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PREFACE

 Plates and panels are primary structural components in many structures from

space vehicles, aircraft, automobiles, buildings and homes, bridges decks, ships, and 

submarines.  The ability to design, analyze, optimize and select the proper materials and 

architecture for plates and panels is a necessity for all structural designers and analysts,

whether the adjective in front of the “engineer” on their degree reads aerospace, civil,

materials or mechanical.

 This text is broken into four parts.  The first part deals with the behavior of 

isotropic plates.  Most metals and pure polymeric materials used in structures are 

isotropic, hence this part covers plates and panels using metallic and polymeric materials.

 The second part involves plates and panels of composite materials.  Because these 

fiber reinforced matrix materials can be designed for the particular geometry and loading,

they are very often anisotropic with the properties being functions of how the fibers are

aligned, their volume fraction, and of course the fiber and matrix materials used.  In

general, plate and panel structures involving composite materials will weigh less than a 

plate or panel of metallic material with the same loads and boundary conditions, as well

as being more corrosion resistant.  Hence, modern structural engineers must be 

knowledgeable in the more complicated anisotropic material usage for composite plates 

and panels. 

 Sandwich plates and panels offer spectacular advantages over the monocoque 

constructions treated above.  By having suitable face and core materials, isotropic or 

anisotropic, sandwich plates and panels subjected to bending loads can be 300 times as 

stiff in bending, with face stresses 1/30 of those using a monocoque construction of a

thickness equal to the two faces of the sandwich.  Thus, for only the additional weight of 

the light core material, the spectacular advantages of sandwich construction can be

attained.  In Part 3, the analyses, design and optimization of isotropic and anisotropic

sandwich plates and panels are presented.

 In Part 4, the use of piezoelectric materials in beams, plates and panels are treated.

Piezoelectric materials are those that when an electrical voltage is applied, the effects are

tensile, compressive or shear strains in the material.  Conversely, with piezoelectric

materials, when loads cause tensile, compressive or shear strains, an electrical voltage is

generated.  Thus, piezoelectric materials can be used as damage sensors, used to achieve 

a planned structural response due to an electrical signal, or to increase damping. 

Piezoelectric materials are often referred to as smart or intelligent materials.  The means

to describe this behavior and incorporate this behavior into beam, plate and panel

construction is the theme of Part 4.

 This book is intended for three purposes: as an undergraduate textbook for those

students who have taken a mechanics of material course, as a graduate textbook, and as a 

reference for practicing engineers.  It therefore provides the fundamentals of plate and 

panel behavior.  It does not include all of the latest research information nor the

complications associated with numerous complex structures – but those structures can be

studied and analyzed better using the information provided herein.



xvi

 Several hundred problems are given at the end of Chapters.  Most if not all of 

these problems are homework and exam problems used by the author over several 

decades of teaching this material.  Appreciation is expressed to Alejandro Rivera, who as

the first student to take the course using this text, worked most of the problems at the end 

of the chapters.  These solutions will be the basis of a solutions manual which will be 

available to professors using this text who contact me.

 Special thanks is given to James T. Arters, Research Assistant, who has typed this

entire manuscript including all of its many changes and enhancements.  Finally, many

thanks are given to Dr. Moti Leibowitz who reviewed and offered significant suggestions

toward improving Chapter 18, 19 and 20.



CHAPTER 1

EQUATIONS OF LINEAR ELASTICITY IN CARTESIAN COORDINATES

References [1.1-1.6]
*
 derive in detail the formulation of the governing differential

equations of elasticity.  Those derivations will not be repeated here, but rather the

equations are presented and then utilized to systematically make certain assumptions in 

the process of deriving the governing equations for rectangular plates and beams.

1.1  Stresses

Consider an elastic body of any general shape.  Consider the material to be a 

continuum, ignoring its crystalline structure and its grain boundaries.  Also consider the

continuum to be homogeneous, i.e., no variation of material properties with respect to the

spatial coordinates.  Then, consider a material point anywhere in the interior of the elastict

body.  If one assigns a Cartesian reference frame with axes x, y and z, shown in Figure 

1.1, it is then convenient to assign a rectangular parallelepiped shape to the material

point, and label it a control element of dimensions dt xdd , dyd  and dzdd .  The control element is

defined to be infinitesimally small compared to the size of the elastic body, yet infinitely

large compared to elements of the molecular structure, in order that the material can be 

considered a continuum.

On the surfaces of the control element there can exist both normal stresses (those 

perpendicular to the plane of the face) and shear stresses (those parallel to the plane of 

the face).  On any one face these three stress components comprise a vector, called a

surface traction.

It is important to note the sign convention and the meaning of the subscripts of 

these surfaces stresses.  For a stress component on a positive face, that is, a face whose 

outer normal is in the direction of a positive axis, that stress component is positive when

it is directed in the direction of that positive axis.  Conversely, when a stress is on a

negative face of the control element, it is positive when it is directed in the negative axis 

direction.  This procedure is followed in Figure 1.1.  Also, the first subscript of any stress

component on any face signifies the axis to which the outer normal of that face is

parallel.  The second subscript refers to the axis to which that stress component is

parallel.  In the case of normal stresses the subscripts are seen to be repeated and often

the two subscripts are shortened to one, i.e. iii where i = x, y or z.

*
 Numbers in brackets refer to references given at the end of chapters.
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Figure 1.1.  Control element in an elastic body showing positive direction of stresses. 

1.2  Displacements

The displacements u, v and w are parallel to the x, y and z axes respectively and z

are positive when in the positive axis direction.

1.3  Strains

 Strains in an elastic body are also of two types, extensional and shear.  

Extensional strains, where i = x, y or z, are directed parallel to each of the axes 

respectively and are a measure of the change in dimension of the control volume in the 

subscripted direction due to the normal stresses acting on all surfaces of the control

volume.  Looking at Figure 1.2, one can define shear strains.

 The shear strain ji (where i and j =j x, y or z, and i j) is a change of angle.  As

an example shown in Figure 1.2, in the x-y-  plane, defining xy to be

2
xy       (in radians),                             (1.1) 

then,

xyxy
2

1
.                                                       (1.2) 
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Figure 1.2.  Shearing of a control element.

 It is important to define the shear strain xy  to be one half the angle xy  in order 

to use tensor notation.  However, in many texts and papers the shear strain is defined as

xy .  Care must be taken to insure awareness of which definition is used when reading or 

utilizing a text or research paper, to obtain correct results in subsequent analysis. 

Sometimes ij  is termed tensor strain, and xy is referred to as engineering shear strain

(not a tensor quantity).

 The rules regarding subscripts of strains are identical to those of stresses 

presented earlier. 

1.4  Isotropy and Its Elastic Constants

 An isotropic material is one in which the mechanical and physical properties do 

not vary with orientation.  In mathematically modeling an isotropic material, the constant 

of proportionality between a normal stress and the resulting extensional strain, in the

sense of tensile tests is called the modulus of elasticity, E.

 Similarly, from mechanics of materials, the proportionality between shear stress

and the resulting angle ij  described earlier, in a state of pure shear, is called the shear 

modulus, G.

 One final quantity must be defined – the Poisson’s ratio, denoted by .  It is 

defined as the ratio of the negative of the strain in the j direction to the strain in thej i

direction caused by a stress in the i direction, ii .  With this definition it is a positive

quantity of magnitude 0  0.5, for all isotropic materials. 
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The well known relationship between the modulus of elasticity, the shear modulus 

and Poisson’s ratio for an isotropic material should be remembered:

)1(2

E
G .                                                     (1.3)

It must also be remembered that (1.3) can only be used for isotropic materials.

The basic equations of elasticity for a control element of an elastic body in a 

Cartesian reference frame can now be written.  They are written in detail in the following

sections and the compact Einsteinian notation of tensor calculus is also provided.

1.5  Equilibrium Equations

A material point within an elastic body can be acted on by two types of forces:

body forces ( iFi ) and surface tractions.  The former are forces which are proportional to

the mass, such as magnetic forces.  Because the material is homogeneous, the body forces

can be considered to be proportional to the volume.  The latter involve stresses caused by 

neighboring control elements.

Figure 1.3.  Control element showing variation of stresses. 



5

 Figure 1.1 is repeated above, but in Figure 1.3, the provision for stresses varying

with respect to space is provided.  Thus on the back face the stress x is shown, while on

the front face that stress value differs because x  is a function of x; hence, its value is 

xxxx dxx)/( xx .  Also shown are the appropriate expressions for the shear stresses.

 The body forces per unit volume, iFi (i = x, y, z) are proportional to mass and, as

stated before, because the body is homogeneous, are proportional to volume.

 The summation of forces in the x direction can be written as

.0ddddd

ddddddd

dddddd

zddydxddFydxdd

zddxddzddydydxddzdd
z

zddxddyd
y

zddydxdd
x

xFzx

yxx
zx

zx

yx

yx
x

x

                        (1.4)

After cancellations, every term is multiplied by the volume, which upon division by the

volume, results in 

.0x
zxyxx Fx

zyx
                                        (1.5) 

Likewise, in the y and z direction, the equilibrium equations are:z

0y

zyyxy
Fy

zyx
                                        (1.6)

.0z
zyzxz Fz

zyx
                                        (1.7)

 In the compact Einsteinian notation, the above three equilibrium equations are

written as

0, iki Fik
   (i, k =k x, y, z)                                         (1.8)

where this is the ith equation, and the repeated subscripts k refer to each term beingk

repeated in x, y and z, and where the comma means partial differentiation with respect to

the subsequent subscript. 
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1.6  Stress-Strain Relations

 The relationship between the stresses and strains at a material point in a three

dimensional body mathematically describe the way the elastic material behaves.  They

are often referred to as the constitutive equations and are given below without derivation,

because easy reference to many texts on elasticity can be made, such as [1.1 - 1.7].

1
yx

E
,

1
yy

E
   (1.9), (1.10)

1
yz

E
, xyxy

G2

1
  (1.11), (1.12)

yzyz
G2

1
, zxzx

G2

1
  (1.13), (1.14) 

 From (1.9) the proportionality between the strain x  and the stress x is clearly

seen.  It is also seen that stresses y  and z affect the strain x , due to the Poisson’s

ratio effect. 

 Similarly, in (1.12) the proportionality between the shear strain xy and the shear 

stress xy is clearly seen, the number ‘two’ being present due to the definition of xy

given in (1.2).

 In the compact Einsteinian notation, the above six equations can be written as 

klijklij a                                                      (1.15) 

where ijkla  is the generalized compliance tensor. 

1.7  Linear Strain-Displacement Relations

 The strain-displacement relations are the kinematic equations relating the 

displacements that result from an elastic body being strained due to applied loads, or the 

strains that occur in the material when an elastic body is physically displaced. 

x

u
x

xx
,

y

v
y

yy
 (1.16), (1.17)

z

w
z

zz
,

x

v

y

u
xy

2

1
  (1.18), (1.19) 
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x

w

z

u
xz

2

1
,

y

w

z

v
yz

2

1
   (1.20), (1.21)

In compact Einsteinian notation, these six equations are written as: 

)(
2

1
,, ij jiij uu    (i, j = x, y, z)   (1.22)

1.8  Compatibility Equations

The purpose of the compatibility equations is to insure that the displacements of 

an elastic body are single-valued and continuous.  They can be written as:

zyxxzy

xyzxyzxx

2

                                  (1.23)

xzyyxz

yzxyzxyy

2

                                  (1.24) 

yxzzyx

zxyzxyzz

2

                                  (1.25)

2

2

2

22

2
xyyx

yyxxxy

xxyyyyxx
,

2

2

2

22

2
yzzy

zzyyyz

yyzzzzyy
  (1.26), (1.27) 

2

2

2

22

2
zxxz

xxzzzx

zzxxxxzz
                                          (1.28) 

In compact Einsteinian notation, the compatibility equations are written as 

follows:

0,,,, ikjlijkl jlikklij    (i, j, k, l =l x, y, z).                      (1.29)

However, in all of what follows herein, namely treating plates and beams,

invariably the governing differential equations are placed in terms of displacements, and 

if the solutions are functions which are single-valued and continuous, it is not necessary

to utilize the compatibility equations. 
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1.9  Summary

 It can be shown that both the stress and strain tensor quantities are symmetric, i.e.,

jiijjiij and    (i, j =j x, y, z).                               (1.30)

 Therefore, for the elastic solid there are fifteen independent variables; six stress

components, six strain components and three displacements. In the case where

compatibility is satisfied, there are fifteen equations: three equilibrium equations, six

constitutive relations and six strain-displacement equations.

 For a rather complete discussion [1.7] of the equations of elasticity for anisotropic

materials, see Chapter 10 of this text.
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1.11  Problems 

1.1. Prove that the stresses are symmetric, i.e., jiij .

 (Suggestion: take moments about the x, y and z axes.)z

1.2. When v = 0.5 a material is called ‘incompressible’.  Prove that for v = 0.5, under 

any set of stresses, the control volume of Figure 1.1 will not change volume when

subjected to applied stresses. 

1.3. An elastic body has the following strain field:

22

222

22

2

2

432

zy

zyx

yxyx

zz

yy

xx

22

22

23

32

0

yz

zy

xz

yz

xy
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Does this strain field satisfy compatibility?  Note: compatibility is not satisfied if 

any one or more of the compatibility equations is violated. 



CHAPTER 2

DERIVATION OF THE GOVERNING EQUATIONS FOR ISOTROPIC

RECTANGULAR PLATES

This approach in this chapter is to systematically derive the governing equations

for an isotropic classical, thin elastic isotropic rectangular plate.  Analogous derivations

are given in [2.1 - 2.8].

2.1  Assumptions of Plate Theory

In classical, linear thin plate theory, there are a number of assumptions that are

necessary in order to reduce the three dimensional equations of elasticity to a two 

dimensional set that can be solved.  Consider an elastic body shown in Figure 2.1,

comprising the region ax0 , by0  and 2/2/ hzh , such that h << a and    

h << b.  This is called a plate.

Figure 2.1.  Rectangular plate.

The following assumptions are made.

1. A lineal element of the plate extending through the plate thickness, normal to the

mid surface, x-y- plane, in the unstressed state, upon the application of load:

a. undergoes at most a translation and a rotation with respect to the original 

coordinate system;

b. remains normal to the deformed middle surface.

2. A plate resists lateral and in-plane loads by bending, transverse shear stresses, and 

in-plane action, not through block like compression or tension in the plate in the
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thickness direction.  This assumption results from the fact that h/a << 1 and        

h/b << 1.

From 1a the following is implied: 

3. A lineal element through the thickness does not elongate or contract.

4. The lineal element remains straight upon load application.

In addition, 

5. St. Venant’s Principle applies. 

It is seen from 1a that the most general form for the two in-plane displacements is:

),(),(),,( 0 yxzyxuzyxu                                         (2.1)

),(),(),,( 0 yxzyxvzyxv (                                          (2.2) 

where 0u and 0v  are the in-plane middle surface displacements (z((  = 0), and z  and  are

rotations as yet undefined.  Assumption 3 requires that 0z , which in turn means that 

the lateral deflection w is at most (from Equation 1.18) 

w = w(x(( , y).                                                       (2.3)

Also, Equations (1.11) is ignored. 

 Assumption 4 requires that for any z, both constantxz and constantyz at any

specific location (x(( , y) on the plate middle surface for all z.  Assumption 1b requires that 

the constant is zero, hence 

.0yzxz

Assumption 2 means that 0z  in the stress strain relations. 

 Incidentally, the assumptions above are identical to those of thin classical beam, 

ring and shell theory.

2.2  Derivation of the Equilibrium Equations for a Rectangular Plate 

 Figure 2.2 shows the positive directions of stress quantities to be defined when the 

plate is subjected to lateral and in-plane loads. 

The stress couples are defined as follows: 
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Figure 2.2.  Positive directions of stress resultants and couples. 

2/

2/

d

h

h

xx xddzM                                                   (2.4)

2/

2/

d

h

h

yy zddzM                                                   (2.5)

2/

2/

d

h

h

xyxy zddzM                                                  (2.6)

xy

h

h

yxyx MzzM

2/

2/

dzz .                                            (2.7)

Physically, it is seen that the stress couple is the summation of the moment about 

the middle surface of all the stresses shown acting on all of the infinitesimal control

elements through the plate thickness at a location (x(( , y).  In the limit the summation is

replaced by the integration.

Similarly, the shear resultants are defined as,

2/

2/

d

h

h

xzx zddQ                                                     (2.8)
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2/

2/

d

h

h

yzy zddQ .                                                    (2.9)

Again the shear resultant is physically the summation of all the shear stresses in the

thickness direction acting on all of the infinitesimal control elements across the thickness

of the plate at the location (x(( , y).

 Finally, the stress resultants are defined to be:

2/

2/

d

h

h

xx xddN                                                   (2.10)

2/

2/

d

h

h

yy zddN                                                   (2.11)

2/

2/

d

h

h

xyxy zddN                                                  (2.12)

xy

h

h

yxyx NzN

2/

2/

dzz                                            (2.13)

These then are the sum of all the in-plane stresses acting on all of the infinitesimal

control elements across the thickness of the plate at x, y.

Thus, in plate theory, the details of each control element under consideration are

disregarded when one integrates the stress quantities across the thickness h.  Instead of 

considering stresses at each material point one really deals with the integrated stress

quantities defined above.  The procedure to obtain the governing equations for plates

from the equations of elasticity is to perform certain integrations on them.

Proceeding, multiply Equation (1.5) by z dz zdd and integrate between –z h/2 and +h/2, as 

follows:

0d

2/

2/

zdd
z

z
y

z
x

z

h

h

xzxyx

0ddd

2/

2/

2/

2/

2/

2/

h

h

xz

h

h

xy

h

h

x zdd
z

zzddz
y

zddz
x

.0d

2/

2/

2/

2/

h

h

xz

h

h

xz

xyx zddz
y

M

x

M
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In the above, the order of differentiation and integration can be reversed because x and z

are orthogonal one to the other.  Looking at the third term, 0zxxz when there are 

no shear loads on the upper or lower plate surface.  If there are surface shear stresses then 

defining )1 xzx and )2 xzx , the results are shown below in Equation

(2.14).  It should also be noted that for plates supported on an edge, xz may not go to 

zero at 2/h , and so the theory is not accurate at that edge, but due to St. Venant’s

Principle, the solutions are satisfactory away from the edge supports.

.0)(
2

21 xxx

xyx Q
h

y

M

x

M
(   (2.14) 

Likewise Equation (1.6) becomes

0)(
2

21 yyy

yxy
Q

h

y

M

x

M
(  (2.15) 

where

).2/(and)2/( 21 hh yzyyzy

These two equations describe the moment equilibrium of a plate element.  Looking now

at Equations (1.7), multiplying it by dzdd , and integrating between –h/2 and +h/2, results in

0d

2/

2/

zdd
zyx

h

h

zzyzx

0

2/

2/

h

h

z

yx

y

Q

x

Q

0),(),( 21 yxpyxp
y

Q

x

Q yx   (2.16)

where ),2/(),(1 hyxp z )2 yp z .

One could also derive (2.16) by considering vertical equilibrium of a plate element 

shown in Figure 2.3.
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Figure 2.3.  Vertical forces on a plate element. 

One may ask why use is made of z in this equation and not in the stress-strain 

relation?  The foregoing is not really inconsistent, since z does not appear explicitly in

Equation (2.16) and once away from the surface the normal surface traction is absorbed 

by shear and in-plane stresses rather than by z in the plate interior, as stated previously

in Assumption 2. 

Similarly, multiplying Equations (1.5) and (1.6) by dzdd  and integrating across thez

plate thickness results in the plate equilibrium equations in the x and y directions 

respectively, in terms of the in-plane stress resultants and the surface shear stresses. 

0)( 21 xx

xyx

y

N

x

N
(   (2.17)

.0)( 21 yy

yxy

y

N

x

N
(  (2.18) 

2.3  Derivation of Plate Moment-Curvature Relations and Integrated Stress 

       Resultant-Displacement Relations 

 Now, the plate equations must be derived corresponding to the elastic stress strain 

relations.  The strains ,x y and xy  will not be used explicitly since the stresses have

been averaged by integrating through the thickness.  Hence, displacements are utilized. 

Thus, combining (1.9) through (1.21) gives the following, remembering that z  has been 

assumed zero in the interior of the plate and excluding Equation (1.11) for reasons given 

previously.

][
1

yx
Ex

u

xx
  (2.19)
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][
1

xy
Ey

v

yy
 (2.20)

xy
Gx

v

y

u

2

1

2

1

xxyy
 (2.21) 

yz
Gy

w

z

v

2

1

2

1

yyzz
  (2.22)

.
2

1

2

1
xz

Gz

u

x

w

zzxx
 (2.23) 

Next, recall the form of the admissible displacements resulting from the plate theory 

assumptions, given in (2.1) through (2.3): 

),(),(0 yxzyxuu  (2.24) 

),(),(0 yxzyxvv (   (2.25) 

only.),( yxww   (2.26)

In plate theory it is remembered that a lineal element through the plate will

experience translations, rotations, but no extensions or contractions. For these

assumptions to be valid, the lateral deflections are restricted to being small compared to

the plate thickness.  It is noted that if a plate is very thin, lateral loads can cause lateral

deflections many times the thickness and the plate then behaves largely as a membrane

because it has little or no bending resistance, i.e., 0D .

The assumptions of classical plate theory require that transverse shear deformation

be zero.  If 0yzxz  then from Equations (1.20) and (1.21)

,or  0
2

1

x

w

z

u

x

w

z

u

xxzzxxzz
   likewise 

.
y

w

z

v

yyzz

Hence, from Equations (2.24) through (2.26) and the above, it is seen that the rotations 

are

x

w

xx
  (2.27) 
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y

w

yy
  (2.28)

Using (2.24) and (2.19), multiplying (2.19) through by z dz zdd  and integrating from    z

–h/2 to +h/2, one obtains

.d][
1

dd

2/

2/

2/

2/

2

2/

2/

0

h

h

yx

h

h

h

h

zddz
E

zdd
x

zzddz
x

u
   (2.29)

Likewise (2.25) and (2.20) result in 

2/

2/

2/

2/

2

2/

2/

0 d][
1

dd

h

h

xy

h

h

h

h

zddz
E

zdd
y

zzddz
y

v
  (2.30) 

and Equations (2.24), (2.25) and (2.21) give 

.d
1

dd

2/

2/

2/

2/

22

2/

2/

00

h

h

xy

h

h

h

h

zddz
G

zdd
x

z
y

zzddz
x

v

y

u
   (2.31) 

Integrating (2.29), (2.30) and (2.31), and using (2.27) and (2.28)

2

233

12

1

12 x

wh

Ex

h
y

xxxx
  (2.32) 

2

233

12

1

12 y

wh

Ey

h
y

yyyy
  (2.33) 

.
6

1

12

233

yx

wh
M

Gxy

h
xy

yyxxxxyy
 (2.34) 

Since )1(2/EG    (2.35) 

)1(12
   where)1(

2

32 Eh
D

yx

w
DM xy .   (2.36)

Solving (2.32) and (2.33) for yx MM and  results in,

2

2

2

2

y

w

x

w
DM x  (2.37)
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.
2

2

2

2

x

w

y

w
DM y   (2.38) 

Equations (2.36) through (2.38) are known as the moment-curvature relations, and D is 

seen to be the flexural stiffness of the plate per unit width.  It is seen also that the 

curvatures in these moment-curvature relations for classical theory are: 

2

2

2

2

,
y

w

yx

w

x
yx

yyyyxxxx

(2.39)

yx

w

xy
xy

yyxxxxyy

2

 Likewise, substituting (2.37) and (2.38) into Equations (2.14) and (2.15) results in 

)(
2

)( 21

2

xxx

h
w

x
DQ (

xx

(2.40)

).(
2

)( 21

2

yyy

h
w

y
DQ (

yy

In the above the two dimensional Laplacian operator 2 is defined as follows: 

.
2

2

2

2
2

y

w

x

w
w

yyxx

Also using Equations (2.24) and (2.25) substituting them into Equations (2.19) through 

(2.21), then multiplying the latter three equations by dzdd , integrating across the thickness, 

results in the following integrated stress-strain relationships:

y

v

x

u
KN x

00   (2.41) 

x

u

y

v
KN y

00   (2.42) 

,00

x

v

y

u
GhNN yxxy   (2.43)

where ,)( 2 the plate extensional stiffness.  Equations (2.41) through (2.43)

describe the in-plane force and deformation behavior.
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2.4  Derivation of the Governing Differential Equations for a Plate

 The equations governing the lateral deflections, and the bending and shearing action 

of a plate can be summarized as follows: 

0)(
2

21 xxx

xyx h
Q

y

M

x

M
(  (2.44)

0)(
2

21 yyy

yxy h
Qy

y

M y

x

M x
(  (2.45) 

021 pp
y

Q

x

Q yx   (2.46)

2

2

2

2

y

w

x

w
DM x   (2.47)

2

2

2

2

x

w

y

w
DM y   (2.48)

.)1(
2

yx

w
DM xy

yyxx
  (2.49)

The equations governing the in-plane stress resultants and in-plane midsurface 

displacements are: 

0)( 21 xx

xyx

y

N

x

N
(  (2.50)

0)( 21 yy

yxy

y

N

x

N
(  (2.51) 

y

v

x

u
KN x

00   (2.52) 

x

u

y

v
KN y

00   (2.53)
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.00

x

v

y

u
GhN xy   (2.54) 

 It should be noted that in classical, thin plate theory the equations related to bending 

and shear, Equations (2.44) through (2.49), are completely uncoupled from the equations 

dealing with in-plane loads and displacements, Equations (2.50) through (2.54).  [Note[[ : in

Chapter 6, we shall see that when in-plane loads are sufficiently large, the in-plane loads

do indeed cause lateral displacements (buckling), but a more sophisticated theory will be 

evolved at that time]. 

 It should also be noted that the flexural stiffness D of the plate corresponds closely 

to the EI in beam theory, but is in terms of a unit width, and incorporates the Poisson’sI

ratio effect.  Likewise a similar correspondence exists between the extensional stiffness K

and the EA in beam theory. 

 Equations (2.44) through (2.54) are the eleven governing plate equations.  First note 

that the plate can only tell the difference between normal tractions on the upper and lower 

surface.  Hence, one can define p(x(( , y) as

).,(),(),( 21 yxpyxpyxp   (2.55)

Substituting (2.44) and (2.45) into (2.46) results in the following for the case of no shear 

stresses on the plate upper and lower surfaces:

.0),(2
2

22

2

2

yxp
y

M

yx

M

x

M yxyx  (2.56) 

Substituting (2.47) through (2.49) into (2.56) results in:

),(2
4

4

22

4

4

4

yxp
y

w

yx

w

x

w
D

yyyyxxxx

or

),4 yp  (2.57) 

where

)).(()(and
)()(

)( 224

2

2

2

2
2

yx
   (2.58) 

2 , the Laplacian operator, is really the sum of the curvatures in two orthogonal 

directions at the location x, y in the plate. 4 , the biharmonic operator, is the Laplacian 

of the Laplacian, and is physically, then, the sum of the curvatures of the sum of the 

curvatures in orthogonal directions.  One might say that it is a measure of ‘bulginess’. 
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Next, treating Equations (2.50) through (2.54) by substituting Equations (2.52)

through (2.54) into the two equilibrium equations, becomes, after considerable

manipulation, and for the case of no surface shear stresses,

00

4u  (2.59)

.00

4v  (2.60)

One never needs to use (2.59) and (2.60) but it shows a certain correspondence to (2.57) 

above.

For the bending vibrations of a plate, an inertial load per unit platform area is added 

as an equivalent force per unit area, i.e., d’Alembert’s Principle, resulting in Equations

(2.57) being modified, as seen below:

2

2
4

t

w
hpwD m  (2.61)

where m  is the mass density of the plate material, and t is the coordinate of time.  Here,t

),,( tyxww and ),,( tyxpp .  This modification can be made because the theory is

linear and superposition is possible.

In a plate of varying thickness, ),,( yxhh the following equation is derived rather 

than (2.57):

 )422 yp  (2.62)

where 4  is the die operator defined as 

.2),(
2

2

2

222

2

2

2

2
4

x

w

y

D

yx

w

yx

D

y

w

x

D
wD

xxyyyyxxyyxxyyxx
  (2.63) 

If a plate is on an elastic foundation, in which a linear foundation modulus k, in units of 

lbs/in/in
2
 can be defined, then Equation (2.57) is altered by adding in the additional 

lateral force per unit platform area: 

.),(4 kwyxpwD   (2.64) 

 Since classical linear elasticity is involved herein, superposition permits the writing 

of a vibrating plate on an elastic foundation as follows: 

.),,(
2

2
4 kw

t

w
htyxpwD m  (2.65)



23

2.5  Boundary Conditions for a Rectangular Plate

 First, the boundary conditions for the bending of a plate subjected to lateral loads,

Equation (2.57), will be discussed.  Additional boundary conditions for Equations (2.59)

and (2.60) for a plate subjected also to in-plane loads will be discussed later.

 Since (2.57) is a fourth order partial differential equation in x and y describing the

bending of a plate, four boundary conditions are needed on the x edges and four are 

needed on the y edges, i.e., two on each edge.  For the clamped and simply supported 

edges, knowledge of beam theory dictates the following:

For a clamped edge For a simply supported edge

0

0

n

w

w

0

0

nM

w
  (2.66) 

where n is the direction normal to the edge.

For a Free Edge

 Consider an x = constant free edge.  Since by definition a free edge has no loads 

applied to it, Figure 2.2 shows that ,x xyM  and xQ  all are zero on that edge.  Hence,

six boundary conditions must be satisfied on the two x = constant plate edges.  However,

the plate equation is only fourth order in x, hence one cannot specify more than two 

boundary conditions on each edge.  [Note: In a more advanced plate theory that includes 

the effects of transverse shear deformation, 0xz and 0yz , the governing equations 

are sixth order in both x and y and the problem discussed here does not occur.]
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Figure 2.4.  Development of the Kirchhoff boundary conditions for a free edge. 

To eliminate the problem, Kirchhoff proceeded as follows:  On the free x = constant 

edge, xM is set equal to zero. ,xyM  the twisting stress couple is considered to be a 

couple consisting of two forces of magnitude xyM separated by a small distance dyd , as

shown in Figure 2.4.  Since the stress couple xyM  is not constant in general along an

edge, nearby is another couple, yyMM xyxy dyy)/( yyMM .  It too can be regarded as two 

forces of magnitude yyMM xyxy dyy)/( yyM , separated by a distance dyd .  Therefore,

considering an infinitesimal region of the edge shown within the dotted line, it is seen

that there is a force xyM  positive downward, a force yyMM xyxy dyy)/( yyMM  positive 

upwards as well as the force due to the transverse shear resultant, ,yx  acting positive 

upwards.  These must equal zero, hence, 

0dd ydQyd
y

M
MM x

xy

xyxy

or

0
y

M
QV

xy

xxVV   (2.67) 

where xVx  is called the effective shear resultant on a free edge.

Physically it is seen that on the free edge neither xQ  nor xyM are zero, only the

relationship given by (2.67) is zero.  However, this approximation was found to have
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sufficient accuracy that it has been widely used in plate analysis and is known as the 

Kirchhoff Free Edge Boundary Condition.

Likewise on a y = constant free edge

0
x

M
QV

xy

yyVV   (2.68) 

and of course on either edge the other boundary condition is 

0nM   (2.69) 

where n refers to the directional normal to the edge. 

Edge Elastically Supported Against Deflection

 Suppose there exists a linear spring support at an edge of magnitude c lbs/in
2
.  Then

the boundary conditions become: 

0nM   (2.70) 

     0VnVV   (2.71) 

or using (2.67) and (2.36) 

0)2(
2

3

3

3

D

cw

sn

w

n

w
cw

s

M
Q ns

n   (2.72)

where s refers to the direction parallel to the edge. 

Edge Elastically Restrained Against Rotation

 Suppose there exists a torsional spring support at an edge of r in lbs/in.  Then ther

boundary conditions would be: 

0nVn  (2.73)

0
n

w
rM n

or using (2.37)

.0
2

2

2

2

n

w

D

r

s

w

n

w
  (2.74) 
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In-Plane Boundary Conditions

 In Section 2.4, it was seen that the governing equations involving the in-plane

forces and midsurface displacements are completely uncoupled from the equations,

involving bending, shear, lateral forces and lateral displacements, the boundary

conditions for which have been discussed above. 

 In the case of a plate not subjected to any prescribed in-plane loads or prescribed 

midsurface displacements at the boundaries, the solutions to Equations (2.59) and (2.60)

are simply as follows for all values of x and y.

.000 vu

 For other cases, the details of the in-plane boundary conditions of the plate structure

being analyzed must be studied in detail, to specify which boundary conditions should be

prescribed.  However through the use of variational procedures, which will be discussed 

in Chapter 9, it can be shown that the boundary conditions to use in solving Equations

(2.59) and (2.60) are:

For an x = constant edge: 

 Either 0u is prescribed or 0x

 and   (2.75)

 Either 0v  is prescribed or 0xyN

For a y = constant edge: 

 Either 0v  is prescribed or 0yN

 and   (2.76)

 Either 0u is prescribed or 0yxN .

2.6  Stress Distribution within a Plate

 In plate theory because all equations are integrated across the thickness only 

integrated stress quantities are obtained.  For stresses on a control element or material

point within a plate, one must assume a stress distribution.  This is done by means of an

analogy to beam theory.  Thus,

h

N

h

zM xx
x

12/3
 (2.77) 

h

N

h

zM yy

y
12/3

  (2.78)
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h

N

h

zM xyxy

xy
12/3

 (2.79)

42/
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3
2

xx
xz

S

h

z

h

Q
  (2.80) 

42/
1

2

3 2

yy

yz

S

h

z

h

Q
  (2.81)

where

2

2

2

1
2/

3
2/

21
2/

3
2/

21
h

z

h

z

h

z

h

z
S xxx    (2.82)

2

2

2

1
2/

3
2/

21
2/

3
2/

21
h

z

h

z

h

z

h

z
S yyy   (2.83)

It can easily be shown that these distributions satisfy the definitions of Equations

(2.4) through (2.13).  Equally important they satisfy the equilibrium equations of 

elasticity (1.5) and (1.6) exactly, and Equation (1.7) on the average.  Thus the stresses 

obtained through the use of plate theory (or beam, shell and ring theory) are not exact, in 

the sense of being three dimensional elasticity theory solutions, but they are very close to

the exact solution. 
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2.8  Problems

2.1. The governing equation for a rectangular plate subjected to a lateral distributed load 

p(x(( , y) are given by Equations (2.57).  However, when the plate is subjected to

surface shear stresses ,1x  ,2x y1  and ,2 y  additional terms are added which are

functions of those surface shear stresses, such that the equations can be written as:

),,,(),( 2121

4

yyxxeyxpwD (

),,,( 21210

4

yyxxfuK (KK

).,,,( 21210

4

yyxxgvK (KK

Starting with (2.44) on, and retaining the surface shear stress terms, find the 

functions e, f and f g.

2.2. Derive Equations (2.59) and (2.60), starting with Equations (2.50) through (2.54). 

2.3. Show that the stress distributions of Sections 2.6 do in fact satisfy the definitions of 

Equations (2.4) through (2.13). 

2.4. Show that the stress distributions of Section 2.6 satisfy Equations (1.5) and (1.6)

where the body forces 0i .  Do they satisfy Equations (1.7) with 0zFz ?  Do

they satisfy (1.7) on the average, i.e.,

?0d
1

2/

2/

zdd
zyxh

h

h

zyzxz

2.5. Starting with the pertinent elasticity equations, derive Equations (2.50) and (2.52). 

2.6. Consider the plate shown in Figure 2.1.  The plate is subjected to a constant in-

plane load in the y-direction, ,0NN y only. 

a. What are the stresses ,x y  and xy  in the plate? 

b. What are the displacements u, v and w in the plate?  Assume 00  along the  

y = 0 edge and 00 along the x = 0 edge. 



CHAPTER 3

SOLUTIONS TO PROBLEMS OF ISOTROPIC RECTANGULAR PLATES

3.1  Some General Solutions of the Biharmonic Equation

The governing equation for the bending of an isotropic, constant thickness,

rectangular plate subjected to lateral distributed loads is given by (2.57) and repeated 

below.

.
),(2

4

4

22

4

4

4
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yxp

y

w

yx

w
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w
w

yyyyxxxx
(3.1)

First, the homogeneous equation, 04w  is investigated.  It is interesting to do this in 

order to identify the functions that are characteristic of the two dimensional biharmonic 

equation in a Cartesian coordinate system. 

One of the most common methods used to solve this homogeneous equation is by 

separation of variables.  This process can be attempted when the boundary conditions are 

homogeneous.  We cannot count upon the separation of variables to yield all of the

complete exact solutions, but it will give all the separable solutions.  There may be others. 

Let

).()(),( yYxXyxw (3.2)

From (3.1) and (3.2), 

.02 IVIV XYYXYX

Dividing by XY gives Y

.02
Y

Y

Y

Y

X

X

X

X IVIV

(3.3)

The variables are still not separated, hence, let 

).(),(),(), ( yp
Y

Y
yk

Y

Y
xg

X

X
xf

X

X IVIV

Equation (3.3) becomes
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.0)()()(2)( ypykxgxf (3.4)

Differentiating with respect to x gives, 

0)()(2)( ykxgxf

or,

.0)(2
)(

)(
yk

xg

xf

For this to be true, then constant)(/)( xgxf  and k(kk y(( ) = constant. 

Thus,

  constant.)(2 yk2 (3.5)

 Similarly differentiating (3.4) with respect to y gives 

0)()()(2 ypykxg

.0)(2
)(

)(
xg

yk

yp

Hence, the following must be true. 

 constant.)(2 g (3.6)

Case 1 2)( 2yk

Case 1a 22 > 0

2)( 2

Y

Y
yk
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  (3.7) 

 So, there are eight such products as solutions of where 

.)(and)()(),( 22ykyYxXyxw
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Hence, another eight products are found to be solutions to 04w  where 

)()( yYxXw and k(kk y(( ) = 0.
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Case 1c 022 ( is imaginary).  Hence, let i
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Case II 
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Case IIb   02
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 (3.13)

So in each case there are eight possible products to satisfy any particular case.  These

solutions comprise all the possible separable solutions of the homogeneous two-

dimensional biharmonic equation in a Cartesian coordinate system.  In the solution of any 

particular problem one can attempt to find the solution through exploiting the particular 

boundary conditions and loading, intuition and experience.  However, if that fails then 

one can resort to trying each of the above solutions for the homogeneous solution.
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3.2  Double Series Solution (Navier Solution)

 In plate problems one can usually obtain solutions using a doubly infinite series,

such as

11

).()(),(
n

nmmn

m

ygxfmAyxw

Such solutions are often inefficient to compute with due to the very slow convergence of 

the series.  As an alternative one may obtain a solution where the function of only one

spatial variable is summed such that, in this case:

1

).()(),(
n

nn xf nyyxw

This approach is particularly useful when two opposite edges are simply supported,

because then the function )f nff  above can be a half range sine series.  This is discussed 

in the next section. 

 In assuming the functions )m  and )ygn  for the double series solution (Navier 

Solution), or assuming the functions )n for the single series solution (the M. Levy

Solution), the functions must be complete in order that the lateral deflection can be

adequately represented.  Furthermore, it is most convenient from a computational point of 

view that the functions be orthogonal.  Also of course they must satisfy the boundary

conditions for the problem.  One straightforward approach to selecting such functions is

to use the vibration modes or buckling modes for a beam of constant cross section with 

the same boundary conditions as those on opposite edges of the plate, because all such 

modes comprise a complete, orthogonal set.  The beam vibration modes for all boundary

conditions and their properties have been conveniently catalogued by Young and Felgar 

[3.1] and Felgar [3.2]. 

 The doubly infinite series approach will be treated first.  Consider a rectangular 

plate simply supported on all four edges in the region ,0 ax ,0 by

.2/2/ hzh

 The governing equation is:

Dyxpw /),(4

 The solution for the lateral displacement can be written as

,sinsin ),(Let 
11 n

mn

m b

yn

a

xm
Ayxw

yyxx
 (3.14) 

because these functions are complete, orthogonal and they satisfy the boundary 

conditions of the problem.  The lateral load must be expanded in the same series solution: 
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where, following the usual Fourier series procedures, 

.ddsinsin ),(
4
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mn xddyd
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  (3.16) 

Substituting these series representations of the load and lateral deflection into the 

governing differential equation results in the following: 
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For the left hand side to equal the right hand side for the above doubly infinite series

requires that an equality exists for each m and n combination in the series.  Looking at the

mth and nth term, mnA is easily found to be

.
2

2

2

2

2
4

b

n

a

m
D

B
A mn

mn  (3.17) 

Thus, the solution is easily found for this case, because mnB  is determined from (3.16), 

and mnA  if then found from the equation above, hence w(x(( , y) is then known everywhere

from (3.14).  From this, all slopes, stress couples and shear resultants can be calculated at 

any location x, y.  As mentioned previously, the doubly infinite series solution usually

converges slowly.  Moreover, the derivatives of w(x(( , y) needed to obtain stress couples

and shear resultants always converge still slower than the deflection function itself.

An example for obtaining mnB can be briefly given.  Consider a plate simply

supported on all four edges subjected to a uniform constant lateral loading 0p .
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   (3.18)

 A similar procedure is followed for any other lateral load over all or part of the

plate surface.

3.3  Single Series Solution (Method of M. Levy)

 Consider a plate with opposite edges simply supported, as shown in Figure 3.1.

Figure 3.1.  Plate simply supported on opposite edges. 

Again, the governing differential equation is:

.
),(4

D

yxp
w

The boundary conditions on the y edges are:

0),()0,( bxwxw

(3.19)

.0),()0,( bxMxM xy
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From (2.38), the stress couple is given by 
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Hence on the y = 0 and y = b edges,
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However, on each of those edges, 

0
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2

b
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w

because the curvature is zero parallel to the simply supported edge.  Therefore, for the y = 

0 and b simply supported edges,

.0
0

,
2

2

b
x

y

w
  (3.20) 

Assume a form of the solution to be as follows, which satisfies the boundary condition on 

the y edges given by (3.19) and (3.20):
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  (3.21) 

For this example, the lateral distributed load is taken to be the following: 

)()(),( yhxgyxp   (3.22)

where g(x(( ) and h(y(( ) are given.  It is necessary to expand h(y(( ) in a series solution that 

corresponds to (3.21), hence, 

1
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Substituting (3.21) through (3.23) into (3.1) gives:

11

sin)(
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where bnn / .

As before, for this to be true, the series must be equated term by term. 
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Note, at this point the boundary conditions on the other two edges have not been 

specified.  Thus, any time a problem has two opposite edges simply supported, one can 

arrive at (3.25) without other information regarding the x = constant edges.

 Proceeding to solve (3.25) in the customary way, let sx

n e  such that the

homogeneous solution becomes: 

02 4224

nn ss 42

0   where0 ))(( 22222

nnn ss 222

nns ,

So, the complementary solution is: 

    .sinh)(cosh)()( 4321 xxCCxxCCx nnn    (3.26)

Equation (3.26) is the form of the homogeneous solution for )n for any set of 

boundary conditions on the x-edges.  The boundary conditions on the x = constant edges

are used to determine the constants 1C  through 4C  above.

3.3.1  Example: Plate Simply Supported on All Four Edges and p = p(y(( ) Only

On the x = constant edges, the boundary conditions are: 

0),(),0( yawyw

(3.27)

.0),(),0( yaMyM xx

Because of no curvature along the x = constant edges, i.e., 
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the bending moment boundary conditions can be written as:
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Also since p = p(y(( ) in this example, simply let g(x(( ) = 1 in (3.22), and from (3.25) the 

particular solution can be written as: 
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Therefore for this example, the complete solution for )n  is: 

.sinh)(cosh)()(
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   (3.30)

Substituting (3.30), the complete solution for )n , and its derivatives, into (3.27) and 

(3.28), the boundary conditions on the x edges, provides the values of the undetermined 

constants 1C  through 4C , for this problem.  The results are:
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Thus, the complete solution for the lateral deflection is:
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where 1C through 4C are given by (3.31).

It should be noted that we could have solved this problem by assuming the

deflection any one of these following ways, because the plate is simply supported on all 

four edges:
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xx

Using the first of these equations the convergence is slower than using the form given by 

the second and third equations to describe the lateral deflection.

For the case of the x edges being clamped or free, and with the same loading,       

p = p(y(( ) only, Equation (3.30) with the appropriate boundary conditions to obtain the 

solution may be used. 

3.4  Example of a Plate with Edges Supported by Beams

The use of beams to support plate elements is very commonplace.  Innovative and 

efficient design for that case often results in complex analytical procedures, so 

complicated in fact that doctoral dissertations have been written in this regard.  For 

instance, complications can arise when (1) the plate mid-surface differs from the mid-

surface of the support beams, (2) beam sections involve centers of twist in difficult 

locations, (3) discontinuous joining of the beams and the plate, etc. 

Presented here is the simplest of beam-plate combinations, merely to introduce

the concepts involved.

Consider a rectangular plate with the following boundary conditions: y = 0, b

simply supported; ax ,0  supported by beams; and a lateral load varying only in the y 

direction, given by
1

)/(sin )(
n

n bynAyp yy , as was done in (3.22) and (3.23) where 

g(x(( ) = 1.
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Figure 3.2.  Vertical forces at beam supported edge. 

For one boundary condition on the x edge; consider an element of beam as a free body, as 

shown in Figure 3.2.  A force balance in the z direction provides one plate boundaryz

condition.

Looking at the details of Figure 3.2, the superscripted b quantities refer to a beam, 

whose flexural stiffness is ,)( b which is mechanically joined to the edge of the plate

denoted by 1xx such that the middle surface of both the plate and beam are identical, 

to retain simplicity in this example.  Hence, the lateral deflection of the beam and plate

are identical at their common boundary, 1xx .  Therefore, the force balance is given by

the following, where the shear resultant of the beam is

2/
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h
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and the Kirchoff ‘effective’ shear resultant is used for the plate.
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The second boundary condition, the balancing of twisting moments, provides the

requirement.  The beam has a torsional stiffness b(  (Figure 3.3).bGJ )
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Figure 3.3.  Stress couples at beam supported edges.

For beam, at 1xx , moment equilibrium requires that 
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So the two plate boundary conditions at the junction between the plate and the beam

support are:
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Once the solution for the plate deflection is found which satisfies these boundary 

conditions at 1xx , the other plate boundary conditions for a given lateral load, then one
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also knows the deflection of the beam, and so the complete solution of the beam is

determined also. 

 For all practical cases one can assume that the beam end conditions are the same 

as the plate end conditions, and assume that the ends of the beam are completely

restrained against rotation.

 It is easy to see how the boundary conditions can become more complex with

more complicated beam – plate joints.  However, the same philosophy as used above can

be used to solve those problems.

3.5  Isotropic Plates Subjected to a Uniform Lateral Load

 For isotropic plates several textbooks such as Timoshenko and Woinowsky-

Krieger [2.1] and Vinson [3.3] have provided expressions for the maximum deflection,

maxw , and the maximum stress couple, M, a plate attains when subjected to a constant MM

laterally distributed load 0p , such as,

3

4

00

max
Eh

apC
w   (3.35)

2

01max apCM   (3.36)

where a and b are plate side dimensions; E is the modulus of elasticity of the plate; E h is

the plate thickness; and 3.0 .

 The dimensionless constants 0C  and 1C are given in tabular form for various

boundary conditions, and these are repeated herein for completeness in Tables 3.1

through 3.4.  Table 3.5 also provides information for the case wherein the plate is

subjected to an hydraulic head.  These tables and procedures are well known and well

used.

Table 3.1.  Coefficients for determining Maximum Deflections and Maximum Stresses for a Rectangular 

Plate, with b > a, Simply Supported at the Edges, under Uniform Pressure Loading 0p  with Sufficient 

Corner Forces to Hold it Down on the Foundation )3.0(( .

b/a 1 1.2 1.4 1.6 1.8 2 3 4 5

0C

1C

0.044

0.048

0.062

0.063

0.077

0.075

0.091

0.086

0.102

0.095

0.111

0.102

0.134

0.119

0.140

0.124

0.142

0.125

0.142

0.125

Table 3.2.  Coefficients for determining Maximum Deflections and Maximum Stresses for Rectangular 

Plate, under Uniform Load 0p , with the a Edges Clamped and b Edges Simply Supported ) .

b/a 3 2 1.6 1.3 1 0.75 0.50 0.25

0C

1C

0.142

0.125

0.128

0.125

0.099

0.119

0.066

0.109

0.042

0.094

0.021

0.070

0.0081

0.045

0.00177

0.021

0.00011

0.0052
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Table 3.3.  Coefficients for Determining Maximum Deflections and Maximum Stresses for a Rectangular 

Plate, under Uniform Loading 0p , Clamped along the a Edge, and Simply Supported along the Three

Remaining Edges )3.0(( .

b/a 2 1.5 1.2 1 0.75 0.50 0.25

0C

1C

0.142

0.125

0.101

0.122

0.070

0.112

0.047

0.098

0.030

0.084

0.0133

0.058

0.0033

0.031

0.0002

0.0077

Table 3.4.  Coefficients for determining Maximum Deflections and Maximum Stresses for a Rectangular 

Plate, under Uniform Loading 0p , Clamped on All Four Edges ) .

b/a 1 1.2 1.4 1.6 1.8 2.0 2.2

0C

1C

0.0138

0.0513

0.0188

0.0639

0.0226

0.0726

0.0251

0.0780

0.0267

0.0812

0.0277

0.0829

0.0285

0.0833

Table 3.5.  Coefficients for determining Maximum Deflections and Maximum Stresses for a Rectangular 

Plate, Simply Supported on All Four Sides, Subjected to a Linearly Increasing Hydraulic Pressure along the 

a Edges, one b side having Zero Pressure, the Opposite b side having 0p .  [The Maximum Deflections

occurs just off the middle of the plate toward the 0p  side (at about 0.55a), the Maximum Stress somewhat 

farther off to the side ) .]

b/a 4 3 2 1.5 1 0.75 0.50 0.25 

0C

1C

0.071

0.064

0.070

0.063

0.067

0.061

0.055

0.053

0.042

0.043

0.022

0.026

0.012

0.021

0.0037

0.0139

0.0004

0.0051

 Of course, for the isotropic plate, the flexural stiffness is given by 

.
)1(12 2

3Eh
D  (3.37)

and the maximum bending stress, which occurs on the top and bottom surfaces of the

plate, is 

2

max

max

6
)2/(

h

M
h  (3.38) 

Also for Tables 3.1 through 3.5, the numerical coefficients correspond to a Poisson’s 

ratio of 3.0  wherein 91.01 2 .  Therefore, for materials with other Poisson ratios, 

, Equation (3.35) must be changed to 
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91.0

1 2

3

4

00

max
Eh

apC
w .   (3.39) 

 It is seen that for an isotropic plate design,

(1) The plate must not be overstressed, i.e., the maximum stress is determined from the 

use of Equations (3.36) and (3.38) to determine the maximum stress couple, M, and MM

the maximum stress.  The determined maximum stress cannot exceed some 

allowable stress, all , defined by the material’s ultimate stress or yield stress

divided by a factor of safety on ultimate stress or yield stress, whichever is smaller.  

This requires a certain value of plate thickness, h, which in analysis is specified 

from which one determines if the plate is overstressed.  In design, using the 

allowable stress, the thickness, h, is found. 

(2) The monocoque plate must not be over deflected determined by Equation (3.35).  

This is sometimes specified, but in other cases the plate deflection cannot exceed 

the plate thickness or some fraction thereof.  If the maximum plate deflections

reaches a value of the plate thickness, h, the equations discussed herein become 

inapplicable because the plate behavior becomes increasingly nonlinear which 

requires that other equations be used.  Again, to prevent over-deflection, a plate 

thickness, h, is determined by Equation (3.35).

Therefore, in plate design, the plate thickness, h, is determined either from a strength or 

stiffness requirement, whichever requires the larger thickness. 

3.6  Summary 

 In this chapter the two basic approaches to solving problems of isotropic 

rectangular plates subjected to lateral loads have been treated.  Also, a more complicated 

boundary condition example was investigated than the classical boundary conditions of 

Section 2.5.  In rectangular plates with more difficult boundary conditions than simply 

supported edges References 3.1 and 3.2 provide functions suitable for either the Navier or 

the Levy Method.

 Many solutions to plate problems are known, and are catalogued in numerous 

references such as Timoshenko and Woinowsky-Krieger [2.1], Marguerre and Woernle 

[2.2] and Mansfield [2.3]. 
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3.8  Problems

3.1. Consider a rectangular isotropic plate occupying the region ,0 ax ,0 by

and 2/2/ hzh .  The plate is simply supported on the edges y = 0 and b.

The plate is subjected to a laterally distributed load given by Equations (3.22) and 

(3.23).  If g(x(( ) = 1, the solution is given by Equation (3.32).  In the plate clamped 

along the edges x = 0 and a, determine the constants 1C  through 4C .

3.2. In problem 3.1 above, if the plate is free along the edges x = 0 and a, determine

the constants 1C  through 4C .

3.3. In problem 3.1 above, if the plate is simply supported at x = 0 and clamped at x =

a, determine the constants 1C through 4C .

3.4. In problem 3.1 above, if the plate is simply supported at x = 0 and free along x =

a, determine the constants 1C through 4C .

3.5. In problem 3.1 above, for the plate clamped along x = 0 and free along x = a,

determine the constants 1C through 4C .

3.6. Consider a floor slab whose geometry is described in problem 3.1.  The slab is

square, simply supported on all edges, and is loaded with sand in such a way that 

the load can be approximated by 

.sin sin ),( 0
b

y

a

x
pyxp

yyxx

Determine the location and magnitude of the maximum deflection, the maximum 

bending stresses in both directions and the maximum shear stresses in each 

direction.

3.7. A certain window in an aircraft is approximated by a square plate of dimensions a

on each side, simply supported on all four edges and subjected to a uniform cabin 

pressure 0p .  Using the Navier solution for a square plate of length and width a,

the solution is given by Equation (3.14).  The maximum value of the lateral 

deflection can be written as

DapCw /4

01max
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 for the plate subjected to a constant lateral loading, 0p .  Determine the numerical 

coefficient 1C  to three significant figures.

 The maximum bending moment 
maxmax yx MM can be written as

.2

02max apCM

 Find 2C  to three significant figures, if the Poisson’s ratio of the window material

is 3.0 .

3.8. A certain hull plate on the flat bottom of a ship may be considered to be a

rectangular plate under uniform loading, 0p , from the water pressure, and 

clamped along all edges.  A 2/1 steel plate four feet in width is to be used for 

the bottom plate in the ship draws 13 ½ feet of water maximum.  If the maximum

allowable stress in the steel is 20,000 psi, what is the maximum plate length, i.e.,

bulkhead spacing that can be used in the ship design, and what is the

corresponding maximum deflection of the hull plate.  Salt water weighs 64 lbs/ft
3
,

psi1030 6

steelE , and 3steel .

For a plate clamped on all four edges, subjected to a lateral load 0p , the 

maximum deflection and maximum stress couple can be found using Table 3.4. 

Linear interpolation is permitted. 

3.9. A rectangular wing panel component, 58 is made of aluminum, and under the

most severe maneuver conditions can be subjected to a uniform lateral load of 20

psi.  This wing panel can be approximated by a flat plate simply supported on all

four edges.  What thickness must the panel be, and what is the resulting maximum 

deflection under this maneuver condition?  Use a Table from Section 3.5.

The aluminum used has an allowable stress of 20,000 psi, and E =E 61010  psi 

and 3.0 .

3.10. A rectangular steel plate is used as part of a flood control structure, and is

mounted vertically under water such that it is subjected to a hydraulic loading

b

y
ppyxp 10),(

 where 0p  and 1p  are constants associated with the pressure heads.  Find the Euler 

coefficient mnB for this loading in Equation (3.16).

3.11. A glass manufacturer has been asked to construct plate glass windows for a new

modern office building.  The windows must be 10 ft. wide and 20 ft. high.  Design

the windows so that they can withstand wind forces due to air velocities of 150

miles/hour.  State all assumptions and physical constants clearly. 

3.12. A flat portion of a wind tunnel measuring 4503  will be subjected to a

maximum uniform wind load of 10 psi.  If the steel to be used has an allowable

stress of 40,000 psi, and a Poisson’s ratio of 3.0 , what plate thickness is

required if the plate is
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 (a) Simply supported on all four edges.

 (b) Clamped on all four edges.

 Use the Tables from Section 3.5.

3.13. A portion of the cover on a hover craft is to be rectangular measuring 48  in 

planform, and is to be simply supported on all four edges.  It is calculated that the

maximum air pressure the panel will be subjected to is 20 psi.

 (1) How thick must the panel be if it is constructed of aluminum ( 61010E

psi, 3.0 ) if the allowable stress is limited to 30,000 psi?

 (2) How thick must the plate be if it is constructed of steel ( 61030E psi, 

3.0 ) if the allowable stress is limited to 60,000 psi? 

 (3) If the weight density of steel is 0.283 lbs/in
3
 and that of aluminum is 0.1

lbs/in
3
, which material should be selected to minimize weight?

 (4) Suppose the aluminum plate of (1) above were clamped on all four edges,

what thickness is required?

 Use the Tables from Section 3.5.

3.14. A rectangular steel plate, used as a footing, rests on the ground is subjected to a 

uniform lateral pressure, p(x(( , y) = 0p (psi).  The ground deflects linearly below 

the footing with a spring constant k (lbs/ink 2
/in) under this loading and deflection.

Figure 3.4.  Elasticically supported footing.

(a) What is the governing differential for the bending of this plate on an elastic

foundation?

Hint: One can consider the effect of the elastic foundation to be analogous to

an infinite set of springs such that it acts like a lateral load analogous to p(x(( ,y,, ).

(b) What are the boundary conditions on the x = 0 and x = a edges?

(c) What are the boundary conditions on the y = 0 and y = b edges?

3.15. A designer is faced with the problem of designing a rectangular plate cover over 

an opening that is 9 feet by 3 feet.  The design load is a lateral pressure of 10 psi. 

If steel is used ( 61030E psi, 3.0 , 000all psi, 3lbs/in283.0 ):

 (a) If the plate is clamped on all four edges, what will it weigh?

 (b) If the plate is simply supported on all four edges, what will it weigh?

3.16. A rectangular aluminum plate, measuring 0204 , is subjected to a uniform

lateral pressure of 10 psi.  Using the maximum stress theory, if the allowable

stress is 30,000 psi, what is the plate thickness required if:

 (a) All edges of the plate are simply supported?

 (b) All edges of the plate are clamped?
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 (c) If the plate were made of steel with the same allowable stress as the aluminum 

above, would the required thickness differ from that of the aluminum plate?

 (d) If the plate were made of steel with the same allowable stress as the aluminum 

above, would the maximum deflection differ from that of the aluminum plate?

3.17. Consider a plate clamped on all four edges made of the same steel as in Problem

3.12.  The plate is subjected to a uniform later load of p = 10 psi.  If the plate is 

01  wide and 61 long, what thickness h is required to prevent overstressing or a 

maximum deflection of 1.0 ?



CHAPTER 4 

THERMAL STRESSES IN PLATES 

4.1  General Considerations

 Consider any elastic body with a constant coefficient of thermal expansion, ,  in 

the units of F, or equivalent units, at a uniform temperature wherein the body is

assumed to be free of any thermal stresses and strains.  If the body is free to deform, and 

the temperature is raised slowly to a temperature of T  degrees from the stress free 

temperature, the thermal strains produced at any material point can be written as

ijiij xT )(
th

    (4.1)

where 1x  are the coordinate direction, and ij  is the Kronecker delta ( 1ij  for i = j,

0ij  for ji ).  It should be noted that thermal strains are purely dilatational (i = j);

thermal shear strains do not exist. 

 In Equation (4.1), T  is positive when the temperature of the material point is 

above the stress free temperature.  The coefficient of thermal expansion  is positive for 

almost all isotropic engineering materials, i.e., the body expands when it is heated. 

However, there are some graphite materials which have negative coefficients of thermal

expansion.

 In many thermoelastic bodies, the changes in temperature within the body tend to

result in strains which do not satisfy the compatibility equations.  In that case isothermal

strains, ,
isoij the strains discussed in Chapter 1, are induced such that the total strain,

,
totij  satisfies compatibility. 

 .
thisotot ijijij     (4.2)

In that case the ‘thermal stresses’ are induced due to the isothermal strains induced to

insure compatibility.  This can occur, for example, in ‘thermal shock’ from very rapid or 

localized heating.

 A second way that thermal stresses occur is through displacement restrictions on 

the elastic body.  One simple example of this occurs when a bar is placed between 

immovable end grips and subsequently heated.  There, compressive thermal stresses 

result.

 Hence, thermal stresses are caused by two mechanisms:  one by displacement 

restrictions, the other through induced isothermal strains to maintain compatibility.
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Next, consider an unrestricted thin rod at a uniform temperature.  If the rod is

slowly heated uniformly, such that the thermal strains satisfy the compatibility equations,

the heated rod has thermal strains but no thermal stresses.  Now if the unheated thin rod is

placed in immovable end grips such that the rod cannot increase in length, slowly heating

the rod uniformly will result in thermal stresses and no thermal strains.

In the latter case, if the compressive axial thermal stresses reach a value equal to 

the Euler buckling load (discussed later in Chapter 6), the rod will buckle.  This is called 

thermal buckling.

4.2  Derivation of the Governing Equations for a Thermoelastic Plate

In deriving the governing equations for a thermoelastic plate, the equilibrium

equations and the strain-displacement equations are not altered from those of the 

isothermal plate of Chapter 1, because in the former the equations involve force balances, 

and the latter are purely kinematic relationships involving total strains.

However, the stress strain relations, Equations (1.9) and (1.10), are modified in

accordance with Equations (4.2) and (4.1):

][
1

totiso yxxx
E

T

][
1

totiso xyyy
E

T

or

T
E

yxx ][
1

    (4.3) 

.][
1

T
E

xyy    (4.4)

In Equations (4.3) and (4.4) and in all that follows the subscript for total strains is

dropped, and all strains noted explicitly are those which satisfy compatibility, i.e., the

total strains, and which appear in the strain-displacement relations.  Hence, in Equations

(4.3) and (4.4) the first terms on the right-hand side are really isothermal strains, and the

second terms on the right-hand side are thermal strains for this isotropic material.

