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Preface

The purpose of this book is to give the reader two things, to paraphrase Mark Twain:
Roots to know the basics of modeling networks and Wings to fly away and attempt
modeling other proposed systems of interest.

The Internet phenomenon is affecting us all in the way we communicate, conduct
business, and access information and entertainment. More unforeseen applications
are still to come. All of this is due to the existence of an efficient global high-
performance network that connects millions of users and moves information at a
high rate with small delay.

High-Performance Networks

A high-performance network is characterized by two performance measures band-
width and delay. Traditional network design focused mainly on bandwidth plan-
ning; the solution to network problems was to add more bandwidth. Nowadays, we
have to consider message delay particularly for delay-sensitive applications such as
voice and real-time video. Both bandwidth and delay contribute to the performance
of the network. Bandwidth can be easily increased by compressing the data, by using
links with higher speed, or by transmitting several bits in parallel using sophisticated
modulation techniques. Delay, however, is not so easily improved. It can only be
reduced by the use of good scheduling protocols, very fast hardware and switching
equipment throughout the network. The increasing use of optical fibers means that
the transmission channel is close to ideal with extremely high bandwidth and low
delay (speed of light). The areas that need optimization are the interfaces and devices
that connect the different links together such as hubs, switches, routers, and bridges.
The goal of this book is to explore the design and analysis techniques of these
devices. There are indications, however, that the optical fiber channel is becoming
less than ideal due to the increasing bit rates. Furthermore, the use of wireless
mobile networking is becoming very popular. Thus new and improved techniques
for transmitting across the noisy, and band-limited, channel become very essential.
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The work to be done to optimize the physical level of communication is devising
algorithms and hardware for adaptive data coding, modulation, and compression.
Thus digital signal processing is finding an increasing and pivotal role in the area of
networking and communications.

Scope

The three main building blocks of high-performance networks are the links, the
switching equipment connecting the links together, and the software employed at
the nodes and switches. The purpose of this book is to provide the basic techniques
for modeling and analyzing the last component: the software and protocols. For this
purpose, different topics are covered in the book such as Markov chains and queuing
analysis, traffic modeling, and protocol analysis.

There are many books and articles dealing with continuous-time Markov chains
and queuing analysis. This is because continuous-time systems were thought to
be easily modeled and analyzed. However, digital communications are discrete
in nature. Luckily, discrete-time Markov chains are simple, if not even easier, to
analyze. The first edition of this book in 2008 contributed to supporting this idea as
can be ascertained by the nature of recent publications on the topic. The approach
we chose to present Markov chains and queuing analysis is to start with explaining
the basic concepts, then explain the analytic and numerical techniques that could
be used to study the system. We introduce many worked examples throughout to
get a feel as to how to apply discrete-time Markov chains to many communication
systems.

We employ MATLAB ® throughout this book for its toolboxes and its simplicity
and popularity. It is widely used by engineers and engineering students. There are
many equally useful mathematical packages available nowadays on many worksta-
tions and personal computers such as the Canadian Maple = and Mathematica -

Organization

This book covers the mathematical theory and techniques necessary for analyzing
telecommunication systems. Queuing and Markov chain analyses are provided for
many protocols that are used in networking. The book then discusses in detail
applications of Markov chains and queuing analysis to model communications
protocols. Several appendices are also provided that round up the discussion and
provide a handy reference for the necessary background material.

Chapter 1 discusses probability theory and random variables. There is a dis-
cussion of sample spaces and how to count the number of outcomes of a random
experiment. Also discussed is probability density function and expectations. Impor-
tant distributions are discussed since they will be used for describing traffic in
our analysis. The Pareto distribution is discussed in this chapter, which is usually
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not discussed in standard engineering texts on probability. Perhaps what is new in
this chapter is the review of techniques for generating random numbers that obey
a desired probability distribution. Inclusion of this material rounds up the chapter
and helps the designer or researcher to generate the network traffic data needed to
simulate a system under specified conditions.

Chapter 2 discusses random processes and in particular Poisson and exponential
processes. The chapter also discusses concepts associated with random processes
such as ensemble average, time average, autocorrelation function, and cross-
correlation function.

Chapter 3 discusses discrete-time Markov chains. Techniques for constructing
the state transition matrix are explored in detail as well as how the time step is
determined since all discrete-time Markov chains require awareness of the time
step value. The chapter discusses also transient behaviour of Markov chains and
explains the various techniques for studying it such as diagonalization, expansion of
the initial distribution vector, Jordan canonic form, and using the z-transform.

Chapter 4 is a very useful and important chapter since it discusses Markov chains
at equilibrium, or steady state. Analytic techniques for finding the equilibrium
distribution vector are explained such as finding the eigenvalues and eigenvectors
of the state transition matrix, solving difference equations, and the z-transform
technique. Several numerical techniques for finding the steady-state distribution
are discussed such as use of forward substitution and backward substitution, and
iterative equations. The concepts of balance equations and flow balance are also
explained.

Chapter 5 discusses reducible Markov chains and explains the concept of closed
and transient states. The transition matrix for a reducible Markov chain is partitioned
into blocks, and the closed and transient states are related to each partitioning block.
An expression is derived for the state of a Markov chain at any time instant n
and also at equilibrium. The chapter also discusses how a reducible Markov chain
could be identified by studying its eigenvalues and eigenvectors. It is shown that the
eigenvectors enable us to identify all sets of closed and transient states.

Chapter 6 discusses periodic Markov chains. Two types of periodic Markov
chains are identified and discussed separately. The eigenvalues of periodic Markov
chains are discussed and related to the periodicity of the system. What is novel in
this chapter is the ability to recognize and characterize a periodic Markov chain
by inspection of its eigenvalues. Transient analysis of a periodic Markov chain is
discussed in detail and asymptotic behaviour is analyzed.

Chapter 7 discusses discrete-time queues and queuing analysis. Kendall’s nota-
tion is explained and several discrete-time queues are analyzed such as the infinite-
sized M/M/1 queue and the finite-sized M/M/1/B queue. Equally important
queues encountered in this book are also considered such as M”/M/1/B and
M/M™/1/B queues. The important performance parameters considered for each
queue are the throughput, delay, average queue size, loss probability, and efficiency.
The chapter also discusses how to analyze networks of queues using two techniques:
the flow balance approach and the merged approach.
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Chapter 8 discusses the modeling of several flow control protocols using Markov
chains and queuing analysis. Three traffic management protocols are considered and
analyzed for the first time: leaky bucket, token bucket, and the virtual scheduling
(VS) algorithm.

Chapter 9 discusses the modeling of several error control protocols using Markov
chains and queuing analysis. Three error control techniques using automatic repeat
request algorithms are considered: stop-and-wait (SW ARQ), go-back-N (GBN
ARQ), and selective repeat protocol (SRP ARQ).

Chapter 10 discusses the modeling of several medium access control protocols
using Markov chains and queuing analysis. Several media access protocols are
discussed: IEEE Standard 802.1p (static priority), pure and slotted ALOHA, IEEE
Standard 802.3 (CSMA/CD, Ethernet), and Carrier sense multiple access with
collision avoidance (CSMA/CA).

Chapter 11 discusses and analyzes several variants of the IEEE 802.11 protocol
such as IEEE Standard 802.11 basic distributed coordination function for ad
hoc networks, IEEE Standard 802.11 RTS/CTS protocol for wireless ad hoc
networks, Enhanced Distributed Channel Access (EDCA) for ad hoc networks, and
IEEE 802.11e Hybrid Coordination function Control Channel Access (HCCA) for
wireless infrastructure networks.

Chapter 12 discusses the IEEE 802.16 WiMAX and provides a simple analytical
model for the Access Point (AP) and the individual users.

Chapter 13 provides a quick review of the physical wireless channel fading
phenomena and develops a Markov chain model for fading.

Chapter 14 discusses cognitive radio (CR) and develops a model for opportunis-
tic behaviour.

Chapter 15 discusses realistic statistical descriptors of network traffic and their
effect on packet queues or buffers. Different traffic distributions are considered such
as on—off traffic, Poisson traffic, Bernoulli traffic, Self-similar traffic, and the general
case of traffic that follows an arbitrary distribution. Other topics are also analyzed
such as traffic destination, packet length, and transmission errors. The interarrival
times for different traffic distributions are discussed in detail and realistic models
are proposed.

Chapter 16 discusses scheduling algorithms. The differences and similarities
between scheduling algorithms and media access protocols are discussed. Scheduler
performance measures are explained and scheduler types or classifications are
explained. The concept of max—min fairness is explained since it is essential for the
discussion of scheduling algorithms. Twelve scheduling algorithms are explained
and analyzed: first-in/first-out (FIFO), static priority, round robin (RR), weighted
round robin (WRR), processor sharing (PS), generalized processor sharing (GPS),
fair queuing (FQ), packet by packet GPS (PGPS), weighted fair queuing (WFQ),
frame-based fair queuing (FFQ), core-stateless fair queuing (CSFQ), and finally
random early detection (RED).

Appendix A provides a handy reference for many formulas that are useful
while modeling the different queues considered here. The reader should find this
information handy since it was difficult to find all of formulas in a single source.
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Appendix B discusses techniques for solving difference equations or recurrence
relations. These recurrence relations crop up in the analysis of queues and Markov
chains.

Appendix C discusses how the z-transform technique could be used to find a
closed-form expression for the distribution vector s(n) at any time value through
finding the z-transform of the transition matrix P.

Appendix D discusses vectors and matrices. Several concepts are discussed such
as matrix inverse, matrix nullspace, rank of a matrix, matrix diagonalization, and
eigenvalues and eigenvectors of a matrix. Techniques for solving systems of linear
equations are discussed since these systems are encountered in several places in
the book. Many special matrices are discussed such as circulant matrix, diagonal
matrix, echelon matrix, Hessenberg matrix, identity matrix, nonnegative matrix,
orthogonal matrix, plane rotation, stochastic (Markov) matrix, substochastic matrix,
and tridiagonal matrix.

Advanced Topics

I invested special effort in making this book useful to practicing engineers and
students. There are many interesting examples and models throughout the book.
However, I list here some interesting topics:

» Chapter 1 discusses heavy-tailed distribution in Sect. 1.20 and generation of
random numbers in Sect. 1.36.

» Chapter 3 discusses techniques for finding higher powers for Markov chain state
transition matrix in Sects. 3.13 and 3.14.

e Chapter 5 discusses reducible Markov chains at steady state in Sect. 5.7 and
transient analysis of reducible Markov chains in Sect. 5.6. Also there is a
discussion on how to identify a reducible Markov chain by examining its
eigenvalues and eigenvectors.

» Chapter 6 discusses transient analysis of periodic Markov chains in Sect. 6.14
and asymptotic behavior of periodic Markov chains in Sect. 6.15. Also there is a
discussion on how to identify a periodic Markov chain and how to determine its
period by examining its eigenvalues.

» Chapter 7 discusses developing performance metrics for the major queue types.

» Chapter 8 discusses how to model three flow control protocols dealing with traffic
management.

» Chapter 9 discusses how to model three flow control protocols dealing with error
control.

» Chapter 10 discusses how to model three flow control protocols dealing with
medium access control.

» Chapter 15 discusses developing realistic models for source traffic using Poisson
description (Sect. 15.3.2), Bernoulli (Sect. 15.4.2), and Pareto traffic (Sect. 15.8).
There is also a discussion on Packet destination and length modeling.
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Web Resources

A website is provided, http://www.ece.uvic.ca/~fayez/Book, that will contain infor-
mation about the textbook and any related web resources.

Errors

This book covers a wide range of topics related to communication networks and
provides an extensive set of analyses and worked examples. It is “highly probable”
that it contains errors and omissions. Other researchers and/or practicing engineers
might have other ideas about the content and organization of this book. We welcome
receiving any constructive comments and suggestions for inclusion in the next
edition. If you find any errors, we would appreciate hearing from you. We also
welcome ideas for examples and problems (along with their solutions if possible) to
include in the next edition with proper citation.

You can send your comments and bug reports electronically to fayez@uvic.ca or
you can fax or mail the information to:

Dr. Fayez Gebali

Elec. and Comp. Eng. Dept.

University of Victoria Victoria, BC, Canada V8W 2Y2
Tel: (250)721-6509

Fax: (250) 721-6052.


http://www.ece.uvic.ca/~fayez/Book
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Chapter 1
Probability

1.1 Introduction

The goal of this chapter is to provide a review of the principles of probability,
random variables, and distributions. Probability is associated with conducting a
random experiment or trial and checking the resulting outcome.

Definition 1.1 (Outcome). An outcome is any possible observation of a random
experiment.

For example, the random experiment might be flipping a coin and the outcome
would be heads or tails depending whether the coin lands face up or down. The
possible outcomes of a random experiment could be discrete or continuous. An
example of a random experiment with discrete outcomes is rolling a die since the
possible outcomes would be the numbers 1, 2, ---, 6. An example of a random
experiment with continuous outcomes is spinning a pointer and measuring its angle
relative to some reference direction. The angle we measure could be anything
between 0° and 360°.

Definition 1.2 (Sample Space). The collection of all possible, mutually exclusive
outcomes is called the sample space S.

For the random experiment of rolling a die, the sample space will be the set:
S =1{1,2,3,4,5,6}

This sample space is discrete since the possible outcomes were discrete. For the
example of spinning a pointer, the sample space is specified by the equation:

S =1{0]0° <6 <360°}

Definition 1.3 (Event). An event is a set of outcomes sharing a common charac-
teristic.

© Springer International Publishing Switzerland 2015 1
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In that sense, an event could correspond to one or several outcomes of an
experiment. An event could be thought of as a subset of the sample space S. On
the other hand, an outcome is an element of the subset space.

Definition 1.4 (Event Space). The event space is the collection of all possible,
mutually exclusive events of a random experiment.

In that sense, the event space is the partitioning of .S into subsets that do not share
their elements.

For the case of die rolling experiment, we might be interested in the event E that
the outcome is an even number—Thus we can specify E: the number is even or E:
the number is odd. In that case there are six outcomes and two events. The event
space will be composed of two events:

S = {E, E)

Another event could be that the outcome is greater than 2, say. In that case there are
two events again for the experiment—£E: the number = 1 or 2 and E': the number
> 2. The event space will also consist of two events.

1.2 Applying Set Theory to Probability

We saw above that sets are used to describe aspects of random experiments such as
sample space, outcomes, and events. Table 1.1 shows the correspondence between
set theory terminology and probability definitions.

Assume A and B are two events in a random experiment. These two events might
be graphically shown using the Venn diagram of Fig. 1.1. The event defined as
any outcome that belongs to either A or B is called the union of 4 and B and is
represented by the expression:

AUB

Figure 1.1a shows the union operation as the shaded area.
The event defined as any outcome that belongs to both A and B is called the
intersection of A and B and is represented by the expression:

Table 1.1 Correspondence Probability
between set theory and
probability definitions [1]

Set theory
Outcome Element of a set
Sample space S | Universal set U
Event Subset
Impossible event | Null set
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Fig. 1.1 Venn diagram for a b
two events A and B in a

sample space S. (a) The ' '
union operation 4 U B.

(b) The intersection

Fig. 1.2 Event A4 and its a

operation A N B
complementary event A

|

ANB

Figure 1.1b shows the intersection operation as the shaded area.

Definition 1.5 (Complementary Event). Given an event A, the complementary
event A is the set of all outcomes that do not belong to the set A.

Figure 1.2 shows that the universal set U is partitioned into the two sets 4 and A.
These two sets are not overlapping in the sense that there is not a single outcome
that belongs to both 4 and A simultaneously.

We can write the following equations describing operations on events:

A=U-4
AUA=U
ANA=0

De Morgan’s law for sets applies also for events and we can write:

ANB=AUB
Example 1.1. LetU = {a, b, ¢, d, e, [, g, h, i, j, k}, A={a, c, e, h, j},
and B = {c, d, e, f, k}. Find the events:

1. AUB
2. ANB

Prove alsothat AN B =AU B

AUB ={a, c,d, e, f, h, j, k}
ANB ={c, e}
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We also have:

ANB={a, b, d, f g h, i, j k}
A={b. d, f g. i k}

={a, b g h i, j

AUB ={a. b, d, f g. h. i, j. k}

|

Hence De Morgan’s law is proved by direct counting. |

Definition 1.6 (Mutually Exclusive Events). Events A and B are said to be
mutually exclusive or disjoint events if they have no elements in common.

From that definition, we can write:

ANB=¢ (1.1)

1.3 Counting Sample Space Points

In many discussions of probability, we need to determine the number of possible
outcomes of a given experiment or trial. The multiplication principle, permutations,
and combinations, to be discussed in the following sections, will prove useful.

1.4 The Multiplication Principle

The fundamental principle of counting is useful in finding the number of points in
the sample space. Suppose that the number of outcomes for doing experiment E| is
x and the number of outcomes for doing experiment E, is y. Then the number of
outcomes for doing experiment E followed by experiment Ej is the product x y.

Example 1.2. Assume there are 3 different ways for a data packet to travel through
network A and 15 different ways to travel through network B. Use the multiplication
principle to find the number of ways the packet could travel through network A

followed by network B.
The multiplication principle states that there are 3 x 15 or 45 ways for the packet
to travel through network A followed by network B. ]

We can generalize the multiplication principle as follows. Suppose that N, is the
number of outcomes for doing experiment E, and N, is the number of outcomes for

doing experiment Ej, ---, and N, is the number of outcomes for doing experiment
E,. The number of outcomes of performing experiments Ey, E,, ---, E, is given
by the product:

N =N N, --- N,
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Example 1.3. A die is thrown three times and the sequence of numbers is recorded.
Determine the number of 3-digit sequences that could result.

We perform three experiments where each one is the act of throwing the die.
One possible outcome would be the number sequence: 312; which corresponds to
obtaining 3 on the first throw, 1 on the second, and 2 on the third. The number of
outcomes of each experiment is 6. Therefore, the total number of outcomes is:

N =6x6x6=216 ]

Example 1.4. In time division multiplexing (also known as synchronous transmis-
sion mode) each slot in a frame is reserved to a certain user. That slot could be
occupied or empty when the user is busy or idle, respectively. Assuming the frame
consists of 10 slots, how many slot occupancy patterns can be received in a single
frame?

Each time slot can be treated as an experiment with only two outcomes, busy or
idle. The experiment is repeated 10 times to form the frame. The total number of
possible outcomes is:

N =2'0=1024 m

1.5 Permutations

Permutations arise when we are given n objects and we want to arrange them
according to a certain order. In other words, we arrange the objects by randomly
picking one, then the next, and so on. We have n choices for picking the first item,
n — 1 choices of picking the second item, and so on.

1.5.1 n Distinct Objects Taken n at a Time

The number of permutations of n distinct objects taken n at a time is denoted by
P(n,n) and is given by:

Pn,n)=nl=nxm—-1)xn—-2)x---x3x2x1

The function n! is called Factorial-n and can be obtained using the MATLAB
function factorial (n).

Example 1.5. Packets are sent through the Internet in sequence; however, they are
received out of sequence since each packet could be sent through a different route.
How many ways can a 5-packet sequence be received?
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If we number our packets as 1, 2, 3, 4, and 5, then one possible sequence of
received packets could be: 12543 when packet 1 arrives first followed by packet
2 then packet 5, and so on. The number of possible received packet sequences is
given by:

P(5.5) = 5! =120 -

1.5.2 n Distinct Objects Taken k at a Time

A different situation arises when we have n distinct objects but we only pick k
objects to arrange. In that case, the number of permutations of n distinct objects
taken k at a time is given by:

Pn,k)=nxmn—-1)x---x(n—k+1)
n!

= i—k)!

(1.2)

Example 1.6. Assume that 10 packets are sent in sequence, but they are out of
sequence when they are received. If we observe a three-packet sequence only, how
many 3-packet sequences could we observe?

A possible observed packet arrival sequence could be 295. Another might be 024,
and so on. We have n = 10 and k = 3:

10!

1.6 Permutations of Objects in Groups

Now, assume we have n objects in which n; objects are alike, n, objects are alike,
---, and ny objects are alike such that:

k
n= Zni (1.3)

Here we classify the objects not by their individual labels but by the group in which
they belong. An output sequence will be distinguishable from another if the objects
picked happen to belong to different groups. As a simple example, suppose we have
20 balls that could be colored red, green, or blue. We are now interested not in
picking a particular ball, but in picking a ball of a certain color.
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In that case, the number of permutations of these n objects taken n at a time is
given by:
n!
X=—— (1.4)
nilny! - ng!
This number is smaller than P(n,n) since several of the objects are alike and this
reduces the number of distinguishable combinations.

Example 1.7. Packets arriving at a terminal could be one of three possible service
classes: class A, class B, or class C. Assume that we received 10 packets and we
found out that there were 2 packets in class A, 5 in class B, and 3 in class C. How
many possible service class arrival order could we have received?

We are not interested here in the sequence of received packets. Instead, we are
interested only in the arrival order of the service classes.

We have n; = 2, n, = 5, and n3 = 3 such that n = 10. The number of service
class patterns is:

10!

X =——=2,520
215! 3!

In other words, there are 10 possibilities for receiving 10 packets such that exactly
two of them belonged to class A, five belonged to class B, and three belonged to
class C. ]

Example 1.8. In time division multiplexing each time slot in a frame is reserved to
a certain user. That time slot could be occupied or empty when the user is busy or
idle, respectively. If we know that each frame contains ten time slots and four users
are active and six are idle, how many possible active slot patterns could have been
received?

We are interested here in finding the different ways we could have received 4
active slots out of 10 possible slots. Thus we “color” our slots as active or idle
without regard to their location in the frame.

We have ny = 4 and n, = 6 such that n = 10:

10!
X=—
4! 6!

Example 1.9. A bucket contains 10 marbles. There are 5 red marbles, 2 green
marbles, and 3 blue marbles. How many different color permutations could result if
we arranged the marbles in one straight line?

We have ny = 5, n, = 2, and n3 = 3 such that n = 10. The number of different
color permutations is:

=210 m

10!
X=——— =2,520
51213 -
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1.7 Combinations

The above permutations took the order of choosing the objects into consideration. If
the order of choosing the objects is not taken into consideration, then combinations
are obtained.

The number of combinations of n objects taken k at a time is called the binomial
coefficient and is given by:

!

MATLAB has the function nchoosek (n, k) for evaluating the above equation
where 0 < k < n.

Example 1.10. Assume 10 packets are received with 2 packets in error. How many
combinations are there for this situation?
We have n = 10 and k = 2:

10 10!

|
Example 1.11. Assume 50 packets are received but 4 packets are received out of
sequence. How many combinations are there for this situation?

We have n = 50 and k = 4:

50 50!
C(50,4) = (4) = 1raq = 230.300

1.8 Probability

We define probability using the relative-frequency approach. Suppose we perform
an experiment like the tossing of a coin for N times. We define event A is when the
coin lands head up. Define N4 as the number of times that event A occurs when the
coin tossing experiment is repeated N times. Then the probability that we will get a
head when the coin is tossed is given by:

p(A) = lim N— (1.6)

This equation defines the relative frequency that event A happens.
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1.9 Acxioms of Probability

We defined our sample space S as the set of all possible outcomes of an experiment.
An impossible outcome defines the empty set or null event §J. Based on this we can
state four basic axioms for the probability:

1. The probability p(A) of an event A is a nonnegative fraction in the range:
0=p4) =1

This can be deduced from the basic definition of probability in (1.6).

2. The probability of the null event @ is zero p(9) = 0.

The probability of all possible events S is unity p(S) = 1.

4. If A and B are mutually exclusive events (cannot happen at the same time), then
the probability that event A or event B occurs is given by:

p(AU B) = p(A) + p(B) (1.7

»

Event E and its complement E¢ are mutually exclusive. Applying the above
axioms of probability we can write:

P(E) + p(E°) =1 (1.8)
p(ENE)=0 (1.9)

1.10 Other Probability Relationships

If A and B are two events (they need not be mutually exclusive), then the probability
that event A or event B occurring is given by:

p(AU B) = p(A) + p(B) — p(AN B) (1.10)

The probability that event A occurs given that event B occurred is denoted by

P(A|B) and is sometimes referred to as the probability of A conditioned by B.

This is given by:

p(AN B)
p(B)

Now, if A and B are two independent events, then we can write p(A|B) = p(A)

because the probability of event A taking place will not change whether event B

occurs or not. From the above equation we can now write the probability that event
A and event B occurs is given by:

p(AN B) = p(A) x p(B) (1.12)

provided that the two events are independent.

p(A|B) = (1.11)
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The probability of the complement of an event is given by:

p(A9) =1-p(4) (1.13)

1.11 Random Variables

Many systems based on random phenomena are best studied using the concept
of random variables. A random variable allows us to employ mathematical and
numerical techniques to study the phenomenon of interest. For example, measuring
the length of packets arriving at random at the input of a switch produces as outcome
a number that corresponds to the length of that packet.

According to references [2-5], a random variable is simply a numerical
description of the outcome of a random experiment. We are free to choose the
function that maps or assigns a numerical value to each outcome depending on the
situation at hand. Later we shall see that the choice of this function is rather obvious
in most situations. Figure 1.3 graphically shows the steps leading to assigning a
numerical value to the outcome of a random experiment. First we run the experiment
then we observe the resulting outcome. Each outcome is assigned a numerical value.

Assigning a numerical value to the outcome of a random experiment allows us to
develop uniform analysis for many types of experiments independent of the nature
of their specific outcomes [2].

We denote a random variable by a capital letter (the name of the function) and
any particular value of the random variable is denoted by a lowercase letter (the
value of the function).

Examples of random variables, and their numerical values, could be:

1. Number of arriving packets at a given time instance is an example of a discrete
random variable N with possible valuesn = 0,1,2,---.

2. Tossing a coin and assigning 0 when a tail is obtained and 1 when a head is
obtained is an example of a discrete random variable X with values x € {0, 1}.

3. The weight of a car in kilograms is an example of a continuous random
variable W with values in the range 1,000 < w < 2,000 kg typically.

4. The temperature of a day at noon is an example of random variable 7'. This
random variable could be discrete or continuous depending on the type of the
thermometer (analog or digital).

Mapping
Function .
Random Random Corresponding
Experiment Outcome Number: x

Fig. 1.3 The steps leading to assigning a numerical value to the outcome of a random experiment



1.12  Cumulative Distribution Function 11

5. The atmospheric pressure at a given location is an example of a random
variable P. This random variable could be discrete or continuous depending on
the accuracy of the barometer (analog or digital).

1.12 Cumulative Distribution Function

The cumulative distribution function (CDF) for a random variable X is denoted by
Fy(x) and is defined as the probability that the random variable is less than or
equal to x. Thus the event of interest is X < x and we can write:

Fx(x) = p(X <x) (1.14)

The subscript X denotes the random variable associated with the function while the
argument x denotes a numerical value. For simplicity we shall drop the subscript
and write F(x) when we are dealing with a single random variable and there is no
chance of confusion. Because F(x) is a probability, it must have the same properties
of probabilities. In addition, F(x) has other properties as shown below:

F(—00) =0 (1.15)
F(o0) =1 (1.16)
0<F(x)<l1 (1.17)
F(x)) < F(xp) when x| < x, (1.18)
p(x1 < X <x3) = F(xp) — F(x1) (1.19)

The CDF is a monotonically increasing function of x. From the last equation, the
probability that x lies in the region xo < x < xo + € (where € is arbitrarily small)
is given by:

p(xo < X = x4 €) = F(xo+€) — F(x) (1.20)

Thus the amount of jump in CDF at x = X is the probability that x = x,. |

Example 1.12. Consider the random experiment of spinning a pointer around a
circle and measuring the angle it makes when it stops. Plot the CDF Fg(0).

Obviously the random variable ® is continuous since the pointer could point at
any angle. The range of values for 8 is between 0° and 360°. Thus the function
Fe(0) has the following extreme values:

Fo(=0°) = p(6<—0° =0
Fo (360°) = p (6 <360°) = 1

There is no preference for the pointer to settle at any angle in particular and the CDF
will have the distribution shown in Fig. 1.4. |
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Fig. 1.4 Cumulative Fg(6)
distribution function for a
continuous random variable

0° 360° 0

1.12.1 CDF in the Discrete Case

For the case of a discrete random variable we make use of the CDF property in
(1.20). The CDF for a discrete random variable will be a staircase as illustrated in
the following example.

Example 1.13. Consider again the case of the spinning pointer experiment but
define the discrete random variable Q which identifies the quadrant in which the
pointer rests in. The quadrants are assigned the numerical values 1, 2, 3, and 4.
Thus the random variable Q will have the values ¢ = 1, 2, 3, or 4.

Since the pointer has equal probability of stopping in any quadrant, we can write:

1
= 1 = —
plg=1 =7
(¢=2)= 1
plg =2 =7
1
= 3 = —
plg=3)=
G=4=
pig=% =7
The CDF for this experiment is shown in Fig. 1.5. |

1.13 Probability Density Function

The probability density function (pdf) for a continuous random variable X is
denoted by fx (x) and is defined as the derivative of Fy(x):

dFx(x)

fx(x) = dx

(1.21)
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Fig. 1.5 Cumulative Fo(q)
distribution function for a
discrete random variable

05f-=----- _—

Because Fy (x) is a monotonically increasing function of x, we conclude that fx (x)
will never be negative. It can, however, be zero or even bigger than 1.

We will follow our simplifying convention of dropping the subscript when there
is no chance of confusion and write the pdf as f(x) instead of fyx (x). Integrating
the above equation we obtain:

X2
[ s ax = Fe) - Fex) (1.22)
X1
Thus we can write:

Pl < X < x) = / ¥ f) dx (1.23)

| The area under the pdf curve is the probability p(x; < X < x;) |

f(x) has the following properties:

f(x)=0 for all x (1.24)
/_Z f(x)dx =1 (1.25)
/_; f(y)dy = F(x) (126)
/: f(x)dx = p(x; < X <x3) (1.27)

f(x)dx = p(x < X <x+dx) (1.28)
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1.14 Probability Mass Function

For the case of a discrete random variable the cdf is discontinuous in the shape of
a staircase. Therefore, its slope will be zero everywhere except at the discontinuities
where it will be infinite.

The pdf in the discrete case is called the Probability Mass Function (pmf) [1].
The pmf is defined as the probability that the random variable X has the value x and
is denoted by py (x). We can write:

px(x) = p(X =x) (1.29)

where the expression on the right-hand side indicates the probability that the random
variable X has the value x.

We will follow our simplifying convention of dropping the subscript when there
is no chance of confusion and write the pmf as p(x) instead of px(x). px(x) has
the following properties:

px(x) >0 for all x (1.30)

> pxx) =1 (1.31)

Example 1.14. The pointer spinning experiment was considered for the continuous
case (Example 1.12) and the discrete case (Example 1.13), plot the pdf for the
continuous random variable ® and the corresponding pmf for the discrete random
variable Q.

Figure 1.6a shows the pdf for the continuous case where the random variable ®
measures the angle of the pointer. Figure 1.6b shows the pmf for the discrete case
where the random variable Q measures the quadrant where the pointer is located. l

a0 b,

1/4
s ‘ ‘ ‘ ‘
1 2 3 4

0 360° 6 0

q

Fig. 1.6 Continuous and discrete random variables. (a) pdf for the continuous case. (b) pmf for
the discrete case
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1.15 Expected Value and Variance

The pdf and pmf we obtained above help us find the expected value E [X] of a
random variable X . For the continuous case, the expected value is given by:

E[X]z/ooxf(x)dx (1.32)

For the discrete case, the expected value is given by the weighted sum:

E[X]=) xi p(x) (1.33)

The expectation is sometimes referred to as the first moment of the random variable.
Sometimes u is used as another symbol for the expected value:

w = E[X]

The mean (m) of a set of random variable samples is defined as:

m=— Xi (1.34)
n -
i=1
The mean is not exactly equal to the expected value p since m changes its value
depending on how many samples we take. However, as n — oo, the two quantities
become equal [1].
Higher moments are also useful and we define the variance, or second central
moment, of the random variable as:

o> =E[(X —n)’] (1.35)

The variance describes how much of the mass of the distribution is close to the
expected value. A small value for o2 indicates that most of the random variable
values lie close to the expected value w. In other words, small variance means that
the pdf is large only in regions close to the expected value p. For an archery target
practice experiment, this might mean that most of the arrows were clustered together
and landed very close at some spot on the target (not necessarily dead center).

Conversely, a large variance means that the pdf is large for values of X far away
from p. Again for the archery experiment, this means that most of the arrows were
not clustered together and landed at different spots on the target.

The standard deviation ¢ is simply the square root of the variance.

Example 1.15. Assume a random variable A from a binary random experiment in
which only two events result. A has the two values a and 0. The probability that the
value a is obtained is p and the probability that the value 0 is obtainedisg = 1 — p.
Find the expected value of A.
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This is a discrete random variable and the pmf for A4 is:

q when A =0
= 1.36
p(a) when A = a ( )
The expected value is obtained from (1.33) as:
E[Al=gx0+pxa=pa (1.37)

Notice that the expected value will be between 0 and a since p is a positive fraction.
]

1.16 Common Continuous RV Distributions

We discuss in the following sections some continuous random variables that are
useful for network simulations. Discussion of common discrete random variables is
found in later sections.

1.17 Continuous Uniform (Flat) Distribution

The uniform random variable, or uniform distribution, usually arises in physical
situations where there is no preferred value for the random variable. For example,
the value of a signal during analog-to-digital conversion could lie anywhere within
each quantization level. This distribution is also useful in our studies because it is
often used to obtain random numbers that obey the more sophisticated distributions
to be discussed below. These random numbers are then considered to be the “traffic”
generated at the inputs of our communication networks.

A uniform distribution is characterized by a random variable that spans the range
a to b such thata < b. f(x) can be written as:

| 1/b—a) a<x<b
Jx) = 0 otherwise (1.38)

and the corresponding cdf is given by:

0 x<a
Fx)y=¢(&x—-a)/(b—a) a<x<b (1.39)
1 x>b

Typically @ = 0 and » = 1. Figure 1.7a shows the pdf for the uniform distribution
and Fig. 1.7b shows the corresponding cdf. The mean and variance for X are:

_b+a

2
N2
azz(b a)
12

(1.40)

(1.41)
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a £ b .0

1 )

1

0 1 x 0 X

Fig. 1.7 The uniform distribution for a continuous random variable. (a) The pdf; and (b) is the
corresponding cdf

The following MATLAB code generates and plots a random variable having a
uniform distribution in the range 0 < x < 1.

suniform.m

n=1000 % number of samples is 1000

x=rand (1,n)

subplot(1,2,1)

plot(x, k")

box off, axis square

xlabel (' Sample index’), ylabel (’Random number value’)
subplot(1,2,2)

hist (x)

title('pdf plot’)

box off, axis square

xlabel ('Bins’), ylabel ('Number of samples)

Figure 1.8 shows the result of running the code. The figure on the left shows the
samples and the figure on the right shows the histogram of the random variable.
Notice that the distribution of the samples in the different bins is almost equal. If we
chose the number of samples to be larger than 1,000, the histogram would show
more equal distribution among the bins.

1.18 Gaussian Distribution

This distribution arises in many random variables used in electrical engineering such
as the noise in a wireless channel. The Gaussian distribution applies for the case of a
continuous random variable X that is allowed to have the values ranging from —oo
to +oo. The pdf for this distribution is given by:

1

o~ 2m

e—(X—M)Z/(Zoz) (1.42)

f(x) =

where u is the mean and o is the standard deviation of the distribution.
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120

Random number value
Bin count

0
0 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1
Sample index Bins

Fig. 1.8 One thousand samples of a random variable having the uniform distribution in the range
0 to 1 (left). Histogram for the samples showing a uniform distribution (right)
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Fig. 1.9 Random numbers generated using the Gaussian distribution with zero mean and unity
variance. Figure on the left shows the random samples and figure on the right shows their histogram

The cdf for this distribution is given by:

o= [ L FO) dy (1.43)

There is no closed-form formula for the cdf associated with the Gaussian distribu-
tion but that function is tabulated in many textbooks on statistics.

The standard or normal random variable is a Gaussian RV with u = 0 and
o = 1 [1]. Figure 1.9 shows the output of a Gaussian random variable with zero
mean and unity variance using the randn function of MATLAB. 1,000 samples
were generated in this experiment.
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1.19 Exponential Distribution

The exponential distribution applies for the case of a continuous random variable X
that is allowed to have the values ranging from 0 to +o00. The pdf for this distribution
is given by:

f(x)=be?~ x>0 (1.44)

where b > 0.
The corresponding cdf is given by:

Fx)=1—e"* (1.45)

The mean and variance for X are:

1
w= (1.46)
) 1

A famous example of exponential RV is the radioactive decay where we have:
f(t) = e ™™ >0 (1.48)

Here A is the rate of decay of an element. In that case 1/ is called the lifetime when
the radioactive material decreases by the ratio 1/e.

1.20 Pareto Distribution

The Poisson and binomial distributions have been traditionally employed to model
traffic arrival at networks. Recent work has shown that such models may be
inadequate because the traffic may exhibit periods of high data rates even when the
average data rate is low. This type of traffic is described as being self-similar (fractal)
[6-8]. Self-similar traffic has distributions with very high variance. Sometimes such
distributions are described as being heavy-tailed since the pdf has large values for x
far away from the mean . This type of distribution might then prove more accurate
in describing the pdf for the rate of data produced by a bursty source.

The Pareto distribution could be made to be a heavy-tailed distribution by proper
choice of its parameters. The Pareto distribution is described by the pdf:

ba® .
[ = witha < x < oo (1.49)
X
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Pareto pdf
o>

2 25 3 3.5 4 45 5
X

Fig. 1.10 Pareto pdf distribution for the case when ¢ = 2 and b = 3 (solid line) and b = 5
(dashed line)

where a is the position parameter and » > 0 is the shape parameter. Figure 1.10
shows the pdf distribution for the case when @ = 2 and b = 3 (solid line) and
b = 5 (dashed line). For the smaller value of shape parameter b the pdf becomes
flatter and has higher values at larger values of x. This results in larger variance
for X.

The corresponding cdf is:

a\b
Fx)=1- (;) (1.50)
The mean and variance for X are:
ba
= 1.51
=37 (L.51)
) b a?
(1.52)

2o ba
b-1>0b-2)

The mean is always positive as long as b > 1. The variance is meaningful only
when b > 2.
From (1.50) we can write:

p(X >x)=1-p(X <x)
a\b
- (;) (1.53)

which means that the probability that the random variable has a value greater than
x decreases geometrically [9].
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Fig. 1.11 Random numbers generated using the Pareto distribution with @ = 2 and b = 2.5. The
figure on the left shows the random samples and the figure on the right shows their histogram

Pareto distribution is typically used to generate network traffic that shows bursty
behavior. This means that when a traffic burst is encountered, it is very probable that
the burst will continue. For such traffic, the shape parameter b is typically chosen in
the range 1.4-1.6.

Figure 1.11 shows the output of a Pareto random variable with position parameter
a = 2 and shape parameter b = 2.5. 1,000 samples were generated in this
experiment using the inversion method as described later in Sect. 1.36.2.

1.21 Rayleigh Distribution

The Rayleigh distribution is used to model the phenomenon of fading in a wireless
communication channel. The pdf of the Rayleigh distribution is given by the
formula:

fx(x) = =0 x>0, a>0 (1.54)
a

where a is the shape parameter. Figure 1.12a shows the Rayleigh pdf distribution for
three different values of the shape parameter a. The corresponding cdf is given by:

Fy(x) = 1 —¢™/a") (1.55)

This can be proven using the formulas in Appendix A.
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a 1 b 1 .
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Fig. 1.12 The Rayleigh distribution for three different values of the shape parameter a. (a)
Probability density function (pdf). (b) Cumulative distribution function (CDF)

The mean of the Rayleigh distribution, using the formulas in Appendix A, is

given by:
© x2 2 2
— Z e /Qa
=[5

b3
d 1.56
a > ( )

The standard deviation, using the formulas in Appendix A, is given by:

o =ay — (1.57)

1.22 Common Discrete Distributions

We discuss in the following sections some discrete random variables that are useful
for network simulations.

1.23 Discrete Uniform Distribution

Assume N is a random variable such that there are k distinct sample points. The
pmf for the discrete uniform RV is defined by:
1/k 1<n<k
p(n) =
0 otherwise

where 7 is the sample index.
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Fig. 1.13 The uniform distribution for a discrete random variable whose values are 0, 1, ---, 5.
(a) The pmf; and (b) is the corresponding cdf

Fig. 1.14 Truncation of a Quantization bits Truncated bits
fractional number from 0. | 1 | 5 | . | . |
n + m bits to n bits *

Binary point

Alternatively, the pmf can be expressed in the form:

k
p(n) = % > b —i) (1.58)

i=1

where 8(j) is the Dirac delta function which is one when j = 0 and zero for all
other values of j # 0.

Figure 1.13 shows the pmf for a random variable consisting of six samples which
are assumed to take the values 0, 1, ---, 5.

Example 1.16. Study the statistical distribution of rounding errors in computer
arithmetic.

The truncation or rounding operation is required after fixed and floating point
number multiplication and also after floating point number addition. Rounding or
truncation is employed to reduce the number of bits back to their original size n,
say. Without loss of generality we assume the inputs to be fractions with the binary
point at the left such that the weight of the most significant bit is 27! and the weight
of the least significant bit (LSB) is 27", Figure 1.14 shows the location of the binary
point for the fixed-point number and also shows the bits that will be truncated or
rounded.

Truncating the extra bits to the right of LSB results in an error e whose magnitude
varies approximately in the range:

—2TM<e<2" (1.59)

Assume the number of bits to be truncated is m. In that case our truncated data has
m bits and the number of possible error samples is k = 2 x 2™ — 1. The factor 2
comes from the fact that the error could be positive or negative.
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Define the discrete random variable E that corresponds to the rounding or
truncation error. Since the probability of any truncation error is equally likely, we
have:

1
p(e) = E = 2(m+l) —1

1.24 Bernoulli (Binary) Distribution

Many systems in communications have two outcomes. For example, a received
packet might be error free or it might contain an error. For a router or a switch,
a packet might arrive at a given time step or no packet arrives. Consider a chance
experiment that has two mutually exclusive outcomes A and A that occur with
probabilities p and g, respectively. We define the discrete random variable X where
X = 1 when A occurs and X = 0 when A occurs. We can write:

p(l)y=p (1.60)
p0) =¢q (1.61)

whereqg =1 — p.
Alternatively, p(x) can be expressed by a single equation in the form:

p(x) =q8(x)+ pdx—1) (1.62)
The mean and variance for X are:

w=p (1.63)
o>=p(l—p) (1.64)

Figure 1.15a shows the pmf for the binary distribution and Fig. 1.15b shows the cdf.

a,® b r

1 —

Fig. 1.15 The binary
distribution: (a) The pmf; and
(b) is the corresponding cdf 0 1 x 0 1 X
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Example 1.17. The 50/50 draw is one of the traditions of a typical minor lacrosse
or baseball sports events. Spectators purchase numbered tickets. One of the tickets
is picked at random and half the proceeds goes to the winner and the rest goes to
support the team (or the executive council might just use the money for their own
purposes). Assume you purchased one ticket and there was a total of 100 entries at
the start of the draw, what are your chances of winning or losing? How much would
your winnings be?

