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PREFACE

Plates and panels are primary structural components in many structures from
space vehicles, aircraft, automobiles, buildings and homes, bridges decks, ships, and
submarines. The ability to design, analyze, optimize and select the proper materials and
architecture for plates and panels is a necessity for all structural designers and analysts,
whether the adjective in front of the “engineer” on their degree reads aerospace, civil,
materials or mechanical.

This text is broken into four parts. The first part deals with the behavior of
isotropic plates. Most metals and pure polymeric materials used in structures are
isotropic, hence this part covers plates and panels using metallic and polymeric materials.

The second part involves plates and panels of composite materials. Because these
fiber reinforced matrix materials can be designed for the particular geometry and loading,
they are very often anisotropic with the properties being functions of how the fibers are
aligned, their volume fraction, and of course the fiber and matrix materials used. In
general, plate and panel structures involving composite materials will weigh less than a
plate or panel of metallic material with the same loads and boundary conditions, as well
as being more corrosion resistant. Hence, modern structural engineers must be
knowledgeable in the more complicated anisotropic material usage for composite plates
and panels.

Sandwich plates and panels offer spectacular advantages over the monocoque
constructions treated above. By having suitable face and core materials, isotropic or
anisotropic, sandwich plates and panels subjected to bending loads can be 300 times as
stiff in bending, with face stresses 1/30 of those using a monocoque construction of a
thickness equal to the two faces of the sandwich. Thus, for only the additional weight of
the light core material, the spectacular advantages of sandwich construction can be
attained. In Part 3, the analyses, design and optimization of isotropic and anisotropic
sandwich plates and panels are presented.

In Part 4, the use of piezoelectric materials in beams, plates and panels are treated.
Piezoelectric materials are those that when an electrical voltage is applied, the effects are
tensile, compressive or shear strains in the material. Conversely, with piezoelectric
materials, when loads cause tensile, compressive or shear strains, an electrical voltage is
generated. Thus, piezoelectric materials can be used as damage sensors, used to achieve
a planned structural response due to an electrical signal, or to increase damping.
Piezoelectric materials are often referred to as smart or intelligent materials. The means
to describe this behavior and incorporate this behavior into beam, plate and panel
construction is the theme of Part 4.

This book is intended for three purposes: as an undergraduate textbook for those
students who have taken a mechanics of material course, as a graduate textbook, and as a
reference for practicing engineers. It therefore provides the fundamentals of plate and
panel behavior. It does not include all of the latest research information nor the
complications associated with numerous complex structures — but those structures can be
studied and analyzed better using the information provided herein.
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Several hundred problems are given at the end of Chapters. Most if not all of
these problems are homework and exam problems used by the author over several
decades of teaching this material. Appreciation is expressed to Alejandro Rivera, who as
the first student to take the course using this text, worked most of the problems at the end
of the chapters. These solutions will be the basis of a solutions manual which will be
available to professors using this text who contact me.

Special thanks is given to James T. Arters, Research Assistant, who has typed this
entire manuscript including all of its many changes and enhancements. Finally, many
thanks are given to Dr. Moti Leibowitz who reviewed and offered significant suggestions
toward improving Chapter 18, 19 and 20.



CHAPTER 1

EQUATIONS OF LINEAR ELASTICITY IN CARTESIAN COORDINATES

References [1.1-1.6]" derive in detail the formulation of the governing differential
equations of elasticity. Those derivations will not be repeated here, but rather the
equations are presented and then utilized to systematically make certain assumptions in
the process of deriving the governing equations for rectangular plates and beams.

1.1 Stresses

Consider an elastic body of any general shape. Consider the material to be a
continuum, ignoring its crystalline structure and its grain boundaries. Also consider the
continuum to be homogeneous, i.e., no variation of material properties with respect to the
spatial coordinates. Then, consider a material point anywhere in the interior of the elastic
body. If one assigns a Cartesian reference frame with axes x, y and z, shown in Figure
1.1, it is then convenient to assign a rectangular parallelepiped shape to the material
point, and label it a control element of dimensions dx, dy and dz. The control element is
defined to be infinitesimally small compared to the size of the elastic body, yet infinitely
large compared to elements of the molecular structure, in order that the material can be
considered a continuum.

On the surfaces of the control element there can exist both normal stresses (those
perpendicular to the plane of the face) and shear stresses (those parallel to the plane of
the face). On any one face these three stress components comprise a vector, called a
surface traction.

It is important to note the sign convention and the meaning of the subscripts of
these surfaces stresses. For a stress component on a positive face, that is, a face whose
outer normal is in the direction of a positive axis, that stress component is positive when
it is directed in the direction of that positive axis. Conversely, when a stress is on a
negative face of the control element, it is positive when it is directed in the negative axis
direction. This procedure is followed in Figure 1.1. Also, the first subscript of any stress
component on any face signifies the axis to which the outer normal of that face is
parallel. The second subscript refers to the axis to which that stress component is
parallel. In the case of normal stresses the subscripts are seen to be repeated and often
the two subscripts are shortened to one, i.e. &, =0, where i=ux,y orz.

%
Numbers in brackets refer to references given at the end of chapters.
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Figure 1.1. Control element in an elastic body showing positive direction of stresses.

1.2 Displacements

The displacements u, v and w are parallel to the x, y and z axes respectively and
are positive when in the positive axis direction.

1.3 Strains

Strains in an elastic body are also of two types, extensional and shear.
Extensional strains, where i = x, y or z, are directed parallel to each of the axes
respectively and are a measure of the change in dimension of the control volume in the
subscripted direction due to the normal stresses acting on all surfaces of the control
volume. Looking at Figure 1.2, one can define shear strains.

The shear strain y,; (where i andj =x, y or z, and i # j) is a change of angle. As

an example shown in Figure 1.2, in the x-y plane, defining y,, to be
T . .
Vg = bl ¢  (inradians), (1.1
then,

gxy :_}/xy' (12)
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Figure 1.2. Shearing of a control element.

It is important to define the shear strain &, to be one half the angle y, in order

to use tensor notation. However, in many texts and papers the shear strain is defined as
7., - Care must be taken to insure awareness of which definition is used when reading or

utilizing a text or research paper, to obtain correct results in subsequent analysis.
Sometimes ¢, is termed tensor strain, and y, is referred to as engineering shear strain

(not a tensor quantity).
The rules regarding subscripts of strains are identical to those of stresses
presented earlier.

1.4 Isotropy and Its Elastic Constants

An isotropic material is one in which the mechanical and physical properties do
not vary with orientation. In mathematically modeling an isotropic material, the constant
of proportionality between a normal stress and the resulting extensional strain, in the
sense of tensile tests is called the modulus of elasticity, E.

Similarly, from mechanics of materials, the proportionality between shear stress
and the resulting angle y, described earlier, in a state of pure shear, is called the shear
modulus, G.

One final quantity must be defined — the Poisson’s ratio, denoted by v. It is
defined as the ratio of the negative of the strain in the j direction to the strain in the i
direction caused by a stress in the i direction, o,. With this definition it is a positive

quantity of magnitude 0 < v < 0.5, for all isotropic materials.



The well known relationship between the modulus of elasticity, the shear modulus
and Poisson’s ratio for an isotropic material should be remembered:

__E . (1.3)
2(1+v)
It must also be remembered that (1.3) can only be used for isotropic materials.
The basic equations of elasticity for a control element of an elastic body in a
Cartesian reference frame can now be written. They are written in detail in the following
sections and the compact Einsteinian notation of tensor calculus is also provided.

1.5 Equilibrium Equations

A material point within an elastic body can be acted on by two types of forces:
body forces (F,) and surface tractions. The former are forces which are proportional to
the mass, such as magnetic forces. Because the material is homogeneous, the body forces

can be considered to be proportional to the volume. The latter involve stresses caused by
neighboring control elements.

Iy
z
G,
X do
Oy | Oy Ldy
G ¥
s Oz 'a
- XZ a,
= Oxz* B dx 5:;‘*—111)?
X Cyz .l— 8o o +a—u}'i By
dz G "o, +—£2 dx % @ dy
ac, o iyt
X
O'x‘l'-é-;- Gy
6=Z—r/
LI

Figure 1.3. Control element showing variation of stresses.



Figure 1.1 is repeated above, but in Figure 1.3, the provision for stresses varying
with respect to space is provided. Thus on the back face the stress o is shown, while on

the front face that stress value differs because o, is a function of x; hence, its value is
o, + (0o, /ox)dx. Also shown are the appropriate expressions for the shear stresses.
The body forces per unit volume, F,(i = x, y, z) are proportional to mass and, as

stated before, because the body is homogeneous, are proportional to volume.
The summation of forces in the x direction can be written as

80‘ ao—vx
o, +—dx|dydz+| o +——dy |dxdz
ox oy
0o .
+(0'zx+a—“xdzjdxdyaxdydzayxdxdz (1.4)
z

-0, dxdy+F dedydz=0.

After cancellations, every term is multiplied by the volume, which upon division by the
volume, results in

oo,
oo, N O, N oo, LF =0, (1.5)
Ox oy Oz

Likewise, in the y and z direction, the equilibrium equations are:

do, 0o, 0o,
2+ +—2+F =0 (1.6)
ox oy 0z :

oo
ao——“+—”+6&+FZ:0. (L.7)
Ox oy oz

In the compact Einsteinian notation, the above three equilibrium equations are
written as

O-ki‘k +E =0 (iak:x’y7z) (18)
where this is the ith equation, and the repeated subscripts k refer to each term being

repeated in x, y and z, and where the comma means partial differentiation with respect to
the subsequent subscript.



1.6 Stress-Strain Relations

The relationship between the stresses and strains at a material point in a three
dimensional body mathematically describe the way the elastic material behaves. They
are often referred to as the constitutive equations and are given below without derivation,
because easy reference to many texts on elasticity can be made, such as [1.1 - 1.7].

£, :]E[G* -v(o, +Uz)], & :l[ay —-v(o, +crz)] (1.9), (1.10)

X v E

L ) R (1.11), (1.12)
z E z x ¥/ Xy 2G xy N ’ °

& _LU £ —LO' (1.13), (1.14)
vz 2G yz o zx 2G X : > :

From (1.9) the proportionality between the strain & and the stress o is clearly
seen. It is also seen that stresses o, and o, affect the strain o, due to the Poisson’s

ratio effect.
Similarly, in (1.12) the proportionality between the shear strain ¢,, and the shear

stress o, is clearly seen, the number ‘two’ being present due to the definition of ¢,

given in (1.2).
In the compact Einsteinian notation, the above six equations can be written as

& =00y (1.15)

where a,, is the generalized compliance tensor.

1.7 Linear Strain-Displacement Relations

The strain-displacement relations are the kinematic equations relating the
displacements that result from an elastic body being strained due to applied loads, or the
strains that occur in the material when an elastic body is physically displaced.

oo

£,

(1.16), (1.17)
Qy

PP (1.18), (1.19)
oz 2\ 0y Ox



e =L ‘9_”+5_W], g = Lfov ow (1.20), (1.21)
2 6z ox ¥ 20z oy

In compact Einsteinian notation, these six equations are written as:

g :%(ui” vu, ) (G j=x9.2) (1.22)

1.8 Compatibility Equations

The purpose of the compatibility equations is to insure that the displacements of
an elastic body are single-valued and continuous. They can be written as:

2 Oe, o¢,,
O6n 0 % 0¢, O (1.23)
Oyoz Ox ox oy oz
0’e. oe., O¢,
I 4 (1.24)
OzOx Oy oy Oz Ox
2 Os,, Oe,
06, _0f %y 00 00, (1.25)
oxoy Oz 0z Ox oy
o%e 5> 0’e o' 0’c, 2
o 06w 0% - 50% _O% 08 (16, (127)
oxoy oy ox oyoz ¢z ay
2 2 2
26 &, 0O 822+6 £ (1.28)
A A

In compact Einsteinian notation, the compatibility equations are written as
follows:

€, tEu, ~En, —E

Il

=0 (G j k1=x,y,2). (1.29)

G

However, in all of what follows herein, namely treating plates and beams,
invariably the governing differential equations are placed in terms of displacements, and
if the solutions are functions which are single-valued and continuous, it is not necessary
to utilize the compatibility equations.



1.9 Summary

It can be shown that both the stress and strain tensor quantities are symmetric, i.e.,
o;,=0,ande, =¢, (,j=xy,2). (1.30)

Therefore, for the elastic solid there are fifteen independent variables; six stress

components, six strain components and three displacements. In the case where
compatibility is satisfied, there are fifteen equations: three equilibrium equations, six
constitutive relations and six strain-displacement equations.

For a rather complete discussion [1.7] of the equations of elasticity for anisotropic

materials, see Chapter 10 of this text.
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Problems

Prove that the stresses are symmetric, i.e., 0, =0.

(Suggestion: take moments about the x, y and z axes.)

When v = 0.5 a material is called ‘incompressible’. Prove that for v = 0.5, under
any set of stresses, the control volume of Figure 1.1 will not change volume when
subjected to applied stresses.

An elastic body has the following strain field:

£, = 2x? +3xy+4y2 £y = 0
2 2 2 2 2
£, =x -2y +z £,=2y -3z

e.=2y"-2" e, =32"-2y’



Does this strain field satisfy compatibility? Note: compatibility is not satisfied if
any one or more of the compatibility equations is violated.



CHAPTER 2

DERIVATION OF THE GOVERNING EQUATIONS FOR ISOTROPIC
RECTANGULAR PLATES

This approach in this chapter is to systematically derive the governing equations
for an isotropic classical, thin elastic isotropic rectangular plate. Analogous derivations
are given in [2.1 - 2.8].

2.1 Assumptions of Plate Theory

In classical, linear thin plate theory, there are a number of assumptions that are
necessary in order to reduce the three dimensional equations of elasticity to a two
dimensional set that can be solved. Consider an elastic body shown in Figure 2.1,
comprising the region 0<x<a, 0<y<b and —h/2<z<h/2, such that h << g and

h <<b. This is called a plate.

h
Figure 2.1. Rectangular plate.

The following assumptions are made.

1. A lineal element of the plate extending through the plate thickness, normal to the
mid surface, x-y plane, in the unstressed state, upon the application of load:
a. undergoes at most a translation and a rotation with respect to the original
coordinate system;
b. remains normal to the deformed middle surface.
2. A plate resists lateral and in-plane loads by bending, transverse shear stresses, and
in-plane action, not through block like compression or tension in the plate in the
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thickness direction. This assumption results from the fact that #/a << 1 and
hlb << 1.

From 1a the following is implied:

3. A lineal element through the thickness does not elongate or contract.
4. The lineal element remains straight upon load application.

In addition,
5. St. Venant’s Principle applies.

It is seen from 1a that the most general form for the two in-plane displacements is:
“(xa%z):”o(xa)’)‘*'za(xJ’) (21)

v(x,3,2) = v, (x, ) + 2 8(x, ) 2.2)

where u, and v, are the in-plane middle surface displacements (z =0), and & and S are
rotations as yet undefined. Assumption 3 requires that &, = 0, which in turn means that
the lateral deflection w is at most (from Equation 1.18)

w=w(x, y). (23)

Also, Equations (1.11) is ignored.
Assumption 4 requires that for any z, both ¢ =constantand & = constant at any

specific location (x, ¥) on the plate middle surface for all z. Assumption 1b requires that
the constant is zero, hence

Assumption 2 means that ¢, =0 in the stress strain relations.

Incidentally, the assumptions above are identical to those of thin classical beam,
ring and shell theory.

2.2 Derivation of the Equilibrium Equations for a Rectangular Plate
Figure 2.2 shows the positive directions of stress quantities to be defined when the

plate is subjected to lateral and in-plane loads.
The stress couples are defined as follows:
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Figure 2.2. Positive directions of stress resultants and couples.

M, = [ozdr (2.4)
—h/2
+h/2

M, = [o,zdz (2.5)
~hl/2
+h/2

M, = [o,zd (2.6)
~h/2

+h/2
M, = [o,.zd=M,. (2.7)

~h/2

Physically, it is seen that the stress couple is the summation of the moment about
the middle surface of all the stresses shown acting on all of the infinitesimal control
elements through the plate thickness at a location (x, y). In the limit the summation is
replaced by the integration.

Similarly, the shear resultants are defined as,

O 28)

~h/2
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0, = hﬁ; dz. 2.9)

—h/2

Again the shear resultant is physically the summation of all the shear stresses in the
thickness direction acting on all of the infinitesimal control elements across the thickness
of the plate at the location (x, y).

Finally, the stress resultants are defined to be:

+h/2

N, = [o, dx (2.10)
~h/2
+h/2
N, = [o,d (2.11)
~h/2
+h!/2
N, = [o,d (2.12)
~h/2
+h/2
N, = [o,d=N, (2.13)
—h/2

These then are the sum of all the in-plane stresses acting on all of the infinitesimal
control elements across the thickness of the plate at x, y.

Thus, in plate theory, the details of each control element under consideration are
disregarded when one integrates the stress quantities across the thickness 4. Instead of
considering stresses at each material point one really deals with the integrated stress
quantities defined above. The procedure to obtain the governing equations for plates
from the equations of elasticity is to perform certain integrations on them.

Proceeding, multiply Equation (1.5) by z dz and integrate between —4/2 and +4/2, as
follows:

+h!2 A ao-
j[zoax +z—= +zaa"zjdz—0

Do\ Ox oy oz
+h/2 +h/2 +h/2
0
2 J‘szdz+£ .[ax},zdz+ jz&dzzo
ax ~h/2 6-)) ~h/2 ~h/2 z
+h/2
oM. oM, +h/2
{—"+ —+z0,, - J.O'xz dz=0.
Ox oy L
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In the above, the order of differentiation and integration can be reversed because x and z
are orthogonal one to the other. Looking at the third term, o, = o,, =0 when there are

no shear loads on the upper or lower plate surface. If there are surface shear stresses then
defining 7, = o _(+4/2) and 7, = o _(-h/2), the results are shown below in Equation

(2.14). 1t should also be noted that for plates supported on an edge, o may not go to

zero at +/h/2, and so the theory is not accurate at that edge, but due to St. Venant’s
Principle, the solutions are satisfactory away from the edge supports.

oM, oM,
x :
ox Oy

+§(r,x +7,)—-0, =0. (2.14)

Likewise Equation (1.6) becomes

My My B )-0, =0 (2.15)
+ +—(1, +7,)-0, = )
Ox oy 2 g

where
7,=0,.(+h/2) and 7, =0 _(-h/2).

These two equations describe the moment equilibrium of a plate element. Looking now
at Equations (1.7), multiplying it by dz, and integrating between —//2 and +4/2, results in

+h/2 a
[GO'H . o, +6O-Z]dz—0

ol ox oy oz
a ) +h!/2
aQ"+ Q“'+o-z .[ =0
Ox oy i
00, 00
L % )= pal) =0 (2.16)
Ox oy

where p,(x,y) =0, (+h/2), p,(x.y)=0(-h/2).
One could also derive (2.16) by considering vertical equilibrium of a plate element
shown in Figure 2.3.
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Figure 2.3. Vertical forces on a plate element.

fv*f Q.

:

dy

One may ask why use is made of o, in this equation and not in the stress-strain
relation? The foregoing is not really inconsistent, since o, does not appear explicitly in
Equation (2.16) and once away from the surface the normal surface traction is absorbed
by shear and in-plane stresses rather than by o, in the plate interior, as stated previously
in Assumption 2.

Similarly, multiplying Equations (1.5) and (1.6) by dz and integrating across the
plate thickness results in the plate equilibrium equations in the x and y directions
respectively, in terms of the in-plane stress resultants and the surface shear stresses.

ON, O©ON,
et ——+(7,—-7,,)=0 (2.17)
Ox oy
ON,, ON,
o +g+(T1y*72},):0. (218)

2.3 Derivation of Plate Moment-Curvature Relations and Integrated Stress
Resultant-Displacement Relations

Now, the plate equations must be derived corresponding to the elastic stress strain
relations. The strains ¢, ¢, and ¢, will not be used explicitly since the stresses have

been averaged by integrating through the thickness. Hence, displacements are utilized.
Thus, combining (1.9) through (1.21) gives the following, remembering that o, has been
assumed zero in the interior of the plate and excluding Equation (1.11) for reasons given
previously.

Z—Z:%[ax -vo,] (2.19)



17

ov 1

—=—[o, —Vvo 2.20
& E[ f .1 (2.20)
1 1
1{ou, ov . 2.21)
2oy ox 2G
How ow)_ 1, (2.22)
206z &) 26"
fow ou)_ 1, (2.23)
20l oz) 2G

Next, recall the form of the admissible displacements resulting from the plate theory
assumptions, given in (2.1) through (2.3):

u=u,(x,y)+za(x,y) (2.24)
v=v,(x,) +2B(x,) (2.25)
w=w(x,y) only. (2.26)

In plate theory it is remembered that a lineal element through the plate will
experience translations, rotations, but no extensions or contractions. For these
assumptions to be valid, the lateral deflections are restricted to being small compared to
the plate thickness. It is noted that if a plate is very thin, lateral loads can cause lateral
deflections many times the thickness and the plate then behaves largely as a membrane
because it has little or no bending resistance, i.e., D — 0.

The assumptions of classical plate theory require that transverse shear deformation
be zero. If ¢, = ¢, =0 then from Equations (1.20) and (1.21)

l(a“Jra_W]:o or 6_u:7('i_w, likewise

ez ox Oz ox
v __ow
oz y

Hence, from Equations (2.24) through (2.26) and the above, it is seen that the rotations
are

a=-2 (2.27)



18

— ow
B=-—
oy

(2.28)

Using (2.24) and (2.19), multiplying (2.19) through by z dz and integrating from

—h/2 to +h/2, one obtains

s 2o hir
——Lzdz+ I 2P —dz= _[—[O'vaav]zdz.
Ox Ox E ’

~h/2 —h/2 ~h/2

Likewise (2.25) and (2.20) result in

P +h/2 8B o
—Lzdz+ Izz—dz= I—[O'},fvax]zdz
—h12 O PN ik

and Equations (2.24), (2.25) and (2.21) give

A\ Gy Ox “hi2 2

Integrating (2.29), (2.30) and (2.31), and using (2.27) and (2.28)

3 A 3 42
h_a_a:i[*Mv_V*M\f]:_h_a ZV
12ox E- ’ 12 ox

3 Ap 3 A2
LR YA R
128y E° ’ 12 oy

12

dy ox

W(oéa oB) 1 h 8w
t——|==M, =—— .
G 6 Oxoy

Since G = E/2(1+v)

2 3
0w where D:Lz.
Ox Oy 12(1-v?)

M, =-(1-v)D

Solving (2.32) and (2.33) for M and M, results in,

X

2 2
YR LT
ox oy~ |

+h/2 +h/2 > n +h/2
I %+% zdz+ J 226_a+22% dz = J‘iawzdz.
0 G ~

(2.29)

(2.30)

2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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+v .
o ot

M,=-D

y

{(yw o’w | (2.38)

Equations (2.36) through (2.38) are known as the moment-curvature relations, and D is
seen to be the flexural stiffness of the plate per unit width. It is seen also that the
curvatures in these moment-curvature relations for classical theory are:

2 2
_Oa 0w 0B oOw
K, = A2 vy T A T A2
Ox ox Cy oy

(2.39)

da of o’w
e I E e,
- dy ox OxCy

Likewise, substituting (2.37) and (2.38) into Equations (2.14) and (2.15) results in

0.= DL vw+l, v,
ox 2
(2.40)
0, = —D—? (Vzw)+ﬁ(rl‘, +7,,).
oy 2 - ’

In the above the two dimensional Laplacian operator V* is defined as follows:

o*w 0w

Viw= + .
o’ oy’

Also using Equations (2.24) and (2.25) substituting them into Equations (2.19) through
(2.21), then multiplying the latter three equations by dz, integrating across the thickness,
results in the following integrated stress-strain relationships:

N, =1{a"° a (2.41)
’ ox oy |
N, =K vy, oy (2.42)
! oy ox
N_=N_=Gh %JET, (2.43)

where Eh/(1-v?) =K, the plate extensional stiffness. Equations (2.41) through (2.43)
describe the in-plane force and deformation behavior.
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2.4 Derivation of the Governing Differential Equations for a Plate

The equations governing the lateral deflections, and the bending and shearing action
of a plate can be summarized as follows:

oM. oM, h
-~ + —— Q. +— + =0 2.44
x o 0. Z(Tlx 73) (2.44)
oM., +8M” 0 +h( +7,)=0 (2.45)
—_— —— —\7,, t7, )= B
Oox oy vy
00,
Q. %, p—p, =0 (2.46)
Ox Oy
2 2
M, = 2,0 Vﬂ (2.47)
ox oy~ |
2 2
M, =-p 0 Vzﬂ (2.48)
’ oy ox” |
o’w
M, =-D(1-v)——. (2.49)
Ox Oy

The equations governing the in-plane stress resultants and in-plane midsurface
displacements are:

aﬁi“L = +(7, = 7,,)=0 (2.50)
ox oy ’
ON ON |
—+——+(1,, - 7,,)=0 (2.51)
ox oy roos
N, = k| 2 o (2.52)
’ ox oy |
N, =K vy, 0, | (2.53)
TNy T e
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ouy , O]

S (2.54)

¥, =

It should be noted that in classical, thin plate theory the equations related to bending
and shear, Equations (2.44) through (2.49), are completely uncoupled from the equations
dealing with in-plane loads and displacements, Equations (2.50) through (2.54). [Note: in
Chapter 6, we shall see that when in-plane loads are sufficiently large, the in-plane loads
do indeed cause lateral displacements (buckling), but a more sophisticated theory will be
evolved at that time].

It should also be noted that the flexural stiffness D of the plate corresponds closely
to the EI in beam theory, but is in terms of a unit width, and incorporates the Poisson’s
ratio effect. Likewise a similar correspondence exists between the extensional stiffness K
and the £4 in beam theory.

Equations (2.44) through (2.54) are the eleven governing plate equations. First note
that the plate can only tell the difference between normal tractions on the upper and lower
surface. Hence, one can define p(x, y) as

P(x, )= p,(x,¥) = p(x, ). (2.55)

Substituting (2.44) and (2.45) into (2.46) results in the following for the case of no shear
stresses on the plate upper and lower surfaces:

ocM o°’M, o’M
* 42 Y =+ p(x,y)=0. (2.56)

3 +
Ox Ox Oy oy

Substituting (2.47) through (2.49) into (2.56) results in:

o'w o*w o*wl
D ——+2———5+— =px)y)
ox ox~ay” oy |
or
DViw= p(x,y), 2.57)
where
2 a0, 2’0 4 2 o2
Vi()=—75"+—5and V' ( )=V (V7 (). (2.58)
ox Oy

V?, the Laplacian operator, is really the sum of the curvatures in two orthogonal
directions at the location x, y in the plate. V*, the biharmonic operator, is the Laplacian
of the Laplacian, and is physically, then, the sum of the curvatures of the sum of the
curvatures in orthogonal directions. One might say that it is a measure of ‘bulginess’.
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Next, treating Equations (2.50) through (2.54) by substituting Equations (2.52)
through (2.54) into the two equilibrium equations, becomes, after considerable
manipulation, and for the case of no surface shear stresses,

Viu, =0 (2.59)
Vi, =0. (2.60)

One never needs to use (2.59) and (2.60) but it shows a certain correspondence to (2.57)
above.

For the bending vibrations of a plate, an inertial load per unit platform area is added
as an equivalent force per unit area, i.e., d’Alembert’s Principle, resulting in Equations
(2.57) being modified, as seen below:

0w

DViw=p—p h—r0
PP, e

(2.61)
where p,, is the mass density of the plate material, and 7 is the coordinate of time. Here,

w=w(x,y,t) and p = p(x,y,t). This modification can be made because the theory is

linear and superposition is possible.
In a plate of varying thickness, / = h(x, y), the following equation is derived rather

than (2.57):
VHDV*w) - (1-v)ON (D, w) = p(x, ) (2.62)
where O* is the die operator defined as

0*D &*w 5 0’D &*w 8°D &*w
A2

OY(D,w) = + .
(D:w) ox® oy Oxoy oxdy Oy ox?

(2.63)

If a plate is on an elastic foundation, in which a linear foundation modulus %, in units of
Ibs/in/in® can be defined, then Equation (2.57) is altered by adding in the additional
lateral force per unit platform area:

DViw= p(x,y)—kw. (2.64)

Since classical linear elasticity is involved herein, superposition permits the writing
of a vibrating plate on an elastic foundation as follows:

2

o'w
DV*w= p(x,y,t)— p,h P —kw. (2.65)
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2.5 Boundary Conditions for a Rectangular Plate

First, the boundary conditions for the bending of a plate subjected to lateral loads,
Equation (2.57), will be discussed. Additional boundary conditions for Equations (2.59)
and (2.60) for a plate subjected also to in-plane loads will be discussed later.

Since (2.57) is a fourth order partial differential equation in x and y describing the
bending of a plate, four boundary conditions are needed on the x edges and four are
needed on the y edges, i.e., two on each edge. For the clamped and simply supported
edges, knowledge of beam theory dictates the following:

For a clamped edge For a simply supported edge
w=0
v=0 2.66)
m_y M,=0 @
on

where 7 is the direction normal to the edge.
For a Free Edge

Consider an x = constant free edge. Since by definition a free edge has no loads
applied to it, Figure 2.2 shows that M , M  and Q, all are zero on that edge. Hence,

six boundary conditions must be satisfied on the two x = constant plate edges. However,
the plate equation is only fourth order in x, hence one cannot specify more than two
boundary conditions on each edge. [Note: In a more advanced plate theory that includes
the effects of transverse shear deformation, ¢ #0 and & _ # 0, the governing equations

are sixth order in both x and y and the problem discussed here does not occur. ]
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Figure 2.4. Development of the Kirchhoff boundary conditions for a free edge.

To eliminate the problem, Kirchhoff proceeded as follows: On the free x = constant
edge, M, is set equal to zero. M, the twisting stress couple is considered to be a
couple consisting of two forces of magnitude M separated by a small distance dy, as
shown in Figure 2.4. Since the stress couple M, is not constant in general along an
edge, nearby is another couple, M +(6M /dy)dy. It too can be regarded as two
forces of magnitude M, +(6M, /dy)dy, separated by a distance dy. Therefore,

considering an infinitesimal region of the edge shown within the dotted line, it is seen
that there is a force M, positive downward, a force M, +(0M  /dy)dy positive

upwards as well as the force due to the transverse shear resultant, O, dy, acting positive
upwards. These must equal zero, hence,

oM,
-M_, +M, + ~dy+0Q.dy=0
) ay A
or

oM,
2 (2.67)
oy

Ve=0+

where V_ is called the effective shear resultant on a free edge.
Physically it is seen that on the free edge neither O, nor M are zero, only the

relationship given by (2.67) is zero. However, this approximation was found to have
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sufficient accuracy that it has been widely used in plate analysis and is known as the

Kirchhoff Free Edge Boundary Condition.
Likewise on a y = constant free edge

oM
) — 0

Vi=0

and of course on either edge the other boundary condition is
Mﬂ = 0
where 7 refers to the directional normal to the edge.

Edge Elastically Supported Against Deflection

(2.68)

(2.69)

Suppose there exists a linear spring support at an edge of magnitude ¢ Ibs/in”. Then

the boundary conditions become:

or using (2.67) and (2.36)

oM o*w o'w  ew
+—"+cw= +2-v -—=0
2, Os on’ ( )6n os* D

where s refers to the direction parallel to the edge.

Edge Elastically Restrained Against Rotation

(2.70)

2.71)

(2.72)

Suppose there exists a torsional spring support at an edge of » in Ibs/in. Then the

boundary conditions would be:

V,=0
Mﬂ+ra—W=0
n

or using (2.37)

o*w *'w  r ow B

+Vv
on’ 0s> D on

(2.73)

(2.74)
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In-Plane Boundary Conditions

In Section 2.4, it was seen that the governing equations involving the in-plane
forces and midsurface displacements are completely uncoupled from the equations,
involving bending, shear, lateral forces and lateral displacements, the boundary
conditions for which have been discussed above.

In the case of a plate not subjected to any prescribed in-plane loads or prescribed
midsurface displacements at the boundaries, the solutions to Equations (2.59) and (2.60)
are simply as follows for all values of x and y.

u, =v, =0.

For other cases, the details of the in-plane boundary conditions of the plate structure
being analyzed must be studied in detail, to specify which boundary conditions should be
prescribed. However through the use of variational procedures, which will be discussed
in Chapter 9, it can be shown that the boundary conditions to use in solving Equations
(2.59) and (2.60) are:

For an x = constant edge:

Either u, is prescribed or N, =0

and (2.75)
Either v, is prescribed or N, =0

For a y = constant edge:

Either v, is prescribed or N , = 0

and (2.76)
Either u, is prescribedor N, =0.

2.6 Stress Distribution within a Plate

In plate theory because all equations are integrated across the thickness only
integrated stress quantities are obtained. For stresses on a control element or material
point within a plate, one must assume a stress distribution. This is done by means of an
analogy to beam theory. Thus,

M N
o, =— LS (2.77)
W12 h
Mz N
o =2 4y (2.78)
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Mxyz ny
0=yt (2.79)
2]
axz=3Qx 1—(L] 5 (2.80)
2h hi2) | 4
30, 2 s,
o, = 9, 1—(ij et (2.81)
Y hi2) | 4

where

S =1, 1—2[i]—3[ij —!+12{1+2(LJ—S[LJ 1 (2.82)
ni2) \ni2) | ni2) \ni2) |

S o=z |1-2 2 |-3[ 2| 47, |142 I (2.83)

ol w2) niz) ni2) \ni2) |

It can easily be shown that these distributions satisfy the definitions of Equations
(2.4) through (2.13). Equally important they satisfy the equilibrium equations of
elasticity (1.5) and (1.6) exactly, and Equation (1.7) on the average. Thus the stresses
obtained through the use of plate theory (or beam, shell and ring theory) are not exact, in
the sense of being three dimensional elasticity theory solutions, but they are very close to
the exact solution.
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2.8 Problems

2.1.

2.2.
2.3.

2.4.

2.5.
2.6.

The governing equation for a rectangular plate subjected to a lateral distributed load
p(x, y) are given by Equations (2.57). However, when the plate is subjected to

surface shear stresses 7, 7,,, 7,, and 7, , additional terms are added which are

functions of those surface shear stresses, such that the equations can be written as:

DViw= p(x,y)+e(r,,7,,, Tiys sz)
4
KV LIO = f(rlX’TZX’le’TZy)

4
KViy, = g(Tlx’TZX’le’ sz)-

Starting with (2.44) on, and retaining the surface shear stress terms, find the
functions e, fand g.

Derive Equations (2.59) and (2.60), starting with Equations (2.50) through (2.54).
Show that the stress distributions of Sections 2.6 do in fact satisfy the definitions of
Equations (2.4) through (2.13).

Show that the stress distributions of Section 2.6 satisfy Equations (1.5) and (1.6)
where the body forces F; =0. Do they satisfy Equations (1.7) with F, =0? Do

they satisfy (1.7) on the average, i.e.,

1" 60, 60, oo, ]

Xz + Yz +

dz=0?

h 5, oOx oy oz |

Starting with the pertinent elasticity equations, derive Equations (2.50) and (2.52).
Consider the plate shown in Figure 2.1. The plate is subjected to a constant in-
plane load in the y-direction, N, = N, only.

a. What are the stresses o, o, and o, in the plate?
b. What are the displacements u, v and w in the plate? Assume v, =0 along the
y=0edge and #, =0 along the x = 0 edge.



CHAPTER 3

SOLUTIONS TO PROBLEMS OF ISOTROPIC RECTANGULAR PLATES

3.1 Some General Solutions of the Biharmonic Equation

The governing equation for the bending of an isotropic, constant thickness,
rectangular plate subjected to lateral distributed loads is given by (2.57) and repeated
below.

Vi 64w+ 20%w +84w:p(x,y)‘

o' ax’oy’ ot D 3.1
First, the homogeneous equation, V*w =0 is investigated. It is interesting to do this in
order to identify the functions that are characteristic of the two dimensional biharmonic
equation in a Cartesian coordinate system.

One of the most common methods used to solve this homogeneous equation is by
separation of variables. This process can be attempted when the boundary conditions are
homogeneous. We cannot count upon the separation of variables to yield all of the
complete exact solutions, but it will give all the separable solutions. There may be others.
Let

w(x,y) = X (x)Y(p). (3.2)
From (3.1) and (3.2),
X"y +2x"Y"+ XYY" =0.
Dividing by XY gives

1w " " w
XX + 2X7Y7 +YT =0. (3.3)

The variables are still not separated, hence, let

XIV " " 1w

X Y Y
Y = f(x), 7 = g(x), 7 =k(y), 7 = p().

Equation (3.3) becomes
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S () +2g(x)k(y) + p(y) = 0. (34
Differentiating with respect to x gives,
S'(x)+2g'(x0)k(y) =0
or,

f'(x)
g'(x)

+2k(y) =0.

For this to be true, then f'(x)/g'(x) = constant and k(y) = constant.
Thus,

— 2% = k(y) = constant. (3.5)
Similarly differentiating (3.4) with respect to y gives
28N +p'(y)=0

p'(y)
k'(y)

+2g(x)=0.

Hence, the following must be true.
—y? = g(x) = constant. (3.6)

Case 1 k(y)=-XA
Case la 1’>0

”

Y
k(y)=—=-21
(62) v



cos A
Y'"+A’Y =0 or Yz{ ) I
sin Ayr
Substituting (3.5) into (3.3) gives,
1w "
LS RS S
X X

X" 22X+ 2'x=0
Let X =e™
at 220’ + A =0=(a’ - 1*)’
cosh Ax
x cosh Ax
sinh Ax
x sinh Ax |

or a=xA,t4 or X =

So, there are eight such products as solutions of where

w(x,y)=Xx)Y(y) and k(y)= -2

Case Ib 1* =0

" ]
k() =2=0 Y—{ |
Y yi
Substituting (3.5) into (3.3) gives,

w "
X —2/12X +A'=0
X
If
=0
1
X
XV=0, X=15,
X
X3L
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(3.7)

(3.8)

Hence, another eight products are found to be solutions to V*w=0 where

w=X(x)Y(y) and k(y) = 0.
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Case Ic 2> <0 (A is imaginary). Hence, let A =il

Y e RY —0=v' -y =0 y = ShAL
cosh Ay|

as before a = £4, + 1 where 1 is imaginary, let

X =e" so
w 4
X —2/12X—+/1“=0
X X
COSZX
PR R— x cos Ax
a’ +2Aa +4 =0 X = _
sin Ax
xsin Ax/
a=+id, il
Case Il
gx)=-y*
Casella y* >0
g =" =—y’
CcOos
X"+y*X =0 X:{, "
sin x|

and as before

cosh py

y cosh py
sinhpy |
ysinh py

(3.9)

(3.10)

(3.11)



Casellb y* =0
then

Casellc y* <0
let y =iy

cosh yx
x =%
sinh yx
sin }_/y

cos yy
ycos ;y [

ysin 7_/y

L
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(3.12)

(3.13)

So in each case there are eight possible products to satisfy any particular case. These
solutions comprise all the possible separable solutions of the homogeneous two-
dimensional biharmonic equation in a Cartesian coordinate system. In the solution of any
particular problem one can attempt to find the solution through exploiting the particular
boundary conditions and loading, intuition and experience. However, if that fails then
one can resort to trying each of the above solutions for the homogeneous solution.
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3.2 Double Series Solution (Navier Solution)

In plate problems one can usually obtain solutions using a doubly infinite series,
such as

W)= A, 1 (08,0,

m=1 n=1

Such solutions are often inefficient to compute with due to the very slow convergence of
the series. As an alternative one may obtain a solution where the function of only one
spatial variable is summed such that, in this case:

W) =3 4, (), ).

This approach is particularly useful when two opposite edges are simply supported,
because then the function f,(x) above can be a half range sine series. This is discussed

in the next section.
In assuming the functions £, (x) and g, (y) for the double series solution (Navier

Solution), or assuming the functions f, (x) for the single series solution (the M. Levy

Solution), the functions must be complete in order that the lateral deflection can be
adequately represented. Furthermore, it is most convenient from a computational point of
view that the functions be orthogonal. Also of course they must satisfy the boundary
conditions for the problem. One straightforward approach to selecting such functions is
to use the vibration modes or buckling modes for a beam of constant cross section with
the same boundary conditions as those on opposite edges of the plate, because all such
modes comprise a complete, orthogonal set. The beam vibration modes for all boundary
conditions and their properties have been conveniently catalogued by Young and Felgar
[3.1] and Felgar [3.2].

The doubly infinite series approach will be treated first. Consider a rectangular
plate simply supported on all four edges in the region 0<x<a, 0<y<b,
—-h/2<z<h/2.

The governing equation is:

Viw=p(x,y)/ D

The solution for the lateral displacement can be written as

Let w(x, y) = z ZA sm—sm% (3.14)

m=1_ n=1

because these functions are complete, orthogonal and they satisfy the boundary
conditions of the problem. The lateral load must be expanded in the same series solution:
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p(x,y)= z ZBW s1n—sm% (3.15)

m=1 n=1

where, following the usual Fourier series procedures,
B, =— X sm—sm 4y dx. 3.16
j [ pey) i (3.16)

Substituting these series representations of the load and lateral deflection into the
governing differential equation results in the following:

n“L mm . nmy
Z ZAmn;z {—+2 T,r e LsmTSmT
——z ZBW s1n—sm%

For the left hand side to equal the right hand side for the above doubly infinite series
requires that an equality exists for each m and # combination in the series. Looking at the
mth and nth term, A4, is easily found to be

= T (3.17)

Thus, the solution is easily found for this case, because B, is determined from (3.16),
and 4, if then found from the equation above, hence w(x, y) is then known everywhere

from (3.14). From this, all slopes, stress couples and shear resultants can be calculated at
any location x, y. As mentioned previously, the doubly infinite series solution usually
converges slowly. Moreover, the derivatives of w(x, ) needed to obtain stress couples
and shear resultants always converge still slower than the deflection function itself.

An example for obtaining B, can be briefly given. Consider a plate simply

supported on all four edges subjected to a uniform constant lateral loading p, .
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4p, o b . nny
B, = " L L sm—sdeydx

_4py)a [ o oma]"|] b _003@7"}
ab |mrx a |, |nx 1o
4

- m,f;iz (1—cos mr)(1 - cos nr) (3.18)
4 m n

=P 1 ()" - (1]

mniw

_ 16p,

— (if, m, n odd only)
MmNz

A similar procedure is followed for any other lateral load over all or part of the
plate surface.

3.3 Single Series Solution (Method of M. Levy)

Consider a plate with opposite edges simply supported, as shown in Figure 3.1.

_‘+

Figure 3.1. Plate simply supported on opposite edges.

Again, the governing differential equation is:

vy o PESY)
D

The boundary conditions on the y edges are:

w(x,0) = w(x,b) =0
(3.19)
M, (x,0)=M (x,b)=0.
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From (2.38), the stress couple is given by

0w ’wl
+v .
oy’ ox? |

M, = —D{

Hence on the y = 0 and y = b edges,

62w 0 62w 0
— | X |tv—F| % |=0.
Oy b Ox b

However, on each of those edges,
2 0
o'w w10
ox’? b

because the curvature is zero parallel to the simply supported edge. Therefore, for the y =
0 and b simply supported edges,

2 0
2_?(x, b] ~0. (3.20)
y

Assume a form of the solution to be as follows, which satisfies the boundary condition on
the y edges given by (3.19) and (3.20):

w(x, y) = igﬁn (x)sin % (3.21)

For this example, the lateral distributed load is taken to be the following:
p(x,y) = g(x)h(y) (3.22)

where g(x) and A(y) are given. It is necessary to expand /(y) in a series solution that
corresponds to (3.21), hence,

W)=Y 4, sin%
n=l1
where (3.23)

2 . nuny
A, =—| h(y)sin —=dy.
. bf(y) , v
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Substituting (3.21) through (3.23) into (3.1) gives:

M

B 22247+ 229, Jsin 2 =3 A g, (0)5in 2 (3.24)
n=1

n

where A, =nz/b.
As before, for this to be true, the series must be equated term by term.

B (x) - 224 (0) + A, () = %Angn (). (3.25)

Note, at this point the boundary conditions on the other two edges have not been
specified. Thus, any time a problem has two opposite edges simply supported, one can
arrive at (3.25) without other information regarding the x = constant edges.

Proceeding to solve (3.25) in the customary way, let ¢, =e™ such that the
homogeneous solution becomes:

st2sT+ AL =0
(s> =22 )s*—2)=0 where A, >0

s=%4, 1

So, the complementary solution is:
¢,(x)=(C, +C,x)cosh 4, x +(C, + C,x)sinhA x. (3.26)

Equation (3.26) is the form of the homogeneous solution for A4, (x) for any set of

boundary conditions on the x-edges. The boundary conditions on the x = constant edges
are used to determine the constants C, through C, above.

3.3.1 Example: Plate Simply Supported on All Four Edges and p = p(y) Only
On the x = constant edges, the boundary conditions are:
w(0,y) = w(a,y)=0
(3.27)
M. (0,y) =M (a,y)=0.

Because of no curvature along the x = constant edges, i.e.,
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o*w(0
P\Z[ ’yJZO
oy’ \a

the bending moment boundary conditions can be written as:

o*w 0w
6x—2(0’ y)= Gx—z(a’ »)=0. (3:28)

Also since p = p(y) in this example, simply let g(x) = 1 in (3.22), and from (3.25) the
particular solution can be written as:

AVI

X)= . 3.29
4,00= 5% (3.29)
Therefore for this example, the complete solution for ¢, (x) is:
. A,
¢,(x)=(C, +C,x)cosh A, x+(C, + C,x)sinhA x + DA (3.30)

n

Substituting (3.30), the complete solution for ¢,(x), and its derivatives, into (3.27) and

(3.28), the boundary conditions on the x edges, provides the values of the undetermined
constants C, through C,, for this problem. The results are:

A

n

DA

1

_ 4, l-coshia
' 2DA sinhAa

(3.31)
A
C = isinhzna—ﬂ
© 2DA (1+coshd,a)| A,a
— A"
‘U 2pA |

Thus, the complete solution for the lateral deflection is:

@ A
w(x,y) = | (C, + C,x) cosh A,x +(C; + C,x)sinh 2,x + o } sindy (3.32)

n=l1 n
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where C, through C, are given by (3.31).

It should be noted that we could have solved this problem by assuming the
deflection any one of these following ways, because the plate is simply supported on all
four edges:

w(x,y) = Z Z A, sin 2% sin %

m=1  n=l

W) = 4, () sin ™%

w(x,y) = Z‘//m ) sin 7"

m=1

Using the first of these equations the convergence is slower than using the form given by
the second and third equations to describe the lateral deflection.

For the case of the x edges being clamped or free, and with the same loading,
p = p(y) only, Equation (3.30) with the appropriate boundary conditions to obtain the
solution may be used.

3.4 Example of a Plate with Edges Supported by Beams

The use of beams to support plate elements is very commonplace. Innovative and
efficient design for that case often results in complex analytical procedures, so
complicated in fact that doctoral dissertations have been written in this regard. For
instance, complications can arise when (1) the plate mid-surface differs from the mid-
surface of the support beams, (2) beam sections involve centers of twist in difficult
locations, (3) discontinuous joining of the beams and the plate, etc.

Presented here is the simplest of beam-plate combinations, merely to introduce
the concepts involved.

Consider a rectangular plate with the following boundary conditions: y = 0, b
simply supported; x =0, a supported by beams; and a lateral load varying only in the y

direction, given by p(y)= ZAH sin (nzy/b), as was done in (3.22) and (3.23) where

gx)=1. 7
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Figure 3.2. Vertical forces at beam supported edge.

For one boundary condition on the x edge; consider an element of beam as a free body, as
shown in Figure 3.2. A force balance in the z direction provides one plate boundary
condition.

Looking at the details of Figure 3.2, the superscripted b quantities refer to a beam,

whose flexural stiffness is (£7)°, which is mechanically joined to the edge of the plate
denoted by x = x, such that the middle surface of both the plate and beam are identical,
to retain simplicity in this example. Hence, the lateral deflection of the beam and plate
are identical at their common boundary, x = x,. Therefore, the force balance is given by
the following, where the shear resultant of the beam is

WP 2

0" () =b" [

h(l)) /2 yz

and the Kirchoff ‘effective’ shear resultant is used for the plate.

® _0=_NO" _ (b) dQ(h) —
SEP =0=-0" -V, dy+ 0 + 5L —dy =0
y

40" o 8 w® o[ 0w
V), = W =AEDT| —5— | =
( x)x Xp dy (xl y) ( ) ay4 _ ( ) ay4 X=X

x=x;

since w, = w at x = x, and since 9’ =dM® /dy, and M* = <(ED"" 2w /8y°.
For the plate
3 3
0w, @2
Ox Ox Cy

:
VY =-—
W) |

xX=x

The second boundary condition, the balancing of twisting moments, provides the
requirement. The beam has a torsional stiffness (GJ)" (Figure 3.3).
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ﬁr’ M,

e,

dT
T+—Ed}'

Figure 3.3. Stress couples at beam supported edges.

For beam, at x = x;, moment equilibrium requires that

-T-M, dy+T+d—Tdy:0
: dy

or,
2 n(b) 3
M, = o LGy 2
dy dy Ox Oy
2 2
= —D{a Zv +v 0 1;\/—|
ox oy” |
since
®) ®) ®)
T=(Gn®39 and 09 = g W o x,.
ox dx

So the two plate boundary conditions at the junction between the plate and the beam
support are:

3 A3 4
D{g?wzv);awz}(El)”’)i—? at x=x, (3:33)
X X Oy y
2 2 3
w0 W-|:(GJ n_ 0w x=x,. (3.34)
ox? ay2J 8x6y2

Once the solution for the plate deflection is found which satisfies these boundary
conditions at x = x,, the other plate boundary conditions for a given lateral load, then one
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also knows the deflection of the beam, and so the complete solution of the beam is
determined also.

For all practical cases one can assume that the beam end conditions are the same
as the plate end conditions, and assume that the ends of the beam are completely
restrained against rotation.

It is easy to see how the boundary conditions can become more complex with
more complicated beam — plate joints. However, the same philosophy as used above can
be used to solve those problems.

3.5 Isotropic Plates Subjected to a Uniform Lateral Load

For isotropic plates several textbooks such as Timoshenko and Woinowsky-
Krieger [2.1] and Vinson [3.3] have provided expressions for the maximum deflection,
W, » and the maximum stress couple, M, a plate attains when subjected to a constant

laterally distributed load p,, such as,

C 4
Wiy = ﬁf (3.35)

Mmax = (:'lpoa2 (336)

where a and b are plate side dimensions; E is the modulus of elasticity of the plate; % is
the plate thickness; and v =0.3.

The dimensionless constants C, and C, are given in tabular form for various
boundary conditions, and these are repeated herein for completeness in Tables 3.1
through 3.4. Table 3.5 also provides information for the case wherein the plate is
subjected to an hydraulic head. These tables and procedures are well known and well
used.

Table 3.1. Coefficients for determining Maximum Deflections and Maximum Stresses for a Rectangular
Plate, with b > a, Simply Supported at the Edges, under Uniform Pressure Loading p, with Sufficient

Corner Forces to Hold it Down on the Foundation (v = 0.3).

bla 1 1.2 1.4 1.6 1.8 2 3 4 5 o0

C 0.044 0.062 0.077 0.091 0.102 0.111 0.134 0.140 0.142 0.142
C, 0.048 0.063 0.075 0.086 0.095 0.102 0.119 0.124 0.125 0.125

Table 3.2. Coefficients for determining Maximum Deflections and Maximum Stresses for Rectangular
Plate, under Uniform Load p,,, with the a Edges Clamped and b Edges Simply Supported (v = 0.3).

bla o0 3 2 1.6 1.3 1 0.75 0.50 0.25

Co 0142 0128 0.099 0.066 0.042 0.021 0.0081 0.00177 0.00011
C, 0.125 0.125 0.119 0.109 0.094 0.070 0.045 0.021  0.0052
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Table 3.3. Coefticients for Determining Maximum Deflections and Maximum Stresses for a Rectangular
Plate, under Uniform Loading p, Clamped along the a Edge, and Simply Supported along the Three
Remaining Edges (v = 0.3).
bla o0 2 1.5 1.2 1 0.75 0.50 0.25

Co 0142 0.101 0.070 0.047 0.030 0.0133 0.0033 0.0002
C, 0.125 0.122 0.112 0.098 0.084 0.058 0.031 0.0077

Table 3.4. Coefficients for determining Maximum Deflections and Maximum Stresses for a Rectangular
Plate, under Uniform Loading p,, Clamped on All Four Edges (v = 0.3).

bla 1 1.2 1.4 1.6 1.8 2.0 2.2

Co  0.0138 0.0188 0.0226 0.0251 0.0267 0.0277 0.0285
C, 00513 0.0639 0.0726 0.0780 0.0812 0.0829 0.0833

Table 3.5. Coefficients for determining Maximum Deflections and Maximum Stresses for a Rectangular
Plate, Simply Supported on All Four Sides, Subjected to a Linearly Increasing Hydraulic Pressure along the

a Edges, one b side having Zero Pressure, the Opposite b side having p,. [The Maximum Deflections
occurs just off the middle of the plate toward the p,, side (at about 0.55a), the Maximum Stress somewhat
farther off to the side (v = 0.3) .]
bla 0 4 3 2 1.5 1 0.75 0.50 0.25

G 0.071 0.070 0.067 0.055 0.042 0.022 0.012 0.0037 0.0004
C, 0.064 0.063 0.061 0.053 0.043 0.026 0.021 0.0139 0.0051

Of course, for the isotropic plate, the flexural stiffness is given by

3
p=_E (3.37)
120-v7)

and the maximum bending stress, which occurs on the top and bottom surfaces of the
plate, is

6M
O (EH12) = i% (3.38)
Also for Tables 3.1 through 3.5, the numerical coefficients correspond to a Poisson’s

ratio of v = 0.3 wherein 1—v” = 0.91. Therefore, for materials with other Poisson ratios,
v, Equation (3.35) must be changed to
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Cypoa (1-v?
Wiy = "E’;Of (09V1 j (3.39)

It is seen that for an isotropic plate design,

(1) The plate must not be overstressed, i.e., the maximum stress is determined from the
use of Equations (3.36) and (3.38) to determine the maximum stress couple, M, and
the maximum stress. The determined maximum stress cannot exceed some
allowable stress, o, defined by the material’s ultimate stress or yield stress

divided by a factor of safety on ultimate stress or yield stress, whichever is smaller.
This requires a certain value of plate thickness, 4, which in analysis is specified
from which one determines if the plate is overstressed. In design, using the
allowable stress, the thickness, #, is found.

(2) The monocoque plate must not be over deflected determined by Equation (3.35).
This is sometimes specified, but in other cases the plate deflection cannot exceed
the plate thickness or some fraction thereof. If the maximum plate deflections
reaches a value of the plate thickness, /4, the equations discussed herein become
inapplicable because the plate behavior becomes increasingly nonlinear which
requires that other equations be used. Again, to prevent over-deflection, a plate
thickness, 4, is determined by Equation (3.35).

Therefore, in plate design, the plate thickness, 4, is determined either from a strength or
stiffness requirement, whichever requires the larger thickness.

3.6 Summary

In this chapter the two basic approaches to solving problems of isotropic
rectangular plates subjected to lateral loads have been treated. Also, a more complicated
boundary condition example was investigated than the classical boundary conditions of
Section 2.5. In rectangular plates with more difficult boundary conditions than simply
supported edges References 3.1 and 3.2 provide functions suitable for either the Navier or
the Levy Method.

Many solutions to plate problems are known, and are catalogued in numerous
references such as Timoshenko and Woinowsky-Krieger [2.1], Marguerre and Woernle
[2.2] and Mansfield [2.3].
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Problems

Consider a rectangular isotropic plate occupying the region 0 < x<a, 0< y <bh,
and —/h/2<z<h/2. The plate is simply supported on the edges y = 0 and b.
The plate is subjected to a laterally distributed load given by Equations (3.22) and
(3.23). If g(x) = 1, the solution is given by Equation (3.32). In the plate clamped
along the edges x = 0 and a, determine the constants C, through C,.

In problem 3.1 above, if the plate is free along the edges x = 0 and a, determine
the constants C, through C,.

In problem 3.1 above, if the plate is simply supported at x = 0 and clamped at x =
a, determine the constants C, through C, .

In problem 3.1 above, if the plate is simply supported at x = 0 and free along x =
a, determine the constants C, through C, .

In problem 3.1 above, for the plate clamped along x = 0 and free along x = q,
determine the constants C, through C, .

Consider a floor slab whose geometry is described in problem 3.1. The slab is
square, simply supported on all edges, and is loaded with sand in such a way that
the load can be approximated by

p(x,y) = p, sin = sin Q.
a b

Determine the location and magnitude of the maximum deflection, the maximum
bending stresses in both directions and the maximum shear stresses in each
direction.

A certain window in an aircraft is approximated by a square plate of dimensions a
on each side, simply supported on all four edges and subjected to a uniform cabin
pressure p,. Using the Navier solution for a square plate of length and width a,

the solution is given by Equation (3.14). The maximum value of the lateral
deflection can be written as

w_ =Cp,a*/D

max
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3.9.

3.10.

3.11.

3.12.
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for the plate subjected to a constant lateral loading, p,. Determine the numerical
coefficient C, to three significant figures.

The maximum bending moment M, =M can be written as

‘max

M, =C,p,a’.

Find C, to three significant figures, if the Poisson’s ratio of the window material
isv=03.

A certain hull plate on the flat bottom of a ship may be considered to be a
rectangular plate under uniform loading, p,, from the water pressure, and
clamped along all edges. A 1/2" steel plate four feet in width is to be used for
the bottom plate in the ship draws 13 % feet of water maximum. If the maximum
allowable stress in the steel is 20,000 psi, what is the maximum plate length, i.e.,
bulkhead spacing that can be used in the ship design, and what is the
corresponding maximum deflection of the hull plate. Salt water weighs 64 Ibs/ft’,
E,., =30x10°psi,and v, =0.3.

For a plate clamped on all four edges, subjected to a lateral load p,, the

steel

maximum deflection and maximum stress couple can be found using Table 3.4.
Linear interpolation is permitted.

A rectangular wing panel component, 8" x 5" is made of aluminum, and under the
most severe maneuver conditions can be subjected to a uniform lateral load of 20
psi. This wing panel can be approximated by a flat plate simply supported on all
four edges. What thickness must the panel be, and what is the resulting maximum
deflection under this maneuver condition? Use a Table from Section 3.5.

The aluminum used has an allowable stress of 20,000 psi, and £ = 10x10° psi
and v =0.3.

A rectangular steel plate is used as part of a flood control structure, and is
mounted vertically under water such that it is subjected to a hydraulic loading

p(x,¥) = py + p, %

where p, and p, are constants associated with the pressure heads. Find the Euler

coefficient B, for this loading in Equation (3.16).

A glass manufacturer has been asked to construct plate glass windows for a new
modern office building. The windows must be 10 ft. wide and 20 ft. high. Design
the windows so that they can withstand wind forces due to air velocities of 150
miles/hour. State all assumptions and physical constants clearly.

A flat portion of a wind tunnel measuring 30"x54" will be subjected to a
maximum uniform wind load of 10 psi. If the steel to be used has an allowable
stress of 40,000 psi, and a Poisson’s ratio of v =0.3, what plate thickness is
required if the plate is
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3.13.

3.14.

3.15.

3.16.

(a) Simply supported on all four edges.

(b) Clamped on all four edges.

Use the Tables from Section 3.5.

A portion of the cover on a hover craft is to be rectangular measuring 8' x4’ in

planform, and is to be simply supported on all four edges. It is calculated that the

maximum air pressure the panel will be subjected to is 20 psi.

(1) How thick must the panel be if it is constructed of aluminum (£ =10x10°
psi, v =0.3) if the allowable stress is limited to 30,000 psi?

(2) How thick must the plate be if it is constructed of steel (E =30x10° psi,
v = 0.3) if the allowable stress is limited to 60,000 psi?

(3) If the weight density of steel is 0.283 Ibs/in® and that of aluminum is 0.1
Ibs/in’, which material should be selected to minimize weight?

(4) Suppose the aluminum plate of (1) above were clamped on all four edges,
what thickness is required?

Use the Tables from Section 3.5.

A rectangular steel plate, used as a footing, rests on the ground is subjected to a

uniform lateral pressure, p(x, y) = — p, (psi). The ground deflects linearly below

the footing with a spring constant & (Ibs/in/in) under this loading and deflection.

/P(X,Y) =Py P Y) =Py

[EXEXERRERR EREERREERRR
XXX XXX T I LXK LTK K XXX KT KKK KX KKK XX
L 2
K

- a > id b b<|

Side View End View

Figure 3.4. Elasticically supported footing.

(a) What is the governing differential for the bending of this plate on an elastic
foundation?
Hint: One can consider the effect of the elastic foundation to be analogous to
an infinite set of springs such that it acts like a lateral load analogous to p(x,y).
(b) What are the boundary conditions on the x = 0 and x = a edges?
(c) What are the boundary conditions on the y = 0 and y = b edges?
A designer is faced with the problem of designing a rectangular plate cover over
an opening that is 9 feet by 3 feet. The design load is a lateral pressure of 10 psi.
If steel is used (£ =30x10° psi, v =0.3, &, =35,000 psi, p = 0.283 Ibs/in’):
(a) If the plate is clamped on all four edges, what will it weigh?
(b) If the plate is simply supported on all four edges, what will it weigh?
A rectangular aluminum plate, measuring 40" x 20", is subjected to a uniform
lateral pressure of 10 psi. Using the maximum stress theory, if the allowable
stress is 30,000 psi, what is the plate thickness required if:
(a) All edges of the plate are simply supported?
(b) All edges of the plate are clamped?
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(c) If the plate were made of steel with the same allowable stress as the aluminum

above, would the required thickness differ from that of the aluminum plate?
(d) If the plate were made of steel with the same allowable stress as the aluminum

above, would the maximum deflection differ from that of the aluminum plate?
Consider a plate clamped on all four edges made of the same steel as in Problem
3.12. The plate is subjected to a uniform later load of p = 10 psi. If the plate is
10" wide and 16" long, what thickness % is required to prevent overstressing or a
maximum deflection of 0.1"?



CHAPTER 4

THERMAL STRESSES IN PLATES

4.1 General Considerations

Consider any elastic body with a constant coefficient of thermal expansion, ¢, in

the units of in/in/°F, or equivalent units, at a uniform temperature wherein the body is
assumed to be free of any thermal stresses and strains. If the body is free to deform, and
the temperature is raised slowly to a temperature of AT degrees from the stress free
temperature, the thermal strains produced at any material point can be written as

g, =aAT(x)s, 4.1)

Uth

where x, are the coordinate direction, and 6, is the Kronecker delta (6, =1 for i =,
6, =0 for i# j). It should be noted that thermal strains are purely dilatational (i = j);

thermal shear strains do not exist.

In Equation (4.1), AT is positive when the temperature of the material point is
above the stress free temperature. The coefficient of thermal expansion « is positive for
almost all isotropic engineering materials, i.e., the body expands when it is heated.
However, there are some graphite materials which have negative coefficients of thermal
expansion.

In many thermoelastic bodies, the changes in temperature within the body tend to
result in strains which do not satisfy the compatibility equations. In that case isothermal
strains, g0 the strains discussed in Chapter 1, are induced such that the total strain,

i satisfies compatibility.

4.2)

& =& +&. .
Ttot Tiso Uth

In that case the ‘thermal stresses’ are induced due to the isothermal strains induced to
insure compatibility. This can occur, for example, in ‘thermal shock’ from very rapid or
localized heating.

A second way that thermal stresses occur is through displacement restrictions on
the elastic body. One simple example of this occurs when a bar is placed between
immovable end grips and subsequently heated. There, compressive thermal stresses
result.

Hence, thermal stresses are caused by two mechanisms: one by displacement
restrictions, the other through induced isothermal strains to maintain compatibility.
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Next, consider an unrestricted thin rod at a uniform temperature. If the rod is
slowly heated uniformly, such that the thermal strains satisfy the compatibility equations,
the heated rod has thermal strains but no thermal stresses. Now if the unheated thin rod is
placed in immovable end grips such that the rod cannot increase in length, slowly heating
the rod uniformly will result in thermal stresses and no thermal strains.

In the latter case, if the compressive axial thermal stresses reach a value equal to
the Euler buckling load (discussed later in Chapter 6), the rod will buckle. This is called
thermal buckling.

4.2 Derivation of the Governing Equations for a Thermoelastic Plate

In deriving the governing equations for a thermoelastic plate, the equilibrium
equations and the strain-displacement equations are not altered from those of the
isothermal plate of Chapter 1, because in the former the equations involve force balances,
and the latter are purely kinematic relationships involving total strains.

However, the stress strain relations, Equations (1.9) and (1.10), are modified in
accordance with Equations (4.2) and (4.1):

1
£, =&, —aAT:E[O'X -vo ]

1
=g, —aAT=—[o, ~vo,]
o E 2
or

x

£ = %[o-x —vo,]+aAT 4.3)

£ = %[0}, —vo ]+ aAT. 4.4)

y

In Equations (4.3) and (4.4) and in all that follows the subscript for total strains is
dropped, and all strains noted explicitly are those which satisfy compatibility, i.e., the
total strains, and which appear in the strain-displacement relations. Hence, in Equations
(4.3) and (4.4) the first terms on the right-hand side are really isothermal strains, and the
second terms on the right-hand side are thermal strains for this isotropic material.

Proceeding as in Chapter 1, employing the strain displacement relations,
Equations (1.16) and (1.17) and Equations (2.24) through (2.28), Equations (4.3) and
(4.4) after multiplying by E become

2
Oy _p, 0w

o,—vo,+EaAT = E 5
’ Ox Ox

4.5)
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2
o'w
2

0
o, ~vo, + EaAT = 2% — E:
ay ay

(4.6)

Now, two quantities N* and M ", known as the thermal stress resultant and the
thermal stress couple, respectively, are defined as

T hil2 T hi2
N = [ EaATdz, M" = [’ EaATzdz. A.7)

Multiplying Equations (4.5) and (4.6) by dz and integrating across the thickness of
the plate, then multiplying them by z dz and also integrating them, provides the integrated
stress strain relations for a thermoelastic isotropic plate. It should be remembered from
the discussion of Section 4.1 that the shear stress-strain relations are not altered by the
inclusion of thermoelastic effects.

Ou,

ox

N,-vN +N' =Eh

oy

N, —wN, +N'" =Eh
; PN

—Eh® 0*w

M,-vM, +M" = —
’ ! 12 ox

—Eh® 0*w
12 ¢

M, —vM +M'" =

:K(l—v){auo_i_avﬂ (4.8)

v 2 dy x|
0w

A A

Ox Oy

M, =-D(1-v) 4.9)

Rearranging the first four of the above results in

T
Nx:/{auo+vavﬂ N

x o] (I-v)

(4.10)

ov, 8u0—| NT
oy ox | (1-v)

N, = 1{ (4.11)



54

2 2 T
Mx=fDa§V+v‘2vﬂf Af (4.12)
ox o” | (-v)
2 2 T
M, =020 Zﬂf Af : (4.13)
oy ox* | (1-v)

Introducing these thermoelastic stress-strain relations into the equilibrium
Equations (2.44) through (2.46) and (2.50) and (2.51), the governing differential
equations for a thermoelastic isotropic plate are determined. For the case of no surface
shear stresses these become:

Dv4w:p(x,y)—Lv2MT (4.14)
(1-v)
4 1 0 27T
KViu, =————(V>N") (4.15)
(1-v) éx
4 1 0 27T
KV*v, =————(V’N"). (4.16)
(1-v) oy

Also for completeness, other useful relationships are catalogued below:

A g T
0, =L (w1 M
’ ox (1-v) ox
4.17)
~ T
Q,:—Dg(vzw)— 1 oM
! oy (1-v) éy
3 3 A T
sz—DaZV+(2—V) 6w2—|_ 1 oM
Ox oxcy” | (1-v) ox
(4.18)
A3 3 T
., %_‘_(2_‘/) 0 WJ_ 1 oM
’ oy oyox” | (1-v) éy

Due to the inclusion of thermal quantities, the expressions for various normal
stresses in the plate become [4.1]:

1 N2 MT 1 EaAT

o.=—|N_+ + + -
* h{ to(-v) | h3/12{ T-v)| (-v)

(4.19)
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aﬁ:l{zv,+ NT T+ z {M& M W_EaAT_
YR -wy | B2l d-v) | (1-v)

The inclusion of the N and M terms in (4.19) are easy to visualize since they

are thermal stress resultants and couples analogous to N, N,, M, and M Vs which are

caused by lateral and in-plane ‘mechanical’ loads. The last terms in (4.19) and (4.20) can
be visualized by the following in which it is assumed that the first two terms do not
contribute. Suppose at some value of (x, y) in a plate, the upper surface is heated while
the lower surface is cooled. Thus the value of AT in the upper portion of the plate is
positive and is negative in the lower plate portion, as shown in the sketch below.

is 0!’1.‘2
Stress free emperalure
Temperalure Profile at time t

z2=0 = = =

/

The last term of (4.19) shows that in the upper portion of the plate compressive stresses
exist while in the lower portion there are tensile stresses. Physically, the material points
in the upper portion of the plate want to expand considerably but are being restrained by
those in the cooler areas of the plate, hence, tending to cause high compressive stresses
there. Likewise, in the cooler portion of the plate the material points wish to contract, but
are being extended by the hotter portions of the plate, hence, thrown into tension. Such
thermal stresses can result in material failure just as stresses caused by mechanical loads.

