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Preface

This book is an introduction to nuclear principles with special emphasis
on engineering applications. Topics such as neutron physics, nuclear
structure and radiation interactions are illustrated through numerous
examples that include detailed solutions and links to theory. The reader will
find plenty of descriptive easy-to-grasp models and analogies with rather
simplified mathematics. A mathematical formula says little unless we
understand the physical context. Hence, priority is given to developing
physical intuition rather than mathematical formalism.

Nuclear engineering is a broad discipline that requires knowledge (of
reasonable depth) in physics, mathematics and computation. The discipline
is grounded in the scientific understanding of the subatomic realm and
energy-matter processes that are taking place at the femtometer range ao®
meter). Several areas of application are driving a renaissance in nuclear
engineering including, but not limited to, new safe nuclear reactor
development, a revolution in nuclear medicine, nuclear space propulsion,
and homeland security.

This book offers background and a basis for technology development in
inherently safe reactors, medical imaging and integrated cancer therapies,
food technology, radiation shielding, and nuclear space applications. It is
intended to be a resource for practicing engineers and a text for university
students in science and engineering.

Tatjana Jevremovic, Ph.D.
School of Nuclear Engineering
Purdue University

West Lafayette

February 2005



Foreword

Nuclear Principles in Engineering is an appropriate starting point for the
new series Smart Energy Systems: Nanowatts to Terawatts. Not only
because the nuclear universe stands at the boundary of human knowledge
with respect to scale, but also, and most importantly, because nuclear ideas
have a largely untapped potential for new sources of energy. When viewed
in this light, nuclear principles offer renewed hope for energy innovation
much needed by a global community confronting the inescapable
environmental and geological limitations of fossil fuels.

The realm of nuclear processes occupies tiny microscopic dimensions, in
the range of 10™"° meter or femtometer. It is a realm inaccessible by our
senses, yet intelligible through the power of Modern Physics. The book
brings the nuclear universe into clear view for the benefit of technical
pedagogy and technological development. A plethora of existing
technologies can be traced to the fruitful application of nuclear principles,
including, but not limited to, weaponry, atomic and nuclear energy, medicine
and instrumentation. The number is likely to grow as innovations are needed
in smart materials, nanostructures, space, homeland security and biomedical
engineering.

In recent years few books have appeared articulating nuclear principles
for engineers. The enthusiasm of the 1950’s and 60’s (the Atomic Age) gave
way to a much impeded if not diminished interest. But nuclear principles are
far from fading hues of past scientific theories. Witnessing a renaissance in
applications of nuclear technology, the book is aimed at engineering students
who need material in a compact and easily digestible form. Professionals and
students of science may benefit as well.



XVill Foreword

With nuclear principles, energy shares the view that much is yet to be
gained from converting tiny specks of matter into useful work. This book
appears on the centennial of Einstein’s famous formula E = mc®. A century
of Modern Physics and half a century of accrued technical experience with
nuclear power strongly support a renewed optimism on the technological
potential of nuclear ideas. Professor Jevremovic’s book presents principles
that have stood the test of time and open new vistas for future energy.

Lefteri H. Tsoukalas, Ph.D.
School of Nuclear Engineering
Purdue University

West Lafayette

February 2005
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Chapter 1
NUCLEAR CONCEPTS

From nano-watts to tera-watts

“The dreams of ancient and modern man are written in the same language as the
myths whose authors lived in the dawn of history. Symbolic language is a language
in which inner experience, feelings and thoughts are expressed as if they were
sensory expetiences, events in the outer world. It is a language which has a different
logic from the conventional one we speak in the daytime, a logic in which time and
space are not the ruling categories but intensity and association.” Erich From (The
Forgotten Language, 1937)

1. INTRODUCTION

Early 20" century marked tremendous and fascinating discoveries in
physics and chemistry. For the first time in human history hard evidence was
produced supporting the existence of atoms. In his book Imagined Worlds,
the eminent astrophysicist Freeman Dyson calls the changes in physics that
occurred in the 1920’s, a concept-driven revolution; theory had primacy over
experiment. Quantum mechanics and the theory of relativity explained
atomic and nuclear structures. Yet, the technology for accessing the atomic
and subatomic level remained rather primitive. It was not until decades later
that serious technological applications appeared.

The middle of the 20" century marked the advent of nuclear technology.
First weaponry, which left a trace of fear and apprehension in the meaning of
the world “nuclear.” After all, the press release for the new technology
became Hiroshima and Nagasaki. Nuclear power for naval and terrestrial
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applications, nuclear medicine, radiochemistry, imaging and space
exploration came later.

Significant institutional development took place concomitantly to
regulate and protect the public and the environment from the deleterious
effects of radiation. National authorities such as the Nuclear Regulatory
Commission in the U.S, and international bodies such as the UN
International Atomic Energy Agency as well as trade and professional
organizations were formed. Nuclear technology cannot be developed and
deployed without serious technical and institutional safeguards.

2. TERRESTRIAL NUCLEAR ENERGY

A major requirement for sustaining human progress is to adequately
provide, generate and distribute energy. In the last fifty years we have seen
nuclear energy grow to become an important source of carbon free
electricity. Concerns about global climate change and energy supply/demand
imbalances bring renewed attention to nuclear energy. The unparalleled
safety record of light water reactors (LWR) and the high capacity factors
achieved by nuclear generators give plenty of motivation for new nuclear
power expansion. Whereas in the 1990’s, nuclear power plants were
considered expensive dinosaurs, there is a growing world wide interest in
new generation with US utilities clamoring for permission to build new
plants. There is every indication that the successes of LWRs, global
warming, and growing worldwide energy challenges, generate a unique
confluence of reasons for a serious reexamination of the nuclear option.

Nuclear power comes mainly from the fission of uranium, plutonium or
thorium. The fission of an atom of uranium produces several million times
more energy than the energy produced by the combustion of an atom of
carbon in fossil fuels, giving nuclear power an extraordinary advantage in
power density. Energy released in fission is converted into electric energy
(this type of electricity represents eighty percent of the electricity generated
in France and over twenty two percent in the United States). More than four
hundred nuclear power plants produce over 15% of the world’s electricity.
Having accumulated over 12,000 years of operational experience with
civilian nuclear power, mankind is becoming more confident about the
economic, safety and environmental benefits of nuclear power generation.

For the vast majority of nuclear reactors the fuel is slightly enriched
uranium, material which is relatively abundant and ubiquitous. Nuclear
power plants typically use enriched uranium in which the concentration of
35U is increased from 0.7% (as found in nature) to about 4% to 5%. At
present, global reserves of uranium are deemed sufficient for at least one
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hundred years. In the very long term, however, breeder reactors are expected
to be used to breed new fuel. Breeder reactors can generate nearly 100 times
as much fuel as they consume.

One of the main issues with nuclear power is the problem of nuclear
waste. Significant technical progress has been made in this area and a
number of countries, including the U.S., move towards addressing the
political aspects of the problem. It is important to note that nuclear power
takes full responsibility for its waste. Radioactive waste coming from
nuclear power reactors is small in quantity and could be turn into useful
nuclear fuel with known chemical processes.

The nuclear industry is developing and upgrading reactor technologies
for nearly fifty years. Future reactor designs focus on safety, economics and
proliferation resistant fuel cycles. Great attention is paid to fuel
improvements targeting, for example, the capability of light water reactors to
burn plutonium, hence, reducing the amount of radioactive waste.

3. SPACE EXPLORATION AND NUCLEAR POWER

Radioisotope generators in space have been providing electrical power
for a variety of spacecrafts. For example, Cassini, the first craft ever to orbit
Saturn, is powered by a radioisotope thermoelectric generator (RTG). After
six years of travel to the Saturn Rings, Cassini reached its destination in
2004 and is scheduled to remain in orbit until 2008. RTGs is proven
technology for missions to distant space destinations. They consist of a
radioisotope (for example ***Pu, a non-weapon-grade material, because of its
long half life ~ 87 years) and a thermoelectric conversion system. Heat
produced from the radioisotope is converted directly to electricity using
thermocouples. For example, Cassini is powered by three RTGs (with nearly
33 kg of plutonium) that produce 750 W of power. The power generated
diminishes somewhat with time due to the exponential decline of
radioactivity. At the end of the 11" year of operation the Cassini system will
produce close to 630 W of power. The development of such systems by the
U.S. Department of Energy generated astonishing success for missions to
Moon, Neptune, and even beyond the Solar system. Famous spacecrafts such
as Pioneer 10 and 11, Apollo, Galileo, and Voyager were powered by RTGs.
Thus far, 44 RTGs have powered 24 U.S. space vehicles. Russia has also
developed RTGs using *'°Po. There are currently two Russian generators in
orbit powering satellites. RTGs using short-lived radionuclides can power
small devices deployed in remote areas on earth or other planets. Such
systems could stay intact and power instrumentation for collecting data that
includes climate variables, chemical composition of air or soil, salinity,
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ozone, and temperature. After a gap of several decades, there is new interest
in U.S. and Russia for nuclear power in space missions. In 2002, NASA
announced the Nuclear Systems Initiative for space code—named Project
Prometheus. 1t focuses at space mission design enabling nuclear—powered
manned missions to Mars and distant planet exploration.

The Jupiter Icy Moon Orbiter (JIMO) is a spacecraft currently in
development, powered by a nuclear reactor to explore Jupiter’s dark and
cold satellites. A major limiting factor for long term space travel or manned
mission to distant planets is radiation protection for the crew and the
electronics. Nuclear principles will be used for the design of light but
effective radiation shield.

4. MEDICINE AND NUCLEAR PRINCIPLES

Soon after the German physicist Wilthelm Conrad Roentgen discovered
them, X rays revolutionized medicine. A century later advanced
three—dimensional imaging, computerized treatment planning and high
energy X ray machines have revolutionized the diagnostics and treatment of
heart disease, cancer, and surgery. A remarkable application of nuclear
principles has been the use of gamma ray narrow beams to irradiate small
tumors with high precision, an instrument called the gamma knife.

In 1932 Chadwick discovered an electrically neutral constituent of the
nucleus which he called the “neutron.” Few years later it was recognized that
neutron interactions producing short range highly ionizing particles could be
used to treat cancer. In the early 1940’s, Neutron Capture Therapy (NCT)
was proposed. This is a bimodal radiotherapy utilizing directed uptake of
neutron absorbing isotopes in tumor tissue and subsequent neutron
irradiation. Neutron interaction products deposit most of the energy from
highly exothermic capture reactions in relatively small space. This is in the
order of cellular dimensions thus delivering to tumor cells a far greater dose
than what is incurred in surrounding healthy tissue. NCT has a great
advantage particularly if the tumor is not imagable or difficult to spatially
define. It has been applied clinically as a post—operative sterilization of
potentially remnant brain tumors. The most prominent element used in NCT
is '°B, which undergoes a neutron interaction producing alpha particle and
"Li. The potential for other elements has been also studied. Gadolinium,
lithium, and uranium can strongly absorb thermal neutrons and hence they
are considered for NCT. The products of neutron capture in 1Gd, for
example, are quite different than neutron capture with other isotopes creating
a mixture of prompt and cascade—induced photons and electrons. A novel
application of the nuclear principles upon which NCT is based is application
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to breast and lung cancer. Recent literature points to novel ways of
combining the NCT principles with the identified genomic signature of
specific cancers. For example, it has been shown that thirty percent of breast
cancers over—express certain proteins, a fact that can be exploited for custom
made treatments. Monoclonal antibodies (MABs) are currently used as part
of chemotherapy for metastatic and late stage breast cancer. A recent study
explores the possibility and effectiveness of using the MABs as a targeting
vehicle for boron to breast cancer cells. This approach is called targeted
(radiation) therapy. In such therapies the radiation or drug agent is brought
directly to the cancer cells. This radioimmunotherapy combines
radionuclides with MABs to deliver radiation to designated areas where it
produces high irradiation effects.

A startling new picture of how cells respond to radiation is beginning to
emerge from microbeam studies in which individual cells are targeted with a
precise dose of radiation. Cells damaged by radiation communicate with
neighboring cells using messenger molecules (cytokines) that can be
transmitted between the cells. As a result, cells not hit by radiation, called
bystander cells, generate molecular and cellular responses similar to cells
that are irradiated. Study of bystander—cell effects will have profound
implications in planning for radiation therapy and also for the assessment of
health risks of low radiation doses. On the other hand, the precise and
non—invasive nature of microbeams is useful in radiobiology, cell and
biomolecular diagnostics, and intracellular micromanipulations. For
example, biological tissues are mostly transparent to photon radiation giving
the unique possibility to act on cell structure without changing the features
or disturbing the vital functions. Recent advances in tissue and molecular
engineering call for new technologies to analyze and possibly modify cell
and tissue behavior while minimizing undesirable signaling (contamination)
in the broader cellular environment.

Neutrons offer powerful tools for the investigation of macromolecular
structures, such as the structure of proteins, membranes, polymers and other
complex biological materials. The use of cold neutrons rather than thermal
neutrons improves the detection limits of miniscule amounts of light
elements such as hydrogen. They are widely used as a microscopic probe in
fields ranging from elementary physics to biological science. Cold neutrons
are finding a fabulous application in depth profiling of light element spatial
deposition; for example, mapping the spatial distribution of boron atoms in a
tumor region (thus providing information that may profoundly advance
BNCT). Cold neutrons are of great interest since they are noninvasive and a
sample can be reused for other profiling tests by different techniques.
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S. BOOK CONTENT

This book offers an overview of basic nuclear principles in engineering
including, but not limited to physical processes in radiation interaction with
matter, neutron transport and reactor physics, nuclear and atomic structure,
and radioactive decay. The understanding of principles is essential in
developing engineering applications. For example, prediction of nuclear
parameters in reactors or accurate radiation treatment in medicine are both
based on principles of radiation interactions with matter. They share the
same tools for predicting energy deposition along different pathways.

The book material is organized as follows:

— Atomic structure principles are described in Chapter 2. This knowledge
is important in analyzing the probabilities of interaction leading to
ionization of a medium (of extreme importance in biological tissues) and
in understanding the energy levels and electronic configuration of atoms.

— The majority of nuclear interactions involve electron clouds or nuclei of a
medium. For example, in a reactor we find interactions of neutron with
nuclear fuel and structure materials. Understanding these interactions is
of great importance in predicting reactor power, achieving reactor control
and selecting fuel characteristics. In order to predict such parameters with
high accuracy, knowledge of the nature of particle interactions and the
structure of nucleus are of great importance and are described in Chapter
3. In addition, a brief overview of Quantum Mechanics starting from the
concept of Planck’s quanta and the de Broglie wavelength through
Heisenberg principle and Schrédinger equation is provided in this
chapter as well.

— Radioactivity, a phenomenon discovered at the end of 19" century, has
found applications in many scientific and engineering approaches
(radioactive dating, radioisotope generators, nuclear medicine) and is
described in detail in Chapter 4.

— The interaction of various particles with matter is described in Chapter 5.
The concept of stopping power, range of interactions, and the attenuation
of radiation beam are essential aspects in particle transport and
applications of radiation effects.

— Chapter 6 focuses at description and analysis of the cross sections for
neutron interactions; the nature of neutron interactions; and, basic
principles of the fission process.

— Reactor steady—state and kinetic physics are described in Chapter 7. The
basic principles of neutron diffusion theory, reactor power, fission chain
reaction, critical mass, spatial distribution of neutron flux and reaction
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rates are described with details needed to pursue analysis of reactor
behavior giving a solid background for understanding time—dependent
physics parameters of thermal reactors.

— Aspects of reactor control, the effects of neutron poisoning as well as
temperature coefficients of reactivity are summarized in Chapter 8.



Chapter 2
ATOMIC THEORY

Basic Principles, Evidence and Examples

“Among all physical constants thete are two which will be universally admitted to
be of predominant importance; the one is the velocity of light, which now appears
in many of the fundamental equations of theoretical physics, and the other is the
ultimate, or elementary, electrical charge”, Robert Millikan (1868 - 1953)

1. INTRODUCTION

Around the 5" century BC, Greek philosopher Democritus invented the
concept of the atom (from Greek meaning “indivisible”). The atom, eternal,
constant, invisible, and indivisible, represented the smallest unit and the
building block of all matter. Democritus suggested that the varieties of
matter and changes in the universe arise from different relations between
these most basic constituents. He illustrated the concept of atom by arguing
that every piece of matter could be cut to an end until the last constituent, is
reached. Today the word atom is used to identify the basic component of
molecules that create all matter, but it is now known that the atom itself is
made up of particles even more fundamental, some of which are elementary.
The first theoretical and experimental models of the structure of matter came
as late as the 19" century, which is the time marked as the beginning of
modern science. At that time a more empirical approach, mainly in
chemistry, opened a new era of scientific investigations.

The work of Democritus remained known through the ages in writings of
other philosophers, mainly Aristotle. Modern Greece has honored
Democritus as a philosopher and the originator of the concept of the atoms
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through their currency. The 10—-drachma coin, before Greek currency was
replaced with the euro, depicted the face of Democritus on one side, and the
schematic of a lithium atom on the other (see Fig. 2-1).
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Figure 2-1. Greek 10—drachma coin featuring Democritus and the lithium atom (Courtesy of
the Bank of Greece)

This chapter introduces the structure of atoms and describes atomic
models that show evidence for the existence of atoms and electrons.

2. ATOMIC MODELS
2.1 The Cannonball Atomic Model

All matter on Earth is made from combination of 90 naturally occurring
different atoms. Early in the 19" century, scientists began to study the
decomposition of materials and noted that some substances could not be
broken down past a certain point (for instance, once separated into oxygen
and hydrogen, water cannot be broken down any further). These primary
substances are called chemical elements. By the end of the 19" century it
was implicit that matter can exist in the form of: a pure element, chemical
compound of two or more elements, or as a mixture of such compounds.
Almost 80 elements were known at that time and a series of experiments
provided confirmation that these elements were composed of atoms. This led
to a discovery of the law of definite proportions: two elements, when
combined to create a pure chemical compound, always combine in fixed
ratios by weight. For example, if element A combines with element B, the
unification creates a compound AB. Since the weight of A is constant and the
weight of B is constant, the weight ratio of these two will always be the
same. This also implies that two elements will only combine in the defined
proportion; adding an extra quantity of one of the elements will not produce
more of the compound.
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Example 2.1: The law of definite proportion
Carbon (C) forms two compounds when reacting with oxygen (O): carbon
monoxide (CO) and carbon dioxide (CO,)

1gof C+4/3gof O 21/3 gof CO

lgof C+8/3g0fO > 32/3g0fCO,

The two compounds are formed by the combination of a definite number of
carbon atoms with a definite number of oxygen atoms. The ratio of these two
clements is constant for each of compounds (molecules): C:0 = 3:4 for CO, and C:O
= 3.8 for CO,.

The first atomic theory with empirical proofs for the law of definite
proportion was developed in 1803 by the English chemist John Dalton
(1766-1844). Dalton conducted a number of experiments on gases and
liquids and concluded that, in chemical reactions, the amount of the elements
combining to form a compound is always in the same proportion. He showed
that matter is composed of atoms and that atoms have their own distinct
weight. Although some explanations in Dalton’s original atomic theory are
incorrect, his concept that chemical reactions can be explained by the union
and separation of atoms (which have characteristic properties) represents the
foundations of modern atomic physics. In his two volume book, New System
of Chemical Philosophy, Dalton suggested a way to explain the new
experimental chemistry. His atomic model described how all elements were
composed of indivisible particles which he called atoms (he depicted atoms
like cannonballs, see Fig. 2-2), and that all atoms of a given element were
exactly alike. This explained the law of definite proportions. Dalton further
explained that different elements have different atoms and that compounds
were formed by joining the atoms of two or more elements.

Figure 2-2. Cannonball atomic model (John Dalton, 1803)

In 1811, Amadeo Avogadro, conte di Quaregna e Ceretto (1776-1856),
postulated that equal volumes of gases at the same temperature and pressure
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contain the same number of molecules. Sadly, his hypothesis was not proven
until two years after his death at the first international conference on
chemistry held in Germany in 1860 where his colleague, Stanislao
Cannizzaro, showed the system of atomic and molecular weights based on
Avogadro’s postulates.

Example 2.2: Avogadro’s law

As shown in Example 2.1, the ratio of carbon and oxygen in forming CO, is 3:8.
Here is the explanation of this ratio: since a single atom of carbon has the same mass
as 12 hydrogen atoms, and two oxygen atoms have the same mass as 32 hydrogen
atoms, the ratio of the masses is 12:32 = 3:8. This shows that the description of the
reaction is independent of the units used since it is the ratio of the masses that
determines the outcome of a chemical reaction. Thus, whenever you see wood
burning in a fire, you should know that for every atom of carbon from the wood, two
oxygen atoms from the air are combined to form CO,; the ratio of masses is always
12:32,

It follows that there must be as many carbon atoms in 12 grams of carbon as
there are oxygen atoms in 16 grams of oxygen. This measure of the number of
atoms is called a mole. The mole is used as a convenient measure of an amount of
matter; similarly as “a dozen” is a convenient measure of 12 objects of any kind.
Thus, the number of atoms (or molecules) in a mole of any substance is the same.
This number is called Avogadro’s number (N,) and its value was accurately
measured in the 20™ century as 6.02 x 10* atoms or molecules per mole.

For example, the number of moles of hydrogen atoms in a sample that contains
3.02 x 10*' hydrogen atoms is:

3.02x 1021at0ms H
6.02x10%

Moles of H atoms = =5.01x107> moles H

atoms | mole

2.2 The Plum Pudding Atomic Model

Shortly before the end of the 19" century, a series of new experiments
and discoveries opened the way for new developments in atomic and
subatomic (nuclear) physics. In November 1895, Wilhelm Roentgen (1845-
1923) discovered a new type of radiation called X rays, and their ability to
penetrate highly dense materials. Soon after the discovery of X rays, Henri
Becquerel (1852-1908) showed that certain materials emit similar rays
independent of any external force. Such emission of radiation became
known as radioactivity.



ATOMIC THEORY 13

During this same time period, scientists were extensively studying a
phenomenon called cathode rays. Cathode rays are produced between two
plates (a cathode and an anode) in a glass tube filled with very low—density
gas when an electrical current is passed from the cathode to the high voltage
anode. Because the glowing discharge forms around the cathode and then
extends toward the anode, it was thought that the rays were coming out of
the cathode. The real nature of cathode rays was not understood until 1897
when Sir Joseph John Thomson (1856-1940) performed experiments that led
to the discovery of the first subatomic particle, the electron. The most
important aspect of his discovery is that cathode rays are a stream of
particles. Here is the explanation of his postulate: from the experiment he
observed that cathode rays were always deflected by an electric field from
the negatively charged plate inside the cathode ray tube, which led him to
conclude that the rays carried a negative electric charge. He was able to
determine the speed of these particles and obtained a value that was a
fraction of the speed of light (one tenth the speed of light, or roughly 30,000
km/sec or 18,000 mi/sec). He postulated that anything that carries a charge
must be of material origin and composed of particles. In his experiment,
Thomson was able to measure the charge—to—mass ratio, e/m, of the cathode
rays; a property that was found to be constant regardless of the materials
used. This ratio was known for atoms from electrochemical analysis and by
comparing the value obtained for the electrons he could conclude that the
electron was a very small particle, approximately 1,000 times smaller than
the smallest atom (hydrogen). The electron was the first subatomic particle
identified and the fastest small piece of matter known at that time.

In 1904, Thomson developed an atomic model to explain how the
negative charge (electrons) and positive charge (speculated to exist since it
was known that atoms were electrically neutral) were distributed in the atom.
He concluded that the atom was a sphere of positively charged material with
electrons spread equally throughout like raisins in a plum pudding. Hence,
his model is referred to as the plum pudding model, or raisin bun atom as
depicted in Fig. 2-3. This model could explain
¢ The neutrality of atoms
¢ The origin of electrons
e The origin of the chemical properties of elements

However, his model could not answer questions regarding
e Spectral lines (according to this model, radiation emitted should be

monochromatic; however, experiments with hydrogen shows a series of

lines falling into different parts of the electromagnetic spectrum)

Radioactivity (nature of emitted rays and their origin in the atom)

e Scattering of charged particles by atoms.
Thomson won the Nobel Prize in 1906 for his discovery of the electron.
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He worked in the famous Cavendish Laboratory in Cambridge and was one
of the most influential scientists of his time. Seven of his students and
collaborators won Nobel Prizes; amongst them his son who, interestingly,
won the Nobel Prize for proving the electron is a wave.

Figure 2-3. Plum pudding atomic model (J. J. Thomson, 1904)
2.3 Millikan’s Experiment

In 1909 Robert Millikan (1868-1953) developed an experiment at the
University of Chicago to measure the charge of the electron. The experiment
is known as the “Millikan oil-drop experiment.”

Millikan determined the mass of the electron based on his experimentally
measured value of the electron charge, 1.60 x 10" C, and Thomson’s
charge-to-mass ratio, 1.76 x 10® C/g. He found the electron mass to be 9.10 x
10 g (about 2000 times smaller than that of hydrogen, the lightest atom);
the presently accepted value is 9.10939 x 10% g.

How was the charge of an electron measured from oil drops? Millikan’s
experimental apparatus consisted of a chamber with two metal plates placed
at the top and the bottom. The plates were connected to a voltage source and
oil droplets were allowed to fall between (see Fig. 2-4). In the absence of
voltage (electrical field, E, equal to zero) droplets were allowed to fall until
they reached their terminal velocity (when the downward force of gravity,
mg, is balanced with the upward force of air resistance). By measuring the
terminal velocity he was able to determine the mass of the oil droplets. By
introducing an electrical field, the forces (gravitational and electrical) could
be balanced and the drops would be suspended in mid—air. The resulting
force is zero, because the gravitational force is equal to the electrical force

mg =qk (2-1)

where the total charge of the oil droplet, g = N-e, is an integer times the
charge of one electron (because the electron cannot be divided to produce a
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fractional charge). By changing the electric charge of oil droplets (irradiating
them with X rays known at that time to ionize the molecules), Millikan
noticed that the charge was always a multiple of the same number,
—1.6 x 10" coulombs. Robert Millikan was awarded the Nobel Prize in
1923 for this work.
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Figure 2-4. Schematics of Millikan's oil drop experiment (1909)

24 The Planetary Atomic Model
24.1 Disproof of Thomson’s Plum Pudding Atomic Model

Thomson’s atomic model described the atom as a relatively large,
positively charged, amorphous mass of a spherical shape with negatively
charged electrons homogenously distributed throughout the volume of the
sphere, the sizes of which were known to be on the order of an Angstrém
1A=10%cm=10"m). In 1911 Geiger and Marsden carried out a number
of experiments under the direction of Ernest Rutherford (1871-1937) who
received the Nobel Prize in chemistry in 1908 for investigating and
classifying radioactivity. He actually did his most important work after he
received the Nobel Prize and the 1911-experiment unlocked the hidden
nature of the atom structure.

Rutherford placed a naturally radioactive source (such as radium) inside
a lead block as shown in Fig. 2-5. The source produced o particles which
were collimated into a beam and directed toward a thin gold foil. Rutherford
hypothesized that if Thomson’s model was correct then the stream of o
particles would pass straight through the foil with only a few being slightly
deflected as illustrated in Fig. 2-6. The “pass through” the atom volume was
expected because the Thomson model postulated a rather uniform
distribution of positive and negative charges throughout the atom. The
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deflections would occur when the positively charged o particles came very
close to individual electrons or regions of positive charges. As expected,
most of the o particles went through the gold foil with almost no deflection.
However, some of them rebounded almost directly backwards — a
phenomenon that was not expected (see Fig. 2-7). The main challenge was to
explain what caused such a large deflection angle and what caused other
particles to go through the atom without noticeable scattering.

Scintillation Screen
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Figure 2-5. Schematics of the Rutherford's experiment (1911)
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Figure 2-6. Expected scattering of o particles in Rutherford's experiment

Rutherford explained that most of the o particles pass through gold foil
with little or no divergence not because the atom is a uniform mixture of
positive and negative charges, but because the atom is largely empty space
and there is nothing to interact with the o particles. He explained the large
scattering angle by suggesting that some of the particles occasionally collide
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with, or come very close to, the “massive” positively charged nucleus that is
located at the center of an atom. It was known at the time that the gold
nucleus has a positive charge of 79 units and a mass of about 197 units while
the o particle has a positive charge of 2 units and a mass of 4 units. The
repulsive force between the o particle and the gold nucleus is proportional to
the product of their charges and inversely proportional to the square of the
distance between them. In a direct collision, the massive gold nucleus would
thus be hardly moved by the o particle. The diameter of the nucleus was
shown to be about 1/105 the size of the atom itself or around 107 m.
Clearly these ideas defined an atom very different from Thomson’s model.

Figure 2-7. Actual scattering of o particles in Rutherford's experiment

Ernest Solvay (1838-1922), a Belgian industrial chemist who made a
fortune from the development of a new process to make washing soda
(1863), was known for his generous financial support to science, especially
physics research. Among the projects he financially supported was a series
of international conferences, known as the Solvay conferences. The First
Solvay Conference on Physics was held in Brussels in 1911 and it was
attended by the most famous scientists of the time. Rutherford was one of
them; he announced the discovery of the atomic nucleus and explained the
structure of the atom. According to his explanation, the electrons revolve
around the nucleus at relatively great distances. Since each electron carries
one elementary charge of negative electricity, the number of electrons must
equal the number of elementary charges of positive electricity carried by the
nucleus for the atom to be electrically neutral. The visual model is similar to
the solar planetary system and is illustrated in Fig. 2-8.
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Figure 2-8. Planetary atomic model (Rutherford, 1911)
2.4.2 Idea of a Nucleus in the Center of an Atom

Rutherford’s scattering experiment showed that a positive charge
distributed throughout the volume of Thomson’s atom could not deflect the
o, particles by more than a small fraction of a degree. A central assumption
of Thomson’s atomic model was that both the positive charge and the mass
of the atom were distributed nearly uniformly over its volume. The electric
field from this charge distribution is the field that must scatter the o
particles, since the light-weight electrons would have a negligible impact.
The expected deflection of an o particle from the gold nucleus according to
Thomson’s atomic model is shown in Fig. 2-9. The thickness of the gold foil
used by Rutherford was about 400 atoms (or ~ 5 X 107 m). The gold atom
has a positive charge of 79¢ (balanced by 79 electrons in its normal state).
Neglecting the electrons, the maximum electric force the o particle would
encounter is that at the surface of the positively charged sphere.

Johannes Kepler was first to mathematically formulate Tycho Brahe’s
precise measurements of the motion of planets, showing that the orbit of the
planets around the sun is elliptical. Newton later proved that these elliptical
orbits are a consequence of the attractive gravitational force (GmM/r*). He
also established that the motion of heavenly bodies in the field of a central
attractive force with a ~1/7* dependence (such as the gravitational field of
the sun) is always a conical section, depending on the initial conditions: a
hyperbola (body has sufficient kinetic energy to avoid capture by the
gravitational field), an ellipse (the body is captured), and a parabola (a
limiting case between these two). The scattering of particles in the electric
field follows the same law that describes the motion of bodies in a
gravitational field, except that the force can be both attractive and repulsive
(the latter being the case for o particles and a positively charged nucleus).
These two forces, electric and gravitational, are generated according to
modern quantum physics by the exchange of a massless particle (or field
quantum). In the case of the electric force the field quantum is a photon and
in the case of the gravitational force the field quantum is called a graviton.
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Plum pudding atomic model Planetary atomic model

Figure 2-9. Trajectory of the a particle in the electric field of an atom in Rutherford’s
experiment according to the plum pudding and planetary atomic model

If the mass of an a particle is m with charge g = 2e, and the charge of the
gold foil nucleus is Q = Ze = 79e, then the electric force acting on the o
particle (a Coulomb repulsion force due to the positively charged nucleus) is
written as

e kQq _ k(79¢)(2e) (2-2)

2 2
r r

where k is the Coulomb force constant, 1 / (47g) = 8.99 x 10° Nm?*/C>.
Assuming the atom to be represented by a sphere of radius 10™'° m, Eq. (2-2)
gives the repulsive force that acts on the incoming o particle as 3.64 x 107
N. The assumption that only the Coulomb force acts on the o particle was
shown to be correct since the a particles never penetrated the gold nucleus
and Rutherford’s theoretical explanation agreed with the experimental
measurements for all cases.

Due to the nature of the Coulomb force acting on the a particle (inverse
square law), the a particle follows a hyperbolic trajectory (see Fig. 2-9) that
is characterized by the impact parameter, b. The impact parameter
represents the distance from the nucleus perpendicular to the line of
approach of the incident o particle. The angle of deflection, &, of any a
particle is related to the impact parameter through the following relation

b k(Ze)(ze) _ k(79¢)(2e) (2-3)
Ttan(€@/2) Ttan(6/2)

where T denotes the kinetic energy of the incident a particle. It follows
that the impact parameter is smaller for larger scattering angles and larger
energy of the incident particle. Table 2-1 illustrates dependence of the



20 Chapter 2

impact parameter on scattering angle as measured in Rutherford’s
experiment.

Table 2-1. Impact parameter and scattering angle of o particles in Rutherford’s experiment

Impact parameter, 5 (10> m) Scattering angle, 8 (degrees)
81.1 40

35.2 80

17.0 120

5.2 160

From the distribution of the a particle’s scattering angles, Rutherford
concluded that the structure of an atom most likely mimics the solar
planetary system. The size of the nucleus at the center of the atom was
estimated based on the kinetic energy, 7, of the incident a particle and its
potential energy at the point of closest approach, d. The closest approach
occurs in the case of a head—on collision in which the o particle comes to
rest before it bounces back at an angle of 180 degrees (see Fig. 2-10). At that
point the kinetic energy is zero, and the potential energy equals the initial
kinetic energy

_ k(79e)(2e)
- d

T (2-4)

A R 3

. .
/ Impact

i Parameter, b

° )__..i

Figure 2-10. Deflection of o particle by the gold nucleus (of radius R)

Knowing the kinetic energy of the incident o particles, the closest
approach of an a particle to any nucleus in the gold foil (on the order of
107"* m) and the approximate size of the gold nucleus (on the order of 10~
m) may be determined. The unit of 10™"° m is designated as a Fermi, fm. The
small volume of the nucleus implies its high density and the need for a
strong attractive force in the nucleus to overcome the Coulomb repulsive
force. It was also understood that this attraction must be of a very short
range.
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Example 2.3: Size of the gold nucleus in Rutherford’s experiment

In Rutherford’s experiment the kinetic energy of the incident o particles was 7.7
MeV. Estimate the upper limit size of the gold nucleus and comment on the effect of
increased energy of the incident o particles in the experiment.

According to Fig. 2-10 the point of closest approach will determine the size of
the nucleus. For the head—on collision it follows from Eq. (2-4)

d< k(79e)(2e) _ (79)(2)ke2 _ (T9(2)(1.44MeV - fm)
7. TMeV 7.7MeV 7. 71MeV

=30 fim

This implies that the gold nucleus has radius smaller than 30 fm (the actual
measurement is about 8 fm).

If the incident energy of the o particles in Rutherford’s experiment is increased,
some of the o particles would penetrate the nucleus; first in the head-on collisions
and then for smaller angles as the energy is further increased. The limiting kinetic
energy for the incident o particle above which the Rutherford experiment would not
agree with theoretical explanation

(19)(ke?

T =28.5MeV

where R represents the radius of the gold nucleus.

2.4.3 Rutherford’s Scattering Formula

Rutherford’s experiment eliminated Thomson’s plum pudding atomic
model on the base of large—angle scattering. Relatively heavy o particles
could not be turned around by much lighter electrons or by the combined
mass of positive and negative charges if this mass were distributed
uniformly over the whole volume. The electrostatic repulsion would only be
strong enough to deflect incoming o particles through such large angles if
the positive charge is concentrated (as he proposed in a central nucleus).
This scattering of charged particles by the nuclear electrostatic field is called
Rutherford scattering. The probability of large—angle scattering is very small
due to the extremely small size of the nucleus relative to the whole atom
(radius of 10 m versus 107'° m); indeed, according to Rutherford’s
experiment, only 1 out of 8000 events resulted in large—angle scattering.

Based on his planetary model of the atom, Rutherford was able to define
the angular distribution of the scattered o particles. A particle with an impact
parameter less than b will be scattered at an angle larger than & (see Fig. 2-
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10). Therefore, all particles hitting the gold foil through the area 7* (where
b is the radius), will scatter at an angle 6 or larger (see Fig. 2-11). Assuming
that the incident beam is made of N alpha particles and has a cross sectional
area A, the number of particles scattered by & or larger is 7b%/A. Thus, the
number of particles scattered through an angle of & or larger by one gold
atom in the foil is

2
Nscart :NL”b ] (2-5)

atom A

The number of atoms encountered by the beam of particles in the gold is

N, .. =nAt (2-6)

foil

where ¢ is the target (foil) thickness and #n is the number of atoms per unit

volume.
/e

g 2

{ Impact
i Parameter, b

Nucleus

Figure 2-11. Correlation between the deflection angle of o particle and its impact parameter

Therefore, it follows from Egs. (2-5) and (2-6) that the total number of o
particles scattered through an angle & or larger by the gold foil in
Rutherford’s experiment is

Nscattered = Nntﬂbz (2'7)
or
zke* |
chattered = Nni7 ———ei—— (2'8)
T tan(6/2)
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where T is the kinetic energy of the o particle. The number of particles
that emerge between fand &+ dfis obtained by differentiating Eq. (2-8)

(2-9)

2 2
N\'am, 0—d0 = Nntﬂ'i: Zke i| 008(0/2) d&

T | sin®(8/2)

At some distance s from the gold foil (where the detector is located)
particles with a deflection angle between @ and & + d@ pass through the
annulus as shown in Fig. 2-12 and are uniformly distributed over the surface
area

A =(27ssin0)(s d6) (2-10)

sdé

s sin@
\——-

Figure 2-12. Detection of o particles after scattering through &

| |

The number of particles per unit area that pass through the annulus at
distance s and at angle @is

Nt zke? T 1
0) = 2-11
n(8) 4s2{ } (2-11)

T | sin*(8/2)

This is called the Rutherford scattering formula or inverse square
scattering formula. According to this formula, the number of particles
scattered at a certain angle is: proportional to the thickness of the foil and to
the square of the nuclear charge of the foil, and inversely proportional to the
incident particle kinetic energy squared and to the fourth power of sin (6/2).
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This was confirmed in all of the experiments with gold foil. Rutherford
derived the above formula (2-11) assuming that the only force acting
between the nucleus and o particle is the Coulomb repulsive force, and since
all of the experimental data agreed, this assumption was valid (see Example
2.3). However, some years later he repeated the experiment using aluminium
foil. The experimental results for small angle scattering agreed with his
formula, but large angle scattering departed from it. Rutherford deduced that
in the large—angle scattering that corresponded to a closer approach to the
nucleus, the o particle was actually striking the nucleus. This meant that the
size of the nucleus could be obtained by finding the maximum angle for
which the Rutherford formula is valid, and finding the incident particle’s
closest approach to the center of the nucleus.

244 Stability of the Planetary Atomic Model

The Rutherford planetary atomic model could not explain:

e How are the electrons (negatively charged bodies) held outside the
nucleus (a positively charged body) despite the attractive electrostatic
force? According to the planetary model electrons are revolving around
the nucleus like planets around the sun, though planets are electrically
neutral and thus stay in their orbits. According to classical
electromagnetic theory any charge placed in circular motion will radiate
light (electromagnetic energy), which means that electrons orbiting
around the nucleus would spiral inwards and collapse into the nucleus
due to the loss of kinetic energy. This would produce extremely unstable
atoms.

e The radiated energy of photons from spiralling electrons would change in
frequency during the deceleration process and produce a continuous
spectrum; however, at that time, the spectra of some of the elements were
known to show specific discrete lines.

e What holds the positive charges in the nucleus together in spite of the
repulsive electrostatic forces?

2.5 The Smallness of the Atom

Rutherford’s gold foil experiment was the first indication and proof that
the space occupied by an atom is huge compared to that occupied by its
nucleus. In fact, the electrons orbiting the nucleus can be compared to a few
flies in a cathedral. As a qualitative reference, a human is about two million
times “taller” than the average Echerichia coli bacterium; Mount Everest is
about 5000 times taller than the average man; and a man is about ten billion
times “taller” than the oxygen atom. If the atom were scaled up to a size of a
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golf ball, on that same scale a man would stretch from Earth to the Moon.
Atoms are so small that direct visualization of their structure is impossible.
Today’s best optical or electron microscopes can not reveal the interior of an
atom.

The picture shown in Fig. 2-13 was taken with a scanning transmission
electron microscope and shows a direct observation of cubes of magnesium
oxide, but details of the atoms cannot be seen.

Figure 2-13. Magnesium oxide crystallites as seen with scanning transmission electronic
microscope produced at the Institute of Standards and Technology in the USA (Courtesy
National Institute of Standards and Technology)

At the National Institute of Standards and Technology (NIST), however,
the Nanoscale Physics Facility is used to manipulate and arrange atoms, one
by one, into desired patterns.

The image shown in Fig.2-14 represents an eight—nanometer square
structure with cobalt atoms arranged on a copper surface. Such arrangements
of atoms are used to investigate the physics of ultra—tiny objects. The
structure shown below was observed with a scanning tunneling microscope
at a temperature of 2.3 Kelvin (about —455 degrees Fahrenheit): the larger
peaks (upper left and lower right) are pairs of cobalt atoms, while the two
smaller peaks are single cobalt atoms. The swirls on the copper surface
illustrate how the cobalt and copper electrons interact with each other.
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Figure 2-14. Nanoscale structure of cobalt and copper atoms produced at the Institute of
Standards and Technology in the USA (Courtesy of J. Stroscio, R. Celotta, A. Fein, E.
Hudson, and S. Blankenship, 2002)

2.6 The Quantum Atomic Model
2.6.1 Quantum Leap

In 1913 Niels Bohr (1885-1962), developed the atomic model that
resolved Rutherford’s atomic stability questions. His model was based on
the work of Planck (energy quantization), Einstein (photon nature of light),
and Rutherford (nucleus at the center of the atom).

In 1900 Max Planck (1858-1947) resolved the long—standing problem of
black body radiation by showing that atoms emit light in bundles of radiation
(called photons by Einstein in 1905 in his theory of the photoelectric effect).
This led to formulation of Planck’s radiation law: a light is emitted as well
as absorbed in discrete quanta of energy. The magnitude of these discrete
energy quanta is proportional to the light’s frequency (f; which represents the
color of light), as shown in Eq. (2-12)

_he

E=h
/ A

(2-12)

where £ is Planck’s constant (4 = 6.63 X 107* J s), ¢ is the speed of light
and A is the wavelength of the emitted or absorbed light.

Bohr applied the quantum theory of light to the structure of the electrons
by restricting them to exist only along the certain orbits (called the allowed
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orbits) and not allowing them to appear at arbitrary locations inside the
atom. The angular momentum of the electrons is quantized and thus
prohibits random trajectories around the nucleus. Consequently the electrons
cannot emit or absorb electromagnetic radiation in arbitrary amounts since
an arbitrary amount would lead to an energy that would force the electron to
move to an orbit that does not exist. Electrons are thus allowed to move from
one orbit to another. However, the electrons never actually cross the space
between the orbits. They simply appear or disappear within the allowed
states; a phenomenon referred to as a quantum leap or quantum jump.

For his theory of atoms that introduced the new discipline of quantum
mechanics in physics, Bohr received a Noble Prize in 1922, He was also a
founder of the Copenhagen school of quantum mechanics. One of his
students once noticed a horseshoe nailed above his cabin door and asked
him: “Surely, Professor Bohr, you don’t believe in all that silliness about the
horseshoe bringing good luck?” With a gentle smile Bohr replied: “No, no,
of course not, but I understand that it works whether you believe it or not”.

2.6.2 Absorption and Emission of Photons

In Bohr’s atomic model, an electron jumps to a higher orbit when the
atom absorbs a photon, and back to a lower orbit when the atom emits a
photon. In other words, a quantum leap to a higher orbit requires energy,
while a quantum leap to a lower orbit emits that energy (see Fig. 2-15).

Bohr’s atomic model resolved the problem of atomic instability (Section
2.4.4) by changing the classical mechanics into quantum mechanics. This
explains the existence of discontinuities in the absorption and emission of
energy which is determined by the allowable electronic states in atoms.
These allowed orbits are also called stationary orbits or stationary states.
Since the orbits are discrete and quantized, so are their energies. The
electrons in an atom can thus only have discrete energies. According to
Bohr’s theory, in an electrically neutral atom, an electron is in its stationary
state and does not radiate energy as long as it is not disturbed. This
explained the stability of atoms but does not explain why electrons don’t
radiate energy while orbiting along their stationary trajectories. The theory
also explained the reason for the discontinuities in the atomic spectra. When
an electron jumps to higher orbit a photon must be absorbed and its energy is
equal to the energy difference of the two orbits. Conversely, a photon is
emitted when an electron drops to a lower orbit and the photon energy is
again equal to the energy difference of the two orbits (see Fig. 2-15)

hf=E, —-E,, n>m (2-13)
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Both the emission and absorption of energy by an atom thus correspond
to electron transition, which is the movement of an electron from one level
to another. The electrons of an electrically neutral atom are normally all in
the lowest possible energy levels. The addition of energy excites the
electrons and the resulting atom is in an excited state (absorption of energy
by an atom). Generally the electrons remain in this excited state for a short
duration and soon return to a more stable, lower energy level by releasing
the extra energy (emission of energy by an atom).

Higher Orbit, E,,

Lower Orbit, E,,

Photon is absorbed Photon is emitted

Figure 2-15. Schematic representation of a quantum leap of electrons in the quantum atomic
model (Niels Bohr, 1913)

2.6.3 The Bohr Model of the Hydrogen Atom

According to the Bohr atomic model, the hydrogen atom consists of an
electron of mass m and charge —e, which orbits around a nucleus of charge
+e (see Fig. 2-16). For simplicity, it is assumed that the electron orbits the
nucleus in a circular motion and that the nucleus is fixed in its position
(since the hydrogen nucleus consists of one proton that is much heavier than
the electron, this assumption does not affect the final result).

The only force that is thus acting on the electron is the attractive
Coulomb force from the positively charged nucleus

F=""0 (2-14)

where k is the Coulomb force constant, k = 1/47g = 8.99 x 10° Nm*/C?,
and & = 8.8542 x 10™'? C*/Nm? is the permittivity of free space.

The Coulomb force of attraction is equal to the electron’s centripetal
force and according to Newton’s second law it can be written as
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M= (2-15)

where v/r is the centripetal acceleration. Equation (2-15) can be
rewritten as follows

my° =—— (2-16)

and according to classical mechanics, this indicates possible values for
electron velocity and its distance from the nucleus that range continuously
from O to . The electron’s kinetic energy is T = mv* /2 and its potential
energy in the field of the proton is U = —ke®/r. By convention the potential
energy is zero (U = 0) when the electron is far away from the nucleus
(r — ), For an electron in a circular orbit around a positively charged
nucleus kinetic and total energy are

1
T=-=U 2-17
5 (2-17)

E=T+U=§U:——— (2-18)

v ; Electron

s U~

Figure 2-16. Circular motion of an electron in the Bohr model of the hydrogen atom

The negative value for the total energy indicates that the electron is
bound to the nucleus and cannot escape to infinity. Since the distance from
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the nucleus ranges from 0 to infinity, it follows from Eq. (2-18) that the
electron’s total energy can have values between —oo and 0.

The above analysis is based on classical mechanics and does not show
that the energy of the electron is quantized. Bohr’s hypothesis was that the
electron’s angular momentum (L = muvr) was quantized in multiples of
Planck’s constant (this is because Planck’s constant has a unit of angular
momentum) and for circular orbits

L:mvr:ni:nh (n=12,3,..) (2-19)
27

where 7 =h/27=1.055x10"%*Js (read as “h bar”).
Combining Eqgs. (2-18) and (2-19)

[ r =
n 2
r kem

=n’ay, (n=12,3,..) (2-20)

[ nh :lz ke? n*h?
ml 2L =
mr

Eq. (2-20) gives quantized values for the radius of the electron’s orbit. In
addition, it defines the so-called Bohr radius, ay

hz
ke’m

=0.0529 nm (2-21)

ay =

From the possible electron orbit radii the possible energy levels are
calculated as follows

2 242
E:T+U=%U=——%ki and r, = o =n’a, gives
r e’m
ke’ 1
E, =———— (n=123,.) (2-22)
2ay n

The energy of the photons that are absorbed or emitted from the
hydrogen atom during electronic transitions between orbits n and m (n > m,
see Fig. 2-15) can be now determined

2
E,=E,-E, = {—1———17} (2:23)

n m = 2
r 2a,Lm° n
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In the chapters that follow this equation is explored further and connected
to the work of Rydberg.

2.7 Atomic Spectra

A spectrum is defined as the distribution of light (electromagnetic
radiation) as a function of its frequency or wavelength. Newton performed
the first light color spectrum experiment in 1666 by shining white light
through a glass prism. The experiment produced a rainbow of colors and
showed that what we observe as white light is a mixture of many different
colors. In 1814 a German physicist, Joseph von Fraunhofer, noticed a
multitude of dark lines, indicating that certain colors are missing in the solar
light spectrum. These dark lines were caused by the absorption of some of
the solar light’s components by the gases in the sun’s outer atmosphere. A
series of experiments followed and by the middle of the 19 century it was
understood that gases absorb light (specific frequencies of light) that are
characteristic of the gas constituents.

Absorption spectrum

Emission spectrum
Figure 2-17. Absorption and emission spectra of atomic hydrogen

If white light is shone through a gas that consists of only one kind of
atom, the gas will absorb light of frequency (energy) that is characteristic to
that atom. If the light is then subsequently transmitted through a glass prism,
the resulting spectrum will lack the colors corresponding to the absorbed
frequencies. This spectrum is called the absorption spectrum and the dark
lines correspond to the absorbed frequencies (see the hydrogen absorption
spectrum in Fig. 2-17). By 1859 Robert Bunsen discovered that sufficiently
heated gases also emit light and an emission spectrum is observed when the
emitted light is transmitted through a glass prism (see the hydrogen emission
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spectrum in Fig. 2-17). The emission spectrum’s bright lines correspond to
the dark lines in the absorption spectrum. At the same time, his colleague,
Gustav Kirchhoff, while analysing the spectra of sunlight and heated
sodium, realized that the dark lines in the solar spectrum represented the
light frequencies that were absorbed by the sodium atoms in the solar gases.

The emission and absorption spectra thus represents a “signature” of an
atom. The Kirchhoff-Bunsen discovery was not fully understood until Bohr
explained the transition of electrons between strictly defined orbits (energy
levels), but it represents the beginning of the science of spectroscopy. By
1870 spectroscopy became a tool that was used to analyse the chemical
compositions of the sun and stars.

271 The Balmer-Rydberg Formula

In 1885 a Swiss school teacher, Jakob Balmer (1825-1898), analysed the
hydrogen atomic spectral data and showed that the observed wavelengths
correlate to the formula

% = RB - ;12—} (2-24)

where R is a constant with a dimension of inverse length, according to
Balmer equal to 0.0110 nm™ for the hydrogen spectrum, and # is an integer
with values of 3, 4, 5 and 6 that correspond to the four observed hydrogen
spectral lines. Balmer correctly assumed that this dependence could not be a
random coincidence and that other lines must exist (r can be greater than 6).
The Balmer formula can be rewritten in the form

% = RB,;— ;17} (n=345,.) | (2-25)

Johannes Rydberg later extended Balmer’s work to include all lines in
the hydrogen atom emission spectrum

1 1 1
I R[;—F—n—z} (n>m) (2:26)

where n and m are both integers. Equation (2-26) is called the Rydberg
formula and R the Rydberg constant. At the time when this formula was
developed, it only represented empirical data and no explanation was given
as to why the spectral lines obey such regularities. In 1913, Neils Bohr
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developed an atomic model that explained this nature of absorption and
emission spectra of atoms. Rewritten in terms of photon energy, the Rydberg
formula becomes

E, =he/ A and %=R[—n—117—;12—} (n>m) give

1

1
E7, = Rhc[;ﬂ——z— - 71—5} (n>m) (2f27)

Recall from Section 2.6.3 (Eq. 2-23) the energy of emitted or absorbed
photons according to the Bohr atomic model

2
E,=E,-E, :-’5?-{%—12} |
2y m° n

From last two relations it can be seen that Bohr’s model predicts Rydberg
formula and gives the value for the Rydberg constant

_ke* 1 1.44eVnm
2a, he  2(0.0529nm)(1240eVnm)

=0.0110nm™" (2-28)

which is in perfect agreement with the measured values. The term, AcR is
called the Rydberg energy, Er

E _ m(ke*)?

2, Y =13.6eV (2-29)

Ep,=hcR=

Thus, the allowed energies of the electron in a hydrogen atom can be
expressed in terms of the Rydberg energy

E =L (2-30)

and the energies of the photons emitted or absorbed by the hydrogen
atom are given by
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E,=E —E :ER[%~L} n>m (2-31)

2
m n

2.7.2 Properties of the Hydrogen Atom According to Bohr’s Atomic
Model

Bohr’s model of the atom correctly predicts:

e Possible electron energies in a hydrogen atom are quantized and with
values of E, =—E,/n* wheren=1,2,3, ...

e The lowest possible energy level corresponds to the ground state for
whichn=1and E, =-E; =—-13.6eV .

e A minimum energy of +13.6¢V is needed to completely remove the
electron from a hydrogen atom. This energy is called the binding energy
of the hydrogen atom and it is in perfect agreement with the empirical
value.

e The radius that corresponds to the ground state of a hydrogen atom is
equal to the Bohr radius, r, =a, =0.0529nm which agrees well with
measured values of the size of the hydrogen atom.

e The radius of the n® circular electron orbit is 7, =n’a, .

The orbits with radii greater than the ground state radius are called the
excited states of an atom. There are infinitely many levels and all are
between the ground state and the zero energy level. For the hydrogen
atom, the energies of excited states arcE, =—FE,/4=-34¢eV,
E,=-E,/9=-1.5eV ... These energy levels are generally plotted as
illustrated in Fig. 2-18 in a format commonly referred to as energy—level
diagrams. The transition from the ground state (n = 1) to the n = 2 energy
level is called the first excitation level, and the energy required to raise
the hydrogen atom to that level is E; — E, =10.2¢V .

The spectral lines of the hydrogen atom (see Fig. 2-19) are given names
based on the names of the scientists who discovered them:

Lyman series: transition to the ground state m = 1
Balmer series: transition to the level m = 2
Paschen series: transition to the level m =3
Bracket series: transition to the level m = 4.

il e
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E=0
n=4 Ey=-Ep/16=-09¢eV
n=3 E3=-Eg/9=-15eV

n=2 E2=-ER/4=-3.4 eV
N
Transition in which !
the hydrogen atom is :
excited from its 1
ground state to the :
first excited level :
1
n=1 L Ey=-Ep/l =-13.6 eV

Figure 2-18. Energy—level diagram of the hydrogen atom

E,
Bracket

Series

Paschen
Series

Balmer
Series

Lyman
Series

Figure 2-19. Spectral lines in hydrogen atom

Example 2.4 Electron transitions in a hydrogen atom
Calculate the wavelength and energy of the light emitted when the electron in a
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hydrogen atom falls from the first excited state to the ground level.
According to the Balmer formula

4 3R (3)(0.0110mm™)

and the required energy of this transition is

1 1 3 3
Ey = ER |:1—2—2—2:| :ZER 21(13681/) =10.2¢eV

Example 2.5 Orbiting velocity of the electron in a hydrogen atom

Calculate the highest velocity, the smallest orbit radius and the time it takes for
an electron to complete one revolution in a hydrogen atom.

The electron has its highest velocity and smallest orbit radius while in the
ground state. The ground state radius in the hydrogen atom corresponds to the Bohr
radius, # = a, = 0.0529nm . The highest velocity is thus

muy =nh 1n=a, n=1 =
ho 1.05x10 kgm” / 5
ma, (9.31x107"'kg)(0.0529 %107 m)

v, = =21x10°m/s

The time it takes for a ground state electron to complete one revolution around
the nucleus is

2
r=""% _150%10"s

b

2.7.3 Tonization and Excitation

Ionization or excitation of atoms occurs when a photon or a charged
particle (electron, o, proton) collides with an orbital electron; thereby
transferring energy to and changing the energy level of the electron.
Ionization refers to the case in which the transferred energy causes the
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¢jection of an electron, while in the case of excitation the electron simply
moves to a higher energy orbital. This is an important concept in health
physics as it represents the mechanism through which energy is transferred
from radiation to tissue.

The ionization energy (also called the ionization potential, /P) of an atom
is the amount of energy required to remove the least tightly bound electron
from the atom. To remove a second electron requires remarkably more
energy and the removal of each subsequent electron becomes increasingly
more difficult. For most elements, the first ionization potential is on the
order of several eV (see Table 2-2). The first ionization potential of the
hydrogen atom is calculated in Section 2.7.2. When a photon with energy
greater than the ionization energy collides with a bound electron of an atom,
the photon vanishes and the electron is ejected from the atom with a kinetic
energy, Ep., equal to the difference between the photon’s initial energy and
the ionization potential

E,. = hf—IP (2-32)

This mechanism is called the photoelectric effect and is described in
more detail in Chapter 5.

Table 2-2. First ionization potential (/P) for the first few atoms

Atom IP(eV)
Hydrogen 13.6
Helium 24.6
Lithium 5.4
Beryllium 9.3
Boron 8.3

. Carbon 11.3
Nitrogen 14.5
Oxygen 13.6
Fluorine 174
Neon 21.6
Sodium 5.14

Example 2.6 Excitation of the hydrogen atom

Sketch the excitation of the hydrogen atom for the corresponding absorption and
emission of light of energy 10.2 eV.

The absorption of a photon with energy 10.2 eV will move the electron from its
ground state to orbit n = 2. Conversely, the jump back to ground state will emit a
photon of energy 10.2 eV (Fig. 2-20).
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N TR " Excitation

Energy is absorbed and the electron jumps from the

ground level (n = 1) to its excited state in a higher
orbital(n = 2)

*.. De-excitation -~ . .
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Teon=3.-
E=hf=102eV

Energy is emitted and the electron falls from its excited
state (n = 2) back to the ground level (n = 1)

Figure 2-20. Excitation and de—excitation of the hydrogen atom

Example 2.7 Ionization potential (IP)
For a photon of wavelength 1077 m striking the outer orbital electron of a sodium

atom, calculate the kinetic energy of the photoelectron (ejected electron). What is
the maximum photon wavelength (minimum energy) required to ionize the sodium

atom? The /P for sodium is given in Table 2-2.
The energy of the photon of wavelength 10~ m is calculated by

he  1240eV.
_fe _1280eVam 1 soev

roa 100nm

The kinetic energy of the photoelectron is Ep=hf- IP =124 eV -5.14eV =7.26
eV. The maximum photon wavelength (minimum energy) required for the ionization

of a sodium atom is then

he  1240eV)
=T odinm
IP  5.14¢V
The electron is ejected because the wavelength of the photon is less than the
required maximum wavelength (i.e. the photon energy exceeds the ionization

potential).
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2,74 Hydrogen-Like Ions

The Bohr’s atomic model was valid for the hydrogen atom. Any attempt
to generalize it for atoms having multiple electrons was unsuccessful until
quantum mechanics development took place in 1925. Bohr’s model can,
however, be applied to all atoms that are like hydrogen, that is atoms that
have lost all but one of their electrons. In such atoms (ions) the remaining
electron revolves around the nucleus of charge +Ze in the same way as the
electron in a hydrogen atom. All of the formulas developed for the hydrogen
atom in previous sections are thus applicable to these ions, with the
exception that the ¢* term is replaced by Ze”. Therefore,

o The radius of an electron moving around a nucleus of charge Ze is
inversely proportional to Z

232 2
n-h n

rn = =—da n= 1,2,3,... 2'33)
kZe*m 7 ° ( ) (

¢ The potential energy of the electron in a hydrogen-like ion is

2
U=z (2-34)
r
o The total energy of the electron in a hydrogen-like ion is:
2
E=T+U=1u=_L1%¢ (2-35)
2 2 r

e The allowed energies for the electron in a hydrogen-like ion are Z* times
the corresponding energies in hydrogen atom:

_kzet 1 _ 2By

E =
I’l2

n

=1,2,3,... 2-36
i (n ) (2-36)

e The energies of the photons emitted and absorbed by the electron in
hydrogen-like ions are:

E,=E -E =ZZER[———} n>m (2-37)
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Example 2.8 Helium ion and reduced mass correction

Calculate the ratio of the allowed energies in the helium ion to that in the
hydrogen atom taking into account the effect of nuclear motion.

The assumption that the electron orbits around a fixed nucleus is not entirely
correct. In reality, they both revolve around the common center of mass. Since the
nucleus is much heavier than the electron, the center of mass is close to the nucleus,
which is therefore almost stationary. In the equations for allowed energies as well as
for the Rydberg energy, the electron mass, m, must be corrected for the motion of
nucleus (mass = M). This is done by replacing the electron mass with the so—called
reduced mass, i, which is defined as

m

— (2-38)
# 1+m/M

The reduced mass is always less than the actual mass of the electron. In a
hydrogen atom, the nucleus consists of a single proton and m / M ~ 1/1800. The
helium ion (He") nucleus is four times heavier than that of the hydrogen atom and
thus m / M is four times smaller.

Ef =92 Er _ _4M EY = _M
! n’ 2h*n’ ! 2h°n’

1

He He* 4x
" _ 4™ 141(@x1800) _ oo
£ - ,UH - 1 -
1+1/1800

When nuclear motion is accounted for, the ratio of allowed energy levels in the
helium ion to that of hydrogen increases from exactly 4 to 4.0017. This small
difference is observed in the measurements of atomic and ionic spectra.

2.7.5 Empirical Evidence of Bohr’s Theory

Although Bohr’s theory was shown to be almost completely valid for the
hydrogen atom, great success was also achieved when it was used to
describe hydrogen—like ions (as discussed in Section 2.7.4). Bohr’s theory
also proved to be valid for calculating the allowed energy levels of the
innermost electron in multi-electron atoms. The latter application
approximates the charge of the outer electrons to be uniformly distributed in
a sphere surrounding the innermost electron. It follows that, due to the
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spherical symmetry of the electric field, the innermost electron experiences
no net force from the outer electrons. The only force acting on the innermost
electron is the electrostatic force from the positively charged nucleus (Ze).
The allowed energies for the innermost electron in multi—electron atoms are
given by Eq. (2-36)

Ze? 1 E
_Kkze — =728 (n=123,.)

E =
2ay n? n

h

For example, the energy required to remove the innermost electron from
its ground state orbit (» = 1) in an iron atom (Z = 26) is

E =—-Z7E, =—(26)*(13.6eV)=9,194¢V

For heavier atoms the energy needed to remove the innermost electrons is
on the order of thousands of eV and thus photons emitted or absorbed in
such transition are in the range of X rays (see Chapter 3). Henry Moseley
(1887 - 1915), a British physicist (killed at the age of 27 in World War I),
was measuring the wavelengths of X rays emitted by various atoms when he
discovered that the dependence on atomic number exactly followed Bohr’s
theory. His explanation of characteristic X rays was that if an innermost
electron (n = 1) is ejected, the vacancy created is filled by an outer electron.

The transition of the outer electron to the inner shell will produce the
emission of a characteristic photon with energy that is equal to the difference
in allowed energies of the levels involved in the electron jump. For example,
in the transition of an electron from level n = 2 to level n = 1, traditionally
called K,, the energy of the emitted photon is given by Eq. (2-37)

1, 3
E,=E,-E, =ZzER(1—Z)=ZZZER

Moseley measured the frequencies of emitted photons for about 20
different elements and found that frequency changes with the square of the
atomic number Z. He then plotted the square root of the frequencies as a
function of known values of Z and verified that it is a linear function. This
helped in the identification of the atomic numbers of several elements that
were not known at the time (one of which was technetium, Z = 43, which
does not occur naturally and was produced artificially in 1937).

The plot shown in Fig. 2-21 indicates that the line does not start from the
origin as the relation would suggest. After detailed examination of the plot,
Moseley concluded that the line crosses the Z—axis at a point close to Z = 1,
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implying that [f e<(Z-1) or E,o<(Z~1)*. The prediction that
characteristic X rays are emitted with frequencies proportional to Z* was
based on the assumption that inner electrons experience a force due to the
positive charge of nucleus (+Ze), but are not affected by the charges of the
other (outer) electrons in the atom.

In reality, however, the inner electrons do experience a force from the
outer electrons in the form of a screening of the nuclear attraction force; that
is, the attractive force of the nucleus is somewhat diminished due to the
presence of the outer electrons. This so—called screening factor, a, is usually
close to unity and the energy of emitted (or absorbed) K, X rays is

3
E7=Z(Z—a)2ER a=1 (2-39)
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Figure 2-21. Plot of K, X ray characteristic lines known at the time of Moseley’s experiments

Example 2.9 Characteristic K, line
Estimate the wavelength of the characteristic K, X ray from niobium, which has
atomic number Z = 41. Assume that the screening factor is approximately equal to 1.

3 3
E, =Z(Z—a)2ER =Z(41~1)2(13.6eV) =16,320eV
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he  1240eV)
2=28 26 076nm

E,  16320eV

Example 2.10 Cascade of vacancies

Calculate the wavelength and determine the spectral region for a krypton atom
(Z = 36) when an electron from n = 2 fills a vacancy in the n = 1 level. What
happened to the n = 2 level when the electron fell to the n = 1 level?

Allowed energies for these two levels, taking into account the screening effect,
are

13.6eV

E, =-13.6eVx (36 —1)* =—16,660eV E, =~ X (36 —1)> = 4,165eV

The energy of the emitted photon in this transition is 12,495 eV and the
corresponding wavelength is 0.099 nm, which belongs to the X-ray region of the
spectrum, After the n = 2 electron falls to the n = 1 level, ann =3 orann =4
electron fills this orbital and emits another photon.

2.8 Atoms of Higher Z
2.8.1 Quantum Numbers

The light spectra of atoms with more than one electron are much more
complex than that of the hydrogen atom (many more lines). The calculations
of the spectra for these atoms with the Bohr atomic model are complicated
by the screening effect of the other electrons (see Section 2.7.5).
Examination of the hydrogen spectral lines with high resolution
spectroscopes shows these lines to have very fine structures, and the
observed spectral lines are each actually made up of several lines that are
very close together. This observation implied the existence of sublevels of
energy within the principal energy level, which makes Bohr’s theory
inadequate even for the hydrogen atomic spectrum.

Bohr recognized that the electrons are most likely organized into orbital
groups in which some are close and tightly bound to the nucleus, and others
less tightly bound at larger orbits. He proposed a classification scheme that
groups the electrons of multi—electron atoms into “shells” and each shell
corresponds to a so—called quantum number n. These shells are given names
that correspond to the values of the principal quantum numbers
e 15 =1 (K shell) can hold no more than 2 electrons
e 7 =2 (L shell) can hold no more than 8 electrons
e 1 =3 (M shell) can hold no more than 18 ¢lectrons, etc.
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Moseley’s work (described in Section 2.7.5) contributed to the
understanding that the electrons in an atom existed in groups visualized as
electron shells, and according to quantum mechanics, the electrons are
distributed around the nucleus in probability regions also called the aromic
orbitals.

In order to completely describe an atom in three dimensions, Schrodinger
introduced three quantum numbers in addition to the principal quantum
number, n. There are thus a total of four quantum numbers that specify the
behaviour of electrons in an atom, namely
e principal quantum number,n=1,2, 3, ...

e azimuthal quantum number, /=0ton -1
* magnetic quantum number, m = -/ to 0 to +/
s spin quantum number, s =-1/2 or +1/2.

The principal quantum number describes the shells in which the
electrons orbit. The maximum number of electrons in a shell n is 24>,

The sub—energy levels (s, p, d, etc...) are the reason for the very fine
structure of the spectral lines and result from the electron’s rotation around
the nucleus along elliptical (not circular) orbits. The azimuthal quantum
number describes the actual shape of the orbits. For example, / = O refers to a
spherically shaped orbit, / = 1 refers to two obloid spheroids tangent to one
another, and / = 2 indicates a shape that is quadra—lobed (similar to a four
leaf clover). For a given principle quantum number, #, the maximum number
of electrons in an / = 0 orbital is 2, for an [ = 1 orbital it is 6, and an / = 2
orbital can accommodate a maximum of 10 electrons.

The magnetic quantum number is also referred to as the orbital quantum
number and it physically represents the orbital’s direction in space. For
example when / = 0, m can only be zero. This single value for the magnetic
quantum number suggests a single spatial direction for the orbital. A sphere
is uni~directional and it extends equally in all directions, hence the reason
for a single m value. If / = 1 then m can be assigned the values -1, 0, or +1.
The three values for m suggest that the double lobed orbital has three
distinctly different directions in three—dimensional space into which it can
extend.

The spin quantum number describes the spin of the electrons. The
electrons spin around an imaginary axis (as earth spins about the imaginary
axis connecting the north and south poles) in a clockwise or counter
— clockwise direction; for this reason there are two values, -1/2 or +1/2.

The allowed combination of quantum numbers is given in Fig. 2-22.

Example 2.11 Quantum numbers of the hydrogen atom
Write the quantum numbers of the ground and first excited level of the electron
in a hydrogen atom. Comment on the values of angular momentum of the ground
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state atom using Bohr’s atomic model. Use an energy-level diagram to indicate the
quantum levels.

From Fig. 2-22 it follows that for the ground level, » = 1. The only possible
value for the azimuthal quantum number is then zero (/ = 0), indicating that the
ground state of a hydrogen atom has zero angular momentum. This in turns gives
only one value for the magnetic quantum number, m = 0. According to Bohr’s
atomic model, the ground state of a hydrogen atom has an angular momentum equal
to L =1x%.However, the Schrédinger equation (see Chapter 4) predicts that L = 0.

For the first excited level, n» = 2, which gives two values for the azimuthal
quantum number; namely / = 0 and / = 1. When / = 0, the only possible value for m
is zero. However, when / = 1, m assumes three values, m = 1, 0, or -1 and this results
in three possible orientations for the angular momentum. In summary:

Ground state:n=1,1=0,m=0

First excited level: n=2,l=0o0rl/=1,m=0orm=1,0or-1.

The energy-level diagram is shown in Fig. 2-23.

I= 0 1 2 3 4 5

n=1 s

n=2 2s 2p Not Allowed
n=3 3s 3p 3d

n=4 4s 4p 4d 4Af

n=>5 S5s S5p 5d 5f Sg

n==6 6s 6p 6d 6f 6g 6h
n=7 7s Tp 7d f Tg 7h

Figure 2-22. Allowed combinations of quantum numbers

2.8.2 The Pauli Exclusion Principle

Quantum numbers describe the possible states that electrons can occupy
in an atom. Additional rules are required to define how the electrons occupy
these available states and thus explain the structure of multi—electron atoms
and the periodic system of elements. An atom in its ground state has the
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minimum possible energy and electrons are distributed among the available
and allowed states according to the principle formulated by the Austrian
physicist Wolfgang Pauli (1900 ~ 1958). This principle, called the Pauli
Exclusion Principle, states that no two electrons in any atom can share the
same set of four quantum numbers. As an analogy, consider the fact that a
single seat in the bus can be occupied by only one passenger and not by all
the passengers. The electron states for the first three elements are used to
describe the Pauli Exclusion Principle.

E=0

4s 4p 4d 4f

n=4 Ey=-ER/16=-09 eV
3s 3p 3d

n=3 Ey=-Fp/9=-15¢eV
2s 2p

N =2  — E2='ER/4="3.4 eV
s

Nz ] — E|=-Eg/1=-13.6eV

Figure 2-23. Energy-level diagram for the hydrogen atom including the quantum numbers

Hydrogen, the first and simplest atom, has a nuclear charge of +1 (Z=1),
and thus only one electron. The principal quantum number must be 1.
Therefore,

n=1,1=0,m=0,s=+120r—-1/2

Since there is only one electron, the spin orientation can be either of the
two values.

Helium, the second element, has 2 orbital electrons and positive nuclear
charge of +2 (Z = 2). The first electron in a helium atom may have the same
set of quantum numbers as the electron in a hydrogen atom, but the second
electron must differ. Since there are two possible values for spin orientation,
these two electrons will have different spin quantum numbers (see Fig.
2-24). Thus,

For the first electron: n=1,1=0,m =0, s=+1/2

And for the second: n=1,1=0,m=0,5s=-1/2
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The second electron in a helium atom exhausts all possibilities for n = 1.
The anti—parallel orientation of the spins in the ls state results in a zero
magnetic moment, which is observed for the helium atom in its ground state,
thus providing proof of the exclusion principle. If the spins of these two
electrons were parallel (forbidden states), this would produce a non—zero
magnetic moment, which has never been observed.

Forbidden Allowed

2s

7 4 )
——0— *—&
' \

Figure 2-24. The ground state of a helium atom according to the Pauli Exclusion Principle

In an excited helium atom as shown in Fig. 2-25, one electron can be in
the 1s state and the other in 2s. In this case, according to Pauli Exclusion
Principle, the spins of the two electrons can be parallel, which would give a
non—zero, magnetic moment, or anti—parallel, in which case the magnetic
moment is zero. Both cases have been observed in reality and thus contribute
evidence of the exclusion principle.

Allowed Allowed
i '
——— 2 ¢
' Y
A A
¢ 5 —@

Figure 2-25. The lowest excited states of a helium atom

Lithium, which has three orbital electrons and atomic number Z =3. The
first two electrons occupy the 1s level with anti—parallel spins. The 1s level
is thus filled and cannot accommodate any more electrons (all seats are
taken!). Thus, the third electron, according to the exclusion principle, must
occupy the next higher energy level and thus have a principal quantum
number equal to 2. The lowest level in this state is the 2s level (see Fig.2-
26). This orbital may be circular or elliptical, i.e. the azimuthal quantum
number may be either 0 or 1:
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ifl=0=>m=0;

ifl=1=>m=-1,00r+1.