The total number of entries is 100, and the probabilities of winning or losing are:

1

= — =001
7= J00

gq=1—p=0.99

Assuming the purchase price of the ticket is $1, the winner takes $50. The money
won would be $49. |

1.25 Geometric Distribution

This distribution is encountered when success, event A, occurs after »n failures. This
is the case when several devices are attached to a bus and compete for access. The
probability of success is a and the probability of failure is b = 1 — a. The pmf is
the probability of success after n repeated failures and is given by:

p(N=n)=abd" forn >0 (1.65)
Alternatively, p(n) can be expressed by a single equation in the form:

p(n):Za b' §(n —1i) forn >0 (1.66)

i>0

The mean and variance for N are:

b

w=- (1.67)
a
b

o’ = = (1.68)

Example 1.18. Assume packets arrive at a certain device with probability a at a
given time slot. The probability that a packet does not arrive at a time slot is
b=1-a.

(a) What is the probability that we have to wait for n time slots before a packet
arrives?
(b) What is the average number of time slots between packet arrivals?
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(a) The probability that we have to wait for n time slots before a packet arrives is:
p(n) =ab"

(b) The average number of time slots between packet arrivals is given by:

En] = Zn p(n) = Zn ab”
i=0 i=0

From Appendix A, the above equation becomes:

Einl = ab b
=T T n

1.26 Binomial Distribution

Consider a chance experiment that has two mutually exclusive outcomes 4 and A
that occur with probabilities a and b, respectively. We define the discrete random
variable K which equals the number of times that A occurs in any order in N trials or
repetitions of the random experiment. We can write the pmf for this distribution as:

p(K =k)= (]Z)ak pN kK for0<k <N (1.69)

where b = 1 — a. Basically, the probability of event A occurring k times during N
trials and not occurring for N — k times is a* b¥ =% and the number of ways of this
event taking place is the binomial coefficient C (N, k).

Alternatively, p(k) can be expressed by a single equation in the form:

N

N . .
p(k):Z(_)a’ bV S (k — i) for0<k <N (1.70)

i
i=0

The mean and variance for K are:
w=Na (1.71)
o’=Nab (1.72)

The binomial distribution is sometimes referred to as sampling with replacement as
for example when we have N objects and each one has a certain property (color
for example). We pick an object, inspect its property, then place it back in the
population. If the selected object is removed from the population after inspection,
then we would have the case of the hypergeometric distribution, which is also
known as sampling without replacement, but this is outside our present interest.
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Example 1.19. Assume a classroom has n students. What are the chances that m
students have a birthday today?

The probability that a student has a birthday on a given day is a = 1/365
and the probability that a student has does not have a birthday on a given day is
b =1—a = 364/365. The probability that m students have a birthday today is:

p(m) — <:1)am pr—m

For example, when n = 20 and m = 2, we get:

20
r(2) = (2)a2b18 =135%x107° (1.73)

1.26.1 Approximating the Binomial Distribution

We saw in the binomial distribution that p(k) is given by:

pk) = (]Z)ak pN kK (1.74)

where b = 1 —a. When N is large, it becomes cumbersome to evaluate the above
equation. Several approximations exist for evaluating the binomial distribution using
simpler expressions. We discuss two techniques in the following two subsections.

1.26.2 DeMoivre-Laplace Theorem

We can approximate p(k) by the Gaussian distribution provided that the following
condition is satisfied [3]:

nab>1 (1.75)

When this condition is true we can write:

1 2 /.2
k)~ — k=)o 1.76
Pk) oﬁe (1.76)
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where we have to choose the two parameters i and o according to the following
two equations:

i=Na (1.77)
o=+~2Nab (1.78)

The above approximation is known as the DeMoivre-Laplace Theorem and is
satisfactory even for moderate values of n such as when n ~ 5.

1.26.3 Poisson Theorem

If Na is of the order of one (i.e., Na ~ 1), then DeMoivre—Laplace approximation
is no longer valid. We can still obtain a relatively simple expressions for the binomial
distribution if the following condition applies [3]:

naxl (1.79)

When this condition is true we can write:

(n a)*
k!

plk) =~ e " (1.80)
Thus we are able to replace the binomial distribution with the Poisson distribution
which is discussed in Sect. 1.27.

Example 1.20. A file is being downloaded from a remote site and 500 packets are
required to transmit the entire file. It has been estimated that on the average 5 % of
received packets through the channel are in error. Determine the probability that 10
received packets are in error using the binomial distribution and its approximations
using DeMoivre-Laplace and Poisson approximations approximation.

The parameters for our binomial distribution are:

N =500
a = 0.05
b = 0.95

The probability that 5 packets are in error is:

500
p(10) = ( 10) (0.05)'° (0.95)*° =2.9165x 1074
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Use the DeMoivre—Laplace Theorem with the parameters:
u=~Na=25
oc=~Nab=262892

In that case, the required probability is:

p(10) = 7.1762 x 10~

Use the Poisson Theorem which results in the probability:
p(10) = 3.6498 x 10~*

Under the above parameters, the Poisson approximation gives better results than the
DeMoivre-Laplace approximation. |

1.27 Poisson Distribution

The Poisson distribution defines the probability p(k) that an event A occurs k times
during a certain interval. The probability is given by:

k e ¢

k!

a

p(K =k)= (1.81)
wherea >0andk =0, 1, ---.
The parameter a in the above formula is usually expressed as:

a=2At

where A is the rate of event A and ¢ is usually thought of as time. Because we talk
about rates, we usually associate Poisson distribution with time or with average
number of occurrences of an event. So let us derive the expression for Poisson
distribution based on this method of thinking.

Consider a chance experiment where an event A occurs at a rate A events/second.
In a small time interval (Az) the probability that the event A occurs is p = AA¢f.
We chose At so small so that event A occurs at most only once. For example, A
might indicate the average number of packets arriving at a link per unit time. In that
case the variable 7 will indicate time. A might also refer to the average number of
bits in error for every 1,000 bits, say. In that case, the variable t would indicate the
number of bits under consideration. In these situations we express the parameter a
in the form ¢ = At where A expresses the rate of some event and ¢ expresses the
size or the period under consideration.
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Typically the Poisson distribution is concerned with the probability that a
specified number of occurrences of event A take place in a specified interval .
Assuming a discrete random variable K that takes the values O, 1, 2, --- , then the
probability that k events occur in a time ¢ is given by:

A k —At
pk) = ([)k—,e (1.82)

Alternatively, p(k) can be expressed by a single equation in the form:

i,—At
pk) = Z W)l_—'eéS(k —1i) fork >0 (1.83)

i>0
The mean and variance for K are:

w=Art (1.84)
o=t (1.85)

1.27.1 Deriving Poisson Distribution from Binomial
Distribution

We saw in the binomial distribution that p(k) is given by:

p(k) = (JZ)ak pN kK (1.86)

where b = 1 —a. When N is large, it becomes cumbersome to evaluate the above
equation. We can easily evaluate p(k) in the special case when the number of trials
N becomes very large and a becomes very small such that:

Na=pu (1.87)

where p is nonzero and finite. This gives rise to Poisson distribution:

k —
p(k)= lim (]Z)ak ph—k o e (1.88)

N—00,0—0 k!

We can prove the above equation using the following two simplifying expressions.
We start by using Stirling’s formula:

N!a~ V2aNNe™V (1.89)
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and the following limit from calculus:
lim (1 — —)N =e (1.90)
N—>o0

Using the above two expressions, we can write [10]:

pk) = (Z)ak Nk (1.91)
—k‘(NN' et (1=p (1.92)

'y (N _A][c/)VN:live—(N—k) (%)k (1 B %)N_k (1.93)

_ Z_’: (Nfik) ( _%) (1.94)

~ ‘Z—Te—“ (1.95)

where © = N a. This gives the expression for the Poisson distribution. This is
especially true when N > 50 and a < 0.1 in the binomial distribution.

Example 1.21. Packets arrive at a device at an average rate of 500 packets per
second. Determine the probability that four packets arrive during 3 ms.
We have A = 500, = 3 x 1073, and k = 4:

(1. 5)4 -2 —2
py =2 T 470 =

1.28 Systems with Many Random Variables

We reviewed in Sect. 1.11 the concept of a random variable where the outcome
of a random experiment is mapped to a single number. Here, we consider random
experiments whose output is mapped to two or more numbers. Many systems
based on random phenomena are best studied using the concept of multiple random
variables. For example, signals coming from a Quadrature Amplitude Modulation
(QAM) system are described by the equation:

v(t) = acos(wt + ¢) (1.96)
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Mapping
Function .
Random Random Corresponding
Experiment Outcome Numbers: x, y, ...

Fig. 1.16 The sequence of events leading to assigning multiple numerical values to the outcome
of a random experiment

Incoming digital signals are modulated by assigning different values to a and ¢. In
that sense, QAM modulation combines amplitude and phase modulation techniques.
The above signal contains two pieces of information: viz, the amplitude a and the
phase ¢ that correspond to two random variables A and ®. So every time we sample
the signal v(¢), we have to find two values for the associated random variables
A and .

Figure 1.16 graphically shows the sequence of events leading to assigning
multiple numerical values to the outcome of a random experiment. First we run
the experiment then we observe the resulting outcome. Each outcome is assigned
multiple numerical values.

As an example, we could monitor the random events of packet arrival at the
input of a switch. Several outcomes of this random event could be observed such as:
(1) packet length; (2) packet type (voice, video, data, etc.); (3) interarrival time—
i.e., the time interval between arriving packets; (4) destination address. In these
situations, we might want to study the relationships between these random variables
in order to understand the underlying characteristics of the random experiment we
are studying.

1.29 Joint cdf and pdf

Assume our random experiment gives rise to two discrete random variables X
and Y. We define the joint cdf of X and Y as:

Fyy(x,y) =p(X <x,Y <) (1.97)
When the two random variables are independent, we can write:
pX =x,Y <y)=pX =x)pY =) (1.98)

Thus for independent random variables the joint cdf is simply the product of the
individual cdf’s:

Fyy (x,y) = Fx (x) Fy () (1.99)
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For continuous RVs, the joint pdf is defined as:

0°F
fxr(x,y) = == (1.100)
dx dy
The joint pdf satisfies the following relation:
/ fxr(x,y)dxdy =1 (1.101)
X,y

The two random variables are independent when the joint pdf can be expressed as
the product of the individual pdf’s:

Sxr(x,y) = fx(x) fr(») (1.102)

For discrete RVs, the joint pmf is defined as the probability that X = x and ¥ = y:

pxy(x.y) =p(X =x. Y =y) (1.103)

The joint pmf satisfies the following relation:
Y3 parxy) =1 (1.104)
x oy

Two random variables are independent when the joint pmf can be expressed as the
product of the individual pmf’s:

pxy(x,y) =pX =x) p(Y =) (1.105)

Example 1.22. Assume arriving packets are classified according to two properties:
packet length (short or long) and packet type (voice or data). Random variable X =
0,1 is used to describe packet length and random variable ¥ = 0,1 is used to
describe packet type. The probability that the received packet is short is 0.9 and
probability that it is long is 0.1. When a packet is short, the probability that it is a
voice packet is 0.4 and probability that it is a data packet is 0.6. When a packet is
long, the probability that it is a voice packet is 0.05 and probability that it is a data
packet is 0.95. Find the joint pmf of X and Y.
We have the mapping:

Y = 0  short packet
~ |1 long packet

Y = 0  voice packet
~ |1 data packet
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Based on the above mapping, and assuming independent RVs, we get:
pxy(0,0) =0.9x0.4 =0.36
pxy(0,1) =0.9x0.6 =0.54
pxy(1,0) = 0.1 x 0.05 = 0.005
pxy(1,1) = 0.1 x0.95 = 0.095

Note that the sum of all the probabilities must add up to 1. ]

1.30 Individual pmf from a Given Joint pmf

Sometimes we want to study an individual random variable even though our random
experiment generates multiple RVs. An individual random variable is described by
its pmf which is obtained as:

px(x) = p(X =x) (1.106)

If our random experiment generates two RVs X and Y, then we have two individual
pmf’s given by:

px(x) =) pxr(x,y) (1.107)

pr(») =Y pxr(x.y) (1.108)

From the definition of pmf we must have:

> px(x) =1 (1.109)

> pr(y) =1 (1.110)
Yy

Example 1.23. Assume a random experiment that generates two random variables
X and Y with the given joint pmf.

pxy(x,y) lx=1 | x=2 [x=3
y=0 0.1 0.05 0.1
y=3 0.1 0.05 0
y=17 0 0.1 0.1
y=9 0.2 0 0.2
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Find the individual pmf for X and Y. Are X and Y independent RVs?
We have

px(x) lx=1|x=2 |x=3
0.4 0.2 0.4

and

py(y) |[y=0|y=3 y=7 |y=9
025 |0.15 |02 0.4

]
1.31 Expected Value
The joint pmf helps us find the expected value of one of the random variables.
px =EX) =" > x pry(x.y) (L111)
x oy

Example 1.24. In Example 1.23 above, find the expected values for the random
variables X and Y.
We can write:

nx =1x044+2x024+3x0.4 =
MUy =0x025+3x0.15+7%x02+9x%x0.4 =545 ]

1.32 Correlation

The correlation between two random variables is defined as:
ryy = E[XY]
=) > xypxr(xy) (1.112)
Xy

We say that the two random variables X and Y are orthogonal when ryy = 0.
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1.33 Variance

The variance of a random variable is defined as:
oy = E[(X — py)’]
=3 (= ux)? par(x.y) (1.113)
X y

The following equation can be easily proven:

oy = E[X*] - u% (1.114)

1.34 Covariance

The covariance between two random variables is defined as:
cxy = E[(X — pux)(Y — py)]
=Z Z(X—MX)()’—MY) pxy(x,y) (1.115)
x oy

The following equation can be easily proven:

Cxy =Txy — Uy [y (1.116)
We say that the two random variables X and Y are uncorrelated when cyy = 0.
The correlation coefficient pyy is defined as:
pxy = cxy/\/0% 0} (1.117)

When we are dealing with two random variables obtained from the same random
process, the correlation coefficient would be written as:

pxmy = cx(n)/og (1.118)

We expect that the correlation coefficient would decrease as the value of n becomes
large to indicate that the random process “forgets” its past values.

1.35 Transforming Random Variables

Mathematical packages usually have functions for generating random numbers
following the uniform and normal distributions only. However, when we are
simulating communication systems, we need to generate network traffic that follows
other types of distributions. How can we do that? Well, we can do that through



1.35 Transforming Random Variables 37

transforming random variables which is the subject of this section. Section 1.36 will
show how to actually generate the random numbers using the techniques of this
section.

1.35.1 Continuous Case

Suppose we have a random variable X with known pdf and cdf and we have another
random variable Y that is a function of X:

Y = g(X) (1.119)

X is named the source random variable and Y is named the target random variable.
We are interested in finding the pdf and cdf of ¥ when the pdf and cdf of X are
known. The probability that X lies in the range x and x +dx is given from (1.28) by:

p(x <X <x+4dx)= fx(x)dx (1.120)

But this probability must equal the probability that Y lies in the range y and y 4+ dy.
Thus we can write:

Sr(y)dy = fx(x)dx (1.121)

where fy(y) is the pdf for the random variable Y and it was assumed that the
function g was monotonically increasing with x. If g was monotonically decreasing
with x, then we would have:

fr(y)dy = — fx(x) dx (1.122)

The above two equations define the fundamental law of probabilities, which is
given by:

|fy (v) dy| = [ fx (x) dx]| (1.123)

or:

Sr(y) = fx(x)

dx
E' (1.124)

since fy(y) and fx(x) are always positive.
In the discrete case the fundamental law of probability gives:

pr(y) = px(x) (1.125)

where py(x) is the given pmf of the source random variable and py () is the pmf
of the target random variable.
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Example 1.25. Given the random variable X whose pdf has the form:
) =e™  x20 (1.126)

Find the pdf for the random variable Y that is related to X by the relation:

Y = X2 (1.127)
We have:

x =%y (1.128)
d_x = :I:; (1.129)

dy 2.y

From (1.124) we can write:
fro) = —— x e (1.130)
2y

Substituting the value of x in terms of y, we get:
fr(y) = %e"’ y=>0 (1.131)
|

Example 1.26. Assume the sinusoidal signal:
X = cos wt

where the signal has a random frequency w that varies uniformly in the range
w; < w < w,. The frequency is represented by the random variable 2. What are
the expected values for the random variables €2 and X?

We can write:

Ja =1/ (w2 —w)

and E[Q2] is given by the expression:

1 @
E[Q] = / wdw (1.132)
Wy — W1 S,
— @ (1.133)

We need to find fy and E[X]. For that we use the fundamental law of probability.
First, we know that —1 < x < 1 from the definition of the sine function, so
fx (x) = 0for |x| > 1. Now we can write:

d
fx (X)ZfQ(w)lf‘ Ix[ <1 (1.134)
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Now we have:

1
w = ?cos_lx (1.135)
and:
dw 1
e x| <1 (1.136)
dx /1 —x2
Thus we get:
1 1
Sx (x) = X x| <1 (1.137)

Wy — w1 41— x2

The expected value for X is given by:

1 ! X
E[X] = / dx =0 (1.138)
(w2 — o)t Jo1 V1T —x2
due to the odd symmetry of the function being integrated. |

Example 1.27. Suppose our source random variable is uniformly distributed and
our target random variable Y is to have a pdf given by:

fr (v) =Ae™ A>0 (1.139)

Derive Y as a function of X.

This example is fundamentally important since it shows how we can find the
transformation that allows us to obtain random numbers following a desired pdf
given the random numbers for the uniform distribution. This point will be further
discussed in the next section.

We use (1.124) to write:

re™ = fy (x) (1.140)

dx
dy

Assume the source random variable X is confined to the range O to 1. From
Sect. 1.17 we have fx (x) = 1 and we can write:

dx

Le M = 2
e &y

(1.141)

Integrating, we get:

e =x (1.142)
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and we obtain the dependence of Y on X as:

In X
Y:g(x)z—nT 0<x<1 (1.143)
|
1.35.2 Discrete Case
In the discrete case the fundamental law of probability gives:
py(y) = px(x) (1.144)

where py (x) is the given pmf of the source random variable and py () is the pmf
of the target random variable. The values of Y are related to the values of X by the
equation:

Y =g(X) (1.145)

The procedure for deriving the pmf for ¥ given the pmf for X is summarized as
follows:

1. For each value of x obtain the corresponding value p(X = x) through
observation or modeling.

2. Calculate y = g(x).

3. Associate y with the probability p(X = x).

1.36 Generating Random Numbers

We review briefly in this section how to generate sequences of random numbers
obeying one of the distributions discussed in the previous section. This background
is useful to know even if packages exist that fulfill our objective.

Before we start, we are reminded of Von Neumann’s remark on the topic:

Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin. (John Von Neumann 1951)

1.36.1 Uniform Distribution

To generate a sequence of integer random numbers obeying the uniform distribution
using C programming, one invokes the function srand (seed). This function
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returns an integer in the range 0 to RAND MAX [11]. When a continuous random
number is desired, drand is used. The function rand in MATLAB is used to
generate random numbers having uniform distribution.

1.36.2 Inversion Method

To generate a number obeying a given distribution, we rely on the fundamental law
of probabilities summarized by (1.124). When X has a uniform distribution over the
range 0 < x < 1, we can use the following procedure for obtaining y. We have:

d
Ef=f@) (1.146)
y

where f(x) = 1 and f(y) is the function describing the pdf of the target
distribution. Integrating, we get:

y
/ f)dz=x (1.147)
0
Thus we have:
F(y)=x (1.148)
y = F(x) (1.149)

The procedure then to obtain the random numbers corresponding to y is to
generate x according to any standard random number generator producing a uniform
distribution. Then use the above equation to provide us with y. Thus the target
random number value y is obtained according to the following steps:

1. Obtain the source random number x having a uniform distribution.

2. Lookup the value of F(y) that is numerically equal to x according to (1.148).
F(y) is either computed or stored in a lookup table.

3. Find the corresponding value of y according to (1.149). If the inverse function
is not available, then a lookup table is used and y is chosen according to the
criterion F (y) < x < F (y + €), where y + € denotes the next entry in the
table.

Graphically, the procedure is summarized in Fig. 1.17.

The inversion technique was used to generate random numbers that obey the
Pareto distribution using MATLAB. In that case, when x is the trial source input,
the output y is given from the F~! by the equation:

a
- _exp [(1/b)In (1 — x)]

Figure 1.11 shows the details of the method for generating random numbers
following the Pareto distribution. The Pareto parameters chosen were a = 2,

(1.150)
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Fig. 1.17 Transformation F(y)
method for finding y given x

Input x —»|- - - - - - -

Output y

b = 2.5, minimum value for data was x,;, = a. One thousand samples were chosen
to generate the data. Note that the minimum value of the data equals @ according to
the restrictions of the Pareto distribution.

1.36.3 Rejection Method

The previous method requires that the target cdf be known and computable such that
the inverse of the function can be determined either analytically or through using a
lookup table. The rejection method is more general since it only requires that the
target pdf is known and computable. We present here a simplified version of this
method.

Assume we want to generate the random numbers y that lie in the range
a <y < b and follow the target pdf distribution specified by f(y). We choose the
uniform distribution g(y) that covers the same range a—b such that the following
condition is satisfied for all the range of x:

§0) = 5= > f) (L151)
—da

If this condition cannot be satisfied, then a different g () must be chosen that might
not follow the uniform distribution. We proceed as follows.

1. Obtain the source random number x using any random number generator having
the uniform distribution.
2. Accept the candidate value x as the target value y = x with probability:

p (accept x) = M (1.152)
g(»)
=(0b-a f(y) (1.153)

We are assured by (1.151) that the above expression for the probability is always
valid.
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Fig. 1.18 The rejection :
method 1/(b-a) 8

S)

This technique is not efficient when f(y) is mostly small with few large peaks.
Since most of the candidate points will be rejected, as can be seen from Fig. 1.18.

1.36.4 Importance Sampling Method

Importance sampling is a generalization of the rejection method. A trial pdf, g (y),
is chosen as in the rejection method. It is not necessary here to choose g (¥) such
that it is larger than f(y). Each point y has a weight associated with it given by:

_J»
g ()

Based on this array of weights, we choose a weight W that is slightly larger than the
maximum value of w(y):

w(y) (1.154)

W = max [w(y)] + € €e>0 (1.155)

The method is summarized in the following steps.

1. Obtain the source random number x that has a uniform distribution.
2. Apply the inversion method using g () to obtain a candidate value for y.
3. Accept the candidate y value with probability:

p (accept y) = % (1.156)

1.37 Problems

1.37.1 The Multiplication Principle

1.1. A pair of fair dice is rolled once. Identify one possible outcome and identify
the sample space of this experiment.

1.2. Consider the above experiment where we are interested in the event that
“seven” will show. What are the outcomes that constitute the event?
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1.3. A student has to take three courses from three different fields. Field A offers 5
courses, field B offers 10 courses, and field C offers 3 courses. In how many ways
can the student select the course load?

1.4. A car dealer specializes in selling three types of vehicles: sedans, trucks, and
vans. Each vehicle could be rated as excellent, okay, lemon, or “bring your own
jumper cables.” How many different ways can a customer buy a vehicle?

1.5. Car license plates in British Columbia consist of three letters followed by three
numbers. How many different license plate numbers could be formed?

1.37.2 Permutations

1.6. Internet packets have different lengths. Assume 10 packets have been received
such that two are over-length, four have medium length, and four are short. How
many different packet patterns are possible?

1.7. In asynchronous transfer mode, a time frame is divided into ten time slots such
that each time slot can be used by any user. Suppose that a frame is received that
contains three packets due to user 1, two due to user 2 and the rest of the time slots
were empty. How many frame patterns are possible?

1.8. A router receives 15 packets from 15 different sources. How many ways could
these packets be received?

1.9. In Problem 1.8, of the 15 packets received, five were due to one user and the
rest were due to 10 different users. How many ways could the packets types be
received?

1.37.3 Combinations

1.10. A packet buffer can store 50 packets. If it is known that 15 of those packets
belong to a certain user. The rest belong to different users. How many possibilities
can these packets can be stored in the buffer?

1.11. A router receives 10 packets such that four of them are in error. How many
different packet patterns are possible?

1.12. In a cellular phone environment, a cell has 100 users and there are only 16
available channels. How many different possibilities exist for choosing among these
users?
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1.37.4 Probability

1.13. A signal source randomly moves from being active to being idle. The active
period lasts 5 s and the idle period lasts 10s. What is the probability that the source
will be active when it is sampled?

1.14. In a wireless channel a certain user found that for each 1,000 packets
transmitted 10 were lost, 100 were in error, and 50 were delayed. Find

(a) Probability that a packet is lost.

(b) Probability that a packet is received without delay.

(c) Probability that a packet is received without delay and without errors.
(d) Probability that a packet is received without delay or without errors.

1.15. Assume a gambler plays double or nothing game using a fair coin and he/she
starts with one dollar. What is the probability that he/she will wind up winning
$1,024?

1.16. Four friends decide to play the following game. A bottle is spun and the
person that the bottle points to is unceremoniously thrown out of the game. What is
the probability that you are still in the game after n spins? Is there an upper limit on
the value of n?

1.17. A bird breeder finds that the probability that a chick is male is 0.2 and a
female is 0.8. If the nest has three eggs, what is the probability that two male chicks
will be produced?

1.37.5 Random Variables

1.18. Indicate the range of values that the random variable X may assume
and classify the random variable as finite/infinite and continuous/discrete in the
following experiments.

(a) The number of times a coin is thrown until a head appears.

(b) The wait time in minutes until a bus arrives at the bus stop.

(c) The duration of a telephone conversation.

(d) The number of students in a classroom.

(e) The number of retransmissions until a packet is received error free.

1.19. A packet is received either correctly or in error on a certain channel. A random
variable X is assigned a value equal to the number of error-free packets in a group
of three packets. Assume that the error in a packet occurs independent of the other
packets.

(a) List all the possible outcomes for the reception of three packets.
(b) List all the possible values of X.
(c) Express the probability for the event x = 2 in terms of fx(x) and Fy (x).
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1.20. In some communication scheme, when a packet is received in error, a request
for retransmission is issued until the packet is received error free. Let the random
variable Y denote the number of retransmission requests. What are the values of Y ?

1.21. Packets arrive at a certain input randomly at each time step (a time step is
defined here as the time required to transmit or receive one complete packet). Let
the random variable W denote the wait time (in units of time steps) until a packet is
received. What values may W assume?

1.37.6 The Cumulative Distribution Function

1.22. Assume a random variable X whose cdf is F(x). Expresses the probability
p(X > x) as a function of F(x).

1.23. A system monitors the times between packet arrivals starting at time t = 0.
This time is called the interarrival time of packets. The interarrival time is a random
variable T' with cdf Fr(¢). The probability that the system receives a packet in the
time interval (z,¢ + §¢) is given by p(t)ét.

(a) Find the probability that the system receives a packet in a time less than or equal
tor.
(b) Find the probability that the system receives a packet in a time greater than 7.

1.24. Plot the cdf for the random variable in Problem 1.19.

1.25. Explain the meaning of Eq. (1.19) for the cdf function. Note that (1.19) is
really a restatement of (1.7) since the events X < x; and x; < X < x, are mutually
exclusive.

1.26. Plot the cdf for the random variable in Problem 1.19

1.27. A buffer contains ten packets. Four packets contain an error in their payload
and six are error-free. Three packets are picked at random for processing. Let the
random variable X denote the number of error free packets selected.

(a) List all possible outcomes of the experiment.

(b) Find the value assigned X for each outcome.

(c) Find the probability associated with each value of X.
(d) Plot the cdf for this random variable.

Note that this problem deals with sampling without replacement; i.e., we pick a
packet but do not put it back in the buffer. Hence the probability of picking an error-
free packet will vary depending on whether it was picked first, second, or third.

1.28. Sketch the pdf associated with the random variable in Problem 1.23.
1.29. Sketch the pdf associated with the random variable in Problem 1.31.

1.30. Sketch the pdf associated with the random variable in Problem 1.32.
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1.31. A router has ten input ports and at a given time instance each input could
receive a packet with probability a or it could be idle (with probability b = 1 — a).
Let the random variable X denote the number of active input ports.

(a) List all possible outcomes of the experiment.

(b) Find the value assigned X for each outcome.

(c) Find the probability associated with each value of X.
(d) Sketch the cdf for this random variable.

1.32. A traffic source generates a packet at a certain time step with probability a.
Let the random variable X denote the number of packets produced in a period T = 5
time steps.

(a) List all possible outcomes of the experiment.

(b) Find the value assigned X for each outcome.

(c) Find the probability associated with each value of X.
(d) Sketch the cdf for this random variable.

1.37.7 The Probability Density Function

1.33. Sketch the pdf and cdf for the binomial distribution. Assume for a = 0.3 and
N =5.

1.34. Sketch the pdf associated with the random variable in Problem 1.19.
1.35. Sketch the pdf associated with the random variable in Problem 1.27.
1.36. Sketch the pdf associated with the random variable in Problem 1.31.
1.37. Sketch the pdf associated with the random variable in Problem 1.32.

1.37.8 Expected Value

1.38. Prove that (1.34) on page 15 converges to (1.33) as n — oo. Start your
analysis by (a) assuming that n samples are grouped such that n; samples produce
the same outcome. (b) Use the definition of probability in (1.6) on page 8 to
complete your proof.

1.39. What are the expected values for the random variables ® and Q in Exam-
ple 1.14?

1.40. Assume a Poisson process, rate parameter is A, that gives rise to two random
variables X; and X, which correspond to k£ packets received at times #; and ¢,,
respectively, where 7, > t;. (a) Find the mean and variance for these two random
variables. (b) Now define a new random variable Y = X, — X and find its mean
and variance.
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1.41. Find the expected value for the random variable in Problem 1.19.
1.42. Find the expected value for the random variable in Problem 1.27.
1.43. Find the expected value for the random variable in Problem 1.31.
1.44. Find the expected value for the random variable in Problem 1.32.

1.45. Repeat Example 1.16 when the random variable E is treated as a discrete
random variable.

1.37.9 The Uniform Distribution

1.46. Write down the pdf and cdf for the uniform distribution of a continuous
random variable X that spans the range a < x < b.

1.47. Repeat the above problem when the random variable is discrete and has n
discrete values in the same range given above.

1.48. Find the average value and variance for the random variable in Problem 1.46.

1.49. Find the average value and variance for the random variable in Problem 1.47.

1.37.10 The Binomial Distribution

1.50. Prove that the mean and standard deviation of the binomial distribution are
Na and / Nab, respectively.

1.51. Sketch the pdf for the binomial distribution. Assume values for a and N.

1.52. The probability of error in a single packet is 10™#. What is the probability
that three or less errors occur in 1,000 packets assuming binomial distribution.

1.53. Assume ¢ as the probability that people making reservations on a certain
flight will not show up. The airline then sells 7 tickets for a flight that takes only s
passengers (¢ > s). Write an expression for the probability that there will be a seat
available for every passenger that shows up. What is that probability for the special
case when only one seat is over sold (i.e.,t = s + 1)?

1.37.11 The Poisson Distribution

1.54. Verify that the mean and standard deviation for the binomial and Poisson
distributions become almost identical for large N and small p as was discussed in
Sect. 1.27.
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1.55. The probability of a defective electronic component is 0.1. Find

(a) The mean and standard deviation for the distribution of defective components
in a batch of 500 components using the Poisson and binomial distributions.
(b) The probability that 2 components are defective in a batch of 500 components.

1.56. Sketch the pdf for the Poisson distribution for different values of Az and k.
Comment on your results.

1.57. Sketch on one graph the binomial and Poisson distributions for the case
N =5and p = 0.1. Assume At = 0.5.

1.58. Repeat question 1.52 assuming Poisson distribution with At = 0.1 where we
assumed the “rate” A of occurrence of error per packet is 10~ errors/packet and the
“duration” of interest is # = 1,000 packets.

1.59. Five percent of the rented videos are worth watching. Find the probability
that in a sample of 10 videos chosen at random, exactly two will be worth watching
using (a) binomial distribution, (b) Poisson distribution.

1.37.12 The Exponential Distribution

1.60. Find the cdf for the exponential distribution.

1.61. Prove that the Pareto distribution formula given by (1.49) is a valid pdf
(i.e., the area under the curve is 1).

1.37.13 Joint pmf

1.62. Consider the random experiment of throwing a dart at a target. The point of
impact is characterized by two random variables X and Y to indicate the location
of the dart assuming the center is the point of origin. We can justifiably assume that
X and Y are statistically independent.

(a) Write down the joint cdf Fxy (x, y) as a function of the individual cdf’s Fy (x)
and Fy ().

(b) Write down the joint pdf fyy (x, y) as a function of the individual pdf’s fx (x)
and fy(y).

(c) Write down an expressions for fx(x) and fy(y) assuming that each follows
the normal (Gaussian) distribution.

1.63. Find the correlation between the two random variables X and Y in Example
1.22 on page 33.

1.64. Find the variance of random variables X in Example 1.22 on page 33.
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1.65. Find the covariance between the two random variables X and Y in Example
1.22 on page 33.

1.66. Prove (1.114) on page 36.

1.67. Find the correlation coefficient for the two random variables X and Y in
Example 1.22 on page 33.

1.37.14 Random Numbers

1.68. Use the inversion method to generate y in the range 1 to 5 such that the target
pdfis f (y) oc1//y.

1.69. Generate the random number y that has pdf f(y) = (1 + y)/./y using the
importance sampling method.
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Chapter 2
Random Processes

2.1 Introduction

We saw in Sect.1.11 on page 10 that many systems are best studied using the
concept of random variables where the outcome of a random experiment was
associated with some numerical value. Next, we saw in Sect. 1.28 on page 31 that
many more systems are best studied using the concept of multiple random variables
where the outcome of a random experiment was associated with multiple numerical
values. Here we study random processes where the outcome of a random experiment
is associated with a function of time [1]. Random processes are also called stochastic
processes. For example, we might study the output of a digital filter being fed by
some random signal. In that case, the filter output is described by observing the
output waveform.

Thus a random process assigns a random function of time as the outcome of a
random experiment. Figure 2.1 graphically shows the sequence of events leading to
assigning a function of time to the outcome of a random experiment. First we run
the experiment then we observe the resulting outcome. Each outcome is associated
with a time function x(¢).

A random process X (¢) is described by:

* The sample space S which includes all possible outcomes s of a random
experiment.

e The sample function x(¢t) which is the time function associated with an
outcome s. The values of the sample function could be discrete or continuous.

e The ensemble which is the set of all possible time functions produced by the
random experiment.

* The time parameter ¢ which could be continuous or discrete.

e The statistical dependencies among the random processes X(¢) when ¢ is
changed.

Based on the above descriptions, we could have four different types of random
processes:

© Springer International Publishing Switzerland 2015 51
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Mapping

Function | Corresponding
—® Function of
Time: x(7)

Random Random
Experient > Outcome

Fig. 2.1 The sequence of events leading to assigning a time function x(¢) to the outcome of a
random experiment

1. Discrete time, discrete value: we measure time at discrete values t = nT with
n = 0,1, 2,---. As an example, at each value of n we could observe the
number of cars on the road x (7). In that case, x(n) is an integer between 0 and
10, say. Each time we perform this experiment, we would get a totally different
sequence for x (n).

2. Discrete time, continuous value: we measure time at discrete values t = nT
withn =0, 1, 2, ---. As an example, at each value of n we measure the outside
temperature x (n). In that case, x(n) is a real number between —30° and +45°,
say. Each time we perform this experiment, we would get a totally different
sequence for x (n).

3. Continuous time, discrete value: we measure time as a continuous variable ¢.
As an example, at each value of ¢ we store an eight-bit digitized version of a
recorded voice waveform x(¢). In that case, x(¢) is a binary number between
0 and 255, say. Each time we perform this experiment, we would get a totally
different sequence for x(z).

4. Continuous time, continuous value: we measure time as a continuous variable .
As an example, at each value of ¢ we record a voice waveform x(¢). In that
case, x(¢) is a real number between 0 and 5V, say. Each time we perform this
experiment, we would get a totally different sequence for x (¢).

Figure 2.2 shows a discrete time, discrete value random process for an observation
of ten samples where only three random functions are generated. We find that for
n = 2, the values of the functions correspond to the random variable X (2).

Therefore, random processes give rise to random variables when the time value ¢
or n is fixed. This is equivalent to sampling all the random functions at the specified
time value which is equivalent to taking a vertical slice from all the functions shown
in Fig.2.2.

Example 2.1. A time function is generated by throwing a die three consecutive
throws and observing the number on the top face after each throw. Classify this
random process and estimate how many sample functions are possible.

This is a discrete time, discrete value process. Each sample function will have
three samples and each sample value will be from the set of integers 1-6. For
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example, one sample function might be 4, 2, 5. Using the multiplication principle
for probability, the total number of possible outputs is 6> = 216. |

2.2 Notation

We use the notation X (¢) to denote a continuous-time random process and also to
denote the random variable measured at time . When X(¢) is continuous, it will
have a PDF fy (x) such that the probability that x < X < x + ¢ is given by:

p(X =x) = fx(x)dx 2.1)

When X(¢) is discrete, it will have a PMF py(x) such that the probability that
X = Xx is given by:

p(X =x) = px(x) 2.2)

Likewise, we use the notation X () to denote a discrete-time random process and
also to denote the random variable measured at time n. That random variable is
statistically described by a PDF fy (x) when it is continuous, or it is described by a
PMF py (x) when it is discrete.
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2.3 Poisson Process

We shall encounter Poisson processes when we describe communication traffic.
A Poisson process is a stochastic process in which the number of events occurring in
a given period of time depends only on the length of the time period [2]. This number
of events k is represented as a random variable K that has a Poisson distribution
given by:

(/\ t)ke—l t
k!

where A > 0 is a constant representing the rate of arrival of the events and 7 is the
length of observation time.

p(k) = (2.3)

2.4 Exponential Process

The exponential process is related to the Poisson process. The exponential process is
used to model the interarrival time between occurrence of random events. Examples
that lead to an interarrival time include the time between bus arrivals at a bus stop,
the time between failures of a certain component; and the time between packet
arrival at the input of a router.

The random variable T' could be used to describe the interarrival time. The
probability that the interarrival time lies in the range t < T <t + dt is given by:

pt <T <t+dt)=2re""dt (2.4)

where A is the average rate of the event under consideration.

2.5 Deterministic and Nondeterministic Processes

A deterministic random process is one where future values of the sample function
are known if the present value is known. An example of a deterministic random
process is the modulation technique known as Quadrature Amplitude Modulation
(QAM) for transmitting groups of binary data. The transmitted analog waveform is
given by:

v(t) = acos(wt + ¢) (2.5)

where the signal amplitude @ and phase angle ¢ change their value depending
on the bit pattern that has been received. The analog signal is transmitted for
the time period 0 < ¢t < Tj. Since the arriving bit pattern is random, the values
of the corresponding two parameters a and ¢ are random. However, once a and ¢
are determined, we are able to predict the shape of the resulting waveform.
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A nondeterministic random process is one where future values of the sample
function cannot be known if the present value is known. An example of a
nondeterministic random process is counting the number of packets that arrives at
the input of a switch every one second and this observation is repeated for a certain
time. We are unable to predict the pattern even if we know the present number of
arriving packets.

2.6 Ensemble Average

The random variable X (n;) represents all the possible values x obtained when
time is frozen at the value 7. In a sense, we are sampling the ensemble of random
functions at this time value.

The expected value of X (n1) is called the ensemble average or statistical average
W (n1) of the random process at n;. The ensemble average is expressed as

wx(t) = E[X()] continuous-time process (2.6)

ux(n) = E[X(n)] discrete-time process 2.7

The ensemble average could itself be another random variable since its value could
change at random with our choice of the time value 7 or n.

Example 2.2. The modulation scheme known as Frequency-Shift Keying (FSK) can
be modeled as a random process described by:

X(t) = acoswt

where a is a constant and w corresponds to the random variable €2 that can have one
of two possible values w; and w, that correspond to the input bit being zero or one,
respectively. Assuming that the two frequencies are equally likely, find the expected
value w(¢) of this process.

Our random variable 2 is discrete with probability 0.5 when Q = w; or 2 = w,.
The expected value for X (¢) is given by

E[X(t)] =0.5a coswit + 0.5a coswst

_ [(w1+w2)r] [(a)l—a)z)t}
= da COS T X COS T [}

Example 2.3. The modulation scheme known as Pulse Amplitude Modulation
(PAM) can be modeled as a random process described by:

X(n) =) g(n) 8(n—i)

i=0
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where g(n) is the amplitude of the input signal at time n. g(n) corresponds to the
random variable G that is uniformly distributed in the range 0—A. Find the expected
value p(¢) of this process.

This is a discrete time, continuous value random process. Our random variable
G is continuous and the expected value for X(n) is given by

1 A
— d
A/(; gdag

A
2

E[X(n)]

2.7 Time Average

Figure 2.2 helps us find the time average of the random process. The time average
is obtained by finding the average value for one sample function such as X;(n) in
the figure. The time average is expressed as

X = % fOT X(t) dt continuous-time process (2.8)

X=1 It X ()] discrete-time process (2.9)

In either case we assumed we sampled the function for a period T or we observed
N samples.

The time average X could itself be a random variable since its value could change
with our choice of the random function under consideration.

2.8 Autocorrelation Function

Assume a discrete time random process X (n) which produces two random variables
X1 = X (ny) and X, = X (ny) attimes n; and n,, respectively. The autocorrelation
function for these two random variables is defined by the following equation:

rxx (ni,ny) = E[X| X5] (2.10)
In other words, we consider the two random variables X and X, obtained from the

same random process at the two different time instances 7, and n,.

Example 2.4. Find the autocorrelation function for a second-order Finite-Impulse
Response (FIR) digital filter, sometimes called Moving Average (MA) filter, whose
output is given by the equation:
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Fig. 2.3 Autocorrelation
function of a second-order
digital filter whose input is
uncorrelated samples

y(n) =aopx(n) +aix(n —1) + arx(n —2) (2.11)

where the input samples x(n) are assumed to be zero mean Independent and
Identically Distributed (IID) random variables.

We assign the random variable Y,, to correspond to output sample y(n) and X,
to correspond to input sample x (n). Thus we can have the following autocorrelation
function:

ryy(0) = E [V, Y,] = a3E [X] + a1 E [ XT] + a3 E [ X7] E [ X{] (2.12)
= (a5 +aj + a3)0” 2.13)

Similarly we can write

ryy (1) = E (Y, Yaq1) = 2a0a; o* (2.14)
ryy (2) = E (Y, Ya42) = aoas o* (2.15)
ryy (k):O, k>2 (216)

where o is the input sample variance. Figure 2.3 shows a plot of the autocorrelation
assuming all the filter coefficients are equal. |

2.9 Stationary Processes

A wide-sense stationary random process has the following two properties [3]
E[X(t)] = n = constant (2.17)

EXt) X+ )] =rxx (@, t +71)=rxx(1) (2.18)

Such a process has a constant expected value and the autocorrelation function
depends on the time difference between the two random variables.
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The above equations apply to a continuous-time random process. For a discrete
time random process, the equations for a wide-sense stationary random process
become

E [X(n)] = p = constant (2.19)

E[X (n) X(ni+n)] =rxx (n,ny+n)=rxx(n) (2.20)

The autocorrelation function for a wide-sense stationary random process exhibits
the following properties [1].

rxx(0) = E[X*(n)] = 0 (2.21)
lrxx(n)] < rxx(0) (2.22)
rxx(—n) = ryx(n) even symmetry (2.23)

A stationary random process is ergodic if all time averages equal their corresponding
statistical averages [3]. Thus if X(n) is an ergodic random process, then we could
write

X =p (2.24)
X2 = ryx(0) (2.25)

Example 2.5. The modulation scheme known as Phase-Shift Keying (PSK) can be
modeled as a random process described by:

X(t) = acos(wt + ¢)

where a and o are constant and ¢ corresponds to the random variable ® with two
values 0 and 7 which are equally likely. Find the autocorrelation function ryy (¢) of
this process.

