
are energy dependent. At a given neutron energy, the neutron flux at a given 
time varies with the spatial position in the reactor. Also, the spatial 
distribution of fissile material is not entirely uniform initially and is not 
uniform after the reactor has been operating for a certain time. In order to 
determine a fission rate at a given time, the above equation has to be 
integrated over all neutron energies and spatial positions in the reactor. In 



NEUTRON PHYSICS 28 1 

practice, this is done using computer codes. However, for the present 
purpose, an approximate method will be shown. In thermal reactors, the 
majority of fissions occur in the thermal energy region where flux and 
macroscopic cross sections are both very large. The fission rate can be 
roughly estimated assuming the average values (space and energy) for flux 
and cross section. Therefore, in a reactor of volume V [m3] 

-- 
Total number offissions = VZ 4 (6-63) 

Assuming that the reactor has been operating for enough time that nearly 
all of the radioactive decay energy is being deposited as heat, and that a 
fission rate of 3.1 x 10'~fissionsls is required to produce 1 watt of thermal 
power, thermal reactor power can be approximated as 

- 

<h = v E f 4  [W] 
3 . 1 ~ 1 0 ' ~  

Example 6.14 Reactor power 
A water-moderated reactor contains 100,000 kg of uranium dioxide enriched to 

an average of 2.5% by weight in 2 3 5 ~ .  The atomic ratio is 200. Calculate the 
approximate (spatial) average thermal neutron flux for a thermal power of 3000 
MWth with an average moderator temperature of 310°C.(Adopted from: Glasstone 
and Sesonske, 1994) 

For 2 3 5 ~  at T = 300K, the total fission cross section at 0.0253 eV is 584.4 barns 
and g(T) = 0.9786. 

& & of (E, , )  = g(T)-of (E,,) = 0.9786~-x584.4 = 506.8barns 
2 2 

If the temperature of the neutron population is increased to 310°C (583K), the 
average radiative capture cross section becomes 

The fraction of 2 3 5 ~  in 235~02  is 235/(235+(2 x 16) = 2351267. Therefore, the 
mass of 2 3 5 ~  is 
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5 3235 2.5
10 kg 2.2 10 kg

267 100
m

The total number of 235U nuclei in a reactor is 

3 23
27

3

(2.2 10 )(6.023 10 )
5.6 10 nuclei

235 10
amN

NV
A

and the neutron flux is 

10
17 23.1 10

4.6 10 n/cm s
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f p
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NV E T

5.3 Fission Neutrons 

In the first 10 14 seconds following the fission process, 99% of the 
neutrons are emitted; these are called the prompt neutrons. The prompt 
neutrons accompany the emission of fission fragments and prompt  
-rays. Over a period of several minutes, the unstable fission fragments emit 

so-called delayed neutrons. The role of each group of neutrons, prompt and 
delayed, in reactor kinetics is explained in Chapter 7. 

The average number of neutrons emitted per each neutron absorbed that 
causes a fission reaction is usually denoted as  and for thermal reactor fuel 
is ~ 2.5 (see Table 6-2). This number is not an integer because it represents 
the average value over a number of fission events (each single fission event 
emits an integer number of neutrons). 

Table 6-2. Number of neutrons emitted per fission, , and per neutron absorbed, 
Neutron
energy 

233U 235U 238U 239Pu

0.025 eV 
1 MeV 
2 MeV 

2.50
2.62
2.73

2.30
2.54
2.57

2.43
2.58
2.70

2.07
2.38
2.54

-
-
2.69

-
-
2.46

2.89
3.00
3.11

2.11
2.92
2.99

The number of neutrons emitted per each neutron absorbed (in fission 
and all other interactions) in the fissile materials is denoted as 

a

f (6-65)
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where, for a single fissile material, the macroscopic cross sections for 
fission and absorption can be replaced with microscopic values 

This ratio represents the fraction of neutrons that are absorbed and 
subsequently cause fission in a given material and is usually written as 

where a represents the capture-to-fission ratio, an energy dependent 
parameter of great importance in reactor core design, as explained later. The 
number of neutrons emitted per each neutron absorbed can now be expressed 
in terms of a 

However the reactor core consists of more than one single fissile 
material, and thus Eq. (6-65) must be written in a more generalized form 

where the numerator represents the sum over all fissile nuclides and the 
denominator represents the total absorption cross section for all materials 
present in fuel. For example, for a thermal reactor in which the fuel is in the 
form of uranium oxide and the uranium is a mixture of 2 3 5 ~  and 2 3 8 ~ ,  the 
above equation reduces to 

knowing that the only fissile material is 2 3 5 ~  and that the absorption cross 
section for oxygen is small enough to be neglected. 

Prompt neutrons are emitted with different energies. As a result, the 
population of prompt neutrons exhibits a distribution or so-called energy 
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spectrum. The prompt neutron energy spectrum is depicted in Fig. 6-31 for 
thermal fission of 2 3 5 ~ .  The spectrum shows a peak (most probable value) at 
an energy of approximately 1 MeV and an average value of 2 MeV. The 
energy spectrum is important because, in additional to the fissile material 
present in a reactor core, there is usually an amount of fertile materials (such 
as 2 3 8 ~  or 2 3 2 ~ h )  for which the fission cross sections have a threshold value, 
or a certain energy value below which the fission cross section is zero. The 
prompt neutron energy spectrum shown in Fig. 6-31 can be described by the 
following equation 

0 1 2 3 4 5 6 7 8 9 

Neutron Energy (MeV) 

Figure 6-31. Prompt fission neutron energy spectrum for thermal fission of 2 3 5 ~  

5.4 Fission y Rays 

The y radiation emitted per each fission event is divided into two groups: 
prompt and delayed. The prompt y rays are emitted within 0.1 ps of the 
fission event (arbitrarily defined time) with an average energy of 1 MeV. 
One portion of the prompt y rays is emitted at about the same time as the 
prompt neutrons, and another portion is represented by the y rays from the 
decay of fission fragments with short half-lives. The delayed y rays come 
from the decay of fission fragments having half-lives longer than the 
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arbitrarily defined time of 0.1 ps. 
The approximate gamma ray energy distribution is shown in Figure 6-32 

for the fission of 2 3 5 ~ .  The spectrum can be divided into three regions 
approximately represented by the following relations 

The total energy of the prompt y rays is close to 7.3 MeV per fission 
event with an average value of around 0.9 MeV. 

k g 1 .OE-02 - 
0 1 2 3 4 5 6 7 

Gamma Ray Energy (MeV) 

Figure 6-32. Prompt fission y rays energy spectrum 

5.5 Fission Products 

5.5.1 Fission Yield 

Majority of fission events produces two fission products. The pair formed 
per single fission varies from event to event giving a broad distribution of 
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isotopes. For example, a detailed study of the thermal neutron fission of 2 3 5 ~  

has shown that about 80 different isotopes are created. Some of these fission 
products are shown in Table 6-3. 

Table 6-3. 2 3 5 ~  thermal fission products 
Element A Half-life Fission yield (%) 
Strontium 89 51 d 4.8 
Strontium 90 28 Y 5.8 
Yttrium 91 58 d 5.4 
Zirconium 95 65 d 6.3 
Ruthenium 103 40 d 3.0 
Ruthenium 106 1 Y 0.4 
Antimony 125 2 Y 0.02 
Tellurium 127 105 d 0.04 
Tellurium 129 37 d 0.35 
Cesium 137 30 Y 6.2 
Cerium 141 33 d 6.0 
Cerium 144 280 d 6.0 
Promethium 147 2.6 y 2.4 
Samarium 151 80 y 0.44 

60 80 100 120 140 160 180 

Mass Number, A 

Figure 6-33. 2 3 5 ~  thermal fission yield versus atomic mass number 

The yield represents the proportion (percentage) of all nuclear fissions 
that form isotopes of a given mass. The 2 3 5 ~  fission yield is plotted in Fig. 6- 
33 versus atomic mass number. This plot is shown to illustrate that most of 
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the fission fragments are radioactive and decay via P decay, which changes 
the atomic number but not the atomic mass number. The fission yield curve 
indicates that the maximum yield for any one isotope is less than 7%. It also 
indicates that fission products fall into two broad groups: a group of light 
nuclei with mass number between 80 and 110, and a heavy group with mass 
numbers between 125 and 155. 

The most probable isotopes to be produced have mass numbers between 
approximately 95 and 139, each having a yield of about 6.4%. The kinetic 
energy of fission fragments per fission event is also distributed according to 
the fission fragment distribution given in Figure 6-33. For the most abundant 
isotope in the heavy group, the kinetic energy is around 67 MeV and around 
98 MeV for the isotopes in light group. The ratio of these two energies 
(98167) is 1.46, which is equal to the ratio of their masses (139195). 

5.5.2 Formation and Removal of Fission Products in a Reactor 

The amounts and activities of individual fission products are important in 
reactor design because: 

it is necessary to evaluate the potential hazards associated with an 
accidental release of fission products into the environment 
it is necessary to determine a proper cooling time for the spent fuel 
(before it becomes ready for reprocessing), which depends on the decay 
times of fission products 
it is necessary to estimate the rate at which heat is released as a result of 
radioactive decay of the fission products after the shut down of a reactor 
it is necessary to calculate the poisoning effect of the fission products 
(the parasitic capture of neutrons by fission products that accumulate 
during the reactor operation) 
The rate at which the concentration of a nuclear species (Ni) in a reactor 

core changes with time is given by (see Figure 6-34) 

dwdt  = Formation Rate - Destruction rate - Decay Rate (6-72) 

The formation of a nuclide i (atomic mass number A, atomic number Z) 
is defined by: fission, neutron capture in nuclide j (atomic mass number A - 
1, atomic number Z), and radioactive decay (usually P decay) of nuclide k 
(atomic mass number A, atomic number Z - I). It can be expressed as 

Formation rate = n N p 4  + I$@+ &Nk (6-73) 

where: is the fission yield of that nuclide, 
Nf, Nj and Nk are the nuclear number densities of the fissile 
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nuclides, 
of is the fission cross section of the fissile material, 
q is the capture cross section of the nuclide j ,  
$ is the neutron flux, and 
Ak is the radioactive decay constant of nuclide k. 

Fission 
I 

Figure 6-34. Formation and removal of fission products 

The destruction of a nuclide i (atomic mass number A, atomic 
number Z) by neutron capture is defined as 

Destruction Rate = Niq$ (6-74) 

Destruction of a nuclide also occurs through its own p decay, 
which is expressed as 

Decay Rate = ANi (6-75) 

Thus the rate at which the concentration of a nuclear species (Ni) in a 
reactor core changes with time becomes 

This equation can be solved for Ni, at any time, assuming that all other 
concentrations and constants are known. This equation develops into 
coupled differential equations for which the exact solution is obtained using 
computer codes. 

After a certain time of reactor operation, a concentration of any fission 
fragment should reach an equilibrium (saturation) value. At that point, the 
rate of production is equal to the rate of removal of that nuclide. For many 
important fission products, like 9 0 ~ r  or 13'1, only the first and the last terms in 
Eq. (6-76) are significant 
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dNi/dt ~ iNf f  - iNi (6-77)

At the reactor start up (t = 0), we may assume that the concentration of 
fission fragment i is zero. Also, a good assumption is that the neutron flux 
reaches a constant value shortly after start up. At that point in time, a 
saturation concentration (density) of the nuclide i is 

,
i f f

i sat
i

N
N  (6-78) 

It follows that for a given flux and fission fragment cross section ( f), the 
saturation number density is increased by large fission yield ( i), and long 
half life (small i). If other conditions are equal, the saturation number 
density increases with the neutron flux.

The ratio of the number density at any time to the saturation value is then 
given by 

,
1 iti

i sat

N e
N

(6-79)

When the reactor is shut-down, the neutron flux becomes negligible and 
the rate at which the concentration of a nuclear species (Ni) in a reactor core 
changes with time reduces to

dNi/dt = kNk iNi (6-80)

If the rate of decay of k into i is larger than the decay rate of i, then the 
nuclear density of the fission fragment i increases with time. If i decays 
faster than it is generated by the decay of k, then the fission fragment 
concentration decreases with time. In this case, however, after a certain 
period of time, the decrease in k decay will produce a situation where the 
concentration of i attains its maximum value (when kNk = iNi). After that, 
the concentration decreases again with time. 

The activity after shut down may be determined using a semi-empirical 
approach (for times 10s to 100d after shut-down), which gives a close 
estimate to detailed calculations using computational methods. The total rate 
of  emission is given by the following semi-empirical relation 

Rate of  emission per fission event ~ 3.2 t 1.2 [1/s] (6-81) 

where t is given in seconds after the fission event. If every fission 
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product is assumed to emit a P particle when it decays, the activity may be 
determined by 

Fission product activity per fission - 3.2 t-1.2 [Bq] 

- 8.6 x lo-" t-1.2 [Ci] 

5.6 Energy Released in Fission 

The energy released by fission can be calculated based on the difference 
in mass between the masses of the neutron and the fissile nucleus before 
fission and the fission fragments and fission neutrons after fission. There is a 
variation in the total energy released per fission that depends on the 
fissionable isotope and the products of the fission event. On average, some 
200 MeV is released per thermal fission. This energy is distributed as shown 
in Table 6-4. 

Table 6-4. Fission energy distribution 
Fission Product Energy (MeV) 
Kinetic energy of fission fragments 165 +I- 5 
Instantaneous gamma rays 7 +I- 1 
Kinetic energy of neutrons 5 +I- 0.5 
Beta particles from product decay 7 +I- 1 
Gamma rays from product decay 6 +I- 1 
Neutrinos from product decay 10 
TOTAL 200 +I- 6 

Example 6.15 Energy released per thermal fission event 
In a typical thermal fission of 2 3 5 ~  as shown below, calculate the instantaneous 

fission energy. 

The instantaneous fission energy is the energy released immediately after the 
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fission process. It is equal to the energy equivalent of the mass lost in the fission 
process. It can be calculated as follows 

NUMERICAL EXAMPLE 

Neutron Attenuation in Common Moderator Materials 
Graphite and water are two common materials used as moderators in 

nuclear reactors. Using the given data, construct an attenuation plot of two 
beams of thermal neutrons passing through water and graphite. Comment on 
the apparent effectiveness of each material as a moderator. 

P (3 (b) M 
(g/cm3> (g/mo~e) 

Water 1 .O 5.33 18.015 
Graphite 1.6 103.66 12.000 

Solution in MATLAB: 

clear all 
Na = 6.022e23; % Avagadro's Number 
% Total thermal microscopic cross section 
sigma-C = 5.33; %b 
sigma-Water = 103.66; %b 
s = loA-24*[sigma-C sigma-Water]; 
rho(1) = 1.6; % carbon glcmA3 
rho(2) = 1; % water glcmA3 
M = [12 18.0151; 
for i = 1:2 

Sigma(i) = s(i)*rho(i)*Na/M(i); 
end 
x = linspace(0,15); 
forj = 1:2 

for i = 1:100 
I(i,j) = exp(-Sigma(i)*x(i)); 

end 
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end 
figure 
hold on 
plot(x,I(:, l),'k') 
plot(x,I(:,2),'k:') 
xlabel('Distance (cm)') 
ylabel('Fractiona1 Intensity') 
legend('Graphite1,'Water') 

Distance (cm) 

Figure 6-35. Neutron attenuation in graphite and water 

Water appears to be a generally more effective moderating material. 

PROBLEMS 

6.1. Uranium oxide (U02) has a theoretical density of 10.96 g/cm3. Calculate the 
number density (nuclei/cm3) of uranium and oxygen if a sample of U02 has a 
density equal to theoretical density. Calculate the number densities for the fuel in 
a reactor that has usually a density equal to 0.95 the theoretical density. 

6.2. The microscopic cross sections at 0.0253 eV for tungsten are given in table 
below. Calculate the capture cross section for the element tungsten. Which 
isotope contributes the most to the capture cross section? If only the isotopes 
180, 184 and 186 produce a radioactive daughter by the reaction (n,y) what is the 
activation cross section for tungsten? 
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Isotope and % abundance 0, (0.0253 eV) 
I x u ,  0.12 30.0 

6.3. Calculate the macroscopic absorption and scattering cross section for 4.8 
atom percent enriched U02 fuel both at 20°C and 300°C. Assume the density of 
U02 is 92 % theoretical density (see Problem 6.1). 

6.4. What thickness of water is necessary to reduce the intensity of a collimated 
beam of 1 MeV and 10 MeV neutrons by factor lo6? Repeat for lead. 

1 MeV: 
Hydrogen 4.2 
oxygen 8 3.35 E+22 0.268 
Lead 5.5 3.23 E+22 0.178 

10 MeV: 
Hydrogen 0.95 
oxygen 1.5 3.35 E+22 0.050 
Lead 5.1 3.23 E+22 0.165 

6.5. A sample of 10 g of 5 5 ~ n  is irradiated by a flux of 10' m-2 s-' of thermal 
neutrons. Calculate the saturation activity of 5 6 ~ n  produced after an irradiation 
time of 7 h. The cross-section for 5 5 ~ n ( n , y ) 5 6 ~ n  is 13.41 b and the half-life of 
5 6 ~ n  is 2.6 h. 

6.6. If 10 g of gold sample is inserted into the reactor at neutron flux of 10' 
n/cm2s, how many atoms of l g 8 ~ u  will be formed after 30 minutes? What is the 
activity of the sample after it is removed from the reactor assuming none of the 
gold atoms decays until removed from the reactor. 

6.7. Discuss the following two nuclear reactions: 

6.8. Calculate the threshold energy for the reaction 1 3 ~ ( n , a ) 1 0 ~ e .  The atomic 
masses in amu are: M(13c) = 13.0033548; M(lOBe) = 10.0135337. 

6.9. A parallel beam of 0.25 MeV neutrons impinges on target of aluminium that 
is 1 cm thick. Calculate what fraction of neutrons will undergo a neutron capture 
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event on their first collision in the last 1 mm of a target (o,, (Al) = 3b and o-Al)  
= lb). 

6.10. If an isotropic source is placed in the center of a sphere what is the 
probability (in percent) that a neutron will be emitted in a cone with a solid angle 
of 0.30 steradians? 

6.1 1. Prove the Eq. (6-48). Calculate the most probable energy for neutrons with 
Maxwell - Boltzmann distribution and explain why it is not the energy 
corresponding to the most probable velocity? 

6.12. Evaluate the nuclear reaction 4~ + 4 ~ e  + 170 + 'H is it endothermic or 
exothermic? Calculate the energy (in MeV), Q, of the reaction. Masses in amu: 
H = 1.007825; neutron = 1.008665; He = 4.00260; 1 4 ~  = 14.00307; and 1 7 0  = 
16.99914. 

6.13. Some stars at the end of their lives collapse combining their protons and 
electrons to form a so called neutron star. Such a star could be approximated by 
a giant atomic nucleus. Assume its mass is equal to that of the Sun (2 x lo3' kg) 
and that it collapsed into neutrons (1.67 X I O - ' ~  kg), what would be the radius of 
this star? 

6.14. Boron is a common material used to shield against thermal neutrons. 
Calculate the thickness of boron required to attenuate an incident thermal 
neutron beam to 0.1% its intensity. Use the thermal cross section of 103 cm-l. 

6.15. Calculate the fission rate density to produce a thermal power density of 
400 kwllitter (typical for fast breeder reactors), assuming that the main fissile 
isotope is 2 3 9 ~ ~ .  

6.16. Follow the numerical example as given and calculate and plot the neutron 
beam attenuation through beryllium. 

6.17. Plot the fission cross section to show that 2 3 2 ~ h  requires a very fast neutron 
to induce fission. Compare it to the conditions for fission on 2 3 8 ~ .  

6.18. 2 3 6 ~  fissions into "'MO and l3'sn isotopes. Knowing that the number of 
nucleons must be conserved write the reaction. How many free neutrons are 
produced in this and how many in the fission process that produces " ~ r  and 
I4Ya? 
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6.19. If one of fission fragments for the 2 4 0 ~ ~  fission is 9 0 ~ r  what is the second 
element? If the mass number of the second element is 142, how many free 
neutrons are produced? Write the equation. 

6.20. For the fission reaction 2 3 5 ~  + n + 1 4 2 ~ ~  + 9 0 ~ b  + 4 n estimate the energy 
released per reaction. 

6.21. A borated-steel sheet (relative density 7.8) which is used as a control rod in 
a reactor is 2 mm thick and contains 2% boron by weight. The atomic masses of 
boron and iron are 10.8 and 55.9 and their nuclear absorption cross sections for 
thermal neutrons are 755 x m2 and 2.5 x m2 respectively. Assuming 
that the thermal neutrons strike the sheet at normal incidence, what fraction of 
them is absorbed? 

6.22. The nuclide 2 5 6 ~ m  decays through spontaneous fission with a half-life of 
158 minutes. If the energy released is about 220 MeV per fission, calculate the 
fission power produced by 1 pg of this isotope. 

6.23. The thermal fission cross section for 2 3 5 ~  is 577 b while its thermal capture 
(non-fission) cross section is 101 b. The isotope 2 3 8 ~  does not fission for 
neutrons with thermal energies but does have a small capture cross section of 
2.75 b. Naturally occurring uranium is 99.3% 2 3 8 ~  and 0.7% 2 3 5 ~ .  Given that an 
average of 2.44 fast neutrons is produced per fission calculate how many of 
these fast neutrons are produced for each thermal neutron absorbed in natural 
uranium. 

6.24. A 100 MW reactor consumes half its fuel in three years. How much 2 3 5 ~  

does it contain? 

6.25. A beam of thermal neutrons is incident upon a thick layer of cadmium 
(density 8650 kg m-3, cross section 24506 barn). Find the absorption length (i.e. 
the distance in which the beam is reduced by a factor lle). 