Each of these states may contain 2 electrons, with each electron having a
spin of +1/2 or —1/2.

Figure 2-26. The ground state of a lithium atom

The Pauli Exclusion Principle also applies to any electron—like particle,
i.e. a particle with a half-integer spin. For example, neutrons, like the
electrons, have a half-integer spin and the arrangement of neutrons inside
the nucleus is similar to that of the electrons in their orbits around the
nucleus (see Chapter 3).

2.8.3 The Aufbau Principle

The quantum numbers and the Pauli Exclusion Principle define the
maximum number of electrons that can be found in each of the electron
orbits of an atom and also explain how the electrons are arranged. The
aufbau principle (German meaning “to build up”) explains the order in
which the electrons occupy the orbitals. According to this principle the
lowest energy orbitals in an atom are filled before those in the higher energy
levels. This explains the regularities in the chemical properties of the
elements and the periodic table of elements as described in the following
section.

2.9 The Periodic Table and Properties of the Elements

By the mid 19" century, several chemists had discovered that when the
elements are arranged by atomic mass they demonstrate periodic behaviour.
In 1869, while writing a book on chemistry, Russian scientist Dmitri
Mendeleev (1834 — 1907) realized this periodicity of the elements and he
arranged them into a table that is today called the periodic table of elements.
The table, as first published, was a simple observation of regularities in
nature; the principles that defined this periodicity were not understood.
Mendeleev’s table contained gaps due to the fact that some of elements were
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yet unknown. In addition, when he arranged the elements in the table he
noticed that the weights of several elements were wrong.

In the modern periodic table, the elements are grouped in order of
increasing atomic number and arranged in rows (see Fig. 2-27). Elements
with similar physical and chemical properties appear in the same columns. A
new row starts whenever the last (outer) electron shell in each energy level
(principal quantum number) is completely filled. Properties of an element
are discussed in terms of their chemical or physical characteristics. Chemical
properties are often observed through a chemical reaction, while physical
properties are observed by examining a sample of a pure element.

Group

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

1 2

1 H He
5 3 4 5 6 7 8 9 10
Li_ [Be B C N JO |[F Ne
3 1 12 13 |14 |15 |16 (17 |18
Na |Mg Al Isi |p S Cl  JAr

19 20 21 22 |23 |24 )25 |26 |27 (28 j29 |30 31 |32 33 |34 [35 |36
K [Ca |Sc |Ti |V Cr {Mn (Fe |Co INi |Cu |Zn |Ga |]Ge [As ([Se [Br |Kr
37 38 {39 |40 |41 |42 43 |44 (45 |46 [47 148 |49 |50 |51 |52 |53 |54
Rb_|Sr Y |Zr INb [Mo |Tc |Ru |Rh |Pd JAg {Cd |In [Sn [Sb |Te [I Xe
55 |56°q71 |72 {73 |14 |75 (76 |77 [78 |79 [80 |81 |82 |83 |84 [85 |86
Cs qBa {Lu |Hf [Ta W |Re JOs |Ir [Pt |Auw |Hg T |Pb |Bi [P0 [At |Rn
87 88 103 1104 |105 |106 |107 {108 |[109 (110 (111 (112 113 (114 115 |116 |117 (118
Rf Db [Sg |[Bh |Hs |Mt |Ds |Rg |Uub jUut |Uugq |Uup [Uuh |Uus [Uuo

Period
=N

58 |59 |60 61 |62 63 |64 |65 |66 |67 |68 |69 |70

Ce |Pr_ INd [Pm |Sm |Ew |Gd |Tb |Dy |Ho |Er |Tm |Yb
90 (91 (92 {93 |94 |95 |9 |97 |98 |99 |00 [101 |102
Th [Pa U [Np |Pu |Am |Cm [Bk |Cf |Es |Fm |Md [No

Figure 2-27. The periodic table of elements

The chemical properties of an element are determined by the distribution
of electrons around the nucleus, particularly the outer, or valence, electrons.
Since a chemical reaction does not affect the atomic nucleus, the atomic
number remains unchanged. For example, Li, Na, K, Rb and Cs behave
chemically similarly because each of these elements has only one electron in
its outer orbit. The elements of the last column (He, Ne, Ar, Kr, Xe and Rn)
have filled inner shells and all except helium have eight electrons in their
outermost shells. Because their electron shells are completely filled, these
elements cannot interact chemically and are therefore referred to as the inert,
or noble, gases. Each horizontal row in the periodic table of elements is
called a period. The first period contains only two elements, hydrogen and
helium. The second and third periods each contain eight elements, while the
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fourth and fifth periods contain 18 elements each. The sixth period contains
32 elements that are usually arranged such that elements from Z = 58 to 71
are detached from main table and placed below it. The seventh and last
period is also divided into two rows; one of which, from Z = 90 to 103, is
placed below the second set of elements from the sixth period. The vertical
columns are called groups and are numbered from left to right. The first
column, Group 1, contains elements that have a closed shell plus a single s
electron in the next higher shell. The elements in Group 2 have a closed shell
plus two s electrons in the next shell. Groups 3 to 18 are characterized by the
elements that have filled, or almost filled, p levels. Group 18 is also called
Group 0, and contains the noble gases. The columns in the interior of the
periodic table contain the transition elements in which the electrons are
present in the d energy level. These elements begin in the fourth period
because the first d level (3d) is in the fourth shell. The sixth and the seventh
shells contain 4f and 5f levels and are called lanthanides, or rare earth
elements, and actinides, respectively.

The elements are also grouped according to their physical properties; for
instance, they are grouped into metals, non—metals, and metalloids.
Elements with very similar chemical properties are referred to as families;
examples include the halogens, the inert gases, and the alkali metals. The
following sections only focus on those atomic properties that are closely
related to the principles of nuclear engineering.

2.9.1 Electronic Configuration
The most common way to illustrate the electronic structure of the atoms

in their ground states is to use energy—level diagrams (like these shown in
Fig. 2-24 and 2-26) or notations as shown in Table 2-3,

Table 2-3. Electron configuration of the first 18 elements

First Shell Second Shell Third Shell

Hydrogen, H-1: 1s' Lithium, Li-3; 1s%2s’ Sodium, Na-11: 15%25%2p®3s’

Helium, He-2: 15* Beryllium, Be-4: 1572s* Magnesium, Mg-12: 15%2s%2p%3s”
Boron, B-5: 15°25%2p' Aluminium, Al-13: 15*25°2p%35s%3p"
Carbon, C-6: 15252p" Silicon, Si-14: 152s%2p%35*3p*

Nitrogen, N-7: 15%25%2p° Phosphor, P-15; 15%25%2p%35%3p°
Oxygen, 0-8: 1s%2s2p* Sulphur, $-16: 15%25°2p%35%3p*
Fluorine, F-9: 15%25%2p° Chlorine, CI-17; 152252p%3s%3p°
Neon, Ne-10: 15725%2p° Argon, Ar-18: 15%25%2p5%35%3p%

Example 2.12 Electronic configuration

For Na and Li, write the electronic configurations in short notation based on the
previous completed electron shell.

From Table 2-3 it follows:
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Lithium, Li-3: 15°2s' = [He] 25
Sodium, Na-11: 15*2s*2p%3s' = [Ne] 3s

2.9.2 Atomic Radius

The size of an atom, expressed as the atomic radius, represents the
distance between the nucleus and the valence, or outermost, electrons. The
boundary between the nucleus and the electrons is not easy to determine and
the atomic radius is therefore approximated. For example, the distance
between the two chlorine atoms of Cl, is known to be nearly 2A. In order to
obtain the atomic radius, the distance between the two nuclei is assumed to
be the sum of the radii of two chlorine atoms. Therefore the atomic radius of
chlorine is ~1A (or 100 pm, see Fig. 2-28).

H . . He
o Atomic radius ) [
37 decreases 31

@oomeo@

112

160 143 118

248 215 167 140 140 142 133 131
265 222 170 146 150 168 140 141

Group 1 2 13 14 15 16 17 18

Atomic radius
increases

<
«

Figure 2-28. Trends of atomic radii (listed in picometers) in the periodic table

The atomic radius changes across the periodic table of elements and is
dependent on the atomic number and the electron distribution. Since
electrons repel each other due to like charges, the overall size of the atom
increases with an increase in the number of electrons in each of the groups
(see Fig. 2-28). For example, the radius of a hydrogen atom is smaller than
the radius of the lithium atom. The outer electron of lithium is in the n = 2
level, so its radius must be larger than the radius of hydrogen which has its
outermost electron in the n =1 level.
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However, in spite of the increase in the number of electrons, the atomic
radius decreases when going from left to right across the periodic table. This
is a result of the increase in the number of protons for these elements, which
all have their valence electrons in the same quantum energy level. Since the
electrons are attracted to the protons, the increased charge of the nucleus
(more protons) binds the electrons more tightly and draws them closer to the
nucleus, causing the overall atomic radius to decrease. For example, the first
two elements in the second period of the periodic table are lithium and
beryllium. The radius of a beryllium atom is 112 pm, which is smaller than
that of lithium (152 pm). In beryllium, Z = 4, the fourth electron joins the
third in the 2s level, assuming their spins are anti-parallel. The charge is thus
larger and this causes the electrons to be bound more tightly to the nucleus;
as a result the beryllium radius is less than the lithium radius. The effect of
the increased charge should, however, be seen in the context of the quantum
energy levels. For example, cesium has a large number of protons but it is
one of the largest atoms. The valence electrons are furthest from the nucleus
and the inner electrons shield them from the positive charge of the nucleus,
thus the valence electrons experience a reduced effective nuclear charge and
not the total charge of the nucleus. The effect of the increase in the nuclear
charge thus only plays a role in the periods from left to right, e.g. from
sodium to argon in the third period, since the additional valence electrons (in
the same quantum energy level) are exposed to a greater effective nuclear
charge along the period.

29.3 Tonization Energy

Another important property that shows a trend in the periodic table is the
ionization energy (the energy required to remove an electron from an atom).
An atom has as many ionization energies as there are electrons. By
definition, the first ionization energy is the energy required to remove the
most outer electron from a neutral atom (see Table 2-2)

M>>M +1e

The second ionization energy is the energy required to remove the next
outer electron from the singly charged ion

M D M+ le

Each successive removal of an electron requires more energy because, as
more electrons are removed, the remaining electrons experience a greater
effective attraction.
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Figure 2-29. lonization potential of the first ten elements

The first ionization potential increases across a period (see Fig. 2-29),
which is a direct result of the decrease in atomic radius (see Fig. 2-28). As
the atomic radius becomes smaller the electrons feel a greater attraction from
the nucleus. As the force of attraction increases, more energy is required to
remove the electrons. The larger nuclear charge in helium (Z = 2) that is
responsible for the smaller radius (31 pm) results in a higher ionization
potential (24.6 eV) compared to that of hydrogen (radius 37 pm and
ionization potential 13.6 eV). Lithium, however, has one more electron than
helium and this electron is at a higher quantum energy level. The lithium
radius is thus greater and the ionization potential is less. The outermost
electron in lithium is located in the 2s level, which is outside the 1s level
occupied by the first two electrons. The 2s electron is screened by the other
two and experiences a charge on the order of one. Thus, the ionization
energy of this electron can be estimated to be nearly that of the 2s hydrogen
state (which is 3.4 eV). The observed lithium ionization potential, however,
is 5.4 eV (see Table 2-2). The value is larger because the outer electron is
not perfectly shielded by inner electrons and the effective charge is greater
than the assumed value of one. Because lithium has such small ionization
energy it is a chemically active element. Next to lithium is beryllium. Due to
the larger charge, the radius is smaller (see Fig. 2-28) and the ionization
potential is thus larger. Next is boron; the first four electrons occupy the 1s
and 2s levels and the fifth electron is in 2p level. The increased charge
causes the electrons in the new energy level to be more tightly bound, but
the new energy level is further away from the nucleus and the valence
electron is thus bound with a slightly weaker force. Consequently, the radius
is reduced; the ionization potential is also reduced. Although there is an
anomaly in the overall trend of ionization potential values across the period,
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the differences are small (the ionization potentials of beryllium and boron
are 9.3 eV and 8.3 eV, respectively). In the next elements leading up to
neon, the electrons occupy the 2p level (maximum of six electrons). The
increasing charge decreases the atomic radius (see Fig. 2-28) and ionization
potential increases as indicated in Fig. 2-29. The next period starts with
sodium. Since the valence electrons of neon fill the 2p level, the sodium
valence electron can only occupy the higher 3s level. This accounts for the
larger atomic radius and smaller ionization potential.

The small drop in ionization potential of oxygen compared to nitrogen is
due to the arrangement of electrons. In nitrogen, two electrons occupy the 1s
level and two others occupy the 2s level. The remaining three electrons
occupy the 2p level. These three electrons occupy three available and
distinct orbitals (2p level accommodates three orientations of the electron’s
orbital, see Section 2.8.1). This keeps them well separated and reduces the
repulsion between them. This in turn makes nitrogen relatively stable with
relatively large ionization energy. In oxygen, the fourth electron occupies the
2p level and must share one of the orbitals (with opposite spin). These two
electrons thus overlap in the orbital they share which increases the repulsion
between them and decreases the ionization potential relative to nitrogen.

Examples of the periodic behaviour of the elements is evident from the
similarities between helium and neon (both very stable, with large ionization
potential and small radii), or lithium and sodium (both with very low
ionization potential and very large radii).

Example 2.13 First ionization potential

Explain which element from the list has the larger first ionization energy and
why: Mg, Na, or Al

Magnesium (Mg), when compared to sodium (Na), has a larger first ionization
potential because the first ionization energy tends to increase across a row of the
periodic table from left to right (period 3, see Fig. 2-27). Mg also has a larger
ionization potential than aluminum (Al) even though Al is to the right of Mg in the
periodic table. The electron configurations for Mg and Al are (sce Table 2-3)

Mg (12 electrons): 15> 2s* 2p°® 35

Al (13 electrons): 1s* 25 2p° 35> 3p'

The outermost electron of Al (in the 3p level) is further away from the nucleus
than the outermost Mg electrons which are in the 3s level. Less energy is thus
required to remove the outermost Al electron.

2.10 Atomic Parameters

Atomic mass is given in either the absolute unit of grams or in a relative
unit called the atomic mass unit (u or amu):
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e | mole of any substance contains 6.02 x 10 molecules (Avogadro’s
number), N,

e The weight in grams of 1 mole of a substance is numerically equal to its
molecular weight

¢ The unified atomic mass unit is exactly one twelfth of the mass of a C
atom (C-12), i.e. the atomic mass of carbon-12 is equal to 12 amu

1 amu = % =1.661x10""kg =931.5MeV /> (2-40)

Example 2.14 Number of atoms

How many '*C atoms are there in 12 g of carbon? What is the mass of one atom
of carbon in kg?

Number of atoms in 12 g of carbon is

12g

= =6.02x10” atoms
(1.661x 107" g/amu)(12amu/atom)

Since the molar mass of carbon-12 is 12 g, the mass of one atom of carbon 12
can be found by dividing the molar mass by Avogadro’s number

12g/mol

0T 10% s = 1993 107 g/atom = 1.993x 107 kg/atom
L X atoms/mo

The chemical properties of atoms are determined by the distribution of
electrons (see Section 2.9), and the number of electrons is called the atomic
number and is usually denoted by Z. The number of protons in an atomic
nucleus is also equal to Z, which is a requirement for electrical neutrality.
When a neutral atom loses some of its electrons the atom becomes positively
charged and is called a positive ion. For example, Ca” is a calcium atom that
has lost two of its electrons. An atom can, however, gain electrons and thus
become a negative ion. For example, CI” is a chlorine atom that gained one
electron. The atomic mass number, A, is an integer that is almost equal to the
atomic mass in amu. It is equal to the number of nucleons in the nucleus;
that is, it is equal to the sum of the number of protons (Z) and the number of
neutrons (N). Atoms (the elements of the periodic table) are denoted as
follows:

2X

Atoms with the same atomic number Z (for example *Ar, *Ar, “Ar) are
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called the isotopes of that element (argon). A naturally occurring sample of
any element consists of one or more isotopes of that element and each
isotope has a different weight. The relative amount of each isotope
represents the isotope distribution for that element, and the atomic weight is
obtained as the average of the isotope weights, weighted according to the
isotope distribution.

Example 2.15 Atomic weight

Chromium (atomic weight 51.996) has four naturally—occurring isotopes. Three
of these are: ’Cr with isotopic weight 49.9461 and abundance 4.31%, **Cr with
isotopic weight 51.9405 and abundance 83.76%, and **Cr with isotopic weight
53.9389 and abundance 2.38%. Determine the isotopic weight of the fourth isotope.

o A3 s B3T6 5 238
100 100 100
[100—(4.31:013.7“2.38)] ¥ = 51,006

M =52.9237 with an abundance of 9.55 %.

Example 2.16 Mass of an atom
Calculate the mass in grams of a *>Cr atom. The atomic mass is 51.94051 amu.
A mole contains N, number of same particles (atoms or molecules), thus

M(?Cr) = 52(g/mol)

= = =8.638x107 g/atom
6.02x10* (atoms/mol)

However, knowing the atomic mass as given in the problem, the more precise
mass of the atom is obtained as follows

(7 Cr) = 3 19405(g/mol)

= = =8.628x107 g/atom
6.02%10” (atoms/mol)

Example 2.17 Atom number density

Calculate the molecular weight of water and then determine the atom density of
hydrogen in water.

The molecular weight of water is
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2A,; + A, =2x14+16 =18 giving the molecular density of water

PN, _1(g/em?)x6.02x10% (molecules/mol) _

H =
N(H,0) 18(g/mol)

=3.35x10% molecules/cm’®
The molecular weight of hydrogen is

N(H,) =2x N(H,0) = 2x3.35x10* atoms/cm’
= 6.69x 10" atoms/cm’

PROBLEMS

2.1 Write the electron configuration for: potassium, lanthanum, copper, bromine.

2.2 Name the elements whose electron configuration is:
(a) 1% 257 2p°® 357 3p° 4s* 34°

(b) 15% 25 2p% 357 3p° 457 3d'° 4p° 55* 4d’

(c) 15* 24 2p6 3s* 3p6

2.3 How many electrons are in an atom specified by 1s* 2s* 2p°® 35 3p*?

2.4 (a) The attractive electrostatic force of the positively charged atomic nucleus
forces the negatively charged electron of the hydrogen atom to a circular motion.
Write the equation that describes this statement.

(b) Knowing that only orbital radii are allowed for which angular momentum is
an integer multiple of A/(27) and using the equation from (a) develop the relation
for the allowed radii.

2.5. (a) Express the relation for the frequency of revolution of the electron in
hydrogen atom forn = 1.

(b) For this case show that vc = (ke )(2m/hc = 1/137 that is called the fine
structure constant, ¢.

2.6 Starting from the Bohr’s equation for the energy of the n — th state of an
electron in hydrogen atom, write the equation describing the frequency of light
given off when an electron makes a transition from an initial to a final state.
From there derive the value for Rydberg constant.
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2.7 Calculate the largest velocity, lowest energy level and smallest orbit radius
for the electron in hydrogen like atoms. When the orbit becomes infinite what is
the value of energy?

2.8 Calculate how many times in second an electron in hydrogen atom orbiting
at the level » = 30 goes around the nucleus?

2.9 What is the excited state of sodium atom? What is the excited state of
hydrogen atom?

2.10 Knowing that the first excited state of sodium atom is at 2.1 eV above 3s
level, determine the wavelength and frequency of the photon emitted in the 3p
—> 3 transition.

2.11 The ground state of hydrogen atom has one electron in the 1s level with its
spin pointing either way. Calculate the energy of the electron in this orbit using
Bohr’s theory. What is the value of the ionizing energy?

2.12 The ground state of helium atom has two electrons and both in 1s level.
How are their spins oriented? The first ionization potential is found

experimentally to be 24.6 eV. Calculate the effective charge, Z4

2.13 Calculate the value of Rydberg constant for the hydrogen atom taking into
account the effect of reduced mass.

2.14 For heavy hydrogenic ions how the reduced mass changes and
consequently what is the value of Rydberg constant?

2.15 Calculate the wavelengths of Balmer lines in hydrogen atom.
2.16 Explain departure from Rutherford formula. Give an example.
2.17 Calculate the first ionization potential of hydrogen helium atom.

2.18 Draw possible trajectories of an o particle in Rutherford experiment for
different impact parameters and scattering angles.

2.19 For a gold (assuming to have a nuclear radius about 7fm and atomic radius
of about 0.13nm) foil used in Rutherford experiment what is its maximum

thickness that would not produce the multiple scattering of o particles?

2.20 For an ion of Mg write the number of protons, neutrons, and electrons.
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2.21 Study the Millikan’s experiment. Knowing that the oil droplets were
produced such to have a radius of 1 |, and that the voltage between plates
positioned at the distance of 0.042 m was recorded whenever the droplets
become stationary, using data provided show that the charge difference is always
the integral multiples of 1.602 x 10" C. Assume that the density of oil is 900
keg/m’. The voltage as measured in Millikan’s experiment is: 391.49 V, 407.80
V,376.43V,337.49V,362.49 V,376.43 V.

2.22 What is the difference between the atomic weight and atomic mass? Give
an example.

2.23 Show that mass of a hydrogen atom is 1.6735 x 10°** grams, and that of the
oxygen atom is 2.6561 X 10 grams.

2.24 If naturally occurring carbon consists of 98.892 % '°C and 1.108 % “°C
what is the average mass (in amu) of carbon?

2.25 Calculate the molecular mass of methane (CH4). What is the percentage by
mass of the elements in this compound?

2.26 Using Eq. (2-3) write the computer code to plot the 7.7 MeV o particle’s
trajectories as a function of impact parameters and angles of deflection. Indicate
the points of closest approach.

2.27 Use the Bohr’s atomic model and write the computer code to calculate the
orbiting velocity of the electron in hydrogen atom (see Example 2.5), helium
ion, lithium ion, and boron ion, Comment on the results.

2.28 To the computer code developed for the Problem 2.27 add the calculation
of the time it takes for an electron to complete one revolution in hydrogen atom
and ions of helium, lithium and boron. How does the time change with the orbits
moving further away form the nucleus? Comment on the results.

2.30 Write the computer code to reproduce the spectral lines shown in Fig. 2-19.

2.31 Plot the Rydberg energy for hydrogen atom, and first 11 ions from the table
of elements. Comment on the resuits.

2.32 Calculate the ratio of allowed energies in the helium and lithium ion to that
in the hydrogen atom taking into account the effect of nuclear motion (see
Example 2.8).



Chapter 3
NUCLEAR THEORY

Basic Principles, Evidence and Examples

“The dazzling complexity of the material wortld can, for almost all purposes, be
reduced to a simple trinity: the proton, the electron, and the neutron. The neutron,
a component of the nucleus of every atom except that of hydrogen, was the last of
the trinity to be discovered, in 1932. Had they all been a little younget, the scientist
who uncovered the neutron might have met on the battlefields of Wotld War I1.”
Brian L. Silver, (““The Ascent of Science” ,1998)

1. INTRODUCTION

Atomic physics is the science of atoms, their structure and their behavior.
To discuss the properties of atoms we need to know about the number of
electrons and their configuration (see Chapter 2). In this context the
information related to the atomic nucleus is not of great interest except to
know that a neutral atom caries Z protons and A — Z neutrons (where Z
represents the atomic number and A the atomic mass number).

Nuclear physics is the science of nuclei. Atomic and nuclear physics use
similar laws to describe the motion of electrons and the constituents of a
nucleus (protons and neutrons). However, innovative approaches had to be
developed to describe the forces that hold protons and neutrons in a nucleus,
A theoretical understanding of the forces acting inside the nucleus is not yet
complete.

In this chapter the basic principles and laws of nuclear theory are
presented.
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2. THE NUCLEUS

The nucleus of an atom is composed of two types of particles, protons
and neutrons, collectively called nucleons. The nucleus depicted in Fig. 3-1
is currently understood to be a quantum system composed of nucleons of
nearly equal mass and the same intrinsic angular momentum (spin) of Y.
The neutron, an electrically neutral particle, was discovered by the British
physicist Chadwick in 1932. Its presence in the nucleus accounts for the
difference between the atomic number and the atomic mass number and also
supplies forces that hold the nucleus together. The proton, a positively
charged particle, was discovered by Ernest Rutherford in 1919. In addition
to its atomic number and atomic mass number, a nucleus is characterized by
its size, shape, binding energy, angular momentum, and stability.

1.5x 10%*m

4.9x10%m

1.7x10%m

Figure 3-1. Schematic representation of a '®B nucleus (N - neutrons, P - protons) indicating
the size of the atom, nucleus and nucleons

2.1 Size, Shape and Density of Nucleus
As described in Chapter 2 (Section 2.4) Rutherford’s experiment showed

that it was possible to determine the size of a nucleus by bombarding a gold
foil with a beam of o particles. According to the evidence from his
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experiments, it was understood that an atom has a large radius in comparison
with the size of its nucleus. At that time, o particles were used because they
were easily attainable as a product of radioactive decay of unstable nuclei
(see Chapter 4). Currently, experiments designed to probe the shapes and
sizes of nuclei utilize accelerated beams of electrons, protons and «
particles. One of the best ways to determine the size of a nucleus is to scatter
high—energy electrons from it. From the angular distribution of the scattered
electrons, which is dependant on the proton distribution in the nucleus, the
shape and an average radius of a nucleus are determined.

Data from these types of experiments indicates that most nuclei have a
spherical shape; though some (for example those with Z between 56 and 71)
have ellipsoidal shapes with eccentricities of less than 0.2 (departure from
spherical shape). Figure 3-1 shows the nucleus of a Boron-10 atom which
consists of 5 protons (which give the nucleus a charge of +5) and 5 neutrons
(giving it a total mass number of 10). Since departure from spherical shape is
usually minimal, most theoretical models assume that the nucleus is
spherical.

The nuclear radius of known elements ranges from 2 fm (helium) to 7 fm
(uranium). The radius of any nucleus can be approximated using the Fermi
model:

R=R,A"’ (3-41)

where A represents the atomic mass number, and Ry = 1.07 fm. Since the
volume of a sphere of radius R is proportional to R, it follows from Eq.
(3-41) that the nuclear volume is proportional to A, i.e. to the total number of
nucleons:

V=%71R3 =—43-71R(’?A=V0A (3-42)

Thus, if the volume of a nucleus is proportional to A, it is clear that the
volume per nucleon, Vj is approximately the same for all nuclei. In other
words, the density of nucleons (nuclear density) is the same for all nuclei as
is the degree of packing of nucleons for all nuclei.

Example 3.1 Nuclear density
Compare the nuclear densities of '2C and P°U.
The radii of these nuclei are
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R‘ZC — R0A1/3 - (1.07ﬁ’n)(12)1/3 - 2.45fm
R™Y =R A =(1.07 fm)(235)" = 6.60 fin

Knowing that a mass of '2C atom is 12 amu and of **U atom is 235 amu, (see
Chapter 2, Section 2.10) it can be shown that the nuclear density is a constant value

12 4
V  =VA=12V, = (12)(575130)3

235 4
Vv U=vA=235V, = (235)(§er0 Y

where V, = 5.13x10™ m’ . Thus

we M 12 1.661x1077 k
pl= = % =32x10"kg /m’
C v, S13%x107%m

v
wy MY 235amu

= = =3.2x10" kg /m’
v 235y,

The obtained density inside the nucleus is some 14 orders of magnitude greater
than the density of ordinary matter like solids or liquids. For example the density of
water at standard temperature and pressure is 1000 kg/m’,

Investigation of nuclear size and structure took place in 1950’s producing
several Nobel Prizes. For example, for his pioneering studies of electron
scattering in atomic nuclei and for his discoveries concerning the structure of
the nucleons Robert Hofstadter (1915 - 1990) was awarded the Nobel Prize
for physics. He shared the prize with Rudolf Mossbauer. Robert Hofstadter
is the father of the cognitive scientist and philosopher Douglas R. Hofstadter
best known for his 1980 — Pulitzer Prize winning book, Gddel, Escher,
Bach: an Eternal Golden Braid.

2.2 Equivalence of Mass and Energy

Albert Einstein in his special theory of relativity postulated that the
velocity of light in vacuum is the upper limit of speed in the universe.
According to his theory, the mass of a moving body is not constant (as
classical mechanics would predict) but is a function of velocity. The relation
between mass and velocity of a moving body indicates that as the velocity
increases, the mass of a body increases
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m=——0 (3-43)

where

m - mass of a moving body (called also the variable mass)
my - rest mass of a body (velocity is zero)

v - velocity of a moving body

¢ - speed of light.

The ratio, 17/ ¢* is usually denoted as /. Thus

m=—m0 (3-44)

J1- 52
Similarly, the relativistic energy of a body moving with velocity v is

2
myc

J1- 2

In the relativistic case, velocity increase due to additional energy is

E=

(3-45)

smaller than in the non-relativistic case, because the additional energy
serves to increase the mass of the moving body rather than its velocity.
Equation (3-45) suggests that:

The more energy an object has, the heavier it is.

The closer the velocity of a moving body is to the speed of light, the
larger the force needed to accelerate the body.

An infinite force is needed to accelerate a material object to the speed of
light, which is not physically possible. The only particle that travels at
the speed of light is a photon (that has a zero mass). It is also assumed
that the graviton moves at the speed of light but there is still no evidence
of its existence.

Mass and energy are equivalent. In other words, all matter contains
potential energy by virtue of mass.

A body at rest (v =0 2> £ = 0) (non—relativistic approximation)
possesses energy given by the famous Einstein equation

E=my® (v=0) (3-46)

In terms of momentum and mass
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E* =(pc)* + (myc?)? (3-47)

Graphically, the three terms in Eq. (3-47) can be represented as the sides
of a right triangle (see Fig. 3-2). The energy—momentum equation is
therefore often referred to as the “Pythagorean relation”.

m:acz

Total energy = rest energy + kinetic energy

E=mg(:2 +K

macz

Figure 3-2. Graphic representation of the relativistic energy-momentum relation: (a) when
pe < myc? the total energy is mostly rest energy, (b) when pc > moc? the total energy is mostly
kinetic energy of the moving particle

Example 3.2 Rest energy of nuclear fuel
How much energy can be obtained from 1 gram of nuclear fuel?

E= m002 =(1g)(3x10"cm/s)* =9x10"erg =9x10"°J
=(9x10"erg)(2.78x 10" KWh/erg) = 2.5x10" KWh

The result suggests

e A small amount of mass corresponds to a large amount of energy (because the
speed of light is large).

e In nuclear reactions an atomic nucleus of initial mass M is transformed into a
nucleus of mass M’ and the difference in mass is released as energy

E=(M-M') (3-48)

Example 3.3 Electron volt (eV)

Show that the energy given to an electron (of charge e = — 1.6 x 10™"° coulomb)
by accelerating it through 1 volt of electric potential difference called 1 el is equal
to 1.60 x 107" J.
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The work needed to move one electron through a voltage drop of 1 volt is
e AV=(-1.6x10" coulomb) (- 1 volt) =1.602 x 10"° J=1 eV

Example 3.4 Rest mass of an electron

Calculate the rest energy of an electron in e} and its mass in eV’ / ¢* if its mass is
9.109 x 107! kg.

The rest energy is

E=my’ =(9.109x10"" kg)(3x 10" cm/5)* =81.98x10™" joules
leV

m) =5.11X105€V =0.511MeV
. X

=(81.98x10"°J)(

Thus, my = 0.511 MeV / ¢~

Example 3.5 Relativistic momentum of an electron
Prove the energy—momentum relation given in Eq. (3-47)

E’= (pc)2 + (moc2 )2

By definition, momentum can be described as a function of the mass and
velocity of a moving body

p=mv=—18_ (3-49)

where p = muv, thus
E* =(pc) + (moc2 )

For a massless particle (like a photon) it follows that the total energy depends on
its momentum and the speed of light: £ = pc. This aspect will be discussed in greater
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detail in later sections.

Example 3.6 Transition of masses

Assume a peace of solid matter initially weighs 6 grams. Following a reaction,
the mass of the products is one half of the initial mass. Calculate the energy (in J)
released in this mass “transition”.

From equation (3-48)

M
E :EM—7jc2 =(6x10"kg —3x10"kg)3x10°m/s)* =27x10"J

2.3 Binding Energy of a Nucleus

Since an atom contains Z positively charged particles (protons) and

N (= 4 — Z) neutral particles (neutrons), the total charge of a nucleus is +Ze

where e represents the charge of one electron. Thus, the mass of a neutral

atom, M,,,, can be expressed in terms of the mass of its nucleus, M,,., and
its electrons, m,

M

=M,,. +7Zm M,.=Zm,+(4A-2Z)m, (3-50)

atom e

where m,, is the proton mass, m, the mass of an electron and m, the mass
of a neutron.

For example the mass of the rubidium nucleus, %Rb, which contains 37
protons and 50 neutrons, can be calculated as

M, (Y Rb) =37x1.007277 +50x1.008665 = 87.7025amu (3-51)

The atomic mass, indicated on most tables of the elements, is the sum of
the nuclear mass and the total mass of the electrons present in a neutral
atom. In the case of *’Rb, 37 electrons are present to balance the charge of
the 37 protons. The atomic mass of *’Rb is then

M, (YRb) =M, (YRb)+Zm,

=87.7025+37x0.00055 =87.7228amu

uc

(3-52)

From the periodic table, the measured mass of a *’Rb atom is found to be
M esered (T ppy = 86.909187 amu. These two masses are not equal and the

atom

difference is given by
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Am=M, (Y Rb)— M" " (STRp) = 0.813613amu (3-53)

atom ( atom

Expanding the terms in Eq. (3-53) shows that the difference in mass
corresponds to a difference in the mass of the nucleus

Am _ M _Mmeasured

atom atom

: (3-54)
=7Zm,+Zm,+(A~Z)m, ~ M — Zm,
which reduces to
Am = Marom _M;rtt(c;::ured 5
=Zm p +(A4-Z )mn -M ZZZ“SWM = me _ Mr’z';ecmumd

Thus, when using atomic mass values given by the periodic table, the
mass difference between the measured and calculated is given by

Am=M,,, — M} =Zm , + Zm, + (A= Z)m, — M o™ (3-56)

nuc nuc atom
Notice also that

Zm, +7Zm, =Zmy (3-57)

where my is a mass of the hydrogen atom.

From this and other examples it can be concluded that the actual mass of
an atomic nucleus is a/ways smaller than the sum of the rest masses of all its
nucleons (protons and neutrons). This is because some of the mass of the
nucleons is converted into the energy that is needed to form that nucleus and
hold it together. This converted mass, Am, is called the “mass defect” and the
corresponding energy is called the “binding energy” and is related to the
stability of the nucleus; the greater the binding energy, the more stable the
nucleus. This energy also represents the minimum energy required to
separate a nucleus into protons and neutrons. The mass defect and binding
energy can be directly related, as shown in Egs. (3-58) and (3-59)

BE =Amx931.5MeV / amu or (3-58)

atom

BE = (Zmp +Zm, +(A—Z)m, — M"ewred )02 (3-59)
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Since the total binding energy of the nucleus depends on the number of
nucleons, a more useful measure of the cohesiveness is the binding energy
per nucleon, E,

_BE _ Am(amu)x931.5(MeV / amu)
A A(nucleons)

E, [ MeV/nucleon | (3-60)

10

Binding Energy per Nucleon (MeV/amu)

1 1
] Fission |
1 ]

T T T T L T T T T T

I B S S S e S S —

0 50 100 150 200 250
M ass Number, 4

Figure 3-3. Variation of binding energy per nucleon with the atomic mass number

The binding energy per nucleon varies with the atomic mass number, 4,

as shown in Figure 3-3. For example, the binding energy per nucleon in a

rubidium nucleus is 8.7 MeV, while in helium it is 7.3 MeV. The curve

indicates three characteristic regions:

e Region of stability — A flat region between 4 equal to approximately 35
and 70 where the binding energy per nucleon is nearly constant. This
region exhibits a peak near 4 = 60. These nuclei are near iron and are
called the iron peak nuclei representing the most stable elements.

e Region of fission reactions — From the curve it can be seen that the
heaviest nuclei are less stable than the nuclei near 4 = 60, which suggests
that energy can be released if heavy nuclei split apart into smaller nuclei
having masses nearer the iron peak. This process is called fission (the
basic nuclear reaction used in atomic bombs as uncontrolled reactions
and in nuclear power and research reactors as controlled chain reactions).
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Each fission event generates nuclei commonly referred to as fission
fragments with mass numbers ranging from 80 to 160. Fission is
described in detail in Chapter 6.

* Region of fusion reactions — The curve of binding energy suggests a
second way in which energy could be released in nuclear reactions. The
lightest elements (like hydrogen and helium) have nuclei that are less
stable than heavier elements up to the iron peak. If two light nuclei can
form a heavier nucleus a significant energy could be released. This
process is called fusion, and represents the basic nuclear reaction in
hydrogen (thermonuclear) weapons.

24 Stability of the Nucleus

Nuclei that have the same number of protons and different number of
neutrons are called isotopes. For example, two isotopes of oxygen, 'S Oy
and]g O, , both have eight protons, but one has eight neutrons while the other
has nine. Nuclei with the same mass number such as 'sCy and YN, are
called isobars, while isotones are nuclei with the same number of neutrons,
for example, 7 C, and "IN, .

100
80 -

]
60 -

40 -

Number of Protons (Z)

¢\ Beta Decay

0 20 40 60 80 100 120 140
Number of Neutrons (N)

Figure 3-4. Nuclear stability curve (see also Chapter 4)
The naturally occurring elements have atomic numbers (Z) between 1

and 92 with neutron numbers (N) between O and 146. If the number of
protons is plotted against the number of neutrons for all nuclides existing in
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nature as shown in Fig. 3-4, the following tendencies are observed:

o For light nuclei (A <40), Z and N are nearly equal. This tendency of
Z ~ N is called the symmetry effect and is characteristic of stable nuclei.
As a result of the fundamental similarity between protons and neutrons,
an unstable nucleus will transform a proton into a neutron or vice versa
in order to reach the stable Z ~ N arrangement.

e TFor heavier nuclei more neutrons are needed to form a stable
configuration and the ratio of N to Z approaches 1.5 for the heaviest
nuclei. The tendency for N to be bigger than Z is due to the electrostatic
repulsion force acting between the protons. If a nucleus has too many or
too few neutrons it is unstable and may spontaneously rearrange its
constituent particles to make a stable formation. Isotopes of atoms with
unstable nuclei are called radioisotopes and are said to be radioactive
(see Chapter 4).

* A preference for Z and N to be even is observed in the majority of nuclei.
When the numbers of neutrons and protons are both even numbers, the
isotopes tend to be far more stable than when they are both odd (see
Table 3-1). This tendency is the result of a pairing effect that is described
in Section 2.7.

Table 3-1. Configuration of stable nuclei

Z N Number of stable nuclei
Even Even 148

Even Odd 51

QOdd Even 49

Odd Odd 4

2.5 Protons and Neutrons

In 1919 Ernest Rutherford discovered a new particle, that he called a
proton (the first particle known to be a constituent of every nucleus). He was
investigating the effect of o particles interacting with nitrogen gas and
noticed signs of hydrogen in the detectors. Rutherford postulated that this
hydrogen could have come only from the nitrogen, and therefore that
nitrogen contains hydrogen nuclei. At that time it was known that hydrogen
had an atomic number equal to 1; thus he suggested that the hydrogen
nucleus itself was an elementary particle and he named it proton using the
Greek word for “first”, protos. From this experiment it was understood that
the proton carries a positive electrical charge equal in magnitude to the
negative charge of an electron because the number of protons in a nucleus
was found to be the same as the number of electrons surrounding it for an
atom in its neutral state.

In 1932 Rutherford’s colleague James Chadwick discovered another
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constituent of the nucleus which he named the neutron. Neutron carries no
electrical charge and thus can pass through material without being deflected
by electrical forces.

Protons and neutrons are approximately equal in mass (each roughly
2,000 times heavier than an electron) and are both composed of up and down
quarks whose fractional charges (2/3 and —1/3) combine to produce the O or
+1 charge of the neutron and proton respectively.

2.5.1 Protons and Proton Decay

The positive charge of the nucleus of any atom is due to the presence of
protons. Every atomic nucleus contains at least one proton and the total
number of protons (atomic number) is different for every element. The basic
characteristics and constituents of the proton are summarized in Fig.3-5.

The possibility that the proton may have a finite lifetime has been under
experimental investigation for the last decade. The latest experimental
evidence suggests that the lower boundary for proton lifetime is over
10* years (many times the present age of the universe, which is estimated to
be on the order of 15 x 10° years). How is it possible to detect a time that is
longer than the existence of the universe?

"up” quark +(2/3)e

"down" quark -(/3)e

mass = 1.6726 x 10%" kg
= 938.27231 MeVi/c?
= 1.00727647 amu

Proton

Figure 3-5. Nuclear properties of proton

Obviously it is not possible to watch one proton for 10 years to see if it
decays; however, 10* protons can be observed for one year with a 50-50
probability that one proton out of 10° will decay. There are two laboratories
equipped for this experiment; one in Minnesota and the other in Japan (the
Super—Kamiokande). The dominant mode of proton decay is into a positron
and a neutral pion: p 2 e + n’. A positron is an anti—electron; a particle
with the same mass and same charge as an electron, but with the opposite
charge sign (i.e. a positively charged electron). The pion (or “m meson”) is
the collective name for three subatomic particles, n°, n* and n~. The
Super—Kamiokande detector has the capability to observe this mode of
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proton decay. Using a huge pool of water as a source of protons, a proton
from either hydrogen or oxygen may decay into a positron and a neutral
pion. Upon contact with an electron, the positron is destroyed in a process
known as electron—positron annihilation {see Chapter 5). Upon contact, the
positron and electron destroy each other, producing two 511 keV photons.
The 7° has a mass of 135 MeV/c? and decays into two photons with a very
short half life of 84 x 107'® seconds. The experiments look for these
electromagnetic showers as an indication of proton decay. To date, proton
decay has not been observed at either facility.

2.5.2 Neutrons and Neutron Decay

Polonium Source .
Geiger Counter

~ 1000 V

Figure 3-6. Experimental setup that led to the discovery of a neutron (1932)

From the time of Rutherford it has been known that the atomic mass
number A of nuclei is more than twice the atomic number Z for most atoms
and that almost all of the mass of the atom is concentrated in its center, i.e. at
the nucleus. However, it was presumed that the only fundamental particles
were protons and electrons. Rutherford had speculated that the nucleus was
composed of protons and proton—electron pairs tightly bound together and
the fact that an atom was neutral in charge required that somehow a number
of electrons were bound in the nucleus to partially cancel the charge of the
protons. Quantum mechanics, however, indicated that there was not enough
energy available to contain electrons in the nucleus (see Section 5.4). An
experimental breakthrough came in 1930 when Bothe and Becker
bombarded a beryllium target with o particles emitted from a radioactive
source. The experiment produced neutral radiation that was observed to be
highly penetrating but non—ionizing. In the following years Curie and Joliot
showed that when paraffin (a material rich in protons) is bombarded with
this neutral radiation it ejects protons with energy of about 5.3 MeV (see
Fig 3-6). Bothe and Joliot — Curie each explained that the radiation was high
energy gamma rays. This, however, proved to be inconsistent with what was
known about gamma ray interactions with matter (see Chapter 5).

In 1932 Chadwick performed a number of experiments using different
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target materials to discover that the emitted radiation was actually a stream
of new particles that he named neutrons. The discovery proved that there is a
neutral particle in the nucleus, but also that there are no free electrons in the
nucleus as Rutherford had speculated. Amazingly, once free from the
nucleus, neutrons are unstable and decay with a half life of about 15 minutes
into a proton, an electron, and an antineutrino.

The a—Be reaction in the experiment shown in Fig. 3-6 was explained by
Chadwick

JHe+ ,Be—>n+'sC (3-61)

where ; He represents the o particle. He argued that if a photon interacts
with a proton in the paraffin target and transfers 100 MeV/c of recoil
momentum, the photon itself must have had a momentum of nearly 50
MeV/c, which corresponds to an energy of 50 MeV (see Section 2.2). As the
energy of the o particles striking the beryllium target was only about 5 MeV,
it was impossible that 50 MeV gammas were being emitted. Instead,
Chadwick suggested a new particle with approximately the same mass as a
proton, which solved the contradiction related to the energy of the assumed
photons. In the collision of two particles of equal masses, the incident
particle (neutron) can transfer all of its kinetic energy to the target particle
(proton). Thus for the observed momentum of 100 MeV/c, the kinetic energy
of the neutron was T = p” / 2m = (100 MeV/c)* / (2 x 938 MeV/c?) = 5.3
MeV.

. "up" quark +(2/3)¢

@ @ "down" quark -(U3)e

mass = 1.6749 x 107" kg
= 939.5656 MeV/c?
= 1,0086647 amu

Neutron

Figure 3-7. Properties and composition of the neutron

By examining the interactions of neutrons with various materials,
Chadwick determined the actual mass of the neutron to be between
1.005 amu and 1.008 amu, or 938 +/— 1.8 MeV. The presently accepted
value is 939.57 MeV (see Fig. 3-7).

The following is the original note Chadwick sent to Nature in February
of 1932 describing the arguments for the existence of a neutron. Chadwick
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was awarded a Noble Prize for his discovery in 1935,

Possible Existence of a Neutron
James Chadwick, Nature, p. 312 (Feb. 27, 1932)

It has been shown by Bothe and others that beryllium when bombarded by o
particles of polonium emits a radiation of great penetrating power, which has an
absorption coefficient in lead of about 0.3 (cm)™\. Recently Mme. Curie-Joliot
and M. Joliot found, when measuring the ionization produced by this beryllium
radiation in a vessel with a thin window, that the ionization increased when
matter containing hydrogen was placed in front of the window. The effect
appeared to be due to the ejection of protons with velocities up to a maximum of
nearly 3 x 10° cm per sec. They suggested that the transference of energy to the
proton was by a process similar to the Compton effect, and estimated that the
beryllium radiation had a quantum energy of 50 x 10° electron volts.

I have made some experiments using the valve counter to examine the properties
of this radiation excited in beryllium. The valve counter consists of a small
ionization chamber connected to an amplifier, and the sudden production of ions
by the entry of a particle, such as a proton or ¢ particle, is recorded by the
deflexion of an oscillograph. These experiments have shown that the radiation
ejects particles from hydrogen, helium, lithium, beryllium, carbon, air, and
argon, The particles ejected from hydrogen behave, as regards range and
ionizing power, like protons with speeds up to about 3.2 X 10° cm. per sec. The
particles from the other elements have a large ionizing power, and appear to be
in each case recoil atoms of the elements.

If we ascribe the ejection of the proton to a Compton recoil from a quantum of
52 x 10° electron volts, then the nitrogen recoil atom arising by a similar process
should have an energy not greater than about 400,000 volts, should produce not
more than about 10,000 ions, and have a range in air at N.T.P. of about 1.3 mm.
Actually, some of the recoil atoms in nitrogen produce at least 30,000 ions. In
collaboration with Dr. Feather, I have observed the recoil atoms in an expansion
chamber, and their range, estimated visually, was sometimes as much as 3 mm at
N.T.P.

These results, and others I have obtained in the course of the work, are very
difficult to explain on the assumption that the radiation from beryllium is a
quantum radiation, if energy and momentum are to be conserved in the
collisions. The difficulties disappear, however, if it be assumed that the radiation
consists of particles of mass 1 and charge O, or neutrons. The capture of the -
particle by the Be’ nucleus may be supposed to result in the formation of a c?
nucleus and the emission of the neutron. From the energy relations of this
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process the velocity of the neutron emitted in the forward direction may well be
about 3 x 10° cm per sec. The collisions of the neutron with the atoms through
which it passes give rise to the recoil atoms, and the observed energies of the
recoil atoms are in fair agreement with this view. Moreover, I have observed that
the protons ejected from hydrogen by the radiation emitted in the opposite
direction to that of the exciting o-particle appear to have a much smaller range
than those ejected by the forward radiation. This again receives a simple
explanation of the neutron hypothesis.

If it be supposed that the radiation consists of quanta, then the capture of the «-
particle by the Be® nucleus will form a C'* nucleus. The mass defect of C" is
known with sufficient accuracy to show that the energy of the quantum emitted
in this process cannot be greater than about 14 X 108 volts. It is difficult to make
such a quantum responsible for the effects observed.

It is to be expected that many of the effects of a neutron in passing through
matter should resemble those of a quantum of high energy, and it is not easy to
reach the final decision between the two hypotheses. Up to the present, all the
evidence is in favor of the neutron, while the quantum hypothesis can only be
upheld if the conservation of energy and momentum be relinquished at some
point.

J. Chadwick.
Cavendish Laboratory,
Cambridge, Feb. 17.

2.6 Nuclear Forces

Electrons are held in their orbits around the positively charged nucleus by
the electrostatic (Coulomb) force of attraction. Within the nucleus, however,
there reside only neutral particles (neutrons) and positively charged particles
(protons). Therefore the only electrostatic force that acts within the nucleus
is a repulsive force between protons. Furthermore, the gravitational force
that acts on all matter regardless of charge is too weak to hold the nucleus in
tact, as illustrated in Example 3.7.

Example 3.7 Gravitational force within the nucleus

Use Bohr’s atomic model for hydrogen to show that it is impossible to find an
atom on the quantum level bound by gravity. Also, show that the gravitational force
can not hold nucleons in the nucleus.

According to Coulomb’s law, which has the same form as Newton’s universal
law of gravity, the electrostatic and gravitational forces acting between an electron
of mass m and charge ¢ and a proton of mass M and charge Q are
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kgQ ke’
F =2 % pnd (3-62)
r r
GmM
o =7 (3-63)

where G = 6.67x10™"' Nm” / kg® and k =8.99x10° Nm* / C*.
According to Bohr’s atomic model the energy of an electron in its ground state
in hydrogen atom is

ke* 1 ?
E,=———— (1=123,.); @, =—=—=0.0529mm (3-64)
2a, n ke"m
Equation (3-64) can be rewritten as
ke’)'m 1
E, :_( : )zm_z (3-65)
2h° nm

If the force that bound electrons to the atom was gravitational, Eqgs. (3-62),
(3-63), and (3-65) yield

ke*  GmM
F =F,, = —=220 = ke’ =GmM
r r (3-66)
(GmM)’ ' m 1
= E =t
2h n

(6.67x107" Nm® / kg*)* (9.1x 10" kg)* (1.67 x 10" kg)? 1 N

E =
‘ 2(1.0545x 107 Js)? 12

E =-26x10"eV

Recall that according to Bohr’s atomic model, the lowest possible energy level
corresponds to the ground state for whichn =1 and E, =—-13.6 eV

The ratio of the gravitational and electrostatic forces shown in Eq. (3-67) (which
is independent of distance between the particles) shows that the gravitational force is
too weak to overcome the repulsion between the protons and thus hold the nucleons
together in the nucleus. In the following equation, the masses are those of two
protons:
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Fgrav _ GMM _
F, ke’
3-67
(667107 Nnr* /kg? )(1.67x10 kg )| (3-67)
——=8x 1077
(8.99 x10° Nm® / C? )(1.6 x 10’1°C)
Repulsian Nucleons

- ]
1| 2' 3| Distance, fin

( )
\_/CS';z;mmﬁan . 7T meson .

Figure 3-8. Strong nuclear force and force carrier (meson)

The force that holds the nucleus together is called the nuclear force (or
the strong force since it must overcome the electrostatic force of repulsion
between the protons) and is the strongest of the four known natural forces
(gravitational, electrostatic, nuclear and weak). The force is transferred
between nucleons through force carrier particles called mesons, 7 (see
Fig. 3-8). The exchange of mesons can be understood in analogy to having a
ball constantly being thrown back and forth between two people. The strong
nuclear force has a very short range, and thus the particles must be extremely
close (about 1 to 2 x 107" m; approximately the diameter of a proton or
neutron) in order for meson exchange to take place. When a nucleon gets
closer than this distance to another nucleon, the exchange of mesons can
occur, and the particles will bond to each other. When nucleons cannot come
within this range, the strong force is considered to be too weak to keep them
together, and the competing force (the electrostatic force of repulsion)
causes the particles to move apart. Additionally, at distances less than 1 fm,
the electrostatic force will overcome the strong nuclear force and the
nucleons will repel one another (see Fig. 3-8). In other words, when two
nucleons are separated by a distance of approximately 1 fm they are bound
to each other by the strong nuclear force. Inside of that distance, the
electrostatic force becomes dominant and outside of that distance the nuclear
force is too weak to bind the nucleons.

As explained in Section 2.3, the mass of any nucleus is always smaller
than the sum of the rest masses of its individual nucleons. This difference in
mass is a result of the conversion of some mass into the binding energy
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needed to hold the nucleus together, which is a measure of the strength of
the strong nuclear force. This same energy must be applied in order to
separate a nucleus into its constituents.

The nuclear density is constant for all nuclei (see Section 2.1) because it
is limited by the short range repulsion. The maximum size of a nucleus (see
Chapter 2) is limited by the fact that the attractive force dies away
exponentially with distance between nucleons.

2.7 The Pauli Exclusion Principle and the Symmetry
Effect

Nuclei tend to be more stable for nearly equal numbers of neutrons and
protons especially for elements with small atomic mass numbers (see
Section 2.4), a phenomenon known as the symmetry effect. Protons and
neutrons, like electrons, obey the Pauli Exclusion Principle (see Chapter 2),
which states that no two identical particles, i.e. no two protons or two
neutrons, can occupy the same quantum level. According to this principle,
however, a single neutron and a single proton may occupy the same quantum
level.

A nucleus, like an atom, can be found in the ground state (the lowest
energy level) and in excited states. The ground state corresponds to the
arrangement of all nucleons in their lowest energy levels and according to
the Pauli Exclusion Principle:

e Such arrangements forbid the nucleons to be involved in interactions that
would lower their energy, because there are no lower energy states they
can move to. Thus the scattering from an incident particle which raises
the energy of a nucleon is an allowed interaction, but scattering that
lowers an energy level is blocked by the Pauli Exclusion Principle.

e A dense collection of strongly interacting nucleons would assume the
high probability of constant collisions resulting in redirection and
perhaps loss of energy for the nucleons. The Pauli principle however
blocks the loss of energy because only one nuclear particle can occupy a
given energy state (with spin 1/2). In this dense collection of matter, all
of the low energy states will fill up first.

It is important to mention here that the Pauli principle is applied only to
define the behavior of so—called fermions. The fermions are particles which
form anti-symmetric quantum states and have half—integer spin: protons,
neutrons and electrons. Particles like photons and gravitons (called bosons)
do not obey the Pauli Exclusion Principle (they form symmetric quantum
states and have integer spin).

The ground state structures of the nuclei of three isobars (':Cs , 7N
and '7B,) are illustrated in Fig. 3-9. From the arrangement of nucleons,
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following the Pauli Exclusion Principle, it can be seen that the seventh
neutron in 152 B, must occupy a higher quantum energy level compared to the
arrangement in '2C, and thus the total energy of the '2 B, nucleus is higher.
Similarly, the seventh proton in 172 N, must occupy a higher quantum energy
level than any of the nucleons in 162C6 and thus has a greater total energy.
This example leads to the conclusion that among any set of isobars (nuclei
having the same number of nucleons) the nucleus with equal numbers of
protons and neutrons will have the lowest total energy. It can be seen from
Fig. 3-4 that if a nucleus possesses more energy than the neighboring isobar
it will have a tendency to move toward the lowest and most stable energy
configuration. This process, as indicated in Fig. 3-4, is called B decay and is
explained in Chapter 4.

Z<N Z=N Z>N
L] L
LE 2 J LA X R LA XX BNER X 2 X J LA X L BER X X ]
LK L 2 ] L 2 ] LA .l *e
12 12 12
5B7 ﬁcﬁ 7N5

Figure 3-9. Arrangements of protons and neutrons in their ground states for three isobars with
the atomic mass number of 12

3. NUCLEAR MODELS

3.1 The Liquid Drop Model and the Semi-empirical
Mass Formula

As explained in Section 2.3, the binding energy, BE, of a nucleus is a
measure of the strong nuclear force and represents the energy required to
separate the nucleus into its constituent protons and neutrons; therefore, the
greater the binding energy, the more stable the nucleus. The nuclear binding
energy is large enough to cause a difference in the mass of a nucleus and the
sum of the separate masses of protons and neutrons, which is given in terms
of the binding energy as discussed in Section 2.3, Eq. (3-59)

BE =(Zm,, + Zm, + (A~ Z)m, = M o' ) c*

atom

Theoretically, the total binding energy may be directly measured by
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completely separating all components of the nucleus; this process, however,
is seldom possible. It is much easier to determine the binding energy of a
single nucleon, for example a neutron (Ey)

EbN ZBE_BEN_I (3'68)

where BE is the binding energy of the nucleus and BEy_; is the binding
energy of the remaining nucleus once a single neutron has been removed.

Example 3.7 Binding energy of a single nucleon
The binding energies of 'O, and 'O, are 127.6 MeV and 131.8 MeV,
respectively. Determine the energy required to separate the neutron from 1; 0,.

E,, = BE—-BE,  =131.8-127.6 = 42MeV

The liquid drop model was proposed by Bohr and Wheeler to explain the
structure and shape of the nucleus. In this model, a nucleus is described in
analogy with a drop of incompressible liquid. This is a crude model that does
not explain all of the properties of nuclei, but can easily account for the
spherical shape of most nuclei and explain the process of fission (see
Chapter 6). The liquid drop model considers the nucleus as a homogeneous
mixture of nucleons that interact strongly with each other and maintain a
spherical geometry due to surface tension. Mathematical analysis of the
model produces a semi—empirical equation that can be used to predict the
binding energy of a nucleus as a function of Z, N and 4. An empirically
refined form is presented here. The formula is also called the Weizsaecker
semi—empirical formula:

o The binding energy of a nucleus is proportional to the number of
nucleons, A: there are two reasons for this tendency. First, the strong
nuclear force as discussed in Section 2.6 acts only within a very small
distance between nucleons (up to ~ 2 fin; see Fig 3-10), which means that
each nucleon is bound to only a fraction of the other nucleons. The
second reason is that the nuclear density as described in Section 2.1 is
approximately constant for all nuclei, which means that the degree of
packing of nucleons is also nearly equal for all nuclei, and consequently
each nucleon is bound to roughly the same number of neighboring
nucleons. Thus the average binding energy for each individual nucleon is
the same in all nuclei and the total binding energy is proportional to the
total number of nucleons, 4. Furthermore, the total number of nucleons,
and therefore the total binding energy, is proportional to the volume of
the nucleus. This is expressed mathematically using a volume term
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BE«<BE,, =a,,A

vol (3_69)

where a,,, is a constant such that a,,; > 0.

e Surface nucleons tend to reduce the total binding energy of a nucleus:
Nucleons near the surface of a nucleus are less tightly bound because
they have fewer neighboring nucleons (see Fig. 3-10). The number of
surface nucleons is proportional to the surface area of a nucleus, which is
related to the total number of nucleons by the Fermi model

47R* = 4nR: A% (3-70)

Thus the total binding energy of a nucleus is reduced by a factor
proportional to A*?

BE « BE,, + B,,; =a,,A-a,,, A"

vol

(3-71)

where ay, is a constant such that a,,,> 0.

Figure 3-10. Distribution of nucleons in the interior of a nucleus (each nucleon is bound only
to the nucleons within the short range of ~ 2fm)

o Electrostatic (Coulomb) repulsion forces between protons tends to
reduce the total binding energy of a nucleus: this reduction is equal to the
potential energy of the total nuclear charge, which is given by the
following equation, assuming that the total charge of Ze is uniformly
distributed within the sphere

3k (Ze)2 7?2
Coulomb = gW = Acoutomb Zf/—:s— (3'72)
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The total binding energy of a nucleus is thus further reduced by a factor
proportional to Z* / A'”

Z2
BE o< BEvol + Bwa + BCoulomb = avolA - axmfAZ/3 = Qoutomp F (3_73)

The exact value of acuoms is dependent on the real shape of the nucleus
and the approximation of Eq. (3-73) is thus valid for spherical nuclei.

® Due to the symmetry effect the total binding energy of a nucleus tends to
decrease as the quantity Z — N increases: as discussed in Section 2.7 a
nucleus with Z = N has the highest binding energy (and greatest
stability). As the nuclei depart from this equality (as Z — N increases), the
total binding energy decreases. This phenomenon is accounted for
mathematically as follows

BE < BE _, + B.\‘ulf + BCaul()mb +B

vol symm =

z? (Z - N)? (3-74)

273
a,,A—a A —a ——da
vol surf Coulomb symm
Al 13 > A

e The pairing effect (described in next section) affects the total binding
energy of a nucleus: as described in Chapter 2, a nucleus having an even
number of both protons and neutrons tends to have the greatest stability,
and therefore greater binding energy. This preference requires a
correction to the total binding energy of the form

BE o< BE,,; + B + Beotomy + Boymm + By =

vol symm pair
ohea AP g L (Z=N? o 1 G
vol surf Coulomb A1/3 symm A pair A1/2

where a,,;, is a constant and J'is dependant upon nuclear configuration as
shown in Table 3-2.

From the Weizsaecker semi—empirical formula it can be concluded that
the total binding energy of a nucleus depends primarily on A, which is why
BE is usually discussed in terms of binding energy per nucleon (Section 2.3).

Table 3-2. Correction term for the semi—empirical binding energy formula

) V4 N
1 Even Even
0 Even or Odd Odd or Even

-1 Odd Odd
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The five constants of the formula are determined empirically so as to fit
as many experimentally measured binding energies as possible. For those
nuclides that are difficult to measure experimentally, the following set of
values is generally used to approximate the binding energy (all values are
given in MeV)

A,y =15.75 ag,, =178 acypm =0.711 ag,, =237 a,, =112

symm pair

Example 3.8 Prediction of nuclear binding energy from the
Weizsaecker semi-empirical formula

Calculate the total binding energy for 87.)Rbsg and compare with the measured
value of 757853.053 +/- 2.487 keV.

BE o< (15.75)(87) - (17.8)(87)"* - 0.71 1-(371”-3—~ 2378220 1
87 @&7)

= BE =755.05MeV

The liquid drop model also permits the development of a semi—empirical
formula for the prediction of nuclear masses.

+0.000627 —=+ A

2 2
M =0.99389A—0.000812+0.014A2’3+o.083~£i/—2;rz—)— AZM +

where the values of A are given in Table 3-3.

Table 3-3. Correction term for the semi-empirical nuclear mass formula

A Z A
-0.036/ A" Even Even
+0.036/ 4% 0dd Even
0 Odd

Example 3.9 Prediction of a nuclens mass from the Weizsaecker
semi-empirical formula

Calculate the nuclear mass for *’5;Rbs, and compare with the measured value of
86.9091835 +- 0.0000027 amu.
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2__ 2 2
M =0.99389%(87) - 0.00081(37) + 0.014(87)*"* +0.083 &8731)— +0.000627 im

1
—0.036?573—374— =86.94609amu

3.2 The Shell Model

An alternative to Bohr and Wheeler’s liquid drop model of the nucleus is
the shell model, according to which the various nucleons exist in certain
energy levels within the nucleus (see Fig. 3-9). Each nucleon is identified by
its own set of quantum numbers similar to electrons in their orbits. In this
manner, nuclear energy levels containing successively 2, 8, 20, 50, 82, and
126 nucleons exhibit a very high level of stability due to completely filled
energy levels. For this reason, as with atoms that have a full valence electron
shell, nuclei containing these magic numbers of nucleons are inert in the
nuclear sense. For example, these nuclei do not readily react when
bombarded with neutrons. Table 3-4 illustrates the atomic and nuclear
closed—shell numbers.

Table 3-4. Atomic and nuclear closed-shell numbers

Atomic closed-shell numbers 2, 10, 18, 36, 54, 86

Nuclear closed-shell numbers 2, 8, 20, 28, 50, 82, 126
(magic numbers)

Nuclei which have both a magic number of neutrons and protons are
particularly stable and are labeled “doubly magic”

4 16 40 48 208
2Hey 0y xCay  Cay  53Pbyy

The existence of the magic numbers and the shell structure of a nucleus
are confirmed through many observations

1. Nuclei with a magic number of neutrons or protons tend to have more
stable isotopes. For example, (a) tin (55n7) has ten stable naturally
occurring isotopes: '*Sn (0.97%), ''*Sn (0.65%), '°Sn (0.34%), ''°Sn
(14.54%), "V'Sn (7.68%), ""®Sn (24.22%), '°Sn (8.58%), '*Sn (32.59%),
2281 (4.63%), '**Sn (5.79%); (b) isotones with N = 82 have seven stable
isotopes.

2. The stable elements at the end of the naturally occurring radioactive
series (see Chapter 4) all have a magic number of neutrons or protons.
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The thorium, uranium and actinium series decay to lead, which has a
magic number of 82 protons, while the neptunium series ends with
bismuth, which has a magic number of 126 neutrons.

3. The neutron absorption cross section (see Chapter 6) for nuclei with a
magic number of neutrons is much lower than that for the neighboring
isotopes. The closed neutron shells increase the stability of the nuclei
making them less likely for neutron interactions.

4. The binding energy of the last neutron in nuclei with a magic number
plus one drops rapidly when compared to that of a nucleus with a magic
number of neutrons.

Example 3.10 Separation energy of the last neutron

Compare the separation energy of the last neutron in *°Cay, with its binding
energy per nucleon. What is the separation energy of the last neutron when one
neutron is added to the nucleus of *°*Cayy.

The masses are

m(40Ca20) =39.9625912 amu; m(39Ca19) =38.9707177 amu; m,, = 1.008665 amu;
m, = 1.007277 amu; m(*' Cay) = 40.9622783 amu

The separation energy of the last neutron in **Cay, is

E, =(38.9707177+1.008665 —39.9625912) x 931.5MeV =15.6 MeV

The binding energy per nucleon is (see Section 2.3 and 3.1)

atom

BE =(Zm, +Zm, +(A—Z)m, — Mo )c?

=(20x1.007277 + 20 x 0.00055 + 20 x 1.008665 — 39.9625921)c’
=342.1MeV =

BE /40 =8.6MeV
The separation energy of the last neutron is almost twice the average nucleon
binding energy in the doubly magic isotope of calcium—20.
When one neutron is added, according to the Pauli principle and shell structure
of the nucleus, the nucleons must begin to fill a new shell.

The separation (or the binding) energy of that neutron is thus much less

E, =(39.9625912 +1.008665 —40.9622783) x 931.5MeV = 8.3 MeV
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5. The excitation energy from the ground energy level to the first excited
energy level is greater for the closed—shell nuclei. An interesting
observation to point out is that the discrete energy levels of the electrons
in an atom are measured in eV or keV, while the energy levels of a
nucleus are on the order of MeV. Nuclei, like atoms, tend to release
energy and return to the ground state following excitation. The excitation
energies for the even—A nuclei of lead are shown in Fig. 3-11. The
histogram indicates that the required energy is dramatically larger for the
nucleus with a magic number of neutrons.

3_

Excitation Energy (MeV)

202 204 206 208 210 212
Even-A Lead Nuclei

Figure 3-11. First excited energy level in even—A nuclei of lead

4. PLANCK’S THEORY OF QUANTA

In 1900 Max Planck developed the theory that energy is absorbed and
emitted in small energy packets that he called quanta. The size of quanta of
low frequency (red) light is smaller than the size of quanta of high frequency
(violet) light. In 1905, Albert Einstein published his famous paper on the
photoelectric effect postulating the quantum nature of light (for which he
received the Nobel Prize in 1921). According to Einstein’s theory (see
Chapter 5), light is composed of particles (which he called photons) such
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that a beam of light is analogous to a stream of bullets. Thus, ultraviolet
(UV) light having a frequency of 10'® Hz consists of a stream of photons
each having 100 times the energy of photons of infrared (IR) light having a
frequency of 10" Hz. That is why UV light can cause skin cancer while IR
has no significant effect on the skin.

The energy of an atom, as discussed in Chapter 2, can be increased only
in discrete values, just as American money cannot be counted in units less
than cents. The energy of the quanta (E) is proportional to the frequency (f)
of oscillation of the light wave. Therefore the total energy can be equal only
to an integer number of quanta (similar to the fact that one can have 3 dollars
and 20 cents, but can not have 3 dollars and 20.5 cents). The size of the
energy quantum is given by

E=hf (3-76)
where % is Planck’s constant equal to 6,626 x 107* Js.

4 : wavelength indicating the
distance between two wave crests

- I (the longest are radio waves)
/\ @ S frequency describing how many
l crests pass a given point each

second
direction of

motion v:velocity = 2/ f

E:energy=hf=hc/2

Figure 3-12. Definition of a wave

It is important to note that increasing the intensity of a light source
increases the rate at which photons are emitted. If the frequency of emitted
light has not changed, the energy of the emitted photons has also not
changed. The relationships between frequency, wavelength, velocity and
energy of a light wave are sketched in Fig. 3-12.

4.1 Black Body Radiation

At the beginning of the 20™ century it was known that heat causes the
molecules and atoms of matter to oscillate and that any body with a
temperature greater than absolute zero radiates some energy. It was also
observed that the intensity and frequency distribution of the emitted
radiation depended on the detailed structure of the heated body. The model
analyzed for more than 40 years in order to explain the dependence of
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emitted radiation energy on wavelength was the “black body” model, (see
Fig. 3-13). A black body is a hypothetical object that absorbs 100 % of all
radiation that it is exposed to.

Relative Energy

Figure 3-13. Black body
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Figure 3-14. Black body radiation spectrum (not to scale)

At normal temperatures such a body reflects no radiation and thus
appears to be perfectly black. When heated, the radiation emitted by a black
body is called black body or cavity radiation and is characteristic of this
body only and is not dependent upon the type of incident radiation. In
practice no material has been found to exhibit the exact properties of this
model. A black body may be thought of as a furnace with a small hole in the
door through which heat energy can enter from the outside. Once inside the
furnace, the heat is entirely absorbed by the inner walls, which may emit
radiation to be absorbed by another part of the furnace wall or to escape
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through the hole in the door. The radiation that escapes from a black body

may contain any wavelength.

The black body radiation spectrum (Fig. 3-14), which represents the
intensities of each of the wavelengths of radiation emitted from a black body
as a function of the energy of radiation, indicates that
e A black body radiates energy at every wavelength, while energy

decreases exponentially as wavelength increases.

¢ A black body emits most of its radiant energy at a peak wavelength. For
example, at 5000 K the peak wavelength is about 5 X 107m (500 nm)
which is in the visible light (yellow—green) region.

e At each temperature a black body emits a standard amount of energy
represented by the area under the curve. A hotter body thus emits
radiation with shorter wavelengths. For example, black bodies at higher
temperatures are blue, and those at lower temperatures are red.

e As the temperature increases, the peak wavelength emitted by a black
body decreases and begins to move from the infra—red to the visible end
of the spectrum. Since none of the curves cross the x—axis it follows that
radiation is emitted at every wavelength.

e As the temperature increases, the total energy emitted increases
nonlinearly (the total area under the curve increases in uneven steps).

4.2 Wein’s Displacement Law

When the temperature of a black body increases, the overall emitted
energy increases and the peak of the radiation curve moves to shorter
wavelengths (see Fig. 3-14) as defined by the Wein’s displacement law

Aoax T = 2.8898 107 mK (3-77)

where A i the wavelength at which the energy of the emitted radiation
is maximum, and 7T is the temperature in Kelvin.

Wein’s displacement law is used to evaluate the temperatures of any
radiant object whose temperature is far above that of its surroundings (such
as stars, for example). Wilhelm Wein was awarded the Nobel Prize in
Physics in 1911 for his work in optics and radiation.

Example 3.11 Wein’s displacement law

Use Wien’s displacement law to calculate the temperature (in K) of a star whose
maximum wavelength is 3.6x10”m (an X ray star).

From Eq. (3-77)
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A T=2.8898 107 mK T=8.03x10°K

4.3 The Stefan-Boltzmann Law

According to the Stefan-Boltzmann law the energy, E, radiated by a
black body per unit time and unit area (energy flux or emissive power) is
proportional to the fourth power of the absolute temperature, T’

E=oT" (3-78)

4where o is the Stefan-Boltzmann constant equal to 5.67 x 10 W m™>
K.

The Stefan—Boltzmann law gives the total energy that is emitted at all
wavelengths from a black body (which corresponds to the area under the
black body radiation spectrum, Fig. 3-14) and explains the increase in the
height of the curves with temperature. The increase in energy is very abrupt,
since it is proportional to the fourth power of the temperature.

Example 3.12 Stefan—Boltzmann law

Calculate the ratio of radiated energy from the sun to that of the earth assuming
their temperatures are 6000 K and 300 K, respectively. Determine the maximum
wavelengths of the emitted radiation.

According to Stefan—Boltzmann law, Eq. (3-78)

Egn=5.67x 10" Wartts m™ K* (6000 K)* = 7.3 x 10" Watts m™
Eeurin=5.67 x 10 Watts m™ K* (300 K)* = 459 Watts m™

Esun ! Evare = (6000 K)* / (300 K)* = 1.6 x 10

According to Wein’s displacement law:
Sun: Ay, = 2.8898 107 mK /6000 K = 0.48 um
Earth: A, =2.8898 10> mK /300 K = 9.6 um

4.4 The Rayleigh—Jeans Law

At the beginning of the 20™ century a major problem in physics was to
predict the intensity of radiation emitted by a black body at a specific
wavelength. Wien’s displacement law (see Section 4.3) could predict the
overall shape of the black body spectrum, but at long wavelengths the
predictions disagreed with experimental data. Rayleigh and Jeans developed
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a theory that the radiation within a black body is made up of a series of
standing waves. They argued that electromagnetic radiation was emitted by
atoms oscillating in the walls of the black body. The oscillating atoms emit
radiation that creates a standing wave moving back and forth between the
walls. Their formula is shown in Fig. 3-15.