As discussed before, shear stresses and strains are not affected by thermal effects,
hence remain the same as in Chapter 2:

z=-h/2

N M,z

xy

T =T, +h3/12

L 30 1_{zj21 o 30 1_(LJ27
¥ 2h h/2 J" o 2h h/2 J"

Of course if there exists shear stresses applied to the upper or lower surfaces of
the plate, the latter two expressions must be modified as in Section 2.6.

To proceed with solutions of thermoelastic plates using Equations (4.14) through
(4.16), one now proceeds using the same solution techniques that were introduced in
Chapter 3. However, the additions of thermal effects do introduce certain difficulties
with boundary conditions that cause some analytical difficulties. These are discussed in
the next section. Also, because of thermal expansions and contractions, solutions usually
involve solving for the in-plane displacements u, and v, in addition to solving for the

lateral deflections, w(x, y). Excellent texts include [4.1, 4.2 and 4.3].

(4.20)
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4.3 Boundary Conditions
Looking now at the boundary conditions associated with a thermoelastic plate,
comparisons are made with an isothermal plate, where again n denotes normal to the edge
and s denotes along the edge:
Simply Supported Edge
w=0, M, =0. (4.21)

From Equations (4.12) and (4.13), the latter equation above is in fact

o’w o’wl M7
+v - .
on’ os*> | (1-v)

M,=0= —D{

Since there is no curvature parallel to the simply supported edge (i.e.,
d*w/ds® = 0), this equation becomes
o*w M

= DA (4.22)

Hence, the boundary conditions for a simply supported thermoelastic plate are
nonhomogeneous.

Clamped Edge

=0. (4.23), (4.24)

w=0,

ow
on

These remain the same as those for the isothermal plate.
Free Edge
The boundary conditions are
M, =0 and V,=0.

Hence, the first condition is given by Equation (4.22) and the latter is seen to be
from Equation (4.18).

3 3 T
OW L 2-w awzz_ I oM (4.25)
on Os D(1-v) on

on’
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Here the boundary conditions are seen to be nonhomogeneous.
General

In many problems involving thermoelastic plates, it is seen that the boundary
conditions are nonhomogeneous. Why is this important? In solving linear partial
differential equations, separation of variables cannot be used with nonhomogeneous
boundary conditions.  Fortunately, methods are available to transform either
homogeneous or nonhomogeneous partial differential equations with nonhomogeneous
boundary conditions to nonhomogeneous partial differential equations with homogeneous
boundary conditions, so that separation of variables may be used. A generalized method
is presented in the next section.

4.4 General Treatment of Plate Nonhomogeneous Boundary Conditions
Consider a plate with the y = 0, b edges simply supported. The governing

equation for the lateral deflection is given by Equation (4.14). From Equations (4.21)
and (4.22), the boundary conditions are:

w(x,0) = w(x,b) =0 (4.26)
622” (0= -4 (@0 M (x) (4.27)
oy D(1-v) D(1-v)
azf(x,b):—MT(x’b) __ MW (4.28)
oy D(-v) D(1-v)

where M) (x)=M"(x,0) and M](x)= M (x,b).
We now introduce a function y(x,y), which satisfies homogeneous boundary
conditions on the y =0 and y = b edges. Let

w(x,3) =y (x, 1)+ LM () + £,() M (x). (4.29)

where for this problem we take y/(x, y) to be of the Levy form:
= . n
y(x.y)= X 4,()sin 2. (430)
n=1

Also in Equation (4.29) f,(»y)and f,(y) are to be determined to satisfy the

boundary conditions (4.26) through (4.28).
Substituting Equation (4.29) into Equations (4.26) through (4.28) results in
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W(x,0) =y (x.0)+ £,(OM] (x) + £,(O)M? (x) =0

w(x,b) =y () + £,(BYM] (1) + £,(B)M (x) =0

62w(x,0) _ 62W(X,0) " T " T — MIT(X)
YRR + I OM () + £ (0)M, (x) = D)

62W(X,b) _ azl//(x,b) " T " T _ M]T (X)
» o + I OM, (x) + £ (0)M, (x) = Di—v)’

Since it is required that y(x, y) satisfy homogeneous boundary conditions at y = 0
and y = b, then

O (x,0) O*w(x,b
p(x0) = p(xby = O VD) (431)
Oy oy

Hence, from the above, the following is required:

£(0)=0 £,(0)=0
fl'(b) - fzﬂ(b) 0 (432)
f10)=-1/D(1-v) f(0)=0

£b)y=0 J(b)=—1/D(1~v).

These are the only requirements on f,(y)and f,(y). Since there are four
conditions on each function, each can be assumed to be a third order polynomial.

Let
fi()=C,+C,y+C,y* +C,y’ (4.33)
and
L) =k, +ky+k,y +ky’. (4.34)

Substituting Equations (4.33) and (4.34) into (4.32), the result is

1 2. Az 2, 3
fl(J’)—m@b y=3by"+y°) (4.35)
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1 2 3
fz(y)*m(b y=y). (4.36)

Using Equations (4.35) and (4.36), the substitution of Equation (4.29) into (4.14)
results in the following:

!
DV'y = p(x,y) ———V'M"

1-v)
4 1 2. 2 3 T
-V {M(Zb y=3by" +y )M, (x)} 4.37)
Rve, b’y=y'
v {76(1v)b M, (x)}.

Looking at Equation (4.37) it is seen that the original problem, which was
Equation (4.14), with nonhomogeneous boundary conditions, given by Equations (4.26)
through (4.28), has been transformed into a problem involving a ‘lateral deflection’ v/,

with homogeneous boundary conditions (4.31) and an ‘altered loading’, given by the
right-hand side of Equation (4.37), which shall now simply be written as H(x, y). Hence,

DViy = H(x,y). (4.38)

Here, y(x,y) is given by Equation (4.30) and H(x, y) must be expanded correspondingly
into a Fourier series as

H(x,y)= Zhn (x)sin 4,y where A, =nn/b. (4.39)

n=1

Substituting (4.30) and (4.39) into Equation (4.38) gives

0

DZ {¢;V 28"+, }sin A,y = Zw: h,(x)sin 1,y.

n=1 n=1
Hence,

B 224!+ 2 = h"g‘). (4.40)

It is seen that this has the same form of the ordinary differential equation in the
Section 3.3 discussion of the Levy method. Now the boundary conditions at x = 0 and
x = a can be considered. For the sake of a specific example, consider them to be simply
supported also. Then,
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w(0,y) =w(a,y)=0, M (0.3)=M (a,y)=0

or

’w(0,y) __M'(0,y) *wa,y) __M'(a,y)

o> DA-v)’ ox? D1-v) (441)
Substituting Equation (4.29) into the above results in
w(0,) = (0,9)+ f,(»)M] (0) + £,(»)M; (0) = 0
wa.3) = (@) + [0IM] (@) + (M (@) =0
ygg””=5V2$”°+ﬁodekm+fxymﬁ"w)=%%S%?
Tl TV oMy @+ £ @ =S
Rearranging the above produces
v (0.9) =L/, 0)M] O+ /()M (0]
V(@) =LA0IM] @)+ ()M (@)]
(4.42)

6W&w:{MWU)

T” T” —|
- D) HAOMT O+ LOIMT O

Oy(a.y) _ [ M'(a,y) " o]
oL = — =4 M, (a)+ M, (a)-
o D(—v) SIM; (a)+ f,(»)M, ( )J
Remembering that w(x,y) is given by Equation (4.30), it is logical to make the
following expansions:

/=Y A,sind,y M'(0,y)=) C,sind,y

n=1 n=1

(4.43)
£:() =B, sind,y M'(a,y)= E,sini,y.
n=1 n=1
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Here, A4,,B,,C,and E, are easily found by the usual Fourier procedures.

Substituting Equations (4.43) and (4.30) into (4.42) and equating all coefficients results
in

$,(0)=—4,M/ (0)+ B, M, (0)]

$,(a)=—-[A,M (a)+ B,M] (a)]
(4.44)
C ]

$,(0) = {D(liv) +4,M; (0)+B,M, (O)J'

" _ En T" T" —‘
#l(a) = {D(IV)MMMI @+ B M (@)

Hence, these four boundary values provide the necessary information to
determine the constants K, through K, in the solution of Equation (4.40), which is

@,(x) =(K, + K,x) coshd, x + (K, + K,x) sinhAd,x + 71, (x). (4.45)

Here, 77,(x) is the particular solution, i.e., the right hand side of Equations (4.40). Using

(4.45), Equation (4.30) is completely solved, and in turn Equation (4.29) is solved.
Subsequently, stress couples, shear resultants and stresses can be determined everywhere
using Equations (4.19) and (4.20).

This general approach can be used to solve any plate problem that involves
nonhomogeneous boundary conditions.

4.5 Thermoelastic Effects on Beams

For the thermoelastic beam, it can be easily shown from Chapters 2 and 3, and
Section 4.2 that the governing differential equations are as follows: Assume the length of
the beam is in the x direction, that nothing varies in the y direction, and hence, all
equations can be multiplied by the beam width, 5. Remembering that all derivatives with
respect to y are zero then,

d
P+P" = E4"N (4.46)
dx

2
dw
2

M, +M] =—EI

(4.47)
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d*w dm’
V., =—EI - 4.48
b dx3 dx ( )

d*w d*mT
El o =q(x)- W (4.49)
o, =%[P+PT]+§[M}, +M"]-EaAT (4.50)
P =" EbaAT &z, M7 = [ EbadT: dz. (4.51)

hi/2 hi/2

where P = in-plane load

A =beam cross sectional area = b if rectangular
b =beam width
M, =bM,

I'=moment of inertia = b#* /12 if rectangular
V, =bO,
q(x) = bp(x)

Using these equations, solutions are easily obtained. As in the case of plates, the
expressions for boundary conditions of simply supported and free edges for a
thermoelastic beam will be nonhomogeneous. However, for beams (unlike plates) this
causes no particular problem, because ordinary differential equations are involved, not
partial differential equations, hence, separation of variables is not needed.

4.6 Self-Equilibration of Thermal Stresses

In Section 4.1 the two mechanisms by which thermal stresses are introduced into
a thermoelastic solid body are discussed, namely, by displacement restrictions caused by
the boundary conditions, the other by the introduction of the isothermal strains in
Equations (4.2) in order that Eoal satisfy compatibility when the thermal strain, iy do

not satisfy compatibility.

One other physical phenomenon occurs that is very important in the structural
mechanics of planar bodies such as beams and plates, namely, if the planar body is not
restricted by the boundary conditions the thermal stresses in the body are self-
equilibrating: i.e., the average stress across the thickness is zero,

1 phi2
o, =— o,dz=0 (i=x,y) (4.52)

Tavg b2 !
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This can be exemplified in the easiest and shortest way by considering a load free beam
lying on a friction free flat surface and heated or cooled such that at any time ¢, the
temperature change is given by:

2

= z\" z z
AT(Z) = E an(zJ =a, + a, Z"r a, h_2+ (453)
n=0

It is seen that the term a, is merely a uniform heating or cooling of the entire beam;
(a, +a,z) is a steady state heat transfer situation and in that case the temperature is

linear in the z direction. The entire expression given by (4.53) represents a temperature
situation that involves additional terms and occurs during transient heating or cooling
and/or internal heat generation. In the following example, it is sufficient to consider only
the first three terms of (4.53) to illustrate the point. From (4.53) and (4.51),

2
P’ = EAd| a, yal o yr  Eabh y (4.54)
12 | 12
For the illustrative problem, the lateral deflection is
w(x)=C, +C,x+C,x* +Cyx’ (4.55)

where this form is the solution to Equation (4.49) for this case. The boundary conditions
for this example are seen to be simply supported: i.e.,

w(0,L) = M, (0,L) = 0. (4.56)

With these boundary conditions, the constants of (4.55) are found to be

aa, L aa
C,=0 C,=—"—- C,=——L C,=0 4.57
0 “on Y 2 4357
and the lateral deflection is seen to be
aa,
w(x) = —x(L —x). 4.58
(x) h ( ) (4.58)

It is seen that only if a, (or any «,, n odd) is non-zero will the beam deflect at all

in the thickness direction.
From (4.50), it is seen that

a 12221
ax—Eaé{l— e (i=x,y). (4.59)
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It is extremely important to see that thermal stresses will occur in the beam if and
only if a, (or any other n even) is non-zero. Therefore, it is seen that for a steady state
temperature distribution (&, , n > 2 = 0) the beam in this example is stress free, whether a
deflection occurs or not.

Now if (4.59) is substituted into (4.52) it results in, for all cases

=0. (4.60)

al
avg

Therefore, in those cases where there are no boundary conditions constraining the thin
beam of plate, so that it is free to expand or contract, the average stress across the
thickness is zero, i.e., the stresses are self-equilibrating. This is an important concept to
remember in the design of flat plates and beam structures of all kinds.
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4.8 Problems

4.1. A flat structural panel on the wing of a supersonic fighter of thickness 0.2 inches is
considered to be unstressed at 70 °F . After a considerable time at cruise speed such
that a steady state temperature distribution is reached, the temperature on the heated

side is measured to be 140°F, the temperature on the cooler side is measured at
80°F, and the temperature gradient through the plate is considered to be linear.
Calculate the thermal stress resultant, N7, and the thermal stress couple, M,
where for aluminum £ =10x10° psi, ¢ =10x10* in/in/°F, and v = 0.3

4.2. The same aluminum panel as in Problem 4.1 is now heated symmetrically from
both the top side and the bottom side. After 10 seconds thermocouples placed on
both surfaces of the panel read 160 °F, and a thermocouple at the mid-surface reads
80°F. Assuming the temperature profile in the panel to be parabolic (i.e., a second
degree polynomial), what is the thermal stress resultant N7 and the thermal stress
couple M7 at this time?

4.3. In Problem 4.1 at what location across the plate thickness are the absolute values of
o and o a maximum and what is that stress; assuming

x y

N,=N,=M,=M,6 =02
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4.5.

4.6.
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In Problem 4.2 at what location across the plate thickness are the absolute vales of
o, and o, a maximum value and what is the wvalue; assuming

N,=N,=M =M, =0?

An aluminum panel 0.4" thick, and stress free at 70°F is subjected to transient
heating on one of its surfaces such that 7 =7(z) only as in the previous problems.

Thermocouples record at a critical time that 7(h/2)=170°F, 7(0) =130°F, and
T(~h/2)=100°F. Assuming a polynomial temperature distribution calculate N”,
M" and & =o, assuming N, N,, M _,and M, =0.

X max hj

Thermocouples are used to measure the temperature profile through a two inch
thick plate, through three measurements: one on the upper surface, one at the mid-
surface, and one on the lower surface. At one specific time the measurements were:

Location Actual Temperature Measured
h=+1" 200°F

h=0" 110°F

h=-1 S0°F

4.7.

4.8.

If the stress free temperature is 60°F, calculate N” and M".

A plate is heated from both the top and bottom such that at a certain time, three
thermocouples read 7T(A/2)=300°F, T(0)=80°F, and T(—A/2)=300°F. If the
stress free temperature is 70°F, calculate N and M” for a plate that is 2" in
thickness. This aluminum plate has £ =10x10° psi and & =10x10° in/in/°F .

A thin walled structure 1/2" thick, i.e., —1/4" < z <+1/4", is composed of an
aluminum with properties £ =10x10° psi and & =10x10~° in/in/°F. As a certain
time ¢, thermocouples on the top, at mid-surface and at the bottom record 90°F,

100°F, and 150°F. If the stress free temperature is 70°F, determine the equation
for AT to perform w subsequent thermoelastic analysis.



CHAPTER 5

CIRCULAR ISOTROPIC PLATES

5.1 Introduction

In previous chapters, attention has been focused on rectangular plates. However,
circular plate structural elements are encountered in all phases of engineering. It is,
therefore, necessary to develop an understanding of the behavior of circular plates.

Consider the following element from a circular plate (Figure 5.1), with positive
directions of stresses and deflections as shown.

Figure 5.1. Circular plate element.
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5.2 Derivation of the Governing Equations
The equations of elasticity can be derived in a circular cylindrical coordinate
system, or could be obtained by transforming the elasticity equations given in Chapter 1
through the use of the relationships:
x=rcosf, y=rsin@ and x*>+y’=r>.
However, they are merely presented here in their final form.

Equilibrium Equations in Circular Cylindrical Coordinates

oo, +186,9 . oo, L 9-~0

=0 5.1
or r 00 0z r SR

90, 109, 90w 2, _g (5.2)
or r 00 oz r

90, +100"3 + 99 +1o,, =0. (5.3)
or r 00 oz r -~

Stress-Strain Relations (after using classical plate assumptions)

-vo,], &y = %[0'0 -vo,] (5.4), (5.5

€0 =590 o,=¢,=6,=0. (5.6), (5.7)

Strain-Displacement Relations, General

_ou _LOup w0 (5.8)
or rod r 0z
g, = L[ L0, Oy Uy (5.9)
2\r 06 or r
gy = [ Qo  LOw LW G )5 40) (5.00)
© 2\ 0z roé © 2\or Oz

Of course, for classical plate theory, &, =¢,. = ¢, =0 in(5.8), (5.10) and (5.11) above.

Similar to the case of rectangular plates, stress resultants, stress couples and shear
resultants are defined as follows:
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N, o, M, o,
hi/2 "2
Ng = J:,/z Gy dZ’ MH = fh/z Oy zdz (512), (513)
NVB, O'rg MrH o'rg
- O .
Q,l: fh/z 'Zldz_ (514)
Qg hi2 Ol

In developing the governing equations for a circular plate, one proceeds as in
Chapter 2, multiplying Equations (5.1) through (5.3) by dz and integrating the equations
across the thickness of the plate: then multiplying (5.1) and (5.2) by z dz and again
integrating these across the plate thickness. For the isothermal circular plate, the results
are:

oN, 10N,, N,-N,
+— 420

=0 5.15
or r o060 r ( )
N, +16N” +3N,0 =0 (5.16)

or r o8 r

00, 100, 1
—=r 4 - 4+ — + ,0)=0 5.17
5 T o0 rQr p(r.,0) (5.17)
M —-—M

aMr +laMH9 + r [ _Qr:O (518)

or r 00 r
oM, +l%+EMW -0, =0. (5.19)

or r 00 r

If there are surface shear stresses applied 7,,,7,,,7, and7,, stresses will be

appended to (5.15) through (5.19) identical to those for rectangular plates of Section 2.4,
with appropriate subscripts.

Again, for the bending of a circular plate, displacements are taken in a form
analogous to (2.1) through (2.3)

u, =u,, +az, U, =1y, +fz, and w=w(r,6). (5.20)

Since in a classical circular plate £, = ¢, =0, substituting (5.20) into Equations
(5.10) and (5.11) results in
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(5.21)
u, =u fza—w U, =u _zow
r or 8]" > o 00 r 66
From Equations (5.21), (5.8) and (5.4),
ou, 1 ou,, 0w
=—=—[o, -vo,]=—- . 5.22
- or [ ” 9] o z o’ ( )
From Equations (5.21), (5.8) and (5.5),
0
&, _ Lo, u—’:—[ag -vo,]
rod r E (5.23)
_louy, uy, z@w zow '
r o6 r r*o6* ror
From Equations (5.21), (5.9) and (5.6),
o = 1 o ]+vo_
0= A ~9%0 = 5 O
2G E
(5.24)

_1 l%_,_auos Uy | 2z 0°w 2z ow
r 69 61” r

= — =
2 r orod r’ 00

Multiplying Equations (5.22) through (5.24) by dz, and integrating across the thickness of

the plate, then multiplying them by z dz and again integrating them across the plate

thickness and with some algebraic manipulation the stress resultant in-plane displacement

relations and moment-curvature relations for a circular plate evolve (for the case of no

surface shear stresses).

N, = k| Do, ¥ Oos 3 Vo | (5.25)
or r 00 r |

N, =] 1P Mo O ] (5.26)
r o8 r or |

N, = K(l—v){l%+%—u‘—’9—| (5.27)
r

2 2
_D{é w ovow v dwl (5.28)
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2 2 '|
M, =-p| oW, 1ow, oW (5.29)
r- o6 ror or |
M., =-D(-v) 10w 1wl (5.30)
" rorod r* oo | '

where again K = Eh/(l —v*) and D= Eh3/12(1 —v?), the in-plane stiffness and flexural
stiffness, respectively.

Solving (5.18) and (5.19) for Q, and Q,, and substituting the result into
Equation (5.17) provides an equations involving M,, M,, M, and p(r,0).
Substituting Equations (5.28) through (5.30) into that equation results in the final

governing differential equations for the bending of a circular plate, again the biharmonic
equation.

DV*w = p(r,0) (5.31)

where

)

‘O, 1e) 190 (5.32)

1
Vi) = -
O ot r or r* 06?

Similarly, substituting (5.25) through (5.27) into (5.15) and (5.16) produces the
equations for the stretching of a circular plate.

Viu, =0 Viu,, =0. (5.33)

Note that (5.31) and (5.33) are identical to (2.57), (2.59) and (2.60) for the rectangular
plate. The biharmonic equations control plate behavior in both the Cartesian and the
circular coordinate systems. Only the definition of the Laplacian operator changes with
the coordinate system.

Of course once the plate solution is obtained, the stresses within the plate are
given by:

N, M.z N, M,z
O, =—+—7—, O,=—"+—
ho h12 h o B2
N, M,z
o, =ty 5.34
ré h h3/12 ( )

) B
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For the case of surface shear stresses, the last two expressions above would be
modified by the analogous expressions of (2.80) through (2.83), simply modified by
changing x and y subscripts to » and 4.

Furthermore, to consider a thermoelastic circular plate, one merely adds
appendages to Equations (5.25), (5.26), (5.28), (5.29), (5.31), (5.33) and the first two of
(5.34), identical to the last terms of the N, N, M_, M expression of (4.10) through

(4.13), and the modifications for o, and o in (4.19) with obvious subscript changes.

In the general case of no axial symmetry, the solution of Equation (5.31) results in
Bessel functions and modified Bessel functions of the first and second kinds. Such
problems will not be treated herein, but are treated in depth in various other texts dealing
with circular plates. Because so often circular plates are subjected to axially symmetric
loads, they are discussed below.

5.3 Axially Symmetric Circular Plates

When the plate is continuous in the € direction, (i.e., is in the region 0 <& < 27),
when the loading is not a function of §, and when the boundary conditions do not vary
around the circumference, the plate problem is said to be axially symmetric, and the
following simplifications can be made:

o) _2’0)

00 06

=M, =0,=0. (5.35)

The previous equations for the bending of a circular plate can therefore be
simplified to the following, where primes denote differentiation with respect to r.

M = D[W" + Kw'j (5.36)

M, = —D(l w'+ VW"j (5.37)
r

0, =-D(V*w)’ (5.38)

DV*w = p(r) (5.39)

where

2y =(yra Ly L 4], 40T
V()—()+r()—rdr{ | (5.40)
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Interestingly, Equation (5.39) can therefore be written as,
yiyotd) dild( dw H: p(r) (5.41)
rdr| dr{rdr\ dr)] D

5.4 Solutions for Axially Symmetric Circular Plates

Equation (5.41) can be made dimensionless by normalizing both the radial
coordinate, r, and the later deflection, w, with respect to the radius of the circular plate, a,
as follows:

;:r/a, v_v:w/a. (5.42)

Using (5.42) above, Equation (5.41) can be written as

li{;i{li(;ﬁy} _ o’ (5.43)
rdr| dr|rdr\ dr)] D

One can proceed to obtain the homogeneous solution of Equation (5.43) above, by
setting the right hand side equal to zero, and proceeding to integrate the left hand side,
where below, C,,C,,C, and C, are the resulting constants of integration used to satisfy

the boundary conditions.
Multiplying the homogeneous portion of Equation (5.43) by r, then integrating

once yields
7d lid ,ﬂidw 7_7:0
dr| rdr\ dr J r

Integrating once more and multiplying both sides by r provides

L LU e R
dr\ dr

To integrate the first term in the right hand side, let Inr = v, hence, r= e”, and
dr=e’ dy. Thus,
e

I;ln;d; = J.ye2“’ dy = ye;y T
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Therefore, integrating the expression above, and dividing the results by r gives

i

w rinr rl Cr C
dv_v:CO rlnr_17+_lr+72
2 4] 2 r
and finally, one more integration produces

—2

-c{Vm;;” c,r Cr
w=— —

+C, Inr+C,.

2| 2 77{ 8

This final form of the homogeneous solution can be written more succinctly as

w=A+BInr+Cr +Er Inr (5.44)

Returning to Equation (5.43), the particular solution can be written as:
— ¢l =l p(rad- - - - -
W, = j; jr j; fTrdr drdrdr. (5.45)

Thus, the complete solution for any circular plate under axially symmetric loading
is given by Equations (5.44) and (5.45). It is easy to show that the particular solution for
a plate with a uniform lateral load is:

3—4
Pa’r Do
w, = or w =-——. 5.46
" 64D P 64D (5.46)

4

For ease of calculation, the following quantities are given explicitly for the circular plate
of radius a with uniform lateral loading p(r) = p, .

—4

B B B o 3
w=A+Blnr+Cr +Er Inr+ 202" (5.47)
dw_B - = - - par
W_ L ocr+ E[2rinr + 1]+ 204 (5.48)
i 16D
M, =2l B vyraca )+ 2E0 40 Inr
a
r 2 (5.49)
-
) I Chad)

16
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0, :%{LETM (5.50)
al r | 2
M, = —B{B(l_; V) +2C(1+v)+2E ln;(l+ V) + E(l+3v)T
a
_rz (5.5
B poa’r (1+3v)
16 '

For other lateral loadings, the last terms only in each expression above would be
changed, the homogeneous solution remains the same.

5.5 Circular Plate, Simply Supported at the Outer Edge, Subjected to a Uniform
Lateral Loading, py

For the plate which is continuous from 0<r<a, and which contains no
concentrated loading at » = 0, it is easy to see that B = E = 0; otherwise the lateral

deflection and transverse shear resultant would be infinite at 7 = 0. At r=1 orr = a, the
boundary conditions are

w(1)=0 (orw(a)=0), M, (1)=0
Hence,
A:(5+v)p0a3’ :7pna3(3+v)
(1+v) 64D 32D(1+v)
and

w(r) = Py’ {(“ v) 26+v)2 el (5.52)

64D | (1+v)  (1+v) ]

5.6 Circular Plate, Clamped at the Outer Edge, Subjected to a Uniform Lateral
Loading, po

Again B=E =0. At the outer edge, w(1) =0 and 8v_v(1)/8; =0. Hence,

3
A= and =D
64D 32D

Thus,
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4
p““}’) [-2r +7r]. (5.53)

w(r) =

5.7 Annular Plate, Simply Supported at the Outer Edge, Subjected to a Stress
Couple, M, at the Inner Boundary

~
X
2
Al
v

Figure 5.2. Annular circular plate.

Remembering that »=r/a, and defining s=5b/a, the governing differential
equation in this case with no lateral load, p(r), is

Viw=0
and the boundary conditions are:
wl)=0 M, (s)=M
M,(1)=0 0,(s)=0.

The lateral deflection is found to be

w(r) =

2.2 140, 2 2 _
Ma~s” Inr Ma ( s j( _rz)' (5.54)

DA-v)1-5’) 2D(1+v)\1-s
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5.8 Annular Plate, Simply Supported at the Outer Edge, Subjected to a Shear
Resultant, Oy, at the Inner Boundary

) 1 1‘5’0 Qol '<§
§ b N

Figure 5.3. Annular circular plate.

Again, the governing differential equation is V*'w=0, and the boundary
conditions are,

wl)=0 M (s)=0
M,1)=0 0.(s)=0,

The solution is:

w(r) =

sz {_(34—21/)(11” ), s ln;v 17
(1+v) (1-s%)

(5.55)

—2(1+V)[ s* ]lnsln;—;z ln;—|.
1-v) \1-5* |

5.9 Some General Remarks

Of course the results given in Section 5.5 through 5.8 can be superimposed to
form the solutions to other problems. Suppose the plate is subjected to a stress couple,
M, on the inner boundary as well as a transverse shear resultant, (J,, acting also at the

inner edge, as shown in Figure 5.4.
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A/f,/,//:

P S L |

Figure 5.4. Annular circular plate.

The solution is the sum of (5.54) and (5.55). All other stress quantities are found
by substituting this sum into (5.36) through (5.38) and (5.34).

Another example of using the previous examples as building blocks, consider the
problem shown in Figure 5.5.

1 . lR (Ib/in))

’ 1 2 /,','

%) © ) J<%
. b ‘ ’)—

Figure 5.5. Circular plate with a ring load.

This simply supported circular plate is subjected to a ring load of R (Ibs/in. of
circumference). To solve this problem one first divides the plate problem into two parts:
an inner solution 1 extending over the region 0 <r <b, and an outer solution 2 over the

region b <r < a. In each case the governing equation is
Viw, =0 and V'w, =0

and eight boundary conditions are needed. Since there is no lateral load p(r), and the
solution to each equation with suitable subscript, is (5.47) with p, =0 (i.e., the

homogeneous solution). From the reasoning of Sections 5.5 and 5.6, it is seen that
B, =E, =0. Likewise from the reasoning of Sections 5.5, 5.7 and 5.8, atr =aorr=1,

w(l)=M,(1)=0.
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R (Ib/in.)

\ Q1(b) /

Q2(b) /

Figure 5.6. Equilibrium of plate with ring load.

At the junction of the two plate segments, it is obvious that the lateral deflection,
the slopes and the stress couples must be equal for both plate segments; hence

w,(b)=w,(b) or wi(s)=wa(s)

dw (0) _dw,(0) dwi(s) _ dwa(s)
dr dr dr dr

M,,(b) =M, (b) or M, (s)=M,(s).

For the eighth and last boundary condition is obtained by looking closely at the
shear condition at » = b, as seen in Figure 5.6.
Hence, R=0,(h)—Q,(h) is the eighth boundary condition. If one has either a
discontinuity in load or a discontinuity in plate thickness, one must divide the plate into
two segments. Examples of such problems are shown in Figure 5.7.
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Seg. Seg.

1 2

YYY YT Y Y Y E\t
\ b

a <
s 1

Seg Seg.

1 2

|

_—_.
S

-

|

AAARRRERE

p = const

SN o

a
Figure 5.7. Circular plate with discontinuity of load or stiffness.

It should be noted that in the first of Figure 5.7, the lateral load over Segment 1 is
a negative number, and the loading in the second example of Figure 5.7 is a positive
number. Further, it should be noted that in each of these examples, because there is no
concentrated load, R, as in the previous example, the eighth boundary condition here is
0, (b)= 0, (b).

Of course if one had » structural and/or loading discontinuities, one must use
(n + 1) segments, and 4n boundary conditions.

Use of Equations (5.47) through (5.51), with the proper last terms (the particular
solution) obtained through solving (5.45) reduces the problems to a straightforward
procedure. Subsequently, stresses are found through (5.34).

Den Hartog [5.1] provides solutions for seventeen different isotropic circular
plates on pages 128-132 of his text. One paper treating the vibrations of circular plates is
by Oyibo and Brunelle [5.2]. Although it treats orthotropic plates, by letting
D.=D,=D,, =D, the results apply to isotropic circular plates.
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5.10 Laminated Circular Thermoelastic Plates

As a practical example of the effects of thermal stresses on plates that are
laminated, thermal stresses in laminated circular plates will now be addressed.

Consider a plate a radius L, composed of two laminae of different materials
continuously bonded at their common face, such that no slippage can occur. The laminae
may have different, but constant thicknesses limited only by plate theory assumptions.
Constant material properties are assumed for each lamina. The coordinate system used is
given in Figure 5.8, from which it is seen that the origin of the z axis for each lamina is at
the middle surface of that lamina.

il s Mt
_// _ zh‘" -, ——%—b

//
\g

Figure 5.8. Plate Coordinate System.

The equations of equilibrium in cylindrical coordinates for the axi-symmetric case
are:

0o, 0o, o0,-0,

r rz r - 0
or oz r (5.56)
oo, oo, 1
—=+—=+—-0,_=0
or oz r
The strain-displacement relations are:
gr :%’ 80 :ur ; grv :l @4—% (557)
or r © o 2\or oz

The stress-strain relations for an isotropic thermoelastic solid are given by:
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1
g, = E[O', —vo,1+aAT(r,z)

g, = %[o-67 —vo,]+aAT(r,z)
1

grz =4 GY‘A
2G L

(5.58)

where, o, are the stresses, ¢; the strains, u, the displacement in the radial direction, w

the lateral deflection, E the modulus of elasticity, v Poisson’s ratio, G the shear modulus,
a the coefficient of thermal expansion and A7 (r,¢) the temperature increase or decrease

from a reference temperature at which the plate is stress free thermally.
Stress resultants and couples are defined for each lamina as follows:

Nri O-ri
Ny, Oyi
hl2 )
0, = .[h / 0. (dz i=ab.
M, 2,0,
My, Z;0p;|l

The positive directions for these resultants and couples are shown in Figure 5.9.

Qa

Mrb  OF

+
Mab Neb*

Figure 5.9. Stress Resultants and Stress Couples.

(5.59)

Equation (5.56) can now be multiplied by dz; and by z;dz; and be integrated across
the thickness of each lamina to obtain the stress resultants and couples defined in (5.59).

The non-vanishing boundary conditions are:
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For lamina a:

h
o, (~h,/12)=7; z,0, (<h,/2)=- ;’; o, (=h,12)=p, (5.60)
For lamina b:
h,t
0. (thy 12 =11 z,0, (+h /D=2 o (+h/D)=p, (5.61)

where 7 is the radial shear stress in the joint between the laminae, and p; is the normal

joint stress.
The resulting plate equilibrium equations are given below.

d'Nra + Nm B Nﬂa —r=0 (5.62)
dr T
dm M —M h
oy Mo = Wa T (5.63)
dr r 2
d
&+Q"—p.:0 (5.64)
dr r /
N Na o (5.65)
dr r

~0,=0 (5.66)

99, .9 ., _o (5.67)
dr r /

To determine stress-strain relations for the laminated plate, it is assumed that the
displacements for each lamina will be of the form

u, (r,z)=uy,(r)+ z&(r)l (5.68)
w=w(r) [
where u, is the in-plane displacement of the middle surface of the lamina, and a is the

rotation.
Neglecting transverse shear deformation, the last of (5.57) becomes
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r

w__ou,

o oz

Substituting this into (5.68), it is seen that 5:7w’, and the displacement relations
become

u, =u, =zw'
(5.69)

w=w(r) [

where the prime denotes differentiation with respect to ». The strain-displacement
relations for either lamina are then given by:

g =u, —zw"
Cuy oz, (5.70)

&y
ror

Upon substituting (5.70) into the first two equations of (5.58), integrating across the
thickness of each lamina, and rearranging, the stress resultants and stress couples are
found to be, for each lamina,

, 1
N, =K u, +;uoj—:NT (5.71)
"o, 1 T
Ng =K WO +7 —EN (572)
M=l Yl (5.73)
" ro| 1-v
M, =—p| Y Ly (5.74)
¢ r | 1-v

T h/2 . « s T h/2 .
where N' = fm EaT dz is the “thermal stress resultant,” M™ = fm Ealzdz is the

“thermal stress couple,” K = Eh/(1-v?) and D = ER’ [12(1-v?).

It is seen that we have six equilibrium equations, and eight equations derived from
the strain-displacement and stress-strain relations. However, there are sixteen unknown
variables; namely, N, N,, M, , M,, O,, N,, Ng, M,, My, O,, w,, w,

ra’ ra

Ug,, Uy, T and p;. Hence, two more relationships are needed and are easily found.

First, because transverse normal deformation is neglected, and since
w, (r,—h,/2)=w,(r,+h, /2), because the laminae are bonded together,
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w=w, =w,. (5.75)

The second relationship expresses the fact that no slippage occurs in the joint between
laminae, hence u(r,~h, /2) = u{r,+h, /2) and employing (5.69).

(5.76)

Uy, =Ugyy —

The governing equations can now be combined into relations in terms of the lateral

deflection, w, and the displacement, u,,. In the following, it is assumed that Poisson’s

ratio for the material in each lamina is sufficiently similar to assume that v, =v, =v.
Solving for O, and Q, in (5.63) and (5.66), and substituting them into (5.64) and

(5.67) along with (5.73) and (5.74), two relations are produced which upon adding and
subtracting result in the following:

h +h
(D, +Db)V4w:f%[V2MZ +V2M[]+”;"[r’+rj (5.77)
—v r

iy
(D, D,)V'w= —— ! Vem? —vem! |+ b, -
-V

(T'+£j2pj (5.78)
r
where V> and V* are the Laplacian operators defined as
vroldf,d) ga_tdf dftdf da)l
rdr dr rdr| drrdr dr/j

Adding and subtracting (5.62) and (5.65), and substituting (5.71), (5.72) and
(5.76) into them results in

[ h h 1 [ ’
(Kﬁ&)%{uw +%}+K,, ; ”%(Vzw)—:(ﬁ to7/)=0 (5.79)
KK, (h +h KTT'fKTT'
ro- Kk th) 4 (goy KT, KT, (5.80)

2K, +K,) dr (1-v)K,+K,)

Substituting (5.80) and its first derivative into (5.77) yields

DV*w= —IL[COVZT[ L OV VM VM (5.81)
-V
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where C, =(h, +h,)K,/2(K,+K,) and C, =(h, +h,)K,/2(K,+K,). The constant
D, is the effective flexural stiffness for a laminated plate and is given by

KK, (h, +h,)

4K, +K,) (>82)

D,=D,+D, +

It should be noted that for the laminated plate, the flexural stiffness is greater than the
sum of the rigidities of the individual laminae, as shown in (5.82). It is also interesting to
note that due to the restraining action the thermal stress resultants enter into (5.81), while
in the case of a plate of a homogeneous material only the thermal stress couple is
involved. It should also be noted that (5.82) is also a valid expression for plates of any
geometry, i.e., for rectangular plates as well.

Substituting (5.80) and its first derivative into (5.78), and rearranging, will
directly produce the normal joint stress, p; .

2
1 b _p o KK

2
-~ |p -p, h”)—|><[COV2TaT+C1V2TbT
2D, (1-v)

P 4K, +K,) |

+V2 M +V2MZ]—ﬁ[CZV2THT —C VT VM -V M) ]
-V

(5.83)

where C, = (h, +h,)K,/2(K, +K,) and C, = (h, —h,)K,/2(K, +K,).

In (5.81), the lateral deflection w is the only unknown and can be easily solved for
in terms of the temperature distribution in the laminae. In classical thermoelasticity, the
stress and displacement fields are coupled to the temperature distribution but the
temperature distribution is not affected by the stress and displacement fields in the solid.
Hence, the temperature distribution in the body may be found independent of the stresses
and displacements produced in the body as a result of the temperature distribution. It is
assumed that for the cases discussed here the effects of the stress field on the temperature
distribution in the body can be neglected.

Any axi-symmetric temperature distribution in the laminated plate may be
represented by a Fourier series such that

NI =>b, cosd,r (5.84)

n=l1
where

b, :eraT cosd rdr and 1 ="%
L L

and L is the radius of the circular plate in Figure 5.8.
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Likewise,
N/ = Zdn cosA,r (5.85)
n=1
M] =Y e, cosi,r (5.86)
n=1
M, =Yg, cosd,r (5.87)

n=1

Integrating (5.81) and making use of (5.84) through (5.87) it is seen that

1 oc
Vw=—-——">® cosidr+C,Inr+C 5.88
D(J(I*V),,Zl: n n 4 5 ( )
< ()] C
we— b 3O sinlnr+Lcos/1nr+g{ln£—ll+—5r+& (5.89)
D,(1-v).5 4, A,r 2 a 21 r

where ®, =Cib, +C\d, +e,+g, and C,,C, and C, are constants of integration.

For the case of a laminated plate with no hole at the center, the two boundary
conditions at » = 0 are that the sum of the shear resultants, @, + Q,, equal zero and that

the slope equals zero.
Hence,

%(Vzw):o and w'=0 at r=0 (5.90)

By proper substitution it is found that

1 O
C,=0;, Cj=—— - 591
: Y 2y (5.91)
The deflection is then given by

s D 2 4 6 '|

w:—#z ﬂ; —cosﬂnr+21r1/1"r—(§"”2)' +(j”r4)' —(2"2‘
(V) 4, e o O] (592

2
+C5r +C,
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So (5.92) is the deflection of a laminated plate, as shown in Figure 5.8, under any
arbitrary axi-symmetric temperature distribution, when the constants C, and C, are
determined by the particular method of support at » > 0.

Using (5.92), the displacement, #,,, is determined by integrating (5.79), such that

b +d
u,, =—Cyw'+ ! Z nta, x[sinlnr+Lcosﬂnr]
(K, +K)(-v)'m5 4, A,r (5.93)
,

where C, and C, are constants of integration. Again, for the case of the plate with no

hole at the center, it is seen that u,, =0 at»=0, hence

1 b, +d
C,=- > (5.94)
(K, +K)(1-n&= 2

Equation (5.93) then becomes

b, +d, . 1 1
Uy, = K 4K, )= )z ) ><s1nlnr+l—cos/1ﬂrfl—

( + )( v n=1 ,,r nr (595)
Cyr

Since all the governing equations have been placed in terms of w and u,,,

substituting (5.92) and (5.95) and their derivatives into these equations will provide the
solution for all stress resultants, stress couples and displacements.

Knowing the stress resultants and stress couples in each lamina, the stress
distribution throughout each lamina may be determined. The radial stress and
circumferential stresses in each lamina are given by

0_,‘:1{ . NT 1+ z { . M" | EaAT (5.96)

h aA-v)y| K12 a-v)| (1-v)

agzl{ . IR z { M 1_EaAT (5.97)
h (1-v)| Kh2 (1-v)| (1-v)

To find the shear stress o, in each lamina, the distribution throughout each lamina must
be such that the conditions for o, and &,,, given in (5.60) and (5.61), and the relations
for O, andQ, given in (5.59) are each satisfied. The shear stress distributions are
therefore:
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o = (30, -’ 30, - h,) {H h? ] (5.98)
3h,(20, —7h,) h, 620, ~h,) |

o - (30, -, 300, ;zhb){z+ @] (5.99
3hb (2Qh - ﬂ’lh) hb 6(2Qb - Thb)J

The shear stresses and the normal stresses in the joint between the laminae are
found to be:

d
——— > (K,b, ~K,d)A,sind,r - K,C,—(V* 5.100
(K +K )(] z( b%n a n) n nr a Odr( W) ( )

0

P, :#Z en+h—“(Khbﬂ—Kad 1 xA (—sm/l r
ToA-v)s 2(K,+K,) | r

+ A, cosA,r)— ih (Viw) - Lz_v)di{r(w’#zw'j}
r r r

(5.101)

Thus, the general formulation of the stresses in and the displacements of a circular
laminated plate subjected to an axi-symmetric temperature distribution has been found.
To solve any particular case of interest, the constants, C,,C, and C, must be solved for

the boundary conditions at > 0.

This analysis is useful in determining the thermal stresses produced in portions of
multi-layer structures which can be approximated by a laminated plate. To obtain the
complete stress condition in such a structure, the stresses due to a lateral pressure
distribution may be calculated, and superposition of the pressure induced stresses and
thermal stresses is possible as long as the plate is everywhere in the elastic range and the
deflections are small.

In the case of a transient temperature distribution this analysis will describe the
thermal stress condition at a specified time. Thus, the quasi-steady state analysis can be
used at several particular times during a transient heat input to portray the stresses and
deformations at those times.

This analysis is also useful in the solution of a circular plate made of one material
subjected to a temperature distribution in which the transverse temperature gradient is so
large that the mechanical properties of the material vary significantly across the
thickness. The plate may be broken into “laminae,” average material properties assigned
to each, and this analysis employed.
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5.12 Problems

5.1.  The circular flooring in a silo of radius « is solidly supported at the walls such that
the floor plate is considered to be clamped. If grain is poured onto the floor such
that the floor loading is triangular in cross section as shown in Figure 5.10, what
is the expression for the deflection at the center of the floor?

-x ,r;?(m*:—mll—r,r
1l \[ ™~
[ N
h
) a-’+.f'+
a |
e —_— -

Figure 5.10. Circular plate with varying load.

5.2.  Consider a circular plate of radius a, shown in Figure 5.11, loaded by an edge
couple M, = M at the outer edge. Find the value of the stress couples M, and

M, throughout the plate.

h
M[[_ ])M

Figure 5.11. Circular plate with edge moment.
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The flat head of a piston in an internal combustion engine is considered to be a
plate of radius a, where the center support to the connecting rod is of radius b as
shown in Figure 5.12. If the maximum down pressure is uniform of magnitude
p(r)=—p,, determine the location and magnitude of the maximum bending

stress? Assume the head is clamped on both edges.

p(r)= —pg
'HHHH-H*i:iHr
aalmde M

LTI T AT T TIIL

TR B ERDTBB T ERBG DS SRR D525

—
Figure 5.12. Piston in cylinder.

A certain pressure transducer is designed such that the pressure in the chamber
deflects a thin circular plate, a rigid member joined to it at the center thus being
deflected, and through a linkage mechanism shown in Figure 5.13, thus deflecting
an arrow on a gage to the right. Determine the expression to relate the deflection
of the gage to the pressure p, in the chamber. Assume that neither the rigid piece

nor the linkages affect the deflection of the plate by their presence. Assume the
circular plate is simply supported at the outer edge.
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5.5.

5.6.

attachment

Thin rigid %
e

Po

Figure 5.13. Pressure measurement device.

An underwater instrumentation canister, shown in Figure 5.14, is a cylinder with
ends which are circular plates that can be considered clamped at the outer edge, r
=aor r =1. In order to design the ends, i.e., choose the thickness, /4, for a given
material system, one must determine the location and magnitude of the maximum
stress when this canister is underwater with ambient pressure p,. Assume that

the cylindrical portion introduces no in-plane loads to the ends. Find the
maximum radial stress. Also what is the maximum circumferential stress? What
elastic properties of the material are involved in finding the maximum radial
stress? The maximum circumferential stress?

=

P
|
I
Figure 5.14. Underwater canister.

A flat circular plate roof is being designed to fit over an unused cave entrance.
The outer radius is a, the thickness %, and the outer edge is considered clamped.
If the weight density of the material used is p (Ibs/in.’), what is the maximum

deflection, and the maximum stress in the plate due to gravity alone?
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An air pump is constructed of a shaft, to which is clamped a disk of uniform
thickness, at whose outer edge a soft gasket prevents air passage between the disk
and the surrounding cylinder as shown in Figure 5.15.

Figure 5.15. Air pump.

Assuming the disk is clamped on the shaft of radius b, and free at its outer edge of
radius g, and a maximum differential pressure of p, (psi), what is the expression

for the maximum radial stress? What is the value of the maximum shear
resultant, Q. (Ibs/in.)? Could O, have been determined in another way?

In a chemical plant, a certain process involving high gaseous, pressures requires a
blow-out diaphragm which will blow at 100 psi pressure in order that expensive
equipment will not be damaged. The flat circular plate diaphragm is 10" in radius
and simply supported on its outer edge. Constructed of a brittle material with
v =1/3, and the ultimate tensile strength is 50,000 psi, what thickness is required
to have the plate fracture when the lateral pressure reaches 100 psi?

A circular plate is used as a component in a pressure vessel. It has a 14"
diameter, is simply supported at the outer edge, and is composed of steel:
E=30x10°psi, o, =40,000psi, v=03. Using maximum principal stress
theory, what thickness, 4, is required for a pressure differential of 50 psi?

What is the maximum deflection for the solution of Problem 5.9 above?

What is the governing differential equation for the lateral deflection, w, for a
circular plate subjected to a lateral pressure, p(r), and a temperature distribution,
T(r, 2)?

A circular steel plate, used as a footing, rests on the ground and is subjected to a
uniform lateral pressure, p(r)=—p, (psi). The ground deflects linearly with a

spring constant of k (Ibs/in./in.?).

a. What is the governing differential equation for this problem?
b. What are the boundary conditions at the outer edge, » = a?
Hint: See Section 2.4.
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5.13.

5.14.

In Problem 5.7, write explicitly the four boundary condition equations involving
the constants 4, B, C and E, etc. Do not bother to solve for the constants,
however.

In Problem 5.8, the maximum radial and circumferential stresses are at the plate
center and given by

o at z==1h/2.

3 poa’
rmax — O Omax i§(3+v) ](;2

If the plate is 10" in radius, v =0.3, p, =10psi and the yield stress is 50,000

psi, what thickness is required if

a. the maximum principal stress failure theory is used?

b. the maximum distortion energy failure theory is used?

In each case assume the field is two dimensional, i.e., ignore o, and refer to any

text on structural mechanics to review the failure theories referred to.



CHAPTER 6

BUCKLING OF ISOTROPIC COLUMNS AND PLATES

6.1 Derivation of the Plate Governing Equations for Buckling

The governing equations for a thin plate subjected to both in-plane and lateral
loads have been derived previously. In those equations, there was one governing
equation describing the relationship between the lateral deflection and the laterally
distributed loading,

DV'w = p(x,y)
and other equations dealing with in-plane displacements, related to in-plane loads
Viu, =V, =0.

As discussed previously, the equations involving lateral displacements and lateral
loads is completely independent (uncoupled) from those involving the in-plane loadings
and in-plane displacements.

However, it is true that when in-plane loads are compressive, upon attaining
certain discrete values, these compressive loads do result in producing lateral
displacements. Thus, there does occur a coupling between in-plane loads and lateral
displacements, w. As a result, a more inclusive theory must be developed to account for
this phenomenon, which is called buckling or elastic instability.

Unlike in developing the governing plate equations in Chapter 1, wherein the
development began with the three dimensional equations of elasticity, the following shall
begin with looking at the in-plane forces acting on a plate element, in which the forces
are assumed to be functions of the midsurface coordinates x and y, as shown in Figure
6.1.
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an,
(N, + e dx)dy

1 a.’\"“
Ny + =2 guj g,

Figure 6.1. In-plane forces on a plate element.

Looking now at the plate element of Figure 6.2, viewed from the midsurface in
the positive y direction, the relationship between forces and displacements is seen, when
the plate is subjected to both lateral and in-plane forces, i.e., when there is a lateral
deflection, w (note obviously that in the figure the deflection is exaggerated).

an
(Ny+ % dx)dy

Sw
ox

Figure 6.2. In-plane forces acting on a deflected plate element.

Hence, the z component of the N loading per unit area is, for small slopes (i.e.,
the sine of the angle equals the angle itself in radians):

z ]
L (Nx+aNx dxjdy MOV e, a2
dxdy Ox ox Ox ]
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Neglecting terms of higher order, the force per unit planform area in the z
direction is seen to be

o’w oN, ow

N > .
ox ox Ox

x

(6.1)

Similarly, the z component of the N, force per unit planform area is seen to be

’w CN, ow

1oy oy

5 6.2)

¥y

Finally to investigate the z component of the in-plane resultants N, and N,

/ dy o
' ] ,(‘

Deflected plate
midsurface

dw d fow
f= 5 (3) v

Undeflected plate
midsurface

dw d (dw
o T E(?) o 3

Figure 6.3. In-plane shear forces acting on a deflected plate element.

Hence, the z component per unit area of the in-plane shear resultant is:
ON 2
Ly + @ ][ 2200 g lay
dx dy Y ox oy oxoy

ON 2
v, g [ 9 gy ax
oy ox  Oxoy

-N 6—Wdy—N @dxl
Oy [

xy VX A
0.

Neglecting higher order terms, this result in
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S Ny o N
Yeéxdy ox &y “oxoy Oy ox

(6.3)

With all the above z components of forces per unit area, the governing plate
equation can be modified to include the effect of these in-plane forces on the governing
plate equations.

2 2 2
DV4w:p(x,y)+Nxa—v2V+Nva‘;v+ xvﬂ
Ox S oy © Ox Oy
ON, ow 5Ny ow ON_ 6w ON, 6w
o+ +— +—

ox Ox 6y5 6x5 Oy o

6.4)
+

However, from in-plane force equilibrium, it is remembered from Equations
(2.17) and (2.18), assuming no applied surface shear stresses, that

ON ON_ ON
N, +—==0, T —2=0 (6.5), (6.6)
ox oy Ox Oy

Substituting these into the expression above, the final form of the equation is
found to be:

4 o*w o*w o*w
DViw=p(x,y)+ N, —5+N,—+2N_ ——. 6.7)
ox " oy Y éx oy

Likewise, this governing plate equation can be reduced to the governing equation
for a beam column by multiplying (6.7) by & (the width of the beam) and letting

0()oy=0,v=0, P=-bN, and q(x) = bp(x), to provide

4 2 _

It should be noted that the load P defined above is an in-plane load which when
positive produces compressive stresses, which differs from the convention used
elsewhere throughout this text. However, it is commonly used in the literature on
buckling, is convenient, so herein is described as a barred quantity.
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6.2 Buckling of Columns Simply Supported at Each End

Solving Equation (6.8) by methods described previously, the solution can be
written as:

w(x) = A coskx + Bsinkx + C + Ex+w, (x) (6.9)

where w, (x) is the particular solution for the loading g(x). Consider, for example, the

case wherein g(x) = 0, and the column is simply supported at each end. The boundary
conditions, at x = 0, L, are then

w(0) = w(L) = 0
(6.10)
MX(L} _Ed Yo o SO _ D)
0 dr dr dr

From the first boundary condition 4 + C = 0, from the third 4 = 0; hence, C = 0 also.
From the second boundary condition B sinkL + EL = 0, and from the fourth boundary
condition

Bk’ sinkL =0 = %sinkL =0. (6.11)

Note that in Equation (6.11) when kL # nrx, then B = E = 0; when kL = nx, then
E =0, B#0 butis indeterminate and

P=n’n’—. (6.12)

It is thus seen that for most values of P, the axial compressive loading, the lateral
deflection w is zero (4 = B = C = E = 0), and the in-plane and lateral forces and responses
are uncoupled. However, for a countable infinity of discrete values of P, there is a lateral
deflection, but it is of an indeterminate magnitude. Mathematically, this is referred to as
an eigenvalue problem and the discrete values given in (6.12) are called eigenvalues. The
resulting deflections, in this case, are

w(x) = B sinkx

and are called eigenfunctions.

The natural vibration of elastic bodies are also eigenvalue problems, where in that
case the natural frequencies are the eigenvalues and the vibration modes are the
eigenfunctions. This is treated in the next chapter.

As to buckling, looking at Equation (6.12), as P increases, it is clear that the
lowest buckling load occurs when » = 1, and at that particular load, the column will either
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inelastically deform and strain harden, or the column will fracture. Hence, » > 1 has no
physical significance. The load

Bl

P=r 2

(6.13)

is therefore the critical buckling load for this column for these boundary conditions. In
this particular case the buckling load is called the Euler buckling load, since the Swiss
mathematician was the first to solve the problem successfully.

Another way to phrase the buckling problem is exemplified by solving Equation
(6.8), letting g(x)= g, =constant. The resulting particular solution, in this case, is

q,=x" /2P . If the column is simply supported, solving the boundary value problem for
the lateral deflection, results in

— Ao eoskysinkL — coskL — Ly sinkL + k*x sinkL]. (6.14)

w(x) =
) Pk? sinkL

In Equation (6.14), the solution of a boundary value problem, when the axial load

P has values given in (6.12) wherein sinkL = 0, then w(x) goes to infinity, or, more
properly, since we have a small deflection linear mathematical model, w(x) becomes
indefinitely large.

Hence, whether we solve for the homogeneous solution of Equation (6.8),
resulting in an eigenvalue problem, or we solve the nonhomogeneous Equation (6.8),

resulting in a boundary value problem, the results are identical, when P has values given

by (6.12), or physically where P attains the value given by (6.13), the column ‘buckles’.

Note also that the buckling load, Equation (6.13), is not affected by any lateral
load g(x). The physical significance of a lateral load ¢(x), however, is that the beam-
column may deflect sufficiently, due to both the lateral and in-plane compressive loads,
that the resulting curvature would cause bending stresses which in addition to the
compressive stresses may fracture or yield the column at a load less than or prior to
attaining the buckling load.

These elastic stability considerations are very important in analyzing or designing
any structure in which compressive stresses result from the loading, because in addition
to insuring that the structure is not merely overstressed or overdeflected, in this case a
new failure mode has been added, i.e., buckling.
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6.3 Column Buckling with Other Boundary Conditions

From the previous section, the critical compressive buckling load P is given as

Po=mt— (6.15)

2

Numerous other texts derive critical buckling loads for columns with other
boundary conditions, [6.1] through [6.4], and [12.2].

For ease of use in analysis and design, but without derivations, the following
column buckling equations are listed for the other classical boundary conditions.

Column with both ends clamped

- El
Pcr :471-2? (6.16)
Column with one end clamped and the other simply supported
- ’El
Po=—— (6.17)
(0.669L)
Column with one end clamped and the other end free
Py - El (6.18)
cr 4L2 . .

6.4 Buckling of Isotropic Rectangular Plates Simply Supported on All Four Edges

Plate buckling qualitatively is analogous to column buckling, except that the
mathematics is more complicated, and the conditions that result in the lowest eigenvalue
(the actual buckling load) are not so lucid in many cases.

Whenever the in-plane forces are compressive, and are more than a few percent of
the plate buckling loads (to be defined later), Equation (6.7) must be used rather than
Equation (3.1) in the analysis of plates.

For the plate, just as the case of the beam-column, since the in-plane load that
causes an elastic stability is not dependent upon a lateral load, to investigate the elastic
stability we shall assume p(x, y) = 0 in Equation (6.7).

Consider, as an example, a simply supported plate subjected to constant in-plane
loads N, and N, (let N, =0), as shown in Figure 6.4.
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IITRTRERINRRNRR
x +l N}
Figure 6.4. Rectangular plate subjected to in-plane loads.

Assume the solution of Equation (6.7) to be of the Navier form

wx) = Y4, sm—sm% (6.19)

n=1

Substituting (6.19) into (6.7), it is convenient to define & here to be
a=N,/N,. (6.20)

The solution to the eigenvalue problem is found to be

GEGH

N, =-Dr’t———= (6.21)
(=) ()<,

Here the subscript cr denotes that this is a critical load situation — the plate
buckles. Also note that in (6.21) N, is negative, i.e., a load that causes compressive
stresses.

Equation (6.21) is the complete set of eigenvalues for the simply supported plate,
analogous to Equation (6.12) for the column. In other words for these discrete values of
N, and N, Equation (6.7) has nontrivial solutions wherein the lateral deflection is

given by (6.19); for other values w(x, y) = 0.
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Since we know that as the load increases, the plate will buckle at the lowest
buckling load (or eigenvalue) and all the rest of the eigenvalues have no physical
meaning. So it is necessary to determine what values of the integers m and z (the number
of half sine waves) make N _ a minimum.

Defining the length to width ratio of the plate to be » = a/b Equation (6.21) can be
rewritten as

D’ [m* +n’r’]
N, =-—; [ > 2] . (6.22)
a” [m” +nral

Note if in Equation (6.22) ¢ =0, r=1and m=n=1, then

2
N, =- 4’; D (6.23)

Note the similarities between Equations (6.23) and (6.13).
The question remains; given a combination of N, and N loadings, and a given

=1

N’, b* é
D \:25 \—16 4\ \\—4 (0.0)

Figure 6.5. Values of biaxial loads causing buckling for square simply supported isotropic plate.
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geometry », what values of m and »n provide the lowest buckling loads. One can make a
plot such as Figure 6.5 above from manipulating Equation (6.22) (which is not shown to
scale) for a square plate (a= b, r=1).

It is seen from Figure 6.5 that for such a square plate, simply supported on all four
edges, the plate will always buckle into a half sine wave (m = n = 1) under any
combination of N and/or N, since that line is always closest to the origin, hence, the

lowest buckling load situation.
Next consider a plate under an in-plane load in the x direction only, so N, =0,

and « = 0. In this case, Equation (6.21) can be written as

mor (6.24)

Dr*a® | m* n2—|2
a’ sz

Xcr 2

m

+

N

YYVY Y

A
r 9

Y
J‘+

Figure 6.6. Plate subjected to in-plane load in the x direction.

Examination of Equation (6.24) shows that the first term is merely the Euler
column load (6.13) for a column of unit width, including Poisson ratio effects. The
second term clearly shows the buckle resisting effect providing by the simply supported
side edges, and this effect diminishes as the plate gets wider, i.e., as b increases. In fact
as b — o, (6.24) shows that the plate acts merely as an infinity of unit width beams,
simply supported at the ends, and because they are ‘joined together’, the Poisson ratio
effect occurs, i.e., D instead of EI appears.

It is obvious from Equation (6.24) that the minimum values of N occurs when n

= 1, since n appears only in the numerator. Thus for an isotropic plate, simply supported
on all four edges, subjected only to an uniaxial in-plane load the buckling mode given by
(6.19) will always be one half sine wave [sin(y/b)] across the span, regardless of the
length or width of the plate.

Thus, since n = 1, Equation (6.24) can be written as
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Xcr bZ I m

N - PT (ﬁ+i] (6.25)

where it is remembered that » = a/b, termed the aspect ratio.
Now if a < b (the plate wider than it is long), the second term is always less than
the first, hence, the minimum value of N is always obtained by letting m = 1. Hence for

a < b, the buckling mode for the simply supported plate is always

w(x, y) = A, sin(mj sin(ﬂyj. (6.26)
a b
In that case,
pz* (1 Y
Ny =3 (;+r] . (6.27)

To find out at what aspect ratio r, that N_ is truly a minimum, let

dn, 2D7° (1 1
— = =0=-—"—| =47 | ——5+1}|
dr b r r

Therefore » = 1 provides that minimum value. Hence for m =1, N, is a minimum when
a=b. Under that condition, from (6.27)

2 2
:74D7r :74D7r . (6.28)

xcra=h bz a2

Comparing this with the Euler buckling load of (6.13) for a simply supported
column, it is seen that the continuity of a plate and the support along the sides of the plate
provide a factor of at least 4 over the buckling of a series of strips (columns) that are
neither continuous nor supported along the unloaded edges.

Now as the length to width ratio increases, as a/b increases, the buckling load
(6.27) will increase, and one can ask, will m = 1 always result in a minimum buckling
load, or is there another value of m which will provide a lower buckling load as r
increases (i.e., N, (m=2)<N__ (m=1) for some value of 7?7)

Mathematically, this can be phrased as the following, using (6.25):

2(m—1 Py
< + .
r m—1
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This states the condition under which the plate of aspect ratio » will buckle in m
half sine waves in the loaded direction rather than m — 1 sine waves. Manipulating this
inequality results in

m(m—1) < r?. (6.29)

Equation (6.29) states that the plate will buckle in two half sine waves in the axial
direction rather than one when »>~/2 . The plate will buckle in three half sine waves in
the axial direction rather than 2, when r > \/g , etc.

Again one can ask that when the plate buckles into m = 2 configuration, does a
minimum buckling load occur, if so at what » and what is N

xcr(min) *

From Equation (6.25)
Y 2
i(mzz)zoz_sz 2. r _%Jrl —0
dr b r 2 7 2
orr’=4,r=2.
4Dz’
X cr (min) :_b_2 fOI' m=2. (630)

This is the same value as is given in Equation (6.28) for m = 1. Proceeding with
all values of » and m, the following graph can be drawn, which clearly shows the results
(Figure 6.7).

r=ajfb

Figure 6.7. Buckling load as a function of aspect ratio for a simply supported isotropic plate.
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Hence knowing the value of r, the figure provides the actual value of N and the

corresponding value of the wave number m in the load direction. However, in practice
for » > 1, universally one simply uses Equation (6.28) or (6.30) for the buckling load.
However, looking more closely at Equation (6.29), as m increases we see

mm—1)—>m’>=r> or m=r=alb.

This means that for long plates, the number of half sine waves of the buckles have
lengths approximately equal to the plate width. Another way to stating it is that a long
plate simply supported on all four edges and subjected to a uniaxial compressive load
attempts to buckle into a number of square cells.

Remembering that o = N_/h, Equation (6.28) or (6.30) can be written as the

following for a/b>1,

2’E (hY
o, = W(Zj . (6.31)

6.5 Buckling of Isotropic Plates with Other Loads and Boundary Conditions

The solution to the buckling of flat isotropic plates simply supported on all four
sides subjected to uniaxial uniform compressive in-plane loads has been treated in detail.
However, for many other boundary conditions, simple displacement functions like
Equation (6.19) do not exist, and in some cases analytical, exact solutions analogous to
Equations (6.21) and (6.31) have not been found. In those cases approximate solutions
have been found using energy methods, which will be discussed in Chapters 8 and 9.
These have been catalogued by Gerard and Becker [6.3] among others, and are presented
in Figure 6.8 and k,_, given in the following equations:

2 2
o-’ccr = _LE‘Z(EJ : Nxcr = 2 (632)
’ 12(-vH\ b b
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Figure 6.8. Compressive-buckling coefficients for flat rectangular isotropic plates.

In many practical applications, the edge rotational restraints lie somewhere
between fully clamped and simply supported along the unloaded edges. For the case of
the loaded edges simply supported, the buckling coefficient, k_, of Equation (6.32) are

also given by Gerard and Becker [6.3] as shown in Figure 6.9. The unloaded edge
restraint, ¢, is zero for simply supported edges and infinity for full clamping. Values in

between these extremes require engineering judgment.
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Figure 6.9. Compressive-buckling-stress coefficient of isotropic plates as a function of a/b for various
amounts of edge rotational restraint.

For in-plane shear loading, the critical shear stress is given by the following
equations:

K7E (hY K7D
( j; N, = (6.33)

T, =——— | —
C120-vH)\ b b’

where K is given in Figure 6.10 for various boundary conditions [6.3].
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Figure 6.10. Shear-buckling-stress coefficient of isotropic plates as a function of a/b for clamped and
hinged edges.

For rectangular plates subjected to in-plane bending loads, the following equation
is used to determine the stress value for the buckling of the plate shown in Figure 6.11.

zE 2
o, =k1’”2(hj (6.34)
12(1-v7)\ b

where again ¢ is the value of the edge constraint as discussed previously.
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6.6 The Buckling of an Isotropic Plate on an Elastic Foundation Subjected to
Biaxial In-Plane Compressive Loads

It is important to consider that besides overall buckling of the entire plate, it is
possible that a sandwich face plate may buckle, due to loads applied to the face. In this
case the plate can be considered to be supported on a uniform elastic foundation, namely
the core. In such a case the buckling equation for this phenomenon is

. 2 _ 2
DV*w+kw+ N, 0 ZV+N_V 0 v:
ox oy

=0 (6.35)

where D is the flexural stiffness of the face plate, w is the lateral displacement of the face
plate, & is the foundation modulus in force/unit area/unit deflection, and N., N, are the
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compressive loads per unit width in the subscripted direction (i.e., N.=-N . etc.) acting

on that particular face plate.

Considering this localized buckling phenomenon, is has been found that the plate
boundary conditions at the outer plate edges do not affect the buckling load. Therefore,
for analytical simplicity, assume simply-supported edges on all four sides. Therefore, the
Navier approach may be used for the solution, with the lateral deflection assumed to be

w(x,y)= A sin(@j sin[%} (6.36)

where 4, is the deflection amplitude, a is the plate dimension in the x-direction, and b is
the plate dimension in the y-direction.