6.26. A free neutron decays into a proton, electron and antineutrino. Assuming 
the latter to be massless and the original neutron to be at rest, calculate the 
maximum momentum that could be carried off by the electron and compare this 
with the maximum momentum which the antineutrino could have. 

6.27. A spectrum of P particles are emitted during the fission process. How far 
will a 9 MeV P travel in a water moderated reactor? (Recall the radiation 
interactions with matter described in Chapter 5). 
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6.28. Cadmium and boron are strong neutron absorbers and are the most 
common materials used in control rods. Write neutron absorption reaction in 
boron and calculate the Q - value for this reaction.  

6.29. Find the energy of a hydrogen atom moving at speed of 2.2 x 106 cm/sec. 
What is the kinetic energy of the thermal neutron at room temperature moving at 
the speed of 2200 m/sec? 

6.30. Show that the number of neutrons per absorption, , for 235U homogeneous 
thermal reactor is ~2.08. 

6.31. Calculate the neutron density from a reactor thermal flux of 1012 n/cm2sec.
Compare it with the number of particles 1cm3 contains at standard temperature 
and standard pressure. 

6.32. Estimate the reactor power which fuel is made of 5 % enriched uranium 
metal. The total weight of the fuel is 100 kg. The average neutron flux is 1013

n/cm2s. Assume the density of the fuel is 18.7 g/cm3. The microscopic fission 
cross section for 235U is 549 b. 

6.33. Determine the probability that a 2 MeV neutron will undergo its first 
collision in 0.476 cm diameter UO2 fuel rod enriched to 4 % in 235U. Assume 
that the neutron is born in the center of the fuel rod and that it travels radially 
toward the fuel boundary. The fuel density is 94 % theoretical density (10.96 
g/cm3).
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NEUTRON TRANSPORT 
Time Independent and Time Dependent Neutron Transport 
Theory - Concepts and Examples 

"When we have carried out the indicator experiments that proved that barium was 
present, I wrote some personal letters to Lise Meitner, telling her of our results. In 
my letter of 19 December I wrote: . . . The thing is there is something so odd about 
the 'radium isotopes' that for the moment we don't want to to tell anyone but you. 
The half-lives of three isotopes are pretty accurately determined; they can be 
separated from all elements except barium; all reactions are correct. Except for one 
- unless there are some very weird accidental circumstances involved: the 
fractionation doesn't work. Our Ra isotopes behave like Ba.. . Strassmann and I 
agree that for time being nobody should know but you. Perhaps you can put 
forward some fantastic explanation.. ." Otto Hahn (1879 - 1968) 

1. INTRODUCTION 

Design of a reactor core requires detailed prediction of the balance 
between neutron production and neutron loss. The rates of neutron 
production, transport and absorption are key information not only for core 
design and analysis but also for thermal-hydraulic, heat-mass transfer, 
accident scenarios and radioactivity release estimates. After neutrons are 
born in fission reactions, they move through the reactor core and undergo 
collisions of various types (absorption and scattering). There are two main 
absorption processes which may occur, radiative capture and fission. In 
fission, the target isotope splits and releases additional neutrons. In radiative 
capture, the neutron is parasitically absorbed and does not contribute to 
sustaining the chain reaction. In scattering collisions (elastic or inelastic) 
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neutrons change their energy, spatial position and direction of motion in a 
process known as slowing down. In general, the interaction of neutrons with 
nuclei in medium may be considered as neutrons being transferred or 
transported from one location to another, from one energy to another, and 
from one direction of motion to another. A schematic diagram of the various 
paths for a neutron born in a thermal reactor is depicted in Fig 7-1. The 
details of neutron interactions as well as the concept of the sustained (and 
controlled) chain reaction are described in the succeeding sections. 

Capture 

235 U fission 

Reflection 
# 

'"u fast 
fission 

C 

Figure 7-1. Schematic diagram of the history of neutron born in thermal nuclear reactor 

2. CONCEPT OF TIME INDEPENDENT NEUTRON 
TRANSPORT 

2.1 The Nuclear Chain Reaction 

Seven months after the discovery of the neutron and more than six years 
before the discovery of uranium fission (September, 1932) Leo Szilard 
postulated that a controlled release of nuclear power may be possible if 
materials that would sustain the neutron chain production could be 
identified. In 1934 he filed a patent application for a weapon based on the 
release of nuclear power from such materials and also defined the concept of 
critical mass. A year later, he received the patent which made him the legal 
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inventor of the nuclear bomb. The reason he patented the idea was to protect 
the use of such powerful weapon and prevent the destruction Second World 
War brought to humanity. 

After the discovery of neutrons, many scientists across the world 
developed a number of experiments to analyze the effects of bombarding 
different materials with this new particle. 

In late 1938, Otto Hahn and Lise Meitner were able to develop a 
theoretical interpretation of experiments involving neutron interactions with 
uranium. On December 21, 1938, Hahn submitted a paper to a German 
journal, Natunuissenschaften, in which he showed convincing evidence of 
the fission leading to production of radioisotopes from uranium irradiated 
with thermal neutrons. Soon after the concept of the fission was understood, 
a number of trials followed to find the method to produce a self-sustained 
reaction in which neutrons born in fission would induce fission in other 
uranium nuclei. 

As described in Chapter 6, on average 2.5 neutrons are emitted per 
thermal fission event. In order to sustain a fission reaction, at least one 
should be conserved to continue the fission process. The essential problem in 
achieving a sustained nuclear fission reaction is related to the neutron 
economy. 

A history of a single neutron born from fission in enriched uranium is 
schematically depicted in Fig. 7-1. Interaction of 2 3 5 ~  with a neutron of any 
energy will split the nucleus into two smaller nuclei and release a few fast 
neutrons. However, 2 3 8 ~  can absorb neutrons in the non-fission reaction 
called radiative capture that remove neutron from the chain reaction. This is 
why the fuel in thermal reactors is enriched in 2 3 5 ~ ;  increasing its content 
from the natural value of 0.7%. The typical enrichment in nuclear power 
reactors is about 5%. Fast neutrons can produce fission of 2 3 8 ~  nucleus and 
the probability of this interaction depends on reactor core structure, fuel type 
and fuel composition. Along with being absorbed (radiative capture by fuel 
or other materials present in a core) neutrons can be removed by escaping 
the physical boundaries of the system. As long as more neutrons are 
produced than lost the chain reaction will be sustained and the fission 
process will generate additional neutrons and energy. 

In a nuclear weapon, the chain reaction is uncontrolled and a giant 
amount of energy is generated in a short period of time leading to an 
explosion. In nuclear reactors the control and sustainability of the chain 
reaction is achieved by introducing materials which absorb neutrons. 

2.2 Fick's Law 

The number of neutrons per unit volume is a function of neutron energy, 
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neutron spatial position and its direction of motion, and is referred as 
angular neutron density 

N = N (spatial position, direction, energy) = N ( r , R ,  E )  (7-83) 

Neutron balance is described by the neutron transport equation which 
expresses the distribution of the neutron population in space, energy and 
time. In a steady-state condition, the neutron density is assumed to be 
constant with respect to time. 

The neutron transport equation is also called the Boltzmann equation 
because it is derived from the kinetic theory of gases developed by 
Boltzmann in the later part of the 19" century. 

Neutrons of a given energy moving in a given direction collide with 
nuclei of atoms in a reactor core producing other neutrons that have a wide 
range of energies and directions of motion. It is thus necessary to describe 
neutron transport by integrating over all neutron energies and spatial 
directions. The neutron transport equation is therefore an integro-differential 
equation which can be solved exactly for only a few simple cases. For 
practical applications, various simplifications and computational 
methodologies are developed and solutions are produced using complex 
software packages. 

One of the simplest approximations to transport theory is diffusion 
theory. The name is given because it involves relationships similar to Fick's 
law of gas diffusion. Diffusion theory is explained in detail in the following 
sections. A numerical example based on what is currently the most attractive 
and advanced deterministic approach in neutron transport modelling in 
complex geometries (method of characteristics) is presented at the end of 
this Chapter. 

Diffusion is defined as the random walk (Brownian motion) of a group of 
particles from a region of high concentration to a region of lower 
concentration. This means that the diffusing mass flows in the direction of 
decreasing concentration and such a flow rate is proportional to the negative 
concentration gradient. 

By definition, the gradient (see Fig. 7-2 and Fig. 7-3) of a straight line is 
an indication of how steep that line is and may be calculated as follows 

Gradient = Change in Y / Change in X. (7-84) 

From Fig. 7-3, it follows that the gradient can be defined as 

Af Gradient (slope) = -, (7-85) 
Ax 
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Af and Ax represent finite quantities; for 
follows that the gradient is represented as 

infinitesimal quantities, 

Figure 7-2. Examples of a gradient: starting from the left end of the line, going to the right the 
gradient is positive, up is positive, and down is negative, across to the left is also negative 

Figure 7-3. Definition of a gradient 

Fick's law defines 

(7-86) 

diffusion of particles from the region of higher 
concentration to the region of lower concentration (see Fig. 7-4) 

(7-87) 

where Jx [ ~ m - ~  s-'1 represents the net current, C is the particle 
concentration, x is position, and x is the diffusivity constant [cm2/s] which 
describes how fast (or slow) an object diffuses. Concentration is defined as 
the amount of mass in a given volume represented in units of mol/cm3 or 
mollliter. The negative sign indicates that Jx is positive when the movement 
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is down the gradient, i.e., the negative sign cancels the negative gradient 
along the direction of the positive net current.  

Figure 7-4. Fick’s law 

Figure 7-5. Vector notation of the current in three dimensional space 

Fick’s law can also be written in terms of particle flux. , as 

dx
dDJ x  (7-88) 

where d /dx [cm-3 s 1] represents the flux gradient, and D [cm] is called 
the diffusion coefficient. Fick’s law can be written in vector form to analyze 
three dimensional space (see Fig. 7-5) 

( , ) ( , )J r t D r t (7-89)



NEUTRON TRANSPORT 303 
--t -t 

where: J(r,t)represents the neutron current density or the net flow 
vector of neutrons passing through a unit area perpendicular to the direction 
of neutron motion per unit time. Divergence of the neutron current density 
represents the net number of neutrons leakingfrom the unit volume per unit 
time (see next Section) and the term V@(r,t)represents the gradient of 
neutron flux in three-dimensional space. 

2.3 Diffusion Coefficient and Diffusion Length 

Neutron current density, neutron flux and the diffusion coefficient are 
correlated variables. In order to derive the relation for the diffusion 
coefficient which depends on the nuclear characteristics of the medium the 
following assumptions are made: 

There is no neutron sources in the medium of interest 
The medium is homogeneous, i.e. neutron cross section is independent of 
spatial position 
Angular neutron distribution in the medium is isotropic 
Neutron flux is nearly uniform in the medium 
The medium is considered to be infinite 

Figure 7-6. The formation of neutron current 

According to Fig. 7-6, the unit area dA, is located at the origin in the zy 
plane. The differential volume dV represents the volume from which 
neutrons will scatter through the area dA contributing a differential current 
flow in the negative z direction, dJ; . The net current flow in the z direction 
is obtained by subtracting the downward current flow in the z direction, dJ ;  
from the upward flow in the lower hemisphere, dJ: 
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The number of neutrons which are elasticaJly scattered per unit time from 
the differential volume dV placed at distance r from the origin is equal to 

where C, is the elastic scattering cross section and is not a function of 
position due to the assumption 2, however the neutron flux is position 
dependent. Because it was assumed that neutrons are scattered isotropically 
in the medium (assumption 3) the number of neutrons which will pass 
through the unit area dA is 

where dAcos8 repcesents the projection of the unit area dA onto the 
plane perpendicular to r or the effective surface area as seen from dV. The 
number of neutrons scattered through the area dA is dAcos 8 / 4 m 2  under the 
assumption that there are no interactions as neutrons travel from dV to dA. 
However, due to interactions between these two position in space, the 
number of neutrons that reach the area dA is the fraction exp(-C,,, r) of the 
total neutrons where El,, is the total neutron cross section. The remainder of 
neutrons are scattered or absorbed in the medium. In spherical coordinates, 
the elementary volume is defined as 

dV = r2  sin Bdrdedq (7-93) 

Assuming the medium is only weakly absorbing (E,,, - 2,) the number of 
neutrons passing through the unit area in the plane xy in direction z is 

Although flux is not known, under the assumption that it is nearly 
independent of spatial position (assumption 4), using the McLaurin series 
and by neglecting all terms except the first two, it follows 
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Index 0 denotes the origin point. In the spherical coordinate system 

x= r s inecosp  

y = r sin esin p 
z = rcos8  

It therefore follows that 

Assumption 5 states that the medium is infinite and the integration over r 
is from 0 to infinity reducing the above integral to 

Following substitution of the limits 

The upward current flow through the area dA from the lower hemisphere 
is obtained by integration as above with 0 limits from z to 727'2. Therefore, 
the number of neutrons passing through the unit area in direction +z is 

Thus the total net flow of neutrons in direction z is 
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J  = J ' -  J -=--  - 
Z Z Z  ( a m )  3C, az 0 

the net flow of neutrons through the areas in xz and in yz plane are 

The neutron current density (number of neutrons per unit time crossing 
unit area normal to direction of flow) is according to Fig. 7-5 

In this equation the flux is valid for any point in the medium not just the 
origin as previously assumed. In comparison with Eq. (7-89) 

where 4, represents the mean free path for neutron scattering. The 
diffusion coefficient is corrected for anisotropic scattering using the 
transport mean free path. If the average cosine of the scattering angle for 
collision in laboratory system (as explained in Section 3.3) is 

where A is the atomic mass number of the medium, the diffusion 
coefficient can be written as a function of the transport cross section, Crr 

Eq. (7-106) may therefore be written as 
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which, for a weakly absorbing medium, becomes 

Example 7.1 Diffusion coefficient 
Estimate the diffusion coefficient of graphite at l ev .  The scattering cross section 

at l e v  is 4.8 barns. 
For graphite A = 12, thus from Eq. (7-107) it follows 

The macroscopic scattering cross section for graphite is 

C, = No, = ( 0 . 0 8 0 2 3 ~ 1 0 ~ ~  a t / ~ m ~ ) ( 4 . 8 ~ 1 0 - ~ ~  cm2) = 0.385cm-' 3 

Example 7.2 Neutron transport mean free path 
The transport mean free path is a scattering mean free path which is corrected 

for the slightly larger distance travelled in the laboratory system due to preferential 
forward scattering. Calculate the transport mean free path for thermal neutrons in 
beryllium oxide (BeO), if p(Be) = 2.70 g/cm3, A(Be0) = 25.01, q,(Be) = 7 b and 
q(0) = 4.2 b. 

The atom densities are 

The average cosine of the scattering angle for collision in laboratory system, 
from Eq. (7-107), and the transport mean free path from Eq. (7-108) are 
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The diffusion coefficient divided by the absorption cross section has the 
dimension of the squared length. The square root of which is called the 
diffusion length, L 

Table 7-1. Diffusion parameters for neutrons at T = 293 K 
Moderator D [cm-'1 C, [cm-'1 L [cml ML [cm] 
Hz0 0.144 0.0189 2.75 5.6 
DzO 0.810 0.00007 161.0 11.0 
Be 1.85 0.00053 21.2 9.2 
Graphite 1.60 0.0003 1 52.5 18.7 

The diffusion length represents the distance a neutron passes from the 
point of thermalization to the point of absorption. The distance from the 
point where a neutron is born to the point where it is thermalized is called 
the moderation length, ML. It determines the optimum distance between 
adjacent fuel channels in a heterogeneous reactor (called the pitch). The 
moderator and diffusion lengths for few materials commonly used in thermal 
reactors are listed in Table 7-1. The small diffusion length of H20 is due to 
its high absorption cross section. If a light water reactor is over-moderated 
(the lattice pitch is large) it will result in increased neutron absorption. 
However, if a DzO moderated reactor is over-moderated it will have no 
significant effect on neutron economy. 
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2.4 Neutron Diffusion Theory 

2.4.1 One-Speed Neutron Diffusion Equation 

The exact interpretation of neutron transport in heterogeneous domains 
such as a reactor core is so complex that simplified approaches are often 
used. Though simplified, they are accurate enough to give an estimate of the 
average characteristics of neutron population in a given medium. The 
simplest form of neutron transport equation is the one-speed diffusion 
equation developed under the assumptions: 
1. neutrons are monoenergetic: average neutron energy and average cross 

sections for neutron interactions are selected; 
2. absorption in a medium is small: macroscopic absorption cross section is 

small in comparison with scattering cross section; 
3. neutron scattering is isotropic in the laboratory system: valid for neutron 

scattering with heavy nuclei, and not true for thermal reactor moderators 
(corrections must be applied); 

4. angular neutron distribution is isotropic: valid if neutron flux is nearly 
constant which is approximately satisfied far from the system boundary, 
neutron source or points of strong absorptions (if neutron flux gradient is 
large, there are preferable directions of neutron motion toward low 
neutron flux region). 
In a reactor core, neutrons are produced or lost through capture and 

leakage. Thus the net rate of change in neutron density per unit volume and 
time is 

- -, 
where S(r ,  t) is neutron source rate, Z,4(r, t) neutron absorption rate, 

and LE neutron leakage, per unit time and unit volume. LE represents the 
rate of neutrons flowing in a given direction per unit time through unit area 
(see Fig. 7-7) normal to direction of flow 

Neutron leakage per unit volume = did(;, t) = V . J(;, t) (7-1 14) 

Thus, Eq. (7-1 13) is re-written in the following way 
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Figure 7-7. Neutron leakage from an elementary volume 

Neutron diffusion through any material is the result of scattering 
interactions. In reactor analysis, it is assumed that neutrons do not collide 
with one another. This is valid because the neutron density is much lower 
than the atomic density of a medium. Due to nearly constant collisions, 
neutrons in a scattering medium travel zigzag trajectories. When considering 
a large number of neutrons assumed to be monoenergetic, there is an overall 
motion of neutrons from regions of higher to regions of lower neutron 
density (or neutron flux). This is the reason why Fick's law of diffusion is 
applied to define the net rate of neutron flow. Fick's law, Eq. (7-89), may be 
inserted into Eq. (7-1 15) to give 

which can be re-written as 

Under the assumption that the medium is homogenous, the diffusion 
coefficient becomes independent of neutron position and the leakage term 
reduces to 
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LE = -DV~~( ; ,  t) 

where V2 represents the Laplacian operator which is defined for various 
coordinate systems as 

a2  a2  a2  
Rectangular coordinate system: v = , + --i- + - (7-1 19) ax ay az2 

d 2  2 d 
Spherical coordinate system: V = - + - - (7-120) 

dr2 r d r  

d 2  1 d d 2  
Cylindrical coordinate system: V2 = - + -- + - (7-121) 

dr2 r dr dz2 

Combining Eq.(7-118) with Eq. (7-117), the one-speed diffusion 
equation for neutrons interacting with a homogeneous medium is 

The following cases introduce important simplifications to Eq. (7-122) 

Steady-state condition 

0v2@(;) + s(;) - %$(;) = 0 (7-123) 

Steady-state, non-multiplying medium (neutron source = 0) 

where 
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2.4.2 Solution to One-Speed Neutron Diffusion Equation in Infinite 
Medium 

The simplest case to demonstrate diffusion theory is diffusion of neutrons 
from a point source in a large infinite medium. Neutrons are emitted from 
such a source in all directions with equal probability giving a spherical 
symmetry in regard to the position of source. If r represents the distance 
from the origin where point neutron source is located, the one-speed 
diffusion equation in Eq. (7-124) expressed in spherical coordinates, 
becomes 

Introducing y = @ the above equation reduces to 

whose solution has the following general form 

Re-introducing the variable r, the solution becomes 

where A and C are constant determined from the boundary conditions. 
Far from the neutron source of intensity S the neutron flux must decrease, 
which determines the C constant to be zero: 

The total number of neutrons passing through the entire surface of a 
sphere whose center is the point neutron source is 4 m 2  J where 
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2
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r
LrDAe

dr
dDJ Lr  (7-131) 

The limiting value of the total number of neutron passing through the 
surface of the sphere as distance becomes zero is equal to the source strength 

2 /
20 0

1 /
lim 4 4 lim 4r L

r r
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S r J DA e DA

r
(7-132)

giving

4
S

A
D

 (7-133) 

and the solution for flux is thus 

/

4

r LS e
D r

 (7-134) 

Figure 7-8. Distance between a point of neutron source to a point of neutron absorption 

Neutrons travel a certain distance, r, during diffusion through a medium 
along which they collide until they are absorbed, creating a path similar to 
that shown in Fig. 7-8. The mean square of this distance is obtained from the 
neutron flux distribution from a point neutron source. In a differential ring of 
thickness dr placed r from the neutron source, there will be 

adrr 24 neutrons absorbed per unit time (number of neutrons absorbed is 
equal to the number of neutrons created in the system). This also represents 
the probability that a neutron will be absorbed at a distance r from the 
source. Thus 



and inserting Eq. (7-134) for the flux, it follows 
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(7-135) 

2.4.3 Solution to One-Speed Neutron Diffusion Equation in Finite 
Medium 

In order to solve the neutron diffusion equation for a medium of finite 
dimensions, or in the medium composed of two different materials, a set of 
boundary conditions are specified as follows 
a) At the interface between the two media, A and B, with different diffusion 

properties (neither of which is a vacuum) the neutron flux must be the 
same for both media (continuity of flux) 

where the subscript 0 denotes the interface plane between the two media. 
b) At a plane interface between two media (neither of which is a vacuum) 

the neutron currents are equal. Assuming the x - direction we can write 

c) In the case when one of the media is a vacuum (or air) the boundary 
conditions are different because there is no scattering from vacuum. In 
other words, the flow of neutrons exists only in one direction, toward 
vacuum. The boundary condition at the interface between the diffusion 
medium and the vacuum (or air) specifies that the neutron flux gradient 
vanishes at a certain point beyond the physical boundary, called the 
extrapolated distance or extrapolated boundary. The concept is 
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hypothetical because there is no indication that neutron flux is actually 
zero at that particular point 

0

0

,d
dx d

(7-139)

where d is the distance called the linear extrapolation distance (see Fig. 
7-9) and is equal to 0.71 tr (valid for plane surfaces). Diffusion theory gives 
the extrapolation distance to be nearly equal to 2/3 of tr (see Section 2.4.5). 