The Rayleigh—Jeans formula agreed with the experimental data for long
wavelengths, but in the region of short wavelengths the disagreement with
measured values was extreme. According to the Rayleigh—Jeans formula, the
radiation intensity becomes infinite as wavelength approaches zero. When
compared to the radiation energy distribution as a function of temperature
and wavelength of the emitted light (see Fig. 3-14) it can be observed that
the peak wavelength was not predicted by the Rayleigh—Jeans law. This
failure to account for the decrease in energy emitted at short wavelengths
(the UV wavelengths) is known as the ultraviolet catastrophe.

At a meeting of the German Physical Society in October of 1900, Max
Planck presented his theory that radiation is emitted in discrete portions,
quanta, and showed that his formula fit all experimental data.

87 f?

C3

kT

Radiated Intensity

87f? hf
¢’ e%—l

|
Frequency
*  Rayleigh-Jeans Distribution (Classical)
w=w==_Plank Distribution (Quantum)

Figure 3-15. Rayleigh—Jeans law of black body radiation
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4.5 Planck’s Law

Planck explained that the oscillating electrons of the surface atoms of a
black body emit radiation according to Maxwell’s laws of electromagnetism.
At that time, classical mechanics predicted that such radiation could have
any value of energy.

Planck postulated that the energy is emitted or absorbed only in discrete
amounts because the frequencies of the oscillating electrons could have only
specific discrete values. Since the energy of electromagnetic radiation is
proportional to frequency (E = hf), it, too, can be available only in discrete
amounts

E =0, hf, 2hf, 3hf, ... (3-79)

Equation (3-79) defines Planck’s law which represents the basic law of
quantum theory. According to this law the energy of electromagnetic waves
is restricted to quanta radiated or absorbed as a whole with magnitude
proportional to frequency.

S. THE WAVE PARTICLE DUALITY

The ultimate belief and tendency in modern physics is toward a large
overview that will incorporate all laws of nature into one unified theory.
This theory would bring together the laws of the subatomic world and laws
of galaxies and everything in between; a concept that Einstein called the
ideal limit of knowledge.

Kepler, Galileo, Copernicus, and Newton where the first to develop the
theory of the universe, according to which the universe was infinite in all
directions and light travelled at infinite or near infinite speed. With the 20"
century came Einstein’s theories of quantum mechanics and the
understanding of physics from the macro—world to the subatomic realm
changed.

A quantum is a discreet quantity and mechanics is the study of motion;
thus quantum mechanics describes a nature to consist of small, discreet parts
(quanta) and is applied to describe events on the subatomic scale. Newtonian
(classical) physics is applicable to the macro—world, but is not applicable to
the subatomic realm.

Newton’s laws are based on every day observations and predict events
such as ball trajectory or the velocity of celestial bodies. Quantum
mechanics is based on subatomic experiments and predicts probabilities.
Subatomic phenomena cannot be observed or detected directly, as an atom
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or subatomic particle can not be seen by the same means as macro objects.
Using Newton’s laws of motion, the future or the past of a moving object
can be easily predicted given initial conditions. For example, if the present
positions and velocities of the earth, the moon, and the sun are known, it is
possible to predict where the earth has been or will be in relation to the
moon and the sun. For example, the space program would not be possible
without Newtonian calculations of the movements of spacecraft relative to
the movements of the earth and moon.

The ability to predict the future and the past based on knowledge of the
present and Newton’s laws of mechanics suggests that from the moment the
universe was created and set into motion, everything that was to happen
within the universe was already determined. However, according to quantum
mechanics, it is not possible to know enough about the present to make a
complete prediction of the future. A prediction or observation of the
subatomic world requires a decision as to which of aspects must be known,
because the laws of quantum mechanics forbid precise knowledge of more
than one of them at the same time.

This section introduces the basic aspects of the quantum mechanics
concept, describes the evidence for the wave—particle duality nature of
subatomic constituents, explains the uncertainty principle, and gives a brief
introduction to the Schrodinger wave equation.

The scope of the presented theories is directly related to applications in
nuclear engineering disciplines.

5.1 De Broglie’s Hypothesis

The development of quantum mechanics began in 1900 with Planck’s
study of black body radiation (see Section 4.1.). Planck found that the
energy of oscillation of electrons that produce the radiation is absorbed and
emitted in discrete amounts, quanta, given by E = nhf, where n is an integer
value and 4 is Planck’s constant which value was determined from the black
body radiation spectra. However, Planck was not able to explain why the
energy would be quantized, because at that time radiated energy was
considered to be wave—like. This theory was derived from the Thomas
Young’s double—slit experiment (see Section 5.2) that in 1803 demonstrated
the interference pattern of light.

In 1905, Einstein explained the photoelectric effect that proved Planck’s
discovery of quanta, and showed not only that energy absorption and
emission are quantized, but that the energy of light itself is quantized. With
this explanation he introduced a new concept of light; theorizing that light
quanta are particle—like (photons) and that light, therefore, behaves as a
series of particles, This was a confrontation to classical physics and the two
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sets of (repeatable by demand) experiments (the photoelectric effect and the
double-slit experiment) were proving different natures of light.

The idea that light could behave as a wave and as a particle created a new
question: does an electron have particle—wave properties or, in a larger
frame, is the dual particle~wave nature of light a property of all material
objects as well.

The answer to this question was given by Prince Louis de Broglie in his
Doctoral thesis of 1923 in which he argued that all material objects can
behave, like light, both as a particle and as a wave at the same time.
Equation (3-76)

E=hf

was difficult to apply to particles with finite mass. It describes a total,
kinetic or total relativistic energy (as all are identical) of light.
However, the relationship of momentum, p, to wavelength

p=hlA (3-80)

is valid for any particle or material object.

De Broglie suggested (without any experimental evidence) that for any
particle with non-zero mass (such as electrons, protons, or bowling balls)
moving with momentum p, there is an associated wave of wavelength A
related to momentum as

A=hlp (3-81)

The wavelength of a moving particle calculated from this equation is
called the de Broglie wavelength.

Example 3.13 De Broglie wavelength
Calculate the de Broglie wavelength for: (1) an electron moving at
3.0 x 10® m/sec (= 0.01¢), and (2) a 1000-kg car travelling at 100 km/hr.

(M A=h/p=66x10>*Js/[(9.11 x 10™ kg) (3.0 X 10° m/sec)] = 2.4 x 10" m
Since the wavelength of the electron is comparable to atomic dimensions, the
effect of its wave nature is important.

() A=h!p=6.6x10>*Js/[(1000 kg) (100 x 10> m/3600sec)] = 2.4 X 10°* m
The wave character of the car is much smaller than the car itself; hence the
wave-like motion of the car (or of any macro object, for that matter) is not evident.
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Using the analogy of sound waves (known to vibrate at discrete
frequencies when confined to a finite region such as an organ pipe), de
Broglie argued that the quantization of electron energy in an atom can be
explained as the quantization of electron—wave frequency (for an electron
confined inside the atom), which would explain the quantization of the
angular momentum of an electron in a hydrogen atom.

De Broglie pictured the electron wave oscillating along the circular orbit
of Bohr’s atom (see Fig. 3-16) such that its circumference is equal to the
finite integral number of wavelengths

27r =ni, n=12,3,.. (3-82)

Replacing the wavelength of the electron wave with the de Broglie
relation of Eq. (3-81), it follows

_nh

o= (3-83)
P 2r
For a circular orbit, rp represents the angular momentum, L.
Combining last equation it gives
nh
L=—=nh, n=1,2,3,.. (3-84)
27

the Bohr quantization condition was obtained (see Chapter 2).

Figure 3-16. Electron wave in Bohr’s atom according to the de Broglie representation



98 Chapter 3

5.2 Double—Slit Experiment

In 1803, the British physicist, physician, and Egyptologist, Thomas
Young (known for deciphering the Rosetta stone), carried out a very simple
but unique experiment known as the double—slit experiment. The goal of this
experiment was to understand the nature of light. He analyzed the pattern
created by light while passing through two slits (either through one or both).

In order to understand the nature of such an experiment we start with a
brief review of the properties of waves. The best analogy for understanding
the wave property of light is to consider the water waves created at the
entrance of a harbour. For example, if the mouth of the harbour is wide
enough the waves move straight through it. This is because the distance
between the crests, the wavelength, is smaller than the size of harbour
entrance as illustrated in Fig. 3-17 (a). However, if the mouth of the harbour
is small (smaller than or equal to the wavelength) the waves spread out into
semicircles, a phenomenon called the diffraction of waves. Diffraction of
waves is illustrated in Fig. 3-17 (b).

It was assumed that since light is a wave it should behave the same way
when passing through slits of sizes smaller or larger than its wavelength.

If light passes through the cut—out screen as shown in Fig.3-18 (a), it will
behave as the ocean waves passing through the large harbour entrance, since
the opening in the slit is large compared to the wavelength.

When the slit opening is small (see Fig. 3-18 (b)) the light diffracts and
there is no sharp boundary between the bright and dark area at the screen
where the image is projected.

Knowing this, Thomas Young developed an experiment as shown in Fig.
3-19. He analyzed the patterns that are created by the light on the wall screen
depending on the size of the slits and whether one or both are opened.

Young observed that when one slit was closed the image obtained at the
wall indicated light diffraction (like that shown in Fig. 3-18 (b)). However,
when both slits were opened, the expected image of a simple sum of the light
waves did not appear. Instead, the pattern showed bands of light and dark
areas (see Fig. 3-19), a phenomenon called light interference.

Since the spacing of the maxima and minima in the interference pattern
depend on light wavelength, changing the wavelength (color) of light will
change the location and number of bright and dark bands on the screen. If
the distance between the slits is increased more bands of light will be created
on the screen.

This experiment showed that light has a wave—like property because only
waves can show interference. However, 100 years later, Einstein proved that
light also exhibits the properties of a particle.
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Figure 3-17. Patterns that water waves create while passing through a harbor entrance of
different sizes: (a) the entrance is larger than the wavelength of water waves; (b) the entrance
is smaller than the wavelength of water waves

Assuming light to be a stream of particles, the double—slit experiment
can be analyzed in a very interesting way. When both slits are opened,
photons “fired from the light gun one at the time” will hit the screen (wall)
at particular areas and there will be places where the photons will never land
(otherwise there would be no dark areas and the image would be the same as
when there is only one slit).
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light source
Cut-out slit
(a) Size of the slit larger than light wavelength
hightannece Cut-out slit

(b) Size of the slit comparable to light wavelength

Figure 3-18. Patterns created by light passing through slits of various sizes
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Figure 3-19. Thomas Young’s double slit experiment (1803)

Now the question is Aow the photons know where to land and where not
to land or how the photons know that there are two slits and that both are
opened? If one of the slits is closed there will be no interference and the dark
bands will disappear (the whole wall becomes illuminated including areas
that are dark when both slits are opened). When only one slit is opened, the
future of the event can be easily predicted because the laws governing the
phenomenon are known, as well as the initial conditions (the origin of light,
its speed and its direction). Using Newton’s laws of motion it is possible to
determine where the photons will land on the wall surface. The initial
conditions for each case (one slit or two) are identical. However, in the case
when both slits are opened, Newton’s laws of motion will give exactly the
same results as in the previous case, which will be wrong. In other words,
two photons having exactly the same initial conditions, in two different
experiments, will not go to the same location. In the second experiment it
can be understood that a wave pattern is created on the screen by a large
group of photons. In that pattern it is not possible to know where a single
photon will land. All that can be known is the probability of finding a single
photon in a given location. What determines WHERE a single photon will
land?

According to quantum mechanics there is only a probability which
guides a photon to a particular area. The experiment can be viewed once
again considering the light as a particle, as a wave, or as a wave—particle:

Light as a particle — if light is considered as a stream of particles we may
ask why the photons avoid making spots on certain areas of the screen when
both slits are open. Every particle has two opportunities, two slits to pass
through. These two opportunities interfere with each other since the image
obtained at the wall shows the bands of light and dark areas. The
interference can be explained by saying that the particles are controlled in
such a way that each particle passes through a slit alone. The particles do not
bump into each other and two particles never pass through one slit at the
same time. The next question is how to explain this interference using
quantum mechanics.
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Figure 3-20. Wave~particle duality

Light as a wave — if light is considered to behave as a wave it can reach
both slits at the same time, which a particle can not do. The wave can then
break up into two waves and each would pass through each slit individually.

This phenomenon is seen when a real wave (at a harbour, for example)
comes to two openings (like the space between piers). Two waves can travel
separate paths, go through separate slits, and reach the wall where they can
interfere with each other. Waves are made of moving hills and valleys (see
Fig. 3-12); if at some point on the wall the valley of one wave meets the hill
of another wave, these two waves cancel out at that point. This easily
explains the light and dark bands at the wall when both slits are opened. If
one slit is closed, then there would be no reason for the wave to split into
two parts and the wave will reach the screen unimpeded.

This consideration seems to solve the problem by stating that the
possibilities always interfere with each other if an object behaves as a wave.
It could be concluded that there were no particles in the stream of light, and
that the stream was simply a wave. However, when the waves arrive at the
screen they do not land everywhere like waves reaching the beach shore,
indicating that light does not always behave like a wave.

Light as a particle and a wave — Waves reach the screen in a series of
points. Since the real waves can not do that, it can be concluded that a
particle always leaves a track while travelling as a wave through the space.
This statement can explain that waves are particles and that particles are the
waves.

Such behaviour of particles when confronted with two or more
possibilities is called wave—particle duality (see Fig. 3-20). Although it is
still not known why subatomic matter behaves in this way, the laws of
quantum mechanics can explain the phenomena (lasers, microchips,
photocells, nuclear reactors, long-range deep—space communication
devices, transistors, materials at very low temperatures).
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5.3 Experimental Evidence for the Wave—Particle
Duality

De Broglie’s hypothesis as discussed in Section 5.1 explained that matter
waves were not evident in the macroscopic world because the wavelength
was much smaller than the size of the objects. His equation, however,
indicated that because the size of subatomic particles is smaller than the
wavelengths of their associated waves the wave properties are noticeable.
For example, for a non—relativistic particle of mass m and kinetic energy
E =p’/ 2m, the de Broglie wavelength can be expressed as

(3-85)

This relation clearly indicates that particles of lower mass have longer
wavelengths. It follows that the particle—wave behaviour of the lightest
known particle, the electron, should be easy to detect. By expressing the
kinetic energy of an electron in eV and placing its mass of 9.109 x 107" kg
into Eq. (3-85), the de Broglie wavelength for an electron is

A= \/g(nm) (3-86)

For example, an electron with energy 1.5 e} has a wavelength of 1 nm,
while an electron with energy 15 kel has a wavelength of 0.01 nm. Since the
distances between the atoms in crystalline structures of solid matter are in
the order of electron wavelengths for electron energies in the range of e/ to
keV, electrons are expected to be diffracted by crystal lattices. In 1926, just
two years after de Broglie presented his hypothesis, C. J. Davisson and L. H.
Germer, at the Bell Telephone Laboratories, were able to verify the wave
property of electrons in crystal diffraction experiments. Davison used
electrons with energy of 54 el and wavelength of 0.167 nm which were
diffracted from a nickel-coated surface. In 1927 G. P. Thomson used
electrons with energy of approximately 40 kel and wavelength 0.006 nm to
demonstrate diffraction by micro crystals.

In the Davisson-Germer experiment the electrons were of low energy and
thus they did not penetrate very far into crystal. To analyze the experimental
data and show evidence of the wave nature of electrons, it is sufficient to
assume that the diffraction took place in the plane of atoms on the surface of
the nickel. From independent X ray diffraction data available at that time it
was known that the spacing between the rows of atoms in a nickel crystal
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was 0.091 nm. Therefore, according to Bragg’s law (knowing that the
maximum angle of diffraction was measured to be 8= 65%), the wavelength
of the diffracted electron was 0.165 nm (see Fig. 3-21). This value, when
compared with the de Broglie wavelength of 0.167 nm, provides strong
evidence for wave—like behavior of electrons.

Incident ray Diffracted ray

O O O O .
d, spacing between the planes
O O O 0 O
O O O O O 1 is the order of diffraction
maximum. The maxma forn>1
O O @) O QO are weak. Usually the only
( 2dsin@=nl, n=1,2 ] important diffractionisz=1

Figure 3-21. The Bragg's law

Example 3.14 Electron diffraction from crystal planes

Electrons accelerated through a voltage of 100 V are diffracted from a crystal
with a plane distance of d = 2 X 10"° m. Calculate the electron scattering peaks for
the first three orders of diffraction.

The electron wavelength can be obtained as follows

2

qV=-§— = p=2mgv -

m

6.626%x107"J -
ko SR =1.228%107%m

P \J2mqV \/2(9.1><10“31kg)(1.6><10“'90)(10()V)

Using Bragg’s law (see Fig. 3-21) the scattering peaks for the first three orders
of diffraction are:

A
2dsinf@=ni — O=sin" % = sin”'(0.306997) >

O(n=1)=17.88° H(n=2)=37.88° B(n=3)=67.07°

Since these first experiments of particle diffraction many more were
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carried out to confirm the wave—particle duality of protons, neutrons, atoms
and molecules. Additionally, the double—slit interference experiment was
performed with electrons (1989), neutrons (1991) and even atoms (1991)
and molecules (1999). The double—slit interference experiments with
electrons demonstrated that a very weak source of electrons (only one
electron passing through the slits at any given time) generated the pattern of
waves on the screen. Such experiments showed that particles of matter are
not classical solid particles with well predicted and defined trajectories, but
that they behave as waves whenever there is a choice of more than one
possibility (such as in the double—slit experiment). In other words, in the
double—slit experiment every particle is given two trajectories. In a wave
form the particle travels along both trajectories arriving at a random point on
the screen causing the interference pattern. In all experiments with all types
of particles, the pattern consists of bands with a spacing of AL / a, where a is
the separation between the slits, L is the distance between the slits and the
screen, and A is the de Broglie wavelength (see Fig. 3-19).

—| & j—

Figure 3-22. Single slit diffraction pattern

Example 3.15 Single slit diffraction
For red light (660 nm) impinging on slits of width ¢ = 0.05 mm and ¢ = 0.2 mm
placed L = 1 m away from the screen, determine the angular separation & between
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the center line and the first minimum of the resulting diffraction pattern and its
distance from the first maximum, y (see Fig. 3-22).

asinf=nd, n=1 - ¢9=sin‘1i -
a

6(0.05mm) = 0.76° 6(0.2mm) = 0.19°
y=Ltan8 — y(0.05mm)=132mm; y(0.2mm) =3.3mm

5.4 The Uncertainty Principle

The double-slit experiment considering photons as both particles and
waves is discussed in Section 5.2. In order to introduce the uncertainty
principle associated with the subatomic realm, we will analyze this
experiment using electrons as shown in Fig. 3-23 (a). In the experiment it is
assumed that all electrons coming from the “gun” have nearly the same
energy. The electrons behave in the same way as photons (as discussed in
Section 5.3) and produce interference pattern on the screen. The question is
can we “watch” each of the electrons to see their trajectories and thus
understand which slit they go through and at which point on screen they
land.

In order to do this, two modifications are made to the experimental setup:
(1) a light source is placed directly behind the slit screen and (2) a detector
or an array of detectors is placed on the wall. As each electron passes
through a slit, the light emitted from the source is reflected such that the
observer may determine which slit the electron passed through.

The detectors then indicate where the electron struck the wall. Thus
every electron that arrives at the screen is placed into one of two categories:
those that passed through slit one and those that passed through slit two.
From the number of events recorded in each category, we obtain the
probabilities, P’; and P’,, respectively, of each event. The distribution of
these probabilities as a function of distance from the centreline is shown in
Fig. 3-23 (b). When the light source is in place we “watch” each electron
passing through the screen; we obtain the expected result: each electron
passes through only one slit regardless of the number of open slits. In this
case, when both slits are open, the probabilities of each event simply add to
determine the total probability, P’;; = P’y + P’,, and no interference is
observed. However, if the light source is removed, interference is once again
observed (Py,) as in the original experiment. The conclusion is that the
observation of the electron trajectories via the light source somehow changes
the distribution of electrons at the screen. When a photon from the light
source is reflected, or scattered, by the electron, the motion of the electron is
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changed such that it may fall into a different part of the probability
distribution (a minima instead of a maxima, or vice versa). This is why
interference is observed.
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Figure 3-23. (a) Double-slit experiment with electrons and (b) the results of the experiment
when electron trajectories are "watched” by shining a light on the electrons

The next question then becomes what will happen to the probability
distribution if the intensity of the light source is reduced? Remember,
however, that when the intensity is reduced, the energy (quanta) of the
photons is not changed; only the rate at which they are emitted from the
source. Thus when the source of light is dim, we may not see each electron
trajectory and must now record the events into three categories: those
electrons that passed through slit one, those that passed through slit two, and
those that were not seen, but were registered at the detector. The
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probabilities of these events are P’;, P’,, and P),, respectively. Those
electrons that are not seen cause interference, which is understandable
because when we do not see the electron, it means there were no photons to
disturb its trajectory (to change the direction and speed of motion), and when
we do see it, there is a photon disturbing it (changing the direction and the
speed of motion). We now come naturally to the last question: is there any
way we can see the electrons without disturbing them?

The momentum carried by a photon is p = &/ 4, implying that in order to
disturb electrons only slightly, not the intensity, but the frequency of the
light source should be changed. Using a light of lower frequency (for
example red light), i.e. longer waves, the interference pattern at the screen
will be restored. If the interference pattern is restored, however, we are no
longer able to see where the electron hits the screen. The conclusion from
this experiment is that it is impossible to design an apparatus such that it can
be used to distinguish which slit the electron passed through without
disturbing the electrons enough to destroy the interference pattern. This
introduces the basic characteristic of subatomic wave—particle duality,
known as the uncertainty in measuring more than one of the particle’s
parameters.

In the above experiment there was a reason why we have chosen a light
source (photons) to monitor the trajectories of the electrons. In the macro
world the objects we are able to see is due to the reflection of light from
those objects. For example, a lamp in the night emits photons that travel
through space and interact with the surrounding objects. The reflected
photons travel back toward our eyes where we detect the image. Therefore,
the interaction of the photons with the objects around us is the core of the
process; if an object can be observed, it must have undergone interactions
with light (photons). In the macro world, where Newtonian physics applies,
the interactions of photons with measured objects are ignored since such
interactions will not affect the motion of macro objects (a table in a room
will not move when the light is turned on). Thus in the macro world the act
of measurement does not affect the object being measured. From the
double—slit experiment, however, we have seen that the motion of subatomic
particles is affected by observation and measurement. The very important
conclusion is that every measurement taken on a quantum scale has an effect
on the system.

Werner Heisenberg, after earning his Doctoral degree in Munich,
Germany, worked with Bohr and Born in the emerging field of quantum
mechanics. He developed the Heisenberg uncertainty principle as an
explanation for the uncertainty in measuring parameters of the subatomic
particles. The principle states

(uncertainty in position) X (uncertainty in velocity) > A/ m
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or

AvxApz - (3-87)
m

where m is the mass of the particle and A is Planck’s constant. The
uncertainty in position, Ax, represents the error made in measuring the
position of the particle, and the uncertainty in velocity, Av, refers to the error
made in measuring the velocity of the particle. Thus, if we choose to
measure the position of the particle we will introduce an uncertainty in the
velocity and vice versa. That is why the product of these two measured
values is not equal to zero. In other words, as the uncertainty in one variable
becomes smaller and smaller, the uncertainty in the other becomes larger and
larger in order to maintain a constant product. At the conceptual limit, if we
could know the exact location of a particle in the subatomic realm, we would
not know anything about its velocity; or, if we knew the exact speed of the
particle, we would not be able to know where the particle is. The uncertainty
principle applies not only to position and velocity, but to all parameters of a
subatomic particle. For example, if we want to measure the energy of a
quantum system we will need a certain amount of time, Az, to take the
measurement. During this time the energy of the system may change, AE,
without our knowledge. The uncertainty principle describing the relation
between the energy of a quantum system and the time needed to measure it
is given by

AE X At 2~h2— (3-88)

The principle states that if a particle has a definite energy (AE = 0), then
Ar must be infinite. In other words, a particle with definite energy is
localized in the same region for all time. Such states are called the stationary
states corresponding to Bohr’s stationary orbits as discussed in Chapter 2. If
a particle does not remain in the same state forever, At is finite and therefore
AE is not zero and the energy of the particle must be uncertain. An example
of this condition is an unstable atom or nucleus. As mentioned previously, an
unstable atom or nucleus will eventually rearrange in order to reach a stable
condition, thus At is finite and the energy of an unstable atom or nucleus has
a minimum uncertainty given as

AE =~ — 3-89
2At ( )
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Finally, the uncertainty principle can be expressed in terms of particle
momentum, p, and particle position, knowing that p = mv

Axx Ap > -Z- (3-90)

Example 3.16 Uncertainty in the position and energy of an electron
confined in a nucleus and an atom

If the size of an atom is 107'° m, and the size of a nucleus is 10,000 times
smaller, calculate the momentum and energy of an electron confined in an atom and
in a nucleus. Compare these to the binding energy of an electron in a hydrogen
atom.

For an electron confined in the nucleus

Pt = 1107 m . Ax =1x107" m
h B 6.626x107Js/2

AAp2= = Ap=—= — SI27 S 275107 kgm! s
2 2Ax 2x10™"m

Ee (Ap)*  (5.27x107 kgm/5)* leV

=1.53x107" J X ———==9.55x10"eV
1.6x107%J

2m 2(9.1x107 kg)

The energy of an electron localized in a volume comparable to that of a nucleus
is very large when compared to the binding energy of the electron in a hydrogen
atom (see Chapter 2).

This implies clearly that an electron can not be localized to such a small volume
in the atom.

For an electron confined in an atom

roo=Ix10™m e Ax=1x107""m

atom

h 6.626x107* Js/2 »
acap>l o ap=s T 527x10% kgm s
2 2Ax 2x10m
ApY  (5.27x10 % kgm/ s) leV
g _( B3 53%107 J X —— e = 0.95¢V
2m 29.1x10 kg) 1.6x107™ 7

The energy of an electron localized in a volume comparable to that of an atom is
comparable to the binding energy of the electron in a hydrogen atom.



NUCLEAR THEORY 111

6. SCHRODINGER EQUATION
6.1 Interpretation of Quantum Mechanics

A quantum system is divided into two parts: (a) the observed system, and
(b) the observing system. For example, the observed system in the
double—slit experiment is a photon. The observing system represents the
environment that surrounds the observed system including the experimenter
(observer). The observed system travels according to a physical law called
the Schrodinger wave function. This wave function refers to probabilities,
e.g. the probability of finding a subatomic particle in one location rather than
another (see Fig. 3-20). In the macroscopic world it is intuitive that every
event exists in three dimensions and in time. For example, a wave function
associated with two particles will be written in six spatial dimensions (three
for each particle). If the wave function represents the probability associated
with 20 particles, it will exist in 60 spatial dimensions. Thus when an
experiment with subatomic particles is carried out their multi-dimensional
reality is reduced to three dimensions in order to be compatible with our
macroscopic world. The wave—particle duality that employs the concept that
an entity simultaneously possesses localized (particle) and distributed (wave)
properties has been introduced in order to account for observations in
experiments with subatomic particles. The dominant view of this approach is
that quantum probabilities become determinate by the act of measurement.
Thus it is said that the wave function is collapsed when an observer looks at
the system. In the double—slit experiment, according to classical physics, a
photon emitted from the light source travels from the source to the slit,
passes through the slit, and travels to the screen where it is detected. Thus its
location at the screen can be determined. However, according to quantum
mechanics, there is no real particle that travels between the source and the
screen. There is only a wave function and the probability that the photon will
pass though one slit or the other. The photon is detected only when the
observer looks at the screen. In other words, the quantum reality is not
described until an act of measurement takes place, at which point the wave
function collapses to a single possibility.

In the autumn of 1927, the 5th Solvay Conference was held in Brussels,
Belgium. The conclusion of this meeting became known as the Copenhagen
interpretation of quantum mechanics. During this Conference Bohr and
Einstein conducted their famous debate:

“I shall never believe that God plays dice with the world!” questioning
the probabilistic nature of quantum theory. And Bohr’s answer:
“Einstein, stop telling God what to do!”
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The Copenhagen interpretation of quantum mechanics, for the first time,
acknowledged that a complete understanding of reality lies beyond the
capability of a rational thought.

In 1957 Hugh Everett, John Wheeler and Neill Graham proposed another
explanation of the quantum wave functions called the many worlds
interpretation of quantum mechanics. According to this theory the wave
function is real, and all possibilities that it predicts are real. This theory can
also be demonstrated by analyzing the double—slit experiment. Suppose that
when a photon goes through slit one, you run up the stairs. When a photon
goes through slit two you run down the stairs. According to the Copenhagen
interpretation of quantum mechanics, these two possibilities are mutually
exclusive because it is not possible for you to run up and down the stairs at
the same time. However, according to the many worlds interpretation of
quantum mechanics, at the moment the wave function “collapses” the
universe splits into these two worlds. In one of them you run upstairs, and in
another one you run downstairs. There are two editions of you doing
different things at the same time; but each of these two editions is unaware
of the existence of the other. These two editions of you will never meet, as
these worlds remain forever separated branches of reality.

6.2 Standing Waves

De Broglie’s hypothesis (Section 5.1) that each material object has a
wave property opened new developments in quantum mechanics. It
immediately pointed to a much more natural way of understanding atomic
phenomena than Bohr’s model of the atom. Bohr’s model of hard, spherical
electrons that orbit the nucleus at specific distances and specific energy
levels, emitting photons by jumping between the orbits, explained the
spectrum of simple atoms. However, it did not explain why each shell
contains a certain number of electrons or how electrons move between
shells. Austrian physicist Erwin Schrodinger postulated that electrons are not
spherical objects, but rather patterns of standing waves.

The standing wave can be explained in analogy with a rope tied to one
pole at one end and then flicked sharply upward and downward from the
other end, forming a hump, or a wave, that appears to travel between the two
ends. By sending a series of waves down the rope, a pattern of standing
waves as shown in Fig.3-24 is generated. The simplest pattern is that of a
single standing wave, shown in Fig. 3-24 with n = 1. This pattern is formed
by the superposition of two waves travelling in opposite directions. In
reality, it is not the rope that is moving, but the pattern; these stationary
patterns are called standing waves. Regardless of the length of the rope, the
rope will always show a pattern of a whole number of standing waves (i.e.
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one wave, two waves, three waves, etc.) that must divide the rope evenly
into whole sections. The number of wavelengths or half-wavelengths that
will fit on the rope is determined by its length. The first three possible
standing waves are shown in Fig.3-24. The lowest frequency is called the
fundamental frequency or the first harmonic, and the higher frequencies are
called overtones. Integer multiples of the fundamental frequency (the 1%
harmonic) are labelled as the 2™ harmonic, 3" harmonic, etc.

antinodes

L[]

nodes

Figure 3-24. Standing waves and electron's orbits around the nucleus

In 1925 Schrodinger proposed that standing waves of subatomic particles
are “quantized”, similar to the waves in the rope. For example, an electron
orbiting a nucleus must travel a certain distance around the nucleus, which
can be thought of as the length of the rope; therefore, only a whole number
of standing waves, never a fraction of one, can form the length of orbiting
electrons. Schrédinger developed the complex equation (now called the
Schrddinger equation) to describe the quantum wave function of subatomic
particles. The equation can be solved exactly only for the simplest structure,
the one—proton and one—electron structure of atomic hydrogen. The reason
that the Schrodinger equation cannot be solved exactly for an atom which
contains more than one electron is a mathematical problem that also appears
in other areas such as astronomy: there is no exact solution to the equations
describing the motion of more than two mutually interacting bodies. No
exact solution of the Schrédinger equation is possible for any of the atoms
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heavier than hydrogen, but methods of successive approximations can be
used to obtain solutions. The solution of the Schrédinger equation gives the
energies an electron should have in an atom. Since light is emitted or
absorbed by an atom when an electron moves from one permitted location to
another, knowledge of the energies of the various levels available to an
electron also gives the emission and absorption spectra of the atom.

The electrons are confined to the space surrounding the nucleus in similar
to the way in which the waves of a guitar string are controlled within the
string. The tautness of the string forces it to vibrate with specific
frequencies, as an electron can only vibrate with specific frequencies (see
Chapter 2). In the case of an electron, these frequencies are called
eigenfrequencies and the states associated with these frequencies are called
eigenstates or eigenfunctions. The set of all eigenfunctions for an electron
form a mathematical set called the spherical harmonics. There is an infinite
number of spherical harmonics, with no in-between states. Thus an atomic
electron can only absorb and emit energy in specific quanta. It does this by
making a quantum leap from one eigenstate to another. This term has been
introduced in Chapter 2.

Shortly before Schrodinger’s discovery, another Austrian physicist,
Wolfgang Pauli, discovered that no two electrons in an atom can be exactly
the same (as described in Chapters 2 and 3). In terms of Schrodinger’s
standing wave theory, Pauli’s Exclusion Principle means that once a
particular wave pattern forms in an atom, it excludes all others of its kind.
Schrédinger’s equation shows that there are only two possible wave patterns
in the lowest orbit of Bohr’s atomic model and therefore there can be only
two electrons existing in that orbit. There are eight different standing wave
patterns possible in the next energy level; therefore there can be only eight
electrons, and so on. Although Schrodinger was sure that electrons were
standing waves, he was not sure what was waving. He was however
convinced that something was waving and that he called “psi” (¥), a
quantum wave function.

6.3 General Characteristics of the Quantum Wave
Function

Each particle is represented by a wave function, W¥(x,t), which is
obtained by solving the Schrédinger equation

R JC DN {62))

oy o T HUDY() (3-91)

where i is the square root of negative 1, 7 is Plank’s constant divided by
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2x, and U(x,¢) is the potential energy field. This equation plays the role of
Newton’s law of conservation of energy in classical mechanics. The
equation predicts the probability of future behaviour of dynamic quantum
subatomic systems; given a large number of events, it predicts the
distribution of probabilities. Specifically, the square of the wave function
represents the probability amplitude for finding a particle at a given point in
space at a given time. In order to represent a physically observable system
the wave function must satisfy the following constraints: must be a solution
to the Schrodinger equation, must be normalized implying that the total
probability over all x is unity, must be a continuous function of x and must
have a continuous slope. Basic steps in developing the fundamental quantum
mechanics equation are as follows:

1. Conservation of energy:
E=T+U (3-92)

where E is the total energy, T (m /2 = p*/2m) is the kinetic energy and U
is the potential energy of a particle with mass m.

2. De Broglie hypothesis: for a free particle with momentum p, the
wavelength, A, is equal to h/p. If we write: k = 2774, where k is called a
wave number, then it follows

_h_hk

=== 3-93
A 2z ( )

p

Combining Egs. (3-92) and (3-93), the kinetic energy of a free particle to
which a de Broglie wave is associated can then be written as

2 2 212
ro Pt hzk (3-94)
2 2m  4An°2m

which bears a clear resemblance to the kinetic energy term (first term) of
the Schrodinger equation.

3. Continuous solution: a solution concerning the location or state of motion
of a particle should not show discontinuity (the particle can not appear
and disappear at different locations in a system).

4. Single-valued solution: a solution should give only one probability for
the particle to be in a specific location at a specific time.
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5. Linear solution: solution must be linear in order to assure that de Broglie
waves will have the superposition property expected for waves.

The following sections will explore the time—independent Schrodinger
equation where the time—dependant solution is assumed to be separable in
the following form

Y(x,0)=y(x)f@) (3-95)

The partial derivatives in the Schrodinger equation may now be
transformed into two absolute derivatives under the assumption that the
potential field is not a function of time

f@) dr (3-96)
1 M (x)
Ry +U () (x) = Ey(x)

In this technique, a separation constant, £ is introduced representing the
particle energy state. The time—dependant portion is easy to solve and has
the following general solution

iEt

f@y=Ce (3-97)

The remaining time—independent portion will now be analyzed for some
specific potential energy distributions.

6.4 Wave Function for a Particle in an Infinite Well

Perhaps the simplest case to analyze is that of a single particle in an
infinite well, namely

0, for0<x<a,
U(x)={ orvsx=d (3-98)

oo, otherwise

An illustration of this distribution is shown in Fig. 3-25.

For this case, the wave function takes a zero value outside of the well
because the infinitely high walls confine the particle within. Therefore,
inside the well, the time-independent Schrodinger equation reduces to
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By
2m  dx*

= Ey(x), (3-99)

or, equivalently

2
d;/’gx) — Ky (), where k=YZ"E (3-100)
X
. .
U= U=0 U=
x=0 x=a

Figure 3-25. Infinite square well potential distribution

In this form, it is clear that the general solution is the same as that for the
classical simple harmonic oscillator

w(x) = Asin(kx) + Bcos(kx) for 0< x <q, (3-101)

where A and B are constants to be determined using boundary conditions
for wave function continuity at the boundaries

y(0)=y(a)=0. (3-102)

Imposing the first boundary condition implies that B must be zero and the
solution reduces to

w(x)= Asin(kx). (3-103)
Imposing the second boundary condition implies that the argument of the

sine function must be zero. Sine is a periodic function which takes a zero
value when evaluated at integers multiples of 7, therefore



118 Chapter 3

2mE

ka= =nx, where n=1,2,3,.... (3-104)

This gives a result for energy which can take only discrete values unlike
the classical case where energy is continuous

E = n°r*h?

n

- (3-105)

The full solution for this case is the product of the time—dependant and
time-independent components

iEt

W (x, 1) = () f(£) :Asin(ﬁ@-)e O (3-106)
a

where the two constants have been combined into a single constant, A.
Now, to determine the constant A, we must normalize the integral of the
square of the wave function to one as explained in Section 6.3.

[ cenf” dvdr = [ 00" (nndxdt =1, (3-107)

where ¥ is the complex conjugate of the wave function. Expanding the
conjugate product reveals that the time—dependant terms cancel each other
leaving only a simple integral with respect to x. Evaluating this integral
gives A* = 2/ a, and the full solution is, therefore

n’rth

—i — 11
W(x,r) = %sin(n—mje [ZJ for 0<x<a. (3-108)
a a

This wave function may now be used to determine the probability that
the particle will be located at any position x and time ¢ within the infinite
well.

6.5 A Wave Function for a Free Non — Relativistic
Particle

In this case, the particle is assumed to be totally free, namely U(x) = O for
all x. Upon insertion of this potential distribution, the time-independent
Schrédinger equation takes the same form as inside the infinite square well
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and has a solution in the following form
w(x) = Asin(kx) + B cos(kx). (3-109)

At this point in solving the infinite well problem, we applied the
appropriate boundary condition which determined the allowed values for &
and therefore, E. However, in this case there are no such boundary
conditions to restrict the value of the & because the particle is totally free.
However, upon closer inspection of the definition of %, the allowed energies
may be found to be

, (3-110)

which is precisely the same as the energy predicted by the De Broglie
hypothesis for a free particle. One important thing to note is that due to the
lack of a restriction on £, the energy values are not quantized, meaning that a
free particle can possess any energy value.

Another interesting note about this solution, is that it is not normalizable,
namely the integral of |¥(x,?)|* is infinite. Thus, the wave function can never
be normalized and the wave function obtained here may not be used to
predict probabilities.

6.6 Hydrogenic Wave Functions

As mentioned before, the Schrodinger equation is analytically solvable
only for the simplest case of the hydrogen atom consisting of a single proton
and a single electron. In this case, the only relevant force is the attractive
force between these two particles. However, when more particles are
introduced into the system, like for instance a helium atom, the problem
becomes increasingly more difficult. There are now additional force terms
representing the repulsion of like particles as well as additional attractive
terms for the newly introduced particles. You can imagine that if one were to
try and solve this problem for a high—Z atom such as uranium how complex
the system would be.

There are however some special cases other than hydrogen where a
solution may be obtained. These are known as hydrogenic atoms, literally
meaning atoms which are /ike hydrogen. The simplest example is that of a
singly ionized helium atom. In this case, the nucleus contains two protons as
compared to the one in hydrogen and there in only one orbital electron. The
actual solution of such cases is outside the realm of this text, however a list
of recommended literature is provided if a more in—depth study if desired.
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NUMERICAL EXAMPLE

Wave Function States in Infinite Square Well
As described in Section 6.4, the wave function of a particle in an infinite
square well is represented by Eq. (3-108). At time = O, plot the first three
probability distribution functions for an electron trapped in an infinite well
of width equal to twice the Bohr radius (ry = 0.0529nm). Also, compute the
energy of these three states.
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Figure 3-26. Probability distributions for first three states on an electron trapped in an infinite
well of width twice the Bohr radius.

Solution in MATLAB:

clear all

a =2%(0.529*107-10); % m

m =9.109*107-31; % kg

hbar = 6.626*10"-34 / (2*pi); % J*sec
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x = linspace(0,a);
forn=1:3
E(n) = (m"2*pi"2*hbar*2 / (2*m*a”2)) / (1.602*¥10"-19); %eV
fori=1:100
phi(n,i) = (sqrt(pi/a)*sin(n*pi*x(i)/a))"2;
end
subplot(3,1,4-n)
plot(x/a,phi(n,:),'’k")
xlabel('Distance Normalized to a)")
ylabel('Probability Density")
end
disp(E)

PROBLEMS

3.1. If the radius of a nucleus is given by Eq. (3-41), calculate the density of
nuclear matter in g/cm’ and in nucleons/fin’. Assume the mass of a nucleon is
1.67x10% g.

3.2. Use the Eq. (3-41) to calculate the radius of °H, °°Co and **’Pu.

3.3. Show by expanding [1 — (v/c)*]"* in powers of (v/c)* that the kinetic energy
can be written as:

T—lm Vi +>m —4+
2 0 8 0 C2 e

Does non-relativistic formula m,0*/2 overestimate or underestimate the kinetic
energy of particle with the rest mass m, and speed v?

3.4. An electron and proton are each accelerated from rest by a total potential of
500 million volts (500 MeV). Calculate the increase in mass and fractional
increase in mass of each of these particles as well as their final speeds.

3.5. Calculate the total binding energy and the binding energy per nucleon for
32p,, (atomic mass = 31.975697 amu).

3.6. Calculate how much energy would be absorbed or released if two atoms of
12C were fused together to create one atom of **Mg;, (4 = 23.985042 amu).

3.7. Calculate the amount of energy needed to dissociate one atom of '>C into
three atoms of *He (atomic mass = 4.002603 amu).
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3.8. Calculate the magnitude of the Coulomb and gravitational potential energy
between adjacent protons using the radius of a nucleus as the separation
distance. Compare these two energies with the binding energy per nucleon of
2P, Use the Eq. (3-41) to calculate the radius of a nucleus.

3.9. How much energy is required to remove a proton from *’Cay, (atomic mass
=39.962589 amu)?

3.10. Find the energy released in the reaction: B U > P4, Th + *, He.
M(*#5,U) = 238.050786 amu , M( 2*Th) = 234.043583 amu , M(*,He) =
4.002603 amu.

3.11. The radius of a heavy nucleus is ~ 10" cm. When the velocity of neutron
becomes large enough that 4/2 7 is of the same order of magnitude as the nuclear
radius, the neutron can be diffracted about the nucleus what is known as shadow
scattering. Show that at neutron energy of ~0.21 MeV this effect becomes
important [/ = 6.62 x 107 erg-sec; neutron mass = 1.675 x 10> g].

3.12. Show that on average 200 MeV is released when one atom of U fissions
by capture of a thermal neutron? In fission usually two fission fragments are
released. Use Fig.3-3 to estimate the average binding energy of fission
fragments. What is the binding energy of a captured neutron?

3.13. Calculate the wavelength of a proton needed to excite an electron in Li*"
from the state » = 2 to the state n = 5.

3.14. Calculate the minimum de Broglie frequency of the neutron that is capable
of exiting an electron in He" from the ground state to the state » = 3. What is the
wavelength of the X ray emitted when electron falls back to its ground state?

3.15. Starting from the Bohr’s atomic model show that the energy (kinetic plus
potential) corresponding to the circular orbit of the mass m in a three-
dimensional harmonic oscillator potential is nfivk/m .

3.16. Calculate the de Broglie wavelength of the electron and proton with the
kinetic energy of 50 MeV.

3.17. Show that the minimum mass using the semi-empirical formula (3-75) is
obtained for

A

Z(min mass) = —
2+0.0154
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3.18. Using the solution of the Eq. (3-75) for minimum mass show that for light
stable nuclei Z ~ 4/2 and give few examples. Also, show that for stable heavy
nuclei Z~ 4"/0.015.

3.19. The two red stars are observed to be part of a binary star system. What can
be concluded about their temperatures?

3.20. What is the ratio of temperatures of two starts which spectral peaks are
observed at 3,500 4 and at 7,000 A4.

3.21. It takes about 1 Mev of energy to produce a positron and an electron. Use
the uncertainty principle to estimate for how long can this energy exist before
the positron and electron annihilate each other?

3.22. For a particle that lives for 6 x 10 s what will be a mass-energy
uncertainty?

3.23. A 1, 5 and 15 kg mass attached to a spring with the constant k£ =400 N/m is
undergoing simple harmonic motion on a frictionless surface with an amplitude
of A = 10 ¢cm. Assuming that the energy levels are quantized according to the
Planck’s relation £ = nhf', calculate the corresponding quantum number # for all
of three masses? Comment on the results calculating the energy difference
between the states » and n+1. [The total energy associated with the system of
mass m is k4%/2].

3.24. Suppose light of wavelength 4 = 8x107" m is used to determine the
position of an electron. What is the minimum uncertainty in electron’s speed?

3.25. Following the numerical example shown above calculate and plot the first
three probability distribution functions for an electron trapped in an infinite well
of width equal to the Bohr radius (a = 0.0529nm). Compare the results when the
width is increased to two and three Bohr radii.

3.26. For the free particle in the box with infinite walls, the probability for
finding it inside the box is equal to one. Write the condition for normalization
for the time-independent wave function and solve it for the one-dimensional
wave function. [Since the probability must be one for finding the particle
somewhere, the wave function must be normalized]. You should obtain the
equation as (3-108) but without the time dependent term.

3.27. Treating the system as a photon-like entity the time—dependent wave
equation is written in the form
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2
ox?

=L5_E
c? 3

Assuming the solution to be:

E(x,t) = E, cos(kx — ax) show that the energy of a photon is E = pc.

3.28. The Schrodinger time-dependent one dimensional equation for an electron
can be written in the following form

R P (x,1)

a‘}'(x 1)
P(x,1)=
2m . +U(x, )Y (x, )= P

Assuming the potential energy to be constant (U = {;) and that the solution of
the above wave equation can be expressed as
¥(x,1) = Ae'* = Alcos(kx — ax) + i sin(kx — ax)]

show that the total energy of the electron is a summation of potential and kinetic
energy

n2k?

3.29. Based on the wave particle duality in one dimension (the de Broglie’s
relation between wavelength and momentum and the Planck’s relation between
frequency and energy) show that the Schrodinger equation for free particle (like
electron for example)

LA (CORPY:S {EX))
2m ax2 ot

has the following solution

2
l(/1 )

Y(x,t)= Ae' ™ = Ae

3.30. A particle of energy E that is smaller than the height of barrier (potential
energy Up) according to classical mechanics is forbidden to penetrate inside the
region (see figure below). The wave function associated with the free particle
must be continuous and thus there is a finite probability that the particle will
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tunnel through the barrier. For a particle approaching the barrier, a wave

function for free particle can be used. However when a particle reaches the
barrier, it must satisfy the Schrodinger equation in the form

R M)
2m  9x?

Y(x)=Ae™® o= -2—’351—19222
V' #

Calculate the tunneling probability for the a particle described in Example 4.6
(Chapter 4).

=(E-Uy¥(x) which has a solution

Uh=29 MeV

£=8.954 MeV

18
I(_.IF‘ Exiting particle wave

£ =const

Incoming particle wave but reduced probabulity
Function

3.31. Shells and orbits of the electron in Bohr’s atomic model are quantized and
so are the lengths of the waves of de Broglie’s electrons in each shell. As the
electron moves further away from the nucleus, the wavelength becomes longer
(because electron’s velocity is reduced when the radius of shell is increased).
Capture this dependence by plotting the bar—like diagram showing on the one
the velocity and on the other the wavelength.

3.32. The resolving power of an electron microscope is assumed to be equal to
the wavelength of the used light. Calculate the required kinetic energy of
electrons in order to be able to “see” an atom. The required resolving power is
107" m.

3.33. Find the probability function for the wave described as
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Y(x,0) = i ;ei(koxf“’ot)e‘(x—ﬂt)z/4(a+i;/t)
V2 \a+in

3.34. Determine the change in wavelength of the 2p—1s photon when a hydrogen
atom is placed in a magnetic field of various intensities: 37, 57, 107 and 307.
Comment on the results.

3.35. Use Eq. (3-45) to write a computer code to calculate and plot the
dependence of a mass of a moving body and its energy.

3.36. Use the Planck’s law to write a computer code that will calculate the black
body radiation as a function of light frequency.

3.37. Plot the dependence of de Broglie wavelength and the velocity of motion
for an electron, proton and a 1000 kg body moving at non-relativistic speeds.

3.38. Calculate the nuclear density of the smallest and the largest nucleus in the
periodic system of elements. Comment on the results.

3.39. Calculate the separation energy of last neutron in first ten nuclei in the
periodic system of elements. Comment on the result.

3.40. Select an even-A4 nuclei and plot the excitation energy of the first excited
state. Compare with the Fig. 3-11 and discuss the differences.

3.41. Plot the Eq. (3-76). What can you conclude from the slope of the plot?

3.42. Compare the size of the nuclei (calculated using the Fermi model) and the
size of the corresponding atoms across the periodic system of elements. What is
your observation? How would you explain the change in nucleus size analyzing
the number of nucleons, nuclear forces, Coulomb forces, and nuclear density?

3.43. Show that when two deuterons react they form tritium with the net gain in
binding energy of the system of 4.02 MeV'.

3.44. Calculate the binding energy per nucleon of ***U. What is an approximate
gain in the binding energy of the system if >**U splits into two equal nuclei?
What would be the corresponding amount of energy released in this reaction?
Compare with the values discussed in Chapters 6 and 7.

NOTE: Some of the problems listed are adopted from the web—site developed by
Dr. C. N. Booth, http://www.shef.ac.uk/physics/teaching/phy303/
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RADIOACTIVE DECAY
Radioactivity, Kinetics of Decay, Examples

“It can be thought that radium could become very dangerous in criminal hands, and
here the question can be raised whether mankind benefits from knowing the secrets
of Nature, whether it is ready to profit from it or whether this knowledge will not
be harmful for it.

The example of the discoveties of Nobel is characteristic, as powerful explostves
have enabled man to do wonderful work. They ate also a terrible means of
destruction in the hands of great criminals who are leading the people towards war.
I am one of those who believe with Nobel that mankind will drive more good than
harm from new discoveres.” Pierre Curie (1859 — 1906), 1903 Nobel Prze
address.

1. INTRODUCTION

Nuclides exist in two main forms, stable and unstable. A nuclide is
considered to be stable if there is no proof of its spontaneous transformation
into another nuclide. The probability of transformation is characterized by
the half-life, which is defined as the time needed for half of the starting
amount of an unstable nuclide to transform. Elements above lead are all
unstable and have very long half-lives (order of 10® to 10" years) compared
to the age of the atom (assumed to be formed some 10 billion years ago).

If, for example, a stable nucleus of ¥Co with 27 protons and 32 neutrons,
receives one neutron (which must possess an energy of 7.5 MeV), the newly
formed nucleus ®Co is artificial (does not exist in nature), unstable and in an
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excited state. The instability is caused by the addition of a new particle (with
its associated energy) that requires rearrangements of nucleons inside the
nucleus. The process nuclei undergo in order to return to the ground state is
called radioactive decay. In the case of “Co the radioactive decay scheme is
sketched in Fig. 4-1.

e 60 C 1]

p- 0.314 MeV

§ H 1.173 MeV
§ ¥ 1.132 MeV

Figure 4-1. Radioactive decay scheme for ®°Co

None of the artificially created isotopes are stable; all are radioactive and
decay with half-lives in the range of microseconds to years. However, based
on the quantum mechanics (see Chapter 3) it is expected that it is possible to
create isotopes in a new “island” of stability (see Fig. 4-2).

The most stable nuclides are those whose protons and neutrons close the
shells (energy levels). These are nuclides with a magic number of protons,
neutrons or both.

The next proton magic number is 114 (beyond those already known to
exist). The best estimate for the number of neutrons needed to overcome the
proton—proton repulsion in such a nucleus is at least 184 neutrons, and
perhaps as many as 196. It is not easy to bring together two nuclei that
would give both the correct number of protons and the necessary neutrons
with a half-life long enough to be detected. Element 114 was experimentally
observed in 1998 at Russia’s Joint Institute for Nuclear Research in Dubna.
Their very complex experiments showed the possibility to create short-lived
heavy nuclei around the new “island” of stability. By accelerating atoms of
“Ca into a target of ***Pu, atoms of element 114 (with a nuclear weight of
289) were detected through their decay into element 112

MPu+*Ca> %, Uug+3"n 175 neutrons

#oPu+ *%Ca> %, Uug+4'n 174 neutrons
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respectively.

The lifetimes of elements 114 and 112 are 30 sec and 280 msec,

This chapter focuses on the laws of physics governing the mechanisms,
kinetics and types of radioactive decays.

2.

decaying.
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Figure 4-2. The new "island" of stable super-heavy nuclides

MECHANISM OF RADIOACTIVE DECAY

Radioactivity is defined as the spontaneous nuclear transformation of an
unstable element resulting in the formation of a new one. The process of
radioactive decay is statistical and therefore random in its nature. For
example, whether a radioactive uranium atom will or will not decay at any
given instant is purely a matter of probability. There is no physical
difference between uranium atom that is decaying and one that is not

In 1895 Wilthelm Conrad Roentgen discovered a new phenomenon that
he called the X rays. Soon after, Henri Becquerel decided to study the
correlation between newly discovered X rays and the fluorescence
phenomena of uranium salts. Once exposed to ultraviolet photons (sun light),
the uranium salts radiate visible light (the fluorescence phenomenon).
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However, due to bad weather in Paris, Becquerel was not able to expose the
samples to sun light for a few weeks, during which time he left them in a
closet. Later he found that the plates were exposed and concluded that a new
type of radiation was emitted from the non-fluorescence uranium and
correctly speculated that some materials at rest emitted radiation in a
spontaneous fashion without the addition of any external energy. Becquerel
called this new radiation “U rays”, later renamed radioactivity. Pierre and
Marie Curie worked on radioactivity and demonstrated that thorium also
exhibited radioactive properties. In July of 1898, they succeeded in isolating
a new material, a million times more radioactive than uranium, that Marie
Curie called “polonium.” From pitchblende ore, they were able to extract by
hand a few milligrams of another new material, 2.5 million times more
radioactive than uranium, which they called radium. For this discovery,
Pierre and Marie Curie received the physics Nobel Prize in 1903. Some
years later, Marie, alone since the death of Pierre in 1906, isolated metallic
radium with an electrolytic procedure for which she received the Noble prize
for Chemistry in 1911. In 1934, Irene and Frederic Joliot—Curie discovered
artificial radioactivity, making a great step toward the use and control of
radioactivity. For this discovery, they received the Nobel Prize in chemistry
in 1935. Neither Marie Curie nor her daughter Irene, both Nobel Prize
winners, were members of the French Academy of Science (an oddity
probably having more to do with gender than scientific accomplishment).
The spontaneous nuclear transformations are accomplished by the
emission of an alpha (o) particle, a beta (87) particle or a positron (B*) as
well as by orbital electron capture, neutron emission (n) or proton emission
(p). Each of these reactions may or may not be accompanied by gamma
radiation (). Radioactivity is a nuclear process that originates in the nucleus
and is therefore not determined by the chemical or physical states of the
atom. As discussed in Chapters 2 and 3, an isotope of a given element is an
atom that contains the same number of protons and has the same electronic
structure, but differs in the number of neutrons. Most elements have several
isotopes; chlorine, for example has two: 75.4% **Cl and 24.6% *'Cl. A few
radioisotopes arise naturally; however, most of them are created artificially.
There are more than 2930 known isotopes, but only 65 are naturally
occurring and exist either as a product of cosmic radiation in the atmosphere
(’H, "Be and '*C) or are products of radioactive decay of primordial isotopes
(K and Z*U).
The exact mode of radioactive decay depends on two factors:
1. The particular type of nuclear instability (whether the neutron—to—proton
ratio is too high or too low), and
2. The mass—energy relationship among the parent nucleus, daughter
nucleus and the emitted particle.
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Radioactive decay of a nucleus changes the arrangement of its nucleons.
This change usually influences the entire atom by affecting the electron
cloud. The change can even propagate further and affect the molecule. The
decay, however, obeys a series of physical laws of conservation. The
conservation laws are a direct consequence of the symmetries in nature that
require certain variables to stay unchanged. The following conservation laws
must be satisfied for radioactive decay to exist:

1. Conservation of mass — energy: radioactive decay of a nucleus changes
mass into energy. In other words, in the process of radioactive decay the
total mass is reduced but the energy is increased. The difference in
masses before and after the decay is emitted as energy of the emitted
particles in the decay. It can be shown that conservation of mass and
energy holds for the radioactive decay as a consequence of symmetry in
time. Every experiment will give the same decay results for the same
nucleus no matter when it was performed.

2. Conservation of momentum: the sum of the momentum before and after
the decay must be the same. This law is a direct consequence of the
symmetry in space. Namely, all points in Euclidian space are equivalent
and thus the physical laws are the same for all points in space.

3. Conservation of angular momentum: the sum of angular momentum and
spins must remain the same before and after the decay. Angular
momentum describes the degree of rotation of a system. Since in space
all directions are equally probable, the physical laws are independent of
orientation of motion of a system in space.

4. Conservation of charge: the sum of charges before and after the decay
remains the same. The charge can only be redistributed between the
particles and can not be lost in the process of radioactive transformations.
For example, this law says that an electron can not appear or disappear
on its own. In order for an electron to disappear there should exist its
counterpart; a positron. Interaction of these two particles will result in the
annihilation of both (see Chapter 5). The fact that an electron can not
change its appearance without its opposing particle (positron) assures the
stability of the electron and thus the stability of matter.

5. Conservation of nucleons: the total number of nucleons for any decay
mode must be conserved. This law forbids neutrons (and protons)
confined within a nucleus to decay into other particles and assures the
stability of matter.
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3.  KINETICS OF RADIOACTIVE DECAY

3.1 Decay Constant

Radioactive decay although a random process that occurs at a
characteristic rate can be predicted. The length of time, the number of steps
required completing the transformation, and the kinds of radiation released
at each step of the decay are well known.

The decay constant, A, represents the probability that a radionuclide will
decay in a unit time. Thus, the probability that a radionuclide will decay in
time dt is Adr. The characteristics of the decay constant confirmed
experimentally are:

o The decay constant is the same for all nuclei of a given atom. It cannot be
changed by ambient pressure or temperature.

e The decay constant does not depend on the age of nuclides, i.e., it does
not change with time.

3.2 Radioactive Decay
If the probability for a nucleus to decay in time dt is
Adt 4-111)

then from the total number of nuclei &, in time dt, the number of nuclei
that will decay, dN, can be calculated as

—dN = NAdt (4-112)

Since the decay constant is not dependent on time (as explained in
Section 3.1), the solution of the above equation is simply

N=Ne* (4-113)

where Ny is the starting number (amount) of nuclei, and N represents the
amount of nuclei that did not decay after time ¢. As Fig. 4-3 shows, the
amount of the initial radionuclide decreases exponentially with time,
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3.3  Activity

3.3.1 Definition

Activity, A, is the number of nuclei decaying per unit time. If the
probability for a nucleus to decay is A, and there are N nuclei present, the
average number of decaying nuclei is NA, and is defined as activity

A=NA (4-114)

Hinnber of Half-Lives

Figure 4-3. Radioactive decay

Thus, from Eq. (4-113)
A=NA=Nyie" = Aje™ (4-115)

Radiation detectors do not usually measure the total activity, that is, the
total number of decays per second, but some fraction of this called the count
rate (see Problems 4.6. — 4.8.). In any given situation, if all else is kept
equal, the count rate is proportional to the activity

R=kA where k<=1 (4-116)
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Therefore the decay equation can be expressed in terms of count rate

R =R,e™” (4-117)

3.3.2 Units

The Becquerel, Bq, is a unit used to measure radioactivity. One
Becquerel is, by definition, one nuclear decay or nuclear transformation per
second. Often radioactivity is expressed in larger multiples of this unit such
as: thousands (kBq), millions (MBq) or even billions (GBq) of Becquerel.

The curie, Ci, is the original unit used to measure radioactivity and is, by
definition, 37,000,000,000 transformations in one second. This is roughly
the activity (the rate of disintegration) of 1 gram of the radium isotope, **Ra
(see Problem 4.1). Radioactivity is often expressed in smaller multiples of
this unit such as: thousandths (mCi), millionths (uCi) or even billionths
(nCi) of a curie.

As a result of having one Becquerel being equal to one transformation
per second, there are 3.7 x 10" Bq in one curie.

Example 4.1 Disintegration of “Co

Determine the number of disintegrations released per one curie of *Co (see
Fig. 4-1).

From the decay scheme shown in Fig. 4-1, it can be seen that each disintegration
of a ®Co nucleus releases one beta particle and two gamma rays. Therefore, the total
number of radiations is: 3 X 3.7 x 10'® = 11.1 x 10" per second per curie “Co.

3.4 Half-Life

The half-life, Tip, of a nuclide is the time needed for half of the atoms
present to decay. Half-lives can range from less than a millionth of a second
to millions of years. After one half-life, the level of radioactivity of a
substance is halved; after two half-lives it is reduced to one quarter; after
three half-lives to one—eighth, and so on (see Fig. 4-3). The products of
radioactive decay are the particles emitted and the remaining nucleus called
the daughter of the decaying atom. Radioactive decay proceeds
exponentially, as does the growth of the daughter product.

The decay constant and the half-life of a given nuclide are related. The
quantitative relationship can be found by setting
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(4-118)

Example 4.2 Activity of radium
Calculate the percent of **Ra that will decay during a period of 1000 years if the
half-life is 1600 years.

A= Aoe—/u - Aoe_o'(’%rﬂ“z . __A_ = OE9XN0I600 _ (y cre 64 8y

Ay

The percent that decayed away during 1000 years is 100 % - 64.8 % = 35.2 %.

Example 4.3 Estimate of decay constant and half-life for radium

Calculate the decay constant and half-life for ***Ra if one microgram emits
3.65 x 10* alpha particles per second.

The number of radium atoms per microgram of radium, ¥, is

N = N (atoms/mole) x M (g) _
A(g/mole)
(6.02x107 atoms/mole) x (107 g)
226(g/mole)

=2.66x10" atoms

The decay constant is thus obtained from the known number of radium nuclei
that decayed and the number of radium nuclei that did not decay per unit time

—dN/N (3.65%10" atoms) /(2.66 x 10" atoms) N
dt 1sec
A=137x10"sec” =4.26x10" yrs™

—dN =NAdt = A=

This gives the half-life

1n2_ In2

Lpy=—="r——""7
A 426x10

2 =

=1627yrs
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which is very close when compared with the measured value of 1600 yrs (see
Example 4.2).

Example 4.4 Specific activity of a radioactive nuclide

A sample of '"In has a mass of 2 pg and a physical half-life of 1.6582 hours.
Calculate:

a) The number of '*In atoms present.

b) The number of '"In atoms remaining after 4 hours.

¢) The activity of the sample (in Bq and Ci) after 4 hours.
d) The specific activity of the '"*In sample.

a) Number of atoms present in the 2 pg sample is

N = N (atoms/mole) X M (g)
0 A(g/mole)

_ (6.02x10” atoms/mole) x (2x10™ g)
113(g/mole)

=1,065%10" atoms

b) Number of atoms that remain after 4 hours is

In2

- X4
N =N, =(1.065x10'" atoms)e "% =2.00x10" atoms

¢) Activity of the sample after 4 hours is

In?2
A=NA=(2.00% 1015at0ms)( - ) =8.36x10" atoms/h
1.6582h
h

A=(8.36x10" 2OMS, )=2.32x10"Bq

h 3600sec

1
A=(232%x10"Bg)(=————) = 6.3Ci
3.7%10"°Ci

d) The ratio of nuclide activity to the total mass of the element present is known as
the specific activity of the sample, SA (see also Problem 4.9)

A 6.3Ci
sz 3Ci

=———=3.15x10°Ci/g
M 2x107°g
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3.5 Radioactive Decay Equilibrium

Most radioactive decay schemes contain more than one member, and it is
therefore interesting to analyze the relation between the radioactivities and
the number of nuclei that disintegrate per unit time in such a series. For
example, the radioactive chain in which the parent, A, decays into a daughter
nucleus, B, which is also radioactive is written as:

A>B>C-> ..

The equilibrium of radioactive decay is attained when the ratio between
the activities of the successive members in the series remains constant.
Considering only the first two members in the above chain, as shown in
Fig. 4-4, the rate of change is:

¢ Rate of change of parent nuclide

dn,
—L=-4,N, (4-119)

¢ Rate of change of daughter nuclide (= rate of production — rate of decay)

dN,
dt

=A,N, - AN, (4-120)

Parent

Figure 4-4. Two successive members in radioactive chain

Eqgs. (4-119) and (4-120) are a system of first-order linear differential
equations whose solution is

A
N,0=N, (O)ﬁ (e_/l”' —e M )+Nd(0)e‘*d’ (4-121)

d P
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According to the relation between the activity and number of atoms that
decay, Eq. (4-114), it follows that

A
A, <r>=Ap<0>;——”7—(
—

4

e et )+Ad (0)e ™' (4-122)

The second term in the above activity equation represents the residual
daughter product activity from that present at ¢ = 0. This equation is known
as the Bateman equation.

The general behaviour of the parent and daughter activities described by
this equation is shown in Fig. 4-5. The correct assumption is usually that the
initial activity of the daughter nuclide is zero, N, (0) = 0. As expected, the
activity and the number of daughter nuclides will start building up with the
decay of the parent nuclide. After some time the activity will peak and
eventually start to decay.

The time when the daughter nuclide reaches its maximum activity can be
estimated as follows

1.0 T T T T | T T

Decay of parent ruclide

Fraction Present

04} -1

------

i N Build up and decay
. : e ) of daughter rmaelide
oz2r : 1
: l
; |
ol | i i 1 | L
o 110! 21 318 410 sad sad® 7@ sad
Time (s)

Figure 4-5. General trend of activity change with time according to the Bateman equation

de(t) d /’l’p —At iy
INGD _d ] oy Lo (A )| =g 4-123
o O e e @1z
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which gives A,e™#™ = 1 ,e~4m Solving for time (see Fig. 4-5)

In{4, /

Thus, the time when the activity of the daughter nuclide reaches its

maximum value depends only on the decay constants of the parent and
daughter nuclides.

The Bateman equation is usually analyzed for the following cases

1. The daughter nuclide is stable, A, = 0. assuming that N, (0) = O,
Eqg. (4-120) becomes

dN ~A,t -
—L=A,N, = 2,N, e M= N, )=N,0)1-e ™)

(4-125)

The decay of a parent and accumulation of a stable daughter nuclide is
shown in Fig. 4-6 for the decay of “°Co to stable “Ni (decay scheme of
%Co is given in Fig. 4-1).

1.0

08

0é

04

Fraction Present

02

0 2.1 4.10° §10° g.10f 114

Time (s}
Figure 4-6. Serial decay of parent to stable daughter (*'Co to Ni)

2. The half-life of the parent nuclide is shorter than that of the daughter,
T1pp < Tipg: in this case the daughter nuclide builds up faster than it
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decays. Essentially all parent nuclei transform into daughter nuclei and
the activity of the sample comes from the daughter nuclide only. This
condition is called no equilibrium. One example is the decay of *'°Bi into
*%o as shown in Fig. 4-7.

3. The half-life of the parent nuclide is longer than that of the daughter,
T1pp > Ty the change (decrease) of the activity of the parent nuclide
becomes negligible. This case is called a transient equilibrium and is
schematically depicted in Fig. 4-8. Examples include "**Te (78 hours)
decaying to I (2.3 hours) and '’Sn decaying to '"™In (1.7 hours).
However, the best example is the Mo (65.94 hours) parent - S
(6.01 hours) daughter relationship. The Bateman equation reduces to the
following form

A
dp<hy . €M <<e™ 5 NO=NO-TL(e)  (@126)
P P =4,

The ratio of the rate change of parent to daughter nuclides thus becomes

- N, @) ;-4
At p d P
N @&)=N_(De ™ — = 4-127)
r P N, 4,
ZlﬂBi
L1615 MeV
100.00%
0.0000 MeV
210P0
54075 MeV
100.00%
0.8031 MeV
0.0000 MeV

206Pb

Figure 4-7. No equilibrium decay of 20Bj (T, = 5.013 days) to 20pg (T, = 138.376 days)
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4. The half-life of parent nuclide is much longer than that of the daughter,
T11p >> Typa: For example, 226Ra with a half-life of 1600 years decays
into *°Rn, which has a half-life of only 4.8 days. The observation period
is therefore very small compared to the 1600-year half-life of **°Ra. From
Eq. (4-127)

N,(6) A4,

= A << A
N, 4, pond
it follows
N, 2
L _d N (DA =N, (HDA, — A ()=A4,( 4-128
N,O 4, (O, 4 (DA, , () =4,@1) ( )

The activity of the parent and daughter are the same and total activity of

the sample remains effectively unchanged during the time of observation.

This is called a secular equilibrium and the example for *°Ra = **Rn is
shown in Fig. 4-9 (see also Problem 4.11). The half-life of long—lived
nuclides can be estimated knowing that they are in a secular equilibrium.
Knowing the atomic composition of a mixture of two radionuclides that are
in a secular equilibrium, such as ***Ra and ***U in uranium ore, the decay
constant or half-life of one nuclide can be determined given the half-life for
the other using Eq. (4-128).

Dianghter activity

0.1

k] | | | | |

o 5.107 110 Li10 210t 250 310
Tine (]

Figure 4-8. Transient equilibrium decay when T, > T 24
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T

Pawent activity
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Danghter activity

0

1.10°

2.10*

3.1
Tame (53

0 4.10f
3

5.10¢

65.10

Chapter 4

Figure 4-9. Secular equilibrium decay: buildup of daughter activity when Ty >> Typg

Example 4.5 Mo (65.94 hours) parent — #mT¢ (6.01 hours) daughter

relationship

Sketch a diagram of the activity change in time for the transient equilibrium of
these two nuclides and find the time at which the daughter reaches a maximum
activity. From the decay of Mo it is known that 87% decays into *™Tc. Assume
that the activity of the parent nuclide at =0 is 1 Ci.

Activity (Curies)

0.2 1

Time (hours)

Figure 4-10. Activity change for **Mo and *™Tc

100
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Starting from the Bateman equation and assuming that the activity of the
daughter nuclide at # = 0 was zero,

—At

— ﬂd P 71‘/1
A,(6)= 4,(0) s (e —e )

and rearranging it into the form of the ratio of the activities

Ad (t) _ ﬂ'd _lp N Ad (t) _ /ld (l _ef(/ld—/lp)r)
—At
A1) 4,(0)e A,() A, -4,
it follows
In2 In2
A =—=_-00105th" 2, =———=011531h"
» "~ 65.94h 6.01h

A,(1)=0.87x 4, (1)

0.11531 (1 _ e—0.10481)
0.11531-0.01051

=0.9574,(1)(1-¢ ")

—0.01051 —0.1048
=0.9574,(0)e " (1)

The time when the daughter reaches its maximum activity is obtained by
differentiating the above equation (Fig. 4-10)

da, (1) _

P 0 = ¢, =228h A,(22.8h)=0.684Ci
t

ma:

3.6 Production of Radioisotopes

The activity of isotopes irradiated in nuclear reactors or accelerators
changes according to secular equilibrium of radioactive decay. If a nuclear
reaction produces an isotope with concentration N, from N, atoms at a rate R
= A1 N1(0), then assuming the activity of the isotope that is produced by this
reaction at ¢ = 0 is zero
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N,(t)=N, (O)L(ﬂ’ —e M ) (4-129)
/12 - /11

The production of radioisotopes is constant (similar to secular
equilibrium in which the half-life of a parent is much longer than the half-
life of daughter)

h<<d = Nz(t)EN1(O)%(€M_eM) = (4-130)
: ]

A, (1) = R(eiﬂ" - e%z’)

However, since the decay constant of the isotope that is irradiated is
much smaller than the decay constant of the produced isotopes, the exponent
term, e * ~ 1 and the above equation reduces to

A4 = R(1-e ™) (4-131)

This equation is called the activation equation (see Fig. 4-11). Initially,
when Af is small, the activity of the produced radioisotope increases almost
linearly due to the behaviour of(l—eiﬂ?t . After some time the activity
reaches its saturated value. At an irradiation time equal to one half-life of the
radioisotope, half of the maximum activity is formed. It is easy to realize
that the activity of the produced isotope will saturate and therefore
irradiation times that exceed twice the half-life are usually not worthwhile.

=]
o
(=

Fraction Produced
oy
I

0.25

a 1 2 3 4 5 3
Time (munber of half-lives)

Figure 4-11. Activation curve — production of radioisotopes
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4. ALPHADECAY

4.1 Mechanism of Alpha Decay

An alpha (o) particle is a highly energetic helium nucleus consisting of
two protons and two neutrons. Whenever a nucleus has too many protons,
causing excessive repulsion, it is unstable and has a tendency to decay by
emitting an o particle, which reduces the repulsive force. Most o emitters
are towards the end of the periodic table.