The phase PMF is given by

p0) =0.5
p(r) =05
The autocorrelation is found as
rxx(t) = E [acos(wt + @) a cos(wt + wt + D)]
= 0.5 4’ cos(wr) E [cosQwt + wT + 2D)]

= 0.5a> cos(wt) cosRwt + wT)

We notice that this process is not wide-sense stationary since the autocorrelation
function depends on ¢. u
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2.10 Cross-Correlation Function

Assume two discrete time random processes X(n) and Y (rn) which produce two
random variables X; = X (n;) and Y, = Y (n;) at times n; and n,, respectively.
The cross-correlation function is defined by the following equation:

rxy (n1,n2) = E[X, Y] (2.26)
If the cross-correlation function is zero, i.e., ryy = 0 then we say that the two
processes are orthogonal.
If the two processes are statistically independent, then we have:
rxy (ni,n2) = E[X (m)] x E[Y (n,)] (2.27)

Example 2.6. Find the cross-correlation function for the two random processes:

X(t) = acoswt
Y(t) = bsinwt

where a and b are two IID random variables with mean . and variance o2
The cross-correlation function is given by:

rxy(t,t + 1) = E[Acoswt Bsin(wt + w7t)]
= 0.5[sinwt + sinwt + wt)] E[A] E[B]
= 0.5 u? [sinwt + sinRwt + w1)] ]

2.11 Covariance Function

Assume a discrete time random process X (n) which produces two random variables
X1 = X (ny)and X, = X (ny) attimes ny and n,, respectively. The autocovariance
function is defined by the following equation:

cxx (i, n2) = E[(X; — ) (X2 — p2)] (2.28)

The autocovariance function is related to the autocorrelation function by the
following equation:

cxx (ni,n2) =ry (ny,n2) — i (2.29)
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For a wide-sense stationary process, the autocovariance function depends on the
difference between the time indices n = n, — ny:

cxx(n) = E[(X1 — ) (X2 — w)] = rxx(n) — p? (2.30)

Example 2.7. Find the autocovariance function for the random process X(¢)
given by:

X(t) =a+ bcoswt

where w is a constant and a and b are IID random variables with zero mean and

variance o2.

We have:

cxx = E{(A+ Bcoswt)[A + Bcosw(t + )]}
= E[A*] + E[AB] [cosw! + cosw(t + 7)] + E [B*] cos’ w(t + 1)
= 0> + E[A] E[B] [coswt + cosw(t + 1)] + 0% cos” w(t + 1)
=014 cos’ w(t + 1)] -

The cross-covariance function for two random processes X(n) and Y(n) is
defined by

cxy(n) = E[(X (n) — pux) (Y (n1 +n) — uy)]
=ryy(n) — puxpy (2.3D)

Two random processes are called uncorrelated when their cross-covariance function
vanishes.

ch(n) =0 (232)
Example 2.8. Find the cross-covariance function for the two random processes
X(t) and Y (¢) given by
X(t) = a + bcoswt
Y(t) =a+ bsinwt

where w is a constant and a and b are IID random variables with zero mean and

variance o2.

We have
cxy(n) = E{(A+ Bcoswt)[A + Bsinw(t + )]}
=E [Az] +E[AB] [coswt+sinw(t + 1)+ E [BZ] coswt sinw(t + 1)
= 02 + E[A] E[B] [coswt + sinw(t + 1)] + 0> coswt sinw(t + 1)

= 02 [1 + coswt sinw(t + 7)]
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2.12 Correlation Matrix

Assume we have a discrete time random process X (7). At each time step i we define
the random variable X; = X(i). If each sample function contains » components,
it is convenient to construct a vector representing all these random variables in the
form:

x=[X X, X, (2.33)

Now we would like to study the correlation between each random variable X; and
all the other random variables. This would give us a comprehensive understanding
of the random process. The best way to do that is to construct a correlation matrix.

We define the n x n correlation matrix Ry, which gives the correlation between
all possible pairs of the random variables, as:

X1 X XiXs - X1 X,

X0 X1 X0 X5 -+ X0 X,
Ry =E[xX'|=E i o i (2.34)
XnXI XnX2 Xan
We can express Ry in terms of the individual correlation functions:
ryx(1,1) ryx(1,2) --- rxx(1,n)
rxx(1,2) rxx(2,2) --- rxx(2,n)
X = : : , . (2.35)

rxx(1,n) rxx(2,n) -+ ryx(n,n)

Thus we see that the correlation matrix is symmetric. For a wide-sense stationary
process, the correlation functions depend only on the difference in times and we get
an even simpler matrix structure:

rxx (0) rxx(1) ---rxx(n—1)
rxx (1) rxx(0) - rxx(n—2)
Ry = . ) ) ) (2.36)
Vxx(l’l—l) rxx(l’l—Z)'-' rxx(O)

Each diagonal in this matrix has identical elements and our correlation matrix
becomes a Toeplitz matrix.

Example 2.9. Assume the autocorrelation function for a stationary random process
is given by:

rxx (1) =54 3¢

Find the autocorrelation matrix for t = 0, 1, and 2.
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The autocorrelation matrix is given by:

8 6.1036 5.4060
Ryy = | 6.1036 8 6.1036
5.4060 6.1036 6 ]

2.13 Covariance Matrix

In a similar fashion, we can define the covariance matrix for many random variables
obtained from the same random process as:

Cxx = E[(x-7) (x—1)'] (2.37)

where & = [,ul o o ]l is the vector whose components are the expected
values of our random variables. Expanding the above equation we can write:

Cyx = E[XX'| - (2.38)
=Ry - p' (2.39)

When the process has zero mean, the covariance matrix equals the correlation
matrix:

Cxx = Rxy (2.40)

The covariance matrix can be written explicitly in the form:

Cxx(1,1) Cyx(1,2) -+ Cxx(1,n)

CX)((I,Z) Cxx(2,2) Cxx(z,n)

Cxx = (2.41)

Cxx(1,n) Cxx(2,n) --- Cxx(n,n)

Thus we see that the covariance matrix is symmetric. For a wide-sense stationary
process, the covariance functions depend only on the difference in times and we get
an even simpler matrix structure:

Cxx(0) Cxx(1) - Cxx(n—1)

Cyx (1) Cxx(0) --- Cxx(n—2)

Cyx = (2.42)

Cxx(f.i -1) Cxx(’.i —2) - CX);(O)
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Using the definition for covariance in (1.118) on page 36, we can write the above
equation as:

1 p(l)y  p(2) - pn—1)
p(1) 1 p(l) - p(n—2)
Cxx =02 | P2  p) I - p(n—3) (2.43)
pn—1) p(n =2) p(n =3) --- 1

Example 2.10. Assume the autocovariance function for a wide-sense stationary
random process is given by:

cxx(t) =5+ 3¢l

Find the autocovariance matrix for t = 0, 1, and 2.
Since the process is wide-sense stationary, the variance is given by:

o 2 = Cxx (0) =38
The autocovariance matrix is given by:

1 0.7630 0.6758
Cxx =8(07630 1 0.7630
0.6758 0.7630 1 ]

2.14 Problems

2.14.1 Random Processes

2.1. Define deterministic and nondeterministic random processes. Give an example
of each type.

2.2. Let X be the random process corresponding to observing the temperature
throughout a day. The number of sample functions is 365 corresponding to each
day of the year. Classify this process.

2.3. Let X be the random process corresponding to observing the number of
defective lights in a building versus time for a period of one month. Each month
we would get a different pattern. Classify this process.

2.4. Let X be the random process corresponding to measuring the total tonnage
(weight) of ships going through the Suez canal in one day. The data is plotted for a
period of one year. Each year will produce a different pattern. Classify this process.
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2.5. Let X be the random process corresponding to observing the number of cars
crossing a busy intersection in one hour. The number of sample functions is 24
corresponding to each hour of the day. Classify this process.

2.6. Let X be the random process corresponding to observing the bit pattern in an
ATM cell. Classify this process.

2.14.2 Expected Value

2.7. Amplitude-Shift Keying (ASK) can be modeled as a random process
described by

X(t) = acoswt

where w is constant and a corresponds to the random variable A with two values
0 and ag which occur with equal probability. Find the expected value w(z) of this
process.

2.8. A modified ASK uses two bits of the incoming data to generate a sinusoidal
waveform and the corresponding random process is described by

X(t) = acoswt

where w is a constant and a is a random variable with four values a;, a», az, and
a4. Assuming that the four possible bit patterns are equally likely find the expected
value () of this process.

2.9. PSK can be modeled as a random process described by
X(t) = acos(wt + ¢)

where a and w are constant and ¢ corresponds to the random variable ® with two
values 0 and 7 which occur with equal probability. Find the expected value w(¢) of
this process.

2.10. A modified FSK uses two bits of the incoming data to generate a sinusoidal
waveform and the corresponding random process is described by

X(t) = acoswt

where a is a constant and w is a random variable with four values 7/4, 37/4,
—3m/4, and —mr /4 [4]. Assuming that the four possible bit patterns occur with equal
probability find the expected value w(¢) of this process.
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2.11. A modified FSK uses three bits of the incoming data to generate a sinusoidal
waveform and the random process is described by

X(t) = acoswt

where a is a constant and @ corresponds to the random variable €2 with four values
w1, w2, -+, ws. Assuming that the eight frequencies are equally likely find the
expected value pu(¢) of this process.

2.12. A deterministic discrete-time random process X(n) produces the random
variable X (n) given by

X(n) =d"

where a is a uniformly distributed random variable in the range 0-1. Find the
expected value for this random variable at any time instant r.

2.14.3 Autocorrelation Function

2.13. Define a wide-sense stationary random process.
2.14. Prove (2.23) on page 58.
2.15. Define an ergodic random process.

2.16. Explain which of the following functions represent a valid autocorrelation
function.

ryx(ny=a" 0<a<l1 rxx(n)=lal"” 0<a<1l1
ryx(m) =a" 0<a<1 ryx(n) =la|” 0<a<1
rxx(n) = cosn rxx(n) =sinn

2.17. A random process described by
X(t) = acos(wt + ¢)

where a and w are constant and ¢ corresponds to the random variable & is uniformly
distributed in the interval 0-27. Find the autocorrelation function ryy (¢) of this
process.

2.14.4 Cross-Correlation Function

2.18. Define what is meant by two random processes being orthogonal.

2.19. Define what is meant by two random processes being statistically
independent.
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2.20. Find the cross-correlation function for the following random process and its
delayed version
X(t) = acoswt

Y(t) = o acos(wt + 60)

where a 6 are zero two mean random variable and « is a constant.

2.14.5 Covariance Function

2.21. Given two random processes X and Y, when are they uncorrelated?

2.22. Write down expressions for the cross-correlation and cross-covariance for
two uncorrelated random processes.

2.23. Find the covariance function for the random process

X(t) = acoswt

where a is a random variable with mean y and variance 0.

2.24. Find the autocovariance function for the random process in Example 2.7 on
page 60 when o is a uniformly distributed random variable in the range O—wj and a
and b are IID random variables with zero mean and o2 variance.

2.25. Find the autocovariance function for the random process in Example on
page 60 when o is a uniformly distributed random variable in the range O—wj and a
and b are IID random variables with zero mean and o> variance.
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Chapter 3
Markov Chains

3.1 Introduction

We explained in Chap. 1 that in order to study a stochastic system we map its random
output to one or more random variables. In Chap. 2 we studied other systems where
the output was mapped to random processes which are functions of time. In either
case we characterized the system using the expected value, variance, correlation,
and covariance functions. In this chapter we study stochastic systems that are best
described using Markov processes. A Markov process is a random process where
the value of the random variable at instant n depends only on its immediate past
value at instant n — 1. The way this dependence is defined gives rise to a family
of sample functions just like in any other random process. In a Markov process the
random variable represents the state of the system at a given instant n. The state of
the system depends on the nature of the system under study as we shall see in that
chapter. We will have a truly rich set of parameters that describe a Markov process.
This will be the topic of the next few chapters.
We see examples of Markov processes in many real-life situations

. Telecommunication protocols and hardware systems.

. Customer arrivals and departures at banks.

. Checkout counters at supermarkets.

. Mutation of a virus or DNA molecule.

. Random walk such as Brownian motion.

. Arrival of cars at an intersection.

. Bus rider population during the day, week, month, etc.
. Machine breakdown and repair during use.

. The state of the daily weather.
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3.2 Markov Chains

If the state space of a Markov process is discrete, the Markov process is called a
Markov chain. In that case the states are labeled by the integers O, 1, 2, and so
on. We will be concerned here with discrete-time Markov chains since they arise
naturally in many communication systems.

3.3 Selection of the Time Step

A Markov chain stays in a particular state for a certain amount of time called the
hold time. At the end of the hold time, the Markov chain moves to another state
at random where the process repeats again. We have two broad classifications of
Markov chains that are based on how we measure the hold time.

Discrete-Time Markov Chain In a discrete-time Markov chain the hold time
assumes discrete values. As a result, changes in the states occur at discrete time
values. In that case time is measured at specific instances:

t="T), T, Tr, ---

The spacing between the time steps need not be equal in the general case. Most
often, however, the discrete time values are equally spaced and we can write
t =nT (3.1
n=0,1,2,--- (3.2)

The time step value T depends on the system under study as will be explained below.

Continuous-Time Markov Chain In a continuous-time Markov chain the hold
time assumes continuous values. As a result, changes in the states occur at any time
value. The time value ¢ will be continuous over a finite or infinite interval.

3.3.1 Discrete-Time Markov Chains

This type of Markov chains changes state at regular intervals. The time step could
be a clock cycle, start of a new day, or a year, etc.

Example 3.1. Consider a packet buffer where packets arrive at each time step with
probability @ and depart with probability c. Identify the Markov chain and specify
the possible buffer states.
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Table 3.1 States of buffer State | Significance

ocetipaticy 0 Buffer is empty
1 Buffer has one packet
2 Buffer has two packets

B Bufter has B packets (full)

We choose the time step in this example to be equal to the time required to
receive or transmit a packet (transmission delay). At each time step we have two
independent events: packet arrival and packet departure. We model the buffer as a
Markov chain where the states of the system indicate the number of packets in the
buffer. Assuming the buffer size is B, then the number of states of the buffer is B+ 1
as identified in Table 3.1. ]

Example 3.2. Suppose that packets arrive at random on the input port of a router
at an average rate A, (packets/s). The maximum data rate is assumed to be o
(packets/s), where o > A,. Study the packet arrival statistics if the port input is
sampled at a rate equal to the average data rate A,.

The time step (seconds) is chosen as:

T =—
Aq
In one time step we could receive 0, 1, 2, ---, N packets where N is the maximum
number of packets that could arrive:

N=loxT] =[]

where the ceiling function f(x) = [x] gives the smallest integer larger than or
equal to x.

The statistics for packet arrival follow the binomial distribution and the probabil-
ity of receiving k packets in time 7" is:

p(k) — (]]:/) Clk bN—k

where a is the probability that a packet arrives and b = 1 — a. Our job in almost all
situations will be to find out the values of the parameters N, a and b in terms of the
given data rates.

The packet arrival probability a could be obtained using the average value of the
binomial distribution. The average input traffic N,(in) is given from the binomial
distribution by:

N,(in)y=Na
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But N, (in) is also determined by the average data rate as:
N,(in) =4, xT =1
From the above two equations we get:

1
a=—<

N

Qg

Example 3.3. Consider the previous Example 3.2 when the input port is sampled at
the rate 0.
The time step is now given by:

7=t
o
In one time step we either get one packet or we get no packets. There is no chance to
get more than one packet in one time step since packets cannot arrive at a rate higher
than o. Therefore, the packet arrival statistics follow the Bernoulli distribution.

For a time period ¢, the average number of packets that arrives is:

Ny(in) = A4t

From the Bernoulli distribution that average is given by:

Ny(in) =d 7
The fraction on RHS indicates the number of time steps spanning the time period ¢.
From the above two equations we get:

A

a=xT ==
o

3.4 Memoryless Property of Markov Chains

In a discrete-time Markov chain, the value of the random variable S(n) represents
the state of the system at time n. The random variable S(n) is a function of its
immediate past value—i.e., S(n) depends on S(n — 1). This is referred to as the
Markov property or memoryless property of the Markov chain where the present
state of the system depends only on its immediate past state [4, 5]. Alternatively, we
can say that the Markov property of the Markov chain implies that the future state
of the system depends only on the present sate and not on its past states [3].
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Fig. 3.1 The occupancy states of a buffer of size four and the possible transitions between the
states

The probability that the Markov chain is in state s; at time # is a function of its
past state s; at time # — 1 only. Mathematically this statement is written as:

pIS(n) =si1= f(s;) (3.3)

foralli € S and j € S where S is the set of all possible states of the system.
Transition from a state to the next state is determined by a transition probability
only with no regard to how the system came to be in the present state. Many
communication systems can be modeled as Markov or memoryless systems using
several techniques such as introducing extra transitions, defining extra states, and
adjusting the time step value. This effort is worthwhile since the memoryless
property of a Markov chain will result in a linear system that can be easily studied.

Example 3.4. Consider a data buffer in a certain communication device such as a
network router for example. Assume the buffer could accommodate at most four
packets. We say the buffer size is B = 4. Identify the states of this buffer and show
the possible transitions between states assuming at any time step at most one packet
can arrive or leave the buffer. Finally explain why the buffer could be studied using
Markov chain analysis.

Figure 3.1 shows the occupancy states of a buffer of size four and the possible
transitions between the states. The buffer could be empty or it could contain 1, 2, 3,
or 4 packets. Furthermore, the assumptions indicate that the size of the buffer could
remain unchanged or it could increase or decrease by one.

The transition from one state to another does not depend on how the buffer
happened to be in the present state. Thus the system is memoryless and could be
modeled as a Markov chain. ]

3.5 Markov Chain Transition Matrix

Let us define p;;(n) as the probability of finding our system in state i at time step
n given that the past state was state j. We equate p;; to the conditional probability
that the system is in state i at time »n given that it was in state j at time n — 1.
Mathematically, we express that statement as follows:

pij(m) =p[Sn) =i [Sh—1)=j] (3.4)
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The situation is further simplified if the transition probability is independent of the
time step index #. In that case we have a homogeneous Markov chain and the above
equation becomes:

pij=pISM) =i [Sh—-1) =] (3.5)
Let us define the probability of finding our system in state i at the nth step as:
si(n) = p[X(n) =i] (3.6)

where the subscript i identifies the state and n denotes the time step index.
Using (3.4), we can express the above equation as:

si(n) = Zp[j xsi(n—1) 3.7)

=1

where we assumed the number of possible states to be m and the indices i and j
lieintherange 1 <i <mand 1 < j < m. We can express the above equation in
matrix form as:

s(n) =Ps(n—1) (3.8)
where P is the state transition matrix of dimension m x m:

P11 P12t Pim

D21 P2t DPom

P= (3.9

Pm1 Pm2 ** Pmm

and s(n) is the distribution vector (or state vector) defined as the probability the
system being in each state at time step 7:

s(n) = [s1(n) s2(n) -+~ s(n) | (3.10)

The component s;(n) of the distribution vector s(n) at time n indicates the
probability of finding our system in state s; at that time. Because it is a probability,
our system could be in any of the m states. However, the probabilities only indicate
the likelihood of being in a particular state. Because s describes probabilities of all
possible m states, we must have:

Zs,»(n):l n=0,12,-- (3.11)

i=1
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We say that our vector is normalized when it satisfies (3.11). We call such a
vector a distribution vector. This is because the vector describes the distribution
of probabilities among the different states of the system.

Soon we shall find out that describing the transition probabilities in matrix form
leads to great insights about the behavior of the Markov chain. To be specific, we
will find that we are interested in more than finding the values of the transition
probabilities or entries of the transition matrix P. Rather, we will pay great attention
to the eigenvalues and eigenvectors of the transition matrix.

Since the columns of P represent transitions out of a given state, the sum of each
column must be one since this covers all the possible transition events out of the
state. Therefore we have, for all values of j,:

m
Y py=1 (3.12)
i=1

The above equation is always valid since the sum of each column in P is unity. For
example, a 2 x 2 transition matrix P would be set up as in the following diagram:

Present State

1 2
1
1 P P2
Next State <«
2 D2t P»

The columns represent the present state while the rows represent the next state.
Element p;; represents the transition probability from state j to state i . For example,
P12 is the probability that the system makes a transition from state s, to state s;.

Example 3.5. An on—off source is often used in telecommunications to simulate
voice traffic. Such a source has two states: The silent state s; where the source does
not send any data packets and the active state s, where the source sends one packet
per time step. If the source were in s, it has a probability s of staying in that state
for one more time step. When it is in state s,, it has a probability a of staying in that
state. Obtain the transition matrix for describing that source.

The next state of the source depends only on its present state. Therefore, we can
model the state of the source as a Markov chain. The state diagram for such source
is shown in Fig. 3.2 and the transition matrix is given by:

P=|: ) l—a:|
l—s a [}
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Fig. 3.2 Transition diagram I-s
for an on—off source

Fig. 3.3 A Markov chain Colwood
involving three states

Sooke Langford

Example 3.6. Assume that the probability that a delivery truck moves between three
cities at the start of each day is shown in Fig. 3.3. Write down the transition matrix
and the initial distribution vector assuming that the truck was initially in Langford.

We assume the city at which the truck is located is the state of the truck. The next
state of the truck depends only on its present state. Therefore, we can model the state
of the truck as a Markov chain. We have to assign indices to replace city names. We
chose the following arbitrary assignment, although any other state assignment will
work as well.

City State index
Colwood | 1
Langford |2
Sooke 3

Based on the state assignment table, the transition matrix is given by:

0 1/41/4
P|3/4 0 1/4
1/43/41/2

The initial distribution vector is given by:
s =[010] u
Example 3.7. Assume an on—off data source that generates equal length packets

with probability a per time step. The channel introduces errors in the transmitted
packets such that the probability of a packet is received in error is e. Model the
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source using Markov chain analysis. Draw the Markov chain state transition diagram
and write the equivalent state transition matrix.
The Markov chain model of the source we use has four states:

State | Significance

1 Source is idle

2 Source is retransmitting a frame

3 Frame is transmitted with no errors
4 Frame is transmitted with an error

Since the next state of the source depends only on its present state, we can model
the source using Markov state analysis.

Figure 3.4 shows the Markov chain state transition diagram. We make the
following observations:

* The source stays idle (state s;) with probability 1 — a.

¢ Transition from s; to 53 occurs under two conditions: the source is active and no
errors occur during transmission.

¢ Transition from s; to 54 occurs under two conditions: the source is active and an
error occurs during transmission.

¢ Transition from s, to s3 occurs under only one condition: no errors occur.

The associated transition matrix for the system is given by:

1—a 0 10
p— 0 0 01
a(l—e)1—e00
ae e 00 ]

Example 3.8. In an ethernet network based on the carrier sense multiple access
with collision detection (CSMA/CD), a user requesting access to the network starts

1
1>a n
1-e

Fig. 3.4 State transition -
diagram for transmitting a

packet over a noisy channel 1
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transmission when the channel is not busy. If the channel is not busy, the user starts
transmitting. However, if one or more users sense that the channel is free, they will
start transmitting and a collision will take place. If a collision from other users is
detected, the user stops transmitting.

Assume the following probabilities

u Probability all users are idle
uy Probability only one user is transmitting
1 — up — u; Probability two or more users are transmitting

(a) Justify using Markov chain analysis to describe the behavior of the channel or
communication medium.

(b) Select a time step size for a discrete-time Markov chain model.

(c) Draw the Markov state transition diagram for this channel and show the state
transition probabilities.

(a) A user in that system will determine its state within a time frame of twice the
propagation delay on the channel. Therefore, the current state of the channel
or communication medium and all users will depend only on the actions of the
users in time frame of one propagation delay only. Thus our system can be
described as a Markov chain.

(b) The time step T we can choose is twice the propagation delay. Assume packet
transmission delay requires n time steps where all packets are assumed to have
equal lengths.

(c) The channel can be in one of the following states:

1. i:Idle state
2. t: Transmitting state
3. c¢: Collided state

Figure 3.5 shows the state of the user and the transition probabilities between these
states.

The channel remains in the idle state with probability .

The channel moves from idle to transmitting state with probability u;.

The channel moves from idle to the collided state with probability 1 — uy — u;.

The other transitions are explained in the same way. We organize our state
transition matrix such that first row or column corresponds to the idle state i. The
second row or column corresponds to the collided state. The third row or column
corresponds to transmit state #1, and so on. For n transmit states, the transition matrix
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Fig. 3.5 Markov chain state
transition diagram for the
CSMA/CD channel

Collided

-
ki
will have the dimension (n + 2) x (n + 2):
[ uo Uuo 00--- Uuo i
l—uo—ull—uo—ulOO---l—uo—u1
u u M]O u
P= 0 0 0ft1--- 0
0 0 00-- 0
i 0 0 00--- 0 1 |

3.6 Markov Matrices

The definition of the transition matrix P results in a matrix with peculiar properties:

Nk e =

6.

The number of rows equals the number of columns. Thus P is a square matrix.
All the elements of P are real numbers. Thus P is a real matrix.

0 < p;j < 1for all values of i and j. Thus P is a nonnegative matrix.

The sum of each column is exactly 1 (i.e. 3-7_; pij = D).

The magnitude of all eigenvalues obeys the condition |A;| < 1. Thus the spectral
radius of P equals 1.

At least one of the eigenvalues of P equals 1.

From all the above properties we conclude that the transition matrix is square, real,
and nonnegative. Such a matrix is termed column stochastic matrix or Markov
matrix. Notice that all column stochastic matrices are a subset of nonnegative
matrices. Thus nonnegative matrices need not be column stochastic.

Nonnegative matrices have many interesting properties related to their eigenval-

ues and eigenvectors but this is beyond the scope of this book [2].
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The above properties have implications on the eigenvalues of the transition
matrix. The following theorem indicates one such implication.

Theorem 3.1. Let P be any m x m column stochastic matrix. Then P has 1 as an
eigenvalue [2].

Proof. We know that if A is an eigenvalue of P, then the determinant of the
characteristic equation must vanish, i.e.:

det(P—AI) =0 (3.13)

where I is an m X m unit matrix. Assume that P has 1 as an eigenvalue, then the
determinant is given by:

pu—1 pn - pim

P21 pn—1- py

detP—1x1) = (3.14)

Pmi Pm2 Pmm — 1

where |A| indicates the determinant of matrix A. The determinant will not change
if we add all the remaining rows to the first row:

=1 po—1-3 pim—1

D21 po—1 - py

det(P—1x1I) = (3.15)

Pmi Pm2 ot Pmm — 1

But the sum of the elements in each column is 1 and the first row of the above
determinant will be zero. As a result, the determinant is zero and this proves that 1
is an eigenvalue of P.

Conversely, assume that (3.13) is satisfied for some value of A. In that case we
can write an equation similar to (3.15), namely:

Ypii—AY pir—A D pim—A
D21 pn—1 - Dom
det(P—1xT) = _ o , (3.16)
Pmi Pm2 e pmm_l

But we know that this determinant is zero. This is true for all values of p;; which
implies that the elements in the first row of the matrix must be zero. Thus we
must have:

S pi—2=0 (3.17)
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But the sums in the above equation is equal to 1 independent of the value of i. Thus
we must have:

1-14=0 (3.18)

The above equation implies that A = 1 is a root of the equation which proves the
second part of the theorem. O

The following theorem will prove useful when we start multiplying Markov
matrices to perform transient analysis on our Markov chain. The theorem essentially
explains the effect of premultiplying any matrix by a column stochastic matrix.

Theorem 3.2. The sum of columns of any matrix A will not change when it is
premultiplied by a column stochastic matrix P.

Proof. When A is premultiplied by P we get matrix B:
B=PA (3.19)

Element b;; is given by the usual matrix product formula:

bij = Zpik agj (3.20)
k=1

The sum of the jth column of matrix B is denoted by o (B) and is given by:
m m m
o;B) =) b= Y pikai (3:21)
i=1 i=1 k=1
Now reverse the order of summation on the right-hand side of the above equation:
m m
o;(B) = ar; Y pik (322)
k=1 i=1

Because P is column stochastic we have:

m
ox(P) =Y pu=1 (3.23)
i=1
Therefore, (3.22) becomes:
O'j(B) = Zb,‘j = Zakj (324)
i=1 k=1
=0;(A) (3.25)

Thus we proved that sum of columns of a matrix does not change when the matrix
is premultiplied by a column stochastic matrix. O
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Table 3.2 Significance of

¢ Diagonal | Significance
diagonals of P

Main Probabilities queue will retain its size

19" upper | Probabilities queue size will decrease by one
2"4 upper | Probabilities queue size will decrease by two
34 upper | Probabilities queue size will decrease by three

1% lower | Probabilities queue size will increase by one
24 Jower | Probabilities queue size will increase by two
34 lower | Probabilities queue size will increase by three

3.6.1 The Diagonals of P

We mentioned above the significance of each element p;; of the transition matrix P
as the probability of making a transition from state j to state i. Further insight can be
gained for Markov chains representing queues. Queuing systems are a special type of
Markov chains in which customers arrive and lineup to be serviced by servers. Thus
a queue is characterized by the number of arriving customers at a given time step,
the number of servers, the size of the waiting area for customers, and the number
customers that can leave in one time step.

The state of a queuing system corresponds to the number of customers in the
queue. If we take the lineup for a bank as an example, then the queue size increases
when new customers arrive. The number of arriving customers could be one in some
cases or many in others. This depends on the specifics of the situation. For example,
if there is only one door to the bank, then we could expect at most one customer
to arrive at any time. At the head of the queue, the number of servers varies also
depending on how many bank tellers are ready, or disposed, to serve the customers.
If there is only one teller, then we expect the size of the queue to decrease by at
most one each time a customer is served. The duration of the service time also
varies depending on the type of transaction being done.

The diagonals of P reflect the queuing system characteristics. Table 3.2 illustrates
the significance of each diagonal of the matrix P

3.7 Eigenvalues and Eigenvectors of P

The eigenvalues and eigenvectors of the transition matrix P will prove to be of
utmost importance in the analyses of this book.
The following theorem makes certain predictions about the eigenvector
corresponding to the eigenvalue A = 1.
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Theorem 3.3. Given a column stochastic matrix P and the eigenvector X corre-
sponding to the eigenvalue A = 1, the sum of the elements of X is nonzero and could
be taken as unity, i.e. o(x) = 1.

Proof. The eigenvector x corresponding to A = 1 satisfies the equation:
Px=x (3.26)
We can write the above equation as:
P-I)x=0 (3.27)
This is a system of linear equation with an infinite number of solutions since the

matrix (P —1I) is rank deficient (i.e., rank(P) < m). To get a unique solution for x
we need one extra equation which we choose as:

ox)=1 (3.28)
We cannot choose the sum to be zero since this is a trivial solution. Any nonzero
value is acceptable. We choose to have o(x) = 1 for reasons that will become
apparent later on. This proves the theorem. O

The following theorem makes certain predictions about the sum of elements of
the other eigenvectors of P corresponding to the eigenvalues A < 1.

Theorem 3.4. Given a column stochastic matrix P and an eigenvector X corre-
sponding to the eigenvalue A # 1, the sum of the elements of X must be zero, i.e.
o(x)=0.

Proof. The eigenvector x satisfies the equation:
Px=2Ax (3.29)
The sum of columns of both sides of the above equation is equal:
o(Px) =Ao0(x) (3.30)

From Theorem 3.2, on page 79, we are assured that the sum of the elements of x
will not change after being multiplied by matrix P. Thus we can write:

o(Px)=0(x) 3.31)
From the above two equations we have:

o(x) = Ao(x) (3.32)
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or
o(x)(1-4)=0 (3.33)
Since A # 1, the only possible solution to the above equation is o (x) = 0. This
proves the theorem. O
Example 3.9. Verify Theorems 3.3 and 3.4 for the Markov matrix:
0.30.1 0 0.2
0.1 0.6 0.3 0.1

0.40.20.40.5
0.20.1030.2

MATLAB gives the following eigenvectors and corresponding eigenvalues

[X,D] = eig(P)

X =
-0.1965 0.5887 -0.1002 -0.428¢6
-0.6309 0.3983 -0.7720 0.1644
-0.6516 -0.5555 0.5190 -0.4821
-0.3724 -0.4315 0.3532 0.7463

D =

1.0000 0 0 0
0 0.2211 0 0
0 0 0.3655 0
0 0 0 -0.0866

We have to normalize our eigenvectors so that the sum of the components of the first
column, which corresponds to A = 1 is one.

X = X/sum(X(:,1))

X =
0.1061 -0.3179 0.0541 0.2315
0.3408 -0.2151 0.4169 -0.0888
0.3520 0.3001 -0.2803 0.2604
0.2011 0.2330 -0.1907 -0.4031

We can write, ignoring rounding errors:

U](X) =1
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Oz(X) =0
U3(X) =0
CT4(X) =0 [ ]

3.8 Constructing the State Transition Matrix P

The state transition matrix P is the key to analyzing Markov chains and queues. To
construct the matrix the following steps are usually followed [3].

1. Verify that the system under study displays the Markov property. In other words,
ensure that transition to a new state depends only on the current state.

2. All possible states of the system are identified and labeled. The labeling of the
states is arbitrary although some labeling schemes would render the transition
matrix easier to visualize.

3. All possible transitions between the states are either drawn on the state transition
diagram, or the corresponding elements of the state transition matrix are
identified.

4. The probability of every transition in the state diagram is obtained.

The transition matrix is constructed.

6. Relabeling of the states is always possible. That will change the locations of
the matrix elements and make the structure of the matrix more visible. This
rearrangement will still produce a column stochastic matrix and will not disturb
its eigenvalues or the directions of its eigenvectors.

e

Example 3.10. The closing price of a certain stock on a given weekday is either
falling or rising compared to the previous day’s price. If the price stays the same,
then it is classified as rising if the previous day’s trend was rising, and vice versa.
The probabilities of price transitions between these two states are shown in Fig. 3.6.
Construct state transition matrix.

The price of the stock has only two states falling (s;) or rising (s»). The transition

matrix will be:
0.30.6
P=
[ 0.70.4 ] [ ]

0.7

0.4
Fig. 3.6 Day-to-day closing ‘

0.3
. falling
price fluctuations of a certain

stock 0.6
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3.9 Transient Behavior

From (3.8) on page 72 we can write the distribution vector at time stepn = 1 as:

s(1) = P s(0) (3.34)
and

s(2) =Ps(1) (3.35)

= P[P s(0)] (3.36)

= P? 5(0) (3.37)

and we can generalize to express the distribution vector at step n as:
s(n) = P" s(0) n=0,12,... (3.38)

This equation allows us to calculate the distribution vector at the nth time step given
the transition matrix and the initial distribution vector s(0).

Example 3.11. In Example 3.6, on page 73, what is the probability that our truck is
in Colwood after five deliveries assuming that it was Langford initially?

We are looking for element p;, in matrix P>. Using any mathematical tool such
as MAPLE or MATLAB, we get:

0.1990.2 0.200
P° = | 0.288 0.277 0.278
0.513 0.523 0.522

hence the required probability is 0.2. |

Example 3.12. Assume a ball falls on the pegs shown in Fig. 3.7. The pegs are setup
such that the ball must hit a peg at each level and bounce off one of the two pegs
immediately below. The location of the ball at the bottom bucket indicates the prize
to be won.

(a) Define a Markov chain describing the state of the ball.

(b) Write down the transition matrix.

(c) Write down the initial distribution vector if the ball is dropped in the middle
hole.

(d) Determine the probability of hitting the middle bucket.

(e) Assume the money to be won is given by the vector:

w=[3$5%1$103$185]
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Fig. 3.7 A ball falling
through a maze of pegs

row 0
row 1
row 2 $ S3 Ss 87
row 3
row 4
row 5

row 6

row 7

row 8 l l l l

Determine the average amount of money that could be won.

Since the next location of the ball depends only on its present location, we can
describe this system using Markov chains.

(a) We can model this system as a Markov chain with nine states s; to sg9, as
indicated in the figure. State s;(n) indicates that the ball is at column i and
row n in the game. The rows are numbered starting with zero at the top row.
Thus our distribution vector could be written as:

t
= [S() S1 82 §3 84 S5 S¢ §7 Sg]

where at even time steps the even states could be occupied and at odd time steps
only the odd states could be occupied.
(b) The transition matrix is given by:

0050 0 0 0 0 0 0
10 050 0 0 0 0 0
0050 050 0 0 0 0
00 050 050 0 0 0
P=|00 0 050 050 0 0
00 0 0 050 050 0
00 00 0 050 050
00 000 0 050 1
L0000 0O 0 0 050]

(c) The initial distribution vector is given by:

5(0)=[000010000]



86 3 Markov Chains

(d) After eight iterations, the ball finally falls into one of the buckets. Thus the
distribution vector after eight iterations is given by:

s(8) = P% s(0)
=[0.1100.2500.2800.2500.11]

Note that the only valid states are the ones that correspond to a bucket locations
at the bottom of the figure. This explains the zeros in the odd locations 1, 3, 5,
and 7. The probability of settling into the middle bucket is s, = 0.28.

(e) The average winnings are given by:

Wa = Wy 50(8) + Wa 52(8) + Wi 54(8) + Wi 56(8) + Wy 53(8)
— $4.4

It is interesting that if hundreds of balls are dropped at the center toward the
bottom, then their distribution at the bottom barrels is bell-shaped and their
number is the binomial coefficients [1] |

Example 3.13. A computer memory system is composed of very fast on-chip cache,
fast on-board RAM, and slow hard disk. When the computer is accessing a block
from each memory system, the next block required could come form any of the three
available memory systems. This is modeled as a Markov chain with the state of the
system representing the memory from which the current block came from: state s;
corresponds to the cache, state s, corresponds to the RAM, and state s3 corresponds
to the hard disk. The transition matrix is given by:

0.70.1 0
P=1020.70.1
0.10.20.9

Find the probability that after three consecutive block accesses the system will read
a block from the cache. .
The starting distribution vector is s(0) = [ 10 O] and we have:

[ 0.51 0.14 0.01
P> = 0.290.530.16
| 0.20 0.33 0.83

0.386 0.151 0.023
P’ = | 0.3250.432 0.197
| 0.289 0.417 0.780
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The distribution vector after three iterations is:
s(3) = P> 5(0) = [0.386 0.325 0.289|'

The probability that the system will read a block from the cache is 0.386. ]

3.9.1 Properties of P"

Matrix P" has many interesting properties that we list below:

* P” remains a column stochastic matrix according to Lemma 3.1 below.

¢ A nonzero element in P can increase or decrease in P" but can never become zero.

¢ A zero element in P could remain zero or increase in P” but can never become
negative.

As aresult of Theorem 3.2 on page 79, we deduce the following two lemmas.

Lemma 3.1. Given a column stochastic matrix P, then P", forn > 0, is also column
stochastic.

The proof is easily derived from Theorem 3.2. O

Lemma 3.2. The state vector s(n) at instance n is given by:
s(n) = P" s(0) (3.39)

This vector must be a distribution vector for all values of n > 0. The proof is easily
derived from Theorem 3.2 after applying the theorem to the state vector s(0). O

3.10 Finding s(n)

We can determine the state of our Markov chain at time step n if we are able to
calculate P". In general performing » matrix multiplications is tedious and leads to
computational noise. Besides, no insight can be gained from repeatedly multiplying
a matrix. Alternative techniques for obtaining an expression for s(n) or P" include:

1. Repeated multiplications to get P".
Expanding the initial distribution vector s(0).
Diagonalizing the matrix P.

Using the Jordan canonic form of P.

Using the z-transform.

A

The first method is simple and is best done using a mathematical package such as
MATLAB. We have seen examples of this technique in the previous section. We
show in the following sections how the other techniques are used.
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3.11 Finding s(n) by Expanding s(0)

In most cases the transition matrix P is simple, i.e. it has m distinct eigenvalues. In
that case we can express our initial distribution vector s(0) as a linear combination
of the m eigenvectors:

sO)=cixi+c2Xo+ -+ CpnXp (3.40)

where x; is the ith eigenvector of P and c; is the corresponding scalar expansion
coefficients. We can write the above equation as a simple matrix expression:

s(0) =Xe (3.41)

where X is an m x m matrix whose columns are the eigenvectors of P and ¢ is an
m-component vector of the expansion coefficients:

X =[x X2 Xp | (3.42)

c=[cicpe cm]f (3.43)

We need not normalize the eigenvectors before we determine the coefficients
vector ¢ because any normalization constant for X will be accounted for while
determining c.

To find s(n) we will use the technique explained below. Equation (3.41) is a
system of m-linear equations in 7 unknowns, namely the components of the column
vector ¢. There are many numerical techniques for finding these components like
Gauss elimination, Kramer’s rule, etc. MATLAB has a very simple function for
finding the eigenvectors of P:

X = eig(P) (3.44)

where matrix X will contain the eigenvectors in its columns. To find the coefficient
vector ¢ we use MATLAB to solve the system of linear equations in Eq. (3.41) by
typing the MATLAB command:

c = X\s (3.45)

where the backslash operator “\” effectively solves for the unknown vector ¢ using
Gaussian elimination.

WWW The function EIGPOWERS (P, s) can be used to expand s in terms of the
eigenvectors of P.
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Example 3.14. A Markov chain has the state matrix:

03020202
03040202
0.20.20.20.2
02020404

Check to see if this matrix has distinct eigenvalues. If so, expand the initial
distribution vector:

s =[1000]
in terms of the eigenvectors of P.

The eigenvalues of P are Ay = 1, A, = 0.1, A3 = 0.2 and A4, = 0. The
eigenvectors corresponding to these eigenvalues are:

0.439 —0.707 0.0 0.0
0.548 0.707 0.707 0.0
0.395 0.0 0.0 0.707
0.592 0.0 —-0.707 —0.707

Therefore, we can expand s(0) in terms of the corresponding eigenvectors:
s(0) =Xc
where ¢ given by:
¢ =[0.507 —1.1 0.707 0.283 ' ]

Now let us see how to get a simple expression for evaluating s(n) given the
expansion of s(0). We start by using (3.41) to find s(1) as:

s(1) = Ps(0) (3.46)
=P (C1X1 + Xy + -0+ Cme) (347)
= CIA1X] + CAXy + -+ CAm X (3.48)

where A; is the ith eigenvalue of P corresponding to the i th eigenvector x;.
We can express s(1) in the above equation in matrix form as follows:

s() =XDc¢ (3.49)
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where X was defined before and D is the diagonal matrix whose diagonal elements
are the eigenvalues of P:

A0 -2 0
0 X+ 0

p=| . . (3.50)
00 -2,

MATLAB provides a very handy function for finding the two matrices X and D
using the single command:

[X,D] = eig(P) (3.51)
Having found s(1), we now try to find s(2):

s(2) = Ps(1) (3.52)
=PXDec (3.53)

but the eigenvectors satisfy the relation:

Px; = A;x; (3.54)
In matrix form we can write the above equation as:

PX=XD (3.55)

Substituting (3.55) into (3.53) we get:

s2)=XD’c (3.56)
where
220 -0
D = (.) A% ? (3.57)
00 .22

m

In general the distribution vector at time step » is given by:

s(n) = XD"¢ (3.58)
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where
ATO - 0
0 Ao 0
D=7 (3.59)
00 .--A"

It is relatively easy to find the nth power of a diagonal matrix by simply raising
each diagonal element to the nth power. Then the distribution vector at time step n
is simply obtained from (3.58).