Figure 7-9. Extrapolation of neutron flux at the interface between diffusion medium and 
vacuum

2.4.4 Neutron Diffusion in Multiplying Medium 

The main interest in applying diffusion theory in neutron transport is to 
analyze the neutron population, neutron flux and power distribution in a 
reactor core. A reactor core is a finite multiplying medium with a sustaining 
fission chain reaction. As neutrons diffuse through the core they can be 
absorbed by fuel, moderator or structural materials present in the core; leak 
out from the geometrical boundaries of the reactor core; or act as a source 
for new neutrons to be born in fission reactions.  

In a critical (or steady state) reactor core, the number of neutrons 
produced by fission is the same as the number of neutrons lost by absorption 
or leakage in a given unit time. Thus we can define 

Infinite neutron multiplication factor which represents the number of 
neutrons produced per fission per one neutron absorbed in a medium 
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neutron production rate 
k, = 

neutron absorption rate 

In an infinitely large system the leakage is neglected, and the neutrons 
are lost only by absorption. However, in a finite medium, like a reactor 
core, neutrons are lost also by leaking through the geometrical 
boundaries and by absorption. The criticality condition is then defined in 
terms of the effective neutron multiplication factor: 

neutron production rate 
(7-141) 

= neutron absorption rate + neutron leakage rate ' 

If neutron production rate is S, neutron absorption rate A and neutron 
leakage rate LE, it follows 

which represents the probability that a neutron will be lost in a system by 
absorption. Since the alternative loss mechanism is leakage, this equation 
also represents the probability that a neutron will not be lost through 
leakage, i.e. it represents the non-leakage probability, Pnon-leak. Therefore 

In order for a reactor to be critical the infinite multiplication factor must 
be greater than unity. The neutron leakage is generally proportional to the 
surface area, SA, and neutron production is proportional to the volume, V. If 
the size of a system is expressed in unit of a 

LE SA a2 1 - 4-474-, 
S V a a  

The ratio between the number of neutrons leaked and number of neutrons 
produced is inversely proportional to the linear dimension of the finite 
multiplying system. Thus, by changing the size of the core, the leakage rate 
changes affecting the effective neutron multiplication factor to range 
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between 0 and k ,  .The infinite multiplication factor is a function of the 
materials present in the core (fuel, moderator, coolant, structures). The 
non-leakage probability is dependent on the reactor materials and its 
geometry (size, shape). For thermal neutrons, exactly k ,  new thermal 
neutrons is created per each neutron absorbed and thus the neutrons source is 
written 

Thus, assuming a homogeneous system and the steady-state condition, 
and applying one-speed diffusion theory, the diffusion equation can be 
written in a following form 

where 

The square root of Eq. (7-147) is referred to as the material buckling (B,) 
of the reactor core because it is a measure of the bending or the curvature of 
the spatial distribution of the neutron flux. The overall neutron production 
must balance the neutron absorption plus leakage during the steady-state 
operation of the reactor. The relation for material buckling can be rearranged 

Comparing Eq. (7-148) with Eq. (7-143) yields an expression for the 
non-leakage probability in a critical reactor 

Example 7.3 Material buckling 
Calculate the material buckling and thermal neutron leakage probability for a 

critical homogeneous reactor consisting of a mixture of 200 moles of graphite per 
mole of 5.5% enriched uranium fuel. The overall temperature of the reactor core is 



3 18 Chapter 7 

20 OC. The density of graphite and uranium are: pc = 1.6 g/cm3 and pu = 18.9 g/cm3. 
The microscopic cross section for thermal neutron scattering at carbon is 4.8 b and 
at uranium 8.3 b. The microscopic cross section for absorption in carbon 0.0034 b, 
in 2 3 5 ~  is 694 b and in 2 3 8 ~  is 2.73 b. The infinite multiplication factor is 1.2. 
(Adopted from "Basic Nuclear Engineering", A. R. Foster and R. L. Wright Jr., 
Allyn and Bacon Inc., 1968) 

The volumes of the uranium fuel, graphite moderator and the core are 

200moles Clmole U x 12g Clmole C 
Vc = = 1500cm ' mole C 

1.6g/cm3 

The atom densities of uranium, 2 3 5 ~ ,  2 3 8 ~  and carbon are 

- - 6 . 0 2 2 ~  10" atoms Ulg mole U 
= 3 . 9 8 ~  lo2' atoms U/cm3 mixture 

15 12.6cm31g mole U 

lo2') = 0 . 2 1 9 ~  lo2' u/cm3 mixture 

lo2') = 3 . 7 6 1 ~ 1 0 ~ ~ a t o m s ~ ~ ~ ~ 1 c r n ~  mixture 

N ,  = (200atoms~/atom~) x ( 3 . 9 8 ~  lo2' ) = 7 . 9 6 ~  a t o m s ~ l c m ~  mixture 

The transport macroscopic cross section for thermal neutrons in this mixture is 
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The average absorption cross section at the most probable neutron energy 
assuming I/V dependence in thermal reactors (see Chapter 6, Section 4.6) is 

Giving the material buckling and the neutron leakage probability as 
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2.4.5 Solution to One-Speed Neutron Diffusion Equation in Infinite 
Slab Bare Reactor 

The diffusion equation, Eq. (7-146), will be solved for an infinite slab 
reactor of a finite thickness in order to determine a criticality condition 
(directly dependent on the slab thickness). The slab is assumed to be infinite 
in the y or z direction, thus neutrons can leak only along the x direction 
through slab faces (Fig. 7-10); the neutron flow (neutron flux gradient) will 
exist only in the x direction. The flux falls off from the center toward either 
of two slab faces and falls to a zero value at the extrapolated distance. 

Figure 7-10. Infinite slab bare reactor 

For the half-size of the slab the distance where flux becomes zero is 
equal to 

where d is the extrapolated distance by which the geometrical boundary 
of the slab reactor core is extended. In the case of a bare reactor, neutrons 
leave the reactor geometrical boundaries and almost none scatter back into 
the core. Therefore, the return current is assumed to be zero 
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Assuming the extrapolation of flux is a straight line the slope is equal to 

Combining Eq. (7-153) and Eq. (7-152) gives the extrapolation distance 

as mentioned in Section 2.4.3. The most sophisticated transport theory 
predicts the extrapolation distance to be 0.71 4,. It is always much smaller 
than the size of a reactor and these two different values do not introduce 
significant error into flux estimates. 

The neutron flux in an infinite slab varies along the x direction. The 
diffusion equation reduces to an ordinary second-order linear differential 
equation 

If B~ is real and positive the general solution of this equation is 

The boundary conditions are: 

1. The neutron flux drops to zero at the extrapolated distance and is finite at 
the geometrical boundaries 

2. The neutron flux is symmetric about the origin 
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From the second boundary condition, the flux gradient is 

At the origin, the flux gradient is zero which eliminates the sine term, i.e. 
sinBx = 0. Since B is real and positive, C must be equal to zero; thus 

$(x) = A cos Bx (7-159) 

The first boundary condition gives 

Since constant A cannot be zero (in which case the flux would be zero), 
this equation is satisfied only if 

The various values of a. are called the eigenvalues 

Only the first value is used to define the flux in critical reactors, d B ,  (the 
fundamental mode). 

For a steady-sate critical infinite slab reactor it follows 

The value d u o  is called the geometric buckling. If the reactor is critical 
the material buckling must be equal to geometrical buckling 

The constant A in flux relation is an arbitrary value. However, at the 
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center of a slab reactor it is equal to the maximum value of neutron flux 

$(x = 0) = QZnax = A (7- 164) 

Example 7.4 Infinite slab reactor 
Calculate the thickness of a critical infinite slab homogeneous reactor consisting 

of a mixture of 200 moles of graphite per mole of 5.5% enriched uranium fuel. 
Assume that the overall temperature of the reactor core is 20 OC and that the reactor 
is critical. 

The density of graphite and uranium are: pc = 1.6 @m3 and pu = 18.9 &m3. 
The microscopic cross section for thermal neutron scattering at carbon is 4.8 b 

and at uranium 8.3 b. The microscopic cross section for absorption in carbon 0.0034 
b, in 2 3 5 ~  is 694 b and in 2 3 8 ~  is 2.73 b. The infinite multiplication factor is assumed 
to be 1.2. 

(Adopted from "Basic Nuclear Engineering", A. R. Foster and R. L. Wright Jr., 
Allyn and Bacon Inc., 1968) 

Since the reactor is critical the material buckling is equal to geometrical 
buckling, therefore 

2.4.6 Solution to One-Speed Neutron Diffusion Equation in 
Rectangular Bare Parallelepiped Reactor 

For the rectangular parallelepiped reactor core is shown in Fig. 7-1 1, Eq. 
(7-146) can be written as 

This equation is solved by the method of variable separation 
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Figure 7-11. Rectangular Bare Parallelepiped Reactor Core 

This expression indicates that the flux in the x, y or z directions is 
independent of that in other two directions. 

Differentiating the above equation yields 

Substituting these partial second order derivatives into Eq. (7-165) gives 

Dividing by XYZ reduces Eq. (7-168) to 
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Since each of the terms is a function of a single variable, the above 
equation may be written as 

where a, p and yare constants such that 

Since the derivatives are functions of only one variable, the partial 
derivative is replaced with a total derivative to give: 

X =AxcosaX + C x s i n m  

Y =Ay cos,8Y+Cy sin,@ 

Z=Az  cos yZ+C, s i n p  

The boundary conditions for the x direction are: 
1. Forx=ad2,X=O 
2. For x = 0, gradient of X is zero, aX 1 ax = 0 

Following the procedure as described for the infinite slab, it is obtained 

n 
Y =A, cos-y 

bo 

The flux and the geometrical buckling then can be written as 



$=XYZ=Acos - x  cos - y  cos -z (: 1 (; 1 (: 1 

In case of a cubic reactor, the geometrical buckling becomes 

Chapter 7 

(7-175) 

(7- 176) 

(7- 177) 

It can be understood that the extrapolated length of a side of a cubic core 
is larger than the olated thickness of an infinite slab of the same 
material by a factor 

2.4.7 Solution to One-Speed Neutron Diffusion Equation in 
Spherical Bare Reactor 

Figure 7-12. Spherical bare reactor 

A spherical configuration requires the minimum amount of fuel to 
achieve criticality because the leakage is minimum (the area to volume ratio 
is minimal compared to other geometries). In a spherical reactor, neutron 
flux varies along the radial coordinate (see Fig. 7-12). The Eq. (7-146) 
written in spherical coordinates become 
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This equation is solved by introducing y = @ similar to the solution of 
the one-speed neutron diffusion equation shown in Section 2.4.2 for a point 
neutron source. With the given substitution, Eq. (7-178) reduces to 

with a solution of the form 

The first boundary condition specifies that the flux must be finite at the 
origin of the sphere resulting in 

AcosBr A x 1  
lim - --=.. A=O 
r -10 y 0 

The secondary boundary condition requires that the flux becomes zero at 
the extrapolated radius 

The constant C must be non-zero to assure the existence of neutron flux. 
Thus, Eq. (7-1 82) can be satisfied only if 

The first value is a trivial solution and disregarded. The first non-zero 
value is a fundamental eigenvalue followed by the harmonic eigenvalues. 
The fundamental flux mode gives 
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Example 7.5 Spherical bare reactor 
Calculate the critical radius of a spherical homogeneous reactor consisting of a 

mixture of 200 moles of graphite per mole of 5.5% enriched uranium fuel. 
Determine the flux ratio between the center and the core boundary. For details see 
the Examples 7.3 and 7.4. 

(Adopted from "Basic Nuclear Engineering", A. R. Foster and R. L. Wright Jr., 
Allyn and Bacon Inc., 1968) 

The extrapolated radius and macroscopic cross section are 

Flux has its maximum value, (bmax , at the center of a spherical core 

Constant C is determined as follows 

C 0 CB cos Br 
lim 4 = lim -sin Br = - > lim 4 = lim = CB = 
r+O r+0 r O L'Hospitalmle 

r+O r-0 1 

4max C = -  ,$=ksinBr + 4max - Br - 0 . 0 5 6 6 ~  53.55 
= 27.4 

B Br 4 sin Br sin(0.0566 x 53.55) 

Notice that the angle is expressed in units of radian. 

2.4.8 Solution to One-Speed Neutron Diffusion Equation in 
Cylindrical Bare Reactor 

The geometrical buckling of the finite cylindrical bare reactor can be 
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obtained from the neutron diffusion equation 

If ro is the extrapolated core radius and zo is the extrapolated core height 
the flux and geometrical buckling are as follows 

2.4.9 Two-Group Neutron Diffusion Theory 

The one-speed diffusion equation is based on the assumption that 
neutron production, absorption and leakage occurs at single neutron energy. 
More accurate estimates are obtained with two group treatment according to 
which all neutrons are either in a fast or in a thermal energy group. The 
boundary between these two groups is set to 1 eV. 

Thermal neutrons diffuse in a medium and encounter absorption 
reactions that may cause fission or leak out from the system. Fast neutrons 
are lost by slowing down due to elastic scattering. 

The source for fast neutrons is thermal neutron fission. The source for 
thermal neutrons is provided by the slowing down of fast neutrons. 

The neutron flux in the two groups is 

loMeV _ 
Fast : @, (;) = I $(E,  r)dE 

l e v  

l e v  

Thermal : q2 (;) = I @ ( E , ; ) ~ E  
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Fast Energy Group 
E >  1 eV I 

I I Scattering 

I 
Ingroup scattering 

Figure 7-13. Schematic representation of two-group diffusion equation 

In the two-group approximation, the neutron multiplication factor is 
defined as follows (see Fig. 7-13) 

The diffusion equations for the two energy groups become 
Fast energy group 

First term describes fast neutron leakage which involves a fast diffusion 
coefficient. 
The second t rm represents the removal of fast neutrons by 
thermalization. 'a1 is the sum of the fission, capture and scattering (from 
group I to group 2) cross sections, and is called the removal cross 
section. 
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Fast neutron production is described by 1 )  representing the fast 
neutron source which depends on thermal neutron flux at the spatial 
positions where thermal neutrons cause fission (see Fig. 7-13). 
The infinite multiplication factor for a thermal reactor represents the ratio 
of neutrons produced in any generation to the neutrons absorbed in the 
proceeding generation (leakage is neglected if the system is infinitely 
large). 
Neutron loss is accounted for by resonance absorption during the slowing 
down process. Thus, for each thermal neutron absorbed, k ,  lp fas t  
neutrons are produced by fission ( p  is the resonance escape probabilcy, 
see Section 3). The number of thermal neutrons absorbed is C,,$,(r), 
thus Eq. (7- 19 1) becomes 

Thermal energy group 

The first term describes the leakage of thermal neutrons. 
The- second term accounts for thermal neutron absorptions. 
S, (r)  represents the thermal neutron source. 

-, 

If there are no resonance absorptions, C,,$l(r) would give the rate at 
which neutrons are transferred to the thermal group. 
Due to resonance capture, the probability that a fast neutron will be 
thermalized is p. Thus, the thermal neutron source depends on fast 
neutron flux, and Eq. (7-193) becomes 

Both equations are dependent on fast and thermal flux and thus 
represents a coupled system of equations. In addition, for a critical 
steady-state system the following equations from the diffusion theory are 
applied 

Note that the buckling is same for both energy groups because it depends 
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only on the core geometry for the critical system. By substituting Eq. (7-195) 
into Eq. (7-193) and Eq. (7-194), the following system is obtained 

The solution of these coupled equations is found by setting the 
determinant of the coefficients to zero (Cramer's rule) 

or: 

giving 

Equation (7-199) represents the two-group diffusion approximation for 
the critical bare reactor. In comparison with the one-speed diffusion equation 
there is one additional leakage term. 

Equation (7-199) can be rewritten as 

For large reactors for which B2 << 1, Eq. (7-201) reduces to 
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where M is migration length as explained in Section 3. 
The effective multiplication factor for finite systems thus becomes 

th fust 
= k- ' non- led  non-leak 

2.4.10 Multi-Group Neutron Diffusion Theory 

In reactors neutrons born in fission are fast. In thermal reactors, they 
slow down to lower energies due to scattering with the medium 
- If a medium consists of dominantly heavy nuclei, neutrons scatter 

through inelastic processes creating energy spectrum shifted toward 
lower energies. 

- If a medium consists of dominantly light nuclei, neutrons scatter through 
elastic processes resulting in thermal energy spectrum. 

- In both cases, neutrons possess a wide spectrum of energies that require 
more than one or two energy groups for accurate estimates. 
In a multi-group approach, neutrons are divided into a number of groups 

such that to every group corresponds an average energy and velocity with 
which neutrons diffuse through a medium until they are absorbed or due to 
slowing down removed to a lower energy group. 

The n-group diffusion theory is represented by the following series of 
equations 
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- 
D~V'@~ (;) - za14 (;) - 2 Z(1 -t h ) ~  (;) + S, ( r )  = 0  

h=2 

i - l  

+ E ~ ( h + i ) @ , ( ; )  = O  
h=l 

For each of these groups, the diffusion equation is written such that: for 
energy group i, C$ describes neutron loss (absorptions, Cai@ and removal to 
a lower energy group, Xi@).  

The source term in first energy group, S1, takes into account neutrons 
which are emitted with energies corresponding to that interval. In all other 
energy groups the source, Si, is defined as a sum of neutrons emitted from 
that source plus all neutrons that come from other energy groups. 

3. SLOWING DOWN OF NEUTRONS 

Neutrons are slowed down in both elastic and inelastic scattering 
collisions with the nuclei of the atoms in a medium. In each collision, the 
neutron transfers a portion of its kinetic energy to the target nucleus in the 
form of kinetic energy if the collision is elastic or excitation energy if the 
collision is inelastic. Inelastic scattering is dominant with heavy nuclei, 
while elastic scattering is dominant with light nuclei. Moderator materials 
have low mass numbers and remove a large amount of energy from neutrons 
in a single collision and are also weak absorbers. This is why in a fast reactor 
materials of low mass number are avoided thus keeping the neutron 
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population at a high average energy (the range where inelastic scattering by 
uranium or plutonium nuclei plays an important role). The one group 
neutron diffusion equation provides a basic understanding of neutron 
transport. 

Most of the neutrons produced in fission have energies in range of 1 to 2 
MeV. In collisions with the materials in a reactor core, neutron energies 
range from small fractions of eV to a few MeV. Thermal reactors 
incorporate moderator materials in order to reduce the neutron energies to 
the thermal region where fission is most likely to occur. In an accurate 
reactor analysis both elastic and inelastic scattering are analyzed. A simple 
mathematical description of the elastic scattering processes can be developed 
under the following assumptions 

target nuclei are at rest relative to the neutrons, and 
the nuclei are not bound in a solid, liquid or gaseous molecule. 
However, in the thermal region, the energies of the nuclei cannot be 

neglected in comparison with the neutron kinetic energies, and the scattering 
nuclei should be considered bound. In this condition, low energy inelastic 
scattering cannot be neglected. Also, neutrons can gain or lose energy in a 
collision. An increase in energy is called up-scattering, and a decrease is 
called down-scattering. 

The slowing down of a neutron from fission energies to roughly 1 eV is 
called moderation and the slowing down below 1 eV is called the 
thermalization. The following description of the neutron slowing down 
process refers to the moderation process for which the two assumptions 
stated above are acceptable. 

3.1 Elastic Scattering in the Moderating Region 

Elastic scattering in the moderating region is described by assuming that 
the colliding particles behave as elastic spheres, with the assumption that the 
target nuclei are stationary. In considering the scattering collision processes, 
two frames of references (Fig. 7-14) are used 

(a) The laboratory system (LS): scattering nucleus is at rest before the 
collision, and the neutron is moving toward the nucleus; after the collision, 
the neutron changes its direction of motion and velocity, and the nucleus 
moves from the rest position with some velocity. The viewpoint is that of a 
stationary external observer. 