Proceeding as in Chapter 1, employing the strain displacement relations,

Equations (1.16) and (1.17) and Equations (2.24) through (2.28), Equations (4.3) and 

(4.4) after multiplying by E become E

2

2
0

x

w
Ez

x

u
ETEyx

xxxx
    (4.5) 
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2

2
0
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w
Ez

y

v
ETExy

yyyy
(4.6)

Now, two quantities N  and M , known as the thermal stress resultant and the

thermal stress couple, respectively, are defined as

.d,d
2/

2/

2/

2/

h

h

T
h

h

T zddTzEMzddTEN (4.7)

Multiplying Equations (4.5) and (4.6) by dzdd and integrating across the thickness of z

the plate, then multiplying them by z dzdd  and also integrating them, provides the integrated z

stress strain relations for a thermoelastic isotropic plate.  It should be remembered from 

the discussion of Section 4.1 that the shear stress-strain relations are not altered by the 

inclusion of thermoelastic effects. 
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w
DM xy
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Rearranging the first four of the above results in 

)1(

00
T

x

N

y

v

x

u
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v
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 Introducing these thermoelastic stress-strain relations into the equilibrium

Equations (2.44) through (2.46) and (2.50) and (2.51), the governing differential

equations for a thermoelastic isotropic plate are determined.  For the case of no surface

shear stresses these become:

TMyxpwD 24
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 Also for completeness, other useful relationships are catalogued below:
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Due to the inclusion of thermal quantities, the expressions for various normal

stresses in the plate become [4.1]:
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 The inclusion of the TN  and TM  terms in (4.19) are easy to visualize since they

are thermal stress resultants and couples analogous to ,and,, yxyx MMNN  which are

caused by lateral and in-plane ‘mechanical’ loads.  The last terms in (4.19) and (4.20) can 

be visualized by the following in which it is assumed that the first two terms do not 

contribute.  Suppose at some value of (x(( , y) in a plate, the upper surface is heated while 

the lower surface is cooled.  Thus the value of T in the upper portion of the plate is

positive and is negative in the lower plate portion, as shown in the sketch below. 

The last term of (4.19) shows that in the upper portion of the plate compressive stresses 

exist while in the lower portion there are tensile stresses.  Physically, the material points 

in the upper portion of the plate want to expand considerably but are being restrained by 

those in the cooler areas of the plate, hence, tending to cause high compressive stresses

there.  Likewise, in the cooler portion of the plate the material points wish to contract, but 

are being extended by the hotter portions of the plate, hence, thrown into tension.  Such

thermal stresses can result in material failure just as stresses caused by mechanical loads. 

 As discussed before, shear stresses and strains are not affected by thermal effects, 

hence remain the same as in Chapter 2: 
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Of course if there exists shear stresses applied to the upper or lower surfaces of 

the plate, the latter two expressions must be modified as in Section 2.6. 

To proceed with solutions of thermoelastic plates using Equations (4.14) through 

(4.16), one now proceeds using the same solution techniques that were introduced in 

Chapter 3.  However, the additions of thermal effects do introduce certain difficulties 

with boundary conditions that cause some analytical difficulties.  These are discussed in 

the next section.  Also, because of thermal expansions and contractions, solutions usually 

involve solving for the in-plane displacements 0u  and 0v in addition to solving for the 

lateral deflections, w(x(( , y).  Excellent texts include [4.1, 4.2 and 4.3]. 
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4.3  Boundary Conditions

 Looking now at the boundary conditions associated with a thermoelastic plate,

comparisons are made with an isothermal plate, where again n denotes normal to the edge

and s denotes along the edge:

Simply Supported Edge

 w = 0,        .n   (4.21) 

 From Equations (4.12) and (4.13), the latter equation above is in fact 

.
)1(

0
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2 T
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M
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w
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w
DM

Since there is no curvature parallel to the simply supported edge (i.e.,

022 sw ), this equation becomes

.
)1(2

2

D

M

n

w T

  (4.22)

Hence, the boundary conditions for a simply supported thermoelastic plate are

nonhomogeneous.

Clamped Edge 

w = 0, .0
n

w
  (4.23), (4.24) 

These remain the same as those for the isothermal plate. 

Free Edge

The boundary conditions are 

.0and0 nn VnM

Hence, the first condition is given by Equation (4.22) and the latter is seen to be 

from Equation (4.18).
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 Here the boundary conditions are seen to be nonhomogeneous.

General

 In many problems involving thermoelastic plates, it is seen that the boundary

conditions are nonhomogeneous.  Why is this important?  In solving linear partial

differential equations, separation of variables cannot be used with nonhomogeneous

boundary conditions.  Fortunately, methods are available to transform either 

homogeneous or nonhomogeneous partial differential equations with nonhomogeneous

boundary conditions to nonhomogeneous partial differential equations with homogeneous

boundary conditions, so that separation of variables may be used.  A generalized method 

is presented in the next section.

4.4  General Treatment of Plate Nonhomogeneous Boundary Conditions

 Consider a plate with the y = 0, b edges simply supported.  The governing

equation for the lateral deflection is given by Equation (4.14).  From Equations (4.21)

and (4.22), the boundary conditions are: 

0),()0,( bxwxw   (4.26) 
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  (4.28) 

where )1

TT and )2

TT .

We now introduce a function ),( yx , which satisfies homogeneous boundary 

conditions on the y = 0 and y = b edges.  Let 

  ).2211 yf 2yf1yy TT    (4.29) 

where for this problem we take ),( yx  to be of the Levy form: 

1

.sin )(),(
n

n
b

yn
xyx

yy
  (4.30) 

Also in Equation (4.29) )(and)( 21 yf 2yf1 are to be determined to satisfy the 

boundary conditions (4.26) through (4.28).

Substituting Equation (4.29) into Equations (4.26) through (4.28) results in
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0)()0()()0()0,()0,( 2211 xMf 2xMf1xxw TT

0)()()()(),(),( 2211 xMbf 2xMbf1bxbxw TT
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 Since it is required that ),( yx  satisfy homogeneous boundary conditions at y = 0 

and y = b, then

.0
),()0,(
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Hence, from the above, the following is required:
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 These are the only requirements on )(and)( 21 yf 2yf1 .  Since there are four 

conditions on each function, each can be assumed to be a third order polynomial.

 Let 

3

3

2

2101 )( yCyCyCCyf1   (4.33)

and
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2102 ykykykkyf 2   (4.34)

 Substituting Equations (4.33) and (4.34) into (4.32), the result is
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59

).(
)1(6

1
)( 32

2 yyb
bD

yf 2   (4.36) 

 Using Equations (4.35) and (4.36), the substitution of Equation (4.29) into (4.14) 

results in the following: 
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 Looking at Equation (4.37) it is seen that the original problem, which was

Equation (4.14), with nonhomogeneous boundary conditions, given by Equations (4.26) 

through (4.28), has been transformed into a problem involving a ‘lateral deflection’ ,

with homogeneous boundary conditions (4.31) and an ‘altered loading’, given by the

right-hand side of Equation (4.37), which shall now simply be written as H(HH x(( , y).  Hence,

).,(4 yxHD  (4.38)

Here, ),( yx  is given by Equation (4.30) and H(HH x(( , y) must be expanded correspondingly

into a Fourier series as 

.   wheresin)(),(
1n

nnn bny xhyxH  (4.39)

Substituting (4.30) and (4.39) into Equation (4.38) gives
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 It is seen that this has the same form of the ordinary differential equation in the

Section 3.3 discussion of the Levy method.  Now the boundary conditions at x = 0 and      

x = a can be considered.  For the sake of a specific example, consider them to be simply

supported also.  Then,
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Substituting Equation (4.29) into the above results in 
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Rearranging the above produces
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 Remembering that ),( yx  is given by Equation (4.30), it is logical to make the

following expansions:
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Here, nnnnA ,  are easily found by the usual Fourier procedures. nnn ECB and,

Substituting Equations (4.43) and (4.30) into (4.42) and equating all coefficients results

in
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 Hence, these four boundary values provide the necessary information to

determine the constants 1K through 4K  in the solution of Equation (4.40), which is

).(sinh)(cosh)()( 4321 xxxKKxxKKx nnnn    (4.45)

Here, )n  is the particular solution, i.e., the right hand side of Equations (4.40).  Using

(4.45), Equation (4.30) is completely solved, and in turn Equation (4.29) is solved.  

Subsequently, stress couples, shear resultants and stresses can be determined everywhere 

using Equations (4.19) and (4.20). 

This general approach can be used to solve any plate problem that involves 

nonhomogeneous boundary conditions.

4.5  Thermoelastic Effects on Beams 

For the thermoelastic beam, it can be easily shown from Chapters 2 and 3, and 

Section 4.2 that the governing differential equations are as follows:  Assume the length of 

the beam is in the x direction, that nothing varies in the y direction, and hence, all

equations can be multiplied by the beam width, b.  Remembering that all derivatives with

respect to y are zero then, 
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where P = in-plane load P

A = beam cross sectional area = bh if rectangular 

  b = beam width

xb bMM

 I = moment of inertia =I 123bh if rectangular 

xb bQVb

)()( xbpxq

 Using these equations, solutions are easily obtained.  As in the case of plates, the

expressions for boundary conditions of simply supported and free edges for a

thermoelastic beam will be nonhomogeneous.  However, for beams (unlike plates) this

causes no particular problem, because ordinary differential equations are involved, not 

partial differential equations, hence, separation of variables is not needed.

4.6  Self-Equilibration of Thermal Stresses

In Section 4.1 the two mechanisms by which thermal stresses are introduced into

a thermoelastic solid body are discussed, namely, by displacement restrictions caused by

the boundary conditions, the other by the introduction of the isothermal strains in

Equations (4.2) in order that 
totalij satisfy compatibility when the thermal strain,

thij do

not satisfy compatibility.

 One other physical phenomenon occurs that is very important in the structural

mechanics of planar bodies such as beams and plates, namely, if the planar body is not 

restricted by the boundary conditions the thermal stresses in the body are self-

equilibrating:  i.e., the average stress across the thickness is zero,

),(0d
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h
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This can be exemplified in the easiest and shortest way by considering a load free beam 

lying on a friction free flat surface and heated or cooled such that at any time t, the

temperature change is given by:

0
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n

n
h

z
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h

z
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h

z
azT   (4.53) 

It is seen that the term 0a  is merely a uniform heating or cooling of the entire beam; 

)( 10 zaa  is a steady state heat transfer situation and in that case the temperature is

linear in the z direction.  The entire expression given by (4.53) represents a temperaturez

situation that involves additional terms and occurs during transient heating or cooling 

and/or internal heat generation.  In the following example, it is sufficient to consider only 

the first three terms of (4.53) to illustrate the point.  From (4.53) and (4.51), 
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 For the illustrative problem, the lateral deflection is

3

3

2

210)( xCxCxCCxw   (4.55)

where this form is the solution to Equation (4.49) for this case.  The boundary conditions 

for this example are seen to be simply supported: i.e., 

.0),0(),0( LMLw b   (4.56)

With these boundary conditions, the constants of (4.55) are found to be
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and the lateral deflection is seen to be
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a
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  (4.58) 

 It is seen that only if 1a  (or any ,n n, odd) is non-zero will the beam deflect at all

in the thickness direction. 

 From (4.50), it is seen that 
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 It is extremely important to see that thermal stresses will occur in the beam if and 

only if 2a (or any other n even) is non-zero.  Therefore, it is seen that for a steady state 

temperature distribution ( ,n 02n ) the beam in this example is stress free, whether a

deflection occurs or not.

Now if (4.59) is substituted into (4.52) it results in, for all cases

 .0
avgi   (4.60) 

Therefore, in those cases where there are no boundary conditions constraining the thin 

beam of plate, so that it is free to expand or contract, the average stress across the

thickness is zero, i.e., the stresses are self-equilibrating.  This is an important concept to

remember in the design of flat plates and beam structures of all kinds.
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4.8  Problems 

4.1. A flat structural panel on the wing of a supersonic fighter of thickness 0.2 inches is

considered to be unstressed at 70 F .  After a considerable time at cruise speed such

that a steady state temperature distribution is reached, the temperature on the heated 

side is measured to be 140 F , the temperature on the cooler side is measured at 

80 F , and the temperature gradient through the plate is considered to be linear.  

Calculate the thermal stress resultant, ,T  and the thermal stress couple, ,T

where for aluminum 3,p , 66 .

4.2. The same aluminum panel as in Problem 4.1 is now heated symmetrically from

both the top side and the bottom side.  After 10 seconds thermocouples placed on

both surfaces of the panel read 160 F , and a thermocouple at the mid-surface reads

80 F .  Assuming the temperature profile in the panel to be parabolic (i.e., a second 

degree polynomial), what is the thermal stress resultant TN and the thermal stress 

couple TM  at this time?

4.3. In Problem 4.1 at what location across the plate thickness are the absolute values of 

x and y  a maximum and what is that stress; assuming

0yxyx MMNN ?
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4.4. In Problem 4.2 at what location across the plate thickness are the absolute vales of 

x  and y a maximum value and what is the value; assuming

0yxyx MMNN ?

4.5. An aluminum panel 4.0  thick, and stress free at 70 F is subjected to transient 

heating on one of its surfaces such that )(zTT  only as in the previous problems. 

Thermocouples record at a critical time that F , F130)0( , and 

F100)2/( hT .  Assuming a polynomial temperature distribution calculate TN ,
TM  and 

maxmax yx assuming xN , yN , xM , and 0yM .

4.6. Thermocouples are used to measure the temperature profile through a two inch 

thick plate, through three measurements:  one on the upper surface, one at the mid-

surface, and one on the lower surface.  At one specific time the measurements were:

Location Actual Temperature Measured 

1h

0h

1h

F200

F110

F80

 If the stress free temperature is F60 , calculate TN  and TM .

4.7. A plate is heated from both the top and bottom such that at a certain time, three 

thermocouples read F , F80)0( , and F)( .  If the 

stress free temperature is F70 , calculate TN  and TM  for a plate that is 2  in

thickness.  This aluminum plate has psi6 and Fin/in/1010 6 .

4.8. A thin walled structure 2/1 thick, i.e., 4/14/1 z , is composed of an

aluminum with properties psi6 and Fin/in/1010 6 .  As a certain 

time t, thermocouples on the top, at mid-surface and at the bottom record F90 ,

F100 , and F150 .  If the stress free temperature is F70 , determine the equation

for T to perform w subsequent thermoelastic analysis. 



CHAPTER 5

CIRCULAR ISOTROPIC PLATES

5.1  Introduction 

 In previous chapters, attention has been focused on rectangular plates.  However, 

circular plate structural elements are encountered in all phases of engineering.  It is,

therefore, necessary to develop an understanding of the behavior of circular plates.

 Consider the following element from a circular plate (Figure 5.1), with positive

directions of stresses and deflections as shown.

Figure 5.1.  Circular plate element. 
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5.2  Derivation of the Governing Equations

 The equations of elasticity can be derived in a circular cylindrical coordinate

system, or could be obtained by transforming the elasticity equations given in Chapter 1

through the use of the relationships:

.andsin,cos 222 ryxryrx

 However, they are merely presented here in their final form.

Equilibrium Equations in Circular Cylindrical Coordinates 
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Stress-Strain Relations (after using classical plate assumptions)
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Strain-Displacement Relations, General 
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Of course, for classical plate theory, 0zrzz z in (5.8), (5.10) and (5.11) above. 

Similar to the case of rectangular plates, stress resultants, stress couples and shear 

resultants are defined as follows: 
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In developing the governing equations for a circular plate, one proceeds as in

Chapter 2, multiplying Equations (5.1) through (5.3) by dzdd and integrating the equationsz

across the thickness of the plate: then multiplying (5.1) and (5.2) by z dz zdd and againz

integrating these across the plate thickness.  For the isothermal circular plate, the results

are:
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 If there are surface shear stresses applied 2121 and,, rr  stresses will be 

appended to (5.15) through (5.19) identical to those for rectangular plates of Section 2.4,

with appropriate subscripts.

 Again, for the bending of a circular plate, displacements are taken in a form

analogous to (2.1) through (2.3)

).,(and,, 00 )rwwzuuzuu rr   (5.20)

Since in a classical circular plate ,zrz z  substituting (5.20) into Equations

(5.10) and (5.11) results in
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(5.21)
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From Equations (5.21), (5.8) and (5.4), 
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From Equations (5.21), (5.8) and (5.5),
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From Equations (5.21), (5.9) and (5.6),
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Multiplying Equations (5.22) through (5.24) by dzdd , and integrating across the thickness of 

the plate, then multiplying them by z dz zdd and again integrating them across the plate z

thickness and with some algebraic manipulation the stress resultant in-plane displacement 

relations and moment-curvature relations for a circular plate evolve (for the case of no

surface shear stresses). 
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where again )1( 2EhK  and ,)1(12 23EhD  the in-plane stiffness and flexural

stiffness, respectively.

 Solving (5.18) and (5.19) for rQ  and ,Q and substituting the result into 

Equation (5.17) provides an equations involving ,rM ,M rM  and ),(rp .

Substituting Equations (5.28) through (5.30) into that equation results in the final 

governing differential equations for the bending of a circular plate, again the biharmonic 

equation.

)4 )p  (5.31) 
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 Similarly, substituting (5.25) through (5.27) into (5.15) and (5.16) produces the

equations for the stretching of a circular plate. 

00

4

ru .00

4u  (5.33) 

Note that (5.31) and (5.33) are identical to (2.57), (2.59) and (2.60) for the rectangular 

plate.  The biharmonic equations control plate behavior in both the Cartesian and the

circular coordinate systems.  Only the definition of the Laplacian operator changes with

the coordinate system.

 Of course once the plate solution is obtained, the stresses within the plate are

given by:
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For the case of surface shear stresses, the last two expressions above would be 

modified by the analogous expressions of (2.80) through (2.83), simply modified by

changing x and y subscripts to r and r .

Furthermore, to consider a thermoelastic circular plate, one merely adds

appendages to Equations (5.25), (5.26), (5.28), (5.29), (5.31), (5.33) and the first two of 

(5.34), identical to the last terms of the ,x ,yN ,xM yM expression of (4.10) through

(4.13), and the modifications for x  and y in (4.19) with obvious subscript changes.

In the general case of no axial symmetry, the solution of Equation (5.31) results in 

Bessel functions and modified Bessel functions of the first and second kinds.  Such

problems will not be treated herein, but are treated in depth in various other texts dealing

with circular plates.  Because so often circular plates are subjected to axially symmetric 

loads, they are discussed below. 

5.3  Axially Symmetric Circular Plates

When the plate is continuous in the direction, (i.e., is in the region 20 ),

when the loading is not a function of , and when the boundary conditions do not vary

around the circumference, the plate problem is said to be axially symmetric, and the

following simplifications can be made: 
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 The previous equations for the bending of a circular plate can therefore be 

simplified to the following, where primes denote differentiation with respect to r.
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Interestingly, Equation (5.39) can therefore be written as,
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5.4  Solutions for Axially Symmetric Circular Plates 

 Equation (5.41) can be made dimensionless by normalizing both the radial 

coordinate, r, and the later deflection, w, with respect to the radius of the circular plate, a,

as follows:

., awwarr  (5.42) 

Using (5.42) above, Equation (5.41) can be written as

.
)(

d

d

d

d1

d

d

d

d1 3

D

arp

r

w
r

rrr
r

rr
 (5.43) 

One can proceed to obtain the homogeneous solution of Equation (5.43) above, by 

setting the right hand side equal to zero, and proceeding to integrate the left hand side, 

where below, 3210 and,, CCCC are the resulting constants of integration used to satisfy 

the boundary conditions. 

Multiplying the homogeneous portion of Equation (5.43) by ,r  then integrating 

once yields 
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Integrating once more and multiplying both sides by r  provides 
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 To integrate the first term in the right hand side, let ,ln yr  hence, ,yer  and 
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Therefore, integrating the expression above, and dividing the results by r  gives 
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This final form of the homogeneous solution can be written more succinctly as 
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Returning to Equation (5.43), the particular solution can be written as: 
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Thus, the complete solution for any circular plate under axially symmetric loading

is given by Equations (5.44) and (5.45).  It is easy to show that the particular solution for 

a plate with a uniform lateral load is: 

.
64

or    
64

4

0

43

0

D

rp
w

D

rap
w pp   (5.46)

For ease of calculation, the following quantities are given explicitly for the circular plate 

of radius a with uniform lateral loading 0)( prp .
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For other lateral loadings, the last terms only in each expression above would be 

changed, the homogeneous solution remains the same.

5.5  Circular Plate, Simply Supported at the Outer Edge, Subjected to a Uniform 

      Lateral Loading, p0

 For the plate which is continuous from ,0 ar and which contains no

concentrated loading at r = 0, it is easy to see that r B = E = 0; otherwise the lateral E

deflection and transverse shear resultant would be infinite at r = 0.  At r 1r or r =r a, the 

boundary conditions are

0)1(w 0)(or aw ,           0)(r

Hence,
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5.6  Circular Plate, Clamped at the Outer Edge, Subjected to a Uniform Lateral

      Loading, p0

Again B = E = 0.  At the outer edge,E w(1) = 0 and 0/)1( rw .  Hence,
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5.7  Annular Plate, Simply Supported at the Outer Edge, Subjected to a Stress 

      Couple, M, at the Inner BoundaryMM

Figure 5.2.  Annular circular plate.

 Remembering that arr , and defining ,abs the governing differential

equation in this case with no lateral load, p(r), is

04w

and the boundary conditions are:

MsMw r )(0)1(
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The lateral deflection is found to be
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5.8  Annular Plate, Simply Supported at the Outer Edge, Subjected to a Shear

       Resultant, Q0, at the Inner Boundary

Figure 5.3.  Annular circular plate.

 Again, the governing differential equation is ,4 and the boundary 

conditions are,

0)(0)1( sMw r

0)(0)1( QsQM rr

 The solution is:
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5.9  Some General Remarks

Of course the results given in Section 5.5 through 5.8 can be superimposed to 

form the solutions to other problems.  Suppose the plate is subjected to a stress couple,

M, on the inner boundary as well as a transverse shear resultant, ,MM 0  acting also at the 

inner edge, as shown in Figure 5.4. 
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Figure 5.4.  Annular circular plate.

 The solution is the sum of (5.54) and (5.55).  All other stress quantities are found 

by substituting this sum into (5.36) through (5.38) and (5.34). 

 Another example of using the previous examples as building blocks, consider the

problem shown in Figure 5.5.

Figure 5.5.  Circular plate with a ring load.

This simply supported circular plate is subjected to a ring load of R (lbs/in. of 

circumference).  To solve this problem one first divides the plate problem into two parts:

an inner solution 1 extending over the region ,0 br  and an outer solution 2 over the

region arb .  In each case the governing equation is 

0and0 2

4

1

4 ww

and eight boundary conditions are needed.  Since there is no lateral load p(r), and the 

solution to each equation with suitable subscript, is (5.47) with 00  (i.e., the 

homogeneous solution).  From the reasoning of Sections 5.5 and 5.6, it is seen that 

011 EB .  Likewise from the reasoning of Sections 5.5, 5.7 and 5.8, at r =r a or r = 1, r

0)1()1( rMw .
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Figure 5.6.  Equilibrium of plate with ring load. 

 At the junction of the two plate segments, it is obvious that the lateral deflection,

the slopes and the stress couples must be equal for both plate segments; hence

)()(or   )()( 2121 swswbwbw
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sw
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bw
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)(d
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)(d 2121

).()(or    )()( 2121 sMsMbMbM rrrr

 For the eighth and last boundary condition is obtained by looking closely at the 

shear condition at r =r b, as seen in Figure 5.6. 

Hence, )12 is the eighth boundary condition.  If one has either a 

discontinuity in load or a discontinuity in plate thickness, one must divide the plate into 

two segments.  Examples of such problems are shown in Figure 5.7. 



80

Figure 5.7.  Circular plate with discontinuity of load or stiffness. 

 It should be noted that in the first of Figure 5.7, the lateral load over Segment 1 is

a negative number, and the loading in the second example of Figure 5.7 is a positive

number.  Further, it should be noted that in each of these examples, because there is no 

concentrated load, R, as in the previous example, the eighth boundary condition here is

)()( 21 bQbQ .

 Of course if one had n structural and/or loading discontinuities, one must use      

(n + 1) segments, and 4n boundary conditions. 

Use of Equations (5.47) through (5.51), with the proper last terms (the particular 

solution) obtained through solving (5.45) reduces the problems to a straightforward 

procedure.  Subsequently, stresses are found through (5.34).

Den Hartog [5.1] provides solutions for seventeen different isotropic circular 

plates on pages 128-132 of his text.  One paper treating the vibrations of circular plates is 

by Oyibo and Brunelle [5.2].  Although it treats orthotropic plates, by letting

DDDD rr , the results apply to isotropic circular plates. 
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5.10  Laminated Circular Thermoelastic Plates

 As a practical example of the effects of thermal stresses on plates that are 

laminated, thermal stresses in laminated circular plates will now be addressed.

 Consider a plate a radius L, composed of two laminae of different materials

continuously bonded at their common face, such that no slippage can occur.  The laminae

may have different, but constant thicknesses limited only by plate theory assumptions. 

Constant material properties are assumed for each lamina.  The coordinate system used is

given in Figure 5.8, from which it is seen that the origin of the z axis for each lamina is at z

the middle surface of that lamina.

Figure 5.8.  Plate Coordinate System.

 The equations of equilibrium in cylindrical coordinates for the axi-symmetric case

are:

0
1

0

rz
zrz

rrzr

rzr

rzr
 (5.56) 

The strain-displacement relations are: 

z

u
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w
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u
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2

1
;;   (5.57)

The stress-strain relations for an isotropic thermoelastic solid are given by:
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  (5.58) 

where, ij  are the stresses, ij the strains, ru  the displacement in the radial direction, w

the lateral deflection, E the modulus of elasticity,E Poisson’s ratio, G the shear modulus,G

 the coefficient of thermal expansion and ),( trT  the temperature increase or decrease

from a reference temperature at which the plate is stress free thermally. 

 Stress resultants and couples are defined for each lamina as follows: 
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 (5.59) 

The positive directions for these resultants and couples are shown in Figure 5.9. 

Figure 5.9.  Stress Resultants and Stress Couples.

 Equation (5.56) can now be multiplied by dzdd i and by zidzdd i and be integrated across

the thickness of each lamina to obtain the stress resultants and couples defined in (5.59).  

The non-vanishing boundary conditions are: 
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For lamina a:

jaz
a

arzaarz ph
h
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aaa
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2

)2/(  ;)2/(   (5.60) 

For lamina b:

jbz
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h
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)2/(;
2

)2/(;)2/(   (5.61) 

where  is the radial shear stress in the joint between the laminae, and jp is the normal

joint stress. 

 The resulting plate equilibrium equations are given below.
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 To determine stress-strain relations for the laminated plate, it is assumed that the 

displacements for each lamina will be of the form 

)(

)()(),( 0

rww

rzruzrur  (5.68) 

where 0u  is the in-plane displacement of the middle surface of the lamina, and  is the

rotation.

 Neglecting transverse shear deformation, the last of (5.57) becomes
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Substituting this into (5.68), it is seen that ,w and the displacement relations

become

)(

0

rww

wzuur
  (5.69)

where the prime denotes differentiation with respect to r.  The strain-displacement 

relations for either lamina are then given by:
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 (5.70)

Upon substituting (5.70) into the first two equations of (5.58), integrating across the

thickness of each lamina, and rearranging, the stress resultants and stress couples are

found to be, for each lamina,

T

r Nu
r

uKN
1

1
00  (5.71) 
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where
2/

2/
d

h

h

T zddTEN T is the “thermal stress resultant,”
2/

2/
d

h

h

T zddTzEM T  is the

“thermal stress couple,” )1( 2EhK  and )1(12 23EhD .

It is seen that we have six equilibrium equations, and eight equations derived from 

the strain-displacement and stress-strain relations.  However, there are sixteen unknown 

variables; namely, ,ra ,aN ,raM  ,aM  ,aQ ,rbN ,bN bb  ,rbM  ,bM bb  ,bQ  ,aw ,bw

,0au ,0bu and jp .  Hence, two more relationships are needed and are easily found. 

First, because transverse normal deformation is neglected, and since 

,)2/,()2/,( bbaa hrwhrw  because the laminae are bonded together, 
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.ba www  (5.75) 

The second relationship expresses the fact that no slippage occurs in the joint between

laminae, hence )ba  and employing (5.69).
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The governing equations can now be combined into relations in terms of the lateral 

deflection, w, and the displacement, au0 .  In the following, it is assumed that Poisson’s 

ratio for the material in each lamina is sufficiently similar to assume that ba .

 Solving for aQ and bQ in (5.63) and (5.66), and substituting them into (5.64) and 

(5.67) along with (5.73) and (5.74), two relations are produced which upon adding and 

subtracting result in the following: 
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where 2  and 4  are the Laplacian operators defined as
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Adding and subtracting (5.62) and (5.65), and substituting (5.71), (5.72) and 

(5.76) into them results in 
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Substituting (5.80) and its first derivative into (5.77) yields

e wD 4

1

1
  (5.81)



86

where )(2)(0 babba KKKhhC  and )(2)(1 baaba KKKhhC .  The constant 

eD is the effective flexural stiffness for a laminated plate and is given by 

.
)(4

)( 2
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baba
bae

KK

hhKK
DDD  (5.82) 

It should be noted that for the laminated plate, the flexural stiffness is greater than the

sum of the rigidities of the individual laminae, as shown in (5.82).  It is also interesting to

note that due to the restraining action the thermal stress resultants enter into (5.81), while

in the case of a plate of a homogeneous material only the thermal stress couple is 

involved.  It should also be noted that (5.82) is also a valid expression for plates of any

geometry, i.e., for rectangular plates as well.

 Substituting (5.80) and its first derivative into (5.78), and rearranging, will

directly produce the normal joint stress, jp .
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where )(2)(2 babba KKKhhC and )(2)(3 baaba KKKhhC .

In (5.81), the lateral deflection w is the only unknown and can be easily solved for 

in terms of the temperature distribution in the laminae.  In classical thermoelasticity, the 

stress and displacement fields are coupled to the temperature distribution but the

temperature distribution is not affected by the stress and displacement fields in the solid.  

Hence, the temperature distribution in the body may be found independent of the stresses 

and displacements produced in the body as a result of the temperature distribution.  It is 

assumed that for the cases discussed here the effects of the stress field on the temperature

distribution in the body can be neglected.

Any axi-symmetric temperature distribution in the laminated plate may be

represented by a Fourier series such that 

1
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and L is the radius of the circular plate in Figure 5.8. 
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Likewise,
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Integrating (5.81) and making use of (5.84) through (5.87) it is seen that 
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where nnnnn gedCbC 10 and 654 and, CCC are constants of integration. 

For the case of a laminated plate with no hole at the center, the two boundary

conditions at r = 0 are that the sum of the shear resultants, ,r ba QQ  equal zero and that 

the slope equals zero.

Hence,

0at  0and0)(
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r

  (5.90) 

By proper substitution it is found that 

.
)1(

1
;0

1
264

n n

n

eD
CC

2
  (5.91)

The deflection is then given by 
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So (5.92) is the deflection of a laminated plate, as shown in Figure 5.8, under any

arbitrary axi-symmetric temperature distribution, when the constants 5C and 7C  are 

determined by the particular method of support at r > 0.r

 Using (5.92), the displacement, ,0a  is determined by integrating (5.79), such that 
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where 8C  and 9C are constants of integration.  Again, for the case of the plate with no

hole at the center, it is seen that 00a at r = 0, hencer

1
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Equation (5.93) then becomes
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 Since all the governing equations have been placed in terms of w and ,0a

substituting (5.92) and (5.95) and their derivatives into these equations will provide the

solution for all stress resultants, stress couples and displacements.

 Knowing the stress resultants and stress couples in each lamina, the stress

distribution throughout each lamina may be determined.  The radial stress and 

circumferential stresses in each lamina are given by
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To find the shear stress rz  in each lamina, the distribution throughout each lamina must 

be such that the conditions for 
arz  and 

brz given in (5.60) and (5.61), and the relations

for baQ  given in (5.59) are each satisfied.  The shear stress distributions arebQand

therefore:
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 The shear stresses and the normal stresses in the joint between the laminae are 

found to be: 
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Thus, the general formulation of the stresses in and the displacements of a circular 

laminated plate subjected to an axi-symmetric temperature distribution has been found.  

To solve any particular case of interest, the constants, 875 and, CCC must be solved for 

the boundary conditions at r > 0. r

This analysis is useful in determining the thermal stresses produced in portions of 

multi-layer structures which can be approximated by a laminated plate.  To obtain the

complete stress condition in such a structure, the stresses due to a lateral pressure 

distribution may be calculated, and superposition of the pressure induced stresses and 

thermal stresses is possible as long as the plate is everywhere in the elastic range and the

deflections are small. 

In the case of a transient temperature distribution this analysis will describe the 

thermal stress condition at a specified time.  Thus, the quasi-steady state analysis can be 

used at several particular times during a transient heat input to portray the stresses and 

deformations at those times. 

This analysis is also useful in the solution of a circular plate made of one material 

subjected to a temperature distribution in which the transverse temperature gradient is so

large that the mechanical properties of the material vary significantly across the 

thickness.  The plate may be broken into “laminae,” average material properties assigned 

to each, and this analysis employed.
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5.12  Problems

5.1. The circular flooring in a silo of radius a is solidly supported at the walls such that 

the floor plate is considered to be clamped.  If grain is poured onto the floor such

that the floor loading is triangular in cross section as shown in Figure 5.10, what 

is the expression for the deflection at the center of the floor? 

Figure 5.10.  Circular plate with varying load. 

5.2. Consider a circular plate of radius a, shown in Figure 5.11, loaded by an edge

couple MM r at the outer edge.  Find the value of the stress couples rM and 

M  throughout the plate. 

Figure 5.11.  Circular plate with edge moment.
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5.3. The flat head of a piston in an internal combustion engine is considered to be a

plate of radius a, where the center support to the connecting rod is of radius b as 

shown in Figure 5.12.  If the maximum down pressure is uniform of magnitude

,)( 0prp  determine the location and magnitude of the maximum bending 

stress?  Assume the head is clamped on both edges. 

Figure 5.12.  Piston in cylinder. 

5.4. A certain pressure transducer is designed such that the pressure in the chamber 

deflects a thin circular plate, a rigid member joined to it at the center thus being

deflected, and through a linkage mechanism shown in Figure 5.13, thus deflecting

an arrow on a gage to the right.  Determine the expression to relate the deflection

of the gage to the pressure 0p in the chamber.  Assume that neither the rigid piece

nor the linkages affect the deflection of the plate by their presence.  Assume the 

circular plate is simply supported at the outer edge.
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Figure 5.13.  Pressure measurement device.

5.5. An underwater instrumentation canister, shown in Figure 5.14, is a cylinder with

ends which are circular plates that can be considered clamped at the outer edge, r

= a or r = 1.  In order to design the ends, i.e., choose the thickness, h, for a given

material system, one must determine the location and magnitude of the maximum

stress when this canister is underwater with ambient pressure 0p .  Assume that 

the cylindrical portion introduces no in-plane loads to the ends.  Find the

maximum radial stress.  Also what is the maximum circumferential stress?  What 

elastic properties of the material are involved in finding the maximum radial

stress?  The maximum circumferential stress?

Figure 5.14.  Underwater canister. 

5.6. A flat circular plate roof is being designed to fit over an unused cave entrance. 

The outer radius is a, the thickness h, and the outer edge is considered clamped.  

If the weight density of the material used is  (lbs/in.
3
), what is the maximum

deflection, and the maximum stress in the plate due to gravity alone?
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5.7. An air pump is constructed of a shaft, to which is clamped a disk of uniform

thickness, at whose outer edge a soft gasket prevents air passage between the disk 

and the surrounding cylinder as shown in Figure 5.15.

Figure 5.15.  Air pump.

Assuming the disk is clamped on the shaft of radius b, and free at its outer edge of 

radius a, and a maximum differential pressure of 0p (psi), what is the expression 

for the maximum radial stress?  What is the value of the maximum shear 

resultant, rQ  (lbs/in.)?  Could rQ  have been determined in another way?

5.8. In a chemical plant, a certain process involving high gaseous, pressures requires a

blow-out diaphragm which will blow at 100 psi pressure in order that expensive

equipment will not be damaged.  The flat circular plate diaphragm is 01  in radius

and simply supported on its outer edge.  Constructed of a brittle material with

,31  and the ultimate tensile strength is 50,000 psi, what thickness is required 

to have the plate fracture when the lateral pressure reaches 100 psi?

5.9. A circular plate is used as a component in a pressure vessel.  It has a 41

diameter, is simply supported at the outer edge, and is composed of steel: 

psi,1030 6E  psi,all 3.0 .  Using maximum principal stress

theory, what thickness, h, is required for a pressure differential of 50 psi?

5.10. What is the maximum deflection for the solution of Problem 5.9 above?

5.11. What is the governing differential equation for the lateral deflection, w, for a

circular plate subjected to a lateral pressure, p(r), and a temperature distribution, 

T(TT r, z)?

5.12. A circular steel plate, used as a footing, rests on the ground and is subjected to a

uniform lateral pressure, (psi)0 .  The ground deflects linearly with a 

spring constant of k (lbs/in./in.k 2
).

a.   What is the governing differential equation for this problem?

b.  What are the boundary conditions at the outer edge, r =r a?

Hint: See Section 2.4. 
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5.13. In Problem 5.7, write explicitly the four boundary condition equations involving

the constants A, B, C and C E, etc.  Do not bother to solve for the constants,

however.

5.14. In Problem 5.8, the maximum radial and circumferential stresses are at the plate

center and given by

.2at  )3(
8

3
2

2

0

maxmax
hz

h

ap
r

 If the plate is 01  in radius, 3.0 , psi0  and the yield stress is 50,000 

psi, what thickness is required if 

a.   the maximum principal stress failure theory is used? 

b.  the maximum distortion energy failure theory is used? 

In each case assume the field is two dimensional, i.e., ignore z , and refer to any

text on structural mechanics to review the failure theories referred to. 



CHAPTER 6

BUCKLING OF ISOTROPIC COLUMNS AND PLATES

6.1  Derivation of the Plate Governing Equations for Buckling

The governing equations for a thin plate subjected to both in-plane and lateral

loads have been derived previously.  In those equations, there was one governing 

equation describing the relationship between the lateral deflection and the laterally 

distributed loading,

),(4 yxpwD

and other equations dealing with in-plane displacements, related to in-plane loads

.00

4

0

4 vu

As discussed previously, the equations involving lateral displacements and lateral

loads is completely independent (uncoupled) from those involving the in-plane loadings

and in-plane displacements.

However, it is true that when in-plane loads are compressive, upon attaining

certain discrete values, these compressive loads do result in producing lateral 

displacements.  Thus, there does occur a coupling between in-plane loads and lateral 

displacements, w.  As a result, a more inclusive theory must be developed to account for 

this phenomenon, which is called buckling or g elastic instability.

Unlike in developing the governing plate equations in Chapter 1, wherein the

development began with the three dimensional equations of elasticity, the following shall

begin with looking at the in-plane forces acting on a plate element, in which the forces 

are assumed to be functions of the midsurface coordinates x and y, as shown in Figure 

6.1.
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Figure 6.1.  In-plane forces on a plate element.

Looking now at the plate element of Figure 6.2, viewed from the midsurface in

the positive y direction, the relationship between forces and displacements is seen, when 

the plate is subjected to both lateral and in-plane forces, i.e., when there is a lateral 

deflection, w (note obviously that in the figure the deflection is exaggerated).

Figure 6.2.  In-plane forces acting on a deflected plate element.

Hence, the z component of thez xN  loading per unit area is, for small slopes (i.e.,

the sine of the angle equals the angle itself in radians):

x

w
yNx

x

w

x

w
yx

x

N
N

yx
x

x
x dyydxxdyydxx

dyydxx

1
2

2



97

 Neglecting terms of higher order, the force per unit planform area in the z

direction is seen to be 
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(6.1)

 Similarly, the z component of thez yN force per unit planform area is seen to be 
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 Finally to investigate the z component of the in-plane resultants z xyN  and yxN ,

Figure 6.3.  In-plane shear forces acting on a deflected plate element.

 Hence, the z component per unit area of the in-plane shear resultant is:z
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 Neglecting higher order terms, this result in
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 With all the above z components of forces per unit area, the governing platez

equation can be modified to include the effect of these in-plane forces on the governing 

plate equations.
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 However, from in-plane force equilibrium, it is remembered from Equations 

(2.17) and (2.18), assuming no applied surface shear stresses, that 

0
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(6.5), (6.6)

Substituting these into the expression above, the final form of the equation is

found to be:
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Likewise, this governing plate equation can be reduced to the governing equation 

for a beam column by multiplying (6.7) by b (the width of the beam) and letting

0)/( y , 0 , xbNP  and q(x(( ) = bp(x(( ), to provide 
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 It should be noted that the load P defined above is an in-plane load which when 

positive produces compressive stresses, which differs from the convention used 

elsewhere throughout this text.  However, it is commonly used in the literature on 

buckling, is convenient, so herein is described as a barred quantity. 
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6.2  Buckling of Columns Simply Supported at Each End

Solving Equation (6.8) by methods described previously, the solution can be

written as:

)(sincos)( xwExCkxBkxAxw p (6.9)

where )(xwp is the particular solution for the loading q(x(( ).  Consider, for example, the

case wherein q(x(( ) = 0, and the column is simply supported at each end.  The boundary

conditions, at x = 0, L, are then 

0)()0( Lww

(6.10)
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From the first boundary condition A + C = 0, from the third C A = 0; hence, C = 0 also. C

From the second boundary condition B sinkL + EL = 0, and from the fourth boundary 

condition

.0sin
EI

0sin2 kL
PB

kLBk  (6.11) 

Note that in Equation (6.11) when nkL , then B = E = 0; whenE nkL , then 

E = 0, E 0B  but is indeterminate and 

.
EI

2

22

L
nP   (6.12)

It is thus seen that for most values of P , the axial compressive loading, the lateral 

deflection w is zero (A(( = B = C = C E = 0), and the in-plane and lateral forces and responsesE

are uncoupled.  However, for a countable infinity of discrete values of P, there is a lateral

deflection, but it is of an indeterminate magnitude.  Mathematically, this is referred to as

an eigenvalue problem and the discrete values given in (6.12) are called eigenvalues.  The

resulting deflections, in this case, are

w(x(( ) = B sinkx

and are called eigenfunctions.

 The natural vibration of elastic bodies are also eigenvalue problems, where in that 

case the natural frequencies are the eigenvalues and the vibration modes are the 

eigenfunctions.  This is treated in the next chapter.

 As to buckling, looking at Equation (6.12), as P  increases, it is clear that the 

lowest buckling load occurs when n = 1, and at that particular load, the column will either 
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inelastically deform and strain harden, or the column will fracture.  Hence, n > 1 has no 

physical significance.  The load 

2

2 EI

L
P  (6.13) 

is therefore the critical buckling load for this column for these boundary conditions.  In

this particular case the buckling load is called the Euler buckling load, since the Swiss 

mathematician was the first to solve the problem successfully.

Another way to phrase the buckling problem is exemplified by solving Equation

(6.8), letting constant.0  The resulting particular solution, in this case, is

Pxq 22

0 .  If the column is simply supported, solving the boundary value problem for 

the lateral deflection, results in

kLPkPP

q
xw

sin
)(

2

0 .   (6.14) 

 In Equation (6.14), the solution of a boundary value problem, when the axial load 

P  has values given in (6.12) wherein sinkL = 0, then w(x(( ) goes to infinity, or, more

properly, since we have a small deflection linear mathematical model, w(x(( ) becomes

indefinitely large.

 Hence, whether we solve for the homogeneous solution of Equation (6.8), 

resulting in an eigenvalue problem, or we solve the nonhomogeneous Equation (6.8), 

resulting in a boundary value problem, the results are identical, when P has values given

by (6.12), or physically where P  attains the value given by (6.13), the column ‘buckles’. 

 Note also that the buckling load, Equation (6.13), is not affected by any lateral 

load q(x(( ).  The physical significance of a lateral load q(x(( ), however, is that the beam-

column may deflect sufficiently, due to both the lateral and in-plane compressive loads, 

that the resulting curvature would cause bending stresses which in addition to the 

compressive stresses may fracture or yield the column at a load less than or prior to

attaining the buckling load. 

 These elastic stability considerations are very important in analyzing or designing 

any structure in which compressive stresses result from the loading, because in addition 

to insuring that the structure is not merely overstressed or overdeflected, in this case a

new failure mode has been added, i.e., buckling.
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6.3  Column Buckling with Other Boundary Conditions

 From the previous section, the critical compressive buckling load crP  is given as

2

2
cr

EI

L
P  (6.15)

 Numerous other texts derive critical buckling loads for columns with other 

boundary conditions, [6.1] through [6.4], and [12.2]. 

 For ease of use in analysis and design, but without derivations, the following 

column buckling equations are listed for the other classical boundary conditions. 

Column with both ends clamped 

.
EI

4
2

2
cr

L
P 4   (6.16) 

Column with one end clamped and the other simply supported 

.
)669.0(

EI
2

2

cr

L
P   (6.17) 

Column with one end clamped and the other end free 

.
4

EI
2

2

cr

L
P  (6.18)

6.4  Buckling of Isotropic Rectangular Plates Simply Supported on All Four Edges

Plate buckling qualitatively is analogous to column buckling, except that the

mathematics is more complicated, and the conditions that result in the lowest eigenvalue

(the actual buckling load) are not so lucid in many cases.

Whenever the in-plane forces are compressive, and are more than a few percent of 

the plate buckling loads (to be defined later), Equation (6.7) must be used rather than

Equation (3.1) in the analysis of plates.

For the plate, just as the case of the beam-column, since the in-plane load that 

causes an elastic stability is not dependent upon a lateral load, to investigate the elastic

stability we shall assume p(x(( , y) = 0 in Equation (6.7).

 Consider, as an example, a simply supported plate subjected to constant in-plane 

loads xN  and yN  (let 0xyN ), as shown in Figure 6.4.
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Figure 6.4.  Rectangular plate subjected to in-plane loads.

Assume the solution of Equation (6.7) to be of the Navier form

.sinsin),(
11 n

mn

m b

yn

a

xm
Ayxw

yyxx
  (6.19) 

Substituting (6.19) into (6.7), it is convenient to define here to be 

.xy NN   (6.20) 

The solution to the eigenvalue problem is found to be 

.
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2
22

2

cr

b

n

a

m

b

n

a

m

DN x  (6.21)

 Here the subscript cr denotes that this is a critical load situation – the plate

buckles.  Also note that in (6.21) xN  is negative, i.e., a load that causes compressive

stresses.

 Equation (6.21) is the complete set of eigenvalues for the simply supported plate, 

analogous to Equation (6.12) for the column.  In other words for these discrete values of 

xN  and yN , Equation (6.7) has nontrivial solutions wherein the lateral deflection is

given by (6.19); for other values w(x(( , y) = 0.
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Since we know that as the load increases, the plate will buckle at the lowest 

buckling load (or eigenvalue) and all the rest of the eigenvalues have no physical

meaning.  So it is necessary to determine what values of the integers m and n (the number 

of half sine waves) make xN  a minimum.

Defining the length to width ratio of the plate to be r =r a/b Equation (6.21) can be

rewritten as 

.
][

][
222

2222

2

2

rnm

rnm

a

D
N x   (6.22) 

Note if in Equation (6.22) ,0 r = 1 and r m = n = 1, then 

.
4

2

2

a

D
N x

4
 (6.23)

 Note the similarities between Equations (6.23) and (6.13).

 The question remains; given a combination of xN and yN  loadings, and a given

Figure 6.5.  Values of biaxial loads causing buckling for square simply supported isotropic plate. 
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geometry r, what values of m and n provide the lowest buckling loads.  One can make a

plot such as Figure 6.5 above from manipulating Equation (6.22) (which is not shown to

scale) for a square plate (a = b, r = 1).r

 It is seen from Figure 6.5 that for such a square plate, simply supported on all four 

edges, the plate will always buckle into a half sine wave (m = n = 1) under any

combination of xN  and/or yN , since that line is always closest to the origin, hence, the

lowest buckling load situation.

 Next consider a plate under an in-plane load in the x direction only, so 0yN ,

and 0 .  In this case, Equation (6.21) can be written as

.

2

2

2

2

2

2

22

b

n
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m

m

aD
N

crx  (6.24) 

The loaded plate is shown in Figure 6.6. 

Figure 6.6.  Plate subjected to in-plane load in the x direction.

 Examination of Equation (6.24) shows that the first term is merely the Euler 

column load (6.13) for a column of unit width, including Poisson ratio effects.  The 

second term clearly shows the buckle resisting effect providing by the simply supported 

side edges, and this effect diminishes as the plate gets wider, i.e., as b increases.  In fact 

as b , (6.24) shows that the plate acts merely as an infinity of unit width beams, 

simply supported at the ends, and because they are ‘joined together’, the Poisson ratio 

effect occurs, i.e., D instead of EI appears. 

It is obvious from Equation (6.24) that the minimum values of xN occurs when n

= 1, since n appears only in the numerator.  Thus for an isotropic plate, simply supported 

on all four edges, subjected only to an uniaxial in-plane load the buckling mode given by 

(6.19) will always be one half sine wave [sin(y(( /b)] across the span, regardless of the

length or width of the plate.

 Thus, since n = 1, Equation (6.24) can be written as 
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2

2

2

m

r

r

m

b
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crx   (6.25) 

where it is remembered that r =r a/b, termed the aspect ratio.

Now if a < b (the plate wider than it is long), the second term is always less than

the first, hence, the minimum value of xN  is always obtained by letting m = 1.  Hence for 

ba , the buckling mode for the simply supported plate is always 

.
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y
sinsin),( 11
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x
Ayxw  (6.26)

In that case,
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To find out at what aspect ratio r, that xN  is truly a minimum, let 
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Therefore r = 1 provides that minimum value.  Hence for r m = 1, xN  is a minimum when

a = b.  Under that condition, from (6.27)
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Comparing this with the Euler buckling load of (6.13) for a simply supported 

column, it is seen that the continuity of a plate and the support along the sides of the plate 

provide a factor of at least 4 over the buckling of a series of strips (columns) that are

neither continuous nor supported along the unloaded edges.

Now as the length to width ratio increases, as a/b increases, the buckling load 

(6.27) will increase, and one can ask, will m = 1 always result in a minimum buckling

load, or is there another value of m which will provide a lower buckling load as r

increases (i.e., 1)
crcr xx for some value of r?)

Mathematically, this can be phrased as the following, using (6.25): 
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 This states the condition under which the plate of aspect ratio r will buckle inr m

half sine waves in the loaded direction rather than m – 1 sine waves.  Manipulating this 

inequality results in 

.)1( 2rmm  (6.29)

Equation (6.29) states that the plate will buckle in two half sine waves in the axial

direction rather than one when 2r .  The plate will buckle in three half sine waves in

the axial direction rather than 2, when 6r , etc.

 Again one can ask that when the plate buckles into m = 2 configuration, does a 

minimum buckling load occur, if so at what r and what is r
(min)cr xN ?

 From Equation (6.25)
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 This is the same value as is given in Equation (6.28) for m = 1.  Proceeding with

all values of r and r m, the following graph can be drawn, which clearly shows the results

(Figure 6.7).

Figure 6.7.  Buckling load as a function of aspect ratio for a simply supported isotropic plate. 
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 Hence knowing the value of r, the figure provides the actual value of xN  and the 

corresponding value of the wave number m in the load direction.  However, in practice 

for r > 1, universally one simply uses Equation (6.28) or (6.30) for the buckling load.r

However, looking more closely at Equation (6.29), as m increases we see

.or   )1( 22 barmrmmm

 This means that for long plates, the number of half sine waves of the buckles have

lengths approximately equal to the plate width.  Another way to stating it is that a long

plate simply supported on all four edges and subjected to a uniaxial compressive load 

attempts to buckle into a number of square cells.

 Remembering that hN xx , Equation (6.28) or (6.30) can be written as the 

following for 1ba ,

.
)-3(1
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2

2

cr
b

hE
  (6.31)

6.5  Buckling of Isotropic Plates with Other Loads and Boundary Conditions 

 The solution to the buckling of flat isotropic plates simply supported on all four 

sides subjected to uniaxial uniform compressive in-plane loads has been treated in detail. 

However, for many other boundary conditions, simple displacement functions like

Equation (6.19) do not exist, and in some cases analytical, exact solutions analogous to

Equations (6.21) and (6.31) have not been found.  In those cases approximate solutions

have been found using energy methods, which will be discussed in Chapters 8 and 9. 

These have been catalogued by Gerard and Becker [6.3] among others, and are presented 

in Figure 6.8 and ck , given in the following equations:
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Figure 6.8.  Compressive-buckling coefficients for flat rectangular isotropic plates. 

 In many practical applications, the edge rotational restraints lie somewhere 

between fully clamped and simply supported along the unloaded edges.  For the case of 

the loaded edges simply supported, the buckling coefficient, ck , of Equation (6.32) are

also given by Gerard and Becker [6.3] as shown in Figure 6.9.  The unloaded edge

restraint, , is zero for simply supported edges and infinity for full clamping.  Values in

between these extremes require engineering judgment.
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Figure 6.9.  Compressive-buckling-stress coefficient of isotropic plates as a function of a/b for various 

amounts of edge rotational restraint.

For in-plane shear loading, the critical shear stress is given by the following 

equations:
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hEK s
xy

s   (6.33) 

where sK  is given in Figure 6.10 for various boundary conditions [6.3].
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Figure 6.10.  Shear-buckling-stress coefficient of isotropic plates as a function of a/b for clamped and 

hinged edges.

For rectangular plates subjected to in-plane bending loads, the following equation

is used to determine the stress value for the buckling of the plate shown in Figure 6.11.

2

2

2

)-12(1 b

hEkb
B   (6.34) 

where again is the value of the edge constraint as discussed previously. 
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Figure 6.11.  Bending-buckling coefficient of isotropic plates as a function of a/b for various amounts of 

edge rotational restraint.

6.6  The Buckling of an Isotropic Plate on an Elastic Foundation Subjected to

      Biaxial In-Plane Compressive Loads

It is important to consider that besides overall buckling of the entire plate, it is

possible that a sandwich face plate may buckle, due to loads applied to the face.  In this 

case the plate can be considered to be supported on a uniform elastic foundation, namely 

the core.  In such a case the buckling equation for this phenomenon is

0
2

2

2

2
4

y

w
N

x

w
NkwwD yx   (6.35) 

where D is the flexural stiffness of the face plate, w is the lateral displacement of the face

plate, k is the foundation modulus in force/unit area/unit deflection, and k yx NN , are the 
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compressive loads per unit width in the subscripted direction (i.e., xx NN , etc.) acting

on that particular face plate.

 Considering this localized buckling phenomenon, is has been found that the plate

boundary conditions at the outer plate edges do not affect the buckling load.  Therefore,

for analytical simplicity, assume simply-supported edges on all four sides.  Therefore, the

Navier approach may be used for the solution, with the lateral deflection assumed to be

b

yn

a

xm
Ayxw mn

yyxx
sinsin),(  (6.36)

where mnA  is the deflection amplitude, a is the plate dimension in the x-direction, and b is

the plate dimension in the y-direction.

 For simplification, let xy NN / and r =r a/b.  Substituting Equation (6.36) into 

(6.35) and using the above
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If 1 , and r = 1, then the response is independent of direction.  When the in-r

plane loads are caused by the cooling of a sandwich plate wherein the coefficients of 

thermal expansion between face and core cause the face to be compressed, then 1.

Further because the buckling is a localized phenomenon, one can let r = 1.  Thenr

Equation (6.37) may be written as

)(
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2222224
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karnmaD
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First it is seen that the minimum value of xN  will occur when m = n = 1,

therefore

2

224

2

)/4( kaaD
N x   (6.39) 

To find the dimension a resulting in a minimum value of crxN , set 0/cr aN x , with 

the result that 

4
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2/12
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D
a  (6.40)
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This is the half wavelength of the buckle that will occur, and it can be determined that 

this is a localized buckle in a reasonably sized face plate.  Substituting Equation (6.40) 

into (6.39) results in 

2/1
cr )(2 kDN x

As defined, crxN  is a compressive force per unit width and equal to cryN , since

1, or in the usual notation, where ii NN ,

2/1

crcr
)(2 kDNN yx  (6.41)

The buckling stress in the face plate is therefore 

2/1

cr )(
2

kD
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  (6.42) 

 It has been found that in the fabrication of some sandwich plates, because of the

cooling down subsequent to joining, the faces to the core in a rolling operation, 

differential thermal contractions caused sufficiently high compressive stresses in the 

faces to cause thermal buckling of the sandwich faces. 
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6.8  Problems 

6.1. In a plate clamped on all four edges, 25.0 and loaded in the x direction the 

critical buckling stress is given by (from Reference 7.1) 

2

2

2

2

2

cr
)1(12 b

hEk
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Dk kk

 where D is the flexural stiffness, b is the plate width, a is the plate length, and h is 

the plate thickness. ck  is given by 
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a/b

k

0.75

11.69

1.0

10.07

1.5

8.33

2.0

7.88

2.5

7.57

3.0

7.37

 (a) Part of a support fixture for a missile launcher measure 5154 , and must 

support 145,000 lbs in axially compressive load.  Its edges are all clamped.  If 

the plate is composed of aluminum with psi6 , allowable 30,000 

psi (both the tensile and compressive allowable stress is of magnitude 30,000 

psi) and 25.0 .  What thickness is required to prevent buckling?  What 

thickness is required to prevent overstressing? 

(b) Suppose a steel plate of the same dimensions were used instead of the

aluminum with the following properties: psi1030 6

steelE , 25.0 and 

psi000,100allowable .  What thickness is needed to prevent buckling?  Will

the steel plate be overstressed? 

 (c) The density of steel is 3lbs/in283.0 , the density of aluminum is 3lbs/in100.0 .

Which plate will be lighter?

6.2. A structural component in the interior of an underwater structure consists of a 

square plate of dimension a, simply supported on all four sides.  If the component is 

subjected to in-plane compressive loads in both the x and y directions of equal 

magnitude, find xN .

6.3. An aluminum support structure consists of a rectangular plate simply supported on 

all four edges is subjected to an in-plane uniaxial compressive load.  If the length of 

the plate in the load direction is 4 feet, the width 3 feet, determine the minimum 

plate thickness to insure that the plate would buckling in the elastic range, if the 

material properties are psi6 , 3.0  and the compressive yield stress,

psi000,30y .

6.4. A rectangular plate 4 feet 2 feet is subjected to an in-plane compressive load xN

in the longer direction as shown in Figure 7.6.  How much weight of plate can be 

saved by using a plate clamped on all four edges rather than having the plate simply

supported on all four edges to resist the same compressive load 
crxN ?  Express the 

answer as a percentage. 

6.5. An aluminum plate measure 6 feet 3 feet, of thickness 0.1 inch is clamped on all 

four edges.  Use the material properties in Problem 6.3 above. 

 (a) If it is subjected to a compressive in-plane load in the longer direction, what is 

the buckling stress? 

 (b) How much higher is the buckling stress compared to the same plate simply 

supported on all four edges? 



CHAPTER 7

VIBRATIONS OF ISOTROPIC BEAMS AND PLATES

7.1  Introduction 

Through the previous chapter, the static behavior of beams, rods, columns and 

plates has been treated to determine displacements, stresses, and buckling loads.  This is

important because many structures are stiffness critical (maximum deflections are 

limited) or strength critical (maximum stresses are limited).  In Chapter 6, the elastic

stability of these structures was treated because that is a third way in which structures can

be rendered useless.  In most cases when a structure becomes elastically unstable, it 

cannot fulfill its structural purpose.

In this chapter, the vibration of beams and plates is studied in some detail.  Many

textbooks have been written dealing with this subject, but here, only an introduction is

made to show how one approaches and deals with such problems.

In linear vibrations, both natural vibration and forced vibrations are important. 

The former deals with natural characteristic of any elastic body, and these natural

vibrations occur at discrete frequencies, depending on the geometry and material systems

only.  Such problems (like buckling) are eigenvalue problems, the natural frequencies are

the eigenvalues, and the displacement field associated with each natural frequency are the 

eigenfunctions.  One remembers that in a simple spring-mass system, there is one natural 

frequency and mode shape; in a system of two springs and two masses, there are two 

natural frequencies and two mode shapes.  In a continuous elastic system, theoretically

there are an infinite number of natural frequencies, and a mode shape associated with 

each.

 Forced vibrations occur when an elastic body is subjected to a time dependent 

force or forces.  In that case the response to the forced vibrations can be viewed as a

linear superposition of all the eigenfunctions (vibrations modes), each with an amplitude

determined by the form of the forcing function.  In forced vibrations, the forces can by

cyclic (harmonic vibration) or non-cyclic, including shock loads (those which occur over 

very small times). 
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7.2  Natural Vibrations of Beams 

 Consider again the beam flexure equation discussed previously.
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xq
xdd

w
(7.1)

It is seen that the forcing function q(x(( ) is written in terms of force per unit length.  

Using d’Alembert’s Principle for vibration, an inertial term can be written which is the 

mass times the acceleration per unit length.  Also the forcing function can be a function

of time, and of course the lateral deflections will be a function of both spatial and 

temporal coordinates.  The result is that (7.1) becomes, for the flexural vibration, 

.),(EI
2

2

4

4

t

w
Atxq

x

w
m

xx
(7.2)

 In the above m  is the mass density of the beam material, and A is the beam

cross-sectional area, both of which are taken here as constants for simplicity.

 As stated previously, natural vibrations are functions of the beam material 

properties and geometry only, and are inherent properties of the elastic body – 

independent of any load.  Thus, for natural vibrations, q(x(( , t) is set equal to zero, and 

(7.2) becomes 
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 To solve this equation to obtain w(x(( , t), in general, one can assume w(x(( , t) =

X(XX x(( )T(TT t), a separable solution, use separation of variables to obtain a spatial function X(XX x(( )

which satisfies all of the boundary conditions, and an harmonic function for T(TT t), and thus 

arrive at a characteristic set of variables to satisfy (7.3) and its boundary conditions.  In

that process the natural frequencies and mode shapes are determined.