Example 3.15. Consider the Markov chain in Example 3.14. Find the values of the
distribution vector at time steps 2, 5, and 20.
For the given transition matrix, we can write:

s(n) = XD"c

where the matrices X, D, and the vector ¢ are given by:

70.439 —0.707 0.0 0.0
X — | 0348 0707 0.707 0.0
~ 10395 0.0 0.0 0.707
| 0.592 0.0 —0.707 —0.707
710 0 0
p_|0010 0
00 020
L00 0 0

¢ =[0.507 —1.10.707 0.283]'
Thus we can simply write:

s(2) = XD’c
=[0.230.290.20.28]
s(5) = XD’c
=[0.220280203]
s(20) = XD%¢c
=[0.220280203]
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We see that the distribution vector settles down to a fixed value after a few iterations.
The above results could be confirmed by directly finding the distribution vectors
using the usual formula:

s(n) = P" s(0) |

Sometimes two eigenvalues are the complex conjugate of each other. In that
case the corresponding eigenvectors will be complex conjugate and so are the
corresponding coefficient ¢ such that the end result s(n) is purely real.

Example 3.16. A Markov chain has the transition matrix:
0.10.40.2
P=10.10406
0.80.20.2

Check to see if this matrix has distinct eigenvalues. If so,

(a) Expand the initial distribution vector:
s(0)=[100]

in terms of the eigenvectors of P.
(b) Find the value of s(3).

The eigenvalues of P are:

=1
Ay = —0.15+ j0.3122
A3 = —0.15— j0.3122

We see that complex eigenvalues appear as complex conjugate pairs. The eigenvec-
tors corresponding to these eigenvalues are:

—0.4234 —0.1698 + j0.3536 —0.1698 — j0.3536
X = [ —0.6726 —0.5095 — j0.3536 —0.5095 + ;j0.3536
—0.6005 0.6794 0.6794

We see that the eigenvectors corresponding to the complex eigenvalues appear
also as complex conjugate pairs. Therefore, we can expand s(0) in terms of the

corresponding eigenvectors:

s(0) =Xc¢
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where c is given by:

¢ = [—5863 —0.2591 — j0.9312 —0.2591 + j0.9312]'
We see that the expansion coefficients corresponding to the complex eigenvectors
appear as complex conjugate pairs also. This ensures that all the components of the

distribution vector will always be real numbers.
The distribution vector at time step n = 3 is:

s(3) = XD%c = [ 0.2850 0.3890 0.3260 | ]

3.12 Finding s(n) by Diagonalizing P

According to reference [2], matrix P is diagonalizable when it has m distinct
eigenvalues and we can write:

P = XDX' (3.60)
where X is the matrix whose columns are the eigenvectors of P and D is a diagonal
matrix whose diagonal elements are the eigenvalues arranged according to the
ordering of the columns of X. MATLAB provides a very handy function for finding
the matrices X and D using the single command:

[X,D] = eig(P)
It does not matter here whether the columns of X are normalized or not since any
scaling factor in X will be cancelled by X~'. MATLAB also offers a very simple
function for inverting a matrix by using the command:

X_inv = inv (X)

We can calculate P2 as:

P> = (XDX ') x (XDX ') (3.61)
= XD’X™! (3.62)

In general we have:

P = XD'X"! (3.63)
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where
A0 0 - 0
0 A 0
D'=| 002450 (3.64)
00O0-.---A"

It is easy therefore to find s(n) at any value for n by simply finding D" and then
evaluate the simple matrix multiplication expression:

s(n) = P" s(0)
= XD"X ! 5(0) (3.65)

3.12.1 Comparing Diagonalization with Expansion of s(0)

Diagonalizing the matrix P is equivalent to the previous technique of expanding s(0)
in terms of the eigenvectors of P. As a proof, consider calculating s(n) using both
techniques.

Using diagonalization technique, we have:

s(n) = P"s(0) (3.66)
= XD"X ! 5(0) (3.67)

Using the expansion of s(0) technique in (3.41) we know that:
s(0) = Xe¢ (3.68)
Substituting this into (3.67) we get:

s(n) = XD"X X ¢
=XD"c¢ (3.69)
Now the value for ¢ = X~'s(0) can be found to yield:
s(n) = XD"X ! 5(0) (3.70)
This last expression for s(n) is identical to Eq. (3.67). Thus we see that the two
techniques are equivalent.

Before we finish this section we state the following lemma which will prove
useful later on.
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Lemma 3.3. Assume the first column of X is the normalized eigenvector corre-

sponding to eigenvalue ). = 1. Then the matrix X" will have ones in its first row.
In general, if the first column of X is not normalized, then the theorem would

state: The matrix X~' will have the value 1/0 (X)) in the elements in its first row.

Proof. Assume Y = X! then we can write:
XxY=I (3.71)

where I is the m x m unit matrix. Let us express the above equation in terms of the
elements of the two matrices X and Y:

X11 X12 *°° Xim Yir Y12 oo Vim
X1 X2 ttr Xom Y21 Y22t Yom

] ] ] =1 (3.72)
Xml Xm2 *** Xmm Yml Ym2 **° Ymm

The element at location (i, j) is obtained from the usual formula:

> xik yig =8 — ) (3.73)
k=1

where §(i — J) is the Dirac delta function which is one only when the argument is
zero, i.e. when i = j. The function is zero for all other values of i and j.

The sum of the j th column on both sides of (3.71) or (3.73) is given by:
DO xikwg =1 (3.74)
i=1 k=1

Now reverse the order of summation on the left-hand side of the above equation:
Doy DXk =1 (3.75)
k=1 i=1

Because of the properties of the eigenvectors in Theorem 3.3 on page 80 and
Theorem 3.4 on page 81, the second summation becomes:

Y i dk—1) =1 (3.76)

k=1
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8(k—1) expresses the fact that only the sum of the first column of matrix X evaluates
to 1. All other columns add up to zero. Thus the above equation becomes:

yi; =1 (3.77)

This proves that the elements of the first row of matrix X! must be all ones. |

3.13 Expanding P" in Terms of its Eigenvalues

We shall find that expanding P" in terms of the eigenvalues of P will give us
additional insights into the transient behavior of Markov chains.
Equation (3.63) related P” to the nth powers of its eigenvalues as:

P' = XD'X"! (3.78)
Thus we can express P” in the above equation in the form:
P’ = A?A1 + /\gAz + -+ )L;;Am (3.79)

Assume that A; = 1 and all other eigenvalues have magnitudes lesser than unity
(fractions) because P is column stochastic. In that case, the above equation becomes:

P'=A + A+ -+ A0 A, (3.80)

This shows that as time progresses, n becomes large and the powers of A? will
quickly decrease. The main contribution to P” will be due to A; only.
The matrices A; can be determined from the product:

A =XY; X! (3.81)
where Y; is the selection matrix which has zeros everywhere except for element

yvii = L.
For a 3 x 3 matrix, we can write:

Al 0 X
P’ = [X] Xo X3] 0 Ag 0 [Xl X2 X3]_ (382)
0 0 A
100
A =X|000 |X! (3.83)
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F0007
Ar=X|010|X! (3.84)
1000 |

0007
A;=X|000 | X! (3.85)
1001 |

The selection matrix effectively ensures that A; is given by the product of the i th
column of X and the ith row of X!

WWW We developed the function SELECT (P) that can be used to obtain the
different matrices A; for a diagonalizable matrix.

It will prove useful to write A; explicitly in terms of the corresponding
eigenvector. A; can be written in the alternative form:

Al' = X; Z; (386)

where x; is the ith eigenvector of P, which is also the i th column of X, and z; is the
m-row vector corresponding to the ith row of X~!. Thus we have:

Ai = [zX 20Xi 23X+ ZimX | (3.87)
The following two theorems discuss some interesting properties of the expansion
matrices A;.

Theorem 3.5. Matrix A is column stochastic and all its columns are identical.

Proof. A, is found from the Eq. (3.87) as
A= [lexl 212X 213X -+ Zlmxl] (3.88)

But Lemma 3.3 on page 95 proved that 7y, 212, -+ *, Z1,» are all equal to unity. Thus
the above equation becomes:

A1 = [X] X1 v X]] (389)

This proves the theorem. O
Theorem 3.5 results in the following very useful lemma.

Lemma 3.4. The steady state distribution vector s(c0) = s must be independent of
the initial value s(0) and equals any column of A,.

The proof of this lemma is found in Problem 3.53. O

From Theorem 3.5 and Lemma 3.4 we can state the following very useful lemma.
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Lemma 3.5. Each column of A represents the steady-state distribution vector for
the Markov chain. |

We define a differential matrix as a matrix in which the sum of each column is
zero. The following theorem states that matrices A; corresponding to eigenvalues
A; # 1 are all differential matrices.

Theorem 3.6. The expansion matrices A; corresponding to eigenvalues A; 7 1 are
differential; i.e. have o (A;) = 0.

Proof. The sum of column j in (3.80) is given by:
o;(P") =0;(A1) + A5 0;(A2) + A3 0, (A3) + -+ (3.90)

Lemma 3.1 on page 87 assures us that P” is column stochastic and Theorem 3.5 on
page 97 assures us that A, is also column stochastic. Therefore, we can write the
above equation as:

1=1+250;(A2) +A0;(A3) +--- (3.91)
Since this equation is valid for all values of A; and n, we must have:
0j(A2) =0;(A3) =---=0;(A,) =0 (3.92)

The above equations are valid for all values of 1 < j < m. Thus all the matrices A;
which correspond to A; # 1 are all differential matrices. And we can write:

0(A2) =0(A3) =---=0(Ay) =0 (3.93)

This proves the theorem. O

The following theorem is related to Theorem 3.2 on page 79. The theorem
essentially explains the effect of premultiplying any matrix by a differential matrix.

Theorem 3.7. Given any matrix A and a differential matrix V, then matrix B = VA
will be a differential matrix.

Proof. When A is premultiplied by V matrix B results
B=VA (3.94)

Element b;; is given by the usual matrix product formula:

m
bij =Y vik ai; (3.95)
k=1
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The sum of the jth column of matrix B is denoted by o (B) and is given by
m m m
ojB) = b= viay (3.96)
i=1 i=1 k=1
Now reverse the order of summation on the right-hand side of the above equation:
m m m
oiB) = by = ay Y vik (3.97)
i=1 k=1 i=1
Because V is differential we have:
m
oj(V) =Y vy =0 (3.98)
i=1

Therefore, (3.97) becomes:
m
ag; (B) = Z bij

i=1
m
= Z agj x0
k=1
=0 (3.99)
Thus we proved that sum of columns of a matrix becomes zero when the matrix is

premultiplied by a differential matrix. O

Example 3.17. The following is a diagonalizable state matrix.

0.1031
P=102030
07040

We would like to express P” in the form in (3.80).

First thing is to check that P is diagonalizable by checking that it has three distinct
eigenvalues. Having assured ourselves that this is the case, we use the MATLAB
function select that we developed, we find that:

P'"=A + AgAz + A§A3



100 3 Markov Chains

where Ay = 1 and

[ 0.476 0.476 0.476
A; = | 0.136 0.136 0.136
| 0.388 0.388 0.388

0.495 0.102 —0.644 7
Ay = | —0.093 —0.019 0.121
| —0.403 —0.083 0.524 |

0.028 —0.578 0.168 ]
A; = | —0.043 0.883 —0.257
0.015 —0.305 0.089 |

Notice that matrix A is column stochastic and all its columns are equal. Notice also
that the sum of columns for matrices A, and A3 is zero. |

Sometimes two eigenvalues are the complex conjugate of each other. In that
case the corresponding eigenvectors will be complex conjugate and so are the
corresponding matrices A; such that the end result P® is purely real.

Example 3.18. A Markov chain has the transition matrix:

0.20.40.2
P=1]0.1040.6
0.70.20.2

Check to see if this matrix has distinct eigenvalues. If so:

(a) Expand the transition matrix P" in terms of its eigenvalues.
(b) Find the value of s(3) using the expression in (3.80).

The eigenvalues of Pare A; = 1, A, = —0.1 4+ j0.3, and A3 = —0.1 — j0.3.
We see that complex eigenvalues appear as complex conjugate pairs.
The eigenvectors corresponding to these eigenvalues are:

0.476 —-0.39-,0.122 —-0.394 ;0.122
X=] 0660 0.378—-,0.523 0.378 4+ j0.523
0.581 0.011+ j0.645 0.011 — j0.645

We see that the eigenvectors corresponding to the complex eigenvalues appear also
as complex conjugate pairs.

Using the function select (P), we express P” according to: (3.80)

P" = A + AlA; + AlAs
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where

[ 0.277 0.277 0.277
A; = 0.385 0.385 0.385
| 0.339 0.339 0.339

0.362 + j0.008 —0.139— j0.159 —0.139 + j0.174 ]
Ay =| —0.192+ j0.539 0.308 — j0.128 —0.192 — j0.295
| —0.169— j0.546 —0.169 + j0.287 0.331 + j0.121 |

0.362 — j0.008 —0.139 + j0.159 —0.139 — j0.174 ]
A;=| —0.192—j0.539 0.308 + j0.128 —0.192 + j0.295
| —0.169 + j0.546 —0.169— j0.287  0.331— j0.121

We see that the expansion coefficients corresponding to the complex eigenvectors
appear as complex conjugate pairs. This ensures that all the components of the
distribution vector will always be real numbers. The distribution vector at time step
n =3is:

s(3) = P? s(0)
= [A| + 3A; + 23A3]5(0)

=[0.2850.389 0.326 ] n

Example 3.19. Consider the on—off source example whose transition matrix was
given by:

1—s a

Pz[ s 1_“] (3.100)

express this matrix in diagonal form and find an expression for the nth power of P.

Using MAPLE or MATLAB’s SYMBOLIC packages, the eigenvectors for this
matrix are:

x=[0-a)/(1-91]: withig=1 (3.101)
x=[-11]"; withd; =s+a—1 (3.102)

Thus we have:

X = [(1 _a){(l =5) _11] (3.103)

_ I[1-s1-s
X]:E[s—ll—a] (3.104)
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where « = (s + a — 1). And P” is given by:

= X[l . 1|X_1 (3.105)
0o”
_l l—a—a”(s_l) (l_an)(l—a)
T |: 1—-a"(1-5) 1—s5s+a" (l—a):| (3.106)

We can write P" in the summation form:

P’ = Al + O[nAz (3107)
where
A= L |l-al-a (3.108)
Ty s 1-s1—5 '
1 l—sa-—1
Ay= —— 3.109
2 2—a—s|:s—11—a:| ( )

The observations on the properties of the matrices A; and A, can be easily verified.
For large values of n, we get the simpler form:

1 _ _
lim P”:Al:—[1 al “} (3.110)

n—00 2—a—s|1—s5s1-—s

and in the steady state our distribution vector becomes:

s=;[(l—a) 1-9]

2—a-—s
and this is independent of the initial state of our source.

Example 3.20. Consider the column stochastic matrix:

0.50.80.4
P=]050 03
0 0203

This matrix is diagonalizable. Express it in the form given in (3.63) and obtain
a general expression for the distribution vector at step n. What would be
the distribution vector after 100 steps assuming an initial distribution vector
s =[100]

The eigenvalues for this matrix are: A; = 1, A, = —0.45, A3 = 0.25. Since
they are distinct, we know that the matrix is diagonalizable. The eigenvectors
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corresponding to these eigenvalues are:

x; = [0.8690.4750.136

x; = [—0.577 0.789 —0.211]'

x3 = [-0.577 —0.211 0.789]'

and matrix X in (3.63) is simply X = [ x; X, X3 | which is given by

0.869 —0.577 —0.577
X ={0.475 0.789 -0.212
0.136 —0.212  0.789

Notice that the sum of the elements in the second and third columns is exactly zero.
We also need the inverse of this matrix which is:

0.676 0.676  0.676
X!'=| —-0.473 0.894 —0.106
—0.2430.123 1.123

Thus we can express P” as:

100
PP=X|0A3 0 |X!
00 A

= A + AJA; + AA;
where the three matrices A, A;, and Aj are given using the following expressions:

(1007
A=X|000|X! (3.111)
1000 |

F000T
010 | X! (3.112)
1000 |

A,

I
o

F0007
000 | X! (3.113)
1001 |

Az

Il
w4
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The above formulas produce:

[10.587 0.587 0.587
A; = | 0.321 0.321 0.321
[ 0.092 0.092 0.092

0.273 —0.516  0.062
Ay = | —0.373 0.705 —0.084
0.1 —0.189 0.022

0.141 —0.071 —0.649
Az = 0.051 —0.026 —0.237
L —0.192 0.097 0.886

We notice that all the columns in A; are identical while the sum of the columns
in A, and Aj is zero. These properties of matrices A; guarantee that P” remains a
column stochastic matrix for all values of n between 0 and oo.

Since each A is a fraction, we see that the probabilities of each state consist of
a steady-state solution (independent of 1) and a transient solution that contains the
different A’s. In the steady-state (i.e., when n — 00) we have the distribution vector
that equals any column of A;:

s (00) = [0.587 0.321 0.092]' (3.114)
Thus we get after 100 steps

s(100) = P'? 5(0)

0.6 4+ 0.3 x )% + 0.1 x A}
0.3 — 0,420
0.1 4 0.12190 —0.22100

[0.587 0.321 0.092]'

Thus the distribution vector settles down to its steady-state value irrespective of the
initial state. ]

3.13.1 Test for Matrix Diagonalizability

The above two techniques: expanding s(0) and diagonalizing P both relied on the
fact that P could be diagonalized. We mentioned earlier that a matrix could be
diagonalized when its eigenvalues are all distinct. While this is certainly true, there
is a more general test for the diagonalizability of a matrix.
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A matrix is diagonalizable only when its Jordan canonic form (JCF) is diagonal [2].

We will explore this topic more in the next section.

Example 3.21. Indicate whether the matrix in Example 3.6 on page 73 is diagonal-
izable or not.

The eigenvalues of this matrix are: A; = 1 and A, = A3 = —1/4. Since some
eigenvalues are repeated, P might or might not be diagonalizable. Using Maple or
the MATLAB function JORDAN (P) , the Jordan canonic form for this matrix is:

1 0 0
J=10-1/4 1
0 0 -—-1/4
Since J is not diagonal, P is not diagonalizable. It is as simple as that! |

3.14 Finding s(n) Using the Jordan Canonic Form

We saw in Sect. 3.12 how easy it was to find s(n) by diagonalizing P. We would like
to follow the same lines of reasoning even when P cannot be diagonalized because
one or more of its eigenvalues are repeated.

3.14.1 Jordan Canonic Form (JCF)

Any m x m matrix P can be transformed through a similarity transformation into its
Jordan canonic form (JCF) [2]:

P=UJU"! (3.115)

Matrix U is a nonsingular matrix and J is a block-diagonal matrix:

JJ0O0 -0
0J,0 -0

J=|00J--0 (3.116)
000--J,

where the matrix J; is an m; x m; Jordan block or Jordan box matrix of the form
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A1 0--0

Al 0

00A -0
J=1. . .. . (3.117)

000---1

| 000 -2 |

such that the following equation holds
mi+my+--+m=m (3.118)
The similarity transformation performed in (3.115) above ensures that the

eigenvalues of the two matrices P and J are identical. The following example proves
this statement.

Example 3.22. Prove that if the Markov matrix P has Jordan canonic form matrix
J, then the eigenvalues of P are identical to those of J. Having proved that, find the

relation between the corresponding eigenvectors for both matrices.
We start first by proving that the characteristic equations for both matrices are
identical. The characteristic equation or characteristic polynomial of P is given by:
x(A) = det (P — AI) (3.119)

where det(A) is the determinant of the matrix A. The characteristic polynomial of J
is given by:

y(a) = det(J — al) (3.120)

where « is the assumed root or eigenvalue of J. But (3.115) indicates that J can be
expressed in terms of P and U as:

J=U"PU
Using this, we can express (3.120) as
y(e) = det (UT'PU — aU~'U)
We can factor out the matrices U™! and U to get:
y(a) = det[U™ (P —aI) U]
But the rules of determinants indicate that det(AB) = det(A)xdet(B). Thus we have

y(a) = det (U™") det(U) det (P —al)
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But the rules of determinants also indicate that det(A™') x det(A) = 1. Thus
we have:

y(a) = det (P — «al) (3.121)

This proves that the polynomial x(A) in (3.119) and the polynomial y(«) in (3.121)
are identical and the matrices P and J have the same roots or eigenvalues.

So far, we proved that the two matrices P and J have the same roots or
eigenvalues. Now we want to prove that they have related eigenvectors. Assume
x is an eigenvector of P associated with eigenvalue A

Px = Ax

but P = UJU™! and we can write the above equation as

UJU ™! x = Ax
Now we premultiply both sides of the equation by U~! to get
JU ' x=2U"'x

We write u = U~!x to express the above equation as
Ju=Aiu

Thus the relation between the eigenvectors of P and J is
u=U'x

This is why the transformation

P=UJU"'

is called a similarity transformation. In other words, a similarity transformation does
not change the eigenvalues and scales the eigenvectors. |

MATLAB offers the command [U,J] = JORDAN (P) to obtain the Jordan
canonic form as the following example shows.

Example 3.23. Obtain the Jordan canonic form for the transition matrix
0 0.250.25

P={0750 025
0.250.75 0.5
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Using MATLAB we are able to obtain the Jordan canonic form:

[U,J] = jordan (P)
U=

0.2000 0 0.8000
0.2800 0.4000 —0.2800
0.5200 —0.4000 —0.5200

J =
1.0000 O 0
0 —0.2500 1.0000
0 0 —0.2500 |

3.14.2 Properties of Jordan Canonic Form

We make the following observations on the properties of the Jordan canonic from:

1. The number of Jordan blocks equals the number of linearly independent
eigenvectors of P.

2. The elements in P are real but matrix U might have complex elements.

3. Matrix U can be written as

U=[U, 0, U]
where each matrix U; is a rectangular matrix of dimension m x m; such that
my+my+---+m=m

4. Rectangular matrix U; corresponds to the Jordan block J; and eigenvalue A;.
5. Each rectangular matrix U; can be decomposed into m; column vectors:

U =[w win W, (3.122)

where each column vector has m components.
6. The first column u;; is the eigenvector of matrix P and corresponds to the
eigenvalue A;:

Pu ;=24 u; (3.123)
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7. The other column vectors of U; satisfy the recursive formula:
Pu ;=24 u;+u; (3.124)

where 2 < j < m;.

8. There could be one or more blocks having the same eigenvalue. In other words,
we could have two Jordan blocks J; and J, such that both have the same
eigenvalue on their main diagonals.

9. The eigenvalue A; is said to have algebraic multiplicity of m;.

10. If all Jordan blocks are one-dimensional (i.e., all m; = 1), then the Jordan
matrix J becomes diagonal. In that case, matrix P is diagonalizable.

Example 3.24. Given the following Jordan matrix, identify the Jordan blocks and
find the eigenvalues and the number of linearly independent eigenvectors.

051 0 0 O
0 050 0 O
J=10 0 021 0
0 0 0 020
0 0 0 0 1

We have three Jordan blocks as follows:

051
J‘_[o 05}
021
Jz"[o 02}
J: =[1]
From the three Jordan blocks, we determine the eigenvalues as A; = 0.5, A, =
0.2, and A3 = 1. We also know that we must have three linearly independent
eigenvectors.

Using MATLAB, the eigenvectors of J are:

x;=[10000]
x,=[00100]
x3=[00001]

we notice that these eigenvectors are linearly independent because they are orthog-
onal to each other. |
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3.15 Properties of Matrix U

According to Theorem 3.3 on page 80, Theorem 3.4 on page 81, and Lemma 3.3 on
page 95, the columns of matrix U must satisfy the following properties:

1. The sum of the elements of the vector u corresponding to the eigenvalue A = 1
is arbitrary and could be taken as unity, i.e. o(u) = 1.

2. The sum of the elements of the vectors u belonging to Jordan blocks with
eigenvalue A # 1 must be zero, i.e. (1) = 0.

3. Matrix U~! has ones in its first row.

3.16 P”" Expressed in Jordan Canonic Form

We explained in the previous subsection that the transition matrix could be
expressed in terms of its Jordan canonic form which we repeat here for convenience:

P=UJU"! (3.125)

where U is a unitary matrix. Equation 3.125 results in a very simple expression for
P" in (3.38). To start, we can calculate P? as:

P> = (UJU ') x (UJU ) (3.126)
= UJU™! (3.127)

In general we have:
P =UJ'U! (3.128)

where J” has the same block structure as J:

J500 -0
0J:0---0

Jyy=[00J3---0 (3.129)
000--J

In the above equation, the Jordan block J! of dimension m; x m; is an upper
triangular Toeplitz matrix in the form:
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fio S b S5 il,1mi—l
0 S5 i Jio oo Jim—a
=10 0 fig fif = fims (3.130)
00 0 0 - f§
where f;7 is given by:
= (’;) A 0<j<m; (3.131)

We assumed the binomial coefficient vanishes whenever j > n.
In fact, the term f;7 equals the jth term in the binomial expansion:

mi—1

Mi+D"=) f (3.132)
j=0

3.17 Expressing P” in terms of its Eigenvalues

Equation (3.128) related P” to the nth power of its Jordan canonic form as:
P =UJ'U"! (3.133)
Thus we can express P” in the above equation in the form:
mp—1 mp—1 mor—1
P’ = Z fiiAy + Z fiAsy + Z Sy Az 4 (3.134)
j=0 j=0 j=0
The above equation can be represented as the double summation:
t mi—1
P’ = Z Z A (3.135)

i=1 j=0

where 7 is the number of Jordan blocks and it was assumed that f;7 is zero
whenever j > n.
The matrices A;; can be determined from the product:

A;=U0Y,; U! (3.136)
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where Y;; is the selection matrix which has zeros everywhere except for the
elements corresponding to the superdiagonal j in Jordan block i which contain
the values 1. For example, assume a 6 x 6 Markov matrix whose Jordan canonic
form is:

10 0 0 0 0
0021 0 0 0

J= 00 021 0 0
“ 100 0 020 O

00 0 0 051
(00 0 0 0 05|

This Jordan canonic form has three Jordan blocks (t = 3) and the selection matrix
Y, indicates that we need to access the first superdiagonal of the second Jordan
block:

000000 ]
001000
000100
000000
000000
(000000 |

Yy =

WWW  We have prepared the MATLAB function J _POWERS (n, P) that accepts
a Markov matrix (or any square matrix) and expresses the matrix P" in the form
given by (3.134).

Example 3.25. Consider the Markov matrix

0 02504
P=|0750 03
0.250.75 0.3

Use the Jordan canonic form technique to find the decomposition of P according
to (3.134).

We start by finding the Jordan canonic form for the given matrix to determine
whether P can be diagonalized or not. The Jordan decomposition produces

0.20 0.00 0.80
U=044 0.20-0.44
0.36 —0.20 —0.36
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1 0 0
J=10-0.25 1
0 0 —0.25
The given Markov matrix has two eigenvalues A; = 1 and A, = —0.25, which is

repeated twice. Since the Jordan matrix is not diagonal, we cannot diagonalize the
transition matrix and we need to use the Jordan decomposition techniques to find
P". Using the function J_POWERS we get

P’ = A + fipAxn + f5A%
where

fo = 0.0156
f5 = 0.187

and the corresponding matrices are given by

[0.20 0.20 0.20
Ay = | 0.440.44 0.44
| 0.36 0.36 0.36

0.80 —0.20 —0.20
Ay = | —0.44 0.56 —0.44
| —0.36 —0.36 0.64

0 0 0
Ay =| 0.2-005-005
| —02 005 0.05 -

3.18 Finding P” Using the Z-Transform

The z-transform technique has been proposed for finding expressions for P”. In
our opinion, this technique is not useful for the following reasons. Obtaining the
z-transform is very tedious since it involves finding the inverse of a matrix using
symbolic, not numerical, techniques. This is really tough for any matrix whose
dimension is above 2 x 2 even when symbolic arithmetic packages are used.
Furthermore, the technique will not offer any new insights that have not been already
covered in this chapter. For that reason, we delegate discussion of this topic to
Appendix C on page 551. The interested reader can gloss over the appendix and
compare it to the techniques developed in this chapter.
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3.19 Renaming the States

Sometimes we will need to rename or relabel the states of a Markov chain. When we
do that, the transition matrix will assume a simple form that helps in understanding

the behavior of the system.

Renaming or relabeling the states amounts to exchanging the rows and columns
of the transition matrix. For example, if we exchange states s, and s5, then rows 2
and 5 as well as columns 2 and 5 will be exchanged. We perform this rearranging
through the elementary exchange matrix E(2, 5) which exchanges states 2 and 5:

10000

00001
E2.5=[00100
00010
01000

In general, the exchange matrix E(Z, j) is similar to the identity matrix except that

rows i and j of the identity matrix are exchanged.

The exchange of states is achieved by pre and post multiplying the transition

matrix:

P =E(2,5) PE(Q2.5)

Assume, for example, that P is given by

1 2

0.1
0.3
0.2
0.3
0.1

a~

Il
N B~ W N =
co~oo

where the state indices are indicated around P for illustration.

Exchanging states 2 and 5 results in

P/

I
N A~ W N =
oo~ oo —
SO OO O = W

S oo —=o W

—-_— o oo W

4

0.1
0.2
0.2
0.4
0.1

4

0.1
0.1
0.2
0.4
0.2

S O O O =

5

0.1
0.1
0.2
0.1
0.3

3 Markov Chains
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3.20 Problems

Markov Chains

3.1. Consider Example 3.2 where the time step value is chosen as T = 8/A,.
Estimate the packet arrival probability a.

3.2. Three workstation clusters are connected to each other using switching hubs.
At steady state the following daily traffic share of each hub was observed. For hub
A, 80 % of its traffic is switched to its local cluster, 5 % of its traffic is switched to
hub B, and 15 % of its traffic is switched to hub C. For hub B, 90 % of its traffic is
switched to its local cluster, 5 % of its traffic is switched to hub A, and 5 % of its
traffic is switched to hub C. For hub C, 75 % of its traffic is switched to its local
cluster, 10 % of its traffic is switched to hub A, and 15 % of its traffic is switched
to hub B. Assume initially the total traffic is distributed among the three hubs as
follows 60 % in hub A, 30 % in hub B, and 10 % in hub C.

(a) Write the initial distribution vector for the total traffic.
(b) Construct the transition matrix for the Markov chain that describes the traffic
share of the three hubs.

3.3. In order to plan the volume of LAN traffic flow in a building, the system
administrator divided the building into three floors. Traffic volume trend indicated
the following hourly pattern. In the first floor, 60 % of traffic is local, 30 % of traffic
goes to second floor, 10 % of traffic goes to third floor. In the second floor, 30 % of
traffic is local, 40 % of traffic goes to first floor, 30 % of traffic goes to third floor.
In the third floor, 60 % of traffic is local, 30 % of traffic goes to first floor, 10 %
of traffic goes to second floor. Assuming initially traffic volume is distributed as
follows 10 % is in first floor, 40 % in second floor, and 50 % in third floor.

(a) Write the initial distribution vector for the total traffic.
(b) Construct the transition matrix for the Markov chain that describes the traffic
share of the three floors.

3.4. The transition matrix for a Markov chain is given by

p— 0.30.6
0.70.4

What does each entry represent?

3.5. A traffic data generator could be either idle or is generating data at five different
rates A; < A; < -+ < As. When idle, the source could equally likely remain idle
or it could start transmitting at the lowest rate A;. When in the highest rate state As,
the source could equally likely remain in that state or it could switch to the next
lower rate A4. When in the other states, the source is equally likely to remain in its
present state or it could start transmitting at the next lower or higher rate. Identify
the system states and write down the transition matrix.
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3.6. Repeat the above problem when transitions between the different states are
equally likely.

3.7. The market over reaction theory proposes that stocks with low return (called
“losers”) subsequently outperform stocks with high return (called “winners”) over
some observation period. The rest of the market share is stocks with medium return
(called “medium”). It was observed that winners split according to the following
ratios: 70 % become losers, 25 % become medium, and 5 % stay winners. Medium
stocks split according to the following ratios: 5 % become losers, 90 % stay medium,
and 5% become winners. Losers split according to the following ratios: 80 %
stay losers, 5 % become medium, and 15 % become winners. The Markov chain
representing the state of a stock is defined as follows. s; represents loser stock, s,
represents medium stock, and s3 represents winner stocks. Assuming an aggressive
manager’s portfolio is initially split among the stocks in the following percentages:
5 % losers, 70 % medium, and 25 % winners.

(a) Write the initial distribution vector for the portfolio.
(b) Construct the transition matrix for the Markov chain that describes the stock
share of the portfolio.

3.8. Consider Example 3.8; but this time the source is transmitting packets having
random lengths. Assume for simplicity that the transmitted packets can be one out
of four lengths selected at random with probability /; (i = 1, 2, 3, or 4).

(a) Identify the different states of the system.
(b) Draw the corresponding Markov state transition diagram.
(c) Write down the transition matrix.

Time Step Selection

3.9. Develop the proper packet arrival statistics for the case considered in
Sect. 3.3.1 when the line is sampled at a rate r while the packets arrive at an
average rate A,.

Markov Transition Matrices

3.10. Explain what is meant by a homogeneous Markov chain.

3.11. Assume P is a transition matrix. Prove that the unit row vector
u=[111--1]

is a left eigenvector of the matrix and its associated eigenvalue is A = 1.
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3.12. Prove (3.11) on page 72 which states that at any time step n, the sum of the
components of the distribution vector s(n) equals 1. Do your proof by proceeding
as follows:

(a) Start with an initial distribution vector s(0) of an arbitrary dimension m such
that Y7 | 5:(0) = 1.

(b) Prove that s(1) satisfies (3.11).

(c) Prove that s(2) also satisfies (3.11) and so on.

3.13. Prove the properties stated in Sect. 3.9.1 on page 87.
3.14. Prove Lemma 3.1 on page 87.

3.15. Given a column stochastic matrix P with an eigenvector x that corresponds to
the eigenvalue A = —1. Prove that o (x) = 0 in accordance with Theorem 3.4.

3.16. In problems 3.17-3.26 determine which of the given matrices are Markov
matrices and justify your answer. For the Markov matrices, determine the
eigenvalues, the corresponding eigenvectors, and the rank.

3.17.
0.40.4
0.6 0.3
3.18.
0.8 0.5
0.30.5
3.19.
—-0.10.8
—0.90.2
3.20.
1.2 0.8
—-0.20.2
3.21.
100
010

001
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3.22.
0404
0.6 0.3
3.23.

0.10.3
0.20.5
0.70.2

3.24.

010
100
001

3.25.

0.80.30.5
0.20.70.5

3.26.

0.70.30.50.3
0.10.10.20.3
0.10.30.10.3
0.10.30.20.3

3.27. Choose any column stochastic matrix from the matrices in the above prob-
lems, or choose one of your own, then reduce the value of one of its nonzero
elements slightly (keeping the matrix nonnegative of course). In that way, the
matrix will not be a column stochastic matrix any longer. Observe the change in
the maximum eigenvalue and the corresponding eigenvector.

3.28. Assume a source is sending packets on a wireless channel. The source could
be in one of three states: (1) Idle state. (2) Successful transmission state where
source is active and transmitted packet is received without errors. (3) Erroneous
transmission state where source is active and transmitted packet is received with
eITOorS.

Assume the probability the source switches from idle to active is a and the
probability that the source successfully transmits a packet is s. Draw a state
transition diagram indicating the transition probabilities between states and find the
transition matrix.
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Transient Behavior

3.29. For problem 3.2 how much share of the traffic will be maintained by each hub
after 1 day and after 2 days?

3.30. For problem 3.3 how much share of the traffic will be maintained by each
floor after 1 h and after 2h?

3.31. The transition matrix for a Markov chain is given by
0.8 0.1
P=
[ 0.20.9 ]
(a) Given that the system is in state 57, what is the probability the next state will be

) ?
(b) For the initial distribution vector s(0)

s(0) = [0.40.6]

find s(1).
3.32. The transition matrix for a Markov chain is given by
0.50.30.5

P=|(0 03025
0.50.40.25

(a) What does the entry p, represent?

(b) Given that the system is in state s;, what is the probability the next state will
be 5,7

(c) For the initial distribution vector s(0)

s(0) =[0.40.60]

find s(1).

3.33. Given a transition matrix

0.20.7
P= [0.8 0.3]

what is the probability of making a transition to state s; given that we are in state 5,?

3.34. Assume in a hypothetical city where yearly computer buying trends indicate
that 95 % of the persons who own a desktop computer will purchase a desktop
and the rest will switch to laptops. On the other hand, 60 % of laptop owners will
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continue to buy laptops and the rest will switch to desktops. At the beginning of the
year 65 % of the computer owners had desktops. What will be the percentages of
desktop and laptop owners after 1, 2, and 10 years?

3.35. Assume the state of a typical winter day in Cairo to be sunny, bright, or
peaceful. Observing the weather pattern reveals the following. When today is sunny,
tomorrow will be bright with probability 80 % and peaceful with probability 20 %.
When today is bright, tomorrow will be sunny with probability 60 %, bright with
probability 30 % and peaceful with probability 10 %. When today is peaceful,
tomorrow will be sunny with probability 30 %, bright with probability 40 % and
peaceful with probability 30 %. Assume state 1 represents a sunny day, state 2
represents a bright day, and state 3 represents a peaceful day.

(a) Construct a state transition matrix.

(b) What is the probability that it will be peaceful tomorrow given that it is sunny
today?

(c) What is the probability that it will be bright day after tomorrow given that it is
bright today?

3.36. Assume a gambler plays double or nothing game using a fair coin and starting
with one dollar.

(a) Draw a state diagram for the amount of money with the gambler and explain
how much money corresponds to each state.

(b) Derive the transition matrix.

(c) What is the probability that the gambler will have more than $500 after playing
the game for ten tosses of the coin?

3.37. Suppose you play the following game with a friend, both of you start with $2.
You flip a fair coin for $1 a flip. If the coin comes up heads, you win $1. If the coin
comes up tails, you lose $1. The game ends when either of you do not have anymore
money.

(a) Construct a Markov transition diagram and transition matrix for this game.
(b) Find the eigenvectors and eigenvalues for this matrix.
(c) What is the initial probability vector when you start the game?

3.38. Assume you are playing a truncated form of the snakes and ladder game using
a fair coin instead of the dice. The number of squares is assumed to be 10, to make
things simple, and each player starts at the first square (we label it square 1 and the
last square is labeled 10). Tails mean the player advances one square and heads mean
the player advances by two squares. To make the game interesting, some squares
have special transitions according to the following rules which indicate the address
on the next square upon the flip of the coin.
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Square Heads | Tails
2 4 2

3 6 1
5 7 2
8 9 4

Write the initial distribution vector and the transition matrix. What will be the
distribution vector be after five flips of the coin? What are the chances of a player
winning the game after ten flips?

3.39. Assume a particle is allowed to move on a one-dimensional grid and starts at
the middle. The probability of the particle moving to the right is p and to the left
is g, where p 4+ g = 1. Assume the size of the gird to extend from 1 to N, with
N assumed odd. Assume that at the end points of the grid, the particle is reflected
back with probability 1. Draw a Markov transition diagram and write down the
corresponding transition matrix. Assume p = 0.6 and ¢ = 0.4 and N = 7. Plot the
most probable position for the particle versus time.

3.40. A parrot breeder has birds of two colors blue and green. She finds that 60 %
of the males are blue if the father was blue and 80 % of the males are green if the
father was green. Write down the transition matrix for the parrot males. What is the
probability that a blue male has a blue male after two and three generations?

3.41. A virus can mutate between N different states (typically N = 20). In each
generation it either stays the same or mutates to another sate. Assume that the virus
is equally likely to change state to any of the N states. You can reduce the size of
the transition matrix P from N x N to 2x2 only by studying two sates: original
state and “others” state which contains all other mutations. Construct the transition
matrix describing the two-state Markov chain. What is the probability that in the nth
generation it will return to its original state?

3.42. Consider the stock portfolio problem 3.7.

(a) What will be the performance of the portfolio after 1, 2, and 10 years?

(b) Investigate the performance of the conservative portfolio that starts with the
following percentage distribution of stocks s(0) = [0.5 0.5 O]t over the same
period of time as in (a) above.

(c) Investigate the performance of a “very aggressive” portfolio that starts with
the following percentage distribution of stocks s(0) = [O 01 ]t over the same
period of time as in (a) above.

(d) Compare the long-term performance of the conservative and aggressive
portfolios.

3.43. A hidden Markov chain model can be used as a waveform generator. Your
task is to generate random waveforms using the following procedure.

1. Define a set of quantization levels O, Q», -+, O, for the signal values.
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2. Define an m x m Markov transition matrix for the system. Choose your own
transition probabilities for the matrix.

3. Choose an initial state vector from the set with only one nonzero entry chosen at
random from the set of quantization levels

s(0)=[0---010---0]

If that one element is in position k, then the corresponding initial output value is

Ok-

4. Evaluate the next state vector using the iteration
s@)=Ps@i—1)
5. Generate the cumulative function
J
Fi(i) =) s(i)
k=1

6. Generate a random variable x using the uniform distribution and estimate the
index j for the output Q ; that satisfies the inequality

Fi—1(i)) <x < F;(i)

7. Repeat4.

Finding P" by Expanding s(0)

3.44. In Sect. 3.11 we expressed s(0) in terms of the eigenvectors of the transition
matrix according to (3.41). Prove that if a pair of the eigenvectors is a complex
conjugate pair, then the corresponding coefficients of ¢ are also a complex conjugate
pair.

3.45. The given transition matrix

0.10.40.6
P=010402
0.80.20.2

has distinct eigenvalues. Express the initial state vector
s =[o10]

in terms of its eigenvectors then find the distribution vector for n = 4.
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3.46. The given transition matrix

0.10.40.40.1
0.10.40.20.1
0.10.10.20.7
0.70.1 0.2 0.1

has distinct, but complex, eigenvalues. Express the initial state vector
s =[0100]

in terms of its eigenvectors then find the distribution vector for n = 5.

3.47. The given transition matrix

0.10.40.10.8
0.10405 0
0.30.10.40.1
0.50.1 0.00.1

has distinct, but complex, eigenvalues. Express the initial state vector
s =[0100]

in terms of its eigenvectors then find the distribution vector for n = 5.

3.48. The given transition matrix

0.50.30.5
P={05030
0 0405

has distinct, but complex, eigenvalues. Express the initial state vector
s(0)=[010]

in terms of its eigenvectors then find the distribution vector forn = 7.

3.49. The given transition matrix

pP— 0.50.75
0.50.25
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has distinct, and real, eigenvalues. Express the initial state vector

s =[01]
in terms of its eigenvectors then find the distribution vector forn = 7.
3.50. The given transition matrix

0.90.75
P= [0.1 0.25}

has distinct, and real, eigenvalues. Express the initial state vector

s =[01]

in terms of its eigenvectors then find the distribution vector for n = 7.