(b) The center of mass system (COM): neutron and nucleus are stationary 
in the collision. The observer is located at the center of mass of neutron plus 
the nucleus (compound nucleus) and travels with the velocity of the 
compound nucleus. The center of mass is an imaginary point where the 
system is balanced. 
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Figure 7-14. Scatter in lab and center of mass systems  

Actual measurements are made in LS system, while the theoretical 
treatment is easier in the COM system. Since data are measured in the LS
reference frame and the theoretical predictions are made in the COM
reference system, a coordinate transformation is needed to compare theory to 
experiment. The both systems are shown in Fig. 7-14 

0 : initial neutron velocity in LS
0 = 0 : nucleus velocity in LS

C : compound nucleus velocity in LS
A : recoil nucleus velocity in the LS
 : recoil nucleus velocity in the LS
 : neutron scattering angle in LS with respect to original neutron 

direction
A1 : recoil nucleus velocity in the COM system 
 : scatterd neutron velocity of in the COM system 

 : neutron scattering angle in the COM system 
Laboratory system: Since the nucleus is stationary, its velocity is equal to 

zero and the momentum of a compound nucleus in LS is equal to the 
momentum of the incoming neutron 

0 0 ( )A Cm M m M (7-206)
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giving the velocity of the compound nucleus to be, 

Center of mass system: In order to follow the splitting of the compound 
nucleus it is convenient to transfer to the center of mass system. In this 
system, the observer travels at the velocity and direction of the compound 
nucleus after the collision. Thus, the velocity of the neutron and nucleus 
before the collision must be reduced by the velocity of the compound 
nucleus vc. The velocity of the compound nucleus itself will become zero as 
it will appear stationary after the collision (see Fig. 7-14). Thus 

The velocity of incident neutron 

The velocity of nucleus: -vc 
According to the conservation of energy law, the kinetic energy before 

the collision must equal the kinetic energy of the particles after the collision. 
The binding energy to form and break up the compound nucleus is the same 
and thus cancels out. The only energy to be conserved is, therefore, kinetic 
energy. The kinetic energy before the collision and available to the 
compound nucleus is the sum of kinetic energy of neutron and nucleus: 

Eliminating the target nucleus velocity from the above equation gives 

where T(LS)o represents kinetic energy of the incident neutron in LS. 
From the above equation it can be seen that the kinetic energy before the 
collision in the COM system for light nuclei is half of the incident neutron 
energy in LS, while for an interaction with 2 3 5 ~  (that creates 2 3 6 ~  as a 
compound nucleus) it is the fraction 2351236 of the incident neutron energy. 
Thus, the difference between these two systems is more evident for light 
nuclei. 

According to Fig. 7-14 the kinetic energy in the COM system is shared 
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between the scattered neutron and scattered nucleus flying away in opposite 
directions. Thus, the conservation energy law in COM gives 

The conservation of momentum equation gives 

By combining the last two equations it follows 

Laboratory system (LS): It is useful to now convert back to the LS in 
order to compare the kinetic energy of the scattered neutron with the kinetic 
energy of the incoming neutron. Conversion from the COM system to the LS 
system is depicted in Fig. 7-15 and shows the transfer of velocities from one 
system to another using the Pythagorean Theorem 

v 2  = (v, sin e)2 + (v, cos e + vc )2 (7-21 5) 

v = -  s i n e  )2 + ( ~ c o s e + -  
1 + A  1 

which gives 
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Figure 7-15. Diagram of velocities for conversion from COM to Lab system 

From this equation it is possible to obtain the ratio of kinetic energy of 
the neutron after collision to that before the collision 

This equation leads to the following conclusions 
This ratio reaches its maximum when 8 = 0, or a glancing collision. 
Therefore, in forward scattering, neutron energy is not changed 

The minimum ratio of energies is obtained for a head-on collision in 
which the neutron does not change its direction, or 8 = n 

In the example of hydrogen (A = I), the value of the defined parameter a 
becomes 
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indicating that in head-on collision with a hydrogen nucleus, the neutron 
energy after the collision will be zero. In other words, a hydrogen atom 
can cause a neutron to lose all of its energy in a single collision event. 
For beryllium atom for which A = 9 

indicating that a neutron will lose 36 % of its energy in a 
collision with a beryllium nucleus. This becomes a 
percentage for a heavy nucleus like 2 3 5 ~  

giving that only 2 % of the initial neutron energy will be 

single head-on 
much smaller 

lost in a single 
head-on collision. Thus, for heavy nuclei in which A >> 1, it is expected 
that a - 1 indicating, as shown in the example of uranium atom, that 
neutron energy after the collision is nearly equal to its energy before the 
collision. 

Example 7.6 Scattering of a neutron in COM and LS 
A neutron traveling through a medium is scattered by 9 ~ e .  If the initial neutron 

energy is 0.1 MeV and the scattering angle 45' in the COM system calculate the 
fraction of energy that the neutron will lose as well as the scattering angle in the LS? 

From 

it follows that the scattered neutron energy is 0.937 x 0.1 MeV = 93.7 keV. The 
fraction of energy neutron has lost in this collision is 
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From Figure 7- 15 it follows 

T(LS)  - A sin8 -- 
A + 1 sin y 

9 sin 45 
shy=--=0.657 + y=41.1° 

9+1 J0.937 

3.2 Energy Distribution in Elastic Scattering - 
Logarithmic Energy Decrement 

The energy that a neutron loses in an elastic collision with the nuclei of a 
medium is a function of medium atomic number and the scattering angle. 
The logarithmic energy decrement is defined as the logarithm of neutron 
energy per collision 

In the COM system the break up of a compound nucleus does not depend 
on the mode of its creation and neutrons scatter in random manner having 
equal probability for all directions (isotropic scattering, Fig. 7-16). The 
probability that a neutron will scatter into an angle between 6 and 6 + dB is 
the ratio of the area of the differential ring to the total area of the unit sphere 

2nsin &6 - sin a 6  
-- 

4 n  2 

The differential number of neutrons, dn, scattered into a differential angle 
is the product of the total number of neutrons, n, and the probability that 
neutrons will scatter into a differential angle between Band 6 +  dB 

sin &6 
dn = n- 

2 
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Figure 7-16. Isotropic scattering of neutrons in COM 

The differential number of neutrons, dn, multiplied by the logarithmic 
decrement 

and integrated from 0 to n will give the total logarithmic decrement for 
all n neutrons of the system 

This integral can be solved introducing the following change of variables 

A' + 2 A c o s 0 + 1  2 A  sin 0 d  0 
x =  =&=- 

( A  + I ) ~  (A + 1)2 

with the appropriate adjustment of the limits, Eq. (7-224) becomes 

The constant term can be rearranged in the following form 
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and the logarithmic decrement becomes 

The average logarithmic energy loss per collision is only a function of 
mass of the target nucleus and is not dependent on neutron energy; it is 
usually approximated with 

Since crepresents the average logarithmic energy loss per collision, the 
total number of collisions necessary for a neutron to lose a given amount of 
energy may be determined by expanding 5 into a difference of natural 
logarithms of the energy range in question. 

The number of collisions (N) to travel from any energy, Ehigh, to any 
lower energy, El,,, may then be calculated as 

If the medium is non-homogeneous, the effective or mean value for the 
logarithmic energy decrement is calculated as follows 

Example 7.7 Average number of neutron elastic collisions 
Calculate the number of collisions in ' ~ e  and 2 3 8 ~  required to reduce neutron 
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energy from 2Mev to thermal energies (0.025 eV). 
9 ~ e :  

Although the logarithmic energy decrement is a convenient measure of 
the ability of a material to slow neutrons, it does not measure all necessary 
properties of a moderator. How rapidly slowing down will occur in material 
is measured by the macroscopic slowing down power (MSDP) which is 
defined as the product of the logarithmic energy decrement and the 
macroscopic scattering cross section for the material 

MSDP thus represents the slowing down power of all nuclei in a unit 
volume of a moderator and does not give full information about material 
properties such as probability of scattering or absorption of neutrons. For 
example (see Table 7-2), helium gas would have a good logarithmic energy 
decrement but very poor slowing down power due to the small probability of 
scattering neutrons due to its low density. Another example is boron that 
again has a high logarithmic energy decrement and a good slowing down 
power, but it is a poor moderator because it has a very high probability of 
absorbing neutrons. 

The most complete measure of the effectiveness of a moderator is the 
moderating ratio (MR) which is defined as the ratio of the MSDP to the 
macroscopic cross section for absorption. The higher the MR, the more 
effectively the material performs as a moderator 
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For a single element this reduces to 

while for a mixture of two elements it becomes 

Table 7-2. Characteristics of moderators 
Moderator 5 N to MSDP MR 

thermalized 
Water 0.927 19 1.425 62 
Heavy water 0.510 35 0.177 4830 
Helium 0.427 42 8.87~10" 5 1 
Beryllium 0.207 86 0.724 126 
Boron 0.171 105 0.092 0.00086 
Carbide 0.258 114 0.083 216 

Relative merits of some moderator materials used in current thermal 
reactors are given in Table 7-2. Ordinary water has high 5 and a good 
MSDP. However because of 0.332 b absorption cross section it has the 
lowest MR of all moderators. The use of enriched fuel is thus required for a 
reactor to be critical. But the low cost and high availability are crucial 
factors in the wide use in the majority of nuclear power plant designs. 
Graphite is also widely used due to good moderation parameters and low 
cost. Heavy water has superior characteristics as a moderator, but is very 
expensive and therefore used in only a small number of reactor 
configurations. Helium is not used because of its low density while 
beryllium is avoided due to its high toxicity. 

3.3 Average Cosine of the Scattering Angle 

As described in Section 3.1, actual physical measurements are made in 
the LS system, while theoretical treatment is usually done in the COM 
system because it is simpler. In the COM system the scattering of neutrons is 
considered to be isotropic while in LS there is a preferential forward 
scattering and scattering is therefore anisotropic. This can be shown by 
deriving the relation for the average cosine of the scattering angle. 

In the COM system the average value of the cosine of the scattering angle 
can be calculated as the product of the number of neutrons scattering into an 
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angle between B and B + dB and cos 8 integrated from 0 to ~t divided by the 
total number of scattered neutrons 

This gives a value for the scattering angle in COM system of 90"; this 
means that an equal number of neutrons scatter forward and backward 
therefore proving that scattering is isotropic in the COM system. 

When transfer now to the LS system the scattering angle becomes (see 
Figures 7-14 and 7-15) 

The average cosine of scattering angle is 

For example, the average cosine of scattering angle for graphite indicates 
the scattering is nearly isotropic in LS for that material 

while scattering on hydrogen indicates strong forward scattering 

3.4 Slowing Down of Neutrons in Infinite Medium 

3.4.1 Slowing Down Density (Neutron Moderation) without 
Absorption 

All analyses presented in this section are valid for a steady state reactor, 
under the assumptions that there is no loss of neutrons by absorptions or 
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leakage since the medium is assumed infinite during the slowing down 
process. It is also assumed that the energy dependent relations are already 
integrated over the spatial coordinates (spatial dependence is given in 
Section 3.5). The no absorption assumption requires a moderator that does 
not absorb neutrons with energies greater than thermal energies. Another 
assumption is that the neutron source is provided inside the moderator to 
produce neutrons at a uniform rate and at a definite energy, S(E1). A sink is 
provided to absorb only neutrons which have slowed down to thermal 
energies. Therefore, at steady state there will be no accumulation of neutrons 
and the number of neutrons that enter any energy increment, dE, at given 
energy E will be exactly equal to the number of neutrons leaving it. The 
slowing down process is shown schematically in Fig. 7-17. 

The slowing down density, q(E), is defined as the number of neutrons per 
unit volume that pass a given energy E per unit time. The derivations which 
follow are given for energies far from the source energy. These solutions are 
called asymptotic solutions. 

Solutions applicable near the source are complex (with the exceptions of 
hydrogen moderator) and are called the transient solutions. Each neutron 
generated at El will be either scattered or absorbed. The scattering collisions 
will distribute neutrons uniformly over the energy range from El to aEl. The 
slowing down density at El is defined as the number of neutrons that slows 
down from El per unit volume and in unit time 

According to the assumption of no absorption in the system, the above 
relation reduces to 

In an energy increment dE' (see Fig. 7-17) lying in energy interval 
between Elaand E, the number of collisions per unit volume in unit time is 
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Monoenergetic source, S ( q  Direction of integration F p  increments 

Wa cc uEI 

Figure 7-17. Neutron slowing down in energy space 

If the fraction of neutrons that will have energy less than E after 
scattering from d E '  is 

then the number of neutrons passing an energy level E in unit volume per 
unit time, that originate from energy increment d E '  is 

Therefore, the slowing down density becomes 

A more explicit relation can be obtained for the slowing down density by 
recognizing that at steady state the number of neutrons scattered into the 
increment dE at E must be equal to those scattered out (since there is no 
absorption and no leakage of neutrons) 
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Since no neutrons are lost in an infinite non-absorbing medium at steady 
state, the number of neutrons slowing down past any energy is constant, or 
in other words the slowing down density is constant. The scattering cross 
section does not vary greatly in moderating energy region (see examples in 
Fig. 7-18) and the flux is proportional to IIE. 

1 .OE+04 

I 
-- 

I .OE-05 I .OE-03 1 .OE-01 1 .OE+OI I .OE+O3 1 .OE+O5 I .OE+O7 1 .OE+O9 

Energy (eV) 

Figure 7-18. Elastic scattering cross section in moderating energy region for 'H and "C 

Example 7.8: Slowing down of neutrons 
Neutrons of 1.5 MeV are introduced at the rate 2 x 10" n/cm3-s in an infinite 

slab of graphite. Calculate the number of elastic scattering collisions occurring per 
second in cm3 in the energy interval from 0.5 to 0.3 MeV. 

The average logarithmic energy loss per collision 

Since no absorptions or leakage are assumed, the only interaction neutrons may 
undergo is scattering with the nuclei in the graphite slab. Thus, the slowing down 
density equals the neutron source, i.e, the neutron rate at energy 1.5 MeV. Hence, 
we may write 



Chapter 7 

3.4.2 Lethargy 

The equations involving energy and energy changes may be expressed in 
terms of a quantity called lethargy. By definition, the lethargy is 

where Eo is an arbitrary starting energy usually taken to be 10 MeV. As 
neutron energy decreases the lethargy increases (see Fig. 7-19). Low 
lethargy media are such that the energy change after a collision is small. This 
is true for high mass nuclei. If El represents the neutron initial energy and E2 
neutron energy after the collision, the corresponding lethargies are ul and u2 
respectively, and then the lethargy change is given by 

Since the average value of InE11E2 represents the average logarithmic 
energy loss, 5 

A;={ (7-248) 

it can be also regarded as the average change in lethargy. As stated 
before, for the isotropic scattering in the moderating energy region of the 
COM system, 5 is independent of energy. That means that neutrons, 
regardless of their initial energy, must undergo on average the same number 
of collisions in a given medium to increase their lethargy by a specific 
amount (because the reciprocal value 115 represents the average number of 
collisions). 
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Eo initial energy (2 MeV) 
Eo 2MeV uo = 0 

El 1.5MeV : q = ln211.5 

E2 1.3MeV j ul= ln211.3 

i Neutron sdauing 
id"" 

Erk 0.025 eV z+k = h2E610.02 5 

Figure 7-19. Neutron lethargy distribution 

3.4.3 Slowing Down Density (Neutron Moderation) with Absorption 

In any actual situation neutrons are absorbed during the slowing down 
process. The slowing down density with absorption can be expressed as 

where q(E') is the slowing down density without absorption, and p(E) is 
the fraction of neutrons that escape capture while slowing down from E' 
(energy of the source neutrons) to E, and is called the resonance escape 
probability. 

For a homogeneous system assumed to be infinite with the fuel 
distributed throughout the moderator, the neutron flux is independent of 
position. The neutron absorption rate is then 

Absorption from E' to E = )I, (E"))(E")dEM 
E 

In order to determine neutron absorption it is necessary to know the flux 
distribution as a function of energy. That is difficult to determine exactly and 
some approximations are customarily introduced. One such approach is 
called the narrow resonance (NR) approximation. This approximation states 
that inside the resonance region, a neutron cannot be scattered from one 
energy to another. In other words, a neutron that enters the resonance region 
is either absorbed or is scattered to energy below the resonance. 

Neutrons reaching the energy interval dE within the resonances will be 
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only those scattered from higher energies. In the NR approximation, the 
number of neutrons entering this energy interval is independent of whether 
or not neutrons are absorbed in this region and it is equal to q(E) dE 1 E5, or 
S(E) dE / E c  Neutrons are lost from the energy interval dE by absorption 
and scattering. The loss rate is (CoF + Cs) $(E) dE, where EaF is the 
absorption cross section in the fuel (absorber) and Cs is the total scattering 
cross section of the fuel and moderator, all of which are functions of energy. 

In steady state, the number of neutrons entering an energy interval dE is 
equal to the number of neutrons which are lost 

giving the flux to be 

The presence of the absorption cross section in the denominator means 
that the neutron flux decreases in the resonance region. 

The resonance escape probability then becomes 

p(E) = exp [ - - 1 1 &s $1 
where the integration is over the resonance region energies. 
A further approximation is called the narrow resonance infinite mass, 

NRIM approximation in which the mass number of the absorber is assumed 
to be infinitely large. In such a case, the scattering cross section is that for 
the moderator only. An alternative expression for the resonance escape 
probability may be written in the following way 

where the scattering cross section and the average energy loss are 
assumed to be independent of energy. The integral in last equation is called 
the effective resonance integral, I and has the same dimension as the 
microscopic cross section. Thus, N$ has the dimension of macroscopic cross 
section. 
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Actual reactors are heterogeneous systems where fuel and moderator are 
physically separated. The fuel is present in distinct units called fuel rods that 
are spaced in a lattice array with the moderator region in between. If the 
neutron mean free path at given energy is less than or equal to the rod 
diameter, the probability that neutron will be absorbed in the fuel rod is 
large. This means that the flux at that given energy in the fuel rod will be 
lower than the flux in the moderator region. Resonance neutrons are largely 
absorbed in the outer regions of the fuel rods, especially if the resonance 
peak is narrow and high. As a result, nuclei in the interior are exposed to a 
very low neutron flux and the.amount of absorptions is small. This effect is 
called self-shielding. The net result is that the probability of resonance 
capture is less than in the case of a uniform distribution of the fuel within the 
moderator. Therefore, the resonance escape probability is larger in 
heterogeneous systems. Also, it increases with fuel radius. Another factor 
that increases the escape probability in a fuel region is that some neutrons 
are slowed down in the moderator region to energies below the resonance 
region and therefore they escape capture. Neutrons absorbed by resonance 
capture in a thermal reactor fuel region (i.e. 2 3 8 ~ )  are lost from the fission 
chain reaction. Thus, most thermal reactors are designed to maximize the 
resonance escape probability. For fuel rods placed far enough that resonance 
neutrons cannot pass directly between the rods, the rods are said to be 
"isolated". The resonance escape probability is then found to be 

p ( E )  = exp - NFVF [ SFlrvF +SMrMVM 

In closely packed or so called "tight" lattices, like in water moderated 
reactors, some resonance neutrons that would normally enter a fuel rod will 
be intercepted by adjacent fuel rods. The resonance flux is then less, on 
average, than it would be if the rods were well separated. Thus, each fuel rod 
in a tight lattice configuration is said to be partially "shadowed" by the other 
rods. The effective resonance integral is smaller, and thus the escape 
probability is larger. Corrections are made by introducing the Dancoff factor 
which depends on the spacing and radius of fuel rods and the fuel material 
cross sections. 

3.5 Spatial Distribution of the Slowing Down Neutrons 

3.5.1 Fermi Model 

The proceeding models were developed for an infinite medium in which 
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the neutron flux distribution was not a function of spatial coordinates. 
However, in reality the system has finite dimensions in which the ne- ron 
flux distribution is a function of energy as well as spatial position 4 ( 7  E, r . A 
useful approach in studying the spatial distribution of neutrons is to consider 
the slowing down density in the moderating region. Slowing down density 
can be expressed analytically only under certain approximations. A fairly 
simple analytical approach is'the so called continuous slowing down model 
or the Fermi model. In the Fermi model the following assumptions are made: 
1 .  The scattering of neutrons is isotropic in the COM system, thus the 

average logarithmic energy decrement, c, is independent of neutron 
energy. This also represents the average increase in lethargy per 
collision, i.e. after n collisions the neutron lethargy will be increased by 
nc units (see Section 3.4.2). 

2. Every neutron gains exactly 5 units of lethargy in every collision, i.e. 
each neutron is supposed to behave as an average neutron. Therefore, the 
only lethargy values possible in the moderating region are discrete values 
of n c  where n = 1, 2 ,3, etc. 

3. The lethargy is a continuous function, i.e. the steps in lethargy change are 
approximated by continuous change, see Fig. 7-20. 
The Fermi model is a reasonably good for describing neutron slowing 

down process in a material with a large mass number; because the average 
logarithmic energy loss is small (the spread of neutron energies after 
scattering is relatively small). Thus, the assumption that each neutron 
behaves like an average neutron is nearly accurate. In addition, since 5 is 
small, the steps shown in Fig. 7-20 are small in height but large in number. 
Therefore, it is acceptable to approximate the steps with the continuous 
curve. If neutrons slow down in materials of low mass number (like 
hydrogenous materials), the energy spread after collision is large and the 
average lethargy change is large. For example, in hydrogen it is possible that 
a neutron would lose all of its energy in a single collision. In this case, the 
Fermi model is inapplicable. 

The neutron conservation equation in a reactor for the energy range E 
and E + dE, assuming 

continuous slowing down of neutrons 
weak neutron absorptions in the moderator 
finite size of the reactor (leakage cannot be neglected) 

0 

may be written as 
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with the terms defined as follows 

dErED ,2 : number of neutrons with energy dE leaking out of 
the system 

dErEEa , : number of neutrons with energy dE being absorbed in 
the medium 

rES , : neutron source (number of neutrons slowing down out of dE as 
shown in Fig. 7-21. 

The source term can thus be expressed in terms of slowing down density 

dErEq
E

rEqrdEEqrES ,,,, (7-257)

which may be inserted into Eq. (7-256) to give 

0,,,2 dErEq
E

dErEEdErED a   (7-258) 

Figure 7-20. Continuous slowing down approximation  
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Figure 7-21. Definition of the neutron source term 

If the medium is a weak absorber, Eq. (7-258) reduces to 

In the absence of absorption, the change in neutron slowing down density 
is due to leakage. 