 By way of a specific example, consider the beam to be simply supported at each

end.  Then the spatial function is a sine function such that 
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where nA  is the amplitude, and n is the natural circular frequency in radians per unit 

time for the nth vibrational mode.

 Substituting (7.4) into (7.3) results in:
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 For this to be an equation, then for each value of n, requires that 
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m

n (7.6)

It is seen that for each integer n, there is a different natural frequency, and from 

(7.4) a corresponding mode shape (i.e., n = 1, a one half sine wave; n = 2, two half sine 

waves, etc.).

Unlike in buckling where one looks for the lowest buckling load only, in

vibrations each natural frequency is important, because if a beam were subjected to an 

oscillating load coinciding with any one natural frequency, little energy would be needed 

to cause the amplitude to grow until failure occurs. 

The lowest natural frequency, n = 1 in this case is called the fundamental

frequency.  Theoretically n could increase to infinity.  However, at some point the 

governing equation (7.3) does not apply, and thus the resulting frequencies given by (7.6)

become meaningless.  For a beam of an isotropic material the classical beam equation 

(7.3) ceases to apply when the vibration half wave length approaches the beam depth, h,

because then transverse shear deformation effects ( 0xz ) become important and (7.3) 

must be modified. 

 It is noted that for beams with boundary conditions other than simply supported at 

each end, the eigenfunctions (vibration modes) are not as simple as a sine wave.  These 

are treated in detail in any of many fine texts on vibration.  However, the natural 

frequencies, n , are catalogued below for use in analysis and design.  In this case,

Equation (7.6) is modified slightly for general use. 

4

2 EI

ALm

nn (7.7)

where 2

n values are given by the following:

Simple Support-Simple Support Beam: 22n

Cantilevered Beam:  ,2

1  ,6222

2 7.612

3

Clamped-Clamped Beam:  ,2

1 ,7612

2 0.1212

3

In all of the above, classical beam theory is used, i.e., no transverse shear deformation

effects.  Also remember that in %90  of the errors made by students calculating natural

frequencies, the student used the weight density of the material rather than the mass

density.
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7.3  Natural Vibrations of Isotropic Plates

 Consider again the equation for the bending of a rectangular plate subjected to a 

lateral load, p(x(( , y), given by Equation (2.57).

 ).4 yp (7.8)

 If d’Alembert’s Principle were used to accommodate the motion, one would add a

term to the right hand side equal to the negative of the product of the mass per unit area

and the acceleration in the z direction.  In that case, the right hand side of (7.8) becomes:z

),,(),,(
2

2

tyx
t

w
htyxp m (7.9)

where both p and w are functions of time as well as space, is the mass density of the 

material and h is the plate thickness.  For forced vibration p(x(( , y, t) causes the dynamic 

response, and can vary from a harmonic oscillation to an intense one time impact.

As discussed in the previous section, to study the natural vibrations p(x(( , y, t) is set 

equal to zero, and the governing equation becomes the following homogeneous equation: 

.02
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4

4

22

4

4

4

t

w
h

y

w

yx

w

x

w
D m  (7.10)

As done previously, one can assume a solution for the lateral deflection, which

spatially satisfies the boundary condition, is harmonic in time and satisfies (7.10) above. 

For the case of a plate simply-supported on all four edges, such a function is

11

sinsinsin),,(
n

nmn

m

t
b

yn

a

xm
Atyxw

yyxx
  (7.11) 

where a and b are the plate dimensions, mnA  is the vibration amplitude for each value of 

the integers m and n, and mn  is the natural circular frequency in radians per unit time. 

.

2
1

2

2

2

2

24

b

n

a

m

h

D

m

mn  (7.12)

In this case the fundamental natural frequency occurs for m = n = 1.  Again, the 

amplitude mnA  cannot be determined from this linear eigenvalue problem, in which the 

eigenvalues are the natural circular frequencies of Equation (7.12) and the corresponding 

eigenfunctions are the mode shapes, given in (7.11). 

To obtain the natural frequency of vibration in cycles per second, called Hertz 

(Hz), denoted by mnfm ,
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2

mn
mnfm   (7.13)

 As in buckling, plates with other boundary conditions comprise more complicated 

problems, often most difficult to solve analytically.  In many cases appropriate solutions

are obtained using energy methods (Chapters 8 and 9).

 Ma and Lin [7.1] have provided graphic descriptions of the first six vibration

modes for an aluminum (isotropic) square plate, giving both the experimental observation

and the mode shapes obtained by numerical calculation. 

Figure 7.1.  First six mode shapes for isotropic aluminum square plate obtained from experimental

observation and numerical calculation.
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7.4  Forced Vibrations of Beams and Plates

These will not be treated here.  There are many fine texts at a basic level and 

voluminous literature dealing with this subject.  Thomson [7.2] is such a text, and Leissa

[7.3] provides solutions to numerous problems.  Vibration damping is treated in the text 

by Nashif, Jones and Henderson [7.4].

One excellent paper by Dobyns [7.5] also given by Vinson and Sierakowski [1.7],

and repeated here in Chapter 13, provide solutions to the dynamic response of anisotropic

plates subjected to a variety of impact loads of practical value, and are treated herein in

Section 13.4.  Those solutions are easily simplified to treat plates of isotropic materials.
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7.6  Problems

7.1. A beam is 30 inches long, 1 inch wide and made of steel ( psi,6 ,3.0

weight density 3lbs/in283.0w ), simply supported at each end.  What must the

thickness h be to insure that the lowest natural frequency is not lower than 30 Hz?

7.2. For the beam of Problem 7.1 dimensions and material, what is the fundamental

frequency if the beam is cantilevered?

7.3. For the beam of Problem 7.1 dimensions and material, what is the fundamental

frequency if the beam is clamped at each end?



CHAPTER 8

THEOREM OF MINIMUM POTENTIAL ENERGY, HAMILTON’S PRINCIPLE

AND THEIR APPLICATIONS

8.1  Introduction

 Many structures involve complicated shapes and numerous or unusual loads for 

which solutions of the governing differential equations and/or the boundary conditions

are difficult or impossible.  For instance, a rectangular plate with a hole somewhere, or a

plate with discontinuous boundary conditions poses a major difficulty in finding an

analytical solution.

 For preliminary design and analysis one needs simplified, easy to use analyses

analogous to those that have been presented earlier.  However, for final design, quite

often transverse shear deformation and thermal effects must be included.  Thermal

effects have been described in Chapter 4.  Analytically they cause considerable difficulty,

because with their inclusion few boundary conditions are homogeneous, hence separation

of variables, used throughout the plate solutions to this point, cannot be utilized in a

straightforward manner. Only through the laborious process of transformation of 

variables can the procedures discussed herein be used [1.1].  Therefore, energy principles

are much more convenient for use in design and analyses of plate structures when

thermal effects are present.

 In solving plate problems it is seen that in order to obtain an analytical solution

one must solve the differential equations and satisfy the boundary conditions; if that 

cannot be accomplished, there is no solution.  With energy methods, one can always

obtain a good approximate solution, no matter what the structural complexities, the loads

or the boundary condition complications may be, using a little ingenuity.

 In structural mechanics three energy principles are used: Minimum Potential

Energy, Minimum Complementary Energy and Reissner’s Variational Theorem [8.1].  

The first two are discussed at length in Sokolnikoff [1.1] and many other references.  The 

Reissner Variational Theorem, likewise, is widely referenced.  In solid mechanics, 

Minimum Complementary Energy is rarely used, because it requires assuming functions 

that insure that the stresses satisfy boundary conditions and equilibrium.  It is usually far 

easier to make assumptions about functions that can represent displacements.

Minimum Potential Energy is widely used in solutions to problems involving 

plate structures.  In fact, the more complicated the loading, the more complicated the 

geometry and the more complicated the boundary conditions (e.g., discontinuous or 

concentrated boundary conditions), the more desirable it is to use Minimum Potential 

Energy to obtain an approximate solution, compared to attempting to solve the governing 

differential equations and to satisfy the boundary conditions exactly.

In addition, in many cases energy principles can be useful for eigenvalue 

problems such as in the buckling and vibration problems as shall be shown. 
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There are numerous books dealing with energy theorems and variational methods.  

One of the more recent is that by Mura and Koya [8.2].

8.2  Theorem of Minimum Potential Energy

For any generalized elastic body, the potential energy of that body can be written

as follows: 

R iiS iiR
RuFiSuTiRWV

TS
dRRddRRWW

(8.1)

where
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One sees that the first term on the right-hand side of Equation (8.1) is the strain

energy of the elastic body.  The second and third terms are the work done by the surface 

tractions; and the body forces, respectively.  The Theorem of Minimum Potential Energy

can be stated as described in [1.1]: “Of all the displacements satisfying compatibility and 

the prescribed boundary conditions, those that satisfy the equilibrium equations make the

potential energy a minimum.” 

Mathematically, the operation is simply stated as,

0VVV                                                         (8.2)

The lowercase delta is a mathematical operation known as a variation.  

Operationally, it is analogous to partial differentiation.  To employ variational operations

in structural mechanics, only the following three operations are usually needed (where y

is any dependent variable):

xyxyyyy
x

y

x

y
dxxdxx,2,

dxx

dyy

dxx

)(d 2 yyyy
yy

                  (8.3) 

 In Equation (8.1) the strain energy density function, W, is defined as follows in aWW

Cartesian coordinate frame: 
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 (8.4) 

 To utilize the Theorem of Minimum Potential Energy, the stress-strain relations 

for the elastic body are employed to change the stresses in Equation (8.4) to strains, and 

the strain-displacement relations are employed to change all strains to displacements.  

Thus, it is necessary for the analyst to select the proper stress-strain relations and strain-

displacement relations for the problem being solved. 

 Although this text is dedicated to plate and panel structures, it is best to introduce 

the subject using isotropic monocoque beams, a much simpler structural component, to 

first illustrate the energy principles. 

8.3  Analysis of a Beam In Bending Using the Theorem of Minimum Potential 

       Energy

 As the simplest example of the use of Minimum Potential Energy, consider a 

beam in bending, shown in Figure 8.1.  In this section, Minimum Potential Energy 

methods are used to show that if one makes beam assumptions, one obtains the beam 

equation.  However, the most useful employment of the Minimum Potential Energy 

Theorem is through making assumptions for the dependent variables (the deflection) and 

using the Theorem to obtain approximate solutions, as will be illustrated later. 

 From Figure 8.1 it is seen that the beam is of length L, in the x-direction, width b

and height h.  It is subjected to a lateral distributed load, q(x(( ) in the positive z-direction,

in units of force per unit length.  The modulus of elasticity of the isotropic beam material 

is E, and the stress-strain relation is simply 

xx E                                                       (8.5) 

Figure 8.1.  Beam in bending
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The corresponding strain-displacement relation for a beam in bending only is, from

(1.16), (2.1) and (2.27),

z
x

w

x

u
x 2

2

dxx

d

dxx

d
                                             (8.6) 

since in the bending of beams, )d/d( xddwzu only.

 Looking at Equations (8.4) through (8.6) and remembering that in elementary 

beam theory 

0xyyzxzxyzy

then if the beam is subjected to bending only 
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Therefore, the strain energy, U, which is the volume integral of the strain energy densityUU

function, W, is WW
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where, 123bh , the flexural stiffness for a beam of rectangular cross-section.

 Similarly, from the surface traction work term in Equation (8.1) it is seen that 

L
xxwxqsuT
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Equation (8.1) then becomes
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Following Equation (8.2) and remembering Equation (6.3) then
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 The variation can be included under the integral, because the order of variation

and integration can be interchanged.  Also, there is no variation of E, I or q(x(( ) because 

they are all specified quantities. 

 Integrating by parts the first term on the right-hand side of Equation (8.10).
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Substituting Equation (8.11) into (8.10) and rearranging, it is seen that: 
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 For this to be true, the following equation must be satisfied for the integral above 

to be zero: 

)(
d

d
EI

4

4

xq
xdd

w
(8.13)

This is obviously the governing equation for the bending of a beam under a

lateral load. So, it is seen that if one considers a beam-type structure, uses beam

assumptions, and uses proper stress-strain relations and strain-displacement relations, the

result is the beam bending equation. However, it can be emphasized that if a

nonclassical-shaped elastic structure were being analyzed, by using physical intuition, 

experience or some other reasoning to formulate stress-strain relations, and strain-

displacement relations for the body, then through the Theorem of Minimum Potential

Energy one can formulate the governing differential equations for the structure and load 
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analogous to Equation (8.13).  Incidentally, the resulting governing differential equations

derived from the Theorem of Minimum Potential Energy are called the Euler-Lagrange

equations.

 Note also for Equation (8.12) to be true, each of the first two terms must be zero. 

Hence, at x = 0 and x = L (at each end) either Mxw x or 0dxx/dEI 22  must 

be specified (that is, its variation must be zero), also either wVxw xVV or 0dxx/dEI 33

must be specified.  These are the natural boundary conditions.  All of the classical 

boundary conditions, including simple supported, clamped and free edges are contained 

in the above “natural boundary conditions.”  This is a nice byproduct from using the

variational approach for deriving governing equations for analyzing any elastic structure.

The above discussion shows that if in using The Theorem of Minimum Potential

Energy one makes all of the assumptions of classical beam theory, the resulting Euler-

Lagrange equation is the classical beam equation (8.13) and the natural boundary

conditions given in (8.12) as discussed above.

Equally or more important the Theorem of Minimum Potential Energy provides a

means to obtain an approximate solution to practical engineering problems by assuming

good deflection functions which satisfy the boundary conditions.  As the simplest 

example consider a beam simply supported at each end subjected to a uniform lateral

load per unit length 0)( qxq , a constant.

Here, an example, assume a deflection which satisfies the boundary conditions

for a beam simply supported at each end, where A is a constant to be determined. 

L

x
Axw

xx
sin)(                                                 (8.14)

This is not the exact solution, but should lead to a good approximation because (8.14) is

a continuous single valued function which satisfies the boundary conditions of the

problem.

Proceeding,
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Substituting (8.14) into (8.9) results in 
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The exact solution is 

EI384

5
)2/(

4
0

Lq
Lw                                          (8.18)

 The difference is seen to be 0.386%.  So the Minimum Potential Energy solution 

is seen to be almost exact in determining the maximum deflection. 

 In determining maximum stresses the accuracy of the energy solution is less, 

because bending stresses are proportional to second derivatives of deflection.  By taking 

derivatives the errors increase (conversely, integrating is an averaging process and errors 

decrease) so the stresses from the approximate solution differ more from the exact 

solution than do the deflections. 

 To continue this example for a one lamina composite beam, simply supported at 

each end, subjected to a constant uniform lateral load per unit length of 0q , it is clear 

that the maximum stress occurs at x = L/2.  From classical beam theory, the exact value

of the maximum stress is 

82
,

2

2
0

max

LqhL
x                                   (8.19) 

Likewise, for the Minimum Potential Energy solution, using (8.15) 
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The difference between the two is 3.2%, so the energy solution is quite accurate for many

applications.

 If one wishes to increase the accuracy, instead of using (8.14) one could use 

N

n L

xn
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1
sin)(
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If N were chosen to be three, for example, the expression for N w(x(( ) is given by

L

x
A

L

x
Axw

xxxx 2
sinsin)( 21 L

x
A

xx3
sin3 and one would proceed as before, taking

variations with respect to 1A , 2A and 3A  which provides three algebraic equations for 

determining the three nA . Of course as N increases, the accuracy of the solution N

increases until as N approaches infinity it is another form of the exact solution.N

As a second example, examine the same beam, this time subjected to a 

concentrated load P at the mid-length, P x = L/2.  To obtain an exact solution, one must 

divide the beam into two parts, so that the load discontinuity can be accommodated, with

the result that there are two fourth order differential equations and eight boundary

conditions.  Not so with the case of Minimum Potential Energy to obtain an approximate

solution, as follows.  Again assume (8.14) as the approximate deflection because it is

single valued, continuous and satisfies the boundary conditions at the end of the beam.  

There,
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Again, instead of (8.14) one could have chosen (8.21) as the trial function to use in 

solving this problem.

 Thus, the Theorem of Minimum Potential Energy can be used easily for 

complicated laterally distributed loads, concentrated lateral loads, any boundary 
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conditions, and/or variable or discontinuous beam thicknesses.  One only needs to select 

a form of the lateral displacement such as the following examples. 

Clamped Clamped Beam

L

x
Axw

xx2
cos1)(                                           (8.22) 

Clamped-Simple Beam

433 23L3)( xLxxAxw                                    (8.23)

Cantilevered Beam

2)( Axxw                                                     (8.24) 

8.4  The Buckling of Columns

 In this case the strain energy is again given by Equation (8.8), where neglecting 

body forces iFi , the work done by surface tractions is given as follows: 
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 This equation incorporates the more comprehensive theory employed in Chapter 

6 to include buckling, and as discussed previously, to calculate buckling loads, 00 ,

because at incipient buckling the arc length of the buckled column is equal to the original 

length.  Also, in the above, P is the tensile load, considered constant to make the problemP

linear.  Therefore, for column buckling, 

LL

x
x

wP
x

x

wEI
V

0

2

0

2

2

2

dxx
dxx

d

2
dxx

dxx

d

2
. (8.25)

 Taking the variation of the potential energy, one obtains the following Euler-

Lagrange equation analogous to Equation (8.13)
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as well as the natural boundary conditions discussed previously.  However, assuming a 

form of w(x(( ), which satisfies the boundary conditions for the column, which

approximates the exact buckled shape will provide an approximation to the exact 

buckling load.

Consider a column simply supported at each end, if one uses (8.14) in (8.25) and 

takes variation of A, the result is:
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so the bracket must equal zero, or 
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It is seen that this is the exact buckling load, because the exact buckling mode 

(8.14) was utilized.  Some other approximate displacement functions satisfying the 

boundary conditions would give an approximate buckling load.  It can be proven that 

such an approximate buckling load will always be greater than the exact buckling load.  

However, as long as the assumed displacement satisfies the boundary conditions, the 

error is never more than a very few percent of the exact value. 

8.5  Vibration of Beams 

 The energy principle to utilize in dynamic analysis is Hamilton’s Principle which 

employs the functional 

2

1
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t

t

tVTI . (8.28)

Hamilton’s Principle states that in a conservative system 

0I . (8.29)

In the above, the potential energy, V, is given by Equation (8.1), and VV T is theT

kinetic energy of the body.  In a beam undergoing flexural vibration, the kinetic energy 

would be 
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where m  is the mass density of the material, A is the beam cross-sectional area, and 

tw is the velocity of the beam.

Using Hamilton’s Principle in the same way that was done before for Minimum 

Potential Energy, the resulting Euler-Lagrange equation is 
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which is identical to Equation (7.3).  Also resulting are the natural boundary conditions,

discussed previously. 

 Considering a beam simply supported at each end, if Equation (8.14) is modified 

to include a harmonic motion with time, such as 

t
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where C is a constant.C

The result is an Euler-Lagrange equation of 

A

EI

L

n

m

n 2

22

(8.32)

which is the exact solution for the natural circular frequency, n , in radians/unit time 

[see Equation (7.6)] because the exact mode shape was assumed.  Again, if the assumed 

displacement function is approximate, then approximate natural frequencies will be

obtained; are higher than the exact frequencies, but the error will be at most a few

percent.  In any case the natural frequency, f (in Hz), is found byf 2n .

 Note that in assuming mode shape functions in both buckling and vibration

problems (eigenvalue problems), the closer the assumed approximate function is to the 

exact mode shape, the lower the resulting eigenvalue will be, and of course it will be 

closer to the exact eigenvalue, since the exact eigenvalue is always lower than any

approximated value. 
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8.6  Minimum Potential Energy for Rectangular Isotropic Plates

 The strain energy density function, W, for a three dimensional solid in rectangular WW

coordinates is given by Equation (8.4).  The assumptions associated with the classical 

plate theory of Chapter 2 are employed to modify (8.4) for a rectangular plate.  If 

transverse shear deformation is neglected, then 0yzxz .  If there is no plate 

thickening, then 0z .  From Equations (1.9), (1.10), and (1.12), stresses are written in

terms of strains, such that for the classical plate, 
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Therefore, (8.4) becomes
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If the plate is subjected to bending and stretching, the deflection functions are given by 

Equations (2.24) through (2.28).  Substituting these into (8.34) results in the following: 
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 From this the strain energy )d(
R

RddWddU is found.
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It is seen that the first term is the extensional or in-plane strain energy of the

plate, and the second is the bending strain energy of the plate.  In the latter, it is seen that 

the first term is proportional to the square of the average plate curvature, while the

second term is known as the Gaussian curvature.
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 For the plate the total work term due to surface traction is seen to be
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Hence, in (8.36) and (8.37) if one considers a plate subjected only to a lateral load 

p(x(( , y), one assumes 000 xyyx NNNvu .  If one is considering in-plane loads 

only (except for buckling) assume w(x(( , y) = p(x(( , y) = 0.  If one is looking for buckling 

loads, assume 0)( 00yp .  The rationale for all of this has been discussed 

previously.

8.7  The Buckling of an Isotropic Plate Under a Uniaxial Load, Simply Supported 

      on Three Sides, and Free on an Unloaded Edge 

The most beneficial use of the Minimum Potential Energy Theorem occurs when 

one cannot formulate a suitable set of governing differential equations, and/or when one 

cannot ascertain a consistent set of boundary conditions.  In that case one can make a

reasonable assumption of the displacements, and then solves for an approximate solution 

using the Theorem of Minimum Potential Energy.  This is illustrated in the following 

example.

Consider the plate shown below in Figure 8.2.  The governing differential 

equation for this problem is obtained from Equation (6.7). 
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(8.38)

To solve for the buckling load directly, a Levy type solution may be assumed:

.sin)(),(
1m

m
a

xm
yyxw

xx
(8.39)

Substituting (8.39) into (8.38) results in the following ordinary differential

equation to solve: 

224 2 m
x

mm
D

NIV (8.40)

)



134

Figure 8.2.  Plate studied in Section 8.7.
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 Letting xx NN , Equation (8.40) can be solved with the result that 

yEyCyByAym sincossinhcosh)(  (8.41)
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The boundary conditions on the y = 0 and b edges are 

0)0(0)0,(xw

0)0(0)0,(xM y

0)()(0),( 2 bbbxM my m

2 (8.42)

.0)()2()(0),( 3 bbbxV mm

3

It is clear that the first two boundary conditions require that A = C = 0.  SatisfyingC

the other two boundary conditions results in the following relationship for the 

eigenvalues (i.e., the buckling load xx NxN ).

.0][ tan][ tanh 222222

mm bb 22  (8.43) 

Thus, knowing the plate geometry and the material properties, one can solve for 

the buckling loads for each value of m.  It can be shown that the minimum buckling load 

will occur for m = 1, thus a one-half sine wave in the longitudinal direction.  However,

note the complexity both in obtaining Equation (8.43), and then using that equation to

obtain the buckling load, compared to the relative simplicity of Section 6.4 for solving 

the simpler problem of the plate completely simple supported on all four edges.  The 

solutions of this problem have been catalogued in Reference 6.1 and are given below: 

.
)1(12

and

2

2

2

cr2

2

b

hEk

b

Dk
N x

kk

 For 25.0

a/b 0.50 1.0 2.0 3.0 4.0 5.0 

k 4.40 1.44 0.698 0.564 0.516 0.506k

Now to solve the same problem using Minimum Potential Energy.  However, 

before doing so a brief discussion regarding boundary conditions is in order.  They can 

be divided into two categories: geometric and stress.  Geometric boundary conditions 

involve specifications on the displacement function and the first derivative, such as 

specifying the lateral displacement w or the slope at the boundary, xw xx  or yw yy ,

stress boundary conditions involve the specifications of the second and third derivative 

of the displacement function, such as the stress couples, ,,, xyyx MMM or the transverse

shear resultants ,, yx QQ or the effective transverse shear resultants ,V, yVxVx  discussed in 

Chapter 2. 

In using the Minimum Potential Energy Theorem, one must choose a deflection 

function that at least satisfies the geometric boundary conditions specified on thet

boundaries.  This suitable function will give a reasonable approximate solution.  Better 

yet, by assuming a deflection function that satisfies all specified boundary conditions, 
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one can achieve a very good approximate solution.  If one could choose a deflection 

function that satisfies all boundary conditions and the governing differential equation for 

the problem also, that is the exact solution!  Finally, if one chose a deflection function

that did not satisfy even the geometric boundary conditions, the solution would be

inaccurate because in effect the solution would not be for the problem to be solved, but 

for some other problem for which the assumed deflection does satisfy the geometric

boundary conditions.

In this example, the following function is assumed for the lateral deflection:

a

x
Ayyxw

xx
sin),( (8.44)

 This satisfies all boundary conditions on the x = 0, a edges.  It satisfies the 

geometric boundary condition that w(x(( ,0) = 0, but does not satisfy the stress boundary 

conditions that M(MM x(( ,0) = M(MM x(( ,b) = V(VV x(( ,b) = 0.  Substituting Equation (8.44) and its 

derivatives into Equations (8.1) using (8.36) and (8.37), where of course 

0),( yxpNN xyy  produces 
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Integrating Equation (8.45) gives 
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Setting 0V , where the only variable with which to take a variation is A, produces the

requirement that 
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 To compare this approximate result with the exact solution shown previously, let 

a/b = 1, and 25.0 .  From Equation (8.46) 

.456.1
2

2

cr b

D
N x (8.47)
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In the exact solution, the coefficient is 1.440.  Hence, the difference between the

approximate solution and the exact solution is approximately 1%, yet the three stress

boundary conditions on the y = constant edges were not satisfied.

8.8  Functions for Displacements in Using Minimum Potential Energy for Solving

       Beam, Column, and Plate Problems

 In the use of Minimum Potential Energy methods to solve beam, column, and 

plate problems, one usually needs to assume an expression for the lateral deflection w(x(( )

for the beam or column, and w(x(( , y) for the plate.  These must be single valued,

continuous functions that satisfy all the boundary conditions, or at least the geometric

ones.  Below are a few functions useful in the solutions of beam and column problems.

Simple-simple

1

sin)(
n

n
L

xn
Axw

xx
(8.48)

Simple-free

  w(x(( ) = Ax (8.49)

Clamped-clamped

a

xm
Axw

xx2
cos1)( (8.50)

Clamped-free

   w(x(( ) = Ax2
(8.51)

Clamped-simple

    ])( 433 (8.52)

Free-free

   w = A. (8.53)

In the case of a plate with varied boundary conditions, let w(x(( , y) = f(ff x(( )g(x(( ) where for f(ff x(( )

and g(y(( ) use the appropriate beam functions above.  For example, consider a plate

clamped on edges y = 0 and y = b, and clamped at x = 0 and simply supported at x = a.

Assume the function:
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.
2

cos1]23[),( 433

b

ym
xLxxLAyxw m

yy
(8.54)

 Keep in mind none of the above functions are unique, and thus the engineer may

use his ingenuity to conceive functions best for the solution of that particular problem.  

For instance, suppose a plate had one edge simply supported at y = 0, 2/0 ax , and 

clamped from axa 2/ .  No analytical solution could be obtained but an approximate

solution using energy methods is always attainable. 

 Perhaps the most complete and useful tabulation of functions, their derivatives 

and their integrals, to use in energy methods are those of Warburton [8.3] and Young and 

Felgar [3.1, 3.2].
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8.10  Problems

8.1. Consider a steel plate )psi000,30,25.0psi,1030( 6

yE used as a 

portion of a bulkhead on a ship.  The bulkhead is 06  long and 03  wide 

subjected to an in-plane compressive load in the longer direction.  What thickness

must the plate be to have a buckling stress equal to the yield stress if:

(a) the plate is simply supported on all four edges?

(b) the plate is simply supported on three edges and free on one unloaded edge?

8.2. Given a column of width b, height h, and length L, simply supported at each end,

use the principle of Minimum Potential Energy to determine the buckling load, if 

one assumes the deflection to be

 (a) )()( xL
L

x
Axw

 (b) ]2[)( 343

3
xLxLx

L

A
xw

where in each case A is an amplitude. 

Do the deflections assumed above satisfy the geometric boundary conditions?  Do

they satisfy the stress boundary conditions? 

8.3. Consider the plates below, each subjected to a uniform axial compressive load per 

inch of width, (lbs./in.)xx NN in the x direction.  Determine a suitable
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deflection function w(x(( , y) for each case for subsequent use in the Principle of 

Minimum Potential Energy to determine the critical load xN .

8.4. For an end plate in a support structure with the following boundary conditions,

use the Principle of Minimum Potential Energy to determine the buckling load, if 

one assumes the deflection function to be )]/2(cos1[ axAw xx , where A is the

unknown amplitude. 

8.5. Consider a rectangular plate of ax0 , by0 , 2/2/ hzh .  If the 

lateral deflection w(x(( , y) is assumed to be in a separable form )()( ygxfw , and 

if w = 0 on all boundaries, determine the amount of strain energy due to the terms

comprising the Gaussian curvature.  See (8.36).

8.6. The base of a missile launch platform consists in part of vertical rectangular 

plates of height a, and width b, where ba .  They are tied into the foundation 

below and the platform above such that those edges are considered clamped. 
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However, on their vertical edges they are tied into I-beams, such that those edges

can only be considered simply supported.  Using the Theory of Minimum

Potential Energy, derive the equation for the buckling load per inch of edge

distance,
crxN , for these plates, using a suitable deflection function, so that the 

plates can be designed to resist buckling. 

8.7. An alternative to the design of Problem 8.6 would be to ‘beef up’ the vertical

support beams such that the plate members can be considered to have their 

vertical edges clamped.  Thus the plates have all four edges clamped.  Employing 

a suitable deflection function, use the Theorem of Minimum Potential Energy to

determine an expression for the critical buckling load per unit edge distance,

crxN , to use in designing the plates.  Is the plate with all edges clamped thicker or 

thinner than the one with the sides simply supported in Problem 8.6, to have the

same buckling load?

8.8. The legs of a water tower consist of three columns of length a, constant flexural

stiffness EI, simply supported at one end and clamped at the other end.  Using theII

Theorem of Minimum Potential Energy, and a suitable function for the lateral

deflection, calculate the buckling load crPc for each leg, in order that they may be

properly designed.

8.9. Consider a beam of length L, and constant cross-section, i.e., EI is a constant. I

The beam is subjected to a load q(x(( ) = a + c(x(( /L// ), (lbs./in.) applied laterally where 

a and c are constants.  The beam is simply supported on both ends.  Using

Minimum Potential Energy, and assuming )/(sin)( LxBxw ( xx , determine the 

maximum deflection, w, and the maximum bending stress, x .  Consider the 

beam to be of unit width, i.e., b = 1. 

8.10. A beam of length L, and constant cross-section (EI( = constant) is subjected to aI

lateral load Lxqxq /)()( 0 , where 0q is a constant, and is simply supported at 

each end.  Using Minimum Potential Energy, and assuming )/(sin)( LxAxw ( xx ,

where A is a constant to be determined, determine the maximum deflection, w,

and the maximum stress, x , in the beam.

8.11. Consider the beam of Section 8.3 to be simply supported at each end and 

subjected to a uniform lateral load 0q  (lbs./in.).  Assuming the deflection to be 

)/(sin)( LxAxw ( xx , use the Principle of Minimum Potential Energy to

determine A.

8.12. Consider a beam-column simply supported at one end and clamped at the other. 

Using the Theorem of Minimum Potential Energy, and assuming an admissible

form for the lateral deflection, w(x(( ), calculate the in-plane load, crPc (lbs.), to

buckle the column.

8.13. Consider a beam of stiffness EI, lengthII L, width b, height h, simply supported at 

each end, subjected to a uniform lateral load, 0q  (lbs./in.).  Use Minimum 

Potential Energy, employing a deflection function 

N

n

n
L

xn
Axw

1

sin)(
xx
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 where N = 3, to determine the maximum deflection and maximum stress. N

Compare the answer with the exact solution. 

8.14. Consider a column of length L, clamped at one end and simply supported at the

other end.  Using a buckling mode shape of 

]23[)( 433 xLxxLAxw

 where A is the buckle amplitude.  Use Minimum Potential Energy to determine

the axial critical buckling load, crPc .

8.15. Consider a beam of constant flexural stiffness EI, of lengthII L, clamped at each

end.  Using Hamilton’s Principle, and an assumed deflection of 

tLxAtxw nxx sin)]/2(cos1[),( ,

 determine the fundamental natural frequency, and compare it with the exact 

solution.



CHAPTER 9 

REISSNER’S VARIATIONAL THEOREM AND ITS APPLICATIONS

9.1  Introduction 

 A general discussion of Reissner’s Variational Theorem is presented, followed by

a treatment of the theory of moderately thick beams which represents a striking example

of the power of this technique.  The first application is the development of the governing

equations for the static deformations of moderately thick rectangular beams, including the

effects of transverse shear deformation and transverse normal stress.  The second 

application involves the use of the theorem, together with Hamilton’s Principle, to

develop a theory of beam vibrations including rotatory inertia, in addition to the other 

effects listed above.

 The Calculus of Variations has long been recognized as a powerful mathematical 

tool in many branches of mathematical physics and engineering.  Variational principles

are found to constitute the central core of many of the most useful techniques in such 

fields as dynamics, optics and continuum mechanics.  The utility of such principles is

two-fold: first, they provide a very convenient method for the derivation of the governing

equations and natural boundary conditions for complex problems and, second, they

provide the mathematical foundation required to produce consistent approximate theories.

It is in this second role that variational methods have been most useful in theory of 

elasticity.  There are two variational principles in the classical theory of elasticity, namely 

the Principle of Minimum Potential Energy, treated in Chapter 8, and the Principle of 

Minimum Complementary Energy.  It will be useful to discuss these two principles very

briefly here, because it was certain of their features which led E. Reissner, in 1950, to

propose a third, more general, variational theorem.

 The Principle of Minimum Potential Energy was discussed in Chapter 8.  It was

noted that, in carrying out the variations to minimize the potential energy, V, the class of VV

admissible variations are displacements satisfying the boundary conditions, and the 

appropriate stress-strain relations have to be obtained separately.  The resulting Euler-

Lagrange equations of the variational problem are then equilibrium equations, written in

terms of displacements.  When the principle is used to formulate approximate theories,

i.e., beam, plate or shell theory, it can therefore only yield appropriate equilibrium

equations and the stress-strain or stress-displacement relations must be obtained 

independently, as stated above 

 The Principle of Minimum Complementary Energy may be stated as follows: of 

all the stress systems satisfying equilibrium and the stress boundary conditions, that 

which satisfies the compatibility conditions corresponds to a minimum of the

complementary energy V defined as, 
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R S
ii

u

SuTiV d (9.1)

where uS  denotes that part of the boundary S on which displacements are prescribed.S

It is emphasized that, in the Principle of Minimum Complementary Energy, the

class of admissible variations are stresses which must satisfy equilibrium everywhere, as

well as the stress boundary conditions.  The Euler-Lagrange equations of the variational

problem are here compatibility equations or stress-displacement relations which insure

the satisfaction of the compatibility requirements.  Thus, when this principle is used in

developing approximate theories, only the stress-displacement relations may be obtained 

and the equilibrium relations must be derived independently.

It should be pointed out that, in the language of structural analysis, the Principle

of Minimum Potential Energy corresponds to the Principle of Virtual Displacements,

while the Principle of Minimum Complementary Energy corresponds to the Theorem of 

Castigliano.

So in these two theories, one must either satisfy the stress-strain relations exactly

and formulate approximate equilibrium conditions or vice-versa.  As a result, any

approximate theory obtained by such means runs the risk of inconsistency.  These

considerations led Reissner in 1950 to propose a third variational theorem of elasticity

which would yield as its Euler-Lagrange equations both the equilibrium equations and the d

stress-displacement relations.  Clearly, if such a principle could be developed, its use

would yield approximate theories which would satisfy both requirements to the same 

degree and would, therefore, have the advantage of consistency.  The result of this 

investigation is the Reissner Variational Theorem, which may be stated as follows: 

Of all the stress and displacement states satisfying the boundary conditions, those

which also satisfy the equilibrium equations and the stress-displacement relations

correspond to a minimum of functional defined as,

tS
ii

R
ii

R
SuTiRuFiRH ddRRdRRHH (9.2)

where tS = portion of S on which stresses are prescribed.  Again, S ii TFi and  areiTi and

body forces and surface tractions prescribed by the problem considered. 

)( ijijij WH

)( ijW  = strain energy density function in terms of stresses only. 

In a rectangular coordinate system )( ijW  in general is written as follows for an 

isotropic material 

))(1(2

)(2
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xzzyyxzyxij
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2
  (9.3)



145

The proof of the Theorem is now presented.  The tensor notation is standard, and hence

will not be explained here.  Also, the operations used herein in taking variations are

identical to those of partial differentiation, such as ijijij 2)( 2 ,

)()( ijijijijijij , and 
xj

ij

ij

jx
)( .

Taking the variation of  and equating it to zero, one obtains:

0ddd
tS

ii
R

ii
R

ij

ij

ijijijij SuTiRdduFiRdd
W

 (9.4) 
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ij
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u
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2

1
.

It should be noted that all stress and strain components have been varied, while iFi

and iTi , which are prescribed functions, are not.  Rearranging the above expression, one 

obtains,
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The terms )( i

j

ij u
xxx

 and )( j

i

ij u
xxx

 are symmetric with respect to i and j, and we 

may, therefore, interchange these indices and obtain,

0d

dd)(

tS
ii

R
ii

R
i

j

ijij

ij

ij

SuTi

RdduFiRddu
x

W

  (9.6) 

 Note that i

j
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, so that Equation (9.6) may be 

written,
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Applying the Green-Gauss divergence theorem and remembering that 0i ,

on all surfaces where displacements are prescribed, one obtains:

tt S
ii

S
ijij

R
iij

j

SuTiSuRu
x

dddRR)( j (9.7)

where here j  is the direction cosine. 

 Finally, substituting Equation (9.7) into (9.6) yields the equations, 

.0dRdduF
x

W

R
iiFF

j

ij

ij

ij

ij   (9.8) 

Since ij and iu are arbitrary variations, Equation (9.8) is satisfied only if the stresses 

ij and strains ij  satisfy the equations, 

0i

j

ij
Fi

x
(9.9)

ij

ij

ij

W )(
  (9.10)

Equations (9.9) and (9.10) are the equilibrium and stress-strain displacement relations of 

elasticity.  Thus, the Reissner Variational Theorem is found to be equivalent to the three-

dimensional equations of elasticity and is, therefore, established.  Now consider typical

applications of the Theorem to the static and dynamic deformations of beams, because 

beams permit the simplest example.

9.2  Static Deformation of Moderately Thick Beams 

As a first illustration, consider the development of a theory for the static 

deformations of moderately thick beams in which the effects of transverse shear 

deformation and transverse normal stress are taken into account.  Consider a beam of 

rectangular cross-section of width b, height h and length L, as shown in Figure 9.1 

subjected to a distributed load q(x(( ) acting on the surface z = +z h/2.
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Figure 9.1. Rectangular Beam. 

 In order to apply the variational theorem, one must first assume functions for the

stresses in the beams.  In this case the following are assumed.

,
12

where,
3bh
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Mz
x

,where,
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h

z
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z

b

q
z  (9.11)

.0yzyxy

It should be noted that the form of the stress components x and xz  is identical to that 

of classical theory.  The form of the transverse normal stress z may easily be derived 

from the stress equation of equilibrium in the thickness directions, as a consequence of 

the assumptions made above for x  and xz .  The expression shown in (9.11) is derived 

for

.0)2/(and)2/( hqh zz

An analogous expression can be derived easily if there were a normal stress on the lower 

surface.

 The stress-couple M and shear resultant M Q are defined in the usual manner by the

equations,



148

2/

2/

d)(

h

h

x zddzbxM

    (9.12) 

.d)(

2/

2/

h

h

xz zddbxQ

It should be noted that Equations (9.11) satisfy all of the stress boundary conditions.

 As in classical beam bending theory, one assumes that beam cross-sections

undergo translation and rotation but no deformation in the plane of the cross-section. 

Such displacements are of the following form for bending only (no stretching), which is

the simplest case: 

)(xzu

   (9.13)

w = w(x(( )

It should be noted that the cross-sections will not be assumed to remain normal to the 

deformed middle surface; this assumption, made in classical beam theory, is equivalent to

the neglect of transverse shear deformation, and will not be made here. 

The appropriate strain displacement relations may be written 

)(xz
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u
x

xx
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1

2

1
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x
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z

u
xz

xxzz
  (9.14)

0
z

w
z

where the primes denote differentiation with respect to x.

For the present case, the functional , Equation (9.2), takes the form, 

.ddd
2

1

)(

0

2/

2/0

L

h

h

xzx

L

xddwqxddzdd
E

wzb

  (9.15) 

Substituting Equations (9.11) into Equation (9.15) and carrying out the integration with

respect to z, one obtains,
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  (9.16) 

It should be noted that the integration of the term in 2

z  has not been carried out because 

this term depends only on q and not on the basic unknown stresses and displacements, ,

W,WW M, and MM Q.  Thus, when variations to minimize are taken, the term in 2

z will not 

contribute to the result.  One may now obtain the governing equations by minimizing the 

functional  of Equation (9.16).  Taking the variation of this equation gives, 
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  (9.17) 

Integrating by parts and rearranging, Equation (9.17) may be written in the form, 
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Setting the first term equal to zero yields the natural boundary conditions for the beam.  It 

is seen that, either M = 0 or M  must be prescribed at x = 0 and L and either Q = 0 or w

must be prescribed at x = 0 and L.

 Finally, since the variations QMw QQMMww and,,,  are all independent arbitrary

functions of x, the only way in which the definite integral of Equation (9.18) can be made

to vanish is by requiring the unknowns M,MM Q,  and w to satisfy the equations,

0
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xdd
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0
d

d
q

xdd

Q
  (9.20)

0
5

6

d

d

EA

q

EI

M

xdd

6 qq
  (9.21) 



150

0
5

6

d

d

GA

Q

xdd

w
 (9.22)

 Note that Equations (9.19) and (9.20) are identical to the equilibrium equations of 

classical beam theory.  This is as expected since no new stress resultants or stress couples

were introduced.  Considering Equation (9.22), it is seen that the quantity w is

precisely the change in the angle between the beam cross-section and the middle surface

occurring during the deformation; Equation (9.22) shows that this angular change, which 

is a measure of the shear deformation, is proportional to Q/A//  which is the average shear 

stress.  In addition, note that as G , the shear deformation tends to vanish as

assumed in classical beam theory.  Finally, observe that the third term in Equation (9.21) 

depends on the lateral load q and the Poisson’s ratio ; this term would vanish if one 

assumed 0  as in classical beam theory.  It is identified as the effect of the transverse

normal stress z which is proportional to q, according to the initial assumptions (see 

Equation (9.11)). 

 Solutions of Equations (9.19) through (9.22) may easily be obtained for typical 

loading and boundary conditions.  These solutions reveal that for beams of isotropic 

materials, the effects of transverse shear deformation and transverse normal stress are

negligible for sufficiently large values of L/h and become important as L/h decreases and 

becomes of order unity. 

9.3  Flexural Vibrations of Moderately Thick Beams 

 As a second example, a theory of free vibrations for moderately thick beams of 

rectangular cross-section is treated; this will include the effects of transverse shear 

deformation and rotatory inertia. 

 In order to derive the equations of motion, one now applies Hamilton’s Principle 

in conjunction with the Reissner Variational Theorem.  It will be remembered that 

Hamilton’s Principle is nothing but a variational statement of Newton’s Laws of Motion.  

Thus, one may state that the motion of the beam of Figure 9.1 will be such as to minimize 

the integral

2

1

d)(

t

t

tT  (9.23)

where T = kinetic energy of the system,T = Reissner functional, t = time.  The quantity t

LT )(  is often called the Lagrangian. 

 The equations of motion will now be obtained from the condition, 

0  (9.24)

and it must be remembered that all stresses, strains and displacements are now functions 

of time, as well as the space coordinates x and z.  Equations (9.23) and (9.24) are general, 

for any elastic body. 
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 The kinetic energy for the beam of Figure 9.1 may be written in the form,
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where m  is the mass density of the beam material.  Substituting Equations (9.13) into 

Equation (9.25) and integrating with respect to z gives, z

x
t

w
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t
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m dxx
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 (9.26)

where I and I A are the area moment of inertia and the cross-sectional area of the beam, 

respectively.

The substitution of Equations (9.16) and (9.26) into Equation (9.23) then yields,
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   (9.27)

where the term in 2

z has been dropped since it will not contribute to the variations (as

explained previously). 

 The governing equations are then obtained by taking the variation of Equation

(9.27) and setting the result equal to zero.  It is found that the natural boundary conditions

are the same as for the static case, while the initial deflection and velocity must also be

specified.  The equations of motion are obtained in the form,
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In the above equations, two tracing constants c and k are introduced for the purpose of k

identifying terms.  Note that Equation (9.28) is identical to the corresponding moment 

equilibrium condition of classical beam theory, except for the term )( 22 tIcm

which represents the contribution of rotatory inertia. Thus, when c = 1 in the resulting

solutions, rotatory inertia effects are included, when c = 0, the theory neglects the effect 

of rotatory inertia.  Equation (9.29) is identical to the classical beam theory equation for 

transverse force equilibrium with the inertia term added.  Equation (9.30) exhibits the

term EAq 566 , which is the contribution of transverse normal stress; since this is the

only term in which  appears explicitly, setting  = 0 is equivalent to neglecting the

transverse normal stress.  Equation (9.31) is nearly identical to the corresponding stress-

strain relation of classical theory with the term 6  representing the effect of GAQk 5

transverse shear deformation which is included when k = 1, and neglected whenk k = 0. k

Now consider a simple application of this theory.

9.3.1   Natural Frequencies of a Simple-Supported Beam

 For free vibrations, Equations (9.28) through (9.31) reduce to,
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  (9.32)

It is convenient to reduce these equations to a system of two equations in the unknown 

displacements w and .

 From the first and the third of Equations (9.32), one obtains, 

x
EIM

xx

2

2

2

2

t
Ic

x
EIQ m

xx

and the substitution of these expressions in the second and fourth of Equations (9.32)

yields,
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For a simply supported beam of length L, the boundary conditions are 

LxMw ,0for  0 ,

and when the beam is oscillating in a normal mode, the motion is harmonic so that the 

solutions for  and w may be taken in the form, 

t
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t
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xx
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 (9.34)

where nnWn   are the amplitudes of the translation and rotation respectively, and nand n

is the natural circular frequency of the thn mode of vibration.  It is easily verified that 

these expressions satisfy the boundary conditions.  The substitution of Equation (9.34) in

Equations (9.33) yields two simultaneous homogeneous algebraic equations for the

amplitudes nnWn ; these are, nand
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  (9.35) 

Since (9.35) forms a homogeneous system, the condition for a non-trivial solution is that 

the determinant of the coefficients nWn  and n equal zero.  That is termed an eigenvalue 

problem.  Solving the determinant yields a frequency equation, from which solutions

involve discrete values of the natural circular frequencies, which are termed eigenvalues. 

 The amplitude ratios are obtained from satisfying either of the two equations

comprising (9.35).  Thus, the amplitude ratio is given by,

.
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nm
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L

n
EcLn

EIA
  (9.36) 

The frequency equation may be written in the form,
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  (9.37)

The natural frequencies for the case where both transverse shear deformation and rotatory

inertia are included may be obtained by solving Equation (9.37) with k =k c = 1.  The

frequency equation is then of the form,
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To obtain a simplified theory neglecting the effect of rotatory inertia, but retaining 

transverse shear deformation, set k = 1 and k c = 0 after multiplying the frequency equation 

(9.37) by c.  The resulting simplified frequency equation may be written, 
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and the natural frequencies are given by, 
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Finally, to obtain a frequency equation in which both shear deformation and rotatory 

inertia are neglected, multiply Equation (9.37) by kc and set k =k c = 0; the frequencies are

then given by,

4

2

L

n

A

EI

m

n   (9.41)

Equation (9.41) is easily recognized to be the well-known solution of classical beam 

theory for a simply-supported beam.  A few calculations using Equations (9.38) and 

(9.40) will show that most of the error (approximately 90%) of the classical theory is due 

to the neglect of transverse shear deformation, so that accurate results may be obtained by

Equation (9.40) which still neglects rotatory inertia, but has the advantage of simplicity.  

Comparison of Equations (9.40) and (9.41) reveals that the effect of shear deformation is 
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to reduce the square of the frequencies by a factor equal to 

222

10
1

L

h

G

En
.  It is seen 

that this factor increases with increasing h/L// , so that the errors through using classical 

theory tend to become larger as the beam becomes “stubbier”.  This factor also increases

as n increases, indicating that classical theory is only adequate for lower modes of 

vibration, and it becomes increasingly inaccurate for higher modes. 



CHAPTER 10

ANISOTROPIC ELASTICITY AND COMPOSITE LAMINATE THEORY

10.1  Introduction 

As discussed in the first nine chapters, an isotropic material is one that has

identical mechanical, physical, thermal and electrical properties in every direction. 

Isotropic materials involve only four elastic constants, the modulus of elasticity, E, the

shear modulus, G, the bulk modulus K and Poisson's ratio,K .  However, only two are

independent, and the following relationships exist:  See Equation (1.3).

)2-3(1

E
K,

)1(2

E
G

2
         (Isotropic only)      (10.1) 

Most engineers and material scientists are well schooled in the behavior and design of 

isotropic materials, which include the family of most metals and pure polymers.  The 

rapidly increasing use of anisotropic materials such as composite materials has resulted in 

a materials revolution and requires a new knowledge base of anisotropic material 

behavior.

Before understanding the physical behavior of composite material structures and 

before being able to quantitatively determine the stresses, strains, deformations, natural 

frequencies, and buckling loads in such structures, a clear understanding of anisotropic 

elasticity is necessary.  In general, isotropic materials are mathematical approximations to

the true situation.  For instance, in polycrystalline metals, the structure is usually made up 

of numerous anisotropic grains, wherein macroscopic isotropy exists in a statistical sense

only because the anisotropic individual grains are randomly oriented.  However, the same

materials could be macroscopically anisotropic due to cold working, forging or spinning 

during a fabrication process.  Other materials such as wood, human and animal bone, and 

most fiber reinforced materials are anisotropic. 

Fiber reinforced composite materials are unique in application because the use of 

long fibers results in a material which has a higher strength-to-density ratio and/or 

stiffness-to-density ratio than any other material system at moderate temperatures, and 

there exists the opportunity to uniquely tailor the fiber orientations to a given geometry, 

applied load and environment.  For short fiber composites, used mainly in high 

production, low cost systems, the use of fibers makes the composites competitive and 

superior to plastic and metal alternatives.  Finally, the use of two or more kinds of 

dissimilar fibers within one matrix is termed a hybrid composite, where one fiber is 

stronger or stiffer while the other fiber is less expensive but desirable for less critical 

locations in an overall structural component.  Other examples of a hybrid composite 

involve  stronger and stiffer (but more brittle) fibers that are protected by outer plys of a 

tougher fiber composite to protect the composite from impact and other deleterious 
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effects.  Therefore through the use of composite materials, the engineer is not merely a

materials selector, but is also a materials designer. 

   For small deflections, the linear elastic analysis of anisotropic composite

material structures requires the use of the equilibrium equations, strain-displacement 

relations, and compatibility equations, which remain the same whether the structure is

composed of an isotropic material or an anisotropic composite material.  However, it is

very necessary to drastically alter the stress-strain relations, also called the constitutive 

relations, to account for the anisotropy of the composite material structure.

A quantitative understanding of the virtues of using composite materials in a

structure is found through deriving systematically the anisotropic elasticity tensor matrix,

discussed below in Section 10.2. 

10.2  Derivation of the Anisotropic Elastic Stiffness and Compliance Matrices

Consider an elastic solid body of any general shape, and assume it is composed of 

an infinity of material points within it.  In order to deal with a continuum, one also 

assumes that the material points are infinitely large compared to the molecular lattice

spacing of the particular material.  If one assigns a Cartesian reference frame to the 

elastic body shown in Figure 10.1, one then calls this rectangular parallelepiped material

point a control element or control volume of dimension dx, dy and dz in a Cartesiant

coordinate system.  Figure 10.1 is identical to figure 1.1, but repeated here for continuity.

Figure 10.1.  Positive Stresses on a Control Element of an Elastic Body. 

On the surface of the control element there can exist both normal stresses (those

perpendicular to the plane of the face) and shear stresses (those parallel to the plane of the 

face).  On any one face the three mutually orthogonal stress components comprise a 

vector, which is called a surface traction.

It is important to note the sign convention and the meaning of the subscripts of 

these surface stresses.  For a stress component on a face whose outward normal is in the 

direction of a positive axis, the stress component is positive when it is in the direction of 

a positive axis.  Also, when a stress component is on a face whose outward normal is in



159

the direction of a negative axis, the stress component is positive when it is in the direction

of a negative axis.  This can be seen clearly in Figure 10.1.

The first subscript of any stress component on any face of the control element 

signifies the axis to which the outward normal of the face is parallel; the second subscript 

refers to the axis to which that stress component is parallel.  Again, see Figure 10.1.

The strains occurring in an elastic body have the same subscripts as the stress 

components but are of two types.  Dilatational or extensional strains are denoted by
ii

,

where i = x, y, z, and are a measure of the change in dimension of the control volume in

the subscripted direction due to normal stresses,
ii

, acting on the control volume.  Shear 

strains
ij

(i =/== j) are proportional to the change in angles of the control volume from 90°,

changing the rectangular control volume into a parallelogram due to the shear stresses, 

ij
, i /// j.  For example, looking at the control volume x-y- plane shown in Figure 10.2

below, shear stresses 
xy

 and 
yx

 cause the square control element with 90° corner angles

to become a parallelogram with the corner angle as shown.  Here, the change in angle

xy
 is 

2xy   (10.2) 

The shear strain
xy

, a tensor quantity, is defined by 

2/xyxy   (10.3)

Similarly,
xz

= 
xz

/2, and 
yz

= 
yz

/2.

Having defined all of the elastic stress and strain tensor components, the stress-

strain relations are now used to derive the anisotropic stiffness and compliance matrices.

The following derivation of the stress-strain relations for an anisotropic material

parallels the derivation of Sokolnikoff [1.1], Vinson and Chou [2.8], Vinson [10.1, 10.2],

and Vinson and Sierakowski [1.7].  Although the derivation is very formal

mathematically to the reader who is primarily interested with the end result, the

systematic derivation does provide confidence in the extended use of the results.

From knowledge of basic strength of materials [10.3], both the stresses,
ij
, and 

the strains ij, are second order tensor quantities, where in three dimensional space they

have 32 = 9 components.  They are equated by means of the fourth order elasticity tensor,

C
ijkl

, which therefore has 34 = 81 components, with the resulting constitutive equation:

klijklij C   (10.4)
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Figure 10.2.  Shearing of a Control Element.

where i, j, k and k l assume values of 1, 2, 3 or x, y, z in a Cartesian coordinate system.  l

Fortunately, there is no actual material that has eighty-one elastic constants.  Both the 

stress and strain tensors are symmetric, i.e.,
ij

=
ji

and
kl

= lk, and therefore the

following shorthand notation may be used:

612
2

12333612333

531
2

31222531222

423
2

23111423111

  (10.5)

At the outset it is noted that 
4
,

5
and 

6
, which are quantities widely used in 

composite analyses, are not tensor quantities and therefore do not transform from one set 

of axes to another by affine transformation relationships.  Care must also be taken

regarding whether or not to use the factor of "two" when using shear strain relations, see

(10.3) and (10.5).  Using Equation (10.5), Equation (10.4) can be written:

jiji C   (10.6) 

It should be noted that the contracted C
ij
 quantities are also not tensor quantities, 

and therefore cannot be transformed as such.

Hence by the symmetry in the stress and strain tensors the elasticity tensor 

immediately reduces to the 36 components shown by Equation (10.6).  In addition, if a

strain energy density function, W, exists [1.1, 1.7, 2.8, 10.1, 10.2, 10.3], i.e.,

,
2

1
ijijW
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in such a way that 

ij

W = Cij = ij,                                            (10.7) 

then the independent components of C
ijkl

 are reduced to 21 elastic constants, since C
l ijkl

= 
l

C
klij

 and now it can be written C
j ij

= C
ji

C .

Next, to simplify the general mathematical anisotropy to the cases of very 

practical importance, consider the Cartesian coordinate system only.  (However, the

results are applicable to any curvilinear orthogonal coordinate system of which there are 

twelve, some of which are spherical, cylindrical, elliptical, etc. – see [1.7 and 10.2].

First, consider an elastic body whose properties are symmetric with respect to the

X
1

- X
2

plane.  The resulting symmetry can be expressed by the fact that the C
ij
's

discussed above must be invariant under the transformation x
1
 = x '

1
 , x

2
= x '

2
 and x

3
 = -

x '
3

, shown in Figure 10.3. 

Figure 10.3.  One Plane of Symmetry.

Also shown in the table above are the direction cosines, t
ij
, associated with this 

transformation.  The stresses and strains of the primed coordinate system are related to

those of the original (unprimed) coordinate system by the well-known relationships:

' = t it j ij  andj
' = t i t j ij.

where, for i = 1, 2, 3, 6, '
i

=
i
and '

i
=

i
, i.e., '

11
= t

11
t
11 11

=
11

.  However, from

the direction cosines, '
23

= -
23

 or '
4

= -
4
, and '

4
= -

4
; likewise '

31
= -

31
, hence

'
5

= -
5
 and '

5
= -

5
.  For example, '

23
= '

4
= t

22
t
33 23

 = (1)(-1)
23

 = -
23

 = -
4
.

If one looks in detail at Equation (10.6) then,
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'
4 = C41

'
1 + C42

'
2 + C43

'
3 + C44

'
4 + C45

'
5 + C46

'
6 ,

4 = C41 1 + C42 2 + C43 3 + C44 4 + C45 5 + C46 6.

It is evident from these two equations that C
41

= C
42

= C
43

= C
46

= 0.  From similar 

examinations of the other two axial symmetries, it can be seen that C
25

= C
35

= C
64

= C
65

= 0, C
51

= C
52

= C
53

= C
56

= 0, and C
14

= C
15

= C
16

= C
24

= C
34

= 0.

So, for a material having only one plane of symmetry the number of elastic

constants is now reduced to 13.  Note that from a realistic engineering point of view this

would still require thirteen independent physical tests (at each temperature and humidity

condition!) - an almost impossible task both in manpower and budget.

Now, materials that have three mutually orthogonal planes of elastic symmetry

are called "orthotropic" (a shortened term for orthogonally anisotropic).  In such a case,

other terms in the elasticity matrix are also zero, namely

C16 = C26 = C36 = C45 = 0.

Therefore, the elastic stiffness matrix for orthotropic materials is shown below,

remembering that C
ij

= C
ji

C ,

ijC =

C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

                      (10.8) 

Thus, for orthotropic elastic bodies, such as most composite materials in a three

dimensional configuration, there are nine elastic constants. 

Hence, using Equations (10.8) and (10.6), the explicit stress-strain relations for an

orthotropic, three dimensional material are:
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  (10.9)

It should be noted that in the latter three relationships, which involve shear relations, the

factor of two is present when one uses the tensor shear strains, 123123 and, .

If the Equations (10.9) are inverted, then, through standard matrix transformation:

1 = a11 1 + a12 a 3

2 = a21 1 + a22 a 3

3 = a31 1 + a32 a 3 (10.10)

4 = 2 23 = a44 23 = a44 4

5 = 2 31 = a55 31 = a55 5

6 = 2 12 = a66 12 = a66 6.

The a
iji

matrix, called the compliance matrix, involves the transpose of the cofactor (C0)

matrix of the C
ij

's divided by the determinant of the C
ij
 matrix with each term defined as

C

CC
a

T][

ij

ijo

ij
(10.11)

Again, the aiji  quantities are not tensors, and cannot be transformed as such.  In 

fact, factors of 1, 2 and 4 appear in various terms when relating the tensor compliance

quantities a
ijkli

 and the contracted compliance quantities a
ij
.

It can be easily shown that a
iji
 = a

ji
a and that 

i = aij j   (where j i, j = 1, 2, ...., 6).                (10.12) j

Table 10.1 is useful for listing the number of elastic coefficients present in both 

two and three dimensional elastic bodies.
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Table 10.1.  Summary of the Number of Elastic Coefficients Involved for Certain Classes of Materials.

Class of Material Number of 

nonzero

coefficients

Number of 

independent

coefficients

Three-Dimensional Case 

General Anisotropy 36 21

One-plane of symmetry 20 13

Two-planes of symmetry 12   9

Transverse isotropy 12   5

Isotropy 12   2 

Two-Dimensional Case

General anisotropy   9   6 

One-plane of symmetry   9   6 

Two-planes of symmetry   5   4

Transverse isotropy   5   4

Isotropy   5   2 

10.3  The Physical Meaning of the Components of the Orthotropic Elasticity Tensor

So far, the components of both the stiffness matrix, C
ij

, and the compliance

matrix, a
ij
, are mathematical symbols relating stresses and strains.  By performing

hypothetical simple tensile and shear tests all of the components above can be related to

physical or mechanical properties. 

Consider a simple, standard tensile test in the x
1

direction.  The resulting stress

and strain tensors are

iji
=

11 0 0

0 0 0

0 0 0

, ij =

11 0 0

0 - 12 11 0

0 0 - 13 11

    (10.13)

where the Poisson's ratio,
ij
, is very carefully defined as the negative of the ratio of the 

strain in the x
j

x direction to the strain in the x
i

direction due to an applied stress in the xi

direction.  In other words in the above it is seen that 
22

= -
12 11

or 
12

= -
22

/
11

.  Care 

must be taken to not confuse ij  with ji , because in some unidirectional composites, i.e.
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a composite in which all of the fibers are aligned in one direction, one may be ten or 

more times larger than the other.

Also, the constant of proportionality between stress and strain in the 1 direction is

denoted as E11 (or E1), the modulus of elasticity in the x
i
direction.  Thus,

1 = a11 1 = 
1

E1

2 = a21 1 = - 12 1 = 
1

112

E

3 = a31 1 = - 13 1 = 
1

113

E

Therefore,

a11 = 1/E1,  a21 = - 12/E1,  a31 = - 13/E1                    (10.14)

For a simple tensile test in the x
2

direction, it is found that 

a12 = - 21/E2,  a22 = 1/E2,  a32 = - 23/E2.                     (10.15)

Likewise, a tensile test in the x
3
 direction yields 

a13 = - 31/E3,  a23 = - 32/E3,  a33 = 1/E3.                     (10.16)

From the fact that ,aa jiij  then 

j

ji

i

ij

EE
    (i, j = 1, 2, 3) (10.17)

The Equation (10.17) is most valuable and widely used in the analysis of all composite
material bodies. 