238U 234U
45x10° y - 2.5x10° y
43 MeV B 4.9 MeV
ZZWmPa
o 12m *
2.3 MeV
v b v
8T B BT
24d 7.5x10%y
0.3 MeV 4.8 MeV
20Ra o
1.6x10° y
4.9 MeV
o
Y
222Rn
3.8d
5.6 MeV
o
A\ 4
218P0 214PO ZIOPO
3.1m > 164 s » 1384d
6.1 MeV B 7.8 MeV B 5.4 MeV
24pi u0g;
a 20 m o 5d o
3.3 MeV 1.2 MeV
A\ 4 A A 4 o
Ziapy, B py, B w6py,
27m 2y Stable
1.0 MeV 0.1 MeV

Figure 4-12. Uranium series

The products of the decay are called a radioactive series, and there are
four natural o radioactive series: (1) uranium series, (2) thorium series, (3)
actinium series and (4) neptunium series. The uranium series starts with the
U isotope, which has a half-life of 4.5 x 10° years, and is shown in
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Fig. 4-12. Because of the very long half-life of the parent nuclide, this chain
is still present today. The thorium and actinium series are also present today,
whereas the parent nucleus of the neptunium series, **'o3Np, has a half-life
of 2.2 x 10° years and has already disappeared. However, it is possible to
produce this element artificially and thus determine the half-lives of the
series.

Alpha particles do not exist as such inside the heavy nuclei. Instead, they
form, exist for some time, disintegrate, form and disintegrate again.
Occasionally, some of them have enough energy to overcome the potential
barrier of the nucleus; this results in a net decrease in mass of the nucleus
and consequently an energy release.

The emission of an o particle leads to the formation of a more stable
nuclear configuration. The daughter product, however, may also be unstable
and continue to decay. Emitted o particles may have energies ranging from 4
to 7 MeV. There are almost no o particles with energies below 2 MeV since
the probability for an o particle to cross the potential barrier decreases
exponentially with energy. One example is the decay of ***Th into **Ra with
the energies of emitted o particles shown in Fig. 4-13.

132 Th

e (878 MV

l 0.2047 MeV
0.0638 MeV
s (. 0000 MeV

228Ra

‘Energy (ke¥)| Intensity
40123 78.2
3947 2 217
38111 0.063

Figure 4-13. o. decay of *Th = ***Ra and energies of the emitted o particles

The half-lives of o emitters range from microseconds to 10" years.

The half-life of an o emitter is directly dependent on the energy of the
emitted o particle. For example, the half-life of *°Po is 4.2 usec and the
energy of o particle emitted in the decay is 8.37 MeV. Thorium-232 emits o
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particles of energy around 4 MeV with a half-life of 1.405 x 10" years,
while *'®Th emits o particles of energy of about 10 MeV and has a half-life
of only 0.11 usec. To further illustrate this point, the energy and half-lives
of the **U decay series (shown in Fig. 4-12) are plotted in Fig. 4-14
indicating similar correlation between energy of the a particle and half-lives
of the nuclides. Why in some cases a decay takes billions of years when it is
driven by the process involving the a particle energy of the order of MeV?

The mechanism of a decay as well as the observed relation is explained
by considering the a particle as being bound in the potential of the nucleus
(see Fig. 4-15). Alpha particles in a level with negative energy cannot
penetrate the Coulomb barrier, but those in a positive energy level may have
enough energy to overcome the barrier and exit the nucleus. The region
between -a and +a in Fig. 4-15 represents the inner part of the nucleus where
o particles are bound by a strong nuclear potential. The regions left and
right are governed by the Coulomb repulsive potential between the charge of
the o particle, +2e , and the charge of the remaining nucleus, +(Z — 2)e.

LE+19 T

LEFI6 { oo

1.LE+13 4

L.LE+10 4

1.LE+07 A

Half-life (sec)

L.LE+01 A

I
I
I
I
I
I
I
I
I
I
I
I
I
:
I
LE+04 +——— - - +mm =

I
I
I
I
I
:
1.E-02 4 |
I

I

I

214Po &

1.E-05
4 4.5 5 55 6 6.5 7 7.5 8

Alpha Energy (MeV)

Figure 4-14. Geiger—Nuttall plot of the energy of emitted o particles versus the half-lives of
nuclides in 2**U decay series

The three energy levels shown in Fig. 4-15 are not to scale and are shown
only to illustrate the mechanism of o decay. Namely, if an o particle has
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energy corresponding to energy level one, the energy is depicted as negative
in order to indicate that it cannot exit the nucleus, and thus no o decay is
expected to take place. However, if an o particle has an energy
corresponding to levels two or three, then it may penetrate the potential
barrier via the tunnel effect and o decay will happen. The following
example illustrates how the potential energy can be estimated.

T Energy
ES
E, wﬁcle
- ——-
) =(f 0 +¢t x
£,

Figure 4-15. Coulomb potential of an o particle in a nucleus
(simplified one—dimensional representation)

Example 4.6 Coulomb potential barrier in o decay

Calculate the Coulomb potential at the nuclear surface felt by an o particle
emitted by the parent nucleus *'*Po, and compare with the decay energy of 8.954
MeV.

Approximate the daughter nucleus as well as the o particle as uniformly charged
spheres and plot energy versus center-to-center separation. Also, estimate the
velocity of the particle inside the nucleus and the frequency of hitting the wall of the
Coulomb potential. See problem 3.30 for definition of tunneling probability.

The Coulomb repulsion potential energy, V, (also known as the height of the
potential barrier), when two spheres just touch is given by (see illustration in
Fig. 4-16)
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_AZ-Dek
- R
_2(82)(1.6x107°C)*(8.99x10” Nm*/C?)
B 8x10™°m

leV

=4.72% 10“21-—————15— =29MeV
1.6x1077J

V.

0

(4-132)

where the radius, R, is estimated by the Fermi model (see Chapter 3)

R=1.07A"% =1.07(4"* +208"%) = 8fm

v 2.08x10"m/ s
fe=—r =200 T T 1 3%10% /sec

2R 28x107°m)

R(fm)

Figure 4-16. Coulomb potential barrier in ***Po o decay

The distance at which the Coulomb potential becomes equal to the energy of the
observed decay of ***Po is

2AZ -2)e’k
—

8.954MeV = R =26fm

Thus the width of the *'*Po Coulomb barrier seen by the a. particle is
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R — R = 26fm — 8fm = 18fm

For the known . particle energy, its velocity, v, moving inside the nucleus, and
the frequency, f, of hitting the wall of the potential barrier may be estimated as

mv*  3727MeV v’
2 ¢

T =8.954MeV =

v/¢=0.0693

v =2.08%x10"m/s

4.2 Kinetics of Alpha Decay

Generally, for o particle emission to happen, the following conservation
equation must be satisfied

M o€ =M ggpeer €’ + Mo +Q (4-133)

parent

where Q represents the energy released in the o decay.

If there is no 7y ray emission, the Q value is distributed between the o
particle and the daughter, which recoils after the o particle is emitted.

As discussed in Section 2, certain conservation laws apply to radioactive
decay.

From the law of conservation of energy it follows that

1 2

1
Q = 5 Mavaz + —2_ M daughter Udaughter (4—1 34)

while from the law of conservation of momentum it follows

Ma va = Mdaughter Udaughter (4' 1 35)

When combined, Eqs. (4-134) and (4-135) lead to:

1 » 1 ML
Q=5Mava +5Mdaugh1er;/1—7a—-va =

daughter (4— 1 36)
:%Mv‘(1+ Moy ras—Ma_

daughter daughter

where T represents the kinetic energy of the o particle.
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From the above equation describing the kinetics of o decay, it is
understood that the spontaneity condition for the decay is @ > 0.

Example 4.7 Kinetics of o decay
Find the energy released in the decay of **U

238 234

wlU = whto

Calculate the energy of the emitted o particle and the recoil nucleus, if

m, =4.002603amu  m,, = 234.043583amu m, =238.050786amu

The energy released in the reaction is obtained from the mass difference between
the nuclei and particle involved (see Chapter 3) is

0 =[my, —(my, +m,)lc’ = 4.28MeV
This energy is also equal to
m
0=T(1+—%)
My,

which gives the energy of the emitted o particle

g,

T=0/(1+ ) = 4.208MeV

M,

The energy released in the reaction is also equal to the energy of emitted
particle plus the energy of recoil nucleus.
It follows

Q=T+E, - E,=428MeV-4208MeV =0.072MeV
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5. BETADECAY

5.1 Mechanism of Beta Decay

Beta decay is a process that involves nucleon transformation and
therefore is a unique decay mode. Beta unstable nuclei can decay in one of
the following three modes:

e 37 particle (electron) emerges in a weak decay process where one of the
neutrons inside nucleus decays to a proton, an electron and an anti-
electron-type neutrino: n - p+e +v,

¢ P" particle (positron) emerges in a process where a proton decays into a
neutron, a positron and an electron—type neutrino: p > n+¢e* + v,

e Nuclei having an excess number of protons may capture an electron from
one of the inner orbits which immediately combines with a proton in the
nucleus to form a neutron and an electron-type-neutrino: p + e > n + v,
All of these reactions are a result of restructuring the nucleus within an

unstable nuclide in order to approach the region of stability as discussed in

Chapter 3. In all of these decay modes, the laws of conservation as described

in Section 2 must be satisfied. In order to determine which nuclei are J

emitters, it is useful to compare the masses of the isobars, ;M

AM>, M possible B~ decay Z2>Z+1
AM<, M +E, possible orbital electron capture Z+12>Z
AM +2myc>, M possible B* decay Z+12>Z

Beta—minus decay will occur if an atom of higher Z has a smaller mass.
Orbital electron capture requires the mass difference to be greater than the
binding energy of the electron to be captured. Beta—plus decay is possible
only in the case when the mass difference is greater than two electron rest
masses. An example that illustrates the conditions for various beta decay
modes is shown in Table 4-1 for six isobars with atomic mass number
A =90 (Zr). It can be seen that the even—even nucleus, ,Zr has the smallest
mass and the highest binding energy. This is the only stable element among
the six listed isobars. Masses of all other nuclei, up and down from the j Zr ,
are increasing. This is illustrated in Fig. 4-17. Nuclei left of Zng decay by

B~ forming a decay chain whereas those to the right decay either through B*
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or electron capture and also form a decay chain. Since beta decay is caused
by the difference in the masses of the two isobars, there are no two stable
neighbouring isobars.

Table 4-1. Decay modes of six isobars with A = 90

Nuclide Mass (amu) BE (MeV) Decay mode Half-life
. Kr 89.9195238 773.217 B 3232
% Rb 89.9148089 776.826 B 158 s
NSt 89.9077376 782.631 B 28.79 years
N 89.9071514 782.395 B 64.00 h
0 o Zr 89.9047037 783.892 stable stable
%, Nb 89.9112641 776.999 Bt 14.60 h
%,,Mo 89.9139362 773.728 Bg* 5.56h
80.027"
89.9151 E+/ —
< 89914
B :
& ! |
£ 89905 . : | ™ : |
il 5 : . B T
89.895+° : ——— L oy

Kr-36 Rb-37 Sr-38 Y-39 Zr-d0 Nb-41 Mo-42
Figure 4-17. Isobars with A = 90

The energy spectrum of every beta emitter is continuous up to a
maximum finite value. Every emitted electron or positron particle is
accompanied by the emission of an antineutrino or neutrino, whose energies
are equal to the difference between the kinetic energy of the beta particle and
the maximum energy of the spectral distribution for the beta decay of that
nuclide. The antineutrino and neutrino have no electrical charge and have a
small mass that is usually neglected in analyzing the kinetics of the decay.
The energy released in B~ decay is distributed between the emitted particles:
electron, neutrino, and the recoil nucleus, which usually has negligibly small
energy and is not taken into account. Therefore

Emax =Eﬂ +Ev (4'137)
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Eayg~ 0.3E

Intensity

Kinetic Energy (~MeV)

(a)

Epant

Intensity

Kinetic Energy (~MeV)

(b)
Figure 4-18. Energy spectrum of electron (§7) decay (a) general § energy spectrum and (b)
complex § energy spectrum

The electron spectrum is asymmetric, with a higher population of emitted
electrons at lower energies and the average energy of around (0.3)E,.. A
general B energy spectrum is shown in Fig. 4-18 (a). Beta—minus decay does
not often lead to only one element, but a series of nuclides that all decay by
B emission. In such cases, the electron energy spectrum is complex and
consists of a number of partial energy spectrums (see Fig. 4-18 (b)).

The positron energy spectrum is similar to the electron energy spectrum
except it is shifted to a higher energy region with the average energy of
around (0.4)E,,.. Every positron, once emitted, annihilates very rapidly in
collision with its material counter—particle, the electron, creating two
photons each with energy 0.511 MeV (see Chapter 5). A general trend of the
positron energy spectrum is shown in Fig. 4-19.

When B decay leaves the residual nucleus in an excited state, the nucleus,
in order to achieve stability, may either emit a y ray or transfer the excitation
energy to an electron. The latter is called internal conversion and is an
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alternative mechanism for an excited nucleus to relax into the ground state.
It is an interaction in which a tightly bound electron interacts with the
nucleus, absorbs the excitation energy and is ejected from the atom (see
Section 5.5). A list of the most commonly used 3 emitters (sources) is shown
in Table 4-2.

Egvg~ 0.4E a;

Intensity

Eiax
Kinetic Energy (~MeV)

Figure 4-19. Energy spectrum of positron (B*) decay

Table 4-2. Most commonly used B emitters

Nuclide Half-life E o MeV) Production
*H 12.33 years 0.019 *Be(d, 200)
SLi(n, o))
e 5730 years 0.156 B, p)
"“N(n, p)
p 14.262 d 1.711 3P, )
32S(r1, P
Ca 162.61d 0.257 “Ca(n, y)
sy 28.79 years 0.546 fission
Oy 64.00 h 2.280 51>y, fission
10 5.013d 1.163 2Bi(n, y)

5.2 Kinetics of Beta—Minus Decay

Beta—minus decay produces an electron, an antineutrino that always
accompanies the decay, and the daughter atom that is left in an ionized state.
The electron and antineutrino move away from the nucleus and the residual
nucleus has one more proton than did the parent. Since an atom gains a
proton during B~ decay, it changes from one element to another. For
example, after undergoing B~ decay, an atom of carbon (with six protons)
becomes an atom of nitrogen (with seven protons).
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Beta minus decay preserves the total number of nucleons, A. The beta
decay process is a nucleon transformation that can be written as follows:
n—->p+e +Vv, (see Section 5.1).

For beta emission to be energetically possible, the exact nuclear mass of
the parent, M., must be greater than the sum of the exact masses of the
daughter nucleus, Myugner, and the /3 particle, m,

M =M

parent daughter

+m, +Q (4-138)

If atomic masses are used the above equation reduces to

Mparent = Mdaughter + Q (4'139)

The energy of B decay, Q, appears as kinetic energy of the B particle and
is equivalent to the difference in mass between the parent nucleus and the
sum of daughter nucleus and P particle. An extremely small part of the
released energy is dissipated by the recoil nucleus, since the ratio of beta
particle mass to that of the recoil nucleus is very small. The following
example illustrates the energy conservation of B~ decay and explains how
atomic masses may be used in a calculation instead of nuclear masses
(masses of nuclei only).

Example 4.8 Kinetics of beta-minus decay

Calculate the energy released in the B decay of 2P, The atomic mass of the
parent nucleus is 31.9739072 amu. The daughter product is 32§ with an atomic mass
of 31.9720707 amu.

The reaction is

32 32 - T
P = 1S +€e +V,

Although it was explained in Chapter 3 (Section 2.3) that the atomic masses can
be used as nuclear masses, here again is a summary of this explanation based on the
example of phosphorus decay. From the reaction equation it follows that the mass
balance equation (neglecting the mass of antineutrino) is

Mnucleus (32P) =M (32S) + me

nucleus

However, the tabulated masses are the atomic masses, thus

M, =M +Zm

atom nucleus e
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Adding the same number of electron masses to both sides for the reaction
equation

Mnuc'leus(32p)+15me =M (32S)+me +15me

nucleus
It can now be seen that the masses obtained are equal to the atomic masses.
Thus, for B decay the energy equation becomes

M =M

parent daughter

o=[M,, (PP)-M

arom atom

+0 -

(*$))c* =1.7107MeV

This energy corresponds to the maximum energy of the *P B spectrum and is
exactly equal to the measured value as shown in Table 4-2, For example, if the
energy of the emitted electron is 650 keV, the energy of the antineutrino will be 1.06
MeV. As discussed, an extremely small part of the  decay energy is observed in the
recoil nucleus, because the ratio of B particle mass to the recoil nucleus mass is very
small. In this example it is 0.00055/31.9720707 = 0.000017.

5.3 Kinetics of Beta—Plus Decay

When the neutron-to-proton ratio is too low and o emission is not
energetically possible, the nucleus may reach stability by emitting a positron.
During B* decay, a proton in the nucleus transforms into a neutron, emitting
a positron and neutrino. The positron and neutrino move away from the
nucleus, and the residual nucleus has one less proton than the parent nucleus.
Since the atom loses a proton during B* decay, it changes from one element
to another. For example, after undergoing B* decay, an atom of carbon (with
6 protons) becomes an atom of boron (with 5 protons). The beta-plus decay
preserves the total number of nucleons, A. The decay process is a nucleon
transformation and as discussed in Section 5.1 can be written as follows: p
> n + ¢’ + v.. The reaction equation in the form of nuclear masses is
identical to that for B decay given in Eq. (4-138)

M =M

parent daughter

+m, +0Q

If the atomic masses are used the above equation becomes

M =M

parent daughter

+2m, +Q (4-140)
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The following example illustrates the energy conservation of " decay
and again illustrates that atomic masses can be used instead of nuclear
masses.

Example 4.9 Kinetics of beta-plus decay

Calculate the energy released in the B* of ;N given the following masses: M('*;N) =
13.0057386 amu, M("*sC) = 13.0033548 amu, m, = 0.00055amu.

Starting from the reaction

BN BC+e+v,

From the above reaction equation it follows that the mass balance equation
(neglecting the mass of neutrino) is

Mnucleus ( ISN) =M (13c) + mg+

nucleus
However, the tabulated masses are atomic masses, thus

M =M +Zm

atom nucleus 3

Adding the same number of electron masses to both sides for the reaction
equation

Mt CNY+Tm, =M (PS)+m . +Tm,

nucleus

It can now be seen that the masses obtained are equal to the atomic masses if

M(ttom(l3N) = Mmam(BS) + 2me
Thus
parent = M{qughrer + 2me + Q -
0=[M,,, ("N)-M,, (°C)-2m,]c* =1.196MeV

The positive Q value indicates that the decay is possible, i.e. that N is unstable
and decays by positron emission.
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5.4 Kinetics of Orbital Electron Capture
The energy balance equation for positron emission

Mparent = Mdaughter + zme + Q (4-141)

indicates that if a neutron—deficient atom is to attain stability by positron
emission, it must exceed the weight of its daughter by at least two electron
rest masses. If this requirement cannot be met, then the neutron deficiency is
overcome by a process called electron capture or K—capture. In this
radioactive transformation, one of the lowest positioned (K—shell) electrons
is captured by the nucleus and combines with a proton to produce a neutron
and a neutrino (see Section 5.1): p + € = n + V.. A schematic of this decay
mode is shown in Fig. 4-20.

Nucleus

Figure 4-20. Orbital electron capture (K—capture)
The energy conservation for K—capture is therefore

M +m, =M

parent e daughter + Eb + Q (4'142)

where E, is the binding energy of the captured electron and the masses
are nuclear masses. The following example illustrates the kinetics of the
K-—capture decay mode.

Example 4.10 Kinetics of orbital electron capture (K—capture)
For the decay shown in Fig. 4-21, determine the energy of the orbital electron
capture decay mode. The K—shell binding energy of 2 Na is 1.0721 keV, and the
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atomic masses of ??,,Na and *,,Ne are 21.9944368 amu and 21.9913855 amu,
respectively.

22 Ma

a7
_nmmg’f .1 : e

2Ne

28420 MeY

\
P+ 006%

Figure 4-21. *|)Na decay scheme

In order to calculate the decay energy from the equation that is expressed in
nuclear masses

+m =M +E, +0

parent e daughter

it is necessary to translate them into atomic masses to be able to use the values
as given in the problem. The daughter nucleus has one nucleon less than the parent
and thus if Z denotes the atomic number of the parent it follows

+m, +(Z~-N)m, =M

daughter

+(Z-)m,+E, +0

parent
For the decay of 22, Na it follows

Mnuclem‘ ( 2121 Na) + me + (1 1- 1)me = Mrlucleus ( Tg NC) + (1 1- l)me + Eb + Q
M tom ( 2121 Na) = Matom(T3N6) + Eb + Q

ai

The Q-value is
0=M,, (1 Na)-M, (}:Ne)-E, =2.841MeV

From the decay shown in Fig. 4-21 it can be seen that a photon is emitted
with energy of 1.2746 MeV. Thus, the excess energy is equal to 2.841 MeV
—1.2746 MeV = 1.567 MeV. The recoil energy associated with the emission
of a gamma ray photon is insignificantly small; therefore the excess energy
is carried away by the neutrino. In order to conserve energy, whenever
radioactive decay involves the capture or emission of an electron, a neutrino
must be emitted. In the middle of the periodic table, the isotopes that are
lighter than the most stable isotopes tend to decay by electron capture, and
the heavier ones decay by beta-minus emission. One example is silver,
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which has two stable isotopes: one of lower mass which decays by electron
capture and one of greater mass which decays by beta emission.

5.5 Kinetics of Internal Conversion

Internal conversion is an alternative mechanism for an excited nucleus to
release excess energy and return to its ground state. It is an interaction in
which a tightly bound electron interacts with the nucleus, absorbs the
excitation energy which is emitted as a gamma ray, and is then ejected from
the atom. Internally converted electrons are monoenergetic, and the kinetic
energy of the converted electron, E,, is equal to the difference between the
energy of the gamma ray emitted from the nucleus, £, and the binding
energy of the converted electron of the daughter element, E,

E,=E, -E, (4-143)

Notice that in this process, the emitted electron was previously one of the
orbital electrons, whereas the electron in beta decay is produced by the
decay of a neutron from the nucleus.

Since the internal conversion process can interact with any of the orbital
electrons (from K, L, M, N... shells), which all have different binding
energies, the energy spectrum consists of many lines (see Fig. 4-22).

5.6 Auger Electrons

In the process of internal conversion and orbital electron capture, an
electron leaves its atomic orbit and the vacancy is soon filled. There are two
competing processes, emission of an X ray due to the transition of an
electron from an outer shell to the vacancy in a shell closer to the nucleus,
and another process that is similar to internal conversion in which the energy
difference between two orbits is not released as an X ray but rather is used to
knock another electron from the orbit. For example, if a vacancy in the
K—-shell is filled in with an electron from the L—shell, then the energy
difference is enough to remove another electron from the L— or M-shell
which causes another vacancy to form. This process is called Auger electron
emission and can consist of a number of vacancies and thus emitted
electrons. However, the entire process is not longer than 107 seconds. The
Auger process is more probable in light nuclei, while emission of X rays is
more probable in heavy nuclei. Auger electrons have energy in the range of
100 eV to a few keV. The kinetic energy of the Auger electron corresponds
to the difference between the energy of the initial electronic transition and
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the ionization energy of the shell from which the Auger electron was ejected.
These energy levels depend on the properties of the atom.

M

Relative Intensity

Energy

Figure 4-22. Internal conversion electron spectrum (not to scale)

This effect was discovered independently by both Lise Meitner and
Pierre Auger. The discovery made by Meitner was published in 1923 in the
Journal Zeitschrift fur Physik, two years before Auger discovered the same
effect. However, the English speaking scientific community adapted Auger’s
name for the process.

6. GAMMA DECAY

6.1 Mechanics of Gamma Decay

Gamma (y) decay follows o and [ decay. The most common 7y sources
are B radioactive isotopes because they are easy to produce and have higher
Y ray intensity than o emitters. Very penetrating y rays were discovered in
1900 by Paul Villard, a French physicist. They are similar to X rays, but are
emitted from the nucleus and generally have much shorter wavelengths.
Gamma rays are the most energetic form of electromagnetic radiation, with
more than 10,000 times the energy of visible light photons.

In 7y decay, a nucleus rearranges its constituent protons and neutrons in
order to transition from a higher energy state to a lower energy state through
the emission of electromagnetic radiation. The number of protons and
neutrons in the nucleus does not change in this process, so the parent and
daughter atoms are the same chemical element. The emitted 7y ray is
monoenergetic having energy equal to the energy level difference less the
small fraction transferred to the recoil nucleus (see Fig. 4-1). Gamma decay
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is a fast process with half-lives that are usually in the range of 10" seconds
to days. The most common sources of ¥ radiation are listed in Table 4-3.

Table 4-3. Most commonly used 7y emitters

Isotope Half-life E,..> 5% (MeV)
Na 14.9590 h 275
"Ga 14.10 h 2.20
14019 1.6781d 2.52
HomA g 249.79 d 1.52
152,154y 13.537 years, 8.593 years 1.40
0Co 1925.1d 1.33
Y 23.72h 0.78

In the case when lower energy photon radiation is required, the isotopes
that decay by electron capture are used to produce X rays. A list of some of
the isotopes that can be produced in a reactor and are X ray emitters is
shown in Table 4-4.

Table 4-4. Most commonly used X ray emitters

Isotope Half-life E(K-shell) (keV)
>Fe 2.73 years 6.404

7n 244.26 d 8.639

Se 119.79 d 11.222

0rm 128.6d 50.741

2047 3.78 years 72.872

6.2 Kinetics of Gamma Decay

In the vy decay of a nucleus, a y ray is produced by a transition between
nuclear levels:

Einitial - Eﬁ’ml + E* = Efinal + Enucleu.\' + E7 (4'144)

where the excitation energy, E', is shared between the v, E, and the
kinetic energy of the recoiling nucleus, E,,...;. In general, the transition
energy and Y energy may be considered equal because the energy of the
recoil nucleus is much smaller than the energy of the emitted y ray. Thus, the
mass-energy equation for y decay reduces to:

Epiiar = E finat + E = Epu +E, (4-145)
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7. NATURAL RADIOACTIVITY

Since its creation, the world has been naturally radioactive. The level of
radioactivity differs from area to area depending on the naturally occurring
radioisotope concentration and their half-lives. Background radiation
describes the total exposure to existing, natural radionuclides, which are
found in air, water and soil, but also in human bodies and are divided into
three general categories:

a) Primordial radioisotopes that have existed since before the creation of the

Earth,

b) Cosmogenic radioisotopes that are formed as a result of cosmic ray
interactions, and
¢) Those produced due to human actions.

The primordial radionuclides are typically long lived, with half-lives

often on the order of hundreds of millions of years:

U (703800000 years): 0.72% of all natural uranium.

¥ (4.468 x 10° years): 99.2745% of all natural uranium

*2Th (1.405 x 10'° years)

6Ra (1600 years)

*’Rn (3.8235 d)

K (1.277 x 10° years).

One example of a primordial nuclide that is a constituent of every living
creature is “°K. The following example demonstrates the radiation level due
to potassium decay in an average human.

Example 4.11 How radioactive is a human body?

Considering that there are about 140 g of potassium in a typical person’s body,
determine the total number of atoms of “°K and its activity in the body. The
abundance of “’K is 0.0117%. The atomic weight is 39.0983.

The total number of “°K atoms

_ (140g)(6.02x10” atoms/mole)(0.0117x107*)
K 39.0983g/mole

=2.52x10* atoms
The activity is thus

In2

K 1277%10° X 365X 24 X 3600 sec
= 4.3kBq = 116nCi

20
A=A Ny ><(2.52><10 atoms)
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Cosmic radiation can exist in many forms, from high-speed heavy
particles to high-energy photons and muons. Cosmic radiation interacts with
the upper atmosphere and produces radioactive nuclides. Although they can
have long half-lives, the majority have shorter half-lives than the primordial
nuclides. Three of the main cosmogenic radionuclides are:

o ' (5730 years): created by "“N(n, p)"*C
e °H (1233 years): created through cosmic radiation interactions with N

and O, or °Li(n, o)’H
e 'Be (53.29 days): created through cosmic radiation interactions with N

and O.

The most interesting is the cycle of radiocarbon in nature (see Fig. 4-23)
and is explained in more details as follows. From the known content
(activity) of radiocarbon (**C) in organic matter it is possible to determine its
age. This method is called the carbon dating and was developed after World
War II by Willard F. Libby. It is used to determine the age of specimens (for
example wood, charcoal, marine and freshwater shells) in archeology,
geology, geophysics, and other branches of science. Carbon has many
unique properties which are essential for life on earth. As sketched in
Fig. 4-23, '*C is created in a series of events in the atmosphere that starts
with cosmic radiation interactions in the upper atmosphere by removing
neutrons from nuclei. These neutrons interact with ordinary nitrogen ('*N) at
lower altitudes, producing '*C. Unlike common carbon (**C), "*C is unstable
and decays to nitrogen. Ordinary carbon is a constituent of the carbon
dioxide (CO,) in the air and is consumed by plants. Since plants are
consumed by animals (including humans), carbon enters the food chain.
Carbon-14 also combines with oxygen to form carbon dioxide (‘*CO,), that
follows the same cycle as the non-radioactive CO,. The ratio of these two
‘molecules of CO, can be determined by measuring a sample of the air. The
ratio *C/'*C is fairly constant in air, leaves, or the human body because '*C
is intermixed with '>C. In living things the "*C atoms decay into '*N, and at
the same time living things exchange carbon with the environment, so that
the ratio remains approximately the same as in the atmosphere. However, as
soon as a plant or animal dies, the '*C atoms continue to decay but are no
longer replaced. Thus, the amount of '“C decreases with time; in other
words, the "*C/"*C ratio becomes smaller. The “clock” of radiocarbon dating
thus starts ticking at the moment a living organism dies. Since the half-life of
“C is 5,730 years anything over approximately 50,000 years should
theoretically have no detectable '*C. That is why radiocarbon dating cannot
approximate an age of millions of years.

Humans have used radioactivity for one hundred years, and through its
use, added to the natural inventories. However, the amount of radionuclides
created by humans is small compared to the natural amounts discussed
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above. In addition, the majority of created radionuclides have short half-
lives. Major radionuclides produced by humans and included into the chain
food are fission products produced from weapons testing: '*'T (8.0207 d),
7Cs (30.07 years), and *°Sr (28.79 years).

1
>
Sun Neuiron @ Caollision on neutron Earth
with N nucleus Biosphere
Cosmic-ray [6] Protron ahsorbs 1
proton Carl_:tuhn combhines
Atmosphere Hco, it oxyeen Buried matter:
14 :
E Collision with 14 Oceans contain C decays and is not
C .
atmosphere most of the 14C replaced with fresh *C

Figure 4-23. Carbon cycle

Example 4.12 Radiocarbon dating

The "C content in a living things decreases after death with a half-life of 5730 years.
If the *C content of an animal bone is found to be 22.5% of that of an equivalent present-
day sample, determine its age. Calculate the activity of the bone assuming the initial
activity to be 15 dis per minute per gram.

The age of the specimen is determined as follows

In2
N(@)=N©Oe™ 4=—==0.000121yrs”

172

N(t
L=0.225 —  t=12,331years
N(0)
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The activity of the specimen knowing that the rate of disintegration is constant,
A(0) = 15 dis/min/g, is

AN A®)

= =0.225 — A(r)=15%x0.225=3.4 dis/min/ gr
AN(©) A0)

NUMERICAL EXAMPLE

Solution of the Bateman Equation
Oxygen-20 decays by beta-minus according to the following decay
scheme:

20—L _SWE__£ 5O Ne(stable)

13.51s 11.163s

Calculate the decay as a function of time for °O as well as its daughter
product *°F by numerical solution of the Bateman equations. Also, using
Eq. (4-124), compute the time of maximum F concentration.

Solution in MATLAB:

clear all

global lambda_p lambda_d

Thalf_p = 13.51; %s half life of O-20
Thalf_d = 11.163; %s half life of F-20
lambda_p = log(2)/Thalf_p; % s"-1
lambda_d = log(2)/Thalf_d; % s"-1

% Numerical Solution

[t,N] = ode45(@Bateman, [0 100], [1 0]);
% Tmax calculation

tmax = log(lambda_d/lambda_p) / (lambda_d - lambda_p)
plot(t,N(:,1),'’k"

hold on

plot(t,N(:,2),'’k--")

plot([tmax tmax],[0 1],'k:")

xlabel('Time (s)")

ylabel('Fraction Present’)

function dN = Bateman(t,N)

global lambda_p lambda_d

dN = zeros(2,1);

dN(1) = -lambda_p*N(1);

dN(2) = lambda_p*N(1) - lambda_d*N(2);
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Figure 4-24. Numeric solution of the Bateman equations for 20 decay
PROBLEMS

4.1. Write the decay of **Ra and show that the activity of 1 gram of pure radium is
equal to one curie. Then calculate the activity of this sample 100 and 1000 years
later. The half-life of ***Ra is 1600 years.

4.2. A solution with radioactive sodium of activity of 12,000 disintegrations min’
was injected into the blood stream of a patient. After 30 hours the activity of 1 cm’
of the blood was 0.5 disintegrations min™, If the half-life of the sodium isotope is 15
hours calculate the volume of blood in the body.

4.3. A sample contains an isotope of magnesium, ’Mg, which undergoes B decay
with a half-life of 9.46 min. A Geiger-counter measured the activity of the sample
to be 1.69 x 10*' Bq. Write the decay of this isotope. Calculate the decay constant.
How many moles of the isotope are present in the sample? How many radioactive
isotopes are present after one hour? What is the activity of the sample after 10 h?

4.4. Use the nuclide table from http://atom.kaeri.re.kr/ton/nuc7.html and find the
decay of ’Mg. Sketch the decay scheme and find the energy of Y rays emitted with
the probabilities of 29 % and 71 %.

4.5. A canister was found in a laboratory to contain 1,000,000 atoms of a certain
isotope in 2004. The label on the canister showed that the number of nuclei in 1984
was 2,000,000. Calculate the decay constant and half-life of this isotope.
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4.6. The disintegrations of radioactive nuclides are detected by an appropriate
counting apparatus. The efficiency of such equipment is determined as the ratio of
counts per unit time (usually a minute) to the number of disintegrations per same
unit of time. If dpm represents the number of disintegrations per minute, and cpm
number of counts per minute then the efficiency of measurement is given with:

Efficiency of measurement = [ cpm/dpm ] X 100 %

Calculate the efficiency of measurement if a sample had 1000 disintegrations per
minute while the counter recorded 800 counts per minute.

47. Every measurement of sample radioactivity includes the background
radioactivity caused by cosmic rays, natural radioactivity, radioactive fallout, and
electronic noise in the circuitry of the equipment. Therefore the true value of the
cpm of a sample must be reduced for the background value: sample cpm -
background cpm. The efficiency of measurement is:

Efficiency of measurement = [ (sample cpm - background cpm) / dpm ] x 100
%

Calculate the efficiency for the counts from Problem 4.7 if the background radiation
is 15 cpm.

4.8. A 0.01 pCi (1 pCi= 2.22 x 10° dpm) source of *°S (T, = 87.51 days) was
counted in a liquid scintillation counter after 200 days and was found to contain
2600 cpm. Calculate the efficiency of the counting apparatus.

4.9. Calculate the specific activity of “°Co. The half-life is 1925.1 days.

4.10. Consider a decay chain C; = C, > C; 2 ... = C,. Write the coupled system
of decay equations,

4.11. Use the nuclide table from http://atom.kaeri.re.kr/ton/nuc7 html to find the
decay of *U and its half-life, Compare the half-lives of P87 and its daughter
nuclide and define the condition for secular equilibrium. Calculate the molar
concentration of the daughter nuclide at secular equilibrium if the activity of **U is
2.3 dpmv/kg.

4.12. Use the nuclide table from http://atom kaeri.re.kr/ton/nuc7.html to find decay
of ?°Ra and read the atomic masses of the parent and daughter nuclide. Calculate
the Q value for the decay, kinetic energy of the o particle and the Coulomb barrier
potential.
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4.13. Use the nuclide table from http://atom.kaeri.re.kr/ton/nuc7.html to find decay
of *'Ti. Calculate the decay energy, the maximum kinetic energy of the emitted B
particle and the maximum kinetic energy of the anti-neutrino. The decay emits one Y
ray of energy 0.32 MeV.

4.14. Show that the atomic mass of **Cf is 252.0816196 amu knowing that it decays
by emission of o particle of energy 6.118 MeV. Show also that the decay energy is
6.217 MeV. Use the nuclide table from http://atom.kaeri.re.kr/ton/nuc7 html to find
the necessary data.

4.15. A sample consists of mixture containing »*Pu and **°Pu. If the specific activity
is 3.42 x 10® dpm per mg, calculate the proportion of plutonium in the sample.

4.16. The half-life of *Na is 2.6019 years, It decays with 89 % by positive electron
emission and with 11 % by electron capture. Calculate the partial decay constants.

4.17. Complete the decay schemes

o9 13 o 13

Bo= N-—- C

99 20 999 20
Vo2 F—— Ne

4.18. Calculate the time when the rock is solidified if the ratio of “°K to “°Ar was
found to be 0.1.

4.19. A rock sample of 200 g was found to contain 25 g of “°K. Determine the age of
the rock sample.

4.20. Estimate the age of the ore sample that contained 10.67 mg of U and 2.81 g
of *Pb.

4.21. Calculate the age of a sample containing 25 g of carbon with MC activity
measured to be 4 Bq. Assume that *C/'*C = 1.3 x 10742,

4.22. What is the age of a bone sample that is found to contain | mg of .
4.23. Write the equation of '*C decay.
4.24. Define the unit of Bq and Ci. Explain the relation between these two units and

correlate to the disintegration per minute.

4.25. Explain the decay of tritium.
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4.26. There are a number of sources containing ¢, emitting radionuclides. One such
case is an americium-beryllium source. Use the nuclide table from
http://atom kaeri.re.kr/ton/nuc7.html to find decay of **’Am. What is the most
probable energy of the emitted o particle? What is the o particle energy spectrum
for this decay?

4.27. What is the activity of 1 mCi of "C after ten weeks?
4.28. What is the activity of a sample of 250 uCi of **P after ten weeks?

4.29. Calculate the density of water and standard gas in unit of molecules per liter,
and comment on the density of ionization interactions in these two media.

4.30. Explain what causes atoms to be radioactive.

4.31. Explain how does the radioactivity take place and how stable atoms can
become radioactive? What are the isotopes, and what are the isotones?

4.32. Calculate the activity of 2 gram-mole of *K in 2005 and million years later?
What is the number of atoms present in 2 gram-mole in 2005 and million years
later?

4.33. The biological removal of radioisotopes from the human body is taken into
account through so called biological half-life. Very often, the radioactive half-life
and the biological half-life are evaluated through the effective half-life

Ay =A+4,

io

Knowing that radioactive half-life for *'I is 8 days and its biological removal
half-life is 120 days, calculate the effective half-life of 'L

4.34. Knowing that after 500 years the activity of a sample containing ***Ra was
reduced to 80.4% of its original value, determine the haif-life of 26Ra. Compare the
value you can find in the table of elements provided at
http://atom.kaeri.re.kr/ton/nuc?.html.

4.35. Calculate the maximum kinetic energy of a positron emitted in the decay of
vanadium—48§.



Chapter 5

INTERACTIONS OF RADIATION WITH
MATTER

Basic Principles, Evidence and Examples

“The social system of science begins with the apprenticeship of the graduate
student with a group of his peers and elders in the laboratory of a senior scientist; it
continues to collaboration at the bench or the blackboard, and on to formal
publication — which is a formal invitation to criticism. The most fundamental
function of the social system of science is to enlarge the interplay between
imagination and judgment from a private into a public activity. The oceanic feeling
of well-being, the true touchstone of the artist, is for the scientist, even the most
fortunate and gifted, only the midpoint of the process of doing science”. Horace
Freeland Judson (b. 1931)

1. INTRODUCTION

Radiation interaction with matter is generally analyzed by considering
charged particles and electromagnetic radiation separately. As discussed in
Chapter 4 the two types of charged particles emitted are o and P particles
(electrons or positrons). The mass of these particles differ by many orders of
magnitude and the types of nuclear interactions they undergo are thus
dramatically different. Other important heavy charged particles that need to
be considered are protons, deuterons and helium. The characteristics of
electromagnetic radiation (y rays and X rays) interactions are quite different
(photons are massless and travel at the speed of light) to that of charged
particles and will be considered separately. This chapter discusses the
mechanisms of interaction for both charged particles (o, protons and
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electrons) and electromagnetic radiation (y rays and X rays). The
characteristics and interactions of neutrons with matter are described in
Chapter 6.

2. INTERACTIONS OF CHARGED PARTICLES

2.1 Types of Interactions

An incoming charged particle may either interact with the atom’s
electron cloud or directly with the nucleus. The difference in size, mass and
binding energy of the nucleus and electrons determine the type of interaction
the incoming particle will undergo. In every collision energy is exchanged
between the target and the incoming particle but the energy before and after
the collision must be preserved (conservation of energy law). There are two
types of collisions: elastic and inelastic scatterings which differ in energy
distribution after the collision. Incoming particle bring kinetic energy into
the system and the collision is elastic if none of this energy is transferred to
the target. These collisions are conceptually similar to collisions between
billiard balls. However, if a portion of the incoming kinetic energy imparted
on the target atom then the collision is considered to be inelastic.

2.1.1 Elastic Scattering of Charged Particles

When a charged particle passes through matter there is a significant
probability that an elastic scattering event will take place. In principle, there
are no elastic interactions with the bound electrons in an atom because the
electron subsequently transfers the energy to the nucleus and the collision is
analyzed as a collision with the whole atom. Since the mass and charge of an
atom is dominated by that of its nucleus, such a collision is generally
considered as a direct collision between the charged particle and the nucleus.
As described in Chapter 2, Rutherford’s gold foil experiment uncovered
many aspects of charged particle collisions with matter. For example, if a
charged particle passes very close to the nucleus, the electron cloud
distribution is nearly symmetric with respect to the incoming particle, and
the electronic Coulomb forces are neglected. When the charged particle
passes further away from the nucleus through the electron cloud, the
electrons reduce the effect. Due to this screening effect, the analyses of such
collisions require a correction to the total charge seen by the incoming
particle, called the effective charge that is always less than the charge of the
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nucleus, Z,» < Z. This allows the elastic scattering of a charged particle with
an atom to be simplified as a direct interaction with a nucleus of charge Z,.

v

Gold Nucleus

Figure 5-1. Rutherford scattering of charged particle with the nucleus

In the elastic collisions, also known as Rutherford scattering, the
direction and the energy of the incoming charged particle may be changed.
Since the interaction is strongly dependant on Coulomb forces it is also
referred to as Coulomb scattering.

The Rutherford scattering formula gives angular deflection probability of
incident particle (see Fig. 5-1) usually discussed in terms of the cross
section, ie. the effective target area seen by the incident particle (see
Chapter 6) as shown in Fig. 5-1. For a gold nucleus (A = 197), the radius can
be estimated according to the Fermi model given in Eq. 3-1

R=1.074"3 =6.2fm

For example, if an o particle with kinetic energy, 7= 6 MeV approaches
the gold nucleus with the impact parameter, b, equal to the radius of a gold
nucleus, it will be scattered at an angle of ~ 161° according to Eq. 2-3

b k(Ze)(ze) _ k(79e)(2e)

= = g=161°
Ktan(€/2) Ktan(8/2)
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with cross sectional area
2 -15 Y 28 2
Area: o= =n(62x10"5m) =121x10% m? =121barn

Thus the cross section for scattering at the angle of ~ 161° is ~ 1.21 barns.

The differential scattering cross section, o(6), is the probability of
scattering the incident particles at a certain angle, 6, from a single nucleus,
and is given by the Rutherford scattering formula

k*Z}7Z%e? 1 k*zizie 1

o(0)= =
mlv*  sin*(0/2) 4K*  sin*(8/2)

(5-146)

where T = m; U’/2 is the kinetic energy of an incoming charged particle with
charge Ze, and Ze is the charge of the target nucleus. The above relation
indicates

¢ The probability of deflection is proportional to the square of the product
of the charges of the incident particle and the target nucleus. That is, a
larger deflection is obtained for incoming particles of greater charge or
for heavier target nuclei.

e The incoming charged particle deflection is smaller if its energy is larger,
since the probability of the angular distribution is inversely proportional
to the square of the kinetic energy of the incoming charged particle.

¢ Smaller angles have a higher probability since the differential scattering
cross section is inversely proportional to the fourth power of half the
scattering angle, 8/ 2.

The probability that an incoming charged particle will transfer all or part
of its energy to a target nucleus (which is assumed to be at rest) depends on a
number of factors and may be written as

do(K) _ VAVATH
dK K*Mv?

(5-147)

e The probability of energy transfer is directly proportional to the charges
of the incoming particle and the target nucleus squared.

o The probability of smaller energy transfer is inversely proportional to the
energy of the incoming particle (energy that is to be transferred) squared.

e If the target is lighter, the transfer of energy is more probable since it is
inversely proportional to the mass of the target nucleus (M).

e If the incident particle velocity (v) is small, it will deflect more and
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transfer more energy since the probability of energy transfer is inversely
proportional to the square of the incoming particle velocity.

The maximum energy transfer, governed by the energy and momentum
conservation laws, occurs during a head—on collision. It should, however, be
mentioned that the head—on collision is a very rare event. The energy
exchange depends directly on the masses of the incoming particle, m and the
target, M; for example, when the mass of the incoming particle is smaller
than the mass of the target nucleus the incoming particle is repelled

. 2
iz(M”mj (5-148)
E M+m

where E is the particle energy before the collision and E’ the particle
energy after the collision. From this relation it can be seen that when two
masses are equal, the energy difference of the incoming particle, before and
after the collision, is zero.

The incoming particle is thus stopped and all of its energy is transferred
to the target nucleus. Conversely, if M >> m, the right hand side of Eq.
(5-148) approaches unity and the energy of the incoming particle remains
unchanged after the collision. Equation (5-148) suggests that in a collision of
an o particle with a gold nucleus, as in Rutherford’s experiment, the
maximum energy that the o particle will lose is ~ 10%. The maximum
energy that the target nucleus may receive (head—on collision) from an
incoming charged particle of energy E is

B 4dMm :
(M +m)

target

(5-149)

Since the incoming particles are usually much lighter than the target
nuclei, the collision leads to a change of their directions while the change of
their energies can almost be neglected.

2.1.2 Inelastic Scattering of Charged Particles with Electrons

In an inelastic scattering, the incoming particle may transfer all or part of
its energy to the electrons in an atom. The energy transferred to the electrons
may cause excitation of the electron or ionization of the atom. The excitation
and ionization processes are described in Chapter 2. If the energy of
incoming charged particle is larger than the binding energy of the electron it
interacts with, then the collision is similar to elastic scattering. In this case,
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the probability of the angular deflection is proportional to the square of the
target’s charge. In the collision with an electron, the incoming particle is
deflected at an angle which is a factor of 1/Z° smaller than in a direct
collision with a nucleus of charge Z.

2.1.3 Inelastic Scattering of Charged Particles with a Nucleus
When passing close to the nucleus, charged particles are attracted or

repelled by the Coulomb force. The acceleration of a particle, a, is
proportional to the charges of the nucleus and of the particle itself

Z,Z,e’

m

(5-150)

This acceleration causes the particle to deflect from the original
trajectory (see Fig. 5-2). An electron will, for example, deflect towards the
nucleus, while an o particle will deflect away from the nucleus because of
the opposite signs of their respective charges. According to classical
electrodynamics, every charged particle that accelerates emits
electromagnetic radiation with an intensity that is proportional to the square
of the acceleration. Thus:

e The intensity of electromagnetic radiation decreases for heavier particles.
For example, the intensity of this radiation for the o particles is a million
times smaller than for electrons.

¢ The intensity of radiation is greater for heavier target materials.

This type of electromagnetic radiation is also called radiative loss,
“bremsstrahlung” (German for braking radiation), or continuous X radiation.
Quantum mechanics gives a correct interpretation of bremsstrahlung since it
defines it as a quantum process in which an electron emits a photon.
Bremsstrahlung photons have a continuous energy distribution that ranges
from zero to a theoretical maximum that is equal to the kinetic energy of the
B particle (electron). The emitted energy spectrum is in the range of
X rays and the energy is higher for materials of higher Z. For example, since
the use of light materials reduces bremsstrahlung, Plexiglas® is often used to
shield against B radiation. The greatest bremsstrahlung occurs when high
energy P particles interact with high density materials such as lead. In
general, the probability of bremsstrahlung production increases with the
energy of the incoming charged particle and the mass (charge) of the target
material.

The bremsstrahlung hazard due to B particles of maximum energy E that
interact with a target material with atomic number Z may be estimated from
the following approximation
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f=35x10"ZE (5-15D)

where f represents the fraction of incident [ particle energy converted
into bremsstrahlung photons.

Electron
o

Figure 5-2. Bremsstrahlung radiation

Example 5.1 Bremsstrahlung radiation

A 1 mCi ®Co source is encapsulated in a spherical lead (atomic number 82)
shield that has a thickness that is sufficient to stop all the B particles emitted by the
source. Calculate the bremsstrahlung radiation flux as a function of distance outside
the spherical shield. The maximum energy of emitted 3 particle is 0.3179 MeV.

The fraction of incident B particle energy that is converted into an X-ray in each
decay of ®°Co is

f=(3.5%107)(82)(0.3179MeV) = 0.009124
The source energy (S) of the photons is determined from the assumption that the
average B energy is one-third of the spectrum’s maximum value, Eg,q = 0.3179

MeV. For the activity of the “°Co source of A = | mCi

Eﬁmax -3
S = fA———=(0.009124)| 107 Cix3.7x10

3
S =35,773MeV/sec

3

10 decays/sec )( 0.3179MeV/decay J
Ci

It is important to mention that the maximum [} energy spectrum value should be
assumed for the photons whenever bremsstrahlung is considered in the radiation
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exposure of humans In other cases it sufficient to assume that each photon receives
the average (3 energy. Thus, the photon generation rate if the maximum 3 energy is
taken can be expressed as

35,773MeV/sec
0.3179MeV/photon

=1.125x 10’ photon/sec

Assuming a point ’Co source, the bremsstrahlung flux as a function of distance
from the spherical shield is

1.125x10’ photons / sec

2

¢(r)=

drr

2.2 Loss of Energy

The mechanisms by which charged particles transfer their energy in
inelastic collisions with matter are expressed in one or more of the following
forms: stopping power, relative stopping power, specific ionizations and loss
of energy per ionization.

2.2.1 Stopping Power (— dE/dx)

Stopping power is defined as the amount of energy, dE, which a charged
particle loses along the length of its path through matter, dx. This quantity
always represents the average energy loss per number of interacting
particles. It is proportional to the square of the charge of the incoming
particle, Z;%, and it is inversely proportional to its velocity; thus the stopping
power increases as the particle velocity is decreased.

The value of —dE/dx along a particle track is also called specific energy
loss, S, the rate of energy loss, or the linear energy transfer (LET). The
classical formula that describes the specific energy loss is known as the
Bethe—Bloch Formula, which is valid for all types of heavy charged particles
with velocities that are large compared to orbital electron velocities.

The Bethe-Bloch formula has different forms for heavy and light charged
particles:
¢ For heavy charged particles (o particles and protons):
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dE 4nZ%e*
AE_EE
dx m,v
(5-152)
2 2 2
B=7In 2m,v v v

~In(l-=) - —
C2 C2

u: velocity of the charged particle

Ze: charge of the charged particle

N: number density of the target

m,: rest mass of the electron

I: experimentally evaluated average excitation and ionization potential
(see Chapter 2)

B: stopping number

e For light charged particles (electrons and positrons):

_dE _2me’
dx_mev2
1n—”le—v—2£—-—(1n2) JI- B2 =1+ B )+
g| 2°(1-8°) ( ) (5-153)
1—ﬂ2+%(1—\/1—ﬂ2)2
B=vlc

For the charged particles with v << ¢ (non-relativistic particles) only the
first term in the stopping number (B) equation is necessary. Equations
(5-152) and (5-153) show that B varies slowly with particle energy and is
proportional to the atomic number (Z) of the absorber material. Thus the
stopping power varies as 1/17, or inversely with particle energy.

The Bethe-Bloch formula also shows that higher—Z materials have
greater stopping powers. The ionization/excitation parameter / is an
experimentally determined value (see Section 2.2.4) and the ratio //Z is
approximately constant for absorbers with Z > 13. This ratio ranges from 10
eV for heavy elements to 15 eV for light elements (see Fig. 5-3).

The loss of energy due to ionization and excitation shows a general trend
for all charged particles (see Fig. 5-4):

e For each charged particle, the maximum energy loss occurs at a
characteristic incoming particle velocity.
e The stopping power then decreases to a minimum value on the order of
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1 MeV for electrons and higher for heavier charged particles.

18

iz

Figure 5-3. Average ionization and excitation potential as a function of Z

dE/dx

minimum

Energy (in mc?)

Figure 5-4. General trend of dE/dx as a function of particle energy E

2.2.2 Relative Stopping Power

The relative stopping power for a charged particle that interacts with a
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given material is defined as the ratio of particle energy loss per atom of the
given material to the energy loss per atom that will be experienced by the
same particle in standard material (air for B particles or aluminum for o
particles)

¢ Relative linear stopping power (MeV/cm)

(dE / dx)material (5_ 1 54)
(dE dx),,

Slinear =

e Relative mass stopping power (MeV/g cm®)

= pst (dE / dx)material (5_155)
P material (dE /dx )xt

e Relative stopping power per atom (MeV/atom cm)

_ N, (dE/dx)

Sm — v material (5-156)

dE | dx),,

material (

¢ Relative stopping power per electron (MeV/electron cm)

S,n — NstZst (dE / dx)material (5_157)
N materialZ material (dE / dx)st

Figures 5-5 to 5-7 illustrate the stopping power of aluminum for
electrons, o particles, and protons.

2.2.3 Secondary Electrons

As a charged particle passes through a medium it ionizes some of the
atoms by ejecting the electrons. This involves a transfer of energy from the
charged particle to the electrons, which may receive sufficient kinetic energy
to cause further ionizations. This process is known as secondary ionization.
The total ionization is thus the sum of both primary and secondary
processes.
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Figure 5-5. Total mass stopping power of electron in aluminum (National Institute of
Standards and Technology tables)
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Figure 5-6. Total mass stopping power of o particle in aluminum (National Institute of
Standards and Technology tables)
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Figure 5-7. Total mass stopping power of proton in aluminum (National Institute of Standards
and Technology tables)

The energy of secondary electrons ranges from zero to a theoretical
maximum which depends on the mass and energy of the primary charged
particle.

For example, in a collision between an o particle with energy £ and mass
mg, and an electron of mass m,, the maximum energy that the « particle can
transfer to the electron, E,,,., is given by Eq. (5-149)

dm,m,

E =E————2
(my, +m,)

target

Since the mass of an electron is significantly less than the mass of an o
particle, the above equation reduces to

4
~p e 4p e

target (ma ) 2 ma

~5.44x10™* E for o, particles (5-158)

It follows that the maximum energy an o particle can transfer to an
electron is 0.0544% of the energy before the collision.

A 6 MeV a particle can transfer a maximum energy of 3.26 keV to an
electron (where m, = 0.511 MeV/c? and m, = 4 my = 4 X 940 MeV/ ¢*). In a
collision between two electrons in which both leave the atom, it is
impossible to distinguish the primary electron from the secondary one. By
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convention, the secondary electron is considered to be the one with lower
energy or with energy below 50 eV. In general, the secondary electron yield
is greater for targets of high atomic number. Secondary electrons with
energies greater than a few hundred electron volts are referred to as delta
rays or delta electrons, 6.

2.2.4 Specific Ionization and Ion Pairs

Specific ionization (S7) is defined as the total number of ionizations (ion
pairs), both primary and secondary, formed per unit track length along a charged
particle’s path. In other words, it represents the number of ion pairs produced
per unit track length. If W represents the average energy needed to create a
single ion pair, the ST is defined as

_dE/dx
w

SI (5-159)

The unit of specific ionization is [number of ion pairs per unit track
length] and W ranges from 22 eV to 46 eV. At high energies, W is nearly
constant and has similar value for all incoming charged particles. For
example, at 4 MeV o and [ particles have nearly equal values for W. It has
also been shown empirically that B particles have a constant W value for
energies above a few keV. For o and 3 particles, the values for W increase at
lower energies, since the probability for ionization is reduced. Table 5-1
shows some measured W values. The ionization density produced by a single
charged particle depends on its charge and velocity. For example, a slower
moving particle spends more time in the vicinity of an atom or molecule
thereby increasing the chance of ionization events. Thus, an o particle
creates thousands more ion pairs per centimeter than an electron (B particle)
of the same energy (approximately 100 ion pairs per cm).

Table 5-1. lon pair generation energy for different materials

Material Ion pair generation energy, W (eV)
Air 339

Silicon (Si) 3.6

Germanium (Ge) 2.8

Silicon-oxide (Si0,) 17

Hydrogen (H) 37

Helium (He) 46

Nitrogen (N) 36

Oxygen (0) 32

Neon (Ne) 37
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Example 5.2 Ion pair production from ¢ particle interaction

An o particle loses about 35.5 eV for each ion pair formed.

Calculate the number of ion pairs produced by an o particle with a kinetic
energy of 5.5 MeV.

The number of ion pairs produced is

5.5x10%V

=154,930 ion pairs.
35.5eV/i.p.

2.2.5 Range of Interactions

Heavy particles such as protons and o particles will deposit all their
energies along a definite depth of penetration in a medium. This depth or
distance is called the range of the particle and it depends on the energy and
mass of the particle.

The range is longer for particles of higher energy and shorter for heavier
particles. For example, consider two particles with the same Kinetic energy;
the heavier particle has a shorter range.

The range may either be defined as linear range (units of length) or the
mass range (units of mass per area).

Theoretically, the range of a charged particle in a medium may be
obtained from the integration of the inverse of a particles energy loss per
unit length, i.e.

dE

REH=1|"
(Ea) dE [ dx

(5-160)

where dE/dx represents the total stopping power and the final particle
velocity is assumed to be zero.

The evaluation of this term is complicated, especially for light charged
particles (see Section 4.1), and its reciprocal is commonly assumed to go to
zero at zero particle energy and increases linearly to the known value of least
energy. The use of these assumptions in the calculation of range is referred
to as the continuous slowing down approximation (CSDA).

Figures 5.8 show the ranges of a proton, electron and an o particle
passing through aluminum. This illustrates the tendency of the CSDA range
and its difference for light and heavy charged particles.
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Example 5.3 Ion—pair density from o particle interaction
If the range of an o particle is 10 c¢m, determine the average ion—pair density

using data from Example 5.2.
The ion pair density is obtained as the ratio of the number of ion pairs produced

to the length of track of the ionizing particle

154,930i.p.

10cm

=15,493 ion pairs per unit length (cm).

3. ALPHA PARTICLES AND PROTONS

3.1 Mechanism of Energy Loss

The o particles have a short range and high specific ionization due to
their large mass. The range may be only few centimetres in air down to a
few microns in tissue. This indicates that a simple shielding from an external
o emitter would be a single sheet of paper.
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Since o particles have a strong ionizing effect on the medium they are
passing through (see Examples 5.2 and 5.3), they are used as a basic agent in
damaging cancer cells in a method called neutron capture therapy see
Chapter 1).

When an o particle interacts with an atom, its electric field ejects
electrons to form an ion pair. On average, an o particle loses about 35.5 eV
for each ion pair formed. For example, in order to ionize a hydrogen atom,
13.6 eV energy is required. The excess energy, 21.9 eV, lost by the o
particle is transferred to the electron as kinetic energy. Thus, the ejected
electron is set into motion and can produce another ion pair or secondary
electrons.

A fast moving o particle may lose energy without causing ionization as it
passes through a medium. In such cases, the electrons do not receive
sufficient energy to be ejected and they simply change orbits (moving to
higher energy levels). Thus, the o particle caused only excitation of the
medium and not ionization. The fast moving o particle has less time for
interactions and the specific ionization consequently decreases at higher
energies (see Fig. 5-9).

Specific Ionization

Energy (MeV) 10
Figure 5-9. Specific ionization of « particle versus its energy

In other words, the specific ionization of a high—energy o particle will
increase as the velocity decreases. This tendency of increasing ionization
probability with the continuous slowing down of the o particle towards the
end of its range is known as the Bragg curve and is illustrated in Fig. 5-10.
As soon as the energy of the o particle drops below the energy required for
ionization of the atoms in a medium, its ionization efficiency abruptly



INTERACTIONS OF RADIATION WITH MATTER 191

reduces to zero. The highest localized ionization energy deposition is
expected around the Bragg peak.

Specific Ionization

Range (penetration depth)

Figure 5-10. Specific ionization of & particle versus its range

3.2 Range - Energy Relationship

The general expression for linear stopping power (linear energy loss) for
a charged particle that is slowing down in a medium is the Bethe—Bloch
formula (as discussed in Section 2.2.1). Since the energy loss is proportional
to the square of the charge of the incoming particle, an o particle is expected
to stop much faster than a proton in a given medium.

Semi—empirical formulas express the range of charged particles as a
function of kinetic energy.

For o particles, the range in air at a temperature of 15°C and 760 mm
pressure is given by the equations

0.56| —2_|E(MeV) E <4MeV
MeV

R, (cm)= (5-161)

air

MeV

1.24[ om jE(MeV) ~2.62(cm) 4MeV < E <8MeV

The range (expressed as density thickness) of an o particle in any other
medium, R, is given by
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0.00056A"°
R, (cm)=———""-R_ (5-162)

m

where A is the atomic mass number of the medium, R,;, is the range of
the o particle in air, and p,,.is the density of the medium.

The effective atomic composition of tissue is very similar to that of air
and the Bragg—Kleeman rule (which states that the atomic stopping power is
proportional to the square root of the atomic weight of the medium) gives
the formula for the calculation of the range of o particles in tissue

Rtiysue ptissue = Rair pair (5 -1 63)

The density of air at standard pressure and temperature is
1.293 x 10° g/cm’.
The density of tissue is usually assumed to be that of water, ie. 1.0
3
glem’”.

The charged particle range is affected by the following factors

e Energy:
The range is approximately linear with energy since the Bethe-Bloch
formula for stopping power is inversely proportional to E.

e Mass:
With the same kinetic energy, an electron is much faster than an o
particle because of its smaller mass; therefore, incoming electrons spend
less time near the orbital electrons. This reduces the effect of Coulomb
interactions (consequently stopping power) and increases the range.

o Charge:
Stopping power increases with charge while the range decreases. Range
is inversely proportional to the square of the charge of the incoming
particle. For example, a tritium particle with Z=1 will have % the
stopping power of a *He particle with Z=2.

*  Density:
Stopping power increases with density. The range is inversely
proportional to the density of the absorbing medium.

The proton range in air is defined as

E,(MeV)

18
o3 } for E,(few MeV ~ 200MeV) (5-164)

Rair (m) = |:

The range of protons in aluminum is given by the semi-empirical
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formula

10.5E>
0.68+0.434In(E )
Ry (pm) = (5-165)

2.7MeV < E, <20MeV

1421E;*™  IMeV < E, <2.7MeV

The rate of energy loss for ¢ particles and protons and their ranges are
shown in Tables 5-2 to Table 5-5 for different materials and particle
energies.

Data was taken from the National Institute of Standards and Technology
ASTAR and PSTAR tables.

Example 5.4 Range of an ¢, particle and shielding

Estimate the range of a 3 MeV « particle in air and tissue.

Calculate the linear aluminum thickness required to totally stop these o particles.
Investigate the accuracy of by comparing with Table 5-3.

A density of aluminum is 2.7 g/cm’,

The range of a 3 MeV o particle in air is

R . (cm)=0.56(cm/MeV)E(MeV) =1.68cm

From Table 5-3 the range of 3 MeV o, particle in air is 2.116 x 10~ g/cm” giving
a linear range of 1.64cm.
The range of a 3 MeV o particle in tissue is

- Rair pair

tissue

=1.293x107 R, = (1.293x107)(1.68cm) = 0.0022cm

tissue

Table 5-2. Total stopping power (MeV cm*g) of o particles in different materials

o particle Hydrogen Air Water Tissue Aluminum
energy
(MeV)
0.001 1.264E+03 2.215E+02 3.271E+02 3.688E+02 1.305E+02
0.005 1.136E+03 2.937E+02 3.667E+02 4.382E+02 2.095E+02
0.01 1.292E+03 3.625E+02 4.304E+02 5.227E+02 2.790E+02
0.05 2.746E+03 7.310E+02 8.230E+02 9.924E+02 6.444E+02

0.1 4.123E+03 1.031E+03 1.151E+03 1.375E+03 9.056E+02
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o particle Hydrogen Air Water Tissue Aluminum
energy
(MeV)
0.5 8.220E+03 1.964E+03 2.184E+03 2.698E+03 1.300E+03
1 7.167E+03 1.924E+03 2.193E+03 2.522E+03 1.226E+03
L5 5.654E+03 1.626E+03 1.898E+03 2.062E+03 1.100E+03
2 4.593E+03 1.383E+03 1.625E+03 1.729E+03 9.859E+02
3 3.354E+03 1.072E+03 1.257E+03 1.324E+03 8.217E+02
4 2.678E+03 8.865E+02 1.035E+03 1.086E+03 6.991E+02
5 2.244E+03 7.612E+02 8.855E+02 9.267E+02 6.053E+02
10 1.284E+03 4.637E+02 5.344E+02 5.556E+02 3.762E+02
15 9.200E+02 3.425E+02 3.930E+02 4.070E+02 2.809E+02
20 7.245E+02 2.748E+02 3.146E+02 3.250E+02 2.272E+02
Table 5-3. CSDA range (g/cm?) of o particles in different materials
o particle Hydrogen Air Water Tissue Aluminum
energy
(MeV)
0.001 7.480E-07 5.377E-06 3.273E-06 2.985E-06 9.964E-06
0.005 4.230E-06 2.079E-05 1.489E-05 1.292E-05 3.329E-05
0.01 8.380E-06 3.605E-05 2.746E-05 2.334E-05 5.381E-05
0.05 2.882E-05 1.097E-04 9.179E-05 7.632E-05 1.418E-04
0.1 4.344E-05 1.665E-04 1.425E-04 1.186E-04 2.059E-04
0.5 1.034E-04 4.188E-04 3.699E-04 3.063E-04 5.421E-04
1 1.671E-04 6.698E-04 5.931E-04 4.922E-04 9.343E-04
1.5 2.459E-04 9.520E-04 8.374E-04 7.118E-04 1.365E-03
2 3.445E-04 1.287E-03 1.123E-03 9.777E-04 1.845E-03
3 6.030E-04 2.116E-03 1.829E-03 1.646E-03 2.961E-03
4 9.391E-04 3.147E-03 2.711E-03 2.485E-03 4.283E-03
5 1.349E-03 4.368E-03 3.759E-03 3.485E-03 5.825E-03
10 4.424E-03 1.309E-02 [.130E-02 1.072E-02 1.666E-02
15 9.097E-03 2.581E-02 2.236E-02 2.138E-02 3.224E-02
20 1.527E-02 4.222E-02 3.668E-02 3.523E-02 5.216E-02
Table 5-4. Total stopping power (MeV cm%/g) of protons in different materials
Proton Hydrogen Air Water Tissue Aluminum
energy
(MeV)
0.001 9.730E+02 1.414E+02 1.769E+02 2.180E+02 1.043E+02
0.005 1.741E+03 2.776E+02 3.153E+02 4.067E+02 2.131E+02
0.01 2.402E+03 3.850E+02 4.329E+02 5.620E+02 2.966E+02
0.05 3.818E+03 6.897E+02 7.768E+02 9.887E+02 4.749E+02
0.1 3.493E+03 7.301E+02 8.161E+02 1.004E+03 4.477E+02
0.5 1.160E+03 3.501E+02 4.132E+02 4.395E+02 2.550E+02
1 6.771E+02 2.229E+02 2.608E+02 2.737TE+02 1.720E+02
L5 4.902E+02 1.683E+02 1.957E+02 2.045E+02 1.328E+02
2 3.885E+02 1.371E+02 1.586E+02 1.653E+02 1.095E+02
3 2.788E+02 1.018E+02 1.172E+02 1.217E+02 8.250E+01
4 2.197E+02 8.197E+01 9.404E+01 9.738E+01 6.707E+01
5 1.825E+02 6.909E+01 7.911E+01 8.174E+01 5.695E+01




INTERACTIONS OF RADIATION WITH MATTER 195

Proton Hydrogen Air Water Tissue Aluminum
energy
(MeV)
10 1.019E+02 4.006E+01 4.567E+01 4.692E+01 3.376E+01
15 7.239E+01 2.894E+01 3.292E+01 3.373E+01 2.466E+01
20 5.679E+01 2.294E+01 2.607E+01 2.667E+01 1.969E+01

Table 5-5. CSDA range (g/cm?) of protons in different materials

Proton Hydrogen Air Water Tissue Aluminum
energy

MeV)

0.001 1.091E-06 9.857E-06 6.319E-06 5.418E-06 1.471E-05
0.005 4.058E-06 2.891E-05 2.262E-05 1.825E-05 3.981E-05
0.01 6.473E-06 4.400E-05 3.599E-05 2.857E-05 5.943E-05
0.05 1.849E-05 1.152E-04 9.935E-05 7.769E-05 1.560E-04
0.1 3.194E-05 1.842E-04 1.607E-04 1.268E-04 2.632E-04
0.5 2.598E-04 1.021E-03 8.869E-04 7.801E-04 1.503E-03
1 8.476E-04 2.867E-03 2.458E-03 2.270E-03 3.945E-03
1.5 1.728E-03 5.479E-03 4.698E-03 4.410E-03 7.287E-03
2 2.883E-03 8.792E-03 7.555E-03 7.147E-03 1.146E-02
3 5.968E-03 1.737E-02 1.499E-02 1.429E-02 2.210E-02
4 1.004E-02 2.839E-02 2.458E-02 2.355E-02 3.563E-02
5 1.506E-02 4.173E-02 3.623E-02 3.481E-02 5.188E-02
10 5.346E-02 1.408E-01 1.230E-01 1.191E-01 1.705E-01
15 1.126E-01 2.899E-01 2.539E-01 2.467E-01 3.462E-01
20 1.913E-01 4.855E-01 4.260E-01 4.147E-01 5.748E-01

The tabulated value shown in Table 5-3 is 0.0018 cm. The aluminum thickness
required to totally stop a 3 MeV « particle is

1/3

0.00056A'" 0.00056(27)
R, (cm)= R, = 3
2.7g/cm

m

(1.68cm) = 0.00105¢cm

This is in good agreement with the value given in Table 5-3 (0.002961 / 2.7 =
0.001cm).

Example 5.5 Range of proton

Estimate the range of a 3 MeV proton in air and aluminum.
Compare this value to the value given in Table 5-5.

The range of 3 MeV proton in air is
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E MeV)™* 18
R, (m)= £, (MeV) =[-§—} =0.130m
9.3 9.3

The range of 3 MeV proton in aluminum is

10.5E _ 1053

RAI (Hm) = -
0.68+0.434In(E))  0.68+0.4341n(3)

=0.0082cm

Table 5-5 gives a range of 13.4 cm in air and 0.0082 c¢cm in aluminum for a
3 MeV proton.

4. BETA PARTICLES (ELECTRONS AND
POSITRONS)

4.1 Mechanism of Energy Loss

The mechanism of energy loss and the type of interactions for 8 particles
in matter are more complex than for o particles due to the smaller mass and
higher speed. Beta particles are emitted during the decay of radionuclides
with a continuous energy spectrum with a maximum energy that is
characteristic of the radionuclide (see Chapter 4). This maximum value is
taken as the total transition energy. The difference between this maximum
value and the emitted § particle energy is carried off by an electrically
neutral particle. The maximum energy for B radiation from the majority of
radionuclides is in the range of 0.5 to 3.5 MeV. When passing through a
medium, the [ particles interact with atomic nuclei and electrons; the f
particle range is not as well defined as for o particles. This is due to the
combined effect of the continuous energy spectrum and the scattering
characteristics. The characteristics of the range are described in Section 4.2,

The loss of B particle energy in a medium consists of two components.
The total stopping power (energy loss) is expressed as a summation of the
two terms
e The collision term, (dE/dx)..;, represents the energy loss due to Coulomb

interactions (ionization and excitation).

o The radiative term, (dE/dx),., accounts for the energy loss due to
bremsstrahlung, Cerenkov radiation, or nuclear interactions.

Therefore, the total stopping power (as illustrated in Fig. 5-11) is written
as



INTERACTIONS OF RADIATION WITH MATTER 197

d_Ezﬂd_Ej +(d_E] (5-166)
dx dx coll dx rad

where the collision term is referred to as the linear energy transfer (LET),
i.e. the linear rate of energy loss of a B particle due to ionization and
excitation (see Section 2.2.1). The LET is related to the local energy
deposition while the radiative stopping power takes into account the total
energy loss due to bremsstrahlung radiation and the formation of secondary
and 0 electrons. The collision term and total stopping power are nearly equal
for heavy charged particles (see Figures 5-12 and 5-13). Notice that in the
case of heavy charged particles, the collision stopping power is called
electronic stopping power. It is also important to note that the nuclear
stopping power is only significant for heavy charged particles and it
represents an average rate of energy loss per unit path length due to the
transfer of energy to recoiling atoms in elastic collisions.

Except for highly relativistic electrons, ionization and excitation are the
main forms of energy loss, which may therefore be calculated with the
Bethe—Bloch equation.
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Figure 5-11. Components of total stopping powers for electrons in aluminum (National
Institute of Standards and Technology tables)
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Figure 5-12. Components of total stopping powers for o particle in aluminum (National
Institute of Standards and Technology tables)
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Figure 5-13. Components of total stopping powers for proton in aluminum (National Institute
of Standards and Technology tables)

The general form of this equation is described in Section 2 for the
different types of particles. The condensed form of this equation for the
ionization and excitation energy loss of electrons can be written as
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dE Z
_(E)w” _picoll (I, ) (5-167)

The equation illustrates the following:

The collision energy loss is proportional to the electron density in the
medium, p, and the ratio Z/A4, where Z is the atomic number of a medium
and A its atomic weight. This ratio varies slowly with increasing Z (for
example the ratio is 0.5 for low Z materials and reduces to ~ 0.39 for
uranium).