Finding P" by Diagonalizing P

3.51. Prove Lemma 3.3 on page 95.
3.52. Prove Theorem 3.7 on page 98.

3.53. Prove Lemma 3.5 on page 97. Start with an initial distribution vector s(0) and
show that s(co) = A;s(0), then find the components of the equilibrium distribution
vector.

3.54. Prove Lemma 3.4 on page 97.

3.55. Repeat problem 3.45 by decomposing P” in terms of the matrices A,;.
3.56. Repeat problem 3.46 by decomposing P” in terms of the matrices A,;.
3.57. Repeat problem 3.47 by decomposing P” in terms of the matrices A,;.

3.58. Diagonalize the given transition matrix and write an expression for P” similar
to the one in (3.80)
l—a d
P =
|: a 1-d ]

3.59. Diagonalize the given transition matrix and write an expression for P” similar
to the one in (3.80)

pP— 0.50.75
0.50.25
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3.60. Diagonalize the given transition matrix and write an expression for P” similar
to the one in (3.80)
01
P =
[to]

Will this matrix ever settle down to a steady-state value?

3.61. Express the probability of requiring a block from the cache memory at any
time step n in Example 3.13 as a function of the eigenvalue powers.

3.62. Prove Lemma 3.4 on page 97 starting with (3.80) and using Theorem 3.5.

Jordan Canonic Form

3.63. Prove the observations in Sect. 3.15.

Finding P" Using Jordan Canonic Form

3.64. Assume an m x m Markov matrix P whose Jordan canonic form equivalent
matrix is J. Prove that if J is purely diagonal then:

(a) J has m Jordan blocks each of dimension 1 x 1.
(b) The number of linearly independent eigenvectors is m.
(c) The unitary matrix Y becomes the eigenvector matrix X.

3.65. Prove for the m x m Markov matrix P the following statements are equivalent:

(a) Rank of P is m.

(b) Dimension of nullspace of P is zero.

(c) Number of Jordan blocks is m.

(d) Each Jordan block has dimension 1 x 1.

(e) Number of linearly independent eigenvectors is m.
(f) Jis a diagonal matrix D.

(g) Y isitself the eigenvector matrix X.

3.66. Prove the statement in observation 6 on page 108 about the column vectors
of the similarity matrix V.

3.67. If a transition matrix has the eigenvalues 1, 0.4, and 0.3, what is the expected
structure of its Jordan canonic form?

3.68. If a transition matrix has the eigenvalues 1, 0.4 (repeated 3 times), and 0.3,
what is the expected structure of its Jordan canonic form?
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3.69. Consider the Jordan matrix

021 0 0
= 0 020 0
“ 10 0 020

0 0 0 03

Identify the Jordan blocks and find the eigenvalues and the number of linearly
independent eigenvectors.

3.70. Consider the Jordan matrix

2

Qo
[
coocoo
cooco~

0
1
0.2
0
0

cocoooco
o — o oo

3

Identify the Jordan blocks and find the eigenvalues and the number of linearly
independent eigenvectors.

3.71. Consider the Jordan matrix

020 0 0 O
0 021 0 O
J=10 0 020 O
0 0 0 031
0 0 0 0 03

Identify the Jordan blocks and find the eigenvalues and the number of linearly
independent eigenvectors.

3.72. Consider one Jordan block matrix of dimension 10 x 10

110---0
011---0
y=|001---0
TR
000 1

Use MATLAB, or any other mathematical package to see how the structure of
J develops for all values of i in the range 2 to 15. What are your observations?
Compare your results to (3.130).
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3.73. Obtain the Jordan canonic form for the transition matrix

0.1050.2
P={080.10.25
0.1 0.4 0.55

Compare the columns of the similarity matrix V with the eigenvectors of P.
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Chapter 4
Markov Chains at Equilibrium

4.1 Introduction

In this chapter we will study the long-term behavior of Markov chains. In other
words, we would like to know the distribution vector s(n) when n — oo. The state
of the system at equilibrium or steady state can then be used to obtain performance
parameters such as throughput, delay, loss probability, etc.

4.2 Markov Chains at Equilibrium

Assume a Markov chain in which the transition probabilities are not a function of
time ¢ or n, for the continuous-time or discrete-time cases, respectively. This defines
a homogeneous Markov chain. At steady state as n — oo the distribution vector s
settles down to a unique value and satisfies the equation

Ps=s 4.1)

This is because the distribution vector value does not vary from one time instant
to another at steady state. We immediately recognize that s in that case is an
eigenvector for P with corresponding eigenvalue A = 1. We say that the Markov
chain has reached its steady state when the above equation is satisfied.
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4.3 Significance of s at “‘Steady State”

Equation (4.1) indicates that if s is the present value of the distribution vector,
then after one time step the distribution vector will be s still. The system is now
in equilibrium or steady state. The reader should realize that we are talking about
probabilities here.

At steady state the system will not settle down to one particular state, as one
might suspect. Steady state means that the probability of being in any state will not
change with time. The probabilities, or components, of the vector s are the ones that
are in steady state. The components of the transition matrix P” will also reach their
steady state. The system is then said to be in steady state.

Assume a five-state system whose equilibrium or steady state distribution
vector 1S

S = [Sl S2 §3 84 S5 ]t (42)
=[020.1040.102] (4.3)

Which state would you think the system will be in at equilibrium? The answer is:
The system is in state s; with probability 20 %. Or the system is in state s, with
probability 10 %, and so on. However, we can say that at steady state the system is
most probably in state s3 since it has the highest probability value.

4.4 Finding Steady State Distribution Vector s

The main goal of this chapter is to find s for a given P. Knowledge of this vector
helps us find many performance measures for our system such as packet loss
probability, throughput, delay, etc. The technique we choose for finding s depends
on the size and structure of P.

Since the steady state distribution is independent of the initial distribution vector
s (0), we conclude therefore that P" approaches a special structure for large values
of n. In this case we find that the columns of P”, for large values of n, will all be
identical and equal to the steady state distribution vector s. We could see that in
Examples 3.11 on p. 84 and 3.20 on p. 102.

Example 4.1. Find the steady state distribution vector for the given transition
matrix by:

(a) Calculating higher powers for the matrix P”.
(b) Calculating the eigenvectors for the matrix.

0.20.40.5
P=|(080 05
0 060
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The given matrix is column stochastic and hence could describe a Markov chain.
Repeated multiplication shows that the entries for P” settle down to their stable
values.

[0.36 0.38 0.30
P> = 0.16 0.62 0.40
| 0.480 0.30

[10.3648 0.3438 0.3534 7]
P° = | 0.4259 0.3891 0.3970
| 0.2093 0.2671 0.2496 |

0.3535 0.3536 0.3536 ]
P! = | 0.4042 0.4039 0.4041
| 0.2424 0.2426 0.2423 |

70.3535 0.3535 0.3535 ]
P = | 0.4040 0.4040 0.4040
| 0.2424 0.2424 0.2424 |

The entries for P?° all reached their stable values. Since all the columns of P
are identical, the stable distribution vector is independent of the initial distribution
vector (could you prove that? It is rather simple). Furthermore, any column of P2
gives us the value of the equilibrium distribution vector.

The eigenvector corresponding to unity eigenvalue is found to be

s = [0.3535 0.4040 0.2424]'

Notice that the equilibrium distribution vector is identical to the columns of the
transition matrix P?°, [ |

4.5 Techniques for Finding s

We can use one of the following approaches for finding the steady state distribution
vector s. Some approaches are algebraic while the others rely on numerical
techniques.

1. Repeated multiplication of P to obtain P” for high values of n.
Eigenvector corresponding to eigenvalue A = 1 for P.

Difference equations.

Z-transform (generating functions).

Direct numerical techniques for solving a system of linear equations.
Iterative numerical techniques for solving a system of linear equations.
Iterative techniques for expressing the states of P in terms of other states.

Nk wbd
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Which technique is easier depends on the structure of P. Some rough guidelines
follow.

The repeated multiplication technique in 1 is prone to numerical roundoff
errors and one has to use repeated trials until the matrix entries stop changing for
increasing values of n.

The eigenvector technique (2) is used when P is expressed numerically and
its size is reasonable so that any mathematical package could easily find the
eigenvector. Some communication systems are described by a small 2 x 2 transition
matrix and it instructive to get a closed-form expression for s. We shall see this for
the case of packet generators.

The difference equations technique (3) is used when P is banded with few sub-
diagonals. Again, many communication systems have banded transition matrices.
We shall see many examples throughout this book about such systems.

The z-transform technique (4) is used when P is lower triangular or lower
Hessenberg such that each diagonal has identical elements. Again, some commu-
nication systems have this structure and we will discuss many of them throughout
this book.

The direct technique (5) is used when P is expressed numerically and P has no
particular structure. Furthermore the size of P is not too large such that rounding or
truncation noise is insignificant. Direct techniques produce results with accuracies
dependent on the machine precision and the number of calculations involved.

The iterative numerical technique (6) is used when P is expressed numerically
and P has no particular structure. The size of P has little effect on truncation noise
because iterative techniques produce results with accuracies that depend only on the
machine precision and independent of the number of calculations involved.

The iterative technique (7) for expressing the states of P in terms of other states
is illustrated in Sect. 9.3.2 on p. 322.

We illustrate these approaches in the following sections.

4.6 Finding s Using Eigenvector Approach

In this case we are interested in finding the eigenvector s which satisfies the
condition

Ps=s (4.4)

MATLAB and other mathematical packages such as Maple and Mathematica
have commands for finding that eigenvector. This technique is useful only if P
is expressed numerically. Nowadays, those mathematical packages can also do
symbolic computations and can produce an answer for s when P is expressed in
symbols. However symbolic computations demand that the size of P must be small
like 2 to 5 at the most to get any useful data.
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Having found a numeric or symbolic answer, we must normalize s to ensure that
D osi=1 (4.5)
i

Example 4.2. Find the steady state distribution vector for the following transition
matrix.

0.8 0.70.5
P=10.150203
0.050.1 0.2

We use MATLAB to find the eigenvectors and eigenvalues for P :

s = [0.9726 0.2153 .0877 | oA =1
s, = [0.8165 —0.4882 —0.4082 |' “Ay =02
s3 = [0.5345 —0.8018 0.2673 ] A3 =0

The steady state distribution vector s corresponds to s; and we have to normalize it.
We have

Z s; = 1.2756

Dividing s; by this value we get the steady state distribution vector as

s = [0.7625 0.1688 0.0687 |

4.7 Finding s Using Difference Equations

This technique for finding s is useful only when the state transition matrix P is
banded. Consider the Markov chain representing a simple discrete-time birth—death
process whose state transition diagram is shown in Fig. 4.1. For example, each state
might correspond to the number of packets in a buffer whose size grows by one
or decreases by one at each time step. The resulting state transition matrix P is
tridiagonal with each subdiagonal composed of identical elements.

We make the following assumptions for the Markov chain.

1. The state of the Markov chain corresponds to the number of packets in the buffer
or queue. s; is the probability that i packets are in the buffer.
2. The size of the buffer or queue is assumed unrestricted.
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Fig. 4.1 State transition ad ad ad ad
diagram for a discrete-time fo
birth—death Markov chain .0'0'0'6

bc f bce f bc f be

3. The probability of a packet arriving to the system is a at a particular time; and
the probability that a packet does not arrive is b = 1 — a.

4. The probability of a packet departing the system is ¢ at a particular time; and the
probability that a packet does not departisd = 1 —c.

5. When a packet arrives, it could be serviced at the same time step and it could
leave the queue, at that time step, with probability c.

From the transition diagram, we write the state transition matrix as

fobc 0 O---
ad f bc 0 ---

p=| Oad fbc-- (4.6)
0 Oad f -

where fy = ac+b and f = ac+bd. For example, starting with state 1, the system
goes to state 0 when a packet does not arrive and the packet that was in the buffer
departs. This is represented by the term bc at location (1, 2) of the matrix.

Using this matrix, or the transition diagram, we can arrive at difference equations
relating the equilibrium distribution vector components as follows. We start by
writing the equilibrium equation

Ps=s “4.7)

Equating corresponding elements on both sides of the equation, we get the following
equations.

ad so—bcs; =0 4.8)
ad so—gsy+bcs; =0 4.9)
ad si_1—gsi +bcsiy1 =0 i>0 4.10)

where ¢ = 1 — f and s; is the ith component of the state vector s which is equal
to the probability that the system is in state i. Appendix B gives techniques for
solving such difference equations. However, we show here a simple method based
on iterations. From Eqgs. (4.8)—(4.10) we can write the expressions
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and in general

ad\' .
s, = (—) So i>0 “4.11)
bc
It is more convenient to write s; in the form
si=p o i>0 (4.12)
where
d
p=2% 4 (4.13)
bc

In that sense p can be thought of as distribution index that dictates the magnitude of
the distribution vector components.
The complete solution is obtained from the above equations, plus the condition

D osi=1 (4.14)
i=0

Substituting the expressions for each s; in the above equation, we get

o0
soy p =1 (4.15)
i=0
Thus we obtain
o g (4.16)
1—p

from which we obtain the probability that the system is in state O as
so=1—0p 4.17)
and the components of the equilibrium distribution vector are given from (4.12) by

si=(1—p)p' i >0 (4.18)
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For the system to be stable we must have p < 1. If we are interested in situations
where p > 1, then we must deal with finite-sized systems where the highest state
could be sp and the system could exist in one of B + 1 states only. This situation
will be treated more fully in Sect. 7.6 on p. 241.

Example 4.3. Consider the transition matrix for the discrete-time birth—death
process that describes single arrival, single departure queue with the following
parameters a = 0.4 and ¢ = 0.6. Construct the transition matrix and find the
equilibrium distribution vector.

The transition matrix becomes

0.840.360 0

0.16 0.48 0.36 0 .
P=|0 0160480.36---

0 0 0.16048---

Using (4.13), the distribution index is equal to
p = 0.4444
From (4.17) we have
5o = 0.5556
and from (4.18) we have
si = (1—p)p' = (0.5556) x 0.4444'

The distribution vector at steady-state is

s = [0.5556 0.2469 0.1097 0.0488 0.0217 ---|' -

4.8 Finding s Using Z-Transform

This technique is useful to find the steady state distribution vector s only if the
state transition matrix P is lower Hessenberg such that elements on one diagonal
are mostly identical. This last restriction will result in difference equations with
constant coefficients for most of the elements of s. This type of transition matrix
occurs naturally in multiple arrival, single departure (M™/ M /1) queues. This queue
will be discussed in complete detail in Sect. 7.7 on p. 249.
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Let us consider a Markov chain where we can move from state j to any state i
where i > j — 1. This system corresponds to a buffer, or queue, whose size can
increase by more than one due to multiple packet arrivals at any time, but the size of
the queue can only decrease by one due to the presence of a single server. Assume
the probability of K arrivals at instant # is given by

p(K arrivals) = ag K=012,... (4.19)

for all time instants n = 0, 1,2,---. Assume that the probability that a packet is
able to leave the queue is ¢ and the probability that it is not able to leave the queue
isd =1-—c.

The condition for the stability of the system is

o
Z Kag <c (4.20)
K=0

which indicates that the average number of arrivals at a given time is less than the
average number of departures from the system. The state transition matrix will be
lower Hessenberg:

[0 b() 00 ---
ay bl b() 0 ---

P=|axbybi by 4.21)
as b3 b2 b1

where b; = a;c + a;_1d and we assumed
a; =0 wheni <0

Note that the sum of each column is unity, as required from the definition of a
Markov chain transition matrix.
At equilibrium we have

Ps=s 4.22)

The general expression for the equilibrium equations for the states is given by the
i-th term in the above equation

i+1
S; = a;So + Z bi—j+1 S; 4.23)
j=1
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This analysis is a modified and simpler version of the one given in [1]. Define the
z-transform for the state transition probabilities a; and b; as

AR =) a7 (4.24)
i =0

B(z) = sz‘ 7 (4.25)
i=0

One observation worth mentioning here for later use is that since all entries in the
transition matrix are positive, all the coefficients of A(z) and B(z) are positive.
We define the z-transform for the equilibrium distribution vector s as

S@=Y sz’ (4.26)
i=0

where s; are the components of the distribution vector. From (4.23) we can write

00 oo i+l
S(z) = so Zai [ Zzbi—jﬂ s 7 4.27)
i=0 i=0 j=1
0o 00
= SQA(Z) + Z Zb,’_j_H S Z_i (4.28)
i=0 j=1

we were able to change the upper limit for j, in the above equation, by assuming
b =0 wheni <0 (4.29)
Now we change the order of the summation
00 0
S@ =s54@)+ Y. Y bij18 7" (4.30)
j=1i=0

Making use of the assumption in (4.29), we can change the limits of the summation
fori

00 00
S(Z) = S()A(Z) + ZSJ‘ Z_j X Z b,'_j+1 Z_(i_j) (4.31)
=i

j=1 i 1
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We make use of the definition of S(z) to change the term in the square brackets

S(2) = s0A(2) + [S(z) — s0] ¥ Z bi—jy 7D (4.32)

i=j—1

We now change the summation symbol i by using the new variable m =i — j + 1

S(2) =A@ + [S@) —sol xz ) bwz "

m=0
=504(2) +2[S(2) — 0] B(2) (4.33)
We finally get
_ 7 'ARR) — B()
S(z) = s0 % T (4.34)

Below we show how we can obtain a numerical value for sy. Assuming for the
moment that sy is found, MATLAB allows us to find the inverse z-transform of
S(z) using the command RESIDUE (a,b) where a and b are the coefficients of
A(z) and B(z), respectively, in descending powers of z~!. The function RESIDUE
returns the column vectors r, p, and ¢ which give the residues, poles, and direct
terms, respectively.

The solution for s; is given by the expression

m
si=ci+y ri(p)i i>0 (4.35)
j=1
where m is the number of elements in r or p vectors. The examples below show

how this procedure is done.
When z = 1, the z-transforms for s, a;, and b; are

Sy =Y s5; =1 (4.36)
j=1

A1) =B(1) =1 4.37)
Thus we can put z = 1 in (4.34) and use L’Hospital’s rule to get

B 14+ B'(1)
14+ B/(1)—4'(1)

S0 (4.38)
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where
A1) = A _ (4.39)
dz z=1
Hayzégﬁ <0 (4.40)
dz |.—

Since all the coefficients of A(z) and B(z) are positive, all the coefficients of A" and
B’ are negative and the two numbers A’(1) and B’(1) are smaller than zero. As a
result of this observation, it is guaranteed that sy < 1 as expected for the probability
that the queue is empty.

We should note that the term —A’(1) represents the average number of packet
arrivals per time step when the queue is empty. Similarly, —B’(1) represents the
average number of packet arrivals per time step when the queue is not empty.

Having found a numerical value for sy, we use (4.34) to obtain the inverse
z-transform of S(z) and get expressions for the steady state distribution vector

s=[s0515 ] (4.41)
Example 4.4. Use the z-transform technique to find the equilibrium distribution
vector for the Markov chain whose transition matrix is

0.840360 0

0.16 0.48 0.36 0
P=|(0 0.160.480.36---

0 0 0.16048---

The transition probabilities are given by

ap = 0.84
a; = 0.16
ai =0 wheni > 1
by = 0.36
by = 0.48
by, = 0.16
bi =0 wheni > 2

We have the z-transforms of A(z) and B(z) as

A(z) = 0.84 + 0.1677"
B(z) = 0.36 4+ 0.48z 7! + 0.1677>
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Differentiation of the above two expressions gives
Az) = —0.16z2
B(z) = —0.48772—0.327°

1

Substituting z—' = 1 in the above expressions, we get

A1) = -0.16
B(1) = -0.8
Using (4.38) we get the probability that the queue is empty

B 1+ B'(1)
14 B/(1)— A(1)

S0 = 0.5556

From (4.34) we can write

0.2-0.277"
0.36 —0.52z71 +0.16z72

S(z) =

We can convert the polynomial expression for S(z) into a partial-fraction expansion
(residues) using the MATLAB command RESIDUE:

b= [0.2, -0.2]; a = [0.36, -0.52, 0.16];

[r,p,c] = residue (b, a)
r =
0.0000
0.2469
p =
1.0000
0.4444
c =
0.5556

where the column vectors r, p, and c¢ give the residues, poles, and direct terms,
respectively. Thus we have

so = ¢ = 0.5555

which confirms the value obtained earlier. For i > 1 we have

si=y.r ()"
;



142 4 Markov Chains at Equilibrium

Thus the distribution vector at steady-state is given by

s = [0.5556 0.2469 0.1097 0.0488 0.0217 ---]'

Note that this is the same distribution vector that was obtained for the same matrix
using the difference equations approach in Example 4.3.

As a check, we generated the first 50 components of s and ensured that their sum
equals unity. |
Example 4.5. Use the z-transform technique to find the equilibrium distribution
vector for the Markov chain whose transition matrix is

[10.5714 0.4082 0 0 0
0.2857 0.3673 0.4082 0 0
0.1429 0.1837 0.3673 0.4082 0
P=1p 0.0408 0.1837 0.3673 0.4082 - --
0 0 0.0408 0.1837 0.3673 ---

We have the z-transforms of A(z) and B(z) as

A(z) = 0.5714 + 02857z + 0.1429772
B(z) = 0.4082 + 0.3673z"" + 0.1837z7% + 0.04087°

Differentiation of the above two expressions gives
Az)) = —0.2857772 — 0.28577 2
B(z)) = —0.3673772 —0.3673z > — 0.12247*

1

Substituting 7' = 1 in the above expressions, we get

A1) = —0.5714
B(1) = —0.8571

Using (4.38) we get the probability that the queue is empty

1+ B'(1)

1+ B —Aa0) 0.2

5o

From (4.34) we can write

0.0816 — 0.04087~! — 0.0204z72 — 0.020473

S(z) =
() = 02082 = 0.6326: T £ 0.183722 + 0.040872




4.9 Finding s Using Forward- or Back-Substitution 143

We can convert the polynomial expression for S(z) into a partial-fraction expansion
(residues) using the MATLAB command residue:

b = [0.0816, -0.0408, -0.0204, -0.0204];
a = [0.4082, -0.6327, 0.1837, 0.0408];
[r,p,c] = residue (b, a)
r =

0.0000

0.2574

-0.0474
p =

1.0000

0.6941

-0.0474
Cc =

0.2000

where the column vectors r, p, and ¢ give the residues, poles, and direct terms,
respectively. Thus we have

So =¢C = 0.2

which confirms the value obtained earlier. For i > 1 we have
i—1
si=y ri (p))
J
Thus the distribution vector at steady state is given by

s = [0.2100 0.1855 0.1230 0.0860 0.0597 ---]'

As a check, we generated the first 50 components of s and ensured that their sum
equals unity. |

4.9 Finding s Using Forward- or Back-Substitution

This technique is useful when the transition matrix P a is a lower Hessenberg matrix
and the elements in each diagonal are not equal. In such matrices the elements
pij = Ofor j > i + 1. The following example shows a lower Hessenberg matrix of
order 6:



144 4 Markov Chains at Equilibrium

[ hyyhi, O 0 0 0
hat hop ho3 0 0 0
h3t h3y h3z hsy 0 0
hay hap haz hag has O
hsi hsy hs3 hsy hss hse

| 61 hea hes hes hes hes |

(4.42)

This matrix describes the M™/M/1 queue in which a maximum of m packets
may arrive as will be explained in Chap.7. At steady state the distribution vector
s satisfies

Ps=s 4.43)

and when P is lower Hessenberg we have

]’l]]h]z o 0 .. S1 N

hai hap hoz O -+ 52 52 4

h31 h3p haz hag -+ s3] 7|83 (4.44)
where we assumed our states are indexed as sy, 5, - --. Forward substitution starts

with estimating a value for s, then proceeding to find s, 53, and so on. The first row
gives

s1=hys1+hi s (4.45)

We assume an arbitrary value for s; = 1. Thus the above equation gives us a value
for s,

so=0=hy)/hi2 (4.46)
We remind the reader again that s; = 1 by assumption. The second row gives
§2 = hy1 81+ hoy 55+ ho3 53 (4.47)
Substituting the values we have so far for s; and s,, we get
53 = (1 —=hu1) (1 = ha) / (hia haz) — ha1/ a3 (4.48)

Continuing in this fashion, we can find all the states s; where i > 1.
To get the true value for the distribution vector s, we use the normalizing equation

D osi=1 (4.49)
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Let us assume that the sum of the components that we obtained for the vector s gives

isi =b (4.50)

i=1

then we must divide each value of s by b to get the true normalized vector that we
desire.

Backward substitution is similar to forward substitution but starts by assuming
a value for s, then we estimate s§,,—;, Sy—2, and so on. Obviously, backward
substitution applies only to finite matrices.

Example 4.6. Use forward substitution to find the equilibrium distribution vector s
for the Markov chain with transition matrix given by

[0402 0 0 0 0
0303502 0 0 0
020.2503502 0 0
0.10.150.250.350.2 0
0 0.050.150.250.350.2

[0 0 00502 0.450.8 |

Assume s; = 1. The distribution vector must satisfy the equation

[0402 0 0 0 0 1 1
0303502 0 0 O $5 55
o | 0202503502 0 0 ss|_ |3
0.10.150.250.350.2 0 S sS4
0 0.050.150.250.350.2 | | s5 §5
[0 0 00502 07 08 [ss| |s6]

The first row gives us a value for s, = 3. Continuing, with successive rows, we get

s3 = 8.25

54 = 22.0625
s5 = 58.6406
s = 156.0664

Summing the values of all the components gives us

6
D s; =249.0195 4.51)

j=1
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Thus the normalized distribution vector is

s = [0.0040 0.0120 0.0331 0.0886 0.2355 O.6267]t (4.52)

4.10 Finding s Using Direct Techniques

Direct techniques are useful when the transition matrix P has no special structure
but its size is small such that rounding errors' are below a specified maximum level.
In that case we start with the equilibrium equation

Ps=s (4.53)
where s is the unknown n-component distribution vector. This can be written as

P-Ts=0 (4.54)
As=0 (4.55)

which describes a homogeneous system of linear equations with A = P — 1. The
rank of A is n — 1 since the sum of the columns must be zero. Thus, there are many
possible solutions to the system and we need an extra equation to get a unique
solution.

The extra equation that is required is the normalizing condition

isi =1 (4.56)

i=1

where we assumed our states are indexed as sy, $2, * -+, §;;,. We can delete any row
matrix A in (4.55) and replace it with (4.56). Let us replace the last row with (4.56).
In that case we have the system of linear equations

air ap s A 81 0

a  axp -+ dy 52 0
= (4.57)

Am—1,1 An—12 *** Ap—1,m Sm—1 0

1 1 .- 1 S 1

"Rounding errors occur due to finite word length in computers. In floating point arithmetic,
rounding errors occur whenever addition or multiplication operations are performed. In fixed-point
arithmetic, rounding errors occur whenever multiplication or shift operations are performed.
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This gives us a system of linear equations whose solution is the desired steady state

distribution vector.

Example 4.7. Find the steady state distribution vector for the state transition matrix
04020

P=10.1050.6
0.50.30.4

First, we have to obtain matrix A = P —1

—06 02 0
A= 0.1 -0.5 0.6
0.5 03-0.6

Now we replace the last row in A with all ones to get

—-0.6 020
A= 0.1 -0.50.6
1 1 1

The system of linear equations we have to solve is

—-0.6 020 51 0
0.1 0506 ||s| =10
111 53 1
The solution for s is
s =[0.1579 0.4737 0.3684 ' -

4.11 Finding s Using Iterative Techniques

Iterative techniques are useful when the transition matrix P has no special structure
and its size is large such that direct techniques will produce too much rounding
errors. Iterative techniques obtain a solution to the system of linear equations
without arithmetic rounding noise. The accuracy of the results is limited only by
machine precision. We enumerate below three techniques for doing the iterations.
These techniques are explained in more detail in Appendix D.
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1. Successive overrelaxation
2. Jacobi iterations
3. Gauss—Seidel iterations

Basically the solution is obtained by first assuming a trial solution then this is
improved through successive iterations. Each iteration improves the guess solution
and an answer is obtained when successive iterations do not result in significant
changes in the answer.

4.12 Balance Equations

In steady state the probability of finding ourselves in state s; is given by
S; = Zp,‘j S (458)
J

The above equation is called the balance equation because it provides an expression
for each state of the queue at steady state.
From the definition of transition probability, we can write

> pii=1 (4.59)
J

which is another way of saying that the sum of all probabilities of leaving state i is
equal to one. From the above two equations we can write

iy Pii = Py s (4.60)
J J
Since s; is independent of the index of summation on the L.H.S., we can write

iji S Zpij S (4.61)
J J

Now the L.H.S. represents all the probabilities of flowing out of state i. The R.H.S.
represents all the probabilities of flowing into state i. The above equation describes
the flow balance for state i.

Thus we proved that in steady state, the probability of moving out of a state
equals the probability of moving into the same state. This conclusion will help
us derive the steady state distributions in addition to the other techniques we have
discussed above.
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4.13 Problems

Finding s Using Eigenvectors

4.1. Assume s is the eigenvector corresponding to unity eigenvalue for matrix P.
Prove that this vector cannot have a zero component in it if P does not have any zero
elements.

4.2. Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

0.450.20.5
P=|(05 0203
0.050.6 0.2

4.3. Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

0.290.46 0.4
P=|04 045033
0.31 0.09 0.27

4.4. Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

0.33 0.48 0.41
P=|03 0.01048
0.37 0.51 0.11

4.5. Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

0.330.51 0.12
P = 0.240.17 0.65
0.430.320.23

4.6. Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

0.03 0.19 0.07
P=10.440.170.53
0.53 0.64 0.4
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4.7. Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

0.56 0.05 0.2
P=|0.14 0.57 0.24
0.3 0.38 0.56

4.8. Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

0.08 0.19 0.07 0.05
0.04 0.17 0.26 0.03
0.18 0.17 0.27 0.12
0.70 0.47 0.40 0.8

4.9. Find the steady-state distribution vector corresponding to the unity eigenvalue
for the following transition matrix.

0.12 0.06 0.42 0.1 0.09
0.18 0.14 0.03 0.14 0.01
P = 0.230.330.17 0.14 0.32
0.26 0.32 0.38 0.43 0.18
0.210.150 0.1904

Finding s by Difference Equations

4.10. A queuing system is described by the following transition matrix.

08050 0 O
0203050 0
P=|0 0203050
0 0 020305
0 0 0 0205

(a) Find the steady-state distribution vector using the difference equations
approach.
(b) What is the probability that the queue is full?
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4.11. A queuing system is described by the following transition matrix.

03020 0 O
0.70.1020 0
P=|0 0701020
0 0 070102
0 0 0 0.70.8

(a) Find the steady-state distribution vector using the difference equations
approach.
(b) What is the probability that the queue is full?

4.12. A queuing system is described by the following transition matrix.

09010 0 O
0.1080.10 O
P=|0 01080.10
0 0 0.10.80.1
0 0 0 0.109

(a) Find the steady-state distribution vector using the difference equations
approach.
(b) What is the probability that the queue is full?

4.13. A queuing system is described by the following transition matrix.

0750250 0 O

02505 0250 O
P=|0 02505 0250

0 0 02505 0.25

0 0 0 025075

(a) Find the steady-state distribution vector using the difference equations
approach.
(b) What is the probability that the queue is full?

4.14. A queuing system is described by the following transition matrix.

06020 0 O
0204020 O
P=1020204020
0 02020402
0 0 0204038
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(a) Find the steady-state distribution vector using the difference equations

approach.
(b) What is the probability that the queue is full?

4.15. A queuing system is described by the following transition matrix.

0.80.50
020305
p=|0 0203
00 02

Find the steady-state distribution vector using the difference equations approach.
4.16. A queuing system is described by the following transition matrix.
0.80.70
0.20.10.7---

pP—|0 020.1-.
0 0 02

Find the steady-state distribution vector using the difference equations approach.
4.17. A queuing system is described by the following transition matrix.
0.90.20
0.10.70.2---

pP—|0 0107
0 0 0.1

Find the steady-state distribution vector using the difference equations approach.
4.18. A queuing system is described by the following transition matrix.
0.850.350
0.150.5 0.35---

pP—|0 01505
0 0 015

Find the steady-state distribution vector using the difference equations approach.
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4.19. A queuing system is described by the following transition matrix.

[0.7060 0

0201060 ---
0.10.20.10.6---
P=10 010201
0 0 0102---

Find the steady-state distribution vector using the difference equations approach.

Finding s Using Z-Transform

4.20. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

0.80.30

020503
p—|0 0205

0 0 02

4.21. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

0.950.45 0
0.050.5 0.45---
p=|0 00505
0 0 005

4.22. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

0.950.45 0
0.050.5 0.45---
p—|0 00505
0 0 005
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4.23. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

0.86 0.24 0

0.140.620.24 ---
P=(0 0.140.62--.-

0 0 0.14---

4.24. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

0.930.27 0
0.07 0.66 0.27 - --
p=|0 007066
0 0 007

4.25. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

[0.512 0.3584 0 0

0.384 0.4224 0.3584 0

0.096 0.1824 0.4224 0.3584 - - -
P — | 0.008 0.0344 0.1824 0.4224 -- -
0  0.0024 0.0344 0.1824 - -
0 0 0.0024 0.0344 - - -

4.26. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

[0.720 0.4374 0 0

0.243 0.4374 0.4374 0

0.027 0.1134 0.4374 0.4374 - - -
P — | 0.001 0.0114 0.1134 0.4374 - -
0  0.00040.0114 0.1134 ---
0 0 0.0004 0.0114 - - -




Reference

4.27. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

4.28. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

4.29. Given the following state transition matrix find the first ten components of
the equilibrium distribution vector using the z-transform approach.

Reference

1. M.E. Woodward, Communication and Computer Networks (IEEE Computer Society Press, Los

Alamitos, 1994)

[10.9127 0.3651 0 0
0.0847 0.5815 0.3651 0

0 0
0 0 0

[0.6561 0.5249 0 0
0.2916 0.3645 0.5249 0

0 0

[0.512
0.384
0.096
0.008

0.4096 0 0
0.4096 0.4096 0

0 0

0.0026 0.0519 0.5815 0.3651 ---
0 0.0016 0.0519 0.5815 ---
0.0016 0.0519 ---
0.0016 ---

0.0486 0.0972 0.3645 0.5249 - --
0.0036 0.0126 0.0972 0.3645 ---
0.0001 0.0008 0.0126 0.0972 ---
0.0008 0.0126 - - -

0.1536 0.4096 0.4096 - - -
0.0256 0.1536 0.4096 - - -
0.0001 0.0016 0.0256 0.1536 - --
0.0016 0.0256 - - -




Chapter 5
Reducible Markov Chains

5.1 Introduction

Reducible Markov chains describe systems that have particular states such that once
we visit one of those states, we cannot visit other states. An example of systems
that can be modeled by reducible Markov chains is games of chance where once
the gambler is broke, the game stops and the casino either kicks him out or gives
him some compensation (comp). The gambler moved from being in a state of play
to being in a comp state and the game stops there. Another example of reducible
Markov chains is studying the location of a fish swimming in the ocean. The fish
is free to swim at any location as dictated by the currents, food, or presence of
predators. Once the fish is caught in a net, it cannot escape and it has limited space
where it can swim.

Consider the transition diagram in Fig. 5.1a. Starting at any state, we are able
to reach any other state in the diagram directly, in one step, or indirectly, through
one or more intermediate states. Such a Markov chain is termed irreducible Markov
chain for reasons that will be explained shortly. For example, starting at s;, we can
directly reach s, and we can indirectly reach s3 through either of the intermediate
states s, or s5. We encounter irreducible Markov chains in systems that can operate
for long periods of time such as the state of the lineup at a bank, during business
hours. The number of customers lined up changes all the time between zero to
maximum. Another example is the state of buffer occupancy in a router or a switch.
The buffer occupancy changes between being completely empty to being completely
full depending on the arriving traffic pattern.

Consider now the transition diagram in Fig.5.1b. Starting from any state, we
might not be able to reach other states in the diagram, directly or indirectly. Such a
Markov chain is termed reducible Markov chain for reasons that will be explained
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Fig. 5.1 State transition
diagrams. (a) Irreducible
Markov chain. (b) Reducible
Markov chain

shortly. For example, if we start at s;, we can never reach any other state. If we
start at state s4, we can only reach state s5. If we start at state 53, we can reach all
other states. We encounter reducible Markov chains in systems that have terminal
conditions such as most games of chance like gambling. In that case the player
keeps on playing till she loses all her money or wins. In either cases, she leaves the
game. Another example is the game of snakes and ladders where the player keeps
on playing but cannot go back to the starting position. Ultimately the player reaches
the final square and could not go back again to the game.

5.2 Definition of Reducible Markov Chain

The traditional way to define a reducible Markov chain is as follows.

A Markov chain is irreducible if there is some integer k£ > 1 such that all
the elements of P* are nonzero.

What is the value of k? No one seems to know, the only advice is to keep on
multiplying till the conditions are satisfied or computation noise overwhelms us!

This chapter is dedicated to shed more light on this situation and introduce, for
the first time, a simple and rigorous technique for identifying a reducible Markov
chain. As a bonus, the states of the Markov chain will be identified as closed or
transient without much effort on our part.
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Fig. 5.2 The states of a
reducible Markov chain are
divided into two sets:
transient states and closed
states

Transient
States

Closed
States

5.3 Closed and Transient States

We defined an irreducible (or regular) Markov chain as one in which every state
is reachable from every other state either directly or indirectly. We also defined a
reducible Markov chain as one in which some states cannot reach other states.

Thus the states of a reducible Markov chain are divided into two sets: closed
states (C) and transient states (7"). Figure 5.2 shows the two sets of states and the
directions of transitions between the two sets of states.

When the system is in 7', it can make a transition to either 7 or C. However once
our system is in C, it can never make a transition to 7" again no matter how long we
iterate. In other words, the probability of making a transition from a closed state to
a transient state is exactly zero.

When C consists of only one state, then that state is called an absorbing state.
When s; is an absorbing state, we would have p;; = 1. Thus inspection of the
transition matrix quickly informs us of the presence of any absorbing states since
the diagonal element for that state will be 1.

5.4 Transition Matrix of Reducible Markov Chains

Through proper state assignment, the transition matrix P for a reducible Markov
chain could be partitioned into the canonic form

_[cA
P_[OT] 5.1)
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where

C = square column stochastic matrix
A = rectangular nonnegative matrix
T = square column substochastic matrix
Appendix D defines the meaning of nonnegative, and substochastic matrices.

The matrix C is a column stochastic matrix that can be studied separately from
the rest of the transition matrix P. In fact, the eigenvalues and eigenvectors of C will
be used to define the behavior of the Markov chain at equilibrium.

The states of the Markov chain are now partitioned into two mutually exclusive
subsets as shown below.

C = set of closed states belonging to matrix C
T = set of transient states belonging to matrix T

The following equation explicitly shows the partitioning of the states into two sets
of closed states C and transient states T

C T
cl[c A
P_T[O T} (5.2)

Example 5.1. The given transition matrix represents a reducible Markov chain.

S1 S2 53 S4

s1[08 0 0.1 0.1
s210 05 0 02
s3102 02 09 0

s LO 03 0 07

P:

where the states are indicated around P for illustration. Rearrange the rows and
columns to express the matrix in the canonic form in (5.1) or (5.2) and identify
the matrices C, A, and T. Verify the assertions that C is column stochastic, A is
nonnegative, and T is column substochastic.

After exploring a few possible transitions starting from any initial state, we see
that if we arrange the states in the order 1, 3, 2, 4, then the following state matrix is
obtained
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S1 53 52 S4

s1 [08 01 0 0.1
s3102 09 02 0

s210 0 05 02
s LO 0 03 07

We see that the matrix exhibits the reducible Markov chain structure and matrices
C,A,and T are

[0.80.1]
C__0.20.9_
A_[0 01

1020
T [0502

10.30.7 ]

The sum of each column of C is exactly 1, which indicates that it is column
stochastic. The sum of columns of T is less than 1, which indicates that it is column
substochastic.

The set of closed states is C = {1, 3} and the set of transient states is T =
{2, 4}.

Starting in state s, or s4 will ultimately take us to states s; and s3. Once we are
there, we cannot ever go back to state s, or s4 because we entered the closed states. l

Example 5.2. Consider the reducible Markov chain of the previous example.
Assume that the system was initially in state s3. Find the distribution vector at 20
time step intervals.

We do not have to rearrange the transition matrix to do this example. We have

0.80 0.10.1
0 050 02
0202090

0 030 07

The initial distribution vector is
t
s=[0010]
The distribution vector at 20 time step intervals is

5(20) = [0.3208 0.0206 0.6211 0.0375|'

5(40) = [0.3327 0.0011 0.6642 0.0020 |'
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5(60) = [ 0.3333 0.0001 0.6665 0.0001 |'

s(80) = [0.3333 0.0000 0.6667 0.0000 |'

We note that after 80 time steps, the probability of being in the transient states s, or
s4 is nil. The system will definitely be in the closed set composed of states s; and s3.
|

5.5 Composite Reducible Markov Chains

In the general case, the reducible Markov chain could be composed of two or more
sets of closed states. Figure 5.3 shows a reducible Markov chain with two sets of
closed states. If the system is in the transient states 7', it can move to either sets of
closed states C; or C,. However, if the system is in state C}, it cannot move to 7" or
C,. Similarly, if the system is in state C,, it cannot move to 7" or C|.

In that case, the canonic form for the transition matrix P for a reducible Markov
chain could be expanded into several subsets of non-communicating closed states

C, 0 A
0 0T
where
C; and C, = square column stochastic matrices
A, and A, = rectangular nonnegative matrices
T = square column substochastic matrix

Since the transition matrix contains two column stochastic matrices C; and C,, we
expect to get two eigenvalues A; = 1 and A, = 1 also. And we will be getting

Transient
States T

Closed
States
®)

Fig. 5.3 A reducible Markov
chain with two sets of closed
states
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two possible steady-state distributions based on the initial value of the distribution
vector s(0). More on that in Sects. 5.7 and 5.9.

The states of the Markov chain are now divided into three mutually exclusive sets
as shown below.

C; = set of closed states belonging to matrix C;
C, = set of closed states belonging to matrix C,
T = set of transient states belonging to matrix T

The following equation explicitly shows the partitioning of the states

¢ G T
C[C 0 A
P = C2 0 C2 A2 (54)
T L0 0 T

Notice from the structure of P in (5.4) that if we were in the first set of closed states
C}, then we cannot escape that set to visit C, or T'.

Similarly if we were in the second set of closed states C,, then we cannot escape
that set to visit C or T'.

On the other hand, if we were in the set of transient states 7', then we cannot stay
in that set since we will ultimately fall into C; or C;.

Example 5.3. You play a coin tossing game with a friend. The probability that one
player winning $1 is p, and the probability that he loses $1 is ¢ = 1 — p. Assume
the combined assets of both players is $6 and the game ends when one of the
players is broke. Define a Markov chain whose state s; means that you have $i
and construct the transition matrix. If the Markov chain is reducible, identify the
closed and transient states and rearrange the matrix to conform to the structure of
(5.3) or (5.4).

Since this is a gambling game, we suspect that we have a reducible Markov chain
with closed states where one player is the winner and the other is the loser.