Next, consider a hypothetical simple shear test as shown in Figure 10.4.  In this

case the stress, strain, and displacement tensor components are:
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ij =j

0 12 0

21 0 0

0 0 0

   ,   ij =j

0 12 0

21 0 0

0 0 0

  ,   

ji,u =

0 0 0

21/G21 0 0

0 0 0

Figure 10.4.  Shear Stresses and Strains.

In the above, u
i

is the displacement and u
i,j

 = ( u
i
)/( x

j
x ).  From elementary

strength of materials the constant of proportionality between the shear stress 
21

and the

angle  is G
21

, the shear modulus in the x
1

- x
2
 plane. 

From the theory of elasticity

12 = )uu(
2

1
1,22,1

= 
21

2G21
=

tan

2
.                     (10.18) 

From Equation (10.10),
6
 = a

66 6
, or 

12 = 
a66 21

2
=

21

2G21
.

Hence,
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a66 =
1

G21
=

1

G12
.                                           (10.19) 

Similarly,

a44 =
1

G23
and  ad 55 = 

1

G13
.                                   (10.20)

Thus, all a
iji

components have now been related to mechanical properties, and it is seen

that to characterize a three dimensional orthotropic body, nine physical quantities are 

needed (that is E
1
, E

2
, E

3
, G

12
, G

23
, G

31
,

12
,

13
,

21
,

23
,

31
and 

32
, and using 

Equation (10.17).  However, because of (10.17) only six separate tests are needed to 

obtain the nine physical quantities.  The standardized tests used to obtain these anistropic

elastic constants are given in ASTM standards, and are described in a text by Carlsson

and Pipes [10.4].  For convenience, the compliance matrix is given explicitly as:

12

13

23

32

23

1

13

3

32

21

12

3

31

2

21

1

G

1
00000

0
G

1
0000

00
G

1
000

000
E

1

EE

000
EE

1

E

000
EEE

1

a ij

 (10.21)

10.4  Methods to Obtain Composite Elastic Properties from Fiber and Matrix 

        Properties

In order to minimize the time and expense to experimentally determine 

mechanical properties of the almost infinite varieties of composite materials, it is very 

useful to analytically predict the properties of a unidirectional (one in which all of the 

fibers are in one direction) composite, if the properties of the fibers and the properties of 

the matrix are known.
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There are several sets of equations for obtaining the composite elastic properties 

from those of the fiber and matrix materials.  These include those of Halpin and Tsai

[10.5], Hashin [10.6], and Christensen [10.7].  In 1980, Hahn [10.8] codified certain

results for fibers of circular cross section which are randomly distributed in a plane

normal to the unidirectionally oriented fibers.  For that case the composite is

macroscopically, transversely isotropic, that is ( )
12

 = ( )
13

,  ( )
22

= ( )
33

and   ( )
55

 = ( )
66

,

where in the parentheses the quantity could be E, G, or ; hence, the elastic properties 

involve only five independent constants, namely ( )
11

, ( )
22

, ( )
12

, ( )
23

 and  ( )
66

.

For several of the elastic constants, Hahn states that they all have the same

functional form: 

)V(V

)VPV(P
P

mVVfVV

mVVmPfVVf (10.22) 

where for the elastic constant P, the P
f
, P

ff m
 and  are given in Table 10.2 below, and 

where V
f
 and V

f m
are the volume fractions of the fibers and matrix respectively (and 

whose sum equals unity):

Table 10.2.  Determination of Composite Properties From Fiber and Matrix Properties.

Elastic Constant P P
f
 P

f m

f m

12 12 12f m

G
12

1/G
12

 1/G
12f

 1/G
f m 6

G
23

 1/G
23

 1/G
23f

 1/G
f m 4

K
T

 1/K
T

 1/K
f

1/Km K

 In Table 10.2 and Equation (10.26), unless the anisotropic properties are given 

specifically one must assume the fiber is isotropic. 

The expressions for E
11

and 
12

in Table 10.2 are called the Rule of Mixtures.  In 

the above K
T

 is the plane strain bulk modulus, K
f
 = [E

f f
/2(1-

ff f
)] and K

ff m
= [E

m
/2(1-

m
)].

Also, the 's are given as follows:

6 = 
1 + Gm/G12f

2
 , 4 = 

3 - 4 m + Gm/G23f

4(1- m)
, K = K

1 + Gm/Kf

2(1- m)
.

The shear modulus of the matrix material, G
m

, if isotropic, is given by G
m

=E
m

/2(1+
m

).

The transverse moduli of the composite, E
22

= E
33

, are found from the following

equation:
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E22 = E33 =
4KTG23

KT + mG23
,                               (10.23) 

where

m = 1 +
4KT

2
12

E11
.

The equations above have been written in general for composites reinforced with

anisotropic fibers such as some graphite and aramid (Kevlar) fibers.  If the fibers are

isotropic, the fiber properties involve Ef, Gff f and f f, where Gff f =f .
)1(2

E

f

f   In that case 

also
K

 becomes
K

K = K

1 + (1-2 f)Gff m/Gf

2(1- m)
.               (10.24)

Hahn notes that for most polymeric matrix structural composites, G
m

/G
f
 <0.05.  If 

f

that is the case then the parameters are approximately: 

6  0.5; 4 =
3-4 m

4(1- m)
 ; K = K

1

2(1- m)
.                     (10.25)

Finally, noting that 
m

 = 0.35 for most epoxies, then
4
 = .62 and 

K
 = 0.77.

K

Also, the Poisson's ratio,
23

, can be written as

23 = 12f Vf f +f m (1-Vf)ff

1 + m - 12

Em

E11

1- m
2 + m 12

Em

E11

.              (10.26)

where
12f

 is the fiber Poisson’s ratio. 

The above equations along with Equation (10.17) provide the engineer with the 

wherewithal to calculate the elastic constants for a unidirectional composite material if 

the constituent properties of the fibers and matrix, and the fiber volume fraction are 
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known.  In a few instances only the weight fraction of the fiber, W
f
, is known.  In that 

ff

case the volume fraction is obtained from the following equation, where W
m

 is the 

weight fraction of the matrix, and 
m

 and 
f
 are the respective densities:

f

mffm

fm
f

WmW

W
Vf (10.27) 

For determining the composite elastic constants for short fiber composites, hybrid 

composites, textile composites, and very flexible composites, Chou [10.9] provides a

comprehensive treatment.

Of course if the composite manufacturer has added a filler to the structural matrix

to reduce cost, then (10.27) must be modified. 

10.5  Thermal and Hygrothermal Considerations

In the previous two sections, the elastic relations developed pertain only to an

anisotropic elastic body at one temperature, that temperature being the "stress free"

temperature, i.e. the temperature at which the body is considered to be free of stress if it 

is under no mechanical static or dynamic loadings.

However, in both metallic and composite structures changes in temperature are

commonplace both during fabrication and during structural usage.  Changes in

temperature result in two effects that are very important.  First, most materials expand 

when heated and contract when cooled, and in most cases this expansion is proportional

to the temperature change.  If, for instance, one had a long thin bar of a given material

then with change in temperature, the ratio of the change in length of the bar, L, to the

original length, L, is related to the temperature of the bar, T, as shown in Figure 10.5.TT

Mathematically, this can be written as

thermal = 
L

LLL
= T (10.28)

where is the coefficient of thermal expansion i.e., the proportionality constant between

the "thermal" strain ( L/L// ) and the change in temperature, T, from some reference

temperature at which there are no thermal stresses or thermal strains.  For almost all

materials, is constant unless a phase change occurs in the material.

The second major effect of temperature change relates to stiffness and strength. 

Most materials become softer, more ductile, and weaker as they are heated.  Typical plots

of ultimate strength, yield stress and modulus of elasticity as functions of temperature are

shown in Figure 10.6.  In performing a stress analysis, determining the natural

frequencies, or finding the buckling load of a heated or cooled structure one must use the

strengths and the moduli of elasticity of the material at the temperature at which the

structure is expected to perform.
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In an orthotropic material, such as a composite, there can be up to three different 

coefficients of thermal expansion, and three different thermal strains, one in each of the

orthogonal directions comprising the orthotropic material. Equation (10.28) would then

have subscripts of 1, 2 and 3 on both the strains and the coefficients of thermal

expansion.  Notice that, for the primary material axes, all thermal effects are dilatational

only; there are no thermal effects in shear. 

Temperature

ε
TH

εε =
L

ΔL

Figure 10.5.  Change in Length of a Bar or Rod as a Function of Temperature.

         Some general articles and monographs on thermomechanical effects on composite 

material structures include those by Tauchert [10.10], Argyris and Tenek [10.11], Turvey 

and Marshall [10.12], Noor and Burton [10.13] and Huang and Tauchert [10.14], 

Springer [10.15], Milke and Vizzini [10.16], and Sun and Chen [10.17]. 

Figure 10.6.  Modulus of Elasticity and Strengths as Functions of Temperature.

During the mid-1970’s another physical phenomenon associated with polymer 

matrix composites was recognized as important.  It was found that the combination of 

high temperature and high humidity caused a doubly deleterious effect on the structural 

performance of these composites.  Engineers and material scientists became very

concerned about these effects, and considerable research effort was expended in studying 

this new phenomenon.  Conferences [10.18] were held which discussed the problem, and 

both short range and long range research plans were proposed.  The twofold problem 

involves the fact that the combination of high temperature and high humidity results in 

the entrapment of moisture in the polymer matrix, with attendant weight increase ( 2%)



172

and more importantly, a swelling of the matrix.  It was realized [10.19] that the ingestion

of moisture varied linearly with the swelling so that in fact 

hygrothemal =
L

LLL
= m                 (10.29)

where m is the increase from zero moisture measured in percentage weight increase,

and  is the coefficient of hygrothermal expansion, analogous to the coefficient of 

thermal expansion, depicted in Equation (10.28).  This analogy is a very important one

because one can see that the hygrothermal effects are entirely analogous mathematically

to the thermal effect.  Therefore, if one has the solutions to a thermoelastic problem,

merely substituting m for or adding it to the T terms provides the hygrothermal 

solution. The test methods to obtain values of the coefficient of hygrothermal expansion

 are given in [10.20].

The second effect (i.e. the reduction of strength and stiffness) is also similar to the

thermal effect.  This is shown qualitatively in Figure 10.7.  Dry polymers have properties

that are usually rather constant until a particular temperature is reached, traditionally

called by polymer chemists the "glass transition temperature," above which both strength

and stiffness deteriorate rapidly.  If the same polymer is saturated with moisture, not only

are the mechanical properties degraded at any one temperature but the glass transition

temperature for that polymer is significantly lower.

Figure 10.7.  Mechanical Properties as a Function of Temperature and Moisture Absorption.

In 1981, Shen and Springer [10.21] investigated the hygrothermal effects on the

tensile strength. 

As a quantitative example, Figure 10.8 clearly shows the diminution in tensile and 

shear strength due to a long term hygrothermal environment.  Short time tensile and shear 

tests were performed on random mat glass/polyester resin specimens.  It is clearly seen

that there is a significant reduction in tensile strength, and a 29.3% and a 37.1% reduction

in ultimate shear strength of these materials over a 100+ day soak period.  If these effects 

are not accounted for in design analysis, catastrophic failures can and have occurred in 

such structures as the axial fans in waste disposal facilities.
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Figure 10.8.  Strength as a Function of Soak Time in a Hot, Wet Environment.

Thus, for modern polymer matrix composites one must include not only the

thermal effects but also the hygrothermal effects or the structure can be considerably 

under designed, resulting in potential failure. 

Thus, to deal with the real world of polymer composites, Equation (10.12) must 

be modified to read 

i = aiji j +j i T + i m (i = 1, 2, 3)                          (10.30) 

i = aij j (i = 4, 5, 6)                                  (10.31)

where in each equation j = 1 - 6.j

Two types of equations are shown above because in the primary materials system

of axes (i,j,,  = 1, 2, … , 6) both thermal and hygrothermal effects are dilatational only, thatj

is, they cause an expansion or contraction, but do not affect the shear stresses or strains. 

This is important to remember.

Although the thermal and moisture effects are analogous, they have significantly

different time scales.  For a structure subjected to a change in temperature that would 

require minutes or at most hours to come to equilibrium at the new temperature, the same

structure would require weeks or months to come to moisture equilibrium (saturation) if 

that dry structure were placed in a 95-100% relative humidity environment.  Figure 10.9

illustrates the point, as an example.  A 1/4" thick random mat glass polyester matrix

material requires 49 days of soak time at 188°F and 95% relative humidity to become

saturated.
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Figure 10.9.  Moisture Absorption as a Function of Soak Time. 

Woldesenbet [10.22] soaked a large number of IM7/8551-7 graphite epoxy

unidirectional test pieces, some in room temperature water to saturation.  For the 1/4"

diameter by 3/8" long cylinders soaked at room temperature the time required to reach

saturation was 55 weeks.  Other test pieces were soaked at an elevated temperature to

reduce soak time. 

For additional reading on this subject, see Shen and Springer [10.21] and Zhu and 

Sun [10.23].

In Chapter 18 herein another effect is added to the hygrothermal equations (10.30)

and (10.31).  When piezoelectric materials are used in the structure an additional term is

added to the right hand side of (10.30) and (10.31). 

10.6  Time-Temperature Effects on Composite Materials

In addition to the effects of temperature and moisture on the short time properties

discussed above, if a structure is maintained under a constant load for a period of time,

then creep and viscoelastic effects can become very important in the design and analysis

of that structure.  The subject of creep is discussed in numerous materials science and 

strength of materials texts and will not be described here in detail.

Creep and viscoelasticity can become significant in any material above certain 

temperatures, but can be particularly important in polymer matrix materials whose

operating temperatures must be kept below maximum temperatures of 250°F, 350°F, or 

in some cases 600°F for short periods of time, dependent upon the specific polymer 

material. See Christensen [10.24].

From a structural mechanics point of view, almost all of the viscoelastic effects 

occur in the polymer matrix, while little or no creep occurs in the fibers.  Thus, the study

of creep in the polymeric materials, which comprise the matrix, provides the data 
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necessary to study creep in composites.  Jurf [10.25] experimentally studied the effects of 

temperature and moisture (hygrothermal effects) on various epoxy materials (FM 73M

and FM 300M adhesives).  They established that at least for some epoxy materials it is

possible to construct a master creep curve using a temperature shift factor, and 

established the fact that a moisture shift factor can also be employed.  The importance of 

this is that by these experimentally determined temperature and moisture shift factors, for 

the shear modulus of the epoxy, the results of short time creep tests can be used for a

multitude of time/temperature/moisture combinations over the lifetime and environment 

of a structure comprised of that material.  Wilson [10.26, 10.27] studied the effects of 

viscoelasticity on the buckling of columns and rectangular plates and found that 

significant reductions of the buckling loads can occur.  Wilson found that for the

materials he studied, the buckling load diminished over the first 400 hours, then

stabilized at a constant value.  However that value may be a small fraction of the elastic 

buckling load if the composite properties in the load direction were matrix dominated 

properties (described later in the text).  Wilson also established that for the problems

studied it was quite satisfactory to bypass the complexities of a full-scale viscoelastic

analysis using the Correspondence Principle and Laplace transformations.  The use of the 

appropriate short time stiffness properties of the composite experimentally determined 

with specimens that have been held at the temperature and until the time for which the 

structural calculations are being made. 

Hu and Sun have studied the equivalence of moisture and temperature in physical 

aging of polymer composites by using momentary creep tests [10.28].  Such equivalence

may permit the substitution of a moisture creep test with tests under an equivalent 

temperature thus saving much time and expense. 

10.7  High Strain Rate Effects on Material Properties

Another consideration in the analysis of all composite material structures is the

effect of high strain rate on the strength and stiffness properties of the materials used. 

Most materials have significantly different strengths, moduli, and strains to failure at high

strain rates compared to static values.  However most of the major finite element codes

such as those which involve 105-106 elements using 101-102 hours of computer time to

describe underwater and other explosion effects on structures, still utilize static material

properties.   High strain rate properties of materials are sorely needed.  Some dynamic

properties have been found, and test techniques established.  For more information see

Lindholm [10.29], Daniel, La Bedz, and Liber [10.30], Nicholas [10.31], Zukas [10.32],

and Sierakowski [10.33, 10.34], Rajapakse and Vinson [10.35], and Abrate [10.36,

10.37].

Vinson and his colleagues have found through testing over thirty various

composite materials over the range of strain rates tested up to 1600/sec, that in comparing 

high strain rate values to static values, the yield stresses can increase by a factor up to 3.6, 

the yield strains can change by factors of 3.1, strains to failure can change by factors up 

to 4.7, moduli of elasticity can change by factors up to 2.4, elastic strain energy densities

can change by factors up to 6, while strain energy densities to failure can change by 

factors up to 8.1.  Thus the use of static material properties to analyze and design 
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structures subjected to impact, explosions, crashes, or other dynamic loads should be

carefully reviewed. 

Most recently, Song experimentally determined the high strain rate mechanical

properties of several polymer matrix composite materials over temperature ranges from

room temperature to liquid nitrogen temperatures (-196 C ).  Most significantly, the

strength of these composites increased as much as a factor of 5 at liquid nitrogen

temperatures compared to the properties at room temperature [10.38 through 10.41].

10.8 Laminae of Composite Materials

Almost all practical composite material structures are thin in the thickness

direction because the superior material properties of composites permit the use of thin

walled structures.  Many polymeric matrix composites are made in the form of a uniaxial

set of fibers surrounded by a polymeric matrix in the form of a tape several inches wide

termed as a "prepreg."  The basic element in most long fiber composite structures is a 

lamina of fiber plus matrix, all fibers oriented in one direction, made by laying the

prepreg tape of a certain length side by side.  In the next section, 10.9, the stacking of 

various laminae to form a superior structure termed a laminate will be discussed.

In modern manufacturing methods, such as many liquid injection molding

techniques, the fibers are placed in the mold as a “preform”. In that case the analyst must 

decide whether the molded composite can best be modeled as one lamina or a laminate. 

Also if a composite lamina has a thermal gradient across the thickness such that 

the material properties vary significantly from one surface to the other, then the analyst 

could model the composite as a laminate with differing material properties in each

lamina.

To describe this, consider a small element of a lamina of constant thickness h, 

wherein the principal material axes are labeled 1 and 2, that is the 1 direction is parallel to

the fibers, the 2 direction is normal to them, and consider that the beam, plate or shell

geometric axes are x and y as depicted in Figure 10.10. For the material axes 1 and 2, the 

1 axis is always in the direction involving the stiffer and stronger material properties,

compared to the 2 direction.
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Figure 10.10.  Lamina Coordinate System. 

The element shown in Figure 10.10 has the stresses shown in the positive

directions consistent with references [1.7, 2.7, 2.8, 3.3, 10.1, 10.2, 10.42].  If one

performs a force equilibrium study to relate
x
,

y
 and 

xy
to 

1
,

2
, and 

12
, it is

exactly analogous to the Mohr's circle analysis in basic strength of materials with the 

result that, in matrix form,

1

2

6

= [T]
CL

x

y

xy

(10.32)

where

[T]
CL

=

m2 n2 +2mn

n2 m2 -2mn

-mn mn (m2-n2)

(10.33)

and where here m = cos , n = sin , and is defined positive as shown in Figure 10.10,

and the subscripts CL refer to the classical two-dimensional case only, that is, in the 1-2 

plane or the x-y-  plane only.

Analogously, a strain relationship also follows for the classical isothermal case
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1

2

12

=[T]
CL

x

y

xy

                           (10.34)

However, these classical two-dimensional relationships must be modified to treat 

a composite material to include thermal effects, hygrothermal effects, and the effects of 

transverse shear deformation treated in detail elsewhere [e.g., 1.7].  The effects of 

transverse shear deformation, shown through the inclusion of the
4
 - 

4
and 

5
-

5

relations shown in Equations (10.32) and (10.34), must be included in composite

materials, because in the fiber direction the composite has many of the mechanical 

properties of the fiber itself (strong and stiff) while in the thickness direction the fibers

are basically ineffective and the shear properties are dominated by the weaker matrix

material.  Similarly, because quite often the matrix material has much higher coefficients

of thermal and hygrothermal expansion ( and ), thickening and thinning of the lamina

cannot be ignored in some cases.  Hence, without undue derivation, the Equations (10.32) 

through (10.34) are modified to be:

xy
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z
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 (10.35) 

where

[T]  =

m2 n2 0 0 0 2mn

n2 m2 0 0 0 -2mn

0 0 1 0 0 0

0 0 0 m -n 0

0 0 0 n m 0

-mn mn 0 0 0 (m2 - n2)

(10.36)
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Please note the introduction of the factor of 
2

1
 as noted in the strain expressions, because

of the way and are defined in Equation (10.5).

For completeness, the reverse transformations are given.

xy

xz

yz

z

y

x

= [T]-1

6

5

4

3

2

1

 and

xy

xz

yz

z

y

x

= [T]-1

2

2

2

6

5

4

3

2

1

= [T]-1

12

13

23

33

22

11

     (10.37)

where*

)nm(000mnmn

0mn000

0nm000

000100

mn2000mn

mn2000nm

[T]

22

22

22

1
                        (10.38)

Again, please note that the transformations can be made only with tensor strains. r

Hence, from Equation (10.5), it is necessary to divide 
4
,

5
 and 

6
by two.

If one systematically uses these expressions, and utilizes Hooke's Law relating

stress and strain, and includes the thermal and hygrothermal effects, one can produce the

following overall general equations for a lamina of a fiber reinforced composite material

in terms of the principal material directions (1, 2, 3); see Equations (10.8) - (10.21).

can be found by replacing  by (- ) in [T]. 
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1

2

3

4

5

6

=

Q11 Q12 Q13 0 0 0

Q12 Q22 Q23 0 0 0

Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

1 - 1 T - 1 m

2 - 2 T - 2 m

3 - 3 T - 3 m

2 23

2 31

2 12

(10.39)

In the above, the Q
ij

quantities are used for the stiffness matrix quantities obtained 

directly from Equation (10.8) through (10.21).  One should also remember that 
23

= 

(1/2G
23

)
4
,

31
 = (1/2G

31
)

5
and 

12
= (1/2G12)

6
, hence the coefficients of "two"

appearing with the tensor shear strains 23, 31, and 12 above.  Using the notation of 

Sloan [10.42], the stiffness matrix quantities can be written as follows:

Q11 = E11(1- 23 ,  Q22 = E22(1- 31 13)/

Q33 12 21)/ Q = G23,  Q55 = G13,  Q66 = G12

Q12 = ( 21 + 23)E11/  = ( 12 + 32 13)E22/

Q13 = ( 31 + 32)E11/  = ( 13 + 12 23)E33/ (10.40)

Q23 = ( 32 + 31)E22/  = ( 23 + 21 13)E33/

= 1 - 12 21 - 23 32 - 31 13 -2 21 32 13

Incidentally in the above expressions, if the lamina is transversely isotropic, i.e.

has the same properties in both the 2 and 3 directions, then
12

=
13

, G
12

= G
13

, E
22

=

E
33

 with resulting simplification.

For preliminary calculations in design or where great accuracy is not needed,

simpler forms [1.7] for some of the expressions in Equation (10.40) can be used, as

shown below, with little loss in numerical accuracy:
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Q11= E11/(1 - 12 21),     Q22= E22/(1- 12 21)

Q12 = Q21 = 21E11/(1- 12 21) = 12E22/(1- 12 21)           (10.41)

Q66 = G12

If these simpler forms are used then one would use the classical form of the

constitutive relations instead of Equation (10.39), neglecting transverse shear 

deformation and transverse normal stress, i.e., letting 543 and, equal zero, thus

obtaining

12

222

111

66

2212

1211

3

2

1

2

mT

mT

Q00

0QQ

0QQ

                (10.42)

where one should remember also that 2
12

=
6
, hence the appearance of the factor of two

before
12

.  As stated above for many cases it is sufficient to use Equations (10.41) and 

(10.42) rather than Equations (10.39) and (10.40) for faster and easier calculation.

 In the case where there are no 16 and 26 terms the anisotropic composite material 

is frequently referred to as “specially orthotropic”.

When the structural axes, x, y and z, are not aligned with the principle materials

axes, 1, 2, 3, as described in Figure 10.10, then a coordinate transformation is necessary.

To relate these relationships to the x-y- -z coordinate system, one utilizes Equations (10.37)z

through (10.39).  The result is
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xy

xz

yz

z

y

x

=

-
Q11

-
Q12

-
Q13 0 0

-
Q16

-
Q12

-
Q22

-
Q23 0 0

-
Q26

-
Q13

-
Q23

-
Q33 0 0

-
Q36

0 0 0
-
Q44

-
Q45 0

0 0 0
-
Q45

-
Q55 0

-
Q16

-
Q26

-
Q36 0 0

-
Q66

x - x T - x m

y - y T - y m

z - z T - z m

2 yz

2 xz

2( xy - xy T - xy m)

(10.43)

where [
-
Q ] = [T]-1[Q][T], or more explicitly,

-
Q 11 = Q11m4 + 2(Q12 + 2Q66)m2n2 + Q22n4

-
Q 12 = (Q11 + Q22 - 4Q66)m2n2 + Q12(m4 + n4)

-
Q 13 = Q13m2 + Q23n2

-
Q 16 = -mn3Q22 +m3nQ11 - mn(m2 - n2)(Q12 + 2Q66)

-
Q 22 = Q11n4 + 2(Q12 + 2Q66)m2n2 +Q22m4
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-
Q 23  =  n2Q13  +  m2Q23

-
Q 33 = Q33

-
Q 26 = -m3nQ22 + mn3Q11 + mn(m2 - n2) (Q12 + 2Q66) (10.44)

-
Q 36 = (Q13 - Q23)mn

-
Q 44 = Q44m2 + Q55n2

-
Q 45 = (Q55 - Q44)mn

-
Q 55 = Q55m2 + Q44n2

-
Q 66 = (Q11 + Q22 - 2Q12)m2n2 + Q66(m2 - n2)2

x = 1m2 + n x = 1m2 + 2n2

y = 2m2 + 1n2
y = 2m2 + 1n2

z = 3 z = 3

xy = ( 1 - )mn xy = ( 1 - 2)mn.

It should be remembered that although the coefficients of both thermal and 

hygrothermal expansion are purely dilatational in the material coordinate system 1-2,

rotation into the structural coordinate system x-y- , results in an
xy

and a 
xy

, simply 

because the composite materials will probably have 1 2 and 1 2.

Again, for preliminary design purposes or for approximate but usually accurate

calculations one can use the simpler classical form of 
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x

y

xy

=

-
Q11

-
Q12

-
Q16

-
Q12

-
Q22

-
Q26

-
Q16

-
Q26

-
Q66

x - x T - x m

y - y T - y m

2( xy - xy T - xy m)

(10.45)

where the 
-
Q

ij
 are defined in Equation (10.44), but one can use the Q

ij
of Equation 

(10.41) instead of Equation (10.40) for consistency with the simpler expressions above.

One interesting variation of the above classical quantities of Equation (10.43)

resulted when Tsai and Pagano [10.43] rewrote many of the quantities in terms of 

material invariants and trigonometric functions involving (2 ) and (4 ). Their method 

provides an alternative formulation or a check of numerical results.

At this point, given a lamina of a unidirectional composite of known elastic

properties, if used in a plate or panel, (as well as a beam, ring or shell, discussed later)

with the 1-2 material axis at an angle from the plate or panel x-y axes, all stiffness

quantities Q
ij
 and 

-
Q

ij
can be determined relating stresses and strains in either coordinate 

system.

10.9  Laminate Analysis

In the previous section the generalized constitutive equations for one lamina of a

composite material were formulated.  Many structures of composite materials including

sandwich structures are composed of numerous laminae, which are bonded and/or cured 

together.  In fact, over and above the superior properties in strength and stiffness that 

composites possess, the ability to stack laminae one on the other in a varied but unique

fashion to result in the optimum laminate material properties for a given structural size

and set of loadings is one of the major advantages that composites have over more

conventional structures.  Up to this point, the concentration has been on the stress-strain

or constitutive relations.  Now the other three sets of equations comprising the equations

of elasticity will be considered: the strain-displacement relations, the equilibrium

equations and the compatibility equations.

Consider a laminate composed of N laminae.  For theN kthk lamina of the laminate,

Equation (10.43) can be written as:



185

x

y

z

yz

xz

xy

k

  =[
-
Q ]k

x - x T - x m

y - y T - y m

z - z T - z m

2 yz

2 xz

2( xy - xy T - xy m)

k

,                 (10.46) 

where all of the above matrices must have the subscript k due to the material and its

orientation for each particular lamina with respect to the structural x-y coordinates and 

therefore its unique .and,Q
kkk ii

For any elastic body the strain-displacement equations, i.e., those kinematic

relations describing the functional relations between the elastic strains in the body and its

displacements, are given by the following expression when considering linear elastic

deformation:

ijjiij ,, uu
2

1
(10.47)

where i, j = x, y, z in a Cartesian coordinate frame, and the comma denotes partialj

differentiation with respect to the coordinate denoted by the symbol after the comma.  

Explicitly, the relations are: 

x=
x

u
, y=

y

v
, z=

z

w

xz=
x

w

z

u

2

1
, yz=

y

w

z

v

2

1
                         (10.48)

xy=
x

v

y

u

2

1

In the above u, v, and w are the displacements in the structural x, y, and z

directions, respectively.  In linear elastic beam, plate, ring and shell theory, it is assumed 

that a lineal element extending through the thickness of a thin plate and perpendicular to 

the middle surface (that is, the x-y plane in Figure 10.11 below) prior to loading, upon the 

application of a load undergoes at most a translation and a rotation with respect to the 

original coordinate system.  Based upon that one assumption the functional form of the 

displacements for a laminated plate is: 
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u(x, y, z) = u0(x, y) + z )yx,(

v (x, y, z) = v0 (x, y) + z )yx,( (10.49)

w(x, y, z) = w(x,y) 

Figure 10.11.  Typical Rectangular Plate. 

where u
0
, v

0
and w are the middle surface displacements, i.e., the translations of the 

lineal element, and the second terms in the first two equations are the rotations of a lineal 

element through the thickness.  In classical beam and plate theory
-

 and 
-
  are the 

negative of the first derivative of the lateral displacement with respect to the x and y

coordinates respectively (i.e., 
-
  = -( w/ x) and 

-
  = -( w/ y), the negative of the slope),

but if transverse shear deformation is included,
-

 and 
-

 are unknown dependent 

variables which must be solved for; this will be discussed later.  Also, in classical theory,

it is assumed that the lineal element across the thickness of the beam, plate or shell

cannot extend nor shrink because at most it undergoes a translation and rotation, hence w

= w(x,y) only.  Sloan [10.42] has shown that for many practical composites, plate

thickening (where the lateral deflection is a function of z) is unimportant and can be

neglected, hence it is not included here, but can be found in detail in [10.42].

Substituting Equation (10.49) into Equation (10.48) results in:
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x =
x

z
x

u
0

u
, y =

y
z

y

v
0 , z =0

xz =
x

w

2

1
, yz =

y

w

2

1

(10.50)

xy =
xy2

z

x

v

y

u

2

1 00

The mid-surface strains can be written as: 

0
x =

x

u
0

uu
,

0
y =

y

v
0 ,

0
xy =

x

v

y

u

2

1 00                  (10.51)

The curvatures can be written as

x
=

x y
= ,

y xy
=

xy2

1
                        (10.52)

The classical and first order shear deformation theories utilize displacements and 

strains   to describe the strains and displacements of a laminated or sandwich structure 

composed of composite material, because all of the individual laminae are bonded 

together, therefore the same assumptions are made regarding the lineal element through 

the laminate thickness.  Thus, a continuity of strains and displacements occurs across the 

laminated structure regardless of the orientation of individual laminae. 

Substituting (10.50) through (10.52) into Equation (10.46) results in Equation 

(10.53); wherein because it is assumed that 
z
 = 0, (because plate thickening is 

neglected),
z

for a thin walled structure of composite material is usually negligible and 

will not be considered further. 

k
xyxyxyxy

xz

yz

yyyy

xxxx

k

kxy

xz

yz

y

x

m)Tz2(

2

2

mTz

mTz

0

0

0

            (10.53)

Note that without the hygrothermal terms, the strain-curvature matrix at the right 

in Equation (10.53) would suffice for the entire laminate independent of orientation,
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because the displacements, and strains are continuous over the thickness of the laminate.  

In that case the subscript k on that matrix would not be needed.  However, even though

there is continuity of the mid-surface strains and curvatures across the thickness of the 

laminate, the stresses are discontinuous across the laminate thickness because of the 

various orientations of each lamina, hence, the subscript k in the stress matrix above.  It is

seen from Equation (10.53) that if all quantities on the right hand side are known, one can

easily calculate each stress component in each lamina comprising the laminate. 

Consider a laminated plate or panel of thickness h as shown below, in Figure 

10.12.  It is seen that h
k

is the 
k

vectorial distance from the panel mid-plane, z = 0, to thel

upper surface of the kth lamina, i.e., any dimension below the midsurface is a negative

dimension and any dimension above the midsurface is positive.  For example, consider a 

laminate 0.52 mm (0.020") thick, composed of four equally thick laminae, each being

0.13 mm (0.005") thick.  Then h
0

= -0.26 mm (-0.010"), h
1

= -0.13 mm (-0.005"), h
2

= 0,

h
3
 = 0.13 mm (0.005") and h

4
= 0.26 mm (0.010").

As in classical beam, plate and shell theory [1.7, 2.7, 2.8, 3.3, 10.1, 10.2], one

defines and uses stress resultants (N), stress couples (M), and transverse shear resultants 

(Q) per unit width, with appropriate subscript, for the overall structure regardless of the

number and the orientation of the laminae, hence:

,dz

Q

Q

N

N

N

h/2

h/2

yz

xz

xy

y

x

y

x

xy

y

x

h/2

h/2
zdz

M

M

M

xy

y

x

xy

y

x

              (10.54)

It must be emphasized that all of the above quantities are a force per unit width

and a couple per unit width because in plate and shell structures these quantities vary in

both the x and y directions.
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Figure 10.12.  Nomenclature for the Stacking Sequence. 

In the plate shown in Figure 10.13, the positive directions of all the stress

resultants and stress couples are shown, consistent with the definitions of the quantities 

given in Equation (10.54).

Figure 10.13.  Positive directions for Stress Resultants and Stress Couples for a Plate.

For a laminated plate, the stress components can be integrated across each lamina, 

but must then be added together across the laminae as follows; employing Equations

(10.47) and (10.50) through Equation (10.52):
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                 (10.55)

where only the pertinent portions of the [
-
Q ]

k
 matrix are used. 

k

            Since the derivatives of the mid-surface displacements (u
0

and v
0
), the rotations

(
-
  and 

-
 ) and the 

-
Q 's are not functions of z, Equation (10.55) can be rewritten as:

k

1k

k

1k

h

h

h

h

0

0

0

zdzdz

N

N

N
N

1k

kxy

y

x

k

k
xy

yk

xy

y

x x

11k

k

1k

h

h

h

h
mdz

kxy

y

x

k

kxy

y

x

              (10.56) 

Finally, Equation (10.56) can be written succinctly as: 

                                      [N] = [A][ 0] + [B][ ] - [N]T - [N]m,             (10.57)

where it is shown later in Equation (10.66) that a factor of 2 is necessary in some terms, 

and where

,
1kkk

A
N

1k
jij [i,j,,  = 1, 2, 6]  (10.58)j
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,
1-kkk

hh
2

1
B

N

1k

22
jij [i,j,, = 1, 2, 6] (10.59)j

N

1k

k

1k

h

h
TdzN

kk
T

ijjij [i,j,, = 1, 2, 6] (10.60) j

N

1k

k

1k

h

h
mdzN

kk
m

ijjij [i, j = 1, 2, 6] (10.61)j

where it is obvious from Equation (10.56) how the [
ij
]
k

andd
ij
]
k

matrices are defined. 
k

From Equation (10.57), it is seen that the in-plane stress resultants for a laminated 

thin walled structure are not only functions of the mid-plane strains (
0

x = u
0
/ x, etc.) as 

they are in a homogeneous beam, plate or shell, but they can also be functions of the 

curvatures and twists  as well. Therefore in-plane forces can cause

curvatures or twisting deformations in composite laminated structures.

Similar to the above, but multiplying Equation (10.53) through by z first before

integrating, as in Equation (10.55), the following can be found:

k

1k

k

1k

k

1k

k

1-k

h

h

h

h

h

h

N

1k

h

h

mzdz

dzzzdz
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xy

y

x

k

xy
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k

xy
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k

xy

y

x

0

0

0

[M] = [B] [ 0] + [D] [ ] - [M]T - [M]m   (10.62)

where it will be shown in Equation (10.66) that factors of 2 are necessary in some terms, 

and where 

,
1-kkk

hh
3

1
D

N

1k

33
jij [i,j,, =1, 2, 6] (10.63) j

N

1k

k

1k

h

h
T)zdz(M

kk
T

ijjij [i,j,, =1, 2, 6]     (10.64) j

N

1k

k

1k

h

h
m)zdz(M

kk
m

ijjij [i,j,,  =1, 2, 6] (10.65)j
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            It is noted that in Equations (10.60), (10.61), (10.64) and (10.65) the

ijijij and,Q  could have been placed outside of the integral sign since in a lamina, they

are not functions of z.

Finally, the results of (10.57) and (10.62) can be written succinctly as follows to

form perhaps the most important and most used equation in this text.

Nx

Ny

Nxy

---

Mx

My

Mxy

  = 

A11 A12 A16 |

A12 A22 A26 |

A16 A26 A66 |

-- -- --

B11 B12 B16 |

B12 B22 B26 |

B16 B26 B66 |

B11 B12 B16

B12 B22 B26

B16 B26 B66

-- -- --

D11 D12 D16

D12 D22 D26

D16 D26 D66

x0

y0

2 xy0

---

x

y

2 xy

NT
x

NT
y

Nxy
T
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MT
x

MT
y

M T
xy

Nm
x

Nm
y

Nm
xy

---

Mm
x

Mm
y

Mm
xy

(10.66)

The [A] matrix represents the extensional stiffness matrix relating the in-plane

stress resultants (N's) to the mid-surface strains (
0
's) and the [D] matrix is the flexural

stiffness matrix relating the stress couples (M's) to the curvatures ( 's).  Since the [B] 

matrix relates the M's to 
0
's and N's to 's, it is called the bending-stretching coupling

matrix.  It should be noted that a laminated structure can have bending-stretching

coupling even if all laminae are isotropic. For example, a laminate composed of one 

lamina of steel and another of polyester will have bending-stretching coupling.  In fact,

only when the structure is exactly symmetric about its middle surface are all of the B
iji

components equal to zero, and this requires symmetry in laminae properties, orientation,

and distance from the middle surface. 

It is seen that stretching-shearing coupling occurs when A
16

 and A
26

are non-

zero.  Twisting-stretching coupling as well as bending-shearing coupling occurs when the

B
16

and B
26

 terms are non-zero, and bending-twisting coupling comes from non-zero

values of the D
16

and D
26

terms.  Usually the ( )16 and ( )26 terms are avoided by proper 

stacking sequences, but there could be some structural applications where these effects 

could be used to advantage, such as in aeroelastic tailoring. 

Examples of these effects in several cross-ply laminates (i.e., combinations of 0° 

and 90° plies), angle ply laminates (combinations of +  and - plies), and unidirectional

laminates (all 0° plies) are involved in problems at the end of this chapter.  It is seen in

Equation (10.58) that (h
k

- h
k k-1

) is always positive, and from Equation (10.63) 3

1

3 hh kk
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is always positive, hence, in all symmetric cross-ply laminates, all (  )
16

 and (  )
26

terms 

are zero.  If one describes a single layer isotropic plate one can see that, for example 

)1(EhAA 2

2211 and 
)1(12

Eh
DD

2

3

2211 .

The inclusion of transverse shear deformation effects on the structural behavior,

results in an improved theory as follows.  To determine the transverse shear resultants Q
x

Q

and Q
y

Q , defined in Equation (10.54), it is assumed that the transverse shear stresses are 

distributed parabolically across the laminate thickness.  In spite of the discontinuities at 

the interface between laminae, a continuous function f(z(( ) is used as a weighting function

by some authors, which includes a factor of 5/4 so that the shear factor calculated for an

orthotropic laminate is consistent with the established shear factor from the previous

work of Reissner [10.44] and Mindlin [10.45] for the homogeneous case.

f(z) = 
5

4
1 -

z

h/2
2

                                     (10.67) 

Then from Equations (10.40), (10.43), (10.50), (10.54), and (10.67) 

xzk
= 2

-
Q 55k xz + 2

-
Q 45k yz yzk

= 2
-
Q 45k xz + 2

-
Q 44k yz  (10.68)

where,

-
Q 44 = Q44m2+Q55n2,

-
Q 45 = (Q55-Q44)mn,

-
Q 55 = Q55m2+Q44n2,

Q44 = G23, and Qd 55= G13,

Hence, the transverse shear resultants Qx and Qy are as follows:

Qx = 2(A55 xz + A45 yz) (10.69)

             Qy = 2(A45 xz + A44 yz)     (10.70)

where,

Aij =
N

1k k
)Q(

4

5
ij 21kk1kk

h

1
)h(h

3

4
hh 33 (i,j,,  = 4,5 only) (10.71)j

where h is the total thickness of the laminated plate.  Some authors use other weighting 

functions.  As an example if one considers the laminate to be only one lamina, 
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,
2

h
z

2

h
 then ,hQ

6

5
A 5555  illustrating clearly the weighting factor introduced by

Reissner of 
5

6
 [10.44].

At this point the stress-strain relations, or constitutive relations Equation (10.66) 

can be combined with the appropriate stress equations of equilibrium, and the strain-

displacement relations to form an appropriate beam, plate or shell theory including

thermal and hygrothermal effects as well as transverse shear deformation. 

Another reference for the developments of this chapter is a recent text by Jones 

[10.46].
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10.11  Problems

10.1 Consider a laminate composed of boron-epoxy with the following properties:
Q11 = 2.43 105 MPa                                         Q12 = 2.43 104 MPa

(35.32 106 psi)                                                  (1.06 106 psi)
        Q22 = 2.43 104MPa                                         Q66=1.034 103 MPa
               (3.532 106 psi)                                                 (1.5 106 psi)
 If the laminate is a cross–ply with [0 /90 /90 /0 ], with each ply being 0.25 mm 

(0.11'') thick, and if the laminate is loaded in tension in the x direction (i.e., the 0
direction):
(a) What percentage of the load is carried by the 0 plies? The 90  plies?
(b) If the strength of the 0  plies is 1.364 103 MPa (198,000 psi), and the strength 

of the 90 plies is 44.8 MPa (6,500psi) which plies will fail first?
(c) What is the maximum load, Nmax, that the laminate can carry at incipient 

failure? What stress exists in the remaining two plies, at the failure load of the
other two others? 

(d) If the structure can tolerate failure of two plies, what is the maximum load,
Nmax that the other two plies can withstand to failure?

10.2. A laminate is composed of graphite epoxy (GY70/339) with the following
properties: E11 = 2.89 105 MPa (42 106 psi), E22 = 6.063  103 MPa (0.88  106

psi), G12 = 4.134 103 MPa (0.6 106 psi) and 12 = 0.31. Determine the elements of 
the A, B and D matrices for a two-ply laminate [ 45 / 45 ], where each ply is
0.15 mm (0.006") thick.

10.3. Consider a square panel composed of one ply with the fibers in the directions as
shown in Figure 10.12.
Which of the orientations above would be the stiffest for the loads given in Figure
10.12?

10.4. For a panel consisting of boron-epoxy with the properties of Problem 1 above,
and a stacking sequence of  [0º/+45º/-45º/0º], and a ply thickness of 0.14 mm
(0.005"), determine the elements of the elements of the A, B and D matrices.

10.5. The properties of graphite fibers and a polyimide matrix are as follows:
                            E = 2.756 105 MPa               E = 2.756 103 MPa
                                  (40 106 psi)                           (0.4 106 psi) 

 = 0.2  = 0.33
(a) Find the modulus of elasticity in the fiber direction, E11, of a laminate of 

graphite-polymide composite with 60% fiber volume ratio.
(b) Find the Poisson’s ratio, 12?
(c) Find the modulus of elasticity normal to the fiber direction, E22.
(d) What is the Poisson’s ratio, 21?

10.6. Consider a laminate composed of GY70/339 graphite epoxy whose properties are
given above in Problem 10.2. For a lamina thickness of 0.127 mm (0.005"),
calculate the elements of the A, B and D matrices for the following:
(a) [0º, 0º, 0º, 0º]   (unidirectional); 
(b) [0º, 90º, 90º, 0º]  (across-ply);
(c) [±45]s, i.e. [+45º/-45º/-45º/+45º]  (an angle-ply);
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(d) [0º/+45º/-45º/90º]s  (a quasi-isotropic, 8 plies); 
(e) Compare the various stiffness quantities for the four laminates above.

y y  y y

x x x x

   A    B C D
Figure 10.12.

10.7. Consider a laminate composed of GY70/339 graphite epoxy whose properties are
given above in Problem 10.2. For a lamina thickness of 0.127 mm (0.005") cited
in Problem 10.6, calculate the elements of the [A], [B] and [D] matrices for the
following laminates: 
(a) [±(45)2]s, [+45/-45/+45/-45]s

(b) [±45]s, [+45/-45/-45/+45]
(c) [±45]Qs,  [+45/-45/+45/-45]
(d) [±(45)2]Qs, [+45/-45/+45/-45]Qs

Compare the forms of the A, B and D matrices between laminate type. 
10.8. What type of coupling would you expect in the (B) matrix for (a) and (b) below:

(a) 0º/90º laminate
(b) + /  laminate 

10.9. Given a composite laminate composed of continuous fiber laminate laminae of 
High Strength Graphite/Epoxy with properties of Table 10.3, if the laminate
architecture is [0°, 90°, 90°, 0°], determine A11 if , and each ply thickness
is 0.006".

10.10. Consider a plate composed of a 0.01" thick steel plate joined perfectly to an
aluminum plate, 0.01" thick. Using the properties of Table 10.3 calculate B11, if 
the Poisson’s Ratio of each material is = 0.3.

10.11. Consider a unidirectional composite composed of a polyimide matrix and graphite
fibers with properties given in Problem 10.5 above. In the fiber direction, what 
volume fraction is required to have a composite stiffness of E11 =10 6 psi to
match an aluminum stiffness. 

10.12. A laminate is composed of ultra high modulus graphite epoxy with properties
given in Table 10.3 below. Determine the elements of the [A], [B] and [D]
matrices for a two ply laminate [+45º/-45º], where each ply is 0.006" thick. For 
the material 12 = 0.31.

10.13. A laminate is composed of boron-epoxy with the properties of Problem 10.1 and a
stacking sequence of  [0/ 45 / 45 / ], and a ply thickness of 600.0 .  Determine 
the elements of the A, B and D matrices.
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Table 10.3. Unidirectional properties.
          Material         Elastic moduli              Ultimate strength               Density

       Axial       Transverse       Shear       Axial tens.   Trans. tens.   Shear tens.

E
11

E
22

 G
12 11 22 12

High strength 20 1.0 0.65 220 6 14 0.057

GR/epoxy (138) (6.9) (4.5) (1517) (41) (97) (1.57) 

High Modulus 32 1.0 0.7 175 5 10 0.058 

GR/epoxy (221) (6.9) (4.8) (1206) (34) (69) (1.60)

Ultra high 44 1.0 0.95 110 4 7 0.061

modulus (303) (6.9) (6.6) (758) (28) (48) (1.68)

GR/epoxy       

Kevlar49/ 12.5 0.8 0.3 220 4 6 0.050 

epoxy (86) (5.5) (2.1) (1517) (28) (41) (1.38)

S glass 8 1.0 0.5 260 6 10 0.073

epoxy (55) (6.9) (3.4) (1793) (41) (69) (2.00) 

Steel 30 30 11.5 60 60 35 0.284 

(207) (207) (79) (414) (414) (241) (7.83) 

Aluminum 10.5 10.5 3.8 42 42 28 0.098

6061-T6 (72) (72) (26) (290) (290) (193) (2.70)

Moduli in Msi (GPa); Stress in Ksi (MPa); Density in lb/in
3

(g/cm
3

)

10.14. Consider a composite laminae made up of continuous Boron fibers imbedded in 

an epoxy matrix. The volume fraction of the Boron fibers in the composite is 

40%. Assuming that the modulus of elasticity of the Boron fiber is 5 10
7
 psi and 

the epoxy is 5  10
5
 psi, find:

(a) The Young’s moduli of the composite in the 1 and 2 direction. 

(b) Consider an identical second lamina to be glued to the first so that the fibers 

of the second lamina are parallel to the 2 direction. Assuming the thickness of 

each lamina to be 0.1" and neglecting Poisson’s Ratio, what are the new 

moduli in the 1 and 2 directions. 

10.15. The properties of graphite fibers and a polyimide matrix are as follows:     

                                   GRAPHITE                                            POLYIMIDE

                                   E = 40 × 10
6
  psi                                    E = 0.4  × 10

6
 psi

0.2  0.33

(a) Finder the modulus of elasticity in the fiber direction, E11, of a lamina of 

graphite – polyimide composite with 70% fiber volume ratio. 

(b) Find the Poisson’s Ratio, 12.

(c) Finder the modulus of elasticity normal to the fiber direction, E22.

(d) What is the Poisson’s Ratio, 22.

(e) Compare these properties with those obtained for the same material system

but with F = 60% in problem 10.5.
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10.16. In a given composite, the coefficient of thermal expansion for the epoxy and the

graphite fibers are 30 10
6
 in/in/ F and 15 10

6
in/in/ F respectively. For 

space application where no thermal distortion can be tolerated what volume 

fractions of each component are required to make zero expansion and contraction

in the fiber direction for an all 0 construction? (Hint: Use the Rule of Mixtures). 

10.17. Find the A, B and D matrices for the following composite: 50% volume Fraction

Boron-Epoxy Composite

                      E11 = 30.0  106 psi
                      E22 = 3.0 10

6
psi 

                      G12 = 1.0  10
6
 psi

12  = 0.22

 Stacking Sequence (each lamina is 0.0125" thick)

10.18. Three composite plates are under uniform transverse loading. All the conditions, 

such as materials, boundary conditions and geometry, etc. are the same except the 

stacking sequence as shown below. Without using any calculation, indicate which 

plate will have maximum deflection and will have minimum deflection. 

10.19. Consider a Kevlar 49/epoxy composite laminate, whose properties are in Table 

10.3 in the text and whose stacking sequence is [0,90,90,0]  (i.e. a cross ply 

laminate).  The ply thickness is 0.0055 inches. 

(a) Determine the A, B, and D matrix component.

(b) What if any are the couplings in this cross-ply construction that are discussed 

below Equation (10.66)?

(c) If only in-plane loads are applied, is the plate stiffer in the x direction or y 

direction, or are they the same? 

(d) If only plate bending is considered, is the plate stiffer in the x direction, the y 

direction, or are they equally stiff?

10.20. Given the following fiber and matrix properties for HM-S/epoxy composite  

components:

                        Epoxy                                                           HM-S/Graphite 

Em= 0.5 Msi = 3.45 GPa                                  Ef11 = 55.0 Msi = 379.3 GPa 

            Gm= 0.185 Msi = 1.27 GPa                              Ef22= 0.9 Msi =6.2 GPa 

m= 0.0440 lb/in
3

= 1.218 gr./cm
3

f12 = 0.20

f12 = 0.0703 lb/in
3

= 1.946 gr./cm
3

Determine each of the following properties for a unidirectional composite:
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E11, E12, E33, G12, G13, 12, 21, 13, 31, 23 and 32 for the fiber volume fractions 

of Vf = 0%, 30%, 60%. Which properties increase linearly with volume fraction? 

Which do not increase linearly with volume fraction?

10.21. Given a cross-ply construction of four lamina of the same composite material

system oriented as 0°, 90°, 90°, 0°, each lamina being equally thick, which

elements of the [A], [B] and  [D] matrices of Equation (10.66) will be equal to

zero.

10.22. Given an angle-ply construction of five plies of the same composite material

oriented as + / /+ / /+ , each of equal thickness, which elements of the

[A], [B] and [D] matrices of Equation (10.66) will be equal to zero.

10.23. Determine the elements of the Cij matrix analogous to the aij of Equation (10.10)

through (10.12) for orthotropic materials.

56

55

44

333231

232221

131211

00000

00000

00000

000

000

000

C

C

C

CCC

CCC

CCC

Cij

10.24. A laminate is composed of graphite epoxy (GY70/339) with the following

properties:

E11 = 2.89  10
5

MPa (42  10
6

psi)

E22 = 60.63  10
3

MPa (0.88  10
6

psi)

                                           G12 = 4.134 10
3

MPa (0.60 10
6

psi)

12 = 0.31

(a) Determine the elements of the [A], [B], and [D] matrices for a two-ply

laminate [+45/-45], where each ply is 0.15mm. (0.006 inches) thick.

   (b) What couplings exist as discussed below Equation (10.66) for this laminate?

10.25. For a panel consisting of Boron-Epoxy with the properties

                                              Q11= 35.32 10
6

psi

                                             Q22= 3.532 10
6

psi

                                             Q12= 1.06 10
6

psi

                                             Q66= 1.50 10
6

psi

        and a stacking sequence of [0 , +45 , -45 , 0 ], and a ply thickness of 0.006 

inches, determine the elements of the A, B and D matrices.  What would the

elements be if the ply thickness were 0.0055 inches? 

10.26. Determine how the A, B, D matrices are populated for the following two stacking

sequences [0 , 45 , 90 ]QS and [0 , 45 , 90 ]S . The subscript QS mean

symmetric Q times where Q = 2, 3,…  The composite material is orthotropic and 

has the properties E11, E22, G12, 12, with each lamina having thickness hk. In the

[A], [B], and [D] matrices, place an x or an O for each element, where an x shows

that the component is non zero, and O shows that the component is zero.
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10.27. What type of couplings, as discussed below Equation (10.66) would you expect in

the B matrix for (a) and (b) below: (that is, identify the non-zero terms)

(a) 0 /90  laminate

(b) + /-  laminate

10.28. Find the [A], [B] and [D] for the following laminates.

Given: E11 = 30  10
6

psi, E22 = 3 10
6

psi, G12 = 1  10
6

psi,  = 0.3.

10.29. In problem 10.28 which laminate is stiffest and which is the least stiff for 

(a) In-plane loads in the 0 direction. 

(b) In-plane loads in the 90 direction. 

(c) Bending in the 0  direction.

(d) Bending in the 90 direction.

10.30. Consider a laminate composed of GY 70/339 graphite/epoxy with the following

properties,

                                        E11 = 2.89  10
5

MPa (42 10
6

psi)

E22 = 6.063 10
3

MPa (0.88 10
6

psi)

                                        G12 = 40134 10
3

MPa (0.60 10
6

psi)

12 = 0.31

 Using the laminate thickness as 0.127mm (0.005 inches) calculate the elements of                    

the [A], [B], and [D] matrices for the following laminates.

(a) [ (45)2]s, [+45/-45/+45/-45]s

(b) [ 45]s, [+45/-45/+45/-45]s

(c) [ 45]Qs, [+45/-45/+45/-45]

(d) [ (45)2]Qs, [+45/-45/+45/-45]Qs

 Compare the forms of the [A], [B] and [D] matrices between laminate types.
10.31. A composite material has stiffness matrix as follows,

510

2000000

0200000

0020000

0005000

100005010

1000010100

psi

Determine the state of stress if the strains are given by, 

x = 100 in/in, y = 50 in/in,  = -100 in/in.

 10.32. Consider the stress acting on an element of a composite material to be as shown

below. The material axes 1,2 are angle  with respect to the geometry loading
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axes for the element. Taking the material properties as noted below, find the m-

plane displacements u(x,y), v(x,y).

10.33. A 50% boron-epoxy orthotropic material is subjected to combined stress as shown

below.

 - Find the stress on the material element for a 45° rotation about the z-axis in

positive sense.

(a) If the strain components in the non-rotated system are given by: 

x = 260 in/in, y = 3110 in/in,  = -9090 in/in

 Find the corresponding strains in the rotated system. 

(b) Comment on the corresponding stresses and strains in the rotated system. 

10.34. The elastic properties of a unidirectional Kevlar 49/epoxy composite are given in

Table 10.3.  A cross-ply laminate consists of 4 plies such that the stacking

sequence is ].  Each ply is 0.0055 inches thick.

 (a) Determine each element in the [A[[ ], [B] and [D] matrices.

(b) What if any coupling exists in this cross-ply configuration? 

(c) Concerning in-plane loads only, is the plate stiffer in the x-direction, the y-

direction, or are they the same?

 (d) Concerning plate bending, is the plate stiffer in the x-direction, the y-direction,

or are they equally stiff in bending? 



CHAPTER 11

PLATES AND PANELS OF COMPOSITE MATERIALS 

11.1  Introduction 

In Chapter 10, the constitutive equations for composite materials were developed 

in detail, describing the relationships between integrated stress resultants ,,, xyyx NNN

integrated stress couples ,,, xyyx MMM  in-plane mid-surface strains 000 ,, xyyx , and 

the curvatures xyyx ,, , as seen in Equation (10.66).  These will be utilized with the

strain-displacement relations of Equations (10.48) and (10.50) and the equilibrium

equations to be developed in Section 11.2 below to develop structural theories for thin

plates and panels, the configuration in which composite materials are most generally 

employed.

11.2  Plate Equilibrium Equations 

The integrated stress resultants N , shear resultants Q  and stress couples ,

with appropriate subscripts, are defined by Equations (2.4) though (2.13), and their 

positive directions are shown in Figure 2.2, for a rectangular plate, defined as a body of 

length a in the x -direction, width b in the y -direction, and thickness h in the z -

direction, where ,, ahbh i.e. a thin plate.

In mathematically modeling solid materials, including the laminates of Chapter 

10, a continuum theory is generally employed.  In doing so, a representative material

point within the elastic solid or lamina is selected as being macroscopically typical of all 

material points in the body or lamina.  The material point is assumed to be infinitely

smaller than any dimension of the structure containing it, but infinitely larger than the

size of the molecular lattice spacing of the structured material comprising it.  Moreover,

the material point is given a convenient shape; and in a Cartesian reference frame that 

convenient shape is a small cube of dimensions dxdd , dyd , and dzdd  as shown in Figure 1.1.z

This cubic material point of dimension zyx dzzanddyy,dxx  is termed a control element. 

The positive values of all stresses acting on each surface of the control element are shown 

in Figure 1.3, along with how they vary from one surface to another, using the positive

sign convention consistent with most scientific literature, and consistent with Figure 1.3. 

Details of the nomenclature can be found in any text on solid mechanics, including [1.7,

2.7, 2.8, 3.3, 10.1, 10.2].  In addition to the surface stresses acting on the control element 

shown in Figure 1.3, body force components zyx FzFyFx and, can also act on the body. 

These body force components such as gravitational, magnetic or centrifugal forces are 

proportional to the control element volume, i.e., its mass. 
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A force balance can now be made in the zyx and, directions resulting in three

equations of equilibrium.  Proceeding exactly as in Section 1.5, one derives Equations

(1.5) though (1.8).  These three equations comprise the equilibrium equations for a three

dimensional elastic body.  However, for beam, plate and shell theory, whether involving

composite materials or not, one must integrate the stresses across the thickness of the thin

walled structures to obtain solutions.

Recalling the definitions of the stress resultants and stress couples defined in (2.4)

through (2.13) and (10.54); for a laminated (or sandwich) plate or panel, they are:
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The first form of each of the above is applicable to a single layer plate, while the
second form is necessary for a laminated or sandwich plate due to the stress 
discontinuities associated with different materials and/or differing orientations in the
various plies. 

Turning now to (1.5), neglecting the body force term, ,xFx for simplicity of this

example, integrating term by term across each ply, and summing across the plate

provides
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In the first two terms integration and differentiation can be interchanged, hence: 
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   (11.4)

In the first two terms yxx NN and  appear explicitly as the bracketed quantities. 

In the third term it is clear that between all plies of a laminated composite plate and 

between the face and core materials of a sandwich panel the interlaminar shear stresses
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will cancel each other, and one can define the applied surface shear stresses on the top 

N and bottom 0hz  surfaces as shown below (see Figure 10.1)

xNzx h
1   and

xozx hoo 2
                            (11.5) 

Equation (11.4) can then be written as: 

0
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Similarly, integrating the equilibrium equation in the y-direction provides
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Likewise equilibrium in the z-direction upon integration and summing provides
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where

20
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1
phph zNz                                    (11.10) 

It is seen that Equations (11.6), (11.7) and (11.8) are identical to Equations (2.17), (2.18) 

and (2.16) for a plate made of an isotropic material.  The reason is that equilibrium 

equations are force balances and have nothing to do with the materials comprising the 

plate.

In addition to the integrated force equilibrium equations above, two equations of 

moment equilibrium are also needed, one for the x-direction and one for the y-direction.

Multiplying equation 1.5 through by zdzdd , integrating across each ply and summing across 

all laminae results in the following 
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Again, in the first two terms integration and summation can be interchanged with

differentiation with the result that the first two terms become .// yxyx M xxM MMxxMM

However, the third term must be integrated by parts as follows:
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Here the last term is clearly .xQ   Again in the first term on the right, clearly the 

moments of all the interlaminar stresses between plies cancel each other out, and the only

non-zero terms are the moments of the applied surface shear stresses hence that term 

becomes

xxxxN
h

hh
N 21201 20N

Using the former expression, the equation of equilibrium of moments in the x-

direction is 
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Similarly in the y-direction the moment equilibrium equation is
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where all the terms are defined above.  Again, (11.11) and (11.12) are identical to (2.14)

and (2.15).  Thus, there are five equilibrium equations for a rectangular plate, regardless

of what material or materials are utilized in the plate: (11.6), (11.7), (11.9), (11.11) and 

(11.12).