For simplification, let ¢ = N, /N, and r = a/b. Substituting Equation (6.36) into
(6.35) and using the above

B (*D/a*Ym® +n’r’) +k

NXC[’
(7[2 /az)(m2 + n2r2¢)

(6.37)

If ¢ =1, and r = 1, then the response is independent of direction. When the in-

plane loads are caused by the cooling of a sandwich plate wherein the coefficients of
thermal expansion between face and core cause the face to be compressed, then ¢ =1.

Further because the buckling is a localized phenomenon, one can let » = 1. Then
Equation (6.37) may be written as
N (7*D/a*)(m® +n’r’)’ +ka’
“ x*(m* +n*)

(6.38)

First it is seen that the minimum value of N, will occur when m = n = 1,
therefore

_ 4 2 2
N, -Gz Dla)rka (6.39)
27

To find the dimension a resulting in a minimum value of Nm , set 6Nm /6a =0, with
the result that

1
a=2"4 2V 6.40
. (6.40)
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This is the half wavelength of the buckle that will occur, and it can be determined that
this is a localized buckle in a reasonably sized face plate. Substituting Equation (6.40)
into (6.39) results in

Nxcr = z(kD)]/z

As defined, N, is a compressive force per unit width and equal to Nycr, since

¢ =1, or in the usual notation, where Ni:=-N, s

i

xcr y

N,, =N, =-2(kD)" (6.41)

The buckling stress in the face plate is therefore

o, = 72(1(1))”2 (6.42)

It has been found that in the fabrication of some sandwich plates, because of the
cooling down subsequent to joining, the faces to the core in a rolling operation,
differential thermal contractions caused sufficiently high compressive stresses in the
faces to cause thermal buckling of the sandwich faces.
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6.8 Problems

6.1. In a plate clamped on all four edges, v =0.25 and loaded in the x direction the
critical buckling stress is given by (from Reference 7.1)

P —_
“ b*h 12(1-v?)

_kn’D_ kr’E (hjz
b

where D is the flexural stiffness, b is the plate width, a is the plate length, and 7 is
the plate thickness. k, is given by
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alb 0.75 1.0 1.5 2.0 2.5 3.0

k 11.69 10.07 8.33 7.88 7.57 7.37

6.2.

6.3.

6.4.

6.5.

(a) Part of a support fixture for a missile launcher measure 45"x15", and must
support 145,000 lbs in axially compressive load. Its edges are all clamped. If
the plate is composed of aluminum with £ =10x10° psi, allowable 30,000
psi (both the tensile and compressive allowable stress is of magnitude 30,000
psi) and v =0.25. What thickness is required to prevent buckling? What
thickness is required to prevent overstressing?

(b) Suppose a steel plate of the same dimensions were used instead of the
aluminum with the following properties: E,_, =30x10° psi, v =0.25 and

=£100,000 psi. What thickness is needed to prevent buckling? Will
the steel plate be overstressed?

(c) The density of steel is 0.283 Ibs/in’, the density of aluminum is 0.100 Ibs/in".
Which plate will be lighter?

A structural component in the interior of an underwater structure consists of a

square plate of dimension a, simply supported on all four sides. If the component is

subjected to in-plane compressive loads in both the x and y directions of equal

magnitude, find N _.

(e

allowable

An aluminum support structure consists of a rectangular plate simply supported on
all four edges is subjected to an in-plane uniaxial compressive load. If the length of
the plate in the load direction is 4 feet, the width 3 feet, determine the minimum
plate thickness to insure that the plate would buckling in the elastic range, if the
material properties are £ =10x10° psi, v =0.3 and the compressive yield stress,
o, =30,000psi.

A rectangular plate 4 feet x 2 feet is subjected to an in-plane compressive load N,

in the longer direction as shown in Figure 7.6. How much weight of plate can be
saved by using a plate clamped on all four edges rather than having the plate simply
supported on all four edges to resist the same compressive load N, ? Express the

answer as a percentage.

An aluminum plate measure 6 feet x 3 feet, of thickness 0.1 inch is clamped on all

four edges. Use the material properties in Problem 6.3 above.

(a) Ifitis subjected to a compressive in-plane load in the longer direction, what is
the buckling stress?

(b) How much higher is the buckling stress compared to the same plate simply
supported on all four edges?



CHAPTER 7

VIBRATIONS OF ISOTROPIC BEAMS AND PLATES

7.1 Introduction

Through the previous chapter, the static behavior of beams, rods, columns and
plates has been treated to determine displacements, stresses, and buckling loads. This is
important because many structures are stiffness critical (maximum deflections are
limited) or strength critical (maximum stresses are limited). In Chapter 6, the elastic
stability of these structures was treated because that is a third way in which structures can
be rendered useless. In most cases when a structure becomes elastically unstable, it
cannot fulfill its structural purpose.

In this chapter, the vibration of beams and plates is studied in some detail. Many
textbooks have been written dealing with this subject, but here, only an introduction is
made to show how one approaches and deals with such problems.

In linear vibrations, both natural vibration and forced vibrations are important.
The former deals with natural characteristic of any elastic body, and these natural
vibrations occur at discrete frequencies, depending on the geometry and material systems
only. Such problems (like buckling) are eigenvalue problems, the natural frequencies are
the eigenvalues, and the displacement field associated with each natural frequency are the
eigenfunctions. One remembers that in a simple spring-mass system, there is one natural
frequency and mode shape; in a system of two springs and two masses, there are two
natural frequencies and two mode shapes. In a continuous elastic system, theoretically
there are an infinite number of natural frequencies, and a mode shape associated with
each.

Forced vibrations occur when an elastic body is subjected to a time dependent
force or forces. In that case the response to the forced vibrations can be viewed as a
linear superposition of all the eigenfunctions (vibrations modes), each with an amplitude
determined by the form of the forcing function. In forced vibrations, the forces can by
cyclic (harmonic vibration) or non-cyclic, including shock loads (those which occur over
very small times).
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7.2 Natural Vibrations of Beams

Consider again the beam flexure equation discussed previously.

4

EI ix‘f = g(x). (7.1)

It is seen that the forcing function g(x) is written in terms of force per unit length.
Using d’Alembert’s Principle for vibration, an inertial term can be written which is the
mass times the acceleration per unit length. Also the forcing function can be a function
of time, and of course the lateral deflections will be a function of both spatial and
temporal coordinates. The result is that (7.1) becomes, for the flexural vibration,

o'w 0w
EI = )—p A——. 7.2
P q(x,0)-p, P (7.2)

In the above p, is the mass density of the beam material, and 4 is the beam

cross-sectional area, both of which are taken here as constants for simplicity.

As stated previously, natural vibrations are functions of the beam material
properties and geometry only, and are inherent properties of the elastic body —
independent of any load. Thus, for natural vibrations, g(x, 7) is set equal to zero, and
(7.2) becomes

4 2
6w+p Aaw

El -
ox’ " ot

=0. (7.3)

To solve this equation to obtain w(x, f), in general, one can assume w(x, f) =
X(x)T(?), a separable solution, use separation of variables to obtain a spatial function X{x)
which satisfies all of the boundary conditions, and an harmonic function for 7(7), and thus
arrive at a characteristic set of variables to satisfy (7.3) and its boundary conditions. In
that process the natural frequencies and mode shapes are determined.

By way of a specific example, consider the beam to be simply supported at each
end. Then the spatial function is a sine function such that

wx, )= 4, sin % sin. ¢ (7.4)

n=1

where 4, is the amplitude, and o, is the natural circular frequency in radians per unit

time for the nth vibrational mode.
Substituting (7.4) into (7.3) results in:

4_4
n'r
I

ZA{ EI—a)nsz} sin%sina)nt =0. (7.5)

n=1
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For this to be an equation, then for each value of », requires that

2_2

w, =2 B (7.6)
L P, A

It is seen that for each integer n, there is a different natural frequency, and from
(7.4) a corresponding mode shape (i.e., n» = 1, a one half sine wave; n = 2, two half sine
waves, etc.).

Unlike in buckling where one looks for the lowest buckling load only, in
vibrations each natural frequency is important, because if a beam were subjected to an
oscillating load coinciding with any one natural frequency, little energy would be needed
to cause the amplitude to grow until failure occurs.

The lowest natural frequency, n = 1 in this case is called the fundamental
frequency. Theoretically # could increase to infinity. However, at some point the
governing equation (7.3) does not apply, and thus the resulting frequencies given by (7.6)
become meaningless. For a beam of an isotropic material the classical beam equation
(7.3) ceases to apply when the vibration half wave length approaches the beam depth, 4,
because then transverse shear deformation effects (£ _ # 0) become important and (7.3)

must be modified.

It is noted that for beams with boundary conditions other than simply supported at
each end, the eigenfunctions (vibration modes) are not as simple as a sine wave. These
are treated in detail in any of many fine texts on vibration. However, the natural
frequencies, ®,, are catalogued below for use in analysis and design. In this case,

no

Equation (7.6) is modified slightly for general use.

(1.7)

where « values are given by the following:

Simple Support-Simple Support Beam: n’7z>
Cantilevered Beam: « =3.52, «a;, =22.6, a; =61.7

Clamped-Clamped Beam: «, =224, a; =61.7, a; =121.0

In all of the above, classical beam theory is used, i.e., no transverse shear deformation
effects. Also remember that in 90 + % of the errors made by students calculating natural
frequencies, the student used the weight density of the material rather than the mass
density.
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7.3 Natural Vibrations of Isotropic Plates

Consider again the equation for the bending of a rectangular plate subjected to a
lateral load, p(x, ), given by Equation (2.57).

DV*w = p(x, 7). (7.8)

If d’Alembert’s Principle were used to accommodate the motion, one would add a
term to the right hand side equal to the negative of the product of the mass per unit area
and the acceleration in the z direction. In that case, the right hand side of (7.8) becomes:

2

o'w
p(xayat)_pmha?(-x:yat) (79)

where both p and w are functions of time as well as space, p is the mass density of the
material and / is the plate thickness. For forced vibration p(x, y, f) causes the dynamic
response, and can vary from a harmonic oscillation to an intense one time impact.

As discussed in the previous section, to study the natural vibrations p(x, y, £) is set
equal to zero, and the governing equation becomes the following homogeneous equation:

4 4 ~d 2
D{O w+ o'w 0w—|+ h6 W (7.10)

+ =
ox? ox* oyt oyt ] P or?
As done previously, one can assume a solution for the lateral deflection, which

spatially satisfies the boundary condition, is harmonic in time and satisfies (7.10) above.
For the case of a plate simply-supported on all four edges, such a function is

w(x, y,t) = z z A,, sin% sin% sinw,,t (7.11)

m=1 n=1

where a and b are the plate dimensions, A,,, is the vibration amplitude for each value of

the integers m and n, and @, is the natural circular frequency in radians per unit time.

1
4 2 2 2—|A
,, :[” i(m—2+z—2] . (7.12)

In this case the fundamental natural frequency occurs for m = n = 1. Again, the
amplitude 4,, cannot be determined from this linear eigenvalue problem, in which the

eigenvalues are the natural circular frequencies of Equation (7.12) and the corresponding
eigenfunctions are the mode shapes, given in (7.11).

To obtain the natural frequency of vibration in cycles per second, called Hertz
(Hz), denoted by f,,,,
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Som =57 (7.13)

As in buckling, plates with other boundary conditions comprise more complicated
problems, often most difficult to solve analytically. In many cases appropriate solutions
are obtained using energy methods (Chapters 8 and 9).

Ma and Lin [7.1] have provided graphic descriptions of the first six vibration
modes for an aluminum (isotropic) square plate, giving both the experimental observation
and the mode shapes obtained by numerical calculation.

AF-ESPI EN AF-ESPI

Maode

Mode 2

Mode 3 Mode 6 (3,3)

Figure 7.1. First six mode shapes for isotropic aluminum square plate obtained from experimental
observation and numerical calculation.
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7.4 Forced Vibrations of Beams and Plates

These will not be treated here. There are many fine texts at a basic level and
voluminous literature dealing with this subject. Thomson [7.2] is such a text, and Leissa
[7.3] provides solutions to numerous problems. Vibration damping is treated in the text
by Nashif, Jones and Henderson [7.4].

One excellent paper by Dobyns [7.5] also given by Vinson and Sierakowski [1.7],
and repeated here in Chapter 13, provide solutions to the dynamic response of anisotropic
plates subjected to a variety of impact loads of practical value, and are treated herein in
Section 13.4. Those solutions are easily simplified to treat plates of isotropic materials.

7.5 References

7.1. Ma, C-C and Lin, C-C (2001) Experimental Investigation of Vibrating Laminated
Composite Plates by Optical Interferometry Method, 4IAA Journal, Vol. 38,
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Administration Special Publication, also (1973) The Free Vibration of
Rectangular Plates, Journal of Sound and Vibration, Vol. 31, No. 3, pp. 257-
293.

7.4. Nashif, A.D., Jones, D.I.G. and Henderson, J. (1985) Vibration Damping, Wiley
Interscience.

7.5. Dobyns, A.L. (1981) The Analysis of Simply-Supported Orthotopic Plates
Subjected to Static and Dynamic Loads, AI44 Journal, May, pp. 642-650.

7.6 Problems

7.1. A beam is 30 inches long, 1 inch wide and made of steel (E =30x10° psi, v=0.3,
weight density p, =0.2831bs/in’), simply supported at each end. What must the

thickness # be to insure that the lowest natural frequency is not lower than 30 Hz?
7.2. For the beam of Problem 7.1 dimensions and material, what is the fundamental
frequency if the beam is cantilevered?
7.3. For the beam of Problem 7.1 dimensions and material, what is the fundamental
frequency if the beam is clamped at each end?



CHAPTER 8

THEOREM OF MINIMUM POTENTIAL ENERGY, HAMILTON’S PRINCIPLE
AND THEIR APPLICATIONS

8.1 Introduction

Many structures involve complicated shapes and numerous or unusual loads for
which solutions of the governing differential equations and/or the boundary conditions
are difficult or impossible. For instance, a rectangular plate with a hole somewhere, or a
plate with discontinuous boundary conditions poses a major difficulty in finding an
analytical solution.

For preliminary design and analysis one needs simplified, easy to use analyses
analogous to those that have been presented earlier. However, for final design, quite
often transverse shear deformation and thermal effects must be included. Thermal
effects have been described in Chapter 4. Analytically they cause considerable difficulty,
because with their inclusion few boundary conditions are homogeneous, hence separation
of variables, used throughout the plate solutions to this point, cannot be utilized in a
straightforward manner. Only through the laborious process of transformation of
variables can the procedures discussed herein be used [1.1]. Therefore, energy principles
are much more convenient for use in design and analyses of plate structures when
thermal effects are present.

In solving plate problems it is seen that in order to obtain an analytical solution
one must solve the differential equations and satisfy the boundary conditions; if that
cannot be accomplished, there is no solution. With energy methods, one can always
obtain a good approximate solution, no matter what the structural complexities, the loads
or the boundary condition complications may be, using a little ingenuity.

In structural mechanics three energy principles are used: Minimum Potential
Energy. Minimum Complementary Energy and Reissner’s Variational Theorem [8.1].
The first two are discussed at length in Sokolnikoff [1.1] and many other references. The
Reissner Variational Theorem, likewise, is widely referenced. In solid mechanics,
Minimum Complementary Energy is rarely used, because it requires assuming functions
that insure that the stresses satisfy boundary conditions and equilibrium. It is usually far
easier to make assumptions about functions that can represent displacements.

Minimum Potential Energy is widely used in solutions to problems involving
plate structures. In fact, the more complicated the loading, the more complicated the
geometry and the more complicated the boundary conditions (e.g., discontinuous or
concentrated boundary conditions), the more desirable it is to use Minimum Potential
Energy to obtain an approximate solution, compared to attempting to solve the governing
differential equations and to satisfy the boundary conditions exactly.

In addition, in many cases energy principles can be useful for eigenvalue
problems such as in the buckling and vibration problems as shall be shown.
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There are numerous books dealing with energy theorems and variational methods.
One of the more recent is that by Mura and Koya [8.2].

8.2 Theorem of Minimum Potential Energy

For any generalized elastic body, the potential energy of that body can be written
as follows:

V = JyWdR— [ Ta,dS - [ Fu,dR
(8.1)

where

W = strain energy density function, defined in Equation (8.4) below
R = volume of the elastic body

T; = ith component of the surface traction

u; = ith component of the deformation

F; = ith component of a body force

S = portion of the body surface over which tractions are prescribed

One sees that the first term on the right-hand side of Equation (8.1) is the strain
energy of the elastic body. The second and third terms are the work done by the surface
tractions; and the body forces, respectively. The Theorem of Minimum Potential Energy
can be stated as described in [1.1]: “Of all the displacements satisfying compatibility and
the prescribed boundary conditions, those that satisfy the equilibrium equations make the
potential energy a minimum.”

Mathematically, the operation is simply stated as,

oV =0 (82)

The lowercase delta is a mathematical operation known as a variation.
Operationally, it is analogous to partial differentiation. To employ variational operations
in structural mechanics, only the following three operations are usually needed (where y
is any dependent variable):

DA Ao i

In Equation (8.1) the strain energy density function, W, is defined as follows in a
Cartesian coordinate frame:
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—_ 1 n ]
=505 =5 0xbx t 50,6, + 50 84
+0,6,+0,.6.+0,.8,

To utilize the Theorem of Minimum Potential Energy, the stress-strain relations
for the elastic body are employed to change the stresses in Equation (8.4) to strains, and
the strain-displacement relations are employed to change all strains to displacements.
Thus, it is necessary for the analyst to select the proper stress-strain relations and strain-
displacement relations for the problem being solved.

Although this text is dedicated to plate and panel structures, it is best to introduce
the subject using isotropic monocoque beams, a much simpler structural component, to
first illustrate the energy principles.

8.3 Analysis of a Beam In Bending Using the Theorem of Minimum Potential
Energy

As the simplest example of the use of Minimum Potential Energy, consider a
beam in bending, shown in Figure 8.1. In this section, Minimum Potential Energy
methods are used to show that if one makes beam assumptions, one obtains the beam
equation. However, the most useful employment of the Minimum Potential Energy
Theorem is through making assumptions for the dependent variables (the deflection) and
using the Theorem to obtain approximate solutions, as will be illustrated later.

From Figure 8.1 it is seen that the beam is of length L, in the x-direction, width b
and height 4. It is subjected to a lateral distributed load, ¢(x) in the positive z-direction,
in units of force per unit length. The modulus of elasticity of the isotropic beam material
is E, and the stress-strain relation is simply

oy =Eg&y (8.5)
q(x)
J\z’ E x’

-

Figure 8.1. Beam in bending
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The corresponding strain-displacement relation for a beam in bending only is, from
(1.16), (2.1) and (2.27),

d d?
Ex =a”=—dx—;”z (8.6)

since in the bending of beams, u# = —z(dw/dx) only.

Looking at Equations (8.4) through (8.6) and remembering that in elementary
beam theory

0y =0;=0y =&x; =€); =0y, =0

then if the beam is subjected to bending only
1 1 1 (d2w)’
W=_0.,6 ==E&= E(—} z2 (8.7)

Therefore, the strain energy, U, which is the volume integral of the strain energy density
function, W, is

2
b2 hs21 EI d’w
U= joL b/2 .El7/22 [ ] 2dzdydx:7j0L (dxzj dx (8.8)

where, 1= b3 /12 , the flexural stiffness for a beam of rectangular cross-section.
Similarly, from the surface traction work term in Equation (8.1) it is seen that

L
[s, Tids = [y q(x) w(x)dx
Equation (8.1) then becomes

=— Io ( ] dx— Io q(x) w(x)dx (8.9)

Following Equation (8.2) and remembering Equation (6.3) then

SV =0= —jo [dx }dx [ q(x) Sw(x)dx (8.10)
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The variation J can be included under the integral, because the order of variation
and integration can be interchanged. Also, there is no variation of E, I or ¢(x) because
they are all specified quantities.

Integrating by parts the first term on the right-hand side of Equation (8.10).

] o S (e

2 2
_EIIOLd ;vd (iw)
dx

| d%w (dw rd3 wd(o“w)
{Eldﬁg(dxj‘ El[, < = dx (8.11)

2, - 3. 1k

_|prdw > 5(‘”] e s

dx dx ), dx Jo
+EIde  Swdx

dx?

Substituting Equation (8.11) into (8.10) and rearranging, it is seen that:

2w (dw\l [ b 1"
oV =0= {EI 5(5) _ {EI 3 W sw
d‘x JO dx JO (8.12)

d*w
+ o {EI o q(x) owdx

For this to be true, the following equation must be satisfied for the integral above
to be zero:

d4
EI— = .
& q(x) (8.13)

This is obviously the governing equation for the bending of a beam under a
lateral load. So, it is seen that if one considers a beam-type structure, uses beam
assumptions, and uses proper stress-strain relations and strain-displacement relations, the
result is the beam bending equation. However, it can be emphasized that if a
nonclassical-shaped elastic structure were being analyzed, by using physical intuition,
experience or some other reasoning to formulate stress-strain relations, and strain-
displacement relations for the body, then through the Theorem of Minimum Potential
Energy one can formulate the governing differential equations for the structure and load
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analogous to Equation (8.13). Incidentally, the resulting governing differential equations
derived from the Theorem of Minimum Potential Energy are called the Euler-Lagrange
equations.

Note also for Equation (8.12) to be true, each of the first two terms must be zero.

Hence, at x = 0 and x = L (at each end) either El(dzw/dxz): —M, =0or (dw/dx) must

be specified (that is, its variation must be zero), also either El(d3 w/dx ): -V, =0o0rw

must be specified. These are the natural boundary conditions. All of the classical
boundary conditions, including simple supported, clamped and free edges are contained
in the above “natural boundary conditions.” This is a nice byproduct from using the
variational approach for deriving governing equations for analyzing any elastic structure.

The above discussion shows that if in using The Theorem of Minimum Potential
Energy one makes all of the assumptions of classical beam theory, the resulting Euler-
Lagrange equation is the classical beam equation (8.13) and the natural boundary
conditions given in (8.12) as discussed above.

Equally or more important the Theorem of Minimum Potential Energy provides a
means to obtain an approximate solution to practical engineering problems by assuming
good deflection functions which satisfy the boundary conditions. As the simplest
example consider a beam simply supported at each end subjected to a uniform lateral
load per unit length g(x) =—q, a constant.

Here, an example, assume a deflection which satisfies the boundary conditions
for a beam simply supported at each end, where 4 is a constant to be determined.

~ foin ™
w(x) = Asin 7 (8.14)

This is not the exact solution, but should lead to a good approximation because (8.14) is
a continuous single valued function which satisfies the boundary conditions of the
problem.

Proceeding,

(8.15)

Substituting (8.14) into (8.9) results in
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_EI L A%r? . QX L . TIX
V—7 04 sin fdx—jo(—qo)Asmfdx
El A%272% (L L o
== Z = (~g,)A=| —cos =2 8.16
3 sz e (#19
4
4 2 L
_EEIA +qOA;[—cos;z+1]
2q0 qOL-|
oV = 0——EI2A§A+ oA =05 —EIA .
4L T 2L /4 ]
Therefore,
4g.L*
4=-"10 =w(L/2) (8.17)
7 El
The exact solution is
5 qoL
L/2)= .
ML) = 3 h (8.18)

The difference is seen to be 0.386%. So the Minimum Potential Energy solution
is seen to be almost exact in determining the maximum deflection.

In determining maximum stresses the accuracy of the energy solution is less,
because bending stresses are proportional to second derivatives of deflection. By taking
derivatives the errors increase (conversely, integrating is an averaging process and errors
decrease) so the stresses from the approximate solution differ more from the exact
solution than do the deflections.

To continue this example for a one lamina composite beam, simply supported at
each end, subjected to a constant uniform lateral load per unit length of —g,), it is clear

that the maximum stress occurs at x = L/2. From classical beam theory, the exact value
of the maximum stress is

12
Omax = O-x(£ +ﬁ} 1907 (8.19)

Likewise, for the Minimum Potential Energy solution, using (8.15)
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2
L h oL L h 4q0L
= +t—|=-Elw s 8.20
GmaX O-x [ 2 > 2) 2 2 7[3 ( )
The difference between the two is 3.2%, so the energy solution is quite accurate for many
applications.

If one wishes to increase the accuracy, instead of using (8.14) one could use

N
w(x) = ZAnsin% (8.21)
n=1

If N were chosen to be three, for example, the expression for w(x) is given by

27mx 3 .
w(x) = A;sin— 7 +A25m 7 + A4;sin Zx and one would proceed as before, taking

variations with respect to 4, 4, and A, which provides three algebraic equations for

determining the three 4,. Of course as N increases, the accuracy of the solution

increases until as N approaches infinity it is another form of the exact solution.

As a second example, examine the same beam, this time subjected to a
concentrated load P at the mid-length, x = L/2. To obtain an exact solution, one must
divide the beam into two parts, so that the load discontinuity can be accommodated, with
the result that there are two fourth order differential equations and eight boundary
conditions. Not so with the case of Minimum Potential Energy to obtain an approximate
solution, as follows. Again assume (8.14) as the approximate deflection because it is
single valued, continuous and satisfies the boundary conditions at the end of the beam.
There,

2
d-w
V= 2] El(dx }dx Pw(L/2)

7131 A% — P4
413
7%EI A4
oV =0=2"2%_psd
2L
2PI3
or, A = 4—E:I = W(L/z) = Wmax

T

Again, instead of (8.14) one could have chosen (8.21) as the trial function to use in
solving this problem.

Thus, the Theorem of Minimum Potential Energy can be used easily for
complicated laterally distributed loads, concentrated lateral loads, any boundary
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conditions, and/or variable or discontinuous beam thicknesses. One only needs to select
a form of the lateral displacement such as the following examples.

Clamped Clamped Beam

w(x) = A{l —cos 22“} (8.22)
Clamped-Simple Beam
w(x) = A[L3x —3Lx3 + 2x4} (8.23)

Cantilevered Beam

w(x) = Ax? (8.24)

8.4 The Buckling of Columns

In this case the strain energy is again given by Equation (8.8), where neglecting
body forces F;, the work done by surface tractions is given as follows:

s flr ()

This equation incorporates the more comprehensive theory employed in Chapter
6 to include buckling, and as discussed previously, to calculate buckling loads, #, =0,
because at incipient buckling the arc length of the buckled column is equal to the original
length. Also, in the above, P is the tensile load, considered constant to make the problem
linear. Therefore, for column buckling,

L 2 2 I 2
V:ﬂj ‘“2” dx+fj(@jdx. (8.25)
2 I dx 2 Udr

Taking the variation of the potential energy, one obtains the following Euler-
Lagrange equation analogous to Equation (8.13)

d*w _p d*w

EI o e

=0 (8.26)
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as well as the natural boundary conditions discussed previously. However, assuming a
form of w(x), which satisfies the boundary conditions for the column, which
approximates the exact buckled shape will provide an approximation to the exact
buckling load.

Consider a column simply supported at each end, if one uses (8.14) in (8.25) and
takes variation of A4, the result is:

V_|:7I4E[ Pz’ 1

= +
4L AL |
(8.27)
4 2
sv=Z fl—PiszaAzo
4L 4L |
so the bracket must equal zero, or

P=-7? %

It is seen that this is the exact buckling load, because the exact buckling mode
(8.14) was utilized. Some other approximate displacement functions satisfying the
boundary conditions would give an approximate buckling load. It can be proven that
such an approximate buckling load will always be greater than the exact buckling load.
However, as long as the assumed displacement satisfies the boundary conditions, the
error is never more than a very few percent of the exact value.

8.5 Vibration of Beams

The energy principle to utilize in dynamic analysis is Hamilton’s Principle which
employs the functional
= ](T “V)dr. (8.28)
4
Hamilton’s Principle states that in a conservative system
01=0. (8.29)
In the above, the potential energy, V, is given by Equation (8.1), and T is the

kinetic energy of the body. In a beam undergoing flexural vibration, the kinetic energy
would be
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T—le A(a—wjzdx (8.30)
zopm (31 ‘

where p,, is the mass density of the material, 4 is the beam cross-sectional area, and
ow/ot is the velocity of the beam.

Using Hamilton’s Principle in the same way that was done before for Minimum
Potential Energy, the resulting Euler-Lagrange equation is

~d 2
oW, 40y (8.31)

EI -
ox* "ot

which is identical to Equation (7.3). Also resulting are the natural boundary conditions,
discussed previously.

Considering a beam simply supported at each end, if Equation (8.14) is modified
to include a harmonic motion with time, such as

. nm
w(x,t) = Csin——-cosw,t
L

where C is a constant.
The result is an Euler-Lagrange equation of

w, =12 | = (8.32)

which is the exact solution for the natural circular frequency, ,, in radians/unit time

[see Equation (7.6)] because the exact mode shape was assumed. Again, if the assumed
displacement function is approximate, then approximate natural frequencies will be
obtained; are higher than the exact frequencies, but the error will be at most a few
percent. In any case the natural frequency, /(in Hz), is found by @, /27 .

Note that in assuming mode shape functions in both buckling and vibration
problems (eigenvalue problems), the closer the assumed approximate function is to the
exact mode shape, the lower the resulting eigenvalue will be, and of course it will be
closer to the exact eigenvalue, since the exact eigenvalue is always lower than any
approximated value.
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8.6 Minimum Potential Energy for Rectangular Isotropic Plates

The strain energy density function, W, for a three dimensional solid in rectangular
coordinates is given by Equation (8.4). The assumptions associated with the classical
plate theory of Chapter 2 are employed to modify (8.4) for a rectangular plate. If
transverse shear deformation is neglected, then £ =g _=0. If there is no plate

thickening, then £, = 0. From Equations (1.9), (1.10), and (1.12), stresses are written in
terms of strains, such that for the classical plate,

E E E
o, = —le, +ve, ], o, =——-le, +ve,]; 0, =——-¢,. (833)
(1-v7) ’ (1-v") ’ (1-v7) -
Therefore, (8.4) becomes
E Ee,
W= o (e hve )t (e, bve )t g2 (8.34)
20-17) AT (d+v) *

If the plate is subjected to bending and stretching, the deflection functions are given by
Equations (2.24) through (2.28). Substituting these into (8.34) results in the following:

2 2 A 2
£ [f{uo] [ m(%) ovy ), Lev[ou,  ov, ]
2(0-v7) |\ ox oy ox \ oy 2 | oy ox |
Ez’ aw) (o*wY) o*wY o*w) |
o >+ = | +2v|— =1 . (8.35)
20—v7)| { ox oy ox oy |
N Ez* (d*w ’
(1+v)\oxdy )
From this the strain energy U(= IRWdR) is found.
a b A 2
R A PRV S S LA o PV
24 ox Oy ay 2 \dy ox

: (8.36)
Dl (0w 8w o*w\ 6*w o*w )’
e e R

It is seen that the first term is the extensional or in-plane strain energy of the
plate, and the second is the bending strain energy of the plate. In the latter, it is seen that
the first term is proportional to the square of the average plate curvature, while the
second term is known as the Gaussian curvature.
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For the plate the total work term due to surface traction is seen to be

, o b - 1
TudS jofp(x L) w(x, y)dxdy‘oj HN{%JF (Z;vj J

(8
N |:6\0 —‘_+ny|:(%+_ Voj-i-( Wj[aij} Y
J @)7 Ccx Ox ) J

Hence, in (8.36) and (8.37) if one considers a plate subjected only to a lateral load
p(x, y), one assumes u, =v, =N, =N, =N_=0. If one is considering in-plane loads

37)

only (except for buckling) assume w(x, y) = p(x, ) = 0. If one is looking for buckling
loads, assume p(x,y)=u, =v, =0. The rationale for all of this has been discussed

previously.

8.7 The Buckling of an Isotropic Plate Under a Uniaxial Load, Simply Supported
on Three Sides, and Free on an Unloaded Edge

The most beneficial use of the Minimum Potential Energy Theorem occurs when
one cannot formulate a suitable set of governing differential equations, and/or when one
cannot ascertain a consistent set of boundary conditions. In that case one can make a
reasonable assumption of the displacements, and then solves for an approximate solution
using the Theorem of Minimum Potential Energy. This is illustrated in the following
example.

Consider the plate shown below in Figure 8.2. The governing differential
equation for this problem is obtained from Equation (6.7).

otw o'w  o*'w N, ow
4 + 2 2 + 4 = 2"
Ox ox“dy~ Oy D ox

(8.38)

To solve for the buckling load directly, a Levy type solution may be assumed:

w(x, y) = ZV/M ) Sln— (8.39)

m=1

Substituting (8.39) into (8.38) results in the following ordinary differential
equation to solve:

2 v N 2
Ay -2Ly"+y" =- D" % (8.40)
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Figure 8.2. Plate studied in Section 8.7.

where
A =TE e dz(z)’ and ()" = d4(4)
a dy dy
Letting N.=-N .» Equation (8.40) can be solved with the result that
v, (y)=Acosha y+ Bsinha y+Ccosff y+ Esinfl y
where

1/2

=|

Al
[ \/7—|1/2

A+ A
D

(8.41)
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The boundary conditions on the y = 0 and b edges are

w(x,0) =0 = w(0) =0

M, (x,0)=0—y"(0)=0

M, (x,)=0 = y"(b)~vA2y(b) =0 (8.42)
V(x,0)=0— y"(b) - 2 - )L y'(b) =0.

It is clear that the first two boundary conditions require that 4 = C = 0. Satisfying
the other two boundary conditions results in the following relationship for the

eigenvalues (i.e., the buckling load N, = -N)).
— Btanha bla® —vA. ]’ +a tanf b B° +vA. ]’ = 0. (8.43)

Thus, knowing the plate geometry and the material properties, one can solve for
the buckling loads for each value of m. It can be shown that the minimum buckling load
will occur for m = 1, thus a one-half sine wave in the longitudinal direction. However,
note the complexity both in obtaining Equation (8.43), and then using that equation to
obtain the buckling load, compared to the relative simplicity of Section 6.4 for solving
the simpler problem of the plate completely simple supported on all four edges. The
solutions of this problem have been catalogued in Reference 6.1 and are given below:

2 2 2
N, :—kﬂ—zD and o, = —LEZ(EJ .
b 120-v7)\b
For v=0.25
alb 0.50 1.0 2.0 3.0 4.0 5.0
k 4.40 1.44 0.698 0.564 0.516 0.506

Now to solve the same problem using Minimum Potential Energy. However,
before doing so a brief discussion regarding boundary conditions is in order. They can
be divided into two categories: geometric and stress. Geometric boundary conditions
involve specifications on the displacement function and the first derivative, such as
specifying the lateral displacement w or the slope at the boundary, ow/éx or éw/dy,
stress boundary conditions involve the specifications of the second and third derivative
of the displacement function, such as the stress couples, M, M , M, or the transverse

xy?

shear resultants Q. ,Q,, or the effective transverse shear resultants V',V , discussed in

Chapter 2.

In using the Minimum Potential Energy Theorem, one must choose a deflection
function that at least satisfies the geometric boundary conditions specified on the
boundaries. This suitable function will give a reasonable approximate solution. Better
yet, by assuming a deflection function that satisfies all specified boundary conditions,
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one can achieve a very good approximate solution. If one could choose a deflection
function that satisfies all boundary conditions and the governing differential equation for
the problem also, that is the exact solution! Finally, if one chose a deflection function
that did not satisfy even the geometric boundary conditions, the solution would be
inaccurate because in effect the solution would not be for the problem to be solved, but
for some other problem for which the assumed deflection does satisfy the geometric
boundary conditions.
In this example, the following function is assumed for the lateral deflection:

w(x, y) = Ay sin% (8.44)

This satisfies all boundary conditions on the x = 0, a edges. It satisfies the
geometric boundary condition that w(x,0) = 0, but does not satisfy the stress boundary
conditions that M(x,0) = M(x,b) = V(x,b) = 0. Substituting Equation (8.44) and its
derivatives into Equations (8.1) wusing (8.36) and (8.37), where of course
N, =N_ = p(x,y) = 0 produces

V=

v}

].bj. {—Ayﬂzsinﬂx—| +2(l—v){—A7rcosﬂxT dxdy
00 a a | a a | (8.45)

a

b 2
= .[ IAzyzﬂ—zcoszﬂdxdy.
0 0 a

=

2 a
Integrating Equation (8.45) gives

4 73 2 '| 273
V =A42D ”—Sb—+2(17v)”b N2 T
a 3 a | ’ 3a

Setting ¢ V' =0, where the only variable with which to take a variation is 4, produces the
requirement that

N, :[n2D+6(l—v)DT (8.46)

a’ o

To compare this approximate result with the exact solution shown previously, let
a/b=1,and v =0.25. From Equation (8.46)

2
N —-1456%P

Xer b2 :

(8.47)
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In the exact solution, the coefficient is 1.440. Hence, the difference between the
approximate solution and the exact solution is approximately 1%, yet the three stress
boundary conditions on the y = constant edges were not satisfied.

8.8 Functions for Displacements in Using Minimum Potential Energy for Solving
Beam, Column, and Plate Problems

In the use of Minimum Potential Energy methods to solve beam, column, and
plate problems, one usually needs to assume an expression for the lateral deflection w(x)
for the beam or column, and w(x, y) for the plate. These must be single valued,
continuous functions that satisfy all the boundary conditions, or at least the geometric
ones. Below are a few functions useful in the solutions of beam and column problems.

Simple-simple

wx) =4, sin% (8.48)
n=1
Simple-free
w(x) = Ax (8.49)

Clamped-clamped

w(x) = A[l _ cos 2| (8.50)
Clamped-free
w(x) = Ax* (8.51)
Clamped-simple
w(x) = AL'x =3Lx" +2x*] (8.52)
Free-free
w=4. (8.53)

In the case of a plate with varied boundary conditions, let w(x, y) = fx)g(x) where for f{x)
and g(y) use the appropriate beam functions above. For example, consider a plate
clamped on edges y = 0 and y = b, and clamped at x = 0 and simply supported at x = a.
Assume the function:
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M{L)O—zgiﬁx3Lx3+2xﬂ[lcoszﬁfy} (8.54)

Keep in mind none of the above functions are unique, and thus the engineer may
use his ingenuity to conceive functions best for the solution of that particular problem.
For instance, suppose a plate had one edge simply supported at y =0, 0<x <a/2, and
clamped from a/2 < x < a. No analytical solution could be obtained but an approximate
solution using energy methods is always attainable.

Perhaps the most complete and useful tabulation of functions, their derivatives
and their integrals, to use in energy methods are those of Warburton [8.3] and Young and
Felgar [3.1, 3.2].
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8.10 Problems

. 6 . .
8.1.  Consider a steel plate (£=30x10"psi,v =0.25,5 =30,000psi)used as a

portion of a bulkhead on a ship. The bulkhead is 60" long and 30" wide

subjected to an in-plane compressive load in the longer direction. What thickness

must the plate be to have a buckling stress equal to the yield stress if:

(a) the plate is simply supported on all four edges?

(b) the plate is simply supported on three edges and free on one unloaded edge?
8.2.  Given a column of width b, height %, and length L, simply supported at each end,

use the principle of Minimum Potential Energy to determine the buckling load, if

one assumes the deflection to be

@)mm=A%u—m

(b) w(x)= L—/i[Zsz —x*'=I’x]

where in each case 4 is an amplitude.
Do the deflections assumed above satisfy the geometric boundary conditions? Do
they satisfy the stress boundary conditions?

8.3.  Consider the plates below, each subjected to a uniform axial compressive load per

inch of width, N, =-N_(Ibs./in.) in the x direction. Determine a suitable
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deflection function w(x, y) for each case for subsequent use in the Principle of
Minimum Potential Energy to determine the critical load N ..

N, S
TYrvrrvveeY Case I |[F F

y* &

S = simple support

ple== W= F = free edge 3
a C= clamped Case Il IS F

C

C
I““_“““ Case Il |C F

‘ N C

X
N,

TR

8.4.  For an end plate in a support structure with the following boundary conditions,
use the Principle of Minimum Potential Energy to determine the buckling load, if
one assumes the deflection function to be w = A[l—-cos(2mx/a)], where A4 is the
unknown amplitude.

8.5. Consider a rectangular plate of 0<x<a, 0<y<b, —h/2<z<h/2. If the
lateral deflection w(x, y) is assumed to be in a separable form w= f(x)g(»), and
if w = 0 on all boundaries, determine the amount of strain energy due to the terms
comprising the Gaussian curvature. See (8.36).

8.6. The base of a missile launch platform consists in part of vertical rectangular
plates of height a, and width 5, where a >b. They are tied into the foundation
below and the platform above such that those edges are considered clamped.



140

8.7.

8.8.

8.9.

8.10.

8.11.

8.12.

8.13.

However, on their vertical edges they are tied into I-beams, such that those edges
can only be considered simply supported. Using the Theory of Minimum
Potential Energy, derive the equation for the buckling load per inch of edge
distance, N, ., for these plates, using a suitable deflection function, so that the

plates can be designed to resist buckling.

An alternative to the design of Problem 8.6 would be to ‘beef up’ the vertical
support beams such that the plate members can be considered to have their
vertical edges clamped. Thus the plates have all four edges clamped. Employing
a suitable deflection function, use the Theorem of Minimum Potential Energy to
determine an expression for the critical buckling load per unit edge distance,
N_ , to use in designing the plates. Is the plate with all edges clamped thicker or

thinner than the one with the sides simply supported in Problem 8.6, to have the
same buckling load?

The legs of a water tower consist of three columns of length a, constant flexural
stiffness E7, simply supported at one end and clamped at the other end. Using the
Theorem of Minimum Potential Energy, and a suitable function for the lateral
deflection, calculate the buckling load P, for each leg, in order that they may be
properly designed.

Consider a beam of length L, and constant cross-section, i.e., £7 is a constant.
The beam is subjected to a load ¢(x) = a + c(x/L), (Ibs./in.) applied laterally where
a and ¢ are constants. The beam is simply supported on both ends. Using
Minimum Potential Energy, and assuming w(x) = Bsin(zx/L), determine the
maximum deflection, w, and the maximum bending stress, o . Consider the
beam to be of unit width, i.e., b= 1.

A beam of length L, and constant cross-section (EI = constant) is subjected to a
lateral load g(x)=(g,x)/L, where ¢, is a constant, and is simply supported at
each end. Using Minimum Potential Energy, and assuming w(x) = Asin(zx/L),
where A4 is a constant to be determined, determine the maximum deflection, w,
and the maximum stress, o, in the beam.

Consider the beam of Section 8.3 to be simply supported at each end and
subjected to a uniform lateral load ¢, (Ibs./in.). Assuming the deflection to be
w(x) = Asin(mx/L), use the Principle of Minimum Potential Energy to
determine A.

Consider a beam-column simply supported at one end and clamped at the other.
Using the Theorem of Minimum Potential Energy, and assuming an admissible
form for the lateral deflection, w(x), calculate the in-plane load, P, (Ibs.), to
buckle the column.

Consider a beam of stiffness E/, length L, width b, height 4, simply supported at
each end, subjected to a uniform lateral load, ¢, (Ibs./in.). Use Minimum

Potential Energy, employing a deflection function

N
w(x) = 4, sin %
n=l1
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8.15.
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where N = 3, to determine the maximum deflection and maximum stress.
Compare the answer with the exact solution.
Consider a column of length L, clamped at one end and simply supported at the
other end. Using a buckling mode shape of

w(x) = A[Lx —3Lx* +2x*]

where A is the buckle amplitude. Use Minimum Potential Energy to determine
the axial critical buckling load, P, .

Consider a beam of constant flexural stiffness EI, of length L, clamped at each
end. Using Hamilton’s Principle, and an assumed deflection of

w(x,1) = A[1 —cos(2mx/ L)]sinw, ¢,

determine the fundamental natural frequency, and compare it with the exact
solution.



CHAPTER 9

REISSNER’S VARIATIONAL THEOREM AND ITS APPLICATIONS

9.1 Introduction

A general discussion of Reissner’s Variational Theorem is presented, followed by
a treatment of the theory of moderately thick beams which represents a striking example
of the power of this technique. The first application is the development of the governing
equations for the static deformations of moderately thick rectangular beams, including the
effects of transverse shear deformation and transverse normal stress. The second
application involves the use of the theorem, together with Hamilton’s Principle, to
develop a theory of beam vibrations including rotatory inertia, in addition to the other
effects listed above.

The Calculus of Variations has long been recognized as a powerful mathematical
tool in many branches of mathematical physics and engineering. Variational principles
are found to constitute the central core of many of the most useful techniques in such
fields as dynamics, optics and continuum mechanics. The utility of such principles is
two-fold: first, they provide a very convenient method for the derivation of the governing
equations and natural boundary conditions for complex problems and, second, they
provide the mathematical foundation required to produce consistent approximate theories.
It is in this second role that variational methods have been most useful in theory of
elasticity. There are two variational principles in the classical theory of elasticity, namely
the Principle of Minimum Potential Energy, treated in Chapter 8, and the Principle of
Minimum Complementary Energy. It will be useful to discuss these two principles very
briefly here, because it was certain of their features which led E. Reissner, in 1950, to
propose a third, more general, variational theorem.

The Principle of Minimum Potential Energy was discussed in Chapter 8. It was
noted that, in carrying out the variations to minimize the potential energy, V, the class of
admissible variations are displacements satisfying the boundary conditions, and the
appropriate stress-strain relations have to be obtained separately. The resulting Euler-
Lagrange equations of the variational problem are then equilibrium equations, written in
terms of displacements. When the principle is used to formulate approximate theories,
i.e., beam, plate or shell theory, it can therefore only yield appropriate equilibrium
equations and the stress-strain or stress-displacement relations must be obtained
independently, as stated above

The Principle of Minimum Complementary Energy may be stated as follows: of
all the stress systems satisfying equilibrium and the stress boundary conditions, that
which satisfies the compatibility conditions corresponds to a minimum of the
complementary energy V" defined as,
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where S, denotes that part of the boundary S on which displacements are prescribed.

It is emphasized that, in the Principle of Minimum Complementary Energy, the
class of admissible variations are stresses which must satisfy equilibrium everywhere, as
well as the stress boundary conditions. The Euler-Lagrange equations of the variational
problem are here compatibility equations or stress-displacement relations which insure
the satisfaction of the compatibility requirements. Thus, when this principle is used in
developing approximate theories, only the stress-displacement relations may be obtained
and the equilibrium relations must be derived independently.

It should be pointed out that, in the language of structural analysis, the Principle
of Minimum Potential Energy corresponds to the Principle of Virtual Displacements,
while the Principle of Minimum Complementary Energy corresponds to the Theorem of
Castigliano.

So in these two theories, one must either satisfy the stress-strain relations exactly
and formulate approximate equilibrium conditions or vice-versa. As a result, any
approximate theory obtained by such means runs the risk of inconsistency. These
considerations led Reissner in 1950 to propose a third variational theorem of elasticity
which would yield as its Euler-Lagrange equations both the equilibrium equations and the
stress-displacement relations. Clearly, if such a principle could be developed, its use
would yield approximate theories which would satisfy both requirements to the same
degree and would, therefore, have the advantage of consistency. The result of this
investigation is the Reissner Variational Theorem, which may be stated as follows:

Of all the stress and displacement states satisfying the boundary conditions, those
which also satisfy the equilibrium equations and the stress-displacement relations
correspond to a minimum of functional y defined as,

w = [HdR~ [ Fu,dR ~ [ Tu,dS 9.2)

where §, = portion of S on which stresses are prescribed. Again, F, and 7, are

i

body forces and surface tractions prescribed by the problem considered.

H=0,6,-W(o;)

W(o,) = strain energy density function in terms of stresses only.
In a rectangular coordinate system W (o) in general is written as follows for an

isotropic material

1
W(O'U.) = E[of + o-f, + o-f - 2V(O'X0'y to,0.+ c,0.) ©9.3)

+2(1+v) (0l +0% + o)
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The proof of the Theorem is now presented. The tensor notation is standard, and hence
will not be explained here. Also, the operations used herein in taking variations are

identical to those of partial differentiation, such as 5(G;)=2UU§O'U,

oo, J
0y

Taking the variation of y and equating it to zero, one obtains:

5(0,].8,,.) = al.jﬁg,j +£I.j5(0',j) , and _"8 (50',.1.) = 5[
’ ox .
J

ow |
Sy = L{a,ja‘gﬁ +a,00, -~ 00, JdR - [ FSudR- [Touds=0  (9.4)
i

1( ou, Ou;
where & =513 + = |
x; O,

It should be noted that all stress and strain components have been varied, while F,

i

and 7, which are prescribed functions, are not. Rearranging the above expression, one

5l//: {{ i/'*a—W—|5 laifii».i(é‘ui)"'i(é‘”/‘)_}}(ﬂe
R aO-UJ 2 0oX; ox;, i 9.5

- [Foudr~ [ Tuds=o0.

obtains,

0 0 L
The terms o, — (o u,) and o, —(J u ;) are symmetric with respect to i and j, and we
U axj U b axi J
may, therefore, interchange these indices and obtain,

ow | 0
51/1 = 'L{|:gif - .5o-if +O_if a(é‘ux)}dR _.;(F‘Ié‘uldR
J

o'..J

y

(9.6)
- [Touds=0

Note that 6—(0 du) =0, 6—(5u )+ 3 i S u,, so that Equation (9.6) may be
X .

J J
written,

54,/=J;{g,, aW}s +—(05u)7 y }dRJ;Fiéu,.dR

- | T.0udS=0.
[Tou
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Applying the Green-Gauss divergence theorem and remembering that o u, =0,
on all surfaces where displacements are prescribed, one obtains:

B
Lg(aijéui)dR = L o,v,5udS = L 7.5 u,dS (9.7)
J

where here v ; is the direction cosine.

Finally, substituting Equation (9.7) into (9.6) yields the equations,

] oo, |
sw=1{1e - 5o |20k suldr=0. 9.8)
Ryl Y o, | 1o ]

x]. i

Since do; and & u, are arbitrary variations, Equation (9.8) is satisfied only if the stresses

o; and strains ¢, satisfy the equations,

~

OO0 ;.
iy F =0 9.9)
axj
oW (o,
LA (9.10)
Y oo

i

Equations (9.9) and (9.10) are the equilibrium and stress-strain displacement relations of
elasticity. Thus, the Reissner Variational Theorem is found to be equivalent to the three-
dimensional equations of elasticity and is, therefore, established. Now consider typical
applications of the Theorem to the static and dynamic deformations of beams, because
beams permit the simplest example.

9.2 Static Deformation of Moderately Thick Beams

As a first illustration, consider the development of a theory for the static
deformations of moderately thick beams in which the effects of transverse shear
deformation and transverse normal stress are taken into account. Consider a beam of
rectangular cross-section of width b, height # and length L, as shown in Figure 9.1
subjected to a distributed load g(x) acting on the surface z = +4/2.
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hi2

Figure 9.1. Rectangular Beam.

In order to apply the variational theorem, one must first assume functions for the
stresses in the beams. In this case the following are assumed.

M- 3
o :—Z,where[ =—,
1 12

x

2
o —g{l—( z j ,where 4 = bh,

Ny hi2) |
3]
o =34 2 2 1f 2z | 9.11)
4| h/2 3 3\hi2) |
6,=0,=0, = 0

It should be noted that the form of the stress components o, and o is identical to that

of classical theory. The form of the transverse normal stress o, may easily be derived

from the stress equation of equilibrium in the thickness directions, as a consequence of
the assumptions made above for o, and o . The expression shown in (9.11) is derived
for

o.(+h/2)=qgando_(-h/2)=0.

An analogous expression can be derived easily if there were a normal stress on the lower
surface.

The stress-couple M and shear resultant O are defined in the usual manner by the
equations,
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hil2
M(x) = jbaxzdz
~h/2

(9.12)

hl2

0= [bodz.

~hl2

It should be noted that Equations (9.11) satisfy all of the stress boundary conditions.

As in classical beam bending theory, one assumes that beam cross-sections
undergo translation and rotation but no deformation in the plane of the cross-section.
Such displacements are of the following form for bending only (no stretching), which is
the simplest case:

u= za(x)
(9.13)

w = w(x)

It should be noted that the cross-sections will not be assumed to remain normal to the
deformed middle surface; this assumption, made in classical beam theory, is equivalent to
the neglect of transverse shear deformation, and will not be made here.

The appropriate strain displacement relations may be written

€ =6i’=z5 (%)

Toox

1(ou ow 1 —
o fow o) 1w 9.14
Ex 2[82 axj @) ©.14)

where the primes denote differentiation with respect to x.
For the present case, the functional i, Equation (9.2), takes the form,

V= [J. MJ‘Z b{axza’ +o, (E+ w)
v . (9.15)
_ﬁ[af +ol - 2vo.o, +2(1+v)o, ]l dzdx — qudx.

Substituting Equations (9.11) into Equation (9.15) and carrying out the integration with
respect to z, one obtains,
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o M® | 6vgM 30’ l
= |\Ma +0(a+w)—-— w dx
v (H QW)= e SEA sa
(9.16)

2

Lon2
—= bdzdx
EEET

It should be noted that the integration of the term in &’ has not been carried out because
this term depends only on ¢ and not on the basic unknown stresses and displacements, a,
W, M, and Q. Thus, when variations to minimize y are taken, the term in o-z2 will not

contribute to the result. One may now obtain the governing equations by minimizing the
functional y of Equation (9.16). Taking the variation of this equation gives,

Sy = J{Mé(?) 0 M+ QS+ S + (a4 w50 - L 1

El
9.17)
6v 9 60
+— qgow;dx =0
SEA 5G4 56497 l
Integrating by parts and rearranging, Equation (9.17) may be written in the form,
L
Sy =[Msa+0sw|L+ [{[0-Mba [0 +qlow
' 0 (9.18)
F M6 Ty [ +w—£wéQldx 0
EIl SEAJ 5GA |

Setting the first term equal to zero yields the natural boundary conditions for the beam. It

is seen that, either M =0 or & must be prescribed at x = 0 and L and either O = 0 or w
must be prescribed at x = 0 and L.

Finally, since the variations Sa, 5w, M, and oQ are all independent arbitrary
functions of x, the only way in which the definite integral of Equation (9.18) can be made

to vanish is by requiring the unknowns M, Q, & and w to satisfy the equations,

dm

- 4 0 9.19
dx 0= ( )
do

+ 0 9.20
e (9.20)
da M 6vq

&= =0 (9.21)
& EI " SEA
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Qw60 _ (9.22)
dx  5GA

Note that Equations (9.19) and (9.20) are identical to the equilibrium equations of
classical beam theory. This is as expected since no new stress resultants or stress couples
were introduced. Considering Equation (9.22), it is seen that the quantity a+w' is
precisely the change in the angle between the beam cross-section and the middle surface
occurring during the deformation; Equation (9.22) shows that this angular change, which
is a measure of the shear deformation, is proportional to Q/4 which is the average shear
stress. In addition, note that as G — oo, the shear deformation tends to vanish as
assumed in classical beam theory. Finally, observe that the third term in Equation (9.21)
depends on the lateral load ¢ and the Poisson’s ratio v ; this term would vanish if one
assumed v =0 as in classical beam theory. It is identified as the effect of the transverse
normal stress o, which is proportional to g, according to the initial assumptions (see
Equation (9.11)).

Solutions of Equations (9.19) through (9.22) may easily be obtained for typical
loading and boundary conditions. These solutions reveal that for beams of isotropic
materials, the effects of transverse shear deformation and transverse normal stress are
negligible for sufficiently large values of L/h and become important as L/h decreases and
becomes of order unity.

9.3 Flexural Vibrations of Moderately Thick Beams

As a second example, a theory of free vibrations for moderately thick beams of
rectangular cross-section is treated; this will include the effects of transverse shear
deformation and rotatory inertia.

In order to derive the equations of motion, one now applies Hamilton’s Principle
in conjunction with the Reissner Variational Theorem. It will be remembered that
Hamilton’s Principle is nothing but a variational statement of Newton’s Laws of Motion.
Thus, one may state that the motion of the beam of Figure 9.1 will be such as to minimize
the integral

D= ](T —y)dt (9.23)

h

where T = kinetic energy of the system, i = Reissner functional, # = time. The quantity
(T —w) = L is often called the Lagrangian.
The equations of motion will now be obtained from the condition,

ob=0 (9.24)
and it must be remembered that all stresses, strains and displacements are now functions

of time, as well as the space coordinates x and z. Equations (9.23) and (9.24) are general,
for any elastic body.
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The kinetic energy for the beam of Figure 9.1 may be written in the form,

T=LJ' h/jz P b{(a—“j +(6—WJ szdx (9.25)
2 ot ot ]

0 -h/2

where p, is the mass density of the beam material. Substituting Equations (9.13) into
Equation (9.25) and integrating with respect to z gives,

L —\2 N 2—|
T= &[1(6—“] +A(ﬂj dx (9.26)
5 2 ot ot |

where 7 and A4 are the area moment of inertia and the cross-sectional area of the beam,
respectively.
The substitution of Equations (9.16) and (9.26) into Equation (9.23) then yields,

o T[] (2] {2 - gfan )
ot J ox Ox
2 2
M 6vgM 30 dedt
2E1  SEA 5G4 |

(9.27)

where the term in o has been dropped since it will not contribute to the variations (as
explained previously).

The governing equations are then obtained by taking the variation of Equation
(9.27) and setting the result equal to zero. It is found that the natural boundary conditions
are the same as for the static case, while the initial deflection and velocity must also be
specified. The equations of motion are obtained in the form,

oM ’a

Sy =0 9.28
0 o TPl (9.28)
oQ 0w
% A% g =0 9.29
o P q(x,1) 9:29)

da M 6vqg_ (9.30)

ox  El 5EA

a6k _, (9.31)

ox 5GA
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In the above equations, two tracing constants ¢ and k are introduced for the purpose of
identifying terms. Note that Equation (9.28) is identical to the corresponding moment
equilibrium condition of classical beam theory, except for the term pmlc(ﬁza/ or’)
which represents the contribution of rotatory inertia. Thus, when ¢ = 1 in the resulting
solutions, rotatory inertia effects are included, when ¢ = 0, the theory neglects the effect
of rotatory inertia. Equation (9.29) is identical to the classical beam theory equation for
transverse force equilibrium with the inertia term added. Equation (9.30) exhibits the
term 6v gq/5EA, which is the contribution of transverse normal stress; since this is the
only term in which v appears explicitly, setting v = 0 is equivalent to neglecting the
transverse normal stress. Equation (9.31) is nearly identical to the corresponding stress-
strain relation of classical theory with the term 6Qk/5GA representing the effect of
transverse shear deformation which is included when & = 1, and neglected when k& = 0.
Now consider a simple application of this theory.

9.3.1 Natural Frequencies of a Simple-Supported Beam

For free vibrations, Equations (9.28) through (9.31) reduce to,

oM o’

-——+p, 1 =0
Q- PPl

2

0_, 42
ox ot (9.32)
a _M _,
ox EI
5+a—w—6—Qk=0

ox 5G4 L

It is convenient to reduce these equations to a system of two equations in the unknown

displacements w and « .
From the first and the third of Equations (9.32), one obtains,

Y
ox
o’a o’a
R
Q=L 5 Pl

and the substitution of these expressions in the second and fourth of Equations (9.32)
yields,
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(9.33)

For a simply supported beam of length Z, the boundary conditions are
w=M=0 for x=0,L,

and when the beam is oscillating in a normal mode, the motion is harmonic so that the
solutions for & and w may be taken in the form,

w=W, sin% cosa,t
9.34)
N
a=y,cos—— cosw, !

where W, and y, are the amplitudes of the translation and rotation respectively, and @,

is the natural circular frequency of the »n™ mode of vibration. It is easily verified that

these expressions satisfy the boundary conditions. The substitution of Equation (9.34) in
Equations (9.33) yields two simultaneous homogeneous algebraic equations for the
amplitudes W, and y, ; these are,

33 1 Y
P PR ok | ra+ Be i, =0
r  E\L " El

2 2 2 —|
14 Ema Pu€ 2|y o[y =0
10(G L G ") L /

Since (9.35) forms a homogeneous system, the condition for a non-trivial solution is that
the determinant of the coefficients W, and y, equal zero. That is termed an eigenvalue

(9.35)

problem. Solving the determinant yields a frequency equation, from which solutions
involve discrete values of the natural circular frequencies, which are termed eigenvalues.

The amplitude ratios are obtained from satisfying either of the two equations
comprising (9.35). Thus, the amplitude ratio is given by,

(plﬂ A/E])a)j

(nz/L)’ - (p,,,c/E)%wi

W (9.36)

n

Vo =

The frequency equation may be written in the form,
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. | 106 (nﬂjz E 56,
®, — | |t | @,
pPuhke UL J)\p,c 6p,k)]
10 (G EI (n;zy
t——|—— -] =0
hike\ p, \ p, AN\ L
The natural frequencies for the case where both transverse shear deformation and rotatory

inertia are included may be obtained by solving Equation (9.37) with k = ¢ = 1. The
frequency equation is then of the form,

2 —| 4
o -| 1 (22 (E+5GJ wlO(G]{ﬂ]{ﬂj 0 0
Puh L)\p, 6p,)] o\ pu NPuAN L

To obtain a simplified theory neglecting the effect of rotatory inertia, but retaining
transverse shear deformation, set k = 1 and ¢ = 0 after multiplying the frequency equation
(9.37) by c. The resulting simplified frequency equation may be written,

[ 10G +(ﬂj ( E Twz _g( G J(ﬂ}(ﬂj -0 (9.39)
p.ht L)\ p, )| " o \p, \p, A\ L

and the natural frequencies are given by,

Bl \(nz)
2 pmA L

w, = (9.40)
nrt (EY hY
1+ — | =
10 \GAL
Finally, to obtain a frequency equation in which both shear deformation and rotatory
inertia are neglected, multiply Equation (9.37) by kc and set k = ¢ = 0; the frequencies are

then given by,
4
o) = _ET (ﬂj (9.41)
p.AN L

Equation (9.41) is easily recognized to be the well-known solution of classical beam
theory for a simply-supported beam. A few calculations using Equations (9.38) and
(9.40) will show that most of the error (approximately 90%) of the classical theory is due
to the neglect of transverse shear deformation, so that accurate results may be obtained by
Equation (9.40) which still neglects rotatory inertia, but has the advantage of simplicity.
Comparison of Equations (9.40) and (9.41) reveals that the effect of shear deformation is

(9.37)
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10 \G
that this factor increases with increasing 4/L, so that the errors through using classical
theory tend to become larger as the beam becomes “stubbier”. This factor also increases
as n increases, indicating that classical theory is only adequate for lower modes of
vibration, and it becomes increasingly inaccurate for higher modes.

. 22 (EXhY .
to reduce the square of the frequencies by a factor equal to 1+ nz (— ) It is seen



CHAPTER 10
ANISOTROPIC ELASTICITY AND COMPOSITE LAMINATE THEORY

10.1 Introduction

As discussed in the first nine chapters, an isotropic material is one that has
identical mechanical, physical, thermal and electrical properties in every direction.
Isotropic materials involve only four elastic constants, the modulus of elasticity, E, the
shear modulus, G, the bulk modulus K and Poisson's ratio, v. However, only two are
independent, and the following relationships exist: See Equation (1.3).

G=_EF gx-_F
2(1+v) 3(1-2v)

(Isotropic only)  (10.1)

Most engineers and material scientists are well schooled in the behavior and design of
isotropic materials, which include the family of most metals and pure polymers. The
rapidly increasing use of anisotropic materials such as composite materials has resulted in
a materials revolution and requires a new knowledge base of anisotropic material
behavior.

Before understanding the physical behavior of composite material structures and
before being able to quantitatively determine the stresses, strains, deformations, natural
frequencies, and buckling loads in such structures, a clear understanding of anisotropic
elasticity is necessary. In general, isotropic materials are mathematical approximations to
the true situation. For instance, in polycrystalline metals, the structure is usually made up
of numerous anisotropic grains, wherein macroscopic isotropy exists in a statistical sense
only because the anisotropic individual grains are randomly oriented. However, the same
materials could be macroscopically anisotropic due to cold working, forging or spinning
during a fabrication process. Other materials such as wood, human and animal bone, and
most fiber reinforced materials are anisotropic.

Fiber reinforced composite materials are unique in application because the use of
long fibers results in a material which has a higher strength-to-density ratio and/or
stiffness-to-density ratio than any other material system at moderate temperatures, and
there exists the opportunity to uniquely tailor the fiber orientations to a given geometry,
applied load and environment. For short fiber composites, used mainly in high
production, low cost systems, the use of fibers makes the composites competitive and
superior to plastic and metal alternatives. Finally, the use of two or more kinds of
dissimilar fibers within one matrix is termed a hybrid composite, where one fiber is
stronger or stiffer while the other fiber is less expensive but desirable for less critical
locations in an overall structural component. Other examples of a hybrid composite
involve stronger and stiffer (but more brittle) fibers that are protected by outer plys of a
tougher fiber composite to protect the composite from impact and other deleterious
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effects. Therefore through the use of composite materials, the engineer is not merely a
materials selector, but is also a materials designer.

For small deflections, the linear elastic analysis of anisotropic composite
material structures requires the use of the equilibrium equations, strain-displacement
relations, and compatibility equations, which remain the same whether the structure is
composed of an isotropic material or an anisotropic composite material. However, it is
very necessary to drastically alter the stress-strain relations, also called the constitutive
relations, to account for the anisotropy of the composite material structure.

A quantitative understanding of the virtues of using composite materials in a
structure is found through deriving systematically the anisotropic elasticity tensor matrix,
discussed below in Section 10.2.

10.2 Derivation of the Anisotropic Elastic Stiffness and Compliance Matrices

Consider an elastic solid body of any general shape, and assume it is composed of
an infinity of material points within it. In order to deal with a continuum, one also
assumes that the material points are infinitely large compared to the molecular lattice
spacing of the particular material. If one assigns a Cartesian reference frame to the
elastic body shown in Figure 10.1, one then calls this rectangular parallelepiped material
point a control element or control volume of dimension dx, dy and dz in a Cartesian
coordinate system. Figure 10.1 is identical to figure 1.1, but repeated here for continuity.

x-i-

Figure 10.1. Positive Stresses on a Control Element of an Elastic Body.

On the surface of the control element there can exist both normal stresses (those
perpendicular to the plane of the face) and shear stresses (those parallel to the plane of the
face). On any one face the three mutually orthogonal stress components comprise a
vector, which is called a surface traction.

It is important to note the sign convention and the meaning of the subscripts of
these surface stresses. For a stress component on a face whose outward normal is in the
direction of a positive axis, the stress component is positive when it is in the direction of
a positive axis. Also, when a stress component is on a face whose outward normal is in
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the direction of a negative axis, the stress component is positive when it is in the direction
of a negative axis. This can be seen clearly in Figure 10.1.

The first subscript of any stress component on any face of the control element
signifies the axis to which the outward normal of the face is parallel; the second subscript
refers to the axis to which that stress component is parallel. Again, see Figure 10.1.

The strains occurring in an elastic body have the same subscripts as the stress
components but are of two types. Dilatational or extensional strains are denoted by ¢,

where i = X, y, z, and are a measure of the change in dimension of the control volume in
the subscripted direction due to normal stresses, 6, acting on the control volume. Shear

strains g (i # j) are proportional to the change in angles of the control volume from 90°,

changing the rectangular control volume into a parallelogram due to the shear stresses,
oy i # j. For example, looking at the control volume x-y plane shown in Figure 10.2

below, shear stresses Oyy and o, cause the square control element with 90° corner angles

to become a parallelogram with the corner angle ¢ as shown. Here, the change in angle

Tyy 18

T
7xy :§_¢ (10.2)
The shear strain €y @ tensor quantity, is defined by

Exy =Vxy /2 (10.3)
Similarly, ¢ , =y, /2, and €y, = yyZ/Z.

Having defined all of the elastic stress and strain tensor components, the stress-
strain relations are now used to derive the anisotropic stiffness and compliance matrices.

The following derivation of the stress-strain relations for an anisotropic material
parallels the derivation of Sokolnikoff [1.1], Vinson and Chou [2.8], Vinson [10.1, 10.2],
and Vinson and Sierakowski [1.7].  Although the derivation is very formal
mathematically to the reader who is primarily interested with the end result, the
systematic derivation does provide confidence in the extended use of the results.