For electron energies up to 1 MeV, the collision term of the total
stopping power decreases due to the increase of the f = v/c term. The
collisional stopping power decreases as 1/ ° for increasing velocity until
it reaches a minimum value at electron energy of about 1.5 MeV (see Fig.
5-14). For higher electron energies where S ~ 1, the energy loss due to
ionization and excitation increases logarithmically (relativistic rise) until
it reaches a constant value (Fermi plateau).

As discussed in Chapter 2, the ionization potential (/) increases with Z;
but loses significance due to the logarithmic dependence in the collision
stopping power equation. However, as illustrated in Fig. 5-14, the loss of
energy decreases with increasing Z of a medium.
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Figure 5-14. Energy loss of electrons due to ionization and excitation (collision term) in air,

aluminum, lead and tissue
(National Institute of Standards and Technology ESTAR tables)

For electron energies above a few MeV, an additional density—effect

correction is required. This accounts for the reduction in the collision
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stopping power due to the incident electron’s polarization of the medium.
Descriptions of the average radiative loss of electron energy in the form of
bremsstrahlung radiation are only approximate. Although there are no
adequate equations to express the radiative stopping power over a wide
range of electron energies, a general equation can be used

dE Zp 5
I Py E+ E,Z 5-168
( dx Jrad A ( m.,c )frad( ) ( )

From this equation and the trends illustrated in Fig. 5-15 (radiative
stopping power curves for various materials), the following is understood
about the radiative stopping power
e It is proportional to Z* and as a result the radiative stopping power

becomes comparable to the collision term for higher Z.

e It is proportional to the electron energy, E, and as a result it becomes
comparable to the energy loss in ionization and excitation at specific
electron energy values. At even higher energy values it begins to exceed
these competing energy loss contributors.
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Figure 5-15. Energy loss of electrons due to radiative processes (radiative term) in, air,
aluminum, lead and tissue (National Institute of Standards and Technology ESTAR tables)

For relativistic electron energies the ratio of the radiative and the
collision stopping power becomes
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B (dE/dx)rud NE (5-169)

—(dE/dx),, F

coll

where E is in MeV and F has a value of 700 for lighter elements and 800
for higher Z materials (see Example 5.6). The above relations can be
generalized for any charged particle of rest mass M and energy E >> Mc”

—(dE/d EZ(m,\
( x)rad ~ =2 m, (5_170)
—(dE/dx),, F \M

For example, this ratio is equal to one, that is the bremsstrahlung and
ionization/excitation energy losses become equal, at electron energy of
47 MeV in aluminum and 7 MeV in lead (see Fig. 5-16).
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Figure 5-16. Collision and radiative energy losses of electrons (National Institute of
Standards and Technology ESTAR tables) in water

Example 5.6 Energy loss of an electron to bremsstrahlung and
ionization and excitation

Estimate the energy at which an electron will start losing its energy equally in
both bremsstrahlung and ionization/excitation while moving through lead (Z = 82)
and water. Compare the results with the Fig. 5-16.

e Jead
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~(dE/dx
By EZ o ggemev
—(dE/dx) 800

coll

which is in good agreement with ~ 10 MeV shown in Fig. 5-16.
e  Water

—(dE/ dx) . EZ
— M =]l —— = [E=538MeV
—(dE/dx) 700

coll
This is in good agreement with the value of ~ 52 MeV shown in Fig. 5-16.
4.2 Range - Energy Relationship

As B particles travel through a medium, their interactions with atomic
nuclei and electrons cause them to deflect from their initial trajectory. The
resulting trajectory depends on the medium and the energy of the B particle.
The range is defined as the average distance along the trajectory that the [3
particle travels in the medium. Unlike heavy charged particles, light particles
have no definite range. Since the mass of a [ particle is much smaller than
the mass of an atom, it is deflected considerably in elastic scattering with the
atoms. The probability of deflection is inversely proportional to the square of
the energy and as a result low—energy B particles are deflected more than
high—energy. That is, § particles with energy above a few MeV will pass
through material in almost a straight line. The deflection also depends
strongly on material and is approximately proportional to Z°. Thus, the B
particle trajectory is expected to be a nearly—straight line in light materials
and very erratic line in heavy materials. It can be concluded that the
trajectory of ( particles
¢ is nearly a straight line for energies above 1 MeV. With decreased energy

of B particles the deflection is more pronounced and particles start to

diffuse in a medium.

fluctuates along the trajectory more than heavy particles.

the depth of penetration for most of the B particles is smaller than the

length of range.

The range of B particles in material is a complex function of their energy,
the type and the atomic number of the absorber material. From the
macroscopic point of view the absorption of [ particles is a function of
distance travelled and the density of material. It has been observed that the
absorption (attenuation of [} particle beam, see Fig. 5-17) in the absorber is
approximately exponential function of the density of the absorber (p),
distance through the absorber (x) and the absorbing property of the material
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(1. Thus the absorption is approximately similar to that of photon beam:
In(Z/1,) = (xp)(t/p) However due to multicollision nature of B particle
interactions with absorber the absorption curve does not follow exactly the
exponential decline in beam intensity:

The ionization caused by [3 particles falls off exponentially with distance.
For thick absorbers the absorption curve (curve of activity versus the
absorber thickness as sketched in Fig. 5-17) becomes almost horizontal
indicating a nearly constant absorption, i.e. ionization occurs. Thick
absorbers are expected to stop all incoming [ particles while only a part
of the B particle energy is lost in thin absorbers.

Fng fonizatinn (Ahsarptinn)

Absorber thickners, x

Figure 5-17. Beta particles attenuation and the absorption curve

The absorption depth (range) depends on B particle energy as well; for
example, very high energy B particles can penetrate to a depth of about
one centimeter in tissue.

The “tail” at the end of the absorption curve indicates the presence of
bremsstrahlung radiation. This is especially prevalent in materials with
high atomic number such as lead. Even though high atomic number
materials are the most effective in stopping high energy B particles, the
presence of bremsstrahlung makes lighter materials such as Lucite or
plywood a better choice as absorber materials.

Although [ particles do not have definite range it is possible to specify an
absorber thickness that will reduce the ionization to a zero level.

Given the complexity of B interactions and the  spectrum it is difficult
to develop theoretical range—energy dependence. As a result
experimental energy—range measurements are used to approximate the
range of f particles. Fig. 5-18 shows the range—energy curve and
equations that may be used to compute the range. The range is often
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expressed in terms of the mass thickness rather than linear distance
because mass thickness is independent of the material density. The mass
thickness is given in mg/cm’. The linear thickness (range) in cm is
obtained by dividing the mass thickness with the density of absorber.

1.0E+02
]
1.OE+01 5
~ 1 R=412E mg/em?
~_ 1.0E+00 3
E 01 n=1265-00954InE R = 530E — 106 mg/em?
fif 1LOE-01 001 <E<3MeV 1 <E <20 MeV
& ]
& LOB-02 1
1.0E-03 4
1.0B-04 e e
0.01 0.10 1.00 10.00 100.00

Electron Energy (MeV)

Figure 5-18. Range—energy curve for 3 particle transport

Table 5-6. Total stopping power (MeV cm*/g) for B particles in different materials

Electron Hydrogen Air Water Tissue Aluminum
energy

(MeV)

0.01 5.124E+01 1.976E+01 2.256E+01 2.257E+01 1.650E+01
0.0s5 1.424E+01 5.822E+00 6.607E+00 6.597E+00 5.046E+00
0.1 8.738E+00 3.637E+00 4.119E+00 4.111E+00 3.185E+00
0.5 4.196E+00 1.809E+00 2.041E+00 2.034E+00 1.604E+00
1.0 3.821E+00 1.674E+00 1.862E+00 1.851E+00 1.486E+00
1.5 3.796E+00 1.680E+00 1.841E+00 1.829E+00 1.491E+00
2 3.835E+00 1.711E+00 1.850E+00 1.838E+00 1.518E+00
3 3.943E+00 1.783E+00 1.889E+00 1.876E+00 1.580E+00
4 4.047E+00 1.850E+00 1.931E+00 1.917E+00 1.637E+00
5 4.140E+00 1.911E+00 1.971E+00 1.957E+00 1.690E+00
10 4.479E+00 2.159E+00 2.149E+00 2.131E+00 1.921E+00
15 4.714E+00 2.359E+00 2.306E+00 2.283E+00 2.134E+00
20 4.903E+00 2.539E+00 2.454E+00 2.425E+00 2.340E+00

The total stopping power and the CSDA range for electrons in various
materials are shown in Table 5-6 and 5-7 respectively (data is from the
ESTAR tables of the National Institute for Standards and Technology).
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Table 5-7. CSDA range (g/cm?®) for B particles in different materials

Electron Hydrogen Air Water Tissue Aluminum
energy

MeV)

0.01 1.076E-04 2.884E-04 2.515E-04 2.512E-04 3.539E-04
0.05 1.970E-03 4913E-03 4.320E-03 4.324E-03 5.738E-03
0.1 6.650E-03 1.623E-02 1.431E-02 1.433E-02 1.872E-02
05 8.480E-02 1.995E-01 1.766E-01 1.770E-01 2.260E-01
1.0 2.117E-01 4.912E-01 4.367E-01 4.385E-01 5.546E-01
1.5 3.433E-01 7.901E-01 7.075E-01 7.110E-01 8.913E-01
2 4.744E-01 1.085E+00 9.785E-01 9.839E-01 1.224E+00
3 7.316E-01 1.658E+00 1.514E+00 1.523E+00 1.869E+00
4 9.819E-01 2.208E+00 2.037E+00 2.050E+00 2.491E+00
5 1.226E+00 2.740E+00 2.550E+00 2.566E+00 3.092E+00
10 2.383E+00 5.192E+00 4.975E+00 5.011E+00 5.861E+00
15 3.470E+00 7.405E+00 7.219E+00 7.276E+00 8.328E+00
20 4.510E+00 9.447E+00 9.320E+00 9.401E+00 1.056E+01

Example 5.7 Range of § particles

Calculate the distance a §§ particle will travel in aluminum (p = 2.7 g/lem’) as it
slows down from 15 MeV to 0.5 MeV. What is the average linear stopping power?

Table 5-7 gives the CSDA mass range values and the resulting linear distances
are

R(15MeV) = (8.328g/cm2)/(2.7g/cm3) =3.084cm
R(0.5MeV) = (O.226g/cm2)/(2.7g/cm3) =0.084cm

Thus the B particle travels 3.084 - 0.084 = 3.0 cm in aluminum while it deposits
an energy of 14.5 MeV. The average stopping power is obtained as:

dE _14.5MeV
dx  3.0cm

=4.833MeV/cm

Example 5.8 Energy deposition in tissue cell

Using the data provided for the CSDA range for 1.5 MeV o and B particles in
Tables 5-3 and 5-7 respectively, comment on the liner ranges in a human tissue cell.
Assume the radius of a human cell is 15 pm with the density of 1 g/em’,

The ranges are:
e (O particle

R =(7.840x10™ g/cm®) /(lg/cm®) = 7.84x 107 cm = 7.84pm
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o P particle
R =(0.711g/em®)/(1g/cm’) = 0.71Icm

It can be seen that a 1.5 MeV «. particle travels only 7.84 um and thus deposits
all of its energy inside the cell volume, while the B particle leaves the cell and will
deposit its energy over a much longer range. In boron neutron capture therapy for
brain cancer treatments, the o particle emitted in boron-neutron interaction has the
energy of nearly 1.5 MeV and because of its short range represents the key agent in
killing the cancer cells.

Example 5.9 Summation of ranges in different materials

The range of an unknown [ particle is measured to be 0.111 mm in aluminium.
Calculate the energy of the 3 particle if the 3 emitter is placed in air at lcm from the
aluminium sheet and with a 1.7 mg / cm” mica absorber between the counter and the
aluminium sheet.

Summation of ranges is allowed if the ranges are expressed as density
thicknesses:
e Air

R, =1.293mg/cm’ xlcm =1.293mg/cm’
e Aluminum

R, =2.7g/cm’ x0.0111cm = 29.97mg/cm’
e Mica

R =1.7mg/cm’

micy
Thus, the total range is

R, =1293mg/cm’ +29.97mg/cm’ +1.7mg/em’ = 32.96mg/cm’

Fig.5-18 shows that this range corresponds to energy of 0.17 MeV.
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S. PHOTONS (GAMMA AND X - RAYS)

5.1 Exponential Absorption Law

Many nuclear reactions, radioactive decays, and particle interactions
result in the emission of gamma (7y) rays, the highest—energy electromagnetic
waves (or photons). Their energies range from thousands of electron volts
(keV) to millions of electron volts (MeV) and their wavelengths are very
short (107" m to 107" m). These high—energy particles have found
application in the medical profession, especially in cancer treatments.

As explained in previous sections both o and B radiation can be
completely absorbed by properly selected materials and their thicknesses.
Gamma radiation, however, can only be reduced in intensity. This intensity
reduction or attenuation is governed by the exponential absorption law

I =1 | (5-171)

where

I: y-ray intensity transmitted through an absorber of thickness x
Iy: y-ray intensity at zero absorber thickness

x;; linear absorber thickness

My: linear absorption coefficient.

The linear absorption coefficient is related to the mass absorption
coefficient, t,, through the density of the absorber materials, p

Ly (em™y =, (cm® 1 g)x p(g/cm’) (5-172)

If the mass thickness, x,,, is defined as the mass per unit area obtained by
multiplying the linear thickness x; by the density (x,, = p x; ), then the
exponential absorption law can be written in the following way

I =1y ™ = [y~ Hi/Pn (5-173)

and 4 /p can be obtained from empirical measurements of Iy, / and x.
These values are tabulated for different materials and photon energies.
Figures 5-19 a) and b) show the mass absorption coefficient for aluminum
and lead, respectively.

The total absorption coefficient or attenuation coefficient represents the
fraction of the Y ray beam attenuated per unit thickness of absorber.
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Figure 5-19.a) Mass absorption coefficient for y rays in aluminum
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Figure 5-19.b) Mass absorption coefficient for y rays in lead

10

The atomic absorption coefficient, u,, is the fraction of an incident y ray
beam that is absorbed by a single atom, i.e. the probability that an absorber
atom will interact with the y rays in the incoming beam. If N is the number
of absorber atoms per cm’, the atomic absorption coefficient is
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2

The atomic absorption coefficient has units of area and is thus referred to
as the “cross section” of the absorber (for the discussion on the cross section
see Chapter 6). The atomic absorption coefficient is called the microscopic
cross section (o), while the linear absorption coefficient is called
macroscopic cross section (X). The microscopic cross section may be
expressed in barns (1 barn = 102* cm®) while the unit of the macroscopic
cross section is cm™'. These two cross sections are related as

2
Sem™) = () x N A (5-175)
atom cm

Thus the attenuation of 7y rays can be expressed in terms of cross sections
I =1, M =[e™ (5-176)

Gamma ray interaction data is usually expressed as mass attenuation
coefficients (examples shown graphically in Fig. 5-19 and values given in
Table 5-8). Neutron interaction data are usually expressed as cross sections.

Table 5-8. y rays mass attenuation (absorption) coefficients (em?/g) from the NIST X ray
attenuation data base

Photon Hydrogen Air Water Tissue Aluminum
energy

MeV)

0.01 3.854E-01 5.120E+00 5.329E+00 4.937E+00 2.623E+01
0.05 3.355E-01 2.080E-01 2.269E-01 2.223E-01 3.681E-01
0.1 2.944E-01 1.541E-01 1.707E-01 1.688E-01 1.704E-01
0.5 1.729E-01 8.712E-02 9.687E-02 9.593E-02 8.445E-02
1.0 1.263E-01 6.358E-02 7.072E-02 7.003E-02 6.146E-02
1.5 1.027E-01 5.175E-02 5.754E-02 5.699E-02 5.006E-02
2 8.769E-02 4.447E-02 4.942E-02 4.893E-02 4.324E-02
3 6.921E-02 3.581E-02 3.969E-02 3.929E-02 3.541E-02
4 5.806E-02 3.079E-02 3.403E-02 3.367E-02 3.106E-02
5 5.049E-02 2.751E-02 3.031E-02 2.998E-02 2.836E-02
10 3.254E-02 2.045E-02 2.219E-02 2.191E-02 2.318E-02
15 2.539E-02 1.810E-02 1.941E-02 1.913E-02 2.195E-02
20 2.153E-02 1.705E-02 1.813E-02 1.785E-02 2.168E-02

The energy absorption coefficients shown in Fig. 5-19 are the total
absorption coefficients and they account for both primary and secondary
radiation. Primary radiation considers the local energy deposition during the



210 Chapter 5

photon interactions with matter, while secondary radiation considers the
energy deposited elsewhere via secondary radiation such as Compton
scattered photons, bremsstrahlung, fluorescence, and annihilation photons.
For a mixture or composite materials, the mass attenuation coefficient,
Monmixures 18 the weighted average of the individual mass coefficients, 4,

:um—mixture = Wlluml + W2/um2 o (5-177)

Example 5.10 Attenuation of y rays

Calculate the linear and density thickness of aluminium and lead needed to
transmit not more than 5 % of a 0.60 MeV ¥ ray beam and compare the density
thicknesses. The density of aluminium is 2.7 g/cm’® and the density of lead is 11.35
g/em’. The mass absorption coefficients are: 7.802 X 10 em?/g for aluminum and
0.1248 cm¥g for lead.
e Aluminum linear thickness

fem™) =g (cm’/g)x p(g/lem’) = 0.07802x 2.7 = 0.2107cm”

—=—=e"" = x =1422cm

Density thickness
x, =xXp=1422x2.7=384g/cm’
e Lead linear thickness

w(em™y = p, (cm’/g)x p(g/em’) = 0.1248x 11.35 =1.416cm™

I 5 -
—=——=¢"" = x,=2115m
I, 100

Density thickness

x, =xxp=2115x11.35=24.0g/cm’

Example 5.11 Attenuation coefficient and cross section for y ray
interactions
Knowing that the linear absorption coefficient represents the macroscopic cross
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section for 7y ray interactions that is predominantly with the electrons of an atom,
calculate the microscopic cross section for lead if the mass attenuation coefficient
for 0.6 MeV v ray is 0.1248 cm*/g (density of lead is 11.35 g/cm’). The atomic
weight of the lead is 207.2.

wem™)y=u (cm’/g)x p(g/em’) = 0.1248x 11.35 = 1.416cm™
4 =No=L =

N 1.416
N NZp/A 6.02x10”x82x11.35/207.2
0=0524b

Example 5.12 Attenuation of y rays in a composite material

The soft tissue can be approximated as a mixture of four elements: 10.1174 % of
hydrogen, 11.1 % of carbon, 2.6 % of nitrogen and 76.1826 % of oxygen. This
composition gives a soft tissue density of 1 g/cm’, Determine the linear attenuation
coefficient for 0.6 MeV 7 rays for which the mass attenuation coefficients in these
four elements are: 0.1599 cm%g in hydrogen, 0.08058 cm%g in carbon,
0.08063 cm%g in nitrogen, and 0.08070 cm*/g in oxygen.

The general definition for the total mass attenuation coefficient for the mixture

lum~nlrsuc = WHlumH + WClumC + WNlumN + WOlumO

L, . =0.101174%0.1599 +0.111x0.08058 + 0.026 x 0.08063 +
0.761826%0.08070 = 0.088698cm*/g

lul-rix.x‘ue = lum—li.m'ue x pt[s.me = 0088698 X 1 O = 008869801'1'1—]

5.2 Mechanism of Energy Loss

Photons are energy quanta of electromagnetic nature and interact with
particles that have electrical charge or, with smaller probability, with
particles that behave as small magnets (possess magnetic momentum). The
main interactions of photons with matter are with the electrons and nuclei

through
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* Absorption of photons: in this interaction the initial photon disappears as
it transfers all of its energy to an electron or nucleus.

e Scattering of photons: photon can be scattered through an elastic or
inelastic interaction. In elastic scattering, the wavelength of the scattered
photon is almost the same as that of the initial photon. If the interaction
leads to interference, it is referred to as coherent scattering, In inelastic,
incoherent scattering the initial photon transfers its energy to the matter
and scatters with a longer wavelength.

The types of photon interactions are summarized in Table 5-9 and show
that photoelectric absorption and Compton scattering are interactions that are
limited to the orbital electrons of the absorber. These interactions are
probable for incident photon energies less than or not significantly higher
than the energy equivalent of the rest mass for two electrons (1.022 MeV).
Pair production dominates in the energy range above this threshold.

Table 5-9. Types of photon interactions

Interaction with Absorption FElastic scattering Inelastic scattering
Electrons in atoms Photoelectric effect Rayleigh scattering Compton scattering
Electromagnetic Pair production

field of a nucleus or

electron

5.2.1 Photoelectric Effect (y+ atom > €™ + ion)

In 1886, Heinrich Hertz discovered that photons in the ultraviolet region
of the spectrum (wavelengths of 200-400 nm) could eject electrons from a
metal surface (see Fig. 5-20). The experiment showed that the emission of
electrons and the incoming light had certain dependencies
¢ The number of electrons emitted by the metal was found to directly

depend on the intensity of the light, i.e. the number of emitted electrons

increased with increasing light intensity.

The emitted electrons moved faster if the light had a higher frequency.

There was a cut—off frequency, f,, for the incident photons, below which

no electrons were emitted.

According to classical mechanics and the wave theory of light that was
valid at the time, it was expected that the intensity of the emitted light would
determine the kinetic energy of the ejected electrons. The experiments,
however, showed that the kinetic energy of the ejected electrons depended
on the incoming photon frequency instead of its intensity. The photon
intensity thus only affected the number of ejected electrons and not their
kinetic energies. This was the discovery of a new phenomenon called the
photoelectric effect and it was defined as the emission of electrons from a
metal surface exposed to photon radiation. The full physical explanation of
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the phenomenon was given in 1905 by Albert Einstein who applied Planck’s
idea of energy quanta and additionally assumed that the light had particle
properties. He proved that the incoming photon could be represented as
discrete quanta of energy, hf, where f is the photon frequency and % Planck’s
constant (see Chapter 3, Section 4). It thus follows that every photon carries
a specific energy that is related to its frequency or its wavelength, such that
photons of short wavelength (for example blue light) transmit more energy
than long wavelength (for example red light) photons. Einstein’s equation
that explained the photoelectric effect based on the experimental
observations is

hf=W+%mevz (5-178)

where W is called the work function and represents the minimum energy
required to remove an electron from the metal surface, and m U2 is the
maximum Kinetic energy of the emitted photoelectron. The work function
for most metals is around 4.5 eV (see Table 5-10).

Photo- f"ﬂﬂ"i —
Cathode( t ‘:‘_g"ﬂ: a—> o o> | )Anode
—
G—>

Vacuum Tube
@

Figure 5-20. Schematics of the experiment for the photoelectric effect

Example 5.13 Work function and photoelectric effect

Using the data shown in Table 5-10, determine if green light with 4 = 505 nm
can cause electrons to be ejected from cesium.

The energy of the incoming photon

-34 8
hf=ﬁ£=(6'63><10 Js)(39><10 m/s):B.94><10_19J
A 505x107 m
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From Table 5-10 the work function for cesium is:

W=21eV=21x1.6x10""J=3.36x10"J

1, 1 B}
hf=W+Emev' > hf—W=5mevz=5.8><102°J

The photon of given energy will eject an electron from the surface of cesium
metal and the energy of the ejected electron will be 0.36 eV.

Table 5-10. Work function, W (eV), for some metals

Element W(eV)
Aluminum 4.08
Beryllium 5.0
Cadmium 4.07
Calcium 2.9
Carbon 481
Cesium 2.1
Cobalt 5.0
Copper 4.7
Gold 5.1
Iron 4.5
Lead 4.14
Magnesium 3.68
Mercury 4.5
Nickel 5.01
Niobium 43
Potassium 2.3
Platinum 6.35
Silver 4.73
Uranium 3.6
Zink 43

Example 5.14 Cut—off frequency and photoelectric effect

Calculate the cut—off frequency for cesium and plot the kinetic energy of ejected
electron vs. frequency of photons.

The cut—off (threshold) frequency is the lowest frequency, or longest
wavelength, that permits photoelectrons to be ejected from the surface of a metal. At
this frequency the photoelectrons have zero kinetic energy:

I
hf=W+5mev~ = nf.=W = f =507x10"Hz
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Since the kinetic energy of electrons is equal to the stopping potential,
eVy, in the experimental measurements (see Fig. 5-21), Einstein’s equation
for the photoelectric effect can be written in the following alternative form

eVy=hf -W (5-179)
mevzl\
2
s / £ Frequenc§
-W
\ 4

Figure 5-21. Kinetic energy of the ejected electron vs. frequency of photons (the slope of the
curve is always equal to the Planck’s constant, )

Example 5.15 Stopping potential and photoelectric effect

Assume that a potential of 0.54 V is required to stop all the electrons in a
photoelectric experiment. Calculate the maximum electron kinetic energy and
determine the material (comparing the work function with the values listed in Table
5-10) if the incident photons have the wavelength of 360 nm. What is the longest
wavelength that will eject any electron from this metal?

A potential of 0.54 V stops all of the electrons and thus the maximum kinetic
energy of the electrons must be equal to the kinetic energy equivalent of a potential
of 0.54 V, that is

(mv?12)  =eV,=(1.6x10™C)x (0.54V) = 0.864x107™J =

max

\
= (0.864%10™ J)———~ = 0.54eV
1

6x10777

The incident photons thus have energy of
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he  (6.63x107Js)(3x10" m/s)

hf =— = =5.525%107"7
A 36010~ m
he  1240eV

hf ==~ 3 44ev
A 360nm

The electrons then must have lost (3.44 - 0.54) eV = 2.9 eV which represents the
work function of the metal or the electron energy lost leaving the metal. From Table
5-10 it can be seen that the material is calcium.

The longest wavelength that will eject an electron from this metal corresponds to
the minimum energy needed to remove an electron from the material, i.e. the work
function, W=29eV

h he 12408V
,=——=W = A, === 427nm
W 29V

© Ejected
electron

Photon

Before: Atom After: Ion
Figure 5-22. Photoelectric effect

In the photoelectric effect, the incoming photon is absorbed through
interaction with an orbital electron (for example the K—shell electron, see
Chapter 2). The process can be sketched as shown in Fig. 5-22. If the photon
energy is above the work function, the orbital electron will be ejected from
an atom. The vacancy is then filled by an electron from an outer shell and
this produces either fluorescence X rays (as indicated in Fig. 5-22) or Auger
electrons. The probability for X ray emission is given by the fluorescence
yield and, for K—shell electrons, varies from 0.005 for Z = 8 to 0.965 for Z =
90. During the photoelectric absorption of light by an atom, one quantum
(photon) is absorbed by one of the orbital electrons. The orbital electron is
ejected such that the incoming photon energy, Af, and the binding energy of
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electron, E,, are distributed between the recoil atom and ejected electron
Eye=hf—E, (5-180)

Virtually all of this energy is carried away by the ejected electron (also
called the photoelectron), E,., because the electron has much smaller mass
than the recoil atom.

The electron binding energy, E;, depends on its orbit (shell) and assumes
discrete values (see Chapter 2)

Ey=Ex, Ep1, Ep2, Er3, Enpp .. (5-181)

Nearly all photoelectric events in light nuclei involve K—shell electrons.
Binding energy in the K—shell varies from 13.6 eV for hydrogen to 7.11 keV
for iron and 88 keV in lead. The cross section for the photoelectric effect
thus depends on the binding energy of the electrons in different materials.
Figure 5-23 illustrates the cross sections for various photon interactions in
aluminum and lead.

Incoherent Scattering

Coherent Scattering —

Cross Section (barns/atom)

-10' I L I L 5 L 1
10 102 10" 10° 10" 10* 100 10t 10°

Energy (MeV)

Figure 5-23. a) Scattering cross sections of photon interactions with aluminum
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Figure 5-23. b) Photoelectric effect and pair production cross sections of photon interactions
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Figure 5-23. c) Scattering cross sections of photon interactions with lead
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Pair Production
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Figure 5-23.d) Photoelectric effect and pair production cross sections of photon interactions
with lead

The probability for the photoelectric effect for a given orbital electron is
maximum if 4f = E), and it is zero, that is the photoelectric effect can not
occur, when 4f < E;. As the incident photon energy increases above E,, the
probability for the photoelectric effect decreases. This trend can be observed
in Fig. 5-23 for any of the indicated edges (peaks). The edges correspond to
the electron shells, K, L, M, etc. For energies below 150 keV, the cross
section varies as (4f)”. Above 150 keV but below 5 MeV, it varies as (hf)”
and at energies above 5 MeV it becomes proportional to (Af)".

The atomic cross section for the photoelectric effect is proportional to Z”,
where m depends on the incident photon energy. For a 100 keV photon,
m = 4 and for a photon energy of 3 MeV, m = 4.6. Thus, the cross section for
the photoelectric effect is strongly dependent on the photon energy as well as
on Z, the atomic number of the material

5
(hf)7/2
oc (5-182)

4.5
Zh ) for 0.1 MeV < hf <5 MeV

for low photon energies

ph

Low energy photons will thus ionize the material they interact with
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through the generation of photoelectrons. The range of a photoelectron is
calculated in the same manner as that for a [ particle (described in
Section 4).

5.2.2 Compton Effect (y + Atom = y + ¢ + Ion)

The Compton Effect, or Compton scattering, is an inelastic collision of a
photon with an electron that is loosely bound to an atom or molecule. Such
an electron can be considered free if its binding energy is much smaller than
the energy of the incident photon. Under such conditions, Compton
scattering is more probable than the photoelectric effect. After the
interaction, an electron is ejected from the atom along with the scattered
photon. The energy of the scattered photon is less than that of the incident
photon; that is, compared to the incident photon it has a longer frequency
and a smaller wavelength. The Compton Effect is illustrated in Fig. 5-24.

Scattered
electron . ¢
Incident
Photon m.? © Ep.
-
phA Electron at
rest

pIA

Scattered
Photon

Figure 5-24. Compton scattering

This scattering experiment was performed by Compton in 1923 and
showed that light had a corpuscular nature as well as wave-like
characteristics. This conclusion was mainly due to the difference in
wavelength between the incident and the scattered photon. This change in
wavelengths could not be explained by the wave theory of light alone, since
it does not predict this change in wavelength. Compton analysed the
experimental results by adopting Planck’s hypothesis of considering light as
an energy quanta, and assigned energy values of £ = Af to the photons.
Accordingly, the momentum of a massless particle is given by p = h / A.
Consequently, Compton assumed the incident photon to be equivalent to a
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particle with mass m = hf/ ¢*. By the conservation of energy (see Fig. 5-24)
hf +m,c* =E +hf (5-183)

and by the conservation of momentum

p=p'+p, (5-184)

where p = E / ¢ for photons, and p, = m,v for the electron. Squaring this
equation and using the scalar product (see Fig. 5-25) gives

p2=(p-p')(p-p")=p*+p°~2pp'cosd (5-185)

Geb = abcos®

v

Figure 5-25. Scalar product of two vectors

Multiplying the above equation by ¢* and replacing the momentum of
photons with p = E / ¢ = hf / ¢, the momentum conservation equation
becomes

p2e® =V +(nf'F =20 Vit )cos 0 (5-186)

The energy conservation equation can be squared and rewritten in the
following way

hf —hf +m,c* =E

(1 11" + 27 =1 m” = 7 = e (5-18)

Recall from Chapter 3, Eq. (3-7), the energy — momentum relation for a
relativistic particle

E? = (pec)2 + (mec2 )2
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Thus the above energy conservation equation can be written as

p2c =(nf  + (i F =20 if )+ 20f = bf I, (5-188)

The left-hand sides of Egs. (3-7) and (5-188) are equal and thus the
right-hand sides must also be equal

\2

(Y + (" = 2(nf Nbf Jcos 6=

| , ‘ (5-189)
(e Y+ (ar =200 Yoo )+ 200f = if 2
Rearranging Eq. (5-189)
—(nf f Jeos 0 =—(tf \uf ')+ if = f I, (5-190)
COSG:]—(hf—hf,)mecz (5-191)
(nf Wi
Finally, the Compton scattering formula is
AL _1zeost o A=Ad=—"(1=cosh) (5-192)

hf W m,c* m,c

This shows that the wavelength change of the incoming photon in a
Compton scattering event depends only upon the scattering angle for a given
target particle. The constant in the Compton formula above can be calculated
explicitly as

h_ __he _ _1240eVnm 4 002430m (5-193)

mee  m,c>  0.511x10%eV

and is called the Compton wavelength for the electron. It corresponds to
the wavelength of a photon that has energy equal to the rest mass of an
electron. With this taken into account, the Compton scattering formula for an
electron can be written as

h (1-cos8)=A+0.00243nm(l—cos @)  (5-194)

m,c

A=A+Al=A+
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From this equation it can be concluded

e the change in wavelength, A4, does not depend upon the wavelength of
the incident photon

o for higher-energy photons, the wavelength decreases such that the same
change in wavelength corresponds to a larger difference in energies

+ for low photon energies, the energy difference, (kf) - (Af'), is small, while
for high photon energies (for example order of MeV) the electron may
receive over 75 % of energy of the incoming photon

o the change in wavelength, A4, depends only on the electron scattering
angle

o the change in wavelength, A4, is independent of the medium.
The following relation between the scattering angles of the photon and

the recoil electron may be determined from Fig. 5-24

2
m,c

cot%z[l+—ﬂ——}an¢ (5-195)

Example 5.16 Energy of Compton scattered photons

For a photon of energy hf = 200 keV that is Compton scattered on electron
through an angle of 45°, calculate the energy and frequency of the scattered photon
as well as the energy and the momentum of the recoil electron.

Applying the Compton scattering formula it follows

A=A+44= /1+—f’—(1 —cos @) = A +0.00243nm(1 - cos 0)

m,c

A A (I-cos6) 1 1 (l-cos@)
+— = — =t

he  he mec2 E E mgc2

1 1 (1—cos 45°)
+

- = E =(hf)=179%eV
E 200keV  511keV

The frequency of the scattered photon is

. 179%keV  (179x10°eV)(1.6x10™" J/eV)

” = 4.32x10"Hz
h 6.63x107" Js
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The energy given to a recoil electron
AE = hf —hf =200-179 = 21keV
The total energy and the momentum of the recoil electron

E=AE+ mﬂc2 =21keV +511keV = 532keV

E = (pec)2 +<mec2 )2 —

JE -mict 144.94x10°eV "
= x1.6x107JeV —

¢ 3% 10" m/s
p, =7.73x10" kgm/s

p.=

The following is an analysis of some aspects of Compton scattering:

1. The dependence of the scattered photon energy on incident photon
energy and photon scattering angle (6):

The energy of the scattered photon, (E' = hf ') depends on the energy of
incident photon, (E = hf) and the scattering angle, (6) as

01 teewo o B

W mc m,c? +E(1-cos )

(5-196)

If the ratio of energies, E / E, is plotted against the incident photon
energy for various scattering angles (see Fig. 5-26), the following can be
observed:

e For incoming photon energies smaller than ~ 50 keV, the energy of the
scattered photon is nearly equal to that of the incident photon. At these
low incident photon energies, Compton scattering is similar to Rayleigh
(coherent) scattering in which the energy of the scattered photon remains
unchanged (the scattered photon is only deflected).

e In the case of complete forward photon scattering (& = 0), the energy of
the incident photon is unchanged.
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Figure 5-26. Ratio of scattered to incident photon energy vs. incident photon energy and
photon scattering angle in the Compton Effect

¢ Compton scattering is an efficient interaction type for reducing photon
energy at large scattering angles. The maximum reduction in photon
energy is obtained for backscattering, at &= 180°,

2. The angular distribution of the scattered photons and recoil
electrons:

The scattering angle for the recoil electron varies from 0° to 90°. The
maximum energy that a recoil electron can obtain in Compton scattering
is in a head—on collision in which the electron scatters at nearly zero
angle (it continues its trajectory in straight line of the impact photon) and
the photon is scattered backward at the angle of 180°. The minimum
energy that a recoil electron receives is during the collision in which the
photon trajectory is constant (scattering angle of a photon is zero) while
the electron scatters at nearly 90°. The probability for an electron to be
scattered at an angle of zero increases with incident photon energy as
shown in Table 5-11. This table further shows that for a given photon
scattering angle, the recoil electron scattering angle decreases with
increasing incident photon energy.

3. Cross section for Compton scattering:

The cross section for the Compton scattering of photons with incident
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energy hf, through a scattering angle &, is given by the Klein—Nishina
formula. In general, the formula suggests that the probability for the
Compton Effect to occur for an element Z is proportional to Z / hf . If the
incident photon energy is measured in the units of electron rest mass,
ie. o = hf | m,?, then the Klein—Nishina formula for total Compton
scattering cross section (integrated over the photon scattering angle & to
give the energy dependence of the cross-section per electron) can be
written as

2(1+ o
It lra) 1,142
, | o 1+20 o
O compton :27[’/8 (5'197)
& 1 1+3a
+—In(1+2a)- >
2 (1+2e)

where r, is the classical electron radius, also called the Compton radius,
and is defined as the radius, r,, of a sphere which has charge ¢ and
electrostatic potential energy, U, equal to the rest mass energy of the
electron. That is

(5-198)

Table 5-11. Angular distribution of recoil electron (@) as a function of incident photon energy
(hf) and photon scattering (6)

hf f= 0= 0= 0= 0= 0= o= 0=
MeV) 1° 5° 10° 30° 60° 90° 120° 150°
0.01 89.49 87.45 84.90 74.72 59.52 44.44 29.52 14.72
0.1 89.40 87.01 84.03 72.24 55.38 3991 2577 12.63
1.0 88.52 82.64 75.50 51.61 30.36 18.68 11.05 5.18
10 79.82 48.07 29.06 10.28 4.81 278 1.61 0.75

100 30.22 6.64 3.33 1.09 0.50 0.29 0.17 0.08

Solving for the electron radius

. ke*  (8.987x10°Nm?*/C*)(1.6x107°C)?
“me? (0.511x10°eV)(1.6x107° Nm/eV) (5-199)

=2.8x10"m
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The total Compton scattering cross section plotted against incident
photon energy is shown in Fig. 5-27. This shows that the probability of
Compton scattering decreases with increasing incident photon energy.

038

Cross Section (barns/nr,2)
o o
o+ [=2%

]
a1

0 2 4 6 8 10
Incident Photon Energy Normalized to Electron Rest Mass

\Fz'gure 5-27. Total Compton scattering cross section vs. incident photon energy

5.2.3 Correction for Bound Electrons and Coherent (Rayleigh)
Scattering

Compton scattering is valid under the assumption that the electron is free.
This assumption is only applicable when the binding energy of the electron
is much smaller than the energy of the incident photon. When the incident
photon energy is comparable to the electron binding energy, a more
complicated, semi—empirical relation must be used to evaluate the
incoherent scattering. Such scattering interactions occur for low incident
photon energies, small photon scattering angles and highly bound electrons
(electrons in the inner shells of an atom). Thus, the scattering cross section
for bound electrons decreases at low photon energies. The dominant
interaction at low photon energies is the photoelectric effect. The effect of
electron binding energy thus becomes negligible at these energies and the
error introduced by neglecting the binding energy is small.

In competition with the incoherent scattering of photons by individual
electrons is coherent (Rayleigh) scattering. When low energy photons scatter
at a small angle in a high—Z medium, the energy transferred to an electron is
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so small that even excitation of that atom is not possible. The energy is thus
absorbed by the entire atom and even this small amount of energy will cause
an atom to recoil. The energy loss of the incoming photon is considered to
be negligible. Fig. 5-23 shows that coherent scattering cross sections greatly
exceed the incoherent scattering at low photon energies in a high—Z medium.
In radiation shielding calculations, however, this type of scattering is usually
neglected since the dominant method of energy attenuation is through
photoelectric effect.

5.2.4 Pair Production (y + Atom - e' + ¢” + Atom)

In this process, the incident photon is absorbed and an electron—positron
pair is created (see Fig. 5-28). The photon generates this electron—positron
pair in the Coulomb field of the nucleus and this interaction has a photon
threshold energy that is equal to the rest mass energies of two electrons,
2mec2 = 1.022 MeV. The same interaction can occur in the Coulomb field of
an electron, with a threshold energy of 4m.c* = 2.044 MeV. The probability
of pair production in the electric field of nucleus is however significantly
higher and is the only interaction analyzed further.

Electron

Incident Photon
hf > 2m c?

Positron

Before: Atom After: Atom

Figure 5-28. Pair production

In pair production

o The total charge is conserved: a photon with zero electric charge
generates a pair which also has a total charge of zero (electron with
negative charge and positron with positive charge)

e According to the energy conservation law:
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Incident photon energy = Energy used to generate the pair + Kinetic
energy of the positron + Kinetic energy of the electron

hf = 2mec2 +T"+T"=1.022+T"+T~ (MeV) (5-200)

e According to the momentum conservation law: pair production cannot
take place in an empty space because some third entity must absorb the
momentum (p=h/A =hf/c) of the initial photon. The photon momentum is
usually absorbed by an atomic nucleus. The following example shows
why it is impossible for a photon to transfer all of its energy to a free
electron. Consider a photon of energy 4f and momentum Af/c. If the
photon was to transfer all of its energy to an electron of mass m and
velocity v, then from the conservation of energy

1
hf = —mv’
2
and conservation of momentum
h —f— =mv
c

Eliminating 4f from these two equations gives
v=12c,

which is an impossible result since no particle can travel faster than light.

The electron and positron have energies equal to the difference between
the initial photon energy and 2m,.c’. The energy spectra of the emitted
electron and positron are continuous and are very similar to one another.
The scattering angles of the positron and electron as well as the angular
dependence on photon energy are complex and not easy to describe. This is
due to the involvement of the nucleus in the momentum distribution after the
interaction. For very high photon energies, the average scattering angle of
the electron and the positron is proportional to 0.511 MeV/hf (MeV) .

The total cross section for pair production per atom divided by Z* is
graphically shown for various materials in Fig. 5-29. It can be observed that
the cross section for all of the elements does not significantly change for
incoming photon energies up to 10 MeV. For higher energies, the cross
section for different materials starts to depart. The cross section for pair
production in the electric field of an electron is also depicted in Fig. 5-23.
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Figure 5-29. Cross section for pair production in different materials (cross section for pair
production in the Coulomb field of the nucleus is divided by Z2, cross section for the pair
production in the Coulomb field of an electron is divided by Z)

The cross section depends on Z of the material and thus it can be

considered important for low-Z media. The cross section also increases with
incident photon energy. This dependence is nearly logarithmic

o, o< Z* In(hf) (5-201)
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The positron that is formed very quickly disappears in an annihilation
process that involves another electron. Annihilation (e*e” =2 ), which is the
inverse of pair production (y = ¢'¢’), occurs when a positron encounters an
electron. The energy conservation equation for an annihilation event is

2m,c® + K+ K~ =2hf (5-202)

The first term represents the rest energy of the electron-positron pair, the
second and third terms are the kinetic energies of the positron and electron
before the collision, and the term on the right-hand side represents the
energy of the two photons created in the reaction, each having the same
frequency f and energy Af. According to the energy conservation law, the
value of 4f must be at least m,c* = 0.511 MeV.

NUMERICAL EXAMPLE

Photon Attenuation in Common Shielding Materials
Aluminum and lead are two materials commonly used in high energy
photon shielding. Using the data in Table 5-8, construct an attenuation plot
of a 1 MeV photon beam passing through aluminum (p = 2.7 g/cm3) and
lead (p = 11.34 g/cm3). Comment on the apparent effect of the material
density on gamma attenuation.

Solution in MATLAB
clear all
% Mass attenuation coefficients at IMeV
mu_Al = 0.06146; %cm”"2/g
mu_Pb = 0.0757,
rho_Al =2.7; %g/cm”3
rho_Pb =11.34;
mu = [mu_Al*rho_Al mu_Pb*rho_Pb];
x = linspace(0,30);
forj=1:2

fori=1:100

I(i,j) = exp(-mu(j)*x(1));

end
end
figure
hold on
plot(x,1(:,1).’k")
plot(x,1(:,2),'’k:")
xlabel('Distance (cm)’)
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ylabel('Fractional Intensity")
legend('Aluminum',Lead")

Results show that higher—Z materials are more effective as photon shields.

1

Fractional Intensity
(=] o [ =] o
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Figure 5-30. Attenuation of a 1-MeV photon beam in aluminum and lead

PROBLEMS

5.1. Expain do o particles produce bremsstrahlung radiation?

5.2. Estimate the source energy of bremsstrahlung radiation from the lead
container shielding 5 mCi source of **P (maximum B energy is 1.71 MeV). How
much heat will be deposited in the wall of the container?

5.3. Anenergy of 35.5 eV is required to produce an ion pair. Estimate how many
ion pairs are produced by o particle with a 1.0 MeV kinetic energy and how
much total charge is produced?

5.4. If the ionization potential of air is 33.9 ¢V, how many ion pairs are produced
by an 5MeV o particle? How many ion pairs would produce a § particle of the
same energy? What would be the linear ranges of these two particles?

5.5. Determine the range of 2 MeV o particle in aluminum. Compare the value
with that given in Table 5-3.
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5.6. The half-value shielding layer is 5 mm thick. Calculate the shiled thickness
to attenuate 99.912 % of the incoming 7y radiation.

5.7. Use the data from Table 5-8 to calculate the relative number of 1 MeV and
0.1 MeV vyrays that emerge from 15 cm thick water tank. Assume that the yrays
beam consists of equal number of both when entering the water tank.

5.8. Calculate the thickness of air, water and aluminum that will stop 20 % of a
beam of 1.5 MeV 7yrays.

5.9. In the table http://physics.nist.gov/PhysRefData/contents.html find the
values needed to determine and calculate the fraction of energy in a 30 keV X-
ray beam deposited in 5 mm of soft tissue.

5.10. A yray (1.46 MeV) from “K is scattered through an angle of 30° and then
again through an angle of 150°. Calculate the energy of y ray after second
scattering.

S.11. If the light of wavelength 400 nm is incident on a metal with a work
function 5.5 V calculate the external voltage that must be applied to the metal to
have the electrons be released from its surface?

5.12. A completely ionized carbon nucleus is accelerated through a potential
difference of 7000 V. What is the final kinetic energy of the carbon?

5.13. If the work function of a material is 10 eV what is the lowest frequency
photon that can cause electrons to be ejected?

5.14, For a 200 keV Compton photon scattered at 45° calculate its energy and
the magnitude and direction of the momentum of the recoil electron.

5.15. Calculate and plot the linear and mass ranges of o particle, proton and
electron as a function of energy in water, aluminum, lead and graphite.

5.16. Determine the linear energy loss resulting from the passage of a 0.1 MeV B
particle through the graphite (density = 2.25 g/cm®)? Calculate the mass stopping
power and the relative (to air) mass stopping power.

5.17. From http://physics.nist.gov/PhysRefData/contents.html determine the
minimum energy that a proton must have to penetrate 30 cm of tissue (density 1
g/em®), the approximate thickness of the human body. Using the same table
calculate how much energy does an o particle need to penetrate 1 cm of the
tissue layer?
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5.18. In a Compton scattering experiment it is found that the fractional change in
the wavelength is 1.0 % when the scattering angle is 60°. What was the
wavelength of the incident photons, and what would be the wavelength of the
photons scattered through an angle of 90°.

5.19. Plot the Compton scattering energy of scattered beam (4f/hf), for the
initial photon energies of 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 MeV as a
function of photon scattering angle.

5.20. Calculate the necessary shielding (glass with density of 2.23 g/cm’ and
plastic with density of 1.03 g/cm’®) to completely stop the B particles from *H.
The maximum f particles energy is 0.019 MeV and the average energy is 0.0057
MeV.

5.21. Tabulate the cut-off frequency for elements given in Table 5-10. Calculate
the kinetic energy of ejected electrons.

5.22. Prove the Eq. (5-195).

5.23. Write the computer code to compute the maximum range of a proton in
aluminium, air, silicon and water for the range of energies from 0.001 eV to 1
GeV.

5.24. Use the Bethe-Block formula and write the computer code to calculate
energy loss of an a particle and proton in varying the ratio of particle velocity to

the speed of light from zero to one.

5.25. Repeat the previous problem with electrons. What can you conclude from
the results?

5.26. Discuss the head—on collision of charged particles.
5.27. Describe the inelastic scattering of charged particles with electrons.

5.28. How inelastic scattering of charged particles take place with the nucleus?
Compare the aspects of interactions with the Problem 5.27.

5.29. Explain the bremsstrahlung radiation and define the bremasstrahlung
hazard.

5.30. Explain the condition for electron positron annihilation process.
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NEUTRON PHYSICS

Interactions, Fission and Cross Sections

“...1 feel that I ought to let you know of a very sensational new development in
nuclear physics. In a paper in the Naturwissenschaften Hahn reports that he finds
when bombatding uranium with neutrons the uranium breaking up into two halves
giving eclements of about half the atomic weight of uranium. This is entirely
unexpected and exciting news for the average physicist. The Department of Physics
at Princeton, whete I spent the last few days, was like a stirred-up ant heap. Apart
from the purely scientific interest there may be another aspect of this discovery,
which so far does not seem to have caught the attention of those to whom I spoke.
First of all it is obvious that the enetgy teleased in this new reaction must be very
much higher than in all previously known cases. It may be 200 million (electron-)
volts instead of the usual 3-10 million volts. This in itself might make it possible to
produce power by means of nuclear energy, but I do not think that this possibility
is very exciting, for if the enetgy output is only two or three times the energy input,
the cost of investment would probably be too high to make the process
wotthwhile. Unfortunately, most of the energy is released in the form of heat and
not in the form of radioactivity.

I see, however, in connection with this new discovety potential possibilities in
another direction. These might lead to a large-scale production of energy and
radioactive elements, unfortunately also perhaps to atomic bombs. This new
discovery revives all the hopes and fears in this respect which I had in 1934 and
1935, and which I have as good as abandoned in the course of the last two years”. ..
Leo Szilard (1898 - 1964) in his letter to Luis Strauss on January 25th, 1939,
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1. INTRODUCTION

Neutrons together with protons are the constituents of atomic nuclei. The
neutron was discovered after more than two decades of speculation that
electrically neutral particles exist in atoms (see Chapter 3). Because the
neutron is electrically neutral, it easily interacts with nuclei and does not
interact directly with electrons. Since the nucleus of an atom is about one
ten—thousandth the size of the electron cloud, the chance of neutrons
interacting with a nucleus is very small, allowing them to travel long
distances through matter. As a free particle, the neutron is an important and
yet unique tool used for various applications: in medicine to initiate
powerful nuclear interactions whose products can directly destroy cancer
cells (neutron capture therapy for example), for research on physical and
biological materials, for imaging through easy allocation of light atoms
especially hydrogen, to investigate properties of magnetic materials
(neutrons possess a magnetic moment and thus act as small magnets), to
track atomic movement (thermal neutron energies almost directly coincide
with the energies of atoms in motion), and to maintain the fission chain
reaction in nuclear reactors. Free neutrons are unstable (see Chapter 3) and
break up in short time by B~ decay to a proton, electron and a neutrino.
However, free neutrons will most likely interact with the surrounding matter
and disappear through nuclear interactions long before they decay.

2. NUCLEAR REACTIONS

A nuclear reaction involves interactions between nuclear particles
(nucleons, nuclei); the outcome of which are other nuclear particles or
v rays. Assuming, for simplicity, only two initial and two produced particles,
a nuclear reaction is usually written as follows (see Fig. 6-1)

A+B—>C+D

Every nuclear interaction must obey the following laws

e Conservation of nucleons: the total number of nucleons before and after a
nuclear reaction is not changed

e Conservation of charge: the sum of the charges of all particles involved
in the reaction before and after must be preserved

e Conservation of momentum: the total momentum of interacting particles
before and after the reaction is not changed

e Conservation of energy. energy, including the rest mass energies of
particles, is not changed by a nuclear reaction.
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After

Before

Figure 6-1. Schematics of a typical nuclear reaction

The law of conservation of energy can be also used to predict whether a
certain interaction is energetically possible. For the assumed interaction of
particle A with particle B that produces two particles C and D, the sum of
energies before and after the interaction takes into account the kinetic
energies (T) and rest mass energies (mc”) of each individual particle

T, + Ty +myc? +myc® =T, + T, +mpc* +mpc? (6-1)
Equation (6-1) may be rewritten as
(T +Tp) = (T, +Ty) =[(m, +my) — (mg + mp)lc? (6-2)

showing that the change in kinetic energies of the particles involved in a
reaction is equal to the change in their rest mass energies. The change in rest
mass energies of the particles involved in the reaction is known as the
(Q—value of the reaction

Q=[(m, +mg)—(mg +mp)lc (6-3)

The sign of the Q—value defines the reaction

e Exothermic reaction for which @ > 0: nuclear mass is converted into
kinetic energy and there is a net increase in kinetic energies of the
particles

o Endothermic reaction for which Q < 0: kinetic energy is converted into
mass and there is a net decrease in the energies of the particles.

Example 6.1 Nuclear reaction

Complete the following reaction, calculate the Q-value, and comment on its sign

35U (n, 7) P%U. The rest masses: myss = 235.0439231 amu, m, = 1.0086649 amu,
Maze = 236.0455619 amu.
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The atomic number of °U is 92 and that of the neutron is zero. The sum of the
atomic numbers of the incident particles is thus 92. Since the atomic number of *°U
is also 92, it follows that the produced particle should have an atomic number equal
to zero. The total atomic mass number of the incident particles is 235 + 1 = 236. The
total atomic mass number of the produced particles must be the same. Since the
atomic mass number of 2°U is 236 it follows that the additional particle has atomic
mass number zero. It therefore follows that the other particle is a Yy ray:

25 (n, y) 25U

For this reaction the Q-value is

Q =[(mys +m,) = (my +m)]c* =0.0070261amu

0 =0.0070261x931.5 = 6.54 MeV > 0, thus the reaction is exothermic.

3. NEUTRON SOURCES AND NEUTRON
CLASSIFICATION

Neutrons are produced from neutron sources such as a nuclear reactor, a
radioisotope, or an accelerator—based source. A nuclear reactor is the most
inexhaustible source for the production of neutrons of all energies. However,
the complexity of a reactor and the systems involved as well as the cost
make simple and broad use of reactors impractical for small scale indusrial,
medical, or research applications. On the other hand, radioisotope neutron
sources are used in an innumerable amount of industrial applications and are
ideal when a continuous source is needed. However, such a source is not
appropriate for applications that require neutrons of a specific energy or
emission of neutrons in specified time pulses. One example of a large
accelerator-based neutron source is the Spallation Neutron Source under
construction at Oak Ridge National Laboratory in the United States. Small
scale accelerators and compact pulse neutron sources use nuclear reactions
to produce neutrons. The most common are the deuterium-deuterium CH -
*H) and deuterium—tritium (2H —*H) reactions

*H (*H, n) *He Q=17.59 MeV

’H (*H, n) “He Q =3.27 MeV

These reactions produce 14.1 MeV and 2.5 MeV neutrons, respectively.
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Pulse neutron sources (also called pulse neutron generators) have found a
number of applications in science, industry, medicine, and technology. To
name a few

— Real—~time analysis of bulk materials: Materials such as cement and coal
moving on conveyor belts are examples of bulk materials that are
extensively examined by applying fast and thermal neutron beams for
activation analyses. The purpose of such analysis is to measure the
content and the amount of the elements present in the material. For
example, the information obtained from neutron activation analysis of
cement enables the optimal combination of raw material constituents as
well as verification of chemical consistency. Another example is the
application of neutron activation tests in on—line measurements of sulfur
and the content of other elements in coal which are important for
predicting its combustion efficiency and environmental impact.

— Detection of explosive, chemical and nuclear materials: Such materials
may be accurately detected for fast security checks of airline—cargo or
other unknown packages.

— Medical applications: An accurate and simple measurement of the
body’s fat is achieved using neutron pulse generators. The measurement
is based on neutron interactions with carbon and oxygen. By examining
the quantity and distribution of carbon and oxygen, it is possible to
evaluate the health of individuals with respect to obesity, aging and
cardiovascular disease.

A very special interaction that results in a high production rate of

neutrons of various energies is the interaction of an o particle with a

beryllium atom:

’Be (o, n) *C 0=5.75MeV

Since the Coulomb repulsion force between the beryllium nucleus and
the incoming o particle is not high, this reaction is very suitable for neutron
production. The o particles are emitted through the radioactive decay of
isotopes such as **Ra, *’Rn, *'°Po, **Pu, and **'Am. Beryllium is the only
naturally occurring isotope of beryllium and thus a neutron source utilizing
this element is easy to realize. Namely, powders of both beryllium and the o
emitter are mixed together in ratios from 20:1 to 300:1 and the mixture is
encapsulated. Such sources constantly emit neutrons and the energy
spectrum is usually complex because decay products have different
o energies and thus produce neutrons with different energies. Figure 6-2
depicts the neutron energy spectrum emitted from an americium-beryllium
(AmBe) neutron source. Neutrons can also be produced in the reaction of y
rays with targets most commonly made of beryllium or deuterium (for
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example heavy water). Such reactions are referred to as photoneutron
sources. The binding energy of the neutrons in these light elements is low
and a large amount of energy is therefore not required for the reaction to
occur:

’Be (v, n) *Be 0 =1.63MeV

H (y,n) 'H Q=223 MeV

Neutrons produced by photodisintegration of nuclei are monoenergetic
and such sources are reproducible (in terms of neutron energy). The most
common sources of 7y rays used for these interactions are the 7y rays emitted
in radioactive decays of Na (E, = 2.8 MeV, Ty, = 15 hours) or 1248p
(E7= 1.67 MeV, T1/2 =60.9 days).
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Figure 6-2. Typical neutron spectrum from an americium-beryllium source

Example 6.2 Nuclear reaction that revealed the existence of neutron

As described in Chapter 3, Rutherford was the first to correctly predict the
existence of a neutral particle as a constituent of the nucleus as early as 1920. That
idea has inspired many scientists around the world to start the search for other
constituents of nuclei. Two German scientists, Bothe and Becker, studied the
interaction that is today commonly used to produce neutrons: *Be(o,n)'?C. In their
experiment they discovered that nearly 5 cm of lead reduced the radiation emerging
from the reaction and attributed this phenomenon incorrectly to 7y rays. Now,
consider the same interaction and assume that a neutron produced in that interaction
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has an energy of 5.3 MeV. Calculate the energy of the recoil proton if such a
neutron encountered a head-on collision with a paraffin block (assume the collision
is with a proton only).

Before the interaction, the neutron of mass m, had a velocity v,; while the
velocity of the proton of mass m, was zero. After the interaction, the neutron moves
with velocity v,, and the proton recoils with velocity v,. According to the law of
conservation of energy

1 1 1
Emnvfl =5mn032 +Empvlf (6“4)

The conservation of momentum for the head-on collision (see Chapter 3) gives

mu, =mu, +mo, (6-5)

n“n2

Equations (6-4) and (6-5) can be simplified and combined assuming the mass of
a proton is nearly equal to that of a neutron to give

v =0

14 nl Un2 =0 (6"6)

This result shows that in a head-on collision a neutron is stopped by a proton,
transferring all of its energy to the target. In our example, therefore, the energy of
the target proton after the reaction is equal to the energy of the incident neutron, or
5.3 MeV.

Neutrons are classified according to their energies because their

interactions with matter are energy dependent. The most common classification
is shown in Table 6-1.

Table 6-1. Classification of neutrons

Neutron energy Name
0-0.025eV Cold

0.025 eV Thermal
0.025eV -04eV Epithermal
04eV-06eV Cadmium
0.6eV-1leV Epicadmium
levV-10eV Slow

10eV -300eV Resonance
300eV -1 MeV Intermediate
1 MeV - 20 MeV Fast

> 20 MeV Relativistic
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4. NEUTRON ATTENUATION

4.1 Concept of the Cross Section

The quantitative description of nuclear interactions requires known neutron
cross section data. A rate at which a particular neutron interaction with a given
target material will occur depends on the neutron energy and speed, as well as the
nature of the target nuclei. The cross section of a target material for any given
reaction thus represents the probability of a particular interaction and is a
property of the nucleus and incident neutron energy. In order to introduce the
concept of a neutron cross section, consider a parallel monoenergetic neutron
beam falling on thin target of thickness x and area A, as shown in Fig.6-3. The
intensity of the incident neutron beam is described with the number of neutrons
per unit volume, n, and their velocity, v, as

Io = nv [(neutrons/cm®) - (cm/s) = neutrons/cm?/s] 6-7)
The total number of nuclei in the target of atomic density N is

Total number of nuclei in target = Nax (6-8)

Ite)

| ]
|
———————— R

Tirwet Scattered
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0
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Figure 6-3. Concept of neutron cross section

The number of neutrons that collide with the target nuclei is proportional to
the neutron beam intensity and the total number of nuclei in the target

Number of neutron collisions per second in the whole target = clpNax  (6-9)
where ol represents the number of neutron collisions with the single target’s

nuclei per unit time, and o is referred to as the effective cross sectional area,
frequently called the microscopic cross section. It follows
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o = number of neutron collisions per unit time with one nucleus per unit
intensity of the incident neutron beam

The neutron microscopic cross section thus represents a visible area and for
some interactions is closely equal to an actual area, 7R* (see Example 6.3). The
accepted unit of microscopic cross sections is the barn (b), which is equal to
10 cm® All neutron cross sections are functions of neutron energy and the
nature of the target nucleus. The probability of a neutron undergoing an
interaction in the target as sketched in Fig. 6-3 is equal to the ratio of the
reaction area to the total area:

Xx = [Reaction area] / [Total area] (6-10)

The reaction area of the target (of volume Ax) is defined as the number of
nuclei in the target material, NAx, multiplied by the area of each nucleus, o

_NoAx _
A

2x

Nox (6-11)

Thus, the relation between the microscopic (o) and macroscopic
(Z) cross section is

Z=No [ecm™] _ (6-12)

The number of nuclei in a target material made of a single element (also
called the number density), N, is obtained from (see Chapter 2)

_ N, xp
A

N

(6-13)

where A is the atomic mass number and N, is Avogadro’s number.

Example 6.3 Microscopic and macroscopic cross sections for a single
isotope

Calculate the microscopic cross section based on geometrical area and estimate
the macroscopic cross section for >*Fe, which has a density of 7.86 g/em’. Use the
following empirical relation to estimate the radius of the nucleus, R:
R=(14A4)x 10" m.

The microscopic cross section is estimated based on the nuclear radius
calculated from the Fermi model of the nucleus (see Chapter 3)
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R=144%10"m=1.4x54x10"%m =75.6x10"°m

o=k =x(75.6x 10“‘6m)2 =1.79x10®m? =1.79bamns

Figure 6-4 shows the neutron microscopic cross sections for **Fe and **Mn. It
can be seen that the estimate is close to the measured value. The same empirical

formula can be used for *Mn to estimate the microscopic cross section.
The number density of **Fe is

Ne N, xp (6.023x107)7.86)
A 54

= 8.77 x 107 nuclei/cm’

The macroscopic cross section is thus

X =No =(8.77x10%)1.79x107*)=0.157cm™
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Cross Section (b)
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1.0E-04 | Fe

LOBA06 Lottt
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Figure 6-4. Microscopic cross section for neutron elastic scattering on *>Mn and **Fe
(reproduced using the ENDF plot and MCNP cross section data)

Example 6.4 Microscopic and macroscopic cross section for a
mixture of elements

Calculate the microscopic and macroscopic absorption cross sections for natural
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uranium if Gxs =681 b, and G335 = 2.7 b. The density of uranium is 19 g/cm3.
The abundances (¢) of ®U and **U in natural uranium (neglecting small

amounts of 2*U) are 99.28% and 0.72%, respectively. Thus, the number densities
are

N, xp

38

(6.023x 107 )(19)

=0.9928

Noyyg = € =4.77x10* nuclei/cm’

N,xp (6.023x107)(19)

N =0.0072

vis = Exss =3.50x10” nuclei/cm’

235

The macroscopic and microscopic cross sections of natural uranium are

z
2 = NpyOps + Npyy0pye =0.367cm™ and 0= ——————=7.64b
N23S + N238
4.2 Probability of Neutron Interactions
,.;’
X
i

Figure 6-5. Neutron travel in a homogeneous medium

Neutrons travel with constant direction and speed until they interact with
the medium. Considering only a homogeneous medium, the probability of a
neutron interacting is a function of the distance at which a neutron will

interact, x. This probability can be expressed as a MacLaurin series of
distance x as
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P

 ron(X)=a+bx +cex® +dx’ + .. (6-14)

where a, b, ¢, d, ... are the coefficients of expansion. Since the
interaction of a neutron can not occur at zero distance, the first term is equal
to zero. For a sufficiently small distance ox (see Fig. 6-5), the series shown
in Eq. (6-14) reduces to

(&) = b (6-15)

P reaction
The probability that a neutron will not interact along the distance ox is

P

non—reaction (&C) =1-box (6-16)
Since every interaction is independent of the previous interaction, the
probability that a neutron will not interact along the distance x + dx can be

written as a product of two probabilities
P (x+0x)=P

(X)F, (6x)

non—reaction non—reaction on—reaction ( 6_ 1 7)
= Pnon—reactinn (x)[l - b5X]
Rearranging terms it follows
P ; +ox)-P ;
el 5)3 rcrestonC) —pp 0 (6-18)

Taking the limit as ox > 0 and replacing the constant » with X
(macroscopic cross section)

dPnUn—reac'tion ()C) =_3

dx non—reaction (X)

(6-19)

Integrating Eq. (6-19) gives the probability that a neutron does not
interact and the probability that a neutron will interact along the distance x

Pn()nfreaction (X) = e*f‘x (6 20)
Preaczion (.X') = 1 - eizx

The macroscopic cross section in the above equation is replaced with the
linear attenuation coefficient (1) in case of y ray attenuation (see Chapter 5).
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Example 6.5 Probability of neutron interactions

Calculate the probability that a neutron will travel 5 cm in a block of **Fe (see
Example 6.3 for other data) without an interaction. What is the probability that the
neutron will interact with the medium between 5 cm and 5.5 cm?

From the Example 6.3, the macroscopic cross section for **Fe is X = 0.157 cm’™.
The probability of traveling 5 cm without an interaction is

P

o =Zx _ -0ISTXS _
non~reaction (SCm) =e =e =0.456
In order to calculate the probability of having an interaction between 5 cm and
5.5 cm, we first calculate the probability of traveling an additional 0.5 cm without
interaction, or

P

non-reaction (S'SCm) = eﬁxx = 6_0.157><55 = O~422
Thus the probability of a neutron interacting in the interval between 5 cm and
55cmis

P (5em)—P

non—reaction non-~reaction

(5.5¢m)=0.456-0.422 = 0.034

Alternatively, the product of two probabilities may be used: the probability that a
neutron will not interact along the first 5 cm of travel and the probability that it will
interact in the next 0.5 cm

_ —0.157%5 —0.157x0.5 | _
Rmn—reacrion (Scm)x Preacrion (0.5cm)=¢ X [1 —e il -

=0.456%[1-0.924] =0.034

4.3 Neutron Mean Free Path

The neutron mean free path is, by definition, the average distance that a
neutron will travel in a medium without interacting. It can be obtained from
the probability that a neutron will interact in the distance interval between x
and x+dx. Thus, the probability is equal to the product of these two
probabilities (see Section 4.2 and the Example 6.5)

e The probability that a neutron will not interact along the distance x

Pnon—reaction (X) = e-):x (6-21)

o The probability that a neutron will interact along the distance dx
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Preactirm (dX) =2dx (6-22)

The mean free path has a continuous value and can be obtained by
integrating the product of probabilities assuming the length of neutron travel
can span from zero to infinity

jxe"z"de

Pyl _1 (6-23)
Ie_zx Ydx
0

A

Example 6.6 Neutron mean free path

Calculate the mean free path and the time needed for a neutron with energy
100 eV to have its first interaction in a block of *'Fe (see Example 6.3 for other
data). The neutron mass is 1.67492716 x 10 kg.

The neutron mean free path is equal to the reciprocal of the macroscopic cross
section of the medium, therefore

1
=——=6.37cm

1
Z  0.157cm™

The neutron velocity is obtained from its energy

2T [2x10°x1.6x10™"
v= _=\/ — =1.38%x10"m/s
m, \1.67492716x107

The time to the first interaction is therefore

A 0.0637
p=Z=—2 = 0d6ps
v 1.38%10°m/s

4.4 Reaction Rate and Concept of Neutron Flux

In all situations involving the evaluation of neutron behavior the concern
is to analyze neutron population as a whole and almost never the history of a
single neutron. For the majority of applications (like neutron population
behavior in nuclear reactors, transport of neutrons through shielding
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materials or in biological media), it is important to determine neutron
reaction rates. A neutron interacts with the nuclei of a medium through
scattering from one nucleus to another until it is absorbed or it escapes the
boundary of a system. The mean free path that a neutron travels before it
interacts can be defined as the mean free path for scattering, A, = 1/%,, and
for absorption A4, = 1/Z,. The total mean free path is thus equal to:
Aioe = 1/Z,,. The reaction rate per unit volume of the target material and unit
time for an i type of interaction is

R, = % =®%, =®No, (6-24)

i
[

where ® represents the total distance that the neutron travels in unit time
and unit volume of a given target material. This variable is also called the
neutron flux and has units of number of neutrons per unit time and unit area,
neutrons/cm?/s.

If all neutrons have the same velocity v and the neutron density is 7, then
the neutron flux and neutron reaction rate may be written as

O =nv (6-25)

R, =nuNo;, (6-26)
When neutrons have different velocities, it is necessary to define the

neutron density as a function of velocity distribution such that n(v)dv
represents the number of neutrons having velocity between vand v+ dv

oo

n= jn(v)dv (6-27)

0

In this case, the neutron flux and reaction rate become integral values

= jn(v)wv (6-28)
0

R, = [n(w)wNo, (v)dv (6-29)
0
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If the average velocity of a neutron population

oo

j n(V)udv
T2 (6-30)

o0

jn(u)dv

0

is used, then the neutron flux is
®=nv (6-31)

Also, it is possible to define the average microscopic cross section

[o. n@yudv
o= (6-32)

l oo

In(v)vdv

0

which gives the relation for reaction rate
R,=®No, (6-33)

Example 6.7 Reaction rate and flux

In a medium consisting of 10% atoms of fissile material, a neutron flux is
sustained at 5 X 10" neutrons/cm?s. If the reaction rate is 1.5 x 10" reactions/cm’/s,
calculate the macroscopic and microscopic cross sections of the medium.

The cross sections can be obtained from the following relations

D =nv
R 1.5x10" -
R =nuNo,=@%, — X =—t=—""010© =003cm™”
D 5x10
zZ 003 _r
0, =—-=——=3%10"cm” = 300b
N 10
4.5 Neutron Interactions

Neutron interactions can be described in three steps: the condition before the



NEUTRON PHYSICS 251

interaction when the neutron is approaching the nucleus, an intermediate stage
when the incident neutron forms a compound nucleus with the target, and the
condition after the interaction. In the intermediate stage, the neutron is
incorporated into the nucleus and forms a compound nucleus that has an atomic
mass number increased by one in comparison to the target nucleus. The
formation of the compound nucleus also means that the incident neutron transfers
all of its energy to the target nucleus. The time for the formation of the compound
nucleus is approximately the time that an incident neutron needs to travel across
the target nucleus (about 10" sec). A newly formed compound nucleus is highly
excited and unstable. It therefore decays after a relatively long period of time
(typically from 10™ to 10™ second). Different types of neutron interactions are
illustrated in Fig. 6-6.

Before Intermediate After

Scattering

Elastic Scattering (a,;)
-Potential Scattering (o)
-Resonance Scattering (o)
Inelastic Scattering (o;,)

«.
®o—

Neutron  Nucleus Compound nucleus Absorption

Radiation capture (&, or o)
Neutron - protron (o)
Neutron - alpha (5, )

Fission (s,)

/ o Fe+n (elastic scatiering)
== ¥ Fe+n' finelastic scattering)
Q 5TFe +y fradiative capiure)

55Fe + 2n (n,2n reaction)

¥ Fe+ g ——— 'R

Figure 6-6. Different types of neutron interactions

One of the important and characteristic features of neutron interactions
with matter that proceed through a compound nucleus formation is that cross
sections exhibit maximum values at certain incident neutron energies. These
maximum values are called the resonances (see example for neutron cross
sections for different types of interactions with 56Fe in Fig.6-7). Nuclei have
various excited states that correspond to different configurations of the
nucleons within the nucleus (see Chapter 3). An incident neutron and a
target nucleus are more likely to combine and form a compound nucleus if
the energy of the incident neutron is such that the compound nucleus is
produced in one of its excited states. These resonances appear in the cross
section because it is necessary to form the compound nucleus before the
interaction can proceed. The excitation energy of the compound nucleus is
equal to the kinetic energy of the incident neutron plus the separation
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(binding) energy of the neutron in the compound nucleus.
In the following sections the reactions shown in Fig. 6-6 are discussed

with the exception of the fission reaction, which is described in detail in
Section 5.
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Figure 6-7. Cross section for various interactions of a neutron with *Fe

4.5.1 Elastic Scattering (n, n)

There are two possible ways for a neutron to scatter elastically from a nucleus

"~ e Resonance or compound elastic scattering: the neutron is absorbed by the
target nucleus to form a compound nucleus followed by re-emission of a
neutron, and

e Potential elastic scattering: the neutron is scattered away from the
nucleus by the short range nuclear force.

Potential scattering is the most common form of neutron elastic
scattering and is schematically depicted in Fig. 6-8. The more unusual of the
two interactions is resonance elastic scattering which is highly dependent
upon initial neutron kinetic energy. The cross section for this interaction
exhibits a resonance region as shown in Fig. 6-7.
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Figure 6-8. Schematics of the elastic neutron scattering

Potential elastic scattering is more common and can be understood by
visualizing the neutrons and nuclei as billiard balls with impenetrable
surfaces. Potential scattering in which the neutron never actually touches the
nucleus and a compound nucleus is not formed takes place with incident
neutrons of energies up to about 1 MeV. Neutrons are scattered by the short
range nuclear forces as they approach the nucleus. The cross section is
approximately constant (see Fig. 6-7) and is expressed by the relation

o, (potential scattering) = 47R? (6-34)
where R is the nuclear radius (see Chapter 3).