11.3 The Bending of Composite Material Laminated Plates: Classical Theory

Consider a plate composed of a laminated composite material that is mid-plane

symmetric, i.e. ,0ijB  and has no other coupling terms (  )16 = (  )26 = 0.  Such a plate is

called a specially orthotropic plate.  Also, assume no surface shear stresses and no 

hygrothermal effects for simplicity.  The plate equilibrium equations for the bending of 

the plate, due to lateral loads given by Equations (11.9), (11.11) and (11.12) become:

0x
xyx Qx
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M x
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M x
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xx

MM
                                      (11.13)
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where yxpp , 21 .  Derivatives of (11.13) and (11.14) can be 

substituted into (11.15) with the result that:

p
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M yMxyMxM
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2

22

2

2

yyyyxxxx
                          (11.16)

Again, it is seen that (11.16) is identical to (2.56), because the above equations are

derived from equilibrium considerations alone.  From Equation (10.66) and for the case

of mid-plane symmetry 0ijB and no (  )16 and (  )26 coupling terms, the constitutive

relations are:

yxx DDM x 1211                                       (11.17) 

yxy DDM y 22
D

12                                       (11.18) 

xyxy DM x 66
2                                            (11.19)

where from Equation (10.52)

.
2

1
,,

xyyx
xyyx

xxyyyyxx

It is well known that transverse shear deformation (that is )0,0 yzxz

effects are important in plates composed of polymer matrix composite materials in 

determining maximum deflections, vibration natural frequencies and critical buckling

loads.  However, it is appropriate to use a simpler stress analysis involving classical

theory which neglects transverse shear deformation for preliminary design to determine a

“first cut” for stresses, a suitable stacking sequence and an estimate of the required plate

thickness.

If, in fact, transverse shear deformation is ignored, then from Section 2.3
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So, substituting Equation (11.20) into Equations (11.17) through (11.19) results in the 

following for the case of no transverse shear deformations, i.e., classical plate theory: 
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Substituting derivatives of these three equations in turn into Equation (11.16) results in: 
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The above coefficients are usually simplified to: 

36612222111
2,, DDDDDDD                     (11.25) 

with the result that (11.24) becomes 
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This is the governing differential equation for the bending of a plate composed of 

a composite material, excluding transverse shear deformation, with no coupling terms 

(that is ),0)()( 2616ijB  and no hygrothermal terms (that is, )0mT subjected 

to a lateral distributed load p .  Because no 16 nor 26 coupling terms are included, 

(11.26) refers to a plate that is “specially orthotropic”. 

As stated previously, neglecting transverse shear deformation and hygrothermal 

effects can lead to significant errors, as will be shown, but in many cases their neglect 

results in easier solutions which are useful in preliminary design to “size” the plate 

initially.  Note also that if the plate were isotropic, then in that case 

DDDDDD 3212211 , and (11.26) becomes identical to (2.57).
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Solutions of Equation (11.26) can be obtained generally in two ways: direct 

solution of the governing differential equation (11.26), or utilization of an energy

principle solution.  The latter offers more latitude through attaining satisfactory

approximate solutions.

Direct solutions of the governing differential equations for plates of composite

materials fall into three categories: Navier solutions, Levy solutions and perturbation

solutions.  Each has its advantages and disadvantages.  However prior to that, boundary

conditions need to be discussed.

11.4  Classical Plate Theory Boundary Conditions

In the “classical” (that is, ignoring transverse shear deformation) specially

orthotropic plate theory of Section 11.3, two and only two boundary conditions can be

satisfied at each edge of the plate because the governing differential equation (11.26) is 

fourth order in x and fourth order in y.  The boundary conditions for a simply supported 

edge and a clamped edge shown below are identical to those of classical beam theory,

where here n is the direction normal to the plate edge and t is the direction parallel or t

tangent to the edge. 

The boundary conditions for the composite material, anisotropic plate are

identical to the simply supported, clamped and free edges for an isotropic plate, discussed 

in detail in Section 2.5. 

11.5  Navier Solutions for Rectangular Composite Material Plates

Just as seen earlier for isotropic plates, the Navier approach may be employed. 

The Navier approach to these solutions for specially orthotropic plates involves separable 

solutions, as shown below, of the governing differential-plate equation shown in

Equation (11.26).  Thus 

1 1m n1
YXAw nmmnA

(11.27)

1 1m n1
YXBp nmmn

In the above, the functions X m  and yY n are a uniformly convergent, complete, 

orthogonal set of functions that satisfy the boundary conditions.  Thus, when the

complete summation is taken, the exact solution is obtained.  From a practical point of 

view, because of uniform convergence, a finite number of terms are sufficient to provide

any desired accuracy.

If one assumes a plate that is simply supported on all four edges, then Equation

(11.27) can be written as



212

b

yn

a

xm
mnAmmw

m n

yyxx
sinsin

1 1n
                      (11.28) 

b

yn

a

xm
mnBmp

m n

yyxx
sinsin

1 1n
                       (11.29) 

These half-range sine series (the original Navier problem) satisfy the simply supported 

boundary conditions on all four edges of the plate shown in Figure 2.1.  If the plate has 

other boundary conditions, then other functions must be used for X m and Y n , in

which case the approach is labeled the Generalized Navier approach. 

To proceed it is first necessary to determine mnB  in Equation (11.29) in order to 

describe the load p , whether it is continuous of discontinuous.  One simply 

multiplies both the left- and right-hand sides of Equation (11.29) by 

dxdy
b

ys

a

xr yyxx
sinsin and integrates both sides from 0 to a in the x-direction and 0 to b

in the y-direction, i.e., over the planform area of the plate.  It must be remembered that 
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                       (11.30)

Therefore,

dydx
b

yn

a

xm
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ab
B
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mnB
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sinsin
4

00
                    (11.31) 

For example if p = 0p = a constant, a commonly occurring load,

2

4 0
mn

mn

p
B                                 (11.32)

Now the above can be used for an isotropic or orthotropic plate, classical theory 

or advanced theory (including transverse-shear deformation) and a laminated or single-

layer plate.  Considering an orthotropic composite panel, using classical plate theory, 

simply supported on all four edges, Equation (11.26) is used. 

Simply substituting Equations (11.28) and (11.29) into Equation (11.26), the 

equality requires that each term be equated, thus 
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B
A mn

mn                  (11.33) 
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where the flexural stiffness quantities 1D , 2D and 3D are defined by Equations (11.25), 

for a laminated composite panel.  For the isotropic case in which )1(G2EE 2211 ,

Equations (11.25) becomes DDDD 321 .

After obtaining the solution for xw ,  using Equations (11.28), (11.29) and y

(11.33), one may calculate the magnitude and location of the maximum deflection.  By 

taking the derivative of w , and using Equations (11.21) through (11.23), the stress

couples xM x , yM y  and xyM x  are determined to find the maximum values and their 

location.  Finally, depending upon whether the panel is a laminate or a single layer, the 

maximum stresses are determined through calculating the curvatures at the locations of 

maximum stress couples, using (2.39): 

yx

w

y

w

x

w
xyyx yyxxyyxx

2
and

2

2
,

2

2

Knowing these, one can calculate the stresses in each of the k laminae through the use of k

(10.53) where in this case of a lateral loading only, there is no in-plane response, i.e.

000
and xyyx are zero, and there are no thermal or moisture effects:
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                       (11.34) 

The number of terms necessary to attain a desired accuracy depends upon the particular 

load p , the aspect ratio of the plate b / , and the material system of which thea

plate is fabricated.

11.6  Navier Solution for a Uniformly Loaded Simply Supported Plate – An

        Example Problem 

The case of a uniformly loaded, p(x(( , y) = -p- 0 simply supported plate is solved by 

means of the Navier series solution of Section 11.5, for two composite materials systems: 

unidirectional and cross-ply, stresses xyyx and,  are determined for each case at the

quarter points and mid-point of the plane . In addition, in this example, the solutions have 

been examined by utilizing one, three and five terms in the Navier series solution. 

            In this analysis, it is of course assumed that all plys are perfectly bonded and 

classical theory is used (that is, xy and yz , are assumed zero). This results in the in-

plane stresses, xyyx and,  being directly determined, while the transverse shear 

stresses xz and yz  are determined subsequently. 



214

 Using the methods discussed previously it is found that the stresses in each lamina

for the case of p(x(( , y) = -p- 0 are given by: 
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where 3D is defined by Equation (11.25).

 As a numerical example a square plate of a = b = 12" is considered. The total

plate thickness is 0.08": eight plies of 0.01" thickness ( kh  = 0.01").

 The first material system considered is E glass/epoxy, with a fiber volume

fraction %70VfVV , with the following properties:

E11 = 8.8 10
6
 psi 12 = 0.23 

E22 = 3.6 10
6
 psi                                                G12 = 1.74 10

6
psi 

The stiffnesses ijQ are, from (10.43) and (10.44),

0 ply (psi)                        90 ply (psi)
6

11 100.9Q 6

11 1068.3Q

6

12 1085.0Q 6

12 1085.0Q

6

22 1068.3Q 6

22 100.9Q

6

66 1074.1Q 6

66 1074.1Q
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In the following figures, the stresses have been normalized as 0/ pijij .  In 

Figure 11.1, the normalized stresses are shown at the plate midpoint (x =x a/2, y = b/2) for 
a unidirectional ( )0  laminate.  In this case the stresses are proportional to the 
distance from the plate mid-plane.  In Figure 11.2, the normalized stresses at plate
midpoint are shown for a mid-plane symmetric cross-ply laminate.  Here, because the
plys alternate between 90and0 , the stresses are discontinuous from ply to ply, and in
each ply the stresses are larger in the fiber direction than in the 90 direction.  In Figure 
11.3, these stresses are shown at the quarter point location for the cross-ply plate. 
Because of symmetry, at the plate center in-plane shear stresses are zero, while at the
quarter points a non-zero xy  exists as shown in Figure 11.3.

Figure 11.1.  Normalized stresses at center of the plate for an E glass/epoxy unidirectional composite.
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Figure 11.2.  Normalized stresses at center of plate for an E glass/epoxy cross-ply composite.

Figure 11.3.  Normalized stresses at quarter point of plate for an E glass/epoxy cross-ply composite.

A cross-ply laminate of T300-5208 graphite-epoxy has been used for comparison

with the E glass/epoxy laminate.  Properties of the graphite-epoxy laminate are as follows 

for Vf = 70%:

 psi6

11 12.012

psi6

22 psi1081.0G 6

12

Again normalized stresses have been shown in Figures 11.4 and 11.5 at both plate quarter 

point and mid-point.
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Figure 11.4.  Normalized stresses at quarter point of plate of a graphite/epoxy cross-ply composite.

Figure 11.5.  Normalized stresses at center of plate of a cross-ply graphite/epoxy composite.

Some conclusions can be drawn from this example set. 

1.  Solution convergence is rapid within the framework of taking three terms for both m

     and n for evaluating x , but is not as rapid in calculating y .

2.  For the same material there is little difference between the maximum value of the x

    stress for both the unidirectional and cross-ply composites at similar plate locations,

    however, the y stresses differ significantly.

3.  The stress y  at a fixed location for the graphite/epoxy laminate is much smaller 

     relative to the x  value (10%), compared to that in the E glass/epoxy laminate where

y  is 33% of the value of x  at the same location.

This example was the work of Wenn-Jinn Liou, a student at the University of Florida.
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11.7  Levy Solution for Plates of Composite Materials

The second direct method of solution for the bending of rectangular plates due to
lateral loads, is due to Maurice Levy [11.1] who, in 1899, introduced a single infinite-
series method of solution for isotropic plate problems, as discussed in Section 3.3.  The
method can also be used to solve Equation (11.26) for a specially orthotropic composite
material plate. 

Consider the plate, shown in Figure 2.1, with edges y = 0 and y = b simply 
supported.  The boundary conditions for those edges are 

0.0, bxwxw
(11.35)

0,0, bxMxM yMyM

The latter implies that the following equations hold, as shown before in (3.20):

0
,0,

2

2

2

2

y

bxw

y

xw
                                     (11.36) 

Levy assumed the following solution form: a single infinite half-range sine series 
that satisfies the simply supported boundary conditions on both y edges seen previously 
in (3.21): 

1
sin

n b

yn
w

yy
                                 (11.37)

where n  is at this point an unknown function of x.  A laterally distributed load

p can be expressed as follows: 

yhxgyxp ,                                           (11.38)

where g  and h  are specified.  Following Section 3.3, the form of Equation (11.37) 

requires that the h portion of the load also be expanded in terms of a half range sine
series, such as 

1
sin

n
n b

yn
Annh

yy
                                       (11.39)

where
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b dy
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b
An 0

2 yy
                                  (11.40)

Substituting Equations (11.37) through (11.39) into (11.26) and observing that the

equation exists only if it is true term by term, it is seen that, after dividing by 1D  and the

trigonometric function: 
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where bnn / .  Note that Equation (11.41) was derived without specifying any 

boundary conditions on the x-edges.  In fact, the homogeneous solution of Equation 

(11.41) yields four constants of integration, which are determined through satisfying 

boundary conditions on those x-edges.

To obtain the homogeneous solution of Equation (11.41) the right-hand side is set 

equal to zero: 
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After letting sx

n e , and dividing the result by sxe , the indicial equation, from

(11.42) becomes:

022
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D
s 4

nn
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nn                                         (11.43)

Unlike the case of an isotropic plate where 321 DDD , see (3.25), such that 

the roots are easily seen to be n and n (repeated roots), for this case there are three

sets of roots depending upon whether 
2/1

12 / DD  is greater than, equal to or less than 

13 / DD .  Hence, for the specially orthotropic composite plate, sandwich or laminate, 

using the Levy-type solution requires three different forms for the homogeneous solution 

of n  to be put in Equation (11.37) depending on the relative stiffness of the plate in

various directions. 

For the case,
2/1

12 / DD <

xsCxsCxsCxsC nnnnn
h 24

C
23

C
12

C
11

CC sinhcoshsinhcosh nnnnnnnn

(11.44)

where the roots are
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For the case, 2/1 =

xsxCCxsxCC nnn
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where the roots are 
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where the roots are 
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Obviously, for a given plate whose materials and orientation have already been
specified (the analysis problem) only one of the three cases needs to be solved.  However, 
if one is trying to determine the best material and orientation (the design problem), then
more than one case may need to be solved, with the necessity of determining not just four 
constants, but eight or all twelve to satisfy the edge boundary conditions to determine 
which construction is best for the design.

Concerning the particular solution, it is noted that if the lateral load, p , is at 

most linear in x, hence from Equation (11.38), xgn is at most linear in x, then from 

Equation (11.41) the particular solution is
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n 4

nn

                                          (11.47) 
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Otherwise, one must seek another particular solution.  In any case, one must then add the
relevant homogeneous

hn  to the particular 
pn  to satisfy any set of boundary conditions

on the x-edges of the plate.  For example, suppose the x = 0 edge is simply supported,x
then from Equation (2.66) the boundary conditions are

0w ,  and 00
2

2

x

w
M xM                        (11.48) 

However, when w(x,y) has the form of Equation (11.37) this then implies that: 

000 "
nn                                              (11.49) 

where primes denote differentiation with respect to x.
Similarly, appropriate expressions can be found if the x-edges are clamped or free.

Then whatever the relevant form of the boundary conditions on x = 0 andx x =x a, the total 

ph nnn and hence w(x,y) is known from Equation (11.37).  Then, for a 

composite-material laminated plate, one must calculate the curvatures, as was done is the
previous section for the Navier approach: 
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Knowing these, one can calculate the bending stresses in each of the k laminaek
through the following; which is identical to (11.34):
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(11.50)

The stresses thus derived for each lamina must them be compared with the
allowable stresses, determined through some failure criterion to see if structural integrity
is retained under a given load (the analysis problem), or if this set of materials and
orientation is sufficient for a given load (the design problem).

It is seen that the Levy-type solution is fine for a composite plate with no
bending-stretching coupling, i.e., with midplane symmetry, and with two opposite edges
simply supported.  If two opposite edges are not simply supported then the complexity of 
the functions necessary to satisfy the boundary conditions on the y = constant edges cause
problems.
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11.8  Perturbation Solutions for the Bending of a Composite Material Plate With
    Midplane Symmetry and No Bending-Twisting Coupling

As shown in the previous two sections, the Navier approach is excellent for 
composite material plates with all four edges simply supported, and the Levy approach is
fine for composite material plates with two opposite edges simply supported, regardless
of the boundary conditions on the other two edges.  But for a composite plate with two
opposite edges simply supported, even the Levy approach yields three distinct solutions
depending on the relative magnitudes of 1D , 2D  and 3D = 12D + 2 66D .  In addition,

there are numerous books and papers available for the solution of isotropic plate
problems [2.2-2.5].

Aware of all of the above, and based upon the fact that the solution of the second
case of the Levy solution of (11.45) has the same form as that of the isotropic case of 
(3.26), Vinson showed that the cases of (11.44) and (11.46) can be dealt with as
perturbations about the solution of the same plates composed of isotropic materials [11.2,
11.3].

Consider the governing equation for the bending of a composite material plate
exhibiting mid-plane symmetry 0ijB , no bending-twisting coupling 02616 DD ,

and no transverse shear deformation (classical theory).  Then Equation (11.26) becomes,
after dividing both sides by 1D :
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Coordinate stretching is employed by defining the following: 
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Substituting Equation (11.52) into Equation (11.51) yields

1
4

4

22

4

1

3

2/1

1

2
4

4
2

D

p

y

w

yx

w

D

D

D

D

x

w

xxxx
            (11.53)

Next defining a parameter  to be
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it is seen that substituting Equation (11.54) into Equation (11.53) yields
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Note that in this section,  is a perturbation parameter, not to be confused with , the 
coefficient of thermal expansion. 

If one defines the biharmonic operator, used in all isotropic plate problems (2.58), 
to be (in the stretched coordinate system) 

4

4

22

4

4

4
4 2

y

w

yx

w

x

w
w

xxxx
                                (11.56) 

then Equation (11.55) becomes 
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Finally, assume the form of the solution for yxw ,  to be

0n

n
nwnw                                      (11.58) 

which is a perturbation solution employing the “small” parameter defined in Equation 
(11.54).  Substituting Equation (11.58) into Equation (11.57) and equating all coefficients 
of n  to zero, it is easily found that: 
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It is seen that Equation (11.59) is the governing differential equation for an
isotropic plate of stiffness 1D , subjected to the actual lateral load yxp ,  given by (2.57),

with the stretched coordinate y defined in Equation (11.52).  It is probable that, 

regardless of boundary conditions on any edge, the solution for 0w  of Equation (11.59) is 

available in the literature, either exactly or approximately and this was discussed in  
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Chapter 3.  Subsequently 1w , 2w , 3w , and so on are available from solving Equation 

(11.60), an isotropic plate whose lateral load is 
22

1
4

1 / yxwD n , where 1nw

would be determined previously, whose flexural stiffness is 1D  and whose boundary

conditions are homogeneous.  Where there are non-homogeneous boundary conditions, 
the non-homogeneous boundary conditions should be taken care of in the 0w  solution, 

since truncation is anticipated. 
This technique is very useful because the “small” perturbation parameter need not 

be so small; it has been proven that when 1, Equation (11.58) is another form of the 

exact solution, and 1 covers much of the practical range of composite material

properties.  Also from a computational point of view, it is seldom necessary to include
terms past 1n , in Equation (11.58).  This technique can only be used if 1.

The above technique can be very useful.  However, even if 1, then the 

composite may fall within another range where for 1/ 12 DD .  In that case, the plate

behaves as a plate in the x-direction, but because 1/ 12 DD , it behaves as a

membrane in the y-direction, with the following simpler governing differential equation, 
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The solution of (11.61) can be in the form of the following for a plate simply supported 
on the y edges 
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Even if the perturbation technique described by Equations (11.62) and (11.63) is 
not used it still provides physical insight by showing that if 12 DD , then the structure 

behaves as a plate in the stiffer direction and acts only as a membrane in the weaker 
direction.  Physically, on the x edges, the usual use of two boundary conditions must be x
used, while in the weaker edges, only one boundary condition on each edge is needed (as
with a membrane), that dealing with the lateral displacement set equal to zero. 

Finally, if 3/
4/1

12 ab , then the plate behaves purely as a 

beam in the x-direction, regardless of the boundary conditions on the y-edge, as far as 
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maximum deflection and maximum stresses.  Hence, beam solutions have easy

application to the solution of many composite plate problems.  All of the details on the

last two techniques are give in detail in References [11.2] and [11.3].

Incidentally, the techniques described in this section [11.2] were the first use of 

perturbation techniques involving a material property perturbation, even though

geometric perturbations have been utilized for many decades.

11.9  Quasi-Isotropic Composite Panels Subjected to a Lateral Load

When a composite laminate has a stacking sequence in which 2211 DD , it is 

referred to as quasi-isotropic.  In that case it behaves as an isotropic plate in the 

determination of lateral deformations, yxw , , and stress couples,y xM , yM and xyM .

Therefore, for a quasi-isotropic composite plate the methods of Chapter 3 can be

employed wherein 2211 DDD .  When the lateral load is uniform, then Section 3.5

results can be used.

11.10 A Static Analysis of Composite Material Panels Including Transverse Shear

Deformation Effects

The previous derivations have involved "classical" plate theory, i.e., they have 

neglected transverse shear deformation effects.  In many composite material laminated 

plate constructions, transverse-shear deformation effects are important because some of 

the in-plane plate stiffness quantities are dominated by the placement of in-plane fibers,

the plate transverse shear stiffness are dominated by the matrix properties.  Therefore, for 

polymer matrix composite plates transverse shear deformation effects can be significant. 

Therefore, a more refined theory must be developed.  However, because of its simplicity,

and the number of solutions available, classical theory is still useful for preliminary

design and in analysis to size the structure required in minimum time and effort.

In the simpler classical theory, the neglect of transverse shear deformation effects

means that 0yzxz .  To include transverse shear deformation effects, one uses

x

w

z

u
xz 2

1
                                          (11.64)

y

w

z

v
yz 2

1
                                          (11.65) 

Now substituting the admissible forms of the displacement for a plate or panel, 

Equation (2.1) and (2.2) into Equations (1.20) and (1.21), shows that
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x

w
xz 2

1
                                           (11.66) 

y

w
yz 2

1
                                           (11.67)

No longer are the rotations  and explicit functions of the derivatives of the

lateral deflection w, as shown by Equation (11.20) for classical plate theory.  The result is 

that for this refined theory there are five geometric unknowns, 0u , 0v , w ,  and ,

instead of just the first three in classical theory. 

Now one needs to look again at the equilibrium equations, the constitutive

equations (stress-strain relations), the strain-displacement relations and the compatibility 

equations.  For the plate, the equilibrium equations are given by Equations (2.14) through

(2.18), because they do not change from classical theory.  The constitutive equations for a

composite material laminated plate and sandwich panel are given by Equations (11.68) 

through (11.75).  The new cogent strain-displacement (kinematic) relations are given 

above in Equation (11.66) and (11.67).  Because the resulting governing equations are in 

terms of displacements and rotations, any single valued, continuous solution will, by 

definition, satisfy the compatibility equations. 

A plate that is mid-plane symmetric )0( ijB  and has no coupling terms [(  )16 =

(  )26 = (  )45 = 0]; the constitutive equations for this specially orthotropic plate can be 

written as follows, where , with no subscripts, is a transverse shear coefficient to be 

discussed later. 

00
1211 yx AAN x                                         (11.68)

00
2212 yx A
22

AN y                                         (11.69)

0
66

2 xyAN xy                                              (11.70)

yxx DDM x 1211                                        (11.71)

yxy DDM y 2212                                        (11.72)

xyxy DM x 66
2                                              (11.73)

x

w
AAQ xzx AA

55
A

55
A2                                (11.74) 
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y

w
AAQ

yzy
AA

44
A

44
A2                                (11.75)

Because the plate is mid-plane symmetric there is no bending-stretching coupling, 

hence the in-plane stress resultants xyyx NNN ,, and deflections oou ,  are uncoupled ov

(separate) from the lateral loads, deflections and rotations.  Hence, for a lateral distributed 

static loading, p , Equations (11.13) through (11.15) and Equations (11.71) through

(11.75) are utilized: 8 equations and 8 unknowns.

Substituting Equations (11.71) through (11.75) into Equations (11.13) through

(11.15) results in the following set of governing differential equations for a laminated 

specially orthotropic composite plate subjected to a lateral load, with 0ij ,

,0452616  and no applied surface shear stresses (for simplicity)

0
55

2

66122

2

662

2

11 x

w
A

55yxy
D

x
D AA

    (11.76)

0
442

2

222

2

66

2

6612 y

w
A

44y
D

x
D

yx
AA

   (11.77)

0
2

2

442

2

55
p

y

w

y
A

44x

w

x
A

55
AAAA

            (11.78)

The inclusion of transverse shear deformation effects results in three coupled 

partial differential equations with three unknowns, , and w, contrasted to having one 

partial differential equation with one unknown, w, in classical plate (panel) theory; see 

Equation (11.26).  Incidentally if one specified that ,-=and
y

w

x

w

yyxx
 substituting

that into Equations (11.76) through (11.78) reduces the three equations to Equation

(11.26), the classical theory composite material plate bending equation.  Note that the

symbol with no subscript in (11.76) through (11.78) is a transverse shear deformation

correction factor which is given by Yu, Hodges and Volovoi in [11.4] for an orthotropic

material and for an isotropic material can be written as given by Hodges [11.5]

)2940984033(2

)1112341211(5
432

432

9080

1242
.

It is interesting to note that leaving out the terms in the above equation, 6/5 , the

value obtained by Reissner in 1950.  Incidentally, there still remains discussion and 

controversy over the value of the shear correction factor.
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The classical plate theory governing partial differential equation is fourth order in

both x and y, and therefore requires two and only two boundary conditions on each of the

four edges, as discussed in Section 11.4 and 2.5.  The refined theory, discussed in this

section which includes transverse shear deformation, is really sixth order in both x and y,

and therefore requires three boundary conditions on each edge as discussed in Section

11.11 below.  See papers by Reddy [11.6], Lo, Christensen and Wu [11.7] DiSciuva

[11.8] and Reddy and Phan [11.9]. 

If the laminated plate is orthotropic but not mid-plane symmetric, i.e., 0ij ,

the governing equations are more complicated than Equations (11.76) through (11.78)

and are given by Whitney [11.10], Vinson [10.1] and are discussed briefly in Section

11.15 below.

11.11  Boundary Conditions for a Plate Including Transverse Shear Deformation

11.11.1  SIMPLY-SUPPORTED EDGE

Again Equation (2.66) holds, but now a third boundary condition is required for 

the plate bending because (11.76) through (11.78) are sixth order in w with respect to x

and y.  In addition, since the in-plane and lateral behavior are coupled, a fourth boundary

condition enters the picture as well.  This has resulted in the use of two different simply

supported boundary conditions, both of which are mathematically admissible as natural

boundary conditions and are practical structural boundary conditions.  By convention the

simply supported boundary conditions are given as follows:

S1(x(( = constant edge): 0
0 xyx NuM xw

S1(y(( = constant edge): 0
0 yxy NvM yw

(11.79)

S2(x(( = constant edge): 0
0

vNMw xxM

S2(y((  = constant edge): 0
0

uNMw yy

where 0u  is the mid-surface displacement in the x-direction and 0v is the mid-surface 

displacement in the y-direction.

Whether one uses S1 or S2 boundary conditions is determined by the physical 

aspects of the plate problem being studied.

11.11.2  CLAMPED EDGE

Similarly, for a clamped edge the lateral deflection w  and the rotation or

(for an x = constant edge or a y = constant edge, respectively) are zero (note: the slope is

not zero) and the other boundary conditions are analogous to Equation (2.66).
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C1(x((  = constant edge): 0
0 xyNuw

C1(y(( = constant edge): 0
0 yxNvw

(11.80)

C2(x((  = constant edge): 0
0

vNw
x

C2(y((  = constant edge): 0
0

uNw
y

11.11.3  FREE EDGE

The free edge requires three boundary conditions on each edge; therefore, it is no

longer necessary to resort to the difficulties of the Kirchhoff boundary conditions for the

bending of the plate needed for classical plates which were discussed in (2.67) through

(2.69).  The bending boundary conditions for the free edge of the plate are:

0ntnn MnQMn                                          (11.81) 

where n and t are directions normal to and tangential with the edge.  Again, the in-planet

boundary conditions for the free edge are 0ntn .

11.11.4  OTHER BOUNDARY CONDITIONS

In addition to the above boundary conditions, which are widely used to 

approximate the actual structural boundary conditions, sometimes it is desirable to

consider an edge whose lateral deflection is restrained, whose rotation is restrained or 

both.  The means by which to describe these boundary conditions are given in Section

2.5.

11.12  Composite Plates on An Elastic Foundation or Contacting a Rigid Surface

Consider a composite material plate that is supported on an elastic foundation.  In

most cases an elastic foundation is modeled as an elastic medium with a constant 

foundation modulus, i.e., a spring constant per unit planform area, of k in units such ask

lbs./in./in2.  Therefore, the elastic foundation acts on the plate as a force in the negative

direction proportional to the local lateral deflection w(x(( ,y,, ).  The force per unit area is -kw,

because when w is positive the foundation modulus is acting in a negative direction, and 

vice versa.  In order to incorporate the effect of the elastic foundation modeled as above

one simply adds another force to the p(x(( ,y,, ) load term.  The results are, that for classical

theory, Equation (11.26) is modified to be (11.82), and for the refined theory, Equation

(11.78) is modified to become Equation (11.83):
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1
yxpkw
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D

yx
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D

x

w
D

yyyyxxxx
               (11.82) 

0),(
2

2

442

2

55
yxpkw

y

w

y
A

x

w

x
A AAAA        (11.83)

 In addition, if a plate with any boundary conditions, due to the lateral applied 

load, comes in contact with a rigid smooth surface over part of its area, Hodges [11.5] 

provides solutions and examples for this important and difficult problem. 

 For an extended treatment of the modeling of elastic and viscoelastic foundations 

see Kerr [11.11]. 

11.13  Solutions for Plates of Composite Materials Including Transverse-Shear
  Deformation Effects, Simply Supported on All Four Edges

Some solutions are now presented for the equations in Sections 11.10 and 11.11, 

using the governing differential equations (11.76) through (11.78).  In the following 

with no subscript is a transverse shear correction factor, often give as 12/2  or 5/6, and 

discussed above in Section 11.10.

Dobyns [7.5] employed the Navier approach to solve these equations for a 

composite plate simply supported on all four edges subjected to any lateral load, using 

the following functions: 

1 1
sinsin),(

m n1 b

yn

a

xm
Cyxw mnC

yyxx
                      (11.84)

11
sincos),(

nm b

yn

a

xm
Ayx mnA

yyxx
(                       (11.85)

11
cossin),(

nm b

yn

a

xm
Byx mn

yyxx
(                       (11.86)

11
sinsin),(

nm b

yn

a

xm
qyxp mn

yyxx
                       (11.87) 

It is seen that Equations (11.84) through (11.87) satisfy the simply supported boundary 

conditions on all edges given in Equation (11.79). 

Substituting these functions into the governing differential equations (11.76) 

through (11.78) results in the following: 
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mnmn

mn

mn

qCm

B

Amm

LLL

LLL

LLL

0

0

332313

232212

131211

                           (11.88)

if amm / , bnn /  and mnq  is the lateral load coefficient of (11.87) above,

defined by (11.93) below, then the operators ijL  (i,j,, = 1,2,3) are given by the followingj :

55661111
22 A

55
DDL nm AA2

nn
2
mm nmDDL nnmm661212

mAL mmAA
55

A
13

,
44226622

22 A
44

DDL nm AA2
nn

2
mm

nAL AA44A23 , 22
445533 nm A
44

A
55

L 2
nnAA2

mmAA .

Solving Equation (11.88), one obtains 

det

)(
13222312 mn

mn
qLLLL

Amm                                  (11.89) 

det

)(
23111312 mn

mn
qLLLL

B                                  (11.90) 

det

)( 2
122211 mn

mn

qL2LL
Cm                                     (11.91)

where det is the determinant of the [L] matrix in Equation (11.88).

Having solved the problem to obtain ,  and w in (11.84) through (11.86), the 

curvatures )/( xx xx , )/( yy yy  and )]/()/[(2/1 yyxy yyyy  may be 

obtained.  These then can be substituted back into Equations (11.17) through (11.19) to

obtain the stress couples xM , yM and xyM to determine the location where they are 

maximum, necessary in determining where the stresses are maximum.

For a laminated composite plate, to find the bending stresses in each lamina one 

must use the above equations to find the values for 
x

,
y

and 
xy

 in Equation (11.20).

Finally, for each lamina the bending stresses can be found using:
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z

Q

QQ

QQ

xy

y

x

kxy

y

x

200

0

0

66

2212

1211

                         (11.92) 

The stresses in each lamina in each direction must be compared to the strength of 

the lamina material using a suitable failure theory.  Keep in mind that quite often the 

failure occurs in the weaker direction in a composite material.

Looking at the load p(x(( ,y,, ) in Equation (11.87), if the lateral load p(x(( ,y,, ) is 

distributed over the entire lateral surface, then the Euler coefficient, mnq is found to be 

ba
dxdy

b

yn

a

xm
yxp

ab
qmn

00
sinsin),(

4 yyxx
                  (11.93)

If that load is uniform then,

).cos1)(cos1(
4

2
0 nm

mn

p
qmn                          (11.94)

For a concentrated load located at x and y ,

b

n

a

m

ab

P
qmn sinsin

4
                              (11.95)

where P is the total load.P
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Figure 11.6.  Load over a rectangular area.  (Reprinted from Reference [11.12]).

For loads over a rectangular area of side lengths u and v whose center is at  and 

, as shown in Figure 11.6, mnq is given as follows: 

ua

m

ua

m

vb

n

vb

n
vabu

a

um

b

vn

a

m

b

m
P

q
mn 1111

2
cos

2
cossinsin4

22

uuvv

                 (11.96) 

where P is the total load.  Note that when P n/b = 1/v, m/a = 1/u, then mnq = 0.  Of course, 

any other lateral load can be characterized by the use of Equation (11.93). 
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11.14  Some Remarks On Composite Structures

So far in this chapter, plates made of composite materials have been discussed. 

However, there are complicated constructions, which are made either from composite

materials or from isotropic materials, which can be referred to as composite structures. 

One such structure is a box beam shown below in Figure 11.7, which could be the cross-

section of a windmill blade, a water ski, or other representative structural components.

Such a structure will be subjected to tensile or compressive loads in the x-

direction, to bending loads about the structural mid-surface, and to torsional loads about 

the x-axis.  In each case one needs to develop the extensional stiffness matrix EA, the 

flexural stiffness matrix EI and the torsional stiffness matrix GJ, for the rectangular cross-

section.

It is probable that in the structural component considered, the top and bottom

panels would be identical, as well as each side panel perpendicular to the other one – that 

will be assumed here, and therefore the subscripts 1 and 2 will be used.

Figure 11.7.  Box Beam. 

For each of the four panels the extensional relationship in the x-direction involves,

for a construction without couplings
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0
11 xAN xN

where xNx is the force per unit width, and the axial strain, 0

x , is identical in each plate 

element.

Simply adding the contribution of each unit width, the overall load P carried byP

the overall box beam construction can be written as 

0

21
2222

211111 xhA
11

bA
11

hNbNP x
2

xN

Hence, the structural extensional stiffness EA for the rectangular construction of 

Figure 11.7 is simply 

hAbAEAEE
211

AA
111

AA 22

Similarly if the box beam is bent in the x-z plane the overall bending moment z M

will be related to the overall curvature ,x by

x
hh

bM
12

2

2
2

3
211

2

111111
                 (11.97) 

However, if the top and bottom surfaces are thin compared to the overall box

height h, then the first term is negligible compared to the other terms, so

62
2

3
211

2

111beambox
hh

b                      (11.98) 

Similar expressions can easily be constructed for the torsional stiffness.  Consider 

the construction of Figure 11.7 subjected to a torsional load T in inch-lbs. about theT x-

axis.

Then it is clear that 

2
2

2
2

21

b
h

h
bT yy                               (11.99)

Now from Equation (10.66), for both elements,

2,1
66

2 0 ixyxy iii
AN x
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If is the angle of twist caused by the torque T over the length T L, then for 

element 1 and 2 

2and1                                   (11.100)

It is also seen that

LL xyxy 22
2and1

2
y

1
yy                                (11.101)

22661166

26616621
22

2
2

2
2

21

L

bh

L

bh

Abhbh
b

h
h

bT xyxy
1

yy

2 266166
bAh

L

bh
T

So the GJ, the torsional stiffness of the box beam construction of Figure 11.7 is

bAh
bh

GJ
2661662

                                       (11.102)

The above merely illustrates what one can and must do to develop the basic

mechanics of materials global formulation for the extension, bending or twisting of a

rectangular section, perhaps composed of very esoteric composite materials but used for a 

water ski, windmill blade or other shapes for many other purposes.

However, care must be taken to insure that in addition to preventing overall

failure of the box beam.  As an example, care must be taken to insure that each of the

plate structures will not fail at a lower load than the overall structure.  This could occur if 

the plate in compression due to beam bending of the box beam causes the compressive

plate to buckle.

11.15  Governing Equations for a Composite Material Plate With Mid-Plane

           Asymmetry

Consider a rectangular plate in which there are no 16)( nor 26)(  coupling 

terms, but which has bending stretching coupling, i.e. 0ij .  In that case the 

equilibrium Equations (11.6) through (11.12), and the strain-displacement Equations

(10.50) through (10.52) remain the same.
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However, from Equation (10.66) it is seen that the constitutive equations change

as shown below. 

yxyxx BBAANx 12111211 00
x

yxyxy BBAAN y 22112212 00
x                    (11.103) 

xyxyxy BANx 6666
22

0
y

Proceeding as before for the mid-plane symmetric rectangular plate of Section 11.3, the 

resulting three coupled equations using classical plate theory, i.e. no transverse shear 

deformation, have the following form: 
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       (11.106)

 Because of the bending-stretching coupling not only are lateral displacements,

w(x(( ,y,, ), induced but in-plane displacements, 00  vand u , as well; hence, three coupled 

equations (11.104) through (11.106).
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11.16  Governing Equations for a Composite Material Plate With Bending-Twisting

           Coupling 

 Looking at Equation (10.66), the moment curvature relations for a rectangular 

mid-plane symmetric plate with bending-twisting coupling are:

xyyxx DDDM
161211

2

xyyxy DDDM
262212

2                          (11.107)

xyyxxy DDDM
662616

2

Of course if transverse shear deformation is ignored, i.e., classical theory, then the

curvatures are given by (11.20), and the moment curvature relations become:
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Substituting these into (11.16), provides the following governing differential equation.
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         (11.109) 

Comparing (11.109) with (11.26), it is seen that due to the presence of the 2616 and DD

bending-twisting coupling terms, odd numbered derivatives appear in the governing

differential equation.  That precludes the use of both the Navier approach of Section 11.5,

and the use of the Levy approach of Section 11.7 in obtaining solutions for plate with

bending-twisting coupling.  With these complications one may want to obtain solutions

using the Theorem of Minimum Potential Energy discussed in Chapter 14 below.
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11.17  Concluding Remarks

It appears that there is no end in trying to more adequately describe

mathematically the behavior of composite materials utilized in structural components. 

Unfortunately, the more sophisticated one gets in such descriptions the more difficult the

mathematics becomes, as is evidenced in the increasing difficulty observed as one

progresses through the sections of Chapter 11.

One additional complication that is important in some composite material 

structures is that the stiffness (and other properties) are different in tension than they are

in compression.  This occurs because (1) sometimes the tensile and compressive

mechanical properties of both fiber and matrix materials, differ and (2) sometimes it 

occurs because the matrix material is very weak compared to the fiber (that is 

),fm EE such that the fibers buckle in compression under a small load so that for 

the composite the stiffness in compression differs markedly than the stiffness in tension.  

Hence, one can idealize a little and say that one has one set of elastic properties in tension 

and another set of elastic properties in compression.  Bert [11.15] has termed this a

bimodular material, typical of some composites, certainly typical of aramid (Kevlar) 

fibers in a rubber matrix that are used in tires, and also typical of certain tissues modeled 

in biomedical engineering.  In this context 

nCompressioTension DB

BA

DB

BA
                 (11.110)

All of the complications that result are too difficult to treat in this text for those trying to 

learn the fundamentals of composite material plates and panels. 

Lastly, time dependent effects in the stresses, deformation and strains of 

composite materials are becoming more important design considerations.  Viscoelasticity 

and creep are respected disciplines about which entire books have been written.  These 

effects have been deemed important in some composite material structures.  Crossman, 

Flaggs, Vinson and Wilson have all commented thereupon.  Wilson and Vinson [10.26, 

10.27] have shown that the effects of viscoelasticity on the buckling resistance of 

polymer matrix composite material plates is very significant.  Similarly, the effect of 

viscoelasticity on the natural vibration frequencies will also be significant.  Many of these 

effects have been included in a survey article by Reddy [11.16] who has focused 

primarily on plates composed of composite materials. 
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11.19  Problems

11.1. The following material properties are given for a unidirectional, 4 ply laminate,  

h = 0.020”

lb./in.10

012.000

00176.000547.0

000547.084.0
6A

B = 0

in.lb.

200

05879.01824.0

01824.0053.28

D

, the mass density (corresponding to 0.06 lb./in.
3
) = 424 /in.sec.lb.10554.1

 Consider a plate made of the above material with dimensions a = 20”, b = 30”, h

= 0.020”.  For the first perturbation method of Section 12.8 determine .andb   Is 

 a proper value to use this perturbation technique? 

11.2. For a box beam whose dimensions are b = 4”, h = 2”, L = 20”, composed of 

GY70/339 graphite/epoxy, whose properties are given in Problem 11.9(a),

determine the extensional stiffness, EA; the flexural stiffness, EI, and the torsional

stiffness, GJ, if the box beam is made of a 4 laminae, unidirectional composite, 

with a lamina thickness of 0.0055”, all fibers being in the length direction.

11.3. Consider a composite material plate of dimensions ,0,0 byax of 

thickness h, composed of an E Glass/epoxy, which is modeled as being simply

supported on all four edges.  It is part of a structural system, which is subjected to

a hydraulic load as shown below.

a

b

x

y

z

The load is yyxp yy),( where is the weight density of the water.
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(a)  To utilize the Navier approach determine
mn

B  which is given by

ba

mn dydx
b

yn

a

xm
yxp

ab
B

00
.sinsin),(

4 yyxx

(b)  At what value of x will the maximum deflection occur? 

(c)  At what value of x will the maximum stress x  occur?

11.4.

Kevlar/epoxy composite, %
f

, whose properties are: 

3
w

12

6
12

6
22

6
11

lb/in07.0

34.0

psi10334.0G

psi10798.0E

psi1002.11E

v

(a) Determine the flexural stiffness matrix [D].

(b) In the first perturbation technique of Section 11.8, calculate .andb

(c) Can this perturbation technique be used for this problem? 

(d) What is the total weight of this plate? 

(e)  If this plate is simply supported on all four edges at what location (i.e., x = ?

and y = ?) will the maximum deflection occur? 

(f)  For the plate in (e) above at what location will the maximum bending-stress 

occur?

11.5. Could the first perturbation solution technique of Section 11.8 be used to obtain 

solution for the plate of Problem 12.2 subjected to a static lateral load, p(x(( ,y,, )?

11.6. For the panel of Problem 12.9, could the first perturbation method of Section 11.8 

be used to solve for deflections and stresses, i.e., is ?1

11.7. For the plate of Problem 12.5, at what values of x and y will the maximum 

deflection occur if the plate is subjected to a uniform lateral load 0),( pyxp  (a

constant)?

11.8. Could the perturbation solution technique of Section 11.8 be used to solve 

problems for the plate of Problem 12.9?

11.9. A square plate, simply supported on all four edges is composed of GY70/339 

graphite epoxy.  If this square plate is made of four plys with the A and D matrix 

values shown below, and if the plate is subjected to a uniform lateral load, 0p ,

which stacking sequence would you choose for a design to have the largest 

maximum deflection (the most compliant design)?  Which stacking sequence has 

the smallest maximum deflection (the stiffest design)? 

Consider a square plate in which a = b = 20 ”, h = 0 , 2”,  made of a unidirectional
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GY70/339 graphite epoxy composite

in.-lb.

07.75.155.15

15.57.676.87

15.56.877.67

lb./in.10

21200

0230206

0206230

plyfour ,]45[ply Anglec. 

in.-lb.

4.000

04.020.182

00.18224.6

lb./in.10

1200

04305.46

05.46430

plyfour ]0,90,90,[0Crossplyb.

in.-lb.

4.000

0588.0182.0

0182.01.28

lb./in.10

1200

017.65.46

05.46842

plyfour ctional  Unidirea.

matrix][matrix[A]

3

3

3

s

D

11.10. You have been asked to replace an existing aluminum plate structure by a

unidirectional Kevlar/epoxy structure using the material properties given in

Problem 11.4.  The loading on the aluminum plate is all in one direction, both an

in-plane tensile load and a bending moment as shown below, and the structure is 

stiffness critical.  Therefore, you must design a unidirectional fiberglass structure

to have an extensional stiffness, 11A and a flexural stiffness, 11D , that equals or 

exceeds those values for the aluminum structure.  The aluminum properties are 
36 lb./in.0.100.3,psi,1010.1E  and the aluminum plate is 0.101

inches thick. 

N

N

M M 

 x 

N

     x 

      x 
M 

      x 
M 

(a) For the existing aluminum structure, what is the extensional stiffness per unit 

width, ?)1/(E 2h

(b) In the existing structure what is the flexural stiffness per unit width,

?)1(12/E 23h
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(c) If you replace the aluminum structure with the Kevlar/epoxy structure, what 

thickness h is required of your composite plate to have 11A equal the

extensional stiffness of the aluminum structure?

(d) What thickness h is required to your composite plate to have 11D  equal the 

flexural stiffness of the aluminum structure?

(e) Which h must your composite design be to achieve the stated design

requirement?

(f) Will your composite design be heavier or lighter than the aluminum structure

and by what percentage?

11.11. Consider a rectangular panel simply supported on all four edges.  The panel

measure a = 25”, b = 10”, where .0,0 byax   The laminated plate is 

composed of unidirectional boron/aluminum with the following properties:

35.0in.007.0essply thicknee

50%psi108G

psi000,250psi1020E

lb./in.0915.0psi1032E

12

6
12

tu
6

22

36

11

k

f

h

(a) Determine 66122211 and,, QQQQ for a lamina (ply) of this material. 

(b) Determine the flexural stiffness 66122211 and,, DDDD for a plate made of 

four ply, unidirectionally oriented (all 0 plys).

(c) If the panel were made of one ply with the fibers oriented at ,30 what 

is ?11Q

11.12. Consider that four plates identical to the one in Problem 11.12 above are used to 

fabricate a box beam 60 inches long as shown below. 

60” 

15” 

15” 
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(a) Calculate the axial stiffness, EA, of this box beam.

(b) Calculate the flexural stiffness, EI, of this box beam.

(c) Calculate the torsional stiffness, GJ, of this box beam.



CHAPTER 12

ELASTIC INSTABILITY (BUCKLING) OF COMPOSITE PLATES

12.1  General Considerations 

 As stated previously, structures usually fail in one of four ways:

overstressing (strength critical structure) 

over deflection (stiffness critical structure)

resonant vibration

buckling.

 In monocoque plates, for given plate dimensions, material, boundary conditions,

and a given load type (in-plane compression, in-plane shear), only one buckling load will

result in actual buckling.  This is the lowest eigenvalue of a countable infinity of such

eigenvalues.  All other eigenvalues exist mathematically, but only the lowest value has

physical significance.  This differs from natural frequencies in which several eigenvalues

can be very important.

 For the simplest cases, for columns and isotropic plates, an introduction was given

in Chapter 6.  While philosophically the simple examples cover the topic of buckling;

more complex structures can have several types of buckling instabilities, any one of 

which can destroy the structure. 

 There are five major textbooks dealing primarily with elastic stability or buckling.  

There are authored by Timoshenko and Gere [6.1]
*
, Bleich [6.2], Brush and Almroth

[12.1], Simitses [12.2], and Jones [6.4].

12.2  The Buckling of an Orthotropic Composite Plate Subjected to In-Plane

         Loads-Classical Theory

 From (2.50) through (2.54), it is seen that for a plate there are five equations

associated with the in-plane stress resultants xyyx NNN and, and the in-plane

displacements they cause, namely 00 and vu .  For the case of a composite material

anisotropic plate with mid-plane symmetry )0( ijB  and no thermal or moisture 

considerations it is seen that the following constitutive equations hold, see (10.66):

0

16

0

12

0

11 2 xyyxx AAAN    (12.1)

* Bracketed numbers always refer to references listed at the end of the Chapter indicated by the first number.
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0

26

0

22

0

12 2 xyyxy AAAN    (12.2) 

  .2 0

66

0

26

0

16 xyyxxy AAAN    (12.3) 

 Likewise, for the mid-plane symmetric panel, the six governing equations 

involving ,and,,,, wQQMMM yxxyyx are given by (11.9), (11.14), (11.15), and (11.21)

through (11.23), the latter three neglecting the 2616 and DD  terms.  One can see there is 

no coupling between in-plane and lateral action for the plate with mid-plane symmetry.  

Yet it is well known and often observed that in-plane loads do cause lateral deflections

through buckling, which is usually disastrous. 

 The answer to the paradox is that in the above discussion only linear elasticityr

theory is considered, while the physical event of buckling is a non-linear problem.  For 

brevity, the development of the non-linear theory will not be included herein because it is

included in so many other texts, for example, [6.1] and [6.2].

 The results of including the terms to predict the advent or inception of buckling

for the beam and plate are, modifying (11.26),

2

22

2

2

4

4

222

4

34

4

1

2

),(2

y

w
N

yx

w
N

x

w
Nyxp

y

w
D

yx

w
D

x

w
D

yxy

x

yyyyxx

xxyyyyxxxx
   (12.4) 

where clearly there is a coupling between the in-plane loads and the lateral deflection. 

It should be noted that the buckling loads, like the natural frequencies, are 

independent of the lateral loads, which will be disregarded in what follows.  However, in 

actual structural analysis, the effect of lateral loads, in combination with the in-plane 

loads could cause overstressing and failure before the in-plane buckling load is reached.  

However, the buckling load is still independent of the type or magnitude of the lateral 

load, as are the natural frequencies.  Incidentally, common sense dictates that if one is 

designing a structure to withstand compressive loads, with the possibility of buckling 

being the failure mode, one had better design the structure to be mid-plane symmetric, so 

that 0ijB .  Otherwise the bending-stretching coupling would likely cause overstressing 

before the buckling load is reached. 

Looking now at (12.4) for the buckling of the composite plate subjected to an 

axial load xN only, and ignoring ),( yxp the equation becomes: 

.02
2

2

4

4

222

4

34

4

1
x

w
N

y

w
D

yx

w
D

x

w
D x   (12.5) 

Again, one may assume the buckling mode for a composite orthotropic plate to be that of 

the Navier solution for the case of the plate simply supported on all four edges:
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.sinsin),(
11 n

mn

m b

yn

a

xm
Ayxw

yyxx
  (12.6) 

Substituting (12.6) into the homogeneous equation (12.5), it is seen that the 

equation is satisfied only when xN has certain values, eigenvalues, namely the critical 

values,
crxN ,

.2

4

2

22

3

4

12

22

cr
b

n
D

b

n

a

m
D

a

m
D

m

a
N x    (12.7) 

Again several things are clear:  (12.5) is a homogeneous equation, so this is an eigenvalue 

problem and therefore one cannot determine the value of mnA ; and again only the lowest 

value of 
crxN is of any physical importance.  However, it is not clear which values of m

and n result in the lowest critical buckling load.  All values of n appear in the numerator 

for this case of all edges being simply supported, so n = 1 is the necessary value.  But m

appears several places, and depending upon the value of the flexural stiffnesses 

321 and, DDD , and the length to width ratio, i.e., the aspect ratio, of the plate, a/b, it is

not clear which value of m will provide the lowest value of 
crxN .  However, for a given

plate this is easily determined computationally. 

 What about the buckling loads of composite material plates with boundary 

conditions other than simply supported?  In those cases, quite often the Minimum 

Potential Energy Theorem is used in which trial functions for the lateral deflection are 

selected as follows.  It is seen that all combinations of beam vibrational mode shapes are

applicable for plates with various boundary conditions.  These have been developed by 

Warburton [8.3] and all derivatives and integrals of those functions catalogued 

conveniently by Young and Felgar [3.1] for easy use.

 The buckling loads calculated in this section do not include transverse shear 

deformation effects, and are therefore only approximate – but they are useful for 

preliminary design, because of their relative simplicity.  If transverse shear deformation 

were included, the buckling loads are lower than those calculated with classical theory. 

Therefore the buckling loads calculated, neglecting transverse shear deformation, are not 

conservative.

12.3  Buckling of a Composite Plate on an Elastic Foundation 

 Referring to the previous discussion regarding plates on an elastic foundation in

Section 11.12, the governing differential equation for the buckling of a specially 

orthotropic composite plate on an elastic foundation can be written as follows.  In 

previous sections, the simplest model for an elastic foundation was used.  In what follows, 

a more sophisticated and accurate foundation model is used.  Also, the buckling of an

isotropic plate on an elastic foundation using the simplest foundation model was 

discussed in Section 6.6. 
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ix p
x

w

y

w

yx

w

x

w
D

xxyyyyxxxx 2

2

4

4

222

4

34

4

1 2    (12.8) ix p
w

N
w

D
w

D
242223

 Following the research of Paliwal and Ghosh [12.3] a Kerr foundation [12.4] is 

used, which involves two spring layers and a shear layer employing the constants 

Gkk and, 21 , where 21 and kk  are the foundation moduli of the upper and lower spring

layers respectively, while G is the shear modulus of the shear layer.G

 The lateral deflection is given by

),(),(),( 21 yxwyxwyxw .    (12.9)

 The contact pressure 21 and pp under the plate are

)(),( 21111 wwkwkyxp (12.10)

wkyxp 22 ),( (12.11)

 The governing differential equation for the shear layer is:

12

2

22 pwGwk (12.12)

 Eliminating 2w  from (12.12) and (12.10), and substituting the value of ip from

(12.8) one obtains:

2

2

2

2

2

22

4

4

4

6

6

42

6

2

42

6

24

6

324

6

6

6

1

1

2

2

4

4

222

4

34

4

1

1

2

2

21

y

w

x

w
Gwk

yx

w

x

w
p

y

w

yx

w
D

yx

w

yx

w
D

yx

w

x

w
D

k

G

x

w
p

y

w
D

yx

w
D

x

w
D

k

k

  (12.13) 

 In the composite plate one may assume (12.6) for the lateral deflection ),( yxw .

Substituting (12.6) into (12.13) and letting the plate aspect ratio a/b = c, results in the 

following for a specially orthotropic plate simply supported on all four edges, 

remembering that for this plate also n = 1 only:
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2

11

2

2

1

2

21

3

2

2

1

22

2

2

11

2

11
2

1

11

c

m

m

c

D

D

DD

D

c

m

D

D

m

c

m

c

c

m
N x

  (12.14) 

In Equations (12.14) through (12.16) 2/1

21

22

cr
)/(/ DDbNN xx .

Equation (12.14) is the solution for the Kerr foundation.  Paliwal and Ghosh give

the solutions for the Winkler and Pasternak foundation, which are given below, for a

plate simply supported on all four edges:

22

1

2

21

3

2

2

1 2

m

c

m

c

D

D

DD

D

c

m

D

D
N x   (12.15)
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2

1

2

21

3

2

2

1

1

2

m

c

m

c

m

c

D

D

DD

D

c

m

D

D
N x

(12.16)

where  is the non-dimensional foundation modulus of the spring layer, is the non-

dimensional shear modulus, and k is the foundation modulus,k

21

44 DDkb

21

24 DDGb

 Similarly, Paliwal and Ghosh studied the buckling of a composite plate subjected 

to in-plane compressive loads in two directions.  In that case the governing equation is 

given by

12

2

2

2

4

4

222

4

34

4

1 2 p
y

w
N

x

w
N

y

w
D

yx

w
D

x

w
D yx

yyxxyyyyxxxx
.  (12.17) 

The final buckling load is found from the following equation, where xy NN / :
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D

D

n
D

D
n

c

m

DD

D

c

m

D

D

n
c

m

nn
c

m

c

m

n
c

m
N x

nn

nn

  (12.18)

Postbuckling behavior of composite plates is beyond the scope of this basic text. 

However, the work of Minguet, Dugundji and Lagace [12.5] provides an introduction to

this topic.  Also, a number of NASA reports by Nemeth [12.6] treat the buckling of 

composite plates subjected to thermal and mechanical loads.
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12.5  Problems

12.1. Find the critical buckling load,
crxN in lbs./in. for a plate simply supported on all

four edges made of a material whose flexural stiffness properties are given as

follows and whose thickness is 1 inch. 

in.-lb.610

037.000

0160.0028.0

0028.063.1

(a)  If a = 30 inches and b = 20 inches. 

(b)  If a = 50 inches and b = 12 inches. 

12.2. Consider a plate measuring 16” x 16” in planform of [ ], of total 

thickness 0.022”.  The [D] matrix for this construction is 

in.lb.

296.000

0854.1242.0

0242.070.8

D

If the plate is subjected to an in-plane compressive load in the 0  direction,

what is the critical buckling load per inch of the edge distance,
crxN , using 

classical plate theory? 

12.3. In designing a test facility to demonstrate the buckling of the plate of Problem

12.2, what load cell capacity (force capability) is needed to attain the loads

necessary to buckle the plate?
12.4. Determine the critical buckling load,

crxN , for the same panel as in Problem 12.9.

12.5. Consider a plate of dimensions a = 18” and b = 12”, composed of a laminated 

composite material whose lamina properties are:

psi1087.0Gpsi 1064.1E

30.0psi105.18E

6
12

6
2

12
6

1

The stacking sequence of the plate is [0 ] in which each lamina is0,90,90,

0.006” =
k

h .  The plate is simply supported on each edge.

(a) What are 111111 and, DBA for this plate?

(b) At what values of x and y will the maximum deflection occur if the plate is 

subjected to a uniform lateral load 0),( pyxp  (a constant)? 

(c) At which values of x and y would maximum ply stresses occur?
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(d) Calculate the critical buckling load per unit width,
crxN , if the plate is 

subjected to a uniform compressive load in the x direction. 

12.6. Consider a Kevlar 49/epoxy composite, whose properties are given in Table 10.3

of the text, and whose weight density is .3
w  A plate whose

stacking sequence is [ 0,90,90,0 ] is fabricated wherein each ply is 0.0055” 

thick.  The plate is 6102  in planform dimensions, and is simply supported on 

all four edges.

(a) Determine .and,,,,,, 6622121166221211 DDDDAAAA

(b) Could the first perturbation solution technique of Section 11.8 be used to

solve problems for this plate if it were subjected to a lateral load p(x(( , y)?

(c) If the plate is subjected to an in-plane compressive load in the x- direction 

only, what is the critical buckling load per inch of edge distance, 
crxN , using 

classical plate theory? 

12.7. For a plate simply supported on all four edges that is 6 inches wide and 15 inches

long made up of the unidirectional four ply graphite epoxy described in (a) of 

Problem 11.10, what is the critical buckling load,
crxN , if the compressive load is

applied parallel to the longer direction of the plate?

12.8. Given a Kevlar/epoxy rectangular plate, with the unidirectional material

properties given in Table 10.3, for a plate of dimensions 2161 , and a thickness

of 1.0 , as shown below, simply supported on all four edges.  The fibers are all

aligned in the longer direction.

(a) What is the critical load per unit inch, ,
crxN to cause plate buckling of the

plate?

(b) What is the stress in the load direction at buckling?

(c) Will the plate be overstressed before it could buckle? 

(d) What is the total weight of this plate?
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(e) What thickness would this plate have to be to have the buckling stress equal to

the compressive strength of the composite material?  Assume here that the 

compressive strength is equal to the tensile strength (That is not always true!).

12.9. A panel simply supported on all four edges, measuring a = 30”, b = 10”,

composed of T300-5208 graphite epoxy, composed of laminae with the following

properties:

psi1081.0

"0055.0psi104773.0

psi10591.1

lb./in.05.0psi1036.22

6
66

6
12

6
22

3
w

6
11

Q

hQ

Q

Q

k

In the October 1986 issue of the AIAA Journal, M.P. Nemeth discuses the

conditions in which one can ignore 2616 and DD  in determining the buckling load 

for a composite plate.  He defines:

4/13
2211

26
4/1

22
3

11

16

DD

D
and

DD

D

If both of these ratios are less than 0.18, one can use Equation (12.7) to determine

the buckling load within 2% of the correct value for a plate simply supported on

all four edges.  If either of the ratios is greater than 0.18 one must replace the left 

hand side of Equation (12.4) with the left hand side of Equation (12.109), which 

negates the use of the Navier and Levy methods being used, thus complicating the

solution.

For a four ply panel with stacking sequence of ] ,

determine and to see if the simpler solution can be used.



CHAPTER 13

LINEAR AND NONLINEAR VIBRATION OF COMPOSITE PLATES 

13.1  Dynamic Effects on Panels of Composite Materials

Seldom in real life is a structure subjected only to static loads.  More often

products and structures are subjected to vehicular, impact, crash, earthquake, handling, or 

fabricating dynamic loads.  In the linear-elastic range, dynamic effects can be divided 

into two categories: natural vibrations and forced vibrations, and the latter can be further 

subdivided into one-time events (an impact) or recurring loads (such as cyclic loading). 

These will be discussed in turn.

Physically every elastic continuous body has an infinity of natural frequencies,

only a few of which are of practical significance.  When a structure is excited cyclically

at a natural frequency, it takes little input energy for the amplitude to grow until one of 

four things happens:

(1)  The amplitude of vibration grows until the ultimate strength of a brittle material is

      exceeded and the material and structure fails.

(2)  Portions of the structure exceed the yield strength, plastically deform and the

      dynamic response behavior changes drastically.

(3)  The amplitude grows until nonlinear effects become significant, and there is no

      natural frequency. 

(4)  Due to damping or other mechanisms the amplitude is limited, but as the natural

      vibration continues, fatigue failures may occur. 