From knowledge of basic strength of materials [10.3], both the stresses, Gij, and

the strains &> are second order tensor quantities, where in three dimensional space they

have 32 =9 components. They are equated by means of the fourth order elasticity tensor,

C..,, which therefore has 3% = 81 components, with the resulting constitutive equation:

ik

o, = Cuty (10.4)

y
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Figure 10.2. Shearing of a Control Element.

where i, j, k and / assume values of 1, 2, 3 or x, y, z in a Cartesian coordinate system.
Fortunately, there is no actual material that has eighty-one elastic constants. Both the
stress and strain tensors are symmetric, i.e., o, = O and €y = &l and therefore the

following shorthand notation may be used:

%11 =91 9237% 11749 V3 =26y3=¢4
Oy =0y 031=05  &=&  731=263=¢5 (10.5)

033 =03  01p=0¢  é33=63  Vp =26 =%

At the outset it is noted that &,, &5 and g, which are quantities widely used in

composite analyses, are not tensor quantities and therefore do not transform from one set
of axes to another by affine transformation relationships. Care must also be taken
regarding whether or not to use the factor of "two" when using shear strain relations, see
(10.3) and (10.5). Using Equation (10.5), Equation (10.4) can be written:

o, =Cyz, (10.6)

It should be noted that the contracted Cij quantities are also not tensor quantities,

and therefore cannot be transformed as such.

Hence by the symmetry in the stress and strain tensors the elasticity tensor
immediately reduces to the 36 components shown by Equation (10.6). In addition, if a
strain energy density function, W, exists [1.1, 1.7, 2.8, 10.1, 10.2, 10.3], i.e.,

1
W=EO'U£[/.,
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in such a way that

%: Cij e =0y (10.7)
ij

then the independent components of Cijkl are reduced to 21 elastic constants, since Cijkl =
C,,;; and now it can be written C;;= C...
/ 7 Jt
Next, to simplify the general mathematical anisotropy to the cases of very
practical importance, consider the Cartesian coordinate system only. (However, the
results are applicable to any curvilinear orthogonal coordinate system of which there are
twelve, some of which are spherical, cylindrical, elliptical, etc. — see [1.7 and 10.2].
First, consider an elastic body whose properties are symmetric with respect to the
X, - X, plane. The resulting symmetry can be expressed by the fact that the Cl.j's

discussed above must be invariant under the transformation X; =X, Xy = Xy and Xy = -

x; , shown in Figure 10.3.

Xg
Directional Cosines
%[ %
*2 x,[1]ofo
x'z x? oj]1 |0
x, 0|0 [-1
4
x X}

Figure 10.3. One Plane of Symmetry.

Also shown in the table above are the direction cosines, tl.]., associated with this

transformation. The stresses and strains of the primed coordinate system are related to
those of the original (unprimed) coordinate system by the well-known relationships:

where, fori=1, 2, 3, 6, G, =0; and g =¢g,le, 0, =t t 6, =0, However, from

the direction cosines, €y = "Ey3 OF &4 = -g,, and Gy = -0y likewise €3 = &3 hence
&5 =-g5and 65 =-05. Forexample, 6,3 =6, =t,,t336,; =(1)(-1)0,3 =-0,3=-0,.

If one looks in detail at Equation (10.6) then,
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04 = Cy18) *+ Cyp8y + Cyay + Cyyey + Cyses + Cyete
04 = Ca18) T Cyny + Cyag + Cypey + Cysts + Cyel.

It is evident from these two equations that C,, = C,, = C;3 = C,, = 0. From similar
examinations of the other two axial symmetries, it can be seen that C,s = C;5=Cy, = Cys
=0,Cy5=C5p=C53= C56=0,and C = C;5= C; =€y, =C3y =0.

So, for a material having only one plane of symmetry the number of elastic
constants is now reduced to 13. Note that from a realistic engineering point of view this
would still require thirteen independent physical tests (at each temperature and humidity
condition!) - an almost impossible task both in manpower and budget.

Now, materials that have three mutually orthogonal planes of elastic symmetry

are called "orthotropic" (a shortened term for orthogonally anisotropic). In such a case,
other terms in the elasticity matrix are also zero, namely

Ci6=Coe=C36=Cy5=0.

Therefore, the elastic stiffness matrix for orthotropic materials is shown below,
remembering that C..= C.,,
i i

C3 C3p C330 0 0
C;= : (10.8)
0 0 0 Cyuo 0

0 0 0 0 Cs 0

00000066J

Thus, for orthotropic elastic bodies, such as most composite materials in a three
dimensional configuration, there are nine elastic constants.

Hence, using Equations (10.8) and (10.6), the explicit stress-strain relations for an
orthotropic, three dimensional material are:
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01 =Cpp8) €8y + €385

6y =Cp18) +Cppy +Chseg

0y = C3181 +C3282 +C3383

(10.9)

04 =043 =C4484=2C44823 :C44y23

05 =05 =Cs585 =2C5583) =Cqqv5

56 =912 =Ce6t6 =2Cq6%12 = CggY12

It should be noted that in the latter three relationships, which involve shear relations, the
factor of two is present when one uses the tensor shear strains, €,;, &5, and &, .

If the Equations (10.9) are inverted, then, through standard matrix transformation:
€1 =201 21,0, + 2303
&) = 2101 T 23,0, + 25303
€3 = 23,0 23,0, + 23303 (10.10)
€4 = 28)3 = 244023 = 8440
€5 = 283) = 85503 = 85505
€6 = 2815 = 266512 = 86696-
The a matrix, called the compliance matrix, involves the transpose of the cofactor (Co)
matrix of the Cl.j's divided by the determinant of the Cij matrix with each term defined as
T
_ [Co Cij]
Cij

a, (10.11)

Again, the aji quantities are not tensors, and cannot be transformed as such. In

fact, factors of 1, 2 and 4 appear in various terms when relating the tensor compliance
quantities Qi and the contracted compliance quantities a,.

It can be easily shown that a_ = a_. and that
i i

g = aijGj (wherei,j=1,2, ..., 6). (10.12)

Table 10.1 is useful for listing the number of elastic coefficients present in both
two and three dimensional elastic bodies.
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Table 10.1. Summary of the Number of Elastic Coefficients Involved for Certain Classes of Materials.

Class of Material Number of Number of
nonzero independent
coefficients coefficients

Three-Dimensional Case

General Anisotropy 36 21
One-plane of symmetry 20 13
Two-planes of symmetry 12 9
Transverse isotropy 12 5
Isotropy 12 2

Two-Dimensional Case

General anisotropy
One-plane of symmetry
Two-planes of symmetry
Transverse isotropy
Isotropy

W L O O
N A BRSO

10.3 The Physical Meaning of the Components of the Orthotropic Elasticity Tensor

So far, the components of both the stiffness matrix, Cl.j, and the compliance
matrix, a;, are mathematical symbols relating stresses and strains. By performing

hypothetiéal simple tensile and shear tests all of the components above can be related to
physical or mechanical properties.
Consider a simple, standard tensile test in the x| direction. The resulting stress

and strain tensors are

o 007 e 0 0 ]
;=0 00 B €= 0 -vipe O - (10.13)
0 00 0O O -V13€1] J

where the Poisson's ratio, Vi is very carefully defined as the negative of the ratio of the
strain in the x; direction to the strain in the x; direction due to an applied stress in the x;
direction. In other words in the above it is seen that &,, = -v ,&,, 0Or v|, = -&,,/¢,,. Care

must be taken to not confuse v, with v, because in some unidirectional composites, i.e.
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a composite in which all of the fibers are aligned in one direction, one may be ten or

more times larger than the other.

Also, the constant of proportionality between stress and strain in the 1 direction is

denoted as E1; (or Ey), the modulus of elasticity in the x; direction. Thus,

O
81231101:15_]

€, =8y107 =-Vr&; = — 129
2 2171 121 El

€3 =870 =-V{18 = — 11391
3 3171 13¢1 El
Therefore,

a) = VE, a5 =-Vp/By, a3y =-vy3/Ey
For a simple tensile test in the x, direction, it is found that

a1y = Vo /By, ay) = VEy, a3) = -vy3/Ey.
Likewise, a tensile test in the x, direction yields

From the fact that a;; =2 ;;, then

Yo Vi =123
= L]j=1, 24,
E, E /

i J

(10.14)

(10.15)

(10.16)

(10.17)

The Equation (10.17) is most valuable and widely used in the analysis of all composite

material bodies.

Next, consider a hypothetical simple shear test as shown in Figure 10.4. In this

case the stress, strain, and displacement tensor components are:
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0 o, 0 —I 0 €, 0 —|
o= 051 0 . & €91 0
0 0 0 J 0
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Figure 10.4. Shear Stresses and Strains.

In the above, u; is the displacement and u = (Gui)/(éxj).

From elementary

strength of materials the constant of proportionality between the shear stress 6,, and the

angle 0 is G,,, the shear modulus in the x| - x, plane.
From the theory of elasticity

1
€12 =52+ 21) 726, T 2
From Equation (10.10), &, = ac (o, or

. 36921 921
27 2 2G,,

Hence,

(10.18)
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1 1
== == . (10.19)
66 G, Gy

Similarly,

1 1
=~ and Az =~ . (10.20)
44 G23 55 G13

Thus, all a, components have now been related to mechanical properties, and it is seen

that to characterize a three dimensional orthotropic body, nine physical quantities are

needed (that is E], E,, E,, Glz’ G23, G3], Vis Viz Vap» Vo3 V3 and Vi and using

Equation (10.17). However, because of (10.17) only six separate tests are needed to
obtain the nine physical quantities. The standardized tests used to obtain these anistropic
elastic constants are given in ASTM standards, and are described in a text by Carlsson
and Pipes [10.4]. For convenience, the compliance matrix is given explicitly as:

[ 23 Vi ]
L) W< R Y B

El E2 E3

v 1 v

12 32
A < R

E, E, FE,

A% A%
SO I B S 0 0

al-j: El E2 E3 .
0 0 o 1 0 o
G23 10.21
0 0 0 0 GL 0 (10.21)
13

0 0 0 o o 1
L Gy, |

10.4 Methods to Obtain Composite Elastic Properties from Fiber and Matrix
Properties

In order to minimize the time and expense to experimentally determine
mechanical properties of the almost infinite varieties of composite materials, it is very
useful to analytically predict the properties of a unidirectional (one in which all of the
fibers are in one direction) composite, if the properties of the fibers and the properties of
the matrix are known.
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There are several sets of equations for obtaining the composite elastic properties
from those of the fiber and matrix materials. These include those of Halpin and Tsai
[10.5], Hashin [10.6], and Christensen [10.7]. In 1980, Hahn [10.8] codified certain
results for fibers of circular cross section which are randomly distributed in a plane
normal to the unidirectionally oriented fibers. For that case the composite is
macroscopically, transversely isotropic, that is (), = ()13, ()5, =()33and ()g5= ()44

where in the parentheses the quantity could be E, G, or v; hence, the elastic properties
involve only five independent constants, namely (), |, ( )55, ()5, ()53 and ().

For several of the elastic constants, Hahn states that they all have the same
functional form:

P= PV +mP V)

(Ve +1V,) (1022

where for the elastic constant P, the PP Pm and m are given in Table 10.2 below, and
where V. and V_ are the volume fractions of the fibers and matrix respectively (and

whose sum equals unity):

Table 10.2. Determination of Composite Properties From Fiber and Matrix Properties.
Elastic Constant P P

f m n
Ey Ey Eiir En 1
Vi2 Vi2 Vior Vi !
G12 I/G12 l/G12f l/Gm Mg
G23 l/G23 l/G23f l/Gm Ny
K, K, 1K, UK, g

In Table 10.2 and Equation (10.26), unless the anisotropic properties are given
specifically one must assume the fiber is isotropic.

The expressions for E; | and v, in Table 10.2 are called the Rule of Mixtures. In
the above K is the plane strain bulk modulus, K= [E/2(1-v)] and K = [E_/2(1-v_)].

Also, the n's are given as follows:

C14Gy/Grp 3-4vy + Gy/Goyy 1+G, /K¢

o= 2 M7 4.y ) KT (v )

The shear modulus of the matrix material, G_, if isotropic, is given by G, =E_/2(1+v ).

The transverse moduli of the composite, E,, = E,,, are found from the following

33
equation:
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S s o 3 (1023
where
2
4K v
m=1+——=%
Ep

The equations above have been written in general for composites reinforced with
anisotropic fibers such as some graphite and aramid (Kevlar) fibers. If the fibers are

isotropic, the fiber properties involve Ef, Gy and vy, where Gy = Eif In that case
2(1+vy)

also ny becomes

1+ (1-2v)G, /G,
K™ 21y,

(10.24)
Hahn notes that for most polymeric matrix structural composites, G, /G <0.05. If
that is the case then the n parameters are approximately:

3-4v 1
Ng~0.5 Ny=77 v NMk=51.9 1 - (10.25)
6 4(1-Vm) 2(1-Vm)
Finally, noting that v = 0.35 for most epoxies, then n, = .62 and n, = 0.77.

can be written as

E
1+vm-v]2[—m} —I

Epp

Also, the Poisson's ratio, Vo3

Va3 = Vg Vet v, (1-Vy) (10.26)

E

m

) Ern :
1'Vm +VmV12 [E“]J

The above equations along with Equation (10.17) provide the engineer with the
wherewithal to calculate the elastic constants for a unidirectional composite material if
the constituent properties of the fibers and matrix, and the fiber volume fraction are

where Viof is the fiber Poisson’s ratio.
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known. In a few instances only the weight fraction of the fiber, W, is known. In that
case the volume fraction is obtained from the following equation, where W_ is the

weight fraction of the matrix, and p_ and pare the respective densities:

V= PuWe (10.27)
mef + hWm

For determining the composite elastic constants for short fiber composites, hybrid
composites, textile composites, and very flexible composites, Chou [10.9] provides a
comprehensive treatment.

Of course if the composite manufacturer has added a filler to the structural matrix
to reduce cost, then (10.27) must be modified.

10.5 Thermal and Hygrothermal Considerations

In the previous two sections, the elastic relations developed pertain only to an
anisotropic elastic body at one temperature, that temperature being the "stress free"
temperature, i.e. the temperature at which the body is considered to be free of stress if it
is under no mechanical static or dynamic loadings.

However, in both metallic and composite structures changes in temperature are
commonplace both during fabrication and during structural usage. Changes in
temperature result in two effects that are very important. First, most materials expand
when heated and contract when cooled, and in most cases this expansion is proportional
to the temperature change. If, for instance, one had a long thin bar of a given material
then with change in temperature, the ratio of the change in length of the bar, AL, to the
original length, L, is related to the temperature of the bar, 7, as shown in Figure 10.5.

Mathematically, this can be written as

AL

Ethermal — T= aAT (10.28)

where a is the coefficient of thermal expansion i.e., the proportionality constant between
the "thermal”" strain (AL/L) and the change in temperature, AT, from some reference
temperature at which there are no thermal stresses or thermal strains. For almost all
materials, & is constant unless a phase change occurs in the material.

The second major effect of temperature change relates to stiffness and strength.
Most materials become softer, more ductile, and weaker as they are heated. Typical plots
of ultimate strength, yield stress and modulus of elasticity as functions of temperature are
shown in Figure 10.6. In performing a stress analysis, determining the natural
frequencies, or finding the buckling load of a heated or cooled structure one must use the
strengths and the moduli of elasticity of the material at the temperature at which the
structure is expected to perform.
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In an orthotropic material, such as a composite, there can be up to three different
coefficients of thermal expansion, and three different thermal strains, one in each of the
orthogonal directions comprising the orthotropic material. Equation (10.28) would then
have subscripts of 1, 2 and 3 on both the strains and the coefficients of thermal
expansion. Notice that, for the primary material axes, all thermal effects are dilatational
only; there are no thermal effects in shear.

A

AL

|

Temperature
Figure 10.5. Change in Length of a Bar or Rod as a Function of Temperature.

Some general articles and monographs on thermomechanical effects on composite
material structures include those by Tauchert [10.10], Argyris and Tenek [10.11], Turvey
and Marshall [10.12], Noor and Burton [10.13] and Huang and Tauchert [10.14],
Springer [10.15], Milke and Vizzini [10.16], and Sun and Chen [10.17].

Oitimate

Tineit Tment
Temperature Temperature

Figure 10.6. Modulus of Elasticity and Strengths as Functions of Temperature.

During the mid-1970’s another physical phenomenon associated with polymer
matrix composites was recognized as important. It was found that the combination of
high temperature and high humidity caused a doubly deleterious effect on the structural
performance of these composites. Engineers and material scientists became very
concerned about these effects, and considerable research effort was expended in studying
this new phenomenon. Conferences [10.18] were held which discussed the problem, and
both short range and long range research plans were proposed. The twofold problem
involves the fact that the combination of high temperature and high humidity results in
the entrapment of moisture in the polymer matrix, with attendant weight increase (<2%)
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and more importantly, a swelling of the matrix. It was realized [10.19] that the ingestion
of moisture varied linearly with the swelling so that in fact

AL

Ehygrothemal ~ 7 BAm (10.29)

where Am is the increase from zero moisture measured in percentage weight increase,
and B is the coefficient of hygrothermal expansion, analogous to the coefficient of
thermal expansion, depicted in Equation (10.28). This analogy is a very important one
because one can see that the hygrothermal effects are entirely analogous mathematically
to the thermal effect. Therefore, if one has the solutions to a thermoelastic problem,
merely substituting BAm for or adding it to the AT terms provides the hygrothermal

solution. The test methods to obtain values of the coefficient of hygrothermal expansion
B are given in [10.20].

The second effect (i.e. the reduction of strength and stiffness) is also similar to the
thermal effect. This is shown qualitatively in Figure 10.7. Dry polymers have properties
that are usually rather constant until a particular temperature is reached, traditionally
called by polymer chemists the "glass transition temperature,”" above which both strength
and stiffness deteriorate rapidly. If the same polymer is saturated with moisture, not only
are the mechanical properties degraded at any one temperature but the glass transition
temperature for that polymer is significantly lower.

A / 0% moisture
Stength
or
Stiffness
2% moisture
Temperature

Figure 10.7. Mechanical Properties as a Function of Temperature and Moisture Absorption.

In 1981, Shen and Springer [10.21] investigated the hygrothermal effects on the
tensile strength.

As a quantitative example, Figure 10.8 clearly shows the diminution in tensile and
shear strength due to a long term hygrothermal environment. Short time tensile and shear
tests were performed on random mat glass/polyester resin specimens. It is clearly seen
that there is a significant reduction in tensile strength, and a 29.3% and a 37.1% reduction

in ultimate shear strength of these materials over a 100" day soak period. If these effects

are not accounted for in design analysis, catastrophic failures can and have occurred in
such structures as the axial fans in waste disposal facilities.
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Figure 10.8. Strength as a Function of Soak Time in a Hot, Wet Environment.

Thus, for modern polymer matrix composites one must include not only the
thermal effects but also the hygrothermal effects or the structure can be considerably
under designed, resulting in potential failure.

Thus, to deal with the real world of polymer composites, Equation (10.12) must
be modified to read

€= 2;;0; + o AT + B;Am (i=1,2,3) (10.30)
g=2,0; (i=456) (10.31)

where in each equationj =1 - 6.

Two types of equations are shown above because in the primary materials system
of axes (i,j =1, 2, ..., 6) both thermal and hygrothermal effects are dilatational only, that
is, they cause an expansion or contraction, but do not affect the shear stresses or strains.
This is important to remember.

Although the thermal and moisture effects are analogous, they have significantly
different time scales. For a structure subjected to a change in temperature that would
require minutes or at most hours to come to equilibrium at the new temperature, the same
structure would require weeks or months to come to moisture equilibrium (saturation) if
that dry structure were placed in a 95-100% relative humidity environment. Figure 10.9
illustrates the point, as an example. A 1/4" thick random mat glass polyester matrix
material requires 49 days of soak time at 188°F and 95% relative humidity to become
saturated.



174

1.1

1.2 4 = 3
—_ 4_.—-*-'_‘_'_‘_
¥ 1.0 //"r'
g 0.8 4 //
% #
Z nal ¥4

S
0.4 4 Nararinl * Randam WarSheo Papswr Recin Mampesi v
Speaciman th sk nme e 10400
0.2
0.0 v v v ¥ T T v T v T v T v
0 1 z 3 4 5 6 7

Conditonmg, Time (D lﬁ)é

Figure 10.9. Moisture Absorption as a Function of Soak Time.

Woldesenbet [10.22] soaked a large number of IM7/8551-7 graphite epoxy
unidirectional test pieces, some in room temperature water to saturation. For the 1/4"
diameter by 3/8" long cylinders soaked at room temperature the time required to reach
saturation was 55 weeks. Other test pieces were soaked at an elevated temperature to
reduce soak time.

For additional reading on this subject, see Shen and Springer [10.21] and Zhu and
Sun [10.23].

In Chapter 18 herein another effect is added to the hygrothermal equations (10.30)
and (10.31). When piezoelectric materials are used in the structure an additional term is
added to the right hand side of (10.30) and (10.31).

10.6 Time-Temperature Effects on Composite Materials

In addition to the effects of temperature and moisture on the short time properties
discussed above, if a structure is maintained under a constant load for a period of time,
then creep and viscoelastic effects can become very important in the design and analysis
of that structure. The subject of creep is discussed in numerous materials science and
strength of materials texts and will not be described here in detail.

Creep and viscoelasticity can become significant in any material above certain
temperatures, but can be particularly important in polymer matrix materials whose
operating temperatures must be kept below maximum temperatures of 250°F, 350°F, or
in some cases 600°F for short periods of time, dependent upon the specific polymer
material. See Christensen [10.24].

From a structural mechanics point of view, almost all of the viscoelastic effects
occur in the polymer matrix, while little or no creep occurs in the fibers. Thus, the study
of creep in the polymeric materials, which comprise the matrix, provides the data
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necessary to study creep in composites. Jurf [10.25] experimentally studied the effects of
temperature and moisture (hygrothermal effects) on various epoxy materials (FM 73M
and FM 300M adhesives). They established that at least for some epoxy materials it is
possible to construct a master creep curve using a temperature shift factor, and
established the fact that a moisture shift factor can also be employed. The importance of
this is that by these experimentally determined temperature and moisture shift factors, for
the shear modulus of the epoxy, the results of short time creep tests can be used for a
multitude of time/temperature/moisture combinations over the lifetime and environment
of a structure comprised of that material. Wilson [10.26, 10.27] studied the effects of
viscoelasticity on the buckling of columns and rectangular plates and found that
significant reductions of the buckling loads can occur. Wilson found that for the
materials he studied, the buckling load diminished over the first 400 hours, then
stabilized at a constant value. However that value may be a small fraction of the elastic
buckling load if the composite properties in the load direction were matrix dominated
properties (described later in the text). Wilson also established that for the problems
studied it was quite satisfactory to bypass the complexities of a full-scale viscoelastic
analysis using the Correspondence Principle and Laplace transformations. The use of the
appropriate short time stiffness properties of the composite experimentally determined
with specimens that have been held at the temperature and until the time for which the
structural calculations are being made.

Hu and Sun have studied the equivalence of moisture and temperature in physical
aging of polymer composites by using momentary creep tests [10.28]. Such equivalence
may permit the substitution of a moisture creep test with tests under an equivalent
temperature thus saving much time and expense.

10.7 High Strain Rate Effects on Material Properties

Another consideration in the analysis of all composite material structures is the
effect of high strain rate on the strength and stiffness properties of the materials used.
Most materials have significantly different strengths, moduli, and strains to failure at high
strain rates compared to static values. However most of the major finite element codes

such as those which involve 10°-10° elements using 10'-10% hours of computer time to
describe underwater and other explosion effects on structures, still utilize static material
properties. High strain rate properties of materials are sorely needed. Some dynamic
properties have been found, and test techniques established. For more information see
Lindholm [10.29], Daniel, La Bedz, and Liber [10.30], Nicholas [10.31], Zukas [10.32],
and Sierakowski [10.33, 10.34], Rajapakse and Vinson [10.35], and Abrate [10.36,
10.37].

Vinson and his colleagues have found through testing over thirty various
composite materials over the range of strain rates tested up to 1600/sec, that in comparing
high strain rate values to static values, the yield stresses can increase by a factor up to 3.6,
the yield strains can change by factors of 3.1, strains to failure can change by factors up
to 4.7, moduli of elasticity can change by factors up to 2.4, elastic strain energy densities
can change by factors up to 6, while strain energy densities to failure can change by
factors up to 8.1. Thus the use of static material properties to analyze and design
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structures subjected to impact, explosions, crashes, or other dynamic loads should be
carefully reviewed.

Most recently, Song experimentally determined the high strain rate mechanical
properties of several polymer matrix composite materials over temperature ranges from
room temperature to liquid nitrogen temperatures (-196°C). Most significantly, the
strength of these composites increased as much as a factor of 5 at liquid nitrogen
temperatures compared to the properties at room temperature [10.38 through 10.41].

10.8 Laminae of Composite Materials

Almost all practical composite material structures are thin in the thickness
direction because the superior material properties of composites permit the use of thin
walled structures. Many polymeric matrix composites are made in the form of a uniaxial
set of fibers surrounded by a polymeric matrix in the form of a tape several inches wide
termed as a "prepreg." The basic element in most long fiber composite structures is a
lamina of fiber plus matrix, all fibers oriented in one direction, made by laying the
prepreg tape of a certain length side by side. In the next section, 10.9, the stacking of
various laminae to form a superior structure termed a laminate will be discussed.

In modern manufacturing methods, such as many liquid injection molding
techniques, the fibers are placed in the mold as a “preform”. In that case the analyst must
decide whether the molded composite can best be modeled as one lamina or a laminate.

Also if a composite lamina has a thermal gradient across the thickness such that
the material properties vary significantly from one surface to the other, then the analyst
could model the composite as a laminate with differing material properties in each
lamina.

To describe this, consider a small element of a lamina of constant thickness h,
wherein the principal material axes are labeled 1 and 2, that is the 1 direction is parallel to
the fibers, the 2 direction is normal to them, and consider that the beam, plate or shell
geometric axes are x and y as depicted in Figure 10.10. For the material axes 1 and 2, the
1 axis is always in the direction involving the stiffer and stronger material properties,
compared to the 2 direction.
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Figure 10.10. Lamina Coordinate System.

The element shown in Figure 10.10 has the stresses shown in the positive
directions consistent with references [1.7, 2.7, 2.8, 3.3, 10.1, 10.2, 10.42]. If one

performs a force equilibrium study to relate o, Oy and Oyy too,, 0, and Oy it is
exactly analogous to the Mohr's circle analysis in basic strength of materials with the

result that, in matrix form,

oy | oy |

oy =[T] | Oy ° (10.32)

G6J nyj

where
m?2 n? +2mn —|
[T]. =| 02 m? -2mn ; (10.33)

-mn mn (mz-n2) J

and where here m = cos 0, n = sin 0, and 0 is defined positive as shown in Figure 10.10,
and the subscripts CL refer to the classical two-dimensional case only, that is, in the 1-2
plane or the x-y plane only.

Analogously, a strain relationship also follows for the classical isothermal case
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£ —| £y —I
82 . &
812J

= y -

[T]CL . (10.34)
ny

However, these classical two-dimensional relationships must be modified to treat

a composite material to include thermal effects, hygrothermal effects, and the effects of

transverse shear deformation treated in detail elsewhere [e.g., 1.7]. The effects of

transverse shear deformation, shown through the inclusion of the o, - ¢, and o5 - &

relations shown in Equations (10.32) and (10.34), must be included in composite
materials, because in the fiber direction the composite has many of the mechanical
properties of the fiber itself (strong and stiff) while in the thickness direction the fibers
are basically ineffective and the shear properties are dominated by the weaker matrix
material. Similarly, because quite often the matrix material has much higher coefficients
of thermal and hygrothermal expansion (o and f3), thickening and thinning of the lamina
cannot be ignored in some cases. Hence, without undue derivation, the Equations (10.32)
through (10.34) are modified to be:

[0, ] (oy ] e ] [ex 1

o, oy & &y

o9 |ana |7 |=1] % (10.35)
Oy Oyz 412 Eyz

Os Oxz . 85/2 Exz

1% | [Oxy | €612 &xy |

where

n2 m? 00 0 -2mn
0 0 10 0 O

[T] =10 0 0O0m -noO f (10.36)
0 0 O0On mO

-mn mn 0 0 0 (m2—n2)
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. . 1 . . .
Please note the introduction of the factor of 5 as noted in the strain expressions, because

of the way &4, €5 and g6 are defined in Equation (10.5).

where”*

[T =

=
\S]

S © o 3
S O o = O O

—mn

BOOO

-n
0

OE.’SOOO

For completeness, the reverse transformations are given.

_ ‘ 1
£

&3

fa]

2]

5 = [T

2 .

876 .
1L2)]
“2mn |
2mn
0
0
0
(m? —n?)]

(10.37)

(10.38)

Again, please note that the transformations can be made only with fensor strains.

Hence, from Equation (10.5), it is necessary to divide &4, €5 and £ by two.

If one systematically uses these expressions, and utilizes Hooke's Law relating

stress and strain, and includes the thermal and hygrothermal effects, one can produce the
following overall general equations for a lamina of a fiber reinforced composite material
in terms of the principal material directions (1, 2, 3); see Equations (10.8) - (10.21).

*[T]™" can be found by replacing 0 by (-0) in [T].



180

B 0 0 O

.
[

o | | Q2Q2Qs30 00 iy o AT-B,Am
o3 Q13Q;3Q;30 0 0 : €3 - 03AT - B3Am
3 } = "3 ¢ (10.39)
o4 0 0 0 Qu0 0 |2,
S5 0 0 0 0 Q40 |28
2
Lo 000 0 0 0 Qe [

In the above, the Qij quantities are used for the stiffness matrix quantities obtained
directly from Equation (10.8) through (10.21). One should also remember that €,, =
(112G45)0,, &5 = (1/2G;))os and €, = (1/2G,)o,, hence the coefficients of "two"

appearing with the tensor shear strains &3, €31, and €12 above. Using the notation of
Sloan [10.42], the stiffness matrix quantities can be written as follows:

Q1 = Eq1(1-vp3v3p)/A, Qg = Epy(l-v3yvy3)/A
Q33 = E33(1-vipva /A, Quq = Gp3, Qs5=Gp30 Qg =G
Q1p = (Vo1 +V31V23)E /A = (Vip T V35V13)Ep/A
Q3= (V31 T Vo1 V3)E /A= (V3 T V5Vy3)Es5/A (10.40)

Qp3 = (V35 T VaV3PEyp/A = (Vo3 + vy vi3)Es3/A

A=1-vipvy1 - Va3V3p - V31V13 -2V21V32V13
Incidentally in the above expressions, if the lamina is transversely isotropic, i.e.
has the same properties in both the 2 and 3 directions, then Vi) = Vi3 G12 = G13’ E22 =
E,, with resulting simplification.

For preliminary calculations in design or where great accuracy is not needed,
simpler forms [1.7] for some of the expressions in Equation (10.40) can be used, as
shown below, with little loss in numerical accuracy:
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Q= E/(1-vipvyp)s  Qpp=Enp/(1-vivy))
Qpp =Qyp = vy E/(1-v1pvy)) = vipEpy/(1-v15vy) (10.41)

Qg6 =G12

If these simpler forms are used then one would use the classical form of the
constitutive relations instead of Equation (10.39), neglecting transverse shear
deformation and transverse normal stress, i.e., letting 03,04 andog equal zero, thus

obtaining

o] 1Q, Q, 0 T e, — o, AT —B,Am
Oy = le Q22 0 : €y —0,AT—f,Am (10.42)
oy 0 0 Q) 2¢,,

where one should remember also that 2, = &, hence the appearance of the factor of two

before &,,. As stated above for many cases it is sufficient to use Equations (10.41) and

12°
(10.42) rather than Equations (10.39) and (10.40) for faster and easier calculation.

In the case where there are no 16 and 26 terms the anisotropic composite material
is frequently referred to as “specially orthotropic”.

When the structural axes, x, y and z, are not aligned with the principle materials
axes, 1, 2, 3, as described in Figure 10.10, then a coordinate transformation is necessary.
To relate these relationships to the x-y-z coordinate system, one utilizes Equations (10.37)
through (10.39). The result is
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Q Qy Q30 0
Qp Qp Q3 0 0

Qi3 Q3 Q33 0 0

| Qs Q6 Q36 0 0

0 0 0 Q Q550

6 |
Q26

Q36

0 0 0 Q Q0

Qg5

where [Q ] =[T]'[Q][T], or more explicitly,

7 ( gy - 0, AT - B Am )

3 Lz(sxy - a AT - B, Am)

ey - ocyAT - ByAm

g, - AT - B, Am

“9 >

28yz

2¢e

XZ

Q ;; =Q;m*+2(Q;, +2Q4s)m*n? + Q,yn

Q 12=(Q); + Qpy - 4Qg)m*n? + Q5(m* +n%)

_ 2 2
Q 3=Q3m”+Qysn

Q 1= -mn’Qyy +m*nQy - mn(m? - 1?)(Q, +2Qg4)

Q 5 =Qn* +2(Q, +2Qg¢)m*n* +Q ,m*

(10.43)
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) 2
Q3 = 17°Qp3 + M7Qy;

Q33=Qs3

Q 36 = -m’nQy, + mn’Qy; + mn(m? - n%) (Q; + 2Q4) (10.44)
Q36=(Q)3- Qy3)mn

S 2 2
Q 44 = Qqum” + Q551

Q 45=(Qs5 - Qqq)mn

_ 2 2
Q 55 = Qs5m” + Qyyn

Q 66 =(Q; +Qyy - 2Q)m*n? + Qge(m? - n?)?

ocx=a]m2+(x2n2 BXZBlmZJrBZnZ

_ 2 2 — 2 2
0Ly = apm +oyn By—Bzm +Bn
o, = oy B,=B;

Oyy = (o) - 0,)mn BXy =(B; - By)mn.

It should be remembered that although the coefficients of both thermal and
hygrothermal expansion are purely dilatational in the material coordinate system 1-2,
rotation into the structural coordinate system x-y, results in an oy, and a Bxy, simply

because the composite materials will probably have a1, and 1#B>.

Again, for preliminary design purposes or for approximate but usually accurate
calculations one can use the simpler classical form of
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o, Qi1 Qiz Qe —| g - o AT - B Am
% ¢ = Qu Qu Qp &y - oy AT - B, Am (10.45)
Cyy ~ o o | 2egy - 0y AT - By Am)

Q6 Q6 Qe6 J

where the Q j are defined in Equation (10.44), but one can use the Qij of Equation

(10.41) instead of Equation (10.40) for consistency with the simpler expressions above.

One interesting variation of the above classical quantities of Equation (10.43)
resulted when Tsai and Pagano [10.43] rewrote many of the quantities in terms of
material invariants and trigonometric functions involving (20) and (40). Their method
provides an alternative formulation or a check of numerical results.

At this point, given a lamina of a unidirectional composite of known elastic
properties, if used in a plate or panel, (as well as a beam, ring or shell, discussed later)
with the 1-2 material axis at an angle 0 from the plate or panel x-y axes, all stiffness

quantities Qij and Q j can be determined relating stresses and strains in either coordinate

system.

10.9 Laminate Analysis

In the previous section the generalized constitutive equations for one lamina of a
composite material were formulated. Many structures of composite materials including
sandwich structures are composed of numerous laminae, which are bonded and/or cured
together. In fact, over and above the superior properties in strength and stiffness that
composites possess, the ability to stack laminae one on the other in a varied but unique
fashion to result in the optimum laminate material properties for a given structural size
and set of loadings is one of the major advantages that composites have over more
conventional structures. Up to this point, the concentration has been on the stress-strain
or constitutive relations. Now the other three sets of equations comprising the equations
of elasticity will be considered: the strain-displacement relations, the equilibrium
equations and the compatibility equations.

Consider a laminate composed of N laminae. For the & lamina of the laminate,
Equation (10.43) can be written as:
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(GX A (e, - o AT - B, Am h
oy gy~ (xyAT - ByAm
c, e, - o,AT- B, Am
< oy, } =[Q T 26, } , (10.46)
Oxz 2ey,
Oxy 2(8Xy - (nyAT - BXyAm)
L [ k L [ k

where all of the above matrices must have the subscript k due to the material and its
orientation for each particular lamina with respect to the structural x-y coordinates and

therefore its unique G]k, [ai ]k and [B i]k'

For any elastic body the strain-displacement equations, i.e., those kinematic
relations describing the functional relations between the elastic strains in the body and its
displacements, are given by the following expression when considering linear elastic
deformation:

1
g = E(ui’j +u j’l.) (10.47)

where i, j = X, y, z in a Cartesian coordinate frame, and the comma denotes partial
differentiation with respect to the coordinate denoted by the symbol after the comma.
Explicitly, the relations are:

g 2o OV W
*oox’ Y ooy’ Z oz
_1(du_ow 1oy, ow
szz(aeraxj’ &y 2[ o+ ay} (10.48)

Wo2loy  ox

In the above u, v, and w are the displacements in the structural x, y, and z
directions, respectively. In linear elastic beam, plate, ring and shell theory, it is assumed
that a lineal element extending through the thickness of a thin plate and perpendicular to
the middle surface (that is, the x-y plane in Figure 10.11 below) prior to loading, upon the
application of a load undergoes at most a translation and a rotation with respect to the
original coordinate system. Based upon that one assumption the functional form of the
displacements for a laminated plate is:
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U(X, Y, Z) = u()(xa Y) + Za(X, Y)
v (X, ,2) =V (X, y) + zB(x,y) (10.49)

w(X, ¥, 2) = W(x,y)

A

Y
e —

%t

Figure 10.11. Typical Rectangular Plate.

where Uy Vo and w are the middle surface displacements, i.e., the translations of the

lineal element, and the second terms in the first two equations are the rotations of a lineal

element through the thickness. In classical beam and plate theory o and B are the
negative of the first derivative of the lateral displacement with respect to the x and y

coordinates respectively (i.e., & = -(Ow/6x) and B = -(Ow/dy), the negative of the slope),

but if transverse shear deformation is included, o and B are unknown dependent
variables which must be solved for; this will be discussed later. Also, in classical theory,
it is assumed that the lineal element across the thickness of the beam, plate or shell
cannot extend nor shrink because at most it undergoes a translation and rotation, hence w
= w(x,y) only. Sloan [10.42] has shown that for many practical composites, plate
thickening (where the lateral deflection is a function of z) is unimportant and can be
neglected, hence it is not included here, but can be found in detail in [10.42].
Substituting Equation (10.49) into Equation (10.48) results in:
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ou oo ov op
=_0 _0 =
T TP BT oy +Z§y €270

(= ow 1(5 . oOw
gxz=§(a+6—x} gyZZE(BJFEJ

(10.50)
ou 5
ng:l o, Yo Vo + z( oa 5[3
2| oy 6y 6X
The mid-surface strains can be written as:
76u0 76V0 8u 8V
e i o (1020
The curvatures can be written as
da P 1(0a, OB
=g« i 10.52
o ey Mo Z[Gy ax] (10.52)

The classical and first order shear deformation theories utilize displacements and
strains  to describe the strains and displacements of a laminated or sandwich structure
composed of composite material, because all of the individual laminae are bonded
together, therefore the same assumptions are made regarding the lineal element through
the laminate thickness. Thus, a continuity of strains and displacements occurs across the
laminated structure regardless of the orientation of individual laminae.

Substituting (10.50) through (10.52) into Equation (10.46) results in Equation
(10.53); wherein because it is assumed that ¢, = 0, (because plate thickening is

neglected), o, for a thin walled structure of composite material is usually negligible and

will not be considered further.

Oy SXO + 7Ky —aXAT—BxAm

Oy ey, T 2Ky —ayAT-pyAm

Oyz = [G]k 28yz (10.53)
Oxz 2ex,

Sxy !y Z(SXyO +nyz—(nyAT—BXyAm)[ .

Note that without the hygrothermal terms, the strain-curvature matrix at the right
in Equation (10.53) would suffice for the entire laminate independent of orientation,
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because the displacements, and strains are continuous over the thickness of the laminate.
In that case the subscript k on that matrix would not be needed. However, even though
there is continuity of the mid-surface strains and curvatures across the thickness of the
laminate, the stresses are discontinuous across the laminate thickness because of the
various orientations of each lamina, hence, the subscript k in the stress matrix above. It is
seen from Equation (10.53) that if all quantities on the right hand side are known, one can
easily calculate each stress component in each lamina comprising the laminate.

Consider a laminated plate or panel of thickness h as shown below, in Figure
10.12. It is seen that h, is the vectorial distance from the panel mid-plane, z = 0, to the

upper surface of the kth lamina, i.e., any dimension below the midsurface is a negative
dimension and any dimension above the midsurface is positive. For example, consider a
laminate 0.52 mm (0.020") thick, composed of four equally thick laminae, each being
0.13 mm (0.005") thick. Then h, =-0.26 mm (-0.010"), h; =-0.13 mm (-0.005"), h, =0,

h; =0.13 mm (0.005") and h, = 0.26 mm (0.010").
As in classical beam, plate and shell theory [1.7, 2.7, 2.8, 3.3, 10.1, 10.2], one
defines and uses stress resultants (N), stress couples (M), and transverse shear resultants

(Q) per unit width, with appropriate subscript, for the overall structure regardless of the
number and the orientation of the laminae, hence:

Ny S
NY Gy My Gx
Nyy =[O0y 1dz, { My t=[""" o, zdz (10.54)
QX GXZ MxyL ny
(¢}

It must be emphasized that all of the above quantities are a force per unit width
and a couple per unit width because in plate and shell structures these quantities vary in
both the x and y directions.
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Figure 10.12. Nomenclature for the Stacking Sequence.

In the plate shown in Figure 10.13, the positive directions of all the stress
resultants and stress couples are shown, consistent with the definitions of the quantities

given in Equation (10.54).

Figure 10.13. Positive directions for Stress Resultants and Stress Couples for a Plate.

For a laminated plate, the stress components can be integrated across each lamina,
but must then be added together across the laminae as follows; employing Equations
(10.47) and (10.50) through Equation (10.52):
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waj N O'x—!
Ny -:];jhl: oy .4z
nyj O-XYJ
N | €, ] wa
Nz E:é Ir}:ffl [G}k 5y2 idZ+I}?;] [G]k Ky zdz
nyj 8XYOJ ny_j
Ux | Bx 1
_If;] [G]k Oy ATdZ_-[]?:,I [G]k By - Amdz (10.55)
aXka Bxyjk

where only the pertinent portions of the [Q ], matrix are used.

Since the derivatives of the mid-surface displacements (u, and v), the rotations

(o and B ) and the Q 's are not functions of z, Equation (10.55) can be rewritten as:

N, £ .

o A s ) A A

Nyy ] Exy0 Jie Kxy i
ay | B, |

_I}?i; [k oy ATdZ_J‘lil,il [k B,  Amdz (10.56)
%xy Ji Bxy Jx

Finally, Equation (10.56) can be written succinctly as:
[N]=[Allgo] + [BI[x] - [N]T - [N]™, (10.57)

where it is shown later in Equation (10.66) that a factor of 2 is necessary in some terms,
and where

Ay = i(@-j)k[hk —hk_l], [ij=1,2,6] (10.58)

k=l
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Qg)k|: he ]J [ij=1,2,6] (10.59)
thleg)k[ ,]] ATdz lij=1,26] (10.60)
N
i =2 hleU)k[ y] Amdz [i,j=1,2,6] (10.61)

where it is obvious from Equation (10.56) how the [a and [B matrices are defined.

From Equation (10.57), it is seen that the in- plane stress resultants for a laminated
thin walled structure are not only functions of the mid-plane strains (sxo =0u/0x, etc.) as

they are in a homogeneous beam, plate or shell, but they can also be functions of the
curvatures and twists (x, = J@& /éx, etc.) as well. Therefore in-plane forces can cause
curvatures or twisting deformations in composite laminated structures.

Similar to the above, but multiplying Equation (10.53) through by z first before
integrating, as in Equation (10.55), the following can be found:

M, | £ | KXT
N | r— 0
:k; [Q] IZdZJF[Q]k Ky . IZ dz
MXYJ SXYOJ " nyj i
Oy | . B, |

j [Q],| oy ATzdz- N [Q],| By Amzdz

" Oy | T By

[M] = [B] [¢o] + [D] [x] - [M]" - [M]™ (10.62)

where it will be shown in Equation (10.66) that factors of 2 are necessary in some terms,
and where

Q,])k[ h? IJ [ij=1,2,6] (10.63)
N (—
Mp =3 ik (Qlj)k[aij]k(AT)zdz lij=1,2,6] (10.64)

N
g Qy)k[ﬁl]] (Am)zdz lij=1,2,6] (10.65)
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It is noted that in Equations (10.60), (10.61), (10.64) and (10.65) the
Ql-j , 0 l-jand ﬁl-j could have been placed outside of the integral sign since in a lamina, they

are not functions of z.
Finally, the results of (10.57) and (10.62) can be written succinctly as follows to
form perhaps the most important and most used equation in this text.

[N, —l [ A1 A Al BuBan—l_SXo NI—| Nr’?—l
Ny o | A2AnAxl BpBypBy | & Ny Ny
No o | Ar6 A26A66] BigBasBes | 2exy0 - Ny o [ NG :
Mc | By BpaBygl DyyDppDyg o[ ke [ MT | MT
My | BiaByBygl DypDyyDog o| kg, M7 RV
Mny By Bag Bes | D16D26D66J 2KXyJ MXT;: M;g;'
L L . R

(10.66)

The [A] matrix represents the extensional stiffness matrix relating the in-plane
stress resultants (N's) to the mid-surface strains (g's) and the [D] matrix is the flexural

stiffness matrix relating the stress couples (M's) to the curvatures (k's). Since the [B]
matrix relates the M's to £'s and N's to ks, it is called the bending-stretching coupling

matrix. It should be noted that a laminated structure can have bending-stretching
coupling even if all laminae are isotropic. For example, a laminate composed of one
lamina of steel and another of polyester will have bending-stretching coupling. In fact,
only when the structure is exactly symmetric about its middle surface are all of the Bij

components equal to zero, and this requires symmetry in laminae properties, orientation,
and distance from the middle surface.
It is seen that stretching-shearing coupling occurs when A, and A, are non-

zero. Twisting-stretching coupling as well as bending-shearing coupling occurs when the
B, and B, terms are non-zero, and bending-twisting coupling comes from non-zero

values of the D and D, terms. Usually the ()15 and ( )¢ terms are avoided by proper

stacking sequences, but there could be some structural applications where these effects
could be used to advantage, such as in aeroelastic tailoring.

Examples of these effects in several cross-ply laminates (i.e., combinations of 0°
and 90° plies), angle ply laminates (combinations of +6 and -0 plies), and unidirectional
laminates (all 0° plies) are involved in problems at the end of this chapter. It is seen in
Equation (10.58) that (h, - h, ,) is always positive, and from Equation (10.63) (hz - hiq)
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is always positive, hence, in all symmetric cross-ply laminates, all (), and (),  terms
are zero. If one describes a single layer isotropic plate one can see that, for example
_ ER’
C12(0-v?)

The inclusion of transverse shear deformation effects on the structural behavior,
results in an improved theory as follows. To determine the transverse shear resultants Q

A, =A,, =Eh(1-v*) and D,, =D,,

and Qy, defined in Equation (10.54), it is assumed that the transverse shear stresses are

distributed parabolically across the laminate thickness. In spite of the discontinuities at
the interface between laminae, a continuous function f(z) is used as a weighting function
by some authors, which includes a factor of 5/4 so that the shear factor calculated for an
orthotropic laminate is consistent with the established shear factor from the previous
work of Reissner [10.44] and Mindlin [10.45] for the homogeneous case.

f(z) = % [1 i (ﬁﬂ (10.67)

Then from Equations (10.40), (10.43), (10.50), (10.54), and (10.67)

Oxz = 2Q 55, Exz T 2Q 45,Ey7 Oyz = 2Q 45, Exz T 2Q 44, Eyz (10.68)
where,
N 2. 24 - i N 2, 2
Q 44 = Qgqm +Q55n%, Q 45 = (Q55-Que)mn, Q 55 = Qs5m“+Qyyn”,
Q44 = Gz, and Q55= Gy 3,
Hence, the transverse shear resultants Qx and Qy are as follows:
QX = 2(A55 e, T A45 ayz) (10.69)

Qy =2(Ays58,, A448yz) (10.70)
where,

A= 353@0, b <h 23 —n3 )LD = asony o
i~ 3 Q| Py m3 (i) g @=as enly) (1071

where h is the total thickness of the laminated plate. Some authors use other weighting
functions. As an example if one considers the laminate to be only one lamina,
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h h 5 . . . .
) <z< > then Ass = G Qssh, illustrating clearly the weighting factor introduced by

5
Reissner of P [10.44].

At this point the stress-strain relations, or constitutive relations Equation (10.66)

can be combined with the appropriate stress equations of equilibrium, and the strain-
displacement relations to form an appropriate beam, plate or shell theory including
thermal and hygrothermal effects as well as transverse shear deformation.

Another reference for the developments of this chapter is a recent text by Jones

[10.46].
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10.11 Problems

10.1

10.2.

10.3.

10.4.

10.5.

10.6.

Consider a laminate composed of boron-epoxy with the following properties:

Q,, =243 x 10°'MPa Q,,=2.43 x 10'MPa
(35.32 x 10°psi) (1.06 x 10°psi)
Q,,=2.43 x 10'MPa Q,=1.034 x 10’MPa

(3.532 x 10°psi) (1.5 x 10°psi)

If the laminate is a cross—ply with [0°/90°/90°/0°], with each ply being 0.25 mm
(0.11") thick, and if the laminate is loaded in tension in the x direction (i.e., the 0°
direction):

(a) What percentage of the load is carried by the O plies? The 90° plies?

(b) If the strength of the 0° plies is 1.364 x10°MPa (198,000 psi), and the strength
of the 90° plies is 44.8 MPa (6,500psi) which plies will fail first?

(c) What is the maximum load, N_, that the laminate can carry at incipient
failure? What stress exists in the remaining two plies, at the failure load of the
other two others?

(d) If the structure can tolerate failure of two plies, what is the maximum load,
N, .. that the other two plies can withstand to failure?

A laminate is composed of graphite epoxy (GY70/339) with the following

properties: E,, = 2.89x105 MPa (42 x10° psi), E,, = 6.063 x 10’ MPa (0.88 x 10°

psi), G,,= 4.134x10° MPa (0.6x106 psi) and v,,= 0.31. Determine the elements of
the A, B and D matrices for a two-ply laminate [+45°/—45°], where each ply is

0.15 mm (0.006") thick.

Consider a square panel composed of one ply with the fibers in the directions as

shown in Figure 10.12.

Which of the orientations above would be the stiffest for the loads given in Figure

10.12?

For a panel consisting of boron-epoxy with the properties of Problem 1 above,

and a stacking sequence of [0%+45°-45°/0°], and a ply thickness of 0.14 mm

(0.005"), determine the elements of the elements of the A, B and D matrices.

The properties of graphite fibers and a polyimide matrix are as follows:

E =2.756 x 105 MPa E =2.756 x 103 MPa
(40 x 106 psi) (0.4 x 106 psi)
v=0.2 v=0.733

(a) Find the modulus of elasticity in the fiber direction, E,, of a laminate of
graphite-polymide composite with 60% fiber volume ratio.

(b) Find the Poisson’s ratio, v,,?

(c) Find the modulus of elasticity normal to the fiber direction, E,,.

(d) What is the Poisson’s ratio, v,,?

Consider a laminate composed of GY70/339 graphite epoxy whose properties are

given above in Problem 10.2. For a lamina thickness of 0.127 mm (0.005"),

calculate the elements of the A, B and D matrices for the following:

(a) [0° 0° 0° 0°] (unidirectional);

(b) [0°,90°,90° 0°] (across-ply);

(c) [#45],, i.e. [+45°/-45°/-45°/+45°] (an angle-ply);
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(d) [0°/+45°/-45°/90°], (a quasi-isotropic, 8 plies);
(e) Compare the various stiffness quantities for the four laminates above.

Ay AY AY \y
> X —>% ™ > X > X
A B C D
Figure 10.12.
10.7. Consider a laminate composed of GY70/339 graphite epoxy whose properties are

10.8.

10.9.

10.10.

10.11.

10.12.

10.13.

given above in Problem 10.2. For a lamina thickness of 0.127 mm (0.005") cited
in Problem 10.6, calculate the elements of the [A], [B] and [D] matrices for the
following laminates:

(a) [£(45)2], [+45/-45/+45/-45]
(b) [£45], [+45/-45/-45/+45]
(c) [#45]Q,, [+45/-45/+45/-45]
(d) [£(45)2],,, [+45/-45/+45/-45],,

Compare the forms of the A, B and D matrices between laminate type.

What type of coupling would you expect in the (B) matrix for (a) and (b) below:
(a) 0°/90° laminate

(b) +6/-6 laminate

Given a composite laminate composed of continuous fiber laminate laminae of
High Strength Graphite/Epoxy with properties of Table 10.3, if the laminate
architecture is [0°, 90°, 90°, 0°], determine A, if vi» = 0.3, and each ply thickness
is 0.006".

Consider a plate composed of a 0.01" thick steel plate joined perfectly to an
aluminum plate, 0.01" thick. Using the properties of Table 10.3 calculate B, , if
the Poisson’s Ratio of each material is v = 0.3.

Consider a unidirectional composite composed of a polyimide matrix and graphite
fibers with properties given in Problem 10.5 above. In the fiber direction, what
volume fraction is required to have a composite stiffness of E,, =10 x 10° psi to
match an aluminum stiffness.

A laminate is composed of ultra high modulus graphite epoxy with properties
given in Table 10.3 below. Determine the elements of the [A], [B] and [D]
matrices for a two ply laminate [+45°/-45°], where each ply is 0.006" thick. For
the material v, = 0.31.

A laminate is composed of boron-epoxy with the properties of Problem 10.1 and a
stacking sequence of [0/+45°/—45°/0°], and a ply thickness of 0.006". Determine
the elements of the A, B and D matrices.

s

1
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Table 10.3. Unidirectional properties.

Material Elastic moduli Ultimate strength Density

Axial Transverse Shear Axial tens. Trans. tens. Shear tens.

Bl Ex» Gy 14 %2 12
High strength 20 1.0 0.65 220 6 14 0.057
GR/epoxy (138) 6.9) 4.5) (1517) (41) 97) (1.57)
High Modulus 32 1.0 0.7 175 5 10 0.058
GR/epoxy (221) (6.9) 4.8) (1206) (34) (69) (1.60)
Ultra high 44 1.0 0.95 110 4 7 0.061
modulus (303) (6.9) (6.6) (758) (28) (48) (1.68)
GR/epoxy

Kevlar49/ 12.5 0.8 0.3 220 4 6 0.050
epoxy (86) (5.5) 2.1 (1517) (28) 41) (1.38)
S glass 8 1.0 0.5 260 6 10 0.073
epoxy (55) (6.9) (3.4 (1793) (41) (69) (2.00)
Steel 30 30 11.5 60 60 35 0.284
(207) (207) (79) (414) (414) (241) (7.83)
Aluminum 10.5 10.5 3.8 42 42 28 0.098
6061-T6 (72) (72) (26) (290) (290) (193) (2.70)

Moduli in Msi (GPa); Stress in Ksi (MPa); Density in Ib/in>(g/cm”)

10.14. Consider a composite laminae made up of continuous Boron fibers imbedded in
an epoxy matrix. The volume fraction of the Boron fibers in the composite is

40%. Assuming that the modulus of elasticity of the Boron fiber is 5 x 10" psi and

the epoxy is 5 x 10° psi, find:

(a) The Young’s moduli of the composite in the 1 and 2 direction.

(b) Consider an identical second lamina to be glued to the first so that the fibers
of the second lamina are parallel to the 2 direction. Assuming the thickness of
each lamina to be 0.1" and neglecting Poisson’s Ratio, what are the new
moduli in the 1 and 2 directions.

10.15. The properties of graphite fibers and a polyimide matrix are as follows:

GRAPHITE POLYIMIDE
E =40 x 10° psi E=0.4 x10°psi
v=0.2 v=0.233

(a) Finder the modulus of elasticity in the fiber direction, E;;, of a lamina of
graphite — polyimide composite with 70% fiber volume ratio.

(b) Find the Poisson’s Ratio, vi».

(¢) Finder the modulus of elasticity normal to the fiber direction, Ez,.

(d) What is the Poisson’s Ratio, va».

(e) Compare these properties with those obtained for the same material system
but with vi = 60% in problem 10.5.
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10.16.

10.17.

In a given composite, the coefficient of thermal expansion for the epoxy and the
graphite fibers are +30 x 10°® in/in/°F and —15 x 10°° in/in/°F respectively. For
space application where no thermal distortion can be tolerated what volume
fractions of each component are required to make zero expansion and contraction
in the fiber direction for an all 0° construction? (Hint: Use the Rule of Mixtures).
Find the A, B and D matrices for the following composite: 50% volume Fraction
Boron-Epoxy Composite

E,, =30.0 x 10° psi

Ey =3.0 x 10° psi

Gy = 1.0 x 10° psi

v, =022

Stacking Sequence (each lamina is 0.0125" thick)

0=45°

6=0°

6=90°

0=—45°

0=—45°

6=90°

0=0°

6=45°

10.18.

10.19.

10.20.

Three composite plates are under uniform transverse loading. All the conditions,

such as materials, boundary conditions and geometry, etc. are the same except the

stacking sequence as shown below. Without using any calculation, indicate which

plate will have maximum deflection and will have minimum deflection.

Consider a Kevlar 49/epoxy composite laminate, whose properties are in Table

10.3 in the text and whose stacking sequence is [0,90,90,0] (i.e. a cross ply

laminate). The ply thickness is 0.0055 inches.

(a) Determine the A, B, and D matrix component.

(b) What if any are the couplings in this cross-ply construction that are discussed
below Equation (10.66)?

(c) If only in-plane loads are applied, is the plate stiffer in the x direction or y
direction, or are they the same?

(d) If only plate bending is considered, is the plate stiffer in the x direction, the y
direction, or are they equally stiff?

Given the following fiber and matrix properties for HM-S/epoxy composite

components:

Epoxy HM-S/Graphite
En= 0.5 Msi = 3.45 GPa Efi1=55.0 Msi = 379.3 GPa
Gu=0.185 Msi = 1.27 GPa Epy= 0.9 Msi =6.2 GPa
pm= 0.0440 Ib/in’ = 1.218 gr./cm’ Vi, =0.20

pr2=0.0703 Ib/in’ = 1.946 gr./cm’

Determine each of the following properties for a unidirectional composite:
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10.22.

10.23.

10.24.

10.25.

10.26.
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Ei1, Ei2, E33, G2, Gi3, L12, L21, U13, L31, U3 and vz, for the fiber volume fractions
of Ve= 0%, 30%, 60%. Which properties increase linearly with volume fraction?
Which do not increase linearly with volume fraction?

Given a cross-ply construction of four lamina of the same composite material
system oriented as 0°, 90°, 90°, 0°, each lamina being equally thick, which
elements of the [A], [B] and [D] matrices of Equation (10.66) will be equal to
Zero.

Given an angle-ply construction of five plies of the same composite material
oriented as +0°/—0°/+0°/—-0°/+0°, each of equal thickness, which elements of the
[A], [B] and [D] matrices of Equation (10.66) will be equal to zero.

Determine the elements of the Cj matrix analogous to the a;; of Equation (10.10)
through (10.12) for orthotropic materials.

’—Cn ¢, C; 0 0 0 T
G Cy Cy 0 0 0
C - G, G, CG; O 0 0
v 0 0 0o ¢, O 0
0 0 0 Cs O
L 0 0 0 0 0 CS(,J

A laminate is composed of graphite epoxy (GY70/339) with the following
properties:
E;;=2.89 x 10° MPa (42 x 10° psi)
Ex=60.63 x 10° MPa (0.88 x 10° psi)
Gi2=4.134 x 10° MPa (0.60 x 10° psi)
V2= 0.31
(a) Determine the elements of the [A], [B], and [D] matrices for a two-ply
laminate [+45/-45], where each ply is 0.15mm. (0.006 inches) thick.
(b) What couplings exist as discussed below Equation (10.66) for this laminate?
For a panel consisting of Boron-Epoxy with the properties
Q11=35.32 x 10°psi
Q2=13.532 x 10° psi
Q1= 1.06 x 10°psi
Qs6= 1.50 x 10° psi
and a stacking sequence of [0°, +45°, -45° 0°], and a ply thickness of 0.006
inches, determine the elements of the A, B and D matrices. What would the
elements be if the ply thickness were 0.0055 inches?
Determine how the A, B, D matrices are populated for the following two stacking
sequences [0°, £45°, 90°]qs and [0°, +45°, 90°]s . The subscript QS mean
symmetric Q times where Q = 2, 3,... The composite material is orthotropic and
has the properties Ei1, E2z, Gi2, 12, with each lamina having thickness hy. In the
[A], [B], and [D] matrices, place an x or an O for each element, where an x shows
that the component is non zero, and O shows that the component is zero.
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10.27.

What type of couplings, as discussed below Equation (10.66) would you expect in
the B matrix for (a) and (b) below: (that is, identify the non-zero terms)

(a) 0°/90° laminate

(b) +6/-0 laminate

10.28. Find the [A], [B] and [D] for the following laminates.
o 0 © 90° 0,17
90° e 20° o° 0.1”
og¢ 90° [ . R 4017
0° o0 90° ap° Yoo

10.29.

10.30.

10.31.

10.32.

Given: E;1=30 x 106psi, E»n=3x 106psi, Gp=1x 106psi, v=0.3.
In problem 10.28 which laminate is stiffest and which is the least stiff for
(a) In-plane loads in the 0° direction.
(b) In-plane loads in the 90° direction.
(c) Bending in the 0° direction.
(d) Bending in the 90° direction.
Consider a laminate composed of GY 70/339 graphite/epoxy with the following
properties,
E;;=2.89 x 10° MPa (42 x 10° psi)
Ej = 6.063 x10° MPa (0.88 x 10° psi)
G12=40134 x 10° MPa (0.60 x 10°psi)
V2= 0.31
Using the laminate thickness as 0.127mm (0.005 inches) calculate the elements of
the [A], [B], and [D] matrices for the following laminates.
(a) [+ (45)1]s, [+45/-45/+45/-45],
(b) [£45]s, [+45/-45/+45/-45];
(c) [+45]qs, [145/-45/+45/-45]
(d) [+ (45)2]qs, [+45/-45/+45/-45]qs
Compare the forms of the [A], [B] and [D] matrices between laminate types.
A composite material has stiffness matrix as follows,

[100 10 0 0 0 10]
-10 50 0 0 0 10
0 0 5 0 0 0. . .
[C]: x10° psi
0 0 0 20 0 0
0 0 0 0 20 0.
0 0 0 0 0 20]

Determine the state of stress if the strains are given by,

gx= 100 pin/in, &, = 50 pin/in, y = -100 pin/in.

Consider the stress acting on an element of a composite material to be as shown
below. The material axes 1,2 are angle 6 with respect to the geometry loading
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10.34.
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axes for the element. Taking the material properties as noted below, find the m-
plane displacements u(x,y), v(X.y).
Oyy = 0, =25 Ksi

Nt

X 2" E,; = 25x10° psi
Ep, = 1x108 psi
Gy, = 0.5x108 psi

. **j * * viz =025

A 50% boron-epoxy orthotropic material is subjected to combined stress as shown
below.

Oxx = 10,000 psi
Oyy = 10,000 psi

/ \ Ty = 10,000 psi
\/ Oixx

- Find the stress on the material element for a 45° rotation about the z-axis in
positive sense.
(a) If the strain components in the non-rotated system are given by:
&x =260 pin/in, &,= 3110 pin/in, y = -9090 pin/in
Find the corresponding strains in the rotated system.
(b) Comment on the corresponding stresses and strains in the rotated system.
The elastic properties of a unidirectional Kevlar 49/epoxy composite are given in
Table 10.3. A cross-ply laminate consists of 4 plies such that the stacking
sequence is [0°,90°,90°,0°]. Each ply is 0.0055 inches thick.
(a) Determine each element in the [4], [B] and [D] matrices.
(b) What if any coupling exists in this cross-ply configuration?
(c) Concerning in-plane loads only, is the plate stiffer in the x-direction, the y-
direction, or are they the same?
(d) Concerning plate bending, is the plate stiffer in the x-direction, the y-direction,
or are they equally stiff in bending?



CHAPTER 11
PLATES AND PANELS OF COMPOSITE MATERIALS

11.1 Introduction

In Chapter 10, the constitutive equations for composite materials were developed
in detail, describing the relationships between integrated stress resultants ( Ny, Ny,

integrated stress couples ( oM, M xy), in-plane mid-surface strains (52, 52, ggy), and
the curvatures (K'x, Ky, ny), as seen in Equation (10.66). These will be utilized with the

strain-displacement relations of Equations (10.48) and (10.50) and the equilibrium
equations to be developed in Section 11.2 below to develop structural theories for thin
plates and panels, the configuration in which composite materials are most generally
employed.

11.2 Plate Equilibrium Equations

The integrated stress resultants (N ), shear resultants (Q) and stress couples (1),
with appropriate subscripts, are defined by Equations (2.4) though (2.13), and their
positive directions are shown in Figure 2.2, for a rectangular plate, defined as a body of
length a in the x-direction, width b in the ¥ -direction, and thickness # in the z-
direction, where % << b, h <<a, i.e. a thin plate.

In mathematically modeling solid materials, including the laminates of Chapter
10, a continuum theory is generally employed. In doing so, a representative material
point within the elastic solid or lamina is selected as being macroscopically typical of all
material points in the body or lamina. The material point is assumed to be infinitely
smaller than any dimension of the structure containing it, but infinitely larger than the
size of the molecular lattice spacing of the structured material comprising it. Moreover,
the material point is given a convenient shape; and in a Cartesian reference frame that
convenient shape is a small cube of dimensions dx, dy, and dz as shown in Figure 1.1.

This cubic material point of dimension dx,dy and dz is termed a control element.
The positive values of all stresses acting on each surface of the control element are shown
in Figure 1.3, along with how they vary from one surface to another, using the positive
sign convention consistent with most scientific literature, and consistent with Figure 1.3.
Details of the nomenclature can be found in any text on solid mechanics, including [1.7,
2.7,2.8,3.3,10.1, 10.2]. In addition to the surface stresses acting on the control element
shown in Figure 1.3, body force components F, F), and F, can also act on the body.

These body force components such as gravitational, magnetic or centrifugal forces are
proportional to the control element volume, i.e., its mass.
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A force balance can now be made in the X, yandz directions resulting in three
equations of equilibrium. Proceeding exactly as in Section 1.5, one derives Equations
(1.5) though (1.8). These three equations comprise the equilibrium equations for a three
dimensional elastic body. However, for beam, plate and shell theory, whether involving
composite materials or not, one must integrate the stresses across the thickness of the thin
walled structures to obtain solutions.

Recalling the definitions of the stress resultants and stress couples defined in (2.4)
through (2.13) and (10.54); for a laminated (or sandwich) plate or panel, they are:

Nx _1 ’—O_x —| [ Oy —|
No. — th2 Yo ,
xy = Lan|Cxp _dZ—kZILfH Oxy dz; (11.1)
Ox Oxz Oxz
Oy i 19z ] 1O yz i,
M)C —| (% —| (3 —|
M, =" |o zdz=§:j}f’k o,  z,dz (11.2)
y h/2 y S h% K%r .
My | Ty | T i

The first form of each of the above is applicable to a single layer plate, while the
second form is necessary for a laminated or sandwich plate due to the stress
discontinuities associated with different materials and/or differing orientations in the
various plies.

Turning now to (1.5), neglecting the body force term, F, for simplicity of this
example, integrating term by term across each ply, and summing across the plate
provides

ﬁa 50' ¥, ﬁazxk

In the first two terms integration and differentiation can be interchanged, hence:

1 T _
v -
{ZJ ZI*'ZO-zx Jh

1,0

{ZW T E G

(11.4)

In the first two terms N, and N, appear explicitly as the bracketed quantities.

In the third term it is clear that between all plies of a laminated composite plate and
between the face and core materials of a sandwich panel the interlaminar shear stresses
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will cancel each other, and one can define the applied surface shear stresses on the top
( = hN) and bottom (z = ho) surfaces as shown below (see Figure 10.1)

O'zx(hN)ETIx and sz(ho)zrzx (11.5)

Equation (11.4) can then be written as:

AN. N
—dcx +—@fx +7,,. =75, =0 (11.6)

Similarly, integrating the equilibrium equation in the y-direction provides

Ny, N

N, - _
E +—@} +le Oy 0 (11.7)

where
O'Zy(hN)E 7 andazy(ho)s Ty (11.8)

Likewise equilibrium in the z-direction upon integration and summing provides

Oy, X _
@Cx Wy+pl—pz—0 (11.9)

where
O'Z(hN)E pyand O'Z(ho)z )2 (11.10)

It is seen that Equations (11.6), (11.7) and (11.8) are identical to Equations (2.17), (2.18)
and (2.16) for a plate made of an isotropic material. The reason is that equilibrium
equations are force balances and have nothing to do with the materials comprising the
plate.