Example 6.8 Potential elastic scattering

Using the experimental elastic scattering data from Fig. 6-7, estimate the radius
of the *°Fe nucleus.

From Fig. 6-7, the potential elastic cross section has a constant value of nearly
12 b from about 0.03 eV to 0.6 MeV. Thus, 47R* = 12 x 10 cm®. Solving for R, we
obtain R=9.77 x 10" em.

An elastic scattering reaction between a neutron and a target nucleus does
not involve energy transfer info a nucleus. Momentum and kinetic energy
are, however, conserved and there is usually some transfer of kinetic energy
from the neutron to the target nucleus. The target nucleus thus gains the
amount of kinetic energy that the neutron loses and moves away at an
increased speed. If the neutron collides with a massive nucleus it rebounds
with almost the same speed and loses a negligible amount of energy.
However, light nuclei will gain a significant amount of energy from such a
collision and will therefore be more effective in slowing down neutrons.

The largest energy transfer occurs for a head-on collision in which the
neutron does not change its initial direction. Neutrons lose most of their
incident energy when they interact elastically with light elements such as
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hydrogen. This is because the hydrogen nucleus has a mass (of one proton)
nearly equal to that of the neutron.

Materials with a large content of hydrogen, such as water or paraffin, are
therefore very important in the slowing down of neutrons (see Chapter 7).
For example, in the case of hydrogen, the energy of a head—on scattered
neutron will be zero, which means that the neutron transferred all of its
energy to the hydrogen nucleus (see Example 6.2).

4.5.2 Inelastic Scattering (n, n’)

In order for a neutron to undergo inelastic scattering with a nucleus its
incident energy must be sufficient to place the target nucleus in an excited
state. As a result, the inelastic cross section exhibits threshold energy (and is
zero up to that energy). In general, the energy levels of the excited states of a
nucleus decrease with increasing mass number. Elements of high and
moderate mass number usually have minimum excitation energy in the range
of 0.1 MeV to 1 MeV. Elements of lower mass number have increased
nuclear excitation energies. This is why neutron inelastic scattering is more
probable for heavier nuclei and thus the inelastic cross section is non—-zero
over a large energy region for heavier nuclei.

15
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Figure 6-9. Inelastic cross section for **U (data plotted from ENDF)

At energies well above the threshold value, the inelastic cross section is
nearly equal to the elastic cross section. Three examples of inelastic cross
sections in heavy, moderate and light elements are shown in Fig. 6-9 to 6-11.
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For example, it can be seen that the threshold energy for oxygen is around 6
MeV while for **U it is only 44 keV. Neutrons cannot undergo inelastic
scattering in hydrogen or deuterium (see section 4.5.5). Magic numbered

nuclei behave like light nuclei with respect to inelastic scattering for the
same reason.
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Figure 6-10. Inelastic cross section for 3%Fe (data plotted from ENDF)
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Figure 6-11. Inelastic cross section for 238y, 55Fe and '%0 (data plotted from ENDF)
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Inelastic scattering proceeds in two steps as depicted in Fig. 6-12. The
interaction involves formation of a compound nucleus as an intermediate
stage of the interaction process.

The compound nucleus is formed in an excited state due to the energy
imparted to it by the incident neutron. In the next step, a neutron of lower
kinetic energy is expelled from the nucleus leaving the nucleus in a lower
exited state. The nucleus then regains stability, usually by emitting the
excess energy in the form vy rays.

Before Intermediate After
Ax
¥
o — M
Neutr A+l
e X X .\
Excited compound nucleus
Emitted neutron
E
Incident neutron
E, )
Emitted y ray
Y
Target nucleus
E+E,=E,

Figure 6-12. Schematics of neutron inelastic scattering gamma ray
The energy of the emitted y rays is equal to the excess energy of the
excited state of the target nucleus. The total incident neutron energy, Eo, is
distributed between the emitted v ray, E,, and the expelled neutron, E, see
Fig. 6-12

(6-35)

4.5.3 Radiative Capture (n, 7)

Neutron capture (absorption of a neutron) is often called radiative capture
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because 7y rays are produced in the majority of these reactions. In this
reaction neutrons form an isotope with mass number increased by one from
the original nucleus (see Fig. 6-13).

The newly formed nucleus can be radioactive and will therefore decay.
The neutron capture reaction does not require any specific neutron energy
and the reaction can occur at any neutron energy level. These reactions are
almost always exothermic (positive Q-value) because the binding energy of
the newly formed nucleus is larger than the sum of the binding energies of
the neutron and the original nucleus.

Before Intermediate After
Neutron Arly

Figure 6-13. Schematics of radiative neutron capture

The radiative capture cross section is usually divided into three regions:

e In the low—energy region, for most nuclei, the radiative capture cross
section varies as the inverse square root of incident neutron energy. Since
the neutron speed is proportional to the square root of energy, the
radiative cross section is said to vary as 1/v. Since the cross sections are
usually plotted on a log-log scale the 1/v dependence appears as a
straight line with a slope of —1/2, as can be seen from Fig. 6-14 to 6-17.
Nuclei that do not show 1/v dependence are called non—1/v absorbers.

e Above the 1/v region is a resonance region in the same energy range as
the resonance region for elastic scattering (because the nucleus formed in
radiative capture is identical to the compound nucleus formed in elastic
scattering). The radiative capture cross section in the resonance region
may be expressed using the Breit—Wigner formula.

e Above the resonance region (ending around 1 keV in heavy nuclei and at
higher energies in lighter nuclei) the radiative cross section drops rapidly and
smoothly to very small values, as shown in Fig. 6-14 to 6-17.
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Figure 6-14. Radiative capture cross section for **Fe in comparison with its total and elastic
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Figure 6-15. Radiative capture cross section for 2y
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Figure 6-16. Radiative capture cross section for %Nb
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Figure 6-17. Radiative capture cross section for *Fe
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4.5.4 Charged Particle Emission (n, o), (n, p)

A charged particle reaction usually leads to emission of an o particle or a

proton from the nucleus (see Fig. 6-18); thus charged particle reactions with
slow neutrons are rare.

Before Intermediate After
\ $ix
i
o — MM
Neutron A+l

X = .w‘

\ 71X

Neutron Ay A*Zl X .

4

Figure 6-18. Schematics of charged particle emission

Examples of reactions in which the Q-value is positive (no incident

neutron energy required) are

"B 4+ n > "B* > "Li + o:: The cross section for this reaction is shown in
Fig. 6-19. It can be observed that the cross section is very large at low
neutron energies. For this reason, '°B is used as an absorber material for
unwanted low energy neutrons. As neutron energy increases, the cross
section decreases following 1/v dependence. The charged particles
produced in this reaction are ejected in opposite directions with relatively
high energies. They produce considerable ionization along a short range
(see Chapter 5) and are capable of causing considerable damage to
biological tissue. This reaction is the basic interaction upon which boron
neutron capture therapy for the treatment of brain and skin cancers was
developed.

SLi+n = "Li* © *H + o: This reaction is similar to the previous one and
also shows strong 1/v dependence. The remaining nucleus is tritium, a §°
emitter and an isotope of special interest in fusion science. This reaction
is used for the production of tritium.
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e 0 4+ n - N + p:is an endothermic reaction of interest in reactor
design since it represents the source of radioactivity when water is used
as a moderator.

The majority of interactions involving charged particle emission,
however, are threshold reactions requiring the neutron to posses a minimum
amount of energy. The cross sections tend to be small, especially for heavy
nuclei (see Fig. 6-20).
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Figure 6-19. Cross section for '°B + n interaction

4.5.5 Hydrogen and Deuterium

Hydrogen and deuterium are present in a majority of nuclear reactors.

These nuclei interact with the neutrons in a specific manner (see Fig. 6-21)

e interactions with neutrons do not involve the formation of a compound
nucleus (these nuclei have no excited states because all states are filled
for the given number of nucleons)

e there are no resonances (because there is no formation of a compound
nucleus)
elastic scattering cross section is constant up to 10 keV
radiative capture cross section at all energies shows 1/v dependence, and
inelastic scattering does not occur (because there is no formation of a
compound nucleus).

4.5.6 Cross Sections for Different Neutron Interactions

The concept of microscopic, o, and macroscopic, X, cross sections is
described in Section 4.1. The cross sections for any neutron interaction, i, are
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related as follows

%, =No, (6-36)
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()
Figure 6-20. Cross section for charged particle emission from neutron interaction with (a)
*Fe and (b) 7Au
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Figure 6-21. Neutron cross sections for (a) 'H and (b) *H

The total macroscopic cross section for all interactions is a summation of
individual values

=) No, (6-37)

The values of both cross sections express the probability for neutron
interaction to occur. If the material that a neutron interacts with consists of a
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mixture of different atoms, the macroscopic cross section representing the
summation of individual values will be used to determine the probability of
interaction. For example, the macroscopic radiative capture cross section of
the material is

2, =N,0,,+N,0,,+..=) N0, (6-38)
Y

where N; represents the number density of nuclei of each constituent in a
material. For neutrons traveling in a material the probability of certain
interactions is determined based on known macroscopic cross section values.
For example, the probability for a neutron to be captured in the next collision
with the atoms of material j is given by

N.o, .
7
6-39
b2 ( )

In the analysis of cross sections and interactions it is common to group
similar interactions. For example, the absorption cross section relates to all
interactions that terminate the neutron history: capture interaction, fission
and charged particle interactions

0,=0,+0,+0,+0,+.. (6-40)

Example 6.9 Probability of neutron interactions in a homogeneous
medium

Estimate the probability of a neutron interacting with 35U to be captured if the
microscopic cross sections are: 0,=98.6 b, 0;=582.2band g;=13.8 b.

Since the medium is homogeneous and thus composed of only one type of atom,
the probability can be computed using the microscopic cross section values. The
probability that the neutron will be captured is

o, 98.6

= =0.142
O, +0,+0, 98.6+582.2+13.8

Neutron reaction cross sections vary with neutron energy, neutron
interaction type, and isotope type. Those interactions that do not exhibit
threshold values, such as capture and fission in 50 or capture in **U, have
large cross sections at low neutron energy. A threshold interaction observes
zero cross section values up to certain energy, such as fission in 30 for
which fission becomes significant only if the neutron energy is above 1MeV.
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The energy of interest in reactor physics ranges from the high energy that
fission neutrons are born with to thermal neutron energies in thermal nuclear
reactors. Across this wide span of energies, the cross sections for different
neutron interactions show different dependence. The mean value of the
fission neutron spectrum (the energies with which fission neutrons are born
— see Section 5) is around 2 MeV, while neutrons that are slowed to the
thermal region have energies of 0.025 eV. The high energy neutrons are
moving at a high speed relative to the nuclei in a medium; therefore the
dominant interactions are scattering in which neutrons slow down. In
materials that have a large scattering cross section (like hydrogenous
medium) neutrons lose most of their energy after only a few interaction
events and come into thermal equilibrium with the nuclei of the medium.
Since the nuclei themselves are in thermal motion there is an exchange of
momentum in scattering interactions. Such neutrons have a Maxwellian
spectrum (see Section 4.6) dependent on the temperature of the medium.
Therefore, the neutron population in a reactor has a complicated spectrum
that is a mixture of fast, intermediate and slow neutrons. The particular
spectrum characteristics are determined by the materials present in the
medium. For example, in a medium with a high scattering to absorption
cross section ratio, the spectrum of neutrons will fall predominantly in the
thermal energy region. However, in the opposite case of a medium
consisting of materials with high absorption to scattering ratios, the neutron
spectrum will not differ much from the source spectrum.

At low energies the total microscopic cross section for the non-threshold
interactions behaves as

o =4k’ +-C (6-41)

tot \/E

where C is a constant, £ is the neutron energy and R represents the radius
of a nucleus.

The first term in the above equation represents the elastic cross section,
while the second term gives the cross section for radiative capture or other
exothermic reactions possible at that energy. If the first term dominates over
the second term, then the total cross section is constant at low energies. An
example is shown in Fig. 6-22 for °Fe for which the total cross section is
constant at low energies. If the second term dominates over the first term,
the total cross section behaves as 1/v. An example is shown in Fig. 6-22 for
*%pu for which the cross section varies with the inverse square root of
neutron energy at low energies. Cross section data libraries usually give the
capture and fission cross sections for thermal energy neutrons traveling at
the speed of vy, = 2200 m/s (which corresponds to neutron energy
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E,=0.025eV and temperature 293 K, as explained below). For the nuclei for
which 1/v dependence of the absorption cross section is valid, the absorption
cross section at any other energy of up to few eV can be estimated from

Ep Yy
0,(E)=0,(E N — o,(v)=0,,)—= (6-42)
E v
1.0E+05
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5 :
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Figure 6-22. Total cross section dependence on neutron energy for *°Fe and >**Pu

In the resonance region, elastic scattering, radiative capture, and inelastic
scattering, and thus total cross section, all exhibit resonance in same energy
region. The cross section at the peak values can be as high as a few thousand
barns. The resonances correspond to the discrete energy levels of the
compound nucleus formed after neutron interaction. Neutrons with energy
comparable to the energy levels of a compound nucleus have a high
probability of interaction. The lowest energy at which resonances begin to
appear is around 0.5 eV and the maximum is about 0.1 MeV. As can be seen
from Fig. 6-22, as energy is increased the resonances become closer. All
values for cross sections are obtained experimentally; however, in the region
where resonances are too close together an experiment can not resolve them
(region called the unresolved resonances). In the high energy region (0.1
MeV and above), the total cross section becomes a smooth function of
neutron energy. The cross section is small rarely reaching values greater than
5 b. The charged particle reactions become significant (see Fig. 6-20). The
elastic scattering cross section remains almost constant across the energy
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region below the resonances for almost all isotopes. The average value for

the cross section ranges between one and ten barns from one isotope to
another over a wide energy range (see Fig. 6-23).
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Figure 6-23. Comparison of elastic scattering cross sections for 'H, **Fe, 2*°U and **°Pu

4.6 Maxwell-Boltzmann Distribution

In a medium in which neutrons are not absorbed and from which neu-
trons cannot escape, the only possible interaction is scattering with the nuclei
of the atoms. The scattering interactions reduce the neutron energy.
However, an endless slowing down process is not possible because of the
thermal motion of the atoms. Due to that fact they cannot be assumed to be
stationary, which is usual approximation in analysing neutron interactions.
When neutron energy becomes comparable to the energy of thermal motion
of the atoms, the neutrons come to a thermal equilibrium. It means that the
probability that a neutron will gain or lose energy in a collision with the
nuclei is equal. The average kinetic energy of thermal motion of the atoms
(according to the kinetic theory of gases) is given by

E==kT (6-43)

MW

where k is the Boltzmann constant (1.380662 x 107 J/K), and T is
temperature of the medium (in Kelvin). Therefore, in a thermal equilibrium
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state, neutrons can gain or lose kinetic energy (muv’/2), i.e. exchange their
kinetic energy with the nuclei of atoms in the medium. In an ideal medium
without absorption and leakage, the neutron energy distribution will be the
same as that of the atoms in thermal motion. The thermal neutrons, even at a
specific temperature, do not all have the same energy or velocity. Such
spectrum is called a Maxwellian-Boltzmann distribution, or referred as a
Maxwellian distribution. Although such conditions are not satisfied in a real
reactor system, it is useful to assume that neutrons become thermalized to
the extent that they follow the Maxwellian distribution

n(E) 2 e n(v) 4v°

= e ME? o = e ™ (6-44)
n (7kT) n (27kT/m)
where:

n = thermal neutron population per unit volume

m = neutron rest mass

T = temperature in K

n(E) and n(v) = Maxwellian energy (or velocity) distribution of neutrons

per unit volume and unit energy (or velocity) interval

The left side of Eq. (6-44) represents the fraction of neutrons having
energies (or velocities) within a unit energy interval (or velocity interval)
and the right side represents the Maxwellian distribution curve as shown in
Fig. 6-24. The most probable neutron velocity, v,, is found by setting the
derivative of n(v) with respect to velocity equal to zero

2
dn(v) _ _ 8mun _—— jur __ 4mun — 2mu ot jur =0 (6-45)
dv  (27kT/m) (27T Im)"" 2kT
v, = 2 (6-46)
m

The most probable energy can be obtained in the same way to give kK7/2.
The kinetic energy of thermal neutrons with most probable velocity is

E =—* :%_=kT (6-47)
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T T T T T I

n(v) atT=293 K

Figure 6-24. Maxwellian velocity distribution of neutrons
Note that the most probable (as well as average) kinetic energy is

independent of particle mass. For thermal neutrons at 20°C (or 293K) the
most probable velocity and the corresponding kinetic energy are

=23
0 - [2kT _ [2x1.38x10 _J2/7K><2931<;:2200m/S
m 1.66x107% kg

1

E, =kT =138x10""J/K x 293K = 4.043x10" ] X ———-——
161077 J/eV

=0.025eV

The values for microscopic cross sections provided on most charts and
tables are measured for this neutron velocity (2200 m/s), which corresponds
to an ambient temperature of 68°F (see Section 4.5.6) and energy of 0.025
eVv.

The average neutron velocity is obtained from

> o 3 —mv [ 2kT
J-n(‘l))l)d‘l) J‘m—'e;wzdv
- _o @mT/m) _ [T (6-48)
- “Ampie 2T mm
In(v)dv J

; J @k Im)"?
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The ratio of the average velocity to the most probable velocity of
neutrons in the Maxwellian spectrum is

NSKT/mm 2

LN 2 1128
v,

JokTim

The cross section at these velocities changes accordingly and is shown as
follows. The neutron flux for the Maxwellian distribution of neutrons is
given by

e |2 (6-49)

¢(E)=U”(E)=W -

The average absorption cross section for this population of neutrons
assuming 1/v dependence can be estimated
e As described in Section 4.4.6 for the 1/v absorption cross section
dependence, the following correlation between the cross sections holds

E
o, (E)=0,(E, )‘/Fp where E, = kT (6-50)

e The average absorption cross section is then

[o Brp(E)E
o (E)="2

a\p

o]¢(E>dE
0

=~ [E
0,(E,) H—”ﬂ%\/zEe'E’”dE
PINVE (zkT)" N m

0

= = (6-51)

.[( i;n;wz \/%Ee_E/deE
s

KT . _ppr
0, (E,) [\ Ee ¥ 4
AR iz

0

o, (E,)
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The values for microscopic absorption cross sections at a higher
temperature are lower than the tabulated value (which is generally for the
most probable neutron velocity at ambient temperature) and any cross
sections which involve absorption (fission, capture) must be corrected for
the existing temperature. The average absorption cross section at the average
neutron velocity and temperature, 7, higher than the ambient is given by

O'a(Ep,T)=g0'a(Ep,293K) % (6-52)

Example 6.10 Average and temperature corrected 1/v absorption
cross section

The absorption cross section for 2°U at the most probable neutron velocity and
energy is 680.8 barns. Assuming the cross section follows the 1/v rule, determine
the average cross section at the temperatures of 293K and 600K.

The average absorption cross section at the most probable neutron energy is

i =

0,(E,)="-0,(E,)= -5’5>< 680.8 = 603 3barns

a P

If the temperature of neutron population is increased to 600K, the average
absorption cross section will change as

— ’293 ’293
O'H(E],,T)=go‘a(Ep,293K) -—T——=603.3>< g(-)—6=421.6barns

However, the absorption cross sections of some materials important in reactor
neutronic design do not exhibit exact 1/v dependence. Examples are 5y, ¥4, and
%Py, In these cases, an empirical factor, g(7), based on actual cross section
measurements is introduced to correct for the departure from 1/v behaviour. The
actual thermal cross section corrected for the average absorption temperature is then

o (E.T)= g(T)—‘g;—aa(Ep,z%K), /% (6-53)

Example 6.11 Average and temperature corrected non-1/v
absorption cross section

The radiative capture cross section for 35U at the most probable neutron velocity
and energy is 98.81 barns. From the table of nuclides (http://atom.kaeri.re.kt/), the
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g(T) factor is found to be 0.9898. Calculate the average radiative capture cross
section at energy 0.0253 eV. Calculate the value of the cross section at 600K?

The average radiative capture cross section for a Maxwellian distribution of the
neutron population is

Jz Vz

T
0.(E,)=g()==0,(E,)= O.9898><——§><98.81 = 86.67barns

If the temperature of the neutron population is increased to 600K, the average
radiative capture cross section becomes

DT — f293
o (E,.T)= g(T)—{z_;—r—O'a(EP,Z%K) —T— =

86.67x, ’-22 = 60.57barns
600

Actual

Maxwellian Distribution

- Distribution

N\

Figure 6-25. Energy spectrum of thermal neutrons (departure from Maxwellian distribution)

In thermal reactors, it is not possible to obtain a neutron spectrum that

will follow exactly the Maxwellian distribution. The reasons for this are

1. Neutrons produced by the fission process are high—energy neutrons that
are (in thermal reactors) slowed down by primarily elastic collisions with
moderator (light) nuclei. The proportion of neutrons of higher energy is
greater than that required by the Maxwellian distribution (see Fig. 6-25).
This is because neutrons that are absorbed or that leak out of the reactor
do not have a chance to slow down. This shift of the neutron energy
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spectrum from Maxwellian toward the high neutron energy region is
called absorption hardening.

2. In the low energy region, a real neutron spectrum approaches the
Maxwellian distribution. The departure depends on the absorption and
leakage (escape from the geometrical boundaries) rate in the system, as
neutrons may either be absorbed or lost before they come to equilibrium
with the moderator atoms. In this energy region, the absorption cross
section is inversely proportional to the neutron speed. In spite of these
facts, the neutron spectrum in the thermal region is usually approximated
by the Maxwellian distribution at a temperature somewhat higher than
the moderator temperature. This temperature is called an effective
neutron temperature.

4.7 Doppler Broadening

T, <T,<T,

Cross Section

Neutron Energy
Figure 6-26. Doppler broadening

Cross sections are commonly associated with neutron energy. However,
they actually depend on the relative energy of the interacting neutron and
nucleus. The relative energy is identical to the neutron energy only if the
nucleus is at rest is. In reality, the nuclei in a solid are “vibrating” about
fixed points, and this energy of vibration increases with temperature. At
some given temperature, the vibration energies tend to follow a Maxwellian
distribution over a wide range of the energy spectrum. Therefore, even for
monoenergetic neutrons, the energies relative to the target nuclei vary over a
wide range of values (below and above the incident neutron energy). This
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phenomenon is called the Doppler Effect because of similarity with the
change in wavelength observed with a moving source of light or sound of
constant frequency. Since the vibration energies increase with temperature,
the range of the neutron—nucleus relative energies also increases. As a result
of the Doppler Effect, the width of a resonance peak increases with
temperature (see Fig. 6-26), an effect known as Doppler broadening. The
increase in the resonance width is accompanied by a reduction in resonance
height, while the area under the resonance remains constant. The total rate of
neutron absorptions in the resonance region (a product of neutron flux and
cross section) increases with temperature. This aspect is important in
analyzing the temperature reactivity coefficients in reactors.

4.8 Neutron Beam Attenuation and Neutron Activation

Neutron beam attenuation is determined from
I=Ie™ (6-54)

where:

I, = initial intensity of the neutron beam

2 = macroscopic cross section (cm™)

x = thickness (cm) of the attenuating material

The above equation can be expressed in term of the attenuation factor,
AF, given as

AF =I—°:e“ (6-55)

Example 6.12 Thermal neutron attenuation factor

Calculate the attenuation factor (AF) for thermal neutrons passing through a
layer of water 2.5 cm thick. The macroscopic cross section for thermal neutrons is
0.02 em™.

From the definition of the neutron beam attenuation factor, it follows

AF = ITO — e):x - 60.02><2.5 =1.05

Materials exposed to a neutron flux will absorb neutrons in proportion to
the cross section at that neutron energy. Once an atom absorbs a neutron it
changes into a heavier isotope that is most likely radioactive (unstable). The
absorption of neutrons by certain materials permits the production of sources
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of radioactivity in a reactor, but also affects the structural components of the
reactor core. The same principle is used to infer the level of neutron flux at
points of interest in a reactor core using neutron—absorbing foils. The
activity of the foils following irradiation is proportional to the neutron flux
in which the foil was placed. For example, if an isotope formed in neutron
flux, ¢, is unstable, it will start to decay as soon as it is produced. Assuming
there are N nuclei of a newly formed isotope and Ny nuclei of the original
target isotope, the rate of change of new nuclei can be obtained from

O = Moo, = AN = gE, ~ AN (6-56)

where A is the decay constant of the newly formed, unstable isotope. The
above equation can be rearranged to obtain the first—order differential
gquation as

dN
dt ! ( )

the solution of which is of the form

C

N= efﬂdt

jtm Iej&hézadt— (6-58)
e

where C is a constant of integration. Equation (6-58) can be rearranged to
obtain

1 A c ¢, C
N:eTJe ’¢2adt'"67= ﬂ —67 (6'59)
The constant of integration is obtained from the initial condition
gz, C 2%
Nt=0)=0 = 0=—"%L-— = (C=—+F 6-60
(t=0) PR 7 (6-60)
Thus
)X
N=gfﬁ—ew) (6-61)

The buildup of a radioactive isotope during irradiation in a neutron flux
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is depicted in Fig. 6-27. The material will decay with its characteristic
half-life once removed from the neutron flux.

Sample removed from
N neutron flux decays with
N its characteristic half-life

Figure 6-27. Buildup of radioactive isotope during irradiation in neutron flux

Example 6.13 Neutron activation

A cylinder made of **Co has a volume of | cm’. It was placed in a reactor core
with a flux of 10% n/cm%sec for one year. Calculate the activity of the sample on
removal from the reactor, and the activity of the same sample one year following
later. The temperature of the sample during irradiation was 200 °C. After the
absorption of a neutron, **Co forms ®Co in its isomeric state. The unstable %Co
decays in two ways, either through internal conversion or beta minus decay as
shown in Fig. 6-28. The density of a sample is 8.71 g/cm’. The atomic weight of
Co is 58.94 gr/gr-atom.

0o +n—rCo*

Internal conversion to 6000, 7y = 10.5 minutes, ¢; =18 harns
GOCD* —

B- decay to 60Ni, T,=1925.1 days,o, = 19 harns

Figure 6-28. Neutron absorption by *Co

Let’s first determine the decay constants for the two isomers (data are given in
Fig. 6-24)
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n2 In2 n2 2
A=t o B 60=3.97h" A =—m=— T =150x107hr
T 106 T,  1925.1x24

2

The number of target nuclei is

_VpN, (Iem’)(8.71g /cm’)(6.023%10* at/gratom)
A 58.94gr/gr atom

=0.890x10% * Co atoms

N,

Since the temperature of the sample was higher than 293K, the average cross
sections must be corrected

iz 7

0u(E,) =" =0, (E,)= 7”><18 =15.95barns

P’

—e 293 [293
o, (E T)=ﬁaal(5p,2931<) 2 = 15.95% | == =12.55barns
2 T 473

7 Jz

T
0,(E,) =—2-0'a2(Ep) =——2——-><19= 16.84barns

e [293 293
aaz(Ep,T)=gaa2(Ep,293K> - =16.84%) == = 13.25bams

The one-year irradiation period will saturate the short-lived isomer and the
second term in Eq. (6-61) can be neglected to give

N - PN, 0, (E,T) _ (10° n/em?s)(0.89x 10* atoms)(12.55x 10 cm*)

1
1
A 3.97
3600s

N, =1.01x10" ®Co atoms

The concentration of the longer—lived isomer is
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_ PNy, (E,.T)

L Tee P (1- e‘ﬂz’
N, A’z (1 )

_ (10°n/cm’s)(0.89x 10" atoms)(13.25x 10 em?)

—1.50%10™° XIx365x24
(I-e )

1.50x107°

00s

N, =3.48x10" “Co atoms
The activity on removal is

Ay =N +N,A4, =1.11x10°Bq+1.45x10"Bq = 1.26x10° Bq

1
=1.26x10*Bqx—————— =3.4mCi
& 3.7%x10'“Bg/Ci

One year following removal from the reactor core, the activity of the sample will
be the activity of the long-lived isotope since the short-lived will have decayed away

A=Ay (™) =(039mCi)(e” ) = 0.34mCi

S. FISSION

5.1 Mechanism of the Fission Process

Fission represents a class of nuclear interactions in which the original
target nucleus splits into smaller nuclei. Fission also represents the class of
neutron interactions that produces neutrons and energy and as such is a basic
principle of nuclear power generation. Fission can be a spontaneous process.
For example, **’Pu and **Cf decay by spontaneous fission; however, such
nuclei are rare and the decay rate is very low.

In the fission process, a neutron interacts with the target nucleus creating
a compound nucleus that is unstable and splits into smaller nuclei releasing
two or more neutrons and energy. The compound nucleus thus temporarily
contains all of the charge and mass involved in the reaction and exists in an
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excited state. The excitation energy added to the compound nucleus is equal
to the sum of the binding energy of the incident neutron and its kinetic
energy. A schematic of the fission process is illustrated in Fig. 6-29 for
neutron interaction with **U. The smaller nuclei formed after the compound
nucleus decays are called fission products or fission fragments. They are
usually radioactive and decay by P~ decay. Not every interaction of a
neutron with a nucleus leads to fission after forming the compound nucleus.
Since the compound nucleus is in an excited state, it can reach stability by
emitting 7y rays. Such reactions as explained in Section 4.5.3 are called

radiative capture reactions.
144Ba /
= t
Thermal 23577 23677+ Liquid drop @ .\‘anseutrun
model

*— NV YV
F
neutron Excited state
Gamma
rays
Figure 6-29. Schematics of a fission process for *°U
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for fission
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o~ region | . are apart
| Repulsive ap
Ry+Ry 1 region '
-

Distance between Fission Fragments

Figure 6-30. Critical energy for fission

If the excitation energy of the compound nucleus is greater than a certain
critical energy, the compound nucleus may become dumbbell-shaped due to
forces acting between the nucleons and eventually splits into smaller nuclei
as shown in Fig. 6-29. The mechanism of fission can also be understood
from the graphical representation of potential energy levels in a compound
nucleus and in fission fragments as sketched in Fig. 6.30. At the extreme
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right, fission fragments are apart and the potential energy of the system is
virtually zero. As fission fragments become closer, there is an increase in
potential energy due to the electrostatic repulsion force acting between their
positive parts. The potential energy reaches its maximum value when the
fission fragments are in contact with one another. At this point, the attractive
nuclear forces become dominant and the potential energy decreases up to a
certain value that corresponds to the ground state of the compound nucleus.
In order for fission to occur, the system must transition from the left to the
right side in Fig. 6-30. The energy difference between the maximum value
and the energy that corresponds to the ground state of the compound nucleus
represents the critical energy (also called the activation energy) for fission.
According to the liquid drop model, the critical energy for fission decreases
as ZYA increases. This is explained by the fact that repulsion between
nucleons (which favours fission) increases with Z%, while the attraction force
is nearly proportional to A: for Z*/A < 35, the critical energy is so large that
neutrons (or other particles) of high energy are required to cause fission; for
7*A > 35, the critical energy is on the order of the binding energy of the
incident neutron and thus fission can be caused by even a low—energy
neutron.

5.2 Fission Rate and Reactor Power

As described in Section 4.4, the rate of any interaction involving
monoenergetic neutrons is equal to X¢. For fission reactions it follows

Fission rate = X; ¢ [fissions/m’/s) (6-62)

where:

Zf = N(Sf

¢=nv

N = number of fissile nuclei [nuclei/m3]

oy = fission cross section [mz/nucleus]

n = neutron density [neutrons/m’]

U = neutron speed [m/s]

In a reactor, neutrons are not monoenergetic, but rather cover a wide
range of energies. Neutron flux and cross sections, and thus reaction rates,
are energy dependent. At a given neutron energy, the neutron flux at a given
time varies with the spatial position in the reactor. Also, the spatial
distribution of fissile material is not entirely uniform initially and is not
uniform after the reactor has been operating for a certain time. In order to
determine a fission rate at a given time, the above equation has to be
integrated over all neutron energies and spatial positions in the reactor. In
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practice, this is done using computer codes. However, for the present
purpose, an approximate method will be shown. In thermal reactors, the
majority of fissions occur in the thermal energy region where flux and
macroscopic cross sections are both very large. The fission rate can be
roughly estimated assuming the average values (space and energy) for flux
and cross section. Therefore, in a reactor of volume V [#’]

Total number of fissions = VE—;?D (6-63)

Assuming that the reactor has been operating for enough time that nearly
all of the radioactive decay energy is being deposited as heat, and that a
fission rate of 3.1 x 10" fissions/s is required to produce 1 watt of thermal

power, thermal reactor power can be approximated as

VI, ¢
f
P, =—F[W] (6-64)
"7 3.1x101

Example 6.14 Reactor power

A water-moderated reactor contains 100,000 kg of uranium dioxide enriched to
an average of 2.5% by weight in **U. The atomic ratio H/**%U is 200. Calculate the
approximate (spatial) average thermal neutron flux for a thermal power of 3000
MWth with an average moderator temperature of 310°C.(Adopted from: Glasstone
and Sesonske, 1994)

For 2%U at T = 300K, the total fission cross section at 0.0253 eV is 584.4 barns
and g(T) = 0.9786.

Jz Jz

0,(E,)=g(T)—0(E,)= 0.9786 x =% 584.4 = 506.8barns
2 r 2

If the temperature of the neutron population is increased to 310°C (583K), the
average radiative capture cross section becomes

S Jr 300
0,(E,.T) = §(T)==0, (E,,300K),|= =

=506.8% 39(—)- =363.5barns
V 583

The fraction of *°U in 25U0; is 235/(235+(2 X 16) = 235/267. Therefore, the
mass of 2°U is
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23525
m=10"kg=———-=22x10"kg
267100

The total number of **U nuclei in a reactor is

_mN,  (22x10°)(6.023x10%)
4 235x10°°

NV =5.6x10" nuclei

and the neutron flux is

- 3.1x10"P
p=——2 " —46x10"njem’s
NVo ,(E,.T)
P
5.3 Fission Neutrons

In the first 107 seconds following the fission process, 99% of the
neutrons are emitted; these are called the prompt neutrons. The prompt
neutrons accompany the emission of fission fragments and prompt
y-rays. Over a period of several minutes, the unstable fission fragments emit
so-called delayed neutrons. The role of each group of neutrons, prompt and
delayed, in reactor kinetics is explained in Chapter 7.

The average number of neutrons emitted per each neutron absorbed that
causes a fission reaction is usually denoted as v and for thermal reactor fuel
is ~ 2.5 (see Table 6-2). This number is not an integer because it represents
the average value over a number of fission events (each single fission event
emits an integer number of neutrons).

Table 6-2. Number of neutrons emitted per fission, v, and per neutron absorbed, 7

Neutron 33 35 3/ B9y,
energy

v n v n v n v n
0.025 eV 2.50 2.30 243 2.07 - - 2.89 2.11
1 MeV 2.62 2.54 2.58 2.38 - - 3.00 2.92
2 MeV 2.73 2.57 2.70 2.54 2.69 2.46 3.11 2.99

The number of neutrons emitted per each neutron absorbed (in fission
and all other interactions) in the fissile materials is denoted as 77

n=v—_ (6-65)
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where, for a single fissile material, the macroscopic cross sections for
fission and absorption can be replaced with microscopic values

L 5 L (6-66)

This ratio represents the fraction of neutrons that are absorbed and
subsequently cause fission in a given material and is usually written as

o o o
L S S (6-67)
o, +0, I+ o,

o

a

where « represents the capture-to-fission ratio, an energy dependent
parameter of great importance in reactor core design, as explained later. The
number of neutrons emitted per each neutron absorbed can now be expressed
in terms of o

n=—Yt (6-68)
1+«

However the reactor core consists of more than one single fissile
material, and thus Eq. (6-65) must be written in a more generalized form

Z (vZf )i

M et =—"—§—— (6-69)

a

where the numerator represents the sum over all fissile nuclides and the
denominator represents the total absorption cross section for all materials
present in fuel. For example, for a thermal reactor in which the fuel is in the
form of uranium oxide and the uranium is a mixture of *°U and **U, the
above equation reduces to

235
T
2235 + 2238

a a

235
nfuel =V

knowing that the only fissile material is >’U and that the absorption cross
section for oxygen is small enough to be neglected.

Prompt neutrons are emitted with different energies. As a result, the
population of prompt neutrons exhibits a distribution or so—called energy
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spectrum. The prompt neutron energy spectrum is depicted in Fig. 6-31 for
thermal fission of *°U. The spectrum shows a peak (most probable value) at
an energy of approximately 1 MeV and an average value of 2 MeV. The
energy spectrum is important because, in additional to the fissile material
present in a reactor core, there is usually an amount of fertile materials (such
as *U or #*Th) for which the fission cross sections have a threshold value,
or a certain energy value below which the fission cross section is zero. The
prompt neutron energy spectrum shown in Fig, 6-31 can be described by the
following equation

J(E)=0.453¢7"9%E 5inh (2.29E )" (6-70)

0.4

0.3 4

0.2 4

0.1

Fraction of Fission Neutrons per MeV

0.0 L AN A I N S S A A A A M A A S N A M A L L LI R B L L
0 1 2 3 4 5 6 7 8 9

Neutron Energy (MeV)

Figure 6-31. Prompt fission neutron energy spectrum for thermal fission of 35y

54 Fission y Rays

The +y radiation emitted per each fission event is divided into two groups:
prompt and delayed. The prompt v rays are emitted within 0.1 s of the
fission event (arbitrarily defined time) with an average energy of 1 MeV.
One portion of the prompt y rays is emitted at about the same time as the
prompt neutrons, and another portion is represented by the y rays from the
decay of fission fragments with short half-lives. The delayed v rays come
from the decay of fission fragments having half-lives longer than the
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arbitrarily defined time of 0.1 ps.

The approximate gamma ray energy distribution is shown in Figure 6-32
for the fission of *’U. The spectrum can be divided into three regions
approximately represented by the following relations

6.6 E=0.1~0.6MeV
I(E)=|202¢7"%5  E=0.6~1.5MeV (6-71)
7.2¢7%F E=15~10.5MeV

The total energy of the prompt y rays is close to 7.3 MeV per fission
event with an average value of around 0.9 MeV.

1.0E+01 3
1.0B+00
1.0E-01 4

1.0E-02 -

Number of Fission Gammas per MeV

1.0E-03 s e e e e
0 1 2 3 4 5 6 7

Gamma Ray Energy (MeV)
Figure 6-32. Prompt fission ¥ rays energy spectrum
5.5 Fission Products
5.5.1 Fission Yield

Majority of fission events produces two fission products. The pair formed
per single fission varies from event to event giving a broad distribution of
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isotopes. For example, a detailed study of the thermal neutron fission of *°U
has shown that about 80 different isotopes are created. Some of these fission
products are shown in Table 6-3.

Table 6-3. *°U thermal fission products

Element A Half-life Fission yield (%)
Strontium 89 51d 4.8
Strontium 90 28y 58
Yttrium 91 58d 5.4
Zirconium 95 65d 6.3
Ruthenium 103 40d 3.0
Ruthenium 106 ly 0.4
Antimony 125 2y 0.02
Tellurium 127 105d 0.04
Tellurium 129 37d 0.35
Cesium 137 30y 6.2
Cerium 141 33d 6.0
Cerium 144 280d 6.0
Promethium 147 26y 24
Samarium 151 80y 0.44
1.E+01 : = iow
] | Probable
] i ~6.4%
1E-01 o i
¢ s
g 1.E-03 4 |
> ] '
g :
i E
1LE-05 4 E
I.E'07 T T T T T T ‘: T T T T T T T T T T T T T T
60 80 100 120 140 160 180

Mass Number, A
Figure 6-33. *°U thermal fission yield versus atomic mass number
The yield represents the proportion (percentage) of all nuclear fissions

that form isotopes of a given mass. The 25U fission yield is plotted in Fig. 6-
33 versus atomic mass number. This plot is shown to illustrate that most of
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the fission fragments are radioactive and decay via } decay, which changes
the atomic number but not the atomic mass number. The fission yield curve
indicates that the maximum yield for any one isotope is less than 7%. It also
indicates that fission products fall into two broad groups: a group of light
nuclei with mass number between 80 and 110, and a heavy group with mass
numbers between 125 and 155.

The most probable isotopes to be produced have mass numbers between
approximately 95 and 139, each having a yield of about 6.4%. The kinetic
energy of fission fragments per fission event is also distributed according to
the fission fragment distribution given in Figure 6-33. For the most abundant
isotope in the heavy group, the kinetic energy is around 67 MeV and around
98 MeV for the isotopes in light group. The ratio of these two energies
(98/67) is 1.46, which is equal to the ratio of their masses (139/95).

5.5.2 Formation and Removal of Fission Products in a Reactor

The amounts and activities of individual fission products are important in
reactor design because:
e it is necessary to evaluate the potential hazards associated with an
accidental release of fission products into the environment
e it is necessary to determine a proper cooling time for the spent fuel
(before it becomes ready for reprocessing), which depends on the decay
times of fission products
e it is necessary to estimate the rate at which heat is released as a result of
radioactive decay of the fission products after the shut down of a reactor
e it is necessary to calculate the poisoning effect of the fission products
(the parasitic capture of neutrons by fission products that accumulate
during the reactor operation)
The rate at which the concentration of a nuclear species (;) in a reactor
core changes with time is given by (see Figure 6-34)

dN,/dt = Formation Rate - Destruction rate - Decay Rate (6-72)

The formation of a nuclide i (atomic mass number A, atomic number Z)
is defined by: fission, neutron capture in nuclide j (atomic mass number A —
1, atomic number Z), and radioactive decay (usually B decay) of nuclide k
(atomic mass number A, atomic number Z — 1). It can be expressed as

Formation rate = yN,o + N;G;¢ + AN (6-73)

where: ¥ is the fission yield of that nuclide,
N N; and N, are the nuclear number densities of the fissile
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nuclides,

0y is the fission cross section of the fissile material,
g; is the capture cross section of the nuclide j,

¢ is the neutron flux, and

A 1s the radioactive decay constant of nuclide k.

Fission

471 | mn | a4z | p [471

J i k
A+, Z A, 7+

Figure 6-34. Formation and removal of fission products

The destruction of a nuclide i (atomic mass number A, atomic
number Z) by neutron capture is defined as

Destruction Rate = N;0;¢ (6-74)

Destruction of a nuclide also occurs through its own J3 decay,
which is expressed as

Decay Rate = AV, (6-75)

Thus the rate at which the concentration of a nuclear species (¥,) in a
reactor core changes with time becomes

dNi/dt: ;{Nfo;c¢+N]o;¢+ ﬂka-N[O','¢- /1,'N,' (6-76)

This equation can be solved for N, at any time, assuming that all other
concentrations and constants are known. This equation develops into
coupled differential equations for which the exact solution is obtained using
computer codes.

After a certain time of reactor operation, a concentration of any fission
fragment should reach an equilibrium (saturation) value. At that point, the
rate of production is equal to the rate of removal of that nuclide. For many
important fission products, like **Sr or "'I, only the first and the last terms in
Eq. (6-76) are significant
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dN{dt ~ yN;oyp - AN; (6-77)

At the reactor start—up (¢ = 0), we may assume that the concentration of
fission fragment i is zero. Also, a good assumption is that the neutron flux
reaches a constant value shortly after start—up. At that point in time, a
saturation concentration (density) of the nuclide i is

ViN,o P
Ni,sat - T

1

(6-78)

It follows that for a given flux and fission fragment cross section (o), the
saturation number density is increased by large fission yield (), and long
half-life (small 2;). If other conditions are equal, the saturation number
density increases with the neutron flux.

The ratio of the number density at any time to the saturation value is then
given by

N,
N

i,sat

~l-e (6-79)

When the reactor is shut-down, the neutron flux becomes negligible and
the rate at which the concentration of a nuclear species (;) in a reactor core
changes with time reduces to

dN/dt = JNy— AN; (6-80)

If the rate of decay of k into 7 is larger than the decay rate of i, then the
nuclear density of the fission fragment i increases with time. If i decays
faster than it is generated by the decay of k, then the fission fragment
concentration decreases with time. In this case, however, after a certain
period of time, the decrease in & decay will produce a situation where the
concentration of i attains its maximum value (when 4N, = 4N;). After that,
the concentration decreases again with time.

The activity after shut-down may be determined using a semi-empirical
approach (for times 10s to 100d after shut-down), which gives a close
estimate to detailed calculations using computational methods. The total rate
of B emission is given by the following semi-empirical relation

Rate of B emission per fission event ~ 3.2 £ [1/s] (6-81)

where ¢ is given in seconds after the fission event. If every fission
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product is assumed to emit a 3 particle when it decays, the activity may be
determined by

Fission product activity per fission ~ 3.2 172 [Bq]

(6-82)
~86x 107" 12 [Ci]

5.6 Energy Released in Fission

The energy released by fission can be calculated based on the difference
in mass between the masses of the neutron and the fissile nucleus before
fission and the fission fragments and fission neutrons after fission. There is a
variation in the total energy released per fission that depends on the
fissionable isotope and the products of the fission event. On average, some
200 MeV is released per thermal fission. This energy is distributed as shown
in Table 6-4.

Table 6-4. Fission energy distribution

Fission Product Energy (MeV)
Kinetic energy of fission fragments 165 +/- 5
Instantaneous gamma rays 74+/-1
Kinetic energy of neutrons 5+4/-0.5

Beta particles from product decay 7 4/-1
Gamma rays from product decay 6+/-1
Neutrinos from product decay 10

TOTAL 200 +/- 6

Example 6.15 Energy released per thermal fission event
In a typical thermal fission of *°U as shown below, calculate the instantaneous
fission energy.

1 235 2367 1\" 140 93 1
o+ U = (%5U) = 5Cs+ SRb+3(n)

m

reactants

=, +m, =(235.043924+1.008665) = 236.05258%amu

mproducts

+m|40 +3(m| )
on

=My
SRb S Rb

=(92.91699 +139.90910 +3.02599) = 235.85208amu

The instantaneous fission energy is the energy released immediately after the
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fission process. It is equal to the energy equivalent of the mass lost in the fission
process. It can be calculated as follows

Am=m -m

reactants

=236.05258%amu — 235.85208amu = 0.200509amu

products

931.5MeV

amu

E

instantaneous

= 0.200509( ) =186.8MeV

NUMERICAL EXAMPLE

Neutron Attenuation in Common Moderator Materials
Graphite and water are two common materials used as moderators in
nuclear reactors. Using the given data, construct an attenuation plot of two
beams of thermal neutrons passing through water and graphite. Comment on
the apparent effectiveness of each material as a moderator.

P o (b) M
(g/em’) (g/mole)
Water 1.0 5.33 18.015
Graphite 1.6 103.66 12.000
Solution in MATLAB:
clear all

Na = 6.022e23; % Avagadro's Number
% Total thermal microscopic cross section
sigma_C =5.33; %b
sigma_Water = 103.66; %b
s = 10"-24*[sigma_C sigma_Water];
rho(1) = 1.6; % carbon g/cm”"3
rho(2) = 1; % water g/cm”3
M =[12 18.015];
fori=1:2

Sigma(i) = s(i)*rho(i)*Na/M(i);
end
x = linspace(0,15);
forj=1:2

fori=1:100

I(i,)) = exp(-Sigma(j)*x(i));
end
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end

figure

hold on

plot(x,I(:,1),'k")
plot(x,I(:,2),'k:")
xlabel('Distance (cm)')
ylabel('Fractional Intensity")
legend('Graphite', Water')
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Figure 6-35. Neutron attenuation in graphite and water

Water appears to be a generally more effective moderating material.

PROBLEMS

6.1. Uranium oxide (UO,) has a theoretical density of 10.96 g/cm®. Calculate the
number density (nuclei/cm’) of uranium and oxygen if a sample of UO, has a
density equal to theoretical density. Calculate the number densities for the fuel in
a reactor that has usually a density equal to 0.95 the theoretical density.

6.2. The microscopic cross sections at 0.0253 eV for tungsten are given in table
below. Calculate the capture cross section for the element tungsten. Which
isotope contributes the most to the capture cross section? If only the isotopes
180, 184 and 186 produce a radioactive daughter by the reaction (n,y) what is the
activation cross section for tungsten?
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Isotope and % abundance o, (0.0253 eV)
By 0.12 30.0

182yy 26.3 20.0

18w 14.3 10.3

184y 30.7 1.8

185y 28.6 38.0

6.3. Calculate the macroscopic absorption and scattering cross section for 4.8
atom percent enriched UO, fuel both at 20°C and 300°C. Assume the density of
UO, is 92 % theoretical density (see Problem 6.1).

6.4. What thickness of water is necessary to reduce the intensity of a collimated
beam of 1 MeV and 10 MeV neutrons by factor 10°? Repeat for lead.

o (barns) Atoms/cm’ > (/cm)

1 MeV:

Hydrogen 4.2 6.70 E+22 0.281
Oxygen 8 3.35E+22 0.268
Lead 5.5 3.23 E+22 0.178
10 MeV:

Hydrogen 0.95 6.70 E+22 0.064
Oxygen 1.5 3.35 E+22 0.050
Lead 5.1 3.23 E+22 0.165

6.5. A sample of 10 g of Mn is irradiated by a flux of 10® m? s™ of thermal
neutrons. Calculate the saturation activity of **Mn produced after an irradiation
time of 7 h. The cross-section for **Mn(n,1)**Mn is 13.41 b and the half-life of
*Mnis 2.6 h.

6.6. If 10 g of gold sample is inserted into the reactor at neutron flux of 10°
n/cm®s, how many atoms of '**Au will be formed after 30 minutes? What is the
activity of the sample after it is removed from the reactor assuming none of the

gold atoms decays until removed from the reactor.

6.7. Discuss the following two nuclear reactions:
3Cl(n, 0) 2P 2S(n,p)* P

6.8. Calculate the threshold energy for the reaction ¥C(n,a)!°Be. The atomic
masses in amu are: M("*C) = 13.0033548; M('*Be) = 10.0135337.

6.9. A parallel beam of 0.25 MeV neutrons impinges on target of aluminium that
is 1 ¢m thick. Calculate what fraction of neutrons will undergo a neutron capture
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event on their first collision in the last 1 mm of a target (&, (Al) = 3b and y(Al)
= 1b).

6.10. If an isotropic source is placed in the center of a sphere what is the
probability (in percent) that a neutron will be emitted in a cone with a solid angle
of 0.30 steradians?

6.11. Prove the Eq. (6-48). Calculate the most probable energy for neutrons with
Maxwell — Boltzmann distribution and explain why it is not the energy
corresponding to the most probable velocity?

6.12. Evaluate the nuclear reaction *N + “He — 7O + 'H is it endothermic or
exothermic? Calculate the energy (in MeV), Q, of the reaction. Masses in amu:
H = 1.007825; neutron = 1.008665; He = 4.00260; "N = 14.00307; and 'O =
16.99914,

6.13. Some stars at the end of their lives collapse combining their protons and
electrons to form a so called neutron star. Such a star could be approximated by
a giant atomic nucleus. Assume its mass is equal to that of the Sun (2 x 10* kg)
and that it collapsed into neutrons (1.67 x10% kg), what would be the radius of
this star?

6.14. Boron is a common material used to shield against thermal neutrons.
Calculate the thickness of boron required to attenuate an incident thermal
neutron beam to 0.1% its intensity. Use the thermal cross section of 103 cm™'.

6.15. Calculate the fission rate density to produce a thermal power density of
400 kW/litter (typical for fast breeder reactors), assuming that the main fissile
isotope is *°Pu.

6.16. Follow the numerical example as given and calculate and plot the neutron
beam attenuation through beryllium.

6.17. Plot the fission cross section to show that #>Th requires a very fast neutron
to induce fission. Compare it to the conditions for fission on **U.

6.18. 2°U fissions into ™Mo and '*!Sn isotopes. Knowing that the number of
nucleons must be conserved write the reaction. How many free neutrons are
produced in this and how many in the fission process that produces **Br and

“La?
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6.19. If one of fission fragments for the **°Pu fission is *°Sr what is the second
element? If the mass number of the second element is 142, how many free
neutrons are produced? Write the equation.

6.20. For the fission reaction °U + n 2 '"Cs + “Rb + 4 n estimate the energy
released per reaction.

6.21. A borated-steel sheet (relative density 7.8) which is used as a control rod in
a reactor is 2 mm thick and contains 2% boron by weight. The atomic masses of
boron and iron are 10.8 and 55.9 and their nuclear absorption cross sections for
thermal neutrons are 755 x 10 m? and 2.5 x 10”® m? respectively. Assuming
that the thermal neutrons strike the sheet at normal incidence, what fraction of
them is absorbed?

6.22. The nuclide 2**Fm decays through spontaneous fission with a half-life of
158 minutes. If the energy released is about 220 MeV per fission, calculate the
fission power produced by 1 pg of this isotope.

6.23. The thermal fission cross section for 2°U is 577 b while its thermal capture
(non-fission) cross section is 101 b. The isotope 28 does not fission for
neutrons with thermal energies but does have a small capture cross section of
2.75 b. Naturally occurring uranium is 99.3% **U and 0.7% *°U. Given that an
average of 2.44 fast neutrons is produced per fission calculate how many of
these fast neutrons are produced for each thermal neutron absorbed in natural
uranium.

6.24. A 100 MW reactor consumes half its fuel in three years. How much **U
does it contain?

6.25. A beam of thermal neutrons is incident upon a thick layer of cadmium
(density 8650 kg m™, cross section 24506 barn). Find the absorption length (i.e.
the distance in which the beam is reduced by a factor 1/e).

6.26. A free neutron decays into a proton, electron and antineutrino. Assuming
the latter to be massless and the original neutron to be at rest, calculate the
maximum momentum that could be carried off by the electron and compare this
with the maximum momentum which the antineutrino could have.

6.27. A spectrum of [ particles are emitted during the fission process. How far
will a 9 MeV B travel in a water moderated reactor? (Recall the radiation
interactions with matter described in Chapter 5).
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6.28. Cadmium and boron are strong neutron absorbers and are the most
common materials used in control rods. Write neutron absorption reaction in
boron and calculate the Q - value for this reaction.

6.29. Find the energy of a hydrogen atom moving at speed of 2.2 x 10° cm/sec.
What is the kinetic energy of the thermal neutron at room temperature moving at
the speed of 2200 m/sec?

6.30. Show that the number of neutrons per absorption, 7, for U homogeneous
thermal reactor is ~2.08.

6.31. Calculate the neutron density from a reactor thermal flux of 10'* n/cm’sec.
Compare it with the number of particles 1cm® contains at standard temperature
and standard pressure.

6.32. Estimate the reactor power which fuel is made of 5 % enriched uranium
metal. The total weight of the fuel is 100 kg. The average neutron flux is 10"
n/cm’s. Assume the density of the fuel is 18.7 g/cm’. The microscopic fission
cross section for 2°U is 549 b.

6.33. Determine the probability that a 2 MeV neutron will undergo its first
collision in 0.476 cm diameter UO, fuel rod enriched to 4 % in *°U. Assume
that the neutron is born in the center of the fuel rod and that it travels radially
toward the fuel boundary. The fuel density is 94 % theoretical density (10.96
g/em?).



Chapter 7
NEUTRON TRANSPORT

Time Independent and Time Dependent Neutron Transport
Theory - Concepts and Examples

“When we have catried out the indicator expetiments that proved that barium was
present, I wrote some personal letters to Lise Meitner, telling her of our results. In
my letter of 19 December I wrote: ... The thing is there is something so odd about
the ‘radium isotopes’ that for the moment we don’t want to to tell anyone but you.
The half-lives of three isotopes are pretty accurately determined; they can be
separated from all elements except barium,; all reactions are correct. Except for one
- unless there are some very weird accidental citcumstances involved: the
fractionation doesn’t work. Our Ra isotopes behave like Ba... Strassmann and I
agree that for time being nobody should know but you. Pethaps you can put
forward some fantastic explanation...” Orto Hahn (1879 - 1968)

1. INTRODUCTION

Design of a reactor core requires detailed prediction of the balance
between neutron production and neutron loss. The rates of neutron
production, transport and absorption are key information not only for core
design and analysis but also for thermal-hydraulic, heat-mass transfer,
accident scenarios and radioactivity release estimates, After neutrons are
born in fission reactions, they move through the reactor core and undergo
collisions of various types (absorption and scattering). There are two main
absorption processes which may occur, radiative capture and fission. In
fission, the target isotope splits and releases additional neutrons, In radiative
capture, the neutron is parasitically absorbed and does not contribute to
sustaining the chain reaction. In scattering collisions (elastic or inelastic)
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neutrons change their energy, spatial position and direction of motion in a
process known as slowing down. In general, the interaction of neutrons with
nuclei in medium may be considered as neutrons being transferred or
transported from one location to another, from one energy to another, and
from one direction of motion to another. A schematic diagram of the various
paths for a neutron born in a thermal reactor is depicted in Fig 7-1. The
details of neutron interactions as well as the concept of the sustained (and
controlled) chain reaction are described in the succeeding sections.

Capture

135 %
U fission

Reflection

U fast
fission

Leakage

Figure 7-1. Schematic diagram of the history of neutron born in thermal nuclear reactor

2. CONCEPT OF TIME INDEPENDENT NEUTRON
TRANSPORT

2.1 The Nuclear Chain Reaction

Seven months after the discovery of the neutron and more than six years
before the discovery of uranium fission (September, 1932) Leo Szilard
postulated that a controlled release of nuclear power may be possible if
materials that would sustain the neutron chain production could be
identified. In 1934 he filed a patent application for a weapon based on the
release of nuclear power from such materials and also defined the concept of
critical mass. A year later, he received the patent which made him the legal
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inventor of the nuclear bomb. The reason he patented the idea was to protect
the use of such powerful weapon and prevent the destruction Second World
War brought to humanity.

After the discovery of neutrons, many scientists across the world
developed a number of experiments to analyze the effects of bombarding
different materials with this new particle.

In late 1938, Otto Hahn and Lise Meitner were able to develop a
theoretical interpretation of experiments involving neutron interactions with
uranium. On December 21, 1938, Hahn submitted a paper to a German
journal, Naturwissenschaften, in which he showed convincing evidence of
the fission leading to production of radioisotopes from uranium irradiated
with thermal neutrons. Soon after the concept of the fission was understood,
a number of trials followed to find the method to produce a self—sustained
reaction in which neutrons born in fission would induce fission in other
uranium nuclei.

As described in Chapter 6, on average 2.5 neutrons are emitted per
thermal fission event. In order to sustain a fission reaction, at least one
should be conserved to continue the fission process. The essential problem in
achieving a sustained nuclear fission reaction is related to the neutron
economy.

A history of a single neutron born from fission in enriched uranium is
schematically depicted in Fig. 7-1. Interaction of *°U with a neutron of any
energy will split the nucleus into two smaller nuclei and release a few fast
neutrons. However, 2°U can absorb neutrons in the non—fission reaction
called radiative capture that remove neutron from the chain reaction. This is
why the fuel in thermal reactors is enriched in P50, increasing its content
from the natural value of 0.7%. The typical enrichment in nuclear power
reactors is about 5%. Fast neutrons can produce fission of **U nucleus and
the probability of this interaction depends on reactor core structure, fuel type
and fuel composition. Along with being absorbed (radiative capture by fuel
or other materials present in a core) neutrons can be removed by escaping
the physical boundaries of the system. As long as more neutrons are
produced than lost the chain reaction will be sustained and the fission
process will generate additional neutrons and energy.

In a nuclear weapon, the chain reaction is uncontrolled and a giant
amount of energy is generated in a short period of time leading to an
explosion. In nuclear reactors the control and sustainability of the chain
reaction is achieved by introducing materials which absorb neutrons.

2.2 Fick’s Law

The number of neutrons per unit volume is a function of neutron energy,
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neutron spatial position and its direction of motion, and is referred as
angular neutron density

N = N (spatial position, direction, energy) =N (r,Q,E) (7-83)

Neutron balance is described by the neutron transport equation which
expresses the distribution of the neutron population in space, energy and
time. In a steady—state condition, the neutron density is assumed to be
constant with respect to time.

The neutron transport equation is also called the Boltzmann equation
because it is derived from the kinetic theory of gases developed by
Boltzmann in the later part of the 19" century.

Neutrons of a given energy moving in a given direction collide with
nuclei of atoms in a reactor core producing other neutrons that have a wide
range of energies and directions of motion. It is thus necessary to describe
neutron transport by integrating over all neutron energies and spatial
directions. The neutron transport equation is therefore an integro—differential
equation which can be solved exactly for only a few simple cases. For
practical  applications, various simplifications and computational
methodologies are developed and solutions are produced using complex
software packages.

One of the simplest approximations to transport theory is diffusion
theory. The name is given because it involves relationships similar to Fick’s
law of gas diffusion. Diffusion theory is explained in detail in the following
sections. A numerical example based on what is currently the most attractive
and advanced deterministic approach in neutron transport modelling in
complex geometries (method of characteristics) is presented at the end of
this Chapter.

Diffusion is defined as the random walk (Brownian motion) of a group of
particles from a region of high concentration to a region of lower
concentration. This means that the diffusing mass flows in the direction of
decreasing concentration and such a flow rate is proportional to the negative
concentration gradient.

By definition, the gradient (see Fig. 7-2 and Fig. 7-3) of a straight line is
an indication of how steep that line is and may be calculated as follows

Gradient = Change in ¥ / Change in X. (7-84)

From Fig. 7-3, it follows that the gradient can be defined as

Gradient (slope) = % (7-85)
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Af and Ax represent finite quantities; for infinitesimal quantities, it
follows that the gradient is represented as

MERERY &
[ ]

Figure 7-2. Examples of a gradient: starting from the left end of the line, going to the right the
gradient is positive, up is positive, and down is negative, across to the left is also negative

¥

Figure 7-3. Definition of a gradient

lim N _4 (7-86)
A0 Ax  dx
Fick’s law defines diffusion of particles from the region of higher
concentration to the region of lower concentration as (see Fig. 7-4)

J =% (7-87)

where J, [cm_2 s_l] represents the net current, C is the particle
concentration, x is position, and jy is the diffusivity constant [cmz/s] which
describes how fast (or slow) an object diffuses. Concentration is defined as
the amount of mass in a given volume represented in units of mol/cm’® or
mol/liter. The negative sign indicates that J is positive when the movement
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is down the gradient, i.e., the negative sign cancels the negative gradient
along the direction of the positive net current.

-

(\2. T

S ~

o

= dC/dx N

E_J =

= x .

o S High flux Low flux
@ T More collisons Less collisons
o L

S N ——
O Current J Curtent J

X X

Figure 7-4. Fick’s law

¥ b= 1
ay*ay=1
" a,=1

J=a Fta Jta J

ax” ay=0
where ay| = |ay| =la,| =1

ay ag=10
cyag=0

ax* J =Jy

ay" T =Jy
@y " J =Jy

Figure 7-5. Vector notation of the current in three—dimensional space

Fick’s law can also be written in terms of particle flux. ¢, as

__p9? ]
J.=-D% (7-88)

where dg@/dx [ecm™ s™'] represents the flux gradient, and D [cm] is called
the diffusion coefficient. Fick’s law can be written in vector form to analyze
three—dimensional space (see Fig. 7-5)

J(r,{)=—DV §(r,1) (7-89)



NEUTRON TRANSPORT 303

where: J (;,t) represents the neutron current density or the net flow
vector of neutrons passing through a unit area perpendicular to the direction
of neutron motion per unit time. Divergence of the neutron current density
represents the net number of neutrons leaking from the unit volume per unit
time (see next Section) and the term V¢@(r,#)represents the gradient of
neutron flux in three—dimensional space.

2.3 Diffusion Coefficient and Diffusion Length

Neutron current density, neutron flux and the diffusion coefficient are
correlated variables. In order to derive the relation for the diffusion
coefficient which depends on the nuclear characteristics of the medium the
following assumptions are made:

1. There is no neutron sources in the medium of interest

2. The medium is homogeneous, i.e. neutron cross section is independent of
spatial position

Angular neutron distribution in the medium is isotropic

Neutron flux is nearly uniform in the medium

The medium is considered to be infinite

kW

¥

Figure 7-6. The formation of neutron current

According to Fig. 7-6, the unit area dA, is located at the origin in the zy
plane. The differential volume dV represents the volume from which
neutrons will scatter through the area dA contributing a differential current
flow in the negative z direction,dJ ;. The net current flow in the z direction
is obtained by subtracting the downward current flow in the z direction, dJ;
from the upward flow in the lower hemisphere, dJ |
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J,=J; - (7-90)

The number of neutrons which are elastically scattered per unit time from
the differential volume dV placed at distance » from the origin is equal to

. ¢(r)dV (7-91)

where X is the elastic scattering cross section and is not a function of
position due to the assumption 2, however the neutron flux is position
dependent. Because it was assumed that neutrons are scattered isotropically
in the medium (assumption 3) the number of neutrons which will pass
through the unit area dA is

dAcos @

r?

3 ¢(r)dV (7-92)

where dAcos@ represents the projection of the unit area dA onto the
plane perpendicular to r or the effective surface area as seen from dV. The
number of neutrons scattered through the area dA is dAcos 6 /47 under the
assumption that there are no interactions as neutrons travel from dV to dA.
However, due to interactions between these two position in space, the
number of neutrons that reach the area dA is the fraction exp(-Z,, r) of the
total neutrons where Z,,, is the total neutron cross section. The remainder of
neutrons are scattered or absorbed in the medium. In spherical coordinates,
the elementary volume is defined as

dV =r*sin 0drd0d @ (7-93)

Assuming the medium is only weakly absorbing (Z,, ~ %) the number of
neutrons passing through the unit area in the plane xy in direction z is

Z 2 w2

Jo=2 j j J'e‘y"""¢(;) cos@sin Odrd pd & (7-94)
47[ @=06=0r

Although flux is not known, under the assumption that it is nearly
independent of spatial position (assumption 4), using the McLaurin series
and by neglecting all terms except the first two, it follows

g 9¢ 9¢ 9¢ i
¢(r)—¢o+x(ax)0+y(ayl+z(azl (7-95)
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Index O denotes the origin point. In the spherical coordinate system

x=rsinf@cos@
y=rsinfsin@ (7-96)
z=rcosf

It therefore follows that
Z 2r wl2
J =2 J J'e—E.fr {% + (%@) rcos 0} cos@sin @drdpd @ (7-97)
z Z /o

Assumption 5 states that the medium is infinite and the integration over r
is from O to infinity reducing the above integral to

. X __err - 1Y ., 772
J == — |sin“ @ +
z 472_ ¢0 { Z :|0 ( 2] j|0 (0]()

¥

(g | e " s’
i il 3 r-1)] -
47[( az jo |: E? ( .\r )} 3 :| ¢]0

0 0

(7-98)

Following substitution of the limits

S_Zo | L L (9g) | 1|1 ;
o= 47 ¢{23 }(ZJ(MH 4%(82 jo[Zf }(J(ZE) ()
J: =&+—1—(§£j (7-100)

© 4 6Z \0z), .

The upward current flow through the area dA from the lower hemisphere
is obtained by integration as above with & limits from 7 to 772. Therefore,
the number of neutrons passing through the unit area in direction +z is

7 =ﬁ—-L(§9j (7-101)
Y4 6Z,\ 0z ),

Thus the total net flow of neutrons in direction z is
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o 1 [0¢
J=J-J = -102
¢ ¢ ‘ 32}(&]0 (7-102)

the net flow of neutrons through the areas in xz and in yz plane are

___1[9g .

7, = 32s[8yj0 (7-103)
_ 1 o¢ i

Jo= 32‘\,(8)61) (7-104)

The neutron current density (number of neutrons per unit time crossing
unit area normal to direction of flow) is according to Fig. 7-5

- - 1 |—d¢p —d¢p —a¢
J(ry=aJ +taJ, +al, =-§2—:{ax—é;+ay—a-;+az a_Z} (7-105)

In this equation the flux is valid for any point in the medium not just the
origin as previously assumed. In comparison with Eq. (7-89)

1
D=—o 7-106
o~ ( )

R

where A, represents the mean free path for neutron scattering. The
diffusion coefficient is corrected for anisotropic scattering using the
transport mean free path. If the average cosine of the scattering angle for
collision in laboratory system (as explained in Section 3.3) is

L= Cosy = — (7-107)

where A is the atomic mass number of the medium, the diffusion
coefficient can be written as a function of the transport cross section, X,

3, =X —z_\ﬁ:L (7-108)

tr T “tor
r

Eq. (7-106) may therefore be written as
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- (7-109)

T, =% -Lpu=— (7-110)

: 4 (7-111)

D= —= LA
(-0 30-p

Example 7.1 Diffusion coefficient

Estimate the diffusion coefficient of graphite at 1eV. The scattering cross section
at 1eV is 4.8 barns.

For graphite A = 12, thus from Eq. (7-107) it follows

- — 2
=cosly =— =0.055
H 14 3A

The macroscopic scattering cross section for graphite is

= No, = (0.08023x10%* at/em>)(4.8x102*cm?) = 0.385cm™ =
1 1
35, (1-p) 3x0.385(1-0.055)

%,
D= =0.916cm

Example 7.2 Neutron transport mean free path

The transport mean free path is a scattering mean free path which is corrected
for the slightly larger distance travelled in the laboratory system due to preferential
forward scattering. Calculate the transport mean free path for thermal neutrons in
beryllium oxide (BeQ), if p(Be) = 2.70 g/cm3, A(BeQ) = 25.01, oy(Be) =7 b and
0(0)=42b.

The atom densities are

PXN,  27x6.022x10%
A 25.01

N(Be)= N(O) = =6.51x10%at/cm?

The average cosine of the scattering angle for collision in laboratory system,
from Eq. (7-107), and the transport mean free path from Eq. (7-108) are
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- 2 - 2
Be) =—-=0.0741 0)=——=0.0417
#(Be) 3x9 #O) 3x16

1
& %, (Be)(1 - (Be) + X (O)(1 - u(0)
~ 1
T (6.51x10" W7 %1071 - 0.0741) + (6.51x 107 )(4.2x10™)(1 - 0.0417)
_ 1
0.422+0262

=1.46cm

The diffusion coefficient divided by the absorption cross section has the
dimension of the squared length. The square root of which is called the
diffusion length, L

Lzzﬂz——l—_. (7-112)
L, 3T .(-uw)

Table 7-1. Diffusion parameters for neutrons at 7=293 K

Moderator D [cm™") ¥, [em™] L [cm] ML [cm]
H,0 0.144 0.0189 2.75 5.6

D,O 0.810 0.00007 161.0 11.0

Be 1.85 0.00053 21.2 9.2
Graphite 1.60 0.00031 52.5 18.7

The diffusion length represents the distance a neutron passes from the
point of thermalization to the point of absorption. The distance from the
point where a neutron is born to the point where it is thermalized is called
the moderation length, ML. It determines the optimum distance between
adjacent fuel channels in a heterogeneous reactor (called the pitch). The
moderator and diffusion lengths for few materials commonly used in thermal
reactors are listed in Table 7-1. The small diffusion length of H,O is due to
its high absorption cross section. If a light water reactor is over-moderated
(the lattice pitch is large) it will result in increased neutron absorption.
However, if a D,O moderated reactor is over-moderated it will have no
significant effect on neutron economy.
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24 Neutron Diffusion Theory

2.4.1 One-Speed Neutron Diffusion Equation

The exact interpretation of neutron transport in heterogeneous domains
such as a reactor core is so complex that simplified approaches are often
used. Though simplified, they are accurate enough to give an estimate of the
average characteristics of neutron population in a given medium. The
simplest form of neutron transport equation is the one—speed diffusion
equation developed under the assumptions:

1. neutrons are monoenergetic: average neutron energy and average cross
sections for neutron interactions are selected;

2. absorption in a medium is small: macroscopic absorption cross section is
small in comparison with scattering cross section;

3. neutron scattering is isotropic in the laboratory system: valid for neutron
scattering with heavy nuclei, and not true for thermal reactor moderators
(corrections must be applied);

4. angular neutron distribution is isotropic: valid if neutron flux is nearly
constant which is approximately satisfied far from the system boundary,
neutron source or points of strong absorptions (if neutron flux gradient is
large, there are preferable directions of neutron motion toward low
neutron flux region).