Physically, when a structure is undergoing a natural vibration the sum of the

potential energy and kinetic energy remains constant if no damping is present.  This can

be termed a conservative system.  However, the energy is compartmentalized, i.e., if a

structure is truly vibrating in one mode of natural vibration it will not change by

commencing to vibrate in some other mode of natural vibration at some other natural

frequency.  In a complex structure if two components have vibrational natural

frequencies that are identical, then when one component is excited, the other component 

will also be excited.  It is for this very reason that duplicative natural frequencies are to

be avoided.  Also in complex structures of course the structural natural frequencies can

be coupled involving all components.

Mathematically, natural vibration problems are called eigenvalue problems.  They 

are represented by homogeneous equations, for which nontrivial solutions only occur at 

certain characteristic (eigen, in German) values of a parameter, from which the natural

frequencies are determined.  In a vibration at a natural frequency, the displacement field 

comprises a normal mode for that natural frequency.  At any two different natural

frequencies the corresponding normal modes are mathematical functions that are 
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orthogonal to each other (hence the compartmentalization of the energy).  The normal

modes comprise the solutions to the homogeneous governing differential equations, and 

non-trivial solutions of the equations occur only at the eigenvalues for those equations

and boundary conditions.

If there is a forcing function, then the particular solution for the specific forcing

function (which can be cyclical or a one time dynamic impact load) is added onto the

homogeneous solution, which involves the natural frequencies and mode shapes. 

Physically, any dynamic load excites each and every one of the normal modes and 

corresponding natural frequencies.  Usually, only a relatively few are large enough to be

of concern.  The largest amplitude of response will be in those mode shapes whose 

natural frequencies are closest to the oscillatory component of the forcing function.

When there are no natural frequencies close to the oscillatory portion of the 

dynamic load, then the structure will respond at each time, t, in deflection and stresses

that correspond only to the magnitude and spatial distribution of the load at that time t.

Such a condition results in solving the worst-case static problem in which the largest load 

at some time, t, is applied.  This is termed a quasistatic case.  However, if the dynamic

load oscillatory component is close to one of more natural frequencies, then the structural

response can be much larger than the value obtained from a quasistatic calculation, and 

that increase can be represented by a dynamic load factor. 

In what follows natural frequencies are treated first, then forced linear vibrations

and finally nonlinear large-amplitude vibrations are discussed.

13.2  Natural Flexural Vibrations of Rectangular Plates: Classical Theory

Consider a rectangular composite material plate that is mid-plane symmetric such

that 0ijB .  If this plate is quasi-isotropic, i.e., DDDD 321 , then the governing 

differential equation is given by Equation (2.57) for the classical theory, i.e., no

transverse-shear deformation, and repeated here as 
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For dynamic loads, using d’Alembert’s Principle, the equation is written as 
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where the last term is the mass per unit planform area times the acceleration.  So the 
natural vibrations for a quasi-isotropic composite plate parallels exactly the discussion in 
Section 7.3.

If the composite plate is specially orthotropic and mid-plane symmetric, then for 
the natural vibration problem the governing differential equation is written as follows: 
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Again, if all four edges are simply supported then the mode shapes are given by Equation 
(7.11) with the result that the natural circular frequency in radians per second is given by 
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The natural frequency in Hz is given by Equation (7.13).  As in the case of isotropic plate 
vibrations m and n are integers relating to the mode shapes.  Also it is seen that if the 
plate is isotropic, DDDD 321 , (13.4) becomes (7.12).

Keep in mind that for Equation (13.4) and other equations for the frequencies for 
natural vibrations for thin walled structures, to accurately describe the motion, the 
maximum deflection must be limited to some fraction of the plate thickness since the 
theory is linear.  Above that level of motion, nonlinear effects become increasingly 
significant.

One major reference for the free vibration of rectangular isotropic and composite 
plates is authored by Leissa [13.1].

13.3  Natural Flexural Vibrations of Composite Material Plates Including
         Transverse Shear Deformation Effects 

The governing partial differential equations for a composite plate or panel that is
specially orthotropic and mid-plane symmetric subjected to a lateral static load p(x,y) are 
given in Equations (11.24) through (11.26).  If one now wishes to find the natural
frequencies of this composite plate, that has mid-surface symmetry ( 0ijB ), no other 

couplings 0452616 , but includes transverse shear deformation, 0xz ,

0yz , then one sets p(x,y) = 0 in Equation (11.26), but adds )/( 22 twm to the

right-hand side where m  is the average mass density of the plate material.  So, hm in

(13.7) below is the mass density per unit planform area.  In addition, because  and
are both dependent variables that are independent of w, there will be an oscillatory
motion of the lineal element across the plate thickness about the mid-surface of the plate.  
This results in the last term on the left-hand side of Equations (13.5) and (13.6) becoming 

)/( 22 tI and )/( 22 tI  respectively, as shown below:
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where hm , the plate mass density per unit planform area, in (13.4) and (13.7) above, is 

given by 

N
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where k is the mass density of the kth lamina material, and here kk I isI

.
1
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 (13.9) 

In Equations (13.5) through (13.7) the s' , without subscripts, are transverse-shear 
deformation correction parameters, as discussed earlier in Section 11.10. 

Similar to the Navier procedure used in previous analyses and following Dobyns 
[7.5] for the simply supported plate, looking at (11.84) through (11.86), let 
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Substituting these equations into the dynamic governing equations above results in a set 
of homogeneous equations that can be solved for the natural frequencies of vibration
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where the unprimed L quantities were defined below Equation (11.88) andL
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Three eigenvalues (natural circular frequencies) result from solving Equation 
(13.13) for each value of m and n.  However, two of the frequencies are significantly 
higher than the other because they are associated with the rotatory inertia terms, which 
are the last terms on the left-hand sides of Equations (13.5) and (13.6) and are very 
seldom important in structural responses.  If they are neglected then 11

'
11 LL  and 

22
'
22 LL'  above, and the square of the remaining natural frequency can be easily found 

to be

hQLLLLLLLQL mmn /]2[ 2LL
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13
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(13.15)

where, here, 2
122211 L2LLQ .  Also, 

'13222312'
mnmn CmQ

LLLL
Amm

'23111312'
mnmn CmQ

LLLL
B

If transverse-shear deformation effects were neglected, Equation (13.15) would reduce to
Equation (13.4).  Then, if the plate is isotropic (13.15) becomes identical to (7.12).
 In composite material structures, matrix cracks can occur.  The effect of these
cracks upon the natural vibrations of composite panels, particularly sandwich panels with
composite facings has been treated by Birman and Simitses.
 For non-linear large amplitude vibrations of composite material plates, see Wu
and Vinson [13.2, 13.3].



262

13.4  Forced Vibration Response of a Composite Material Plate Subjected to a
         Dynamic Lateral Load

Dobyns [7.5] then goes on to develop the solutions for the simply supported
laminated composite plate subjected to a dynamic lateral load p(x,y,t), neglecting the
rotatory inertia terms discussed above, utilizing a convolution integral P(t) as seen below 
in (13.19).  Incidentally, the convolution integral is also known as the superposition
integral and the Duhamel integral.

The solutions to Equations (13.5) through (13.7), modified to include a dynamic
distributed lateral load p(x,y,t) and neglecting the rotatory inertia terms are given by
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where

t

dtFtP mn
0

)](sin[)()( d( (13.19) 

and mnq is the coefficient of the lateral-load function expanded in series form [see

Equations (11.29) through (11.32) where there mnB is used. 

So for a given lateral distributed load p(x,y,t), if a solution of the form given by
Equations (13.16) through (13.18) is applicable, then the curvatures x , y  and xy for 

the plate can be found from Equation (10.52), and the stresses in each lamina are found
from Equation (10.53).  The function P(t) has been solved analytically for several
representative forcing functions shown in Figure 13.2.

For the sine pulse, the forcing function F(t) and the convolution integral P(t) are
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10
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For the stepped pulse the forcing function F(t) and the convolution integral P(t) are given
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For a triangular pulse:
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Figure 13.2.  Representative forcing functions. (Reprinted from Reference [7.5].)
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The stepped triangular pulse of Figure 13.2 simulates a nuclear-blast loading 
[13.1] where the pressure pulse consists of a long-duration phase of several seconds due 
to the overpressure and a short-duration phase of a few milliseconds due to the shock 
wave reflection.  The short-duration phase has twice the pressure of the long-duration
phase.
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Lastly, the exponential pulse of Figure 13.2 may be used to simulate a high 
explosive (non-nuclear) blast loading when the decay parameter  is empirically 
determined to fit the pressure pulse of the actual blast.  The equations are 
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It should be noted that although the forcing-function equations given above are used 
herein to investigate the dynamic response of a composite material plate, these equations 
are useful for many other purposes. 

Dobyns [7.5] concludes that the equations presented in this section allow one to 
analyze a composite material panel subjected to dynamic loads with only a little more 
effort than is required for the same panel subjected to static loads.  He stated that one 
does not have to rely upon approximate design curves or arbitrary dynamic-magnification 
load factors. 

With the information presented to this point, the necessary equations for the study 
of a composite plate without the various couplings, but that include transverse shear 
deformation, have been developed.  The plate may be subjected to various static loads 
and a variety of dynamic loads.  These loads and solutions can be used singly-or 
superimposed-to describe a complex dynamic input.  (Those same load functions of this 
Section, since they are functions of time only, can be used for beams, shells and many 
other structural configurations.)  With the solutions for ,and),(,),( wyxyx (  maximum 
deflections and stresses can be determined for deflection stiffness-critical and strength-
critical structures.

For further reading on impact load effects on composite structures, see the text by 
Abrate [13.4], and research by Bert [13.5].

13.5  Vibration Damping

Damping of composite structures is clearly beyond the scope of this basic 
textbook.  However, it would be a mistake not to mention that composite structures 
incorporate significant damping through the intrinsic properties of composite materials
compared to metallic structures. 

For the study of vibration damping, the text by Nashif, Jones, and Henderson 
[7.4] is excellent.  Also, the text by Inman [13.6] concerning vibrations, vibrations 
damping, control, measurement and stability provides much needed information useful to
the study of composite material structural vibrations.
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13.7  Problems

13.1. Find the fundamental natural frequency in Hz (cps) for each of the plates of 
Problem 12.1, if the mass density of the material is

4

2
4

in.

sec.lb.
108.1m

13.2. Consider the plate of problem 11.1.  If it is simply supported on all four edges,

what is its fundamental natural frequency in cycles per seconds neglecting

transverse shear deformation?
13.3. What is the fundamental natural frequency of the plate of Problem 12.2 in Hz (i.e.

cycles per second), using classical plate theory?  The weight density of the 

composite is 0.06 .lb./in.3

13.4. (a) The plate of Problems 12.2, 12.3 and 13.3 will be used in an environment in
which it will be exposed to a sinusoidal frequency of 6 Hz.  Is it likely there
will be a vibration problem requiring detailed study?  Why?

          (b) What about 12 Hz?  Why? 
13.5. For a plate or panel, what are the four ways in which it may fail or become

subjected to a condition which may terminate its usefulness?

13.6. Determine the fundamental natural frequency in Hz (cycles per second) for the

panel of Problem 12.9 made of four plys, unidirectionally oriented plys).

13.7. What is the fundamental natural vibration frequency in Hz for the plate of 
Problem 12.6.  Assume a weight density for the composite to be

.lb./in.06.0 3
w

13.8. Suppose the plate of Problem 13.7 were designed to be subjected to a continuing

harmonic forcing function at:
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(a) 38 to 48 Hz

(b) 10 Hz.

Would there be a problem structurally with this due to dynamic effects?  Why?
13.9. What is the fundamental natural frequency of the plate of Problem 12.7 in Hz.,

using classical plate theory?
13.10. If the fundamental natural frequency were calculated including the effects of 

transverse shear deformation, would that frequency be higher, lower or equal to
the frequency calculated in Problem 13.9 above?

13.11. A square plate, simply supported on all four edges is composed of GY70/339

graphite epoxy.  If this square plate is made of four plys with the A and D matrix

values shown below, which stacking sequence would you choose for a design to 

have the highest fundamental natural frequency?  Which stacking sequence has

the lowest fundamental natural frequency?

GY70/339 graphite epoxy composite 

in.-lb.

07.75.155.15

15.57.676.87

15.56.877.67

lb./in.10

21200

0230206

0206230

plyfour ,]45[plyAnglec.

in.-lb.

4.000

04.020.182

00.18224.6

lb./in.10

1200

04305.46

05.46430

plyfour ]0,90,90,[0Crossplyb. 

in.-lb.

4.000

0588.0182.0

0182.01.28

lb./in.10

1200

017.65.46

05.46842

plyfour ctional   Unidirea.  

matrix][matrix    [A]

3

3

3

s

D

13.12. Consider a square plate with length and width of 12 inches, and thickness of h = 

002.0 , composed of graphite/epoxy whose stiffness matrix properties are given 

in Problem 13.11a.  Calculate the natural frequency 23f2  in cycles per second (i.e.,

m = 2, n = 3, ).mnmnfm

13.13. Does a natural frequency of vibration of a plate clamped on all four edges, 

subjected to a lateral distributed load ,),( 0pyxp where 0p  is a constant, 

depend on the value of the load 0p ?
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13.14. Consider a rectangular panel simply supported on all four edges.  The panel

measure a = 52 , b = 01 , where .0,0 byax   The laminated plate is 

composed of a unidirectional boron/aluminum metal matrix composite with the

following properties; where the fibers are oriented in the long direction.

35.0in. 007.0essply thicknee

50%psi108G

psi000,250psi1020E

lb./in.0915.0psi1032E

12

6
12

lu
6

22

36

11

k

f

h

 Determine the fundamental natural frequency in Hertz (cycles per second) for the

panel if the laminate is made of four laminae, all oriented at 0 .

13.15. Consider a rectangular composite plate whose stiffness matrices are given in

Problem 11.1.  The plate is 15 inches wide, 60 inches long, simply supported on

all four edges, is 0.020 inches thick, whose weight density is 0.06 ,lbs./in.3  and 

the fibers are in the longer direction. 

(a) If an in-plane compressive load, ,x  is applied in the direction parallel to the 

longer dimension, what is the critical buckling load, ,
crxN using classical

plate theory? 

 (b) Using classical plate theory what is the fundamental natural frequency in Hz.? 

 (c) If transverse shear deformation effects were included in the above calculations 

would the buckling load and fundamental natural frequency be higher, the 

same, or lower?



CHAPTER 14

ENERGY METHODS FOR COMPOSITE MATERIAL STRUCTURES

14.1  Introduction 

 Many composite material structures not only involve anisotropy, multilayer 

considerations and transverse shear deformation, but also have hygrothermal effects. 

Because of these complications, plus any caused by complicated loads, obtaining

approximate solutions through the use of energy methods may be the best way to

proceed, if not the only way, rather than expending much time and effort in the hope of 

obtaining an analytical solution.

 As stated in Chapter 8, dealing with isotropic plates, with energy methods, one

can always obtain a good approximate solution, no matter what the complications caused 

by the structural configuration, the loads or the boundary conditions.

14.2  A Rectangular Composite Material Plate Subjected to Lateral and

         Hygrothermal Loads

 A detailed study by Sloan [14.1] shows clearly what is involved in analyzing

composite panels to accurately account for the effects of anisotropy, transverse shear 

deformation, thermal and hygrothermal effects.  The results are also shown in the text by

Vinson and Sierakowski [1.7]. 

 The stress-strain equations to be considered are given by Equation (10.43),

wherein the ijQ are given by Equation (10.44).  The strain-displacement equations are

given by Equation (10.48), the form of the panel displacements by Equation (10.49),

from which Equation (10.50) results.  By neglecting zz  the constitutive relationszand

for the laminate reduce to Equation (10.66).  Sloan [14.1] has shown that even for this 

problem, the z  and z  can be ignored. 

Employing the Theorem of Minimum Potential Energy, Equation (8.1), for the 

plate under discussion it is seen that summing the strain-energy-density functions for 

each lamina across the N laminae that comprise the plate gives the total potential energy N

as
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Here A refers to the planform area of the plate whose dimensions are 

2/2/and0,0 hzhbyax .  It is noted that the strains used in the strain-

energy relations are the isothermal strains, hence one notes the differences between total

strain and the thermal and hygrothermal strains in Equations (4.2) and (10.30). 

Now, substituting the constitutive Equations (10.66) and the strain-displacement 

relations (10.50) into Equation (14.1) results in the following: 
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  (14.2) 

In the above, all quantities (except displacements) are defined by Equations (10.58) 

through (10.61), Equations (10.63) through (10.65) and the following.  Note that the 

ii and (unbarred) below are the coefficients of thermal and hygrothermal expansion 

respectively:
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As written Equation (14.2) provides the expression to use in the analysis of 

composite material rectangular plates of constant thickness, wherein one uses the 

appropriate values of the [A[[ ], [B] and [D] stiffness matrix quantities given by (10.58), 

(10.59), and (10.63). 

Equation (14.2) is the most general formulation and it is seen that without the

surface load term there are 30 terms to represent the strain energy in the composite

material panel.  Referring to Equation (10.66) and the ensuing discussion it is seen that if 

the laminate has no stretching-shearing coupling )2616 then two terms would 

be dropped; if no twisting-stretching coupling )2616  two more would be

dropped; likewise two more are dropped if there were no bending-twisting coupling

)0( 2616 DD .  If the laminate were symmetric about the mid-plane, a very common

construction, then five ijB terms would be canceled out, because there would be no

bending-stretching coupling. 

One can now proceed to solve any problem involving composite material plates

subjected to any set of loads, thermal and moisture conditions through employing (14.2).  

For trial functions one can use the appropriate functions of Section 14.6 below in each of 

the x and y directions.  Now to proceed with a number of examples to illustrate the use.  

One could start by redoing the examples of Sections 8.3, 8.4, 8.5 and 8.7 for a composite 

material plate, but they will not be repeated herein.  Rather, the following are presented.

14.3  In-Plane Shear Strength Determination of Composite Materials in Composite 

        Panels 

In this illustrative problem using the Theorem of Minimum Potential Energy, 

consider a simple test procedure to determine the in-plane shear strength of laminated 

composite materials, as well as other orthotropic and isotropic advanced material

systems; see the recent publication by Vinson [14.2].  The test apparatus shown in Figure 

14.1 is simple, inexpensive, and the flat rectangular plate test specimen is not restricted in

size or aspect ratio.  In addition to its use for laminated composite materials, the test can 

also be used for foam core sandwich panels. In sandwich panels the tests can be used to 

determine the in-plane shear strengths of the faces, the core and/or the adhesive bond 

between face and core.  The shear stresses developed vary linearly in the thickness

direction and are constant over the entire planform area.
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Figure 14.1.  Test method and geometry for the determination of in-plane shear strength. 

(Reprinted from Reference [14.2].)

 Consider a panel of the material to be tested to be rectangular in planform, with

dimensions a in the x-direction and b in the y-direction.  The panel is of constant 

thickness h and if anisotropic, the material principal axes 1-2, should be aligned with the

structural axes x-y- .  The rectangular panel is placed in a test machine such that the loads

P are applied at each of the four corners as shown in Figure 14.1.  The loadsP P areP

recorded as applied until the test specimen fails.  As a result, the in-plane shear strength

of the material is easily calculated from the equations developed below.

 The Theorem of Minimum Potential Energy is utilized to obtain solutions.  It is

assumed that the material system is specially orthotropic, i.e., the material axes (1-2) are

aligned with the structural axes (x(( -y- ).  It is further assumed that the test specimen is mid-

plane symmetric, i.e., no bending-stretching coupling, 0ij , no stretching-shearing 

coupling )2616 , and no bending-twisting coupling )2616 .  The

following methods of analysis can be altered to include laminates or sandwich panels 

asymmetric to the mid-surface, i.e., 0ij .

The potential energy V for the structure and loading of Figure 14.1 is given byV

Equation (14.2), which for this case is
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      (14.3) 

where 00  vand u are the mid-plane in-plane displacements in the x and y-directions,

respectively, and w is the lateral displacement.  All displacements are positive in the 

positive coordinate direction.  The means to portray the concentrated loads at the corners 

of the plate is clearly seen in the last two lines of Equation (14.3). 

 Neglecting transverse-shear deformation effects, then the strain-displacement 

relations are given by (2.27) and (2.28).  The in-plane and flexural stiffness matrix 

quantities are given by (10.58) and (10.63).  Note that these stiffness quantities are valid 

for both composite laminate and sandwich construction. 

 To insure complete generality, the following forms for the displacements are 

assumed as trial functions, where the numbered coefficients are constants to be 

determined by boundary conditions and the variational operation: 
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When, as an analyst, one has trouble deciding on a suitable trial function for the 

deflection, include as many terms in the polynomial such that the highest power in the

polynomial is equal to the highest order in the differential equations.

 The following physical conditions are used to simplify the above assumed 

functions:

;
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The result of satisfying all of the above is that the trial functions given by (14.4)

are reduced to the following:

xyCyxw
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),(v),(                    (14.5)

Substituting Equation (14.5) into (14.3), and setting the variation equal to zero

)0( VVV results in the following relationships:
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            (14.6) 

 From Equation (14.6) it is seen that no curvature exists in the loaded panel, and 

that if the panel is of monocoque construction or a laminate in which each lamina is 
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oriented the same as all other laminae, then 
12

G 3

12
66

h
D , where 12G  is the in-plane12

shear modulus of the material, and h is the panel thickness.

 For a laminated composite plate the in-plane shear stress for the kth lamina iskk

given by 

66

66

4

2

D

PzQ k
ykky y                      (14.7)

since for this test, from Equation (14.6), 665

0 4/and0 DPCxyxy .

In Equation (14.7), for a specially orthotropic material 1266 GQ , the in-plane

shear modulus of the material, and 66D is given by

N

k kk
hhD k

1

33

166 3

1

 Equation (14.7) provides an easy way to calculate the shear strength of the failed 

material simply by measuring the load P at failure, and the locationP z, i.e., the distance

from the midsurface of the panel, of the initial failure site.  Likewise, if one is only 

interested in overall panel in-plane shear strength, then knowing the load P at panelP

failure, and using z =z h/2, provides the “panel” in-plane shear strength.

 For instance, if the plate is an isotropic single-layer material then

2
or  

2

33
)2/(

h

P

h

P
h xyxy                                 (14.8) 

Equation (14.8) is also applicable if the plate is composed of an orthotropic single-layer 

material.  In either case the shear modulus is not needed to calculate the in-plane shear 

strength.

14.4  Cantilevered Anisotropic Composite Plate Subjected to a Uniform Lateral 

         Load 

 In this example, a fin on a flight vehicle is studied to determine what angle  of 

the fiber orientation would produce the greatest angle of twist, if the fins were of a 

unidirectional composite and the applied lateral load were of a uniform pressure 0p .  In

other words how does one maximize bending-twisting coupling. 

 Starting with Equation (14.2), classical theory is assumed, the potential energy

expression is given by (14.9) below, where xw xx  and yw yy .  The

planform view of the fin is shown in Figure 14.2, where the positive direction of  is

shown in Figure 10.10.
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Figure 14.2.  Planform view of the fin.

So for classical theory 
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 Assuming that the stacking sequence is unidirectional, then from (10.58) and 

(10.63)

hQA ijij

(14.10)

12

3hQ
D

ij

ij

where h is the total laminate thickness.  Assuming 0),( pyxp a constant, and that 

000 vu , the trial function for the lateral deflection can be assumed to be

  )2234 yy  (14.11)
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where the function of x is from the solution of a cantilever beam subjected to a uniform

lateral load, and the function of y allows for an angle of twist (or an angle of attack).

 Substituting (14.11) into (14.9) results in

xyByAxaaxxp

D
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Next one performs the integration across the planform area, 
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One now takes the variation of A and B and sets the result equal to zero. 
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Finally collecting terms
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one finds the two governing differential equations 
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From these two equations both A and B can be solved.  It is found that A is given by 
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The constant B can be written as
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From (14.11) it is seen that the two tip deflections are given by:

)(3),( 4 BbAabaw

(14.20)

Aaaw 43)0,(

So the twist or the angle of attack of the plate at the outer (x(( = a) edge is
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A further approximation is that since 1122 EE , 1112 EG  and 21  are very small, simply 

ignore them.  Therefore, using these assumptions the tip angle of twist can be written as 
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In (14.22), calling the tip angle of twist the Factor of Merit (FM), tan
m

n
and 

b

a

m

n
, (14.22) is as follows:
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To find the optimum value of ,
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Finally it is found that 

)2728.0(tan
a

b
 (14.25)

For an example, if a = 62.5mm and b = 80mm, then 349.0)2728.0(
5.62

80
tan

25.19  (14.26) 

So, the optimum fiber angle for this problem, with this configuration, and these

dimensions is 25.19 in the swept back direction, see Figure 14.2.  Also, from (14.23),

11

4

01137.0

bD

ap
FM (14.27) 

 All of this illustrates that regardless of the problem complexity one may always

find a solution.  One can argue about the assumptions made: with all that were made it is

seen that the maximum bending-twisting coupling occurs when the fiber angle is

25.19 .  Now having found this, one may return to the original problem and negate

each assumption and proceed to obtain more complicated solutions.  If the optimum angle

 does not change significantly, then the original assumptions were good assumptions.

14.5  Use of the Theorem of Minimum Potential Energy to Determine Buckling

         Loads in Composite Plates

 As a practical example, consider a specially orthotropic composite material plate 

shown below in Figure 14.3, where each x = constant edge is simply supported, and the y

edges are clamped (y((  = 0) and free (y((  = b).  This is typical of a flange on a ladder side rail

and many other structural applications involving open cross-sections.  Consider this to be
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Figure 14.3.  Buckling of a Flange Plate

The plate is subjected to a uniform compressive in-plane load of xN  (lbs./in. of 

width) in the x direction as shown in the Figure 14.3.  The Theorem of Minimum 

Potential Energy is used to determine the critical buckling load, 
crxN .

 From Equation (14.2), and using classical theory i.e. xw xx , yw yy ,

the potential energy expression is: 
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In this expression the effect of the in-plane load for buckling is given by the latter 

integral, where the effect of an in-plane load on the lateral deflection is seen.

 To use the Theorem of Minimum Potential Energy, let the deflection be a

separable solution of the x and y variables

)()(),( ygxfyxw

Since the edges are simply supported at x = 0 and x = a, let 

a

xn
Axf n

xx
sin)(

which satisfies the boundary conditions, and let 

)64()( 2234 ybbyyyg
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because this is proportional to the exact deflection function for a cantilevered beam 

subjected to a uniform lateral load and satisfies the clamped-free boundary conditions.

Therefore,

)64(sin),( 2234 ybbyy
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                      (14.29) 

Substituting (14.29) and its derivatives into (14.28) gives 
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Performing the spatial integration the final expression for the potential energy is: 
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Taking variations of (14.31) for this eigenvalue problem one sees that the bracket must be 

zero.

020 nn AAV AAVV ,  so 0

From the above the critical buckling load 
crxN  is seen to be
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This is the solution for this case in general, written so that the relative influence for 

various stiffness terms can be assessed.

First, it is important to determine the wave number n yielding the lowest critical 

buckling load, because this is the only one of physical significance. 
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Now, substituting (14.33) into (14.32) results in
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Note the lowest critical buckling load for this case given in (14.34) is independent of the

integer n, and the aspect ratio (a/b) !.  It is also interesting to note that the first and the 

third terms above are identical.  This means that in (14.34) the 

2
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11

2 x

wD
 term and the 

2

2

2
22

2 y

wD
term contribute the same amount of strain energy regardless of the aspect 

ratio.  This in turn means that if 22D  is reduced from one material to another the 

curvature in the y direction increases such that the strain energy remains the same, and of 

course the reverse is true.
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Another set of boundary conditions are exemplified by:

Case II: x = constant edges clamped, y = constant edges clamped-free

 Here the following deflection function can apply
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In this case, following the above, 
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Setting the derivative of xN  with respect to n equals zero in the above gives: 
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Therefore, after substituting (14.37) into (14.36) the minimum critical buckling load per 

unit width is: 
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Again the conclusions reached for Case II are identical to those of Case I. 

Case III:  Let the ends be simply supported and the y edges simple-free 

In this case, one can use the following: 

a
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xx
sin),(  (14.39) 
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From the analysis analogous to the above, one finds that for the lowest buckling load, n =

1, and 
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Therefore since n = 1 is the lowest buckling load, this is overall buckling, no crippling. 

14.6  Trial Functions for Various Boundary Conditions for Composite Material 

         Rectangular Plates 

 To satisfy various boundary conditions for rectangular composite material plates, 

the lateral deflection w(x(( ,y,, ) may take many forms as long as they are single valued and 

continuous.

 For all combinations of clamped and simply supported boundary conditions Wu 

and Vinson [13.2, 13.3] provide functions that can be used which involve characteristic 

beam functions that formulated by Warburton [8.3] and completely characterized by 

Young and Felgar [3.1]. 

 Another example are the functions used by Causbie and Lagace [14.3] for the 

study of composite material rectangular plates subjected to in-plane compressive

buckling loads in the x-direction.  They assumed the following: 

1. Simply supported on all edges 
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2. SS on loaded edges, SS on one side, free on the other side
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3. Clamped on loaded ends; simply supported on the sides
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4. Clamped on loaded ends; simply supported on one side; free on the other side
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14.7 Elastic Stability of a Composite Panel Including Transverse Shear 

Deformation and Hygrothermal Effects 

 In this section, a general buckling theory is formulated that accounts for the

hygrothermal effects as well as transverse shear deformation and all of the couplings

discussed in earlier sections as performed by Flaggs [14.4].  Again the Theorem of 

Minimum Potential Energy is employed, so the strain energy of the plate is identical to

that previously used, namely Equation (8.36) for isotropic plates and (14.2) for an

anisotropic plate, whether monocoque or sandwich.  However, in the absence of a lateral

load p(x(( , y), the last term of Equation (14.2) is absent, but in its place are the effects of in-

plane stress resultants yxyx NNN and,, , that can cause an elastic instability.  Equations

(8.36) and (14.2) become:
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These terms are treated in detail in References [6.1] and [6.2], and will not be developed 

in detail here, but they are standard for isotropic panels as well as composite laminates. 

The buckling loads, yxyx NNN or ,, , are determined by finding the value of the 

load at which bifurcation occurs, that is, loads at which the plate can be in equilibrium in 

both a strain configuration (i.e., w = 0) and in a slightly deformed )0(w  configuration. 

This is accomplished through setting the variation of the potential energy V in EquationV

(14.47) equal to zero, as in Equation (8.2), as shown in Equations (8.44) through (8.47).  

This operation results in an eigenvalue problem that can be solved for nontrivial solutions 

that are discrete values of the applied loads.  The lowest critical load is the actual 

physical buckling load.  Unlike solving for several natural frequencies, all of which could 

be important, only the lowest buckling load has any physical meaning. 

In solving this, and,,,, 00 wvu  could be considered as unknowns to be found 

through the solution.  In the following, simply to illustrate an alternative approach, for the

rotations and , the rotations are solved for in terms of the lateral deflection, w.  To do 

this, consider the laminate to be a beam, hence modifying Equation (14.2) to only have an

x-dependence.  Solving that problem results in three equations: 
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 These Equations can be solved for , the result being as follows.  Even though 

is determined for a beam, a y-dependence is permitted since a plate is being considered. 
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In Equation (14.51) note that the first bracketed term is precisely the reduced flexural 

stiffness term discussed previously.  Similarly, assuming a beam in the y-direction, it is

found that 
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Equations (14.51) and (14.52) can now be substituted into Equation (14.47) so that the

potential energy expression contains only wvu and,, 00 as unknown functions. 

From Equations (11.79) and (11.80) the simply supported case S1 and the

clamped case C1 are chosen as a good set of examples to investigate various effects.  The

forms of displacements chosen are given in the paper [14.4] by Flaggs and Vinson.

 However, they chose a form for w that differs from the usual assumptions.  It 

must be remembered that an admissible function for the displacement must satisfy at least 

the geometric boundary conditions (i.e. those involving the lateral displacement and its

first derivative) but that function is not unique, hence in this case the following is chosen:
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 The displacements can now be substituted into the Potential Energy expression,

Equation (14.47).  Then taking the variation with respect to the unknown amplitudes
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mnmnmnWm ,  results in the eigenvalue problem below, where one can definemnmn and,

xy NN NN  where here is the ratio of the applied yN  to the applied xN .
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 (14.54)

In (14.54), the ijijij GFijE and,,  quantities are lengthy expressions that can be found 

through the variational process of setting 0VVV , in (14.47), and also given in [14.4].

Equation (14.54) can be simplified by uncoupling the third set of simultaneous

linear algebraic equations above, by substituting for the mnmn   equations in terms mnand

of mnWm , resulting in

mnxmnx WmGNWmFNE ][)(][][ 2 (14.55)

For a symmetrically laminated s4]90,45,45,0[ T300/5208 graphite-epoxy composite

plate with simply supported and clamped boundary conditions, the buckling loads using

the generally laminated plate theory are calculated for both steady state and transient 

hygrothermal conditions.  Figure 14.4 and 14.5 show the effects on the applied buckling

load, xN , of different steady-state hygrothermal environments for clamped and simply-

supported boundary conditions.  The effects of temperature and moisture are both quite

clear.  Note, along the abscissa, one sees the combination of moisture and temperature

that combine to produce buckling with no applied axially compressive mechanical load.  

It is straightforward to develop analogous plots for various sandwich panels.
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Figure 14.4.  Buckling load per unit width as a function of temperature and moisture. 

Figure 14.5.  Buckling load per unit width as a function of temperature and moisture. 
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14.9  Problems

14.1. Consider a composite beam of flexural stiffness 11bD  clamped on each end and 

subjected to a uniform lateral load 0)( qxq lb/in.  Using the Theorem of 

Minimum Potential Energy (MPE) and an assumed deflection function of 

L

x
Axw

2
cos1)(

 where A is the amplitude and L the beam length, find, using classical beam theory:

 a. The magnitude and location of the maximum deflection.

 b. The magnitude and location of the maximum stresses.

 c. Does this form of the deflection function satisfy all of the boundary conditions

necessary to use MPE for this problem?

14.2. Consider an orthotropic composite panel shown in Figure 10.11, which has the

following boundary conditions:

free

clamped0

supportedsimply 

clamped0

by

y

ax

x

 Select a suitable function for the lateral deflection w(x(( ,y,, ) with which to utilize the 

Theorem of Minimum Potential Energy for this composite plate to determine the 

deflection of the panel when it is subjected to a laterally distributed load p(x(( ,y,, ).

14.3. Consider a simply supported composite beam subjected to the load 
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L

x
qxq sin)(

 where q is a constant.  Using the Theorem of Minimum Potential Energy, and 

letting the lateral deflection be 

L

x
Wxw sin)(

 a. Determine W.WW

b. What and where is the maximum stress? 

14.4. Consider a simply supported composite beam subjected to the load 

L

x
qxq sin1)(

where q  is a constant.  Using the Theorem of Minimum Potential Energy, and 

lettering the lateral deflection be

L

x
Wxw sin )(

a. Determine W.WW

b. What and where is the maximum stress? 

14.5. The Theorem of Minimum Potential Energy is to be used to analyze an orthotropic

composite rectangular composite plate.  The plate is midplane symmetric, has no 

moisture or thermal loading, does include transverse shear deformation effects, has

no in-plane displacements, and is subjected to a lateral distributed load p(x(( ,y,, ) only. 

What is the explicit expression for the potential energy V to use in solving thisV

problem?

14.6. The exact solution for a simply supported beam subjected to a uniform lateral load 

per unit length of 0q  is:

0

EI24
)(

xq
xw

 Using the Theorem of Minimum Potential Energy and a deflection function of 

m

n

n
L

xn
Axw

1

sin)(

 a. Determine nA .

b. Where and what is the maximum deflection?

c. Where and what is the maximum face stress?

d. Compare these results with the exact values.  What are the percentage

differences?



CHAPTER 15

GOVERNING EQUATIONS FOR PLATES AND PANELS OF SANDWICH

CONSTRUCTION

15.1  Constitutive Equations for a Sandwich Plate

Consider a cross-section of a sandwich structure shown in Figure 15.1 below. 

The two face thicknesses are designated as ft , and the core depth is labeled ch .  In this 

initial example, the faces are identical in thickness and material, whether isotropic or an

anisotropic composite.

Figure 15.1.  Cross section of a symmetric sandwich structure. 

 For a sandwich plate or panel, the equilibrium equations and the strain-

displacement relations remain the same as they are for a monocoque isotropic or 

composite laminate plate or panel.  See (2.14)-(2.18), (1.16)-(1.21), and (10.47)-(10.52). 

Only the constitutive equations differ from the monocoque structures.

 To illustrate how the same methods used to determine the stiffness matrix

quantities for a laminated structure given in Figure 10.12 can be used to obtain the

stiffness quantities for a sandwich plate, simply define lamina 1 as the lower face, lamina

2 as the core and lamina 3 as the upper face.

 Therefore, in this example if the materials are isotropic ijij QQ , and for face

quantities use subscript f, and for core quantities use subscript ff c.  From (10.58)
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For i and j = 1 or 2, to calculate the in-plane stiffness terms,j
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Similarly, from (10.63)
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For i and j = 1 or 2, the resulting flexural stiffness quantities are seen to bej
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Now for many sandwich structures both 1and,1
c

f

f

c

h

t

E

E
, such that if 

1
ff

cc

tE

hE
 the second term in the bracket of (15.4) is very small compared to unity.  In

that case 
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which is the widely used expression for the flexural stiffness for an isotropic sandwich 

structure.

Likewise all A, B and D quantities can be derived from the laminate analysis, for a 

sandwich structure, isotropic or anisotropic, mid-plane symmetric or asymmetric.  

Subsequently, quite often the resulting expressions can be simplified as shown above.  

For example, consider a mid-surface symmetric rectangular sandwich panel, wherein 

both faces are made of a unidirectional continuous fiber composite with the material 1 

axis coincident with the panel’s x-axis etc., and the core is assumed to contribute nothing

to the stiffness matrix.  In that case 
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It should be noted that for this sandwich 

.4/2

cijij hAD
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 For the transverse shear quantities 5544 and AA , following the same procedures for 

the isotropic sandwich 

ffcc GthGAA 25544    (15.8)

 However, in some cases the loads are such that the core material is compressed 

significantly, and then the question arises as to how does the core behave.  According to

Sikarskie and Mercado [15.1], most of the common core materials behave linearly in

shear initially, and then behave nonlinearly: elastic-perfectly plastic for PVC foams, and 

bilinear for end grain balsa, as examples in the extremes.  Sikarskie and Mercado then

analyze sandwich beams under four point bending and sandwich plates showing the

growth of damage and behavior with the nonlinear core materials.

 Many modern sandwich structures involve foam cores that are compressible, and 

under some loadings the upper and lower faces undergo differing deformation patterns. 

This occurs particularly under lateral localized loads, and can lead to premature failure of 

the structure.  Frostig [15.2] and numerous colleagues including Baruch [15.3], Patel

[15.4], Shenhar [15.5], and Thomsen [15.6] have studied these problems extensively

regarding buckling, vibrations, and delamination.  Also, Frostig [15.2] emphasizes that a

stiffener edge support always causes stress concentrations that affect the faces as well as

the skin-core interfaces with any type of loading.  Computational models for sandwich

panels and shells are also discussed by Noor, Burton and Bert [15.7].

15.2  Governing Equations for Sandwich Plates and Panels

 Using the constitutive equations of the previous Section, all of the governing

equations derived in Chapter 10 apply to sandwich panels.  The only change is to use the

sandwich stiffness matrices of Section 15.1 for the ijijij DBA and,  stiffness matrices. 

 Therefore, for a sandwich panel that is specially orthotropic (i.e. no 16(  and 16) 

26(  terms), mid-plane symmetric (i.e. no26) ijB terms), if classical plate theory is used, the

governing equation for a sandwich panels is given by Equation (11.26).  If transverse

shear deformation effects are included then (11.76) through (11.78) apply.  Thus all of 

the material included in Chapter 11 applies if the sandwich stiffness quantities of Section

15.1 are used.  This result is that this is a short chapter.

15.3  Minimum Potential Energy Theorem for Sandwich Plates

 Analogous to the above the overall expression for the potential energy for a

sandwich panel is given by (14.2), remembering to use the stiffness matrix properties of 

Section 15.1 above for the sandwich panel.  Again, because of this, Chapter 15 is very

short.
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15.4  Solutions to Problems Involving Sandwich Panels

Any solution for the lateral and in-plane displacements for anisotropic or isotropic

plates, with or without transverse shear deformation effects can be used for the solution

to the analogous sandwich plate problem if the proper stiffness matrix quantities are used.

However, care must be taken to subsequently describe the stresses in the faces and 

core.  Again, the very accurate expressions for the stresses of (11.34) can be used.  If it is

assumed that all of the in-plane and bending stresses are face stresses, and that the core

only resists transverse shear loads, then the stresses of (11.34) are reduced to the

following where (i = x, y)

cf

i

f

i

if
ht

M

t

N

2
  (15.9)

and the transverse shear stresses, iz , in the core and the faces are found by using 

Equations (10.46) for 
kxz  and 

kyz and (10.48). 

 The solutions to many problems involving sandwich plates and panels are given 

in textbooks by Plantema [15.8], Allen [15.9], Zenkert [15.10, 15.11] and Vinson [10.1]. 
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15.6  Problems

15.1. Consider a foam core sandwich panel composed of two identical faces and a foam

core.  Each face is a cross-ply laminate of ] construction, with

each ply being 0.25 mm )10.0( thick.  The core is made of Klegecell foam of 

density 3lb/ft0.1  and shear modulus cG of 10,000 psi, 4c , and is 25.4 mm

)1(  thick.  The stiffness matrix quantities for the boron/epoxy faces are:

 )p65

11

 )p64

22

 )p63

12

)psi105.1(MPa10034.1 64

66Q

 and the boron/epoxy density is 3lb/in0721.0f .

(a) Using Equations (15.1) through (15.4), what are the [A[[ ] and [D] stiffness

matrices for this sandwich panel? 

(b) Using the simpler equations analogous to (15.6) and (15.7), what are the [A[[ ]

and [D] stiffness matrices for this sandwich panel? 

(c) What is the largest percentage difference between (a) and (b) above of any

component in either matrix? 

(d) If the panel is subjected to in-plane tension in the x-direction (i.e. the 0

direction) such that the faces and core are equally strained, what percentage of 

the load is carried by the faces, and what percentage is carried by the core, 

using the results of (a) above. 

15.2. Consider a mid-plane symmetric sandwich panel, wherein the faces are made of a 

unidirectional Kevlar 49/epoxy composite with the 1-axis coincident with the x-

axis.  The properties are given in Table 15.2, and 34.012 .  This sandwich 

panel has faces 1 mm (0.04 inches) thick, and the core thickness is 25.4 mm (1 

inch).

 (a) Provide the values of the [A[[ ] matrix and the [D] matrix. 

 (b) How does this panel compare with that of Problem 15.1 which geometrically

is the same, i.e., compare the properties of a sandwich with isotropic faces 

with one of faces of a unidirectional composite? 

15.3. In selecting face materials, quite often one selects a material which has the highest 

specific strength, defined here as /11 , or the highest specific stiffness defined 

here as /11E .  In Table 15.1 and 15.2 

 (a) Which material has the highest specific strength?  Which has the lowest?

 (b) Which material has the highest specific stiffness?  Which has the lowest?
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15.4. Consider a rectangular sandwich hull plate on the flat bottom of a ship as a

rectangular plate under a uniform lateral distributed loading, 0p , from the water 

pressure, and clamped along all edges.  The steel sandwich faces are 512.0 thick, 

and the foam core depth 5c .  The panel is 4 feet wide and 6 feet long, and 

the ship draws 14 feet of water, where sea water weighs 3lb./ft.64 .  The steel face

properties are given in Table 15.2.  What is the maximum stress in the sandwich

panel?  What is the maximum deflection?  Use Table 3.4. 

15.5. A rectangular wing panel component, 2161 , is made of a foam core sandwich

with identical aluminum faces )psi000,20,3.0psi,1010( all.

6E .  The 

panel is considered to be simply supported on all four edges.  With a face

thickness of 406.0  and a core depth of 52.1 , if a maximum design pressure of 

20 psi is reached,

(a)  What and where is the maximum stress?

(b)  What and where is the maximum deflection?

Use Table 3.1. 

15.6. A flat portion of a wind tunnel measuring 4503 is subjected to a uniform 

pressure of 20 psi.  If the sandwich faces are steel (see Table 15.2) and the foam

core depth is 0.1 , what face thicknesses are needed if all four sides of the panel

are:

(a)  Simply supported?  (Use Table 3.1)

(b)  Clamped?  (Use Table 3.4)

The panel cannot be overstressed and the maximum deflection cannot exceed 

512.0 .

15.7. A portion of the cover of a hovercraft is approximated by a rectangular sandwich

plate measuring 8 feet by 4 feet in planform, and is simply supported on all four 

edges.  It is subjected to a uniform lateral pressure of 20 psi.  Assume that in the

design fc th 20

(a) How thick must the faces be if made of 6061-T6 aluminum (see Table 15.2)

 to not be overstressed?

(b) What is the maximum deflection in (a) above?

(c) How much will the panel weigh if 33

Al lb./ft.15,lb./in.116.0 c ?

(d) How thick must the faces be if made of the steel in Table 15.2 to not be

 overstressed? 

(e) What is the maximum deflection in that case?

(f) How much will the panel weight if 33

st lb./ft.15,lb./in.283.0 c ?

(g) Which design will weigh less?

15.8. A designer must design a rectangular plate cover over an opening measuring 9

feet by 3 feet.  The maximum design load uniform pressure is 10 psi.  If the steel

faced sandwich of Table 15.2 is use and assume fc th 20 , what will the panel

weight if all four edges are:

(a) Simply supported?

(b) Clamped?

You may use Tables 3.1 and 3.4.
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15.9. Consider a mid-plane asymmetric sandwich panel, wherein the two faces differ in

thickness and stiffness quantities as shown below

Assume cf ht , that the core material contributes nothing to the stiffnesses

discussed here, and that both faces are specially orthotropic. 

Determine the ijijij DBA and,  stiffness analogous to (15.6) and (15.7) in terms of 

the material properties and sandwich geometries shown above. 

Table 15.1.  Quasi-Isotropic Composite Properties. 

Material Configuration 
fV f

(%)

E

)psi10( 6 )(lb/in3

max

)psi10( 3

C/epoxy Cross Ply 58 12.04 0.0555 55.1

B/epoxy Cross Ply 60 15.37 0.0721 55.1

4V-6AlSiC/T -i Woven 35 27.0 0.1492 245 

2024-T3 Al   10.88 0.0973 50.0 

Ti   16.5 0.160 128.0 

E glass/epoxy Cross Ply 57 3.12 0.0710 82.0 

Welton Steel   30.45 0.283 126.9 
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Table 15.2.  Unidirectional Composite Properties.

Material Elastic Moduli Ultimate Strength Density

Axial

11E

Transverse

22E

Shear

12G

Axial

tens.

11

Trans.

Tens.

22

Shear

12

High

strength

GR/epoxy

20

(138)

1.0

(6.9)

0.65

(4.5)

220

(1517)

6

(41)

14

(97)

0.057

(1.57)

High

modulus

GR/epoxy

32

(221)

1.0

(6.9)

0.7

(4.8)

175

(1206)

5

(34)

10

(69)

0.058

(1.60)

Ultra high 

modulus

GR/epoxy

44

(303)

1.0

(6.9)

0.95

(6.6)

110

(758)

4

(28)

7

(48)

0.061

(1.68)

Kevlar

49/epoxy

12.5

(86)

0.8

(5.5)

0.3

(2.1)

220

(1517)

4

(28)

6

(41)

0.050

(1.38)

S glass/ 

epoxy

8

(55)

1.0

(14)?

0.5

(3.4)

260

(1793)

6

(41)

10

(69)

0.073

(2.00)

Steel
30

(207)

30

(207)

11.5

(79)

60

(414)

60

(414)

35

(241)

0.284

(7.83)

Aluminum

6061-T6

10.5

(72)

10.5

(72)

3.8

(26)

42

(290)

42

(290)

28

(193)

0.098

(2.70)

*Moduli in Msi (GPa); Stress in Ksi (MPa); Density in 
3

lb/in
3 3

(g/cm )
3



CHAPTER 16

ELASTIC INSTABILITY (BUCKLING) OF SANDWICH PLATES

16.1  General Considerations

 As stated previously, structures usually fail in one of four ways:

overstressing (strength critical structure) 

over deflection (stiffness critical structure)

resonant vibration

buckling.

 For many cases, because sandwich structures (compared to monocoque structures)

minimize stresses, are extremely stiff, and have high fundamental natural vibration

frequencies, care must be taken to insure that unanticipated buckling does not undermine 

a structural design. 

 In monocoque structures for given plate dimensions, material, boundary

conditions, and a given load type (in-plane compression, in-plane shear), only one

buckling load will result in actual buckling.  This is the lowest eigenvalue of a countable

infinity of such eigenvalues.  All other eigenvalues exist mathematically, but only the

lowest value has physical significance.  This differs from natural frequencies in which

several eigenvalues can be very important. 

 For the simplest cases, for columns and isotropic plates, an introduction was given

in Chapter 6.  While philosophically the simple examples cover the topic of buckling;

more complex structures can have several types of buckling instabilities, any one of 

which can destroy the structure.

 Historically, there have been four major textbooks dealing primarily with elastic

stability or buckling.  These are authored by Timoshenko and Gere [6.1], Bleich [6.2],

Brush and Almroth [12.1] and Simitses [12.2].  A new text by Jones [6.4] will

supplement these four.  Although these texts deal primarily with structures other than

sandwich, the solutions can be applied by using the appropriate flexural stiffnesses.

16.2  The Overall Buckling of an Orthotropic Sandwich Plate Subjected to In-Plane

         Loads - Classical Theory

 From previous developments, it was seen that for a plate there are five equations 

associated with the in-plane stress resultants xyyx NNN and,  and the in-plane 

displacements they cause, namely 00 and vu .  For the isotropic rectangular plate, see 

(2.50)-(2.54), and the isotropic circular plate, see (5.15), (5.16) and (5.25) through (5.27). 

For a composite material plate, the in-plane equilibrium equations are given by Equations



306

(11.6) and (11.7).  From Equation (10.66), for the case of mid-plane symmetry )0( ijB

and no thermal or moisture considerations it is seen that the in-plane constitutive

equations are: 

0

16

0

12

0

11 2 xyyxx AAAN  (16.1) 

0

26

0

22

0

12 2 xyyxy AAAN  (16.2)

 .2 0

66

0

26

0

16 xyyxxy AAAN  (16.3)

For this case, all of the equations of Section 12.2 apply, simply by using the

sandwich stiffness properties for the ijD  that are found in Section 15.1. 

Likewise, for the mid-plane symmetric panel, the six governing equations 

involving ,and,,,, wQQMMM yxxyyx  are given by Equations (11.9), (11.11), (11.12), 

(11.17), (11.18), and (11.19), the latter three neglecting the 2616 and DD terms.  One can

see there is no coupling between in-plane and lateral action for the plate with mid-plane 

symmetry.  Yet it is well knows and often observed that in-plane loads do cause lateral 

deflections through buckling, which is usually disastrous. 

The answer to the paradox is that in the above discussion only linear elasticity r

theory is considered, while the physical event of buckling is a non-linear problem.  For 

brevity, the development of the non-linear theory will not be included herein because it is

included in so many other texts, such as those cited in Section 16.1.

The results of including the terms to predict the advent or inception of buckling

for the beam and plate are, modifying Equation (11.26), shown previously as (12.4),
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x

w
D

yxy

x

yyyyxx

xxyyyyxxxx
 (16.4) 

where clearly there is a coupling between the in-plane loads and the lateral deflection.  

For overall buckling of a sandwich panel the 321 and, DDD  flexural stiffnesses are given 

by (15.1) through (15.8) 

 It should be noted that the buckling loads, like the natural frequencies, are 

independent of the lateral loads, which will be disregarded in what follows.  However, in 

actual structural analysis, the effect of lateral loads, in combination with the in-plane 

loads could cause overstressing and failure before the in-plane buckling load is reached.  

However, the buckling load is still independent of the type or magnitude of the lateral 

load, as are the natural frequencies.  Incidentally, common sense dictates that if one is 

designing a structure to withstand compressive loads, with the possibility of buckling 

being the failure mode, one had better design the structure to be mid-plane symmetric, so 
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that 0ijB .  Otherwise the bending-stretching coupling would likely cause overstressing

before the buckling load is reached.

Looking now at (16.4) for the buckling of the composite plate under an in-plane

compressive load xN only, and ignoring ),( yxp Equation (16.4) becomes:

.02
2

2

4

4

222

4

34

4

1
x

w
N

y

w
D

yx

w
D

x

w
D x   (16.5) 

Again, one may assume the buckling mode for a sandwich plate to be that of the Navier 

solution for the case of the plate simply supported on all four edges: 

.sinsin),(
11 n

mn

m b

yn

a

xm
Ayxw

yyxx
 (16.6)

 Substituting (16.6) into (16.5) it is seen that the equation is satisfied only when 

xN  has certain values, namely the critical values, 
crxN ,

.2

4

2

22

3

4

12

22

cr
b

n
D

b

n

a

m
D

a

m
D

m

a
N x    (16.7)

Again several things are clear:  Equation (16.5) is a homogeneous equation, so this is an

eigenvalue problem and therefore one cannot determine the value of mnA ; and again only

the lowest value of 
crxN is of any importance.  However, it is not clear which value of m

and n results in the lowest critical buckling load.  All values of n appear in the numerator 

for this case of all edges being simply supported, so n = 1 is the necessary value.  But m

appears several places, and depending upon the value of the flexural stiffnesses

321 and, DDD , and the length to width ratio, i.e., the aspect ratio, of the plate, a/b, it is

not clear which value of m will provide the lowest value of 
crxN .  However, for a given

plate this is easily determined computationally.

What about the buckling loads of composite material sandwich plates with 

boundary conditions other than simply supported?  It is seen that all combinations of 

beam vibrational mode shapes are applicable for plates with various boundary conditions. 

These have been developed by Warburton [8.3] and all derivatives and integrals of those

functions catalogued conveniently by Young and Felgar [3.1, 3.2] for easy use.  Likewise

they can be used instead of Equation (16.6) to obtain solutions of Equation (16.5) to

determine the critical buckling load per unit width,
crxN .

 Using classical plate theory the treatment of overall buckling for sandwich plates

with other boundary conditions is given in Section 16.5.2 below.

 The buckling loads calculated in this Section do not include transverse shear 

deformation effects, and are therefore only approximate – but they are useful for 

preliminary design, because of their relative simplicity.  If transverse shear deformation

were included, the buckling loads are lower than those calculated with classical theory. 
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Therefore the buckling loads calculated, neglecting transverse shear deformation, are not 

conservative.  Transverse shear deformation effects will now be investigated.

16.3 The Buckling of Honeycomb Core Sandwich Panels Subjected to In-Plane

Compressive Loads

 In sandwich plates and panels the core is usually either a honeycomb, a foam or 

solid core, a truss core or web core.  The honeycomb core is treated in this Section.

 Consider a rectangular sandwich panel of length a (the load direction), width b,

face thickness ft , core depth ch , core cell wall thickness ct , and diameter d of a circle d

inscribed in the cell as shown in Figures 16.1 and 16.2 for the hexagonal-cell honeycomb

core.  A sketch analogous to Figure 16.2 could also be drawn for the square-cell

honeycomb.  It is assumed for this study that the core is composed of an isotropic

material of shear modulus cG  and modulus of elasticity cE .  If the core is orthotropic,

the properties normal to the plane of the panel for cE  and cG are used.  Consider the

faces to be composed of identical composite materials that are balanced about their own 

planes of symmetry with no unwanted couplings, i.e., 0ijB and all 16(  and 16) 26)(

terms equal to zero.  It is assume that the in-plane load in the x-direction is uniform and 

has the value of xN  (load/unit width) in compression, so xx NN  for convenience.

Figure 16.1.  Sandwich panel with in-plane compressive load in the x-direction.  (Reprinted from 

References [1.7] and [10.1].)
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Figure 16.2.  Honeycomb core in plan view.  (Reprinted from References [1.7] and [10.1].)

16.3.1  Face Stresses

 If it is assumed that the in-plane loads are resisted only by the faces, not the 

honeycomb core.  Therefore, the applied compressive face stress in the load direction is 

written as

fxx tN 2/   (16.8)

For an applied load per unit width, xN , the face stress x is, of course, restricted to some 

prescribed maximum value to prevent overstressing.

The honeycomb sandwich panel shown in Figure 16.1 can be overstressed 

according to Equation (16.8), but can also buckle in one of several modes, any one of 

which will render the panel to be useless.  These modes of buckling are overall 

instability, core shear instability, face wrinkling, and face dimpling (monocell buckling). 

These are discussed in turn. 

16.3.2  Overall Instability

The equation to use for the compressive face stress for overall buckling of the

subject panel that includes the effects of transverse shear deformation is given by [16.1]

as follows, where the bar over the modulus indicates that for stresses above the 

proportional limit, a plasticity reduction factor should be used.
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In this equation, the coefficient K is given byK
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ccyyzccxxz hGUhGU ,  (16.14)

 In Equation (16.13) the iVi  quantities are seen to be particular ratios of the 

sandwich-panel flexural stiffness D, to the transverse shear stiffness U, hence the UU V

quantities are called the transverse shear flexibility parameters.  The D quantities relate to 

face properties while the U quantities are core properties.  The effective core moduli,U cxG

and cyG  are defined in Equation (16.27) and (16.28). 

 The constants 1C  through 4C in Equations (16.10) and (16.11) are associated 

with the boundary conditions and are listed as follows where n is the number of buckling 

waves in the direction of the compressive loading. 

(1)  All edges simply supported (Note that this gives results identical to Equation (16.7)) 

2

22

3222

2

41 ,1,
a

bn
CC

bn

a
CC  (16.15) 

(2)  Loaded edges simply supported, other edges clamped 
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(3)  Loaded edges clamped, other edges simply supported 
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(4)  All edges clamped 
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 (16.18) 

Obviously, if the critical face stress given by Equation (16.9) is higher than the allowable

compressive stress of the face material, the panel will be overstressed before there is an 

overall buckling problem.

16.3.3  Core Shear Instability 

Referring to the expressions for overall stability, if the value of xVx  is increased 

through increasing the panel bending stiffnesses ( yx DD and ) or decreasing the core

transverse shear stiffness ( xzU ), the value of K in Equation (16.10) is decreased.  ThereK

exists a value of xVx  that causes K to equalK x1 .  This value depends both on thexVx/

boundary conditions and the effective shear moduli of the core ( cxG , cyG ), that are

defined in Equations (16.27) and (16.28).  At this particular value of xVxK /1 , K isK

independent of the length-to-width ratio a/b and n is infinite.  For values of xVx  greater 

than this value, xVxK /1 , which is true for a great number of practical sandwich panels

because they have high values of xVx .  Under these conditions, the critical stress can be

written as follows:
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This value of critical stress is called the core-shear instability stress and cannot be

exceeded for any given sandwich construction.  It is seen that Equation (16.19) is 

independent of the panel length, width, and boundary conditions.  Core shear instability is 

illustrated in Figure 16.3.

Figure 16.3.  Core shear instability.  (Reprinted from References [1.7] and [10.1].) 

The particular value of xVx at which xVxK /1 , is the value for which the critical

stresses for overall buckling and core shear instability are equal.  This value is given in

Equation (16.20) and is dependent on the boundary conditions and the effective shear 

moduli of the core, cxG  and cyG , defined in Equations (16.27) and (16.28).  The values 

for the boundary condition factors 1k are listed in Table 16.1. 

cycxx GGrrBkVx /here  where11  (16.20) 

More specifically this can be written as follows, where E refers to a modulus multiplied 

by a suitable plasticity reduction factor, when stresses exceed the proportional limit. 

Otherwise, the modulus of elasticity E is used. E
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Table 16.1.  Boundary Condition Factors ik for Various Edge Conditions.

Boundary Condition 
1k

All edges simply supported 

Loaded edges simply supported, other edges clamped 

Loaded edges clamped, other edges simply supported 

All edges clamped 

1

¾

1

¾
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16.3.4  Face Wrinkling Instability

Wrinkling occurs across many cells of the honeycomb core and, under the loading

conditions described here, extends across the width of the plate, but is localized in the 

direction of the applied load; that is, the wrinkle is essentially a short wavelength buckle,

as shown in Figure 16.4.  Heath [16.2] derived an expression for this mode of instability

for the case of isotropic materials as 

2

1

2cr
)1(3

2 fc

c

f EE

h

t
(16.22)

Figure 16.4.  Face wrinkling instability.  (Reprinted from References [1.7] and [10.1].) 

Heath defined cE  incorrectly in his paper, but Hemp [16.3] clarified the point in an 

earlier paper.  The face-wrinkling stability equation for isotropic faces given by Equation 

(16.22) can be modified for anisotropic materials to be: 
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 (16.23) 

An earlier equation for face wrinkling was developed by Hoff and Mautner [16.4],

and given by

3/1

cr )( cxzcxfx EEEc (16.24)

for a honeycomb sandwich panel where cxzcxE  are given by Equations (16.27) and cxzGand

(16.28), and c is a constant usually 0.5, 0.6, or 0.65.  Note that here the critical stress 

depends on material properties only.  It is not clear whether one should use Equation 

(16.23) or (16.24).  The analyst/designer can be conservative by using the equation which 

gives the lowest critical stress for the particular case being studied. 

16.3.5  Monocell Buckling or Face Dimpling 

In honeycomb core sandwiches, a fourth type of instability occurs because the 

faces over one cell can buckle as a small plate supported by the cell walls.  Methods of 

analysis developed at the Forest Products Laboratory used an empirical equation having 
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the form of the plate-buckling equation with the numerical coefficient determined by

empirical means.  The result for an isotropic face material is as follows, where the

subscript T denotes the tangent modulus.T

2

2cr
)1(

2

d

tE
fTf

For anisotropic faces, the expression can be written as 
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(16.25)

16.3.6  Core Properties

 Mechanical properties of honeycomb core used in the previous equations are 

called “effective” and are designated with a prime, because they are properties associated 

with the core acting as a homogeneous material having these “effective” properties.  They 

are functions of the core material’s properties, cycxcc GGE and,,, , the core wall

thickness ct , and the cell size d.  To truly optimize the structure for minimum weight, it dd

is advantageous to relate the effective properties back to fundamental geometry and 

material properties.  For foam or solid core sandwich panels there is no need for effective

properties and the actual mechanical properties are used for cycxcc GGE and,,, .