In addition to the integrated force equilibrium equations above, two equations of
moment equilibrium are also needed, one for the x-direction and one for the y-direction.
Multiplying equation 1.5 through by zdz, integrating across each ply and summing across
all laminae results in the following

Oo oo éazxk

Xy N X, N
zdz + k zdz + k zdz =0
23 121 J.hkfl 121 '[hk—l
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Again, in the first two terms integration and summation can be interchanged with
differentiation with the result that the first two terms become (AM, / )+ (o’M v /a"y)

However, the third term must be integrated by parts as follows:

oo
%J:'k O;Ck ——Fzdz = Z{zazx] Z" —[* szdz}

i=1 k-1 -1

Here the last term is clearly — Q.. Again in the first term on the right, clearly the

moments of all the interlaminar stresses between plies cancel each other out, and the only
non-zero terms are the moments of the applied surface shear stresses hence that term
becomes

h

h
Vx0T =75 [Tlx + sz]

Using the former expression, the equation of equilibrium of moments in the x-
direction is

oM, 57 Xy
& G

Similarly in the y-direction the moment equilibrium equation is

O+ [Tlx+z-2x] 0 (11.11)

oM , M,
ok d/

where all the terms are defined above. Again, (11.11) and (11.12) are identical to (2.14)
and (2.15). Thus, there are five equilibrium equations for a rectangular plate, regardless
of what material or materials are utilized in the plate: (11.6), (11.7), (11.9), (11.11) and
(11.12).

~0y+ 2[1 rzy}:O (11.12)

11.3 The Bending of Composite Material Laminated Plates: Classical Theory

Consider a plate composed of a laminated composite material that is mid-plane
symmetric, i.e. B;; =0, and has no other coupling terms ( );6=( )26 = 0. Such a plate is

called a specially orthotropic plate. Also, assume no surface shear stresses and no
hygrothermal effects for simplicity. The plate equilibrium equations for the bending of
the plate, due to lateral loads given by Equations (11.9), (11.11) and (11.12) become:

M, N o“Mxy
& &

~0,=0 (11.13)
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My, M,

O’QX_F%
&

+p(x, y)=0 (11.15)

where p(x, y)= )2 (x, y)— P> (x, y). Derivatives of (11.13) and (11.14) can be
substituted into (11.15) with the result that:
2 M, *M
I My 9 oy Y=

(11.16)

Again, it is seen that (11.16) is identical to (2.56), because the above equations are
derived from equilibrium considerations alone. From Equation (10.66) and for the case

of mid-plane symmetry (B,-j = 0) and no ( )16 and ( )26 coupling terms, the constitutive

relations are:

My =D, kx +Dj,k) (11.17)
My, =D|skx + D,,k), (11.18)
My, =2Dg Ky (11.19)
where from Equation (10.52)
da P 1(da B
R ’(xy—z(aﬁax]'

It is well known that transverse shear deformation (that is &, #0,¢,, #0)

effects are important in plates composed of polymer matrix composite materials in
determining maximum deflections, vibration natural frequencies and critical buckling
loads. However, it is appropriate to use a simpler stress analysis involving classical
theory which neglects transverse shear deformation for preliminary design to determine a
“first cut” for stresses, a suitable stacking sequence and an estimate of the required plate
thickness.

If, in fact, transverse shear deformation is ignored, then from Section 2.3
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ow

_ L 52w _ O%w 2%w
a=-— , B=—

Ky=———%5, Ky=—"—5, Ky, = (11.20)
X A2 y 63}2 Xy

2%
So, substituting Equation (11.20) into Equations (11.17) through (11.19) results in the
following for the case of no transverse shear deformations, i.e., classical plate theory:

Aw A*w
My=-Dy, — Dy, 37 (11.21)
A*w A%w
My = D12 2 D22 0}2 (11.22)
Aw
M,,=-2D, , ——. 11.23

Substituting derivatives of these three equations in turn into Equation (11.16) results in:

4 4 4
—; +2(p, +2D,) @Z;ZJFDZZO”@ ”

The above coefficients are usually simplified to:

Dll

=p(x,y) (1124

Dy, =Dy, Dy, =D,, (D, +2D¢)=D, (11.25)
with the result that (11.24) becomes

4 4 4
1a 7 +2D; é]zwerDzé)Xv

=plx, ) (11.26)

This is the governing differential equation for the bending of a plate composed of
a composite material, excluding transverse shear deformation, with no coupling terms
(thatis B; =();s =()y =0), and no hygrothermal terms (that is, AT = Am =0) subjected
to a lateral distributed load p(x, y). Because no 16 nor 26 coupling terms are included,
(11.26) refers to a plate that is “specially orthotropic”.

As stated previously, neglecting transverse shear deformation and hygrothermal
effects can lead to significant errors, as will be shown, but in many cases their neglect
results in easier solutions which are useful in preliminary design to “size” the plate
initially. Note also that if the plate were isotropic, then in that case
D, =D,, =D, =D, =D, =D, and (11.26) becomes identical to (2.57).
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Solutions of Equation (11.26) can be obtained generally in two ways: direct
solution of the governing differential equation (11.26), or utilization of an energy
principle solution. The latter offers more latitude through attaining satisfactory
approximate solutions.

Direct solutions of the governing differential equations for plates of composite
materials fall into three categories: Navier solutions, Levy solutions and perturbation
solutions. Each has its advantages and disadvantages. However prior to that, boundary
conditions need to be discussed.

11.4 Classical Plate Theory Boundary Conditions

In the “classical” (that is, ignoring transverse shear deformation) specially
orthotropic plate theory of Section 11.3, two and only two boundary conditions can be
satisfied at each edge of the plate because the governing differential equation (11.26) is
fourth order in x and fourth order in y. The boundary conditions for a simply supported
edge and a clamped edge shown below are identical to those of classical beam theory,
where here # is the direction normal to the plate edge and 7 is the direction parallel or
tangent to the edge.

The boundary conditions for the composite material, anisotropic plate are
identical to the simply supported, clamped and free edges for an isotropic plate, discussed
in detail in Section 2.5.

11.5 Navier Solutions for Rectangular Composite Material Plates

Just as seen earlier for isotropic plates, the Navier approach may be employed.
The Navier approach to these solutions for specially orthotropic plates involves separable
solutions, as shown below, of the governing differential-plate equation shown in
Equation (11.26). Thus

W, 7)= 3 3 Apn Xm ()7 n(y)

m=1 n=1
(11.27)
ple3)= 5 3 B Xon(xV )

m=ln=

In the above, the functions Xm (x) and Y n(y) are a uniformly convergent, complete,
orthogonal set of functions that satisfy the boundary conditions. Thus, when the
complete summation is taken, the exact solution is obtained. From a practical point of
view, because of uniform convergence, a finite number of terms are sufficient to provide
any desired accuracy.

If one assumes a plate that is simply supported on all four edges, then Equation
(11.27) can be written as
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wry)= 3 3 Amnsin(@}sin(@j (11.28)
m=1n=1 a b

plx,y)= Ozo: Ozo: ansin(m]sin(mzy] (11.29)
m=1n=1 a b

These half-range sine series (the original Navier problem) satisfy the simply supported
boundary conditions on all four edges of the plate shown in Figure 2.1. If the plate has

other boundary conditions, then other functions must be used for X ,(x) and Y, (v), in
which case the approach is labeled the Generalized Navier approach.

To proceed it is first necessary to determine B,,, in Equation (11.29) in order to
describe the load p(x,y), whether it is continuous of discontinuous. One simply
multiplies both the left- and right-hand sides of Equation (11.29) by
sin{mj sin(?jdxdy and integrates both sides from 0 to a in the x-direction and 0 to b

a
in the y-direction, i.e., over the planform area of the plate. It must be remembered that

a ; -
jsin(szin(ﬂjdx:{a/z ifm rl (11.30)
0 a a 0 if m#r;
Therefore,
_4ab . (mmx) . (nxy
B —Eg({p(x,y)sm(Tj sm(Tjdydx (11.31)

For example if p(x, y): P, = a constant, a commonly occurring load,

By =4L02[1—(—1)m][1-(-1)n] (11.32)
mnmr

Now the above can be used for an isotropic or orthotropic plate, classical theory
or advanced theory (including transverse-shear deformation) and a laminated or single-
layer plate. Considering an orthotropic composite panel, using classical plate theory,
simply supported on all four edges, Equation (11.26) is used.

Simply substituting Equations (11.28) and (11.29) into Equation (11.26), the
equality requires that each term be equated, thus

Amn =

(11.33)
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where the flexural stiffness quantities D, D, and D; are defined by Equations (11.25),
for a laminated composite panel. For the isotropic case in which E|; =E,, =2G(1+v),
Equations (11.25) becomes D; =D, =D; =D.

After obtaining the solution for w(x,y) using Equations (11.28), (11.29) and

(11.33), one may calculate the magnitude and location of the maximum deflection. By
taking the derivative of w(x, y), and using Equations (11.21) through (11.23), the stress
couples M _, M f and M, are determined to find the maximum values and their
location. Finally, depending upon whether the panel is a laminate or a single layer, the

maximum stresses are determined through calculating the curvatures at the locations of
maximum stress couples, using (2.39):

2w . __62w and K __82w
ox?’ 7 o2 Xy Ox0y

Knowing these, one can calculate the stresses in each of the £ laminae through the use of
(10.53) where in this case of a lateral loading only, there is no in-plane response, i.e.

&y, =&, andé&,, are zero, and there are no thermal or moisture effects:

oy | Qn O, 0 1[ x|l
o, =01 0y 0 | K, z (11.34)
ool |9 0 el 2Ky

The number of terms necessary to attain a desired accuracy depends upon the particular
load p(x, y), the aspect ratio of the plate (b/ a), and the material system of which the
plate is fabricated.

11.6 Navier Solution for a Uniformly Loaded Simply Supported Plate — An
Example Problem

The case of a uniformly loaded, p(x, y) = -p, simply supported plate is solved by
means of the Navier series solution of Section 11.5, for two composite materials systems:
unidirectional and cross-ply, stresses o, 0, and o, are determined for each case at the

quarter points and mid-point of the plane . In addition, in this example, the solutions have
been examined by utilizing one, three and five terms in the Navier series solution.

In this analysis, it is of course assumed that all plys are perfectly bonded and

classical theory is used (that is, ¢,, and &, are assumed zero). This results in the in-

plane stresses, o,,0, ando,, being directly determined, while the transverse shear

Xy
stresses 0, and o, are determined subsequently.



214

Using the methods discussed previously it is found that the stresses in each lamina
for the case of p(x, y) = -py are given by:

m 2 27] ]
[—QM%} —Q{cz[%j Jsinmjx-sin”l?’
Ox 16p z o © 1 —k 2 —k 2]
0 m n . M . NIy
=+ = — = — | .siIn———=-sin—=
oy 72_4 m:%3,5 nzlz,:3,5 mnD o 2[ a ] szfb] | a b
Ol g —k (m\ n mx nuay
where

D=D m42D mnzD a
=P, ) TP ) T2

where D; is defined by Equation (11.25).

As a numerical example a square plate of a = b = 12" is considered. The total
plate thickness is 0.08": eight plies of 0.01" thickness (4, =0.01").

The first material system considered is E glass/epoxy, with a fiber volume
fraction V; =70%, with the following properties:

E, = 8.8 x 10° psi v, =023

E» =3.6 x 10° psi G, =1.74 x 10° psi

The stiffnesses O, are, from (10.43) and (10.44),

0° ply (psi) 90° ply (psi)
0,/ =9.0x10° 0, =3.68x10°
0,,=0.85x10° 0,, =0.85x10°
0,, =3.68x10° 0,, =9.0x10°

0o =1.74x10° O =1.74x10°
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In the following figures, the stresses have been normalized as Eg/ =0y ! py. In
Figure 11.1, the normalized stresses are shown at the plate midpoint (x = a/2, y = b/2) for
a unidirectional (€ =0°) laminate. In this case the stresses are proportional to the
distance from the plate mid-plane. In Figure 11.2, the normalized stresses at plate
midpoint are shown for a mid-plane symmetric cross-ply laminate. Here, because the
plys alternate between 0° and 90°, the stresses are discontinuous from ply to ply, and in
each ply the stresses are larger in the fiber direction than in the 90° direction. In Figure

11.3, these stresses are shown at the quarter point location for the cross-ply plate.
Because of symmetry, at the plate center in-plane shear stresses are zero, while at the

quarter points a non-zero o, exists as shown in Figure 11.3.
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Figure 11.1. Normalized stresses at center of the plate for an E glass/epoxy unidirectional composite.
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Figure 11.2. Normalized stresses at center of plate for an E glass/epoxy cross-ply composite.
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Figure 11.3. Normalized stresses at quarter point of plate for an E glass/epoxy cross-ply composite.

A cross-ply laminate of T300-5208 graphite-epoxy has been used for comparison
with the E glass/epoxy laminate. Properties of the graphite-epoxy laminate are as follows
for Vi=70%:

E, =22.2x10psi v, =0.12
E,, =1.58x10"psi G,, =0.81x10°psi

Again normalized stresses have been shown in Figures 11.4 and 11.5 at both plate quarter
point and mid-point.
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Figure 11.4. Normalized stresses at quarter point of plate of a graphite/epoxy cross-ply composite.
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Figure 11.5. Normalized stresses at center of plate of a cross-ply graphite/epoxy composite.

Some conclusions can be drawn from this example set.
1. Solution convergence is rapid within the framework of taking three terms for both m

and #n for evaluating ox , but is not as rapid in calculating c y.

2. For the same material there is little difference between the maximum value of the & x
stress for both the unidirectional and cross-ply composites at similar plate locations,
however, the o stresses differ significantly.

3. The stress o » at a fixed location for the graphite/epoxy laminate is much smaller

relatlve to the o« value (10%) compared to that in the E glass/epoxy laminate where
o y 18 33% of the value of o x at the same location.
This example was the work of Wenn-Jinn Liou, a student at the University of Florida.
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11.7 Levy Solution for Plates of Composite Materials

The second direct method of solution for the bending of rectangular plates due to
lateral loads, is due to Maurice Levy [11.1] who, in 1899, introduced a single infinite-
series method of solution for isotropic plate problems, as discussed in Section 3.3. The
method can also be used to solve Equation (11.26) for a specially orthotropic composite
material plate.

Consider the plate, shown in Figure 2.1, with edges y = 0 and y = b simply
supported. The boundary conditions for those edges are

w(x,0)= w(x.h)=0

(11.35)
M, (x,0)= My, (x,b)=0
The latter implies that the following equations hold, as shown before in (3.20):
2 2
“w(x,0) 2 w(x,b):O (11.36)

ay2 8y2

Levy assumed the following solution form: a single infinite half-range sine series
that satisfies the simply supported boundary conditions on both y edges seen previously
in (3.21):

_ 5 Ry
wix,y)= nél i/ (x)sm(Tj (11.37)

where ¢”(x) is at this point an unknown function of x. A laterally distributed load

p(x, y) can be expressed as follows:

plx,y)=gx)h(y) (11.38)

where g(x) and h(y) are specified. Following Section 3.3, the form of Equation (11.37)
requires that the h(y) portion of the load also be expanded in terms of a half range sine
series, such as

W)= 3

n=1

4, sin(%} (11.39)

where
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2 . )
Ay =7 ] é’h(y)sm(n ?’)dy (11.40)

Substituting Equations (11.37) through (11.39) into (11.26) and observing that the
equation exists only if it is true term by term, it is seen that, after dividing by D, and the
trigonometric function:

d*y(x) _2D5 » d*$y(x) Dy 4 Apgn(¥)
- Ay =y 2 Q0 (x) =N (11.41)
a4 D, a2 D #n(x) D,

where A =nnm/b. Note that Equation (11.41) was derived without specifying any

boundary conditions on the x-edges. In fact, the homogeneous solution of Equation
(11.41) yields four constants of integration, which are determined through satisfying
boundary conditions on those x-edges.

To obtain the homogeneous solution of Equation (11.41) the right-hand side is set
equal to zero:

d*¢,(x) \ 2D5 »d?@,(x) Dy u
P (x) D, A 02 +Fl/1n¢n(x)_0 (11.42)

After letting ¢, (x): e”, and dividing the result by e™, the indicial equation, from
(11.42) becomes:

D
It I R R T 11.43
ST, T (11.43)

Unlike the case of an isotropic plate where D, = D, = D,, see (3.25), such that
the roots are easily seen to be £ 4, and + 4 (repeated roots), for this case there are three
sets of roots depending upon whether (D2 /D, )1/2 is greater than, equal to or less than

D, /D,. Hence, for the specially orthotropic composite plate, sandwich or laminate,

using the Levy-type solution requires three different forms for the homogeneous solution
of ¢, (x) to be put in Equation (11.37) depending on the relative stiffness of the plate in

various directions.
For the case, (D, /D,)"><(D,/D,)

@n, (x)=C, cosh(%,s,x)+ C, sinh(A,,s, x )+ Cy cosh(4,s,x)+C, sinh(/inszx)
(11.44)

where the roots are
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For the case, (D, /D,)"*=(D,/D,)
Bn, (¥)= (C + Cgx)eoshld,s,x)+(C; + Cgx)sinh(,s,x) (1145

where the roots are

wh
I
H
) ‘wb

For the case (D2 /D, )”2 > (Dj /D))

&n, (x)= (Cg cosd s.x+C,sin lnssx) cosh(lns4x)
(11.46)
+ (C] | cos /Inssx + C] 5 sin ﬂnssx) sinh(/“tns4x)

where the roots are

D3 _ 1t
DIJ’ 557402

o, 2 o, 1/2 DJ
L3 _ 5
Dy

S4: —_ ——
2 D, DIJ

Obviously, for a given plate whose materials and orientation have already been
specified (the analysis problem) only one of the three cases needs to be solved. However,
if one is trying to determine the best material and orientation (the design problem), then
more than one case may need to be solved, with the necessity of determining not just four
constants, but eight or all twelve to satisfy the edge boundary conditions to determine
which construction is best for the design.

Concerning the particular solution, it is noted that if the lateral load, p(x, y), is at

most linear in x, hence from Equation (11.38), g, (x) is at most linear in x, then from
Equation (11.41) the particular solution is

_ Angn(x)
#n,, (X)= 7D, (11.47)



221

Otherwise, one must seek another particular solution. In any case, one must then add the
relevant homogeneous ¢nh to the particular ¢np to satisfy any set of boundary conditions

on the x-edges of the plate. For example, suppose the x = 0 edge is simply supported,
then from Equation (2.66) the boundary conditions are

2w
w(0,y)=0, and Mx((),y)=0—>a—2(0,y)=0 (11.48)
x

However, when w(x,y) has the form of Equation (11.37) this then implies that:

$,(0)=4,(0)=0 (11.49)

where primes denote differentiation with respect to x.

Similarly, appropriate expressions can be found if the x-edges are clamped or free.
Then whatever the relevant form of the boundary conditions on x = 0 and x = a, the total
$,(x)= ¢nh + ¢np and hence w(x,y) is known from Equation (11.37). Then, for a

composite-material laminated plate, one must calculate the curvatures, as was done is the
previous section for the Navier approach:

K __az_w K —_aziw and K —_az_w
¥ ox2 Y Cy v Ox0y

Knowing these, one can calculate the bending stresses in each of the k£ laminae
through the following; which is identical to (11.34):

oy | O11 O 0 1] x|
o, =012 On _0 K, z (11.50)
O-nyk 0 0 Q66Jk 2nyJ

The stresses thus derived for each lamina must them be compared with the
allowable stresses, determined through some failure criterion to see if structural integrity
is retained under a given load (the analysis problem), or if this set of materials and
orientation is sufficient for a given load (the design problem).

It is seen that the Levy-type solution is fine for a composite plate with no
bending-stretching coupling, i.e., with midplane symmetry, and with two opposite edges
simply supported. If two opposite edges are not simply supported then the complexity of
the functions necessary to satisfy the boundary conditions on the y = constant edges cause
problems.
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11.8 Perturbation Solutions for the Bending of a Composite Material Plate With
Midplane Symmetry and No Bending-Twisting Coupling

As shown in the previous two sections, the Navier approach is excellent for
composite material plates with all four edges simply supported, and the Levy approach is
fine for composite material plates with two opposite edges simply supported, regardless
of the boundary conditions on the other two edges. But for a composite plate with two
opposite edges simply supported, even the Levy approach yields three distinct solutions
depending on the relative magnitudes of D;, D, and Dy = D;, + 2D¢c. In addition,
there are numerous books and papers available for the solution of isotropic plate
problems [2.2-2.5].

Aware of all of the above, and based upon the fact that the solution of the second
case of the Levy solution of (11.45) has the same form as that of the isotropic case of
(3.26), Vinson showed that the cases of (11.44) and (11.46) can be dealt with as
perturbations about the solution of the same plates composed of isotropic materials [11.2,
11.3].

Consider the governing equation for the bending of a composite material plate
exhibiting mid-plane symmetry (Bij = 0), no bending-twisting coupling (D1 6 =Dy = 0),

and no transverse shear deformation (classical theory). Then Equation (11.26) becomes,
after dividing both sides by D :

o%w 2D3 otw D, o%w _ plx,v)

+ +—= (11.51)
ox?t D, 8x28y2 D, 8y4 D,
Coordinate stretching is employed by defining the following:
-1/4 -1/4
5|22 5| D2 b 2
=| — [ ) . = — (] 1 1 5
y D, y D, ( )

Substituting Equation (11.52) into Equation (11.51) yields

-1/2 _
64w+2[&] . [D?,} 64w +a4w: p(x,y) (11.53)

ot Dy Dy)ex2ey® oyt P

Next defining a parameter o to be

~1/2 ]
D D
a=2 1_[32} [33] (11.54)
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it is seen that substituting Equation (11.54) into Equation (11.53) yields

64w+ 204w +84W—a o*w :P(X,’})

ot 26y 8yt ax2ey D

(11.55)

Note that in this section, « is a perturbation parameter, not to be confused with «, the
coefficient of thermal expansion.

If one defines the biharmonic operator, used in all isotropic plate problems (2.58),
to be (in the stretched coordinate system)

4 4 4
vhy 0w, 200w 0w (11.56)

ot 2650 6y

then Equation (11.55) becomes

A _
Viw— a0 — _rley) (11.57)
8x28y D

Finally, assume the form of the solution for w(x, ;) to be
-\ ® —
w(x,y)z an(x,y)a" (11.58)
n=0

which is a perturbation solution employing the “small” parameter « defined in Equation
(11.54). Substituting Equation (11.58) into Equation (11.57) and equating all coefficients
of a” to zero, it is easily found that:

Vi, = p(g’ly (11.59)

84wn_] (x, ;)

V4wn =- —5
6x26y

n>1 (11.60)

It is seen that Equation (11.59) is the governing differential equation for an
isotropic plate of stiffness D, , subjected to the actual lateral load p(x, y) given by (2.57),

with the stretched coordinate ; defined in Equation (11.52). It is probable that,
regardless of boundary conditions on any edge, the solution for w, of Equation (11.59) is
available in the literature, either exactly or approximately and this was discussed in
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Chapter 3. Subsequently w;, w,, wy, and so on are available from solving Equation
—2
(11.60), an isotropic plate whose lateral load is —D1(64wn71 /6x20y J, where w,

would be determined previously, whose flexural stiffness is D; and whose boundary

conditions are homogeneous. Where there are non-homogeneous boundary conditions,
the non-homogeneous boundary conditions should be taken care of in the w, solution,

since truncation is anticipated.
This technique is very useful because the “small” perturbation parameter need not

be so small; it has been proven that when ‘a| <1, Equation (11.58) is another form of the
exact solution, and ‘a’<1 covers much of the practical range of composite material
properties. Also from a computational point of view, it is seldom necessary to include
terms past n =1, in Equation (11.58). This technique can only be used if |a| <1.

The above technique can be very useful. However, even if ’a‘ >1, then the
composite may fall within another range where for (D2 / D, ) << 1. In that case, the plate
behaves as a plate in the x-direction, but because (D2 / D1)<< 1, it behaves as a
membrane in the y-direction, with the following simpler governing differential equation,

o'w D3 a*w _ plx,y)

ox F] 6x26y2 D,

(11.61)

The solution of (11.61) can be in the form of the following for a plate simply supported
on the y edges

wix, y)= 2 (x)sin 4, y" (11.62)

where

12 -1/2
= __ 3 o A, == b =|— e b 11.63
4 [ D, Yoo T D, (169

Even if the perturbation technique described by Equations (11.62) and (11.63) is
not used it still provides physical insight by showing that if D, << D,, then the structure
behaves as a plate in the stiffer direction and acts only as a membrane in the weaker
direction. Physically, on the x edges, the usual use of two boundary conditions must be
used, while in the weaker edges, only one boundary condition on each edge is needed (as
with a membrane), that dealing with the lateral displacement set equal to zero.

Finally, if (E/ a): (D2 /D, )71/4 (b/ a) >3, then the plate behaves purely as a

beam in the x-direction, regardless of the boundary conditions on the y-edge, as far as
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maximum deflection and maximum stresses. Hence, beam solutions have easy
application to the solution of many composite plate problems. All of the details on the
last two techniques are give in detail in References [11.2] and [11.3].

Incidentally, the techniques described in this section [11.2] were the first use of
perturbation techniques involving a material property perturbation, even though
geometric perturbations have been utilized for many decades.

11.9 Quasi-Isotropic Composite Panels Subjected to a Lateral Load

When a composite laminate has a stacking sequence in which D, = D,,, it is

referred to as quasi-isotropic. In that case it behaves as an isotropic plate in the
determination of lateral deformations, w(x, y), and stress couples, M, , M ¥ and M -

Therefore, for a quasi-isotropic composite plate the methods of Chapter 3 can be
employed wherein D =D, = D,,. When the lateral load is uniform, then Section 3.5
results can be used.

11.10 A Static Analysis of Composite Material Panels Including Transverse Shear
Deformation Effects

The previous derivations have involved "classical" plate theory, i.e., they have
neglected transverse shear deformation effects. In many composite material laminated
plate constructions, transverse-shear deformation effects are important because some of
the in-plane plate stiffness quantities are dominated by the placement of in-plane fibers,
the plate transverse shear stiffness are dominated by the matrix properties. Therefore, for
polymer matrix composite plates transverse shear deformation effects can be significant.
Therefore, a more refined theory must be developed. However, because of its simplicity,
and the number of solutions available, classical theory is still useful for preliminary
design and in analysis to size the structure required in minimum time and effort.

In the simpler classical theory, the neglect of transverse shear deformation effects
means that £, =&, =0. To include transverse shear deformation effects, one uses

e = L[Ou Ow 1164

2755 e (11.64)
_1({ov  ow

£yz _2(82+8)/J (11.65)

Now substituting the admissible forms of the displacement for a plate or panel,
Equation (2.1) and (2.2) into Equations (1.20) and (1.21), shows that
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Eys = % (a + ‘g;vj (11.66)
£y =%[ﬁ+g—¥] (11.67)

No longer are the rotations a and S explicit functions of the derivatives of the
lateral deflection w, as shown by Equation (11.20) for classical plate theory. The result is
that for this refined theory there are five geometric unknowns, u,, v,, w, a and f3,

instead of just the first three in classical theory.

Now one needs to look again at the equilibrium equations, the constitutive
equations (stress-strain relations), the strain-displacement relations and the compatibility
equations. For the plate, the equilibrium equations are given by Equations (2.14) through
(2.18), because they do not change from classical theory. The constitutive equations for a
composite material laminated plate and sandwich panel are given by Equations (11.68)
through (11.75). The new cogent strain-displacement (kinematic) relations are given
above in Equation (11.66) and (11.67). Because the resulting governing equations are in
terms of displacements and rotations, any single valued, continuous solution will, by
definition, satisfy the compatibility equations.

A plate that is mid-plane symmetric (B; =0) and has no coupling terms [( )=
( )26 = ( )as = 0]; the constitutive equations for this specially orthotropic plate can be

written as follows, where x, with no subscripts, is a transverse shear coefficient to be
discussed later.

Ny = A0 + A6 (11.68)
Ny = 4,60+ Ay,e) (11.69)
Nyy =245, (11.70)
szD“/cx+D12Ky (11.71)
My :D12Kx +D22/<y (11.72)
My, =2D Ky, (11.73)

_ .0
Oy =24s56,, = KASS(OC +a§:j (11.74)
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— Oow
Qy:2A448yz:KA44[ﬁ+ayJ (11.75)

Because the plate is mid-plane symmetric there is no bending-stretching coupling,
hence the in-plane stress resultants (N Ny, N xy) and deflections ( u,, 0) are uncoupled

(separate) from the lateral loads, deflections and rotations. Hence, for a lateral distributed
static loading, p(x, y), Equations (11.13) through (11.15) and Equations (11.71) through
(11.75) are utilized: 8 equations and 8 unknowns.

Substituting Equations (11.71) through (11.75) into Equations (11.13) through
(11.15) results in the following set of governing differential equations for a laminated
specially orthotropic composite plate subjected to a lateral load, with Bij =0,

( )1 6= ( )26 = ( )45 =0, and no applied surface shear stresses (for simplicity)
o’a o’a

62ﬁ ow
D, .—+D 7+(D +D ) I(A (a+j 0
11 2 66 2 12

o%a 2B 02/3 — ow
(D12+D66)axay+D66ax +D,, 252 m44(ﬂ+a_]=o

(11.77)

oa  0*w o 0*w

ay (11.78)

The inclusion of transverse shear deformation effects results in three coupled
partial differential equations with three unknowns, «, £ and w, contrasted to having one
partial differential equation with one unknown, w, in classical plate (panel) theory; see

substituting

5

Equation (11.26). Incidentally if one specified that & =— 2— and 8 =- 6_

X v
that into Equations (11.76) through (11.78) reduces the three equations to Equation
(11.26), the classical theory composite material plate bending equation. Note that the x
symbol with no subscript in (11.76) through (11.78) is a transverse shear deformation
correction factor which is given by Yu, Hodges and Volovoi in [11.4] for an orthotropic
material and for an isotropic material can be written as given by Hodges [11.5]

C5(11-12v +34v7 —12v7 +11vY)
2(33—40v +98v> —40v° +20v*)

It is interesting to note that leaving out the v terms in the above equation, x =5/6, the
value obtained by Reissner in 1950. Incidentally, there still remains discussion and
controversy over the value of the shear correction factor.



228

The classical plate theory governing partial differential equation is fourth order in
both x and y, and therefore requires two and only two boundary conditions on each of the
four edges, as discussed in Section 11.4 and 2.5. The refined theory, discussed in this
section which includes transverse shear deformation, is really sixth order in both x and y,
and therefore requires three boundary conditions on each edge as discussed in Section
11.11 below. See papers by Reddy [11.6], Lo, Christensen and Wu [11.7] DiSciuva
[11.8] and Reddy and Phan [11.9].

If the laminated plate is orthotropic but not mid-plane symmetric, i.e., Bij =0,

the governing equations are more complicated than Equations (11.76) through (11.78)
and are given by Whitney [11.10], Vinson [10.1] and are discussed briefly in Section
11.15 below.

11.11 Boundary Conditions for a Plate Including Transverse Shear Deformation
11.11.1 SIMPLY-SUPPORTED EDGE

Again Equation (2.66) holds, but now a third boundary condition is required for
the plate bending because (11.76) through (11.78) are sixth order in w with respect to x
and y. In addition, since the in-plane and lateral behavior are coupled, a fourth boundary
condition enters the picture as well. This has resulted in the use of two different simply
supported boundary conditions, both of which are mathematically admissible as natural
boundary conditions and are practical structural boundary conditions. By convention the
simply supported boundary conditions are given as follows:

S1(x = constant edge): w= My =uy=N,, =0

S1(y = constant edge): w=M,, =v,=N,, =0

yx
(11.79)

S2(x = constant edge): w=M, =Ny =v, =0

S2(y = constant edge): w=M, =N, = Uy =0
where u, is the mid-surface displacement in the x-direction and v, is the mid-surface

displacement in the y-direction.
Whether one uses S1 or S2 boundary conditions is determined by the physical
aspects of the plate problem being studied.

11.11.2 CLAMPED EDGE

Similarly, for a clamped edge the lateral deflection w and the rotation & or

(for an x = constant edge or a y = constant edge, respectively) are zero (note: the slope is
not zero) and the other boundary conditions are analogous to Equation (2.66).
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Cl(x = constant edge): w=a =uy =N, =0

Cl(y = constant edge): w=f= Vo =Ny =0
B (11.80)
C2(x = constant edge): w=a = Nx =v, =0

C2(y = constant edge): w= = Ny =u. =0

11.11.3 FREE EDGE

The free edge requires three boundary conditions on each edge; therefore, it is no
longer necessary to resort to the difficulties of the Kirchhoff boundary conditions for the
bending of the plate needed for classical plates which were discussed in (2.67) through
(2.69). The bending boundary conditions for the free edge of the plate are:

M, =0,=M,, =0 (11.81)

where n and ¢ are directions normal to and tangential with the edge. Again, the in-plane
boundary conditions for the free edge are N, = N, =0.

11.11.4 OTHER BOUNDARY CONDITIONS

In addition to the above boundary conditions, which are widely used to
approximate the actual structural boundary conditions, sometimes it is desirable to
consider an edge whose lateral deflection is restrained, whose rotation is restrained or
both. The means by which to describe these boundary conditions are given in Section
2.5.

11.12 Composite Plates on An Elastic Foundation or Contacting a Rigid Surface

Consider a composite material plate that is supported on an elastic foundation. In
most cases an elastic foundation is modeled as an elastic medium with a constant
foundation modulus, i.e., a spring constant per unit planform area, of £ in units such as
Ibs./in./in2. Therefore, the elastic foundation acts on the plate as a force in the negative
direction proportional to the local lateral deflection w(x,y). The force per unit area is -kw,
because when w is positive the foundation modulus is acting in a negative direction, and
vice versa. In order to incorporate the effect of the elastic foundation modeled as above
one simply adds another force to the p(x,y) load term. The results are, that for classical
theory, Equation (11.26) is modified to be (11.82), and for the refined theory, Equation
(11.78) is modified to become Equation (11.83):
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4 4 4
D5W+2D 0w +D252V
Oy

+kw = p(x, (11.82
154 3 22y p(x,y) )

oa  0%w 8B 0%w
KA55(§+6)C_2]+KA44£6)’+8)/ } kw+ p(x,y)=0 (11.83)

In addition, if a plate with any boundary conditions, due to the lateral applied
load, comes in contact with a rigid smooth surface over part of its area, Hodges [11.5]
provides solutions and examples for this important and difficult problem.

For an extended treatment of the modeling of elastic and viscoelastic foundations
see Kerr [11.11].

11.13 Solutions for Plates of Composite Materials Including Transverse-Shear
Deformation Effects, Simply Supported on All Four Edges

Some solutions are now presented for the equations in Sections 11.10 and 11.11,
using the governing differential equations (11.76) through (11.78). In the following x

with no subscript is a transverse shear correction factor, often give as 72 /12 or 5/6, and
discussed above in Section 11.10.

Dobyns [7.5] employed the Navier approach to solve these equations for a
composite plate simply supported on all four edges subjected to any lateral load, using
the following functions:

w(x,y)= Z ZCmn sm(? sin(%] (11.84)

a(x,y)=73 %Amn cos(% sin(nTj (11.85)
m=1 n=I

B(x,y)= Z Zan s1n(% cos(nTj (11.86)

p(x, y)—mz_ Eqmn s1n(m5xjsin(nbj (11.87)

It is seen that Equations (11.84) through (11.87) satisfy the simply supported boundary
conditions on all edges given in Equation (11.79).

Substituting these functions into the governing differential equations (11.76)
through (11.78) results in the following:



231

L12

Lyy Ly
Ly Ly, L33J Comn' 4mn!

Ly [ Ay 0
Loy {Bynt=1 0 (11.88)

if A,,=mnl/a, A,=nn/b and q,,, is the lateral load coefficient of (11.87) above,
defined by (11.93) below, then the operators Lij (ij = 1,2,3) are given by the following:
Ly =DyyAi + Dggln +KAss Lyy =Dy + Deg Vonn
Lyy=Asshm. Ly, = Dol + Doy 2y + 1y
Lyy=KAyqly. Lyy = KAgsdiy + KA, 200

Solving Equation (11.88), one obtains

_ EypLyz —LyyLy3)dmn

Ay o~ (11.89)
_ Uiplys = Ly Loy)dmm (11.90)
mn det '
(L, L,y —I2.)
_ ST Ty Mmn (11.91)
mn det '

where det is the determinant of the [L] matrix in Equation (11.88).

Having solved the problem to obtain a , 3 and w in (11.84) through (11.86), the
curvatures &, =(6a/dx), k', =(8f/dy) and x,, =1/2[(3a/dy)+ (@B /y)] may be
obtained. These then can be substituted back into Equations (11.17) through (11.19) to
obtain the stress couples M,, M, and M,, to determine the location where they are

maximum, necessary in determining where the stresses are maximum.
For a laminated composite plate, to find the bending stresses in each lamina one

must use the above equations to find the values for K Ky and ny in Equation (11.20).

Finally, for each lamina the bending stresses can be found using:
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oy | Qn le 01« |
o, =012 02 _0 | Ky oz (11.92)
nyj 0 0 Q66Jk 2ny_,

The stresses in each lamina in each direction must be compared to the strength of
the lamina material using a suitable failure theory. Keep in mind that quite often the
failure occurs in the weaker direction in a composite material.

Looking at the load p(x,y) in Equation (11.87), if the lateral load p(x,y) is
distributed over the entire lateral surface, then the Euler coefficient, ¢,,, is found to be

a b
Qmn = %g gp(x,y) sin[@jsin(@jdxdy (11.93)
If that load is uniform then,
4pO
Qmn = 5 (I—cosmz)(1—cosnr). (11.94)
mnrw

For a concentrated load located at x =& and y =17,

_4P . (mxg) . (nxn
qm”_ab s1n(—a jsm(—b j (11.95)

where P is the total load.
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1 1 COSINE LOAD
+ 2 m y P (x.y) =pocos% (x-E) cogf (y-n)
| I
+ m UNIFORM LOAD
z
] P=Py

s
¥y

Figure 11.6. Load over a rectangular area. (Reprinted from Reference [11.12]).

For loads over a rectangular area of side lengths # and v whose center is at £ and
17, as shown in Figure 11.6, g, is given as follows:

. (mzxn)\ . (mré nmv mmu
:4Psm( b Jsm( g jcos[ b ]cos[ 2a]
g i
b v\b vNa ula u

where P is the total load. Note that when n/b = 1/v, m/a = 1/u, then g¢,,,= 0. Of course,
any other lateral load can be characterized by the use of Equation (11.93).

(11.96)
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11.14 Some Remarks On Composite Structures

So far in this chapter, plates made of composite materials have been discussed.
However, there are complicated constructions, which are made either from composite
materials or from isotropic materials, which can be referred to as composite structures.
One such structure is a box beam shown below in Figure 11.7, which could be the cross-
section of a windmill blade, a water ski, or other representative structural components.

Such a structure will be subjected to tensile or compressive loads in the x-
direction, to bending loads about the structural mid-surface, and to torsional loads about
the x-axis. In each case one needs to develop the extensional stiffness matrix EA, the
flexural stiffness matrix EI and the torsional stiffness matrix GJ, for the rectangular cross-
section.

It is probable that in the structural component considered, the top and bottom
panels would be identical, as well as each side panel perpendicular to the other one — that
will be assumed here, and therefore the subscripts 1 and 2 will be used.

ELEMENT | L

ELEMENT 2

h 4
ELEMENT 27 =

e5—b——]

ELEMENT |

Ny, Doy
3
EC.| T EL-& i
’r’ Ny €y, T J‘| / > My
1 _ I ’ -
!{| ;&XN N‘J' Jr"; lez
Nt ' | May T2 i’
N ] [
L Ny
nyl Y2
—y SI l—-— ——l2 i-._
Py | é
N 32
h/2 Ny = L e
bt —el-b/2 |—
é

Figure 11.7. Box Beam.

For each of the four panels the extensional relationship in the x-direction involves,
for a construction without couplings
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0
Ny =4,6x

where N, is the force per unit width, and the axial strain, gf , is identical in each plate

element.
Simply adding the contribution of each unit width, the overall load P carried by
the overall box beam construction can be written as

=2N, b+2Ny h=(4, ) b+2(4), ) 42

Hence, the structural extensional stiffness EA for the rectangular construction of
Figure 11.7 is simply
EA=2(4;, ) b+2(4;, )7

Similarly if the box beam is bent in the x-z plane the overall bending moment M
will be related to the overall curvature « ., by

2 37
M= 2(D11)1b+2(A11)1b(gj +2(A1112)2h Ky (11.97)
1

However, if the top and bottom surfaces are thin compared to the overall box
height 4, then the first term is negligible compared to the other terms, so

2 A h3
(ED)box beam = 2(A1 1 )1]{%) + % (11.98)

Similar expressions can easily be constructed for the torsional stiffness. Consider
the construction of Figure 11.7 subjected to a torsional load 7 in inch-lbs. about the x-
axis.

Then it is clear that

=2y, )bgj sy, )h@ (11.99)

Now from Equation (10.66), for both elements,

= 2A66 Sxy (i=1.2)
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If ¢ is the angle of twist caused by the torque 7 over the length L, then for
element 1 and 2

_ % _ &
It is also seen that

_ 1 _ 2

T=2Ny) b@ 2N )y h@ = 20h A ) 2y, +20hlAgg ) 62,

bh bh
= T(A66)151 + T(AM )2 5,
r= %[(Aéé)lh + (A66)2b}¢

So the GJ, the torsional stiffness of the box beam construction of Figure 11.7 is

G =22 g+ (g ), 3] (11.102)

The above merely illustrates what one can and must do to develop the basic
mechanics of materials global formulation for the extension, bending or twisting of a
rectangular section, perhaps composed of very esoteric composite materials but used for a
water ski, windmill blade or other shapes for many other purposes.

However, care must be taken to insure that in addition to preventing overall
failure of the box beam. As an example, care must be taken to insure that each of the
plate structures will not fail at a lower load than the overall structure. This could occur if
the plate in compression due to beam bending of the box beam causes the compressive
plate to buckle.

11.15 Governing Equations for a Composite Material Plate With Mid-Plane
Asymmetry

Consider a rectangular plate in which there are no (), nor ( ),s coupling

terms, but which has bending stretching coupling, i.e. B[-j #0. In that case the

equilibrium Equations (11.6) through (11.12), and the strain-displacement Equations
(10.50) through (10.52) remain the same.
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However, from Equation (10.66) it is seen that the constitutive equations change
as shown below.

N,y Allgx +A125y0 +B”K‘x +BIZK‘
Ny = Alzgxo +A228y0 + B Ky +322Ky (11.103)
Nyy = 2A66‘9xy0 +2B66ny

Proceeding as before for the mid-plane symmetric rectangular plate of Section 11.3, the
resulting three coupled equations using classical plate theory, i.e. no transverse shear
deformation, have the following form:

4 82 [A ]6‘2V0 ny 62u0
(11.104)
-B B =0
11 Ox 3 [ 66]5 ayZ
o“u o%v o%v
[A 44 |20y 044 0
127661508, T 2252 T %652
Y X % s Ox (11.105)
o°w o w
8., +B_] B )
[ 12 66Jax26y 22 ay3
03u, Bu, v a3
_B S PIRY: T e R A S
Thws 66 2~ 27272 2.3
ox oxoy“ ox“0y oy (11.106)
o%w o%w o%w
+D +2D D = p(x,y)
1 8x4 3 aXZayZ 2 ay4

Because of the bending-stretching coupling not only are lateral displacements,
w(x,y), induced but in-plane displacements, u, and v, as well; hence, three coupled

equations (11.104) through (11.106).
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11.16 Governing Equations for a Composite Material Plate With Bending-Twisting
Coupling

Looking at Equation (10.66), the moment curvature relations for a rectangular
mid-plane symmetric plate with bending-twisting coupling are:

My =Dy Ky + D,k +2D, (K yy

My, =D,k + Doy y +2D, Ky, (11.107)

Myy =D,k x +Dyekyy +2D Ky

Of course if transverse shear deformation is ignored, i.e., classical theory, then the
curvatures are given by (11.20), and the moment curvature relations become:

2w 2w 2w
M, = D11q > P 2_2D165x5
ox Oy v
02w 2w o%2w
M, =-D,, 2 D,, 5 2 aedy (11.108)
%w o%w o%w
M., =-D -D —2p SV
X 16 5.2 26 69/2 66 Oxoy

Substituting these into (11.16), provides the following governing differential equation.

4 4 4 4
DH—a 4D 53W +2D, 62 Y +4D, ¢ 0 =
ox x>0y ox<oy oxcy
(11.109)
+D2264—ff=p(x,y)
oy

Comparing (11.109) with (11.26), it is seen that due to the presence of the D,y and D,

bending-twisting coupling terms, odd numbered derivatives appear in the governing
differential equation. That precludes the use of both the Navier approach of Section 11.5,
and the use of the Levy approach of Section 11.7 in obtaining solutions for plate with
bending-twisting coupling. With these complications one may want to obtain solutions
using the Theorem of Minimum Potential Energy discussed in Chapter 14 below.
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11.17 Concluding Remarks

It appears that there is no end in trying to more adequately describe
mathematically the behavior of composite materials utilized in structural components.
Unfortunately, the more sophisticated one gets in such descriptions the more difficult the
mathematics becomes, as is evidenced in the increasing difficulty observed as one
progresses through the sections of Chapter 11.

One additional complication that is important in some composite material
structures is that the stiffness (and other properties) are different in tension than they are
in compression. This occurs because (1) sometimes the tensile and compressive
mechanical properties of both fiber and matrix materials, differ and (2) sometimes it
occurs because the matrix material is very weak compared to the fiber (that is
E,, <<<E ), such that the fibers buckle in compression under a small load so that for

the composite the stiffness in compression differs markedly than the stiffness in tension.
Hence, one can idealize a little and say that one has one set of elastic properties in tension
and another set of elastic properties in compression. Bert [11.15] has termed this a
bimodular material, typical of some composites, certainly typical of aramid (Kevlar)
fibers in a rubber matrix that are used in tires, and also typical of certain tissues modeled
in biomedical engineering. In this context

{A B {A B
# (11.110)
B DJTension

B D JCompression

All of the complications that result are too difficult to treat in this text for those trying to
learn the fundamentals of composite material plates and panels.

Lastly, time dependent effects in the stresses, deformation and strains of
composite materials are becoming more important design considerations. Viscoelasticity
and creep are respected disciplines about which entire books have been written. These
effects have been deemed important in some composite material structures. Crossman,
Flaggs, Vinson and Wilson have all commented thereupon. Wilson and Vinson [10.26,
10.27] have shown that the effects of viscoelasticity on the buckling resistance of
polymer matrix composite material plates is very significant. Similarly, the effect of
viscoelasticity on the natural vibration frequencies will also be significant. Many of these
effects have been included in a survey article by Reddy [11.16] who has focused
primarily on plates composed of composite materials.
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11.19 Problems

11.1. The following material properties are given for a unidirectional, 4 ply laminate,
h=10.020"

0.84  0.00547 0
A=]0.00547 0.0176 0 x10°lb./in.
0 0  0012]

B=0

28.053 0.1824 0]
D={0.1824 0.5879 0 Ib.—in.
0 0 2]

p , the mass density (corresponding to 0.06 Ib./in.*) = 1.554 x 10 *Ib.sec.? /in.*

Consider a plate made of the above material with dimensions a = 207, b =30, h

=0.020". For the first perturbation method of Section 12.8 determine band «. Is
o a proper value to use this perturbation technique?

11.2. For a box beam whose dimensions are b =4”, h =2, L = 20”, composed of
GY70/339 graphite/epoxy, whose properties are given in Problem 11.9(a),
determine the extensional stiffness, EA; the flexural stiffness, EI, and the torsional
stiffness, GJ, if the box beam is made of a 4 laminae, unidirectional composite,
with a lamina thickness of 0.0055”, all fibers being in the length direction.

11.3.  Consider a composite material plate of dimensions 0 < x < a,0< y < b, of
thickness #, composed of an E Glass/epoxy, which is modeled as being simply
supported on all four edges. It is part of a structural system, which is subjected to
a hydraulic load as shown below.

iz

The load is p(x,y) = py where p is the weight density of the water.
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11.4.

11.5.

11.6.

11.7.

11.8.

11.9.

(a) To utilize the Navier approach determine an which is given by

a b
By =7 Tp(x.y) sin(ﬂjsin(@jdydx.
ab( 0 a b

(b) At what value of x will the maximum deflection occur?
(c) At what value of x will the maximum stress o, occur?

Consider a square plate in which a=5b=20”, h=0, 2”, made of a unidirectional
Kevlar/epoxy composite, V' = 60% , whose properties are:

E,, =11.02x10° psi
E,, = 0.798 x 10° psi

Gy, = 0.334x10% psi
vy, =0.34

Py = 0.07Ib/in’

(a) Determine the flexural stiffness matrix [D].

(b) In the first perturbation technique of Section 11.8, calculate b and a.

(c) Can this perturbation technique be used for this problem?

(d) What is the total weight of this plate?

(e) If'this plate is simply supported on all four edges at what location (i.e., x = ?
and y = ?) will the maximum deflection occur?

(f)  For the plate in () above at what location will the maximum bending-stress
occur?

Could the first perturbation solution technique of Section 11.8 be used to obtain

solution for the plate of Problem 12.2 subjected to a static lateral load, p(x,))?

For the panel of Problem 12.9, could the first perturbation method of Section 11.8

be used to solve for deflections and stresses, i.e., is a <1?

For the plate of Problem 12.5, at what values of x and y will the maximum

deflection occur if the plate is subjected to a uniform lateral load p(x,y) = p, (a

constant)?

Could the perturbation solution technique of Section 11.8 be used to solve
problems for the plate of Problem 12.9?

A square plate, simply supported on all four edges is composed of GY70/339
graphite epoxy. If this square plate is made of four plys with the 4 and D matrix
values shown below, and if the plate is subjected to a uniform lateral load, p,,
which stacking sequence would you choose for a design to have the largest
maximum deflection (the most compliant design)? Which stacking sequence has
the smallest maximum deflection (the stiffest design)?
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GY70/339 graphite epoxy composite
[A] matrix [D] matrix

a. Unidirectional four ply

842 546 0] 281 0182 0]
546 17.6 0 x10° Ib./in. 0.182 0.588 0 'Ib.-in.
0 0 12| 0 0 04]

b. Crossply[0°,90°,90°,0°] four ply

430 546 0] 246 0182 0]
546 430 0 x10° Ib./in. 0.182 402 0 ‘lb.-in.
0 0 12| 0 0 04]

¢. Angleply[+45°],, four ply (i.e., + 45/—45/-45/+45)

230 206 0 ] 7.67 687 5.15]
206 230 0 x10° Ib/in. 6.87 7.67 5.15°1b.-in.
0 0 212J' 515 515 7.07|

11.10. You have been asked to replace an existing aluminum plate structure by a
unidirectional Kevlar/epoxy structure using the material properties given in
Problem 11.4. The loading on the aluminum plate is all in one direction, both an
in-plane tensile load and a bending moment as shown below, and the structure is
stiffness critical. Therefore, you must design a unidirectional fiberglass structure
to have an extensional stiffness, A4 and a flexural stiffness, Dy, that equals or

exceeds those values for the aluminum structure. The aluminum properties are
E=10.1x10°psi, v=0.3, p =0.101b./in.’ and the aluminum plate is 0.101
inches thick.

Ny N

My My
(a) For the existing aluminum structure, what is the extensional stiffness per unit
width, Eh/(1-v?)?
(b) In the existing structure what is the flexural stiffness per unit width,
ER /112(1-v%)?
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11.11.

11.12.

(c) If you replace the aluminum structure with the Kevlar/epoxy structure, what
thickness 4 is required of your composite plate to have 4, equal the

extensional stiffness of the aluminum structure?
(d) What thickness /4 is required to your composite plate to have D, equal the

flexural stiffness of the aluminum structure?

(e) Which # must your composite design be to achieve the stated design
requirement?

(f) Will your composite design be heavier or lighter than the aluminum structure
and by what percentage?

Consider a rectangular panel simply supported on all four edges. The panel

measure a =257, b=10", where 0 < x < a,0< y <b. The laminated plate is

composed of unidirectional boron/aluminum with the following properties:

E, =32x10% psi p=0.09151b./in.>

E,, =20x10° psi Ty = 250,000 psi
6 -

G, =8x10" psi vf:SO%

ply thickness /2, = 0.007 in. Vi, =035

(a) Determine Oy, 05,,0;, and O for a lamina (ply) of this material.
(b) Determine the flexural stiffness D, |, D55, D}, and D¢, for a plate made of

four ply, unidirectionally oriented (all 0° plys).
(c) If the panel were made of one ply with the fibers oriented at & = +30°, what
is 011 ?
Consider that four plates identical to the one in Problem 11.12 above are used to
fabricate a box beam 60 inches long as shown below.

60"
15”

15"
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(a) Calculate the axial stiffness, EA, of this box beam.
(b) Calculate the flexural stiffness, EI, of this box beam.
(c) Calculate the torsional stiffness, GJ, of this box beam.



CHAPTER 12

ELASTIC INSTABILITY (BUCKLING) OF COMPOSITE PLATES

12.1 General Considerations
As stated previously, structures usually fail in one of four ways:

overstressing (strength critical structure)
over deflection (stiffness critical structure)
resonant vibration

buckling.

In monocoque plates, for given plate dimensions, material, boundary conditions,
and a given load type (in-plane compression, in-plane shear), only one buckling load will
result in actual buckling. This is the lowest eigenvalue of a countable infinity of such
eigenvalues. All other eigenvalues exist mathematically, but only the lowest value has
physical significance. This differs from natural frequencies in which several eigenvalues
can be very important.

For the simplest cases, for columns and isotropic plates, an introduction was given
in Chapter 6. While philosophically the simple examples cover the topic of buckling;
more complex structures can have several types of buckling instabilities, any one of
which can destroy the structure.

There are five major textbooks dealing primarily with elastic stability or buckling.
There are authored by Timoshenko and Gere [6.1]", Bleich [6.2], Brush and Almroth
[12.1], Simitses [12.2], and Jones [6.4].

12.2 The Buckling of an Orthotropic Composite Plate Subjected to In-Plane
Loads-Classical Theory

From (2.50) through (2.54), it is seen that for a plate there are five equations
associated with the in-plane stress resultants N ,N and N, and the in-plane

displacements they cause, namely u,andv,. For the case of a composite material
anisotropic plate with mid-plane symmetry (B; =0) and no thermal or moisture

considerations it is seen that the following constitutive equations hold, see (10.66):

N, = A&} + A&, + 24,6, (12.1)

* Bracketed numbers always refer to references listed at the end of the Chapter indicated by the first number.
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N, = A,el + Azzg;f + 2A2683y (12.2)
N, = A el + A26g_f + 2A6Ggfy. (12.3)
Likewise, for the mid-plane symmetric panel, the six governing equations

involving M ,M M .0, 0, andw, are given by (11.9), (11.14), (11.15), and (11.21)
through (11.23), the latter three neglecting the D, and D, terms. One can see there is

xy 2

no coupling between in-plane and lateral action for the plate with mid-plane symmetry.
Yet it is well known and often observed that in-plane loads do cause lateral deflections
through buckling, which is usually disastrous.

The answer to the paradox is that in the above discussion only linear elasticity
theory is considered, while the physical event of buckling is a non-linear problem. For
brevity, the development of the non-linear theory will not be included herein because it is
included in so many other texts, for example, [6.1] and [6.2].

The results of including the terms to predict the advent or inception of buckling
for the beam and plate are, modifying (11.26),

o'w o*'w 8w ow
D ——+2D,——+D,— =p(x,y)+ N, 5
ox T ox“oy oy S Ox
o - (12.4)
+oN 2N 2V

Y oxoy 7 oy?

where clearly there is a coupling between the in-plane loads and the lateral deflection.

It should be noted that the buckling loads, like the natural frequencies, are
independent of the lateral loads, which will be disregarded in what follows. However, in
actual structural analysis, the effect of lateral loads, in combination with the in-plane
loads could cause overstressing and failure before the in-plane buckling load is reached.
However, the buckling load is still independent of the type or magnitude of the lateral
load, as are the natural frequencies. Incidentally, common sense dictates that if one is
designing a structure to withstand compressive loads, with the possibility of buckling
being the failure mode, one had better design the structure to be mid-plane symmetric, so
that B, = 0. Otherwise the bending-stretching coupling would likely cause overstressing

before the buckling load is reached.
Looking now at (12.4) for the buckling of the composite plate subjected to an
axial load N, only, and ignoring p(x,y) the equation becomes:

o'w o'w 0w 8w
+2D; ——~+D,——-N,—
oy ox

p 2"
' ox? " ox’oy’

=0. (12.5)

Again, one may assume the buckling mode for a composite orthotropic plate to be that of
the Navier solution for the case of the plate simply supported on all four edges:
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w(x, y) = z ZAmn sm—sm% (12.6)

m=1n=1

Substituting (12.6) into the homogeneous equation (12.5), it is seen that the
equation is satisfied only when N _ has certain values, eigenvalues, namely the critical

N = Talp(m) op (m) () p(n 1 (12.7)
xer 2 1 3 b 2 b
m a a J

Again several things are clear: (12.5) is a homogeneous equation, so this is an eigenvalue
problem and therefore one cannot determine the value of 4, ,; and again only the lowest

mn 2

values, N__,

value of N__ is of any physical importance. However, it is not clear which values of m

and » result in the lowest critical buckling load. All values of » appear in the numerator
for this case of all edges being simply supported, so # = 1 is the necessary value. But m
appears several places, and depending upon the value of the flexural stiffnesses
D,, D, and D,, and the length to width ratio, i.e., the aspect ratio, of the plate, a/b, it is

not clear which value of m will provide the lowest value of N, . However, for a given

plate this is easily determined computationally.

What about the buckling loads of composite material plates with boundary
conditions other than simply supported? In those cases, quite often the Minimum
Potential Energy Theorem is used in which trial functions for the lateral deflection are
selected as follows. It is seen that all combinations of beam vibrational mode shapes are
applicable for plates with various boundary conditions. These have been developed by
Warburton [8.3] and all derivatives and integrals of those functions catalogued
conveniently by Young and Felgar [3.1] for easy use.

The buckling loads calculated in this section do not include transverse shear
deformation effects, and are therefore only approximate — but they are useful for
preliminary design, because of their relative simplicity. If transverse shear deformation
were included, the buckling loads are lower than those calculated with classical theory.
Therefore the buckling loads calculated, neglecting transverse shear deformation, are not
conservative.

12.3 Buckling of a Composite Plate on an Elastic Foundation

Referring to the previous discussion regarding plates on an elastic foundation in
Section 11.12, the governing differential equation for the buckling of a specially
orthotropic composite plate on an elastic foundation can be written as follows. In
previous sections, the simplest model for an elastic foundation was used. In what follows,
a more sophisticated and accurate foundation model is used. Also, the buckling of an
isotropic plate on an elastic foundation using the simplest foundation model was
discussed in Section 6.6.
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o*w o*w o'w o*w
Dl@x—4+2D3W+Dzay—4:N"‘8x—2_pi (128)

Following the research of Paliwal and Ghosh [12.3] a Kerr foundation [12.4] is
used, which involves two spring layers and a shear layer employing the constants
k,,k, and G, where k, and k, are the foundation moduli of the upper and lower spring
layers respectively, while G is the shear modulus of the shear layer.

The lateral deflection is given by
w(x,y) =w (x, )+ w,(x,¥). (12.9)
The contact pressure p, and p, under the plate are
P y)=kw, =k (w-w,) (12.10)
p,(x,y)=k,w (12.11)
The governing differential equation for the shear layer is:
k,w, —GV*w, = p, (12.12)

Eliminating w, from (12.12) and (12.10), and substituting the value of p, from
(12.8) one obtains:

4 4 4 2
ik D,a_varzD;—azw2 Jrz)za_v4”+pa_zﬂ
ky | ox T ox“oy oy ox” |

6 N6 6 6
+E D, a—v:+—o4wz +2D, —54w2 +—62w4
k, ox”  Ox"oy ox"0y° Ox“oy

D _66w +M + ﬂ+—a4w l
: ooyt oyt P ot ox’oy’ [

0w GZWJ

(12.13)

+
ox® oy’

= kzw—G(

In the composite plate one may assume (12.6) for the lateral deflection w(x,y).

Substituting (12.6) into (12.13) and letting the plate aspect ratio a/b = ¢, results in the
following for a specially orthotropic plate simply supported on all four edges,
remembering that for this plate also » =1 only:
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D, m :
+{ D_z[cj (12.14)

O e e Cal

In Equations (12.14) through (12.16) N.= Nmb2 /7*(D,/D,)"*.
Equation (12.14) is the solution for the Kerr foundation. Paliwal and Ghosh give
the solutions for the Winkler and Pasternak foundation, which are given below, for a

plate simply supported on all four edges:

— D > 2D D : :
N.= ‘(’”] e Z(C] +A(CJ (12.15)
D,\ c DD D, \m m

s s (12.16)
+/1(£j +y{l+(£j }
m m Il

where A is the non-dimensional foundation modulus of the spring layer, x is the non-
dimensional shear modulus, and & is the foundation modulus,

2 =kb*/z*\[D,D,
M= Gb4/7z24/D1D2

Similarly, Paliwal and Ghosh studied the buckling of a composite plate subjected

to in-plane compressive loads in two directions. In that case the governing equation is
given by

4 4 4 2 2
lfzzv+2D o'w 8w:N6w+N8w
ox

D - Z - - -
. A . R &

- p,. (12.17)

The final buckling load is found from the following equation, where & = N, /N :
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(12.18)

Postbuckling behavior of composite plates is beyond the scope of this basic text.
However, the work of Minguet, Dugundji and Lagace [12.5] provides an introduction to
this topic. Also, a number of NASA reports by Nemeth [12.6] treat the buckling of
composite plates subjected to thermal and mechanical loads.
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12.5 Problems

12.1.

12.2.

12.3.

12.4.
12.5.

Find the critical buckling load, N, in lbs./in. for a plate simply supported on all

four edges made of a material whose flexural stiffness properties are given as
follows and whose thickness is 1 inch.

163 0028 0 ]
[D]=]0.028 0.160 0 x10°Ib.-in.
0 0 0.037]

(a) If a =30 inches and b = 20 inches.
(b) If a =50 inches and b = 12 inches.

Consider a plate measuring 16” x 16” in planform of [0°,90°,90°,0°], of total
thickness 0.022”. The [D] matrix for this construction is

870 0242 0 ]
D={0242 1854 0 Ib.—in.
0 0  0.296]

If the plate is subjected to an in-plane compressive load in the 6 = 0° direction,
what is the critical buckling load per inch of the edge distance, N, , using

classical plate theory?

In designing a test facility to demonstrate the buckling of the plate of Problem
12.2, what load cell capacity (force capability) is needed to attain the loads
necessary to buckle the plate?

Determine the critical buckling load, N, for the same panel as in Problem 12.9.

Consider a plate of dimensions a = 18” and b = 12”, composed of a laminated
composite material whose lamina properties are:

E, =18.5x10° psi v, =0.30

E, = 1.64x10° psi Gy, =0.87x10° psi

The stacking sequence of the plate is [0°,90°,90° 0°] in which each lamina is
0.006” = h, . The plate is simply supported on each edge.

(a) Whatare 4,,, B,, and D, for this plate?

(b) At what values of x and y will the maximum deflection occur if the plate is
subjected to a uniform lateral load p(x,y) = p, (a constant)?

(c) At which values of x and y would maximum ply stresses occur?



254

12.6.

12.7.

12.8.

(d) Calculate the critical buckling load per unit width, N, , if the plate is

subjected to a uniform compressive load in the x direction.
Consider a Kevlar 49/epoxy composite, whose properties are given in Table 10.3

of the text, and whose weight density is p,, =0.061bs./in>. A plate whose

stacking sequence is [0°,90°,90° 0°] is fabricated wherein each ply is 0.0055”
thick. The plate is 20" x16" in planform dimensions, and is simply supported on
all four edges.

(a) Determine A, 4,5, Ay, Aggs D15 Dy5> Dyy and Deg.

(b) Could the first perturbation solution technique of Section 11.8 be used to
solve problems for this plate if it were subjected to a lateral load p(x, y)?

(c) If the plate is subjected to an in-plane compressive load in the x- direction
only, what is the critical buckling load per inch of edge distance, N, , using

classical plate theory?
For a plate simply supported on all four edges that is 6 inches wide and 15 inches
long made up of the unidirectional four ply graphite epoxy described in (a) of
Problem 11.10, what is the critical buckling load, N, if the compressive load is

applied parallel to the longer direction of the plate?

Given a Kevlar/epoxy rectangular plate, with the unidirectional material
properties given in Table 10.3, for a plate of dimensions 16" x 12", and a thickness
of 0.1", as shown below, simply supported on all four edges. The fibers are all
aligned in the longer direction.

(a) What is the critical load per unit inch, N, , to cause plate buckling of the

plate?
(b) What is the stress in the load direction at buckling?
(c) Will the plate be overstressed before it could buckle?
(d) What is the total weight of this plate?
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(e) What thickness would this plate have to be to have the buckling stress equal to
the compressive strength of the composite material? Assume here that the
compressive strength is equal to the tensile strength (That is not always true!).

A panel simply supported on all four edges, measuring a = 30”, b = 107,

composed of T300-5208 graphite epoxy, composed of laminae with the following

properties:

0,, =22.36x10° psi Py =0.051b./in>
0,, =1.591x10° psi
0, = 0.4773x10° psi h, =0.0055"

Oge = 0.81x10° psi

In the October 1986 issue of the AIAA Journal, M.P. Nemeth discuses the
conditions in which one can ignore D, and D, in determining the buckling load

for a composite plate. He defines:

Y:7D16 and 0= Das

( 3 )1/4 ( 3)1/4
D117 Dpy D11Dy;

If both of these ratios are less than 0.18, one can use Equation (12.7) to determine
the buckling load within 2% of the correct value for a plate simply supported on
all four edges. If either of the ratios is greater than 0.18 one must replace the left
hand side of Equation (12.4) with the left hand side of Equation (12.109), which
negates the use of the Navier and Levy methods being used, thus complicating the
solution.

For a four ply panel with stacking sequence of [+45°, —45°, —45° 1 45°],
determine y and & to see if the simpler solution can be used.



CHAPTER 13

LINEAR AND NONLINEAR VIBRATION OF COMPOSITE PLATES

13.1 Dynamic Effects on Panels of Composite Materials

Seldom in real life is a structure subjected only to static loads. More often
products and structures are subjected to vehicular, impact, crash, earthquake, handling, or
fabricating dynamic loads. In the linear-elastic range, dynamic effects can be divided
into two categories: natural vibrations and forced vibrations, and the latter can be further
subdivided into one-time events (an impact) or recurring loads (such as cyclic loading).
These will be discussed in turn.

Physically every elastic continuous body has an infinity of natural frequencies,
only a few of which are of practical significance. When a structure is excited cyclically
at a natural frequency, it takes little input energy for the amplitude to grow until one of
four things happens:

(1) The amplitude of vibration grows until the ultimate strength of a brittle material is
exceeded and the material and structure fails.

(2) Portions of the structure exceed the yield strength, plastically deform and the
dynamic response behavior changes drastically.

(3) The amplitude grows until nonlinear effects become significant, and there is no
natural frequency.

(4) Due to damping or other mechanisms the amplitude is limited, but as the natural
vibration continues, fatigue failures may occur.

Physically, when a structure is undergoing a natural vibration the sum of the
potential energy and kinetic energy remains constant if no damping is present. This can
be termed a conservative system. However, the energy is compartmentalized, i.e., if a
structure is truly vibrating in one mode of natural vibration it will not change by
commencing to vibrate in some other mode of natural vibration at some other natural
frequency. In a complex structure if two components have vibrational natural
frequencies that are identical, then when one component is excited, the other component
will also be excited. It is for this very reason that duplicative natural frequencies are to
be avoided. Also in complex structures of course the structural natural frequencies can
be coupled involving all components.