In a reactor core, neutrons are produced or lost through capture and
leakage. Thus the net rate of change in neutron density per unit volume and
time is

on(r,1)

= =S(r,t)~2,4(r,t)~ LE (7-113)

where S (;,t) is neutron source rate, X @(r,t) neutron absorption rate,
and LE neutron leakage, per unit time and unit volume. LE represents the
rate of neutrons flowing in a given direction per unit time through unit area
(see Fig. 7-7) normal to direction of flow

Neutron leakage per unit volume = divJ(;,t) =V- J(;,t) (7-114)
Thus, Eq. (7-113) is re—written in the following way

on(r,1)

= S =2, §(r0) =V - J(r0) (7-115)
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‘4 Jrrdx

¥

J;

Figure 7-7. Neutron leakage from an elementary volume

Neutron diffusion through any material is the result of scattering
interactions. In reactor analysis, it is assumed that neutrons do not collide
with one another. This is valid because the neutron density is much lower
than the atomic density of a medium. Due to nearly constant collisions,
neutrons in a scattering medium travel zigzag trajectories. When considering
a large number of neutrons assumed to be monoenergetic, there is an overall
motion of neutrons from regions of higher to regions of lower neutron
density (or neutron flux). This is the reason why Fick’s law of diffusion is
applied to define the net rate of neutron flow. Fick’s law, Eq. (7-89), may be
inserted into Eq. (7-115) to give

a"g—rt”);?(?, 1 ~3,0(r. )=V - [-DV §(r,1)] (7-116)
which can be re—written as

a”(a:”) _1 a¢g,r) —V - [DV D1+ S 1)~ 5,00 1) (7-117)

e

Under the assumption that the medium is homogenous, the diffusion
coefficient becomes independent of neutron position and the leakage term
reduces to
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LE =—DV*¢(r.1) (7-118)

where V?represents the Laplacian operator which is defined for various
coordinate systems as

2 2 2
Rectangular coordinate system: V?* = —9—2— + —a——z— + *(2—2— (7-119)
ox“ dy° o0z
. , d* 2d
Spherical coordinate system: V* =——+ —— (7-120)
dr* rdr
2 2
Cylindrical coordinate system: V> = ald 4 (7-121)

+
dr* rdr d7*

Combining Eq.(7-118) with Eq. (7-117), the one-speed diffusion
equation for neutrons interacting with a homogeneous medium is

on(r,t) _199(r,1)
ot v ot

= DV?4(r, )]+ S(r, 1) = £, 6(- 1) (7-122)
The following cases introduce important simplifications to Eq. (7-122)
o Steady—state condition
DV*p(r) +S(r) = Z,9(r) = 0 (7-123)

e Steady—state, non—multiplying medium (neutron source = 0)

V() —% =0 (7-124)
where
=2 (7-125)
E{l
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2.4.2 Solution to One—Speed Neutron Diffusion Equation in Infinite
Medium

The simplest case to demonstrate diffusion theory is diffusion of neutrons
from a point source in a large infinite medium. Neutrons are emitted from
such a source in all directions with equal probability giving a spherical
symmetry in regard to the position of source. If r represents the distance
from the origin where point neutron source is located, the one—speed
diffusion equation in Eq. (7-124) expressed in spherical coordinates,
becomes

d? 2d é(r)

e r)+ —— r -—-—:O 7-126

dr2¢() rdr¢() % ( )
Introducing y = ¢r the above equation reduces to

y_y _g (7-127)

ar* I’

whose solution has the following general form

y=Ae""" +Ce'". (7-128)
Re-introducing the variable r, the solution becomes

~r/L r/L
p=AS—+CS (7-129)
r r

where A and C are constant determined from the boundary conditions.
Far from the neutron source of intensity S the neutron flux must decrease,
which determines the C constant to be zero:

e—r/L

p=A (7-130)

r

The total number of neutrons passing through the entire surface of a
sphere whose center is the point neutron source is 47r*J where
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r r2

- ﬁ:me-w(—”“j (7-131)

The limiting value of the total number of neutron passing through the
surface of the sphere as distance becomes zero is equal to the source strength

S = 1ri£r3(4;zr2J) = 47DA {i_r)r(}(er“ Hr#j = 47DA (7-132)
giving
A= % (7-133)
and the solution for flux is thus
_ 4%0 er (7-134)

Point of Absorption

4}!’!‘2{1"2&@5 — prohability that
neutron leaving the source will be
ahsorbed within the element dr at a
distance » from the source

eutron Trajectory

Figure 7-8. Distance between a point of neutron source to a point of neutron absorption

Neutrons travel a certain distance, », during diffusion through a medium
along which they collide until they are absorbed, creating a path similar to
that shown in Fig. 7-8. The mean square of this distance is obtained from the
neutron flux distribution from a point neutron source. In a differential ring of
thickness dr placed » from the neutron source, there will be
4m* drX ¢ neutrons absorbed per unit time (number of neutrons absorbed is
equal to the number of neutrons created in the system). This also represents
the probability that a neutron will be absorbed at a distance » from the
source. Thus
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J.r2 47Z'r22 ¢

== , (7-135)
[(47r°z,0)d

r=0

and inserting Eq. (7-134) for the flux, it follows

D]‘ 3 ——r/L
4
o0 ﬁLL_ ~6L2. (7-136)

J' re—r/L

r=0

243 Solution to One—Speed Neutron Diffusion Equation in Finite
Mediuom

In order to solve the neutron diffusion equation for a medium of finite
dimensions, or in the medium composed of two different materials, a set of
boundary conditions are specified as follows
a) At the interface between the two media, A and B, with different diffusion

properties (neither of which is a vacuum) the neutron flux must be the

same for both media (continuity of flux)

By, =Pp,» (7-137)

where the subscript 0 denotes the interface plane between the two media.
b) At a plane interface between two media (neither of which is a vacuum)
the neutron currents are equal. Assuming the x — direction we can write

d
dg,, __p, P, _ (7-138)

-D
A dx dx

¢) In the case when one of the media is a vacuum (or air) the boundary
conditions are different because there is no scattering from vacuum. In
other words, the flow of neutrons exists only in one direction, toward
vacuum. The boundary condition at the interface between the diffusion
medium and the vacuum (or air) specifies that the neutron flux gradient
vanishes at a certain point beyond the physical boundary, called the
extrapolated distance or extrapolated boundary. The concept is
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hypothetical because there is no indication that neutron flux is actually
zero at that particular point

a¢) __ 4 _
(dxl ==, (7-139)

where d is the distance called the linear extrapolation distance (see Fig.
7-9) and is equal to 0.71 A, (valid for plane surfaces). Diffusion theory gives
the extrapolation distance to be nearly equal to 2/3 of 4, (see Section 2.4.5).

B U‘}Pdry Transport

\ theory
\ / Diffusion

theory
Actual/ > /

flux
’ Adr or
) Medium \\ vacuum
: 071 A, 7

Figure 7-9. Extrapolation of neutron flux at the interface between diffusion medium and
vacuum

2.4.4 Neutron Diffusion in Multiplying Medium

The main interest in applying diffusion theory in neutron transport is to
analyze the neutron population, neutron flux and power distribution in a
reactor core. A reactor core is a finite multiplying medium with a sustaining
fission chain reaction. As neutrons diffuse through the core they can be
absorbed by fuel, moderator or structural materials present in the core; leak
out from the geometrical boundaries of the reactor core; or act as a source
for new neutrons to be born in fission reactions.

In a critical (or steady—state) reactor core, the number of neutrons
produced by fission is the same as the number of neutrons lost by absorption
or leakage in a given unit time. Thus we can define
o [Infinite neutron multiplication factor which represents the number of

neutrons produced per fission per one neutron absorbed in a medium
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K = neutron production rate

w = - . (7-140)
neutron absorption rate

¢ In an infinitely large system the leakage is neglected, and the neutrons
are lost only by absorption. However, in a finite medium, like a reactor
core, neutrons are lost also by leaking through the geometrical
boundaries and by absorption. The criticality condition is then defined in
terms of the effective neutron multiplication factor:

neutron production rate

ky = , . (7-141)
neutron absorption rate+ neutron leakage rate

If neutron production rate is S, neutron absorption rate A and neutron
leakage rate LE, it follows

S
k
off _ A+ LE — A , (7_142)
k. S A+LE

A

which represents the probability that a neutron will be lost in a system by
absorption. Since the alternative loss mechanism is leakage, this equation
also represents the probability that a neutron will not be lost through
leakage, i.e. it represents the non—leakage probability, P,y eq. Therefore

& =p (7-143)

k = Lnon-teak

o

In order for a reactor to be critical the infinite multiplication factor must
be greater than unity. The neutron leakage is generally proportional to the
surface area, SA, and neutron production is proportional to the volume, V. If
the size of a system is expressed in unit of g

2
LE sAa b (7-144)

The ratio between the number of neutrons leaked and number of neutrons
produced is inversely proportional to the linear dimension of the finite
multiplying system. Thus, by changing the size of the core, the leakage rate
changes affecting the effective neutron multiplication factor to range
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between 0 and k_ .The infinite multiplication factor is a function of the
materials present in the core (fuel, moderator, coolant, structures). The
non-leakage probability is dependent on the reactor materials and its
geometry (size, shape). For thermal neutrons, exactly k&, new thermal
neutrons is created per each neutron absorbed and thus the neutrons source is
written

S=3% k. ¢ (7-145)

Thus, assuming a homogeneous system and the steady-state condition,
and applying one-speed diffusion theory, the diffusion equation can be
written in a following form

Vio+B'¢=0 (7-146)
where
B*= kmLz“l (7-147)

The square root of Eq. (7-147) is referred to as the material buckling (B,,)
of the reactor core because it is a measure of the bending or the curvature of
the spatial distribution of the neutron flux. The overall neutron production
must balance the neutron absorption plus leakage during the steady—state
operation of the reactor. The relation for material buckling can be rearranged

1=k, {E;l%—;]} (7-148)

Comparing Eq. (7-148) with Eq. (7-143) yields an expression for the
non-leakage probability in a critical reactor

! o I

272 - 2, 3 2 (7-149)
B, L"+1 X ¢+B,¢ Z,0+(-DV°9)

non—leak —

Example 7.3 Material buckling

Calculate the material buckling and thermal neutron leakage probability for a
critical homogeneous reactor consisting of a mixture of 200 moles of graphite per
mole of 5.5% enriched uranium fuel. The overall temperature of the reactor core is
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20 °C. The density of graphite and uranium are: pc = 1.6 g/cm’® and py = 18.9 g/em’,
The microscopic cross section for thermal neutron scattering at carbon is 4.8 b and
at uranium 8.3 b. The microscopic cross section for absorption in carbon 0.0034 b,
in U is 694 b and in **U is 2.73 b. The infinite multiplication factor is 1.2.
(Adopted from “Basic Nuclear Engineering”, A. R. Foster and R. L. Wright Jr.,
Allyn and Bacon Inc., 1968)

The volumes of the uranium fuel, graphite moderator and the core are

_ 238g/mole

v = =12.6cm>*mole U
18.9g/cm’

_ 200moles C/mole Ux12g C/mole C

3 =1500cm*mole C
1.6g/cm

C

V=V, +V, =12.6+1500=1512.6cm> mixture/mole U

The atom densities of uranium, U, **®U and carbon are

N
Ny = V“ =
23
= 6.022x10 ato}ms Ulg mole U =3.98x10% atoms U/cm® mixture
1512.6¢cm”/g mole U

Nass =0.055%(3.98x10%) = 0.219x10% atoms 2> U/cm® mixture

Nosg =0.945%(3.98x10%°) =3.761x10%° atoms *** U/cm’ mixture

N = (200atomsC/atomU)x (3.98x10%°) = 7.96 x10** atomsC/cm” mixture

The transport macroscopic cross section for thermal neutrons in this mixture is
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Iy =Ncol (-pe)+ Nyo! (—py) =

=(7.96x10%)(4.8x10™%) ——2 )4
3%x12

3x238
0.361+0.0033 = 0.364cm > /cm > mixture

+(3.98x10%°)8.3x107% )(1— 2 ):

The average absorption cross section at the most probable neutron energy
assuming 1/v dependence in thermal reactors (see Chapter 6, Section 4.6) is

Jr

_ 235 238 C
Za - I:N2350-a + N2380-a + Nco-a ]

s - (0219%10%)(694x1072*) + (3.761x10*)(2.73x10™*) + | Y
+(7.96x10%2)(0.0034 x10™**) 2

Jr

3, = 0.01657” = 0.0146cm2/cm > mixture

Giving the material buckling and the neutron leakage probability as

=2 _ . 1h= ! =62.6cm >
T, 3L, (-p 3T,ZH  3x0.0146x0.364

ko—-1 12— -
Bl=-—< 1271 60032em™? - B,, =0.0566cm™
I? 62.6
1 1
Pleak =1- Pnon—leak =1- 1

BZ2+1  0.0032x626+1
=1-0.833=0.167
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2.4.5 Solution to One—Speed Neutron Diffusion Equation in Infinite
Slab Bare Reactor

The diffusion equation, Eq. (7-146), will be solved for an infinite slab
reactor of a finite thickness in order to determine a criticality condition
(directly dependent on the slab thickness). The slab is assumed to be infinite
in the y or z direction, thus neutrons can leak only along the x direction
through slab faces (Fig. 7-10); the neutron flow (neutron flux gradient) will
exist only in the x direction. The flux falls off from the center toward either
of two slab faces and falls to a zero value at the extrapolated distance.

¥

a2 d

Figure 7-10. Infinite slab bare reactor

For the half-size of the slab the distance where flux becomes zero is
equal to

S 24 (7-150)
2 2

where d is the extrapolated distance by which the geometrical boundary
of the slab reactor core is extended. In the case of a bare reactor, neutrons
leave the reactor geometrical boundaries and almost none scatter back into
the core. Therefore, the return current is assumed to be zero

J;=&+_l_(.”l_¢) 2&4,2[1’2) _o (7-151)
46z \dr), 4 2\dx),
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) __ 4 ]
( . jo » (7-152)

Assuming the extrapolation of flux is a straight line the slope is equal to

(Eﬂj % & (7-153)
dx )y a/2-al2  d

Combining Eq. (7-153) and Eq. (7-152) gives the extrapolation distance

d=2D= %ﬁ,, (7-154)

as mentioned in Section 2.4.3. The most sophisticated transport theory
predicts the extrapolation distance to be 0.71 A,,. It is always much smaller
than the size of a reactor and these two different values do not introduce
significant error into flux estimates.

The neutron flux in an infinite slab varies along the x direction. The
diffusion equation reduces to an ordinary second—order linear differential
equation

2
g__?+32¢:0 (7-155)
dx

If B is real and positive the general solution of this equation is

@¢(x) = Acos Bx+ Csin Bx (7-156)

The boundary conditions are;

1. The neutron flux drops to zero at the extrapolated distance and is finite at
the geometrical boundaries

¢(J_,a_zoj=0 (7-157)

2. The neutron flux is symmetric about the origin

dg(x)

=0 7-158
e ( )

x=0
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From the second boundary condition, the flux gradient is

dp(x) _
dx

—ABsin Bx+ CBcosBx=0

At the origin, the flux gradient is zero which eliminates the sine term, i.e.
sinBx = 0. Since B is real and positive, C must be equal to zero; thus

@(x)=Acos Bx (7-159)

The first boundary condition gives
¢(x)=O:Acos[ia—2°j (7-160)

Since constant A cannot be zero (in which case the flux would be zero),
this equation is satisfied only if

B(i&jzg,%’[,%,...:fg (n=135...) (7-161)

The various values of gy are called the eigenvalues

3z 5

YT e T Ty 7'162
5B ( )

ay =

SRR

Only the first value is used to define the flux in critical reactors, /7B, (the
fundamental mode).
For a steady—sate critical infinite slab reactor it follows

#(x) = Acos(ﬂj (7-163)

%

The value #qy is called the geometric buckling. If the reactor is critical
the material buckling must be equal to geometrical buckling

The constant A in flux relation is an arbitrary value. However, at the
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center of a slab reactor it is equal to the maximum value of neutron flux

px=0)=¢  =A (7-164)

Example 7.4 Infinite slab reactor

Calculate the thickness of a critical infinite slab homogeneous reactor consisting
of a mixture of 200 moles of graphite per mole of 5.5% enriched uranium fuel.
Assume that the overall temperature of the reactor core is 20 °C and that the reactor
is critical.

The density of graphite and uranium are: pc = 1.6 g/cm® and py = 18.9 g/em’.

The microscopic cross section for thermal neutron scattering at carbon is 4.8 b
and at uranium 8.3 b. The microscopic cross section for absorption in carbon 0.0034
b, in U is 694 b and in ***U is 2.73 b. The infinite multiplication factor is assumed
to be 1.2.

(Adopted from “Basic Nuclear Engineering”, A. R. Foster and R. L. Wright Jr.,
Allyn and Bacon Inc., 1968)

Since the reactor is critical the material buckling is equal to geometrical
buckling, therefore

4y =2 =—2_ =555m d=0714, =211 9Ty o5
B 0.0566 T 0364

%’:%m — a=ay—2d =555-2x1.95=51.6cm

2.4.6 Solution to One—Speed Neutron Diffusion Equation in
Rectangular Bare Parallelepiped Reactor

For the rectangular parallelepiped reactor core is shown in Fig. 7-11, Eq.
(7-146) can be written as

0°¢ 0%¢ 0*
axf + ay‘f + az? +B%9=0 (7-163)

This equation is solved by the method of variable separation

P(x,y,2) =X (DY (Y)Z(2) = XYZ (7-166)
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L2

¥

~

~

A

A

k4

h 4

Figure 7-11. Rectangular Bare Parallelepiped Reactor Core

This expression indicates that the flux in the x, y or z directions is
independent of that in other two directions.
Differentiating the above equation yields

%=Yza—x ﬁ:YZE)zX
ox ox ox’ ox’
2 2
9 _xz % 39 _y,9F (7-167)
dy dy Oy dy
2 2
_afzxya_z a =XYaZ

0z % o 0z’
Substituting these partial second order derivatives into Eq. (7-165) gives

2 2 2
YZa}f+XZa}:+XYa§+BzXYZ:O (7-168)
ox dy 0z

Dividing by XYZ reduces Eq. (7-168) to
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*’X 19% 90’z
2

1 1
——+——+——+B"=0 (7-169)
X ox Yo Zoz

Since each of the terms is a function of a single variable, the above
equation may be written as

B=a’+p[+y (7-170)
where @, fand yare constants such that

d*Z

dz*

2 2
dX+X0{2=O v

2 dy2

+Yf5*=0 +Zy* =0 (7-171)

dx

Since the derivatives are functions of only one variable, the partial
derivative is replaced with a total derivative to give:

X=A,cosaX +C, sinax
Y=A cosfY +C, sinfy (7-172)
Z=A,cosYZ+C, siny

The boundary conditions for the x direction are:
For x=ay/2,X=0
2. For x =0, gradient of X is zero, 0X /dx=0
Following the procedure as described for the infinite slab, it is obtained

[

CY:—;E— ﬁ:]_[- ;/:ﬁ (7'173)
9 by Co
X=A, cos = x
4o
Y=A, cosy (7-174)

0

e
Z=A,c08—7
Co

The flux and the geometrical buckling then can be written as
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9= XYZ=Acos[lxjcos[£yjcos(£zj (7-175)
a() b() CO
AERCRG
aO 0 CO

In case of a cubic reactor, the geometrical buckling becomes

2
B=32] & a4=243 (7-177)
a, B,

It can be understood that the extrapolated length of a side of a cubic core

is larger than the extrapolated thickness of an infinite slab of the same
material by a factor of v3 .

24.7 Solution to One—Speed Neutron Diffusion Equation in
Spherical Bare Reactor

Figure 7-12. Spherical bare reactor

A spherical configuration requires the minimum amount of fuel to
achieve criticality because the leakage is minimum (the area to volume ratio
is minimal compared to other geometries). In a spherical reactor, neutron
flux varies along the radial coordinate (see Fig. 7-12). The Eq. (7-146)
written in spherical coordinates become
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d’¢ 2d
¢, 240
dr rdr

+B¢=0 (7-178)

This equation is solved by introducing y = ¢r similar to the solution of
the one—speed neutron diffusion equation shown in Section 2.4.2 for a point
neutron source. With the given substitution, Eq. (7-178) reduces to

lﬂ_}.le:
rdr’ r

0 (7-179)
with a solution of the form

A C
y=AcosBr+CsinBr=¢r — ¢=—cosBr+—sinBr (7-180)
r r

The first boundary condition specifies that the flux must be finite at the
origin of the sphere resulting in

. AcosBr Axl
lim = =

o = A=0 (7-181)
r—0 r 0

The secondary boundary condition requires that the flux becomes zero at
the extrapolated radius

br=r)=0 = SsinBr,=0 (7-182)
o

The constant C must be non-zero to assure the existence of neutron flux,
Thus, Eq. (7-182) can be satisfied only if

Br, =0,7.2737,... (7-183)

The first value is a trivial solution and disregarded. The first non-zero
value is a fundamental eigenvalue followed by the harmonic eigenvalues.
The fundamental flux mode gives

2
ro=% © 32{5) (7-184)
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p=SEsin 0 (7-185)

roon

Example 7.5 Spherical bare reactor

Calculate the critical radius of a spherical homogeneous reactor consisting of a
mixture of 200 moles of graphite per mole of 5.5% enriched uranium fuel.
Determine the flux ratio between the center and the core boundary. For details see
the Examples 7.3 and 7.4.

(Adopted from “Basic Nuclear Engineering”, A. R. Foster and R. L. Wright Jr.,
Allyn and Bacon Inc., 1968)

The extrapolated radius and macroscopic cross section are

7 =—n-=r+0.7lﬂ» - r=§——0.71/1 =—  _1.95=5355m
0 tr tr
B B 0.0566

Vr

L, =Nysod® —21 = (0.219%10% )(582><10—2“)T =

=0.0113cm % /cm® mixture

Flux has its maximum value, @, , at the center of a spherical core

C .
¢=—sin—
r 1

Constant C is determined as follows

lim ¢ = lim < sin Br =2 — lim ¢ = lim <2887 _ep_y
r—0 r=0 r , - r—-0 r—0 1
L'Hospitalrule
C= Drmax o= Dmax sinBr — D inax _ .Br - 0.0566x53.55 —274
B Br ] sin Br  sin(0.0566 % 53.55)

Notice that the angle is expressed in units of radian.

24.8 Solution to One—Speed Neutron Diffusion Equation in
Cylindrical Bare Reactor

The geometrical buckling of the finite cylindrical bare reactor can be
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obtained from the neutron diffusion equation

' 193¢ o
Tf“‘?‘f*&g*‘%o (7-186)

If r; is the extrapolated core radius and z; is the extrapolated core height
the flux and geometrical buckling are as follows

cos— (7-187)

2.405r 7z
Z0

¢=AJ0(

2 2
B =(2'4°5 ] +(—’ij (7-188)
,E) Z()

24.9 Two—Group Neutron Diffusion Theory

%

The one—speed diffusion equation is based on the assumption that
neutron production, absorption and leakage occurs at single neutron energy.
More accurate estimates are obtained with two group treatment according to
which all neutrons are either in a fast or in a thermal energy group. The
boundary between these two groups is set to 1 eV.

Thermal neutrons diffuse in a medium and encounter absorption
reactions that may cause fission or leak out from the system. Fast neutrons
are lost by slowing down due to elastic scattering.

The source for fast neutrons is thermal neutron fission. The source for
thermal neutrons is provided by the slowing down of fast neutrons.

The neutron flux in the two groups is

10MeV
Fast: ¢,(n= [ (E,r)dE
o (7-189)

Thermal :  ¢,(r) = j¢(E,?)dE
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ol ———a
Fast fission
—C)—— =

Leakage Zad- e | Absorption 1ssmnT

Capture
D,V | ? ={ Za# |———’ —
lScatteri.ng
Ingroup scattering@
Fast Energy Group Enll-2)#,
E>1leV
Thermal Energy Group Down scatter into group 2
E<leV vzfzqﬁz p—
Fissi
Leakage Izsz (2"2)452' + Absorption 1ss1on| Capture
| DV, II: <7> :I b= |—o —v
Scattering

Ingroup scattering

Figure 7-13. Schematic representation of two—group diffusion equation

In the two—group approximation, the neutron multiplication factor is
defined as follows (see Fig. 7-13)

Vlzfl¢l + sz/'2¢

= 2 ? (7-190)
'—Dlv ¢ —~D2V ¢2 +2al¢] +Z(12¢2
The diffusion equations for the two energy groups become
e Fast energy group
DV*¢(r)=Z,6,()+S$,(r)=0 (7-191)

First term describes fast neutron leakage which involves a fast diffusion
coefficient.

The second term represents the removal of fast neutrons by
thermalization. “«! is the sum of the fission, capture and scattering (from
group 1 to group 2) cross sections, and is called the removal cross
section.
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Fast neutron production is described by 5i(n) representing the fast
neutron source which depends on thermal neutron flux at the spatial
positions where thermal neutrons cause fission (see Fig. 7-13).

The infinite multiplication factor for a thermal reactor represents the ratio
of neutrons produced in any generation to the neutrons absorbed in the
proceeding generation (leakage is neglected if the system is infinitely
large).

Neutron loss is accounted for by resonance absorption during the slowing
down process, Thus, for each thermal neutron absorbed, k_ / pfast
neutrons are produced by fission (p is the resonance escape probability,
see Section 3). The number of thermal neutrons absorbed is X ,¢,(r),
thus Eq. (7-191) becomes

- -~k -
DI‘72¢1(r)—2a1¢1(r)+—;—Eaz¢2(r)=0 (7-192)

e Thermal energy group
D,V2$,(r) =2, (1) + $,(r) =0 (7-193)

The first term describes the leakage of thermal neutrons,

The  second term accounts for thermal neutron absorptions.
S, (r)represents the thermal neutron source.

If there are no resonance absorptions, X @, (r) would give the rate at
which neutrons are transferred to the thermal group.

Due to resonance capture, the probability that a fast neutron will be
thermalized is p. Thus, the thermal neutron source depends on fast
neutron flux, and Eq. (7-193) becomes

D,V?¢,(r)~ 2,0, (r)+ pZ,4,(r) =0 (7-194)

Both equations are dependent on fast and thermal flux and thus
represents a coupled system of equations. In addition, for a critical
steady—state system the following equations from the diffusion theory are
applied

V26 (1) + B¢ (1) =0
{ A +EHW) (7-195)

Vi, (r)+ B, (r)=0

Note that the buckling is same for both energy groups because it depends
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only on the core geometry for the critical system. By substituting Eq. (7-195)
into Eq. (7-193) and Eq. (7-194), the following system is obtained

~(D,B*+X,)4,(r) + k—“‘zﬂ@ (P =0
p (7-196)

~(D,B* +X_)é,(r)+ pL 6. (r) =0

The solution of these coupled equations is found by setting the
determinant of the coefficients to zero (Cramer’s rule)

k.X
DB*+%, —-="2
p =0 (7-197)
-z, D,B*+% ,
or:
(DB +2,)(D,B +2,,)-k.Z,Z,, =0 (7-198)
giving
k. =k=1 (7-199)
(1+LB*)(1+L,B*)
I’ E_DZ_
th 2 ,
‘ (7-200)
, D
L=
)y

Equation (7-199) represents the two—group diffusion approximation for
the critical bare reactor. In comparison with the one-speed diffusion equation
there is one additional leakage term.

Equation (7-199) can be rewritten as

k
= =1 (7-201)
1+ B2 +12)+ B4 12

For large reactors for which B? <<1, Eq. (7-201) reduces to
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k -1
S-S RN (7-202)
1+8° (L, +L}) M

where M is migration length as explained in Section 3.
The effective multiplication factor for finite systems thus becomes

keﬁ” = kvopntgn—leak Pn}:f;\‘ileak (7_203)
th _ 1
non-leak — 7 2
(1+L,B%) 7208
fast — 1
non-~leak (1 + l,?Bz )

24.10  Multi-Group Neutron Diffusion Theory

In reactors neutrons born in fission are fast. In thermal reactors, they

slow down to lower energies due to scattering with the medium

If a medium consists of dominantly heavy nuclei, neutrons scatter
through inelastic processes creating energy spectrum shifted toward
lower energies.

If a medium consists of dominantly light nuclei, neutrons scatter through
elastic processes resulting in thermal energy spectrum.

In both cases, neutrons possess a wide spectrum of energies that require
more than one or two energy groups for accurate estimates.

In a multi-group approach, neutrons are divided into a number of groups

such that to every group corresponds an average energy and velocity with
which neutrons diffuse through a medium until they are absorbed or due to
slowing down removed to a lower energy group.

The n—group diffusion theory is represented by the following series of

equations
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DV$(r)~Z, 4P = > 21— g (1) +5,(r) =0

DV, (r) = Z,.0,(r) -
- z 2(2 5 h)g, (1) +5,(r) + E(1— 2)4 () =0

h=3

DV G,() = Z,.8,(r) = > (3 — h)p, (1) + S,(r) +

h=4

+Y S(h = 3)¢,(1) =0

h=1

DVi¢(r)-%,6,(r) - Z 23— W)@ (1) +S,(r) +

h=i+]

+ iz(h — i), (r) =0

h=1

n-l

DY, 20,00+ 8,00+ L3 = 1, (1) =0 (7-205)

For each of these groups, the diffusion equation is written such that: for
energy group i, ¢ describes neutron loss (absorptions, X,¢ and removal to
a lower energy group, X;4,).

The source term in first energy group, S, takes into account neutrons
which are emitted with energies corresponding to that interval. In all other
energy groups the source, S;, is defined as a sum of neutrons emitted from
that source plus all neutrons that come from other energy groups.

3. SLOWING DOWN OF NEUTRONS

Neutrons are slowed down in both elastic and inelastic scattering
collisions with the nuclei of the atoms in a medium. In each collision, the
neutron transfers a portion of its kinetic energy to the target nucleus in the
form of kinetic energy if the collision is elastic or excitation energy if the
collision is inelastic. Inelastic scattering is dominant with heavy nuclei,
while elastic scattering is dominant with light nuclei. Moderator materials
have low mass numbers and remove a large amount of energy from neutrons
in a single collision and are also weak absorbers. This is why in a fast reactor
materials of low mass number are avoided thus keeping the neutron
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population at a high average energy (the range where inelastic scattering by
uranium or plutonium nuclei plays an important role). The one group
neutron diffusion equation provides a basic understanding of neutron
transport.

Most of the neutrons produced in fission have energies in range of 1 to 2
MeV. In collisions with the materials in a reactor core, neutron energies
range from small fractions of eV to a few MeV. Thermal reactors
incorporate moderator materials in order to reduce the neutron energies to
the thermal region where fission is most likely to occur. In an accurate
reactor analysis both elastic and inelastic scattering are analyzed. A simple
mathematical description of the elastic scattering processes can be developed
under the following assumptions
e target nuclei are at rest relative to the neutrons, and
¢ the nuclei are not bound in a solid, liquid or gaseous molecule.

However, in the thermal region, the energies of the nuclei cannot be
neglected in comparison with the neutron kinetic energies, and the scattering
nuclei should be considered bound. In this condition, low energy inelastic
scattering cannot be neglected. Also, neutrons can gain or lose energy in a
collision. An increase in energy is called up-scattering, and a decrease is
called down-scattering.

The slowing down of a neutron from fission energies to roughly 1 eV is
called moderation and the slowing down below 1 eV is called the
thermalization. The following description of the neutron slowing down
process refers to the moderation process for which the two assumptions
stated above are acceptable.

3.1 Elastic Scattering in the Moderating Region

Elastic scattering in the moderating region is described by assuming that
the colliding particles behave as elastic spheres, with the assumption that the
target nuclei are stationary. In considering the scattering collision processes,
two frames of references (Fig. 7-14) are used

(a) The laboratory system (LS): scattering nucleus is at rest before the
collision, and the neutron is moving toward the nucleus; after the collision,
the neutron changes its direction of motion and velocity, and the nucleus
moves from the rest position with some velocity. The viewpoint is that of a
stationary external observer.

(b) The center of mass system (COM): neutron and nucleus are stationary
in the collision. The observer is located at the center of mass of neutron plus
the nucleus (compound nucleus) and travels with the velocity of the
compound nucleus. The center of mass is an imaginary point where the
system is balanced.



336 Chapter 7

M=A A+1
m
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S
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e

Scatter in center of mass system
Figure 7-14. Scatter in lab and center of mass systems

Actual measurements are made in LS system, while the theoretical
treatment is easier in the COM system. Since data are measured in the LS
reference frame and the theoretical predictions are made in the COM
reference system, a coordinate transformation is needed to compare theory to
experiment. The both systems are shown in Fig. 7-14

Uy : initial neutron velocity in LS

U4 = 0 : nucleus velocity in LS

vc : compound nucleus velocity in LS

v, : recoil nucleus velocity in the LS

v : recoil nucleus velocity in the LS

¥ : neutron scattering angle in LS with respect to original neutron
direction

vy : recoil nucleus velocity in the COM system

v, : scatterd neutron velocity of in the COM system

0 : neutron scattering angle in the COM system

Laboratory system: Since the nucleus is stationary, its velocity is equal to
zero and the momentum of a compound nucleus in LS is equal to the
momentum of the incoming neutron

mu, + Mv,, =(m+ M)v, (7-206)
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giving the velocity of the compound nucleus to be,

__W
1+ A)

(7-207)

Ve

Center of mass system: In order to follow the splitting of the compound
nucleus it is convenient to transfer to the center of mass system. In this
system, the observer travels at the velocity and direction of the compound
nucleus after the collision. Thus, the velocity of the neutron and nucleus
before the collision must be reduced by the velocity of the compound
nucleus vc. The velocity of the compound nucleus itself will become zero as
it will appear stationary after the collision (see Fig. 7-14). Thus
¢ The velocity of incident neutron

Yy Ay,
(1+A4) (1+A)

Vy — Ve =7, (7-208)

¢ The velocity of nucleus: —v¢

According to the conservation of energy law, the kinetic energy before
the collision must equal the kinetic energy of the particles after the collision.
The binding energy to form and break up the compound nucleus is the same
and thus cancels out. The only energy to be conserved is, therefore, kinetic
energy. The kinetic energy before the collision and available to the
compound nucleus is the sum of kinetic energy of neutron and nucleus:

T(COM)=—(v,-v.)" + %A (-v. )’ (7-209)

1
2
Eliminating the target nucleus velocity from the above equation gives

2
rcomy=—2___A sy, (7-210)
21+4) 1+A

where T(LS), represents kinetic energy of the incident neutron in LS.
From the above equation it can be seen that the kinetic energy before the
collision in the COM system for light nuclei is half of the incident neutron
energy in LS, while for an interaction with P57 (that creates °U as a
compound nucleus) it is the fraction 235/236 of the incident neutron energy.
Thus, the difference between these two systems is more evident for light
nuclei.

According to Fig. 7-14 the kinetic energy in the COM system is shared
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between the scattered neutron and scattered nucleus flying away in opposite
directions. Thus, the conservation energy law in COM gives

Av; AV U

= (7-211)
2(1+ A) 2 2
The conservation of momentum equation gives
v =Av, (7-212)
By combining the last two equations it follows
A 2 A 2 2,2
Y AV | AUy (7-213)
2(1+A) 2 2
UAI = 1 UOA
M (7-214)
_ Ay,
Lol+A

Laboratory system (LS): 1t is useful to now convert back to the LS in
order to compare the kinetic energy of the scattered neutron with the kinetic
energy of the incoming neutron. Conversion from the COM system to the LS
system is depicted in Fig. 7-15 and shows the transfer of velocities from one
system to another using the Pythagorean Theorem

v? =(v,sin ) + (v, cos O+ v, ) (7-215)
or
2 2
A
02 = A% g | 4 AV o5 4 Yo (7-216)
1+ A 1+ A 1+ A

which gives

2
1)2:A +2Acoz€+lvg (7-217)
(1+A)
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U sind

Figure 7-15. Diagram of velocities for conversion from COM to Lab system

From this equation it is possible to obtain the ratio of kinetic energy of
the neutron after collision to that before the collision

T(LS) v*/2 A®+2Acosf+1
T(LS), U}/2 (1+A)

(7-218)

This equation leads to the following conclusions
e This ratio reaches its maximum when 8 = 0, or a glancing collision.
Therefore, in forward scattering, neutron energy is not changed

[T(LS)} :A2+2A+1=1
T(LSY, ), (1+A)

e The minimum ratio of energies is obtained for a head-on collision in
which the neutron does not change its direction, or 8= 7

( T(LS) ] _ATH2ACD L (A-1) —a (7-219)

T(LS), (1+A) (A+1)°

In the example of hydrogen (A = 1), the value of the defined parameter &
becomes
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indicating that in head—on collision with a hydrogen nucleus, the neutron
energy after the collision will be zero. In other words, a hydrogen atom
can cause a neutron to lose all of its energy in a single collision event.
For beryllium atom for whichA =9

2
0y, =—-————(A—1)2 =0.64
(A+1)

indicating that a neutron will lose 36 % of its energy in a single head-on
collision with a beryllium nucleus. This becomes a much smaller
percentage for a heavy nucleus like **U

A-1)
Oyysy =t =0.98
235U A+1)2

giving that only 2 % of the initial neutron energy will be lost in a single
head-on collision. Thus, for heavy nuclei in which A >> 1, it is expected
that & ~ 1 indicating, as shown in the example of uranium atom, that
neutron energy after the collision is nearly equal to its energy before the
collision.

Example 7.6 Scattering of a neutron in COM and LS

A neutron traveling through a medium is scattered by ’Be. If the initial neutron
energy is 0.1 MeV and the scattering angle 45° in the COM system calculate the
fraction of energy that the neutron will lose as well as the scattering angle in the LS?

From

T(LS) _A*+2Acos@+1 9% +2x9xcos45+1

- d > =0.937
T(LS),  (1+A) (1+9)

it follows that the scattered neutron energy is 0.937 x 0.1 MeV = 93.7 keV. The
fraction of energy neutron has lost in this collision is

0.1MeV —93.7keV
0.1MeV

=0.063 — 63%
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From Figure 7-15 it follows

Avy

U sin @ =vsiny yvs)
+

v _ T(LS) A sind
v, T(LS), A+lsiny

sin@=vsiny

. 9 sin45
siny = —— =0.657 — wy=41.1°
9+140.937

3.2 Energy Distribution in Elastic Scattering -
Logarithmic Energy Decrement

The energy that a neutron loses in an elastic collision with the nuclei of a
medium is a function of medium atomic number and the scattering angle.
The logarithmic energy decrement is defined as the logarithm of neutron
energy per collision

E=InE, —lnE-—-—ln—E— (7-220)

E,

In the COM system the break up of a compound nucleus does not depend
on the mode of its creation and neutrons scatter in random manner having
equal probability for all directions (isotropic scattering, Fig. 7-16). The
probability that a neutron will scatter into an angle between @and 8+ d@is
the ratio of the area of the differential ring to the total area of the unit sphere

2rsin&df _ sindo
4 2

(7-221)

The differential number of neutrons, dn, scattered into a differential angle
is the product of the total number of neutrons, n, and the probability that
neutrons will scatter into a differential angle between &and 6+ d6@

sin &6
2

dn=n

(7-222)
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Figure 7-16. Isotropic scattering of neutrons in COM

The differential number of neutrons, dr, multiplied by the logarithmic
decrement

2
[ A +2Acos€+1} (722

fdnz—ln—E—dn:F—sianﬁ - >
E, 2 (A+1)

and integrated from O to 7 will give the total logarithmic decrement for
all n neutrons of the system

§=——ln£—=—l— J.fl—sinﬁde{—l

Ey, ng2

2
A +2Acos9+1} (722

(A+1)?
This integral can be solved introducing the following change of variables

2 1 A .
=A +2A00320+ :>dx:—2 s1n0c21t9 (7-225)
(A+D (A+1)

with the appropriate adjustment of the limits, Eq. (7-224) becomes

. 2
§=-1n£=J‘”_x{(A“)}d (A“) j1 xdx (7-226)

E, 72| 24

The constant term can be rearranged in the following form
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A+1D)? A+1)? 1
(ArDP___ (A+D" ! 7227
4A (A+D"-(A-1 1_(A—l) l-o
(A+1)°
and the logarithmic decrement becomes
=1+ 2 e (7-228)
-
or,
(A-1) ( A—lj
=1+ In| — 7-229
§ 2A A+l ( )

The average logarithmic energy loss per collision is only a function of
mass of the target nucleus and is not dependent on neutron energy; it is
usually approximated with

2
A+2/3

& (7-230)

Since £represents the average logarithmic energy loss per collision, the
total number of collisions necessary for a neutron to lose a given amount of
energy may be determined by expanding £ into a difference of natural
logarithms of the energy range in question.

The number of collisions () to travel from any energy, Eyign, to any
lower energy, E\., may then be calculated as

_ In Ehigh -InE,,

3

(7-231)

If the medium is non—homogeneous, the effective or mean value for the
logarithmic energy decrement is calculated as follows

E _ §10,1 + 6,0, +...
E, O, +t0,+..

£=-In (7-232)

Example 7.7 Average number of neutron elastic collisions
Calculate the number of collisions in *Be and **U required to reduce neutron
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energy from 2Mev to thermal energies (0.025 eV).

¢ ’Be:
f— 2 f—
£=1+ 870" 92100207
2x9 '\ 9+1
In Eyyg ~In By, 1nf2x10° /0.025)
N = = =88
g 0.207
° 238U:
2
£=14 @807 (28106 608
1x238 238+
- 6
v 2B =10y, _1nf2x10°/0025)
Z 0.0084

Although the logarithmic energy decrement is a convenient measure of
the ability of a material to slow neutrons, it does not measure all necessary
properties of a moderator. How rapidly slowing down will occur in material
is measured by the macroscopic slowing down power (MSDP) which is
defined as the product of the logarithmic energy decrement and the
macroscopic scattering cross section for the material

MSDP=£5,

MSDP thus represents the slowing down power of all nuclei in a unit
volume of a moderator and does not give full information about material
properties such as probability of scattering or absorption of neutrons. For
example (see Table 7-2), helium gas would have a good logarithmic energy
decrement but very poor slowing down power due to the small probability of
scattering neutrons due to its low density. Another example is boron that
again has a high logarithmic energy decrement and a good slowing down
power, but it is a poor moderator because it has a very high probability of
absorbing neutrons.

The most complete measure of the effectiveness of a moderator is the
moderating ratio (MR) which is defined as the ratio of the MSDP to the
macroscopic cross section for absorption. The higher the MR, the more
effectively the material performs as a moderator

ES
z

a

MR=¢ (7-233)
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For a single element this reduces to

o,
MR =E2% (7-234)
(o2

a

while for a mixture of two elements it becomes

MR = §Z +6HX,

(7-235)
2’a] + 2(12
Table 7-2. Characteristics of moderators
Moderator I Nto MSDP MR
thermalized
Water 0.927 19 1.425 62
Heavy water 0.510 35 0.177 4830
Helium 0.427 42 8.87x10°° 51
Beryllium 0.207 86 0.724 126
Boron 0.171 105 0.092 0.00086
Carbide 0.258 114 0.083 216

Relative merits of some moderator materials used in current thermal
reactors are given in Table 7-2. Ordinary water has high & and a good
MSDP. However because of 0.332 b absorption cross section it has the
lowest MR of all moderators. The use of enriched fuel is thus required for a
reactor to be critical. But the low cost and high availability are crucial
factors in the wide use in the majority of nuclear power plant designs.
'Graphite is also widely used due to good moderation parameters and low
cost. Heavy water has superior characteristics as a moderator, but is very
expensive and therefore used in only a small number of reactor
configurations. Helium is not used because of its low density while
beryllium is avoided due to its high toxicity.

3.3 Average Cosine of the Scattering Angle

As described in Section 3.1, actual physical measurements are made in
the LS system, while theoretical treatment is usually done in the COM
system because it is simpler. In the COM system the scattering of neutrons is
considered to be isotropic while in LS there is a preferential forward
scattering and scattering is therefore anisotropic. This can be shown by
deriving the relation for the average cosine of the scattering angle.

In the COM system the average value of the cosine of the scattering angle
can be calculated as the product of the number of neutrons scattering into an
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angle between @ and 6 + d@ and cos@ integrated from O to 7z divided by the
total number of scattered neutrons

cos = 1 j'(ﬁ)cos 0sin0dg =0 (7-236)
ni\2

This gives a value for the scattering angle in COM system of 90° this
means that an equal number of neutrons scatter forward and backward
therefore proving that scattering is isotropic in the COM system.

When transfer now to the LS system the scattering angle becomes (see
Figures 7-14 and 7-15)

v, 080+ U, B Acosf +1

\/(v] cos@+v, ) +(vsin@) VA +2Acos6+1

cosy = (7-237)

The average cosine of scattering angle is

_ (Acos@+1 6de 2
= Co fcos wsin0dé = J‘ )sm - (7-238)
A’ +2Acos 0 +]1 34

For example, the average cosine of scattering angle for graphite indicates
the scattering is nearly isotropic in LS for that material

=CO0S “l_ 2
A

=0.056

while scattering on hydrogen indicates strong forward scattering

U =CcosSly = __2_ — _2__ = 2
AoV =3 T 3
34 Slowing Down of Neutrons in Infinite Medium

34.1 Slowing Down Density (Neutron Moderation) without
Absorption

All analyses presented in this section are valid for a steady state reactor,
under the assumptions that there is no loss of neutrons by absorptions or
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leakage since the medium is assumed infinite during the slowing down
process. It is also assumed that the energy dependent relations are already
integrated over the spatial coordinates (spatial dependence is given in
Section 3.5). The no absorption assumption requires a moderator that does
not absorb neutrons with energies greater than thermal energies. Another
assumption is that the neutron source is provided inside the moderator to
produce neutrons at a uniform rate and at a definite energy, S(E;). A sink is
provided to absorb only neutrons which have slowed down to thermal
energies. Therefore, at steady state there will be no accumulation of neutrons
and the number of neutrons that enter any energy increment, dE, at given
energy £ will be exactly equal to the number of neutrons leaving it. The
slowing down process is shown schematically in Fig. 7-17.

The slowing down density, g(E), is defined as the number of neutrons per
unit volume that pass a given energy E per unit time. The derivations which
follow are given for energies far from the source energy. These solutions are
called asymptotic solutions.

Solutions applicable near the source are complex (with the exceptions of
hydrogen moderator) and are called the transient solutions. Each neutron
generated at £, will be either scattered or absorbed. The scattering collisions
will distribute neutrons uniformly over the energy range from E; to o.Ey. The
slowing down density at E is defined as the number of neutrons that slows
down from E; per unit volume and in unit time

E)=S(E,)———~— 23
q(E)) ( I)E,(,,(E1) (7-239)

According to the assumption of no absorption in the system, the above
‘relation reduces to

L (E)=X(E) — q(E)=S(E) (7-240)

In an energy increment dE’ (see Fig. 7-17) lying in energy interval
between £/ and E, the number of collisions per unit volume in unit time is

T (E)Y(EHIE (7-241)
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£y Monoenergetic source, S(£) Dlmmfn_' of'integration
t for positive increments
of dE
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4 af'

Neutron slowing down

q(E) ‘ Neutron sink

Figure 7-17. Neutron slowing down in energy space

If the fraction of neutrons that will have energy less than E after
scattering from dE’ is

E-ak (7-242)
E —oF

then the number of neutrons passing an gnergy level E in unit volume per
unit time, that originate from energy increment dE’ is

E-oE
E -aE

2 (E))E) dE (7-243)

Therefore, the slowing down density becomes

Ela

g(E)= [ Z,(E)JE)

E

%w' (7-244)

A more explicit relation can be obtained for the slowing down density by
recognizing that at steady state the number of neutrons scattered into the
increment dE at £ must be equal to those scattered out (since there is no
absorption and no leakage of neutrons)

gE) _ S(E)
EE,(E) E&,(E)

¢(E)= (7-245)
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Since no neutrons are lost in an infinite non—absorbing medium at steady
state, the number of neutrons slowing down past any energy is constant, or
in other words the slowing down density is constant. The scattering cross
section does not vary greatly in moderating energy region (see examples in
Fig. 7-18) and the flux is proportional to 1/E.

1.OE+04 ¢
1.0E+03 A
1.0E+02 ¢
o) N
=}
R=1
3 L.OE+01 }
» E
g i 12Q
© 1.0E+00 3
1.0E-01 E
10E_02 SRR L) e Ll kbt i) bt L AL SN Lol d A
1.0E-05 1.0E-03  1.0E-0f 1.0E+01 1.0E+03 1.0E+05 1.0E+07 1.0E+09
Energy (eV)

Figure 7-18. Elastic scattering cross section in moderating energy region for 'H and '*C

Example 7.8: Slowing down of neutrons

Neutrons of 1.5 MeV are introduced at the rate 2 X 10" n/cm*-s in an infinite
slab of graphite. Calculate the number of elastic scattering collisions occurring per
second in cm” in the energy interval from 0.5 to 0.3 MeV.

The average logarithmic energy loss per collision

NS

n——|[=0.158 A=12
2A A+1

Since no absorptions or leakage are assumed, the only interaction neutrons may
undergo is scattering with the nuclei in the graphite slab. Thus, the slowing down
density equals the neutron source, i.e. the neutron rate at energy 1.5 MeV. Hence,
we may write
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S(E)
Fy=—2%)
o(E) EE. (E)
HE)L,(E)= E@dE_— iE- S E|
S o &
15
- 2x10 ln—(E=6.466><1015n/cm3s
0.158 03

34.2 Lethargy

The equations involving energy and energy changes may be expressed in
terms of a quantity called lethargy. By definition, the lethargy is

E
u=In ?0 (7-246)

where Ej is an arbitrary starting energy usually taken to be 10 MeV. As
neutron energy decreases the lethargy increases (see Fig. 7-19). Low
lethargy media are such that the energy change after a collision is small. This
is true for high mass nuclei. If E; represents the neutron initial energy and E,
neutron energy after the collision, the corresponding lethargies are u; and u,
respectively, and then the lethargy change is given by

E
Au=u, —u, =ln—- (7-247)
EZ

Since the average value of InE)/E, represents the average logarithmic
energy loss, &

Au=¢ (7-248)

it can be also regarded as the average change in lethargy. As stated
before, for the isotropic scattering in the moderating energy region of the
COM system, & is independent of energy. That means that neutrons,
regardless of their initial energy, must undergo on average the same number
of collisions in a given medium to increase their lethargy by a specific
amount (because the reciprocal value 1/& represents the average number of
collisions).
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Figure 7-19. Neutron lethargy distribution

343 Slowing Down Density (Neutron Moderation) with Absorption

In any actual situation neutrons are absorbed during the slowing down
process. The slowing down density with absorption can be expressed as

q(E)=q(E Yp(E)=S(E)p(E) (7-249)

where g(E’) is the slowing down density without absorption, and p(FE) is
the fraction of neutrons that escape capture while slowing down from E’
(energy of the source neutrons) to E, and is called the resonance escape
probability.

For a homogeneous system assumed to be infinite with the fuel
distributed throughout the moderator, the neutron flux is independent of
position. The neutron absorption rate is then

B
Absorption from E' to E = .[Ea (E")¢(E")dE" (7-250)
E

In order to determine neutron absorption it is necessary to know the flux
distribution as a function of energy. That is difficult to determine exactly and
some approximations are customarily introduced. One such approach is
called the narrow resonance (NR) approximation. This approximation states
that inside the resonance region, a neutron cannot be scattered from one
energy to another. In other words, a neutron that enters the resonance region
is either absorbed or is scattered to energy below the resonance.

Neutrons reaching the energy interval dE within the resonances will be
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only those scattered from higher energies. In the NR approximation, the
number of neutrons entering this energy interval is independent of whether
or not neutrons are absorbed in this region and it is equal to g(E) dE / E¢, or
S(E) dE | E& Neutrons are lost from the energy interval dE by absorption
and scattering. The loss rate is (X, + X;) AE) dE, where Z,r is the
absorption cross section in the fuel (absorber) and Z; is the total scattering
cross section of the fuel and moderator, all of which are functions of energy.

In steady state, the number of neutrons entering an energy interval dE is
equal to the number of neutrons which are lost

SEE -z, +3,)0E)E (7:251)
ES
giving the flux to be

P(E) = 3 S(E) (7-252)

. +Z,)

The presence of the absorption cross section in the denominator means
that the neutron flux decreases in the resonance region.
The resonance escape probability then becomes

z
! ___a_E___f_ZE} (7-253)

p(E) ) exP\:_ E J‘ZaF + Zs E

where the integration is over the resonance region energies.

A further approximation is called the narrow resonance infinite mass,
NRIM approximation in which the mass number of the absorber is assumed
to be infinitely large. In such a case, the scattering cross section is that for
the moderator only. An alternative expression for the resonance escape
probability may be written in the following way

j—Lo d—E} (7-254)

N
(E)=exp| ——= ;
p p|: ZaF +Z\ " E

where the scattering cross section and the average energy loss are
assumed to be independent of energy. The integral in last equation is called
the effective resonance integral, I and has the same dimension as the
microscopic cross section. Thus, Ng/ has the dimension of macroscopic cross
section.
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Actual reactors are heterogeneous systems where fuel and moderator are
physically separated. The fuel is present in distinct units called fuel rods that
are spaced in a lattice array with the moderator region in between. If the
neutron mean free path at given energy is less than or equal to the rod
diameter, the probability that neutron will be absorbed in the fuel rod is
large. This means that the flux at that given energy in the fuel rod will be
lower than the flux in the moderator region. Resonance neutrons are largely
absorbed in the outer regions of the fuel rods, especially if the resonance
peak is narrow and high. As a result, nuclei in the interior are exposed to a
very low neutron flux and the amount of absorptions is small. This effect is
called self-shielding. The net result is that the probability of resonance
capture is less than in the case of a uniform distribution of the fuel within the
moderator. Therefore, the resonance escape probability is larger in
heterogeneous systems. Also, it increases with fuel radius. Another factor
that increases the escape probability in a fuel region is that some neutrons
are slowed down in the moderator region to energies below the resonance
region and therefore they escape capture. Neutrons absorbed by resonance
capture in a thermal reactor fuel region (i.e. **U) are lost from the fission
chain reaction. Thus, most thermal reactors are designed to maximize the
resonance escape probability. For fuel rods placed far enough that resonance
neutrons cannot pass directly between the rods, the rods are said to be
“isolated”. The resonance escape probability is then found to be

NV
p(E)=exp| - F_E I} (7-255)
$rZpVie +$y Ty Vi

In closely packed or so called “tight” lattices, like in water moderated
reactors, some resonance neutrons that would normally enter a fuel rod will
be intercepted by adjacent fuel rods. The resonance flux is then less, on
average, than it would be if the rods were well separated. Thus, each fuel rod
in a tight lattice configuration is said to be partially “shadowed” by the other
rods. The effective resonance integral is smaller, and thus the escape
probability is larger. Corrections are made by introducing the Dancoff factor
which depends on the spacing and radius of fuel rods and the fuel material
Cross sections.

3.5 Spatial Distribution of the Slowing Down Neutrons

3.5.1 Fermi Model

The proceeding models were developed for an infinite medium in which
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the neutron flux distribution was not a function of spatial coordinates.

However, in reality the system has finite dimensions in which the neutron

flux distribution is a function of energy as well as spatial position ¢(E, ‘:5 LA

useful approach in studying the spatial distribution of neutrons is to consider
the slowing down density in the moderating region. Slowing down density
can be expressed analytically only under certain approximations. A fairly
simple analytical approach is the so called continuous slowing down model
or the Fermi model. In the Fermi model the following assumptions are made:

1. The scattering of neutrons is isotropic in the COM system, thus the
average logarithmic energy decrement, & is independent of neutron
energy. This also represents the average increase in lethargy per
collision, i.e. after n collisions the neutron lethargy will be increased by
n& units (see Section 3.4.2).

2. Every neutron gains exactly £ units of lethargy in every collision, i.e.
each neutron is supposed to behave as an average neutron. Therefore, the
only lethargy values possible in the moderating region are discrete values
of né wheren=1, 2,3, etc.

3. The lethargy is a continuous function, i.e. the steps in lethargy change are
approximated by continuous change, see Fig. 7-20.

The Fermi model is a reasonably good for describing neutron slowing
down process in a material with a large mass number; because the average
logarithmic energy loss is small (the spread of neutron energies after
scattering is relatively small). Thus, the assumption that each neutron
behaves like an average neutron is nearly accurate. In addition, since & is
small, the steps shown in Fig. 7-20 are small in height but large in number.
Therefore, it is acceptable to approximate the steps with the continuous
curve. If neutrons slow down in materials of low mass number (like
‘hydrogenous materials), the energy spread after collision is large and the
average lethargy change is large. For example, in hydrogen it is possible that
a neutron would lose all of its energy in a single collision. In this case, the
Fermi model is inapplicable.

The neutron conservation equation in a reactor for the energy range E
and E + dE, assuming

continuous slowing down of neutrons
weak neutron absorptions in the moderator
finite size of the reactor (leakage cannot be neglected)

e e o o

may be written as

| ovegle. 7 e - 5, (E)lE 7 hE + s(E.7)=0 (7-256)
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with the terms defined as follows

— l— DV2¢(E , 1:) E: number of neutrons with energy dE leaking out of
the system

> (E )¢(E ,;)dE : number of neutrons with energy dE being absorbed in
the medium

S (E , ;) neutron source (number of neutrons slowing down out of dE as
shown in Fig. 7-21.

The source term can thus be expressed in terms of slowing down density
- - - 8 -
S\E,r)=q\E +dE,r|-qg\E,r =£qE,r E (7-257)

which may be inserted into Eq. (7-256) to give

- [— DV2¢(E, ?)]JE -3, (E)¢(E, ?)dE + a% q(E, ;}IE =0 (7-258)
Slowing down in large mass Slowing down in hydrogeneous
number medium medium
3
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---------------------- Continuous slowing down approximation

Figure 7-20. Continuous slowing down approximation
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Figure 7-21. Definition of the neutron source term

If the medium is a weak absorber, Eq. (7-258) reduces to
ovigle, )+ a%q(E, F)=0 (7-259)

In the absence of absorption, the change in neutron slowing down density
is due to leakage.
Combining Eq (7-259) with Eq. (7-245) gives

A 1 gER ) -
DV =——1ylE, 7-260
L’ZA.(E) E } aEq( ") (7-260)
or,
- 1 9 -
Vg(E,r)=—o——qlE, 7-261
q(E,r) ( 5 )aEq( r) ( )
EE(E)E

Equation (7-261) can be simplified by introducing the variable, 7, called
the Fermi age
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__D
L, (E)E

(7-262)

E D E, D
= [ —aE= [——uE
! E{é&(E)E ls@n

Fermi age does not have units of time but the units of distance—squared
and represents the chronological age of neutrons. In other words, it indicates
the time elapsing as neutrons travel away from their source (with energy Ey)
to the point where its energy has been reduced to E. For neutrons of source
energy (FE = Ep) the Fermi age is zero, 7= 0. The Fermi age increases as
energy decreases (as a neutron slows down its age increases).

The slowing down density can be now expressed in terms of Fermi age

Viq(r,r)= %q(r,?) (7-263)

and is valid for a medium with no absorption of neutrons. However, the
age equation can be modified for weakly absorbing medium in the following
way: if g(E) is the neutron density in non-absorbing medium, then g(E)p(E)
is the slowing down density in a medium in which there is weak absorption
of neutrons, p(E) being the resonance escape probability.

Example 7.9: Fermi age equation

Find and interpret the solution for the Fermi age equation for a point source of
monoenergetic fast neutrons (10 MeV) undergoing continuous slowing down in
non-absorbing medium.

The solution of the equation

V2q(z,r) =%q(r,;)

(T.7) = (7-264)
T

It represents the slowing down density for neutrons of age 7at distance r from a
point source of 1 n/s. This expression has the form of a Gaussian error curve, thus
distribution of slowing down densities for a given age is sometimes referred to as
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Gaussian distribution.

Example 7.10: Fermi age for different moderators

For water (density 1.0 g/cm®) and graphite (density 1.6 g/cm®) determine the
Fermi age at | MeV. Assume neutrons initial energy is 2 MeV.

Data: 6 =38 ¢ =3.76b o° =475b

Fermi age

D E

E
D
r=- [—aE=-—
E'!:ézx (E)E 523 EO

Water

_ PN, 1x6.023x10%
M 18

N0 =3.35x10%at/cm’

%19 =0.0335(2x38-3.76) = 2.66cm ™

2
erenfig

0.0335| 2x38x 1——2—— +3.76x 1———2— =
3x1 3x16

=0.969cm ™
HgH 0 £0
D™ =L _(344em g0 = 20, fH “’;} ¢ =0.958
- 20, +0;
Y __ b n£=—~—-%ln—l—=0.093cm2
& E;  0.958x2.66 2
Carbon
23
NC o PNa _LOX6023x10% o o

M 12
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¢ =0.0803x4.75 = 0.38Icm ™

z§=zf[1—i)=o.381(1~ 2 )=0.3600m‘1
! 3A 3x12

D¢ = ! =0.926cm E€ =0.158
Ztr

e B Lo 090 1 066em?
& E, 0.158x0.381 2

3.5.2 Migration Length

The Fermi age of neutrons is related to the mean square distance
travelled while slowing down. For thermal neutrons of age 7, the /7,
represents a measure of net vector distance travelled from the formation as
fission neutrons to their appearance as thermal neutrons. The mean square
distance which corresponds to the Fermi age is calculated as

]‘rzq(E,;)élﬂrz o]r e 4Tdr
P =L =2 =67 (7-265)
JQ(E’;)dmzdr Irze ‘”dr
0 0

The neutron age is analogous to the square of diffusion length. The above
equation means that neutron travels 1/6™ the mean square distance in going
from the lethargy level before collision (u = 0), to lethargy level after the
collision (u). It also represents the slowing down length. The sum of the
square of the diffusion length and the age is called the migration area

M?*=L} +7, (7-266)

and its square root the migration length (see Table 7-3). The criticality
equation in the slowing down approximation for a large reactor is
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k. =1+M?*B* (7-267)

Table 7-3. Migration lengths for most common moderators and thermal neutrons

Moderator Diffusion length Slowing-down Migration length
(cm) length (cm) (cm)

Water 0.027 0.052 0.059

Heavy water 1.000 0.114 1.010

Beryllium 0.210 0.100 0.233

Graphite 0.540 0.192 0.575

Example 7.11: Critical core dimensions

Calculate the migration length, critical core radius and critical mass of a
spherical reactor moderated by unit-density water. The core contains 25U at
concentration of 0.0145 g/cm’.

Data: Fermi age is 27 cm®, thermal diffusion area 3.84 cm’, and buckling 2.8 X
107cm™,

From

M =13, +7, =/384+24 =5.55cm

Geometrical buckling for the spherical core will give the critical radius

2
B? = (lj — R, =59.4cm
R

C
Thus the critical reactor core mass is

m, =0.0145><i3’£R3 =12.7kg

4. NEUTRON TRANSPORT IN THERMAL
REACTORS

4.1 Neutron Life Time in Thermal Reactors

The neutron life time in a reactor is characterized through the fast fission
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factor, fast non—leakage probability, resonance escape probability, thermal
non—leakage probability, thermal fuel utilization factor, and reproduction
factor used to define the six factor formula.

Fast Fission Factor, €

In a thermal reactor some fast neutrons before they slow down, will cause
fission of both **U and **U. At neutron energies above 1 MeV, most of the
fissions will be in **U because of its large proportion in the fuel. Since each
single fission event produces more than one neutron, there will be an
increase in the number of neutrons available. This effect is described by the
fast fission factor (Fig. 7-22) which represents the ratio of the total number
of neutrons (k;+k;), to the number of neutrons produced by thermal fissions
(k1). The fast fission factor is fixed once the fuel is fabricated. As the fuel
ages (due to fuel burn up), the number of *U atoms is depleted by fast
fissions (and consequently converted into **Pu). *’Pu is fissionable with the
epithermal neutrons. In further considerations, these fissions are included in
the fast fission factor as fast fissions. Thus, the change of fast fission factor
over the reactor core lifetime can be assumed to be insignificant.

cPnp, Ly fun=n

FAST SLOWING
1000 fast FISSION 1100 fast DOWN 1089 fast
" neutrons e=11 neutrons Py =099 neutrons P
i:mn‘n thermal  hih after all PR remain in core] #477
issions % fissions f DB+ Eq after leakage
Fast fission factor % Za=ZatZa
Fast non-leakage probability
11 fast neutrons 121 neutrons
leaked out — absorhed while
slowing down
NEUTRON Reproduction e(1-Fp)n
PRODUCTION]| factor £Pp(1-Bye)n
7=20 5= L{f.
Za
S RESONANCE
Fare™ g | ABSORPTIONS
slazt2a) Bo=0.889
Zaz
= i 968 neutrons
iggot:‘;:?:s 2:7‘ neutrons n D38%+ T that reach
fue] materials THERMAL o come DIFFUSION
ABSORPTION Py=0999
£=0517
LY W eBpRy Poun s5R,.n

467 thermal
neutrons absorbed
in non-fuel

1 thermal neutron
leaked out

¢Pa R, B (1) N,

Figure 7-22. Neutron full life cycle,ki=Ea/(D\B*+E); ks=Zy1 2 VaZpnl (D1 B*+E 1) (D2B*+2 )
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Fast Non—Leakage Probability, P

In thermal reactor, where there is a significant amount of moderator
material, fast neutrons will slow down. They also may leak out of the reactor
core, or may proceed to slow down through interactions with the nuclei in
media. The ratio of the number of fast neutrons which begin to slow down to
the number of fast neutrons from all fissions is called the fast neutron
non—leakage probability (Fig. 7-22).

Resonance Escape Probability, pes.

During the slowing down process neutrons may escape or may be
captured in the resonance region. The number of neutrons which become
thermalized to the number of neutrons that started to slow down represents
the so called resonance escape probability (Fig. 7-22).

Thermal Non—Leakage Probability, Py,

Of the total number of neutrons which are thermalized, a certain number
will leak out of the core. The ratio of the number of thermal neutrons that are
absorbed in the core to the number of neutrons that are thermalized is called
the thermal non-leakage probability (Fig. 7-22). Like the fast non—leakage
probability, the thermal non-leakage probability also strongly depends on the
core size. As the core is smaller, the leakage is larger.

Thermal Utilization Factor, f

One of the most important factors in the life cycle of neutrons is the
thermal utilization factor (Fig. 7-22). This factor takes into account
absorption of thermal neutrons in materials other than the fissile fuel. It
accounts for the control rods, chemical shim (boron), and thermal neutron
poisons (the most important one being Xe). Thus, the thermal utilization is
defined as the ratio of thermal neutrons absorbed in a fuel to the thermal
neutrons absorbed in the entire core

quel fuelV fuel
S « P — (7-268)
Eiuel ¢fuelv fuel + Zznod ¢m0dv mod + Egther ¢0thervother

Reproduction Factor, 77

The reproduction factor represents the number of neutrons released in
thermal fission per number of neutrons absorbed by fissile fuel (Fig. 7-22).

Multiplication factor: k.

Figure 7-22 also represents the full neutron life cycle, or the relationship
of one generation of neutrons to the next. This relationship is given in Eq.
(7-203) and is called the effective neutron multiplication factor.

Assuming an infinite core size the criticality of the reactor will be
determined through so called infinite multiplication factor since there will be
no leakage of neutrons. For such a case, the infinite multiplication factor
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represents the ratio of neutrons in the current generation to the number of
neutrons in the previous generation. In actual finite systems it is necessary to
take into account the diffusion of neutrons from the center of the reactor core
toward its geometrical boundaries and account for neutron loss due to
leakage. In such systems the effective multiplication factor is obtained as a
product of the infinite multiplication factor and neutron non-leakage
probability as defined in Eq. (7-203).

For a reactor to be critical the effective multiplication factor must be
equal unity. This means that the number of neutrons is constant in each
generation and that the fission rate, and thus the reactor power, is maintained
at the constant rate. With the k,; greater than one the reactor power will raise
exponentially and the reactor become supercritical. With the k.4 below unity
reactor becomes subcritical and the number of neutrons in every coming
generation decreases causing the reactor power to drop.

The infinite multiplication factor must be greater than unity for the
reactor to be critical to allow for:

s Loss of neutrons due to leakage

o Buildup of fission fragments with time as some of them have very large
absorption cross sections that toward the end of fuel cycle will reduce the
neutron population, and thus the reactor power

¢ Consumption of fissionable nuclei that are depleted by time and thus
neutron population decreases toward the end of fuel cycle

e Changes in temperature and pressure in the core that may cause change
in fission rates.

Example 7.12 Infinite multiplication factor

A bare spherical reactor is made of a homogeneous mixture of heavy water and
23U, with the composition that for every uranium atom there are 2000 heavy water
atoms. Using the one—speed diffusion theory, calculate the total absorption cross
section, the thermal utilization factor and the infinite multiplication factor if

n=206 o =678 D=087cm p,. =06
220 =33%10%em™  o22° =0.001b

For the homogeneous reactor the neutron flux is the same in the core regardless
of the material type, thus

fuel , fuely, fuel fuel
_ 50V X,

B fuel ,fuely, fuel mod 4 mody, mod other , othery, other T oyt
g fuel yiuely fuel 4 5 mod gmody mod 5 other gyothery Z,
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tot __ fuel D,0 D,0 _ D,0 _D,0 fuel _ fuel _fuel
Tt = phel 5D 200 = NPOG D phel - yfuel 5
[¢]
ND20 ZD2
— =2000 NPO = e
Nfuel O_DZO

a

tot _ sofuel |, D0 _ 5 D,0 Nl g _ .l
2O =gl 1320 =300 14 T 24| 20,01122em
NP0 P
Efuel
f=Za 678 =0.997

T3t 678+2000%0.001
a

For the homogeneous mixture £=1.

k. =&p,., f1=1x0.6%x0.997x2.06=1.232

Example 7.13 Neutron generation doubling time

If the effective multiplication factor is 1.1 how many generations of neutrons are
required to double neutron population? If there are 1000 neutrons at the beginning
(see Fig. 7-22) how many neutrons will produce 50 generations?

After n generations there will be k;,f neutrons produced. In order to double the
number of neutrons

In2  In2 _

= 7
Ink, Inl.l

;7=2 - n=

The number of neutrons generated after 50 generations is
we=N — N=(L1)* =117

meaning the initial number of neutrons is increased 117 times, therefore the total
number of neutrons after 50 generations is 1000 X 117 = 117,000.

4.2 Homogeneous and Heterogeneous Reactors

The models used in the previous sections to describe the neutron
transport and parameters of thermal nuclear reactors were related to a
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homogeneous mixture of fuel and moderator. In a homogeneous reactor core
the nuclear properties like neutron flux and average cross sections are
spatially uniform. Although homogeneous systems are practical to use for
theoretical analysis, in practice most reactor concepts are based on
heterogeneous configurations. In heterogeneous cores the fuel and moderator
are separated as all other structural and reactor control components. Thus
nuclear properties change from one region to another such that for example
the neutron flux can vary drastically over a very short distance. The basic
reason for the spatial variation of neutron flux in heterogeneous reactors is
because adjacent material regions can have different absorption cross
sections or some zones can have materials with strong resonance peaks. The
neutron flux is always depressed in a material region of high absorption
cross section, like the control rods consisting of strong absorber materials
(see Chapter 8). Materials with high resonance absorptions (i.e. “*U or
*2Th) cause the neutron flux to be reduced in the resonance energy region.
The neutron resonance absorption rate in *°U is smaller in heterogeneous
than in homogeneous reactors. The following is a brief summary of how
some main reactor parameters which influence criticality conditions change
in heterogeneous as opposed to homogenous systems.

Homogeneous reactors

In homogeneous reactors the fission neutrons are in immediate contact
with the atoms of the moderator. The neutrons are moderated through elastic
scattering before they are absorbed by the nuclei of the fuel. As a
consequence, the neutron will not have the energy necessary to cause fission
in #*U (fast fissions), thus fast fission factor is nearly equal to unity, £= 1
(the ratio of the total number of (fission, fast) neutrons slowing down past
the fission threshold of ***U, to the number of neutrons produced by thermal
fission).

The value of 77 does not vary since it depends on the composition of the
fuel alone. In the case of natural uranium for example 77 = 1.34. Assuming
an infinite reactor in its critical state, it follows
o ¢=1
e 17=1.34
* Puctf=k.l €T

Thus the value for p,,. *f=1/1 ¢ 1.34 = 0.746 assures for chain reaction
to be maintained.This value can be varied by changing the ratio of moderator
to fuel in a homogenous mixture. Examples of homogenous systems include
natural uranium and graphite, natural uranium and D,0O, natural uranium and
H,0 and natural uranium and beryllium.

Heterogeneous reactors

In heterogeneous reactors the fuel rods are surrounded by moderator
material. Fission takes place within the fuel and the neutrons are partially
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moderated through inelastic scattering until they escape from the fuel and
initiate the principal process of moderation via elastic scattering with the
nuclei of the moderator. The separation which exists between two fuel rods
determines how many elastic scattering collisions can take place. Since
neutrons travel through a fuel region before they enter moderator region
there is a slight gain in fast fissions given that the neutrons emitted within
the fuel rod can cause fast fission with *U before escaping the rod. This is
why the value of the fast fission factor, & increases to some extent. The £

value ranges between 1.02 and 1.03.

The resonance escape probability p,. increases significantly in
heterogeneous systems as a result of two effects

e Pitch (distance between the fuel rods): if the pitch is large, the majority
of the neutrons will be moderated below resonant energies before
entering a fuel element.

o Fuel Self-Shielding: fast neutrons born in the fuel region are mainly
slowed down in the moderator region. After being thermalized, neutrons
may diffuse back into the fuel region. Those with energies that
correspond to the peak resonance region of the fertile nuclei in the fuel
region will immediately be absorbed. The most significant resonance in
the case of *U is at energy of 6.7 eV with a peak cross section of 8000b.
Therefore, absorptions at this energy level arise on the surface of the fuel
rods, permitting the interior of the fuel to “see” no neutrons of epithermal
energies consequently reducing the number of **U atoms available for
resonant capture. The result is an improvement in the resonance escape
probability since only a small fraction of fuel volume is involved in
resonance capture.

As a result of these two reasons, the usual value for resonance escape

probability is about 0.9.

The thermal utilization factor, f, decreases in heterogeneous cores
because of the fuel self-shielding for the absorption of thermal neutrons. The
general expression for thermal utilization factor can be written as

quel
f= "d = (7-269)
fuel a o™ g
Eale +E:1no ¢fuel + 2ther ¢fuel

If the flux in the moderator region and other components of the reactor
core are larger than the flux in the fuel region, the thermal utilization factor
will be reduced. The flux ratios in the denominator are called the thermal
disadvantage factors.

The flux distribution of fast and thermal neutrons in a heterogeneous
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lattice is depicted in Fig. 7-23 (numerical example is given at the end of this
Chapter). Fast neutrons are born in the fuel region from fission events. Once
they reach the moderator region they are lost from the fast group because
they slow down in elastic collisions and become thermal neutrons. The slow
neutrons are therefore born in moderator region when as fast neutrons lose
the energy. Fuel elements represent a strong sink (absorber) of thermal
neutrons and thus the thermal flux drops in fuel region and peaks in
moderator region. Conversely, the fast flux peaks in fuel region and dips in
moderator region.

Fuel rod - - (2

Thermal neutron
Average fast

flux
neutron flux
'Average thermal
Fast neutron neutron flux
flux
Moderator

Figure 7-23. Variation of thermal and fast neutron flux in a heterogeneous reactor fuel lattice

4.3 Bare and Reflected Reactors

The theory developed so far has referred to only bare reactors (reactors
without a reflector). However, in reality the reactor core is usually
surrounded by a neutron reflector made of a material which possesses good
scattering properties. As a general rule, the reflector in thermal reactors is
made of the same material as the moderator region; ordinary water, heavy
water, or graphite. Since the majority of neutrons that reach the reflector
region are returned to the core from scattering collisions, the size of the
critical reactor core is smaller than in case of bare reactor. Therefore, the use
of reflector decreases the mass of fissile material (fuel) required for a critical
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system.
The reflector also changes the flux spatial distribution as depicted in Fig.