Combining Eq (7-259) with Eq. (7-245) gives 

Equation (7-261) can be simplified by introducing the variable, z, called 
the Fermi age 
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Fermi age does not have units of time but the units of distance-squared 
and represents the chronological age of neutrons. In other words, it indicates 
the time elapsing as neutrons travel away from their source (with energy Eo) 
to the point where its energy has been reduced to E. For neutrons of source 
energy (E = Eo) the Fermi age is zero, z = 0. The Fermi age increases as 
energy decreases (as a neutron slows down its age increases). 

The slowing down density can be now expressed in terms of Fermi age 

and is valid for a medium with no absorption of neutrons. However, the 
age equation can be modified for weakly absorbing medium in the following 
way: if q(E) is the neutron density in non-absorbing medium, then q(E)p(E) 
is the slowing down density in a medium in which there is weak absorption 
of neutrons, p(E) being the resonance escape probability. 

Example 7.9: Fermi age equation 
Find and interpret the solution for the Fermi age equation for a point source of 

monoenergetic fast neutrons (10 MeV) undergoing continuous slowing down in 
non-absorbing medium. 

The solution of the equation 

It represents the slowing down density for neutrons of age r a t  distance r from a 
point source of 1 nls. This expression has the form of a Gaussian error curve, thus 
distribution of slowing down densities for a given age is sometimes referred to as 



358 Chapter 7 

Gaussian distribution. 

Example 7.10: Fermi age for different moderators 
For water (density 1.0 &m3) and graphite (density 1.6 &m3) determine the 

Fermi age at 1 MeV. Assume neutrons initial energy is 2 MeV. 
Data: 0.: = 38b 0: = 3.76b 0,: = 4.75b 
Fermi age 

Water 

pNu - 1 ~ 6 . 0 2 3 ~ 1 0 ~ ~  
N H Z O  =-- = 3 . 3 5 ~ 1 0 ~ ~ a t j c m ~  

M 18 

Carbon 

pNU 1'6x6'023x1023 = 8~03x1022aVcm~ N =- - 
M 12 
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3.5.2 Migration Length 

The Fermi age of neutrons is related to the mean square distance 
travelled while slowing down. For thermal neutrons of age the A 
represents a measure of net vector distance travelled from the formation as 
fission neutrons to their appearance as thermal neutrons. The mean square 
distance which corresponds to the Fermi age is calculated as 

The neutron age is analogous to the square of diffusion length. The above 
equation means that neutron travels 116' the mean square distance in going 
from the lethargy level before collision (uo = 0), to lethargy level after the 
collision (u). It also represents the slowing down length. The sum of the 
square of the diffusion length and the age is called the migration area 

and its square root the migration length (see Table 7-3). The criticality 
equation in the slowing down approximation for a large reactor is 
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(7-267) 

Table 7-3. Migration lengths for most common moderators and thermal neutrons 
Moderator Diffusion length Slowing-down Migration length 

(cm) length (cm) (cm) 
Water 0.027 0.052 0.059 
Heavy water 1 .OOO 0.114 1.010 
Beryllium 0.210 0.100 0.233 
Graphite 0.540 0.192 0.575 

Example 7.11: Critical core dimensions 
Calculate the migration length, critical core radius and critical mass of a 

spherical reactor moderated by unit-density water. The core contains 2 3 5 ~  at 
concentration of 0.0145 g/cm3. 

Data: Fermi age is 27 cm2, thermal diffusion area 3.84 cm2, and buckling 2.8 x 
1 O - ~ C ~ - ~ .  

From 

Geometrical buckling for the spherical core will give the critical radius 

Thus the critical reactor core mass is 

4n 
rn, = 0.0145~- R: = 12.7kg 

3 

4. NEUTRON TRANSPORT IN THERMAL 
REACTORS 

4.1 Neutron Life Time in.Therma1 Reactors 

The neutron life time in a reactor is characterized through the fast fission 
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factor, fast non-leakage probability, resonance escape probability, thermal 
non-leakage probability, thermal fuel utilization factor, and reproduction 
factor used to define the six factor formula. 

Fast Fission Factor, E 
In a thermal reactor some fast neutrons before they slow down, will cause 

fission of both 2 3 5 ~  and 2 3 8 ~ .  At neutron energies above 1 MeV, most of the 
fissions will be in 2 3 8 ~  because of its large proportion in the fuel. Since each 
single fission event produces more than one neutron, there will be an 
increase in the number of neutrons available. This effect is described by the 
fast fission factor (Fig. 7-22) which represents the ratio of the total number 
of neutrons (kl+k2), to the number of neutrons produced by thermal fissions 
(k,). The fast fission factor is fixed once the fuel is fabricated. As the fuel 
ages (due to fuel burn up), the number of 2 3 8 ~  atoms is depleted by fast 
fissions (and consequently converted into 2 3 9 ~ ~ ) .  2 3 9 ~ ~  is fissionable with the 
epithermal neutrons. In further considerations, these fissions are included in 
the fast fission factor as fast fissions. Thus, the change of fast fission factor 
over the reactor core lifetime can be assumed to be insignificant. 

NEUTRON 
PRODUCTION 

I j  = 2.0 

f P ~ e , ~ P , f I j n  = n  
SLOWING 

from thermal 

Fast fission factor 
Fast non-leakage probability 

11 fast neutrons 
leaked out 

Reproduction s(1-P,)n 
factor 

absorbedwhile 
slowing d m  

ePf(l-P.,& 

RESONANCE 
ABSORPTIONS 

&,,= 0.889 

that reach 

~ P / p , w "  

Figure 7-22. Neutron full life cycle,kl= v~z~ / (D~B~+c ,~ ) ;  k2=~s1+2~2~f?l(~1~2+~ul)(~2~2+Cu2) 
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; 
In thermal reactor, where there is a significant amount of moderator 

material, fast neutrons will slow down. They also may leak out of the reactor 
core, or may proceed to slow down through interactions with the nuclei in 
media. The ratio of the number of fast neutrons which begin to slow down to 
the number of fast neutrons from all fissions is called the fast neutron 
non-leakage probability (Fig. 7-22). 

Resonance Escape Probabilitv, p,,, 
During the slowing down process neutrons may escape or may be 

captured in the resonance region. The number of neutrons which become 
thermalized to the number of neutrons that started to slow down represents 
the so called resonance escape probability (Fig. 7-22). 

Thermal Non-Leakage Probabilitv, Pth 
Of the total number of neutrons which are thermalized, a certain number 

will leak out of the core. The ratio of the number of thermal neutrons that are 
absorbed in the core to the number of neutrons that are thermalized is called 
the thermal non-leakage probability (Fig. 7-22). Like the fast non-leakage 
probability, the thermal non-leakage probability also strongly depends on the 
core size. As the core is smaller, the leakage is larger. 

Thermal Utilization Factor, f 
One of the most important factors in the life cycle of neutrons is the 

thermal utilization factor (Fig. 7-22). This factor takes into account 
absorption of thermal neutrons in materials other than the fissile fuel. It 
accounts for the control rods, chemical shim (boron), and thermal neutron 
poisons (the most important one being Xe). Thus, the thermal utilization is 
defined as the ratio of thermal neutrons absorbed in a fuel to the thermal 
neutrons absorbed in the entire core 

Reproduction Factor, q 
The reproduction factor represents the number of neutrons released in 

thermal fission per number of neutrons absorbed by fissile fuel (Fig. 7-22). 
Multiplication factor: keff 
Figure 7-22 also represents the full neutron life cycle, or the relationship 

of one generation of neutrons to the next. This relationship is given in Eq. 
(7-203) and is called the effective neutron multiplication factor. 

Assuming an infinite core size the criticality of the reactor will be 
determined through so called infinite multiplication factor since there will be 
no leakage of neutrons. For such a case, the infinite multiplication factor 
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represents the ratio of neutrons in the current generation to the number of 
neutrons in the previous generation. In actual finite systems it is necessary to 
take into account the diffusion of neutrons from the center of the reactor core 
toward its geometrical boundaries and account for neutron loss due to 
leakage. In such systems the effective multiplication factor is obtained as a 
product of the infinite multiplication factor and neutron non-leakage 
probability as defined in Eq. (7-203). 

For a reactor to be critical the effective multiplication factor must be 
equal unity. This means that the number of neutrons is constant in each 
generation and that the fission rate, and thus the reactor power, is maintained 
at the constant rate. With the keg greater than one the reactor power will raise 
exponentially and the reactor become supercritical. With the keg below unity 
reactor becomes subcritical and the number of neutrons in every coming 
generation decreases causing the reactor power to drop. 

The infinite multiplication factor must be greater than unity for the 
reactor to be critical to allow for: 

Loss of neutrons due to leakage 
Buildup of fission fragments with time as some of them have very large 
absorption cross sections that toward the end of fuel cycle will reduce the 
neutron population, and thus the reactor power 
Consumption of fissionable nuclei that are depleted by time and thus 
neutron population decreases toward the end of fuel cycle 

0 Changes in temperature and pressure in the core that may cause change 
in fission rates. 

Example 7.12 Infinite multiplication factor 
A bare spherical reactor is made of a homogeneous mixture of heavy water and 

2 3 5 ~ ,  with the composition that for every uranium atom there are 2000 heavy water 
atoms. Using the one-speed diffusion theory, calculate the total absorption cross 
section, the thermal utilization factor and the infinite multiplication factor if 

rj- = 2.06 0,235 = 678b D = O.87cm p,,, = 0.6 

x,D2O = 3 . 3 ~ 1 0 - ~ c m - '  o,DZo = O.OO1b 

For the homogeneous reactor the neutron flux is the same in the core regardless 
of the material type, thus 

fuel fuel fuel c, 4 v - c y f =  - -- - - 
Vother ~7 fuel fuel fuel + e r d  @mod v mod + C~ther other 

C, 4 v 



For the homogeneous mixture &= 1. 

k ,  = qesc fq = 1 x 0.6 x 0.997 x 2.06 = 1.232 

Example 7.13 Neutron generation doubling time 
If the effective multiplication factor is 1.1 how many generations of neutrons are 

required to double neutron population? If there are 1000 neutrons at the beginning 
(see Fig. 7-22) how many neutrons will produce 50 generations? 

After n generations there will be k$ neutrons produced. In order to double the 
number of neutrons 

The number of neutrons generated after 50 generations is 

meaning the initial number of neutrons is increased 117 times, therefore the total 
number of neutrons after 50 generations is 1000 x 1 17 = 1 17,000. 

4.2 Homogeneous and Heterogeneous Reactors 

The models used in the previous sections to describe the neutron 
transport and parameters of thermal nuclear reactors were related to a 
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homogeneous mixture of fuel and moderator. In a homogeneous reactor core - - 

the nuclear properties like neutron flux and average cross sections are 
spatially uniform. Although homogeneous systems are practical to use for 
theoretical analysis, in practice most reactor concepts are based on 
heterogeneous configurations. In heterogeneous cores the fuel and moderator 
are separated as all other structural and reactor control components. Thus 
nuclear properties change from one region to another such that for example 
the neutron flux can vary drastically over a very short distance. The basic 
reason for the spatial variation of neutron flux in heterogeneous reactors is 
because adjacent material regions can have different absorption cross 
sections or some zones can have materials with strong resonance peaks. The 
neutron flux is always depressed in a material region of high absorption 
cross section, like the control rods consisting of strong absorber materials 
(see Chapter 8). Materials with high resonance absorptions (i.e. 2 3 8 ~  or 
2 3 2 ~ h )  cause the neutron flux to be reduced in the resonance energy region. 
The neutron resonance absorption rate in 2 3 8 ~  is smaller in heterogeneous 
than in homogeneous reactors. The following is a brief summary of how 
some main reactor parameters which influence criticality conditions change 
in heterogeneous as opposed to homogenous systems. 

Homogeneous reactors 
In homogeneous reactors the fission neutrons are in immediate contact 

with the atoms of the moderator. The neutrons are moderated through elastic 
scattering before they are absorbed by the nuclei of the fuel. As a 
consequence, the neutron will not have the energy necessary to cause fission 
in 2 3 8 ~  (fast fissions), thus fast fission factor is nearly equal to unity, E G  1 
(the ratio of the total number of (fission, fast) neutrons slowing down past 
the fission threshold of 2 3 8 ~ ,  to the number of neutrons produced by thermal 
fission). 

The value of q  does not vary since it depends on the composition of the 
fuel alone. In the case of natural uranium for example q = 1.34. Assuming 
an infinite reactor in its critical state, it follows 

E=l 
q=1.34 
P e s c * f = k w l ~ * q  
Thus the value for p,,, f  = 1 / 1 1.34 = 0.746 assures for chain reaction 

to be maintained.This value can be varied by changing the ratio of moderator 
to fuel in a homogenous mixture. Examples of homogenous systems include 
natural uranium and graphite, natural uranium and D20, natural uranium and 
H20 and natural uranium and beryllium. 

Heterogeneous reactors 
In heterogeneous reactors the fuel rods are surrounded by moderator 

material. Fission takes place within the fuel and the neutrons are partially 
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moderated through inelastic scattering until they escape from the fuel and 
initiate the principal process of moderation via elastic scattering with the 
nuclei of the moderator. The separation which exists between two fuel rods 
determines how many elastic scattering collisions can take place. Since 
neutrons travel through a fuel region before they enter moderator region 
there is a slight gain in fast fissions given that the neutrons emitted within 
the fuel rod can cause fast fission with 2 3 8 ~  before escaping the rod. This is 
why the value of the fast fission factor, E, increases to some extent. The E 

value ranges between 1.02 and 1.03. 
The resonance escape probability p,,, increases significantly in 

heterogeneous systems as a result of two effects 
Pitch (distance between the fuel rods): if the pitch is large, the majority 
of the neutrons will be moderated below resonant energies before 
entering a fuel element. 
Fuel Self-Shielding: fast neutrons born in the fuel region are mainly 
slowed down in the moderator region. After being thermalized, neutrons 
may diffuse back into the fuel region. Those with energies that 
correspond to the peak resonance region of the fertile nuclei in the fuel 
region will immediately be absorbed. The most significant resonance in 
the case of 2 3 8 ~  is at energy of 6.7 eV with a peak cross section of 8000b. 
Therefore, absorptions at this energy level arise on the surface of the fuel 
rods, permitting the interior of the fuel to "see" no neutrons of epithermal 
energies consequently reducing the number of 2 3 8 ~  atoms available for 
resonant capture. The result is an improvement in the resonance escape 
probability since only a small fraction of fuel volume is involved in 
resonance capture. 
As a result of these two reasons, the usual value for resonance escape 

probability is about 0.9. 
The thermal utilization factor, f, decreases in heterogeneous cores 

because of the fuel self-shielding for the absorption of thermal neutrons. The 
general expression for thermal utilization factor can be written as 

If the flux in the moderator region and other components of the reactor 
core are larger than the flux in the fuel region, the thermal utilization factor 
will be reduced. The flux ratios in the denominator are called the thermal 
disadvantage factors. 

The flux distribution of fast and thermal neutrons in a heterogeneous 
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lattice is depicted in Fig. 7-23 (numerical example is given at the end of this 
Chapter). Fast neutrons are born in the fuel region from fission events. Once 
they reach the moderator region they are lost from the fast group because 
they slow down in elastic collisions and become thermal neutrons. The slow 
neutrons are therefore born in moderator region when as fast neutrons lose 
the energy. Fuel elements represent a strong sink (absorber) of thermal 
neutrons and thus the thermal flux drops in fuel region and peaks in 
moderator region. Conversely, the fast flux peaks in fuel region and dips in 
moderator region. 

Fuel rod 

Average fast 
neutron flux 

7 
Fast neutron 
flux 

Thermal neutron 
flux 

'~verage thermal 
- 

neutron flux 

Moderator 

Figure 7-23. Variation of thermal and fast neutron flux in a heterogeneous reactor fuel lattice 

4.3 Bare and Reflected Reactors 

The theory developed so far has referred to only bare reactors (reactors 
without a reflector). However, in reality the reactor core is usually 
surrounded by a neutron reflector made of a material which possesses good 
scattering properties. As a general rule, the reflector in thermal reactors is 
made of the same material as the moderator region; ordinary water, heavy 
water, or graphite. Since the majority of neutrons that reach the reflector 
region are returned to the core from scattering collisions, the size of the 
critical reactor core is smaller than in case of bare reactor. Therefore, the use 
of reflector decreases the mass of fissile material (fuel) required for a critical 
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system. 
The reflector also changes the flux spatial distribution as depicted in Fig. 

7-24. The figure shows 
The peak in the thermal flux distribution is at the center of the core and 
the dimensions of the core are assumed to be the same in both reactors, 
bare and reflected. The increase in thermal flux in the reflector beyond 
the core boundary is due to the slowing down of fast neutrons which 
escaped from the core into the thermal energy range. These thermal 
neutrons are not absorbed as quickly in the reflector as those in the core 
(because the reflector has no fuel and a much smaller absorption cross 
section). The flux gradient in the reflector near the boundary results in 
the return of thermal neutrons back to the core. This is why the flux is 
greater near the boundary in a reflected reactor in comparison to a bare 
reactor. Therefore, the reflector acts as a source of thermal neutrons due 
to the slowing down of fast neutrons (in thermal reactors). 
The average flux over the entire reactor core is increased in a reflected 
reactor. Since the power of a reactor is proportional to the neutron flux, 
the addition of a reflector increases power output. 

Reflec 

I - Actual boundry 
-From diffusion theory for bare reactor 

Figure 7-24. Neutron flux distribution in bare and reflected thermal reactors 

A reflector reduces the critical size of the reactor and therefore the fissile 
mass needed to produce a critical reactor. The decrease in critical dimension 
of a reactor with the reflector is called the reflector savings, 6 

where Ro is the bare core radius, and R is the core radius of a reactor with 
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the reflector. 
The reflector savings depends on the thickness of the reflector. The 

maximum reflector savings is obtained for the reflector thickness of about 
two migration lengths (assuming the reflector and moderator are of the same 
material). 

5. CONCEPT OF THE TIME DEPENDENT 
NEUTRON TRANSPORT 

All previous chapters were concerned with a reactor in which the flux (or 
neutron population) varied only with spatial position assuming a steady state 
reactor (reactor that operates at constant power). Analysis of how the 
neutron population varies with time is also very important and is called the 
transient behavior of the reactor. 

Issues of the time dependent reactor can be grouped as follows 
1. Behavior of the reactor in the non-critical regime (for example at startup 

of a reactor or when its power is to be raised a reactor has to be 
supercritical; also in order to shut down a reactor it must be subcritical). 
The study of the behavior of a neutron population in a non-critical 
reactor is called reactor kinetics. It assumes the analysis of the prompt 
neutron lifetime, the reactor without delayed neutrons, and the reactor 
with delayed neutrons, the prompt critical stage and the prompt jump 
approximation (all to be described in this chapter). 

2. Regulation of the degree of reactor criticality (reactor is usually regulated 
by the use of control rods or chemical shim, where control rods are parts 
of fuel assemblies, and chemical shim is usually a boric acid mixed with 
the water moderator or coolant). Insertion of control rods make the 
reactor subcritical (more neutrons are absorbed), while withdraw causes 
the neutron multiplication factor to increase. In the case of chemical 
shim, the reactor is controlled by changing the concentration of a neutron 
absorbing chemical in the moderator or coolant region. The basics of 
reactor control are described in Chapter 8. 

3. Temperature effects on neutron population (several of the factors 
defining the multiplication factor are temperature dependent) as 
described in Chapter 8. 

4. Fission product poisoning (accumulation of fission products takes place 
during the operation of reactor). Some fission products have very large 
absorption cross sections and their presents in a reactor can have a 
profound effect on the neutron population. Xenon-155 and Samarium- 
149 are particularly important in analyzing reactor fuel consumption as 
well as the condition of the reactor after shut down. This aspect is 
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described in Chapter 8. 
5. Reactor core properties during the life time of the core (fuel burnup and 

fission product formation affects the power level over time and thus 
power costs). Analysis related to this issue is called fuel management and 
is not addressed in this book. 
The departure from the steady state neutron population, or the percent 

change in multiplication factor is called reactivity 

keff - 1 - Akef 
Reactivity for a finite reactor: p = - - - (7-27 1) 

keff k ,  

k -1 Ak, 
Reactivity for an infinite reactor: p = -- = - 

k ,  k ,  

From these equations it can be understood that reactivity changes 
according to 

k , = 1  + p=O critical 

keff > 1  + p > O  supercritical 

keff < l  + p < O  subcritical 

Thus, reactivity is restricted to the following ranges from - - < p < 1 . 

5.1 Neutron Life Time and Reactor Period without 
Delayed Neutrons 

The total neutron lifetime accounts for the average time that a neutron 
spends in a reactor before it is absorbed or leaks out. In a thermal reactor it 
represents the sum of the slowing down time and the thermal (diffusion) 
time 

The slowing down lifetime, I,, is much shorter than the thermal neutron 
lifetime, lth. It represents the time that a neutron spends while slowing down 
from fission energies to thermal energies. The thermal or diffusion lifetime 
corresponds to the time that neutrons spend diffusing before they are 
absorbed. In an infinite thermal reactor the neutron lifetime is obtained as 
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the ratio of the absorption mean free path and the average neutron velocity 

The neutron lifetime in a finite thermal reactor is shorter than that in an 
infinite reactor. If N represents the number of neutrons per generation and 
Pnon-leok represents the non-leakage probability then N x Pnon-leak neutrons 
remain in the core to contribute to the effective neutron lifetime 

The slowing and thermal lifetimes in thermal reactors are shown in Table 
7-4 for a few most common moderator materials. The slowing down lifetime 
in fast reactors has no practical meaning. The total neutron lifetime in fast 
reactors is on the order of seconds. The neutron generation time is 
defined as the integral time until a neutron is produced 

where 4 represents the mean free path for neutron production. 
If G represents the number of neutron generations, or the number of 

neutron lifetimes, between 0 and time t that the effective multiplication 
factor is very close to unity. The neutron density and neutron flux in a 
thermal infinite reactor will change as follows 

where 
80) - initial (steady state) neutron flux 

k ,  = Ak, +1  
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Thus, the flux change can be expressed as 

for very small change in multiplication factor, Eq. (7-279) reduces to 

Table 7-4. Neutron lifetime in thermal reactors 
Moderator Slowing down time (sec) Thermal time (sec) 
Carbon 1.5 x 1.8 x 10.~ 
Water 5.6 x 10" 2.1 x 
Heavy water 4.3 1.4 x lo-' 
Beryllium 5.7 x 3.7 x 10" 

The reactor period taking into account only prompt neutrons (or e folding 
time), T, is defined as the time needed for flux to change by a factor e 

The reactor period must be long enough to prevent a dangerous excursion 
of reactor power. All reactors employ automatic safety systems to suddenly 
shutdown a reactor if the period becomes too short. The following example 
illustrates the importance of this concept. 