Mathematically, natural vibration problems are called eigenvalue problems. They
are represented by homogeneous equations, for which nontrivial solutions only occur at
certain characteristic (eigen, in German) values of a parameter, from which the natural
frequencies are determined. In a vibration at a natural frequency, the displacement field
comprises a normal mode for that natural frequency. At any two different natural
frequencies the corresponding normal modes are mathematical functions that are
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orthogonal to each other (hence the compartmentalization of the energy). The normal
modes comprise the solutions to the homogeneous governing differential equations, and
non-trivial solutions of the equations occur only at the eigenvalues for those equations
and boundary conditions.

If there is a forcing function, then the particular solution for the specific forcing
function (which can be cyclical or a one time dynamic impact load) is added onto the
homogeneous solution, which involves the natural frequencies and mode shapes.
Physically, any dynamic load excites each and every one of the normal modes and
corresponding natural frequencies. Usually, only a relatively few are large enough to be
of concern. The largest amplitude of response will be in those mode shapes whose
natural frequencies are closest to the oscillatory component of the forcing function.

When there are no natural frequencies close to the oscillatory portion of the
dynamic load, then the structure will respond at each time, ¢, in deflection and stresses
that correspond only to the magnitude and spatial distribution of the load at that time 7.
Such a condition results in solving the worst-case static problem in which the largest load
at some time, 7, is applied. This is termed a quasistatic case. However, if the dynamic
load oscillatory component is close to one of more natural frequencies, then the structural
response can be much larger than the value obtained from a quasistatic calculation, and
that increase can be represented by a dynamic load factor.

In what follows natural frequencies are treated first, then forced linear vibrations
and finally nonlinear large-amplitude vibrations are discussed.

13.2 Natural Flexural Vibrations of Rectangular Plates: Classical Theory

Consider a rectangular composite material plate that is mid-plane symmetric such
that B;; =0. If this plate is quasi-isotropic, i.e., Dy =D, =Dy =D, then the governing

differential equation is given by Equation (2.57) for the classical theory, i.e., no
transverse-shear deformation, and repeated here as

+2 +— =p(x,) (13.1)

platw, 5 atw  atwl
N P B
ox ox“oy< oy |

For dynamic loads, using d’ Alembert’s Principle, the equation is written as

o*w otw  otwl o%w
D +2 + =p(x,y,)—p h—0r0 (13.2)
{ ox? 6x26y2 6y4 ] peey Fm or

where the last term is the mass per unit planform area times the acceleration. So the
natural vibrations for a quasi-isotropic composite plate parallels exactly the discussion in
Section 7.3.

If the composite plate is specially orthotropic and mid-plane symmetric, then for
the natural vibration problem the governing differential equation is written as follows:
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4 4 4 2
laaxZVJrzD ow . p 9 W——pmha—w (13.3)

D ow_
Sadey? 2 g8 o2

Again, if all four edges are simply supported then the mode shapes are given by Equation
(7.11) with the result that the natural circular frequency in radians per second is given by

5 4 2. 2 172

47
__ 7 |p(m m\(n n
om =7 Dl(aj +2D3(a] (b] +Dz(bjJ (13.4)

The natural frequency in Hz is given by Equation (7.13). As in the case of isotropic plate
vibrations m and n are integers relating to the mode shapes. Also it is seen that if the
plate is isotropic, D, = D, = D, = D, (13.4) becomes (7.12).

Keep in mind that for Equation (13.4) and other equations for the frequencies for
natural vibrations for thin walled structures, to accurately describe the motion, the
maximum deflection must be limited to some fraction of the plate thickness since the
theory is linear. Above that level of motion, nonlinear effects become increasingly
significant.

One major reference for the free vibration of rectangular isotropic and composite
plates is authored by Leissa [13.1].

13.3 Natural Flexural Vibrations of Composite Material Plates Including
Transverse Shear Deformation Effects

The governing partial differential equations for a composite plate or panel that is
specially orthotropic and mid-plane symmetric subjected to a lateral static load p(x,y) are
given in Equations (11.24) through (11.26). If one now wishes to find the natural
frequencies of this composite plate, that has mid-surface symmetry (B,j =0), no other

couplings ( )16 =( )26 =( )45 =0, but includes transverse shear deformation, £, #0,
&, #0, then one sets p(x,y) = 0 in Equation (11.26), but adds - p,, (62w/6t2) to the
right-hand side where p, is the average mass density of the plate material. So, p,/ in

(13.7) below is the mass density per unit planform area. In addition, because a and E

are both dependent variables that are independent of w, there will be an oscillatory
motion of the lineal element across the plate thickness about the mid-surface of the plate.
This results in the last term on the left-hand side of Equations (13.5) and (13.6) becoming

1(62&/ 8!2) and I(azﬁ / 612) respectively, as shown below:

D

2- 2- 27 2~
0“a 0“a o°p GWJ_IG a_

2D S Ci(D,+D )L _pd o+ D |- 1L
1152 766 o2 +(Dyp + 66)5x5y 55{“*5)6 12
(13.5)



260

(D, + D, )‘32 +D @Jr/)zz@—m (,B an 1928

6/oxdy 66 g2 oy? ) o
(13.6)
oa 0w 0B  0*w 0w
KA [ax + 72 ]+I(A44[ay + 6y2] p’"haz—2_0 (13.7)

where p,, h, the plate mass density per unit planform area, in (13.4) and (13.7) above, is
given by

N
pmh:k;pk(hk _hk—l) (13.8)
where p, is the mass density of the kth lamina material, and here / is
N Zd
]—g]pmzk Z (13.9)

In Equations (13.5) through (13.7) the «'s, without subscripts, are transverse-shear
deformation correction parameters, as discussed earlier in Section 11.10.

Similar to the Navier procedure used in previous analyses and following Dobyns
[7.5] for the simply supported plate, looking at (11.84) through (11.86), let

w(x, y,t) = Z ZCm,,, s1n( mjsin(%}eiw’ (13.10)
a(x,y,t)= Z ZAmncos[mﬂxjsm( Zy] (13.11)
Lx, 1) = Z Zan sm( m}cos[’?}eia” (13.12)

Substituting these equations into the dynamic governing equations above results in a set
of homogeneous equations that can be solved for the natural frequencies of vibration

' '

L11 L12 L13—| Amn 0
L]2 L22 L23 B, +=10 (13.13)

Lz Lyz Ly |G| (O
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where the unprimed L quantities were defined below Equation (11.88) and

1 =M17 Ty @mn
3
' Pmh” 2
Ly, =Ly, - ’{"2 O (13.14)
Ll

Three eigenvalues (natural circular frequencies) result from solving Equation
(13.13) for each value of m and n. However, two of the frequencies are significantly
higher than the other because they are associated with the rotatory inertia terms, which
are the last terms on the left-hand sides of Equations (13.5) and (13.6) and are very

seldom important in structural responses. If they are neglected then Ell =L;; and

Ezz = L,, above, and the square of the remaining natural frequency can be easily found
to be

2 _ 2 2
W = [QL33 + 21412L23L13 =L, L5 —L1 1L23]/'D’”hQ (13.15)

where, here, O = L ,L,, — sz. Also,

\ L

Amn =

L23 B L22L13 C

Q mn

12

\ L

an =

L,—L L

13 ~11723 ~

12

If transverse-shear deformation effects were neglected, Equation (13.15) would reduce to
Equation (13.4). Then, if the plate is isotropic (13.15) becomes identical to (7.12).

In composite material structures, matrix cracks can occur. The effect of these
cracks upon the natural vibrations of composite panels, particularly sandwich panels with
composite facings has been treated by Birman and Simitses.

For non-linear large amplitude vibrations of composite material plates, see Wu
and Vinson [13.2, 13.3].
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13.4 Forced Vibration Response of a Composite Material Plate Subjected to a
Dynamic Lateral Load

Dobyns [7.5] then goes on to develop the solutions for the simply supported
laminated composite plate subjected to a dynamic lateral load p(x,y,r), neglecting the
rotatory inertia terms discussed above, utilizing a convolution integral P(f) as seen below
in (13.19). Incidentally, the convolution integral is also known as the superposition
integral and the Duhamel integral.

The solutions to Equations (13.5) through (13.7), modified to include a dynamic
distributed lateral load p(x,y,f) and neglecting the rotatory inertia terms are given by

§ %(q’”” ]Sin(mfjsin(”zy]P(t) (13.16)

m=1 n=1 a)mn

W(xay,t) -

[
b‘

- _ 1 2 (LypLlys —Lyykys) max .. (nay
a(x,y,t)—mz Z(wan 0 COS( ” jsm[ 7 ]P(t)

m=1 n=l1
(13.17)
v 1 22 (LypLy3—Ly4Lys) x nmny
=— P
P(x,y,t)= o Z: Z(wmn] 0 sm( g ]cos( A J (?)
(13.18)
where
t
P(t) = [F(7)sin[@,,,(t —7)]ldt (13.19)
0

and g,,, is the coefficient of the lateral-load function expanded in series form [see
Equations (11.29) through (11.32) where there B, , is used.

So for a given lateral distributed load p(x,y,t), if a solution of the form given by
Equations (13.16) through (13.18) is applicable, then the curvatures «,, K and Ky for

the plate can be found from Equation (10.52), and the stresses in each lamina are found
from Equation (10.53). The function P(f) has been solved analytically for several
representative forcing functions shown in Figure 13.2.

For the sine pulse, the forcing function F(¢) and the convolution integral P(f) are

F(t)=Fysin(7 /1)) 0<r<y

F(t)=0 t>1
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P(t) = [F(t)sin[@p (¢ —7)ld7
0

_ Fyty[msin oyt — oputy sin(r t/1))] for0<z<s  (13.20)

- 2 2.2
T =1 Wy

Fyz t)[sin @yt —sin o (t— tl)]

2 2 2
5 1 Oy

P(1) =

for t>1, (13.21)

For the stepped pulse the forcing function F(¢) and the convolution integral P(f) are given

F(t)=F, 0<r<t

F)=0 1>t

t F
P(t) = [F(r)sin[ay,,(t—7))ldr = 0 - cos(@y,ut)] for 0<1<t
0 Omn
(13.22)

FO
P(t)= - {cos[a)mn(t— )] —cos(a)mnt} for 1> 1, (13.23)
mn

For a triangular pulse:
F(t)=F,(1-t/t)) 0<r<t

F()=0 1>1

P(6) = [F(0)sin[@pm (¢~ 0)ld7

_ R

1 —cos(@y,,t) + sin(@,,,t) _ti for 0<¢<s (1324
Omn mnl] 1]
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F(1

SINE LOAD STEP LOADING
FiN = F, sin(!;:-—)/
Fn)
/ /F(n s F,
FO
t !
Time ! Time .
TRIANGULAR LOADING EXPONENTIAL LOADING
=0 (BLAST LOADING)

Fi=F0-t/Y) F

o

Time
Fi1

-at

Flt)= F©

Time

STEPPED TRIANGULAR LOADING
(NUCLEAR BLAST LOADING)

_—F=F, (-1t

F(t)= Fz (1- t/!z}

. L

t to

Figure 13.2. Representative forcing functions. (Reprinted from Reference [7.5].)

P(1) = Fyi—

The stepped triangular pulse of Figure 13.2 simulates a nuclear-blast loading
[13.1] where the pressure pulse consists of a long-duration phase of several seconds due
to the overpressure and a short-duration phase of a few milliseconds due to the shock
wave reflection. The short-duration phase has twice the pressure of the long-duration

phase.

cos(@yut) +

mn Dmn 1

2 0 4
—5——COS Dy I—E SIN Wy, > for 7> ¢



265

F(t)=F,(1-t/13) 0<r<y
F@)=F,(1-1t/t,) 1<t<t,

F()=0 1>t

P(t) = gF(r) sin[@,,, (i - 7)]dz

Sin(@yy,t) — ti for 0<r<1, (13.26)

FO
= 1—cos(@y,t) +
DOmnly 3]

Omn

P(t)=F, {Q)L {1 - i} cos[a)mn (= 4 )]- a)L cos(a)mnt)

t3 mn

mn

sin[a)mn (= 4 )]+ + sin(a)mnt)}

w1 w
mn 3 mn 3 (13.27)
1 t 1 t
+F | S 1-— -t
2{(0,",,[ ’2} a’mn[ ZZ]COS[a)mn( ])]
+ sin[a)mn(t tl)]} for z <t<t,
mn 2
P()=F ! l—t—1 cos[@,,, (t—1t,)]— ! cos(wy,,t)
0 Omn t3 (e ! Omn mn
1 . . |
""T{Sln(a]mnt)_sm[wmn (t_tl)]} :
DOmnlsy ]
(13.28)

+F ! t—l—l cos[ @y, (t—1,)]
2| O | 1 mn I =1
. . —|
-— {SIn[ @)y, (1 = 15)] = sIn[@yyyyy (2 = 1))]} for ¢t >1,

(()mnl2 ]
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Lastly, the exponential pulse of Figure 13.2 may be used to simulate a high
explosive (non-nuclear) blast loading when the decay parametera is empirically
determined to fit the pressure pulse of the actual blast. The equations are

F(1)=Fye 0<t<ow

P() = ;[F(z') sin[@yy, (1 — 7)d7

Fi[w,,,e % + asin(@,,, 1) — @, coS(@,,,t
a‘ + o),

It should be noted that although the forcing-function equations given above are used
herein to investigate the dynamic response of a composite material plate, these equations
are useful for many other purposes.

Dobyns [7.5] concludes that the equations presented in this section allow one to
analyze a composite material panel subjected to dynamic loads with only a little more
effort than is required for the same panel subjected to static loads. He stated that one
does not have to rely upon approximate design curves or arbitrary dynamic-magnification
load factors.

With the information presented to this point, the necessary equations for the study
of a composite plate without the various couplings, but that include transverse shear
deformation, have been developed. The plate may be subjected to various static loads
and a variety of dynamic loads. These loads and solutions can be used singly-or
superimposed-to describe a complex dynamic input. (Those same load functions of this
Section, since they are functions of time only, can be used for beams, shells and many

other structural configurations.) With the solutions for E(x, ), E(x, y)and w, maximum

deflections and stresses can be determined for deflection stiffness-critical and strength-
critical structures.

For further reading on impact load effects on composite structures, see the text by
Abrate [13.4], and research by Bert [13.5].

13.5 Vibration Damping

Damping of composite structures is clearly beyond the scope of this basic
textbook. However, it would be a mistake not to mention that composite structures
incorporate significant damping through the intrinsic properties of composite materials
compared to metallic structures.

For the study of vibration damping, the text by Nashif, Jones, and Henderson
[7.4] is excellent. Also, the text by Inman [13.6] concerning vibrations, vibrations
damping, control, measurement and stability provides much needed information useful to
the study of composite material structural vibrations.
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Problems

Find the fundamental natural frequency in Hz (cps) for each of the plates of
Problem 12.1, if the mass density of the material is

o =1 gx10~4 Ib. —sec.”
m =1 —_

in4

Consider the plate of problem 11.1. If it is simply supported on all four edges,
what is its fundamental natural frequency in cycles per seconds neglecting
transverse shear deformation?

What is the fundamental natural frequency of the plate of Problem 12.2 in Hz (i.e.
cycles per second), using classical plate theory? The weight density of the

composite is 0.06 Ib./in.>.

(a) The plate of Problems 12.2, 12.3 and 13.3 will be used in an environment in
which it will be exposed to a sinusoidal frequency of 6 Hz. Is it likely there
will be a vibration problem requiring detailed study? Why?

(b) What about 12 Hz? Why?

For a plate or panel, what are the four ways in which it may fail or become

subjected to a condition which may terminate its usefulness?

Determine the fundamental natural frequency in Hz (cycles per second) for the

panel of Problem 12.9 made of four plys, unidirectionally oriented (all 0° plys).

What is the fundamental natural vibration frequency in Hz for the plate of
Problem 12.6. Assume a weight density for the composite to be

Py =0.061b./in.>.

Suppose the plate of Problem 13.7 were designed to be subjected to a continuing
harmonic forcing function at:
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13.9.

13.10.

13.11.

13.12.

13.13.

(a) 38 to 48 Hz
(b) 10 Hz.

Would there be a problem structurally with this due to dynamic effects? Why?
What is the fundamental natural frequency of the plate of Problem 12.7 in Hz.,
using classical plate theory?

If the fundamental natural frequency were calculated including the effects of
transverse shear deformation, would that frequency be higher, lower or equal to
the frequency calculated in Problem 13.9 above?

A square plate, simply supported on all four edges is composed of GY70/339
graphite epoxy. If this square plate is made of four plys with the 4 and D matrix
values shown below, which stacking sequence would you choose for a design to
have the highest fundamental natural frequency? Which stacking sequence has
the lowest fundamental natural frequency?

GY70/339 graphite epoxy composite

[A] matrix [ D] matrix

Unidirectional four ply

842 546 0] 28.1 0.182 0]
546 17.6 0 x10° Ib./in. 0.182 0.588 0 ‘lb.-in.
0 0 12 0 0 04]

Crossply[0°,90°,90°, 0°] four ply

430 546 0] 246 0.182 0 |
546 430 0 x10° Ib./in. 0.182 4.02 0 :lb.-in.
0 0 12 0 0 04]

. Angle ply[+45°],, four ply

230 206 0 767 687 5.15]
206 230 0 x10° Ib./in. 6.87 7.67 5.15'lb.-in.
0 0 212] 515 515 7.07|

Consider a square plate with length and width of 12 inches, and thickness of 4 =
0.020", composed of graphite/epoxy whose stiffness matrix properties are given
in Problem 13.11a. Calculate the natural frequency f,; in cycles per second (i.e.,
m=2,n=3, fu, = @y, 27).

Does a natural frequency of vibration of a plate clamped on all four edges,
subjected to a lateral distributed load p(x,y)= p,, where p, is a constant,

depend on the value of the load p?
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13.15.
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Consider a rectangular panel simply supported on all four edges. The panel
measure a = 25", b = 10", where 0<x<q,0< y<b. The laminated plate is
composed of a unidirectional boron/aluminum metal matrix composite with the
following properties; where the fibers are oriented in the long direction.

E, =32x10° psi p =0.09151b./in.>

E,, =20x10° psi o, = 250,000 psi
6 .

Gy, =8x10" psi Vf=50%

ply thickness 2, =0.007 in. Vi, =0.35

Determine the fundamental natural frequency in Hertz (cycles per second) for the
panel if the laminate is made of four laminae, all oriented at 0°.

Consider a rectangular composite plate whose stiffness matrices are given in
Problem 11.1. The plate is 15 inches wide, 60 inches long, simply supported on
all four edges, is 0.020 inches thick, whose weight density is 0.06 lbs./in.3, and
the fibers are in the longer direction.

(a) If an in-plane compressive load, N, is applied in the direction parallel to the
longer dimension, what is the critical buckling load, N, , using classical

plate theory?
(b) Using classical plate theory what is the fundamental natural frequency in Hz.?
(c) If transverse shear deformation effects were included in the above calculations
would the buckling load and fundamental natural frequency be higher, the
same, or lower?



CHAPTER 14

ENERGY METHODS FOR COMPOSITE MATERIAL STRUCTURES

14.1 Introduction

Many composite material structures not only involve anisotropy, multilayer
considerations and transverse shear deformation, but also have hygrothermal effects.
Because of these complications, plus any caused by complicated loads, obtaining
approximate solutions through the use of energy methods may be the best way to
proceed, if not the only way, rather than expending much time and effort in the hope of
obtaining an analytical solution.

As stated in Chapter 8, dealing with isotropic plates, with energy methods, one
can always obtain a good approximate solution, no matter what the complications caused
by the structural configuration, the loads or the boundary conditions.

14.2 A Rectangular Composite Material Plate Subjected to Lateral and
Hygrothermal Loads

A detailed study by Sloan [14.1] shows clearly what is involved in analyzing
composite panels to accurately account for the effects of anisotropy, transverse shear
deformation, thermal and hygrothermal effects. The results are also shown in the text by
Vinson and Sierakowski [1.7].

The stress-strain equations to be considered are given by Equation (10.43),

wherein the QU are given by Equation (10.44). The strain-displacement equations are

given by Equation (10.48), the form of the panel displacements by Equation (10.49),
from which Equation (10.50) results. By neglecting &, and o, the constitutive relations
for the laminate reduce to Equation (10.66). Sloan [14.1] has shown that even for this
problem, the &, and o, can be ignored.

Employing the Theorem of Minimum Potential Energy, Equation (8.1), for the
plate under discussion it is seen that summing the strain-energy-density functions for
each lamina across the N laminae that comprise the plate gives the total potential energy
as
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[ .
14 :EEIUA jhkk_l{ax[ax —a AT — B Am]

+ O'y I:gy - ayAT - ﬁ)Am]-i- O-XZ [2ng]
(14.1)

1
+0y; [2«9);2 ]+ Oxy {2(5}6)} - axyAT - ’BxyAmL } dzd4

=[], p(x, y)m(x, y)dA4

Here A refers to the planform area of the plate whose dimensions are
0<x<a,0<y<bandh/2<z<-h/2. It is noted that the strains used in the strain-
energy relations are the isothermal strains, hence one notes the differences between total
strain and the thermal and hygrothermal strains in Equations (4.2) and (10.30).

Now, substituting the constitutive Equations (10.66) and the strain-displacement
relations (10.50) into Equation (14.1) results in the following:
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+ B %@4_%@4.%@4.%@1
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] o L (14.2)
+T + M +MT — p(x,y)w(x,y)}d4

In the above, all quantities (except displacements) are defined by Equations (10.58)
through (10.61), Equations (10.63) through (10.65) and the following. Note that the
a; and f; (unbarred) below are the coefficients of thermal and hygrothermal expansion

respectively:

T* 1

2k1 [QU] [a [0‘] (AT(z, l))



274

=520 oglil8] 08 ] amz.n)? ¢

T é J.lef—l [QU] k[ai][ﬁj] AT (z,t)Am(z,t)dz

As written Equation (14.2) provides the expression to use in the analysis of
composite material rectangular plates of constant thickness, wherein one uses the
appropriate values of the [4], [B] and [D] stiffness matrix quantities given by (10.58),
(10.59), and (10.63).

Equation (14.2) is the most general formulation and it is seen that without the
surface load term there are 30 terms to represent the strain energy in the composite
material panel. Referring to Equation (10.66) and the ensuing discussion it is seen that if
the laminate has no stretching-shearing coupling (A4, = 4,, =0) then two terms would

be dropped; if no twisting-stretching coupling (B, = B, =0) two more would be

dropped; likewise two more are dropped if there were no bending-twisting coupling
(Dys = D,; =0). If the laminate were symmetric about the mid-plane, a very common

construction, then five Bij terms would be canceled out, because there would be no

bending-stretching coupling.

One can now proceed to solve any problem involving composite material plates
subjected to any set of loads, thermal and moisture conditions through employing (14.2).
For trial functions one can use the appropriate functions of Section 14.6 below in each of
the x and y directions. Now to proceed with a number of examples to illustrate the use.
One could start by redoing the examples of Sections 8.3, 8.4, 8.5 and 8.7 for a composite
material plate, but they will not be repeated herein. Rather, the following are presented.

14.3 In-Plane Shear Strength Determination of Composite Materials in Composite
Panels

In this illustrative problem using the Theorem of Minimum Potential Energy,
consider a simple test procedure to determine the in-plane shear strength of laminated
composite materials, as well as other orthotropic and isotropic advanced material
systems; see the recent publication by Vinson [14.2]. The test apparatus shown in Figure
14.1 is simple, inexpensive, and the flat rectangular plate test specimen is not restricted in
size or aspect ratio. In addition to its use for laminated composite materials, the test can
also be used for foam core sandwich panels. In sandwich panels the tests can be used to
determine the in-plane shear strengths of the faces, the core and/or the adhesive bond
between face and core. The shear stresses developed vary linearly in the thickness
direction and are constant over the entire planform area.
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Figure 14.1. Test method and geometry for the determination of in-plane shear strength.
(Reprinted from Reference [14.2].)

Consider a panel of the material to be tested to be rectangular in planform, with
dimensions a in the x-direction and b in the y-direction. The panel is of constant
thickness % and if anisotropic, the material principal axes 1-2, should be aligned with the
structural axes x-y. The rectangular panel is placed in a test machine such that the loads
P are applied at each of the four corners as shown in Figure 14.1. The loads P are
recorded as applied until the test specimen fails. As a result, the in-plane shear strength
of the material is easily calculated from the equations developed below.

The Theorem of Minimum Potential Energy is utilized to obtain solutions. It is
assumed that the material system is specially orthotropic, i.e., the material axes (1-2) are
aligned with the structural axes (x-y). It is further assumed that the test specimen is mid-
plane symmetric, i.e., no bending-stretching coupling, Bi]. =0, no stretching-shearing

coupling (4, = 4, =0), and no bending-twisting coupling (D, =D,; =0). The

following methods of analysis can be altered to include laminates or sandwich panels
asymmetric to the mid-surface, i.e., sz #0.

The potential energy V for the structure and loading of Figure 14.1 is given by
Equation (14.2), which for this case is
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—Pw(%,%)—PW(*%r%)
+Pw(%,—%)+ PW(f%,%) (14.3)

where u, and v, are the mid-plane in-plane displacements in the x and y-directions,

respectively, and w is the lateral displacement. All displacements are positive in the
positive coordinate direction. The means to portray the concentrated loads at the corners
of the plate is clearly seen in the last two lines of Equation (14.3).

Neglecting transverse-shear deformation effects, then the strain-displacement
relations are given by (2.27) and (2.28). The in-plane and flexural stiffness matrix
quantities are given by (10.58) and (10.63). Note that these stiffness quantities are valid
for both composite laminate and sandwich construction.

To insure complete generality, the following forms for the displacements are
assumed as trial functions, where the numbered coefficients are constants to be
determined by boundary conditions and the variational operation:

w(x,y)=C, +C2x+C3y+C4x2 +Csxy+Coy
+ C7x3 + C8x2y + C9xy2 + C10y3 +C, ]x4
+C]2x3’y+Cl3x2y2 +Cl4)cy3 +C15y4
uy(x,y)= A+ Ayx+ A3y + A4x2 + Asxy + 146y2

VO(x,y)zBl+B2)c+B3y+B4x2 +Bsxy+B6y2 (14.4)
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When, as an analyst, one has trouble deciding on a suitable trial function for the
deflection, include as many terms in the polynomial such that the highest power in the
polynomial is equal to the highest order in the differential equations.

The following physical conditions are used to simplify the above assumed
functions:

w(0,0) = 0; 1, (0,0) =0
ow ow
0,0)0=0; —(0,0)0=0, —(0,0)=0;
Y0 =0 200 -0 2000
Nszxyz()onx:i(%)edges; Mx:Mxy=00nx=i(%)edges;
NyZnyZOOHy:i(%)edges; MyZMxy:()onyZi(%)edges;

Wy D) = w9y ) ==y ) =—w( 9, )

The result of satisfying all of the above is that the trial functions given by (14.4)
are reduced to the following:

w(x, y) = Csxy
ug(x,y)=A,x+ 4,y vy(x,y)=Byx+Byy (14.5)

Substituting Equation (14.5) into (14.3), and setting the variation equal to zero
(0V =0) results in the following relationships:

P
66
Therefore:
P
w(x,y) = i Y (x,y)=43y, vy(x,y)=—Ax (14.6)
66

From Equation (14.6) it is seen that no curvature exists in the loaded panel, and
that if the panel is of monocoque construction or a laminate in which each lamina is
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. . G,h’ . .
oriented the same as all other laminae, then Dy = i22 , where G,, is the in-plane

shear modulus of the material, and % is the panel thickness.
For a laminated composite plate the in-plane shear stress for the Ath lamina is
given by

_ 12@66J i Pz

(14.7)
4D

(ny )k = [2566] k [‘ggy + nyz]:

since for this test, from Equation (14.6), gfy =0andx,, =—C; =-P/4D.

In Equation (14.7), for a specially orthotropic material @66 =G@,,, the in-plane
shear modulus of the material, and D is given by

PS8

Equation (14.7) provides an easy way to calculate the shear strength of the failed
material simply by measuring the load P at failure, and the location z, i.e., the distance
from the midsurface of the panel, of the initial failure site. Likewise, if one is only
interested in overall panel in-plane shear strength, then knowing the load P at panel
failure, and using z = 4/2, provides the “panel” in-plane shear strength.

For instance, if the plate is an isotropic single-layer material then

3P 3P
Oy (th/2) = hoy o ‘ny‘ =7 (14.8)

Equation (14.8) is also applicable if the plate is composed of an orthotropic single-layer
material. In either case the shear modulus is not needed to calculate the in-plane shear
strength.

14.4 Cantilevered Anisotropic Composite Plate Subjected to a Uniform Lateral
Load

In this example, a fin on a flight vehicle is studied to determine what angle 6 of
the fiber orientation would produce the greatest angle of twist, if the fins were of a
unidirectional composite and the applied lateral load were of a uniform pressure p,. In
other words how does one maximize bending-twisting coupling.

Starting with Equation (14.2), classical theory is assumed, the potential energy
expression is given by (14.9) below, where a=-0w/ox and B=-0w/dy. The
planform view of the fin is shown in Figure 14.2, where the positive direction of & is
shown in Figure 10.10.
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+
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Figure 14.2. Planform view of the fin.
So for classical theory
« & D, (*w)’ awYo'w) D, [(d*w\
V:J.J.%az + Dyl —— 2+i 2
P X ox cy 2 oy
2 2 —| 2 2 T
wan | [ 22 S ap, || S [ 0w (14.9)
ex” |\ oxdy ) | oxoy \ oy” )|

o*w ?
+2Dg (&cayj = p(x, y) w(x, y)} dx dy

Assuming that the stacking sequence is unidirectional, then from (10.58) and

(10.63)
Ay =0;h
(14.10)
0,1
D, = QU
12

where 4 is the total laminate thickness. Assuming p(x,y)= p, a constant, and that
u, = v, = 0, the trial function for the lateral deflection can be assumed to be

wix, v) = (x* —dax’ +6a’x>)(4+ By) (14.11)
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where the function of x is from the solution of a cantilever beam subjected to a uniform
lateral load, and the function of y allows for an angle of twist (or an angle of attack).
Substituting (14.11) into (14.9) results in

V= j bj72DH (x* —dax’ +6a°x> —4a’x+a*)(A* +24By + B*y*)

0 0

+D,,(0)+32D,, (x* —6ax’ +15a°x* —18a’x” +9a’x*)B’

+D,,(0) (14.12)
+96D,,(AB+ B’ y)(x* —5ax* +10a’x* —9a’x* +3a"x)

+ Dy (0)

-po(x* —dax’ +6a’x7)(A+ By)}dy dx

Next one performs the integration across the planform area,

273
y- 7520”115[/121;  ABK + B;’ J+“;406632ba7
(14.13)
+16D,,a’hB| A+ Bb —Epoasb A+ B—b—|
2) 5 2 |
One now takes the variation of 4 and B and sets the result equal to zero.
72 5 22 ool
8V =0="2D,a’h 2454+ Bb&A+ Ab3B +b SB&BJ
L1 D, ba’ 2BSB
7 (14.14)

+16D,,a°b[BSA+ ASB +bBSB]
8 poasb[5A +E§BT =0
5 27|

Finally collecting terms



SV=0= EA[%D”aSbA + ?D“asbBb +16D,,a°bB gpoasb}

+0B = {%D,lasbzA +7—52D”a5b3(§]3

144
+ TD“M 2B +16D,,a’b4+16D,,a’b*B

Epoasbﬂ_o
5 2 |

one finds the two governing differential equations

and

%DnasbA +7?2D”a5sz +16D,,a°bB 72 p,a’h=0

?DI,aszA +%Dlla5b33+¥D66ba7B

6 672 6 poasb2
+16D,;a"bA+16D,;a’b B—g 5 =0
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(14.15)

(14.16)

(14.17)

From these two equations both 4 and B can be solved. It is found that 4 is given by

The constant B can be written as

_ 7& (DM/DH )(a/b)po
378  bD,{ }

2 2

3240( D > 700( D ]
where { }=756D]b°|1+=——| —% (“j 2 s (a] g
189 (D, \b) 189\ D, ) (&) |

From (14.11) it is seen that the two tip deflections are given by:

w(a,b) =3a* (A + Bb)

w(a,0)=3a*4

So the twist or the angle of attack of the plate at the outer (x = a) edge is

(14.18)

(14.19)

(14.20)
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W(aab) B W(G,O) — 3a4B
b

(DI6/DII )(a/b)l’o

(o

378 2 2 2

bD,, 1+3240 Dgs [fa) 700( Dy | (a
189 (D, \b) 189D, ) (b

(14.21)

From laminate mechanics where m = cos@ and n =siné,

D, Qnm4 +2(0, + 2Q66)m2n2 + sz”4

Dy, _ fmn3Q22 + m3nQH 7mn(m2 *nz)(Qn +20)

Dy, _(©n+0y —4Q)m’n* + 0, (m* +n*)
Dll Q11m4 +2(Q]2 +2Q66)m2n2 +Q22n4

% _ (O + 0Oy 72Q12)m2n2 +Q(,6(m2 *nz)z
D, Qnm4 +2(0,, + 2Q66)m2”2 + szl’l4

A further approximation is that since E,,/E, , G,,/E,, and v,, are very small, simply
ignore them. Therefore, using these assumptions the tip angle of twist can be written as

2l
wab)-wa0)  Eybk | 376(b Pl )|

b 1,3240(a ()" _700(aY(mY
189 \b) \m 189\ b ) \m

(14.22)

In (14.22), calling the tip angle of twist the Factor of Merit (FM), 2 —tand and
m
(ﬁj(zj =¢,(14.22) is as follows:
m )\ b

4
_ 36a Izo —105¢ (1423)
(378)bH’E,, [ 2540 2]
1+ "¢
189

To find the optimum value of ¢,
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\ 1+@¢2 (—105) +105(¢ 2(2540)¢
JOFM 36a” p, 189 189
=0= 3 5 (14.24)
o (378)bh"E,, 2540 ,
l+=——¢
189
Finally it is found that
b
tan@d =| — |(0.2728) (14.25)
a
. 80
For an example, if a = 62.5mm and » = 80mm, then tané = (EJ(O.ZDS) =0.349

6 =-19.25° (14.26)

So, the optimum fiber angle for this problem, with this configuration, and these
dimensions is 19.25° in the swept back direction, see Figure 14.2. Also, from (14.23),

0.1137p,a’
bD,,

FM (14.27)

All of this illustrates that regardless of the problem complexity one may always
find a solution. One can argue about the assumptions made: with all that were made it is
seen that the maximum bending-twisting coupling occurs when the fiber angle is
6 =19.25°. Now having found this, one may return to the original problem and negate
each assumption and proceed to obtain more complicated solutions. If the optimum angle
6 does not change significantly, then the original assumptions were good assumptions.

14.5 Use of the Theorem of Minimum Potential Energy to Determine Buckling
Loads in Composite Plates

As a practical example, consider a specially orthotropic composite material plate
shown below in Figure 14.3, where each x = constant edge is simply supported, and the y
edges are clamped (y = 0) and free (y = b). This is typical of a flange on a ladder side rail
and many other structural applications involving open cross-sections. Consider this to be
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Case I:

Figure 14.3. Buckling of a Flange Plate

The plate is subjected to a uniform compressive in-plane load of N, (Ibs./in. of

width) in the x direction as shown in the Figure 14.3. The Theorem of Minimum
Potential Energy is used to determine the critical buckling load, N, .

From Equation (14.2), and using classical theory i.e. a= —ow/ox, ﬁ =-0ow/dy,
the potential energy expression is:

2 2
y— (b Dy, 02w D 2w 62w Dzz 02w
- IO .[0 2 + 12 2 2 + 2
2 | ox x|\ oy 2 oy

2 2
02w ab N, (Ow
+2D66[6x8y} dydx — [, jo—zx (J dxdy

(14.28)

Ox

In this expression the effect of the in-plane load for buckling is given by the latter
integral, where the effect of an in-plane load on the lateral deflection is seen.

To use the Theorem of Minimum Potential Energy, let the deflection be a
separable solution of the x and y variables

w(x,y) = f(x)g(y)

Since the edges are simply supported at x = 0 and x = a, let
f(x)=4,sin"™>
a

which satisfies the boundary conditions, and let

g =0t —4y3b+6b2y?)
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because this is proportional to the exact deflection function for a cantilevered beam
subjected to a uniform lateral load and satisfies the clamped-free boundary conditions.
Therefore,

w(x,y) = Ansin%(y“ —4y3p+6b2y?) (14.29)

Substituting (14.29) and its derivatives into (14.28) gives

2l [D 4,4 1
V=1 ;gH ! {Ag ”aZ sin® 22 (4 ~ 4y +6b2y2)J_

2.2 1
+D —Ann il sin@(y4—4by3+6b2y2)_x
12 2 p [

[+ A,sin (1292 —24by + 12b2)u
a I (14.30)
D
+%[A,%sm2 A7 (1252 —24by+12b2)2}
a

2.2 ]
+2D | A2 cos2 TP (433 —12by2 +12by2 Lldydx
66 42 a ]

_Nx
2

2_2

ach n-iw nix

Jo To A ™= c0s2—a (y* —4by> +6b%y?)dydx
a

Performing the spatial integration the final expression for the potential energy is:

_(2 7 5
V=43 7\ a5 ) 7P b g Db

)Dllﬂ4n4b9(104j_12 n?z? g 72
a

2a
(14.31)

7 9
+ #D n27r2 b—— an27z2 b—(gﬂ

66 a2 a2 45 |

Taking variations of (14.31) for this eigenvalue problem one sees that the bracket must be
zero.

SV =0=24,54,{ }=0, so { }=0

From the above the critical buckling load N, is seen to be
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_ 7Dy, nz(gjz_ ()45 Py, 18)9) [ Dy (g)z

b2 a) (D32 Dy, 13x*n?| Dy \b 1432

, (36)45) Dgg !

"3 D11 ]
This is the solution for this case in general, written so that the relative influence for
various stiffness terms can be assessed.

First, it is important to determine the wave number #» yielding the lowest critical
buckling load, because this is the only one of physical significance.

2 2 2 ]
ON, 7°Dy, b 2(18)9) [ Pyy (a)” 1

=0= op| = | — =227 22 12 =,
on b2 n[aj (13)(7[4)(D11}[bj n |

Therefore,

1/4
7

(18)(9) a
{(13)(714)[ } [bj (14.33)

Now, substituting (14.33) into (14.32) results in
v 7Dy [18] 3 (Dn]”_ (3)(45) [&]
Yer o p2 13 72 Dy, (7)(13)”2 D,
+[18J 3 (D, L (36)45)
3) 2\D,) (M3

Note the lowest critical buckling load for this case given in (14.34) is independent of the
integer », and the aspect ratio (a/b) !. It is also interesting to note that the first and the

(14.34)

2
D 2
third terms above are identical. This means that in (14.34) the %(6_;1/} term and the
ox

Dy [ 07w . .
%[—2] term contribute the same amount of strain energy regardless of the aspect
oy

ratio. This in turn means that if D22 is reduced from one material to another the

curvature in the y direction increases such that the strain energy remains the same, and of
course the reverse is true.
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Another set of boundary conditions are exemplified by:
Case II: x = constant edges clamped, y = constant edges clamped-free
Here the following deflection function can apply

2”2’“}@4 —4y°h+6b7y%) (14.35)

w(x,y) =4, [1 —cos
In this case, following the above,

v 7D, i(é]z 135 (D,), 27 [ET
b | 4\a a3y 7)z*\ D, ) 4n’z*\b

L (49(72) ( Dy ]l
137> |\ D,

(14.36)

Setting the derivative of N with respect to n equals zero in the above gives:

%
n{@?[l’ﬂf (ﬁ] (14.37)
7z \ Dy )] \b

Therefore, after substituting (14.37) into (14.36) the minimum critical buckling load per
unit width is:

22D, len"?(p,\" 135 (D 12 (p, )"
N = n J(27) 2 _ P +( ) P
o b’ 7> \ D, 13)nz* D, 7> \ D,

, (4536) [D“ ]l

(13)(7)7[2 D, [

(14.38)

Again the conclusions reached for Case II are identical to those of Case I.

Case III: Let the ends be simply supported and the y edges simple-free

In this case, one can use the following:

w(x, y) = A,y sin 222 (14.39)
a
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From the analysis analogous to the above, one finds that for the lowest buckling load, n =

1, and
’p > 12(p I
N, =Zn [2] | e (14.40)
b a 7o\ Dy )|

Therefore since n = 1 is the lowest buckling load, this is overall buckling, no crippling.

14.6 Trial Functions for Various Boundary Conditions for Composite Material
Rectangular Plates

To satisfy various boundary conditions for rectangular composite material plates,
the lateral deflection w(x,y) may take many forms as long as they are single valued and
continuous.

For all combinations of clamped and simply supported boundary conditions Wu
and Vinson [13.2, 13.3] provide functions that can be used which involve characteristic
beam functions that formulated by Warburton [8.3] and completely characterized by
Young and Felgar [3.1].

Another example are the functions used by Causbie and Lagace [14.3] for the
study of composite material rectangular plates subjected to in-plane compressive
buckling loads in the x-direction. They assumed the following:

1. Simply supported on all edges

6 2
w=Y ZAmnsin@sin% (14.43)
m=1 n=1 a

2. SS on loaded edges, SS on one side, free on the other side

w= i i % Sin(?]{’ﬁlmnsmh(%j*‘ BmpSin[%j} (14.44)

m=1l n=l p=1

3. Clamped on loaded ends; simply supported on the sides

w= % i Ay {cos{(mtll)ﬂx—l —cos{(m _al)ﬂxusin{nﬂyj (14.45)

n=1 m=1 J JL b

4. Clamped on loaded ends; simply supported on one side; free on the other side
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w= Z i %{cos{(m D S{M—H}x
n=l m=1 p=l a a JJL

(14.46)
+ {Amnsinh[%j + B, s1n(pﬂyj}

b

14.7 Elastic Stability of a Composite Panel Including Transverse Shear
Deformation and Hygrothermal Effects

In this section, a general buckling theory is formulated that accounts for the
hygrothermal effects as well as transverse shear deformation and all of the couplings
discussed in earlier sections as performed by Flaggs [14.4]. Again the Theorem of
Minimum Potential Energy is employed, so the strain energy of the plate is identical to
that previously used, namely Equation (8.36) for isotropic plates and (14.2) for an
anisotropic plate, whether monocoque or sandwich. However, in the absence of a lateral
load p(x, y), the last term of Equation (14.2) is absent, but in its place are the effects of in-
plane stress resultants N, N _,and N, that can cause an elastic instability. Equations

(8.36) and (14.2) become:

xy?

ou, 1(ow\'
V= LWdR[See(8.36)or(l4.2)]—”{N{ax+ [ij |

a ” 2]
+Nm{%+%+a—wa—w—l+Ny[%+l(OW] d4
' ]

dy Ox Ox oy | Cy oy
These terms are treated in detail in References [6.1] and [6.2], and will not be developed
in detail here, but they are standard for isotropic panels as well as composite laminates.
The buckling loads, N, or N, are determined by finding the value of the

load at which bifurcation occurs, that is, loads at which the plate can be in equilibrium in
both a strain configuration (i.e., w = 0) and in a slightly deformed (w # 0) configuration.
This is accomplished through setting the variation of the potential energy V in Equation
(14.47) equal to zero, as in Equation (8.2), as shown in Equations (8.44) through (8.47).
This operation results in an eigenvalue problem that can be solved for nontrivial solutions
that are discrete values of the applied loads. The lowest critical load is the actual
physical buckling load. Unlike solving for several natural frequencies, all of which could
be important, only the lowest buckling load has any physical meaning.

(14.47)

Xl’

In solving this, u,,v,,w, E, and £ could be considered as unknowns to be found
through the solution. In the following, simply to illustrate an alternative approach, for the
rotations « and 3, the rotations are solved for in terms of the lateral deflection, w. To do

this, consider the laminate to be a beam, hence modifying Equation (14.2) to only have an
x-dependence. Solving that problem results in three equations:
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d*u d*a
4, —-+B, e (14.48)
da d*w d*w
Assa—Ass = ~N,——=0 (14.49)
— dw d’u, d’a
_ASSa_ASSE_FBH?JFDH?:O (1450)

These Equations can be solved for a, the result being as follows. Even though a
is determined for a beam, a y-dependence is permitted since a plate is being considered.

E(x y):_a_w_ D11A11_B|21 Ass — N, 63_W (14.51)
’ ox 4, 4% ) ox’

In Equation (14.51) note that the first bracketed term is precisely the reduced flexural
stiffness term discussed previously. Similarly, assuming a beam in the y-direction, it is
found that

) ow [ Dydy, =By, | A =N, \0'w
X,y)=—- 14.52
B(x,y) o [ i, e 3 (14.52)

44
Equations (14.51) and (14.52) can now be substituted into Equation (14.47) so that the
potential energy expression contains only u,, v,,and w as unknown functions.

From Equations (11.79) and (11.80) the simply supported case S1 and the
clamped case C1 are chosen as a good set of examples to investigate various effects. The
forms of displacements chosen are given in the paper [14.4] by Flaggs and Vinson.

However, they chose a form for w that differs from the usual assumptions. It
must be remembered that an admissible function for the displacement must satisfy at least
the geometric boundary conditions (i.e. those involving the lateral displacement and its
first derivative) but that function is not unique, hence in this case the following is chosen:

w(x,y) = i inn{ cos[(m — 1)71:1 - cos[(m i 1)7zx]L
m=1 n=1 a a [
X { cos[ ( _bl)ﬂy} - cos[ (n +b1)ﬂy}}

(19.53)

The displacements can now be substituted into the Potential Energy expression,
Equation (14.47). Then taking the variation with respect to the unknown amplitudes
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W...lm-and A results in the eigenvalue problem below, where one can define

mn? " mn?

N, =N, where here A is the ratio of the applied N, to the applied V.

E, E, E,lT,, 0 0 F,lr,
E, E, EyxqA,, =N, 0 0 Fyu9A,,
E31 E32 E33J Wan F31 F32 Fssj Wan (14.54)
00 o7fr,
+N20 0 0 <A,
00 G|\,

In (14.54), the E

through the variational process of setting 6V =0, in (14.47), and also given in [14.4].
Equation (14.54) can be simplified by uncoupling the third set of simultaneous
linear algebraic equations above, by substituting for the I',, and A, equations in terms

of W

mn 2

F;,and G; quantities are lengthy expressions that can be found

i

resulting in

[EWW,

wn

Y= N IFIW,, }+(N )G, } (14.55)

For a symmetrically laminated [0, 45,—45,90],, T300/5208 graphite-epoxy composite

plate with simply supported and clamped boundary conditions, the buckling loads using
the generally laminated plate theory are calculated for both steady state and transient
hygrothermal conditions. Figure 14.4 and 14.5 show the effects on the applied buckling
load, N_, of different steady-state hygrothermal environments for clamped and simply-

supported boundary conditions. The effects of temperature and moisture are both quite
clear. Note, along the abscissa, one sees the combination of moisture and temperature
that combine to produce buckling with no applied axially compressive mechanical load.
It is straightforward to develop analogous plots for various sandwich panels.
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T300/5208

Clamped
[0.45,-45,90],,
- a:b*i2in
h=I76 in
o/h+68.2

N, (Ib/in x10%)

1
T0 150 250 350

TEMPERATURE (*F)

Figure 14.4. Buckling load per unit width as a function of temperature and moisture.

T300/5208
Simply Supported
{0,45,-45,90] .5
asb*I2 in,

he I76 in
a/h+682

1|
150 200

TEMPERATURE (*F)

Figure 14.5. Buckling load per unit width as a function of temperature and moisture.
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Problems

Consider a composite beam of flexural stiffness bD,, clamped on each end and
subjected to a uniform lateral load g(x) = ¢, Ib/in. Using the Theorem of
Minimum Potential Energy (MPE) and an assumed deflection function of

w(x) = A[l —cos 27x]

L |

where 4 is the amplitude and L the beam length, find, using classical beam theory:

a. The magnitude and location of the maximum deflection.

b. The magnitude and location of the maximum stresses.

c. Does this form of the deflection function satisfy all of the boundary conditions
necessary to use MPE for this problem?

Consider an orthotropic composite panel shown in Figure 10.11, which has the

following boundary conditions:

x=0 clamped

x =a simply supported
clamped

y=>b free

Select a suitable function for the lateral deflection w(x,y) with which to utilize the
Theorem of Minimum Potential Energy for this composite plate to determine the
deflection of the panel when it is subjected to a laterally distributed load p(x,y).
Consider a simply supported composite beam subjected to the load
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14.4.

14.5.

14.6.

- . TX
X)=qgSsSin—
q(x)=q i

where ¢ is a constant. Using the Theorem of Minimum Potential Energy, and
letting the lateral deflection be

. TX
w(x) =W sin —
(x) i

a. Determine W.
b. What and where is the maximum stress?
Consider a simply supported composite beam subjected to the load

q(x) = 5{1 ~sin %}

where 5 is a constant. Using the Theorem of Minimum Potential Energy, and
lettering the lateral deflection be

. TX
w(x) =W sin —
(x) 7

a. Determine W.

b. What and where is the maximum stress?

The Theorem of Minimum Potential Energy is to be used to analyze an orthotropic
composite rectangular composite plate. The plate is midplane symmetric, has no
moisture or thermal loading, does include transverse shear deformation effects, has
no in-plane displacements, and is subjected to a lateral distributed load p(x,y) only.
What is the explicit expression for the potential energy V to use in solving this
problem?

The exact solution for a simply supported beam subjected to a uniform lateral load
per unit length of ¢, is:

Using the Theorem of Minimum Potential Energy and a deflection function of

w(x) = i A, sin(”’sz

n=l1

Determine 4,.

Where and what is the maximum deflection?

Where and what is the maximum face stress?

Compare these results with the exact values. What are the percentage
differences?

;oo



CHAPTER 15

GOVERNING EQUATIONS FOR PLATES AND PANELS OF SANDWICH
CONSTRUCTION

15.1 Constitutive Equations for a Sandwich Plate

Consider a cross-section of a sandwich structure shown in Figure 15.1 below.
The two face thicknesses are designated as 7, and the core depth is labeled /.. In this

initial example, the faces are identical in thickness and material, whether isotropic or an
anisotropic composite.

te /

top face

|5 ] |

core

e T e

tf \ lower face

Figure 15.1. Cross section of a symmetric sandwich structure.

For a sandwich plate or panel, the equilibrium equations and the strain-
displacement relations remain the same as they are for a monocoque isotropic or
composite laminate plate or panel. See (2.14)-(2.18), (1.16)-(1.21), and (10.47)-(10.52).
Only the constitutive equations differ from the monocoque structures.

To illustrate how the same methods used to determine the stiffness matrix
quantities for a laminated structure given in Figure 10.12 can be used to obtain the
stiffness quantities for a sandwich plate, simply define lamina 1 as the lower face, lamina
2 as the core and lamina 3 as the upper face.

Therefore, in this example if the materials are isotropic QJ =Q,, and for face

y' 9
quantities use subscript f, and for core quantities use subscript c. From (10.58)
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-l ]’{%(%I’E ' [Q]]K%j(%ﬂ (15.1)
do)|(%en -2 -l b o ln oL L)

2 |
=lo,], (2, )+[o,] 1.
. . Ef
For i and j = 1 or 2, to calculate the in-plane stiffness terms, [Qi,.]/ = R : 7 and
- -v
f
E(‘
[Qi/]c o (1 _ch) .
E E
A=Ay =—L 2t )+——h_. 15.2
11 22 (1_‘/;)( f) (]_ch) c ( )
Similarly, from (10.63)
1= 10 51 1 nY ( h o Y1
Dii - g;[gif]k [hk =l ]— E[Q”]{(_Zj _(_z_lfj J .

Awls]-(4) ol ) -4))

For i andj =1 or 2, the resulting flexural stiffness quantities are seen to be
2E, 2 1 e ®

DI:DZ:l - 3 h—ctf+ihcti+t3f + e
3A-v,[\4)2 250 7] d-v)) 4

_1Eh, Hlﬂ(l—vj)ET.
20-v))| 6E, (1-v))t, |

(15.4)

. E ! .
Now for many sandwich structures both —=<<1, and—-L <<1, such that if
! e

——= << the second term in the bracket of (15.4) is very small compared to unity. In

Es,

that case
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2
D, =, = LEMY (15.5)
LT 2wy '
2

which is the widely used expression for the flexural stiffness for an isotropic sandwich
structure.

Likewise all 4, B and D quantities can be derived from the laminate analysis, for a
sandwich structure, isotropic or anisotropic, mid-plane symmetric or asymmetric.
Subsequently, quite often the resulting expressions can be simplified as shown above.
For example, consider a mid-surface symmetric rectangular sandwich panel, wherein
both faces are made of a unidirectional continuous fiber composite with the material 1
axis coincident with the panel’s x-axis etc., and the core is assumed to contribute nothing
to the stiffness matrix. In that case

4,=00,) 21,=(0,) 2, (.j=12.6)

B, =0

(Q’/ )/’/hcz , )f’/hcz

D.. = = i; = 13 2: 6
ij b B (G, )
or
2Et, 2v, Bt 0 ]
(IT=vypvy) (d=vyv,) _
Aij _ 2V2]E11t/ 2E221‘/. 0 (15.6)

(1_V12V21) (]_V|2V21) :
0 0 2G12t/
L ]

E,ht, v\ hlt, . ]
20-v,vy) 2(0-v,vy)
V21E11hc2t/ Ezzhcztf

DI./. = 0 (15.7)
‘ 20 -v,vy) 2(0-v,vy)

o
. . G,h, ;
I 2]

It should be noted that for this sandwich

(D)= (4, 2 14.

y
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For the transverse shear quantities 4,, and 4, following the same procedures for
the isotropic sandwich

Ay = A5 =G.h +2,G, (15.8)

However, in some cases the loads are such that the core material is compressed
significantly, and then the question arises as to how does the core behave. According to
Sikarskie and Mercado [15.1], most of the common core materials behave linearly in
shear initially, and then behave nonlinearly: elastic-perfectly plastic for PVC foams, and
bilinear for end grain balsa, as examples in the extremes. Sikarskie and Mercado then
analyze sandwich beams under four point bending and sandwich plates showing the
growth of damage and behavior with the nonlinear core materials.

Many modern sandwich structures involve foam cores that are compressible, and
under some loadings the upper and lower faces undergo differing deformation patterns.
This occurs particularly under lateral localized loads, and can lead to premature failure of
the structure. Frostig [15.2] and numerous colleagues including Baruch [15.3], Patel
[15.4], Shenhar [15.5], and Thomsen [15.6] have studied these problems extensively
regarding buckling, vibrations, and delamination. Also, Frostig [15.2] emphasizes that a
stiffener edge support always causes stress concentrations that affect the faces as well as
the skin-core interfaces with any type of loading. Computational models for sandwich
panels and shells are also discussed by Noor, Burton and Bert [15.7].

15.2 Governing Equations for Sandwich Plates and Panels

Using the constitutive equations of the previous Section, all of the governing
equations derived in Chapter 10 apply to sandwich panels. The only change is to use the
sandwich stiffness matrices of Section 15.1 for the A;,B; and D, stiffness matrices.

Therefore, for a sandwich panel that is specially orthotropic (i.e. no ( ),, and
(), terms), mid-plane symmetric (i.e. no B, terms), if classical plate theory is used, the
governing equation for a sandwich panels is given by Equation (11.26). If transverse
shear deformation effects are included then (11.76) through (11.78) apply. Thus all of

the material included in Chapter 11 applies if the sandwich stiffness quantities of Section
15.1 are used. This result is that this is a short chapter.

15.3 Minimum Potential Energy Theorem for Sandwich Plates

Analogous to the above the overall expression for the potential energy for a
sandwich panel is given by (14.2), remembering to use the stiffness matrix properties of
Section 15.1 above for the sandwich panel. Again, because of this, Chapter 15 is very
short.
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15.4 Solutions to Problems Involving Sandwich Panels

Any solution for the lateral and in-plane displacements for anisotropic or isotropic
plates, with or without transverse shear deformation effects can be used for the solution
to the analogous sandwich plate problem if the proper stiffness matrix quantities are used.

However, care must be taken to subsequently describe the stresses in the faces and
core. Again, the very accurate expressions for the stresses of (11.34) can be used. Ifitis
assumed that all of the in-plane and bending stresses are face stresses, and that the core
only resists transverse shear loads, then the stresses of (11.34) are reduced to the
following where (i = x, y)

N, M,
o, =tk (15.9)
2, 1,h,

and the transverse shear stresses, o, , in the core and the faces are found by using

Equations (10.46) for o, and o, and (10.48).

The solutions to many problems involving sandwich plates and panels are given
in textbooks by Plantema [15.8], Allen [15.9], Zenkert [15.10, 15.11] and Vinson [10.1].
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15.6 Problems

15.1.

15.2.

15.3.

Consider a foam core sandwich panel composed of two identical faces and a foam
core. Each face is a cross-ply laminate of [0°,90°,90°,0°] construction, with
each ply being 0.25 mm (0.01") thick. The core is made of Klegecell foam of
density 1.01b/ft’ and shear modulus G, of 10,000 psi, v, = 0.4, and is 25.4 mm

(1") thick. The stiffness matrix quantities for the boron/epoxy faces are:

0,, =2.43%10° MPa (35.32x10° psi)
0,, =2.43x10* MPa (3.532x10° psi)
0,, =7.30x10" MPa (1.06x10° psi)
Oy =1.034x10* MPa (1.5x10° psi)

and the boron/epoxy density is p, =0.0721 Ib/in’ .

(a) Using Equations (15.1) through (15.4), what are the [A4] and [D] stiffness
matrices for this sandwich panel?

(b) Using the simpler equations analogous to (15.6) and (15.7), what are the [4]
and [D] stiffness matrices for this sandwich panel?

(c) What is the largest percentage difference between (a) and (b) above of any
component in either matrix?

(d) If the panel is subjected to in-plane tension in the x-direction (i.e. the 0°
direction) such that the faces and core are equally strained, what percentage of
the load is carried by the faces, and what percentage is carried by the core,
using the results of (a) above.

Consider a mid-plane symmetric sandwich panel, wherein the faces are made of a

unidirectional Kevlar 49/epoxy composite with the 1-axis coincident with the x-

axis. The properties are given in Table 15.2, and v,, =0.34. This sandwich

panel has faces 1 mm (0.04 inches) thick, and the core thickness is 25.4 mm (1

inch).

(a) Provide the values of the [4] matrix and the [D] matrix.

(b) How does this panel compare with that of Problem 15.1 which geometrically
is the same, i.e., compare the properties of a sandwich with isotropic faces
with one of faces of a unidirectional composite?

In selecting face materials, quite often one selects a material which has the highest

specific strength, defined here as o,/ p, or the highest specific stiffness defined

here as E,,/ p. In Table 15.1 and 15.2

(a) Which material has the highest specific strength? Which has the lowest?
(b) Which material has the highest specific stiffness? Which has the lowest?



15.4.

15.5.

15.6.

15.7.

15.8.
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Consider a rectangular sandwich hull plate on the flat bottom of a ship as a
rectangular plate under a uniform lateral distributed loading, p,, from the water

pressure, and clamped along all edges. The steel sandwich faces are 0.125" thick,
and the foam core depth A, =2.5". The panel is 4 feet wide and 6 feet long, and

the ship draws 14 feet of water, where sea water weighs 64 1b./ft.’. The steel face
properties are given in Table 15.2. What is the maximum stress in the sandwich
panel? What is the maximum deflection? Use Table 3.4.

A rectangular wing panel component, 16" x12", is made of a foam core sandwich
with identical aluminum faces(E =10x10° psi,v = 0.3, 0, = +20,000 psi). The

panel is considered to be simply supported on all four edges. With a face
thickness of 0.064" and a core depth of 1.25", if a maximum design pressure of
20 psi is reached,
(a) What and where is the maximum stress?
(b) What and where is the maximum deflection?
Use Table 3.1.
A flat portion of a wind tunnel measuring 30" x 54" is subjected to a uniform
pressure of 20 psi. If the sandwich faces are steel (see Table 15.2) and the foam
core depth is 1.0", what face thicknesses are needed if all four sides of the panel
are:
(a) Simply supported? (Use Table 3.1)
(b) Clamped? (Use Table 3.4)
The panel cannot be overstressed and the maximum deflection cannot exceed
0.125".
A portion of the cover of a hovercraft is approximated by a rectangular sandwich
plate measuring 8 feet by 4 feet in planform, and is simply supported on all four
edges. It is subjected to a uniform lateral pressure of 20 psi. Assume that in the
design h, =207,
(a) How thick must the faces be if made of 6061-T6 aluminum (see Table 15.2)

to not be overstressed?
(b) What is the maximum deflection in (a) above?
(c) How much will the panel weigh if p,, =0.1161b./in.*, p, =151b./ft.’?

(d) How thick must the faces be if made of the steel in Table 15.2 to not be
overstressed?

(e) What is the maximum deflection in that case?

(f) How much will the panel weight if p, =0.2831b./in.’, p, =151b./ft.’?

(g) Which design will weigh less?

A designer must design a rectangular plate cover over an opening measuring 9
feet by 3 feet. The maximum design load uniform pressure is 10 psi. If the steel
faced sandwich of Table 15.2 is use and assume /4, = 207, what will the panel

weight if all four edges are:

(a) Simply supported?

(b) Clamped?

You may use Tables 3.1 and 3.4.
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15.9. Consider a mid-plane asymmetric sandwich panel, wherein the two faces differ in
thickness and stiffness quantities as shown below

Material 3 tf 3

0

N
T,

¢ Material 2

Material 1

Assume 7, << h,_, that the core material contributes nothing to the stiffnesses

discussed here, and that both faces are specially orthotropic.
Determine the 4,, B, and D, stiffness analogous to (15.6) and (15.7) in terms of

the material properties and sandwich geometries shown above.

Table 15.1. Quasi-Isotropic Composite Properties.

Material Conf . v, E P O
ateria onfiguration %) (10° psi) (Ib/in*) (10° psi)
Clepoxy Cross Ply 58 12.04 0.0555 55.1
B/epoxy Cross Ply 60 15.37 0.0721 55.1
SiC/T, 6Al-4V Woven 35 27.0 0.1492 245
2024-T3 Al 10.88 0.0973 50.0
Ti 16.5 0.160 128.0
E glass/epoxy Cross Ply 57 3.12 0.0710 82.0
Welton Steel 3045 0.283 126.9




Table 15.2. Unidirectional Composite Properties.
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Material Elastic Moduli Ultimate Strength Density
Axial | Transverse | Shear z::;l:l Fl;,r::::' Shear
E, E, G, o, oy T2
Stlrilng;th 20 1.0 0.65 220 6 14 0.057
CRiapoxy | (138 | (69) @5y | as17y | @n ©7 | (1.57)
mljélgllfus 32 1.0 0.7 175 5 10 0.058
GRiepoxy | 22D | (69) “.8) | (1206) | (34 69) | (1.60)
[ﬁlgzlﬁfsh 44 1.0 0.95 110 4 7 0.061
Shepory | B9 | 69 6.6) | (758) | (28 48) | (1.68)
Kevlar 12.5 0.8 0.3 220 4 6 0.050
49/epoxy | (86) (5.5) el | as1n | @8 @) | (1.38)
S glass/ 8 1.0 0.5 260 6 10 0.073
€poxy ? . .
D (55) (14)? (3.4 (1793) (41) (69) (2.00)
Stecl 30 30 11.5 60 60 35 0.284
Qo07) | (207) 79 | @14 | @14 | 4n | (7.83)
Aluminum 10.5 10.5 3.8 42 42 28 0.098
6061-T6 | (72) (12) 26) | 290 | 90) | (193) | .70

*Moduli in Msi (GPa); Stress in Ksi (MPa); Density in lb/in3 (g/cm3)



CHAPTER 16

ELASTIC INSTABILITY (BUCKLING) OF SANDWICH PLATES

16.1 General Considerations
As stated previously, structures usually fail in one of four ways:

overstressing (strength critical structure)
over deflection (stiffness critical structure)
resonant vibration

buckling.

For many cases, because sandwich structures (compared to monocoque structures)
minimize stresses, are extremely stiff, and have high fundamental natural vibration
frequencies, care must be taken to insure that unanticipated buckling does not undermine
a structural design.

In monocoque structures for given plate dimensions, material, boundary
conditions, and a given load type (in-plane compression, in-plane shear), only one
buckling load will result in actual buckling. This is the lowest eigenvalue of a countable
infinity of such eigenvalues. All other eigenvalues exist mathematically, but only the
lowest value has physical significance. This differs from natural frequencies in which
several eigenvalues can be very important.

For the simplest cases, for columns and isotropic plates, an introduction was given
in Chapter 6. While philosophically the simple examples cover the topic of buckling;
more complex structures can have several types of buckling instabilities, any one of
which can destroy the structure.

Historically, there have been four major textbooks dealing primarily with elastic
stability or buckling. These are authored by Timoshenko and Gere [6.1], Bleich [6.2],
Brush and Almroth [12.1] and Simitses [12.2]. A new text by Jones [6.4] will
supplement these four. Although these texts deal primarily with structures other than
sandwich, the solutions can be applied by using the appropriate flexural stiffnesses.

16.2 The Overall Buckling of an Orthotropic Sandwich Plate Subjected to In-Plane
Loads - Classical Theory

From previous developments, it was seen that for a plate there are five equations
associated with the in-plane stress resultants N _,N and N, and the in-plane
displacements they cause, namely u,andv,. For the isotropic rectangular plate, see

(2.50)-(2.54), and the isotropic circular plate, see (5.15), (5.16) and (5.25) through (5.27).
For a composite material plate, the in-plane equilibrium equations are given by Equations
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(11.6) and (11.7). From Equation (10.66), for the case of mid-plane symmetry (B, =0)

and no thermal or moisture considerations it is seen that the in-plane constitutive
equations are:

N, = A&l + A,e) +24,¢), (16.1)
N, = A& + Azzgf, +24y8,, (16.2)
N, = Agel + Aye) +245€) . (16.3)

For this case, all of the equations of Section 12.2 apply, simply by using the
sandwich stiffness properties for the D, that are found in Section 15.1.

Likewise, for the mid-plane symmetric panel, the six governing equations
involving M, M ,M .0 QO andw, are given by Equations (11.9), (11.11), (11.12),

(11.17), (11.18), and (11.19), the latter three neglecting the D,, and D,, terms. One can

see there is no coupling between in-plane and lateral action for the plate with mid-plane
symmetry. Yet it is well knows and often observed that in-plane loads do cause lateral
deflections through buckling, which is usually disastrous.

The answer to the paradox is that in the above discussion only linear elasticity
theory is considered, while the physical event of buckling is a non-linear problem. For
brevity, the development of the non-linear theory will not be included herein because it is
included in so many other texts, such as those cited in Section 16.1.

The results of including the terms to predict the advent or inception of buckling
for the beam and plate are, modifying Equation (11.26), shown previously as (12.4),

o'w o'w o'w o*w

D —+2D,——+D,——= p(x,y)+ N

1 3 6)(26)/2 2 ay4 p( y) x axz
o*w o*w

+ WV,
Toxoy oy’

(16.4)
+2N

where clearly there is a coupling between the in-plane loads and the lateral deflection.
For overall buckling of a sandwich panel the D,, D, and D, flexural stiffnesses are given

by (15.1) through (15.8)

It should be noted that the buckling loads, like the natural frequencies, are
independent of the lateral loads, which will be disregarded in what follows. However, in
actual structural analysis, the effect of lateral loads, in combination with the in-plane
loads could cause overstressing and failure before the in-plane buckling load is reached.
However, the buckling load is still independent of the type or magnitude of the lateral
load, as are the natural frequencies. Incidentally, common sense dictates that if one is
designing a structure to withstand compressive loads, with the possibility of buckling
being the failure mode, one had better design the structure to be mid-plane symmetric, so
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that B, = 0. Otherwise the bending-stretching coupling would likely cause overstressing
before the buckling load is reached.

Looking now at (16.4) for the buckling of the composite plate under an in-plane
compressive load N _ only, and ignoring p(x, y) Equation (16.4) becomes:

~d ~d PE 52
[RETAY) R ) R VL) (16.5)
Ox Ox“0y oy C Ox

Again, one may assume the buckling mode for a sandwich plate to be that of the Navier
solution for the case of the plate simply supported on all four edges:

w(x,y) = Z z A, sin% sin % (16.6)

m=1n=1

Substituting (16.6) into (16.5) it is seen that the equation is satisfied only when
N _ has certain values, namely the critical values, N

xer?