A player could have $0, $1, ---, or $6. Therefore, the transition matrix is of
dimension 7 x 7 as shown

[1¢g00000]
0040000
0p0gqg000O0

P=|00p0g00 (5.5)
000p0g0
0000p00

(00000 p1 |
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Notice that states 0 and 6 are absorbing states since pog = pes = 1. The set T =
{sl, 82, 00, c5} is the set of transient states. We could rearrange our transition
matrix such that states sy and s¢ are adjacent as shown

S0 Se S S2 83 S4 S5

so[1 0 g 0 0 0 07

s¢ | 0 1 0 0 0 0 p
p= 0 0 0 g 0 0 O
5|00 p 0 g 0 0
s3]0 O 0O p 0 g O

s4 {0 O 0 0 p 0 ¢

s5 L0 0 0 0 0 p 0]

We have added spaces between the elements of the matrix to show the outline of
the component matrices C;, C,, A, Ay, and T. In that case each closed matrix
corresponds to a single absorbing state (so and s¢), while the transient states
correspond to a 5 X 5 matrix. |

5.6 Transient Analysis

We might want to know how a reducible Markov chain varies with time n since this
leads to useful results such as the probability of visiting a certain sate at any given
time value. In other words, we want to find s() from the expression

s(n) = P" s(0) (5.6)

Without loss of generality we assume the reducible transition matrix to be given in
the form

CA
P=[0T] (5.7)

After n time steps the transition matrix of a reducible Markov chain will still be
reducible and will have the form

0 Cn Yn
P’ = [ o T”} (5.8)
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where matrix Y” is given by
n—1
Y' =) CTTIAT (5.9)
s

We can always find C" and T” using the techniques discussed in Chap. 3 such as
diagonalization, finding the Jordan canonic form, or even repeated multiplications.

The stochastic matrix C” can be expressed in terms of its eigenvalues using (3.80)
on p. 96.

C'"=C +AMC+AC+ -+ (5.10)
where it was assumed that C; is the expansion matrix corresponding to the
eigenvalue A; = 1 and C is assumed to be of dimension m. x m..

Similarly, the substochastic matrix T” can be expressed in terms of its eigenval-
ues using (3.80) on p. 96.

T = /Vle +)LZT2+A§£T3 + - 5.11)

We should note here that all the magnitudes of the eigenvalues in the above equation

are less than unity.
Equation (5.9) can then be expressed in the form

m n—1
Y'=) CAY AT (5.12)
j=1 i=0

After some algebraic manipulations, we arrive at the form

m T\" T —1
n o _ n—lgv = R
Y _;Aj C; A [I (Aj) }(I Aj) (5.13)

This can be written in the form

Y'=CA(I-T)'[I-T"] +
MTICA (T 1T_II 1T”+
2 22 A5

1.\"! 1
AIC;A (I - —T) [I - —T”} + - (5.14)
S R A

If some of the eigenvalues of C are repeated, then the above formula has to be
modified as explained in Sect. 3.14 on p. 105. Problems 5.25 discusses this situation.
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Example 5.4. A reducible Markov chain has the transition matrix

0.50.30.10.30.1
0.50.70.20.10.3
P=]0 0 02020.1
0 0 01030.1
0 0 040104

Find the value of P?* and from that find the probability of making the following
transitions:

(a) From s; when n = 0 to s, when n = 20.
(b) From s, when n = 0 to s, when n = 20.
(c) From s4 when n = 0 to s; when n = 20.
(d) From s3 when n = 0 to s4, when n = 20.

The components of the transition matrix are
[0.50.3

C =

1 0.50.7 :|

[0.10.30.1
(020103

[0.20.20.1
T=|0.1030.1
| 0.40.10.4

We use the MATLAB function that we developed EIGPOWERS that we developed
to expand matrix C in terms of its eigenpowers and we have A; = 1 and A, = 0.2.
The corresponding matrices according to (3.80) are

c. — [03750.375
"7 10.6250.625

c, _ [ 06250375
27| —0.625 0375

We could now use (5.13) to find P?° but instead we use repeated multiplication here

0.375 0.375 0.375 0.375 0.375
0.625 0.625 0.625 0.625 0.625
PY= |0 0 0 0 0
o 0 0 0 0
o 0 0 0 0
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(a) P32 = 0.625
(b) P2 = 0.625
(¢) pia=0.375
(d) ps=0

167

Example 5.5. Find an expression for the transition matrix at times n = 4 and n =

20 for the reducible Markov chain characterized by the transition matrix

0.90.30.3030.2
0.10.70.20.10.3
P=|(0 0 02020.1
0 0 0.1030.1
0 0 020102

The components of the transition matrix are

[0.90.3
€= | 0.1 0.7]

[0.30.10.3
(020.103

[0.20.20.1
T=103030.1
| 0.20.10.4

C” is expressed in terms of its eigenvalues as
C" = AC + A5C,

where Ay = 1 and A, = 0.6 and

c. — [0.75075
"7 10.250.25

c, _ [ 025075
27 2025 075

At any time instant n the matrix Y” has the value

Y'=CAI-T)'[I-T"]+

1 \! 1
6T ICLA (T - — I-—T"
06)"C ( 0.6) [ 0.6" }
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Substituting n = 4, we get

0.7824 0.6528 0.6292 0.5564 0.6318
0.2176 0.3472 0.2947 0.3055 0.3061
P‘=10 0 0.0221 0.0400 0.0180
0 0 0.0220 0.0401 0.0180
0 0 0.0320 0.0580 0.0261

Substituting n = 20, we get

0.7500 0.7500 0.7500 0.7500 0.7500

0.2500 0.2500 0.2500 0.2500 0.2500
PP=|0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

We see that all the columns of P are identical which indicates that the steady state
distribution vector is independent of its initial value. |

5.7 Reducible Markov Chains at Steady-State

Assume we have a reducible Markov chain with transition matrix P that is expressed
in the canonic form

CA
P_[OT] (5.15)

According to (5.8), after n time steps the transition matrix will have the form

P = |:((:) ‘T(”i| (5.16)
where matrix Y” is given by
n—1
Y'=) CTIAT (5.17)
i=0

To be able to see how P” will be like when n — oo, we express the matrices C and
T in terms of their eigenvalues as in (5.10) and (5.11).
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When n — oo, matrix Y becomes
o0
Y°=C?A>' T (5.18)
=0

=CA(I-1)" (5.19)

where I is the unit matrix whose dimensions match that of T.
We used the following matrix identity to derive the above equation

I-n'=>"T (5.20)
i=0

Finally we can write the steady-state expression for the transition matrix of a
reducible Markov chain as

o0 __ Cch><>
P _[0 0] (5.21)

0 0 (5.22)

_ [cl CAI-T)" ]
The above matrix is column stochastic since it represents a transition matrix.
We can prove that the columns of the matrix C;A (I — T)~' are all identical and
equal to the columns of C;. This is left as an exercise (see Problem 5.16).
Since all the columns of P at steady-state are equal, all we have to do to find P>
is to find one column only of C;. The following examples show this.

Example 5.6. Find the steady-state transition matrix for the reducible Markov chain
characterized by the transition matrix

0.8040 0.30.1
0.20.60.20.20.3
P=(0 0 02020.1
0 0 0 030.1
0 0 060 04

The components of the transition matrix are

0.8 0.4
c= [0.2 0.6]

0 030.1
A= [0.2 0.2 0.3]
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0.20.20.1
T=]0 030.1
0.60 0.4
The steady-state value of C is
0.6667 0.6667
oo __ —
r=G= [0.3333 0.3333]

The matrix Y has the value

Y® = C A I-T)" = [0.6667 0.6667}

0.3333 0.3333
Thus the steady state value of P is

0.6667 0.6667 0.6667 0.6667 0.6667

0.3333 0.3333 0.3333 0.3333 0.3333
P* =10 0 0 0 0

0 0 0 0 0

0 0 0 0 0

The first thing we notice about the steady state value of the transition matrix is that
all columns are identical. This is exactly the same property for the transition matrix
of an irreducible Markov chain.

The second observation we can make about the transition matrix at steady-state
is that there is no possibility of moving to a transient state irrespective of the value
of the initial distribution vector.

The third observation we can make is that no matter what the initial distribution
vector was, we will always wind up in the same steady-state distribution. ]

Example 5.7. Find the steady-state transition matrix for the reducible Markov chain
characterized by the transition matrix

0.50.30.10.30.1
0.50.70.20.10.3
P=(0 0 1 020.1
0 0 0 030.1
0 0 0 0104

The components of the transition matrix are

0.50.3
€= [0.5 0.7]
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A — 0.10.30.1
0.20.10.3

0.20.20.1
T=1]01030.1
0.40.10.4

The steady-state value of C is
0.375 0.375
cC*=C =" ’
! [0.625 O.625i|

The matrix Y* has the value
- ~ 1 0.625 0.625 0.625

Thus the steady-state value of P is

0.375 0.375 0.375 0.375 0.375

0.625 0.625 0.625 0.625 0.625
P* =10 0 0 0 0

0 0 0 0 0

0 0 0 0 0

5.8 Reducible Composite Markov Chains at Steady-State

In this section we will study the steady state behavior of reducible composite

Markov chains. In the general case, the reducible Markov chain could be composed

of two or more closed states. Figure 5.3 shows a reducible Markov chain with two

sets of closed states. If the system is in the transient states 7', it can move to either

sets of closed states C; or C,. However, if the system is in state Cj, it cannot move

to T or C,. Similarly, if the system is in state C,, it cannot move to T or Cj.
Assume the transition matrix is given by the canonic form

C 0 A
P=|0 C A, (5.23)
0 0T
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C; and C, = square column stochastic matrices

A and A, = rectangular nonnegative matrices

T = square column substochastic matrix

It is easy to verify that the steady-state transition matrix for such a system will be

Cl0Y,
P*=1]0 C!Y,
0 0 O
where
C, =C®
Cf = ¢

Y, =CAI-T)"
Y, = C/A, I1-T)"

(5.24)

(5.25)
(5.26)
(5.27)
(5.28)

Essentially C] is the matrix that is associated with A = 1 in the expansion of C,
in terms of its eigenvalues. The same also applies to C which is the matrix that is
associated with A = 1 in the expansion of C, in terms of its eigenvalues.

We observe that each column of matrix Y, is a scaled copy of the columns of
C/1~ Also the sum of each column of Y; is lesser than one. We can make the same

observations about matrix Y5.

Example 5.8. The given transition matrix corresponds to a composite reducible

Markov chain.

0

0
0
0

0

0
0
0

05030 0 0.104]]
05070 0 030.1

0.20.70.1 0.2
0.80.30.10.1
0 0 0102
0 0 030

Find its eigenvalues and eigenvectors then find the steady-state distribution vector.
The components of the transition matrix are

C, = [0.5 0.3]

0.50.7
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[0.20.7]
C. = 10.80.3 ]
A, = [0:204
10.20.1 |
A, = [0102
[ 0.10.1 |
T [0102
1030

The steady-state value of C; is

o - [03750375
"7 10.6250.625

The matrix Y; has the value

_1_ [0.24550.2366
Y, =C/A I-T)"'=
1=CG AL d=D) [0.4092 0.3943}

The steady-state value of C; is

, _ [0.4667 0.4667
171 0.5333 0.5333

The matrix Y, has the value
_ 0.1611 0.1722
Y,=C/'A I-T)"' =
:=Cr A I=T) [0.18410.1968]

Thus the steady-state value of P is

[0.3750.375 0 0 0.2455 0.2366 |
0.625 0.625 0 0 0.4092 0.3943
0 0  0.46670.4667 0.1611 0.1722
0 0  0.53330.53330.1841 0.1968
0 0 0 0 0 0
0O 0 0 0 0 0

P> =

‘We notice that all columns are identical for the closed state matrices. However, the
columns for the matrices corresponding to the transient states (Y and Y») are not.
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The second observation we can make about the transition matrix at steady-state
is that there is no possibility of moving to a transient state irrespective of the value
of the initial distribution vector.

The third observation we can make is that no matter what the initial distribution
vector was, we will always wind up in the same steady-state distribution. ]

5.9 Identifying Reducible Markov Chains

We saw above that reducible Markov chains have a transition matrix that can be
expressed, by proper reordering of the states, into the canonic form

CA
P_[OT] (5.29)

This rearranged matrix allowed us to determine the closed and transient states. We
want to show in this section how to easily identify a reducible Markov chain and
how to find its closed and transient states without having to rearrange the matrix.
The following theorem helps us determine if our Markov chain is reducible or not
by observing the structure of its eigenvector corresponding the eigenvalue A = 1.

Theorem 5.1. Let P be the transition matrix of a Markov chain whose eigenvalue
A = 1 corresponds to an eigenvector s. Then this chain is reducible if and only if s
has one or more zero elements.

Proof. We start by assuming that the eigenvector s has k nonzero elements and
m — k zero elements where m is the number of rows and columns of P. Without loss
of generality we can write s in the canonic form

s::[g} (5.30)

where the vector a has k elements none of which is zero such that 0 < k < m.
Partition P into the form

AB
Pz[CD] (5.31)

where A is a square k X k matrix, D is a square (m — k) x (m — k) matrix, and
the other two matrices are rectangular with the proper dimensions. Since s is the

eigenvector corresponding to A = 1, we can write

Ps=s (5.32)
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[éllﬂ m B m (5.33)

Aa=a (5.34)

or

This equation results in

and
Ca=0 (5.35)

Having a = 0 is contrary to our assumptions. Since the above two equations are
valid for any nonzero value of a, we conclude that A is column stochastic and C = 0.
Thus the transition matrix reduces to the form

AB
P:[OIJ (5.36)

This is the general canonic form for a reducible Markov chain and this completes
one part of the proof.

Now let us assume that P corresponds to a reducible Markov chain. In that case
we can write P in the canonic form

CA
P:[OT] (5.37)

There are two cases to consider here: A = 0 and A # 0.
Casel: A =0
This is the case when we have

Co
P= [0 T] (5.38)

We have in reality two independent and non-communicating Markov systems.
Assume vector s is the distribution vector associated with the unity eigenvalue for

matrix C. In that case we can express s as

s=[ab] (5.39)

[gﬂ [pﬂ - [3] (5.40)

and s satisfies the equations
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We can write

Ca=a (541
Tbh=>b (5.42)

The first equation indicates that a is an eigenvector of C and it should be a valid
distribution vector. Since the sum of the components of a must be unity, the sum of
the components of b must be zero which is possible only when

b=0 (5.43)

This completes the second part of the proof for Case 1.

The same is true for the eigenvector corresponding to unity eigenvalue for matrix
T. In that case a will be null and b will be the valid distribution vector. Either way,
this completes the second part of the proof for Case 1.
Case2: A # 0
This is the case when we have

CA
P:[OT] (5.44)

In that case T is a substochastic matrix and T®® = 0. Now for large time values
(n — 00) we have

X
P® = 5.45
H (545
But we can also write
P®s=s (5.46)
We partition s into the form
a
= 5.47
s [b] (5.47)

Substitute the above equation into (5.46) to get

HIBEH

Xa=a (5.49)

And we get the two equations
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and
b=20 (5.50)
Thus the distribution vector corresponding to the eigenvalue A = 1 will have the
form
a
s = [ 0 i| (5.5
This completes the proof of the theorem for Case 2. O

Example 5.9. Prove that the given transition matrix corresponds to a reducible
Markov chain.

007010 O
030010 O
P=10101020 0
0.4 0 0.10.60.7
0.20.20.50.40.3

We calculate the eigenvalues and eigenvectors for the transition matrix. The
distribution vector associated with the eigenvalue A = 1 is

s=[0000.63640.3636]

Since we have zero elements, we conclude that we have a reducible Markov chain.
[ |

5.9.1 Determining Closed and Transient States

Now that we know how to recognize a reducible Markov chain, we need to know
how to recognize its closed and transient states. The following theorem provides the
answer.

Theorem 5.2. Let P be the transition matrix of a reducible Markov chain whose
eigenvalue A = 1 corresponds to an eigenvector s. The closed states of the chain
correspond to the nonzero elements of s and the transient states of the chain
correspond to the zero elements of s.

Proof. Since we are dealing with a reducible Markov chain, then without loss of
generality, the transition matrix can be arranged in the canonic form

CA
pP= [0 T] (5.52)
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where it is assumed that C is a k x k matrix and T is a (m — k) x (m — k) matrix.
The first k states correspond to closed states and the last m — k states correspond to
transient states.

Assume the eigenvector s is expressed in the form

a t
s = [b] (5.53)

where some of the elements of s are zero according to the previous Theorem 5.1.
Since this is the eigenvector corresponding to unity eigenvalue, we must have

54]12)-
And we get the two equations
Cat+Ab=a (5.55)
and
Tbhb=Db (5.56)

The above equation seems to indicate that T has an eigenvector b with unity
eigenvalue. However, this is a contradiction since T is column substochastic and
it cannot have a unity eigenvalue. The absolute values of all the eigenvalues of T
are less than unity [1]. For such a matrix we say that its spectral radius cannot equal
unity.! The above equation is only satisfied if
b=0 (5.57)
In that case (5.55) becomes
Ca=a (5.58)

Thus the eigenvector s will have the form

s = [a] (5.59)

where a is a k-distribution vector corresponding to unity eigenvalue of C.

!'Spectral radius equals the largest absolute value of the eigenvalues of a matrix.
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We can therefore associate the closed states with the nonzero components of s
and associate the transient states with the zero components of s.

So far we have proven that s has the form given in (5.59). We must prove now
that all the components of a are nonzero. This will allow us to state with certainty
that any zero component of s belongs solely to a transient state.

We prove this by proving that a contradiction results if a is assumed to have one
Or more zero components in it.

Assume that a has one or more zero components. We have proven however, that
a satisfies the equation

Ca=a (5.60)

where C is a nonreducible matrix. Applying Theorem 5.1, on p. 174, to the above
equation would indicate that C is reducible. This is a contradiction since C is a
nonreducible matrix.

Thus the k closed states correspond to the nonzero elements of s and the transient
states of the chain correspond to the zero elements of s. This proves the theorem.O

Example 5.10. Prove that the given transition matrix corresponds to a reducible
Markov chain.

[0.30.20.30.40.10.2]
001020 0 0
0 02010 0 0
0.40.10.20.10.20.3
0.10.10.20.20.3 0.4
0203 0 0.30.40.1 |

We calculate the eigenvalues and eigenvectors for the transition matrix. The
distribution vector associated with the eigenvalue A = 1 is

s =[0.25000.250.250.25]

Since we have zero elements, we conclude that we have a reducible Markov chain.
The zero elements identify the transient states and the nonzero elements identify the
closed states:

Closed states | Transient states
1,4,5,6 2,3
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5.10 Identifying Reducible Composite Matrices

We can generalize Theorem 5.2 as follows. Let P be the transition matrix of
a composite reducible Markov chain with u# mutually exclusive closed states
corresponding to the sets Cy, Cs, - -+ C,. The canonic form for the transition matrix
of such a system will be

C, 0 --- 0 A
0C ---0A,
P=| : - (5.61)
0 0 ---C,A,
0 0---0T
The eigenvalue A = 1 corresponds to the eigenvectors sy, Sy, - - -, S, such that
P ST = 8§ (562)
P S =8 (563)
Ps, =s, (5.64)

The eigenvectors also satisfy the equations

C1 St =8 (565)
C2 S =8 (566)
C.s.=s, (5.67)

We can in fact write each eigenvector s; in block form as

t

si=[a;00---00] (5.68)
s =[0a,0---00] (5.69)
5.=[000---2,0] (5.70)

where each a; is a nonzero vector whose dimension matches C; such that

C1 a; = a; (571)
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Ca=a (5.72)

C,a, =a, (5.73)

which means that a; is a distribution (sum of its components is unity).
Vector s; corresponds to the set of closed states C; and the transient states of the
chain correspond to the zero elements common to all the vectors s;.

Example 5.11. Assume a composite reducible transition matrix where the number
of closed states is u = 3 such that the partitioned matrices are:

[0.30.6]
C =
"7 10.704)
[0.50.17
C.= 10.50.9 ]
[0.20.3]
G = 10.80.7 ]
A, =010
[ 0.10.1
A, [0301
10.20.1
A= [0 02
10.10
[0.10.27
T =
10.10.3

Determine the eigenvectors corresponding to the eigenvalue A = 1 and identify the
closed and transient states with the elements of those eigenvectors.
The composite transition matrix P is given by

C

—_

1
2

3
0T

00

C, 0
P=

C

0
0

> > >

]
W

Let us find the eigenvalues and eigenvectors for P. The eigenvalues are

A =-03
A= 1
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As= 04
A= 1

As = —0.1
o= 1

A7 = 0.0268
As = 0.3732

The eigenvectors corresponding to unity eigenvalue (after normalization so their
sums is unity) are

s = [0.46150.5385000000]
s, =[000.16670.83330000]
s3=[0000027270.727300]

The sets of closed and transient states are as follows:

Set | States
| 1,2
C2 3, 4
C; | 5,6
T 7,8

5.11 Problems

Reducible Markov Chains

For Problems 5.1-5.8: (a) Determine whether the given Markov matrices have
absorbing or closed states; (b) Express such matrices in the form given in Eqs. (5.2)
or (5.3); (c) Identify the component matrices C, A, and T; and (d) Identify the closed
and transient states.

5.1.

030
P=
[071]



5.11

5.2

5.3.

54.

5.5.

5.6.

5.7.

5.8.

Problems

P=

P=

P=

183

0.500.2
03103
0.200.5

05050
03050
020 1

0.70.50.1
03050
0 0 .9

0200
0310
0501

010050
0210 0
030050
0400 1

10 00
00500.2
00210
00300.8

10 00
00.100.5
00210
00.700.5
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Composite Reducible Markov Chains

The transition matrices in Problems 5.9-5.12 represent composite reducible Markov
chains. Identify the sets of closed and transient states, find the eigenvalues and
eigenvectors for the matrices, and find the value of each matrix for large values
of n, say when n = 50.

5.9.
10 003
p_|00500
00.510.6
00 00.1
5.10.
070 0 0
p_|0109020
~ 10101080
010 0 1
5.11.
040 0 0 0
0205080 0
P=[0.105020 0
010 0 0.709
020 0 0.30.1
5.12.
020 0 020 0.6]]
0 030 030 0
p_|0 0 0202030
T 10 030 030 0
0 02080 070
08020 0 0 0.4
Transient Analysis

5.13. Check whether the given transitions matrix is reducible or irreducible.
Identify the closed and transient states and express the matrix in the form of
Egs. (5.2) or (5.3) and identify the component matrices C, A, and T.
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050 00 0.5

0 0500250
P=(0 0 10250
0 0500250

050 00.250.5

Find the value of P!° using (5.8) and (5.9) on p. 164, and verify your results using
repeated multiplications.

5.14. Assume the transition matrix P has the structure given in Egs. (5.1) or (5.2)
Prove that P" also possesses the same structure as the original matrix and prove also
that the component matrices C, A, and T have the same properties as the original
component matrices.

5.15. Find an expression for the transition matrix, using (5.13) at time n = 4 and
n = 20 for the reducible Markov chain characterized by the transition matrix

0.70.90.30.30.2
0.30.10.20.10.3
P=(0 0 02020
0 0 020203
0 0 010202

Find the value of P'” using (5.8) and verify your results using repeated multiplica-
tions.

Reducible Markov Chains at Steady-State

5.16. In Sect.5.7 it was asserted that the transition matrix for a reducible Markov
chain will have the form in (5.22) where all the columns of the matrix are identical.
Prove that assertion knowing that:

(a) All the columns of C; are all identical.

(b) Matrix C; is column stochastic.

(¢) Matrix Y is column stochastic.

(d) The columns of Y are identical to the columns of C;.

5.17. Find the steady-state transition matrix and distribution vector for the
reducible Markov chain characterized by the matrix

0.90.20.50.10.1
0.10.80.10.20.3
P=(0 0 02020.1
0 0 02020.1
0 0 0 0304
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5.18. Find the steady-state transition matrix and distribution vector for the
reducible Markov chain characterized by the matrix

0.90.20.50.1
0.10.80.10.2
0 0 0402
0 0 0 05

P=

5.19. Find the steady-state transition matrix and distribution vector for the
reducible Markov chain characterized by the matrix

0.10.20.50.10.1
0.50.70.10.20.3
P=|040.104020.1
0 0 0 0201
0 0 0 0304

5.20. Find the steady-state transition matrix and distribution vector for the
reducible Markov chain characterized by the matrix

10.20.20.10.1
00.30.10.20.3
P=100.1040.20.1
00.30.10.20.1
00.1020304

5.21. Find the steady state transition matrix and distribution vector for the reducible
Markov chain characterized by the matrix

100.20.10.1
010.10.20.3
P=(0004020.1
000.10.20.1
00020304

Note that this matrix has two absorbing states.
5.22. Consider the state transition matrix
0 1 0
P=|1-p0 ¢
p 01—g
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(a) Can this matrix represent a reducible Markov chain?
(b) Find the distribution vector at equilibrium.
(c) What values of p and g give s = 51 = 557

5.23. Consider a discrete-time Markov chain in which the transition probabilities
are given by

pii=q""'p

For a 3 x 3 case, what are the values of p and g to make this a reducible Markov
chain? What are the values of p and ¢ to make this an irreducible Markov chain and
find the steady-state distribution vector.

5.24. Consider the coin tossing Example 5.3 on p. 163. Derive the equilibrium
distribution vector and comment on it for the cases p < g, p = ¢, and p > q.

5.25. Rewrite (5.10) on p. 165 to take into account the fact that some of the
eigenvalues of C might be repeated using the results of Sect. 3.14 on p. 105.

Identification of Reducible Markov Chains

Use the results of Sect.5.9 to verify that the transition matrices in the following
problems correspond to reducible Markov chains and identify the closed and
transient states. Rearrange each matrix to the standard form in (5.2) or (5.3).

5.26.

0.30.10.4
P=| 0010
0.7 0.8 0.6

5.27.

04060
P=04030
0.20.11

5.28.

05030 O
01010 O
0.30.40.20.9
0.10.20.80.1
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5.29.

5.30.

5.31.

5.32.

5.33.

010 0 O

0.30.10.50.3
0.4030.40.2
0.20.60.10.5

02030 030
02040 0 O
030 050102
020 0 040
0.10.30.50.20.8

0.20.10.30.10.6
0 030 020
0.20.2040.10.3
0 010 040
0.60.30.30.20.1

08040 050
0 010 0 O
0 01080 0.3
02020 050
0 02020 0.7

010 0200 03]
0.20.50.100.40.1
010 0300 0.3
020 0.110 0

0.30.50.200.6 0.1

(010 0100 0.2 ]

5 Reducible Markov Chains
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Chapter 6
Periodic Markov Chains

6.1 Introduction

We saw in Chap.4 that a Markov chain settles down to steady-state distribution
vector s when n — oo. This is true for most transition matrices representing most
Markov chains we studied. There are other times however when the Markov chain
never settles down to an equilibrium distribution vector no matter how long we
iterate. So this chapter will illustrate periodic Markov chains whose distribution
vector s(n) repeats its values at regular intervals of time and never settles down to
an equilibrium value no matter how long we iterate.

Periodic Markov chains could be found in systems that show repetitive behavior
or task sequences. An intuitive example of a periodic Markov chain is the population
of wild salmon. In that fish species, we can divide the life cycle as eggs, hatchlings,
subadults, and adults. Once the adults reproduce, they die and the resulting eggs
hatch and repeat the cycle as shown in Fig.6.1. Fluctuations in the salmon
population can thus be modeled as a periodic Markov chain. It is interesting to note
that other fishes that lay eggs without dying can be modeled as nonperiodic Markov
chains.

Another classic example from nature where periodic Markov chains apply is
the predator—prey relation—where the population of deer, say, is related to the
population of wolves. When deer numbers are low, the wolf population is low. This
results in more infant deer survival rate and the deer population grows during the
next year. When this occurs, the wolves start having more puppies and the wolf
population also increases. However, the large number of wolves results in more
deer kills and the deer population diminishes. The reduced number of deer results
in wolf starvation and the number of wolves decreases also. This cycle repeats as
discussed in Problem 6.14.

Another example for periodic Markov chains in communications is data trans-
mission. In such a system data is packetized to be transmitted then the packets are
sent over a channel. The received packets are then analyzed for presence of errors.
Based on the number of bits in error the receiver is able to correct for the errors

© Springer International Publishing Switzerland 2015 191
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Fig. 6.1 Wild salmon can be
modeled as a periodic
Markov chain with the states
representing the number of
each phase of the fish life
cycle

Subadults

Hatchlings

Fig. 6.2 Data
communication over a noisy
channel can be modeled as a
periodic Markov chain with
the states representing the
state of each phase

Decision
Reception

Fig. 6.3 A periodic Markov

chain where states are divided

into groups and allowed

transitions occur only

between adjacent groups ’

or inform the transmitter to retransmit perhaps even with a higher level of data
redundancy. Figure 6.2 shows these states which are modeled as a periodic Markov
chain. In each transmission phase, there could be several states indicating the level
of decoding required or the number of random errors introduced.

Consider the abstract transition diagram shown in Fig. 6.3 where the states of the
Markov chain are divided into groups and allowed transitions occur only between
adjacent groups. The sets of states S| , Sy, --- are called periodic classes of the
Markov chain. A state in set S is allowed to make a transition to any other state in
set S, only. Thus the states in the set S cannot make a transition to any state in .S
or S3. A similar argument applies to the states in sets S, or S3.

6.2 Definition

A periodic Markov chain has the property that the number of single-step transitions
that must be made after leaving a state to return to that state is a multiple of some
integer y > 1 [1]. This definition implies that the distribution vector never settles
down to a fixed steady state value no matter how long we iterate.

Having mentioned that Markov chains could be periodic, we naturally want to
know how to recognize that the transition matrix P represents a periodic Markov
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chain. In addition, we will want also to know the period of such a system. The
theorems presented here will specify the properties of the transition matrix when
the Markov chain is periodic.

Of course, a Markov chain that is not periodic would be called nonperiodic. A
nonperiodic Markov chain does not show repetitive behavior as time progresses and
its distribution vector settles down to a fixed steady state value.

6.3 Types of Periodic Markov Chains

There are two types of periodic Markov chains

1. Strongly periodic Markov chains where the distribution vector repeats its values
with a period y > 1. We will find out in the next section that the state transition
matrix satisfies the relation

P’ =1 6.1)

In other words, in a strongly periodic Markov chain the probability of returning
to the starting state after y time steps is unity for all states of the system.

2. Weakly periodic Markov chains, where the system shows periodic behavior only
when n — oo. In other words, the distribution vector repeats its values with a
period y > 1 only when n — oo. We will find out in Sect. 6.12 that the state
transition matrix satisfies the relation

P’ £1 (6.2)

In other words, in a weakly periodic Markov chain the probability of returning
to the starting state after y time steps is less than unity for some or all states of
the system.

In both cases there is no equilibrium distribution vector. Strongly periodic Markov
chains are not encountered in practice since they are a special case of the more
widely encountered weakly periodic Markov chains. We start this chapter, however,
with the strongly periodic Markov chains since they are easier to study and they will
pave the ground for studying the weakly periodic type.

6.4 The Transition Matrix

Let us start by making general observations on the transition matrix of a strongly
periodic Markov chain. Assume that somehow we have a strongly periodic Markov
chain with period y. Then the probability of making a transition from state j to
state i at time instant n will repeat its value at instant n 4 y. This is true for all valid
values of i and j:
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pij(n +y) = pij(n) (6.3)

It is remarkable that this equation is valid for all valid values of 1, i, and j. But then
again, this is what a strongly periodic Markov chain does.

We can apply the above equation to the components of the distribution vector and
write

s(n 4+ y) =s(n) (6.4)

But the two distributions vectors are also related to each other through the transition
matrix

s(n +y) =P s(n) (6.5)
From the above two equations we can write
PY s(n) = s(n) (6.6)
or
®P"=1) s(n)=0 (6.7)

and this equation is valid for all values of n and s(n). The solution to the above
equations is

P’ =1 (6.8)

where I is the unit matrix and y > 1. The case when y = 1 is trivial which indicates
that P is the identity matrix.

Example 6.1. The following transition matrix corresponds to a strongly periodic
Markov chain. Estimate the period of the chain.

*= V)

We start by performing repeated multiplications to see when PX = I for some
value of k. We are lucky since

PP=1

The period of this Markov chain is y = 2. The given transition matrix is also known
as a circulant matrix where the adjacent rows or columns advance by one position.
The matrix P could also be considered a permutation matrix or exchange matrix
where rows 1 and 2 are exchanged after premultiplying any 2 X m matrix [2]. W
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6.5 The Transition Matrix Determinant

This section provides one specification on the transition matrix of a strongly periodic
Markov chain, Theorem 6.1 indicates the allowed values of the determinant of the
transition matrix.

Theorem 6.1. Let P be the transition matrix of a strongly periodic Markov chain.
The determinant of P will be given by [3]

A==l

Proof. We start by assuming that the Markov chain is strongly periodic. We have
from the assumptions

P’ =1 (6.9)
Equate the determinants of both sides
AY =1 (6.10)

where A is the determinant of P and A? is the determinant of P”.
Taking the y-root of the above equation we find that A is the y-root of unity:

) k
A=exp|j2mr x — k=1,2,---,y (6.11)
14

But A must be real since the components of P are all real. Thus the only possible
values for A are 1. This proves the theorem.

a

From the properties of the determinant of the transition matrix of a strongly

periodic Markov chain, we conclude that P must have the following equivalent
properties

1. The m x m transition matrix P of a strongly periodic Markov chain is full rank,
i.e. rank(P) = m.

2. The rows and columns of the transition matrix P of a strongly periodic Markov
chain are linearly independent.

3. A < 1 can never be an eigenvalue for the transition matrix P of a strongly
periodic Markov chain. Any value of A < 1 would produce a determinant that
is not equal to £1.

4. All eigenvalues must obey the relation |A| = 1. This will be proven in the next
section.
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6.6 Transition Matrix Diagonalization

The following theorem indicates that the transition matrix of a strongly periodic
Markov chain can be diagonalized. This fact leads naturally to great simplification
in the study of strongly periodic Markov chains.

Theorem 6.2. Let P be the transition matrix of a strongly periodic Markov chain
with period y > 1. Then P is diagonalizable.

Proof. If P is diagonalizable, then its Jordan canonic form will turn into a diagonal
matrix. Let us assume that P is not diagonalizable. In that case P is similar to its
Jordan canonic form

P=UJU"! (6.12)
Since P is periodic, we must have
PP=UyU "' =1 (6.13)
Multiplying both sides of the equation from the right by U we get
UJ) =1U =UI (6.14)
This implies that we must have
J=1 (6.15)

The above equation states that the matrix J” is equal to the diagonal matrix I
However, J can never be diagonal if it is not already so. Thus the above equation is
only possible when the Jordan canonic form J is diagonal which happens when P is
diagonalizable and the theorem is proved.

a

Example 6.2. Verify that the following transition matrix is diagonalizable.

0010
1000
0100
0001

We start by finding the Jordan canonic form for the matrix P.

[V,J] = jordan(P)

vV =
0.3333 0.3333 0.3333 0
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0.3333 -0.1667 - 0.2887] -0.1667 + 0.2887] 0
0.3333 -0.1667 + 0.2887] -0.1667 - 0.2887] 0
1.0000 0 0 1.0000
J =

1.0000 0 0 0

0 -0.5000 + 0.8660] 0 0

0 0 -0.5000 - 0.8660] 0

0 0 0 1.0000

Thus we see that P is diagonalizable. We also see that all the eigenvalues all lie
on the unit circle.

where j = +/—1. |

The following theorem will add one more specification on the transition matrix
of a strongly periodic Markov chain.

Theorem 6.3. Let P be the transition matrix of a strongly periodic Markov chain.
Then P is unitary (orthogonal)

Proof. Assume X is an eigenvector of the transition matrix P, then we can write
Px=A1x (6.16)

Transposing and taking the complex conjugate of both sides of the above equation,
we get

x pi = ) * xH (6.17)
where the symbol H indicates complex conjugate of the transposed matrix or vector
and A* is the complex conjugate of A.

Now multiply the corresponding sides of Eqs. (6.16) and (6.17) to get

TP Px=2%1x"x (6.18)
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or
TP Px =2 |x (6.19)

where
x> = XP X1+ X3 X0+ 4 X X (6.20)

We know from Theorem 6.5 that the eigenvalues of P lie on the unit circle, and (6.19)
can be written as

7Y x=|x (6.21)

where Y = P# P. The above equation can be written as
m m m
Z Z X'y x; = Z x5 x; (6.22)
i=1 j=1 i=1
This equation can only be satisfied for arbitrary values of the eigenvectors when
m
Z xi* Yij Xj = )Cl~* Xi (623)
Jj=1

Similarly, this equation can only be satisfied for arbitrary values of the eigenvectors
when

yij = 8 (6.24)

where §;; is the Kronecker delta which satisfies the equation

1 when i = j
8;; = 6.25
/ 0 when i # j (6.25)
We conclude, therefore, that
Pip=1 (6.26)

Thus P is a unitary matrix whose inverse equals the complex conjugate of its
transpose. Since P is real, the unitary matrix is usually called orthogonal matrix.
This proves the theorem.

a
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6.7 Transition Matrix Eigenvalues

So far we have discovered several restrictions on the transition matrix of a strongly
periodic Markov chain. The following theorem specifies the allowed magnitudes of
the eigenvalues for strongly periodic Markov chains.

Theorem 6.4. Let P be the transition matrix of a Markov chain. The Markov chain
will be strongly periodic if and only if the eigenvalues of P all lie on the unit circle.

Proof. Let us start by assuming that the Markov chain is strongly periodic.
According to Theorem 6.1 the determinant of the transition matrix is

A==l

The determinant can be written as the product of all the eigenvalues of the transition
matrix

A=]]n 6.27)

but we know that A = &1 and we can write

HAi = +1 (6.28)

Since P is column stochastic, then all its eigenvalues must satisfy the inequality
Ail <1 (6.29)
The above inequality together with (6.28) implies that
il =1 (6.30)

This proves one side of the theorem.
Let us now assume that all the eigenvalues of P all lie on the unit circle. In that
case we can write the eigenvalues as
i 21
A = exp (J—) 6.31)
Vi

Therefore we can write the transition matrix determinant as

A= HA[ (6.32)
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Raising the above equation to some power y, we get

AV = H,XIV (6.33)
i
Thus we have
N:exp[jzn (l+l+~~+l)} (6.34)
Y1 V2 Vm

If y is chosen to satisfy the equation
y = lem(y;) (6.35)
where [cm is the least common multiple, then we can write
AV =1 (6.36)
According to Theorem 6.1 this proves that the Markov chain is strongly periodic.

This proves the other part of the theorem.

O

Figure 6.4 shows the locations of the eigenvalues of P in the complex plane. We
see that all the eigenvalues of a strongly periodic Markov chain lie on the unit circle
as indicated by the x’s. Since P is column stochastic, the eigenvalue A = 1 must
be present, as is also indicated. The figure also indicates that complex eigenvalues
appear in complex conjugate pairs.

Complex plane

Im
Unit circle % ]
/ Re
y
Fig. 6.4 The eigenvalues of a \
strongly periodic Markov X
chain all lie on the unit circle S—
in the complex plane
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Example 6.3. Consider the following transition matrix

0010
1000
0100
0001

Verify that this matrix is strongly periodic and find its period.
The determinant is de?(P) = 1 and the rank of the transition matrix is rank(P) = 4.
Performing repeated multiplications we find that

PP=1

The period of the given transition matrix is y = 3.
The eigenvalues of the transition matrix are

N
|
o
>
o]

e N
~.
)
B
X

>
(98]
|
o
>
o]
—
.
)
)
X

N— — N N

WlW WlW WIN W~

Thus all the eigenvalues lie on the unit circle. |

The following theorem defines the allowed eigenvalues for the transition matrix
of a strongly periodic Markov chain.

Theorem 6.5. Let P be the transition matrix of an irreducible strongly periodic
Markov chain with period y > 1. Then the eigenvalues of P are the y-roots of
unity, i.e.

A,-:exp(j2nxl—) P=1,2, .y (6.37)
y

where j = «/—1.

Proof. Since we proved in Theorem 6.2 that P is diagonalizable, then it is similar to
a diagonal matrix D such that

P = XDX! (6.38)
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where X is the matrix whose columns are the eigenvectors of P and D is the diagonal
matrix whose diagonal elements are the eigenvalues of P.
Since P is periodic, we must have

P’ =XD'X"' =1 (6.39)
Multiplying both sides from the right by X, we get
XD’ = IX = XI (6.40)
Therefore we must have
D’ =1 (6.41)
This implies that any diagonal element d of D” must obey the relation

d’ =1 (6.42)

1

Therefore, the eigenvalues of P are the y-root of unity and are given by the equation
di :exp(jZﬂxl—) i=12-m (6.43)
14

This proves the theorem. Note that the theorem does not preclude repeated
eigenvalues having the same value as long as P can be diagonalized.

a

Example 6.4. The given transition matrix corresponds to a strongly periodic
Markov chain. Confirm the conclusions of Theorems 6.1, 6.2, and 6.5

0100
0010
0001
1000

The period of the given matrix is 4 since P* = I. Using MATLAB, we find that
the determinant of P is A = —1. The eigenvalues of P are

. 4
A= 1=exp(]27rxz)

. ; 1
A= =exp(]27rx4—1)
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. . 3
A3 =—j =exp ]anz

2
Ay = —1 =exp (j27r X Z)

The matrix can be diagonalized as

P = XDX!
where
0.5 —-049-0.11j —-0.49+0.11j —-0.5
X — —-0.5 0.11 —0.405 0.11 4+0.49;, —-0.5
B 0.5 0.40 4+ 0.115 0.49-0.11j —-0.5
-0.5 —0.11+0.40j -0.11-049; -0.5
and
—10 00
D= 0 j 0. 0
00—j0
0001
We see that Theorems 6.1, 6.2, and 6.5 are verified. |

6.8 Transition Matrix Elements

The following theorem imposes surprising restrictions on the values of the elements
of the transition matrix for a strongly periodic Markov chain.

Theorem 6.6. Let P be the m x m transition matrix of a Markov chain. The Markov
chain is strongly periodic if and only if the elements of P are all zeros except for m
elements that have 1’s arranged such that each column and each row contains only
a single 1 entry in a unique location.

Proof. We begin by assuming that the transition matrix P corresponds to a strongly
periodic Markov chain. We proved that P must be unitary which implies that the
rows and columns are orthonormal. This implies that no two rows shall have nonzero
elements at the same location since all elements are nonnegative. Similarly, no two
columns shall have nonzero elements at the same location. This is only possible if
all rows and columns are zero except for a single element at a unique location in
each row or column.
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Further, since we are dealing with a Markov matrix, these nonzero elements
should be equal to 1. This completes the first part of the proof.

Now let us assume that the transition matrix P is all zeros except for m elements
that have 1’s arranged such that each column and each row of P contains only a
single 1 entry in a unique location.

The unique arrangement of 1’s implies that P is column stochastic. The unique
arrangement of 1’s also implies that the determinant of P must be 41. Thus the
product of the eigenvalues of P is given by

[]r ==+1 (6.44)

Since P was proven to be column stochastic, we have

Al <1 (6.45)
The above equation together with (6.44) implies that

Al =1 (6.46)
Thus we proved that the eigenvalues of P all lie on the unit circle of the complex
plane when P has a unique distribution of 1’s among its rows and columns.

According to Theorem 6.4, this implies that the Markov chain is strongly periodic.
This proves the theorem.

a

6.9 Canonic Form for P

A strongly periodic Markov chain will have its m X m transition matrix expressed
in the canonic form

[000---001]
100---000
010---000
P=1tooe s (6.47)
000---000
000---100
[ 000---010 |

This matrix can be obtained by proper ordering of the states and will have a period
y = m which can be easily proven (see Problem 6.5). This matrix is also known as
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a circulant matrix since multiplying any matrix by this matrix will shift the rows or
columns by one location.