 For hexagonal-cell honeycomb core having some double walls as shown in Figure 

16.2, the properties were developed by Kaechele [16.5], and shown below.  These 

effective core properties can be related to the geometry and actual material properties as 

follows, where ccc GE and,,  are the weight density, the shear modulus and the modulus 

of elasticity of the core material itself: 

ccc dtk )/(2 (16.26)

cccx GdtkG )/(3  (16.27)

cccy GdtkG )/(4  (16.28)

EdtkE cc )/(2 (16.29)

It is seen from Equations (16.27) and (16.28) that here 

43 // kkGGr cycx  (16.30)
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 For the hexagonal cell construction of Figure 16.2 as well as other types of 

honeycomb core, the values of 432 and,, kkk  are given in Table 16.2 according to

Kaechele [16.5] and MIL HDK-23 [16.1].  For other honeycomb configurations, the

values of these constants can be easily derived using the methods of Kaechele [16.5].  A 

fairly inclusive listing of commercially available honeycomb core properties are given in

Appendix 1 of [10.1]. 

Table 16.2.  Values of 432 and, kkk  for Various Honeycomb Constructions. 

Type of Construction
2k 3k 4k

Hexagonal (Kaechele) 

Hexagonal (MIL HDBK-23) 

Square cell (Kaechele) 

Square cell (MIL HDBK-23) 

8/3

8/3

2

2

5/3

4/3

1

1

1

8/15

1

1

16.3.7  Plasticity Effects 

 The extension of elastic buckling theory to account for the buckling of structures 

at stresses above the proportional limit of the material has been widely studied mostly for 

ductile metallic materials.  Many investigations have used the elastic equations, wherein

Young’s modulus E has been multiplied by a plasticity reduction factor E .  However, 

there is considerable difference of opinion about a correct form for .  These expressions 

range in complexity and it is not at all clear which expression has more merit.  For 

structural optimization, if the compressive stress-strain curve of the face material has a 

proportional limit, then for stresses above the proportional limit, all values of fxE  can be 

replaced by fxE where 

fxfx EE EE (16.31)

 One often uses a plasticity reduction factor in which 2/1)( fxTfxfx EEE  where the

subscript T denotes the tangent modulus at that face stress.  This will require an iteration T

to match face stress with tangent modulus.  It is unlikely that for the in-plane 

compression in the x-direction, the stresses in the y-direction will cause deviation from 

the elastic value yE , but this could also be modified.  For many composite materials 

usually the moduli are linear to failure, so this subsection can be ignored. 

16.3.8  Weight Relationship 

 To obtain a weight per unit area of the honeycomb sandwich structure, the

following may be used: 

adccff WahtW 2 (16.32)
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 The weight of the adhesive or other joining material, adWa , cannot be easily related 

to the variables discussed earlier and is dependent upon the material, method of joining,

fabrication techniques, and skill and temperament of the personnel.  Since in many cases

this is a small fraction of the weight and, because of the factors involved, it will not be

specified further and need not be accounted for in the comparisons to select the optimum

geometry and materials.  However, care should be used to include it when comparing 

structures employing no adhesive or with other types of construction.

16.3.9  Analysis and Design Methods

 For a honeycomb sandwich panel (such as that shown in Figure 16.1) to withstand 

an in-plane compressive load xN , in force per unit width, the materials and component 

sizes must be sufficient to insure that overstressing [Equation (16.8)], overall buckling

[Equation (16.9)], core shear instability [Equation (16.19)], face wrinkling [Equation

(16.23) or (16.24)], and face dimpling [Equation (16.25)] will not occur.  If any of the

first four occur the panel is useless.  If face dimpling occurs, it may not cause structural

failure, but peeling of any coating such as paint could occur, the surfaces may be

“unsightly,” a boundary layer could be tripped from laminar to turbulent flow, or 

permanent core crushing in that vicinity may occur.  These should be avoided.

16.4 The Buckling of Solid-Core or Foam-Core Sandwich Panels Subjected to In-

Plane Compressive Loads

16.4.1  Face Stresses 

 For foam core sandwich panels and many other solid core panels it can be

assumed that all in-plane loads, and bending loads as well, are resisted by the faces only. 

Therefore, in this case Equation (16.8) is used to determine the face stresses in terms of 

the applied load per unit width, xN .

16.4.2  Overall Buckling 

 The equation for the overall buckling of an anisotropic composite sandwich panel

with a solid core subjected to an in-plane compressive load is given by Equations (16.9)

through (16.14).  However, in this case the actual mechanical properties of the core, cxG

and cyG are used in Equation (16.14).

16.4.3  Core Shear Instability

 Core shear crimping or core shear instability will occur at a face stress lower than 

that of overall panel buckling when

rBkVxVV 11 (16.33)
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The critical stress value on core shear instability is given by
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 It is seen that overall panel buckling and core shear instability will occur at the 

same face stress value when rBkVxVV 11 , or more specifically when 
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Thus Equations (16.9) and (16.34) completely describe the conditions of the

simultaneous overall buckling of the panel and core shear instability without the 

complexities of using Equations (16.10) through (16.18) with the lengthy determination 

of K.

16.4.4  Face Wrinkling 

In addition to overall panel buckling and core shear instability, a short wavelength 

buckling can occur if the faces are thin and can be described by
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Of course the Hoff-Mautner equation is still used also

3/1

cr ][ cxzcxfx GEEC  (16.37) 

where the constant C is 0.5, 0.6 or 0.65 by various users.  Again, it is seen that with this C

equation the critical strain is dependent on material properties only.  Plantema [15.8] uses 

0.82 for the constant C in Equation (16.35), and Dreher [16.6] says that this correspondsC

well with the experimental data.  He states emphatically that C = 0.5 does not correspond C

with his test results. 

16.4.5  Weight Relationship 

The weight of the solid-core sandwich panel per unit planform area, w is given by

adccff WahtW 2  (16.38) 

where i  are the weight density of the materials involved and adWa  is the non-analytic

weight per unit planform area of the adhesive bonding the face to the core. 
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16.4.6  Analysis and Design Methods 

 For a foam- or solid-core sandwich panel to withstand an in-plane compressive

load xN , in force per unit width, the materials and components thicknesses must be 

sufficient to insure that overstressing [Equation (16.8)], overall buckling [Equation

(16.9)], core shear instability [Equation (16.34)], and face wrinkling [Equations (16.36)

or {16.37)] will not occur, because any one of the above will cause panel failure.  With

the satisfactory design, the panel weight is determined from Equation (16.38).  As

discussed previously, foam cores available today comprise an almost continuous value of 

shear modulus G and density G , usually a linear relationship between them. 

16.5 Buckling of a Truss-Core Sandwich Panel Subjected to Uniaxial Compression

 Another type of sandwich construction for panels subjected to uniaxial 

compression involves a corrugated core, sometimes referred to as single-truss core.  

Several promising and clever manufacturing methods have been devised to make unique

use of fiber-reinforced polymer matrix composites for this type of construction.  At least 

one of these involves weaving the filaments of the face material and core material

together at the junctions, thus increasing the structural integrity of the joint and avoiding

the joining problems associated with conventional construction.

 The analysis methods developed herein are applicable to both metallic and 

composite material construction and account for material orthotropy in both the face and 

core.  They are also applicable to panels at elevated or lowered temperature, under steady 

state and nearly uniform temperatures.  Only the stress-strain curve is necessary for each 

temperature under consideration.

 Consider the flat corrugated-core (truss-core) sandwich panel cross-section

idealized in Figure 16.5 for the panel shown in Figure 16.1(a).  For a given material

system there are four geometric parameters to consider; namely the core depth, ch , the

web thickness, ct , the face thickness, ft , and the angle the web makes with a line normal

to the faces, .
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Figure 16.5.  Cross-section of corrugated-core sandwich panel.  (Reprinted from References [10.1], [16.12]

and [16.13].) 

 This panel will fail if any of the following five events occur:  overstressing of the

face, overstressing of the core, overall panel instability, local face buckling, or web

buckling.  It can be shown that face wrinkling, which can occur in honeycomb sandwich

construction will not occur in this type of construction, because it can be shown that local

face buckling and web buckling will invariably occur at lower values of the applied load. 

Likewise, core shear instability, in the sense of shear crimping in honeycomb sandwich

construction cannot occur for the same reason.  Hence, there are three modes of 

instability and four geometric parameters.

 Unlike honeycomb and solid- or foam-core sandwich construction, with a truss-

core sandwich, it is intended that the core will carry or resist a portion of the in-plane

compressive load.  Thus, it is necessary to define some elastic and geometric quantities 

before proceeding. 

16.5.1  Elastic and Geometric Constants

 These are determined from those given in more general form by Libove and 

Hubka [16.7].  The core area per unit width and the area moment of inertia of the core per 

unit width are given by

sin

c
c

t
A (16.39) 

12sin12

2

cccc
c

hAht
I  (16.40) 

The extensional stiffness of the plate per unit width in the x-direction, 11A , is 

given by the following for isotropic materials,
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ffcc tEAEA 211 (16.41) 

where cE and fE  are the compressive moduli of elasticity of the core and face material,

respectively.  Therefore, Equation (16.41) is 11A  for the truss-core panel in the language

of composite theory. 

 The transverse shear stiffness per unit width, in the x-direction and the y-direction,

respectively, are found to be, in the notation of [16.7] 

tan

coscc

xq

tG
D (16.42) 

sincos
)1(

2

2

c

cc

yq

tE
D  (16.43) 

The latter expression agrees with that derived by Anderson [16.8].  Thus, Equations

(16.42) and (16.43) are 4455 and AA for the truss-core panel [see Equation (10.71)]. 

Lastly, the moment of inertia per unit width of the faces, considered as 

membranes, with respect to the sandwich middle surface, is seen to be, as before, 

2

2

cf
f

ht
I  (16.44)

16.5.2  Overall Instability

The best expression describing the overall instability of a corrugated-core

sandwich panel composed of isotropic materials under uniaxial compressive loads is

derived by Seide [16.9] NACA TN2679 (which is used in ANC-23 in slightly modified 

form [16.1]) 
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KIE
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ff

x  (16.45) 

where K is the buckling coefficient derived and plotted in Figures 2 and 4 of ReferenceK

[16.9].  It is given as a function of length to width ratio (a/b), for the cases of the 

unloaded edges simply-supported and clamped, for various values of the transverse shear 

flexibility parameter, V, defined asVV
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The buckling coefficient K for this type of construction has the same generalK

characteristics as that of a flat homogeneous plate; namely, that for a/b > 1, successive 
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minima occur for increasing numbers of half sine waves in the loading direction, each

minimum having the same value of K.  Hence, this minimum value can be taken as the

lower bound for all panels where a > b.  Therefore, Figure 3 and 5 of Reference [16.9]

can be used.  These figures make use of the ratio ffcc IE / , which for this ff IE

construction is given by 

sin6
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f
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f
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ff
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t
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IE

IE
(16.47)

For example, for panels with the unloaded edges simply supported the buckling

coefficient K is given as follows:K

222

2

)1(2)1(

1

ff

cc

ff IE

IE
K

where here ba / .

 There is no published analytical expression describing the overall instability of 

corrugated-core sandwich panels utilizing orthotropic materials and for in-plane

compressive loads.  However, it is not difficult to deduce the form by observing the

difference in the analogous expression for honeycomb-core sandwich panels for isotropic

and orthotropic materials.

 From the isotropic expressions on pages 53, 82, an 96 of ANC-23 [16.1], it is seen

that when the overall instability expressions are written for orthotropic materials fE is

replaced by fyfx EE  when flexural properties are involved, while fE is replaced by fxE

in extensional property expressions.  It is therefore deduced that for corrugated-core

panels utilizing orthotropic materials using Equations (16.44), (16.45) and the above, the

critical load per unit width is

2

22

2b

KhtEE
N

cffyfx

x (16.48)

It is also hypothesized that Figures 3 and 5 of Reference [16.10] may be used to 

determine K if the following expressions are used instead of Equations (16.46) and K

(16.47):
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16.5.3  Face Plate Instability 

 From Figure 16.5 it is seen that each plate element of the face from A to B can

buckle due to the axial loading xN .  Since the support conditions at A and B, the

unloaded edges, are not known precisely, it is conservative to assume a simply support. 

Since for almost all constructions the panel length a is greater than the distance AB, the

buckling coefficient K is taken as four.  Anderson [16.11] discusses the effect of moreK

complex buckling modes due to the interaction between face and core elements. 

However, he shows that, at most, the buckling coefficient would be 4.21 for simultaneous

buckling of face and core elements.  Hence the value of four appears very realistic as a 

conservative value.  The face plate instability equation can therefore be written in terms

of the quantities given in Figure 16.5 as
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 (16.51)

where f is the critical stress in the face. 

Utilizing the critical stress expression for an orthotropic plate given by 

Timoshenko and Gere [6.1], and using the terminology of Figure 16.5, the expression can 

be written as 
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 (16.52)

where

),()1(22 0 fciGEEEE yxixyixyiixyxiiyixi i  (16.53) 

16.5.4  Web-Plate Instability

Similar to the above, the plate instability equation for a web element can be 

written as
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tE
(16.54) 

where
crw  is the critical stress in the web element.  Likewise, for orthotropic composite 

materials
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where ocE  is given by Equation (16.53). 

16.5.5  Applied Load-Face Stress Relationship 

 By enforcing equal axial strains in the core and face to insure compatibility in the 

overall construction, the following important relationship is easily derived for the stress 

in the core material as a function of the face stresses, 

fx

cx
fc

E

E
(16.56)

Then since ffxfN 2 and cxc AN AA , the face stress can be written in terms of the

applied load per unit width xcxfx NNN :
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 (16.57) 

For orthotropic composite materials the modulus values to use in Equations (16.56) and 

(16.57) are those in the load direction.

Both Equations (16.51) and (16.52) hold only when stresses in the face and core

are both below the proportional limit of each material.  Above the proportional limit an

iterative procedure would be needed to insure compatibility in determining an analogous

relation to Equation (16.56).  If both core and face materials are the same fc  and 

the procedures which follow hold above the proportional limit if a suitable plasticity

reduction factor is used with the modulus of elasticity.

16.5.6  Weight Relationship

From Figure 16.5 it is seen that 

adcffW 2  (16.58) adccff WaAt

where fc and  are the weight density of the core and face material, respectively, and 

W and W adWa are the weight per unit planform area of the panel and the weight of the 

adhesive or other material used to join face and core, respectively. 
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16.5.7  Analysis and Design Methods 

 For the truss core panel subjected to a uniform in-plane compressive load per unit 

width, xN , the face stress is given by Equation (16.57) and the core stress by Equation

(16.56).  These stresses must be maintained at or below the allowable compressive stress

for the face material and core material, respectively.  For orthotropic materials the

properties in the load direction should be used (the x-direction).  It is also necessary that,

with a specific applied load xN , neither overall buckling [Equations (16.45) or (16.48)]

nor face plate buckling [Equations (16.51) or (16.52)] nor web plate buckling [Equations

(16.54) or (16.55)] occur. 

 Once satisfied of the structural integrity, Equation (16.58) is used to determine the

panel weight.

 Under in-plane compressive loads, because the core in truss-core sandwich panels

does resist a portion of the load, and because the construction has such a high flexural

stiffness, truss-core sandwich panels can efficiently resist higher loads than honeycomb

solid- or foam-core sandwich panels.  As a secondary advantage, this type of construction

can be used as a heat exchanger or a liquid storage container.

16.6 Elastic Stability of a Web-Core Sandwich Panel Subjected to a Uniaxial

Compressive In-Plane Load

16.6.1  Introduction

 Consider a flat web-core sandwich panel, generalized to include some arbitrary 

angle , as shown in Figure 16.6.  The overall geometry and loading is given in Figure

16.1(a).  There are five geometric variables; namely, the core depth ch , the web thickness 

ct , the face thickness ft , the angle the web makes with a line normal to the faces , and 

the distance between web elements fd .

Figure 16.6.  Generalized web-core sandwich panel.  (Reprinted from References [1.7] and [10.1].) 
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The panel is considered to fail if any of the following instabilities occur: overall

panel instability, local face buckling in the region from A to B, local face buckling in the

region B to C, and web element buckling (see Figure 16.6).  In each case, the expression 

used to mathematically describe the instabilities is the best available in the literature. 

Overstressing can occur if the stresses in either the face or core exceed established 

allowable stresses for the materials used.  Hence, there are five geometric variables and 

four modes of failure 

16.6.2  Elastic and Geometric Constants

 The elastic and geometric constants for the web-core construction can be 

determined from those given in more general form by Libove and Hubka [16.7].  The

core area per unit width and the moment of inertia of the core about the centroidal axis

per unit width are given by 

cos)tan/( cfccc hdhtA (16.59)

12/)tan(cos12/ 23

cccfcc hAhdhtI )( (16.60) 

 The transverse shear stiffness of the core, per unit width in the x-direction )(
YqD

of an element of the sandwich panel cut by two y-z planes is seen to be negligible, due toz

the lack of structural continuity of the web core.  Hence, following Libove and Hubka

[16.7], as well as Seide [16.9].

0
Yq  (16.61)

Hence, the transverse shear flexibility parameter in the y-direction is given by

Yqffy DbIEVy

22 /  (16.62) 

This is not to say that the construction as a whole has no transverse-shear stiffness, but 

rather that the stiffness that does exist depends upon the faces to provide the continuity.  

In fact Seide discusses this case and states that for the case of 
XqD and 0

Yq , the

compressive buckling load is finite, rather than being equal to zero, and varies with plate 

aspect ratio.

 It should be noted that when 0 and 0fd , the construction has a continuous 

core and is called corrugated core or truss core, with the result that 0
Yq , and there is 

a specific value of  for which the weight is a minimum.  This construction is treated in

Section 16.5.

The area moment of inertia per unit width of the faces considered as membranes, 

with respect to the sandwich middle surface, per unit width, is seen to be
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2/2

cff htI  (16.63)

16.6.3  Applied Load-Face Stress Relationship 

 For a given xN , the face stress and the core stress are given by Equations (16.56)

and (16.57) where cA is given by Equation (16.59).

16.6.4  Overall Panel Instability 

 Just as in Section 16.5.2 earlier, the best expression applicable to the overall 

instability of a web-core sandwich panel composed of isotropic materials under in-plane

compressive loads is derived by Seide [16.9] and given as follows:

22 2/ bKIEN ffx (16.64) 

where K is the buckling coefficient derived and plotted in Figure 2 and 4 of ReferenceK

[16.9] for various boundary conditions.  For this construction, with simply supported 

unloaded edges, K can be given explicitly asK
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where here ba / .

There is no published analytical expression describing the overall panel instability

of web-core sandwich panels utilizing orthotropic materials subjected to uniaxial 

compressive loads.  However, as in previous sections, it is not difficult to deduce the 

form of the equation by observing the differences in the analogous expressions for 

honeycomb-core sandwich panels for isotropic and orthotropic materials.

The remainder of this subsection is identical to Section 16.5.2, but is repeated 

here for completeness.  From the expressions in Reference [16.1], it is seen that when the 

overall instability expressions are written for orthotropic materials fE  is replaced by 

2/1)( fyfx EE when flexural properties are considered, while fE is replaced by fxE  when

extensional properties are involved.  It is therefore deduced that for web-core panels 

utilizing orthotropic materials, Equations (16.64) becomes, utilizing Equation (16.63), 

222/12 2/)( bKhtEEN cffyfxx  (16.66)

It is also hypothesized that Figures 2 and 4 of Reference [16.10] may be extended 

to find the buckling coefficient K for the orthotropic construction if K ffcc IE /  isff IE

determined by
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 Likewise Equation (16.62) may be extended to orthotropic construction by 

replacing

)1(by )1(and,)1(by  )1( 2

xyffyxfxyff f

16.6.5  Face Plate Instability 

 From Figure 16.6 it is seen that the face elements A-B and C-D may each undergo

an elastic instability under in-plane compressive loads.  Since the unloaded edge supports

are not known precisely, it is conservative to assume a simple support.  Since for almost 

all panels, the panel length a is much greater than the width, which is the distance A to B

or C toC D, the buckling coefficient is taken as 4.

 For the faces made of an orthotropic material the expression for the critical face

stress given by Timoshenko and Gere [6.1] is used.  In terms of the quantities defined in

Figure 16.6 the critical stress can be written as follows for the region A to B:
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and in the region B to C:
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where )0 fi  is given by Equation (16.53). 

16.6.6  Web-Plate Instability 

 Similar to the above, the plate instability equation for a web element composed of 

an orthotropic material can be written as
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 (16.70) 

16.6.7  Applied Load-Face Stress Relationship

For the construction of Figure 16.6, it is seen that the load per unit width, xN , is

related to the face and web stresses, cf and , by the following relationship:
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ffccx tAN 2  (16.71)

By equating the axial strains in the core and face to insure compatibility in the overall

construction, the following relationship is easily derived: 

fxcxfc EE /  (16.72)

Thus from Equations (16.71), (16.72), and (16.59), the load per unit width xN  is related 

to the face stress as follows: 

}2]tan(/{[ fcffxcccxfx thdEhtEN  (16.73)

Both Equations (16.72) and (16.73) hold only when stresses in the face and core 

are below the proportional limit of each material, where Hooke’s Law applies.  Above the 

proportional limit of either material an iterative procedure would be needed to insure 

compatibility in determining an analogous relationship to Equation (16.62), employing 

some reduced moduli fici EE and  involving a plasticity reduction factor. 

 If both core and face materials are the same, cf , then the same procedures 

apply for stresses above the proportional limit if a suitable plasticity reduction factor is

used with the modulus of elasticity.

16.6.8  Weight Relation

 From Figure 16.6, it is seen that 

adcffW 2  (16.74) adccff WaAt

where fc and are the weight densities of the core and face material, respectively, and 

W and W adWa  are the panel weight per unit of planform area and the weight of the adhesive 

or other material used to join face to core, respectively.

 At the outset, independent of the material system, it is clear that from Equations

(16.68) and (16.69) that for minimum weight construction of the web-core sandwich

0 (16.75)

This is intuitively obvious.  The result is that all other expressions used for optimization

are simplified, and the construction shown in Figure 16.6, with 0  now assumes the 

familiar web-core configuration.
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16.6.9  Design and Analysis

 For the web-core panels subjected to an in-plane compressive load per unit width,

xN , it is clear that components must be sized such that neither the faces nor the web

elements are overstressed [Equations (16.71) and (16.72)].  Also, overall buckling

[Equations (16.64) through (16.67)], face-element buckling [Equations (16.68) through

(16.69)], and web-plate buckling [Equation (16.70)] cannot be allowed.  Finally the panel

weight can be determined from Equation (16.74).

16.7 Buckling of Honeycomb Core Sandwich Panels Subjected to In-Plane Shear

Loads

 If the honeycomb core sandwich panel discussed in Section 16.3 and shown in

Figure 16.1 is subjected to in-plane shear loads, the following equations in this section

can be used for their design and analysis [10.1].  Again, the honeycomb sandwich panel

faces can be overstressed, or any of four buckling modes can occur. 

16.7.1  Applied Load-Face Stress Relationship 

 Since the honeycomb core does not take any of the applied in-plane shear load, 

the applied load face stress relationship is
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 (16.76) 

16.7.2  Overall Panel Buckling 

The overall panel buckling equation is 
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where the following the terminology of the original source document the buckling 

coefficient is crL ; where, as seen earlier in the text, i.e., Equation (15.7), 
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and where, if the stresses are above the proportional limit, the following plasticity-

reduction factor may be used, where the subscript T refers to the tangent modulus.T

fyTfyfyfxTfxfx EEEEEE ,
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crL is a buckling coefficient defined by curves in Reference [16.10].  Overall

buckling will occur when

xix SkVx 1  (16.78)

where 1and kVxVV  have been defined previously in Section 16.3 and xiS  is defined as
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where in this expression is defined as 

yxxyy

and in this equation,

43 /// kkGGVVr cycxxVVyVV (16.80)

16.7.3  Core Shear Instability

 Core shear instability occurs when xix SkVx 1 , and is described by

cycxcxy GGhN  (16.81)

16.7.4  Face Wrinkling 

 The appropriate equation for the critical face stress for face wrinkling is:
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16.7.5  Monocell Buckling 

 The equation to use to determine the critical face stress for monocell buckling is:
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  (16.83)

where here, the authors of Equation (16.83) have employed the tangent modulus for the

use of this equation with face stresses that are above the material’s proportional limit.

16.7.6  Analysis and Design

 Again, the weight equation is given by Equation (16.32).  At this point any

honeycomb-core panel can be designed and analyzed for specified in-plane shear loads. 

The faces must be sized that the allowable shear stress does not exceed Equation (16.76). 

Also, the panel sizes must preclude overall buckling [Equations (16.77) through (16.80)],

core shear instability [Equation (16.81)], face wrinkling [Equation (16.82)], and face

dimpling [Equation (16.83)].  Obviously, if the face material is isotropic then fyfx EE .

16.8 Buckling of a Solid-Core or Foam-Sandwich Panel Subjected to In-Plane 

Shear Loads

 Again the expression for overall buckling is given by Equation (16.77).  This can

occur when Equation (16.78) holds where for this case
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   (16.84)

The core shear instability equation and the face-wrinkling equations are given by 

Equations (16.81) and (16.82), but in this case effective core properties )( must be 

replaced by the actual core material properties for the solid-core or foam-core materials. 

Thus, the applied load-face stress relations and the weight equation are 

xyfxy tN 2    (16.85)

adccff WahtW 2    (16.86)

any solid-core sandwich panel can now be analyzed and designed for in-plane shear 

loads.
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16.9 Buckling of a Truss-Core Sandwich Panel Subjected to In-Plane Shear Loads

16.9.1  Introduction

 Consider the flat corrugated-core sandwich panel cross section of Figure 16.5. 

For a given material system, there are four geometric parameters with which to optimize;

namely the core depth ch , the web thickness ct , the face thickness ft , and the angle the 

web makes with a line normal to the faces .  The overall panel to be considered is

shown in planform in Figure 16.7.  This panel of width b and length a is subjected to in-

plane shear loads per unit edge distance yxxy NN and  (lb/in).

In addition to overstressing, the panel is considered to fail if any of the following

instabilities occur: overall instability, shear instability of the faces, and shear instability in

the web.  Thus, there are three modes of instability, and four geometric variables.  Since

panels in which the faces and cores utilize different orthotropic materials are the most 

general materials system, it is convenient to derive all expressions for that situation.

Figure 16.7.  Planform view of panel.  (Reprinted from References [10.1] and [16.13].) 

16.9.2  Overall Stability

 The overall stability of a truss-core sandwich panel under in-plane shear loading

is give in ANC-23 [16.1] as well as other places as
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where cr

f  is the critical shear stress in the face of the sandwich and where j  is a

buckling coefficient given by Vinson and Shore [16.12], related to the buckling 

coefficient j.

The coefficient j, found in [16.1], for orthotropic panels with simply-supported 

edges whose axes of elastic symmetry are parallel to the edges is given in Figure 16.8.  In

this figure, j is plotted as a function of j 2B and 1/r where r
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16.9.3  Face-Plate Instability 

Looking at Figure 16.5, it is seen that each plate element of the faces from A to B

can buckle due to the applied shear loads yxxy NN and .  Since the support condition of 

the plate element along the edges depicted by A and B are not known precisely, it is

conservative to assume that they are simply-supported edges.  For such a case, the 

governing equation is given by Timoshenko and Gere [6.1] and others, for an orthotropic

plate whose axes of elastic symmetry are parallel to the edges, of thickness h and width b,
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 In this expression k is a coefficient plotted in Reference [6.1] (Figure 9.42) as ak

function of two parameters: /1and .  If one looks at the original figures, it is obvious

that is r/1 and 2/1 B , then Figure 9.42 of Reference [6.1] and Figure 16.8 herein

are identical.  Hence, the k of Equation (16.89) is identical tok j of Figure 16.8 under thesej

conditions.

From Figure 16.5 it is seen that for the face-plate instability Equation (16.89) can

be written as
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Figure 16.8. Buckling coefficient. 

where jk f is given by Figure 16.8, in which for this plate element 2B  is given by 

Equation (16.88) and 
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16.9.4  Web-Plate Instability

Likewise, the local plate elements of the triangulated core can become unstable

due to shear stresses induced into the core by the shearing of the faces.  Again, the

conservative assumption is made here that the web elements are simply supported along

the edges A and C depicted in Figure 16.5.C

 Referring to Equation (16.90) and the geometry of Figure 16.5, it is seen that the

expression describing the web-plate instability can be written as 
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where jkc  is found from Figure 16.8, where here 
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16.9.5  Applied Load-Face Stress Relationship 

 Looking at the construction shown in Figure 16.7 along the edges at x = 0 or x =

a, the shear resultant yxN is primarily resisted by the two faces.  Even if the core

elements are bonded or otherwise fastened to some edge fixture through which the shear 

yxN  is transmitted, little load will be introduced into the core web plates directly.  Hence,

the applied load-face stress relationship is taken to be 

f

f

xy

f

yx

t

N

t

N

22
  (16.94) 

This is not to imply that loads are not introduced into the core elements by the faces, as

shown below.

16.9.6  Core Stress-Face Stress Relationship

Consider the repeated unit of the triangulated-core construction shown in Figure

16.9.  Due to the shearing deformations of the faces, shearing deformations occur in the

core since the web element and the face are bonded or otherwise connected to their 

junction along db, gh, etc.
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Figure 16.9.  Triangulated-core construction.  (Reprinted from Reference [16.13].) 

 The following relationships are valid in the elastic range, where ),( fcixyi are

the shearing strains and the other symbols are given in Figure 16.5, 16.6 and 16.9.
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Note that fc  when the same materials are used for faces and core.

16.9.7  Weight Relationship 

The weight relationship from Figure 16.5 is repeated here for completeness, 

ad
cc

ffadccff Wa

t
tWaAtW

sin
22     (16.96) 

where cf and are the weight density of the face and core materials, respectively; adWa

is the weight in 2lb/in  of planform area of the adhesive or any other material used to join

face and core; W is the total weight inW 2lb/in  of planform area of the entire panel; and 

sin/cc tA .
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16.10 Buckling of a Web-Core Sandwich Panel Subjected to In-Plane Shear Loads

16.10.1  Overall Buckling 

 For the web-core sandwich subjected to in-plane shear loads, it is seen that all the

applied load is taken by the face components, and none of the applied shear can be

induced into the web elements because they are perpendicular to the faces when 0

(see Figure 16.6).

 The overall panel in-plane shear instability is given as follows, following Libove

and Hubka [16.7], and Vinson and Shore [16.12]
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where
crf  is the critical shear stress in the face, and where for this construction
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41 through CC  are given in Reference [16.1] for various boundary conditions and 

constructions.  For the web-core construction with in-plane shear loading (n = 1) the

constants are 
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All edges simply supported: 
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x = 0, a simply supported; y = 0, b clamped: 
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x = 0, a clamped; y = 0, b simply supported:
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The coefficient j is obtained from Reference [6.1] for panels with simplyj

supported edges, given herein as Figures 16.8, where for this construction, 2B is given by

Equation (16.102) above and 

4/1)/)(/(/1 fyfx EEabr (16.108)

16.10.2  Face-Plate Buckling 

 From Figure 16.5, it is seen that each face plate can buckle between each web 

element due to the applied shear loads yxxy NN and .  Since the support conditions along

the face element at the web element are not known precisely, it is conservative to assume

simply-supported edges.  For that case Timoshenko and Gere [6.1] provide a stability

equation for an orthotropic plate, which can be written as 
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where it can be shown that jk f of Figure 16.8, 2B  is given by Equation (16.102) and 

1/r isr
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Note that for 0 , when the panel is subjected to in-plane shear loads, the web plates 

are unloaded.  If 0 , then some load is introduced into the web plates analogous to

the truss-core construction discussed earlier.

16.10.3  Applied Load-Face Stress Relationship 

 Looking at the construction of Figure 16.5, it is seen that in-plane shear resultants

yxxy NN and are resisted by the two faces.  Hence, the applied load-face stress

relationship is seen to be, again,
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16.10.4  Weight Relationship 

The weight of the web-core sandwich panel per unit planform area is given by 
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where adWa is the weight of the adhesive or other bonding material.

16.11 Other Considerations

 Of course, the theory and analysis becomes far more complex if the sandwich 

panel is curved, has dissimilar faces, initial imperfections, and dynamic loading. 

Librescu, Hause, and Camarda [16.14] developed methods of analysis for giving accurate

predictions for static and dynamic behavior subjected to complex mechanical and thermal

loads in the pre-buckled and post-buckled ranges, and made comparisons with available 

experimental data. 

 Smidt [16.15] also investigated curved sandwich panels because of their 

applications to high-speed boats, containers, tanks and aircraft.  His experimental

research was compared to finite element solutions he obtained.  He comments that in

Equation (16.54) the coefficient can vary from 0.5 to 0.8.

 Also, Laine and Rio [16.16] found that for foam-core sandwich panels typical of 

those used in ship construction, loaded up to 60% of their elastic-buckling load, creep

(that they define as more than 10% influence on deformation) is significant.  They

therefore advocate either the use of a factor of safety of 2 on the critical buckling load, or 

introduce a creep law into the structural analysis.
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 The vibration of sandwich plates and panels can be studied by the use of vibration

equations and solutions derived for isotropic and composite plates if the proper stiffness

quantities are used.  Recommended reading includes papers by Meunier and Shenoi

[16.17-16.19].
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16.13  Problems

16.1. For the sandwich panel of Problem 15.1, 

(a) What is the overall buckling load,
crxN  (lb/in) the sandwich plate can 

withstand, using classical plate theory?

(b) What is the overall buckling load 
crxN (lb/in) the plate can withstand 

including transverse shear deformation effects?

(c) What is the critical load 
crxN for core-shear instability? 

(d) What is the critical load 
crxN for face wrinkling? 

16.2. If the sandwich panel of Problem 16.1 were clamped on all four edges, solve

16.1(b), (c) and (d) again for this case.

16.3. Consider a foam-core sandwich panel that is 6161  in planform dimensions,

simply supported on all four edges.  Each face is made of cross-ply Kevlar 

49/epoxy composite whose properties are given in Table 17.1.  The face stacking 

sequence is ] , wherein each ply is 0.0055 inches thick.  The

foam core has psic , and 3lb/ft2c , and is 3/4 inches thick.

(a) Determine each element of the [A[[ ], [B], and [D] stiffness matrices for the 

sandwich.

(b) Could any of the perturbation techniques of Section 11.8 be used to solve

problems for this plate?
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(c) If the sandwich plate is subjected to an in-plane compressive load in the x-

direction, what is the critical buckling load per unit edge distance, 
crxN  using 

classical-plate theory? 

(d) What is the mode of buckling?

(e) If transverse shear deformation effects are included, what is the overall critical

buckling load, 
crxN ?

(f) What is the fundamental natural frequency in Hz, using classical plate theory?  

Equation (13.4) can be used. 

(g) What is the answer to (f) if transverse shear deformation effects are included? 

Equation (13.15) can be used. 

16.4. Consider a hexagonal-cell honeycomb core sandwich panel, simply supported on

all four edges, subjected to an in-plane compressive load, xN  (lb/in).  The face

material is made of unidirectional T300/934 graphite epoxy, whose properties are

given in Table 17.1.  The core is aluminum whose properties are psi6 ,

and 3.0 .  The dimensions of the panel are:

a = 48 in. in.066.0ft  in.c

b = 30 in. in.ct din. = 0.50 in.d

(a) At what face stress will face dimpling occur?

(b) Would face dimpling ever occur in this panel under this load situation?  Why?

(c) At what face stress will face wrinkling occur?

(d) For this panel, which will have the lower buckling stress, overall panel

buckling (i.e. rBkVxVV 11 ) or core-shear instability (i.e. rBkVxVV 11 )?

(e) At what face stress will core-shear instability occur? 

(f) Of all modes of failure, how will this sandwich panel fail, when subjected to

an increasing in-plane compressive loading? 

(g) Therefore what is the greatest in-plane compressive load xN (lb/in of width) 

that this sandwich panel can withstand?

(h) What is the greatest in-plane compressive load, (pounds) that this sandwich

panel can withstand without failing?

(i) What is the total weight of the panel if the density of the faces is 0.055 3lb/in

and the density of the aluminum is 0.100 3lb/in ?

16.5. Regarding Problem 16.4, consider a monocoque laminated panel of the same size

made of the unidirectional T300/934 graphite/epoxy, that is

213.0606.022 ft thick, simply supported on all four edges.  Thus this

panel has the same face material, but no core. 

(a) What in-plane buckling load per unit width,
crxN  can this monocoque panel 

withstand before buckling?

(b) What is the face stress at that load? 

(c) What is the panel weight per unit planform area?

(d) What thickness would be necessary to have the same buckling load 
crxN as

the sandwich panel considered in Problem 16.4 above? 
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(e) What would the monocoque panel weigh in d above?  What is the comparisond

of the weight of this panel to the sandwich panel of 16.4 above?

16.6. A designer is considering various alternatives in the design of a rectangular 

sandwich panel measuring 60 inches by 30 inches in planform.  The panel must 

withstand an in-plane compressive load in the longer direction of 600x

lb/in.  Consider the foam core to weigh 15 3lb/in , and fc th 25 .

(a) For a sandwich with aluminum faces ( psi6 , 3.0 ,
3lb/in1.0 , psiall ).  To simply support this panel or all four 

edges will require 20 lb of support structure; to clamp it on all four edges will

require 40 lb of support structure.  For the plate to not be overstressed or 

buckle, which design will result in less system weight? 

(b) One alternative is to use magnesium faces ( psi6 , 3.0 ,
3lb/in065.0 , psiall ).  Would a simply supported or clamped 

magnesium-faced system weigh less than the better aluminum-faced sandwich 

system?

(c) What about steel faces ( psi6 , 3.0 , 3lb/in283.0 ,

psi000,60all ); could a steel-faced sandwich result in weight savings?



CHAPTER 17

STRUCTURAL OPTIMIZATION TO OBTAIN MINIMUM WEIGHT

SANDWICH PANELS 

17.1  Introduction

It is sometimes sufficient to be able to design and analyze sandwich panels or any 

other structure to insure its structural integrity.  However, it is very desirable to be able to

design a sandwich panel that not only successfully resists the applied load but is also of 

minimum weight.  A design can proceed the search for the minimum weight solution by

trial and error through examining all of the possible combinations of materials and 

thicknesses for each sandwich element.  This can produce a minimum weight design for 

(only) those options examined.  However, even with excellent insight and intuition, this

random walk approach is time consuming, and is not guaranteed to provide the absolute

minimum weight panel. 

Fortunately, more rational methods have been developed so that the absolute

minimum weight can be found analytically for honeycomb, solid, foam, truss-, and web-

core rectangular sandwich panels.  The methods apply to panels which are subjected to 

either an in-plane compressive load, xN , or to in-plane shear loads, xyN .  Each

optimization uses the best available equations (established through long use and given in

Chapter 16 earlier) to depict the various failure modes.  When, and if, new and better 

equations are formulated, they can be used to develop the same optimization procedures 

as those presented here.

In each case, the age-old principle of the “weakest link in the chain” is applied.  

The philosophy is that with any sandwich panel there are several failure modes, each 

independent of the others, and any one of which will result in the panel’s failure.  Each

failure mode is thus a “link” in the sandwich “chain” that resists the applied load, and 

failure of any one “link” means failure of the whole “chain”.  Logically, the most 

efficient chain is one in which each link fails simultaneously.  In the sandwich, each 

“link” has an associated weight varying directly with its load carrying ability.  Therefore,

the minimum weight panel (“chain”) is found by ensuring that the failure modes (“links”)

occur simultaneously.  Conversely, one could say that if a particular mode of failure is

significantly greater or higher than the others, then the material associated with this

excess strength or buckling resistance could either be removed or could be reallocated to 

bring all modes closer to equality.  This extra material is truly “dead weight” (and cost)

as the overall panel will fail via some other mode before ever reaching the load 

associated with the stronger mode of failure. 

In performing the optimization, unique expressions are obtained for each

geometric variable of the minimum weight panel.  Additionally, a “universal

relationship” is found which relates the applied load index to unique values of face and 

core element stresses for given materials and boundary conditions.  The methods
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developed are also applicable to panels at any steady state temperature if the material 

properties are known at that temperature.  In order to select the best material systems to

achieve minimum weight for a given load, material property figures of merit are also

found; these figures of merit are tabulated for many of the current material systems.  The

optimization methods have been found to be extremely useful for the following reasons:

1. Unique values of each geometric variable are found in order to obtain the minimum

weight panel for a specified load index, material system, panel dimensions, and 

boundary conditions. 

2. Various material systems can be compared for best materials selection. 

3. The best stacking sequence can be determined for laminated composite face

materials.

4. The optimum sandwich panel weight can be compared with other types of 

sandwich, reinforced panel, or monocoque architectures.

5. Weight penalties for non-optimal construction can be determined rationally.

Much of the text of this chapter parallels that of Vinson [10.1, Chapter 10].

17.2  Minimum Weight Optimization of Honeycomb Core Sandwich Panels

Subjected to a Unidirectional Compressive Load [17.2]

 For this type of panel and load, there can be four buckling failure modes: overall

buckling, Equations (16.9) through (16.18); core shear instability, Equation (16.19); face

wrinkling instability, Equations (16.22) and (16.23); and monocell buckling, Equation

(16.24).  For the same construction there are four dependent variables for which the

analyst/designer can specify, namely, the face thickness, ft , the core depth, ch , the core

cell size, d, and the core wall thickness,dd ct .  In addition the applied load is related to the

face stress by (16.8).  Therefore for any panel size, boundary conditions, and given face

and core material, unique values of each dependent variable are determined by the 

philosophy expressed earlier through solving four equations with four unknowns.  In

addition it is found that there exists one and only one face stress, 0 , for a given load 

index )x , that will result in minimum weight.  If the face is stressed below or above

this optimum value the sandwich panel will weigh more.

It was shown that overall buckling and core shear instability occur at the same

stress under the conditions given by (16.20) and (16.21), that is,

rBkVxVV 11 .

 Equations (16.21), (16.19), (16.23), (16.25) and (16.9) yield the universal

relationship for optimum honeycomb sandwich panels with orthotropic facings and core

under uniaxial compression,
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 It must be noted that, in (17.1), 0 , the optimum face stress, must be limited to

some predetermined allowable stress (usually defined by the yield strength or ultimate

strength dividing by appropriate factors of safety for each such that the lower value of the

two is the allowable stress); hence, there is an upper bound on the load that can be carried 

by the panel for a given material system.  Therefore, when given a set of boundary

conditions (denoted by 1k ) and any type of honeycomb core construction (denoted by

rkk and,, 32 ), it is seen that the universal relationship relates the load index )x  to 

the optimum face stress where other items in the equations are material properties only. 

It is independent of geometric variables and it establishes a unique optimum face

buckling stress, 0 , for each value of the load index.

 Explicit values of the unique optimum geometric variables as functions of the

load index )x  are determined to be, from [17.1] and [17.2],
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Through the use of the universal relationship given in (17.1), the explicit values of 

the optimum geometric variables in terms of optimum critical stresses, 0 , are written as
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It should be noted that should if a designer/analyst decides that face dimpling can

be ignored because the monocell buckling does not necessarily mean panel failure, then

equating the three remaining buckling stresses provides the same values for the core 

depth, Equation (17.6), for the face thickness, Equation (17.9), and a ratio for )dc

equal to Equation (17.8) divided by (17.7).  So either way the optimum minimum weight 

panel remains the same.

The expressions for the weight per unit planform area for the optimum panel as a 

function of optimum face stress, 0 , and the load index )x can be found by

substituting the above expressions into (16.32).  The results are expressed both in terms 

of the optimum face stress and the applied load index for ease of use.
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Several very important and interesting conclusions can be drawn from (17.11)

about the weight of optimized honeycomb sandwich panels under uniaxial compressive

loads.  It is seen that in the selection of the materials to use in these optimum panels, the

core material with the highest ratio of ccG /  will result in minimum weight.  For the c

selection of a facing material, the material that has the highest ratio of 

)1(/8/18/3

yxxyffyfx EE y  for the particular applied load index )x will result in the

panel of lowest weight.  For optimized honeycomb sandwich panel construction, the ratio

of core weight to face weight is
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c
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W f
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Therefore, it is obvious that, for a construction employing the same material in 

both faces and honeycomb core, the great majority of the weight is in the faces.  Also 

note that the ratio of the core weight to face weight for an optimum panel is independent 

of boundary conditions and the orthotropy factor r.  In (17.11), it is seen that the panel 

weight varies as the one-fourth power of the boundary condition factor 1k .  For a panel 

that is simply supported on the unloaded edges, 11k .  In a panel that is clamped on the

unloaded edges,
4

3
1k .  Therefore, the ratio of the weight of an optimum panel simply 

supported on the unloaded edges to the weight of an optimum panel clamped along the 

unloaded edges is 1.0745.  This is a slight over-simplification, but it can be concluded 

that for a given load index an optimum honeycomb sandwich panel simply supported on 

the unloaded edges weighs no more than 1.0745 times the weight of the optimum panel 

with unloaded edges clamped. 

 This result has major implications.  Foremost, it implies that, in almost all cases 

of sandwich panels subjected to in-plane compression, the optimizations should be 

conducted for simply supported boundary conditions on all edges.  (Note that the 

boundary conditions on the loaded edges have no effect for this loading).  Also: 

1. Such an optimization will result in the panel weighing at most 7.45% over an 

optimum panel whose unloaded edges are clamped.  Choosing a simply supported 

panel is thus conservative as far as all dimensions selected, enabling the panel to 

have additional structural integrity even when the edges are clamped or partially 

clamped.

2. In actual construction, the auxiliary structural elements required to make the 

unloaded edges clamped would possibly offset the potential saving of 7.45% in 

weight resulting from the clamped boundary condition.  In the final analysis, the 

totally clamped panel assembly would weigh more. 

3. It is virtually impossible to insure a truly clamped edge; hence, most panel edge 

conditions are somewhere between the conditions of fully simply supported and 

totally clamped.  The choice of simple support conditions for the optimization is 

therefore conservative as well as rational. 

 For a honeycomb core sandwich panel subjected to an in-plane compressive load, 

independent of the boundary condition, the “best” face material is determined from 

(17.11) to be 

.
)1( 2/1

8/18/3

yxxyf

yx EE
FM

y

(17.13)

 It is interesting to use this Factor of Merit (FM) to some of the material systems

currently available.  The values in Table 17.1 are for 70 F , and because the Poisson’s

ratios are rarely given tables of mechanical properties for the new materials, it is assumed 

below that 1)1( yxxyy .  It is seen clearly that in this application composite materials
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are better than any all-metallic construction.  It is also clear that graphite/epoxy and 

boron/aluminum composites clearly result in the minimum weight construction.  Even

boron/epoxy is quite competitive.

Table 17.1.  Face Material Comparison, Based on Factor of Merit for an Optimized Honeycomb Core

Sandwich Panel Subjected to an In-Plane Uniaxial Compressive Load.

Material Configuration 
fV f

(%)

xE

(msi)

yE

(msi) )(lb/in3
ult

aksi

bFM Ref.

T300/934

C/epoxy

T300/5208

T300/5208

B/2024Al

B/6061Al

B C)(B4 /Al

B/5052Al

B/110Al

B/3002Al

B/6061

AS/3501

AS1/3501-6

B/Al

Borsic/Al

B/epoxy

B/epoxy

B/epoxy

T300/2500

832 /MOAlAA

Kevlar49/epoxy

SiC/6061Al

S glass/xp-251

/AlOAl 32AA

5Cu-/AlOAl 32AA

SiC/Ti

/AlOAl 22AA

SiC/Ti-6Al-4V

2024 Al 

Titanium

E glass/epoxy

Welton 80 steel

Unidir.

Cross-ply

Unidir.

Unidir.

--

--

--

--

--

--

Unidir.

--

--

--

--

--

--

Cross-ply

--

Cont. fiber 

Cross-ply

--

--

Cont. fiber 

Cont. fiber 

Woven, ISO

Cont. fiber 

Woven, ISO

ISO

ISO

Cross-ply

ISO

60

58

72

60

49

49

49

49

49

49

50

67

--

48

45

67

67

60

--

50

60

48

67

50

50

39.5

50

35

--

--

57

--

23.69

12.04

22.2

21.9

33.93

33.79

34.95

33.35

33.35

32.48

32.0

20.2

18.85

30.02

31.03

31.18

30.3

15.37

17.55

30.02

5.80

31.63

8.29

21.75

21.75

28.70

31.9

27.0

10.88

17.4

3.12

30.45

1.7

12.04

1.58

1.53

22.04

22.04

18.85

21.03

19.72

20.74

20.00

1.30

1.52

21.03

20.16

3.05

2.80

15.37

1.17

15.08

5.80

18.06

2.92

15.95

14.50

28.70

20.16

27.0

10.88

17.4

3.12

30.45

0.0555

0.0555

0.0555

0.0555

0.0916

0.0916

0.0918

0.0916

0.0916

0.0916

0.0915

0.0555

0.0555

0.0918

0.0926

0.0740

0.0740

0.0721

0.0555

0.1009

0.0505

0.112

0.0555

0.1045

0.1045

0.1432

0.1172

0.1492

0.0973

0.1600

0.0710

0.283

105

55.1(T)

110

164

220(T)

513.3

210.3(T)

168.2(T)

323.3

365.4

250.0

209.9

246.0

221.9(T)

190.0(T)

468.4

362.6

55.1(T)

--

275.5

--

--

170.0

203.0

319.0

228(T)

406

245(T)

--

145

82.0

126.9

63.09

62.50

61.01

60.46

60.24

60.14

59.62

59.50

59.03

58.81

58.33

57.47

57.10

57.09

57.03

56.43

55.24

54.37

53.80

49.89

47.72

46.74

45.53

42.91

42.41

37.41

36.14

34.83

33.88

26.07

24.87

19.50

1.7

17.2

1.7

1.7

17.2

17.2

17.2

17.2

17.2

17.2

17.2

1.7

17.2

17.2

17.2

17.2

1.7

17.2

17.2

17.2

17.2

17.2

1.7

17.2

17.2

17.2

17.2

17.2

17.2

17.2

17.2

17.2
a

Compressive Strength: (T) denotes tensile properties available only.
b

Units of FM areM
1/222

lb/in10 .

The above comparison does not indicate maximum loads that the panel may carry. 

To investigate that, knowledge of maximum allowable stresses must be available and 
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(16.8) must be used to determine the maximum load index, N x / , to which the optimumb

panel may be subjected.  Figure 17.1 illustrates that point, where the maximum allowable

stresses are taken to be the ultimate compressive strength and a 2024 aluminum core is

arbitrarily chosen for the honeycomb core.  It is seen that T300/934 is the lowest weight 

material, but limited to a load index of psix .  For higher load levels,

boron/aluminum is the most efficient material to a load index of 5840 psi and 

boron/epoxy the best to a load index of 8740 psi.  Beyond that load index, other panel

architectures are perhaps required.

Figure 17.1.  Weight parameter as a function of load index for a honeycomb core sandwich panel under an

in-plane compressive load [17.1].

In all of the above, it is assumed the materials are elastic to the ultimate stress.  If 

ductility permits and the stress-strain curve are known for stresses higher than the yield 

point, a plasticity reduction factor can be employed.  Finally, it should be remembered 

that in any laminated face construction, in which 0)()( 2616ijB , yx EE and  can 
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always be obtained by utilizing the appropriate stiffness matrix values, discussed in

Section 15.1.

17.3  Minimum Weight Optimization of Foam Core Sandwich Panels Subjected to a

Unidirectional Compressive Load

 For this type of sandwich panel and loading, there are three buckling failure

modes: overall buckling, Equations (16.9) through (16.18); core shear instability,

Equation (16.34); and face wrinkling, Equation (16.36).  In this case of foam or solid core

one uses the actual core properties in (16.14), namely

ccyyzccxxz hGUhGU ,  (17.14)

For the optimum minimum weight construction, overall panel buckling and core shear 

instability occur simultaneously, i.e., when rBkVxVV 11 , or more specifically, as in

(16.35),

.
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(17.15) 

 For the optimized construction the applied load-optimum face stress relationship 

is found to be 
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(17.16)

The geometric variables and the core shear stiffness that results in minimum

weight design are as follows because of the linear relationship between core shear 

modulus and core density, as shown in Figure 17.4 below, cxG is treated as a variable in

the optimization: 
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The above expressions could be written in terms of the applied load index load )x

by using (17.16) but the expressions are lengthier.

The optimized panel weight in terms of applied load is 

2

0

2/12/1

7/17/27/27/2

7/57/37/1

1

7/2

)1(3

)/()1()(6
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EEE
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bNrk

b
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(17.20)

 From (17.20) it is seen that the best face material to use is the one with the largest 

value of 

.

7/17/2

f

fyfx EE
FM  (17.21) 

Note that the face modulus in the load direction is barred to indicate the use of a plasticity

reduction factor if the stresses used for the design are above the proportional limit.  For 

this loading the face stress in the y-direction will never exceed the yield strength, hence 

fyE  is not barred.

17.4  Minimum Weight Optimization of Truss Core Sandwich Panels Subjected to a 

Unidirectional Compressive Load

For the optimization in this case there are three modes of buckling and four 

geometric variables discussed in Section 16.5.  As a result, the approach is to solve for 

three of the variables in terms of the fourth variable, utilizing the three buckling 

equations, and the load-stress equation.  Then substitute these expressions into the weight 

equation such that the panel weight is a function of the core and face material properties,

the load index and the chosen variable .  With five equations and six unknowns, a sixth

equation is obtained by setting the derivative of the weight equation with respect to

equal to zero to obtain the value of that variable which will provide minimum weight.  In 

the case of the faces and core made of the same orthotropic material, the weight equation 

in terms of the load index is written as 

.
)(cossin

/)1(3
1/2

4/3
2

1

4

1
2

)E

bN

Kb

WW xadW
 (17.22)

Setting the derivative of bWW adW /)(  with respect to  equal to zero it is found that for 

the optimum construction, where the core and faces are of the same material, isotropic or 

anisotropic,
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4.32or    7/2sin 2 . (17.23) 

For core and faces of different materials the lengthy results are given in [17.3]. 

The load index–optimum face stress relationship is 
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where 0E is defined by (16.53).  The unique values for the geometric variables are: 
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The optimized panel weight is given by
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from which it is seen that the factor of merit to use in materials selection is 

.
)( 8/14/1

0 yx EEE
FM  (17.29)

For the optimized case, using Figures 3 and 5 of [16.9] to obtain the precise value

of the coefficient K, useKK

24

7
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IE

IE
 (17.30)

and
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and perform a simple iteration.  Note that in the weight equation (10.37), K appears onlyK

as the 1/4 power. 

 If the truss core sandwich panel has the face and core of the same isotropic 

materials, then as noted before, the optimization relations hold also above the 

proportional limit, if a suitable plasticity reduction factor, , is used, such that 

.EE EE  (17.32)

 All expressions will be written in the general form utilizing E .  One then

simplifies (17.22) through (17.29) by letting EEE fc , fc , and 

fc .  The buckling coefficient K is a slowly varying function such that it can beK

considered constant, and can be determined later by a trial iteration.  The unknown

variables are )(and,,,, adccf WaWtht .  For the case of the faces and core being the 

same isotropic materials, the “universal relation” relating load index to a unique stress

value for any set of material properties, which results in minimum weight is:
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KEKKb

N x (17.33) 

 Unique values of all other variables are now found in terms of the applied load 

index, N x / , and the material properties for the optimum, minimum weight isotropicb

construction.
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Using (17.33) analogous expressions can be written for each variable in terms of the

optimum face stress, as was done earlier.

 It is interesting to note that when the same core and face materials are used,

optimum angle, , is independent of load and materials used.  Note also that in the 

optimum construction described above, for the isotropic case:

8

7

f

c

t

t
(17.38) 

and

8

7

f

c

W f

Wc , (17.39) 

where fc W fWc and are the weight of the core and face per unit planform area, respectively. 

The core of the optimized truss-core sandwich weighs nearly as much as the 

faces, but it must be remembered that the core also carries a significant share of the in-

plane compressive load unlike in honeycomb and foam core sandwich constructions. 

17.5  Minimum Weight Optimization of Web Core Sandwich Panels Subjected to a 

Unidirectional Compressive Load 

Again, the philosophy of structural optimization is as follows: within the class of 

structures being studied and for each material system, a truly optimum structure is one 

that has a unique value for each geometric variable,  that results in the minimum possible 

weight for a specified loading condition, and yet maintain its structural integrity.  In this

case, the optimum structure will have the characteristic that the panel will become 

unstable in all four buckling modes simultaneously. 

The equations with which to optimize are: the four buckling equations, Equations

(16.66), (16.68), (16.69) and (16.70); the applied load-face stress relationship, Equation 

(16.73); and the weight relationship, Equation (16.74).  The known quantities for any 

optimization are xN , a, b, and the material properties of both core and face material.  The

buckling coefficient K is a constant depending on the value of (16.67), and is given by K

(16.65).  The unknown variables to be determined are )(and,,,,, adffccf WaWdtht .

With six equations and seven unknown variables, a seventh equation is obtained by

placing the weight equations in terms of one variable only, and setting the derivative of 

weight with respect to that variable to zero as in the previous section.  Thus, one finds the 

value of that variable, and subsequently the value of every other variable, which result in 

minimum weight. 

 At the outset, independent on the material system, it is clear that in executing the 

above optimization philosophy, with Equations (16.68) and (16.69) that for optimum 

construction of the web-core sandwich, 
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0 . (17.40)

This is intuitively obvious because with 0 , upper and lower face plated components 

have the same width.  The result is that all other expressions used for optimization are

simplified, and the construction shown in Figure 16.6, with 0  now assumes the 

familiar web-core configuration. 

Proceeding with the optimization procedure for panels with faces and core of 

different orthotropic materials the following expressions are obtained for the optimum

minimum weight construction.  First, one obtains the “universal relationship” relating

applied load index, N x / , to a unique value of face stressb
0f , as a function of given

material properties for the optimum construction

0
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Here, )/)(/(21 cxfxfc EER and K is determined from Figures 2 or 4 of [16.9] inK

which V  and for the optimum construction
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In a panel with all edges simply supported K is given as follows, using the aboveK

expression for ffcc IEIE /

22

2

)1(21

)/1( )

ff

cc

xyfyxfxyf IE

IE
K (17.43)

where ba / .

 The significance of the universal relationship given by Equation (17.41) is that,

given panel length, width, load, and materials, a panel designed for a face stress either 

higher or lower than that given by (17.41), will be heavier than one designed for the

optimum face stress 
0f  given by (17.41).  Making use of (17.41) then, the geometry of 

the panel for minimum weight construction can be written as:
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)./(3/)( btbWW ffadW  (17.48) 

Other alternative expressions for the optimum construction are given in [17.4]. 

It can also be shown easily that even in this general material system, the ratio of 

the face weight fW f  to the core weight cWc  for the optimum construction is: 

.2/ cf WcW f (17.49) 

Note that this is independent of applied load, material system and panel boundary

conditions.

The optimum construction for panels with faces and core of different isotropic 

materials can be obtained from Equations (17.41) through (17.49) by allowing

iiiyix EEEE 0 and iyxixyi where i = c, fff

The resulting expressions for the optimum construction for panels with faces and 

core of the same orthotropic material can be obtained from (17.41) through (17.49) by 

letting each quantity )()()( cf .  The results are

4/12/1

0

2/12

22/12/1
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)1()2(9

yx

yxxyx

EEEKb

N y
 (17.50) 

where K is determined from Figures 2 or 4 of [16.9] or, for a simply supported panel,K

from (17.45), in which

6

1
/ ffcc IEIE

 Making use of (17.50) to obtain , the other geometric variables are obtained 

easily from the following:

2/12/12

0 )(/6/ yxc EEKbh (17.51)
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cf hd (17.52)
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1/ cf tt (17.54)
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(17.55)

It is see that for a panel in which the same orthotropic material is used in both face and 

core, the optimum geometry results in face and core of the same thickness )( fc tt and 

square cells )( cf hd

 It is seen from (17.50) and (17.55) that the factor of merit for selecting the face 

material is:

/)( 8/14/1

0 yx EEEFM

 Lastly, the expressions for optimum construction of panels with faces and core of 

the same isotropic material can be easily determined from (17.50) through (17.55) by

letting )()()( yx .  With this material system, since the material is isotropic and the 

face and core are equally stressed, the expressions can be employed for loads resulting in

stresses above the proportional limit by utilizing a suitably defined plasticity reduction

factor , such that EE EE .  Thus, in the following, E  is used to denote that the 

expressions are valid in the range of inelastic deformations.
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Again it is seen that the web and face have the same thickness and that the cells are 

square for the optimum construction.  Note also that the isotropic material which has the 
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highest ratio of /2/1E  is the material which will result in the lowest weight panel in the

elastic range. 

 As an example of the use of the optimization procedures derived above, curves of 

the weight function )(2/1

adWaWK as a function of load index )/( 2/1 bNK x are plotted 

in Figure 17.2 for the following materials: 

1. 7075-T6 Aluminum (clad) 

2. S994-181 HTS glass fabric, ERSB-0111 Resin 

3. 143 glass fabric laminate with polyester resin (MIL-R-7575) 

4. 143 glass fabric laminate with epoxy resin (MIL-R-9300)

5. 181 glass fabric laminate with epoxy resin (MIL-R-9300)

6. cross rolled beryllium

7. unidirectional boron fibers with epoxy resin

8. unidirectional Thornel-40 graphite fibers with epoxy resin

9. AISI 4340 steel, 200,000 psi yield strength

Figure 17.2.  Weight parameter as a function of load index, web-core sandwich panel unidirectional

compressive load.  (Reprinted from Reference [10.1].)
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 In each case, the load index is taken only to an optimum stress equal to the yield 

strength of the material system.  The factor 2/1K , appearing as it does in both the

ordinate and abscissa, permits the weight comparison for various material systems

regardless of boundary conditions and aspect ratio a/b.