N,. =—L‘Z’Z{Dl(ﬂ] +2D3(ﬂ] [ﬁ] +D2(£J W (16.7)
m a a b b ]

Again several things are clear: Equation (16.5) is a homogeneous equation, so this is an
eigenvalue problem and therefore one cannot determine the value of 4, ; and again only

mn >

the lowest value of N is of any importance. However, it is not clear which value of m

and » results in the lowest critical buckling load. All values of n appear in the numerator
for this case of all edges being simply supported, so n = 1 is the necessary value. But m
appears several places, and depending upon the value of the flexural stiffnesses
D,, D, and D;, and the length to width ratio, i.e., the aspect ratio, of the plate, a/b, it is

not clear which value of m will provide the lowest value of N, . However, for a given

plate this is easily determined computationally.

What about the buckling loads of composite material sandwich plates with
boundary conditions other than simply supported? It is seen that all combinations of
beam vibrational mode shapes are applicable for plates with various boundary conditions.
These have been developed by Warburton [8.3] and all derivatives and integrals of those
functions catalogued conveniently by Young and Felgar [3.1, 3.2] for easy use. Likewise
they can be used instead of Equation (16.6) to obtain solutions of Equation (16.5) to
determine the critical buckling load per unit width, N __ .

Using classical plate theory the treatment of overall buckling for sandwich plates
with other boundary conditions is given in Section 16.5.2 below.

The buckling loads calculated in this Section do not include transverse shear
deformation effects, and are therefore only approximate — but they are useful for
preliminary design, because of their relative simplicity. If transverse shear deformation
were included, the buckling loads are lower than those calculated with classical theory.
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Therefore the buckling loads calculated, neglecting transverse shear deformation, are not
conservative. Transverse shear deformation effects will now be investigated.

16.3 The Buckling of Honeycomb Core Sandwich Panels Subjected to In-Plane
Compressive Loads

In sandwich plates and panels the core is usually either a honeycomb, a foam or
solid core, a truss core or web core. The honeycomb core is treated in this Section.

Consider a rectangular sandwich panel of length a (the load direction), width b,
face thickness t,, core depth #,, core cell wall thickness ¢, and diameter d of a circle

inscribed in the cell as shown in Figures 16.1 and 16.2 for the hexagonal-cell honeycomb
core. A sketch analogous to Figure 16.2 could also be drawn for the square-cell
honeycomb. It is assumed for this study that the core is composed of an isotropic
material of shear modulus G, and modulus of elasticity E_. If the core is orthotropic,
the properties normal to the plane of the panel for £, and G, are used. Consider the
faces to be composed of identical composite materials that are balanced about their own
planes of symmetry with no unwanted couplings, i.e., B; =0 and all ( ), and ( ),
terms equal to zero. It is assume that the in-plane load in the x-direction is uniform and
has the value of N_ (load/unit width) in compression, so N, =—N_ for convenience.

4 ¥+
—_— e
NX > .‘_,nl
- «———
> X+
- . -
(a) Planview
L
Face te
IRt SN
Core ‘ he
Face te
3
(b) Sideview

Figure 16.1. Sandwich panel with in-plane compressive load in the x-direction. (Reprinted from
References [1.7] and [10.1].)
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Honeycomb Core in Planview

Figure 16.2. Honeycomb core in plan view. (Reprinted from References [1.7] and [10.1].)

16.3.1 Face Stresses

If it is assumed that the in-plane loads are resisted only by the faces, not the
honeycomb core. Therefore, the applied compressive face stress in the load direction is
written as

o, =N/, (16.8)

For an applied load per unit width, N _, the face stress o is, of course, restricted to some

prescribed maximum value to prevent overstressing.

The honeycomb sandwich panel shown in Figure 16.1 can be overstressed
according to Equation (16.8), but can also buckle in one of several modes, any one of
which will render the panel to be useless. These modes of buckling are overall
instability, core shear instability, face wrinkling, and face dimpling (monocell buckling).
These are discussed in turn.

16.3.2 Overall Instability

The equation to use for the compressive face stress for overall buckling of the
subject panel that includes the effects of transverse shear deformation is given by [16.1]
as follows, where the bar over the modulus indicates that for stresses above the
proportional limit, a plasticity reduction factor should be used.
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2 2

V4 — h
0,=——EsE, 5K, forV_<kBr 16.9
cr 4(17‘/ v ) 5 Vi bz 11 ( )

Xy yx

In this equation, the coefficient K is given by

C v,
B,C, +2B,C, +B3+A(’+VXJ

1 4

K= (16.10)
Vy C, V),VXA
1+(B,C, +B,C))—+|—+B,C, V_+
C4 Bl C4
where
2 C3
A=CC,=B,C + BiCy| BC, +2B,C, +% (16.11)
1
B= P p PVt oy - Do (16.12)
| San s by E——F7—==4b;+b)V,, b3= .
D, [D.D, D.D,
> [D.D, > [D.D,
v, =Ny T ! (16.13)
b U, TR U,
U.=G h, Uyz = Gc'yhc (16.14)

In Equation (16.13) the V, quantities are seen to be particular ratios of the
sandwich-panel flexural stiffness D, to the transverse shear stiffness U, hence the V'
quantities are called the transverse shear flexibility parameters. The D quantities relate to

face properties while the U quantities are core properties. The effective core moduli, G .,
and G/, are defined in Equation (16.27) and (16.28).

The constants C, through C, in Equations (16.10) and (16.11) are associated

with the boundary conditions and are listed as follows where # is the number of buckling
waves in the direction of the compressive loading.

(1) All edges simply supported (Note that this gives results identical to Equation (16.7))

2 2712
:;7’ c, -1, ¢, =" (16.15)

2
a

C =cC,

(2) Loaded edges simply supported, other edges clamped
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16 o’ 4 n’b? 4 a°
€ :?nzbz’ CZ:E’ €= a®’ C4:§nzb2 (16.16)
oaded edges clamped, other edges simply supporte
(3) Loaded ed 1 d, other ed impl d
2
C]:C4:%% forn=1
1 a
| = 4:7(;12-}-])? forn>2 (16.17)
C. -1 C _(n2+6n2+1)b2
e n+1) a’
(4) All edges clamped
2
c1=4c4=4b"2 forn=1
2
cl=4c4=3(12761)% forn>2 (16.18)
n’ +
c 4 . _(n*+6n’+1) b*
A n*+1) a’

Obviously, if the critical face stress given by Equation (16.9) is higher than the allowable
compressive stress of the face material, the panel will be overstressed before there is an
overall buckling problem.

16.3.3 Core Shear Instability

Referring to the expressions for overall stability, if the value of V is increased
through increasing the panel bending stiffnesses (D, and D, ) or decreasing the core
transverse shear stiffness (U ), the value of K in Equation (16.10) is decreased. There
exists a value of IV that causes K to equal 1/V . This value depends both on the
boundary conditions and the effective shear moduli of the core (G, G), that are
defined in Equations (16.27) and (16.28). At this particular value of K =1/V_, K is
independent of the length-to-width ratio a/b and n is infinite. For values of V, greater
than this value, K =1/V_, which is true for a great number of practical sandwich panels
because they have high values of V.. Under these conditions, the critical stress can be
written as follows:



312

G.h
o =

cr

e, forV, >k Br (16.19)
I,
f

This value of critical stress is called the core-shear instability stress and cannot be
exceeded for any given sandwich construction. It is seen that Equation (16.19) is
independent of the panel length, width, and boundary conditions. Core shear instability is
illustrated in Figure 16.3.

Figure 16.3. Core shear instability. (Reprinted from References [1.7] and [10.1].)

The particular value of V, at which K =1/V_, is the value for which the critical

stresses for overall buckling and core shear instability are equal. This value is given in
Equation (16.20) and is dependent on the boundary conditions and the effective shear
moduli of the core, G/ and G. , defined in Equations (16.27) and (16.28). The values

for the boundary condition factors k, are listed in Table 16.1.

V.=kBr wherehere r=G/ /G, (16.20)

More specifically this can be written as follows, where E refers to a modulus multiplied
by a suitable plasticity reduction factor, when stresses exceed the proportional limit.
Otherwise, the modulus of elasticity F is used.

2 t,hd Ey
20-v, v, )k, b1, G,

Xy oyx

kr (16.21)

c

Table 16.1. Boundary Condition Factors k; for Various Edge Conditions.

Boundary Condition k,
All edges simply supported 1
Loaded edges simply supported, other edges clamped Y
Loaded edges clamped, other edges simply supported 1

All edges clamped Ya
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16.3.4 Face Wrinkling Instability

Wrinkling occurs across many cells of the honeycomb core and, under the loading
conditions described here, extends across the width of the plate, but is localized in the
direction of the applied load; that is, the wrinkle is essentially a short wavelength buckle,
as shown in Figure 16.4. Heath [16.2] derived an expression for this mode of instability
for the case of isotropic materials as

.= %;—f (ffé)}z (16.22)
e —

Ny — —N,
~—

Figure 16.4. Face wrinkling instability. (Reprinted from References [1.7] and [10.1].)

Heath defined E. incorrectly in his paper, but Hemp [16.3] clarified the point in an

earlier paper. The face-wrinkling stability equation for isotropic faces given by Equation
(16.22) can be modified for anisotropic materials to be:

1
¢, EJEE, |2
_| 25 BN TRl (16.23)

o, =|=—-> .
3h A-vyvy) |

An earlier equation for face wrinkling was developed by Hoff and Mautner [16.4],
and given by

o, =c(E E E )" (16.24)

o exexz

for a honeycomb sandwich panel where E/ and G/ _ are given by Equations (16.27) and

(16.28), and c is a constant usually 0.5, 0.6, or 0.65. Note that here the critical stress
depends on material properties only. It is not clear whether one should use Equation
(16.23) or (16.24). The analyst/designer can be conservative by using the equation which
gives the lowest critical stress for the particular case being studied.

16.3.5 Monocell Buckling or Face Dimpling
In honeycomb core sandwiches, a fourth type of instability occurs because the

faces over one cell can buckle as a small plate supported by the cell walls. Methods of
analysis developed at the Forest Products Laboratory used an empirical equation having
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the form of the plate-buckling equation with the numerical coefficient determined by
empirical means. The result for an isotropic face material is as follows, where the
subscript 7 denotes the tangent modulus.

2
o - 2E,, 1
“a-vHld

For anisotropic faces, the expression can be written as

2E, E )" (1Y
o, :7; _’; ﬁ)) [7’]] (16.25)

v’ yx

16.3.6 Core Properties

Mechanical properties of honeycomb core used in the previous equations are
called “effective” and are designated with a prime, because they are properties associated
with the core acting as a homogeneous material having these “effective” properties. They
are functions of the core material’s properties, p, ., E,,G,,andG,,, the core wall

thickness ¢,, and the cell size d. To truly optimize the structure for minimum weight, it

x?

is advantageous to relate the effective properties back to fundamental geometry and
material properties. For foam or solid core sandwich panels there is no need for effective
properties and the actual mechanical properties are used for p,, E,,G,,,and G, .

For hexagonal-cell honeycomb core having some double walls as shown in Figure
16.2, the properties were developed by Kaechele [16.5], and shown below. These
effective core properties can be related to the geometry and actual material properties as
follows, where p_, E_,and G, are the weight density, the shear modulus and the modulus

ox?

of elasticity of the core material itself:

pL =kt Id)p, (16.26)
G' =kt 1d)G, (16.27)
G, = k(1.1 d)G, (16.28)
E! =k, (t,/d)E (16.29)

It is seen from Equations (16.27) and (16.28) that here

r=G. /G =k, /k, (16.30)
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For the hexagonal cell construction of Figure 16.2 as well as other types of
honeycomb core, the values of k,,k,,andk, are given in Table 16.2 according to
Kaechele [16.5] and MIL HDK-23 [16.1]. For other honeycomb configurations, the
values of these constants can be easily derived using the methods of Kaechele [16.5]. A

fairly inclusive listing of commercially available honeycomb core properties are given in
Appendix 1 of [10.1].

Table 16.2. Values of k,, ky and k, for Various Honeycomb Constructions.

Type of Construction k, k, ky

Hexagonal (Kaechele) 8/3 5/3 1
Hexagonal (MIL HDBK-23) 8/3 4/3 8/15

Square cell (Kaechele) 2 1 1
Square cell (MIL HDBK-23) 2 1 1

16.3.7 Plasticity Effects

The extension of elastic buckling theory to account for the buckling of structures
at stresses above the proportional limit of the material has been widely studied mostly for
ductile metallic materials. Many investigations have used the elastic equations, wherein
Young’s modulus £ has been multiplied by a plasticity reduction factor 7. However,

there is considerable difference of opinion about a correct form for 77. These expressions

range in complexity and it is not at all clear which expression has more merit. For
structural optimization, if the compressive stress-strain curve of the face material has a
proportional limit, then for stresses above the proportional limit, all values of £, can be

replaced by E 5 where
Ex=nE, (16.31)

One often uses a plasticity reduction factor in which Ep= (Eq E /X)” * where the

subscript 7 denotes the tangent modulus at that face stress. This will require an iteration
to match face stress with tangent modulus. It is unlikely that for the in-plane
compression in the x-direction, the stresses in the y-direction will cause deviation from
the elastic value £, but this could also be modified. For many composite materials

usually the moduli are linear to failure, so this subsection can be ignored.
16.3.8 Weight Relationship

To obtain a weight per unit area of the honeycomb sandwich structure, the
following may be used:

W=2,p,+plh +W, (16.32)
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The weight of the adhesive or other joining material, IV, , cannot be easily related
to the variables discussed earlier and is dependent upon the material, method of joining,
fabrication techniques, and skill and temperament of the personnel. Since in many cases
this is a small fraction of the weight and, because of the factors involved, it will not be
specified further and need not be accounted for in the comparisons to select the optimum
geometry and materials. However, care should be used to include it when comparing
structures employing no adhesive or with other types of construction.

16.3.9 Analysis and Design Methods

For a honeycomb sandwich panel (such as that shown in Figure 16.1) to withstand
an in-plane compressive load N _, in force per unit width, the materials and component
sizes must be sufficient to insure that overstressing [Equation (16.8)], overall buckling
[Equation (16.9)], core shear instability [Equation (16.19)], face wrinkling [Equation
(16.23) or (16.24)], and face dimpling [Equation (16.25)] will not occur. If any of the
first four occur the panel is useless. If face dimpling occurs, it may not cause structural
failure, but peeling of any coating such as paint could occur, the surfaces may be
“unsightly,” a boundary layer could be tripped from laminar to turbulent flow, or
permanent core crushing in that vicinity may occur. These should be avoided.

16.4 The Buckling of Solid-Core or Foam-Core Sandwich Panels Subjected to In-
Plane Compressive Loads

16.4.1 Face Stresses

For foam core sandwich panels and many other solid core panels it can be
assumed that all in-plane loads, and bending loads as well, are resisted by the faces only.
Therefore, in this case Equation (16.8) is used to determine the face stresses in terms of
the applied load per unit width, N .

16.4.2 Overall Buckling
The equation for the overall buckling of an anisotropic composite sandwich panel

with a solid core subjected to an in-plane compressive load is given by Equations (16.9)
through (16.14). However, in this case the actual mechanical properties of the core, G,

and G, are used in Equation (16.14).

16.4.3 Core Shear Instability

Core shear crimping or core shear instability will occur at a face stress lower than
that of overall panel buckling when

V.2kBr (16.33)
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The critical stress value on core shear instability is given by

_ ch hc

o 16.34
Y (16.34)

S

It is seen that overall panel buckling and core shear instability will occur at the
same face stress value when V_ =k B,r, or more specifically when

2 EX h(‘t
z LS (16.35)
20-v v, )G, b

xy”opx

Thus Equations (16.9) and (16.34) completely describe the conditions of the
simultaneous overall buckling of the panel and core shear instability without the
complexities of using Equations (16.10) through (16.18) with the lengthy determination
of K.

16.4.4 Face Wrinkling

In addition to overall panel buckling and core shear instability, a short wavelength
buckling can occur if the faces are thin and can be described by

1
172 |5
|24, E(ELE)) iB

0o = ., (1636)
3h, (- vxyvyx) ]
Of course the Hoff-Mautner equation is still used also
o, =ClELE.G..]" (16.37)

where the constant C is 0.5, 0.6 or 0.65 by various users. Again, it is seen that with this
equation the critical strain is dependent on material properties only. Plantema [15.8] uses
0.82 for the constant C in Equation (16.35), and Dreher [16.6] says that this corresponds
well with the experimental data. He states emphatically that C = 0.5 does not correspond
with his test results.

16.4.5 Weight Relationship
The weight of the solid-core sandwich panel per unit planform area, w is given by

W=2p,+ph +W, (16.38)

where p, are the weight density of the materials involved and W, is the non-analytic
weight per unit planform area of the adhesive bonding the face to the core.
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16.4.6 Analysis and Design Methods

For a foam- or solid-core sandwich panel to withstand an in-plane compressive
load N_, in force per unit width, the materials and components thicknesses must be

sufficient to insure that overstressing [Equation (16.8)], overall buckling [Equation
(16.9)], core shear instability [Equation (16.34)], and face wrinkling [Equations (16.36)
or {16.37)] will not occur, because any one of the above will cause panel failure. With
the satisfactory design, the panel weight is determined from Equation (16.38). As
discussed previously, foam cores available today comprise an almost continuous value of
shear modulus G and density o, usually a linear relationship between them.

16.5 Buckling of a Truss-Core Sandwich Panel Subjected to Uniaxial Compression

Another type of sandwich construction for panels subjected to uniaxial
compression involves a corrugated core, sometimes referred to as single-truss core.
Several promising and clever manufacturing methods have been devised to make unique
use of fiber-reinforced polymer matrix composites for this type of construction. At least
one of these involves weaving the filaments of the face material and core material
together at the junctions, thus increasing the structural integrity of the joint and avoiding
the joining problems associated with conventional construction.

The analysis methods developed herein are applicable to both metallic and
composite material construction and account for material orthotropy in both the face and
core. They are also applicable to panels at elevated or lowered temperature, under steady
state and nearly uniform temperatures. Only the stress-strain curve is necessary for each
temperature under consideration.

Consider the flat corrugated-core (truss-core) sandwich panel cross-section
idealized in Figure 16.5 for the panel shown in Figure 16.1(a). For a given material
system there are four geometric parameters to consider; namely the core depth, /_, the

web thickness, ¢, , the face thickness, ¢ I and the angle the web makes with a line normal
to the faces, 4.
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Triangulated Core Sandwich Panel

A |t gPToM" 2h. TAN 8

BAL

Figure 16.5. Cross-section of corrugated-core sandwich panel. (Reprinted from References [10.1], [16.12]
and [16.13].)

This panel will fail if any of the following five events occur: overstressing of the
face, overstressing of the core, overall panel instability, local face buckling, or web
buckling. It can be shown that face wrinkling, which can occur in honeycomb sandwich
construction will not occur in this type of construction, because it can be shown that local
face buckling and web buckling will invariably occur at lower values of the applied load.
Likewise, core shear instability, in the sense of shear crimping in honeycomb sandwich
construction cannot occur for the same reason. Hence, there are three modes of
instability and four geometric parameters.

Unlike honeycomb and solid- or foam-core sandwich construction, with a truss-
core sandwich, it is intended that the core will carry or resist a portion of the in-plane
compressive load. Thus, it is necessary to define some elastic and geometric quantities
before proceeding.

16.5.1 Elastic and Geometric Constants
These are determined from those given in more general form by Libove and
Hubka [16.7]. The core area per unit width and the area moment of inertia of the core per

unit width are given by

t

Ao =—=< 16.39
sin® ( )
1.2
I. =—"‘}.’L‘ _ Ak, (16.40)
12sin@ 12

The extensional stiffness of the plate per unit width in the x-direction, 4,,, is
given by the following for isotropic materials,
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Ay =E A +2E 1, (16.41)

where E, and E, are the compressive moduli of elasticity of the core and face material,

respectively. Therefore, Equation (16.41) is A4,, for the truss-core panel in the language
of composite theory.

The transverse shear stiffness per unit width, in the x-direction and the y-direction,
respectively, are found to be, in the notation of [16.7]

G,t, cosO
= g (16.42)
Et .
) = a < “2) cos’@siné (16.43)
) I

The latter expression agrees with that derived by Anderson [16.8]. Thus, Equations
(16.42) and (16.43) are Ay and A4,, for the truss-core panel [see Equation (10.71)].

Lastly, the moment of inertia per unit width of the faces, considered as
membranes, with respect to the sandwich middle surface, is seen to be, as before,

I,=-"L= (16.44)

16.5.2 Overall Instability

The best expression describing the overall instability of a corrugated-core
sandwich panel composed of isotropic materials under uniaxial compressive loads is
derived by Seide [16.9] NACA TN2679 (which is used in ANC-23 in slightly modified
form [16.1])

7’E, 1K
e (16.45)

where K is the buckling coefficient derived and plotted in Figures 2 and 4 of Reference
[16.9]. Tt is given as a function of length to width ratio (a/b), for the cases of the
unloaded edges simply-supported and clamped, for various values of the transverse shear
flexibility parameter, V, defined as

22E .1 201 _ 4,2 ¢ (E
p B w1 L(h_cj E, (16.46)
b°D,  2cos’@sind\ s, \ b )\ E

¢

The buckling coefficient K for this type of construction has the same general
characteristics as that of a flat homogeneous plate; namely, that for a/b > 1, successive
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minima occur for increasing numbers of half sine waves in the loading direction, each
minimum having the same value of K. Hence, this minimum value can be taken as the
lower bound for all panels where @ > b. Therefore, Figure 3 and 5 of Reference [16.9]

can be used. These figures make use of the ratio E, 1./ E, 1 7, which for this

construction is given by

El. E t |1

E/If Ef t; 6sind

(16.47)

For example, for panels with the unloaded edges simply supported the buckling
coefficient K is given as follows:

- ] + E_‘jc
(I-v)+20+v,)p* E 1B

where here f=a/b.

There is no published analytical expression describing the overall instability of
corrugated-core sandwich panels utilizing orthotropic materials and for in-plane
compressive loads. However, it is not difficult to deduce the form by observing the
difference in the analogous expression for honeycomb-core sandwich panels for isotropic
and orthotropic materials.

From the isotropic expressions on pages 53, 82, an 96 of ANC-23 [16.1], it is seen
that when the overall instability expressions are written for orthotropic materials £, is

replaced by /E  E, when flexural properties are involved, while £, is replaced by £,

in extensional property expressions. It is therefore deduced that for corrugated-core
panels utilizing orthotropic materials using Equations (16.44), (16.45) and the above, the
critical load per unit width is

7 JEE 1, h K
YA et (16.48)

g 22

It is also hypothesized that Figures 3 and 5 of Reference [16.10] may be used to
determine K if the following expressions are used instead of Equations (16.46) and
(16.47):

A (16.49)
2cos’@sin’d \ 1, \ b m |
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El. +E.E, 1 1
ecf _ e (16.50)
E Ty ELE; I, 6sind

16.5.3 Face Plate Instability

From Figure 16.5 it is seen that each plate element of the face from A4 to B can
buckle due to the axial loading N . Since the support conditions at 4 and B, the

unloaded edges, are not known precisely, it is conservative to assume a simply support.
Since for almost all constructions the panel length a is greater than the distance 4B, the
buckling coefficient K is taken as four. Anderson [16.11] discusses the effect of more
complex buckling modes due to the interaction between face and core elements.
However, he shows that, at most, the buckling coefficient would be 4.21 for simultaneous
buckling of face and core elements. Hence the value of four appears very realistic as a
conservative value. The face plate instability equation can therefore be written in terms
of the quantities given in Figure 16.5 as

2 2
7Z'Ef o1

O = —_
“12(1-v}) A} tan®6

(16.51)

where o / is the critical stress in the face.

Utilizing the critical stress expression for an orthotropic plate given by
Timoshenko and Gere [6.1], and using the terminology of Figure 16.5, the expression can
be written as

ﬂzEO/.tfz.
o, = ; 5 (16.52)
12k (1-v v, ) tan’d

xyf
where

2E, = \JEE, +v E +2G (1-v v ) (i=cf) (16.53)
16.5.4 Web-Plate Instability

Similar to the above, the plate instability equation for a web element can be
written as

7*E 12

o, =—"2° < cos’0 16.54
-V B (1659

where o, is the critical stress in the web element. Likewise, for orthotropic composite

wer

materials
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g g2 g
O-wcr = ”2 fes cos (1655)
3h;A-v_ .v..)

xye” yxz
where E  is given by Equation (16.53).

16.5.5 Applied Load-Face Stress Relationship

By enforcing equal axial strains in the core and face to insure compatibility in the
overall construction, the following important relationship is easily derived for the stress
in the core material as a function of the face stresses,

o.=0,-2 (16.56)

Then since N, =27,0, and N, =04, the face stress can be written in terms of the
applied load per unit width N =N_ + N :

e ¢ E— (16.57)

For orthotropic composite materials the modulus values to use in Equations (16.56) and
(16.57) are those in the load direction.

Both Equations (16.51) and (16.52) hold only when stresses in the face and core
are both below the proportional limit of each material. Above the proportional limit an
iterative procedure would be needed to insure compatibility in determining an analogous
relation to Equation (16.56). If both core and face materials are the same o, =0, and

the procedures which follow hold above the proportional limit if a suitable plasticity
reduction factor is used with the modulus of elasticity.

16.5.6 Weight Relationship

From Figure 16.5 it is seen that
W=2p,t,+p,Ac+W, (16.58)

where p, and p, are the weight density of the core and face material, respectively, and
W and W, are the weight per unit planform area of the panel and the weight of the
adhesive or other material used to join face and core, respectively.
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16.5.7 Analysis and Design Methods

For the truss core panel subjected to a uniform in-plane compressive load per unit
width, N _, the face stress is given by Equation (16.57) and the core stress by Equation
(16.56). These stresses must be maintained at or below the allowable compressive stress
for the face material and core material, respectively. For orthotropic materials the
properties in the load direction should be used (the x-direction). It is also necessary that,
with a specific applied load N, neither overall buckling [Equations (16.45) or (16.48)]
nor face plate buckling [Equations (16.51) or (16.52)] nor web plate buckling [Equations
(16.54) or (16.55)] occur.

Once satisfied of the structural integrity, Equation (16.58) is used to determine the
panel weight.

Under in-plane compressive loads, because the core in truss-core sandwich panels
does resist a portion of the load, and because the construction has such a high flexural
stiffness, truss-core sandwich panels can efficiently resist higher loads than honeycomb
solid- or foam-core sandwich panels. As a secondary advantage, this type of construction
can be used as a heat exchanger or a liquid storage container.

16.6 Elastic Stability of a Web-Core Sandwich Panel Subjected to a Uniaxial
Compressive In-Plane Load

16.6.1 Introduction

Consider a flat web-core sandwich panel, generalized to include some arbitrary
angle &, as shown in Figure 16.6. The overall geometry and loading is given in Figure
16.1(a). There are five geometric variables; namely, the core depth #_, the web thickness

t,, the face thickness ¢ e the angle the web makes with a line normal to the faces &, and

ﬁ\:

PITCH

Figure 16.6. Generalized web-core sandwich panel. (Reprinted from References [1.7] and [10.1].)

the distance between web elements d I

/ \

-
e
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The panel is considered to fail if any of the following instabilities occur: overall
panel instability, local face buckling in the region from A4 to B, local face buckling in the
region B to C, and web element buckling (see Figure 16.6). In each case, the expression
used to mathematically describe the instabilities is the best available in the literature.
Overstressing can occur if the stresses in either the face or core exceed established
allowable stresses for the materials used. Hence, there are five geometric variables and
four modes of failure

16.6.2 Elastic and Geometric Constants

The elastic and geometric constants for the web-core construction can be
determined from those given in more general form by Libove and Hubka [16.7]. The
core area per unit width and the moment of inertia of the core about the centroidal axis
per unit width are given by

Ae=t.h /(d, +h, tand) cosd (16.59)
I=1h}/12cosO(d, +h, tand) = Ach? /12 (16.60)

The transverse shear stiffness of the core, per unit width in the x-direction (D, )

of an element of the sandwich panel cut by two y-z planes is seen to be negligible, due to
the lack of structural continuity of the web core. Hence, following Libove and Hubka
[16.7], as well as Seide [16.9].

D50 (16.61)

qy

Hence, the transverse shear flexibility parameter in the y-direction is given by
V,=n’E,I,;/b’D, — (16.62)

This is not to say that the construction as a whole has no transverse-shear stiffness, but
rather that the stiffness that does exist depends upon the faces to provide the continuity.
In fact Seide discusses this case and states that for the case of qu =o0 and qu =0, the

compressive buckling load is finite, rather than being equal to zero, and varies with plate

aspect ratio.
It should be noted that when 8 # 0 and d =0, the construction has a continuous

core and is called corrugated core or truss core, with the result that D, ;7 0, and there is

a specific value of @ for which the weight is a minimum. This construction is treated in
Section 16.5.

The area moment of inertia per unit width of the faces considered as membranes,
with respect to the sandwich middle surface, per unit width, is seen to be
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Iy =t,h}/2 (16.63)
16.6.3 Applied Load-Face Stress Relationship

For a given N _, the face stress and the core stress are given by Equations (16.56)
and (16.57) where A is given by Equation (16.59).

16.6.4 Overall Panel Instability
Just as in Section 16.5.2 earlier, the best expression applicable to the overall

instability of a web-core sandwich panel composed of isotropic materials under in-plane
compressive loads is derived by Seide [16.9] and given as follows:

N, =7"E,1,K/2b’ (16.64)
where K is the buckling coefficient derived and plotted in Figure 2 and 4 of Reference

[16.9] for various boundary conditions. For this construction, with simply supported
unloaded edges, K can be given explicitly as

P [gl/ﬂ)+ﬂ2] _+ El (16.65)
1-vZ+20+v B> E 15

where here f=a/b.

There is no published analytical expression describing the overall panel instability
of web-core sandwich panels utilizing orthotropic materials subjected to uniaxial
compressive loads. However, as in previous sections, it is not difficult to deduce the
form of the equation by observing the differences in the analogous expressions for
honeycomb-core sandwich panels for isotropic and orthotropic materials.

The remainder of this subsection is identical to Section 16.5.2, but is repeated
here for completeness. From the expressions in Reference [16.1], it is seen that when the
overall instability expressions are written for orthotropic materials £, is replaced by

(E.E,)"? when flexural properties are considered, while £, is replaced by E, when

extensional properties are involved. It is therefore deduced that for web-core panels
utilizing orthotropic materials, Equations (16.64) becomes, utilizing Equation (16.63),

N, =2*(E E,)" 1 2K 125’ (16.66)

It is also hypothesized that Figures 2 and 4 of Reference [16.10] may be extended
to find the buckling coefficient K for the orthotropic construction if E I./E I, is

determined by



327

ECF(‘ (Echcy)l/ztchc
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(16.67)

Likewise Equation (16.62) may be extended to orthotropic construction by
replacing

1- V;) by (I-v, v ) and (1+ v,) by (I+v,,)
16.6.5 Face Plate Instability

From Figure 16.6 it is seen that the face elements 4-B and C-D may each undergo
an elastic instability under in-plane compressive loads. Since the unloaded edge supports
are not known precisely, it is conservative to assume a simple support. Since for almost
all panels, the panel length a is much greater than the width, which is the distance 4 to B
or C to D, the buckling coefficient is taken as 4.

For the faces made of an orthotropic material the expression for the critical face
stress given by Timoshenko and Gere [6.1] is used. In terms of the quantities defined in
Figure 16.6 the critical stress can be written as follows for the region 4 to B:

IZ'ZEO/-th
o, = 5 (16.68)
3A-v, v, )d, +2h, tand)
and in the region B to C:
T’E, 12
o, = LA A (16.69)
30— VsV s )df

where £, (i =c¢, f') is given by Equation (16.53).
16.6.6 Web-Plate Instability

Similar to the above, the plate instability equation for a web element composed of
an orthotropic material can be written as

’E, t} cos’6
o, =LCOSZ (16.70)
3A-v v, ).

xyc " yxc

16.6.7 Applied Load-Face Stress Relationship

For the construction of Figure 16.6, it is seen that the load per unit width, N, is

related to the face and web stresses, o, and o, by the following relationship:
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N, =0, Ac+20,1, (16.71)

By equating the axial strains in the core and face to insure compatibility in the overall
construction, the following relationship is easily derived:

o,=0,E,|E, (16.72)

Thus from Equations (16.71), (16.72), and (16.59), the load per unit width N is related
to the face stress as follows:

N, =0 {[E.th |E,(d, +h, tand]+2,} (16.73)

extcele

Both Equations (16.72) and (16.73) hold only when stresses in the face and core
are below the proportional limit of each material, where Hooke’s Law applies. Above the
proportional limit of either material an iterative procedure would be needed to insure
compatibility in determining an analogous relationship to Equation (16.62), employing

some reduced moduli E.; and E ; involving a plasticity reduction factor.
If both core and face materials are the same, o, =0, then the same procedures

apply for stresses above the proportional limit if a suitable plasticity reduction factor is
used with the modulus of elasticity.

16.6.8 Weight Relation

From Figure 16.6, it is seen that
W=2p,t,+p A +W, (16.74)

where p, and p, are the weight densities of the core and face material, respectively, and
Wand W, are the panel weight per unit of planform area and the weight of the adhesive

or other material used to join face to core, respectively.
At the outset, independent of the material system, it is clear that from Equations
(16.68) and (16.69) that for minimum weight construction of the web-core sandwich

0=0° (16.75)

This is intuitively obvious. The result is that all other expressions used for optimization
are simplified, and the construction shown in Figure 16.6, with 8 = 0° now assumes the
familiar web-core configuration.
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16.6.9 Design and Analysis

For the web-core panels subjected to an in-plane compressive load per unit width,
N_, it is clear that components must be sized such that neither the faces nor the web
elements are overstressed [Equations (16.71) and (16.72)]. Also, overall buckling
[Equations (16.64) through (16.67)], face-element buckling [Equations (16.68) through
(16.69)], and web-plate buckling [Equation (16.70)] cannot be allowed. Finally the panel

weight can be determined from Equation (16.74).

16.7 Buckling of Honeycomb Core Sandwich Panels Subjected to In-Plane Shear
Loads

If the honeycomb core sandwich panel discussed in Section 16.3 and shown in
Figure 16.1 is subjected to in-plane shear loads, the following equations in this section
can be used for their design and analysis [10.1]. Again, the honeycomb sandwich panel
faces can be overstressed, or any of four buckling modes can occur.

16.7.1 Applied Load-Face Stress Relationship

Since the honeycomb core does not take any of the applied in-plane shear load,
the applied load face stress relationship is

Y= =g =0, (16.76)

16.7.2 Overall Panel Buckling

The overall panel buckling equation is
N, =—Y"""p (16.77)

where the following the terminology of the original source document the buckling
coefficient is L ; where, as seen earlier in the text, i.e., Equation (15.7),

cr

- 2 - 2
D. Exht, D - Epht,

20-v v,)  — 2(-v, v.)

xy 7 x xy 7 yx

and where, if the stresses are above the proportional limit, the following plasticity-
reduction factor may be used, where the subscript 7 refers to the tangent modulus.

E'/x = E.fXTEﬁY’ Efv = \/EfyTE./ﬁf
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L. is a buckling coefficient defined by curves in Reference [16.10]. Overall

cr

buckling will occur when

V. <kS

x

(16.78)

xi

where V_and k, have been defined previously in Section 16.3 and S, is defined as

{ihr +(1-r)°
2 |

S .= (16.79)
1-vl b1
—— (+7r7)| r+—
J
where v in this expression is defined as
v= VoV
and in this equation,
r=V, IV, =G /G =k /k, (16.80)

16.7.3 Core Shear Instability

Core shear instability occurs when V' > kS, and is described by

N, =h.G. G, (16.81)
16.7.4 Face Wrinkling
The appropriate equation for the critical face stress for face wrinkling is:

1
|2 ENEE, T

o, = _ (16.82)
’ 3h, 1-v ,v,)J

xy " yx
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16.7.5 Monocell Buckling

The equation to use to determine the critical face stress for monocell buckling is:

2JE, E. (1.}
= N AT ’”(f] (16.83)

o, -
T -vyv ) \d

where here, the authors of Equation (16.83) have employed the tangent modulus for the
use of this equation with face stresses that are above the material’s proportional limit.

16.7.6 Analysis and Design

Again, the weight equation is given by Equation (16.32). At this point any
honeycomb-core panel can be designed and analyzed for specified in-plane shear loads.
The faces must be sized that the allowable shear stress does not exceed Equation (16.76).
Also, the panel sizes must preclude overall buckling [Equations (16.77) through (16.80)],
core shear instability [Equation (16.81)], face wrinkling [Equation (16.82)], and face
dimpling [Equation (16.83)]. Obviously, if the face material is isotropic then £, = F .

16.8 Buckling of a Solid-Core or Foam-Sandwich Panel Subjected to In-Plane
Shear Loads

Again the expression for overall buckling is given by Equation (16.77). This can
occur when Equation (16.78) holds where for this case

> JERE h,t
y, =T NERES L <kS

R G 2l-vov)

ox xy” yx

(16.84)

x1

The core shear instability equation and the face-wrinkling equations are given by
Equations (16.81) and (16.82), but in this case effective core properties ( )’ must be

replaced by the actual core material properties for the solid-core or foam-core materials.
Thus, the applied load-face stress relations and the weight equation are

N, =20, (16.85)
W=2t,p,+p.h +W, (16.86)

any solid-core sandwich panel can now be analyzed and designed for in-plane shear
loads.
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16.9 Buckling of a Truss-Core Sandwich Panel Subjected to In-Plane Shear Loads

16.9.1 Introduction

Consider the flat corrugated-core sandwich panel cross section of Figure 16.5.
For a given material system, there are four geometric parameters with which to optimize;
namely the core depth /,, the web thickness 7,, the face thickness 7, and the angle the

web makes with a line normal to the faces #. The overall panel to be considered is
shown in planform in Figure 16.7. This panel of width b and length a is subjected to in-
plane shear loads per unit edge distance N, and N (Ib/in).

In addition to overstressing, the panel is considered to fail if any of the following
instabilities occur: overall instability, shear instability of the faces, and shear instability in
the web. Thus, there are three modes of instability, and four geometric variables. Since
panels in which the faces and cores utilize different orthotropic materials are the most
general materials system, it is convenient to derive all expressions for that situation.

Planform View of Panel

J b ]
\ \
\
\ M |a
\ M

b

x¥Y
Figure 16.7. Planform view of panel. (Reprinted from References [10.1] and [16.13].)
16.9.2 Overall Stability

The overall stability of a truss-core sandwich panel under in-plane shear loading
is give in ANC-23 [16.1] as well as other places as
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E3 E 1/4 2_
_M(h_] 7 (16.87)

a (- VaarV sy AN

where 77 is the critical shear stress in the face of the sandwich and where ; is a

buckling coefficient given by Vinson and Shore [16.12], related to the buckling
coefficient .

The coefficient j, found in [16.1], for orthotropic panels with simply-supported
edges whose axes of elastic symmetry are parallel to the edges is given in Figure 16.8. In
this figure, ; is plotted as a function of B, and 1/r where

’ JELE, "roa

16.9.3 Face-Plate Instability

g 2 2 Vo) ¥ By 1&(15_] (1638)

Looking at Figure 16.5, it is seen that each plate element of the faces from 4 to B
can buckle due to the applied shear loads N and N . Since the support condition of

the plate element along the edges depicted by A4 and B are not known precisely, it is
conservative to assume that they are simply-supported edges. For such a case, the
governing equation is given by Timoshenko and Gere [6.1] and others, for an orthotropic
plate whose axes of elastic symmetry are parallel to the edges, of thickness /# and width b,

_kEE) (h] (16.89)

z-cr 5 7
3A-v v I\b
In this expression £ is a coefficient plotted in Reference [6.1] (Figure 9.42) as a
function of two parameters: fand1/6. If one looks at the original figures, it is obvious
thatis S =1/r and 1/6 = B, , then Figure 9.42 of Reference [6.1] and Figure 16.8 herein
are identical. Hence, the k of Equation (16.89) is identical to j of Figure 16.8 under these
conditions.

From Figure 16.5 it is seen that for the face-plate instability Equation (16.89) can

be written as

EEE) 0

S
r, = 16.90
fe 12 (1-v,,v,,) h’ tan’0 (1690

wf
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Figure 16.8. Buckling coeftficient.

where k, = j is given by Figure 16.8, in which for this plate element B, is given by
Equation (16.88) and

2 E, )*
_ 2k tang[i] (16.91)
Eﬂ
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16.9.4 Web-Plate Instability

Likewise, the local plate elements of the triangulated core can become unstable
due to shear stresses induced into the core by the shearing of the faces. Again, the
conservative assumption is made here that the web elements are simply supported along
the edges 4 and C depicted in Figure 16.5.

Referring to Equation (16.90) and the geometry of Figure 16.5, it is seen that the
expression describing the web-plate instability can be written as

k EicExc e 12
T, —?%hﬁcosze (16.92)
Jer —v_ v X

xyc " yxc

where k, = j is found from Figure 16.8, where here

1
2GX 'c ] - VX CVV\'C + ECVVX )C h EV Z
B, = G0 Veti) H Eo Vs ! ¢ [—} (16.93)

and — =
E,

’ JELE., r acosf
16.9.5 Applied Load-Face Stress Relationship

Looking at the construction shown in Figure 16.7 along the edges at x = 0 or x =
a, the shear resultant N is primarily resisted by the two faces. Even if the core

elements are bonded or otherwise fastened to some edge fixture through which the shear
N . is transmitted, little load will be introduced into the core web plates directly. Hence,

»x

the applied load-face stress relationship is taken to be

Nyx N\,’V
s g (16.94)
2, 2,

This is not to imply that loads are not introduced into the core elements by the faces, as
shown below.

16.9.6 Core Stress-Face Stress Relationship

Consider the repeated unit of the triangulated-core construction shown in Figure
16.9. Due to the shearing deformations of the faces, shearing deformations occur in the
core since the web element and the face are bonded or otherwise connected to their
junction along db, gh, etc.
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b h b
¢
77 %
g d
Unit of Construction Face Element Core Element
Prior to Deformation Deformed (Planform) Deformed (Planlor.)

Figure 16.9. Triangulated-core construction. (Reprinted from Reference [16.13].)

The following relationships are valid in the elastic range, where ¢, , (i =c, f) are

the shearing strains and the other symbols are given in Figure 16.5, 16.6 and 16.9.

7. 5/" 6
=2 . =—1 = —, ¥, =—-cosf
7 1 xyi nyi }/ f hc tan 9 7 l’l(,
For compatibility of deformations, &, =&, hence
G.\'yc .
T, = G 7, sind (16.95)

wf
Note that 7, < 7, when the same materials are used for faces and core.
16.9.7 Weight Relationship
The weight relationship from Figure 16.5 is repeated here for completeness,

pCtC
siné

W=2pt,+p Ac+W, =2p,t, + +W, (16.96)
where p, and p, are the weight density of the face and core materials, respectively; W,

is the weight in Ib/in> of planform area of the adhesive or any other material used to join
face and core; W is the total weight in Ib/in”> of planform area of the entire panel; and
Ac=1,/sinf.
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16.10 Buckling of a Web-Core Sandwich Panel Subjected to In-Plane Shear Loads
16.10.1 Overall Buckling

For the web-core sandwich subjected to in-plane shear loads, it is seen that all the
applied load is taken by the face components, and none of the applied shear can be
induced into the web elements because they are perpendicular to the faces when 8 =0°
(see Figure 16.6).

The overall panel in-plane shear instability is given as follows, following Libove
and Hubka [16.7], and Vinson and Shore [16.12]

_(ELEDT (h_c

Cl-v_v b

’ 1
] j (16.97)
xf " oy 1+ 4

T,
- K, =0)_

m

where 7 ‘o is the critical shear stress in the face, and where for this construction
p T

K, = A (16.98)
B,C, +B,C, +V A
C3
K,V =0)=BC, +2B,C, +? (16.99)
1
2,2 C3
A=C/C,-B,C; +B,C,| B,C, +2B,C, +F (16.100)
1
B, =(E,E)" (16.101)
2G_ . (1-v_ v )+ E v .
Bz — Xl’/( xpf J’—Vrl)/z B xf (16102)
(ELE)
G (-v_ v .
By=—2 2w~ AV v) (16.103)

1/2
(ExEp)

C, through C, are given in Reference [16.1] for various boundary conditions and

constructions. For the web-core construction with in-plane shear loading (n» = 1) the
constants are
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All edges simply supported:
C,=C,=a’/b’, C,=1, C,=b"/d’ (16.104)

x =0, a simply supported; y =0, b clamped:

16 a* 4 y 4 q*
Cl :?b—z, CZ :E, C3 =b"/a . C4 :Eb—z (16105)
x =0, a clamped; y = 0, b simply supported:
34’ b’
C =C, :Zb—z, C, =1 C, :4? (16.106)
All edges clamped:
a’ 4 b’
C, :4C4:4b_2’ sz? C3:4? (16.107)

The coefficient j is obtained from Reference [6.1] for panels with simply
supported edges, given herein as Figures 16.8, where for this construction, B, is given by
Equation (16.102) above and

l/r:(b/a)(E/.X/E/y)”4 (16.108)
16.10.2 Face-Plate Buckling

From Figure 16.5, it is seen that each face plate can buckle between each web
element due to the applied shear loads N, and N, . Since the support conditions along

the face element at the web element are not known precisely, it is conservative to assume
simply-supported edges. For that case Timoshenko and Gere [6.1] provide a stability
equation for an orthotropic plate, which can be written as

3 1/4 2
ky (ExEL) 1

T, =—— — 16.109
Ser 3 (- VirV ) d; ( )

where it can be shown that k, = j of Figure 16.8, B, is given by Equation (16.102) and
1/ris
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1
d (E, )
lz—f[—f”] (16.110)

7 a Eﬁ,

Note that for 8 = 0°, when the panel is subjected to in-plane shear loads, the web plates

are unloaded. If 8= 0°, then some load is introduced into the web plates analogous to
the truss-core construction discussed earlier.

16.10.3 Applied Load-Face Stress Relationship

Looking at the construction of Figure 16.5, it is seen that in-plane shear resultants
N, and N, are resisted by the two faces. Hence, the applied load-face stress

relationship is seen to be, again,

Ny _ N (16.111)
— = — = z'/_ .
2t ; Zt‘,,

16.10.4 Weight Relationship

The weight of the web-core sandwich panel per unit planform area is given by

_ pctchc
W Wy =2pt,+ p Ae =2p0, + 5= (16.112)

P

where W, is the weight of the adhesive or other bonding material.

16.11 Other Considerations

Of course, the theory and analysis becomes far more complex if the sandwich
panel is curved, has dissimilar faces, initial imperfections, and dynamic loading.
Librescu, Hause, and Camarda [16.14] developed methods of analysis for giving accurate
predictions for static and dynamic behavior subjected to complex mechanical and thermal
loads in the pre-buckled and post-buckled ranges, and made comparisons with available
experimental data.

Smidt [16.15] also investigated curved sandwich panels because of their
applications to high-speed boats, containers, tanks and aircraft. His experimental
research was compared to finite element solutions he obtained. He comments that in
Equation (16.54) the coefficient can vary from 0.5 to 0.8.

Also, Laine and Rio [16.16] found that for foam-core sandwich panels typical of
those used in ship construction, loaded up to 60% of their elastic-buckling load, creep
(that they define as more than 10% influence on deformation) is significant. They
therefore advocate either the use of a factor of safety of 2 on the critical buckling load, or
introduce a creep law into the structural analysis.
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The vibration of sandwich plates and panels can be studied by the use of vibration

equations and solutions derived for isotropic and composite plates if the proper stiffness
quantities are used. Recommended reading includes papers by Meunier and Shenoi
[16.17-16.19].
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Problems

For the sandwich panel of Problem 15.1,
(a) What is the overall buckling load, N

withstand, using classical plate theory?
(b) What is the overall buckling load N__ (Ib/in) the plate can withstand

including transverse shear deformation effects?
(c) What is the critical load N for core-shear instability?

(d) What is the critical load N

If the sandwich panel of Problem 16.1 were clamped on all four edges, solve
16.1(b), (c) and (d) again for this case.

Consider a foam-core sandwich panel that is 16”"x16" in planform dimensions,
simply supported on all four edges. Each face is made of cross-ply Kevlar
49/epoxy composite whose properties are given in Table 17.1. The face stacking
sequence is [0°/90°/90°/0°], wherein each ply is 0.0055 inches thick. The

foam core has G, =15,000psi, and p, =2 1b/ft?, and is 3/4 inches thick.

(a) Determine each element of the [4], [B], and [D] stiffness matrices for the
sandwich.

(b) Could any of the perturbation techniques of Section 11.8 be used to solve
problems for this plate?

(Ib/in) the sandwich plate can

xcr

for face wrinkling?

Xer
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16.4.

16.5.

(c) If the sandwich plate is subjected to an in-plane compressive load in the x-
direction, what is the critical buckling load per unit edge distance, N, using
classical-plate theory?

(d) What is the mode of buckling?

(e) If transverse shear deformation effects are included, what is the overall critical
buckling load, N, ?

(f) What is the fundamental natural frequency in Hz, using classical plate theory?
Equation (13.4) can be used.

(g) What is the answer to (f) if transverse shear deformation effects are included?
Equation (13.15) can be used.

Consider a hexagonal-cell honeycomb core sandwich panel, simply supported on

all four edges, subjected to an in-plane compressive load, N  (Ib/in). The face

material is made of unidirectional T300/934 graphite epoxy, whose properties are
given in Table 17.1. The core is aluminum whose properties are E =10x10° psi,
and v =0.3. The dimensions of the panel are:

a=48 in. 1, =0.066 in. h, =0.50in.
b=30 in. 7, =0.001in. d=0.50 in.

(a) At what face stress will face dimpling occur?

(b) Would face dimpling ever occur in this panel under this load situation? Why?

(c) At what face stress will face wrinkling occur?

(d) For this panel, which will have the lower buckling stress, overall panel
buckling (i.e. ¥V <k B,r) or core-shear instability (i.e. V >k B,r)?

(e) At what face stress will core-shear instability occur?

(f) Of all modes of failure, how will this sandwich panel fail, when subjected to
an increasing in-plane compressive loading?

(g) Therefore what is the greatest in-plane compressive load N (Ib/in of width)
that this sandwich panel can withstand?

(h) What is the greatest in-plane compressive load, (pounds) that this sandwich
panel can withstand without failing?

(i) What is the total weight of the panel if the density of the faces is 0.055 Ib/in’
and the density of the aluminum is 0.100 Ib/in’?

Regarding Problem 16.4, consider a monocoque laminated panel of the same size

made of the unidirectional T300/934  graphite/epoxy, that is

2t, =2x0.066"=0.132" thick, simply supported on all four edges. Thus this

panel has the same face material, but no core.
(a) What in-plane buckling load per unit width, N _ can this monocoque panel

withstand before buckling?
(b) What is the face stress at that load?
(c) What is the panel weight per unit planform area?
(d) What thickness would be necessary to have the same buckling load N, as

the sandwich panel considered in Problem 16.4 above?
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(e) What would the monocoque panel weigh in d above? What is the comparison
of the weight of this panel to the sandwich panel of 16.4 above?

A designer is considering various alternatives in the design of a rectangular

sandwich panel measuring 60 inches by 30 inches in planform. The panel must

withstand an in-plane compressive load in the longer direction of N, =-600

Ib/in. Consider the foam core to weigh 15 Ib/in’, and A, = 25¢ Iz

(a) For a sandwich with aluminum faces (E=10x10"psi,v=0.3,
p=011b/in’, o
edges will require 20 1b of support structure; to clamp it on all four edges will
require 40 1b of support structure. For the plate to not be overstressed or
buckle, which design will result in less system weight?

(b) One alternative is to use magnesium faces (£ =6.5x10°psi, v=0.3,

p=0.0651b/in’, &

magnesium-faced system weigh less than the better aluminum-faced sandwich
system?
(c) What about steel faces (E=30x10°psi, v=03, p=02831Ib/in’,

o = 160,000 psi ); could a steel-faced sandwich result in weight savings?

1 =130,000psi). To simply support this panel or all four

al

1 = 130,000 psi). Would a simply supported or clamped

al



CHAPTER 17

STRUCTURAL OPTIMIZATION TO OBTAIN MINIMUM WEIGHT
SANDWICH PANELS

17.1 Introduction

It is sometimes sufficient to be able to design and analyze sandwich panels or any
other structure to insure its structural integrity. However, it is very desirable to be able to
design a sandwich panel that not only successfully resists the applied load but is also of
minimum weight. A design can proceed the search for the minimum weight solution by
trial and error through examining all of the possible combinations of materials and
thicknesses for each sandwich element. This can produce a minimum weight design for
(only) those options examined. However, even with excellent insight and intuition, this
random walk approach is time consuming, and is not guaranteed to provide the absolute
minimum weight panel.

Fortunately, more rational methods have been developed so that the absolute
minimum weight can be found analytically for honeycomb, solid, foam, truss-, and web-
core rectangular sandwich panels. The methods apply to panels which are subjected to
either an in-plane compressive load, N_, or to in-plane shear loads, N _. Each

Xy
optimization uses the best available equations (established through long use and given in
Chapter 16 earlier) to depict the various failure modes. When, and if, new and better
equations are formulated, they can be used to develop the same optimization procedures
as those presented here.

In each case, the age-old principle of the “weakest link in the chain” is applied.
The philosophy is that with any sandwich panel there are several failure modes, each
independent of the others, and any one of which will result in the panel’s failure. Each
failure mode is thus a “link” in the sandwich “chain” that resists the applied load, and
failure of any one “link” means failure of the whole “chain”. Logically, the most
efficient chain is one in which each link fails simultaneously. In the sandwich, each
“link” has an associated weight varying directly with its load carrying ability. Therefore,
the minimum weight panel (“chain”) is found by ensuring that the failure modes (“links™)
occur simultaneously. Conversely, one could say that if a particular mode of failure is
significantly greater or higher than the others, then the material associated with this
excess strength or buckling resistance could either be removed or could be reallocated to
bring all modes closer to equality. This extra material is truly “dead weight” (and cost)
as the overall panel will fail via some other mode before ever reaching the load
associated with the stronger mode of failure.

In performing the optimization, unique expressions are obtained for each
geometric variable of the minimum weight panel.  Additionally, a ‘“universal
relationship” is found which relates the applied load index to unique values of face and
core element stresses for given materials and boundary conditions. The methods
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developed are also applicable to panels at any steady state temperature if the material
properties are known at that temperature. In order to select the best material systems to
achieve minimum weight for a given load, material property figures of merit are also
found; these figures of merit are tabulated for many of the current material systems. The
optimization methods have been found to be extremely useful for the following reasons:
1. Unique values of each geometric variable are found in order to obtain the minimum
weight panel for a specified load index, material system, panel dimensions, and
boundary conditions.
2. Various material systems can be compared for best materials selection.
3. The best stacking sequence can be determined for laminated composite face
materials.
4. The optimum sandwich panel weight can be compared with other types of
sandwich, reinforced panel, or monocoque architectures.
5. Weight penalties for non-optimal construction can be determined rationally.

Much of the text of this chapter parallels that of Vinson [10.1, Chapter 10].

17.2 Minimum Weight Optimization of Honeycomb Core Sandwich Panels
Subjected to a Unidirectional Compressive Load [17.2]

For this type of panel and load, there can be four buckling failure modes: overall
buckling, Equations (16.9) through (16.18); core shear instability, Equation (16.19); face
wrinkling instability, Equations (16.22) and (16.23); and monocell buckling, Equation
(16.24). For the same construction there are four dependent variables for which the
analyst/designer can specify, namely, the face thickness, i, the core depth, #_, the core

cell size, d, and the core wall thickness, /.. In addition the applied load is related to the

face stress by (16.8). Therefore for any panel size, boundary conditions, and given face
and core material, unique values of each dependent variable are determined by the
philosophy expressed earlier through solving four equations with four unknowns. In
addition it is found that there exists one and only one face stress, o, for a given load

index (N, /b), that will result in minimum weight. If the face is stressed below or above

this optimum value the sandwich panel will weigh more.
It was shown that overall buckling and core shear instability occur at the same
stress under the conditions given by (16.20) and (16.21), that is,

V. =kBr.
Equations (16.21), (16.19), (16.23), (16.25) and (16.9) yield the universal

relationship for optimum honeycomb sandwich panels with orthotropic facings and core
under uniaxial compression,

1 1
k, V(N 23" 0-v v, (G 2 ol 171
m 7 = = E_ E3AgUA ( )
3M S T h
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It must be noted that, in (17.1), o,, the optimum face stress, must be limited to
some predetermined allowable stress (usually defined by the yield strength or ultimate
strength dividing by appropriate factors of safety for each such that the lower value of the
two is the allowable stress); hence, there is an upper bound on the load that can be carried
by the panel for a given material system. Therefore, when given a set of boundary
conditions (denoted by k,) and any type of honeycomb core construction (denoted by
ky,k;,and ), it is seen that the universal relationship relates the load index (N, /b) to
the optimum face stress where other items in the equations are material properties only.
It is independent of geometric variables and it establishes a unique optimum face
buckling stress, o, for each value of the load index.

Explicit values of the unique optimum geometric variables as functions of the
load index (N, /b) are determined to be, from [17.1] and [17.2],

1

3 ! 1
2Ve( ky 8 E N EQ (N s
o2 [ 0o | ] B (172)

c

3 3 I
g2 (AN (G} BBy (N, e (173)
72'3/4 kz o E(' E,i’c/l() b .
!
fop 1 E’W(N] (17.4)
2k2k3 G.E, Efr J b
1 1 1
g Bk VL var PG @V, /) (17.5)
;= p 2t | \E E3SEUS ’
3 c Jfx Vi

Through the use of the universal relationship given in (17.1), the explicit values of
the optimum geometric variables in terms of optimum critical stresses, o, are written as

1/2
Oy

172
E,

h. = b(zj(/w)m(l —vy ) (17.6)
. WY,
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It should be noted that should if a designer/analyst decides that face dimpling can
be ignored because the monocell buckling does not necessarily mean panel failure, then
equating the three remaining buckling stresses provides the same values for the core
depth, Equation (17.6), for the face thickness, Equation (17.9), and a ratio for (z./d)
equal to Equation (17.8) divided by (17.7). So either way the optimum minimum weight
panel remains the same.

The expressions for the weight per unit planform area for the optimum panel as a
function of optimum face stress, o,, and the load index (N, /b) can be found by

substituting the above expressions into (16.32). The results are expressed both in terms
of the optimum face stress and the applied load index for ease of use.

|
W = [3]@](,)’}5 2(1- ViV o )b

k, T
(17.10)
GCJZ o, { k, 0'0—|
X\ — T3/4 ~1/4 pf+pL_— +Wad
[EC EJEL? ky G |
il 1
- (3k3klrJ4 {2(1 v v 2
k T
? : (17.11)

1

G, ) b(N, /b)'"? k, o, |

X[E j EISRUS pf+p“’k72G70 AWy
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Several very important and interesting conclusions can be drawn from (17.11)
about the weight of optimized honeycomb sandwich panels under uniaxial compressive
loads. It is seen that in the selection of the materials to use in these optimum panels, the

core material with the highest ratio of G,/ p, will result in minimum weight. For the
selection of a facing material, the material that has the highest ratio of
E;X/ XE};S Ip;(I1=v, v, ) for the particular applied load index (N, /b) will result in the
panel of lowest weight. For optimized honeycomb sandwich panel construction, the ratio
of core weight to face weight is
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We _ P k00
pj k3 Gc .

= (17.12)

.

Therefore, it is obvious that, for a construction employing the same material in
both faces and honeycomb core, the great majority of the weight is in the faces. Also
note that the ratio of the core weight to face weight for an optimum panel is independent
of boundary conditions and the orthotropy factor ». In (17.11), it is seen that the panel
weight varies as the one-fourth power of the boundary condition factor k,. For a panel

that is simply supported on the unloaded edges, k, =1. In a panel that is clamped on the
unloaded edges, k, = % . Therefore, the ratio of the weight of an optimum panel simply

supported on the unloaded edges to the weight of an optimum panel clamped along the
unloaded edges is 1.0745. This is a slight over-simplification, but it can be concluded
that for a given load index an optimum honeycomb sandwich panel simply supported on
the unloaded edges weighs no more than 1.0745 times the weight of the optimum panel
with unloaded edges clamped.

This result has major implications. Foremost, it implies that, in almost all cases
of sandwich panels subjected to in-plane compression, the optimizations should be
conducted for simply supported boundary conditions on all edges. (Note that the
boundary conditions on the loaded edges have no effect for this loading). Also:

1. Such an optimization will result in the panel weighing at most 7.45% over an
optimum panel whose unloaded edges are clamped. Choosing a simply supported
panel is thus conservative as far as all dimensions selected, enabling the panel to
have additional structural integrity even when the edges are clamped or partially
clamped.

2. In actual construction, the auxiliary structural elements required to make the
unloaded edges clamped would possibly offset the potential saving of 7.45% in
weight resulting from the clamped boundary condition. In the final analysis, the
totally clamped panel assembly would weigh more.

3. It is virtually impossible to insure a truly clamped edge; hence, most panel edge
conditions are somewhere between the conditions of fully simply supported and
totally clamped. The choice of simple support conditions for the optimization is
therefore conservative as well as rational.

For a honeycomb core sandwich panel subjected to an in-plane compressive load,
independent of the boundary condition, the “best” face material is determined from
(17.11) to be

3/8 1/8
ECE,

FM=——"—+.
p/ (1 - nyvyx)

(17.13)

It is interesting to use this Factor of Merit (FM) to some of the material systems
currently available. The values in Table 17.1 are for 70 °F, and because the Poisson’s
ratios are rarely given tables of mechanical properties for the new materials, it is assumed
below that (1—v_v )~1. It is seen clearly that in this application composite materials

Xy oyx
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are better than any all-metallic construction. It is also clear that graphite/epoxy and
boron/aluminum composites clearly result in the minimum weight construction. Even
boron/epoxy is quite competitive.

Table 17.1. Face Material Comparison, Based on Factor of Merit for an Optimized Honeycomb Core
Sandwich Panel Subjected to an In-Plane Uniaxial Compressive Load.

. . ’ E E p O
Material Configuration * v .3 . FM® Ref.

(%) (msi) (msi) (b/in%) ksi®
T300/934 Unidir. 60 23.69 1.7 0.0555 105 63.09 1.7
Cl/epoxy Cross-ply 58 12.04 12.04 0.0555 55.1(T) 6250 17.2
T300/5208 Unidir. 72 222 1.58 0.0555 110 61.01 1.7
T300/5208 Unidir. 60 219 1.53 0.0555 164 60.46 1.7
B/2024A1 -- 49 3393 22.04 0.0916 220(T) 60.24 17.2
B/6061A1 -- 49 3379 22.04 0.0916 5133  60.14 172
B(B,C) /Al -- 49 3495 1885 0.0918 210.3(T) 59.62 17.2
B/5052A1 -- 49 3335 21.03 0.0916 168.2(T) 59.50 17.2
B/110Al -- 49 3335 19.72 0.0916 3233 59.03 172
B/3002A1 -- 49 3248 20.74 0.0916 3654  58.81 172
B/6061 Unidir. 50 32.0 20.00 0.0915 250.0 58.33 172
AS/3501 - 67 202 130 0.0555 209.9 5747 1.7
AS1/3501-6 -- - 1885 1.52 0.0555 2460 57.10 172
B/Al -- 48 30.02 21.03 0.0918 221.9(T) 57.09 17.2
Borsic/Al -- 45 31.03 20.16 0.0926 190.0(T) 57.03 17.2
Blepoxy - 67 31.18 3.05 0.0740 4684 5643 172
Blepoxy -- 67 303 2.80 0.0740 3626 5524 1.7
B/epoxy Cross-ply 60 1537 1537 0.0721 55.1(T) 5437 172
T300/2500 - - 17.55 1.17 0.0555 - 53.80 17.2
aAl,0,/M; Cont. fiber 50 30.02 15.08 0.1009 2755 49.89 172
Kevlar49/epoxy Cross-ply 60 580 5.80 0.0505 - 4772 172
SiC/6061A1 - 48 31.63 18.06 0.112 - 46.74 172
S glass/xp-251 - 67 829 292 0.0555 170.0 4553 1.7
yA1,0,/Al Cont. fiber 50 21.75 1595 0.1045 203.0 4291 172
y7Al,0,/A1-5Cu  Cont. fiber 50 21.75 14.50 0.1045 319.0 4241 172
SiC/Ti Woven, ISO  39.5 2870 28.70 0.1432 228(T) 37.41 17.2
AL O,/Al Cont. fiber 50 319 20.16 0.1172 406 36.14 172
SiC/Ti-6A1-4V ~ Woven, ISO 35 27.0 27.0 0.1492 245(T) 34.83 172
2024 Al ISO - 10.88 10.88 0.0973 - 33.88 172
Titanium ISO - 174 174 0.1600 145 26.07 17.2
E glass/epoxy Cross-ply 57 312 3.2 0.0710 82.0 2487 172
Welton 80 steel ISO - 3045 30.45 0.283 1269  19.50 17.2

* Compressive Strength: (T) denotes tensile properties available only. ® Units of FMare 10” in” /16"

The above comparison does not indicate maximum loads that the panel may carry.
To investigate that, knowledge of maximum allowable stresses must be available and
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(16.8) must be used to determine the maximum load index, N /b, to which the optimum
panel may be subjected. Figure 17.1 illustrates that point, where the maximum allowable
stresses are taken to be the ultimate compressive strength and a 2024 aluminum core is
arbitrarily chosen for the honeycomb core. It is seen that T300/934 is the lowest weight
material, but limited to a load index of N /b=719psi. For higher load levels,
boron/aluminum is the most efficient material to a load index of 5840 psi and
boron/epoxy the best to a load index of 8740 psi. Beyond that load index, other panel
architectures are perhaps required.

-
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Figure 17.1. Weight parameter as a function of load index for a honeycomb core sandwich panel under an
in-plane compressive load [17.1].

In all of the above, it is assumed the materials are elastic to the ultimate stress. If
ductility permits and the stress-strain curve are known for stresses higher than the yield
point, a plasticity reduction factor can be employed. Finally, it should be remembered
that in any laminated face construction, in which B, =( ), =( ),, =0, E, and E can
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always be obtained by utilizing the appropriate stiffness matrix values, discussed in
Section 15.1.

17.3 Minimum Weight Optimization of Foam Core Sandwich Panels Subjected to a
Unidirectional Compressive Load

For this type of sandwich panel and loading, there are three buckling failure
modes: overall buckling, Equations (16.9) through (16.18); core shear instability,
Equation (16.34); and face wrinkling, Equation (16.36). In this case of foam or solid core
one uses the actual core properties in (16.14), namely

U.=G,h, U, =G,h (17.14)
For the optimum minimum weight construction, overall panel buckling and core shear
instability occur simultaneously, i.e., when V_ =k By, or more specifically, as in

(16.35),

7’ Esht,
20-v.v. )G, b’

Xy oyx

k7. (17.15)

For the optimized construction the applied load-optimum face stress relationship
is found to be

6(1—v v 3/20_7/2
1 (N*']— U=Vy¥) 7o (17.16)

k)" b 7E,ExEY?

The geometric variables and the core shear stiffness that results in minimum
weight design are as follows because of the linear relationship between core shear
modulus and core density, as shown in Figure 17.4 below, G, is treated as a variable in

the optimization:

31-v v ) bkr) >0

; i) 17.17
! mE ExE}’ e
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The above expressions could be written in terms of the applied load index load (N _/5)

by using (17.16) but the expressions are lengthier.
The optimized panel weight in terms of applied load is

W—Wad ~ 62/7(k1r)1/7(] _nyvyx)3/7(Nx /b)5/7

b 27 21 2T 7
7 ElEr Ey

EELE | (17:20)

+p, .
P 31A-v,v,.)o, ]

x| p,
From (17.20) it is seen that the best face material to use is the one with the largest
value of

FM=_""""_ (17.21)

Note that the face modulus in the load direction is barred to indicate the use of a plasticity
reduction factor if the stresses used for the design are above the proportional limit. For
this loading the face stress in the y-direction will never exceed the yield strength, hence
E, is not barred.