6.10 Transition Diagram

Based on the above theorems specifying the structure of a strongly periodic Markov
chain, we find that the transition diagram for a strongly periodic Markov chain of
period y = 3 is as shown in Fig. 6.5. We see that each set of periodic classes consists
of one state only and the number of states equals the period of the Markov chain.

Example 6.5. Prove that the given transition matrix is periodic and determine the
period.

01000
00001
P=(10000
00100
00010

The given matrix is column stochastic, full rank and all its rows and columns
are all zeros except for five elements that contain 1 at unique locations in each row
and column. Thus P is periodic according to Theorem 6.6. From MATLAB the
eigenvalues of P are given by

2
A= 1/£144° = exp (j27r X §)

3
Ay = 14— 144° = exp (j27t x g)

Fig. 6.5 Transition diagram
for a strongly periodic
Markov chain with period g

y=3
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)
)

5
1£0° = exp (j27t X g)

Ay = 1472° = exp (j27t X

| =

Ay = 1£-72° = exp (j27t X

Wl &

As

Thus the period is y = 5. As a verification, MATLAB assures us that P> = 1. W

6.11 Composite Strongly Periodic Markov Chains

In general a composite strongly periodic Markov chain can be expressed, through
proper ordering of states, in the canonic form

Ci00-- 0 0
0C,0-- 0 0
0 0C;-- 0 0
P=| . . . (6.48)
000 .---Cpy 0
000 0 Cj

where C; is an m; x m; circulant matrix whose period is y; = m;. The period of the
composite Markov chain is given by the equation

y =lem(y1, v2, =+, i) (6.49)

Figure 6.6 shows the periodic classes of a composite strongly periodic Markov
chain. The states are divided into non-communicating sets of periodic classes.

Example 6.6. Find the period of the following periodic transition matrix

(00010007
1000000
0100000
P=|0010000
0000001
0000100
0000010 |
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Fig. 6.6 Transition diagram e

for a composite strongly
periodic Markov chain. The
states are divided into
non-communicating sets of
periodic classes

We identify C; as a circulant 4 x 4 matrix with period y; = 4 and we identify C,
as a circulant 3 x 3 matrix with period y, = 3. Indeed, the eigenvalues of P are

Al

2
1£180° = exp (j27t X 4_1)

A

I
—_
N
o
S

[e]

I
o
>

S
~

N
S
X

N
W
Il
—_
N
|
©
=
o
Il
10
>
o
<
)
g
X

As

I
—_
N
P
)
S
[e}
I
[¢]
>
o
~
o
S
X

A= 1£0° = exp(janj—t

Ag

I
—
N
|
_
[\®]
S
o
I
(¢}
>
S
.
o
S
X
I

3
A= 1£0° = exp(jang)

We expect P to have a period equal to the least common multiple of 3 and 4 which
is 12. Indeed this is verified by MATLAB where the smallest power k for which
PK =Tis when k = 12. [
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Example 6.7. Find the period of the following transition matrix for a strongly
periodic Markov chain and express P in the form given by (6.48).

0001000007
000000010
100000000
001000000

P={000000100
000000001
000001000
010000000

1000010000 _

By inspection, we know that the given matrix is periodic since the elements are
either 1 or zero and each row or column has a single 1 at a unique location.
Indeed, the eigenvalues of P all lie on the unit circle

A= 1£120° = exp(jan

2
Ay =1£—-120° = exp| j2m X 3

3
Az = 1£0° = exp j27tX§

)
(7203)

(7203)

(723)

v = op(1201)
(7203)

(2r3)

Ay = 140°= exp

1

/\5: E
. 2

Ae = 1£180° = exp ]27TXZ
. 1

A= 1£90° = exp ]anz
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Using MATLAB we find that P* # I, P> # I, and P* # 1. However the LCM of 2,
3,and4is 12and P12 =L
We notice that there are three eigenvalues equal to 1 mainly:

Azs=As =g =1

The eigenvectors corresponding to these eigenvalues give three sets of periodic
classes:

C ={l1, 3, 4
C, =1{2, 8
C;=1{5 67,9}

Each set is identified by the nonzero components of the corresponding eigenvector.

To group each set of periodic states together, we exchange states 2 and 4 so that
C, will be contain the new states 1, 3, and 4. This is done using the elementary
exchange matrix

71000000007
000100000
001000000
010000000

E(2.,4)=[000010000
000001000
000000100
000000010

(000000001 |

The new matrix will be obtained with the operations

P =E(2,4) x P xE(2,4)
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Next, we group the states of C, together by exchanging states 5 and 8 so that C,
will contain the new states 2 and 8 and C5 will contain the states 5, 6, 7, and 9. The
rearranged matrix will be

0100000007
001000000
100000000
000010000
P=[000100000
000000001
000001000
000000100
1000000010

From the structure of the matrix, we see that the periods of the three diagonal
circulant matrices are y; = 4, y» = 2, and y3 = 3. The period of the matrix is
y = lem(4,2,3) = 12. As a verification, we find that the first time P” becomes the
identity matrix is when n = 12. ||

6.12 Weakly Periodic Markov Chains

Periodic behavior can sometimes be observed in Markov chains even when some of
the eigenvalues of P lie on the unit circle while other eigenvalues lie inside the unit
circle. In spite of that, periodic behavior is observed because the structure of the
Matrix is closely related to the canonic form for a periodic Markov chain in (6.47)
on page 204. To generalize the structure of a circulant matrix we replace each “1”
with a block matrix and obtain the canonic form for a weakly periodic Markov
chain:

0 00- 0 0 W, |
W, 00--- 0 0 0
0 W,0--- 0 0 0
P=1 @ S (6.50)
0 00--- 0 0 0
0 00---W,., 0 0
L 0 00 0 Wy 0 |

where the block-diagonal matrices are square zero matrices and the nonzero
matrices W; could be rectangular but the sum of each of their columns is unity
since P is column stochastic. Such a matrix will exhibit periodic behavior with a
period y = h where / is the number of W blocks.



6.12 Weakly Periodic Markov Chains 211

As an example consider the following transition matrix

0 0 010605
0 0 090405

P=|05020 0 0 E[w sz} 6.51)
01040 0 0 !
04040 0 0

We know this matrix does not correspond to a strongly periodic Markov chain
because it is not a 0O—1 matrix whose elements are 0 or 1. However, let us look
at the eigenvalues of this matrix:

A =—1
A= 1
Ay = 0.3873)
Ay = —0.3873)
As= 0

Some of the eigenvalues are inside the unit circle and represent decaying modes,
but two eigenvalues lie on the unit circle. It is this extra eigenvalue on the unit circle
that is responsible for the periodic behavior.

Let us now see the long-term behavior of the matrix. When n > 25 the
contribution of the decaying modes will be < 107'° so let us see how P" behaves
when n > 25.

[0 0 040404 ]
0 0 0.60606
P>® =10320320 0 0 (6.52)
0.280.280 0 0
0400400 0 0

0280280 0 0
0.400.400 0 0
P°=10 0 040404 (6.53)
0 0 060606
0320320 0 0

0 0 040404 ]
0 0 0.60606
P’ =10320320 0 0 (6.54)
0.280.280 0 0
0400400 0 0

We see that P” repeats its structure every two iterations.
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We can make several observations about this transition matrix:

—_

. The transition matrix displays periodic behavior for large value of .

2. P" has a block structure that does not disappear. The blocks just move vertically
at different places after each iteration.

3. The columns of each block in P" are identical and the distribution vector will
be independent of its initial value.

4. The period of P" is 2.

Let us see now the distribution vector values for n = 25, 26, and 27. The initial
value of the distribution vector is not important and we arbitrarily pick

s(0) =[0.20.20.20.20.2] (6.55)
We get
s(25) = P¥s(0) = [0.240 0.360 0.128 0.112 0.160 | (6.56)
s(26) = [0.160 0.240 0.192 0.168 0.240]’ (6.57)
s(27) = [0.240 0.360 0.128 0.112 0.160 (6.58)

We notice that the distribution vector repeats its value every two iterations.
Specifically we see that s(25) = s(27) and so on.

Example 6.8. The following transition matrix can be expressed in the form
of (6.50). Find this form and estimate the period of the Markov chain.

0 0501000 ]
0 0305000
0 0204000
090 0000
010 0000
| 000 0111]

Our strategy for rearranging the states is to make the diagonal zero matrices
appear in ascending order. The following ordering of states gives the desired result:

162534
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The rearranged matrix will be

)

0.
0.

0 0111]
10 0000
90 0000
0 0204000
0 0305000
0 0501000

The structure of the matrix is now seen to be in the form

where

W,

W,

W;

The eigenvalues for P are

A

0 0 W,
W, 0 0
0 W, 0

o1
109
0.204

0.30.5
0.50.1

[111]

1
exp (j27r X 5)

2
Ay = exp (j271x 5)

3
Az =1 =exp(j2n><§)

As=0
As =0
Ae =0

The period of P is 3. As a verification, we chose

s(0) =[0.20.20.202020]

213
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and found the following distribution vectors

t

s(3) = [0.2000 0.0400 0.3600 0.1520 0.1920 0.0560 ]

s(4) = [0.4000 0.0200 0.1800 0.1520 0.1920 0.0560 |'
s(5) = [0.4000 0.0400 0.3600 0.0760 0.0960 0.0280
s(6) = [0.2000 0.0400 0.3600 0.1520 0.1920 0.0560 |'
s(7) = [0.4000 0.0200 0.1800 0.1520 0.1920 0.0560

We see that the distribution vector repeats itself over a period of three iterations.
Specifically we see that s(3) = s(6) and s(4) = s(7) and so on. |

Example 6.9. The following transition matrix has the form of (6.50). Estimate the
period of the Markov chain and study the distribution vector after the transients have
decayed.

The eigenvalues for this matrix are

1
AL =exp (j27t X 5)

) 2
Ay = exp (]2]'[ X 5)
) 3

Az =1 =exp(]2n X 5)

) 1
As = 0.438exp (]271 X 5)

) 2
As = 0.438exp (]271 X 5)

. 3
A¢ = 0.438 exp (]271 X 5)

The period of this matrix is y = 3.
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The transients would die away after about 30 iterations since the value of the
eigenvalues within the unit circle would be

230 =0.438% = 1.879 x 107!

The value of P" at high values for n would start to approach an equilibrium pattern

[ 0.5873 0.5873 0 0 0 1]
0.4127 0.4127 0 0 0 0
. 0 0 0.7762  0.7762 0 0
0 0 0.2238 0.2238 0 0
0 0 0 0 0.5895 0.5895
0 0 0 0 0.4105  0.4105 |

where n > 30. As a verification, we chose
s(0) =[0.20.20.20.20.20]

and found the following distribution vectors

t

s(30) = [0.2349 0.1651 0.3105 0.0895 0.1179 0.0821

]
]t

s(31) = [0.1175 0.0825 0.3105 0.0895 0.2358 0.1642
5(32) = [0.2349 0.1651 0.1552 0.0448 0.2358 0.1642 |'
s(33) = [0.2349 0.1651 0.3105 0.0895 0.1179 0.0821 |'

s(34) = [0.1175 0.0825 0.3105 0.0895 0.2358 o.1642]’

We see that the distribution vector repeats itself with a period of three iterations.
Specifically we see that s(30) = s(33) and s(31) = s(34) and so on. |

Example 6.10. Assume a wireless packet transmission system that employs an
adaptive forward error correction scheme. There are two levels of data forward error
correction that could be employed depending on the number of errors detected in the
received packet as shown in Fig. 6.7. The upper row of states corresponds to lower
error levels and the lower row of states corresponds to higher error levels.

For example, if the coder is in state s; and errors occur during transmission, we
move to state s4. If the receiver is able to correct the errors, we move to state sg.
We then conclude that the error correction coding is adequate and we move to state
51 for the next transmission. If the errors cannot be corrected, we conclude that the
error coding is not adequate and we move from state sq to s, at the next transmission.

Write down the transition matrix and show that it corresponds to a weakly
periodic Markov chain.
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Fig. 6.7 An adaptive forward AFEC Transmission Reception/
error correction scheme that . coding . in channel . adaptation
uses two levels of encoding
depending on the number of
errors introduced in the
channel

tos;

tos;

tos,

tos;

to Sy

tos,

The sets of periodic states are identified at the bottom of the figure. We can see
that we have three sets of states such that the states in each set make transitions
only to the next set. This seems to imply a weakly periodic Markov chain. As a
verification, we construct the transition matrix and see its structure.

0 0 0 0 pispie
0 0 0 0 ps px
P— P31 P32 0 0 0 0
P41 Pa 0 0 0 0
0 0 psspssa 0 O
| 0 0 pezpes 0 O |

We see that the transition matrix has the same structure as a weakly periodic Markov
chain with period y = 3. The exact values of the transition probabilities will depend
on the details of the system being investigated. |

6.13 Reducible Periodic Markov Chains

A reducible periodic Markov chain is one in which the transition matrix can be
partitioned into the canonic form

P= (6.59)
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Fig. 6.8 The eigenvalues of a

Complex plane

Im
reducible periodic Markov
chain. Some of the o X
. . . Unit circle
eigenvalues lie on the unit

. . X
circle in the complex plane \
and some lie inside the unit

. X X—
circle
X

N

where

C = square column stochastic periodic matrix
A = rectangular nonnegative matrix
T = square column substochastic matrix
Some of the eigenvalues of the transition matrix will lie on the unit circle. The other

eigenvalues will be inside the unit circle as shown in Fig. 6.8. Note that the periodic
matrix C could be strongly periodic or could be weakly periodic.

Example 6.11. Check to see if the given matrix below corresponds to a reducible
periodic Markov chain.

1 2 3 4 5

110 01 0 0.1 1
2({0 03 0 02 O
P=3|1 02 0 02 0
410 03 0 04 0
5/]0 01 1 01 O

where the state indices are indicated around P for illustration. Rearrange the rows
and columns to express the matrix in the form of (6.59) and identify the matrices C,
A, and T. Verify the assertions that C is column stochastic, A is nonnegative, and T
is column substochastic.

The best way to study a Markov chain is to explore its eigenvalues.

1
exp (jZn X 5)

. 2
Ay = exp (]2yr>< 5)

A
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3
A3 = exp (j271 X 3)

Ay = 0.6exp (j2m7)
As = 0.1exp (j2n)

Thus we see we have two decaying modes but three other eigenvalues lie on the unit
circle. We classify this system as a weakly periodic Markov chain.
The vector corresponding to the unity eigenvalue is given by

x = [0.5774 0 0.5774 0 0.5774]'

The zero components of the eigenvector indicate that we have transient states,
namely s, and s4. The fact that we have only one eigenvalue that is unity indicates
that we have one set only of closed states: C = 1, 3, , 5. Based on that we further
classify this system as reducible weakly periodic Markov chain.

We cluster states 1, 3 and 5 together since they correspond to the closed states
and cluster states 2 and 4 together since they correspond to the transient states. We
perform this rearranging through the elementary exchange matrix E(2,5) which
exchanges states 2 and 5:

10000
00001
E2,5=[00100
00010
01000

The exchange of states is achieved by pre and post multiplying the transition matrix:
P =E(2,5 PE(2,5)

This results in

1 53 4 2
1{0 I 0 0.1 0.1
510 0 1 0.1 0.1
P=3[10 0 02 02
410 0 0 04 0.1
2(0 0 0 02 03

We see that the transition matrix represents a reducible periodic Markov chain and
matrices C, A, and T are
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T010
c=1(001
(100

0.10.1
A=10.10.1
[ 0.20.2

T [0501
10203

The sum of each column of C is exactly 1, which indicates that it is column
stochastic and strongly periodic. The sum of columns of T is less than 1, which
indicates that it is column substochastic.

The set of closed periodic states is C = {1, 3, 5} and the set of transient states
isT ={2,4}

Starting in state 2 or 4, we will ultimately go to states 1, 3, or 5. Once we are
there, we cannot ever go back to state 2 or 4 because we entered the closed periodic
states. |

6.14 Transient Analysis

After n time steps the transition matrix of a reducible Markov chain will still be
reducible and will have the form

Ci’l YVl
P = 6.60
[ o } (6.60)
where matrix Y” is given by
n—1
Y'=) CIAT 6.61)
i=0

We can always find C" and T” using the techniques discussed in Chap. 3 such as
diagonalization, finding the Jordan canonic form, or even repeated multiplications.

The stochastic matrix C" can be expressed in terms of its eigenvalues using (3.80)
on page 96.

C'"=C; + )LgC2 + AgC3 + .- (6.62)

where it was assumed that C; is the expansion matrix corresponding to the
eigenvalue A; = 1.
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Similarly, the substochastic matrix T” can be expressed in terms of its eigenval-

ues using (3.80) on page 96.
T =AT, + AT, + AT + -+

Equation (6.61) can then be expressed in the form
m n—1
—i—1 i
D NIPS S
j=l1 i=0
After some algebraic manipulations, we arrive at the form

m T n T -1
n _ n—lev, I ) (—
Y ;A] Cra [I (lj) }( Aj)

This can be written in the form

Y =CAI-T)"'"I-T"] +

1 \7! 1
oA (I=- —T I-—T"
& ( Az) [ 2 }+

1\ 1
AMTICA(T— —T I——T' | +---
s ( Az) [ 2 }+

(6.63)

(6.64)

(6.65)

(6.66)

If some of the eigenvalues of C are repeated, then the above formula has to be

modified as explained in Sect. 3.14 on page 105.

Example 6.12. Consider the reducible weakly periodic Markov chain of the pre-
vious example. Assume that the system was initially in state 4. Explore how the

distribution vector changes as time progresses.

We do not have to rearrange the transition matrix to do this example. We have

00.100.11
0030020
P=(1020020
0030040
00.110.10

The eigenvalues for this matrix are

1
AL = exp (j27r X §)
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2
As :exp(j2n X §)

3
A3 :exp(j2n X §)

3
Agy = 0.1exp (j27r X 5)

We see that the period of this system is y = 3. The initial distribution vector is

=[oo10]

The distribution vector at the start is given by

Continuing the
sequence.

s0)=[00010]
s(1)

s(2)
s(3)

t

[0 1000 0.2000 0.2000 0.4000 0.1000

t

0.1600 0.1400 0.2200 0.2200 0.2600

t

t

]
]
0.2960 0.0860 0.2320 0.1300 0.2560 |
]
]

[
[

s(4) = [0.2776 0.0518 0.3392 0.0778 0.2536
[

s(5) ={0.2666 0.0311 0.3035 0.0467 0.3522

iterations, the distribution vector settles down to the following

t

s(19) = | 0.3265 0.0000 0.3775 0.0000 0.2959

t

s(20) = |0.2959 0.0000 0.3265 0.0000 0.3775

t

0.3775 0.0000 0.2959 0.0000 0.3265

t

0.2959 0.0000 0.3265 0.0000 0.3775

t

[ ]
[ ]
[ ]
5(22) = [0.3265 0.0000 0.3775 0.0000 0.2959]'
[ ]
[ ]

s(24) = |0.3775 0.0000 0.2959 0.0000 0.3265

We note that after about 20 time steps, the probability of being in the transient states
2 or 4 is nil. The system will definitely be in the closed set composed of states 1, 3,
or 5. The distribution vector will show periodic behavior with aperiody =3. N
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6.15 Asymptotic Behavior

Assume we have a reducible periodic Markov chain with transition matrix P that is
expressed in the form

_[cA
P_[OT] (6.67)

According to (6.60), after n time steps the transition matrix will have the form

" Cl‘l Yn
P’ = [ 0 T"} (6.68)

where matrix Y” is given by (6.65) in the form
m 3 T n T -1
Y =) A7'C; A [I— (Z) } (I— )T,-) (6.69)
j=1 :

when n — oo, T" will become zero since it is column substochastic. Furthermore,
the eigenvalues of C satisfy the following equations because of the periodicity of C.

=1 1<i<K (6.70)
A <1 K<i<m 6.71)

The eigenvalues that lie in the unit circle will have no contribution at large values of
n and matrix P*° becomes

s [EF
P _[00] (6.72)

The matrices E and F are given by

K
E=) 2C (6.73)
k=1
y K
F = [Z M7ICL A Ti_‘} I—17)" (6.74)
i=1 k=1

where I is the unit matrix whose dimensions match that of T.

Example 6.13. Find the asymptotic transition matrix for the reducible weakly
periodic Markov chain characterized by the transition matrix
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02080 0
08020 0
0 0 0 O
0 0
0 0

0 0
[0 0

[0 0 0.90.10.10.30.1]
0 0 0.109020.10.3

0 0.10
0.10 0.1
0.20.20.1
0.10.10
0.30.20.4 |

The components of the transition matrix are

[0 0 090.1
0 0 0109

02080 0
1 08020 O

[10.10.30.17]
0.20.10.3
0 010

| 0.10 0.1

70.20.20.17
0.10.10
| 0.30.20.4

C is a weakly periodic Markov chain whose eigenvalues are

A= 1
A =—1
A3 = 0.6928])
A3 = —0.6928;

and C' can be decomposed into the form

where

&

C=C+(-DG

0.250.25 0.25 0.25
0.250.25 0.25 0.25
0.250.250.25 0.25
0.250.250.25 0.25

223
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0.25 0.25 -0.25 -0.25
0.25 0.25 -0.25 —0.25
—-0.25 -0.25 0.25 0.25
—-0.25-0.25 0.25 0.25

C, =

According to (6.72) the matrix E has the value

0.2742 0.3044 0.3018
0.2742 0.3044 0.3018
0.2258 0.1956 0.1982
0.2258 0.1956 0.1982

According to (6.72) the matrix F has the value

0.2742 0.3044 0.3018
0.2742 0.3044 0.3018
0.2258 0.1956 0.1982
0.2258 0.1956 0.1982

Thus the asymptotic value of P is

P°=10 0 050 0.27420.3044 0.3018
0 0 0 0 O 0 0
0 0 0 0 O 0 0
0 0 0 0 O 0 0

05050 0 0.2258 0.1956 0.
05050 0 0.2258 0.1956 0.
0 0 0.50.50.2742 0.3044 0.3018

6 Periodic Markov Chains

1982
1982

We can make several observations on the asymptotic value of the transition matrix.

(a) The columns are not identical as in nonperiodic Markov chains.
(b) There is no possibility of moving to a transient state irrespective of the value of

the initial distribution vector.

(c) The closed states are divided into sets such that the system makes periodic
transitions between them and a steady state value can never be reached. ]

6.16 Identification of Markov Chains

We are now able to discuss how we can determine if the given transition matrix
corresponds to a periodic Markov chain or not and to determine if the chain is
strongly or weakly periodic. Further, we are also able to tell if the Markov chain
is reducible or irreducible and to identify the transient and closed states.
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Inspection of the elements of the transition matrix does not help much except
for the simplest case when we are dealing with a strongly periodic Markov chain.
In that case the transition matrix will be a 0—1 matrix. However, determining the
period of the chain is not easy since we have to rearrange the matrix to correspond
to the form (6.48) on page 206.

A faster and more direct way to classify a Markov chain is to simply study its
eigenvalues and eigenvector corresponding to A = 1. The following subsections
summarize the different cases that can be encountered.

6.16.1 Nonperiodic Markov Chain

This is the case when only one eigenvalue is 1 and all other eigenvalues lie inside
the unit circle:

<1 (6.75)

For large values of the time index n — oo all modes will decay except the one
corresponding to A; = 1 which gives us the steady state distribution vector.

6.16.2 Strongly Periodic Markov Chain

This is the case when all the eigenvalues of the transition matrix lie on the unit
circle:

Ai = exp (j2n X l;) (6.76)

where | <i <y.
For all values of the time index the distribution vector will exhibit periodic
behavior and the period of the system is y.

6.16.3 Weakly Periodic Markov Chain

This is the case when y eigenvalues of the transition matrix lie on the unit circle and
the rest of the eigenvalues lie inside the unit circle. Thus we can write

A =1 when 1 <i <y (6.77)
1] <1 wheny <i <m (6.78)
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The eigenvalues that lie on the unit circle will be given by

Ai:exp(j2n><i) (6.79)
y

where | <i <y.

For large values of the time index n — oo some of the modes will decay but y
of them will not and the distribution vector will never settle down to a stable value.
The period of the system is .

6.17 Problems

Strongly Periodic Markov Chains

6.1. The following matrix is a circulant matrix of order 3, we denote it by Cs. If
it corresponds to a transition matrix, then the resulting Markov chain is strongly
periodic. Find the period of the Markov chain.

001
P=|(100
010

6.2. Prove Theorem 6.5 using the result of Theorem 6.1 and the fact that all
eigenvalues of a column stochastic matrix are in the range 0 < |A| < 1.

6.3. Does the following transition matrix represent a strongly periodic Markov
chain?

[0001000]
0100000
0000100

P=|0000001
0010000
1000000

0000010 |

6.4. Verify that the following transition matrix corresponds to a periodic Markov
chain and find the period. Find also the values of all the eigenvalues.
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0000001 ]
0001000
0000100
P=|0000010
0010000
1000000
(0100000 |

6.5. Prove that the m x m circulant matrix in (6.47) has a period y = m. You can
do that by observing the effect of premultiplying any m x k matrix by this matrix.
From that you will be able to find a pattern for the repeated multiplication of the
transition matrix by itself.

Weakly Periodic Markov Chains

6.6. Does the following transition matrix represent a periodic Markov chain?

13 0 0 0 0 1/31/37]
1/31/3 0 0 0 0 1/3
1/31/31/3 0 0 0 0

P=| 0 1/31/31/3 0 0 0
0 0 1/31/31/3 0 0
0 0 0 1/31/31/3 0

L 0 0 0 0 1/31/31/3]

6.7. The weather in a certain island in the middle of nowhere is either sunny or
rainy. A recent shipwreck survivor found that if the day is sunny, then the next day
will be sunny with 80 % probability. If the day is rainy, then the next day it will
be rainy with 70 % probability. Find the asymptotic behavior of the weather on this
island.

6.8. A traffic source is modeled as a periodic Markov chain with three stages. Each
stage has three states: silent, transmitting at rate A, and transmitting at rate A,.

(a) Draw the periodic transition diagram.

(b) Write down the transition matrix.

(c) Assign transition probabilities to the system and find the asymptotic behavior
of the source.

(d) Plot the state of the system versus time by choosing the state with the highest
probability at each time instant. Can you see any periodic behavior in the traffic
pattern?



228 6 Periodic Markov Chains

6.9. A computer goes through the familiar fetch, decode and execute stages for
instruction execution. Assume the fetch stage has three states depending on the
location of the operands in cache, RAM, or in main memory. The decode stage
has three states depending on the instruction type. The execute state has three states
also depending on the length of the instruction.

(a) Draw the periodic transition diagram.

(b) Write down the transition matrix.

(c) Assign transition probabilities to the system and find the asymptotic behavior
of the program being run on the machine.

6.10. Table lookup for packet routing can be divided into three phases: database
search, packet classification, and packet processing. Assume the database search
phase consists of four states depending on the location of the data among the
different storage modules. The packet classification phase consists of three states
depending on the type of packet received. The packet processing phase consists of
four different states depending on the nature of the processing being performed.

(a) Draw the periodic transition diagram.

(b) Write down the transition matrix.

(c) Assign transition probabilities to the system and find the asymptotic behavior
of the lookup table operation.

6.11. A bus company did a study on commuter habits during a typical week.
Essentially, the company wanted to know the percentage of commuters that use
the bus, their own car, or stay at home each day of the week. Based on this study,
the company can plan ahead and assign more busses or even bigger busses during
heavy usage days.

(a) Draw the periodic transition diagram.

(b) Write down the transition matrix.

(c) Assign transition probabilities to the system and find the asymptotic behavior
of the commuter patterns.

6.12. Assume a certain species of wild parrot have two colors: red and blue. If was
found that when a red—red pair breeds, their offspring are red with a 90 % probability
due to some obscure reasons related to recessed genes and so on. When a blue—blue
pair breeds, their offspring are blue with a 70 % probability. When a red-blue pair
breeds, their offspring are blue with a 50 % probability.

(a) Draw the periodic transition diagram.

(b) Write down the transition matrix.

(c) Assign transition probabilities to the system and find the asymptotic behavior
of the parrot colors in the wild.

6.13. A packet source is modeled using periodic Markov chain. The source is
assumed to go through four repeating phases and each phase has two states: idle
and active. Transitions from phase 1 to phase 2 are such that the source switches
to the other state with a probability 0.05. Transitions from phase 2 to phase 3 are
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such that the source switches to the other state with a probability 0.1. Transitions
from phase 3 to phase 4 are such that the source switches to the other state with a
probability 0.2. Transitions from phase 4 to phase 1 are such that the source switches
to the other state with a probability 0.90.

(a) Draw the periodic transition diagram.

(b) Write down the transition matrix.

(c) Assign transition probabilities to the system and find the asymptotic behavior
of the source.

6.14. The predator and prey populations are related as was explained at the start of
this chapter. Assume the states of the predator—prey population are as follows.

State | Predator population | Prey population

) Low Low
S Low High
S High Low
53 High High

Assume that the populations undergo changes each year and the time step is
chosen equal to 1 year also. The state of the system must change from one value to
another value after each time step.

1. Construct state transition diagram and a Markov transition matrix.
2. Justify the entries you choose for the matrix.
3. Study the periodicity of the system.
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Chapter 7
Queuing Analysis

7.1 Introduction

Queuing analysis is one of the most important tools for studying communication
systems. The analysis allows us to answer endless questions about the system
performance. This chapter explains that queuing analysis is a special case of Markov
chains. Some examples of queues are:

* The number of patients in a doctor’s waiting room.

* The number of customers in a store checkout line.

* The number of packets stored in a router’s buffer.

* The number of print jobs present in a printer’s queue.

* The number of workstations requesting access to the LAN.

Without being specific to a certain system, we can state that queuing analysis deals
with queues where customers compete to be processed by shared servers. The queue
size is the waiting room provided for the customers that have not been served yet
plus the customers that are being served. We will talk about packets instead of
customers in this chapter since most of networking analysis deals with transmitting
and processing packets.

The objective of queuing analysis is to predict the system performance such as
how many customers get processed per time step, the average delay a customer
endures before being served, and the size of the queue or waiting room required.
These performance measures have obvious applications in telecommunication
systems and the design of hardware for such systems.

We list here some typical examples of queues and point out the customers and
servers in each.

» People lining up at a bank where the bank teller is the server and the bank patrons
are of course the customers.

* Workstations connected in a local-area network (LAN) where the communication
medium (e.g., Ethernet cable) represents the shared resource while the commu-
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nicating applications represent the customers and the server is the media access
control (MAC) protocol that enables access to the medium.

* A parallel processing system in which a common shared memory is accessed
by all the computers. The computers, or rather the memory requests, represent
the customers and the arbitration protocol that resolves memory access conflicts
represents the server.

Most of the literature and textbooks deals with continuous-time systems. In these
systems only single customer arrival or departure takes place at a given time instant.
However, analyzing the systems for general arrival or departure statistics proved
to be difficult such that most textbooks simply provide tables of performance
formulas for the most common situations. Subsequent researchers simply adopt
these formulas without any form of adaptation or innovation.

Most of computer and communication systems, however, are migrating to the
digital domain. In this domain, time is measured in discrete units or steps of finite
size. As a consequence, there could be multiple arrivals or departures at a given
time step. We will find that discrete-time systems are simple to analyze compared
to continuous-time systems. Adapting discrete-time systems to a large variety of
situations is really simple using the techniques we provide in this book.

In this chapter we study different types of discrete-time queues characterized by
the following attributes:

The total number of customers in the system.

The number of customers that could possibly request service at a given time step.

The arrival process statistics for the customers.

The number of servers which dictate how many customers can leave the queue

at a given time step.

5. The service discipline for deciding which customer or customers is to be
served. Examples of service disciplines are first-come-first-serve (FIFO), random
selection, polling, priority, etc. [1].

6. The size of the queue to accommodate customers waiting for service.

Cal o

Kendall’s Notation

Kendall’s notation is frequently used to succinctly describe a queuing system. This
notation is represented as A/B/c/n/ p, where [2]:

Arrival statistics

Service or departure statistics
Number of servers

Queue size

Customer population size

TS S W
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The final two fields are optional and are assumed infinite if they are omitted [3]. The
letters A and B in the notation A/B/c/n/p denoting arrival and server statistics are
given the following notations:

D :  Deterministic, process has fixed arrival or service rates
M : Markovian, process is Poisson or binomial
G : General or constant time.

A common practice is to attach a superscript to the letters A and B in the notation
A/B/c/n/p to denote multiple arrivals or “batch service.” Using this notation, the
discrete-time M /M /1 queue has binomial, or Poisson, arrivals and departures. At a
given time step at most one customer arrives and at most one customer departs. The
queue has infinite buffer size and the population size is also infinite.

The queue M/M/1/B has binomial, or Poisson, arrivals and departures. At a
given time step at most one customer arrives and at most one customer departs. The
queue has a finite buffer of size B and the population size is infinite. This queue is
frequently encountered when the time step is so short that only one customer can
arrive or depart in that time.

The queue M/M/J/B has binomial, or Poisson, arrivals and departures. At a
given time step at most one customer arrives and at most one customer could depart
through one of the J available servers. The queue has a finite buffer of size B and the
population size is infinite. This type of queue might be encountered when a server
might be busy serving a customer at a given time step and the remaining servers
become available to serve other customers in the queue.

The queue M™ /M /1/B has binomial, or Poisson, arrivals and departures. There
is one server in the queue and at a given time step at most /1 customers arrive and at
most one customer departs because there is one server. The queue has a finite buffer
of size B and the population size is infinite.

The queue M/M™ /1/B has binomial, or Poisson, arrivals and departures. There
is one server in the queue and at a given time step at most one customer arrives and
at most J customers depart because the server could handle J customers in one
time step. The queue has a finite buffer of size B and the population size is infinite.

The queues we shall deal with here will be one of the following types:

1. Single arrival, single departure infinite-size queues in which the transition matrix
P is tridiagonal. Such a queue will be denoted by the symbols M/ M/1.

2. Single arrival, single departure finite-size queues in which P is tridiagonal. Such
a queue will be denoted by the symbols M/M/1/B.

3. Multiple arrival, single departure finite queues in which P is lower Hessenberg.
Such a queue will be denoted by the symbols M /M /1/B.

4. Single arrival, multiple departure finite-size queues in which P is upper Hessen-
berg. Such a queue will be denoted by the symbols M/M™/1/B.
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7.2 Queue Throughput (Th)

Most often we are interested in estimating the rate of customers leaving the
queue which is expressed as customers per time step or customers per second.
We call this rate the average output traffic N,(out), or throughput (T h) of a queue.
The throughput is given by:

Th = output datarate = N, (out) (7.1)

The units of Th in the above expression are packets/time step. Notice that this
definition implies that Tk could never be negative.

When we talk about throughput of packets, we usually mean goodput which
represents the packets that got through intact without collisions or other problems.
Sometimes the authors talk about throughput to include good and corrupted packets.
The difference between throughput and goodput is seldom discussed and the reader
is advised to make certain which quantity is being dealt with in any discussion.
Throughout this book we shall use the term throughput to imply good packets that
got sent without corruption.

7.3 Efficiency () or Access Probability (p,)

The efficiency (1) of the queue or its access probability (p,) essentially gives the
percentage of customers or packets transmitted in one time step through the system
relative to the total number of arriving customers or packets one time step also.
We shall use the term efficiency when we talk about queues and switches and
will use the term access probability when we talk about interconnection networks.
Efficiency or access probability essentially measures the effectiveness of the queue
at processing data present at the input.

We define the access probability (p,) or efficiency n as the ratio of the average
output traffic relative to the average input traffic.

N, (out)
= = 7.2
Pa =1 Na(in) (7.2)
This can be expressed in terms of the throughput
N, (out Th
pa == Dalowt) _ <1 (1.3)

Nulin) — Na(in) B

Notice that the access probability or efficiency could never be negative and could
never be more than one.
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If customers or packets are created within the queue, then we have to modify
our definitions of both the input and output traffic to ensure that the efficiency never
exceeds unity. This situation could in fact happen. For example, consider a packet
switch that receives packets at its inputs then it routes these packets to the output
ports. We expect that the number of packets leaving the switch per unit time will
be smaller than or equal to the number of packets coming to the switch per unit
time. The output traffic could be smaller than the input traffic when packets are lost
within the switch when its internal buffers become full. However, the switch itself
might generate its own packets to communicate with other switches or routers in the
network. In that case, the traffic at the input could in fact be smaller than the output
traffic due to the internally generated traffic. Let us leave this point to the problems
at the end of the chapter.

Throughput and access probability are very useful in describing the behavior of
a system. The two concepts are not equivalent and in fact we will see that the curves
showing variation of efficiency with the queue parameters are not scaled version of
throughput variation with queue parameters.

If the queue produces three customers on the average per time step while five
customers could arrive, then the throughput is 7h = 3 while its efficiency is n =
3/5 = 60 %. On the other hand, if the queue produces four customers on the average
per time step while a maximum of six customers could potentially leave, then the
throughput is Th = 4 and its efficiency is = 4/6 = 66.67 %.

7.4 Traffic Conservation

When the queue reaches steady state, the incoming customers or packets have two
options when they arrive at a queue: they either get processed and move through the
queue or they get lost. We can therefore write the traffic conservation as

N,(in) = N,(out) + N,(lost) (7.4)

where N, (lost) is the average number of lost traffic or customers per unit time. The
above equation is valid at steady state since the number of packets in the queue will
be constant.

Dividing the above equation by N, (in) to normalize we get:

N+ L=1 (15)
where L is the customer, or traffic loss probability
L=1-7 (7.6)

Systems that have high efficiency will have low loss probability and vice versa.
This situation is very similar to mechanical or electrical energy conversion systems
characterized by input power, output power, and lost power due to friction or
resistive effects.
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7.5 M/M/1 Queue

In an M/M/1 queue at any time step, at most one customer could arrive and at most
one customer could leave. An example of an M/M/1 queue is a first-in-first-out
(FIFO) buffer of a communication system. This gives rise to simplest of queues in
queuing analysis. The queue size here is assumed infinite. This is the discrete time
equivalent to the famous M /M /1 queue for the continuous time case. At a certain
time step the probability of packet arrival is a, which is equivalent to a birth event
or increase in the queue population. The probability that a packet did not arrive is
b = 1 — a. The probability that a packet leaves the queue is ¢, which is equivalent
to death or reduction in the queue population. The probability that a packet does not
leave the queue is d = 1 —c. The probability c is representative of the server ability
to process the customers or packets in the queue in one time step.

The number of customers or packets stored in the queue is the state of our system.
Thus the queue is in state s; when there are i customers or packets in the queue.
The state transition diagram for the discrete-time M/M/1 queue is shown in Fig. 7.1.
Changes in the queue size occur by at most one, i.e. only one packet could arrive or
depart. Thus we expect the transition matrix to be tridiagonal.

The future state of the queue depends only on its current state. Thus we can model
the queue as a discrete-time Markov chain. Since packet arrivals and departures
are independent of the time index value, we have a homogeneous Markov chain.
We assume that when a packet arrives, it could be serviced at the same time step
and it could leave the queue with probability c. This results in the transition matrix
given by:

fo be 0 O ---
ad f bc O ---

p=| Oad fbc--- (1.7)
0 Oad f ---

whereb =1—a,d =1—c, fo=1—ad,and f = ac + bd.

For example, starting with an empty queue (state s), Fig. 7.1 indicates that we
move to state s; only when a packet arrives and no packet can depart, which is term
ad in the diagram. This transition is also indicated in the above transition matrix as
the term at location (2,1) of the transition matrix.

a ad

d a
l-ad
Fig. 7.1 State transition .0 0‘0
diagram for the discrete-time l l

d
M/M/1 queue be f be f  be
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In order for the queue to be stable, the arrival probability must be smaller than

the departure probability (a < c¢).

Since the dimension of P is infinite, we are going to obtain an expression for the
distribution vector s using difference equations techniques instead of studying the
eigenvectors of the matrix. The difference equations for the steady-state distribution

vector are obtained from the equation:
Ps=s
which produces the following difference equations:

ad so —bcs; =0
ad so—gs;+bcs, =0
ad S,'_l—gSl'—}-bCSH_l =0

i>0

(7.8)

(7.9)
(7.10)
(7.11)

where g = 1 — f and s; is the probability that the system is in state i. For an

infinite-size queue we have i > 0.
The solution to the above equations is given as:

o=(24

1= b S0
ad\’
ﬁ 50
_(29Y
3 = he 50

d i
SjZ(Cll)—c) S0 i>0

It is more convenient to write s; in the form:

$2

and in general:

S; = pi So i>0
where p is the distribution index:

_ad<1
p_bc

(7.12)

(7.13)

The value of the distribution index will affect the component values of the

distribution vector.
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The complete solution is obtained from the above equations, plus the condition:
o0
g i=0% = 1.

o0
soy p=1 (7.14)
i=0
Thus we obtain:
o (7.15)
I—p
from which we obtain:
so=1—p (7.16)

and the components of the equilibrium distribution vector are given from (7.12) by:
si=(1-p)p' i20 (7.17)

It is interesting to compare this expression with the continuous-time M/M/1 queue.
The components of the distribution vector for a continuous-time queue are given by

si=(1—p)p' i>0 (7.18)

where p for the continuous-time queue is called the traffic intensity and equals the
ratio of the arrival rate to the service rate. The two expressions are identical for the
simple M/M/1 queue.

7.5.1 M/M/1 Queue Performance

Once s is found, we can find the queue performance such as the throughput, average
queue size, and packet delay.

The output traffic or average number of packets leaving the queue per time step
is given by

o0
Na(out) =acso+ Y _cs; (7.19)

i=1

The first term on RHS is the number of packets leaving the queue given that the
queue is empty. The second term on RHS is the average number of packets leaving
the queue when it is not empty. Simplifying we get:
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Ny(out) = ac s+ c(1—sp)
=c—bc sy

=a (7.20)

The units of N, (out) are packets/time step.
The throughput for the M/M/1 queue is given by:

Th = N,(out) =a (7.21)

The throughput is measured in units of packets/time step. To obtain the throughput
in units of packets/s, we use the time step value:

_Th
T

ThH (7.22)

The input traffic or average number of packets entering the queue per time step is
given by:

Ny(in)=1xa+0xb=a (7.23)

This output traffic is measured in units of packets/time step.
The efficiency of the M/M/1 queue is given by:

_ Ny(out) 1
A

(7.24)

The M/M|/1 queue is characterized by maximum efficiency since input and output
data rates are equal. There is no chance for packets to be lost since the infinite queue
dues not ever fill up.

The average queue size is given by the equation

o0
Qu=Y isi (7.25)
i =0
Using (7.17) we get
0. == (7.26)
—p

The queue size is measured in units of packets or customers.

Figure 7.2 shows the exponential growth of the average queue size as the
distribution index increases. A semilog plot was chosen here to show in more detail
the size of the queue.
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Fig. 7.2 Average queue size 10
versus the distribution index
p for the M/ M /1 queue 0 L

Average buffer size

L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distribution index (p)

We can invoke Little’s result to estimate the wait time, which is the average
number of time steps a packet spends in the queue before it is routed, as:

Q. =WxTh (7.27)

where W is the average number of time steps that a packet spends in the queue.
Thus W is given by:

S
a(l —p)

This wait time is measured in units of time steps. The wait time in units of seconds
is given by the unnormalized version of Little’s result:

oy
’_
W= Th

(7.28)

(7.29)

Example 7.1. Consider the M /M /1 queue with the following parameters a = 0.6
and ¢ = 0.8. Find the equilibrium distribution vector and the queue performance.