Example 7.14 Reactor period in the absence of delayed neutrons 
For the reactor described in Example 7.2 calculate how the reactor power 

changes if Akef = 0.01? 
From the data calculated in Example 7.2 
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This means every second the power will increase by a factor of e32. 

5.2 Delayed Neutrons and Average 

Tin= 55.72 sec 
;;l3r 

neutron 

stable 

delayed 
neutron 

Neutron Lifetime 

TLn= 22.72 sec 

1::k; 

128 neutron 

stable 

Figure 7-25. Delayed neutron precursors 

Not all neutrons are released at the same time following a fission event. 
Nearly 99 % of all neutrons are released virtually instantaneously (within 
about 10-l3 seconds) after the actual fission event. These neutrons are called 
prompt neutrons. The remainder of neutrons are released after the decay of 
fission products. These neutrons are called delayed neutrons (with respect to 
the fission event). They are emitted immediately following the first P decay 
of a fission fragment, known as a delayed neutron precursor. Although 
delayed neutrons represent a very small fraction of the total number of 
neutrons, they play an extremely important role in the control of the reactor. 
Beta delayed neutron emission is improved when the emitted neutron 
binding energy is minimum. This is true when the neutron emitter has an odd 
neutron number, just above neutron shell closure. In particular, P decaying 
nuclei with neutron numbers equal to 52 (N=50 closed shell) and 84 (N=82 
closed shell) are very important delayed neutron precursors as shown for 
8 7 ~ r  and '37~,  in Fig. 7-25. The delay is determined by the P decay constant. 
Delays vary from fractions of seconds to tens seconds. Probabilities for 
delayed neutron emission are on the order or less than 1 % per fission, or per 
prompt fission neutron. For example, the decay time of 55.72 seconds 
corresponds to the half-life of 8 7 ~ r  (see Fig. 7-25) and defines the first decay 
group. Similarly, the decay of 1311 is followed by the emission of neutron 
after 2.72 seconds specifies the second group. In total, there are six groups of 
delayed neutrons (see Table 7-5). 

Beta delayed neutrons are characterized by their yields Pi, relative to the 
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total neutron number per fission, and their decay constants q. The total 
delayed neutron yield per fission depends on the actual nuclear fuel that is 
used in a reactor, and is defined as 

Table 7-5. Prompt and delayed neutron groups and parameters for thermal reactors 
Group Energy for Group half- P, for 2 3 5 ~  f i  for 2 3 3 ~  for 239Pu 

2 3 5 ~  fission life for 2 3 5 ~  (%I (%I (%I 
(MeV) fission 

Prompt: 
0 - 2 - lo-3 99.359 99.736 99.790 

Delayed: 
1 0.25 55.72 0.021 0.023 0.007 
2 0.56 22.72 0.140 0.079 0.063 
3 0.43 6.22 0.126 0.066 0.044 
4 0.62 2.30 0.253 0.073 0.069 
5 0.42 0.61 0.074 0.014 0.018 
6 0.23 0.027 0.009 0.009 

Delayed neutrons do not have the same properties as the prompt neutrons 
released directly from fission. The average energy of prompt neutrons is 
about 2 MeV which is much greater than the average energy of delayed 
neutrons, - 0.5 MeV (see Table 7-5). The fact that delayed neutrons are born 
at lower energies has two significant impacts on the way they precede 
through the neutron life cycle: 

Delayed neutrons have a much lower probability of causing fast fissions 
than prompt neutrons because their average energy is less than the 
minimum required for fast fission to take place. 
Delayed neutrons have a lower probability of leaking out of the core 
while they are at fast energies, because they are born at lower energies 
and subsequently travel a shorter distance as fast neutrons. 
The average neutron lifetime in a thermal reactor is defined as 
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where crepresents the mean lifetime of a delay group defined as 
reciprocal of the decay constant of the delayed group. For example, for 2 3 5 ~  

(from Table 7-5) the average neutron life time for all neutrons (prompt and 
delayed) is 0.0843 seconds. This means that 0.641 % of the total number of 
neutrons increases the effective neutron generation time by a factor of 84. 

Example 7.15 Reactor period including all neutrons 
For the reactor described in Example 7.2 and Example 7.14 calculate how the 

reactor power changes if Akefl = 0.01 and all neutrons are considered. Use Table 7-5 
to estimate the delayed neutron contribution. 

In Table 7-5 the prompt neutron lifetime was assumed to be 0.001 seconds. In 
Example 7.14 that time was calculated to be 0.00031 seconds. Thus, the average 
neutron lifetime for all neutrons is 0.0836 sec. 

Thus every second the reactor power will change by factor e0.012 = 1.012. 

t delayed neutrons 

Figure 7-26. Effect of delayed neutron on power change in thermal reactors 

The effect of delayed neutrons on reactor power changes as shown in Fig. 
7-26 

Without delayed neutrons the power will rise exponentially and in a very 
short time (see Example 7.14) 
When the effect of delayed neutrons is taken into account, the power of a 
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thermal reactor changes as shown in Fig. 7-26 for Akeff > 0. At the very 
beginning the reactor behaves as if all neutrons were prompt. This is 
because the delayed neutrons are not yet effective. However, after a few 
seconds when delayed neutrons start to appear the rate of neutron flux 
and reactor power starts to level off. The rate of flux increase approaches 
the constant value determined by the stable reactor period. 
When Akeff < 0 the rate at which neutron power decreases is very fast and 
as soon as delayed neutrons appear the curve tends to flatten out. Since 
the flux is dying out, the short-lived delayed neutrons disappear 
completely and the curve approaches a slope with the value determined 
by the longest-lived neutron group. 

5.3 Diffusion Equation for Transient Reactor 

In an accurate reactor kinetics analysis all six groups of delayed neutrons 
are considered in detail (their production and decay). In order to simplify the 
complex calculation procedure, these six groups are considered as one group 
of delayed neutrons that appear from the decay of a single hypothetical 
precursor. The time dependent diffusion equation is given by Eq. (7-1 13). 

The neutron source, S, in a transient reactor takes into account both, 
prompt and delayed neutrons 

The fraction of prompt neutrons that slow down to thermal energies is 1 - 
p (see Fig. 7-27). Assuming the reactor to be infinite, this fraction 
contributes to the neutron source as 

where k,@, means that k, thermal neutrons will appear for each 
neutron absorbed. 

The delayed neutron source is defined with six delayed neutron groups 
that are for simplicity in this derivation assumed to all belong to one group. 
The contribution to the delayed neutron source is equal to the rate of decay 
for all precursors multiplied by the probability that delayed neutrons will 
escape resonance capture while slowing down, p,,, 

where A is the decay constant of the precursor, and C is the number of 
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delayed neutrons reaching thermal energies. For the reactor transient 
conditions near steady state (critical) the shape of the spatial flux distribution 
remains constant and only the magnitude changes. This eliminates the spatial 
dependence, allowing the diffusion transient equation to reduce to 

Leakage c-- 

Absorption r-- 

1 -P +Zf fissions + 
Delayed 
neutrons 

Figure 7-27. Neutron cycle chart in transient thermal 

Prompt 
neutrons 

Substituting Eq. (7-285) and Eq. (7-286) as well as assuming an infinite 
homogeneous reactor results in the following equation 

Absorption in 
fissionable material 

By replacing the neutron density in terms of neutron flux and introducing 
the prompt neutron lifetime, the above equation becomes 

I 

r-------" +zf r,n-P]v] * 
1 

1 1 

n thermal neutrons . 
r 
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In an infinite reactor composed of a homogeneous mixture of the fuel and 
moderator, the total macroscopic thermal absorption cross section is the 
average value of the sum of the fuel and moderator cross sections. 

The total number of neutrons absorbed anywhere in a reactor is equal to 
=,$per unit volume and unit time. Of this number, a fraction is absorbed in 
the fuel (fuel utilization, or in thermal reactors the thermal utilization factor). 

Therefore, there are f C.,$ neutrons absorbed in fuel per unit volume and 
unit time. As a result f C a q $  fission neutrons are emitted where q 
represents the average number of neutrons emitted per thermal neutron 
absorbed in fuel. Thus, the fission rate at which prompt and delayed neutrons 
are produced is 

The rate at which delayed neutrons are produced is 

1 
Pkm~,$--- (7-291) 

Pesc 

which represents also the rate at which fission fragments (precursors) are 
produced (since delayed neutrons appears as a result of precursors decay). 
The precursors decay at the rate k, thus 

dC 
- = pk,Ca$--- - 
dt 

AC 
Pesc 

Equations (7-289) and (7-292) represent a system of coupled differential 
equations to be solved simultaneously in order to obtain C and $. The 
solution can be found for the following specific example: assuming that up 
to time t = 0 the reactor is critical (therefore, k, = 1 ). If the small step 
change in reactivity is introduced after that time the question is: how will the 
thermal neutron flux behave with time? The solutions for the above two 
equations can be assumed in the form 
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where A and Co are the constants and w is a parameter to obtain. Inserting 
the assumed solutions into Eq. (7-292), it follows that 

Using the differential equation for neutron flux it follows 

Rearranging 

This is known as the reactivity equation for one group of delayed 
neutrons. The right hand side (RHS) of this equation can be plotted as a 
function of parameter w: 

If w = 0, the RHS = 0 (the solution curve will pass through the origin as 
shown in Figure 7-28). 
For w + f - , t h e R H S  +1. 
When &=-A or w=-l/l,,,,theRHS +m.  

Since the reactivity can be positive or negative, there are two roots, 6.1, 

and w2. 
Therefore, the flux can be represented with 

From Fig. 7-28 it can be observed 
When reactivity is positive ( p  > 0) then w, is positive and w2 is negative. 
Thus, as time increases the second term in the flux equation dies out and 
the flux increases as ewl'. 
When the reactivity is negative ( p  c 0) then both roots are negative. With 
time, the second term will die out faster than the first term because u2 is 
more negative than w, . Thus, the flux will decrease as em'' .  
From these considerations it can be concluded that in either case, positive 

or negative reactivity, the flux will approachewl'. The reciprocal of q is 
called the reactor period or the stable period. 

The one group delayed neutron reactivity equation can be generalized to 



include all six delayed groups 

Chapter 7 

(7-298) 

I 

Figure 7-28. Reactivity equation for one group delayed neutrons 
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Using the same analysis as for the one group delayed neutron reactivity 
equation a similar plot can be obtained (see Fig. 7-29). In this case, however, 
there are seven roots for either positive or negative reactivity. The flux is 
given as a sum of exponentials 

ttt eAeAeA 721
721 ... (7-299)

With increasing time flux again approaches te 1  since all other exponents 
die out fast.

5.4 The Prompt Jump Approximation and Inhour 
Formula 

The amount of reactivity necessary to make a reactor prompt critical 
corresponds to the prompt neutrons’ multiplication factor (see Fig. 7-30) 

11 effk (7-300)

Figure 7-30. Flux change with the step reactivity insertion 
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It follows that the reactivity corresponding to a prompt critical reactor is 

and is used to define the unit of reactivity known as the dollar, $. As 
shown in Table 7-5 the value of P varies with the fuel type and thus the 
dollar is not an absolute unit. 

Example 7.16 Reactivity in dollars 
Calculate the reactivity of a homogeneous 2 3 S ~  reactor if it suddenly becomes 

supercritical with kef = 1.005. 

The exact computation of the early response of the reactor to a sudden 
change in reactivity is complex. However, under certain assumptions it can 
be significantly simplified. One such approach is called the prompt jump 
approximation and is based on the assumption that the concentration of the 
delayed neutron precursors does not change over the time following a 
sudden decrease or increase in neutron flux. 

With time, as explained in previous section, the second term in Eq. 
(7-297) will die out quickly and the flux will decrease or increase with the 
reactor period T. Exact calculations predict that the constant A:! is negative 
for positive reactivity and positive for negative reactivity. Therefore, the fast 
die out of a negative term will give a sudden rise in flux following the 
insertion of positive reactivity (see Fig. 7-30). On the other hand, the fast die 
out of a positive term will give a sudden drop in flux for negative reactivity 
insertion. With the assumption that the delayed neutron precursor 
concentration does not change over the time during the sudden decrease or 
increase of the neutron flux it follows 

It is also assumed that the infinite reactor was originally critical. The flux 
value in the above equation is the flux prior to a sudden change in reactivity. 
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Therefore, 

where k ,  is the multiplication factor after the reactivity change. The 
solution is 

or introducing the reactor stable period 

Eq. (7-304) becomes 

The condition for a reactor to be less than prompt critical is that Eq. 
(7-300) be less than one. The two exponential terms in Eq. (7-306) will die 
out with a reactor period as given by Eq. (7-281); which is the reactor period 
taking into account only prompt neutrons (see Section 5.1). Thus 

where k ,  = 1 /(I - p) .  
The above equation can be analyzed for the following two cases: 

a) Positive reactivity change: this is an example of the reactivity required to 
increase the reactor power. This increase is usually small and takes a 
short period of time. For the example of a thermal reactor fuelled with 
2 3 5 ~  the time is less than - 2 min for a reactivity insertion of 0.0006. 
Thus the flux will change according to 
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This result indicates that the prompt jump in flux is usually negligible 
and can be assumed to rise from the initial value with the stable period. 

b) Negative reactivity change: introduced whenever a reactor needs to be 
shutdown. The negative reactivity insertion can thus be very large. For 
example, if 20 % in negative reactivity is suddenly introduced into a 
reactor fuelled with 2 3 5 ~  (,8 = 0.0065), the flux will drop by -4% of its 
initial value 

The reactivity can be also expressed in terms of the inverse hour, or 
"inhour" unit. The inhour reactivity is defined as the reactivity necessary to 
make the reactor stable period equal to 1 hour. The general inhour formula 
for a finite reactor including all six groups of delayed neutrons is 

NUMERICAL EXAMPLE 

Method of Characteristics Solution to Neutron Transport in Nuclear 
Reactor Assembly Geometry 

This numerical example illustrates the computational method of 
characteristics solution to the neutron transport equation. A representative 
geometry of a complex reactor assembly is selected to show the distribution 
of neutron flux and reaction rates as a function of neutron energy group and 
spatial coordinates. The method of characteristic solves an integro- 
differential form of the transport equation along straight lines throughout the 
geometric domain in a discrete number of spatial directions and for discrete 
number of energy groups. These straight lines are interpreted as neutron 
trajectories similar to the Monte Carlo neutron trajectories. The method itself 
requires fine spatial subdivision of the geometrical domain into so called 
flat-flux zones where the material properties are assumed to be constant. The 
following example is based on the methodology developed in the AGENT 
code and the list of references is provided for further reading for those 
interested in computational neutron transport modeling. 

The selected example is a two-dimensional assembly consisting of 
17x17 lattice with the square fuel pin cells, as shown in Fig. 7-31. The side 
length of every fuel-pin cell is 1.26 cm and every cylinder is of radius 0.54 
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cm. The spatial fine-mesh flux distribution for each of energy regions is 
shown in Fig. 7-32 to 7-38, while neutron absorption rate is shown in Fig. 7- 
39 to 7-45. Fig. 7-46 shows the absorption rate integrated over all energies. 

UO, Fuel 

Figure 7-31. Fuel assembly geometry modeled with AGENT code 
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Figure 7-32. Neutron flux distribution for energies from 13.53MeV to 20.00MeV 

o n 

Figure 7-33. Neutron flux distribution for energies from 9.12keV to 13.53MeV 
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Figure 7-34. Neutron flux distribution for energies from 3.93eV to 9.12keV 

Figure 7-35. Neutron flux distribution for energies from 0.63eV to 3.93eV 
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Figure 7-36. Neutron flux distribution for energies from 0.15eV to 0.63eV 

.. .. . . . . '.. 

0 0 

Figure 7-37. Neutron flux distribution for energies from 0.057eV to 0.15eV 
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Figure 7-38. Neutron flux distribution for energies from O.OOeV to 0.057eV 

Figure 7-39. Absorption rate distribution for energies from 13.53MeV to 20.00MeV 
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Figure 7-40. Absorption rate distribution for energies from 9.12keV to 13.53MeV 

0 0 

Figure 7-41. Absorption rate distribution for energies from 3.93eV to 9.12keV 
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Figure 7-42. Absorption rate distribution for energies from 0.63eV to 3.93eV 

Figure 7-43. Absorption rate distribution for energies from 0.15eV to 0.63eV 
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0 -  0 

Figure 7-44. Absorption rate distribution for energies from 0.057eV to 0.15eV 

0 0 

Figure 7-45. Absorption rate distribution for energies from O.OOeV to 0.057eV 
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Figure 7-46. Absorption rate integrated over all energies 

PROBLEMS 

7.1 Calculate how many kilograms of 2 3 5 ~  are in 150 kg of U30s. 

7.2 Calculate the energy in eV for hydrogen atom moving at a speed of 2200 
mlsec. Compare it to the energy of thermal neutron traveling at the same speed 
at the room temperature (293 K). 

7.3 How much power will be produced from the spontaneous fission decay of 1 
mg of 2 5 6 ~ m  (half-life is 158 min)? Assume that each fission event would release 
220 MeV. How much of 2 3 5 ~  would be needed to produce 6 MW of power? 

7.4 Calculate the neutron density in a thermal reactor with the neutron flux of 
1012 n/cm2sec. How does this value compare with the particle density in a 
volume of 1 cm3 at standard conditions and how with the number of hydrogen 
atoms in water? 
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7.5 Using on-line data for neutron cross sections (htt~:Natom.kaeri.re.kr) 
calculate the scattering mean free path for thermal neutrons in graphite, lead and 
beryllium. Discuss the scattering cross section dependence on material type and 
neutron energy. 

7.6 If the average neutron flux is 1013 n/cm2sec calculate the average thermal 
power of the reactor with 5 % enriched uranium fuel of weight 150 kg. The 
uranium density is 18.7 g/cm3. Use the on-line data library to read necessary 
cross sections. 

7.7 Calculate the probability that a 2MeV neutron will undergo first collision in 
319 inch dia. U02 fuel rod enriched to 4 %. Assume that the neutron originated 
in the center of the rod and travels radially. The fuel rod has density which is 94 
% of theoretical fuel density (equal to 10.96 g/cm3). 

7.8 Calculate the neutron flux and neutron current density if two beams of 
neutrons are traveling in the same direction down to same guide tube: (a) beam 
1: neuron density is 5 x lo7 n/cm2 and neutron energy is 10 keV; (b) neutron 
beam 2: neutron density is 2 x 10' n/cm2 and neutron energy is 1 eV. How do 
these values change if neutron beams travel in opposite direction? 

7.9 Show all steps in deriving the solution to the diffusion equation for a point 
neutron source placed in an infinite large medium. 

7.10 A large bare reactor has the infinite multiplication factor of 1.022. The 
neutron diffusion length is 35 cm. Determine and compare the critical volumes 
of the following reactor shapes: sphere, cube, cylinder with height twice its 
radius, and rectangular parallelepiped having a = b = c14. 

7.1 1 For the homogeneous one-speed reactor of cylindrical configuration derive 
the formula to obtain its minimum volume (mass). Discuss the values in terms of 
reactor buckling. 

7.12 Calculate the non-leakage probability for the bare cubic homogeneous 
reactor with diffusion length of 10 cm and a = b = c = 100cm. Assume the 
absorption cross section of 0.1 cm-'. 

7.13 Determine the number of elastic scattering events occuring per 1 cm3 in the 
energy interval from 0.5 MeV to 0.3 MeV for neutrons of 1.5 MeV passing 
through an infinite slab of graphite at the rate of 2 x 1015 n/cm3sec. 
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7.14 How many collisions are needed to slow neutrons from 2 MeV down to 
thermal energy region in Be and D moderators? 

7.15 Calculate the critical core radius and the critical mass of a spherical reactor 
moderated and reflected by water. The 2 3 5 ~  fuel density in a core is 0.0145 
g/cm3. How does critical mass of the bare reactor compare to the one with the 
reflector? 

7.16 A homogeneous, spherical, bare reactor of volume 250 m3 is composed of 5 
% enrichment 2 3 5 ~  and graphite. Using the six factor formula, calculate kefl for 
the given data at a thermal energy: 
Uranium-to-moderator ratio: 5: 1 
Graphite density: 2267 kg/m3 
Graphite molar weight: 12.0107 g/m 
Uranium density: 19050 kg/m3 
Graphite microscopic absorption cross section: .009 b 
Graphite microscopic scattering cross section: 10 b 
Uranium-238 microscopic absorption cross section: 90 b 
Uranium-238 molar weight: 238.0507847 g/m 
Uranium-235 microscopic total absorption cross section: 360 b 
Uranium-235 microscopic fission cross section: 270 b 
Uranium-235 molar weight: 235.0439242 g/m 
v =  2.2 

Pesc = 1 
&= 1 
Pf= 1 

7.17 In a thermal nuclear reactor at the beginning of its life for every 1000 
neutrons, 

500 neutrons are absorbed in 2 3 5 ~  

225 neutrons are absorbed in 2 3 8 ~  

125 neutrons are absorbed in coolant and cladding, and 
150 neutrons leak out from the geometrical core boundaries. 