17.4 Minimum Weight Optimization of Truss Core Sandwich Panels Subjected to a
Unidirectional Compressive Load

For the optimization in this case there are three modes of buckling and four
geometric variables discussed in Section 16.5. As a result, the approach is to solve for
three of the variables in terms of the fourth variable, utilizing the three buckling
equations, and the load-stress equation. Then substitute these expressions into the weight
equation such that the panel weight is a function of the core and face material properties,
the load index and the chosen variable 8. With five equations and six unknowns, a sixth
equation is obtained by setting the derivative of the weight equation with respect to &
equal to zero to obtain the value of that variable which will provide minimum weight. In
the case of the faces and core made of the same orthotropic material, the weight equation
in terms of the load index is written as

1 1
_ 2 2 - PN L
w-w., :{3(1 v?) ] {Nx/lﬂzp[l+4s1n ] 1722)

b K || E | xsinf(cos)”

Setting the derivative of (W —W,_,)/b with respect to 8 equal to zero it is found that for

the optimum construction, where the core and faces are of the same material, isotropic or
anisotropic,
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sin’9=2/7 or 6=324°. (17.23)

For core and faces of different materials the lengthy results are given in [17.3].
The load index—optimum face stress relationship is

N, 45 (-v,v) "0,

x xp

b 777Z2K”2E(1)/2(EXEy)”4'

(17.24)

where E; is defined by (16.53). The unique values for the geometric variables are:

t 6(1-v_v )"?c
L: 2 ( 1/2 X;‘/ZJ/X) 0]/4 2 (1725)
b n’K'"E)(E,E))
. (1 (-vov ) o
—=35 172 — 174 ?/2 (17.26)
b \2) EVXE.E)"K
h 2
he_ 1159 17 (17.27)
b (E\E) 2 7°K
The optimized panel weight is given by
1
W_w - l—Vr,V, 1/4 Nr/b 1/2
— =3 2 ! 1>/}4 }X)1/4 o ]/8) (17.28)
b 2)  K"zEV(E.E,)
from which it is seen that the factor of merit to use in materials selection is
E1/4(E E )1/8
FM=—"0 ""2707 (17.29)

P

For the optimized case, using Figures 3 and 5 of [16.9] to obtain the precise value
of the coefficient K, use

= (17.30)

and
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21(1- o
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and perform a simple iteration. Note that in the weight equation (10.37), K appears only
as the 1/4 power.

If the truss core sandwich panel has the face and core of the same isotropic
materials, then as noted before, the optimization relations hold also above the
proportional limit, if a suitable plasticity reduction factor, 77, is used, such that

E =1E. (17.32)

All expressions will be written in the general form utilizing E. One then
simplifies (17.22) through (17.29) by letting E . =E,=FE, v, =v,

o, =0, =0 . The buckling coefficient K is a slowly varying function such that it can be

=v, and

considered constant, and can be determined later by a trial iteration. The unknown
variables are ¢,/ 6,0and (W -W,,). For the case of the faces and core being the

2" c )
same isotropic materials, the “universal relation” relating load index to a unique stress
value for any set of material properties, which results in minimum weight is:

&_f(l*vz)l/zﬂg

X

T (17.33)

Unique values of all other variables are now found in terms of the applied load
index, N, /b, and the material properties for the optimum, minimum weight isotropic

construction.

t (1 v )1/4(N /b)l/Z
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Using (17.33) analogous expressions can be written for each variable in terms of the
optimum face stress, as was done earlier.

It is interesting to note that when the same core and face materials are used,
optimum angle, &, is independent of load and materials used. Note also that in the
optimum construction described above, for the isotropic case:

t
< = 7 (17.38)
t, 8
and
w
3 :Z, (17.39)
w, 8

where W, and W, are the weight of the core and face per unit planform area, respectively.

The core of the optimized truss-core sandwich weighs nearly as much as the
faces, but it must be remembered that the core also carries a significant share of the in-
plane compressive load unlike in honeycomb and foam core sandwich constructions.

17.5 Minimum Weight Optimization of Web Core Sandwich Panels Subjected to a
Unidirectional Compressive Load

Again, the philosophy of structural optimization is as follows: within the class of
structures being studied and for each material system, a truly optimum structure is one
that has a unique value for each geometric variable, that results in the minimum possible
weight for a specified loading condition, and yet maintain its structural integrity. In this
case, the optimum structure will have the characteristic that the panel will become
unstable in all four buckling modes simultaneously.

The equations with which to optimize are: the four buckling equations, Equations
(16.66), (16.68), (16.69) and (16.70); the applied load-face stress relationship, Equation
(16.73); and the weight relationship, Equation (16.74). The known quantities for any
optimization are N _, a, b, and the material properties of both core and face material. The

buckling coefficient K is a constant depending on the value of (16.67), and is given by
(16.65). The unknown variables to be determined are tryh,t,, d/, o, o, and(W-W,).

With six equations and seven unknown variables, a seventh equation is obtained by
placing the weight equations in terms of one variable only, and setting the derivative of
weight with respect to that variable to zero as in the previous section. Thus, one finds the
value of that variable, and subsequently the value of every other variable, which result in
minimum weight.

At the outset, independent on the material system, it is clear that in executing the
above optimization philosophy, with Equations (16.68) and (16.69) that for optimum
construction of the web-core sandwich,
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0=0°. (17.40)

This is intuitively obvious because with 8 = 0°, upper and lower face plated components
have the same width. The result is that all other expressions used for optimization are
simplified, and the construction shown in Figure 16.6, with 8 =0° now assumes the
familiar web-core configuration.

Proceeding with the optimization procedure for panels with faces and core of
different orthotropic materials the following expressions are obtained for the optimum
minimum weight construction. First, one obtains the “universal relationship” relating
applied load index, N, /b, to a unique value of face stress o, , as a function of given
material properties for the optimum construction

= R**c2 17.41
b (EO/EOC)M(Effoy)Mﬂsz E/‘x j fo ( )

c

7
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Here, R=1+2(p,/ p,NE,/E,) and K is determined from Figures 2 or 4 of [16.9] in

which V' — oo and for the optimum construction

1
EYC E(‘XE(‘" E
Le 11 Pr ] Zato (17.42)
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In a panel with all edges simply supported K is given as follows, using the above
expression for E_I. /E/jf

2 E.I.
K= arp)+p] L (17.43)
l—vxyfvm; +2(1+vw)ﬁ Eflfﬂ

where f=alb.

The significance of the universal relationship given by Equation (17.41) is that,
given panel length, width, load, and materials, a panel designed for a face stress either
higher or lower than that given by (17.41), will be heavier than one designed for the
optimum face stress o, ~given by (17.41). Making use of (17.41) then, the geometry of

the panel for minimum weight construction can be written as:

1
ﬂ =<2 & Ecx RO-fO ’ (1744)
b P. \Ey J(ELE,)"? 1K
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Other alternative expressions for the optimum construction are given in [17.4].
It can also be shown easily that even in this general material system, the ratio of
the face weight W, to the core weight ¥, for the optimum construction is:

W, IW, =2. (17.49)

Note that this is independent of applied load, material system and panel boundary
conditions.

The optimum construction for panels with faces and core of different isotropic
materials can be obtained from Equations (17.41) through (17.49) by allowing
E,=E,=E,=E andv,  =v  =v, wherei=c,f.

The resulting expressions for the optimum construction for panels with faces and
core of the same orthotropic material can be obtained from (17.41) through (17.49) by
letting each quantity ( ), =( ), =( ). The results are

N, B 9(2)1/2(]_nyvyx)1/20_2 1750
77 ﬂ_2Kl/2El/2(EE )1/4 (17.50)
0 x™y

where K is determined from Figures 2 or 4 of [16.9] or, for a simply supported panel,
from (17.45), in which

Making use of (17.50) to obtain o, the other geometric variables are obtained
easily from the following:

h. /b =60, [r*K(E.E)"]}" (17.51)
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=h, (17.52)

t_c _ 3(2)1/2(] _nyvyx)l/zo-o (17 53)
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It is see that for a panel in which the same orthotropic material is used in both face and
core, the optimum geometry results in face and core of the same thickness (¢, =¢,) and
square cells (d, =h,)

It is seen from (17.50) and (17.55) that the factor of merit for selecting the face
material is:

FM = E/*(E.E))""/ p

Lastly, the expressions for optimum construction of panels with faces and core of
the same isotropic material can be easily determined from (17.50) through (17.55) by
letting (), =( ), =( ). With this material system, since the material is isotropic and the

face and core are equally stressed, the expressions can be employed for loads resulting in
stresses above the proportional limit by utilizing a suitably defined plasticity reduction
factor 7, such that E=pE. Thus, in the following, £ is used to denote that the
expressions are valid in the range of inelastic deformations.

N, /b=92)"*(1-v)"?c2 (x> EK"?) (17.56)
h/b=d, /b=(60,/0’KE)" (17.57)
t,/b=11b=3(2)""1-v?)"c, (7’ K'*E) (17.58)

1
W-w., 32" pl-v) (N p(N t, t
i _ NP o (Ne) 3, L3t (17.59

b K ET P R W R )

Again it is seen that the web and face have the same thickness and that the cells are
square for the optimum construction. Note also that the isotropic material which has the
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highest ratio of E'*/ p is the material which will result in the lowest weight panel in the
elastic range.

As an example of the use of the optimization procedures derived above, curves of
the weight function K'>(W —W,,) as a function of load index (K'°N_/b) are plotted

in Figure 17.2 for the following materials:

7075-T6 Aluminum (clad)

S994-181 HTS glass fabric, ERSB-0111 Resin

143 glass fabric laminate with polyester resin (MIL-R-7575)
143 glass fabric laminate with epoxy resin (MIL-R-9300)
181 glass fabric laminate with epoxy resin (MIL-R-9300)
cross rolled beryllium

unidirectional boron fibers with epoxy resin

unidirectional Thornel-40 graphite fibers with epoxy resin
AISI 4340 steel, 200,000 psi yield strength

100 1

XNk wD =

S [K'® (W-Woa/8 NO*ib. 1

ol 10 10 100
(K'* Ny /b) 710%psi.

Figure 17.2. Weight parameter as a function of load index, web-core sandwich panel unidirectional
compressive load. (Reprinted from Reference [10.1].)
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In each case, the load index is taken only to an optimum stress equal to the yield
strength of the material system. The factor K'?, appearing as it does in both the
ordinate and abscissa, permits the weight comparison for various material systems
regardless of boundary conditions and aspect ratio a/b.

It is clearly seen that the beryllium results in the lowest weight construction, but
the yield strength is reached at a low value of load index. It is also clearly seen that not
only do boron-epoxy and graphite-epoxy materials provide lower weight construction
than glass-reinforced plastic systems, steel, and aluminum, but of perhaps equal
significance, higher loads can be carried by graphite-epoxy and boron-epoxy panels of
given size and edge support conditions than any other material system.

17.6 Minimum Weight Optimization of Honeycomb Core Sandwich Panels
Subjected to In-Plane Shear Loads

In this optimization, the faces must be sized such that the allowable shear stress is
not exceeded. Also, the panel geometry must preclude overall buckling, Equations
(16.77) through (16.80); core shear instability, Equation (16.81); face wrinkling,
Equation (16.82); and face dimpling, Equation (16.83). The optimization of the
honeycomb core sandwich panel is then performed by equating the four buckling loads
given by Equations (16.77) through (16.83). The results are as follows:

(kz ]2[%]_2«/5(1—1/”,%,,\.)[ G. JZJOZ (17.60)

ksk,S,, b s EL,EfxEjjf
1 1
4 I-v v )2 1/2
B o sy e | (7.61)
bk w ) EiEn)

1

1 1
1- 2 > (E, E, 2
Cb]:\/g(( VX}’V}’X)] [GLJ X ( Sy f."t) 0_(1)/2(k3k15mj (1762)

2 E.) (EsEp)"” k,
l E E E 1/4 _2
L_afl (K] kS Erfr) o (17.63)
b k4 kz Ec(EﬁrE/y)3/4

1 1
t N(d-v_v, 2
to_(3kkS, PV )G )P oy (17.64)
b k, y3 E, ) (ExEp)'"?



362

(W —W,, J _ (3k3lexi HZO - vxyvyxﬂ;(i]i
b k, T J\E (17.65)

X(ny/b)”2 Pk o, |
ErEn)"™* " (k)" G, |

Therefore for the face material selection the factor of merit is:
FM =(EsEz)""/p (17.66)

With this factor of merit a comparison of several materials is given in Table 17.2.
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Table 17.2. Face Material Comparison, Based Upon the Factor of Merit, for an Optimized Honeycomb
Core Sandwich Panel Subjected to In-Plane Shear Loads [10.1].

Material Configuration FM (10%in”/1b'™)
C/epoxy Cross-ply 62.53
B/2024A1 57.09
B/6061Al 57.03
B/5052A1 56.18
B/3002Al 55.61
B/1100A1 55.29
B(B,C)/Al 55.18
B/Al 54.60
B/6061Al 54.57
Blepoxy Cross-ply 54.37
Borsic/Al 54.03
Kevlard9/epoxy Cross-ply 47.68
aAl,0,/Mg Continuous fiber 45.72
T300/934 Unidirectional 45.39
aAl,0,/Al-SCu Continuous fiber 44.04
T300/5208 Unidirectional 43.85
SiC/6061Al 43.57
T300/SP286 43.35
aAl,0,/Al Continuous fiber 42.97
E glass/epoxy 42.75
B/epoxy 42.20
AS4/3501-6 Unidirectional 41.88
AS1/3501-6 41.68
Boron/epoxy 41.62
HS graphite/epoxy Unidirectional 41.56
aAl,0,/Al Continuous fiber 41.30
B/EP Unidirectional 41.09
B/EP 41.02
Boron/EP 41.01
AS/3501 40.70
2024 Al 35.79

It can be shown [17.7] from Equation (17.66) that, for any laminated composite
material, with laminae of continuous unidirectional fibers, used for the sandwich faces,
the best stacking sequence to resist an in-plane shear load is a balanced cross-ply
laminate.
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17.7 Minimum Weight Optimization of Solid and Foam Core Sandwich Panels
Subjected to In-Plane Shear Loads

To minimize the weight, the three buckling critical stresses are equated, and the
results for the minimum weight panel are:

( . ]i[NXy]_6\/5(1—vxyvyx)20'§

kS, b ) aE*GPEEj

(17.67)

Again, because of the continuous linear relationship of core shear modulus to core
density for foam cores, G, is treated as a variable; therefore,

_2Tvyva) o0 (17.68)
GC},ECZE_&E;/:V .

cx

3-v, v, ) b(kS,) oy

t, — (17.69)
7
ﬂECZGl}{zE/X E_/jv
2\B3(1-v v, )b(kS,)" ol
p =20 o (17.70
ﬂEc]/zGl‘sz_/x E,j;
The optimum panel weight equation is
W—Wad ~ 21/533/10(1_VXyVyX)Z/S(kISXi)l/]()(ny /b)4/5
b B ﬂl/sEj/IOE;isG(l“/’lo
’ 17.71)

,E,Ekf«”zw
5 p/_+pL (E /y)2 :
3A-v v )o, ]

from which it is seen that the best face material can be selected from

FM =(ExE )"/ p. (17.72)
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17.8 Minimum Weight Optimization of Truss-Core Sandwich Panels Subjected to
In-Plane Shear Loads

Stated once again, the philosophy of the optimization for the truss core sandwich
panel with in-plane shear loads is as follows: a truly optimum structure is one which has a
unique value for each dependent variable within the class of structure being studied
(triangulated core sandwich panel, for example), for each set of materials for each set of
boundary conditions and is the minimum possible weight for a specified set of design
loads and will maintain its structural integrity (no mode of failure will occur at a load less
than the optimum design load). In this case the optimum (minimum weight) structure
will have the characteristic that the panel will become unstable in all three buckling
modes simultaneously.

The governing equations pertaining to this construction to be used in the
optimization are given by (16.87), (16.89), (16.92), (16.94), (16.95) and (16.96). The
known or specified quantities are the applied shear load per inch, N_, and the panel

width b, which can be combined as the load index (&, /b); the material properties; and
the panel boundary conditions. The buckling coefficient j,k, and k. are given in Figure

16.8 for any given set of variables, and hence are constants for the optimum construction
being sought. The dependent variables with which to optimize the construction are the
face thickness, ;) the core depth, /%, , the web material thickness, 7_, the web angle, 4,

the face stress, 7 i the core stress, 7,, and the weight, W —W .

It is seen that there are six equations and seven unknowns. The seventh equation
is obtained by placing the weight equation in terms of one convenient variable, taking the
derivative of the weight equation with respect to this variable, and equating it to zero to
obtain the unique value of that variable which results in a minimum weight structure.
Subsequently, one can determine the value of all other variables for the optimum
constructions. Manipulation of the equations listed above results in the weight equation
involving only the dependent variable &, as shown below

W_Wad 31/4 pf (ny /b)1/2
b :T(k/})”“ E)?

1 1 1
: i L 17.73)
G, V(E, (k)2 (
4 (Sin9)3/2 + ( pc ][ xye ] ( sf J ( f ]
pf Gx.‘{f Es'c kc

(sin@)(cosH)'"?

X

where

E,=[E,E.]"I0-v v.), (i=c f) (17.74)

xyi " yxi
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Taking the derivative of (17.73) with respect to @, and equating it to zero results in a
value of @ in terms of material properties and buckling coefficients which will result in
minimum weight structure. This expression is:

2(sin6)*'* (cos@)” +2(sind) "

1 1
G YE V(K ) (17.75)
_| Pe e ( “/] (—/] [coszﬁ—lsin29—|=0.
pf Gx)ff E.cc kc 2 J

Note that the optimum web angle, defined by this equation is independent of the load and
boundary conditions to which the panel is subjected.

A “universal relationship” may be obtained which relates the applied load index
(N, /b) to a unique value of face shear stress, 7 ,,, for any set of material properties,

which will result in minimum weight panel. For a given load index (N, /b), a panel
designed to have a face stress 7, higher or lower than the value given by the following

relationship will result in a panel which has a weight greater than can be achieved if this
universal relationship is used.

N, 43 tand 7o
b By

(17.76)

where 6 is obtained from (17.75) and E, from (17.74) and 7, is the optimum face

stress.

The remaining geometric variable 7., 7., and A, , as well as the weight equation

can now be expressed in terms of the optimum face stress 7, obtained from (17.76), and

the optimum angle 6 determined by (17.75) above. For the case of faces and core of the
same materials, these are:

1
t 2/3tanfr h Th )2
S T/Z/O Ze o [L‘L} (17.77), (17.78)
bk E b (£
t, A3 (sin®)'"? 7
T et I 77
k" j s
1
k. \2
N A 4(sin¢9)3/2+[k/]
_ T, .
w _ NPTy ‘ (17.80)

)12

b _k;‘/ 7E, cosé (sind)""”
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Employing (17.76) the minimum weight panels for a given load index N, /b is
given by

1
k)2
4(sin0)*'? + (k—f]

c

W_Wad 31/4 p (ny /b)l/z
b 2 kl/g”“ E!"? sind (cosd)'"?

(17.81)

where E_ is given by (17.74).

Two conclusions are drawn. First, the best composite material to use in such
construction is the one with the highest ratio of

3 1/8
_EC B

FM = . (17.82)
1/2
p o pl-vyv,)
Secondly, the ratio of face weights to core weight for optimum construction is:
W . 3/2
2y AGmO) (17.83)
W, (k,/k)

In the case of a panel with the same face and core materials, then kf =k, , and from
(17.75), 6 = 28.4° and W, /W, =1.316.

17.8.1 Certain Properties of the Buckling Coefficients ;, k,,andk,

It is advantageous to discuss certain characteristics of the coefficients
J-k,,and k, that result in significant simplifications to the design procedures. It is

shown in the References of Chapter 16 and 17 that in all calculations of optimum
constructions

j=Jj and k, =k, (17.84)

17.8.2 Some Conclusions

For truss-core sandwich panels subjected to in-plane shear loads, in which both
the faces and core are composed of the same isotropic or orthotropic materials, 8 = 28.4°
for minimum weight construction, whenever the edge restraint coefficients & , and k, are

equal (the usual case). Under these conditions the weight ratio of face material to core
material per unit planform area is 1.316.
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For the case of core and face material being the same, the use of the orthotropic
material which has the highest value of the following factor of merit will result in the
least weight panel of specified geometry and loading. Since (1-v,v, )~1 for most

composites, it is seen that a factor of merit (FM) can be defined as:
3/8 r1/8
_ EE,
P

FM (17.85)

For unidirectional composites, the fiber direction for this type construction should
be in the y-direction. This is the same factor of merit as that found for the faces of an
optimum honeycomb core subjected to in-plane compression [17.1, 17.2, 17.5]. In those
references several dozen material systems were compared, and provide the wherewithal
to select the best materials for the optimized structures of Figure 16.5.

However, to determine the limitations on the load index (N, /b) to prevent
overstressing, Equations (17.76) and (17.80) must be plotted to make the final
comparison, as in Figure 17.3. There, typical composite materials given in an Appendix
of Reference [17.6] are plotted. There the maximum values of N /b correspond to the
maximum shear strengths given in Reference [17.6]; and some fraction of those values as
a factor of safety would terminate each curve proportionately for safety. It is seen that
among these materials, T300-934 graphite-epoxy provides not only the lowest weight
construction but is also usable to the highest load index.

Weight as a Function of Load Index under In-plane Shear Loads
°r

@ ®

W-W,q 3

b T300-934

(Ibsﬁn?} T300-5208
(x 10‘5) 2 Boron Ep

SGlass (XP251)
Keviar 49/Ep

QIOIOIDIOIS]

1 E-Glass/Ep
0 ! 1 L L 1 I 1
0 1 2 3 4 5 B 7

Nyy/ (Psi)
Figure 17.3. Weight as a function of load index under in-plane shear loads for a truss-core sandwich panel.
(Reprinted from Reference [17.6].)
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17.9 Minimum Weight Optimization of Web-Core Sandwich Panels Subjected to
In-Plane Shear Loads

The equations to employ in the structural optimization of web-core sandwich
panels subjected to in-plane shear loads are Equations (16.97), (16.109), (16.111) and
(16.112). It should be noted that these equations can be used “as is” to design or analyze
any non-optimum web-core panel under these loads.

It can be shown that for minimum weight, the critical faces stress, 7 for

fer»
overall instability and face-element instability must be equal, and this optimized value

can be denoted 7 .

It is also seen that due to the geometry of the web-core construction there is no
buckling criterion for the web element because with & = 0° no load can be introduced
into the web plates where an in-plane shear load is applied to the panel. Therefore, the
criteria for determining the web element thickness, ¢,, is determined by strength alone.

Manipulating the equations enumerated above it is seen that

W - Wud _ p/' (ny /b) + pc (] - nyfvyxj' )(t(: /b)2 3T?

: a2, (17.86)
T ky i TEGERTT (N, /b)
where
- 1 ; (17.87)
Lo d KuV=0) |1
K"’l J

This weight equation is expressed in terms of the face stress, 7,, and the core
wall thickness, 7,. As stated, 7, is not determined by buckling, and will temporarily be
treated as a constant in (17.86). Now setting the derivative of (17.86) with respect to 7,
equal to zero, the following relationship provides the unique optimum value of 7, for a

minimum weight panel, denoted as 7, :

1

1 1
N, 23" (AT (1=v, V)" (’_szfm (17.88)

b _k}MTM p—, [E;;Eﬁ(]l/g b 10

This is the “universal relationship” relating the applied load index to the optimum
face stress, 7,,, for a specific web-core element thickness, 7., as yet undetermined.

Substituting (17.88) into (17.86) results in
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2/3

1 1
=W, )" p e A=vyv,)" [’MN”J (17.89)
- / —1/ rn : .
b (2)1 3 k»lf/ﬁjl 6 [E;jvEfx]Hz

b b
From (17.89) it is clear that the smaller the value of ¢, , the lower the panel weight
will be for given material systems, given panel geometry, and given load index (N, /b).

Likewise from (17.88), for given materials systems, panel geometry, and load index, as
t, decreases the optimum face stress 7,, increases. Therefore, it is concluded that

minimum weight is obtained when the optimum face stress, 7, equals the materials’®

allowable shear stress, 7, i.e.,
T =Ty - (17.90)

It should be noted that this result differs from all of the previously presented
sandwich panel optimizations, where the optimum face stress for minimum weight
construction was generally a unique stress below the maximum allowable value. That is,
when the optimum face stress is the allowable stress, this is the upper bound for the
applied load index, given by (17.88).

Now substituting (17.89) into (17.88) provides the optimum value of ¢, for the

minimum weight construction.

12712 2

t, [(pr\k;" ) E, (N, /b)

=|— (17.91)

b\ p, 43z,

1/4
where E, = [E;\E/r] =V Vi)
The other variables for the minimum weight construction are:

(t,/b)=(N, /b)/ 2z, (17.92)
(h 1b)=(ry 1 JES)'" (17.93)

kl/Z EI/Z(N /b)
f sf Xy
(@ 1) === (17.94)
all

W-W.) _3p, (N, Ib)

17.95
b 27, ( )

Other useful relations for the optimum construction are
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w,/w,)=2 (17.96)
where W, and W, are the weight of the face and core respectively, and
h Yt
e - (p—’j(LJ (17.97)
df pc tc

Note that for the optimum construction, according to Equation (17.93) the core
depth, #_, is practically independent of the applied load. Note also that the weight of the

optimum construction is independent of all material properties except the allowable shear
stress and the density of the face material, and the weight varies linearly with the load
index (N, /b). This differs markedly from the optimum constructions using other core

geometries discussed earlier in Chapter 17.

Thus it is seen that to obtain a minimum weight web-core panel subjected to in-
plane shear loads, the best face material to utilize is the one having the highest rate of
T/ P, . Thus the factor of merit to determine the best materials system to use is:

Factor of Merit = . (17.98)
P

Also, it can be shown that ;and k , are constants for the optimum construction and no

iteration is needed.

The Factor of Merit, (17.98) is used to compare various materials systems. Such
a comparison is found in Table 17.3 for several unidirectional composites for which shear
strengths were available. It is seen that among these systems graphite-epoxy and boron
aluminum look significantly better than the other materials.

Table 17.3. Face Material Comparison, Based on the Factor of Merit, for a Web-Core Sandwich Panel
Subjected to In-Plane Shear Loads.

Rank Material v, 7, P FM
(%) (ksi) (Ib/in*) 10° in

1 T300/934 ? 14.8 0.0555 2.667
2 E glass/Ep. 60 10.0 0.075 2.667
3 Boron 6061 Al 50 23.0 0.0915 2.515
4 AS/3501 67 13.5 0.0555 2.432
5 Boron/Ep. ? 18.0 0.0740 2.432
6 Kev. 49/3501 62 11.7 0.050 2.340
7 Hi Str. Gr./Ep. 60 12.0 0.057 2.105
8 Boron/Ep. 67 15.2 0.074 2.054
9 Braided FP/Al 17 19.9 0.1001 1.988
10 T300/SP-286 60 10.5 0.0555 1.842
11 Kev. 49/Ep. 60 9.0 0.050 1.800
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17.10 Optimal Stacking Sequences for Composite Material Laminate Faces for
Various Sandwich Panels Subjected to Various Loads

If one is given a particular composite material laminate, with its associated
material properties, then the methods presented in Section 17.1 through 17.9 can be used
to design a minimum weight panel. However, if the designer has the freedom to do so,
this current section provides the means by which to select the particular stacking
sequence to use with a given lamina of a filamentary composite in order to create a
laminate for a minimum weight panel. The focus here is on the faces, as the majority of
the weight of a sandwich panel is in the faces, because the faces take most of the in-plane
loads.

It was seen earlier that the Factor of Merit for a honeycomb sandwich panel
subjected to an in-plane compressive load is given by (17.13). Since the faces of the
sandwich resist the applied compressive in-plane load prior to buckling, then for any face
material, the best stacking sequence for this type of loading is one in which 4 4,, is a

maximum, because the Factor of Merit involves E;°E)®. Because the term

(I-v, v, )""? is approximately equal to one for most unidirectional composite laminae, it

will not be included in this discussion. Therefore, to make A 4,, a maximum for a
laminate involving 0°and 90° plies, let N equal the total number of plies, S equal the
number of 0° plies, and N-S the number of 90° plies. If %, is the uniform ply thickness
for the laminate then, from (10.58)

SEllhk +(N_S)E22hk

0= (17.99)
(I=vyvy) (1=vy,vy)
E -S)E
b = S 22hk +(N S) l]hk‘ (17100)
(I=vypvy)  (=vyvy)
So the Factor of Merit is proportional to
h
Al Ay = {[SE, + (N =SB, Px[SE,y + (N -$)E, ]} — (17.101)
(] - V12V21)
If one defines ¢ = E,, / E,,, then the Factor of Merit (FM) is proportional to
[S+(N-$)9]°[Sg+ (N -9)] (17.102)

To maximize Equation (17.102), placing the derivative of FM with respect to S
equal to zero results in

(4S—N)p+3N—-4S =0 (17.103)
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or

SZLM

0<S<N (17.104)
4 (I-9)

Equation (17.104) and Table 17.4 below shows that for ¢ = 0,0r E,, of essentially zero,
the best stacking sequence is 75% 0° plies and 25% 90° plies. As ¢ increases, the
percentage increases until when ¢ =1/3,s=1. At ¢ >1/3, a unidirectional laminate is

used to achieve minimum weight. Incidentally, that means for any metal matrix
composite, a unidirectional composite is best when the loading is uniform in-plane
compression, because in every practical case, E,, > E|, /3.

Table 17.4. Optimum Stacking Sequence for the Laminated Face Material as a Function of ¢ for an
Optimized Honeycomb Core Sandwich Panel Subjected to an Uniaxial Compressive Load.

¢ =E, / E, S

0 075N

0.1 0.806 N

0.2 0.875 N

0.3 0.96 N
0.333 N
>(.33 N

Correspondingly, for the case of a solid or foam-core sandwich panel subjected to
in-plane compression, the Factor of Merit is given by (17.21).
As before, the Factor of Merit is proportional to

(EIE)"7 or (474,)" (17.105)
Utilizing (17.99) and (17.100) the F'M is proportional to
[S+(N - 8)8][Sg + (N - 5)] (17.106)

Setting the derivative of the above with respect to S equal to zero results in the
optimum stacking sequence of

s_1C-9)

= 17.107
3d-9) ( )

For the foam- or solid-core sandwich panel subjected to a uniform compressive in-plane
load, it is seen from (17.106) and shown by Table 17.5 that for ¢ =0, two thirds of the

plies should be 0°, and only after ¢ =1/2, ie., 2E, 2 E,, should the laminate be
unidirectional.
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Table 17.5. Optimum Stacking Sequence for a Laminated Composite Face Material as a Function of ¢ for
an Optimized Solid or Foam Core Sandwich Panel Subjected to an Uniaxially Compressive Load.

p= Ezz /Ell S
0 0.667 N
0.1 0.704 N
0.2 0.75 N
0.3 0.810 N
04 0.889 N
0.5 N

Now examining (17.29) for the truss-core panel subjected to an in-plane
compressive load, and the expression on page 359 for the web-core sandwich panel, one
sees that they are identical. Remembering that

2E, =(E,E))"* +v E +2G (1-v,v ), one sees that for the truss-core panel and for

the web-core panel the FM is proportional to (4,,4,)"*. Therefore, for minimum
weight

S=N/2 (17.108)

Thus, the optimum stacking sequence in each case is cross-ply with the same
number of 0° plies and 90° plies. Incidentally, using the same procedures as above, it
can be shown that an angle ply laminate is never better than a cross-ply or unidirectional
laminate to prevent buckling for any of the four sandwich architectures when the panel is
subjected to an in-plane compressive load.

Turning now to the honeycomb core sandwich panel subjected to an in-plane
shear load, it is seen that the factor of merit is given by (17.66) is proportional to
(EE y)” *. As a result the cross-ply laminate is best, as shown by (17.108). The same

holds true for the solid- or foam-core panel subjected to in-plane shear loading.
For the truss-core sandwich panel subjected to in-plane shear loads, from (17.82),
it is seen that the F'M is proportional to
(E.E)'"® (17.109)

By the same process used before it is seen that

s-101=30) (17.110)
4 (1-¢)

with the tabular values given in Table 17.6. It is seen that if ¢ =0, 75% of the fibers
should be perpendicular to the flutes, and for ¢ >1/3, the best stacking sequence for the

truss-core sandwich subjected to in-plane shear is to have all fibers (i.e. unidirectional)
perpendicular to the flutes.
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Table 17.6. Optimum Stacking Sequence for Laminated Composite Face Materials as a Function of ¢ for
an Optimized Truss-Core Sandwich Panel Subjected to In-Plane Shear Loads.

¢ = Ezz / E11 S

0 025N

0.1 0.194 N

0.2 0.125 N

0.3 0.036 N
0.333 0
>(.333 0

Finally the web-core sandwich subjected to in-plane shear loads differs from all
the rest in that the factor of merit is strictly strength (not stiffness) dependent. Repeating
(17.98),

FM =17,/p. (17.111)

Again for any of the four panel architectures subjected to in-plane shear loads, an
angle ply laminate is never the best choice.
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17.12 Problems

17.1.

17.2.

17.3.

17.4.

17.5.

17.6.

Consider a honeycomb sandwich panel 20 inches long and 12 inches wide
subjected to an in-plane compressive load in the longer direction of
N, =-20001bs./in. of width. The faces are made of boron/epoxy (V, = 67%)

and the core is aluminum each with the following properties:

Boron/epoxy Aluminum Honeycomb Core
E_=30.3x10° psi E,=10.5x10° psi

E, =2.8x10° psi v =0.348

7, =021 G,=3.9x10° psi
G,,=0.93x10° psi p, =0.1011b/in’

P, =0.0741b/in’
o = 362,600 psi

If the panel is simply supported on all four edges:
(a) What is the optimum face stress, o ,?
(b) Is the panel overstressed?

(c) What are the optimum values of each dependent variable (in this case #,, d,

7,,and ¢, ) for the honeycomb construction?

(d) If the boron/epoxy ply thickness is 0.0055 in., how many laminates are
necessary to approximate the optimum construction?

(e) What is the weight of the panel per unit planform area?

Repeat Problem 17.1 for a foam core sandwich using the foam core of Problem

7.2.

Compare the results of Problems 17.1 and 17.2. Which core construction gives

the lighter panel?

Consider a sandwich panel measuring 30"x24" in planform are composed of

5052 aluminum faces whose properties are: E=10x10°psi, v=0.3,
p, =0.101b/in’, o, =70,000psi. The uniaxial compressive load per unit
width, in the longer direction is N, = —4,0001b/in. The sandwich plate is simply
supported on all four edges. What are the optimum ¢, 4, ,¢,,d,and(W —-W,,)
for a honeycomb core also made of 5052 aluminum?

If the sandwich panel of Problem 17.4 has a rigid Klegecell foam core, what are
the optimum values of 7,,4,,G,,and (W -W,,) using Figure 17.4 to determine

the weight of the rigid Klegecell foam?
If the sandwich panels of Problem 17.4 involved a truss-core also of 5052
aluminum, what are the optimum values of 7,,4,7,,0,and (W —W,,) for this

construction?



17.7.

17.8.
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If the sandwich panel of Problem 17.4 involved a web-core was also made of
5052 aluminum, what are the optimum values of ¢ I h.t.,d,and(W-W,) for

this construction?
For Problems 17.4 through 17.7, compare the various constructions as to the
weight, the various total panel thickness, and the various face thicknesses?

MINIMUM-WEIGHT CFTIMIZATION OF SANDWICH CYLINDRICAL SHELLS
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Figure 17.4. Typical foam core properties. (Reprinted from Reference [10.1].)



CHAPTER 18

PIEZOELECTRIC MATERIALS

18.1 Introduction

Recently, there has been increasing interest in using piezoelectric materials in
advanced structures to transform them into “smart” or adaptive structures. To treat these
developments adequately would require an entire text, well beyond the scope of this text;
nevertheless, an introduction is included herein, hopefully, to provide the reader the
capability of including piezoelectric effects into the structures comprising the first three
parts of this book and enabling the reader to more easily follow the growing literature on
this subject.

Smart, intelligent or adaptive materials are being used increasing due to their
active interaction with their environment, and their increasing use in “smart” structures.
Such materials include piezoelectric materials, electrostrictive materials, shape memory
alloys, and electrorheological fluids. Only piezoelectric materials will be discussed
briefly in Chapters 18 through 20 herein.

The use of piezoelectric materials in “smart” structures is increasing significantly.
They can be used as sensors that recognize and measure the intensity of physical
quantities such as strain in the structure and as such can be used as a structural health
monitor to detect damage. They can also be used as actuators, where be responding to an
applied voltage, they strain, and cause the “smart” structure in which they are imbedded
to deform, or in the dynamic case cause it to excite or dampen vibration oscillations.

According to Larson [18.1], the ancient Greeks were the first to recognize the
electrical features, particularly the static charges developed, in certain materials when
rubbed. Another material electrical phenomenon, piezoelectricity, was named by Jacques
and Pierre Curie more than one hundred years ago. In 1894 Voigt [18.2] rigorously
stated the relationship between the material structure and the piezoelectric effects, namely
that when a voltage is placed across a piezoelectric material, it generates a geometric
change known as a converse piezoelectric effect. Depending on the material orientation
and the poling direction, the material may elongate or shrink in different directions, or an
angular distortion. Also, with the same material if the material is stressed due to a
tensile, compressive or shear load, an electrical voltage results, and this is called a direct
piezoelectric effect. Therefore, it is seen that piezoelectric materials can be used as
actuators or sensors for a structure and could serve as both at different times.

Many materials exhibit a piezoelectric effect including Rochelle salt, quartz,
tourmaline and barium titanate. As early as 1918, Langevin proposed a piezoelectric
transducer for sonar during World War II. Prior to World War II lead zirconate titanate
(PZT) was found by researchers at MIT to have a much higher piezoelectric response.
Later, in 1969, Kawai determined that the polymer polyvinylidene fluoride (PVDF) was
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highly piezoelectric. Also in the 1960°s it was found that human muscle and bone are
also piezoelectric.

An excellent overview of recent activity in adaptive or smart structures is given in
the early 1990’s by Wada [18.3], especially regarding NASA future missions, by Wada,
Fansom and Crawley [18.4] and Miura [18.5]. Analytical models of piezoelectric
actuation of simple beams were treated by Forward [18.6], Baily and Hubbard [18.7],
Crawley and de Luis [18.8], Burke and Hubbard [18.9] and Im and Atluri [18.10].
Piezoelectric plates were treated by Lee and Moon [18.11-18.13]; Crawley, Lazarus and
Anderson [18.14, 18.15]; Wang and Rogers [18.16] and Pai and Nayfeh [18.17].

Two reference books are available for serious study of piezoelectric materials and
layers, one by Nye [18.18] in 1972 and the other by Tiersten [18.19] in 1969.

The manufacturing of piezoelectric ceramics involves the intimate mixing of
precise quantities of pure raw materials which are then heated to 1200°C to produce
titanates and zirconates. The calcined material is milled to produce a fine powder, which
after adding organic binders, is formed into prescribed shapes by pressing, casting and
extrusion processes. The parts are then fired at temperatures up to 1350°C to produce
dense polycrystalline ceramic components. Close tolerances of the parts is required
which is achieved by diamond machining.

For subsequent polarization and operational use, metal electrodes must be applied
to the ceramic. Fired-on silver or electrode nickel are the most satisfactory with respect
to electrical conductivity, ease of soldering and good adhesion.

After the electrodes are applied the material is pole in a strong d.c. field in order
to align the randomly oriented dipoles to produced the piezoelectric properties. The
poling effect is permanent provided that the material is not subjected to high a.c. fields, to
temperatures in the region of greater than half the Curie point or to very high mechanical
stresses.

18.2 Piezoelectric Effect

When a piezoceramic element is stressed electrically by a voltage, its dimensions
change. When it is stressed mechanically, it generates an electric charge. If the
electrodes are not short circuited, a voltage associated with the charge appears.

A piezoceramic is therefore capable of acting either as a sensing or transmitting
element or both. Since piezoceramic elements are capable of generating very high
voltages, they are compatible with today’s generation of solid-state devices.

Consider the element shown below:



381

Figure 18.1. Piezoceramic element.

The polar or 3 axis is taken to be parallel to the direction of polarization within
the ceramic. This direction is established during manufacturing by a high d.c. voltage
that is applied between a pair of electroded faces to activate the material. The
polarization vector P is represented by an arrow pointing from the positive to the negative
poling electrode.

In shear operations, these poling electrodes are later removed and replaced by
electrodes deposited on a second pair of faces. In this case, the 3 axis is not altered, but is
them parallel to the electroded faces. Then the mechanical stress or strain is in shear and
the subscript 5 is used as the second subscript.

Piezoelectric coefficients, d,, with double subscripts link electrical and

mechanical quantities. The first subscript gives the direction of the electrical field
associated with the voltage applied, or the charge or voltage produced. The second
subscript gives the direction of the mechanical stress or strain

Since the 1980°s the interest in the use of piezoelectric material for structural
application mushroomed. The technical breakthrough has been the capability to
manufacture thin layers of brittle piezoelectric materials and to successfully imbed them
into a structural component. As a result intelligent structures have evolved including
actively damped structures, smart fins, smart wings, active constrained layer damped
structures, position controls for telescopes in complex structural platforms (NASA), and
for structural health monitoring. The primary piezoelectric materials in use today are
PZT and PVDF. Properties of PZT G1195 and PVDF are given below in Table 18.1
[18.2,19.2].
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Figure 18.1. Properties of PZT G1195 and PVDF.

Material PZT G1195 PVDF
Density 7600 kg/m’ 1780 kg/m’
Elastic Modulus (Y ™) 49%x10" N/m’ 0.2 N/m?

Relative Dielectric

Constant, K, 1700

K, 1700

Piezoelectric Strain

-12 -12
Coefficient, d,, 360x107" m/Volt | 285x107° m/Volt

dy, —166x10 "2 m/Volt | —122x10 "* m/Volt

Piezoelectric Voltage 3
g 25510 Volt m/N 24.9%x107 Volt

Coefficient, g, m/N
3
g 11x107 Voltm/N | 10610 7 Volt
m/N
Curie Temperature 360 °C
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CHAPTER 19

PIEZOELECTRIC EFFECTS

19.1 Laminate of a Piezoelectric Material

Consider a lamina of a laminate which is made of a piezoelectric material that is
electrically anisotropic. For PZT the material is naturally piezoelectric, but for PVDF
rolling and poling is necessary to make the material piezoelectric. The most general form
of the piezoelectric strain constants for a plate can be written as follows [18.2, 19.1]:

0 0 0 0 ds 0]
dy=0 0 0 d 0 0 (19.1)
d13 d23 d33 O 0 d36_l

where (i = 1,2,3) and (j = 1,2,3,4,5,6). For a thin piezoceramic, such as many laminae
are, that are poled in the thickness direction, the only non-zero components are the
d; =d,, and d,; =d,,. Thus, no shear strain components will be produced by a thin

actuator.

Also piezoelectric stress resultants and piezoelectric stress couples can be defined
that are completely analogous to thermal and hygrothermal resultants and couples, see
(10.60), (10.61), (10.64) and (10.65). For a laminate these are defined as follows for i, j
=1,2,6:

N
N‘/].;iezo — Z [E] ; ]k (hk _ hk—] ) (1 92)
k=1
. 1 N f—
M;ﬂm ZEZ[E]JL(}Z}(Z 7hk2—l) (19.3)
k=1

In the above, in general

m* n* 2mn C, C, C.0 0 d,TE,]
[EI], =| w w —2mn |, G O |0 0 dy{E, - (194
—-mn mn mz—nzj 0 0 Cﬁﬁ_}O 0 dwj EZ_]

where here again m =cos@, n=sinéd and @ is the angle between the x-y structural axes
and the 1-2 material axes, defined as positive going for x* axis and the 17 axis. E, (i =
X, Y, z) is the electrical field intensity vector.
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For the laminate, (10.66) can be expanded to include the piezoelectric effects, so

[m_[A 31{501 {NW {N‘“T_{NP*“T

- - - . (19.5)
M| |B D|«x]| |[M"| [M™] M|

Also, the components of the transverse shear resultants, [Q], are defined as

follows:

Q T N | & ;-F?—W—‘ Iy

{ S SR I e B = A (19.6)

QyJ k=1 | p ,BJF_. ey

oy |
where
] | m ”—| C44 C45—| 0 d24—| Ex—l
[E] ]k _{n m J{C% Cs J{dls 0 J{E | (19.7)

where E, (i =x, y) are components of the electrical field intensity vector, and [C k] is the
C; matrix for the k™ lamina. Thus with the integrated stress-strain relations (19.5) a

piezoelectric plate, panel or beam structure can be analyzed by methods developed earlier
in the text, because the piezoelectric effects are directly analogous to thermal and
moisture effects.

When the piezoelectric material is thin in the 3 direction, if the surfaces of the
cross sectional area are fully electroded, the electrical conditions are that £, = E, =0

everywhere, and from the relation that the electrical field intensity vector E, is derivable
from a scalar potential ¢, then E, =—¢. So for many beam and plate structures the

piezoelectric material layers are so thin that the electrical field £, is obtained from
AW
2 2 14
E,=—"/ ~ =7/__" (19.8)
hk

where V' is the driving voltage, s, is the thickness of the piezoelectric layer under
consideration and ¢ is a scalar potential from which the electrical field vector E, is

derived.

To use energy methods, the expression for the kinetic energy and potential energy
for a plate structure involving piezoelectric layers is given by Leibowitz and Vinson
[19.1] as well as an example for the dynamic modeling of an elastic beam with
piezoelectric actuator laminae on each side, using Hamilton’s Principle. In this dynamic
model, the piezoceramic and the beam are treated as an integral system and all of the



387

natural and kinematic boundary conditions were included. Leibowitz has also developed
methods for analyzing an active constrained layer beam involving the primary beam
structure, soft core and piezoelectric actuator for various boundary conditions using
Hamilton’s Principle. This was a new (1993) concept in damping, one in which a
piezoelectric material is embedded in the viscoelastic core such that it acts as an actuator
to increase the shear strains in the viscoelastic material and thus increase the modal

damping of the total laminate compared to the classical approach.

Because the governing equations for a plate including general anisotropy, mid-
plane asymmetry and dynamic effects are so lengthy, suffice it to say that Equations
(19.9) through (19.11) below clearly indicate how the right hand side of the governing
plate equations given throughout this text are modified to include piezoelectric effects
[see 19.2]. The resulting equations of motion are, for the classical plate theory, i.e., no

transverse shear deformation [19.2].

0’u ’u 8%u 0% 0%
A 0 4+24 o4 044 0+ (4, +4 0
11 a2 16 Gxay 66 8_)/2 16 o ( 12 66)6)66
62 ~3 3 3 3
+A26 —vzoanq*ugmaTW*(Blz +2B66) d Wz 7326 d 1;1/
oy ox ox"Cy OxCy ay
i azzo . oN} . ON{
ot Ox oy
o’ o’ o’ 0’ o’
A16 _14 (A66 + AIZ) al + A26 Uzo + Ass c V20 +2A26 Ml
CxCy ay ox Ox0y
%, 63w 63w *w o*w
+A4,—>—-B 2B, +B -3B - —_—
22 P 2 16 ax ( 6 I')/axzay 26 axayz 22 ay3
_ hazvo . ON¢ +6N§
"ot Ox oy
63 63u ou &u oy
Bll A 3 3B16 (Bn +28f»(\),\ 02 +326 N 30 +Bm 30
ox ox’ oy OxCy ay Ox
63 63 63 4 4
(B +2Bea ZVO +3826 :}02 + b5y, ,jv30 _Dlla,,—zv_ 1saTW
" ox Oy OxCy oy Ox ox’oy
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o'w o'w o'w
-20D,+D,, )——-4D, ———— —
( 12 Gé)axzayz 26 6X6y3 22 ay4
0w o*M”  o*M! o M!
=p,h——f(x,y,0)+ 1 42 8

(19.9)

(19.10)

(19.11)

These are the equations of motion for an open circuit piezoelectric laminate under
the influence of an externally applied electric field and lateral mechanical loading. If
thermal and moisture effects are present, then simply add thermal and moisture stress
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resultants and couples to the above, analogous to the piezoelectric terms shown. In
(19.11), if the plate is laminated, the p, % term is given by (13.8). Reference [19.2] also

provides the changes in the governing equations if transverse shear deformation effects
are included as well.

Piezoelectric ceramic materials (e.g. PZT) are available only in the form of small
patches, although sheets of piezoelectric polymeric materials (PVDF) are available. The
properties of each material differ significantly, as seen in Table 18.1.

Because the piezoceramics are only available in small patches, their use in plate
or any other structures makes analytical solutions of governing differential equations with
various boundary conditions impractical if not impossible. Therefore, energy principles
are often used to obtain solutions.

Other useful references include the references of Chapter 18 and [19.3-19.6].
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CHAPTER 20

USE OF MINIMUM POTENTIAL ENERGY TO ANALYZE A PIEZOELECTRIC
BEAM

20.1 Introduction

The following example is given to analyze the simplest structure (a beam) in
which a piezoelectric actuator is used, and because it is a “real world” problem in which
two such beams are being used to actuate a “smart” fin [20.1].

Consider the beam shown in Figure 20.1 below. The host beam is of rectangular
constant cross-section of length L. Piezoelectric actuators are adhesively bonded to the
host beam from L, to L,. Because of the geometry and material properties the adhesive

must be included in the analysis.

Applied Weight, W

Piezoelectric
Adhesive

Host |

Adhesive
Piezoelectric |

NN

\\

~

N

L?
Ly

|
|
|
|
: >

Figure 20.1. Piezoelectric beam.

N

Equation (14.2) is used to obtain the potential energy expression for the bending
of the beam in Figure 20.1. Because it is a beam whose length is in the x-direction all
d( )/dy and v, terms are dropped. If mid-plane symmetric, all B, terms are dropped.

Without extension in this example all #, terms are dropped. Using classical theory
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= —%}. Because it is a beam, all remaining terms are multiplied by the width b, so

that the bD,, = EI, neglecting Poisson ratio effects, because it is a beam. Also the
flexural stiffness for 0<x <L, is (El),, L, <x<L, is (El), and L, <x<L is (El),.
Because of the analogy between the thermal, moisture and piezoelectric stress couples let
M" = M". Lastly, the concentrated load applied at x = L, is accounted for. The result

is Equation (20.1).

L/ 52 \? Ly 52 \?2 Lf 72 \2
V:(E])l dl;’ dx+(E])2 d‘;’ dx+(EI)3 d‘;} dx
2 s\ldx 2 b dx 2 bt dx

L, d2W
+Ww(Ly) + ij’”( de
i dx

(20.1)

2

In this equation the last term represents the work done by the piezoelectric patches which
have a constant moment effect M”.

Since the beam is cantilevered at x = 0 and free at x = L, a deflection function
(20.2) can be assumed which satisfies all of the boundary conditions at the ends of the
beam structures.

w(x) = a,x* +a,x’ 0<x<L 20.2
0 1

If one now utilizes the fact that at x = L;, a load W is applied in the negative z
direction, then at x = L; the transverse shear resultant /" and the beam bending moment
M are:

d*w(Ly) _

d’ d

V(L3) = _(E])3

(20.3)
d*w(Ly) _

M(L;) = ~(ED);, i

0

From (20.3) and (20.2), the constants @, and a, are found to be

w
a, =
6(EIl),

(20.4)
P
* " 2(ED,

Therefore the deflection w(x) is seen to be
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w , X ]
w(x) = 2ED), { Lx™+ ?J (20.5)

For Minimum Potential Energy only the form is used hence one can assume the
deflection to be

w(x) = A{— Lx* + ’g (20.6)

where 4 is the unknown constant to be found. Substituting (20.6) into (20.1) the result is

(El (ED,

V- j4A [ —2x+x ]dx+( ED), I4A [£2 = 2L + x?]ax

(20.7)

(EI)3 J-4A (2 =220+ x|+ b J'zA[—L3 +x]dx + Ww(L,)

L

which after performing the integration, can be written as

3
V= 2A2{(E1)[L§Ll - LL +51

L-0]

3]
+(E1)3[L§(L—L2)—L3(L2 )L ;Lsz }}
-1’1 2 [—L‘]

+ (EI)2|:L§(L2 —L)-Ly(L3 - L})+
(20.8)

+2bMPA{ Ly(L,— L)+

Now setting 6 V' =0, the constant 4 is found to be
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;WLi—;bM{L(L L)+L - L]
A= N (20.9)
(ED), {EL LL2+L—
3]
+(ET), {E(L ~L)- L(LZ—L2)+L 3L3}
+(EI){L(L L))~ LI L)+L LS}
[

Because in experiments performed the beam tip deflection is measured, the tip deflection
is seen to be:

w(L)=w(L;)+ L, )(L L)) (20.10)
dx
where ;L) —AL’. The final expression for w(L) is
X
1 16 5 p 1 2 1o LZ_Lf
—W|-L,-LL, |[+bM ELL378L3 —-L(L,-L)+
w(L) = (20.11)
2 2 L?—|
(EI)1 L3L1 *L3L1 5
3]
2 2 2 L32_Lﬂ
+(E[)2 L3(L2_Ll)_L3(L2_L])+TJ
2 2 2 L37L32—|
+(E])3 L3(L_L2)_L3(L _L2)+ 3 Jﬁ

This is a typical problem that can be solved for a piezoelectric structure. For
brevity, further examples will not be given in this text but recent literature will provided
the reader with many other examples, such as those by Abramovich [20.2, 20.3]
Aldraihem and Khdeir [20.4], Eisenberger and Abramovich [20.5], Azzouz, Mei, Bevan
and Ro [20.6], Abramovich and Pletner [20.7], Donthireddy and Chandrashekhara [20.8],
and Crawley and de Luis [18.8].

Note, if the piezoelectric couples are used to produce an in-plane extension as
well as a constant moment (as in this example) then the in-plane displacement, u,, terms

in (14.2) must be retained.

If the piezoelectric patches actuation and/or the applied mechanical load are
dynamic loads, then Hamilton’s Principle is employed as discussed in previous chapters
to obtain solutions.
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minimum buckling load
minimum potential energy
minimum weight optimization
modal damping

mode shape

moderately thick beam
modified Bessel function
modulus of elasticity

Mohr’s circle

moisture
absorption
effects
shift factor

moment
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momentary creep tests
monocell buckling
monocoque plate

natural
boundary conditions
circular frequency
frequencies

vibration

vibration of beams

vibration of plates
Navier

non-homogeneous boundary
conditions
nonlinear theory
nonlinear vibration
normal
stresses
surface tractions
nuclear blast loading

open circuit piezoelectric laminate
optimum
angle
buckling stress
face stress
panel weight
stacking sequences
orthotropic
elasticity tensor
material
plate
oscillating load
overall buckling

overdeflected
overstressed

Pasternak foundation
panel weight
perturbation
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actuation

actuators

beam

ceramics

coefficients

effects

materials

patches

plates

properties

strain coefficient

strain constants

stress couple

stress resultant

structure

layers

voltage coefficient
plane strain bulk modulus
plasticity

effects

reduction factor
plate

buckling

element

of varying thickness

with edges supported by beams

thickening

vibration
ply thickness
Poisson’s ratio

Poisson’s ratio effects
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vector
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direction
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polymer matrix
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potential energy

preform

preliminary design

prepreg

principal material direction
Principle of Virtual Displacements
proportional limit

PVC foam

PZT

Quasi-Isotropic Composites

Reissner functional
Reissner’s Variational Theorem
relative humidity
resonant vibrations
rigid surface contact
ring
load
theory
rods
rotation

rotational restraints
rotatory inertia
Rule of Mixtures

sandwich plate

scalar potential
self equilibrium of thermal stresses
sensors
separable solutions
separation of variables
shear
buckling
buckling stress coefficients
factor
layer
load
memory alloys
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resultant
strain
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stress
stress-strain relations
shell
shell theory
ship construction
shock loads
short fiber composites
simply supported
beam
column
edge

plate
sine pulse
smart

fin

materials

structures

wings
solid core
solid core sandwich panels
solid state devices
specially orthotropic composites

spring-mass system
square cell honeycomb core
stacking sequence
steady state temperature distribution
stepped pulse
stepped triangular pulse
stiffness critical structure
stiffness matrix
stiffness-to-density ratio
strain

- displacement relations

energy
energy density functions
hardening
tensor
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strength-to-density ratio
stress
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- boundary conditions
couple

discontinuities

- displacement relations
free temperature
resultant

resultant in-plane displacement
relationship
- strain relations

- tensor
stretching of a circular plate
stretching-shearing coupling
structural axes
structural coordinate system
structural health monitor
St. Venant’s Principle
superposition integral
surface

shear stresses

tractions

T300/934 graphite/epoxy
T300-5208 graphite/epoxy
tangent modulus
temperature shift factor
tensile load
tensile strength
tensor
calculus
notation
shear strain
strain
textile composites
Theorem of Castigliano
Theorem of Minimum
Complementary Energy
Theorem of Minimum Potential
Energy

thermal
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buckling
effects

expansion

loads

shock

strain relations

strains

stresses

stress couple

stress resultant
thermoelastic

beam

circular plate

isotropic plate

rectangular plate
three dimensional elasticity theory
thru dimensional solid
time dependent forces
time-temperature effects
torque
torsional load
torsional stiffness
transformation of variables
transient heating and cooling
translation
transverse

isotropy

modulus

normal deformation

normal stress

shear coefficient

shear deformation

shear flexibility parameter
shear loads
shear resultant

shear stiffness
shear stress
temperature distribution
trial function
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triangular pulse 263, 264
truss core 308, 318, 325
truss-core sandwich panel 318-324, 332-336, 339, 353-356, 365-368, 374
turbulent flow 316
twist 191, 278
twisting deformation 191
twisting moment 41
twisting stress couple 20, 24
twisting-stretching coupling 192,274
ultimate strength 170, 257, 302, 303, 347, 350, 351
ultimate stress 45
uniaxial load 133
unidirectional
composite material 167, 168, 176-184, 228, 303, 368
fibers 363
laminate 192, 213, 215, 373, 374
uniform
heating and cooling 63
in-plane loading 284
lateral load 35,43, 44,74, 75, 126, 213, 225, 232, 278-283, 285
temperature 52,54, 318
universal relationship 345, 347, 355, 357, 366, 369
variation 122, 124-126, 136, 143-147, 149, 151, 277, 280,
285, 289
velocity 130, 131
vibration 22,121, 131, 148, 257-269, 298, 340
modes 34,99, 115-119, 249, 257
amplitude 118, 257
of beams 115, 120, 130, 150-155, 249
viscoelastic
core 385, 387
effects 174, 175, 239
foundation 230
material 387
voltage 379, 380, 384
water ski 234,236
wave number 107, 286
web
angle 318, 324, 332, 365
buckling 319, 322, 324, 325, 327, 329, 332, 334
core 308, 325
stress 327

thickness 318, 324, 332, 365
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web-core sandwich panel
weight density
weight relationship

weighting function
windmill blade

Winkler foundation

woven composite materials

yield
strains
stress
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Oscillations of Mechanical Systems. 2000 ISBN 0-7923-6470-8
S.D. Akbarov and A.N. Guz: Mechanics of Curved Composites. 2000 ISBN 0-7923-6477-5
M.B. Rubin: Cosserat Theories: Shells, Rods and Points. 2000 ISBN 0-7923-6489-9
S. Pellegrino and S.D. Guest (eds.): IUTAM-IASS Symposium on Deployable Structures: Theory
and Applications. Proceedings of the IUTAM-IASS Symposium held in Cambridge, U.K., 6-9
September 1998. 2000 ISBN 0-7923-6516-X
A.D. Rosato and D.L. Blackmore (eds.): IUTAM Symposium on Segregation in Granular
Flows. Proceedings of the IUTAM Symposium held in Cape May, NJ, U.S.A., June 5-10,
1999. 2000 ISBN 0-7923-6547-X
A. Lagarde (ed.): IUTAM Symposium on Advanced Optical Methods and Applications in Solid
Mechanics. Proceedings of the IUTAM Symposium held in Futuroscope, Poitiers, France,
August 31-September 4, 1998. 2000 ISBN 0-7923-6604-2
D. Weichert and G. Maier (eds.): Inelastic Analysis of Structures under Variable Loads. Theory
and Engineering Applications. 2000 ISBN 0-7923-6645-X
T.-J. Chuang and J.W. Rudnicki (eds.): Multiscale Deformation and Fracture in Materials and
Structures. The James R. Rice 60th Anniversary Volume. 2001 ISBN 0-7923-6718-9
S. Narayanan and R.N. Iyengar (eds.): IUTAM Symposium on Nonlinearity and Stochastic
Structural Dynamics. Proceedings of the [IUTAM Symposium held in Madras, Chennai, India,
4-8 January 1999 ISBN 0-7923-6733-2
S. Murakami and N. Ohno (eds.): IUTAM Symposium on Creep in Structures. Proceedings of
the IUTAM Symposium held in Nagoya, Japan, 3-7 April 2000. 2001 ISBN 0-7923-6737-5
W. Ehlers (ed.): IUTAM Symposium on Theoretical and Numerical Methods in Continuum
Mechanics of Porous Materials. Proceedings of the [IUTAM Symposium held at the University

of Stuttgart, Germany, September 5-10, 1999. 2001 ISBN 0-7923-6766-9
D. Durban, D. Givoli and J.G. Simmonds (eds.): Advances in the Mechanis of Plates and Shells
The Avinoam Libai Anniversary Volume. 2001 ISBN 0-7923-6785-5

U. Gabbert and H.-S. Tzou (eds.): IUTAM Symposium on Smart Structures and Structonic Sys-
tems. Proceedings of the IUTAM Symposium held in Magdeburg, Germany, 26-29 September
2000. 2001 ISBN 0-7923-6968-8
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Y. Ivanov, V. Cheshkov and M. Natova: Polymer Composite Materials — Interface Phenomena
& Processes. 2001 ISBN 0-7923-7008-2
R.C. McPhedran, L.C. Botten and N.A. Nicorovici (eds.): IUTAM Symposium on Mechanical
and Electromagnetic Waves in Structured Media. Proceedings of the [IUTAM Symposium held
in Sydney, NSW, Australia, 18-22 Januari 1999. 2001 ISBN 0-7923-7038-4
D.A. Sotiropoulos (ed.): IUTAM Symposium on Mechanical Waves for Composite Structures
Characterization. Proceedings of the IUTAM Symposium held in Chania, Crete, Greece, June
14-17, 2000. 2001 ISBN 0-7923-7164-X
V.M. Alexandrov and D.A. Pozharskii: Three-Dimensional Contact Problems. 2001

ISBN 0-7923-7165-8
J.P. Dempsey and H.H. Shen (eds.): IUTAM Symposium on Scaling Laws in Ice Mechanics
and Ice Dynamics. Proceedings of the IUTAM Symposium held in Fairbanks, Alaska, U.S.A.,
13-16 June 2000. 2001 ISBN 1-4020-0171-1
U. Kirsch: Design-Oriented Analysis of Structures. A Unified Approach. 2002

ISBN 1-4020-0443-5
A. Preumont: Vibration Control of Active Structures. An Introduction (2™ Edition). 2002

ISBN 1-4020-0496-6
B.L. Karihaloo (ed.): IUTAM Symposium on Analytical and Computational Fracture Mechan-
ics of Non-Homogeneous Materials. Proceedings of the IUTAM Symposium held in Cardiff,

U.K., 18-22 June 2001. 2002 ISBN 1-4020-0510-5
S.M. Han and H. Benaroya: Nonlinear and Stochastic Dynamics of Compliant Offshore Struc-
tures. 2002 ISBN 1-4020-0573-3

A.M. Linkov: Boundary Integral Equations in Elasticity Theory. 2002
ISBN 1-4020-0574-1
L.P. Lebedev, LI. Vorovich and G.M.L. Gladwell: Functional Analysis. Applications in Me-
chanics and Inverse Problems (2% Edition). 2002
ISBN 1-4020-0667-5; Pb: 1-4020-0756-6
Q.P. Sun (ed.): IUTAM Symposium on Mechanics of Martensitic Phase Transformation in
Solids. Proceedings of the [IUTAM Symposium held in Hong Kong, China, 11-15 June 2001.
2002 ISBN 1-4020-0741-8
M.L. Munjal (ed.): IUTAM Symposium on Designing for Quietness. Proceedings of the [UTAM
Symposium held in Bangkok, India, 12-14 December 2000. 2002 ISBN 1-4020-0765-5
J.A.C. Martins and M.D.P. Monteiro Marques (eds.): Contact Mechanics. Proceedings of the

37 Contact Mechanics International Symposium, Praia da Consolagio, Peniche, Portugal,
17-21 June 2001. 2002 ISBN 1-4020-0811-2
H.R. Drew and S. Pellegrino (eds.): New Approaches to Structural Mechanics, Shells and
Biological Structures. 2002 ISBN 1-4020-0862-7
J.R. Vinson and R.L. Sierakowski: The Behavior of Structures Composed of Composite Ma-
terials. Second Edition. 2002 ISBN 1-4020-0904-6
Not yet published.

J.R. Barber: Elasticity. Second Edition. 2002  ISBN Hb 1-4020-0964-X; Pb 1-4020-0966-6
C. Miehe (ed.): IUTAM Symposium on Computational Mechanics of Solid Materials at Large
Strains. Proceedings of the IUTAM Symposium held in Stuttgart, Germany, 20-24 August
2001. 2003 ISBN 1-4020-1170-9
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P. Stahle and K.G. Sundin (eds.): IUTAM Symposium on Field Analyses for Determination
of Material Parameters — Experimental and Numerical Aspects. Proceedings of the [IUTAM
Symposium held in Abisko National Park, Kiruna, Sweden, July 31 — August 4, 2000. 2003
ISBN 1-4020-1283-7
N. Sri Namachchivaya and Y.K. Lin (eds.): IUTAM Symposium on Nonlnear Stochastic Dynam-
ics. Proceedings of the IUTAM Symposium held in Monticello, IL, USA, 26 — 30 August,

2000. 2003 ISBN 1-4020-1471-6
H. Sobieckzky (ed.): IUTAM Symposium Transsonicum IV. Proceedings of the [UTAM Sym-
posium held in Gottingen, Germany, 2—-6 September 2002, 2003 ISBN 1-4020-1608-5

J.-C. Samin and P. Fisette: Symbolic Modeling of Multibody Systems. 2003

ISBN 1-4020-1629-8
A.B. Movchan (ed.): IUTAM Symposium on Asymptotics, Singularities and Homogenisation
in Problems of Mechanics. Proceedings of the [UTAM Symposium held in Liverpool, United
Kingdom, 8-11 July 2002. 2003 ISBN 1-4020-1780-4
S. Ahzi, M. Cherkaoui, M.A. Khaleel, H.M. Zbib, M.A. Zikry and B. LaMatina (eds.): [UTAM
Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of
Engineering Materials. Proceedings of the [IUTAM Symposium held in Marrakech, Morocco,
20-25 October 2002. 2004 ISBN 1-4020-1861-4
H. Kitagawa and Y. Shibutani (eds.): IUTAM Symposium on Mesoscopic Dynamics of Fracture
Process and Materials Strength. Proceedings of the [IUTAM Symposium held in Osaka, Japan,
6-11 July 2003. Volume in celebration of Professor Kitagawa’s retirement. 2004

ISBN 1-4020-2037-6
E.H. Dowell, R.L. Clark, D. Cox, H.C. Curtiss, Jr., K.C. Hall, D.A. Peters, R.H. Scanlan, E.
Simiu, F. Sisto and D. Tang: A Modern Course in Aeroelasticity. 4th Edition, 2004

ISBN 1-4020-2039-2
T. Burczyniski and A. Osyczka (eds.): IUTAM Symposium on Evolutionary Methods in Mechan-
ics. Proceedings of the IUTAM Symposium held in Cracow, Poland, 24-27 September 2002.
2004 ISBN 1-4020-2266-2
D. Iesan: Thermoelastic Models of Continua. 2004 ISBN 1-4020-2309-X
G.M.L. Gladwell: Inverse Problems in Vibration. Second Edition. 2004 ISBN 1-4020-2670-6
J.R. Vinson: Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials,

Including Sandwich Construction. 2005 ISBN 1-4020-3110-6
Forthcoming

G. Rega and F. Vestroni (eds.): IUTAM Symposium on Chaotic Dynamics and Control of
Systems and Processes in Mechanics. 2005 ISBN 1-4020-3267-6
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