 It is clearly seen that the beryllium results in the lowest weight construction, but 

the yield strength is reached at a low value of load index.  It is also clearly seen that not 

only do boron-epoxy and graphite-epoxy materials provide lower weight construction

than glass-reinforced plastic systems, steel, and aluminum, but of perhaps equal

significance, higher loads can be carried by graphite-epoxy and boron-epoxy panels of 

given size and edge support conditions than any other material system.

17.6  Minimum Weight Optimization of Honeycomb Core Sandwich Panels

Subjected to In-Plane Shear Loads

 In this optimization, the faces must be sized such that the allowable shear stress is

not exceeded.  Also, the panel geometry must preclude overall buckling, Equations

(16.77) through (16.80); core shear instability, Equation (16.81); face wrinkling,

Equation (16.82); and face dimpling, Equation (16.83).  The optimization of the

honeycomb core sandwich panel is then performed by equating the four buckling loads

given by Equations (16.77) through (16.83).  The results are as follows:
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Therefore for the face material selection the factor of merit is: 

/)( 4/1
fyfx EEFM  (17.66) 

With this factor of merit a comparison of several materials is given in Table 17.2. 
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Table 17.2.  Face Material Comparison, Based Upon the Factor of Merit, for an Optimized Honeycomb 

Core Sandwich Panel Subjected to In-Plane Shear Loads [10.1].

Material Configuration FM )M 1/223

C/epoxy

B/2024Al

B/6061Al

B/5052Al

B/3002Al

B/1100Al

B C)(B4 /Al

B/Al

B/6061Al

B/epoxy

Borsic/Al

Kevlar49/epoxy

/MgOAl 32AA

T300/934

SCu-/AlOAl 32AA

T300/5208

SiC/6061Al

T300/SP286

/AlOAl 32AA

E glass/epoxy

B/epoxy

AS4/3501-6

AS1/3501-6

Boron/epoxy

HS graphite/epoxy

/AlOAl 32AA

B/EP

B/EP

Boron/EP

AS/3501

2024 Al

Cross-ply

Cross-ply

Cross-ply

Continuous fiber 

Unidirectional

Continuous fiber 

Unidirectional

Continuous fiber 

Unidirectional

Unidirectional

Continuous fiber 

Unidirectional

62.53

57.09

57.03

56.18

55.61

55.29

55.18

54.60

54.57

54.37

54.03

47.68

45.72

45.39

44.04

43.85

43.57

43.35

42.97

42.75

42.20

41.88

41.68

41.62

41.56

41.30

41.09

41.02

41.01

40.70

35.79

It can be shown [17.7] from Equation (17.66) that, for any laminated composite

material, with laminae of continuous unidirectional fibers, used for the sandwich faces,

the best stacking sequence to resist an in-plane shear load is a balanced cross-ply

laminate.
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17.7 Minimum Weight Optimization of Solid and Foam Core Sandwich Panels

Subjected to In-Plane Shear Loads

 To minimize the weight, the three buckling critical stresses are equated, and the 

results for the minimum weight panel are:
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Again, because of the continuous linear relationship of core shear modulus to core 

density for foam cores, cxG is treated as a variable; therefore, 
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The optimum panel weight equation is 

,
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from which it is seen that the best face material can be selected from 

./)( 5/1
fyfx EEFM  (17.72)
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17.8 Minimum Weight Optimization of Truss-Core Sandwich Panels Subjected to

In-Plane Shear Loads

Stated once again, the philosophy of the optimization for the truss core sandwich

panel with in-plane shear loads is as follows: a truly optimum structure is one which has a

unique value for each dependent variable within the class of structure being studied 

(triangulated core sandwich panel, for example), for each set of materials for each set of 

boundary conditions and is the minimum possible weight for a specified set of design

loads and will maintain its structural integrity (no mode of failure will occur at a load less

than the optimum design load).  In this case the optimum (minimum weight) structure

will have the characteristic that the panel will become unstable in all three buckling

modes simultaneously.

The governing equations pertaining to this construction to be used in the

optimization are given by (16.87), (16.89), (16.92), (16.94), (16.95) and (16.96).  The

known or specified quantities are the applied shear load per inch, xyN , and the panel 

width b, which can be combined as the load index )/( bN xy ; the material properties; and 

the panel boundary conditions.  The buckling coefficient cf kkj and, are given in Figure

16.8 for any given set of variables, and hence are constants for the optimum construction

being sought.  The dependent variables with which to optimize the construction are the 

face thickness, ft , the core depth, ch , the web material thickness, ct , the web angle, ,

the face stress, f , the core stress, c , and the weight, adWaW .

It is seen that there are six equations and seven unknowns.  The seventh equation

is obtained by placing the weight equation in terms of one convenient variable, taking the

derivative of the weight equation with respect to this variable, and equating it to zero to

obtain the unique value of that variable which results in a minimum weight structure. 

Subsequently, one can determine the value of all other variables for the optimum

constructions.  Manipulation of the equations listed above results in the weight equation

involving only the dependent variable , as shown below 
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 (17.73) 

where

).,(),1/(][ 4/13 fciEEE yxixyiixiysi i (17.74)
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Taking the derivative of (17.73) with respect to , and equating it to zero results in a 

value of  in terms of material properties and buckling coefficients which will result in

minimum weight structure.  This expression is:

.0sin
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1
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)sin(2)cos()sin(2

22
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2

1

2/722/3 )))

c

f
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f

c

k

k

E

E

G

G  (17.75) 

Note that the optimum web angle, defined by this equation is independent of the load and 

boundary conditions to which the panel is subjected. 

A “universal relationship” may be obtained which relates the applied load index

)/( bN xy  to a unique value of face shear stress, 0f , for any set of material properties, 

which will result in minimum weight panel.  For a given load index )/( bN xy , a panel 

designed to have a face stress f  higher or lowerr  than the value given by the followingr

relationship will result in a panel which has a weight greater than can be achieved if this 

universal relationship is used.

sf
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N 0

2/12/1

 tan34
 (17.76)

where  is obtained from (17.75) and sfE  from (17.74) and 0f  is the optimum face

stress.

The remaining geometric variable ft , ct , and ch , as well as the weight equation 

can now be expressed in terms of the optimum face stress 0f obtained from (17.76), and 

the optimum angle determined by (17.75) above.  For the case of faces and core of the

same materials, these are:

2

1

0

2/12/1

0
,

 tan3/2

jEb

h

Ejkb

t

s

fc

sf

ff
  (17.77), (17.78)

s

f

c

c

Ejkb

t 0
2/1

2/12/1 cos

)sin(3 )
 (17.79) 

2/1

2

1

2/3

2/12/1

0

)(sincos

)sin(4
3

)

)
c

f

sf

fad
k

k

Ejkb

WaW
 (17.80)



367

Employing (17.76) the minimum weight panels for a given load index bN xy /  is 

given by
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where xE  is given by (17.74). 

Two conclusions are drawn.  First, the best composite material to use in such 

construction is the one with the highest ratio of 

.
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EEE
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 (17.82) 

Secondly, the ratio of face weights to core weight for optimum construction is: 

.
)/(

)sin(4
2/1

2/3

cfc

f

kkWc

W f )
(17.83) 

In the case of a panel with the same face and core materials, then cf kk , and from

(17.75), 4.28  and 316.1/ cf WcWf .

17.8.1 Certain Properties of the Buckling Coefficients cf kkj and,,

 It is advantageous to discuss certain characteristics of the coefficients 

cfj,  that result in significant simplifications to the design procedures.  It iscf kk and,

shown in the References of Chapter 16 and 17 that in all calculations of optimum 

constructions

cfjj and (17.84)cf kk

17.8.2  Some Conclusions 

 For truss-core sandwich panels subjected to in-plane shear loads, in which both 

the faces and core are composed of the same isotropic or orthotropic materials, 4.28

for minimum weight construction, whenever the edge restraint coefficients cf kk and are

equal (the usual case).  Under these conditions the weight ratio of face material to core 

material per unit planform area is 1.316. 
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For the case of core and face material being the same, the use of the orthotropic

material which has the highest value of the following factor of merit will result in the

least weight panel of specified geometry and loading.  Since 1)1( yxxyy  for most 

composites, it is seen that a factor of merit (FM) can be defined as:MM

8/18/3

xy EE
FM  (17.85) 

 For unidirectional composites, the fiber direction for this type construction should 

be in the y-direction.  This is the same factor of merit as that found for the faces of an 

optimum honeycomb core subjected to in-plane compression [17.1, 17.2, 17.5].  In those 

references several dozen material systems were compared, and provide the wherewithal

to select the best materials for the optimized structures of Figure 16.5. 

 However, to determine the limitations on the load index )/( bN xy  to prevent 

overstressing, Equations (17.76) and (17.80) must be plotted to make the final 

comparison, as in Figure 17.3.  There, typical composite materials given in an Appendix 

of Reference [17.6] are plotted.  There the maximum values of bN xy / correspond to the 

maximum shear strengths given in Reference [17.6]; and some fraction of those values as 

a factor of safety would terminate each curve proportionately for safety.  It is seen that 

among these materials, T300-934 graphite-epoxy provides not only the lowest weight 

construction but is also usable to the highest load index. 

Figure 17.3.  Weight as a function of load index under in-plane shear loads for a truss-core sandwich panel.

(Reprinted from Reference [17.6].)
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17.9 Minimum Weight Optimization of Web-Core Sandwich Panels Subjected to

In-Plane Shear Loads

The equations to employ in the structural optimization of web-core sandwich

panels subjected to in-plane shear loads are Equations (16.97), (16.109), (16.111) and 

(16.112).  It should be noted that these equations can be used “as is” to design or analyze 

any non-optimum web-core panel under these loads.

It can be shown that for minimum weight, the critical faces stress, crf , for 

overall instability and face-element instability must be equal, and this optimized value

can be denoted 0f .

It is also seen that due to the geometry of the web-core construction there is no 

buckling criterion for the web element because with 0  no load can be introduced 

into the web plates where an in-plane shear load is applied to the panel.  Therefore, the 

criteria for determining the web element thickness, ct , is determined by strength alone.

Manipulating the equations enumerated above it is seen that 
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This weight equation is expressed in terms of the face stress, f , and the core 

wall thickness, ct .  As stated, ct is not determined by buckling, and will temporarily be

treated as a constant in (17.86).  Now setting the derivative of (17.86) with respect to f

equal to zero, the following relationship provides the unique optimum value of f  for a

minimum weight panel, denoted as
0j :
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 This is the “universal relationship” relating the applied load index to the optimum 

face stress, 0f , for a specific web-core element thickness, ct , as yet undetermined.  

Substituting (17.88) into (17.86) results in 
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 From (17.89) it is clear that the smaller the value of ct , the lower the panel weight 

will be for given material systems, given panel geometry, and given load index )/( bN xy .

Likewise from (17.88), for given materials systems, panel geometry, and load index, as 

ct  decreases the optimum face stress 0f  increases.  Therefore, it is concluded that 

minimum weight is obtained when the optimum face stress, 0f , equals the materials’

allowable shear stress, all , i.e.,

all0f . (17.90)

 It should be noted that this result differs from all of the previously presented 

sandwich panel optimizations, where the optimum face stress for minimum weight 

construction was generally a unique stress below the maximum allowable value.  That is,

when the optimum face stress is the allowable stress, this is the upper bound for the

applied load index, given by (17.88). 

 Now substituting (17.89) into (17.88) provides the optimum value of ct for the 

minimum weight construction. 
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where )1/(
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yxfxyfffysfE f .

 The other variables for the minimum weight construction are:

all2/)/()/( 2bNbt xyf  (17.92) 
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 Other useful relations for the optimum construction are
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2)/( cf WcW f (17.96) 

where cf WcW f and  are the weight of the face and core respectively, and 

c

f

c

f

f

c

t
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d

h
 (17.97)

 Note that for the optimum construction, according to Equation (17.93) the core 

depth, ch , is practically independent of the applied load.  Note also that the weight of the

optimum construction is independent of all material properties except the allowable shear 

stress and the density of the face material, and the weight varies linearly with the load 

index )/( bN xy .  This differs markedly from the optimum constructions using other core 

geometries discussed earlier in Chapter 17. 

 Thus it is seen that to obtain a minimum weight web-core panel subjected to in-

plane shear loads, the best face material to utilize is the one having the highest rate of 

f/all .  Thus the factor of merit to determine the best materials system to use is: 

.MeritofFactor all    (17.98) 

Also, it can be shown that fj  are constants for the optimum construction and nofkand

iteration is needed.

The Factor of Merit, (17.98) is used to compare various materials systems.  Such

a comparison is found in Table 17.3 for several unidirectional composites for which shear 

strengths were available.  It is seen that among these systems graphite-epoxy and boron 

aluminum look significantly better than the other materials.

Table 17.3.  Face Material Comparison, Based on the Factor of Merit, for a Web-Core Sandwich Panel

Subjected to In-Plane Shear Loads.

Rank Material 
fV f

(%)

u

(ksi) )(lb/in3

FM

in105

1

2

3

4

5

6

7

8

9

10

11

T300/934

E glass/Ep. 

Boron 6061 Al 

AS/3501

Boron/Ep.

Kev. 49/3501 

Hi Str. Gr./Ep. 

Boron/Ep.

Braided FP/Al

T300/SP-286

Kev. 49/Ep. 

?

60

50

67

?

62

60

67

17

60

60

14.8

10.0

23.0

13.5

18.0

11.7

12.0

15.2

19.9

10.5

9.0

0.0555

0.075

0.0915

0.0555

0.0740

0.050

0.057

0.074

0.1001

0.0555

0.050

2.667

2.667

2.515

2.432

2.432

2.340

2.105

2.054

1.988

1.842

1.800
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17.10 Optimal Stacking Sequences for Composite Material Laminate Faces for

Various Sandwich Panels Subjected to Various Loads

If one is given a particular composite material laminate, with its associated 

material properties, then the methods presented in Section 17.1 through 17.9 can be used 

to design a minimum weight panel.  However, if the designer has the freedom to do so, 

this current section provides the means by which to select the particular stacking 

sequence to use with a given lamina of a filamentary composite in order to create a

laminate for a minimum weight panel.  The focus here is on the faces, as the majority of 

the weight of a sandwich panel is in the faces, because the faces take most of the in-plane 

loads.

 It was seen earlier that the Factor of Merit for a honeycomb sandwich panel 

subjected to an in-plane compressive load is given by (17.13).  Since the faces of the 

sandwich resist the applied compressive in-plane load prior to buckling, then for any face 

material, the best stacking sequence for this type of loading is one in which 22

3

11 AA  is a 

maximum, because the Factor of Merit involves 8/18/3

yx EE .  Because the term

2/1)1( yxxyy is approximately equal to one for most unidirectional composite laminae, it 

will not be included in this discussion.  Therefore, to make 22

3

11 AA a maximum for a

laminate involving 90and0  plies, let N equal the total number of plies,N S equal theS

number of 0  plies, and N-NN S the number of S 90  plies.  If kh  is the uniform ply thickness

for the laminate then, from (10.58)

)1(
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)1( 2112

22
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11
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22

kk hESNhSE
A    (17.99) 

.
)1(

)(

)1( 2112

11

2112

22

22

22

kk hESNhSE
A (17.100)

So the Factor of Merit is proportional to

.
)1( 2112

3

22

3

11

2

kh
AA   (17.101)

If one defines 1122 / EE , then the Factor of Merit (FM(( ) is proportional toMM

)(3 SNSS (17.102)

To maximize Equation (17.102), placing the derivative of FM with respect toM S

equal to zero results in

043)4( SNNS ) (17.103)
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)1(

)3(
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1

)
(17.104)

Equation (17.104) and Table 17.4 below shows that for 22or ,0 E  of essentially zero,

the best stacking sequence is 75% 0 plies and 25% 90  plies.  As  increases, the

percentage increases until when 3/1 , s = 1.  At 3/1 , a unidirectional laminate is

used to achieve minimum weight.  Incidentally, that means for any metal matrix

composite, a unidirectional composite is best when the loading is uniform in-plane

compression, because in every practical case, 31122 .

Table 17.4.  Optimum Stacking Sequence for the Laminated Face Material as a Function of for an 

Optimized Honeycomb Core Sandwich Panel Subjected to an Uniaxial Compressive Load.

1122 / E1E S

0

0.1

0.2

0.3

0.333

>0.33

0.75 N

0.806 N

0.875 N

0.96 N

N

N

 Correspondingly, for the case of a solid or foam-core sandwich panel subjected to

in-plane compression, the Factor of Merit is given by (17.21).

 As before, the Factor of Merit is proportional to

7/1

2

2

11

7/12 )(or )( AAEE yx (17.105)

Utilizing (17.99) and (17.100) the FM is proportional toM

.)(2 SNSS (17.106)

Setting the derivative of the above with respect to S equal to zero results in theS

optimum stacking sequence of 

NS
)1(

)2(

3

1

)
(17.107)

For the foam- or solid-core sandwich panel subjected to a uniform compressive in-plane

load, it is seen from (17.106) and shown by Table 17.5 that for 0 , two thirds of the

plies should be 0 , and only after 2/1 , i.e., 122 EE , should the laminate be

unidirectional.
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Table 17.5.  Optimum Stacking Sequence for a Laminated Composite Face Material as a Function of  for 

an Optimized Solid or Foam Core Sandwich Panel Subjected to an Uniaxially Compressive Load.

1122 / E1E S

0

0.1

0.2

0.3

0.4

0.5

0.667 N

0.704 N

0.75 N

0.810 N

0.889 N

N

Now examining (17.29) for the truss-core panel subjected to an in-plane 

compressive load, and the expression on page 359 for the web-core sandwich panel, one 

sees that they are identical.  Remembering that 

)1(2)(2 2/1

0 yxxyxyxyxyx GEEEE y , one sees that for the truss-core panel and for 

the web-core panel the FM is proportional toM 4/1

2211 )( AA .  Therefore, for minimum 

weight

2/NS (17.108)

Thus, the optimum stacking sequence in each case is cross-ply with the same 

number of 0  plies and 90 plies.  Incidentally, using the same procedures as above, it 

can be shown that an angle ply laminate is never better than a cross-ply or unidirectional 

laminate to prevent buckling for any of the four sandwich architectures when the panel is 

subjected to an in-plane compressive load. 

Turning now to the honeycomb core sandwich panel subjected to an in-plane 

shear load, it is seen that the factor of merit is given by (17.66) is proportional to 
4/1)( yx EE .  As a result the cross-ply laminate is best, as shown by (17.108).  The same 

holds true for the solid- or foam-core panel subjected to in-plane shear loading. 

 For the truss-core sandwich panel subjected to in-plane shear loads, from (17.82), 

it is seen that the FM is proportional toM

8/13 )( yx EE (17.109)

 By the same process used before it is seen that 

NS
)1(

)31(

4

1

)
(17.110)

with the tabular values given in Table 17.6.  It is seen that if 0 , 75% of the fibers 

should be perpendicular to the flutes, and for 3/1 , the best stacking sequence for the 

truss-core sandwich subjected to in-plane shear is to have all fibers (i.e. unidirectional) 

perpendicular to the flutes. 
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Table 17.6.  Optimum Stacking Sequence for Laminated Composite Face Materials as a Function of  for 

an Optimized Truss-Core Sandwich Panel Subjected to In-Plane Shear Loads. 

1122 / E1E S

0

0.1

0.2

0.3

0.333

>0.333

0.25 N

0.194 N

0.125 N

0.036 N

0

0

 Finally the web-core sandwich subjected to in-plane shear loads differs from all 

the rest in that the factor of merit is strictly strength (not stiffness) dependent.  Repeating 

(17.98),

 ./allFM (17.111)

 Again for any of the four panel architectures subjected to in-plane shear loads, an

angle ply laminate is never the best choice.
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17.12  Problems

17.1. Consider a honeycomb sandwich panel 20 inches long and 12 inches wide 

subjected to an in-plane compressive load in the longer direction of 

lbs./in.2000xN of width.  The faces are made of boron/epoxy %)67( fV f

and the core is aluminum each with the following properties:

 Boron/epoxy  Aluminum Honeycomb Core

psi103.30 6

xE psi105.10 6

cE

psi108.2 6

yE 348.0

21.0xy psi109.3 6

cG

psi1093.0 6

xyG 3lb/in101.0m

3lb/in074.0f

psi600,362all

 If the panel is simply supported on all four edges: 

(a) What is the optimum face stress, f ?

(b) Is the panel overstressed? 

(c) What are the optimum values of each dependent variable (in this case ch , d,dd

ct , and ft ) for the honeycomb construction?

(d) If the boron/epoxy ply thickness is 0.0055 in., how many laminates are 

necessary to approximate the optimum construction? 

(e) What is the weight of the panel per unit planform area? 

17.2. Repeat Problem 17.1 for a foam core sandwich using the foam core of Problem 

7.2.

17.3. Compare the results of Problems 17.1 and 17.2.  Which core construction gives 

the lighter panel?

17.4. Consider a sandwich panel measuring 4203 in planform are composed of 

5052 aluminum faces whose properties are: psi6 , 3.0 ,
3lb/in10.0w , psiall .  The uniaxial compressive load per unit 

width, in the longer direction is lb/inx .  The sandwich plate is simply 

supported on all four edges.  What are the optimum )(and,,,, adccf WaWdtht

for a honeycomb core also made of 5052 aluminum? 

17.5. If the sandwich panel of Problem 17.4 has a rigid Klegecell foam core, what are 

the optimum values of )(and,,, adcif WaWGht using Figure 17.4 to determine 

the weight of the rigid Klegecell foam?

17.6. If the sandwich panels of Problem 17.4 involved a truss-core also of 5052 

aluminum, what are the optimum values of )(and,,,, adccf WaWtht for this

construction?



377

17.7. If the sandwich panel of Problem 17.4 involved a web-core was also made of 

5052 aluminum, what are the optimum values of )(and,,,, adccf WaWdtht  for 

this construction?

17.8. For Problems 17.4 through 17.7, compare the various constructions as to the

weight, the various total panel thickness, and the various face thicknesses? 

Figure 17.4.  Typical foam core properties.  (Reprinted from Reference [10.1].)



CHAPTER 18

PIEZOELECTRIC MATERIALS

18.1  Introduction

Recently, there has been increasing interest in using piezoelectric materials in 

advanced structures to transform them into “smart” or adaptive structures.  To treat these

developments adequately would require an entire text, well beyond the scope of this text;

nevertheless, an introduction is included herein, hopefully, to provide the reader the

capability of including piezoelectric effects into the structures comprising the first three

parts of this book and enabling the reader to more easily follow the growing literature on

this subject.

Smart, intelligent or adaptive materials are being used increasing due to their 

active interaction with their environment, and their increasing use in “smart” structures. 

Such materials include piezoelectric materials, electrostrictive materials, shape memory 

alloys, and electrorheological fluids.  Only piezoelectric materials will be discussed 

briefly in Chapters 18 through 20 herein.

The use of piezoelectric materials in “smart” structures is increasing significantly. 

They can be used as sensors that recognize and measure the intensity of physical 

quantities such as strain in the structure and as such can be used as a structural health

monitor to detect damage.  They can also be used as actuators, where be responding to an 

applied voltage, they strain, and cause the “smart” structure in which they are imbedded 

to deform, or in the dynamic case cause it to excite or dampen vibration oscillations.

According to Larson [18.1], the ancient Greeks were the first to recognize the

electrical features, particularly the static charges developed, in certain materials when 

rubbed.  Another material electrical phenomenon, piezoelectricity, was named by Jacques

and Pierre Curie more than one hundred years ago.  In 1894 Voigt [18.2] rigorously

stated the relationship between the material structure and the piezoelectric effects, namely

that when a voltage is placed across a piezoelectric material, it generates a geometric 

change known as a converse piezoelectric effect.  Depending on the material orientation 

and the poling direction, the material may elongate or shrink in different directions, or an

angular distortion.  Also, with the same material if the material is stressed due to a

tensile, compressive or shear load, an electrical voltage results, and this is called a direct 

piezoelectric effect.  Therefore, it is seen that piezoelectric materials can be used as 

actuators or sensors for a structure and could serve as both at different times.

Many materials exhibit a piezoelectric effect including Rochelle salt, quartz, 

tourmaline and barium titanate.  As early as 1918, Langevin proposed a piezoelectric

transducer for sonar during World War II.  Prior to World War II lead zirconate titanate

(PZT) was found by researchers at MIT to have a much higher piezoelectric response.  

Later, in 1969, Kawai determined that the polymer polyvinylidene fluoride (PVDF) was
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highly piezoelectric.  Also in the 1960’s it was found that human muscle and bone are 

also piezoelectric. 

 An excellent overview of recent activity in adaptive or smart structures is given in

the early 1990’s by Wada [18.3], especially regarding NASA future missions, by Wada,

Fansom and Crawley [18.4] and Miura [18.5].  Analytical models of piezoelectric

actuation of simple beams were treated by Forward [18.6], Baily and Hubbard [18.7],

Crawley and de Luis [18.8], Burke and Hubbard [18.9] and Im and Atluri [18.10]. 

Piezoelectric plates were treated by Lee and Moon [18.11-18.13]; Crawley, Lazarus and 

Anderson [18.14, 18.15]; Wang and Rogers [18.16] and Pai and Nayfeh [18.17].

 Two reference books are available for serious study of piezoelectric materials and 

layers, one by Nye [18.18] in 1972 and the other by Tiersten [18.19] in 1969.

 The manufacturing of piezoelectric ceramics involves the intimate mixing of 

precise quantities of pure raw materials which are then heated to C1200  to produce

titanates and zirconates.  The calcined material is milled to produce a fine powder, which

after adding organic binders, is formed into prescribed shapes by pressing, casting and 

extrusion processes.  The parts are then fired at temperatures up to C1350 to produce

dense polycrystalline ceramic components.  Close tolerances of the parts is required 

which is achieved by diamond machining.

 For subsequent polarization and operational use, metal electrodes must be applied 

to the ceramic.  Fired-on silver or electrode nickel are the most satisfactory with respect 

to electrical conductivity, ease of soldering and good adhesion. 

 After the electrodes are applied the material is pole in a strong d.c. field in order 

to align the randomly oriented dipoles to produced the piezoelectric properties.  The

poling effect is permanent provided that the material is not subjected to high a.c. fields, to 

temperatures in the region of greater than half the Curie point or to very high mechanical

stresses.

18.2  Piezoelectric Effect

 When a piezoceramic element is stressed electrically by a voltage, its dimensions 

change.  When it is stressed mechanically, it generates an electric charge.  If the 

electrodes are not short circuited, a voltage associated with the charge appears. 

 A piezoceramic is therefore capable of acting either as a sensing or transmitting

element or both.  Since piezoceramic elements are capable of generating very high

voltages, they are compatible with today’s generation of solid-state devices.

 Consider the element shown below: 
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Figure 18.1.  Piezoceramic element.

The polar or 3 axis is taken to be parallel to the direction of polarization within

the ceramic.  This direction is established during manufacturing by a high d.c. voltage

that is applied between a pair of electroded faces to activate the material.  The 

polarization vector P is represented by an arrow pointing from the positive to the negative

poling electrode.

In shear operations, these poling electrodes are later removed and replaced by

electrodes deposited on a second pair of faces.  In this case, the 3 axis is not altered, but is

them parallel to the electroded faces.  Then the mechanical stress or strain is in shear and 

the subscript 5 is used as the second subscript. 

Piezoelectric coefficients, ijd , with double subscripts link electrical and 

mechanical quantities.  The first subscript gives the direction of the electrical field 

associated with the voltage applied, or the charge or voltage produced.  The second 

subscript gives the direction of the mechanical stress or strain 

 Since the 1980’s the interest in the use of piezoelectric material for structural

application mushroomed.  The technical breakthrough has been the capability to 

manufacture thin layers of brittle piezoelectric materials and to successfully imbed them

into a structural component.  As a result intelligent structures have evolved including

actively damped structures, smart fins, smart wings, active constrained layer damped 

structures, position controls for telescopes in complex structural platforms (NASA), and 

for structural health monitoring.  The primary piezoelectric materials in use today are

PZT and PVDF.  Properties of PZT G1195 and PVDF are given below in Table 18.1

[18.2, 19.2]. 
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Figure 18.1.  Properties of PZT G1195 and PVDF.

Material PZT G1195 PVDF

Density 7600 3kg/m  17803 3kg/m3

Elastic Modulus )
E 10109.4 2N/m 0.2 2N/m

Relative Dielectric

Constant, 3K
1700

1K 1700

Piezoelectric Strain 

Coefficient, 33d
1210360 m/Volt 1210285  m/Volt 

31d 1210166 m/Volt 1210122  m/Volt 

Piezoelectric Voltage

Coefficient, 33g
31025 Volt m/N 

3109.24  Volt 

m/N

31g 31011  Volt m/N
3106.10  Volt 

m/N

Curie Temperature 360 C
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CHAPTER 19

PIEZOELECTRIC EFFECTS

19.1  Laminate of a Piezoelectric Material

Consider a lamina of a laminate which is made of a piezoelectric material that is 

electrically anisotropic.  For PZT the material is naturally piezoelectric, but for PVDF

rolling and poling is necessary to make the material piezoelectric.  The most general form

of the piezoelectric strain constants for a plate can be written as follows [18.2, 19.1]:

36332313

24

15

00

00000

00000

dddd

d

d

dij  (19.1) 

where (i = 1,2,3) and (j((  = 1,2,3,4,5,6).  For a thin piezoceramic, such as many laminaej

are, that are poled in the thickness direction, the only non-zero components are the

3113 dd and 3223 dd .  Thus, no shear strain components will be produced by a thin

actuator.

Also piezoelectric stress resultants and piezoelectric stress couples can be defined 

that are completely analogous to thermal and hygrothermal resultants and couples, see

(10.60), (10.61), (10.64) and (10.65).  For a laminate these are defined as follows for i, j

= 1,2,6: 
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 In the above, in general 
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   (19.4) 

where here again cosm , sinn  and is the angle between the x-y- structural axes 

and the 1-2 material axes, defined as positive going for x axis and the 1  axis. iE  (i =

x, y, z) is the electrical field intensity vector. 
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 For the laminate, (10.66) can be expanded to include the piezoelectric effects, so

piezo

piezo
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   (19.5) 

 Also, the components of the transverse shear resultants, Q , are defined as

follows:
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where
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k
E
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d

d

CC

CC

mn

nm

0
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15

24

5545

4544
  (19.7) 

where iE (i = x, y) are components of the electrical field intensity vector, and  is the 

ijC matrix for the thk  lamina.  Thus with the integrated stress-strain relations (19.5) a

piezoelectric plate, panel or beam structure can be analyzed by methods developed earlier 

in the text, because the piezoelectric effects are directly analogous to thermal and 

moisture effects.

When the piezoelectric material is thin in the 3 direction, if the surfaces of the

cross sectional area are fully electroded, the electrical conditions are that 021 EE

everywhere, and from the relation that the electrical field intensity vector iE  is derivable

from a scalar potential , then iE .  So for many beam and plate structures the

piezoelectric material layers are so thin that the electrical field 3E  is obtained from 

kk

kk

h

V

h

hh

E
22

3  (19.8) 

where V is the driving voltage,V kh is the thickness of the piezoelectric layer under 

consideration and  is a scalar potential from which the electrical field vector iE is

derived.

To use energy methods, the expression for the kinetic energy and potential energy 

for a plate structure involving piezoelectric layers is given by Leibowitz and Vinson 

[19.1] as well as an example for the dynamic modeling of an elastic beam with 

piezoelectric actuator laminae on each side, using Hamilton’s Principle.  In this dynamic 

model, the piezoceramic and the beam are treated as an integral system and all of the 
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natural and kinematic boundary conditions were included.  Leibowitz has also developed 

methods for analyzing an active constrained layer beam involving the primary beam

structure, soft core and piezoelectric actuator for various boundary conditions using

Hamilton’s Principle.  This was a new (1993) concept in damping, one in which a

piezoelectric material is embedded in the viscoelastic core such that it acts as an actuator 

to increase the shear strains in the viscoelastic material and thus increase the modal 

damping of the total laminate compared to the classical approach.

Because the governing equations for a plate including general anisotropy, mid-

plane asymmetry and dynamic effects are so lengthy, suffice it to say that Equations 

(19.9) through (19.11) below clearly indicate how the right hand side of the governing

plate equations given throughout this text are modified to include piezoelectric effects 

[see 19.2].  The resulting equations of motion are, for the classical plate theory, i.e., no

transverse shear deformation [19.2].
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These are the equations of motion for an open circuit piezoelectric laminate under 

the influence of an externally applied electric field and lateral mechanical loading.  If 

thermal and moisture effects are present, then simply add thermal and moisture stress
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resultants and couples to the above, analogous to the piezoelectric terms shown.  In 

(19.11), if the plate is laminated, the hm term is given by (13.8).  Reference [19.2] also

provides the changes in the governing equations if transverse shear deformation effects 

are included as well.

Piezoelectric ceramic materials (e.g. PZT) are available only in the form of small

patches, although sheets of piezoelectric polymeric materials (PVDF) are available.  The 

properties of each material differ significantly, as seen in Table 18.1.

Because the piezoceramics are only available in small patches, their use in plate

or any other structures makes analytical solutions of governing differential equations with 

various boundary conditions impractical if not impossible.  Therefore, energy principles

are often used to obtain solutions. 

Other useful references include the references of Chapter 18 and [19.3-19.6].
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CHAPTER 20 

USE OF MINIMUM POTENTIAL ENERGY TO ANALYZE A PIEZOELECTRIC

BEAM

20.1  Introduction 

 The following example is given to analyze the simplest structure (a beam) in

which a piezoelectric actuator is used, and because it is a “real world” problem in which

two such beams are being used to actuate a “smart” fin [20.1]. 

 Consider the beam shown in Figure 20.1 below.  The host beam is of rectangular 

constant cross-section of length L.  Piezoelectric actuators are adhesively bonded to the

host beam from 1L  to 2L .  Because of the geometry and material properties the adhesive 

must be included in the analysis. 

Figure 20.1.  Piezoelectric beam.

 Equation (14.2) is used to obtain the potential energy expression for the bending

of the beam in Figure 20.1.  Because it is a beam whose length is in the x-direction all 

y(  and yyy) 0v terms are dropped.  If mid-plane symmetric, all ijB terms are dropped. 

Without extension in this example all 0u terms are dropped.  Using classical theory
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x

w

dxx

d
.  Because it is a beam, all remaining terms are multiplied by the width b, so

that the EIbD11 , neglecting Poisson ratio effects, because it is a beam.  Also the 

flexural stiffness for 10 Lx is 1)(EI , 21 LxL  is 2)(EI  and LxL2  is 3)(EI .

Because of the analogy between the thermal, moisture and piezoelectric stress couples let 
PT MM .  Lastly, the concentrated load applied at 3Lx  is accounted for.  The result 

is Equation (20.1).
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In this equation the last term represents the work done by the piezoelectric patches which

have a constant moment effect PM .

Since the beam is cantilevered at x = 0 and free at x = L, a deflection function

(20.2) can be assumed which satisfies all of the boundary conditions at the ends of the

beam structures. 
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If one now utilizes the fact that at 3Lx , a load W is applied in the negativeW z

direction, then at 3Lx  the transverse shear resultant V and the beam bending moment V

M are:M

W
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From (20.3) and (20.2), the constants 1a and 0a are found to be 
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Therefore the deflection w(x(( ) is seen to be
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 For Minimum Potential Energy only the form is used hence one can assume the 

deflection to be

3
)(

3
2

3

x
xLAxw   (20.6)

where A is the unknown constant to be found.  Substituting (20.6) into (20.1) the result is
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which after performing the integration, can be written as 
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Now setting 0V , the constant A is found to be
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Because in experiments performed the beam tip deflection is measured, the tip deflection

is seen to be:
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where 2
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.  The final expression for w(L(( ) is 
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This is a typical problem that can be solved for a piezoelectric structure.  For 

brevity, further examples will not be given in this text but recent literature will provided 

the reader with many other examples, such as those by Abramovich [20.2, 20.3]

Aldraihem and Khdeir [20.4], Eisenberger and Abramovich [20.5], Azzouz, Mei, Bevan

and Ro [20.6], Abramovich and Pletner [20.7], Donthireddy and Chandrashekhara [20.8],

and Crawley and de Luis [18.8].

Note, if the piezoelectric couples are used to produce an in-plane extension as 

well as a constant moment (as in this example) then the in-plane displacement, 0u , terms 

in (14.2) must be retained.

If the piezoelectric patches actuation and/or the applied mechanical load are

dynamic loads, then Hamilton’s Principle is employed as discussed in previous chapters 

to obtain solutions.
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 strain energy 132

 stress resultant 16, 20, 205, 289, 305 

 stresses 14, 16, 213, 214, 299

integrated

 force equilibrium equations 207 

 stress resultant – displacement 

   relations 16

 moment equilibrium equations 

 stress – displacement relations 
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 stress – strain relations 19, 384, 386 

intelligent

 materials 379

 structures 381

interlaminar shear stresses 206, 208

internal heat generation 67

isotropic material 3, 4, 157, 308 

isotropy 3

isothermal

 strains 51, 54, 58, 272

 plate 52, 56

joining method 315

joint 318

 normal stress 86, 89

 shear stress 89

Kerr foundation 250, 251

kinematic boundary conditions 384, 387

kinematic equations 6, 52, 185

kinetic energy 130, 149-151, 257, 384, 386

Kirchhoff

 boundary conditions 24, 25, 229 

 effective shear resultant 51 

Kroneker delta function 51

ladder side rail 283

Lagrangian 148, 150

lamina 82, 83, 86, 87, 176-184, 187, 189, 192, 193, 205,

207, 214, 221, 231, 232, 262, 271, 278, 363, 383, 

385

laminar flow 316

laminate 184-194, 205, 206, 213, 271, 274-278, 351, 278, 

279, 282, 289, 295, 297, 363, 372-375, 383-387

laminated

 circular plate 81-89

 plate 89, 91, 221, 225, 227, 231 

Laplace transformations 175

Laplacian operator 19, 21, 71, 85 

lateral

 deflections 55, 57, 59, 76, 79, 82, 85, 86, 95, 96, 99, 100, 101,

111, 112, 116, 118, 135-137, 186, 224-228, 237, 

248-250, 276, 279, 284, 288, 289, 299

 loads 12, 23, 55, 78, 80, 95, 99-101, 118, 128, 133, 146,

150, 208, 210, 213, 218, 227, 230-232, 248, 259,

262, 271, 289, 306
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lead zerconate titanate (PZT) 379 

Levy method 34, 36, 45, 57, 59, 65

 solution 133, 211, 218-222, 238 

lineal element 11, 12, 17, 185-187

liquid

 injection molding 176

 nitrogen temperature 176

load discontinuity 80, 128

load index 346-351, 353, 355, 365, 368-371

localized lateral load 298

magnetic forces 4

mass density 22, 116-118, 130, 131, 149, 151, 259, 260

master creep curve 175

material

 point 4-6, 14, 17, 26, 51, 55, 61, 158, 205

 principal axes 275, 383

maximum

 bending stress 44, 45

 deflection 43, 213, 225, 259, 266

 stress 127, 213, 225, 231, 266

 stress couple 43, 45

mechanical loading 387, 392

mechanical properties 3

mechanics of materials 3

membrane 17, 224, 320, 325

metal matrix composite 373

mid-plane asymmetry 236-238, 275, 297, 385, 387

mid-plane symmetry 208, 209, 215, 221, 222, 226-228, 237, 238, 247, 

248, 258, 259, 274, 275, 291, 297, 298, 306

MIL HDBK-23 314

minimum buckling load 135

minimum potential energy 121, 127, 128, 131, 136, 389, 391

minimum weight optimization 314, 315, 325, 328, 345-377

modal damping 385, 387

mode shape 115-119, 131, 151, 258, 259, 307 

moderately thick beam 141, 143, 144, 146-155

modified Bessel function 72, 75

modulus of elasticity 3, 4, 43, 80, 82, 123, 157, 165, 170, 171, 175, 302,

303, 308, 312, 314, 315, 320, 328

Mohr’s circle 177

moisture

 absorption 174

 effects 247, 291, 386, 387

 shift factor 175

moment
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curvature relations 16, 19, 70, 73, 238

equilibrium 15, 42, 207, 208

momentary creep tests 175

monocell buckling 309, 313, 331, 346, 348

monocoque plate 45, 247, 277, 289, 295, 305, 346

natural

boundary conditions 126, 129-131, 143, 146, 149, 151, 384, 387

circular frequency 99, 116, 118, 126, 131, 151, 153, 154, 157, 259, 289

frequencies 101, 115-118, 131, 150, 152, 170, 209, 239, 247,

248, 257-260, 305, 306

vibration 99, 115, 116, 150, 152, 209, 257-259, 261, 305

vibration of beams 115-117, 120

vibration of plates 117-120

Navier 34, 45, 102, 112, 211-217, 221, 222, 230, 238, 248,

260, 307 

non-homogeneous boundary

 conditions 57-61, 224

nonlinear theory 248, 306

nonlinear vibration 257-259

normal

stresses 1, 54, 83, 158 

surface tractions 16, 21 

nuclear blast loading 264

open circuit piezoelectric laminate 387

optimum

angle 366

buckling stress 347

face stress 347, 348, 355, 357, 366, 369, 370 

panel weight 352, 354, 355, 357

stacking sequences 372-375 

orthotropic

elasticity tensor 164-167

material 321, 324, 326, 327, 353, 357-359, 368

plate 82, 162, 171, 193, 228, 247, 248, 274, 305, 333, 338

oscillating load 117

overall buckling 111, 305-307, 309, 311, 312, 316-321, 324-326,

329-332, 337, 346, 352, 361, 369

overdeflected 45, 100, 247, 305 

overstressed 45, 100, 247, 248, 305, 306, 309, 311, 316, 318,

319, 325, 328, 329, 332, 368 

Pasternak foundation 251

panel weight 328, 329

perturbation
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 parameter 223, 224

 solutions 211, 222-225

piezoelectric

 actuation 380, 386, 387, 389

 actuators 384, 387

 beam 386-391

 ceramics 379, 380, 381, 384, 385, 387

 coefficients 381

 effects 379, 380, 383-386

 materials 174, 379-391

 patches 388-390, 392

 plates 380, 386

 properties 381

 strain coefficient 382, 385

 strain constants 383

 stress couple 383, 385, 389, 392 

 stress resultant 383, 385

 structure 384, 390, 392

 layers 384, 386

 voltage coefficient 382

plane strain bulk modulus 168

plasticity

 effects 315

 reduction factor 309, 312, 315, 323, 328, 351, 353, 355, 359

plate

 buckling 86-89, 92-100 

 element 15

 of varying thickness 22

 with edges supported by beams 40-43, 52

 thickening 131, 132, 187

 vibration 257-269

ply thickness 372

Poisson’s ratio 3, 4, 6, 21, 44, 82, 85, 104, 148, 150, 157, 164, 169, 

349

Poisson’s ratio effects 390

polarization 379

 vector 380, 381

poling 383, 385

 direction 379, 381

 effect 380

 electrodes 380

polymer matrix 171-176, 209, 239

polynomials 60

polyvinylidene fluoride (PVDF) 379, 381, 383, 385, 387

post buckling 252, 339
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potential energy 122, 130, 143, 257, 271, 275, 278, 285, 290, 298,

384, 387, 390

preform 176

preliminary design 121, 180, 183, 209, 210, 225, 248, 307

prepreg 176

principal material direction 179

Principle of Virtual Displacements 142, 144

proportional limit 309, 312, 315, 323, 328, 329, 331, 353, 355, 359

PVC foam 298

PZT 379, 381, 385, 387

Quasi-Isotropic Composites 225, 258, 302

Reissner functional 143-155

Reissner’s Variational Theorem 121, 141-155

relative humidity 173

resonant vibrations 247, 305

rigid surface contact 229

ring 184

 load 78, 79

 theory 12, 27, 185

rods 52, 115, 171

rotation 11, 12, 17, 83, 146, 148, 151, 153, 185, 186, 190,

226-228, 289 

rotational restraints 108, 109

rotatory inertia 143, 150, 152, 154, 261, 262

Rule of Mixtures 168

sandwich plate 111-113, 184, 187, 206, 219, 226, 261, 274-276,

289, 295-377 

scalar potential 384, 386

self equilibrium of thermal stresses 62-68

sensors 379, 380

separable solutions 29, 33, 116, 284

separation of variables 29, 57, 62, 67, 116, 121

shear

 buckling 332

 buckling stress coefficients 110

 factor 193

 layer 250

 load 379

 memory alloys 379

 modulus 3, 82, 157, 166, 168, 175, 250, 251, 278, 308, 314,

318

 resultant 13, 14, 41, 61, 68, 72, 77, 87, 147

 strain 2-6, 158, 173, 336, 385, 387
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stress 3, 6, 14, 55, 61, 83, 88, 158, 173, 274

stress-strain relations 6 

shell 143, 176, 184, 185, 188, 191, 194, 206, 266, 298

shell theory 12, 27 

ship construction 339

shock loads 115

short fiber composites 157, 170 

simply supported 

beam 152

column 99, 105 

edge 23, 34-36, 38, 40, 43-45, 56, 57, 62, 100, 101, 103,

104, 108, 116-118, 126, 127, 130-133, 135-138,

151, 211, 212, 218, 221, 222, 228, 230, 248-251,

259, 260, 262, 283, 284, 287, 288, 290, 291, 307,

310, 312, 320-322, 326, 327, 333, 338, 349, 357

plate 40, 105-107, 118

sine pulse 262, 264 

smart

fin 381, 387, 389 

materials 379

structures 379, 380 

wings 381

solid core 308, 314 

solid core sandwich panels 316-318, 331, 364, 373, 374 

solid state devices 380

specially orthotropic composites 181, 208, 210, 211, 218, 219, 226, 249, 250, 258,

259, 275, 278, 283, 298 

spring-mass system 115

square cell honeycomb core 308, 315 

stacking sequence 189, 209, 279, 346, 363

steady state temperature distribution 63, 64

stepped pulse 263, 264 

stepped triangular pulse 264, 265

stiffness critical structure 115, 247, 266, 305

stiffness matrix 158, 159, 180, 295, 298, 351

stiffness-to-density ratio 157

strain 2, 4, 5, 379 

- displacement relations 6, 8, 52, 58, 68, 81, 84, 86, 123-125, 146, 148, 158,

184, 185, 194, 205, 226, 236, 271, 276, 295

energy 122, 124, 129, 132, 274, 286, 289

energy density functions 122, 124, 131, 132, 142, 144, 175, 271

hardening 90

tensor 8

strength critical structure 115, 247, 266, 305

strength-to-density ratio 157

stress 115
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- boundary conditions 135-137, 143, 144, 146, 148

couple 10-13, 37, 39, 47, 61, 68, 76, 77, 82, 84, 86, 88, 90,

135, 145, 147, 148, 150, 188, 189, 192, 205, 206, 

213, 225, 231 

discontinuities 206

- displacement relations 141-144

free temperature 51, 52, 55, 170

resultant 13, 14, 37, 68, 82, 84, 88, 148, 150, 188, 189, 192,

206

resultant in-plane displacement 

  relationship 70, 73 

- strain relations 5, 6, 13, 16, 52, 54, 68, 81, 83, 86, 123, 125, 141,

143, 144, 146, 158, 159, 162, 184, 194, 226, 271, 

315, 318, 351 

- tensor 8

stretching of a circular plate 71 

stretching-shearing coupling 192, 274

structural axes 275

structural coordinate system 183, 383

structural health monitor 379, 381

St. Venant’s Principle 12, 15 

superposition integral 262

surface

shear stresses 15, 16, 21, 22, 54, 59, 69, 70, 72, 74, 89, 98, 100,

206, 208, 227 

tractions 1, 4, 122, 124, 129, 133, 142, 144, 158, 205, 274 

T300/934 graphite/epoxy 368

T300-5208 graphite/epoxy 216, 217, 291, 350 

tangent modulus 313, 315, 329, 331 

temperature shift factor 175

tensile load 379

tensile strength 172

tensor

calculus 4

notation 3, 145 

shear strain 3, 180

strain 3, 176 

textile composites 170

Theorem of Castigliano 144

Theorem of Minimum

 Complementary Energy 121, 141-144

Theorem of Minimum Potential 

 Energy 121-138, 141, 143, 144, 238, 249, 271, 274, 275,

283-292, 298, 387-391

thermal



416

 buckling 52, 113

 effects 55, 121, 172, 173, 178, 179, 194, 213, 247, 291,

346, 386, 387

 expansion 55, 58

 loads 252, 339

 shock 51, 57

 strain relations 54, 55

 strains 51, 52, 57, 58, 62, 67, 170, 171

 stresses 51, 52, 54, 55, 62, 68, 81, 89, 170

 stress couple 53, 55, 59-68, 84, 86, 383, 385, 387, 389

 stress resultant 53, 57, 68, 383, 385, 387

thermoelastic

 beam 61-64

 circular plate 72, 79

 isotropic plate 52-57

 rectangular plate 58-65

three dimensional elasticity theory 27, 95

thru dimensional solid 132, 146, 167 

time dependent forces 115

time-temperature effects 174, 175

torque 236

torsional load 234, 235

torsional stiffness 41, 51, 234-236

transformation of variables 121 

transient heating and cooling 67, 68

translation 11, 15, 17, 146, 148, 151, 153, 185, 186

transverse

 isotropy 164, 168, 180

 modulus 168

 normal deformation 84

 normal stress 141, 143-148, 150, 152, 181

 shear coefficient 226, 227, 230, 260

 shear deformation 17, 23, 83, 117, 121, 131, 132, 141, 143, 144, 146,

148, 150, 152, 154, 178, 181, 186, 193, 194, 209-

211, 222, 225, 228, 230, 237, 238, 258, 259, 261, 

266, 271, 276, 289-292, 298, 307, 309, 385, 387

 shear flexibility parameter 320, 325

 shear loads 299

 shear resultant 14, 24, 79, 134, 135, 145, 188, 193, 384, 386, 388,

390

 shear stiffness 225, 310, 311, 320, 325 

 shear stress 11, 193, 214, 299 

 temperature distribution 91 

trial function 128, 249, 276, 277, 279, 288, 289

triangular core sandwich

  construction 335, 336, 365-368



417

triangular pulse 263, 264

truss core 308, 318, 325

truss-core sandwich panel 318-324, 332-336, 339, 353-356, 365-368, 374

turbulent flow 316

twist 191, 278

twisting deformation 191

twisting moment 41

twisting stress couple 20, 24

twisting-stretching coupling 192, 274 

ultimate strength 170, 257, 302, 303, 347, 350, 351 

ultimate stress 45

uniaxial load 133

unidirectional

 composite material 167, 168, 176-184, 228, 303, 368 

 fibers 363

 laminate 192, 213, 215, 373, 374

uniform

 heating and cooling 63

 in-plane loading 284

 lateral load 35, 43, 44, 74, 75, 126, 213, 225, 232, 278-283, 285

 temperature 52, 54, 318

universal relationship 345, 347, 355, 357, 366, 369 

variation 122, 124-126, 136, 143-147, 149, 151, 277, 280,

285, 289

velocity 130, 131

vibration 22, 121, 131, 148, 257-269, 298, 340

 modes 34, 99, 115-119, 249, 257

 amplitude 118, 257

 of beams 115, 120, 130, 150-155, 249

viscoelastic

 core 385, 387

 effects 174, 175, 239

 foundation 230

 material 387

voltage 379, 380, 384

water ski 234, 236 

wave number 107, 286 

web

 angle 318, 324, 332, 365

 buckling 319, 322, 324, 325, 327, 329, 332, 334

 core 308, 325

 stress 327

 thickness 318, 324, 332, 365
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web-core sandwich panel 324-329, 337-339, 356-361, 369-371, 374, 375

weight density 117, 314, 317, 318, 323, 328, 336 

weight relationship 315, 317, 323, 328, 329, 331, 336, 339, 356, 366,

369

weighting function 193

windmill blade 234, 236

Winkler foundation 251

woven composite materials 302, 318 

yield

 strains 175

 stress 45, 170, 175, 257, 347, 351, 353, 361
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linear Dynamical Systems. Proceedings of the IUTAM/IFToMM Symposium held in Riga,
Latvia. 2000 ISBN 0-7923-6106-7

74. J.-P. Merlet: Parallel Robots. 2000 ISBN 0-7923-6308-6
75. J.T. Pindera: Techniques of Tomographic Isodyne Stress Analysis. 2000 ISBN 0-7923-6388-4
76. G.A. Maugin, R. Drouot and F. Sidoroff (eds.): Continuum Thermomechanics. The Art and

Science of Modelling Material Behaviour. 2000 ISBN 0-7923-6407-4
77. N. Van Dao and E.J. Kreuzer (eds.): IUTAM Symposium on Recent Developments in Non-linear

Oscillations of Mechanical Systems. 2000 ISBN 0-7923-6470-8
78. S.D. Akbarov and A.N. Guz: Mechanics of Curved Composites. 2000 ISBN 0-7923-6477-5
79. M.B. Rubin: Cosserat Theories: Shells, Rods and Points. 2000 ISBN 0-7923-6489-9
80. S. Pellegrino and S.D. Guest (eds.): IUTAM-IASS Symposium on Deployable Structures: Theory

and Applications. Proceedings of the IUTAM-IASS Symposium held in Cambridge, U.K., 6–9
September 1998. 2000 ISBN 0-7923-6516-X

81. A.D. Rosato and D.L. Blackmore (eds.): IUTAM Symposium on Segregation in Granular
Flows. Proceedings of the IUTAM Symposium held in Cape May, NJ, U.S.A., June 5–10,
1999. 2000 ISBN 0-7923-6547-X

82. A. Lagarde (ed.): IUTAM Symposium on Advanced Optical Methods and Applications in Solid
Mechanics. Proceedings of the IUTAM Symposium held in Futuroscope, Poitiers, France,
August 31–September 4, 1998. 2000 ISBN 0-7923-6604-2

83. D. Weichert and G. Maier (eds.): Inelastic Analysis of Structures under Variable Loads. Theory
and Engineering Applications. 2000 ISBN 0-7923-6645-X

84. T.-J. Chuang and J.W. Rudnicki (eds.): Multiscale Deformation and Fracture in Materials and
Structures. The James R. Rice 60th Anniversary Volume. 2001 ISBN 0-7923-6718-9

85. S. Narayanan and R.N. Iyengar (eds.): IUTAM Symposium on Nonlinearity and Stochastic
Structural Dynamics. Proceedings of the IUTAM Symposium held in Madras, Chennai, India,
4–8 January 1999 ISBN 0-7923-6733-2

86. S. Murakami and N. Ohno (eds.): IUTAM Symposium on Creep in Structures. Proceedings of
the IUTAM Symposium held in Nagoya, Japan, 3-7 April 2000. 2001 ISBN 0-7923-6737-5

87. W. Ehlers (ed.): IUTAM Symposium on Theoretical and Numerical Methods in Continuum
Mechanics of Porous Materials. Proceedings of the IUTAM Symposium held at the University
of Stuttgart, Germany, September 5-10, 1999. 2001 ISBN 0-7923-6766-9

88. D. Durban, D. Givoli and J.G. Simmonds (eds.): Advances in the Mechanis of Plates and Shells
The Avinoam Libai Anniversary Volume. 2001 ISBN 0-7923-6785-5

89. U. Gabbert and H.-S. Tzou (eds.): IUTAM Symposium on Smart Structures and Structonic Sys-
tems. Proceedings of the IUTAM Symposium held in Magdeburg, Germany, 26–29 September
2000. 2001 ISBN 0-7923-6968-8
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90. Y. Ivanov, V. Cheshkov and M. Natova: Polymer Composite Materials – Interface Phenomena
& Processes. 2001 ISBN 0-7923-7008-2

91. R.C. McPhedran, L.C. Botten and N.A. Nicorovici (eds.): IUTAM Symposium on Mechanical
and Electromagnetic Waves in Structured Media. Proceedings of the IUTAM Symposium held
in Sydney, NSW, Australia, 18-22 Januari 1999. 2001 ISBN 0-7923-7038-4

92. D.A. Sotiropoulos (ed.): IUTAM Symposium on Mechanical Waves for Composite Structures
Characterization. Proceedings of the IUTAM Symposium held in Chania, Crete, Greece, June
14-17, 2000. 2001 ISBN 0-7923-7164-X

93. V.M. Alexandrov and D.A. Pozharskii: Three-Dimensional Contact Problems. 2001
ISBN 0-7923-7165-8

94. J.P. Dempsey and H.H. Shen (eds.): IUTAM Symposium on Scaling Laws in Ice Mechanics
and Ice Dynamics. Proceedings of the IUTAM Symposium held in Fairbanks, Alaska, U.S.A.,
13-16 June 2000. 2001 ISBN 1-4020-0171-1

95. U. Kirsch: Design-Oriented Analysis of Structures. A Unified Approach. 2002
ISBN 1-4020-0443-5

96. A. Preumont: Vibration Control of Active Structures. An Introduction (2nd Edition). 2002
ISBN 1-4020-0496-6

97. B.L. Karihaloo (ed.): IUTAM Symposium on Analytical and Computational Fracture Mechan-
ics of Non-Homogeneous Materials. Proceedings of the IUTAM Symposium held in Cardiff,
U.K., 18-22 June 2001. 2002 ISBN 1-4020-0510-5

98. S.M. Han and H. Benaroya: Nonlinear and Stochastic Dynamics of Compliant Offshore Struc-
tures. 2002 ISBN 1-4020-0573-3

99. A.M. Linkov: Boundary Integral Equations in Elasticity Theory. 2002
ISBN 1-4020-0574-1

100. L.P. Lebedev, I.I. Vorovich and G.M.L. Gladwell: Functional Analysis. Applications in Me-
chanics and Inverse Problems (2nd Edition). 2002

ISBN 1-4020-0667-5; Pb: 1-4020-0756-6
101. Q.P. Sun (ed.): IUTAM Symposium on Mechanics of Martensitic Phase Transformation in

Solids. Proceedings of the IUTAM Symposium held in Hong Kong, China, 11-15 June 2001.
2002 ISBN 1-4020-0741-8

102. M.L. Munjal (ed.): IUTAM Symposium on Designing for Quietness. Proceedings of the IUTAM
Symposium held in Bangkok, India, 12-14 December 2000. 2002 ISBN 1-4020-0765-5

103. J.A.C. Martins and M.D.P. Monteiro Marques (eds.): Contact Mechanics. Proceedings of the
3rd Contact Mechanics International Symposium, Praia da Consolaç̧̧ao, Peniche, Portugal,˜
17-21 June 2001. 2002 ISBN 1-4020-0811-2

104. H.R. Drew and S. Pellegrino (eds.): New Approaches to Structural Mechanics, Shells and
Biological Structures. 2002 ISBN 1-4020-0862-7

105. J.R. Vinson and R.L. Sierakowski: The Behavior of Structures Composed of Composite Ma-
terials. Second Edition. 2002 ISBN 1-4020-0904-6

106. Not yet published.
107. J.R. Barber: Elasticity. Second Edition. 2002 ISBN Hb 1-4020-0964-X; Pb 1-4020-0966-6
108. C. Miehe (ed.): IUTAM Symposium on Computational Mechanics of Solid Materials at Large

Strains. Proceedings of the IUTAM Symposium held in Stuttgart, Germany, 20-24 August
2001. 2003 ISBN 1-4020-1170-9
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109. P. Ståhle and K.G. Sundin (eds.):˚ IUTAM Symposium on Field Analyses for Determination
of Material Parameters – Experimental and Numerical Aspects. Proceedings of the IUTAM
Symposium held in Abisko National Park, Kiruna, Sweden, July 31 – August 4, 2000. 2003

ISBN 1-4020-1283-7
110. N. Sri Namachchivaya and Y.K. Lin (eds.): IUTAM Symposium on Nonlnear Stochastic Dynam-

ics. Proceedings of the IUTAM Symposium held in Monticello, IL, USA, 26 – 30 August,
2000. 2003 ISBN 1-4020-1471-6

111. H. Sobieckzky (ed.): IUTAM Symposium Transsonicum IV. Proceedings of the IUTAM Sym-VV
posium held in Göttingen, Germany, 2–6 September 2002, 2003 ISBN 1-4020-1608-5¨

112. J.-C. Samin and P. Fisette: Symbolic Modeling of Multibody Systems. 2003
ISBN 1-4020-1629-8

113. A.B. Movchan (ed.): IUTAM Symposium on Asymptotics, Singularities and Homogenisation
in Problems of Mechanics. Proceedings of the IUTAM Symposium held in Liverpool, United
Kingdom, 8-11 July 2002. 2003 ISBN 1-4020-1780-4

114. S. Ahzi, M. Cherkaoui, M.A. Khaleel, H.M. Zbib, M.A. Zikry and B. LaMatina (eds.): IUTAM
Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of
Engineering Materials. Proceedings of the IUTAM Symposium held in Marrakech, Morocco,
20-25 October 2002. 2004 ISBN 1-4020-1861-4

115. H. Kitagawa and Y. Shibutani (eds.): IUTAM Symposium on Mesoscopic Dynamics of Fracture
Process and Materials Strength. Proceedings of the IUTAM Symposium held in Osaka, Japan,
6-11 July 2003. Volume in celebration of Professor Kitagawa’s retirement. 2004

ISBN 1-4020-2037-6
116. E.H. Dowell, R.L. Clark, D. Cox, H.C. Curtiss, Jr., K.C. Hall, D.A. Peters, R.H. Scanlan, E.

Simiu, F. Sisto and D. Tang: A Modern Course in Aeroelasticity. 4th Edition, 2004
ISBN 1-4020-2039-2

117. T. Burczyński and A. Osyczka (eds.):´ IUTAM Symposium on Evolutionary Methods in Mechan-
ics. Proceedings of the IUTAM Symposium held in Cracow, Poland, 24-27 September 2002.
2004 ISBN 1-4020-2266-2

118. D. Ieşan:¸̧ Thermoelastic Models of Continua. 2004 ISBN 1-4020-2309-X
119. G.M.L. Gladwell: Inverse Problems in Vibration. Second Edition. 2004 ISBN 1-4020-2670-6
120. J.R. Vinson: Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials,

Including Sandwich Construction. 2005 ISBN 1-4020-3110-6
121. Forthcoming
122. G. Rega and F. Vestroni (eds.): IUTAM Symposium on Chaotic Dynamics and Control of

Systems and Processes in Mechanics. 2005 ISBN 1-4020-3267-6
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