Calculate the multiplication factor for this reactor if v  = 2.43. By definition the 
conversion factor represents the ratio of number of fissile nuclei produced to the 
number of fissile nuclei lost. What is the conversion ratio value for this reactor? 

7.18 Inserting the control rods into the thermal reactor from the Problem 7.17, 
the absorption in other materials increases such that: 

450 neutrons are absorbed in 2 3 5 ~  

2 15 neutrons are absorbed in 2 3 8 ~  

185 neutrons are absorbed in coolant, control rods and cladding, and 
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150 neutrons leak out from the geometrical core boundaries. 
Calculate the multiplication factor for this reactor. 

7.19 The simplest form of neutron diffusion equation for thermal neutrons is 
one-speed theory. What are the assumptions upon which this theory is valid? 

7.20 Write a computer program to follow the histories of 100 neutrons starting 
with energy 100 keV and slowing down to 10 eV in graphite (density 1.6 g/cm3): 
absorption cross section is zero, scattering cross section is 4.8 b. 

7.21 Repeat the problem 7.20 but use water instead with scattering cross section 
on hydrogen equal to 20 b and oxygen equal to 4 b. 

7.22 Repeat previous two problems by including the absorption of neutrons. 
Assume that the cross section for absorption in carbon is 0.004 b, in hydrogen is 
0.335 b and in oxygen is 0.002 b. 

7.23 A reactor is critical at a power level of 400 MW. How long it will take to 
reach the power level of 3300 MW on a stable period of 100 seconds? 

7.24 Using the one group delayed neutron equation calculate how long it would 
take to increase the power of a reactor by 10 % with the reactivity addition of 
0.02 % 6k/k? Assume that the reactor is critical before the addition of reactivity 
with thermal neutron lifetime of 5 x sec. 

7.25 Calculate the effective multiplication factor for the 2 3 5 ~  reactor having 
reactivity of - l$. If fuel is replaced with 2 3 9 ~ ~  what is the multiplication factor 
value? 

7.26 Calculate the new stable period if control rods inserted into a supercritical 
reactor with the stable period of 20 sec add - 0.01 % 6klk to the reactivity. 
Assume thermal neutron life time is 0.0001 sec. 

7.27 Calculate the size of a thermal bare spherical reactor containing 2 3 5 ~  and 
water in the atom ratio of N(water) / N ( ~ ~ ~ u )  = 198 if the neutron spectrum 
follows Maxwellian distribution at 20 C. How does result change if temperature 
is changed to 300 C? 

7.28 A slab of graphite contains a plane neutron source in the center. The slab is 
in a large pool of water. The albedo (reflection coefficient) of water is defined as 
J,,, / Jh where J represents the neutron current. Evaluate the albedo if the slab is 
60 cm thick. Assume that the source produces thermal neutrons. 
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NUCLEARREACTORCONTROL 
Methods of reactor control, Fission product poisoning and 
Reactivity coeflicients 

"There are two possible outcomes: If the result confirms the hypothesis, 
then you've made a measurement. If the result is contrary to the hypothesis, then 
you've made a discovery". Enrico Ferrni (1 901 - 1 954) 

1. METHODS OF REACTOR CONTROL 

In a reactor of given volume in which fission is caused by neutrons of 
specified energy, the thermal power is proportional to the neutron flux and 
macroscopic fission cross section. As the reactor operates, the macroscopic 
cross section decreases as number of fissile nuclides decreases. However, 
over an essentially short period of time, the cross section remains constant, 
and the power is assumed to change only with neutron flux. 

In most situations a reactor is controlled by varying the neutron flux. 
Among the general methods available, the insertion and withdrawal of a 
neutron absorber is most commonly used in power reactors. Materials used 
as a control absorber have large absorption cross sections, like boron, 
cadmium or hafnium. Strong absorbers in a core compete with fissile 
material for neutrons. In other words, neutrons which are absorbed by the 
controller are no longer available to induce fission, thus reducing the power. 

1.1 Control Rods 

The change in reactivity caused by control rod motion is referred to as 
control rod worth. The maximum effect (insertion of the most negative 
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reactivity) of a control rod is at the location in the reactor where the flux has 
its maximum value. Control rods are used to: 

Change reactivity in order to lower or elevate the reactor power placing 
it on a stable period - rod worth is defined as the magnitude of reactivity 
required to give the observed period. 
Keep reactor critical by compensating for changes over reactor 
operating time - rod worth is measured in terms of change in neutron 
multiplication factor for which the rod can compensate. 
Control rods can be inserted fully or partially. In either of these two cases 

the neutron flux is perturbed and reactor power changed. The following two 
sections address the effects of control rod insertion and withdrawal on 
fission rate, reactor flux distribution and the resulting power change. 

1.1.1 Effect of Fully Inserted Control Rod on Neutron Flux in 
Thermal Reactors 

Figure 8-1. Effect of a control rod on flux perturbation 

The material used for the control rods varies depending on reactor 
design. Generally, the control rod material should have a high absorption 
cross section as well as a long lifetime in the reactor (not burn out too rap- 
idly). A control rod which absorbs essentially all incident neutrons is 
referred to as a "black" absorber and generates large flux depression (see 
Figure 8-1). A "grey" absorber absorbs only a fraction of incident neutrons. 
While it takes more grey rods than black rods for a given reactivity effect, 
the grey rods are often preferred because they cause smaller flux depressions 
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in the vicinity of the rod. This leads to a flatter neutron flux profile resulting 
in a more even power distribution across the core. Since the thermal neutron 
flux density generally peaks in the center of reactor core, this is where 
high efficiency control rods are generally placed. 

A bare cylindrical reactor which is critical with control rods removed 
may be described by the one-speed neutron diffusion equation 

The multiplication factor, which is equal to unity, is given by 

If a strongly absorbing control rod is fully inserted into the core the 
neutron flux will change as shown in Fig. 8-1 due to high neutron absorption 
in the rod. The flux distribution can be described as 

When the control rod is inserted the multiplication factor changes as 

Notice that the core buckling changes with control rod insertion and the 
change in multiplication factor will give the reactivity 

The control rod worth, p,, by definition, is equal to the magnitude of this 
reactivity change 

In order to obtain the control rod worth, Equations (8-310) and (8-312) 
must be solved to obtain the buckling for both cases. In initially critical 
reactor without control rods the buckling is given with 
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However, the calculation of buckling when the control rod is inserted is 
difficult because the geometry is complicated and because the presence of 
strong absorber tends to deform the flux such that the diffusion 
approximation is not valid in its vicinity. In this case, a solution can be 
obtained by assuming that d represents the extrapolated distance and that the 
flux satisfies the following boundary condition at the surface of the control 
rod 

The final result for the extrapolation distance and control rod worth is 
(detailed derivation can be found elsewhere) 

where a is the radius of a control rod, R is extrapolated radius of the bare 
cylindrical core and H is its extrapolated height, 5 is the diffusion 
coefficient and C.,, is the macroscopic cross section. 

The cross section and diffusion coefficient are those for the materials 
surrounding the control rod which is assumed to be a black absorber. 

1.1.2 Control Rod Worth in Fast Reactors 

The most promising material to be used as the control absorber in fast 
reactors is boron-carbide (B4C) enriched in 'OB, because unlike other 
materials, absorption cross section for the boron is still significant at high 
neutron energies. Although considerably higher than for other materials, the 
boron absorption cross section at energies of importance in fast reactors (0.1 
MeV to 0.4 MeV) is only 0.27 b (see Chapter 6). Therefore, the absorption 
neutron mean free path in a medium containing boron is large the atom 
density of boron is 0.087 x loz4 atoms/cm3 at a B4C density of 2 g/cm3 
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giving iZ, = 42.6 cm. This is considerably larger than the diameter of any 
control rod size used in fast reactors which means that the neutron flux 
inside the control rod is more or less the same as in the surrounding medium. 
Therefore the boron contained in the rod can be assumed to be uniformly 
distributed in the reactor. This assumption will only affect the calculation of 
the fuel utilization factor in determining the control rod worth. 

In actual reactor design, control rod worth is calculated using computer 
codes and a multigroup approach. The following is a simplified one group 
estimate of control rod worth in fast reactor. The multiplication factor for a 
fast reactor is given by 

Since the uniformly distributed poison in fast reactors has an effect only 
on the fuel utilization factor, the control rod worth reduces to 

k o u r  - k i n  - four  - f i n  
P w  = - 

k i n  f i n  

giving 

1.1.3 Effect of Partially Inserted Control Rod on Neutron Flux in 
Thermal Reactors 

At the time of reactor start-up, all or most of, the control rods are fully 
inserted. After the start-up, they are slowly withdrawn in order to keep the 
reactor critical as the fuel is consumed and fission products accumulate. 
Therefore, it is necessary to know the control rod worth as a function of its 
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insertion distance. The one group approximation is used to illustrate the 
computation of control rod worth for partially inserted rods in a thermal 
reactor. 

For a cylindrical reactor let 
pw (x): the worth of one or more control rods inserted at the distance x 
parallel to the axis of the reactor core with total height H 
pw(H): the worth of fully inserted control rods. 

Fractional Distance From Bottom of Core 

Figure 8-2. Integral control rod worth as given by Eq (8-324) 

The exact effect of control rods on reactivity may be determined 
experimentally. For example, a control rod can be withdrawn in small 
increments, and the change in reactivity determined for each increment of 
withdrawal. By plotting the resulting reactivity versus rod position, a graph 
similar to that shown in Fig. 8-2 is obtained. The graph depicts integral 
control rod worth over the full range of rod withdrawal. Integral control rod 
worth represents the total reactivity worth of the rod at that particular degree 
of withdrawal 



NUCLEAR REACTOR CONTROL 403 

Fractional Distance From Bottom of Core 

Figure 8-3. Differential control rod worth as given by Eq. (8-325) 

The slope of the curve, and therefore the amount of reactivity inserted per 
unit of withdrawal, is greatest when the control rod is midway out of the 
core. This is because the neutron flux is maximum near the center of the 
core, thus the neutron absorption rate is also greatest in this area. If the slope 
of the curve for integral rod worth in Fig. 8-2 is plotted, the result is a value 
for the rate of change of control rod worth as a function of position. Such a 
plot is referred to as the differential control rod worth, and is shown in Fig. 
8-3. At the bottom of the core there are few neutrons so rod movement has 
little effect; therefore the change in rod worth over distance is nearly 
constant. As the rod approaches the center of the core its effect becomes 
greater, and the change in rod worth per distance becomes significant. At the 
center of the core, the differential rod worth is greatest and varies little with 
rod motion. From the center of the core to the top, the rod worth per distance 
is the opposite of the rod worth per distance from the center to the bottom. 

The integral rod worth at a given withdrawal is the summation of the 
entire differential rod worth up to that point of withdrawal and is also the 
area under the differential rod worth curve at any given withdrawal position. 
The differential control rod worth is obtained as a derivative of pw (x)lpw (H) 
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1.2 Chemical Shim 

Water moderated and cooled reactors can be in part controlled, in 
addition to control rod systems, by varying the concentration of the boric 
acid (H3BO3) in the coolant. This is called chemical shim. Because the 
response to a change in concentration of the solvent is not as quick as 
obtained by the insertion of control rods, chemical shim cannot be used to 
control the large reactivity insertions. Thus it is always used in conjunction 
with the control rod systems. In a reactor with both control systems: 

control rods are used to provide the reactivity control for fast shutdown, 
and for compensating reactivity variance due to temperature change 
chemical shim is used to keep the reactor critical during xenon transients, 
and to compensate for the depletion of fuel and build-up of fission 
products during reactor lifetime. 
The use of chemical shim reduces the number of control rods required in 

a reactor. Since control rod systems are expensive, any reduction in the 
number of control rods reduces the total cost of the reactor. Chemical shim is 
almost uniformly distributed in the core and thus perturbs power distribution 
less as the concentration of the boric acid is changed. 

Chemical shim in thermal reactors primarily affects the thermal (fuel) 
utilization factor. Therefore, chemical shim worth can be computed from the 
following relation 

.r boron 

By inserting Equation (8-322) the reactivity worth reduces to 

=boron 

P w  = (1 - f o u t  z yd 

The boric acid concentration is usually specified in units of ppm (parts 
per million) of water. 

The ppm represents 1 g of boron per lo6 g of water. Therefore, if C 
represents the concentration in ppm, then the ratio of the mass of boron to 
the mass of water is 
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giving 

boron N ~ o ~ o ~ I ~ ~  - 
a - -- - 18x759 X C X ~ O - ~  = 1 . 9 2 x ~ x 1 0 - ~  (8-329) 

c yd N~ O O a  10.8~0.66 

According to Eq. (8-327) the worth of chemical shim becomes 

p, = 1 . 9 2 x ~ x 1 0 - ~  x(1- f,,J (8-330) 

2. FISSION PRODUCT POISONING 

Fission products and their decay products absorb neutrons to some 
extent. The accumulation of the parasitic absorbers during the reactor 
operation tends to reduce the neutron multiplication factor. 

Among all non-fission materials accumulated during the reactor 
operation, two are of the greatest importance for thermal reactors: 13'xe and 
1 4 9 ~ m  (with large thermal neutron absorption cross sections). Since the 
absorption cross section decreases rapidly with increasing neutron energy 
(see Chapter 2), the poisoning effect is of little importance in fast reactors. 
The change of neutron multiplication factor with the poison materials 
present in a thermal reactor are discussed as follows. 

The neutron multiplication factor is written as (see Chapter 7) 

where P stands for both, thermal and fast neutron non-leakage 
probabilities. If a poison material (strong absorber) is added 

The non-leakage probability changes slightly because it is inversely 
related to L~ = 1 I 3CJa , 

The fast fission factor remains unchanged, E=  const. 
The reproduction factor does not change since it is only a function of fuel 
properties ( 7 = V Z ~  1 z?'). 
The resonance escape probability p may change depending on cross 
section of the poisoning material (see Fig. 8-4). 
The fuel utilization factor is inversely related to absorption cross section 
and thus changes drastically 
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(8-332) 

- - 

Thermal absorption cross section 

Energy (eV) 

Thermal absorption cross section 
(at 2200 d s )  is 4.1.104 b 

Figure 8-4. Radiative capture cross section for 1 3 5 ~ e  and I4'srn 

The effect of the poison material on reactivity change is 
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Since non-leakage probability does not change significantly with the 
addition of poison material, PIP - 1 and the above equation reduces to 

If the total absorption cross section is C, it follows 

where Z: - X u  = C p  and Z ,  = c?' +zFd +Cr t ro '  . Finally 

2.1 Xenon Poisoning 

2.1.1 Production and Removal of IJSxe During Reactor Operation 

Xenon-135 ( 1 3 5 ~ e )  is the most important fission product poison and has a 
tremendous impact on the operation of a nuclear reactor. It is necessary to 
know its production and removal rate in order to predict how the reactor will 
respond to changes in power level. Xenon-135 is a non-llv absorber (see 
Fig. 8-4) with a thermal neutron radiative capture (parasitic absorption) cross 
section of 2.6 x lo6 b. 
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Fission l t ~ b  L> ';T~L> IL> ~ e k  cs k '::~a (stable) 

Fission Fission Fission 
Figure 8-5. Production of " ' ~ e  in thermal reactor 

Tellurium-135 (I3'Te) decay chain is the primary production method of 
I3'xe, however it can be produced directly from fission (see Fig. 8-5). The 
fission yield of I3'xe is about 0.3 %, and is about 6 % for I3'Te. ' 3 5 ~ e  is a 
product of the P decay of 13'1 which is formed by fission and by the decay of 
" '~e.  Tellurium-135 is fission product, but can also be formed from the P 
decay of I3'sb (also a fission product). Nearly 95 % of all I3'xe produced 
during reactor operation comes from the decay of '35~.  

Introducing yi to represent the yield fraction for isotope i (the fraction of 
fission fragments that will be isotope i), and PR = yiC# to be the production 
rate of isotope i, and following the decay scheme in Fig. 8-5 it follows: 

The decay times of the I3'sb and I3'Te are very short. Thus, we may 
assume that all 13'sb and I3'Te are 13'1 by defining 

The last nuclide in the decay chain has a very long half-life. Thus, the 
stable nuclide can be taken out of our analysis and we may simplify the 
decay chain as follows 

In the case of a homogeneous thermal reactor the iodine concentration 
can be determined as 

d l  
- = Production of iodine - Loss of iodine 
dt 

where 
I - concentration of ' 3 5 ~  

h1 - radioactive decay constant of 13'1 
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a,' - thermal neutron absorption cross section of ' 3 5 ~  

yl - fission yield of ' 3 5 ~  (=0.061 for 2 3 5 ~  fuel) 
Cf - macroscopic fission cross section of the fuel material in a reactor 
( - thermal neutron flux. 
Under the same assumption, the xenon concentration change can 
determined by: 

dXe 
- = Production of xenon - Loss of xenon 
dt 

where 
Xe - concentration of ' 3 5 ~ e  
Axe - radioactive decay constant of ' 3 5 ~ e  
o,X" - thermal neutron absorption cross section of ' 3 5 ~ e  
yxe - fission yield 1 3 5 ~ e  (=0.002 for 2 3 5 ~  fuel) 

At steady-state the rate change of concentration of both nuclides is constant 
(after the reactor has been operating for some time, the equilibrium 
concentration is attained), thus by setting Equations (8-342) and (8-343) 
equal to zero the equilibrium concentrations may be obtained. 

1 3 5 ~  equilibrium concentration 

The absorption cross section for 1 3 5 ~  is very small in the thermal energy 
region (see Fig. 8-6) so the above equation can be simplified by 
neglecting the absorption rate. The equilibrium concentration of ' 3 5 ~  is 
proportional to the fission reaction rate and power level. 
1 3 5 ~ e  equilibrium concentration: 

The equilibrium concentration for ' 3 5 ~ e  increases with the power 
because the numerator is proportional to the fission reaction rate. Since 
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the thermal flux is also in the denominator, as it exceeds 1012 
neutron/cm2 sec the term including the flux becomes dominant. Thus, at 
nearly 1015 neutron/cm2 sec the ' 3 5 ~ e  concentration approaches a limiting 
value. 
The reactivity equivalent of the equilibrium xenon poisoning effect (by 

neglecting the presence of the control material) may be written in the 
following form 

Figure 8-6. Radiative capture cross section for 1 3 5 ~  

where 

To illustrate the reactivity change due to xenon accumulation, let's 
consider the thermal homogeneous reactor fuelled with 2 % 2 3 5 ~  for which 

77 = 1.8 v = 2.42 C, / E n  = 0.6 
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Using this data, and Eq (8-347)., we may re-write Eq (8-346). in the 
following simplified form. 

For a flux value of l0I5 neutrons/cm2s the poisoning is negligible (-6 x 
For a flux which is ten times higher, the poisoning is still low, - 0.005, 

i.e. 0.5 % of all thermal neutrons are absorbed by the equilibrium amount of 
xenon. However, for a flux greater than 1016 neutrons/cm2s the poisoning 
increases rapidly, as shown in Fig. 8-7 and the limiting value is obtained for 
a flux of 1019 neutrons/cm2s. The equilibrium 1 3 5 ~  and I3'xe concentrations 
as a function of neutron flux are illustrated in Fig. 8-8. 

-0.035 - 
Limiting Value = -0.039 .......................................................................................................... ... 

-0.04 I I 

1 017 1 018 1 0'' 
Thermal Flux (neutrons/cm2s) 

Figure 8-7. Reactivity equivalent of the equilibrium ' 3 5 ~ e  concentration for the example 
thermal reactor 

2.1.2 Xenon Poisoning After Reactor Shutdown 

When a reactor is shutdown, the neutron flux is reduced essentially to 
zero and 1 3 5 ~ e  is no longer produced from fission or removed by absorption. 
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The only remaining production mechanism is the decay of the 1 3 5 ~  which 
was in the core at the time of shutdown. The only removal mechanism for 
1 3 5 ~ e  is its decay. Therefore, if t, is the time after the shutdown the rate of 
change of xenon concentration as written in Eq. (8-343) reduces to the 
following 

The solution to Eq. (8-343) gives the xenon concentration over the time 
after reactor is shutdown 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Thermal Flux (~rn-~s- ' )  1013 

Figure 8-8. Equilibrium concentrations of 1 3 5 ~  and I3'xe as a function of neutron flux 

The time at which the concentration is maximum may be attained by 
setting Eq. (8-350) equal to zero 
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Because the decay rate of 13'1 is faster than the decay rate of 1 3 5 ~ e ,  the 
1 3 5 ~ e  concentration peaks. The peak value is reached when A'I = Axe Xe 
which is in about 10 to 11 hours for thermal reactors. The production of 
xenon from iodine decay is less than the removal of xenon by its own decay. 
This causes the concentration of 1 3 5 ~ e  to decrease. The concentration of 1 3 5 ~  

at shutdown is greater for greater flux prior to shutdown which also 
influences the peak in 1 3 5 ~ e  concentration. Figure 8-9 illustrates the change 
in relative concentration of 13'xe following reactor shutdown as a function 
of neutron flux and time after the shutdown. It can be seen that following the 
peak in 1 3 5 ~ e  concentration about 10 hours after shutdown, the concentration 
will decrease at a rate controlled by the decay of 1 3 5 ~  and ' 3 5 ~ e .  A numerical 
example provided at the end of this Chapter describes the accumulation of 
xenon after reactor shut down and explains the Fig. 8-9. 