7-24. The figure shows

e The peak in the thermal flux distribution is at the center of the core and
the dimensions of the core are assumed to be the same in both reactors,
bare and reflected. The increase in thermal flux in the reflector beyond
the core boundary is due to the slowing down of fast neutrons which
escaped from the core into the thermal energy range. These thermal
neutrons are not absorbed as quickly in the reflector as those in the core
(because the reflector has no fuel and a much smaller absorption cross
section). The flux gradient in the reflector near the boundary results in
the return of thermal neutrons back to the core. This is why the flux is
greater near the boundary in a reflected reactor in comparison to a bare
reactor. Therefore, the reflector acts as a source of thermal neutrons due
to the slowing down of fast neutrons (in thermal reactors).

e The average flux over the entire reactor core is increased in a reflected
reactor. Since the power of a reactor is proportional to the neutron flux,
the addition of a reflector increases power output.

Reflector Reflector

r'S

Reactor

r--Thermal Flux ¥,

| \— Actual boundry
From diffusion theory for bare reactor

Figure 7-24. Neutron flux distribution in bare and reflected thermal reactors

A reflector reduces the critical size of the reactor and therefore the fissile
mass needed to produce a critical reactor. The decrease in critical dimension
of a reactor with the reflector is called the reflector savings, 6

0=R,—-R (7-270)

where R, is the bare core radius, and R is the core radius of a reactor with



NEUTRON TRANSPORT 369

the reflector.

The reflector savings depends on the thickness of the reflector. The
maximum reflector savings is obtained for the reflector thickness of about
two migration lengths (assuming the reflector and moderator are of the same
material).

3. CONCEPT OF THE TIME DEPENDENT
NEUTRON TRANSPORT

All previous chapters were concerned with a reactor in which the flux (or
neutron population) varied only with spatial position assuming a steady state
reactor (reactor that operates at constant power). Analysis of how the
neutron population varies with time is also very important and is called the
transient behavior of the reactor.

Issues of the time dependent reactor can be grouped as follows
1. Behavior of the reactor in the non—critical regime (for example at startup

of a reactor or when its power is to be raised a reactor has to be

supercritical; also in order to shut down a reactor it must be subcritical).

The study of the behavior of a neutron population in a non—critical

reactor is called reactor kinetics. It assumes the analysis of the prompt

neutron lifetime, the reactor without delayed neutrons, and the reactor
with delayed neutrons, the prompt critical stage and the prompt jump
approximation (all to be described in this chapter).

2. Regulation of the degree of reactor criticality (reactor is usually regulated
by the use of control rods or chemical shim, where control rods are parts
of fuel assemblies, and chemical shim is usually a boric acid mixed with
the water moderator or coolant). Insertion of control rods make the
reactor subcritical (more neutrons are absorbed), while withdraw causes
the neutron multiplication factor to increase. In the case of chemical
shim, the reactor is controlled by changing the concentration of a neutron
absorbing chemical in the moderator or coolant region. The basics of
reactor control are described in Chapter 8.

3. Temperature effects on neutron population (several of the factors
defining the multiplication factor are temperature dependent) as
described in Chapter 8.

4. Fission product poisoning (accumulation of fission products takes place
during the operation of reactor). Some fission products have very large
absorption cross sections and their presents in a reactor can have a
profound effect on the neutron population. Xenon-155 and Samarium-
149 are particularly important in analyzing reactor fuel consumption as
well as the condition of the reactor after shut down. This aspect is
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described in Chapter 8.

5. Reactor core properties during the life time of the core (fuel burnup and
fission product formation affects the power level over time and thus
power costs). Analysis related to this issue is called fuel management and
is not addressed in this book.

The departure from the steady state neutron population, or the percent
change in multiplication factor is called reactivity

. . . keff -1 Akeﬂ
Reactivity for a finite reactor: p =———=—— (7-271)
K k.
. P w1 Ak,
Reactivity for an infinite reactor: p = = (7-272)

k k

=3 oo

From these equations it can be understood that reactivity changes
according to

ky=1 — p=0 critical
p=1- 7{—1—— =lky>1 = p>0 supercritical (7-273)
T kg <l > p<0 subcritical

Thus, reactivity is restricted to the following ranges from — o< p <1.

5.1 Neutron Life Time and Reactor Period without
Delayed Neutrons

The total neutron lifetime accounts for the average time that a neutron
spends in a reactor before it is absorbed or leaks out. In a thermal reactor it
represents the sum of the slowing down time and the thermal (diffusion)
time

I=1,+1, (7-274)

The slowing down lifetime, [, is much shorter than the thermal neutron
lifetime, I, It represents the time that a neutron spends while slowing down
from fission energies to thermal energies. The thermal or diffusion lifetime
corresponds to the time that neutrons spend diffusing before they are
absorbed. In an infinite thermal reactor the neutron lifetime is obtained as
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the ratio of the absorption mean free path and the average neutron velocity

y)
I=~1,. = Th (7-275)

The neutron lifetime in a finite thermal reactor is shorter than that in an
infinite reactor. If N represents the number of neutrons per generation and
Proniear epresents the non—leakage probability then N X P, DEUtrONs
remain in the core to contribute to the effective neutron lifetime

Nl, =N, P, e —
! 276
I= lth = lthw Pnon—leak = ther = 1 (7 7 )

1+B°L> 5, 0ll+B*12)

The slowing and thermal lifetimes in thermal reactors are shown in Table
7-4 for a few most common moderator materials. The slowing down lifetime
in fast reactors has no practical meaning. The total neutron lifetime in fast
reactors is on the order of 107 seconds. The neutron generation time is
defined as the integral time until a neutron is produced

A
A=T”:_L (7-277)
v vaf

where A, represents the mean free path for neutron production.

If G represents the number of neutron generations, or the number of
‘neutron lifetimes, between O and time ¢ that the effective multiplication
factor is very close to unity. The neutron density and neutron flux in a
thermal infinite reactor will change as follows

n(t) =n(O)k,; F

(7-278)
6(5) = p(O)k,;

where
#0) - initial (steady state) neutron flux

k, = Ak, +1
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Thus, the flux change can be expressed as

(1+Ak, ) = %{Akdf ——;—(Akeﬁ )+ —} (7-279)

In M = L In
¢0) 1,

for very small change in multiplication factor, Eq. (7-279) reduces to

4(0) Aoy,

t t 7

In—2=—|Ak,, | — @@)=¢0)e = (7-280)
90) L. =2

Table 7-4. Neutron lifetime in thermal reactors

Moderator Slowing down time (sec) Thermal time (sec)

Carbon 1.5x10" 1.8 %107

Water 56x10° 2.1x10%

Heavy water 43 x 103 1.4x10"

Beryllium 5.7 x107° 3.7 x10°

The reactor period taking into account only prompt neutrons (or e folding
time), 7, is defined as the time needed for flux to change by a factor e

T == (7-281)

The reactor period must be long enough to prevent a dangerous excursion
of reactor power. All reactors employ automatic safety systems to suddenly
‘shutdown a reactor if the period becomes too short. The following example
illustrates the importance of this concept.

Example 7.14 Reactor period in the absence of delayed neutrons

For the reactor described in Example 7.2 calculate how the reactor power
changes if Ak,;=0.01?7

From the data calculated in Example 7.2

lwzz,hw=i1_ﬂl_= 1_: ] ! =3.1x107%s
v T,v 00l46cm™ x2.2x10°cm/s
! 1x107
rate X0 500007 S g0y = g™

Ak, 0.0l
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This means every second the power will increase by a factor of ¢*%,

5.2 Delayed Neutrons and Average Neutron Lifetime
57 = 35.72 sec Tp=22.72 sec
2sBr
delayed I
neuiron
l}_
127
g
128 neutron
54XB F_

Figure 7-25. Delayed neutron precursors

Not all neutrons are released at the same time following a fission event.
Nearly 99 % of all neutrons are released virtually instantaneously (within
about 1077 seconds) after the actual fission event. These neutrons are called
prompt neutrons. The remainder of neutrons are released after the decay of
fission products. These neutrons are called delayed neutrons (with respect to
the fission event). They are emitted immediately following the first B decay
of a fission fragment, known as a delayed neutron precursor. Although
delayed neutrons represent a very small fraction of the total number of
neutrons, they play an extremely important role in the control of the reactor.
Beta delayed neutron emission is improved when the emitted neutron
binding energy is minimum. This is true when the neutron emitter has an odd
neutron number, just above neutron shell closure. In particular, B decaying
nuclei with neutron numbers equal to 52 (N=50 closed shell) and 84 (N=82
closed shell) are very important delayed neutron precursors as shown for
¥Br and "1, in Fig. 7-25. The delay is determined by the B decay constant.
Delays vary from fractions of seconds to tens seconds. Probabilities for
delayed neutron emission are on the order or less than 1 % per fission, or per
prompt fission neutron. For example, the decay time of 55.72 seconds
corresponds to the half-life of *’Br (see Fig. 7-25) and defines the first decay
group. Similarly, the decay of Bl is followed by the emission of neutron
after 2.72 seconds specifies the second group. In total, there are six groups of
delayed neutrons (see Table 7-5).

Beta delayed neutrons are characterized by their yields 3, relative to the
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total neutron number per fission, and their decay constants 7. The total

delayed neutron yield per fission depends on the actual nuclear fuel that is
used in a reactor, and is defined as

=>4 (7-282)

i=1

Table 7-5. Prompt and delayed neutron groups and parameters for thermal reactors

Group Energy for Group half- S for **°U £ for *°U B, for *Pu
5y fission  life for 2°U (%) (%) (%)
(MeV) fission
Prompt:
0 ~2 ~ 107 99.359 99.736 99.790
Delayed:
1 0.25 55.72 0.021 0.023 0.007
2 0.56 22.72 0.140 0.079 0.063
3 0.43 6.22 0.126 0.066 0.044
4 0.62 2.30 0.253 0.073 0.069
5 0.42 0.61 0.074 0.014 0.018
6 0.23 0.027 0.009 0.009
B 0.641 0.264 0.210

Delayed neutrons do not have the same properties as the prompt neutrons
released directly from fission. The average energy of prompt neutrons is
about 2 MeV which is much greater than the average energy of delayed
neutrons, ~ 0.5 MeV (see Table 7-5). The fact that delayed neutrons are born
at lower energies has two significant impacts on the way they precede
through the neutron life cycle:
¢ Delayed neutrons have a much lower probability of causing fast fissions

than prompt neutrons because their average energy is less than the

minimum required for fast fission to take place.

¢ Delayed neutrons have a lower probability of leaking out of the core
while they are at fast energies, because they are born at lower energies
and subsequently travel a shorter distance as fast neutrons.

The average neutron lifetime in a thermal reactor is defined as

(7-283)
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where [, represents the mean lifetime of a delay group defined as
reciprocal of the decay constant of the delayed group. For example, for 2y
(from Table 7-5) the average neutron life time for all neutrons (prompt and
delayed) is 0.0843 seconds. This means that 0.641 % of the total number of
neutrons increases the effective neutron generation time by a factor of 84.

Example 7.15 Reactor period including all neutrons

For the reactor described in Example 7.2 and Example 7.14 calculate how the
reactor power changes if Ak, = 0.01 and all neutrons are considered. Use Table 7-5
to estimate the delayed neutron contribution.

In Table 7-5 the prompt neutron lifetime was assumed to be 0.001 seconds. In
Example 7.14 that time was calculated to be 0.00031 seconds. Thus, the average
neutron lifetime for all neutrons is 0.0836 sec.

7=t 2080 _gs6s o p)=p(0)e! /836
My 001

Thus every second the reactor power will change by factor ¢*%'% = 1.012.

Without delayed neutrons
With delayed neutrons
Akeﬁ' =0
3(2)3(0)
time

Figure 7-26. Effect of delayed neutron on power change in thermal reactors

The effect of delayed neutrons on reactor power changes as shown in Fig.
7-26 ‘
e Without delayed neutrons the power will rise exponentially and in a very
short time (see Example 7.14)
e When the effect of delayed neutrons is taken into account, the power of a
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thermal reactor changes as shown in Fig. 7-26 for Ak, > 0. At the very
beginning the reactor behaves as if all neutrons were prompt. This is
because the delayed neutrons are not yet effective. However, after a few
seconds when delayed neutrons start to appear the rate of neutron flux
and reactor power starts to level off. The rate of flux increase approaches
the constant value determined by the stable reactor period.

e When Ak, < O the rate at which neutron power decreases is very fast and
as soon as delayed neutrons appear the curve tends to flatten out. Since
the flux is dying out, the short-lived delayed neutrons disappear
completely and the curve approaches a slope with the value determined
by the longest-lived neutron group.

5.3 Diffusion Equation for Transient Reactor

In an accurate reactor kinetics analysis all six groups of delayed neutrons
are considered in detail (their production and decay). In order to simplify the
complex calculation procedure, these six groups are considered as one group
of delayed neutrons that appear from the decay of a single hypothetical
precursor. The time dependent diffusion equation is given by Eq. (7-113).

The neutron source, S, in a transient reactor takes into account both,
prompt and delayed neutrons

S=S,+8$, | (7-284)

The fraction of prompt neutrons that slow down to thermal energies is 1 -
B (see Fig. 7-27). Assuming the reactor to be infinite, this fraction
contributes to the neutron source as

S, =(1-pk.ez, (7-285)

where k_¢%,means that k_ thermal neutrons will appear for each
neutron absorbed.

The delayed neutron source is defined with six delayed neutron groups
that are for simplicity in this derivation assumed to all belong to one group.
The contribution to the delayed neutron source is equal to the rate of decay
for all precursors multiplied by the probability that delayed neutrons will
escape resonance capture while slowing down, p,,.

Sy = PescAC (7-286)

where A is the decay constant of the precursor, and C is the number of
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delayed neutrons reaching thermal energies. For the reactor transient
conditions near steady state (critical) the shape of the spatial flux distribution
remains constant and only the magnitude changes. This eliminates the spatial
dependence, allowing the diffusion transient equation to reduce to

DV?¢=~-B*¢

dn 2
—=-DB’¢-X ¢+S
7 o-2.9

(7-287)

&FX, fissions

- f ¢
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neutrons
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neutrons

Gy Gl Gy Gy Gl Gl

&X, ¥ { i—ﬁ)v
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{
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-

#1 thermal neutrons
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Figure 7-27. Neutron cycle chart in transient thermal

Substituting Eq. (7-285) and Eq. (7-286) as well as assuming an infinite
homogeneous reactor results in the following equation

A 5,64~ BRofE, + poAC (7-288)

dt

By replacing the neutron density in terms of neutron flux and introducing
the prompt neutron lifetime, the above equation becomes
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Ly, 5;? =—¢+(1- Pk o+ ”Z— AC (7-289)

a

In an infinite reactor composed of a homogeneous mixture of the fuel and
moderator, the total macroscopic thermal absorption cross section is the
average value of the sum of the fuel and moderator cross sections.

The total number of neutrons absorbed anywhere in a reactor is equal to
2,¢ per unit volume and unit time. Of this number, a fraction is absorbed in
the fuel (fuel utilization, or in thermal reactors the thermal utilization factor).

Therefore, there are f%,¢ neutrons absorbed in fuel per unit volume and
unit time. As a result fX,en¢ fission neutrons are emitted where 77
represents the average number of neutrons emitted per thermal neutron
absorbed in fuel, Thus, the fission rate at which prompt and delayed neutrons
are produced is

1

néfza¢:kooza¢ (7'290)
The rate at which delayed neutrons are produced is
1
Pk Ep— (7-291)

esc

which represents also the rate at which fission fragments (precursors) are
produced (since delayed neutrons appears as a result of precursors decay).
The precursors decay at the rate AC, thus

% = ﬁszm_l_ —AC (7-292)

esc

Equations (7-289) and (7-292) represent a system of coupled differential
equations to be solved simultaneously in order to obtain C and ¢. The
solution can be found for the following specific example: assuming that up
to time ¢ = O the reactor is critical (therefore, k_, =1). If the small step
change in reactivity is introduced after that time the question is: how will the
thermal neutron flux behave with time? The solutions for the above two
equations can be assumed in the form

= Ac” C=Cye” (7-293)
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where A and Cj are the constants and @is a parameter to obtain. Inserting

the assumed solutions into Eq. (7-292), it follows that

C, = % (7-294)
Using the differential equation for neutron flux it follows

1 Awe” =-Ae" +(1-f)k_Ae,, + -%— AC,e” (7-295‘)
Rearranging

kol o @ B, (7-296)

k. I+, @ 1+l,hma)/1+a)_

This is known as the reactivity equation for one group of delayed

neutrons. The right hand side (RHS) of this equation can be plotted as a
function of parameter @

or negative reactivity, the flux will approache

If w= 0, the RHS = 0 (the solution curve will pass through the origin as
shown in Figure 7-28).

For @ — teo, the RHS — 1.

When w=-4 or w=-1/1,,_,the RHS —oo.

Since the reactivity can be positive or negative, there are two roots, @,
and @, .

Therefore, the flux can be represented with

p=Ae” + Ae™ (7-297)

From Fig. 7-28 it can be observed

When reactivity is positive (0 > 0) then @, is positive and @, is negative.
Thus, as time increases the second term in the flux equation dies out and
the flux increases as e™' .

When the reactivity is negative (p < 0) then both roots are negative. With
time, the second term will die out faster than the first term because , is
more negative than @, . Thus, the flux will decrease as e’ .

From these considerations it can be conciuded that in either case, positive

“" The reciprocal of @, is

called the reactor period or the stable period.

The one group delayed neutron reactivity equation can be generalized to
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include all six delayed groups
= i 26: ' (7-298)
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Figure 7-28. Reactivity equation for one group delayed neutrons
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Figure 7-29. Reactivity equation for six groups delayed neutrons



NEUTRON TRANSPORT 381

Using the same analysis as for the one group delayed neutron reactivity
equation a similar plot can be obtained (see Fig. 7-29). In this case, however,
there are seven roots for either positive or negative reactivity. The flux is
given as a sum of exponentials

p=Ae” + A, +..+ A,e”" (7-299)

t

With increasing time flux again approaches e’ since all other exponents

die out fast.

5.4 The Prompt Jump Approximation and Inhour
Formula

The amount of reactivity necessary to make a reactor prompt critical
corresponds to the prompt neutrons’ multiplication factor (see Fig. 7-30)

(1= B,y =1 (7-300)

¢1 Firstterm _—

Prompt jump

v

Second term

Figure 7-30. Flux change with the step reactivity insertion
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It follows that the reactivity corresponding to a prompt critical reactor is

ko —1
p=—~%——:ﬁ (7-301)
eff

and is used to define the unit of reactivity known as the dollar, $. As
shown in Table 7-5 the value of S varies with the fuel type and thus the
dollar is not an absolute unit.

Example 7.16 Reactivity in dollars
Calculate the reactivity of a homogeneous **U reactor if it suddenly becomes

supercritical with k.z = 1.005.

ke =1 10051

p= =0.00497 —
ko 1.005
£ 0.00497
$)==—=—T—=0.765% = 76.5cents
p( ) £ 0.0065

The exact computation of the early response of the reactor to a sudden
change in reactivity is complex. However, under certain assumptions it can
be significantly simplified. One such approach is called the prompt jump
approximation and is based on the assumption that the concentration of the
delayed neutron precursors does not change over the time following a
sudden decrease or increase in neutron flux.

With time, as explained in previous section, the second term in Eq.
(7-297) will die out quickly and the flux will decrease or increase with the
‘reactor period 7. Exact calculations predict that the constant A, is negative
for positive reactivity and positive for negative reactivity. Therefore, the fast
die out of a negative term will give a sudden rise in flux following the
insertion of positive reactivity (see Fig. 7-30). On the other hand, the fast die
out of a positive term will give a sudden drop in flux for negative reactivity
insertion. With the assumption that the delayed neutron precursor
concentration does not change over the time during the sudden decrease or
increase of the neutron flux it follows

NZ”¢~——1——- ~AC=0—>C= 2R (7-302)
p p.A

esc esc

dc
2= = Bk
dt s

It is also assumed that the infinite reactor was originally critical. The flux
value in the above equation is the flux prior to a sudden change in reactivity.
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Therefore,

e %=—¢+( - B)k.¢+ B4, (7-303)

where k_ is the multiplication factor after the reactivity change. The
solution is

(1-Bk. -1

(1-p)k. -1
e B, !
— thoo 1 . theo -
$= e T { e } (7-304)

or introducing the reactor stable period

I
T= (luﬂ’;ﬁ (7-305)

Eq. (7-304) becomes

ET N +———-——1_(1ﬂ_¢°ﬁ)k [-e'7] (7-306)

The condition for a reactor to be less than prompt critical is that Eq.
(7-300) be less than one. The two exponential terms in Eq. (7-306) will die
out with a reactor period as given by Eq. (7-281); which is the reactor period
taking into account only prompt neutrons (see Section 5.1). Thus

_ B, _,3(1—,0) o
R 2

where k. =1/(1- p).
The above equation can be analyzed for the following two cases:

a) Positive reactivity change: this is an example of the reactivity required to
increase the reactor power. This increase is usually small and takes a
short period of time. For the example of a thermal reactor fuelled with
55U the time is less than ~ 2 min for a reactivity insertion of 0.0006.
Thus the flux will change according to

BL-plp, _ B(1-0.0006)
B-p S —0.0006

¢= 9o = 9
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This result indicates that the prompt jump in flux is usually negligible
and can be assumed to rise from the initial value with the stable period.

b) Negative reactivity change: introduced whenever a reactor needs to be
shutdown. The negative reactivity insertion can thus be very large. For
example, if 20 % in negative reactivity is suddenly introduced into a
reactor fuelled with *°U (8 = 0.0065), the flux will drop by ~4% of its
initial value

_B(-plp, _00065(1-(-02)) = _
¢= B-p  0.0065-(-0.2) #o =0.0380,

The reactivity can be also expressed in terms of the inverse hour, or
“inhour” unit. The inhour reactivity is defined as the reactivity necessary to
make the reactor stable period equal to 1 hour. The general inhour formula
for a finite reactor including all six groups of delayed neutrons is

I s B
inhours ) = —2%— + ‘
A ) 3600k, §1+3600,1,.

(7-308)

NUMERICAL EXAMPLE

Method of Characteristics Solution to Neutron Transport in Nuclear
Reactor Assembly Geometry

This numerical example illustrates the computational method of
characteristics solution to the neutron transport equation. A representative
“geometry of a complex reactor assembly is selected to show the distribution
of neutron flux and reaction rates as a function of neutron energy group and
spatial coordinates. The method of characteristic solves an integro-
differential form of the transport equation along straight lines throughout the
geometric domain in a discrete number of spatial directions and for discrete
number of energy groups. These straight lines are interpreted as neutron
trajectories similar to the Monte Carlo neutron trajectories. The method itself
requires fine spatial subdivision of the geometrical domain into so called
flat-flux zones where the material properties are assumed to be constant. The
following example is based on the methodology developed in the AGENT
code and the list of references is provided for further reading for those
interested in computational neutron transport modeling.

The selected example is a two—dimensional assembly consisting of
17x17 lattice with the square fuel pin cells, as shown in Fig. 7-31. The side
length of every fuel-pin cell is 1.26 cm and every cylinder is of radius 0.54
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cm. The spatial fine-mesh flux distribution for each of energy regions is
shown in Fig, 7-32 to 7-38, while neutron absorption rate is shown in Fig. 7-
39 to 7-45. Fig. 7-46 shows the absorption rate integrated over all energies.

U0, Fuel
VA—
’l

Fission Chamber Guide Tube

Figure 7-31. Fuel assembly geometry modeled with AGENT code



386 Chapter 7

Flux in Arbitrary Units

Figure 7-32. Neutron flux distribution for energies from 13.53MeV to 20.00MeV

Flux in Arbitrary Units

Figure 7-33. Neutron flux distribution for energies from 9.12keV to 13.53MeV
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Figure 7-34. Neutron flux distribution for energies from 3.93eV to 9.12keV

Flux in Arbitrary Units

Figure 7-35. Neutron flux distribution for energies from 0.63eV to 3.93eV
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Flux in Arbitrary Units

Figure 7-36. Neutron flux distribution for energies from 0.15¢V to 0.63eV

Flux in Arbitrary Units

Figure 7-37. Neutron flux distribution for energies from 0.057eV to 0.15¢V
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Flux in Arbitrary Units

Figure 7-38. Neutron flux distribution for energies from 0.00eV to 0.057¢V
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Figure 7-39. Absorption rate distribution for energies from 13.53MeV to 20.00MeV
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Figure 7-40. Absorption rate distribution for energies from 9.12keV to 13.53MeV
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Figure 7-41. Absorption rate distribution for energies from 3.93eV to 9.12keV
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Absorption Rate in Arbitrary Units

Figure 7-42. Absorption rate distribution for energies from 0.63eV to 3.93eV

Absorption Rate in Arhitrary Units

Figure 7-43. Absorption rate distribution for energies from 0.15¢V to 0.63eV
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Absorption Rate in Arbitrary Units

Figure 7-44. Absorption rate distribution for energies from 0.057eV to 0.15eV
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Figure 7-45. Absorption rate distribution for energies from 0.00eV to 0.057eV
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Absorption Rate in Arbitrary Units

Figure 7-46. Absorption rate integrated over all energies

PROBLEMS

7.1 Calculate how many kilograms of °U are in 150 kg of U;0g.

7.2 Calculate the energy in eV for hydrogen atom moving at a speed of 2200
m/sec. Compare it to the energy of thermal neutron traveling at the same speed
at the room temperature (293 K).

7.3 How much power will be produced from the spontaneous fission decay of 1
mg of PFm (half-life is 158 min)? Assume that each fission event would release
220 MeV. How much of **U would be needed to produce 6 MW of power?

7.4 Calculate the neutron density in a thermal reactor with the neutron flux of
10"* n/cm’sec. How does this value compare with the particle density in a
volume of 1 cm® at standard conditions and how with the number of hydrogen
atoms in water?
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7.5 Using on-line data for neutron cross sections (http://atom kaeri.re.kr)
calculate the scattering mean free path for thermal neutrons in graphite, lead and
beryllium. Discuss the scattering cross section dependence on material type and
neutron energy.

7.6 If the average neutron flux is 10" n/cm’sec calculate the average thermal
power of the reactor with 5 % enriched uranium fuel of weight 150 kg. The
uranium density is 18.7 g/cm’. Use the on-line data library to read necessary
Ccross sections.

7.7 Calculate the probability that a 2MeV neutron will undergo first collision in
3/9 inch dia. UQ, fuel rod enriched to 4 %. Assume that the neutron originated
in the center of the rod and travels radially. The fuel rod has density which is 94
% of theoretical fuel density (equal to 10.96 g/cm?).

7.8 Calculate the neutron flux and neutron current density if two beams of
neutrons are traveling in the same direction down to same guide tube: (a) beam
1: neuron density is 5 X 10" n/cm* and neutron energy is 10 keV; (b) neutron
beam 2: neutron density is 2 X 10’ n/cm? and neutron energy is 1 eV. How do
these values change if neutron beams travel in opposite direction?

7.9 Show all steps in deriving the solution to the diffusion equation for a point
neutron source placed in an infinite large medium.

7.10 A large bare reactor has the infinite multiplication factor of 1.022. The
neutron diffusion length is 35 cm. Determine and compare the critical volumes
of the following reactor shapes: sphere, cube, cylinder with height twice its
radius, and rectangular parallelepiped having a = b = ¢/4.

7.11 For the homogeneous one-speed reactor of cylindrical configuration derive
the formula to obtain its minimum volume (mass). Discuss the values in terms of
reactor buckling.

7.12 Calculate the non-leakage probability for the bare cubic homogeneous
reactor with diffusion length of 10 cm and a = b = ¢ = 100cm. Assume the
absorption cross section of 0.1 cm™,

7.13 Determine the number of elastic scattering events occuring per 1 cm’ in the
energy interval from 0.5 MeV to 0.3 MeV for neutrons of 1.5 MeV passing
through an infinite slab of graphite at the rate of 2 X 10" n/cm’sec.
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7.14 How many collisions are needed to slow neutrons from 2 MeV down to
thermal energy region in Be and D moderators?

7.15 Calculate the critical core radius and the critical mass of a spherical reactor
moderated and reflected by water. The U fuel density in a core is 0.0145
g/em®, How does critical mass of the bare reactor compare to the one with the
reflector?

7.16 A homogeneous, spherical, bare reactor of volume 250 m® is composed of 5
% enrichment °U and graphite. Using the six factor formula, calculate kg for
the given data at a thermal energy:

¢ Uranium-to-moderator ratio: 5:1

*  Graphite density: 2267 kg/m’

® Graphite molar weight: 12.0107 g/m

¢ Uranium density: 19050 kg/m’

¢ Graphite microscopic absorption cross section: .009 b

o Graphite microscopic scattering cross section: 10 b

¢ Uranium-238 microscopic absorption cross section: 90 b

e Uranium-238 molar weight: 238.0507847 g/m

¢ Uranium-235 microscopic total absorption cross section: 360 b

e Uranium-235 microscopic fission cross section: 270 b

¢ Uranium-235 molar weight: 235.0439242 g/m

o y=22

° pe.\'c=1

o g=1
Pf= 1

7.17 In a thermal nuclear reactor at the beginning of its life for every 1000
neutrons,

500 neutrons are absorbed in ***U

225 neutrons are absorbed in **U

125 neutrons are absorbed in coolant and cladding, and

150 neutrons leak out from the geometrical core boundaries.
Calculate the multiplication factor for this reactor if v = 2.43. By definition the
conversion factor represents the ratio of number of fissile nuclei produced to the
number of fissile nuclei lost. What is the conversion ratio value for this reactor?

7.18 Inserting the control rods into the thermal reactor from the Problem 7.17,
the absorption in other materials increases such that:

450 neutrons are absorbed in **U

215 neutrons are absorbed in 2*U

185 neutrons are absorbed in coolant, control rods and cladding, and
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150 neutrons leak out from the geometrical core boundaries.
Calculate the multiplication factor for this reactor.

7.19 The simplest form of neutron diffusion equation for thermal neutrons is
one—speed theory. What are the assumptions upon which this theory is valid?

7.20 Write a computer program to follow the histories of 100 neutrons starting
with energy 100 keV and slowing down to 10 eV in graphite (density 1.6 g/cm®):
absorption cross section is zero, scattering cross section is 4.8 b,

7.21 Repeat the problem 7.20 but use water instead with scattering cross section
on hydrogen equal to 20 b and oxygen equal to 4 b.

7.22 Repeat previous two problems by including the absorption of neutrons.
Assume that the cross section for absorption in carbon is 0.004 b, in hydrogen is
0.335 b and in oxygen is 0.002 b.

7.23 A reactor is critical at a power level of 400 MW. How long it will take to
reach the power level of 3300 MW on a stable period of 100 seconds?

7.24 Using the one group delayed neutron equation calculate how long it would
take to increase the power of a reactor by 10 % with the reactivity addition of
0.02 % Ok/k? Assume that the reactor is critical before the addition of reactivity
with thermal neutron lifetime of 5 x 107 sec.

7.25 Calculate the effective multiplication factor for the *°U reactor having
reactivity of — 1$. If fuel is replaced with *’Pu what is the multiplication factor
value?

7.26 Calculate the new stable period if control rods inserted into a supercritical
reactor with the stable period of 20 sec add — 0.01 % dk/k to the reactivity.
Assume thermal neutron life time is 0.0001 sec.

7.27 Calculate the size of a thermal bare spherical reactor containing **U and
water in the atom ratio of N(water) / N(**U) = 198 if the neutron spectrum
follows Maxwellian distribution at 20 C. How does result change if temperature
is changed to 300 C?

7.28 A slab of graphite contains a plane neutron source in the center. The slab is
in a large pool of water. The albedo (reflection coefficient) of water is defined as
Jou / Jiy where J represents the neutron current. Evaluate the albedo if the slab is
60 cm thick. Assume that the source produces thermal neutrons.
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NUCLEAR REACTOR CONTROL

Methods of reactor control, Fission product poisoning and
Reactivity coefficients

“There are two possible outcomes: If the result confirms the hypothesis,
then you've made a measurement. If the result is contrary to the hypothesis, then
you’ve made a discovery”. Enrico Fermi (1901 - 1954)

1. METHODS OF REACTOR CONTROL

In a reactor of given volume in which fission is caused by neutrons of
specified energy, the thermal power is proportional to the neutron flux and
macroscopic fission cross section. As the reactor operates, the macroscopic

"cross section decreases as number of fissile nuclides decreases. However,
over an essentially short period of time, the cross section remains constant,
and the power is assumed to change only with neutron flux.

In most situations a reactor is controlled by varying the neutron flux.
Among the general methods available, the insertion and withdrawal of a
neutron absorber is most commonly used in power reactors. Materials used
as a control absorber have large absorption cross sections, like boron,
cadmium or hafnium. Strong absorbers in a core compete with fissile
material for neutrons. In other words, neutrons which are absorbed by the
controller are no longer available to induce fission, thus reducing the power,

1.1 Control Rods

The change in reactivity caused by control rod motion is referred to as
control rod worth. The maximum effect (insertion of the most negative
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reactivity) of a control rod is at the location in the reactor where the flux has

its maximum value. Control rods are used to:

o Change reactivity in order to lower or elevate the reactor power placing
it on a stable period - rod worth is defined as the magnitude of reactivity
required to give the observed period.

e Keep reactor critical by compensating for changes over reactor
operating time - rod worth is measured in terms of change in neutron
multiplication factor for which the rod can compensate.

Control rods can be inserted fully or partially. In either of these two cases
the neutron flux is perturbed and reactor power changed. The following two
sections address the effects of control rod insertion and withdrawal on
fission rate, reactor flux distribution and the resulting power change.

1.1.1 Effect of Fully Inserted Control Rod on Neutron Flux in
Thermal Reactors

Control absorber (strong or weak)

Weak control absorber Without control absorber

7’ - ~ ~
v ’ / ~ N ~
(4 , i ~ \
4 ’ ~ N
4 ’ ~ \
P4 ~ \
, (N
’ ~ W
’ AN
’ S N
’
’, Strong control absorber S J

Figure 8-1. Effect of a contro} rod on flux perturbation

The material used for the control rods varies depending on reactor
design. Generally, the control rod material should have a high absorption
cross section as well as a long lifetime in the reactor (not burn out too rap-
idly). A control rod which absorbs essentially all incident neutrons is
referred to as a “black” absorber and generates large flux depression (see
Figure 8-1). A “grey” absorber absorbs only a fraction of incident neutrons.
While it takes more grey rods than black rods for a given reactivity effect,
the grey rods are often preferred because they cause smaller flux depressions
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in the vicinity of the rod. This leads to a flatter neutron flux profile resulting
in a more even power distribution across the core. Since the thermal neutron
flux density generally peaks in the center of reactor core, this is where
high efficiency control rods are generally placed.

A bare cylindrical reactor which is critical with control rods removed
may be described by the one—speed neutron diffusion equation |

Vig+ B, p=0 (8-309)
The multiplication factor, which is equal to unity, is given by

ke (8-310)
1+B2 M?

out

out —

If a strongly absorbing control rod is fully inserted into the core the
neutron flux will change as shown in Fig. 8-1 due to high neutron absorption
in the rod. The flux distribution can be described as

V2¢+Bigp=0 (8-311)
When the control rod is inserted the multiplication factor changes as

k
=— (8-312)
1+B2M?

in
Notice that the core buckling changes with control rod insertion and the
" change in multiplication factor will give the reactivity

p=_’<vwk i (8-313)

mn

The control rod worth, p,,, by definition, is equal to the magnitude of this
reactivity change

Bi%t_Br%u :
Py =]P]=W (8-314)

out

In order to obtain the control rod worth, Equations (8-310) and (8-312)
must be solved to obtain the buckling for both cases. In initially critical
reactor without control rods the buckling is given with
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2 2
B2, = ij +(—”—] (8-315)
R H

However, the calculation of buckling when the control rod is inserted is
difficult because the geometry is complicated and because the presence of
strong absorber tends to deform the flux such that the diffusion
approximation is not valid in its vicinity. In this case, a solution can be
obtained by assuming that d represents the extrapolated distance and that the
flux satisfies the following boundary condition at the surface of the control
rod

(8-316)

The final result for the extrapolation distance and control rod worth is
(detailed derivation can be found elsewhere)

—aZ,, +0.9354

d=2.131D (8-317)
az,, +0.5098

=g 1AM 0116+1n(-—5-—j+—d— ) (8-318)

Yl B MR 2.405a) a

where a is the radius of a control rod, R is extrapolated radius of the bare
cylindrical core and H is its extrapolated height, D is the diffusion
coefficient and Z,,, is the macroscopic cross section.

The cross section and diffusion coefficient are those for the materials

surrounding the control rod which is assumed to be a black absorber.
1.1.2 Control Rod Worth in Fast Reactors

The most promising material to be used as the control absorber in fast
reactors is boron-carbide (B4C) enriched in "B, because unlike other
materials, absorption cross section for the boron is still significant at high
neutron energies. Although considerably higher than for other materials, the
boron absorption cross section at energies of importance in fast reactors (0.1
MeV to 0.4 MeV) is only 0.27 b (see Chapter 6). Therefore, the absorption
neutron mean free path in a medium containing boron is large the atom
density of boron is 0.087 x 10** atoms/cm’ at a B,C density of 2 g/cm’
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giving 4, = 42.6 cm. This is considerably larger than the diameter of any
control rod size used in fast reactors which means that the neutron flux
inside the control rod is more or less the same as in the surrounding medium.
Therefore the boron contained in the rod can be assumed to be uniformly
distributed in the reactor. This assumption will only affect the calculation of
the fuel utilization factor in determining the control rod worth,

In actual reactor design, control rod worth is calculated using computer
codes and a multigroup approach. The following is a simplified one group
estimate of control rod worth in fast reactor. The multiplication factor for a
fast reactor is given by

keff = koo Pmm—leakage = m(Pnon—leakage (8'3 19)

Since the uniformly distributed poison in fast reactors has an effect only
on the fuel utilization factor, the control rod worth reduces to

kout _kin - fout _fin

= 8-320
pW kin fin ( )
Ezluel
fin = Z_Z'uel +Zzoolam +Zl;orrm (8_321)
quel
Jout = oot (8-322)
ZZM@[ +22 lant
giving
boron
py = —— (8-323)

= Sfuel coolant
00+ &,

1.1.3 Effect of Partially Inserted Control Rod on Neutron Flux in
Thermal Reactors

At the time of reactor start-up, all or most of, the control rods are fully
inserted. After the start—up, they are slowly withdrawn in order to keep the
reactor critical as the fuel is consumed and fission products accumulate.
Therefore, it is necessary to know the control rod worth as a function of its
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insertion distance. The one group approximation is used to illustrate the
computation of control rod worth for partially inserted rods in a thermal
reactor.
For a cylindrical reactor let
e p, (x): the worth of one or more control rods inserted at the distance x
parallel to the axis of the reactor core with total height H
¢ . (H): the worth of fully inserted control rods.

o
o

Slope = Ap,, / Ax
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Figure 8-2. Integral control rod worth as given by Eq (8-324)

The exact effect of control rods on reactivity may be determined
experimentally. For example, a control rod can be withdrawn in small
increments, and the change in reactivity determined for each increment of
withdrawal. By plotting the resulting reactivity versus rod position, a graph
similar to that shown in Fig. 8-2 is obtained. The graph depicts integral
control rod worth over the full range of rod withdrawal. Integral control rod
worth represents the total reactivity worth of the rod at that particular degree
of withdrawal

(=P, (H)[g——ggsin(%’“ﬂ (8-324)
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Figure 8-3. Differential control rod worth as given by Eq. (8-325)

The slope of the curve, and therefore the amount of reactivity inserted per
unit of withdrawal, is greatest when the control rod is midway out of the
core. This is because the neutron flux is maximum near the center of the
core, thus the neutron absorption rate is also greatest in this area. If the slope
of the curve for integral rod worth in Fig. 8-2 is plotted, the result is a value
for the rate of change of control rod worth as a function of position. Such a
plot is referred to as the differential control rod worth, and is shown in Fig.
*8-3. At the bottom of the core there are few neutrons so rod movement has
little effect; therefore the change in rod worth over distance is nearly
constant. As the rod approaches the center of the core its effect becomes
greater, and the change in rod worth per distance becomes significant. At the
center of the core, the differential rod worth is greatest and varies little with
rod motion. From the center of the core to the top, the rod worth per distance
is the opposite of the rod worth per distance from the center to the bottom.

The integral rod worth at a given withdrawal is the summation of the
entire differential rod worth up to that point of withdrawal and is also the
area under the differential rod worth curve at any given withdrawal position,
The differential control rod worth is obtained as a derivative of p,, (x)/p,, (H)

G L{l —-cos[z—ﬂxﬂ (8-325)
P.(H) dx H H
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1.2 Chemical Shim

Water moderated and cooled reactors can be in part controlled, in
addition to control rod systems, by varying the concentration of the boric
acid (HsBOs) in the coolant. This is called chemical shim. Because the
response to a change in concentration of the solvent is not as quick as
obtained by the insertion of control rods, chemical shim cannot be used to
control the large reactivity insertions. Thus it is always used in conjunction
with the control rod systems. In a reactor with both control systems:

e control rods are used to provide the reactivity control for fast shutdown,
and for compensating reactivity variance due to temperature change

¢ chemical shim is used to keep the reactor critical during xenon transients,
and to compensate for the depletion of fuel and build-up of fission
products during reactor lifetime.

The use of chemical shim reduces the number of control rods required in
a reactor. Since control rod systems are expensive, any reduction in the
number of control rods reduces the total cost of the reactor. Chemical shim is
almost uniformly distributed in the core and thus perturbs power distribution
less as the concentration of the boric acid is changed.

Chemical shim in thermal reactors primarily affects the thermal (fuel)
utilization factor. Therefore, chemical shim worth can be computed from the
following relation

Zbomn
Py = W (8-326)
By inserting Equation (8-322) the reactivity worth reduces to
Zborr)n
Pr = (= fous )2“,]1—0@, (8-327)

The boric acid concentration is usually specified in units of ppm (parts
per million) of water.

The ppm represents 1 g of boron per 10° g of water. Therefore, if C
represents the concentration in ppm, then the ratio of the mass of boron to
the mass of water is

Zboron — %107 (8-328)
Mu,0
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giving

ZZoron N boron

ol 18%759

-6 _ -3 E
oo Ao 10.8><0.66XCXIO 1.92xCx10 (8-329)
a a

According to Eq. (8-327) the worth of chemical shim becomes

P, =1.92xCx107 x(1-£,,.) (8-330)

2. FISSION PRODUCT POISONING

Fission products and their decay products absorb neutrons to some
extent. The accumulation of the parasitic absorbers during the reactor
operation tends to reduce the neutron multiplication factor.

Among all non-fission materials accumulated during the reactor
operation, two are of the greatest importance for thermal reactors: Xe and
149Sm (with large thermal neutron absorption cross sections). Since the
absorption cross section decreases rapidly with increasing neutron energy
(see Chapter 2), the poisoning effect is of little importance in fast reactors.
The change of neutron multiplication factor with the poison materials
present in a thermal reactor are discussed as follows.

The neutron multiplication factor is written as (see Chapter 7)

ko =k..P=nepfP (8-331)

where P stands for both, thermal and fast neutron non-leakage
probabilities. If a poison material (strong absorber) is added

e The non-leakage probability changes slightly because it is inversely
related to L> =1/3%,%,.
The fast fission factor remains unchanged, €= const.
The reproduction factor does not change since it is only a function of fuel
properties (77 =vZf< /2[“).

e The resonance escape probability p may change depending on cross
section of the poisoning material (see Fig. 8-4).

e The fuel utilization factor is inversely related to absorption cross section

and thus changes drastically
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Efuel
= quel Emod aEpoison anntrol (8_332)
a + a + a + a
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Figure 8-4. Radiative capture cross section for '*Xe and "**Sm

The effect of the poison material on reactivity change is



NUCLEAR REACTOR CONTROL 407

Mo—p - kg =1 _[keﬁ-—l}:_l_ AN [l—k.”é](8-333)
kejf ke# k(ijf kef/ keff kDOP

Since non-leakage probability does not change significantly with the
addition of poison material, P/P ~ 1 and the above equation reduces to

1 f
np=—t |-t (8-334)
keﬂ' ( f J

If the total absorption cross section is X, it follows

~ by {uel

f (8-335)

Ea
X Efuel

f=Zu (8-336)

Ea
where ¥, -3, =2/ and 3, = £/ + £ 120" Finally
' poison

Ap=— [ -3‘-} o % (8-337)

k o ) ke Z
21 Xenon Poisoning
2.1.1 Production and Removal of '*Xe During Reactor Operation

Xenon-135 (***Xe) is the most important fission product poison and has a
tremendous impact on the operation of a nuclear reactor. It is necessary to
know its production and removal rate in order to predict how the reactor will
respond to changes in power level. Xenon-135 is a non-1/v absorber (see
Fig. 8-4) with a thermal neutron radiative capture (parasitic absorption) cross
section of 2.6 x 10° b.
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Figure 8-5. Production of '**Xe in thermal reactor

Tellurium-135 ('**Te) decay chain is the primary production method of
15X e, however it can be produced directly from fission (see Fig. 8-5). The
fission yield of *Xe is about 0.3 %, and is about 6 % for **Te. '*Xe is a
product of the B decay of '*°I which is formed by fission and by the decay of
P5Te. Tellurium-135 is fission product, but can also be formed from the B
decay of '*Sb (also a fission product). Nearly 95 % of all '*Xe produced
during reactor operation comes from the decay of '*°I.

Introducing y; to represent the yield fraction for isotope i (the fraction of
fission fragments that will be isotope i), and PR = y; X to be the production
rate of isotope i, and following the decay scheme in Fig. 8-5 it follows:

e The decay times of the 'Sb and 'Te are very short. Thus, we may
assume that all '>Sb and "*°Te are '*°I by defining

Y=Y T Vre T Y (8-338)
e The last nuclide in the decay chain has a very long half-life. Thus, the

stable nuclide can be taken out of our analysis and we may simplify the
decay chain as follows

B 1% Xe 513 s (8-339)

e In the case of a homogeneous thermal reactor the iodine concentration
can be determined as

% = Production of iodine - Loss of iodine (8-340)
or

%=y,>:f¢—(/1’1+a;1¢) (8-341)
where

I - concentration of T

A! - radioactive decay constant of '*°I
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o, - thermal neutron absorption cross section of 1351
yr - fission yield of 1351 (=0.061 for 3y fuel)
2, - macroscopic fission cross section of the fuel material in a reactor
@ - thermal neutron flux.

e Under the same assumption, the xenon concentration change can
determined by:

% = Production of xenon - Loss of xenon (8-342)
or

%f: yXer-¢+/III—(ﬁ,xeXewLO'feXeqﬁ) (8-343)
where

Xe - concentration of **Xe

A¥ - radioactive decay constant of '*Xe

0, - thermal neutron absorption cross section of '**Xe

yxe - fission yield "**Xe (=0.002 for **°U fuel)
At steady-state the rate change of concentration of both nuclides is constant
(after the reactor has been operating for some time, the equilibrium
concentration is attained), thus by setting Equations (8-342) and (8-343)
equal to zero the equilibrium concentrations may be obtained.
e I equilibrium concentration

yiZso B Yixs@

I. =
A iols A

(8-344)

The absorption cross section for 5 is very small in the thermal energy
region (see Fig. 8-6) so the above equation can be simplified by
neglecting the absorption rate. The equilibrium concentration of BT s
proportional to the fission reaction rate and power level.

o 3Xe equilibrium concentration:

yXezf¢+ﬁ'lIO (yXe +)’1)Ef¢
Xe, = = (8-345)
0 ﬂXe _+_o.:(e¢ AXe +O_5(e¢

The equilibrium concentration for 'Xe increases with the power
because the numerator is proportional to the fission reaction rate. Since
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the thermal flux is also in the denominator, as it exceeds 10"
neutron/cm? sec the term including the flux becomes dominant. Thus, at
nearly 10" neutron/cm’ sec the '**Xe concentration approaches a limiting
value.

The reactivity equivalent of the equilibrium xenon poisoning effect (by

neglecting the presence of the control material) may be written in the
following form

1 Z' 1 Zpuix(m
Apy=——| 1~ 28 |z e (8-346)
k z k z
eff a eff a
1.E401 g
LE+00 s
= 1EO
= g
8 F
3 1E02
» 3
§ -
S LE ¢
1.E-04
1.E-05 sl NS ATETTET] bl Ll Lo
1.E-05 1.E-03 1.E-01 1.E+01 1.E+03 1.E+05 1.E+07
Energy (eV)
Figure 8-6. Radiative capture cross section for '*°T
where
Xe
. +y,)oXz . ¢
poison __ Xe ._ (yXe 1 a f
T Xeg K (8-347)

X X
A +o0,¢

To illustrate the reactivity change due to xenon accumulation, let’s
consider the thermal homogeneous reactor fuelled with 2 % *°U for which

7=18 v =242 L,/%, =06

¥, + ¥y =0.066 o =3x10°b A% =2.1x10"s"
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Using this data, and Eq (8-347)., we may re—write Eq (8-346). in the
following simplified form.

1.15x10™7 ¢
2.1x107° +3x10™ ¢

Ap, = (8-348)

For a flux value of 10" neutrons/cm’s the poisoning is negligible (-6 x
10™). For a flux which is ten times higher, the poisoning is still low, - 0.005,
i.e. 0.5 % of all thermal neutrons are absorbed by the equilibrium amount of
xenon. However, for a flux greater than 10'® neutrons/cm’s the poisoning
increases rapidly, as shown in Fig. 8-7 and the limiting value is obtained for
a flux of 10" neutrons/cm’s. The equilibrium '*°I and '*Xe concentrations
as a function of neutron flux are illustrated in Fig. 8-8.

-0.005 T T

-0.01

-0.015

-0.02

-0.025

-0.03

Equilibrium Xenon Reactivity

-0.035

Limiting Value = -0.039

Thermal Flux (neutrons/cmzs)

Figure 8-7. Reactivity equivalent of the equilibrium 135X e concentration for the example
thermal reactor

2.1.2 Xenon Poisoning After Reactor Shutdown

When a reactor is shutdown, the neutron flux is reduced essentially to
zero and '**Xe is no longer produced from fission or removed by absorption.
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The only remaining production mechanism is the decay of the '°I which
was in the core at the time of shutdown. The only removal mechanism for
35%e is its decay. Therefore, if ¢ is the time after the shutdown the rate of
change of xenon concentration as written in Eq. (8-343) reduces to the
following

% = AT - 2Xe=AT,e"" — 1% Xe (8-349)

The solution to Eq. (8-343) gives the xenon concentration over the time
after reactor is shutdown

A1,

YT (e“"'f — e )+ Xege ™t (8-350)

Xe(t) =

x 107

— lodihe-135
------ Xenon-135
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Figure 8-8. Equilibrium concentrations of 1351 and **Xe as a function of neutron flux

The time at which the concentration is maximum may be attained by
setting Eq. (8-350) equal to zero



NUCLEAR REACTOR CONTROL 413

Xe Xe_ 1
1 A [1-—’1 A &J (8-351)

e T T C

Because the decay rate of '*I is faster than the decay rate of '**Xe, the
Xe concentration peaks. The peak value is reached when A'I =A% Xe
which is in about 10 to 11 hours for thermal reactors. The production of
xenon from iodine decay is less than the removal of xenon by its own decay.
This causes the concentration of **Xe to decrease. The concentration of '*°I
at shutdown is greater for greater flux prior to shutdown which also
influences the peak in *°Xe concentration. Figure 8-9 illustrates the change
in relative concentration of *Xe following reactor shutdown as a function
of neutron flux and time after the shutdown. It can be seen that following the
peak in **Xe concentration about 10 hours after shutdown, the concentration
will decrease at a rate controlled by the decay of **I and '**Xe. A numerical
example provided at the end of this Chapter describes the accumulation of
xenon after reactor shut down and explains the Fig. 8-9.

20¢
1. ¢ = 10" neutrons/cm?s
2: ¢ =5'10" neutrons/cm’s
3: ¢ = 10" neutrons/cm3s
4; ¢ = 5-10" neutrons/cm>s

18

16

14

Relative Xenon Concentration
b=

1 1
0 5 10 15 20 25 30 35 40 45 50
Tine After Shutdown (hr)

Figure 8-9. '*>Xe relative concentration (Xe/Xey) after reactor shut down as a function of
neutron flux
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2.2 Samarium Poisoning

2.2.1  Production and Removal of '*Sm During Reactor Operation

The fission product poison having the most significant effect on reactor
operations, other than 35Xe, is samarium—149 (!*Sm). Its effect is
significantly different from that of "*Xe. Samarium—-149 has a thermal
neutron radiative capture cross section of 4.1 x 10* b (see Fig. 8-10). It is
produced from the decay of the '’Nd which is itself a fission fragment as
shown in Fig. 8-10. Since the "Nd decays fairly rapid in comparison to
"“Pm, it can be assumed that '*Pm is produced directly from fission
reactions with a yield of yp,,.

The rate of change of its concentration is then determined by the
following equation ’

”’% = Yo 0= A" P (8-352)

where
Pm - concentration of '*Pm
A" - radioactive decay constant of '**Pm

Fission = 1:iNd £ lfle Z ,lzsz (stable)

1.72h 53.1h

Figure 8-10. *Sm production in thermal reactor

Samarium~—149 is a stable isotope and thus it is removed only by neutron
radiative capture

dj—:” = AP Pm—o " gSm (8-353)

where

Sm - concentration of "“Sm

25" - radioactive decay constant of '**Sm

o;,S'" - thermal neutron absorption cross section of 9Sm
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Solving for the equilibrium yields the equilibrium concentrations of the
two isotopes

2z
Py =20 4 (8-354)
ﬂ m
and
z
Sy =20 (8-355)
o

a

It can be seen from Eq. (8-355) that the equilibrium concentration of
"¥Sm is independent of neutron flux and power level. With a change in
power level, the equilibrium concentration of '*Sm will go through a
transient value and soon return to its original value.

2,2,2 Samarium Poisoning After Reactor Shutdown

After the reactor is shut down, Eq. (8-353) for 9Sm production reduces
to

dj_;" = 17" P (8-356)

Solving this simple differential equation gives the relation for samarium
concentration as a function of time after shutdown

Sm(t) = Smq + Pmy, (1 . ) (8-357)

where Smy and Pmyg are concentrations at shut down. Because Sm is a
stable isotope, it cannot be removed by decay, which makes its behaviour
after reactor shutdown very different from that of '**Xe, as illustrated in Fig.
8-11. The equilibrium is reached after approximately 20 days (500 hours).
The concentration of '**Sm remains essentially constant during reactor
operation (because it is not radioactive). When the reactor is shutdown, its
concentration builds up from the decay of the accumulated '“Pm. The
build—up after shutdown depends on the power level before reactor
shutdown. The concentration of **Sm does not peak as '*’Xe, but instead
increases slowly to its maximum value of Smy + Pmy. After shutdown, if the
reactor is again operated, '“’Sm is burned up and its concentration returns to
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the equilibrium value. Samarium poisoning is miniscule when compared to
Xenon poisoning.

25 T T T T T T T T T

1.5+ .

MNormalized Samarium Concentration
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Time After Shutdown (hr)

Figure 8-11. "*Sm buildup as a function of time after shutdown

3. TEMPERATURE EFFECTS ON REACTIVITY

3.1 Temperature Coefficients

The change in reactivity with temperature is described in terms of the
temperature coefficient of reactivity. Different materials in a reactor are at
different temperatures and produce various effects on reactivity. The
temperature in a reactor does not change uniformly. An increase in reactor
power would first cause an increase in fuel temperature (the region where
power is generated). The coolant and moderator temperatures will change
after the heat is transferred from the fuel. Thus, the two main temperature
coefficients which are usually specified for thermal reactors are the fuel
temperature coefficient and the moderator temperature coefficient. The
general definition for the temperature coefficient of reactivity is
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_p

Or = 8-358
r=or ( )
or replacing the reactivity (see Chapter 7)
1 dk,
p=1- o =t (8-359)
kefj" keﬂ' dr

Since the multiplication factor is close to unity, Eq. (8-359) is simplified

dk
o, L B 1 (8-360)
ky dT degree

n

The response of the reactor to a change in temperature depends on the

algebraic sign of the temperature coefficient

L.

or > 0: since multiplication factor is always positive value, then dk,/dT
is also positive. In other words, an increase in temperature leads to an
increase in neutron population.

Increase in temperature in a reactor thus increases the reactor power. This
will, in turn, increase the temperature more and thus multiplication factor
will be increased further which will increase power further and so on.
Thus, when the temperature increases the power of a reactor increases
and it can be stopped only by outside intervention.

If temperature is decreased, the multiplication factor will decrease as
well. The reactor power will decrease which will reduce temperature
further and will reduce the neutron multiplication which will reduce
reactor power and temperature and so on. Thus, in this case reactor will
shutdown in the absence of external intervention.

orr < 0: since multiplication factor is always positive value, then dk.,/dT
is negative. In this case, an increase in temperature decreases the neutron
multiplication factor.

An increase in reactor temperature will cause reactor power to drop
which will decrease the temperature. This temperature reduction will
tend to return the reactor to its original state.

A decrease in temperature will result in an increase in multiplication
factor. Therefore, if temperature is reduced, the power of the reactor will
increase and the reactor has a tendency toward its original operating
conditions.
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Thus, a reactor with a positive temperature coefficient is inherently
unstable while a reactor with a negative temperature coefficient is inherently
stable.

3.2 Fuel Temperature Coefficient (Nuclear Doppler
Effect)

The fuel reacts immediately to a change in a temperature. The fuel
temperature reactivity coefficient is also called the prompt temperature
coefficient or the nuclear Doppler coefficient. Fuel temperature promptly
responds to a change in reactor power, a negative fuel temperature reactivity
coefficient is more important than a negative moderator temperature
coefficient. The time for heat generated in the fuel region to be transferred to
the moderator is on the order of seconds. When a large positive reactivity
insertion occurs, the negative moderator temperature coefficient cannot
affect the power in that short time while the fuel temperature coefficient
starts adding negative reactivity immediately. Two important nuclides which
dominate the nuclear Doppler Effect are **U and **Pu.

In a typical light—water moderated low enriched fuel thermal reactor the
fuel temperature reactivity coefficient is negative as a result of the nuclear
Doppler Effect (called Doppler broadening). Doppler broadening is caused
by an apparent broadening of the resonances (see Chapter 6, Fig.6-22) due to
thermal motion of nuclei, explained as follows

Stationary nuclei would absorb a neutron of energy Ej.
If nucleus is moving away from a neutron the velocity and energy of the
neutron must be greater than energy E; for it to undergo resonance
absorption.

e If nucleus is moving toward the neutron, the required neutron energy
would be less energy than Ej in order to be captured by the resonance.

¢ Increased temperature of the fuel causes nuclei to vibrate more and thus
broadening the neutron energy range where they are resonantly absorbed
in the fuel region.

If the temperature is increased, the magnitude of the absorption cross
section is decreased due to Doppler broadening effect which will increase
neutron flux (analogous to the removal of a strong absorber from the core).
The number of neutrons absorbed in the resonance region is proportional to
the average neutron flux thus the number of resonance absorption increases
with temperature. If the parasitic absorptions are increased, the
multiplication factor will be reduced which accounts for the negative value
of the prompt fuel temperature coefficient. The higher temperatures lead to
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larger widths of resonances and thus a broader energy region where neutrons
can be absorbed.
The nuclear Doppler coefficient is obtained as follows

¢ By expressing the neutron multiplication as in Eq. (8-331), the resonance
escape probability can be obtained in the following form

In keﬁ' = ln(ﬂéﬂ))"' In pesc (8'361)

¢ Differentiating with respect to temperature and assuming all parameters
to be constant except the resonance escape probability results in a simple
expression for the Doppler coefficient

dk
SN (P SR e A g L . 4 (8-362)
a7 ky dT  dT p. dT

3.3 The Void Coefficient

The void coefficient of reactivity, ¢, is defined as a rate of change in the
reactivity of a water moderated reactor resulting from a formation of steam
bubbles as the power level and temperature increase. The void fraction, x, is
defined as the fraction of a given volume which is occupied by voids. If 30%
of a volume is occupied by vapor with the rest being occupied by water then
x = 0.30. The void coefficient of reactivity is defined as

a =L (8-363)
dx

The response of the reactor to a change in void fraction depends on the
algebraic sign of the void coefficient

1. &, > 0: an increase in void fraction will increase the reactivity. This will
cause the reactor power to rise, which will increase the boiling and void
formation. More voids will increase the reactivity and reactor power
further which will increase the void fraction and so on. Without external
action the reactor power will continue to increase until much of the liquid
is boiled and reactor core melts down.

2. a,<0: an increase in void fraction will reduce the reactivity and thus the
reactor power. This condition tends to return the reactor to its initial state.
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Thus, a negative void coefficient is desirable.

The void coefficient is related to the moderator coefficient (see next
Section) because the change in void fraction changes the density of the
moderator, or coolant in thermal reactors. In water cooled and moderated
reactors the increase in void fraction decreases the reactivity and the void
coefficient is negative. In fast reactors cooled with the liquid sodium the
effect of void formation is the opposite. Namely, sodium slows down
neutrons through inelastic scattering at high energies and absorbs neutrons at
low energies. Thus, the removal of sodium causes reduced moderation and
the neutron spectrum becomes harder which, in turn, increases the reactivity
(the average number of fission neutrons released per neutron absorbed, 7,
increases with neutron energy for all fissile nuclides in fast reactors). Also,
an increase in void formation increases neutron leakage because the density
of coolant is reduced. This effect reduces the void coefficient and tends to
make it negative. The sign of the void coefficient is determined by the value
of these two factors. In large power fast reactors the void formation has a
local effect. For example, if a void is formed in the central region of the
core, the void coefficient will be positive since neutron leakage has little
importance. The leakage becomes more important and reduces the void
coefficient if void occurs toward the peripheral region of the core.

34 The Moderator Coefficient

34.1 Moderator Temperature Coefficient

The moderator temperature coefficient, @4 determines the rate of
“change of reactivity with moderator temperature. This coefficient determines
the ultimate response of a reactor to fuel and coolant temperature change. It
is desirable to have a negative moderator temperature coefficient because of
its elf-regulating effect. In thermal reactors when the moderator temperature
is increased

1. the physical density of the moderator liquid is changed due to thermal
expansions, and
2. thermal cross sections change.

The increased temperature of the moderator in water moderated reactors
will cause the neutron flux to move toward higher neutron energies. This is
an especially promoted effect when absorption cross section does not follow
a 1/v dependence. Thus, the presence of, for example, 28U at higher
temperatures will increase parasitic absorptions and thus tend to keep the
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coefficient negative. The change in the neutron spectrum at increased
moderator temperature has effect on reactivity which is more pronounced in
the presence of poisons such as **Xe and '**Sm because of their resonances
placed at very low neutron energies (around 0.1 eV). The moderator expands
at increased temperature which causes a reduction in the density of atoms
present; therefore the efficiency of the moderator is reduced.

The magnitude and sign of the moderator temperature coefficient
depends on the moderator-to-fuel ratio in such a manner that if

e reactor is under-moderated the coefficient will be negative
e reactor is over-moderated the coefficient will be positive.

34.2 Moderator Pressure Coefficient

The moderator pressure coefficient of reactivity is defined as the change
in reactivity due to a change in system pressure. The reactivity is changed
due to the effect of pressure on the moderator density. When the pressure is
increased, the moderator density is increased which, in turn, increases the
moderator-to-fuel ratio in the core. In the case of an under-moderated core,
the increase in moderator-to-fuel ratio will result in a positive reactivity
insertion. In water moderated reactors, this coefficient is much smaller than
the temperature coefficient of reactivity.

NUMERICAL EXAMPLE

Xenon and lodine concentration after shutdown

As described in Section 2.1.2 the xenon and iodine concentrations over
the time after reactor is shutdown is calculated using Eq.(8-344), (8-345) and
(8-350). The iodine concentration may be obtained from Eq. (8-341). For
the data listed in Table 8-1, calculate the xenon and iodine concentrations as
a function of time after shutdown of a 2**U thermal reactor which operated at
a flux of 10" neutrons/cm’sec. The solution was obtained using MATLAB
and shown in Fig.8-12.



422 Chapter 8

Table 8-1. Data for 27U thermal reactor

Uranium density 19.1 g/em?
Xenon-135 fission yield 0.00237
lTodine-135 fission yield 0.0639
Xenon-135 decay constant 2.09-10% sec™!
Todine-135 decay constant 2.87-107 sec™!
Xenon-135 absorption cross section 2.65:10%b
Uranium-235 fission cross section 582.2b
Solution in MATLAB:

clear all

lambdaXe = 2.09*107-5; % s/-1

lambdal = 2.87*107-5; % s”-1

gammal = 0.0639; % 1-135 fission yeild

gammaXe = 0.00237; % Xe-135 fission yield

sigmaf = 19.1%6.022e23*(582.2*10/-24) / 235; % U-235 fission cm”-1

sigmaaXe = (2.65e6)*10/-24; % Xe-135 absorption cm"2

flux = 107155 % cm”-2 * s7-1

t = linspace(0,180000);

figure

hold on

% Equilibrium Concentrations

10 = gammal*sigmaf*flux/lambdal;

Xe0 = (lambdal*I0 + gammaXe*sigmaf*flux) / (lambdaXe + sigmaaXe*flux);

fori=1:100

% Build-up After Shutdown
I(i) = I0*exp(-lambdal*t(i));
Xe(i)=Xe0*exp(-lambdaXe*t(i))+(lambdal *10/(lambdal-

lambdaXe))*(exp(-lambdaXe*t(i)) - exp(-lambdal*t(i)));

end

plot(t/3600,1,'’k")

hold on

plot(t/3600,Xe,'k:"

xlabel('Time After Shutdown (hr)")

ylabel('Concentration (cm”-3)")

legend('Todine-135', Xenon-135")
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Figure 8-12. *Xe and '*°I concentrations after shutdown of a B5Y thermal reactor

PROBLEMS

8.1 Plot the differential and integral control rod worth curves if the differential
rod worth data is given as follows:
Fractional distance from the bottom of the core  Inserted reactivity

0-0.125 0.1
0.125-0.25 0.2
0.25-0.375 0.4
0.375-05 0.6
0.5-0.625 0.6
0.625 - 0.75 0.4
0.75 - 0.875 0.2
0.875 -1 0.1

8.2 Explain the role of soluble poisons (chemical shim) in thermal reactors.

8.3 In order to control and minimize the corrosion in the reactor coolant system
the pH of the coolant is monitored. In nuclear reactors that do not use chemical
shim pH is maintained at values high as 10. In reactor systems that use chemical
shim (boric acid) how would the pH limit change?
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8.4 Chemical shim in thermal reactors primarily affects the thermal (fuel)
utilization factor. Derive the relation for the chemical shim worth.

8.5 A common pair of fragments from *°U fission is xenon and strontium. Write
the reaction and calculate: energy released per this fission event; investigate the
decay scheme of xenon and strontium; discuss how xenon is removed from the
reactor; discuss the equilibrium level of xenon.

8.6 Describe the effect of the poison material on reactivity change.

8.7 Sketch the behaviour of xenon poisoning.

8.8 Discuss the loss and production of xenon on reactor start-up and on power
decrease from steady state to full power.

8.9 Discuss the production and removal of samarium.
8.10 Discuss the samarium response to reactor shutdown.

8.11 Solve the differential equation that describes the xenon concentration
change after reactor shutdown.

8.12 Derive the relation to obtain the time needed to achieve the maximum
concentration of xenon after reactor shutdown.

8.13 Define temperature coefficients.

8.14 For the moderator coefficient of -15 pcm/K calculate the reactivity change
that results from a temperature decrease 3.5K.

8.15 How will macroscopic cross section of a moderator change if with
increased temperature its density decreases? How will thermal utilization factor

change?

8.16 Discuss the fuel temperature coefficient and why it is negative?



Appendix 1: World-Wide Web Sources on Atomic
and Nuclear Data

Periodic Table of the Elements

First ionization potential:

http://web.mit.edu/3.09 1/www/pt/pert9.html

Atomic and chemical characteristics of elements:
http://pearl1.lanl.gov/periodic/default.htm
Comprehensive set of data:
http://www.chemistrycoach.com/periodic_tables.htm

Table of nuclides

Cross section plots and fundamental characteristics of nuclides:
http://atom.kaeri.re.kt/

Nuclear physics data: http://physics.nist.gov/PhysRefData/
Ionization potentials:
http://environmentalchemistry.com/yogi/periodic/1stionization.html|

Electron and photon attenuation data: http://atom.kaeri.re.kr/ex.html

Physical constants: http://physics.nist.gov/PhysRefData/

Atomic and molecular spectroscopic data:
http://physics.nist.gov/PhysRefData/

X ray and v ray data: http://physics.nist.gov/PhysRefData/

Stopping-power and range tables for electrons, protons, and helium ions:
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http://physics.nist.gov/PhysRefData/Star/Text/contents.html

National nuclear data center: http://www.nndc.bnl.gov/index.jsp
e Nuclear structure and decay database:
http://www.nndc.bnl.gov/databases/databases.html#structuredecay
e Nuclear reactions databases:
http://www.nndc.bnl.gov/databases/databases.html#reaction




Appendix 2: Atomic and Nuclear Constants

Fundamental Constants

Quantity Symbol Value Unit
Atomic mass unit amuoru 1.66053 x 10 g
931.481 MeV
Avogadro’s number N, 6.02217 x 10% Mole™
Boltzmann’s constant k 1.38062 x 107 J/K
Electron rest mass m, 9.10956 x 10 g
5.48593 x 10 amu
0.511004 MeV
Elementary charge e 1.602192 x 107" C
Neutron rest mass m,, 1.67493 x 102 g
1.008665 amu
939.553 MeV
Newtonian gravitational constant G 6.6742 x 107" m’ /kg s
Planck’s constant h 6.626069 x 10 Js
4.135667 x 107 eVs
Proton rest mass m, 1.67261 x 102 g

1.007277

amu
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Quantity Symbol Value Unit
938.259 MeV

Speed of light c 2.99792458 x 10" cm/s

Stefan-Boltzmann constant o 5.670400 x 10°® Wm?K*

Atomic and Nuclear Constants

Quantity Symbol Value Unit

Bohr radius u n’ 0.05291771 nm
* ke*m

Classical electron radius e 2.817940 x 107 m

Compton wavelength Ac 2426310 x 1072 m

Rk L

-1
i 10973731568 m

Rydberg constant

Rydberg energy E,—hr 2179872 x107% J
13.6 eV




Appendix 3: Prefixes

Factor Prefix Symbol
10" exa E
10% peta P
102 tera T
10° giga G
10° mega M
10° kilo k
10 hecto h
10! deka da
107 deci d
102 centi c
10° milli m
10°¢ micro p

‘ 10? nano n
1012 pico p
1075 femto f
10°% atto a




Appendix 4: Units and Conversion Factors

Angle
Unit Symbol Value
Radian rad 0.01745
Degree ¢ 1
Minute ‘ 60
Second ° 3600
Energy
Unit Symbol Value
Joule J 1
Erg erg 107
Watt second Ws 1
Kilowatt hour kWh 27778 x 107
Mega electron volt ~ MeV 6.242 x 10"
British thermal unit  Btu 9.478 x 10
Length/Distance
Unit Symbol Value
Angstrom A 10"
Nanometer nm 10°
Micrometer Um 108
Millimeter mm 10°
Centimeter cm 10?
Meter m 1
Kilometer km 10°
Inch in (*) 39.37008

Foot ft () 3.28084
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Appendix 4: Units and Conversion Factors

Unit Symbol Value

Yard yd 1.09361

mile mi 6.2137 x 10
Mass

Unit Symbol Value

Milligram mg 10

Gram g 10°

Kilogram kg 1

Ounce 0z 35.274

Pound Ib 2.2046

Tonne (metric) t 107
Temperature

Unit Symbol Value

Fahrenheit F Cx@9/5+32

Celsius C C

Kelvin K C+273.15
Time

Unit Symbol Value

Second s or sec 3.1536 x 10’

Minute m or min 5.256 x 10°

Hour h or hr 8760

Day da 365

Week wk 52.14286

Month mo 11.99203

Year yrora 1
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Elastic scattering, 174
Inelastic scattering, 178
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Loss of energy, 180
Range, 187

Chemical elements, 10

Chemical shim, 404

Closest approach, 20

Compound nucleus, 249

Compton effect, 220

Control rods, 397

Control rod worth, 398
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Coulomb force, 28, 76

Cross section, 242
1/v absorption, 271
Average absorption, 271
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Macroscopic, 243
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Compound nucleus, 249
Temperature corrected, 271
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Democritus, 9
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Magic numbers, 85, 127
Mass,

Defect, 69

Relativistic, 63
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271
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Average velocity, 248, 267
Balance, 295, 296



440 Index

Capture therapy, 4, 5 Power, Space, 3
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Cold, 6 Reactors, LWR, 2
Decay, 74 Shell model, 86
Delayed neutrons, 372, 373 Nucleons, 62

Diffusion (see Diffusion) Nucleus, 18, 62
Discovery, 73, 242 Binding energy, 68, 82, 87
Elastic scattering, 252, 335 Density, 62, 63, 81
Fission, 280 Liquid drop model, 81
Flux, 248, 367, 386 Radius, 61
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Inelastic scattering, 254 Shell model, 86
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Life cycle, 363, 379

Life time, 360, 372

Mean free path, 247, 307 Orbital electron capture, 159
Most probable velocity, 266
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316, 362, 403 Pairing effect, 71, 83
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Potential elastic scattering, 253 Cut-off frequency, 212, 214
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