Time After Shutdown (hr) 

Figure 8-9. ' 3 5 ~ e  relative concentration (Xe/Xeo) after reactor shut down as a function of 
neutron flux 
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2.2 Samarium Poisoning 

2.2.1 Production and Removal of '49~m During Reactor Operation 

The fission product poison having the most significant effect on reactor 
operations, other than 1 3 5 ~ e ,  is samarium-149 (149~m).  Its effect is 
significantly different from that of 1 3 5 ~ e .  Samarium-149 has a thermal 
neutron radiative capture cross section of 4.1 x lo4 b (see Fig. 8-10). It is 
produced from the decay of the 1 4 9 ~ d  which is itself a fission fragment as 
shown in Fig. 8-10. Since the 1 4 9 ~ d  decays fairly rapid in comparison to 
1 4 9 ~ m ,  it can be assumed that 1 4 9 ~ m  is produced directly from fission 
reactions with a yield of ypm. 

The rate of change of its concentration is then determined by the 
following equation 

where 
Prn - concentration of l4'pm 
Apm - radioactive decay constant of 1 4 9 ~ m  

Fission ~d A 'z  prn 4 ': sm (stable) 

1.72h 53.lh 

Figure 8-10. 14'srn production in thermal reactor 

Samarium-149 is a stable isotope and thus it is removed only by neutron 
radiative capture 

where 
Sm - concentration of ' 4 9 ~ m  
Asm - radioactive decay constant of 1 4 9 ~ m  
o,'" - thermal neutron absorption cross section of 1 4 9 ~ m  
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Solving for the equilibrium yields the equilibrium concentrations of the 
two isotopes 

and 

It can be seen from Eq. (8-355) that the equilibrium concentration of 
' 4 9 ~ m  is independent of neutron flux and power level. With a change in 
power level, the equilibrium concentration of ' 4 9 ~ m  will go through a 
transient value and soon return to its original value. 

2.2.2 Samarium Poisoning After Reactor Shutdown 

After the reactor is shut down, Eq. (8-353) for ' 4 9 ~ m  production reduces 
to 

Solving this simple differential equation gives the relation for samarium 
concentration as a function of time after shutdown 

where Smo and Pmo are concentrations at shut down. Because ' 4 9 ~ m  is a 
stable isotope, it cannot be removed by decay, which makes its behaviour 
after reactor shutdown very different from that of ' 3 5 ~ e ,  as illustrated in Fig. 
8-1 1. The equilibrium is reached after approximately 20 days (500 hours). 
The concentration of ' 4 9 ~ m  remains essentially constant during reactor 
operation (because it is not radioactive). When the reactor is shutdown, its 
concentration builds up from the decay of the accumulated ' 4 9 ~ m .  The 
build-up after shutdown depends on the power level before reactor 
shutdown. The concentration of ' 4 9 ~ m  does not peak as I3'xe, but instead 
increases slowly to its maximum value of Smo + Pmo. After shutdown, if the 
reactor is again operated, ' 4 9 ~ m  is burned up and its concentration returns to 
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the equilibrium value. Samarium poisoning is miniscule when compared to 
xenon poisoning. 

Sm, + Pm, 
............................................................................... 

1 I I I I I I I I I 

0 50 100 150 200 250 300 350 400 450 ! 
Time ARer Shutdown (hr) 

Figure 8-11. 1 4 9 ~ m  buildup as a function of time after shutdown 

3. TEMPERATURE EFFECTS ON REACTIVITY 

3.1 Temperature Coefficients 

The change in reactivity with temperature is described in terms of the 
temperature coefficient of reactivity. Different materials in a reactor are at 
different temperatures and produce various effects on reactivity. The 
temperature in a reactor does not change uniformly. An increase in reactor 
power would first cause an increase in fuel temperature (the region where 
power is generated). The coolant and moderator temperatures will change 
after the heat is transferred from the fuel. Thus, the two main temperature 
coefficients which are usually specified for thermal reactors are the fuel 
temperature coefficient and the moderator temperature coefficient. The 
general definition for the temperature coefficient of reactivity is 
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or replacing the reactivity (see Chapter 7) 

Since the multiplication factor is close to unity, Eq. (8-359) is simplified 

The response of the reactor to a change in temperature depends on the 
algebraic sign of the temperature coefficient 

1 .  aT > 0: since multiplication factor is always positive value, then dk,fPdT 
is also positive. In other words, an increase in temperature leads to an 
increase in neutron population. 
Increase in temperature in a reactor thus increases the reactor power. This 
will, in turn, increase the temperature more and thus multiplication factor 
will be increased further which will increase power further and so on. 
Thus, when the temperature increases the power of a reactor increases 
and it can be stopped only by outside intervention. 
If temperature is decreased, the multiplication factor will decrease as 
well. The reactor power will decrease which will reduce temperature 
further and will reduce the neutron multiplication which will reduce 
reactor power and temperature and so on. Thus, in this case reactor will 
shutdown in the absence of external intervention. 

2. aT c 0: since multiplication factor is always positive value, then dk,fPdT 
is negative. In this case, an increase in temperature decreases the neutron 
multiplication factor. 
An increase in reactor temperature will cause reactor power to drop 
which will decrease the temperature. This temperature reduction will 
tend to return the reactor to its original state. 
A decrease in temperature will result in an increase in multiplication 
factor. Therefore, if temperature is reduced, the power of the reactor will 
increase and the reactor has a tendency toward its original operating 
conditions. 
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Thus, a reactor with a positive temperature coefficient is inherently 
unstable while a reactor with a negative temperature coefficient is inherently 
stable. 

3.2 Fuel Temperature Coefficient (Nuclear Doppler 
Effect) 

The fuel reacts immediately to a change in a temperature. The fuel 
temperature reactivity coefficient is also called the prompt temperature 
coefficient or the nuclear Doppler coefficient. Fuel temperature promptly 
responds to a change in reactor power, a negative fuel temperature reactivity 
coefficient is more important than a negative moderator temperature 
coefficient. The time for heat generated in the fuel region to be transferred to 
the moderator is on the order of seconds. When a large positive reactivity 
insertion occurs, the negative moderator temperature coefficient cannot 
affect the power in that short time while the fuel temperature coefficient 
starts adding negative reactivity immediately. Two important nuclides which 
dominate the nuclear Doppler Effect are 2 3 8 ~  and 240p~. 

In a typical light-water moderated low enriched fuel thermal reactor the 
fuel temperature reactivity coefficient is negative as a result of the nuclear 
Doppler Effect (called Doppler broadening). Doppler broadening is caused 
by an apparent broadening of the resonances (see Chapter 6, Fig.6-22) due to 
thermal motion of nuclei, explained as follows 

Stationary nuclei would absorb a neutron of energy Eo. 
If nucleus is moving away from a neutron the velocity and energy of the 
neutron must be greater than energy Eo for it to undergo resonance 
absorption. 
If nucleus is moving toward the neutron, the required neutron energy 
would be less energy than Eo in order to be captured by the resonance. 
Increased temperature of the fuel causes nuclei to vibrate more and thus 
broadening the neutron energy range where they are resonantly absorbed 
in the fuel region. 

If the temperature is increased, the magnitude of the absorption cross 
section is decreased due to Doppler broadening effect which will increase 
neutron flux (analogous to the removal of a strong absorber from the core). 
The number of neutrons absorbed in the resonance region is proportional to 
the average neutron flux thus the number of resonance absorption increases 
with temperature. If the parasitic absorptions are increased, the 
multiplication factor will be reduced which accounts for the negative value 
of the prompt fuel temperature coefficient. The higher temperatures lead to 
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larger widths of resonances and thus a broader energy region where neutrons 
can be absorbed. 

The nuclear Doppler coefficient is obtained as follows 

By expressing the neutron multiplication as in Eq. (8-33 I), the resonance 
escape probability can be obtained in the following form 

Differentiating with respect to temperature and assuming all parameters 
to be constant except the resonance escape probability results in a simple 
expression for the Doppler coefficient 

3.3 The Void Coefficient 

The void coefficient of reactivity, a;, is defined as a rate of change in the 
reactivity of a water moderated reactor resulting from a formation of steam 
bubbles as the power level and temperature increase. The void fraction, x, is 
defined as the fraction of a given volume which is occupied by voids. If 30% 
of a volume is occupied by vapor with the rest being occupied by water then 
x = 0.30. The void coefficient of reactivity is defined as 

The response of the reactor to a change in void fraction depends on the 
algebraic sign of the void coefficient 

1. a; > 0: an increase in void fraction will increase the reactivity. This will 
cause the reactor power to rise, which will increase the boiling and void 
formation. More voids will increase the reactivity and reactor power 
further which will increase the void fraction and so on. Without external 
action the reactor power will continue to increase until much of the liquid 
is boiled and reactor core melts down. 

2. a; < 0: an increase in void fraction will reduce the reactivity and thus the 
reactor power. This condition tends to return the reactor to its initial state. 
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Thus, a negative void coefficient is desirable. 
The void coefficient is related to the moderator coefficient (see next 

Section) because the change in void fraction changes the density of the 
moderator, or coolant in thermal reactors. In water cooled and moderated 
reactors the increase in void fraction decreases the reactivity and the void 
coefficient is negative. In fast reactors cooled with the liquid sodium the 
effect of void formation is the opposite. Namely, sodium slows down 
neutrons through inelastic scattering at high energies and absorbs neutrons at 
low energies. Thus, the removal of sodium causes reduced moderation and 
the neutron spectrum becomes harder which, in turn, increases the reactivity 
(the average number of fission neutrons released per neutron absorbed, q, 
increases with neutron energy for all fissile nuclides in fast reactors). Also, 
an increase in void formation increases neutron leakage because the density 
of coolant is reduced. This effect reduces the void coefficient and tends to 
make it negative. The sign of the void coefficient is determined by the value 
of these two factors. In large power fast reactors the void formation has a 
local effect. For example, if a void is formed in the central region of the 
core, the void coefficient will be positive since neutron leakage has little 
importance. The leakage becomes more important and reduces the void 
coefficient if void occurs toward the peripheral region of the core. 

3.4 The Moderator Coefficient 

3.4.1 Moderator Temperature Coefficient 

The moderator temperature coefficient, G,~, determines the rate of 
change of reactivity with moderator temperature. This coefficient determines 
the ultimate response of a reactor to fuel and coolant temperature change. It 
is desirable to have a negative moderator temperature coefficient because of 
its elf-regulating effect. In thermal reactors when the moderator temperature 
is increased 

1. the physical density of the moderator liquid is changed due to thermal 
expansions, and 

2. thermal cross sections change. 

The increased temperature of the moderator in water moderated reactors 
will cause the neutron flux to move toward higher neutron energies. This is 
an especially promoted effect when absorption cross section does not follow 
a l lv dependence. Thus, the presence of, for example, 2 3 8 ~  at higher 
temperatures will increase parasitic absorptions and thus tend to keep the 
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coefficient negative. The change in the neutron spectrum at increased 
moderator temperature has effect on reactivity which is more pronounced in 
the presence of poisons such as ' 3 5 ~ e  and 1 4 9 ~ m  because of their resonances 
placed at very low neutron energies (around 0.1 eV). The moderator expands 
at increased temperature which causes a reduction in the density of atoms 
present; therefore the efficiency of the moderator is reduced. 

The magnitude and sign of the moderator temperature coefficient 
depends on the moderator-to-fuel ratio in such a manner that if 

reactor is under-moderated the coefficient will be negative 
reactor is over-moderated the coefficient will be positive. 

3.4.2 Moderator Pressure Coefficient 

The moderator pressure coefficient of reactivity is defined as the change 
in reactivity due to a change in system pressure. The reactivity is changed 
due to the effect of pressure on the moderator density. When the pressure is 
increased, the moderator density is increased which, in turn, increases the 
moderator-to-fuel ratio in the core. In the case of an under-moderated core, 
the increase in moderator-to-fuel ratio will result in a positive reactivity 
insertion. In water moderated reactors, this coefficient is much smaller than 
the temperature coefficient of reactivity. 

NUMERICAL EXAMPLE 

Xenon and Iodine concentration after shutdown 

As described in Section 2.1.2 the xenon and iodine concentrations over 
the time after reactor is shutdown is calculated using Eq.(8-344), (8-345) and 
(8-350). The iodine concentration may be obtained from Eq. (8-341). For 
the data listed in Table 8-1, calculate the xenon and iodine concentrations as 
a function of time after shutdown of a 2 3 5 ~  thermal reactor which operated at 
a flux of 1015 neutrons/cm2sec. The solution was obtained using MATLAB 
and shown in Fig.8-12. 



422 Chapter 8 

Table 8-1. Data for 2 3 5 ~  thermal reactor 
Uranium density 19.1 g/cm3 
Xenon-1 35 fission yield 0.00237 
Iodine-1 35 fission yield 0.0639 
Xenon- 135 decay constant 2.09.10.~ sec-' 
Iodine- 135 decay constant 2.87.10~~ sec-' 
Xenon-135 absorption cross section 2.65.10~ b 
Uranium-235 fission cross section 582.2 b 

Solution in MATLAB: 

clear all 
lambdaXe = 2.09*10A-5; % sA-1 
lambda1 = 2.87*10A-5; % sA-1 
gamma1 = 0.0639; % 1-135 fission yeild 
gammaXe = 0.00237; % Xe-135 fission yield 
sigmaf = 19.1 *6.022e23*(582.2*10A-24) / 235; % U-235 fission cmA-1 
sigmaaxe = (2.65e6)" 10"-24; % Xe-135 absorption cmA2 
flux = 10A15; % cmA-2 * sA-1 
t = linspace(0,l80000); 
figure 
hold on 
% Equilibrium Concentrations 
I0 = gammaI*sigmaf*flux/lambdaI; 
XeO = (lambdaI*IO + gammaXe*sigmaf*flux) / (lambdaxe + sigmaaXe*flux); 
for i = 1:100 
% Build-up After Shutdown 

I(i) = IO*exp(-lambdaI*t(i)); 
Xe(i)=XeO*exp(-lambdaXe*t(i))+(lambdaI*IO/(1ambdaI- 

lambdaXe))*(exp(-lambdaXe*t(i)) - exp(-lambdaI*t(i))); 
end 
plot(t/3600,I,'k') 
hold on 
plot(t/3600,Xe,'k:') 
xlabel(Time After Shutdown (hr)') 
ylabel('Concentration (cmA-"3)') 
legend('1odine- 135','Xenon- 135') 
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-.--.- Xenon- 135 

Time ARer Shutdown (hr) 

Figure 8-12. ' 3 5 ~ e  and ' 3 5 ~  concentrations after shutdown of a 2 3 5 ~  thermal reactor 

PROBLEMS 

8.1 Plot the differential and integral control rod worth curves if the differential 
rod worth data is given as follows: 
Fractional distance from the bottom of the core Inserted reactivity 

0 - 0.125 0.1 
0.125 - 0.25 0.2 
0.25 - 0.375 0.4 
0.375 - 0.5 0.6 
0.5 - 0.625 0.6 
0.625 - 0.75 0.4 
0.75 - 0.875 0.2 
0.875 - 1 0.1 

8.2 Explain the role of soluble poisons (chemical shim) in thermal reactors. 

8.3 In order to control and minimize the corrosion in the reactor coolant system 
the pH of the coolant is monitored. In nuclear reactors that do not use chemical 
shim pH is maintained at values high as 10. In reactor systems that use chemical 
shim (boric acid) how would the pH limit change? 
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8.4 Chemical shim in thermal reactors primarily affects the thermal (fuel) 
utilization factor. Derive the relation for the chemical shim worth. 

8.5 A common pair of fragments from 2 3 5 ~  fission is xenon and strontium. Write 
the reaction and calculate: energy released per this fission event; investigate the 
decay scheme of xenon and strontium; discuss how xenon is removed from the 
reactor; discuss the equilibrium level of xenon. 

8.6 Describe the effect of the poison material on reactivity change. 

8.7 Sketch the behaviour of xenon poisoning. 

8.8 Discuss the loss and production of xenon on reactor start-up and on power 
decrease from steady state to full power. 

8.9 Discuss the production and removal of samarium. 

8.10 Discuss the samarium response to reactor shutdown. 

8.11 Solve the differential equation that describes the xenon concentration 
change after reactor shutdown. 

8.12 Derive the relation to obtain the time needed to achieve the maximum 
concentration of xenon after reactor shutdown. 

8.13 Define temperature coefficients. 

8.14 For the moderator coefficient of -15 pcm/K calculate the reactivity change 
that results from a temperature decrease 3.5K. 

8.15 How will macroscopic cross section of a moderator change if with 
increased temperature its density decreases? How will thermal utilization factor 
change? 

8.16 Discuss the fuel temperature coefficient and why it is negative? 



Appendix 1: World-Wide Web Sources on Atomic 
and Nuclear Data 

Periodic Table of the Elements 
First ionization potential: 
http:Nweb.mit.edu/3.09 I/www/pt/pert9.html 
Atomic and chemical characteristics of elements: 
http://pearl 1 .lanl.e,ov/periodic/default.htm 
Comprehensive set of data: 
http:Nwww.chemistrycoach.com/periodic tables.htm 

Table of nuclides 
Cross section plots and fundamental characteristics of nuclides: 
http://atom.kaeri.re.kr/ 
Nuclear physics data: http://physics.nist.e,ov/PhysRefData/ 
Ionization potentials: 
http:Nenvironmentalchemistry.com/yoe,ilperiodic/l stionization.htm1 

Electron and photon attenuation data: http://atom.kaeri.re.kr/ex.html 

Physical constants: http://ph~sics.nist.~ov/Ph~sRefData/ 

Atomic and molecular spectroscopic data: 
http://physics.nist.e,ov/PhysRefData/ 

X ray and y ray data: http:Nphysics.nist.e,ov/PhvsRefData/ 

Stopping-power and range tables for electrons, protons, and helium ions: 
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National nuclear data center: http://www .nndc.bnl.gov/index.i su 
Nuclear structure and decay database: 
http://www.nndc.bnl.nov/databases/databases.html#structuredecay 
Nuclear reactions databases: 
httu://www.nndc.bnl.nov/databases/databases.htmI#reaction 



Appendix 2: Atomic and Nuclear Constants 

Fundamental Constants 

Quantity Symbol Value Unit 
Atomic mass unit 

Avogadro’s number 

Boltzmann’s constant 

Electron rest mass 

Elementary charge 

Neutron rest mass 

Newtonian gravitational constant 

Planck’s constant 

Proton rest mass 

amu or u 

NA

k

me

e

mn

G

h

mp

1.66053 x 10-24

931.481

6.02217 x 1023

1.38062 x 10-23

9.10956 x 10-28

5.48593 x 10-4

0.511004

1.602192 x 10-19

1.67493 x 10-24

1.008665
939.553

6.6742 x 10-11

6.626069 x 10-34

4.135667 x 10-15

1.67261 x 10-24

1.007277

g
MeV 

Mole-1

J/K

g
amu 
MeV 

C

g
amu 
MeV 

m3 /kg s2

Js
eV s 

g
amu 
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Quantity Symbol Value Unit 

Speed of light 

Stefan-Boltzmann constant 

c

938.259

2.99792458 x 1010

5.670400 x 10-8

MeV 

cm/s 

W m-2 K-4

Atomic and Nuclear Constants 

Quantity Symbol Value Unit 
Bohr radius 

Classical electron radius 

Compton wavelength 

Rydberg constant 

Rydberg energy 

mke
a 2

2

0

re

C

hca
keR 1
2 0

2

hcRER

0.05291771

2.817940 x 10-15

2.426310 x 10-12

10973731.568

2.179872 x 10-18

13.6

nm

m

m

m-1

J
eV



Appendix 3: Prefixes 

Factor Prefix Symbol 
lo1* exa E 
10" peta P 
1012 tera T 
1 o9 gigs G 
1 o6 mega M 
1 o3 kilo k 
1 o2 hecto h 
10' deka da 
10.' deci d 
1 o - ~  centi c 
l o 3  miHi m 
1 o - ~  micro I-L 
1 o - ~  nano n 
10"~  pic0 P 
1 0-15 femto f 

atto a 



Appendix 4: Units and Conversion Factors 

Angle 
Unit Symbol Value 
Radian rad 0.01745 
Degree 0 1 
Minute 60 
Second 3 600 

Energy 
Unit Symbol Value 
Joule J 1 
~ r g  erg 1 o7 
Watt second Ws 1 
Kilowatt hour kwh 2.7778 x lo-7 
Mega electron volt MeV 6.242 x lo'* 
British thermal unit Btu 9.478 x lo-4 

Length/Distance 
Unit Symbol Value 
Angstrom A 10l0 
Nanometer nm 1 o9 
Micrometer Pm 1 o6 
Millimeter mm 1 o3 
Centimeter cm 1 o2 
Meter m 1 
Kilometer km 1 w3 
Inch in (") 39.37008 
Foot ft ('1 3.28084 
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Unit Symbol Value 
Yard yd 1.09361 
mile mi 6.2137 x 

Mass 
Unit Symbol Value 
Milligram mg 1 o6 
Gram g 1 o3 
Kilogram kg 1 
Ounce oz 35.274 
Pound Ib 2.2046 
Tonne (metric) t 1 o - ~  

Temverature 
Unit Symbol Value 
Fahrenheit F C x (915) + 32 
Celsius C C 
Kelvin K C + 273.15 

Time 
Unit Symbol Value 
Second s or sec 3.1536 x lo7 
Minute m or min 5.256 x lo5 
Hour h or hr 8760 
Day da 365 
Week wk 52.14286 
Month mo 1 1.99203 
Year yr ora  1 
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