From (7.7), the transition matrix is:

[0.880.320 0 0
0.120.560.320 0
0 0.120.560320 ---
0 0 012056032
0 0 0 012056
0O 0 0 0 012--
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The steady-state distribution vector is found using (7.17):

s = [0.6250 0.2344 0.0879 0.0330 0.0124 0.004 6 0.0017 ]t

The probability of being in state i decreases exponentially as i increases.
The queue performance is as follows:

Th=0.6 packets/time step
n =1
0,=0.6 packets
W =1 time steps ]

Example 7.2. Investigate the queue in the previous example when the arrival
probability is very close to the departure probability.

For the queue to remain stable, we must have a < c. Let us try a = 0.6 and
¢ = a + 0.01. The steady-state distribution vector is found using (7.17)

s = [0.0410 0.0393 0.0377 0.0361 0.0347 0.0332 0.0319 ]t

Comparing this distribution vector with its counterpart in the previous example, we
see that the probability of being in state i is increased fori > 0. This is an indication
that the queue is getting close to being unstable.

The queue performance is as follows:

Th =0.6 packets/time step
n =1

0,=234 packets

W =39 time steps

We see that the throughput is increased since the probability that the queue is empty
(state 0) is decreased. |

7.6 M/M/1/B Queue

This queue is similar to the discrete-time M/M/1 queue except that the queue has
finite size B. The state transition diagram is shown in Fig. 7.3.

Since packet arrivals and departures are independent of the time index value, we
have a homogeneous Markov chain. We assume that when a packet arrives, it could
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Fig. 7.3 State transition l-ad ad ad ad ad 1-be

diagram for the discrete-time

M/M/1/B queue @ e‘
be f be f be f  be

be serviced at the same time step and it could leave the queue with probability c.
This results in the transition matrix is given by:

[ fobc 0 -0 0 0
ad f bc--- 0
0ad f -0 0 0

o
o

P = O : (7.30)
0 0 0--fbc O
0 0 0 ---ad f bc
0 0 0-- 0 adl—bc|

where fo = 1—ad and f = ac + bd.

Since the dimension of P is arbitrary, we are going to obtain an expression
for the equilibrium distribution vector s using difference equations techniques.
The difference equations for the state probability vector are given by:

ad so—bcs; =0 (7.31)
adso—gsy+bcs, =0 (7.32)
ad si-1—gs;i +bcsiy1 =0 0<i<B (7.33)

where ¢ = ad +bc and s; is the component of the distribution vector corresponding
to state i.
The solution to the above equations is given as:

_(ad
S = _bC S0
_(ad 2
Sy = he )

and in general
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It is more convenient to write s; in the form
si=p so 0<i<B (7.34)
where p is the distribution index for the M/M/1/B queue:

_ad

P=%c

The complete solution is obtained from the above equations plus the condition
ZF:O s; = 1 which gives:

B
0 p =1 (7.35)
i =0

from which we obtain sy, which is the probability that the queue is empty:

__1=r
and the equilibrium distribution for the other states is given from (7.34) by:
1— i
_{=pp 0<i<B (1.37)

Si = 1 — pBHl

Note that p for the finite-size queue can be more than one. In that case the queue
will not be stable in the following sense:

So <S1 <8+ <SB (738)

This indicates that the probability that the queue is full (sp) is bigger than the
probability that it is empty (o).

7.6.1 M/M/1/B Queue Performance

The throughput or output traffic for the M/M/1/B queue is given by:

Th = N,(out)

B
=ac sy + E C S

i=1
=ac so+ c (1 —sp)

=c (1=b s (7.39)
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This throughput is measured in units of packets/time step. The throughput in units
of packets/s is:

Th
Th' = — (7.40)
T

The input traffic is given by
Ny(in)=1xa+0xb=a (7.41)

Input traffic is measured in units of packets/time step.
The efficiency of the M/M/1/B queue is given by

N, (out)
N,(in)
Th

a
c(1—bsp)

= 70 (7.42)
a

Data is lost in the M/ M /1/B queue when it is full and packets arrive but does not
leave. The average lost traffic N, (/ost) is given by

Ny(lost) =spad (7.43)

The above equation is simply the probability that a packet is lost which equals the
probability that the queue is full, and a packet arrives, and no packets can leave.

Lost traffic is measured in units of packets/time step. The average lost traffic per
second is given by

_ Nu(lost)

N'(lost
(lost) T

a

(7.44)

The packet loss probability L is the ratio of lost traffic relative to the input traffic:

_ Ny(lost)
L= —Na(in) =spd (7.45)

The average queue size is given by the equation:

B
Qu=) isi (7.46)
i=0
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Fig. 7.4 Average queue size 10 T
versus the distribution index |I
p for the M/M/1/B queue 1
when B = 10 (solid line). 8 1
The dotted line is average © ,'
queue size for an infinite-size 5 !
M/M/1 queue & 6f )
5 1
Q !
N 1
g 4r !
o 1
>
< U
1,
2 -
0 1 1
0 1 2 3

Distribution index

Queue size is measured in units of packets. Using (7.37) the average queue size is

given by:

_ px[1=(B+1)p® + BpPt!]
Qo = X (1= o) (7:47)

Figure 7.4 shows the exponential growth of the average queue size as the distribution
index increases (B = 10 in that case). The solid line is for the M/M/1/B queue
and the dotted line is for the M /M /1 queue for comparison. We see that Q, for the
finite-size queue grows at a slower rate with increasing distribution index compared
to the infinite-size queue. Furthermore, p for the infinite-size queue could increase

beyond unity value.
We can invoke Little’s result to estimate the average number of time steps a

packet spends in the queue before it is routed as

Q. =W xTh (7.48)

where W is the wait time, or average number of time steps, that a packet spends in
the queue. The throughput in the above expression for the wait time must be in units
of packet/time step. The wait time is simply

0.
W = Th (7.49)

Wait time is measured in units of time steps. The wait time in units of seconds is

given by

i _ Qa
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Example 7.3. Consider the M/M/1/B queue with the following parameters
a=0.6,c = 0.8, and B = 4. Find the equilibrium distribution vector and the
queue performance.

From (7.30), the transition matrix is

0880320 0 0 0
0.120.560320 0 0
0 0120560320 0
0 0 0120560320 ---
0 0 0 012056032
0 0 0 0 0.12056--

The steady-state distribution vector is found using (7.37):

s = [0.6297 0.2361 0.0885 0.0332 0.0125 |'

Compare this distribution vector with the distribution vector of Example 7.1, which
described an infinite-size queue with the same arrival and departure statistics.
We see that components of the distribution vector here are slightly larger than their
counterparts in the infinite-size queue as expected.

The queue performance is as follows:

Ny(out)y =Th = 0.5985 packets/time step
n= 0.9975
Ny(lost) = 1.5x 1073 packets/time step
L= 0.0025
0,= 0.5626 packets
W = 0.9401 time steps

We note that the M/M/1/B queue has smaller average size Q, and smaller
wait time W compared to the M/M/1 queue with the same arrival and departure
statistics. As expected we have:

Ny(out)+ Ny(lost) = N,(in) |

Example 7.4. Find the performance of the queue in the previous example when the
queue size becomes B = 20.
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The queue performance is as follows:

N,(out) =Th = 0.6 packets/time step
n= 1
Na(lost) = 2.2682 x 10710 packets/time step
L =3.7804 x 1071°
0, = 0.6 packets
W = 1 time steps

We see that increasing the queue size exponentially decreases the loss probability.
The throughput increases by 0.25 % but the wait time is slightly increased due to the
increased average queue size. |

Example 7.5. Plot the M/M/1/B performance when the input traffic varies
between 0 <a <1 for B = 10and ¢ = 0.5.

Figure 7.5 shows the throughput, efficiency, loss probability, and delay to plot these
quantities versus input traffic.
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Fig. 7.5 M/M/1/B throughput, efficiency, loss probability, and delay to plot versus input traffic
when B = 10andc = 0.5
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The important things to note from this example are:

1. The throughput of the queue could not exceed the maximum value for the
average output traffic. Section 7.6.2 below will prove that this maximum value is
simply c.

2. The efficiency of the queue is very close to 100 % until the input traffic
approaches the maximum output traffic c.

3. Packet loss probability is always present but starts to increase when the input
traffic approaches the packet maximum output traffic c.

4. Packet delay increases sharply when the input traffic approaches the packet
maximum output traffic c.

5. Congestion conditions occur as soon as the input traffic exceeds the maximum
output traffic ¢. Congestion is characterized by decreased efficiency, increased
packet loss and increased delay.

6. The delay reaches a maximum value determined by the maximum size of
the queue and the maximum output traffic ¢. The maximum delay could be
approximated as

B
Maximum Delay = — = 20 time steps ]
¢

7.6.2 Performance Bounds on M/M/1/B Queue

The previous example helped us get some rough estimates for the performance
bounds of the M/ M /1/B queue. This section formalizes these estimates.
Under full load conditions, the M/ M /1/B become full and we can assume:

a—1 (7.51)
b—0 (1.52)
so— 0 (7.53)

sp— 1 (7.54)

0, — B (7.55)

The maximum throughput is given from (7.39) by:

Th(max) = Na (Out)max
_ . (7.56)

The departure probability is most important for determining the maximum through-
put of the queue.



7.7 M™/M/1/B Queue 249

The minimum efficiency of the queue is given from (7.42) by
n(min) = ¢ (7.57)

The departure probability is most important for determining the efficiency of the
queue.
The maximum lost traffic is given from (7.43) by

Ny(lost)pax =d =1—¢ (7.58)
The maximum packet loss probability is given from (7.45) by
L(max) =1—c¢ (7.59)

The maximum wait time is given by the approximate formula
B
W(max) = — (7.60)
¢

Larger queues result in larger wait times as expected.

7.7 M™/M/1/B Queue

Inan M"™/M/1 queue at any time step, at most m customers could arrive and at most
one customer could leave. We shall encounter this type of queue when we study
network switches where FIFO queues exist at each output port. For each queue,
a maximum of m packets arrive at the queue input but only one packet can leave
the queue. Therefore, the queue size can increase by more than one, but can only
decrease by one in each time step. Assume the binomial probability of k arrivals at
instant n is given by:

a, = ('Z)ak pk (7.61)

where a is the probability that a packet arrives, b = 1 — a and m is the maximum
number of packets that could arrive at the queue input. The queue size can only
decrease by at most one at any instant with probability c. The probability that no
packet leaves the queue is d = 1 —c. We assume that when a packet arrives, it could
be serviced at the same time step and it could leave the queue with probability c.
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The condition for the stability of the queue is:
m
Zkakzam<c (7.62)
k=0

which indicates that the average number of arrivals at a given time is less than the
average number of departures from the system. The resulting state transition matrix
is alower (B + 1) x (B + 1) Hessenberg matrix in which all the elements p;; = 0
forj >i 4+ 1.

[ x yo 0 -0 0|
y2 yl y(] . 0 0
yioy2 »n - 00
P= ] ) . (7.63)
YB YB—1 YB—2 *** Y1 Yo
| 2B ZB—1 ZB—2 *** 21 20
where
X =a;c+a (764)
yi=aic+a-1d (7.65)
m
a=aid+ Y a (7.66)
k=i+1
where we assumed
a, =0 k<0 (7.67)
a; =0 k>m (7.68)

The above transition matrix has m subdiagonals when m < B.

7.7.1 M™[M/1/B Queue Performance

To calculate the throughput of the M™ /M /1/B we need to consider the queue in
two situations: when it is empty and when it is not.

The throughput of the M™/M/1/B queue when the queue is in state so is
given by

T]’l() = (1 — ao) c (769)
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This is simply the probability that one or more packets arrive and one packet leaves
the queue. When the queue is in any other state, the throughput is given by

Thy = c 1<i<B (7.70)

This is simply the probability that a packet leaves the queue. The average throughput
is estimated as

B
Th = ZTh, Si
i=0
=c (1 —agsp) (7.71)

The throughput is measured in units of packets/time step. The throughput in units
of packets/s is

Th
Th = — 7.72
K== (7.72)

The input traffic is given by

Nu(in) = i a
i=0
I (7.73)

The efficiency of the M™ /M /1/B queue is given by
_ Ny(out)
~ N,(in)

Th

ma

_ ¢ (1 —aq s0) (7.74)
ma

Data is lost in the M™ /M /1/B queue when it becomes full and packets arrive but
does not leave. However, due to multiple arrivals, packets could be lost even when
the queue is not completely full. For example, we could still have one location left in
the queue but three customers arrive. Definitely packets will be lost then. Therefore,
we conclude that average lost traffic N,(lost) is a bit difficult to obtain. However
the traffic conservation principle is useful in getting a simple expression for lost
traffic. The average lost traffic N,(lost) is given by

N,(lost) = N,(in) — N,(out)
=ma—c (1 —agpsp) (7.75)
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The lost traffic is measured in units of packets per time step. The average lost traffic
measured in packets per second is given by

_ Na(lost)

N/(lost
,(lost) T

(7.76)

The packet loss probability L is the ratio of lost traffic relative to the input traffic

N, (lost)
L=——=1-—7
N,(in)
1 —
—1— ¢ (I—ags0) (7.77)
ma
The average queue size is given by the equation
B
Qu=Y isi (1.78)
i=0

We can invoke Little’s result to estimate the wait time, which is the average number
of time steps a packet spends in the queue before it is routed, as

«a=WxTh (7.79)

where W is the average number of time steps that a packet spends in the queue.
Thus W is given by

= Qa
Th

w (7.80)

The wait time is measured in units of time steps. The wait time in units of seconds
is given by the unnormalized version of Little’s result.

_ 0
Th

W’ (7.81)

Example 7.6. Consider the M™ /M /1/B queue with the following parameters a =
0.04, m = 2, ¢ = 0.1, and B = 5. Check its stability condition and find the
equilibrium distribution vector and queue performance.

The packet arrival probability is

ay = (i) (0.04)%(0.96)>7*
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The stability condition is found from (7.62)

2
Zk ap =0.08 < ¢
k=0

The queue is stable and the transition matrix is

[0.9293 0.0922 0 0 0 0
0.0693 0.8371 0.0922 0 0 0
0.0014 0.0693 0.8371 0.0922 0 0
0 0.0014 0.0693 0.8371 0.0922 0
0 0 0.0014 0.0693 0.8371 0.0922

| 0 0 0 0.0014 0.0707 0.9078 |

The transition matrix has two subdiagonals because m = 2.
The steady-state distribution vector is the eigenvector of P that corresponds to
unity eigenvalue. We have

s = [0.2843 0.2182 0.1719 0.1353 0.1065 0.0838]t

We see that the most probable state for the queue is state sy which occurs with
probability 28.43 %.
The queue performance is as follows:

Th= 0.0738 packets/time step
n= 0.9225
N.(lost) = 6.2 x 1073 packets/time step
L= 10.0775
0,= 1813 packets
W = 245673 time steps

Flow conservation is verified since the sum of the throughput and the lost traffic
equal the input traffic N,(in) = m a. |

Example 7.7. Find the performance of the queue in the previous example when the
queue size becomes B = 20.

The queue performance is as follows:

Th= 0.0799 packets/time step
n=  0.9984
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N.(lost) = 1.3167 x 107* packets/time step
L= 0.0016
Q.= 1.813 packets
W = 443432 time steps

We see that increasing the queue size decreases the loss probability which results in
only a slight increase in the throughput. The wait time is almost doubled. ]

In Chap. 4 we explored different techniques for finding the equilibrium distribu-
tion for the distribution vector s. For simple situations when the value of m is small
(1 or 2) we can use the difference equations approach. When m is large, we can use
the z-transform technique as was done in Sect. 4.8.

Example 7.8. Plot the M™ /M /1/B performance when m = 2 and the input traffic
varies between 0 <a < 1for B = 10and ¢ = 0.5.

Figure 7.6 shows the variation of the throughput, efficiency, loss probability, and
delay versus the versus average input traffic.
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Fig. 7.6 M™/M/1/B throughput, efficiency, loss probability, and delay to plot versus input traffic
whenm =2, B =10andc = 0.5
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The important things to note from this example are:

1. The throughput of the queue could not exceed the maximum output traffic c.

2. The efficiency of the queue is very close to 100 % until the input traffic
approaches the maximum output traffic c.

3. Packet loss probability is always present but starts to increase when the input
traffic approaches the packet maximum output traffic c.

4. Packet delay increases sharply when the input traffic approaches the packet
maximum output traffic c.

5. Congestion conditions occur as soon as the input traffic exceeds the maximum
output traffic ¢. Congestion is characterized by decreased efficiency, increased
packet loss, and increased delay. |

7.7.2  Performance Bounds on M™ /M /1/B Queue

The previous example helped us get some rough estimates for the performance
bounds of the M™ /M /1/B queue. This section formalizes these estimates.
Under full load conditions, the M™ /M /1/B become full and we can assume

a—1 (7.82)
b—0 (7.83)
so — 0 (7.84)
sg — 1 (7.85)
Q. — B (7.86)

The maximum value for the throughput from (7.71) becomes
Th(max) = ¢ (7.87)

The packet departure probability determines the maximum throughput of the queue.
The minimum efficiency of the M /M /1/B queue is given from (7.74) by

. ¢
n(min) = — (7.88)
m
The maximum lost traffic is given from (7.77) by
Ny(l0St)max = m — ¢ (7.89)

The asymptotic value for packet loss probability in (7.77) is obtained when s is
zero and is given by:

L(max) = 1— < (7.90)
m
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When more customers arrive per time step (large m), the probability of loss
increases. Maximum loss probability increases when packet departure probability
decreases and when the number of arriving customers increases.

The maximum delay is given from (7.80) by

B
T h(max)
B

_2 (7.91)
C

W(max) =

7.7.3 Alternative Solution Method

When B is large, it is better to use numerical techniques such as forward- or
backward substitution using Givens rotations.'
At steady state we can write

Ps=s (7.92)

We can use the technique explained in Sect. 4.10 on page 146 and in reference [4] to
construct a system of linear equations that can be solved using any of the specialized
software designed to solve large systems of linear equations.

7.8 M/M™/1/B Queue

In an M/M™ /1 queue at any time step, at most one customer could arrive and at
most m customers could leave. We shall encounter this type of queue when we study
network switches where FIFO queues exist at each input port. For each queue, one
packet arrives at the input line to the storage buffer but a maximum of m packets
can leave the queue destined to the different switch outputs. Therefore, the queue
size can increase by one, but can decrease by more than one. The probability that a
packet arrives is @ and b = 1 — a is the probability that a packet does not arrive at a
time step. Define ¢; ; as the probability that j customers leave the queue when there
are i customers in the queue.

cij = ;)cj A= (7.93)

! Another useful technique for triangularizing a matrix is to use Householder transformation.
However, we prefer Givens rotation due to its numerical stability. Alston Householder once
commented that he would never fly in an airplane that was designed with the help of a computer
using floating-point arithmetic [4].
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where c is the probability that a packet departs and d = 1 — c. The state transition
matrix is an upper (B + 1) x (B + 1) Hessenberg matrix in which all the elements
of subdiagonals 2, 3, --- are zero—i.e. p;; = O fori > j + 1. The matrix has only
m superdiagonals. We assume an arriving packet is served at the same time step
and we also assume that when the queue is full any arriving packets are discarded.
Nonzero element p; ; of the matrix is expressed in general as

j : .
b e Cik j—i=m,
j+1 b 4=
ay i, Cik+bcim j—i+1=m,
Pij = acjtij—i+1+bcjj—i
Cm,B—i
B .
Zk=m CB.B—i

j<B

j<B
j<B

B-m<i<B, j=B

B—m<i<B

j=B8

(7.94)

For the case when B = 6 and m = 3 the transition matrix P will have the form

gor s2 30

Poq1 T2 S3 I

[=lleleNe]

P1 42 13 S4
0 prgsry
0 0 p3qa

0
0

oS O© O

Is
S5y
rs X2

00 0 psgsx

0000p5)€0_

where the matrix elements are given by the general expressions

Pi
qi

Xi

=4aci+10

=aciy11+bcip

i+1

Jj=m

i
— b E C,',j
j=m

= Ce.,i

B
y = E CB,j
j=m

The condition for the stability of the queue is when average traffic at the queue input
is smaller than the average traffic at the queue output.

a<mc

i =aciyip+bc

| =a Z Cit1j+hcin

(7.95)

(7.96)
(7.97)
(7.98)

(7.99)

(7.100)

(7.101)

(7.102)

(7.103)
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7.81 M/M™/1/B Queue Performance

The average input traffic for the M/M™ /1/B queue is obtained simply as
Nq(in) =a (7.104)

Traffic is lost in the M/M™/1/B queue when it becomes full and a packet arrives
while no packets leave. The average lost traffic N, (/ost) is expressed simply as

N,(lost) =a sp cpp (7.105)
The packet loss probability L is the ratio of lost traffic relative to the input traffic

_ Nu(lost)

[ =47 7.106
N, (i) SB CBO ( )

The throughput of the queue is obtained using the traffic conservation principle

Th = N,(@in)— N,(lost)
=da (1 — SBCB_()) (7107)

The efficiency of the M/ M™ /1/B queue is given by

n=1-L
=1—spcpo (7.108)

The average queue size is given by the equation

B
Qu=> is (7.109)

=0

We can invoke Little’s result to estimate the wait time, which is the average number
of time steps a packet spends in the queue before it is routed.

0.=WxTh (7.110)

where W is the average number of time steps that a packet spends in the queue.
Thus W is given by

= Qe

W =
Th

(7.111)
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The wait time is measured in units of time steps. The wait time in units of seconds
is given by the unnormalized version of Little’s result.

_ 9

| —
Th

(7.112)

Example 7.9. Consider the M/M™ /1/B queue with the following parameters a =
0.1, ¢ = 0.07, m = 2, and B = 5. Check its stability condition and find the
equilibrium distribution vector and the queue performance.

Using (7.95), the transition matrix is

[0.9070 0.0635 0.0044 0 0 0
0.0930 0.8500 0.1186 0.0126 0 0
0 0.0865 0.7966 0.1661 0.0241 0
0 0 0.0804 0.7464 0.2069 0.0425
0 0 0 0.0748 0.6994 0.2618
0 0 0 0 0.0696 0.6957 |

The transition matrix has two superdiagonals because m = 2.
The steady-state distribution vector is the eigenvector of P that corresponds to
unity eigenvalue. We have

s = [0.2561 0.3584 0.2414 0.1043 0.0324 0.0074 '

We see that the most probable state for the queue is state s; which occurs with
probability 35.8 %.
The queue performance is as follows:

N, (lost) = 6.4058 x 1074 packets/time step
Th= 0.0994 packets/time step
L = 0.0064 x 1072
n=  0.9936
0, = 1.3205 packets
W = 13.2906 time steps ]

Example 7.10. Find the performance of the queue in the previous example when
the queue size becomes B = 10.
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The queue performance is as follows:

Ni(lost) = 2.6263 x 1078
Th = 0.1
L =2.6263 x 1077

n= 1
Q.= 13286
W= 132862

7 Queuing Analysis

packets/time step

packets/time step

packets

time steps

We see that increasing the queue size exponentially decreases the loss probability.

The throughput is not changed by much.

Example 7.11. Plotthe M/M™ /1/B performance when m = 2 and the input traffic
varies between 0 < a < 1 for B = 5and ¢ = 0.05.

Figure 7.7 shows the throughput, efficiency, loss probability, and delay to plot these

quantities versus input traffic.

The important things to note from this example are:

1. The throughput of the queue increases with increasing input traffic but shows
slight decrease when the input traffic approaches the value m c.
2. The efficiency of the queue is very close to 100 % until the input traffic

approaches the maximum output traffic m c.

3. Packet loss probability is always present but starts to increase when the input

traffic approaches the value m c.

4. Packet decreases when the input traffic approaches the value m c. This is due to
the queue size becomes constant while the throughput keeps increasing. ||

7.8.2 Performance Bounds on M/M™ /1/B Queue

The previous examples help us get some rough estimates for the performance

bounds of the M/M/™1/B queue.

Under full load conditions, the M/ M™ /1/B become full and we can assume

a—1
b—0
so — 0
sg — 1

0, —~ B

(7.113)
(7.114)
(7.115)
(7.116)
(7.117)
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Fig. 7.7 M/M™/1/B throughput, efficiency, loss probability, and delay versus input traffic when
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The maximum lost traffic is given from (7.105) by
N, (IOS[)max = CBo
==
<d" (7.118)
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where n = min(B,m). The reason for the inequality sign is that sp seldom
approaches 1.
The maximum packet loss probability is given from (7.106) by

L(max) = cp
={1-0¢)
<d" (7.119)

The maximum throughput is given from (7.107) by

Th(max) =1 —cpy
>1—(=c)
=1-d" (7.120)

The minimum efficiency of the M/M™ /1/B queue is given from (7.108) by
n(min) > 1 —d" (7.121)

The maximum delay is given by the approximate formula

W(max) < L
~ Th(max)

B
<
—1-dn
B
1—dm

IA

(7.122)

7.8.3 Alternative Solution Method

When B is large, it is better to use numerical techniques such as forward- or
backward substitution using Givens rotations.
At steady state we can write

Ps=s (7.123)

We can use the technique explained in Sect. 4.10 on page 146 to construct a system
of linear equations that can be solved using any of the specialized software designed
to solve large systems of linear equations.
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7.9 The D/M/1/B Queue

Inthe D/M/1/B queue packets arrive at a fixed rate but leave the queue in a random
fashion. Let us assume that the time step is chosen such that exactly one packet
arrives at the n-th time step. Assume also that ¢ is the probability that a packet
leaves the queue during one time step. We also assume that at most one packet leaves
the queue in one time step. d = 1 — ¢ has the usual meaning. Figure 7.8 shows
the state transition diagram for such queue for the case when n = 4 and B = 4
also. The number of rows corresponds to the number of time steps between packet
arrivals. The last row corresponds to the states when a packet arrives. The number of
columns corresponds to the size of the queue such that each column corresponds to a
particular state of queue occupancy. For example, the leftmost column corresponds
to the case when the queue is empty. The rightmost column corresponds to the case
when the queue is full. The state of occupancy of the queue is indicated in Table 7.1.

In that case we know that a packet arrives when the queue is in one of the bottom
states 3,0, $3.1, 53,2, 53,3, OF §3 4.

The state vector s can be grouped into B subvectors

s=[sos ---sg] (7.124)

Fig. 7.8 State transition
diagram for the discrete-time
D/M/1/B queue

Table 7.1 Relation of the

States Queue occupancy
queue states and the "
D/M/1/B queue occupancy So0=$30 | Queue empty .

So.1—s3,1 | One customer in queue

S02—s32 | Two customers in queue

So,;j—$3,j | J customers in queue
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where the subvector s; corresponds to the j-th column in Fig. 7.8 and is given by

t
sj =[S0 15 - Su-1j ] (7.125)

corresponds to the case when there are j customers in the queue. The state transition
matrix P corresponding to the state vector s will be of dimension n(B+1)xn(B+1).
We describe the transition matrix P as a composite matrix of size (B 4+ 1) x (B 4 1)
as follows.

[ACO0---000]
BDC---000
0OBD---000

P=| i i (7.126)
000---DCO
000.---BDC
[ 000---0BE |

where all the matrices A, B, C, D, and E are of dimension n x n. For the case n = 4
we can write

000cT] [000d 0000
A= 1000 ’ B — 0000 ’ C= c000
0100 0000 0c00
0010 L0000 00cO
000cT] (0001
D= d00o0 ’ E— d0o0o
0400 0d00
00dO0J L 00dO0

Having found the state transition matrix, we are now able to find the steady state
value for the distribution vector of the D/M/1/B queue. At steady state the
distribution vector s is derived from the two equations

Ps=s (7.127)
1s=1 (7.128)

where 1 is a row vector whose components are all 1’s.
We can find the vector s by iterations as follows. We start by assuming a value

for element 5oy = 1. As a consequence, all the elements of the vector sy can be
found as follows
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S§1,0 = S0,0 = 1 (7129)
§20 = S10 = 1 (7]30)
§3,0 = 820 = 1 (7131)

(7.132)

Thus we know that s, is assumed to be a vector whose components are all ones.
To find s; we use the equation

so = Asy + Cs; (7.133)
or
s1=C'I—A)sy (7.134)

Since we have an initial assumed value for sy, we now know s;. In general we can
write the iterative expressions

si=C'I—-A)si_, 1<i<B (7.135)
Having found all the vectors s;, we obtained the normalized distribution vector 8" as
n—1 B

=5/ si (7.136)

i=0 j=0

7.9.1 Performance of the D/M/1/B Queue

The average input traffic N,(in) is needed to estimate the efficiency of the queue
and queue delay. Since we get one packet every n time steps, N, (in) is given by

Na(in) = % (7.137)

The throughput of the queue is given by

n—1 B

Th=cs,—10+c Z ZSU

i=0 j=1

n—2
=c (1 - Zs,,o) (7.138)
i=0
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The efficiency of the D/M/1/B queue is given by

Th n—2
= = 1— . 7.13
1= N = ( ;s ,0) (7.139)

Packets are lost in the D/M /1B queue when the queue is full and a packet arrives
but does not leave. The average lost traffic is given by

N,(lost) = ds,—.p (7.140)

The packet loss probability L is given by

N,(lost)
L="""=d(ns,_ 7.141
Na(ll’l) nsSuy—1,B ( )
The average queue size is given by
n—1 B
Qu=>_> isi, (7.142)
i=0 j=0

7.10 The M/D/1/B Queue

In the M/ D/1/B queue packets arrive in a random fashion but leave the queue at a
fixed rate. Let us assume that the time step is chosen such that a packet leaves at the
n-th time step. Assume also that a is the probability that it arrives at queue during
one time step. b = 1 — a has the usual meaning. We also assume that at most one
packet arrives in the queue in one time step. Figure 7.9 shows the state transition

Fig. 7.9 State transition
diagram for the discrete-time
M/D/1/B queue
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Table 7.2 Relation of the
queue states and the
M/D/1/B queue occupancy

States Queue occupancy
50.0—530 | Queue empty
S0.1—s3,1 | One customer in queue

S02—s32 | Two customers in queue

So,;j—$3,; | J customers in queue

diagram for such queue for the case when n = 4 and B = 4 also. The number
of rows corresponds to the number of time steps between packet departures. The
last row corresponds to the states when a packet leaves. The number of columns
corresponds to the size of the queue such that each column corresponds to a
particular state of queue occupancy. For example, the leftmost column corresponds
to the case when the queue is empty. The rightmost column corresponds to the case
when the queue is full. The state of occupancy of the queue is indicated in Table 7.2
In that case we know that a packet leaves when the queue is in one of the bottom
states 3,1, $32, §3.3, OI §3 4.
The state vector s can be grouped into B subvectors

s=[sosi---sg] (7.143)

where the subvector s; corresponds to the j-th column in Fig. 7.8 and is given by

SJ' = [S().j S1~j Sn—l.j ]t (7144)

corresponds to the case when there are j customers in the queue.

The state transition matrix P corresponding to the state vector s will be of
dimension n(B + 1) x n(B + 1). We describe the transition matrix P as a composite
matrix of size (B 4+ 1) x (B + 1) as follows.

[ACO0---000]
BDC---000
0OBD---000

P=| i i (7.145)
000---DCO
000.---BDC
(000---0BE |
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where all the matrices A, B, C, D, and E are of dimension n x n. For the case n = 4
we can write

FT00017 F00007 000b
b000 a000 0000
A= 0boo |’ B= 0a00 |’ C= 0000
L00b 0 | L00a0 ] 0000
F000aT] f000aT]
D Hb000O 7 gp_|1000
0b00 0100
L 00b 0| L0010 ]

Having found the state transition matrix, we are now able to find the steady state
value for the distribution vector of the M/D/1/B queue. At steady state the
distribution vector s is derived from the two equations

Ps=s (7.146)
1s=1 (7.147)

where 1 is a row vector whose components are all 1’s.
We can find the vector s by iterations as follows. We start by assuming a value

for element 5oy = 1. As a consequence, all the elements of the vector sy can be
found as follows

S1.0 = bSo_o =b (7148)
8§20 = bS1_0 = bz (7149)
530 = bsyo = b’ (7.150)

(7.151)

Thus we know sy. To find s; we use the equation
so = Asy + Cs; (7.152)
or
s1=C'I—A)s (7.153)

Since we have an initial assumed value for sy, we now know s;. In general we can
write the iterative expressions

si=C'I—-A)si_, 1<i<B (7.154)
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Having found all the vectors s;, we obtained the normalized distribution vector s’ as

n—1 B

S =5/ si (7.155)

i=0 j=0

7.10.1 Performance of the M/D/1/B Queue

The average input traffic N,(in) is needed to estimate the efficiency of the queue
and queue delay. N,(in) is given by

N,(in)=Na (7.156)

The throughput of the queue is given by
B
Th=a) s, 1, (7.157)

The efficiency of the D/M/1/B queue is given by

Th
— 7.158
= N, (zn) N Zs Lj ( )

Packets are lost in the M/ D/1B queue when the queue is full and a packet arrives
but does not leave. The average lost traffic is given by

n—2
Nu(losty =a sip (7.159)
i=0
The packet loss probability L is given by
N,(lost 13
= Nallos) 1~ (7.160)
N, (in) N “

=YY isi; (7.161)
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7.11 Systems of Communicating Markov Chains

In the previous sections we investigated the behavior of single Markov chains
or single queues. More often than not communication systems are composed of
interconnected or interdependent Markov chains or queues. As an example, let us
consider Fig. 7.10. This system represents an entity that is connected to a bus or
a communication channel in general. This could be the Ethernet network interface
card (NIC) on a computer connected to a local area network. The system to be
analyzed consists of:

1. traffic source
2. packet or transmit buffer
3. medium access module

Each one of these components can be modeled individually using Markov chain
analysis. For example, the traffic source can be modeled using the techniques in
Chap. 15. The transmit buffer is of course modeled using any of the queuing models
discussed in this chapter. The medium access module could be modeled using the
techniques discussed in Chap. 10.

Let us assume that the Markov models for the three components are characterized
by s, states for the traffic source, s, states for the queue, and s3 states for the medium
access module. We could develop a unified Markov model for our system and this
would probably require s; x s, x s3 states. This is the state explosion problem
associated with most Markov chain models. If we, on the other hand, treat the
problem as a system of dependent Markov chains, then we are in effect dealing with
the individual components and the total number of states is s; + s, + s3. Of course,
we cannot solve each system separately since the state of each component depends
on the other components communicating with it.

We can generalize the problem by considering a communicating Markov chain
system composed of n modules. Module i is characterized by four quantities:

1. State transition matrix P;

2. Steady state distribution vector s;

3. Probabilities x; corresponding to the module inputs
4. Probabilities y; corresponding to the module outputs

The parameters of each transition matrix P; (0 < i < n) depend in general on the
values of s, x; and y; of all the other modules or systems. Furthermore, the module
inputs and outputs x; and y; might also depend on the queue parameters such as s;.
In this analysis, we assume that x; and y; are independent variables for simplicity.
Figure 7.11 shows the system of n interdependent Markov chains.

Fig. 7.10 A system of - T Medium | Communication
several Markov chains or Somrce || Buffer () | ™| Access — Channel

Module
queues
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Fig. 7.11 Model of a x ,
network of interdependent 0 > Py, 59 —» Y0

Markov chains

X1

v

P.,s;, |7

-l —l Py, 8, L Vn-1

If we attempt to model the system in Fig. 7.11 as a single Markov chain, the
number of states we have to deal with would be given by

Merged number of states = IT'Z}K;

where K; is the number of states of module i. If all the modules had the same
number of states (K), then the total number of states would have been

Merged number of states = K"

If we deal with the system as a system of communicating and dependent Markov
chains, then the total number of states we have to deal with would be given by

n—1
Number of states = Z K;
i=0

where K; is the number of states of module i. If all the modules had the same
number of states (K), then the total number of states would have been

Number of states = nK
For typical systems, the quantity nK is much smaller than K". As an example,
assume a modest system where each module has K = 10 states and we have n

modules where n = 5. The number of states using the two approaches yield

Number of states = K" = 10° = 100,000

Number of states = nK = 50

The situation is even worse had K = 100 where our states would have been ten
billion using the former approach compared to 500 using the latter.
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This is one reason that researchers and engineers alike attempt to use Petri Nets
to describe typical systems [6, 7]. However, Petri Nets are basically graphical tools.
Our approach in this section could be very loosely considered as approaching Petri
Nets through establishing the communicating channels and dependencies between
the different modules of the system.

For each module in the system we can write the steady-state equation

Pi(sj,x;,yj)xsi=s; 0=<i,j<n (7.162)

where the notation P;(s;, x;, y;) indicates that P; is a function of s;, x; and y;.

Example 7.12. Assume a system of two interdependent queues such that the first
queue is a simple M/ M /1/B queue with parameters: arrival probability a, departure
probability ¢, and size B = 2. The second queue depends on the first queue as
indicated by the state transition matrix

Y=|: o l—xo]
l—a X

where o < 0 and x is the probability that the first queue is empty. Explain how the
steady state distribution vectors x and y of the two queues could be obtained.

We have for the first queue

l1—ad bec 0
X=| ad f be x=[xox1 %]
0 adl-—bc

where f = ac + bd. Since the first queue is not dependent on the second queue,
the steady state distribution vector is found using Eq. (7.17)

X =

l—p
1_p3x[1pp2]t

where p = ad/bc.
For the second queue we have

a 1—x

Matrix Y is determined since we know the value of xy. Thus we can find the value
of y using any of the techniques that we studied in Chap. 4. |



7.11 Systems of Communicating Markov Chains 273

7.11.1 A General Solution for Communicating
Markov Chains

In the general case, a simple solution for the system is not possible due to the
complexity of the transition matrices. The general steps we recommend to employ
can be summarized as follows:

Step 0: Initialization of s;

Set initial nonzero values for all the distribution vectors s; (0) forall 0 < i < n. Of
course each vector must be normalized in the sense that the sum of its components
must always be 1. In general, at iteration k the estimated value of s; (k) is known.
The notation s; (k) indicates the value of s; at iteration k.

Step 1: Estimating P;

The elements of the transition matrices P; (k) at iteration k can now be estimated
since s; (k), x; and y; are known. Initially, k& = O to start our iterations and we are
then able to calculate the initial P; (0).

Step 2: Calculating s;

Knowing P; (k) we can now calculate the values s; .(k), where the notation s; . (k)
indicates the calculated value of s; (k) which will most probably be different from
the assumed s; (k). We calculate s; . (k) using the equation

sic(k) = Pi(k) si (k) (7.163)

Again, initially k = 0 at the start of iterations.

Step 3: Calculating the Estimation Error e; (k)

The calculated value s; (k) will not be equal to the values s; (k). The estimation
error vector is calculated as

e (k) = sic(k) —s;(k) (7.164)

The magnitude of the estimation error for s; (k) is given by

e (k) = \Je! (k) e (k) (7.165)
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Step 3: Updating Value of s; (k)

We are now able to update our guess of the state vectors and obtain new and better
values s; (k + 1) according to the update equations

si(k +1) =s;(k) + ae; (k) 0<i<n (7.166)

where o < 1 is a small correction factor to ensure smooth convergence.

Step 4: Improving the Estimated Values of s; (k)

We repeat steps 1-3 with the new values s; (k + 1) until the total error measure ¢, is
below an acceptable level

n
@=Y &<y (7.167)
i=0

where y is the acceptable error threshold.

We are “confident” that convergence will take place since at each iteration
the matrices P; (k) are all column stochastic and their eigenvalues satisfy the
inequality A < 1.

7.12 Problems

Throughput and Efficiency

7.1. Consider a switch that generates its own traffic, N, (internal), in addition to the
traffic arriving at its input, N, (in), according to the discussion in Sect. 7.3. Define
the throughput and the efficiency for this system in terms of N,(in), N, (internal),
and N, (out), such that n never exceeds unity.

M/M/1 Queue

7.2. Prove that (7.13) on page 237 is true when the M/ M/1 queue is stable.

7.3. Consider an M /M /1 with a distribution vector p very close to unity such that
p=1—¢

where € < 1. Find the equilibrium distribution vector.
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7.4. Consider an M/M/1 queue with arrival probability ¢ = 0.5 and departure
probability ¢ = 0.6.

(a) Construct the first six rows and columns of the transition matrix P.
(b) Find the values of the first 10 components of the equilibrium distribution vector.
(c) Calculate the queue performance.

7.5. Repeat Problem 7.4 when the departure probability becomes almost equal to
the arrival probability (e.g. ¢ = 0.55).

7.6. Consider an M/M/1 queue with arrival probability ¢ = 0.1 and departure
probability ¢ = 0.5.

(a) Construct the first six rows and columns of the transition matrix P.
(b) Find the values of the first ten components of the equilibrium distribution vector.
(c) Calculate the queue performance.

7.7. Repeat Problem 7.6 when the departure probability becomes almost equal to
the arrival probability (e.g., ¢ = 0.11).

7.8. In an M/M/1 queue it was found out that the average queue size Q, = 5
packets and the average waiting time is W = 20 time steps. Calculate the queue
arrival and departure probabilities and find the first ten entries of the distribution
vector.

7.9. In an M/M/1 queue it was found out that the average queue size Q, = 2
packets and the average waiting time is W = 100 time steps. Calculate the queue
arrival and departure probabilities and find the first ten entries of the distribution
vector.

7.10. Equation (7.7) describes the M/M /1 queue when a packet could be served
in the same time step at which it arrives. Suppose that an arriving packet cannot
be served until the next time step. What will be expression for the state matrix?
Compare your result to (7.7).

7.11. Derive the performance for the M/M /1 queue described in Problem 7.10.

7.12. Inthe M/M/1 queue in Problem 7.10 it was found out that the average queue
size Q, = 2 packets and the average waiting time is W = 100 time steps. Calculate
the queue arrival and departure probabilities and find the first ten entries of the
distribution vector.

M/M/1/B Queue
7.13. Prove the average queue size formula for the M/M/1/B queue is given
in (7.47) on page 245.

7.14. Consider an M/M/1/B queue with arrival probability ¢ = 0.5, departure
probability ¢ = 0.6, and maximum queue size B = 4.
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(a) Construct the transition matrix P.

(b) Find the values of the components of the equilibrium distribution vector.

(c) Calculate the queue performance.

(d) Compare your results with those of the M/M/1 queue in Problem 7.4 having
the same arrival and departure probabilities.

7.15. Repeat Problem 7.14 when the departure probability becomes almost equal
to the arrival probability (e.g., ¢ = 0.55). Compare your results with those of the
M/M/1 queue in Problem 7.5 having the same arrival and departure probabilities.

7.16. Repeat Problem 7.14 when the departure probability actually exceeds the
arrival probability (e.g., ¢ = 0.8). Compare your results with those of the M/M/1
queue in Problem 7.5 having the same arrival and departure probabilities.

7.17. Consider an M/M/1/B queue with arrival probability ¢ = 0.1, departure
probability ¢ = 0.5, and maximum queue size B = 5.

(a) Construct the transition matrix P.

(b) Find the values of the equilibrium distribution vector.

(c) Calculate the queue performance.

(d) Compare your results with those of the M/M/1 queue in Problem 7.6 having
the same arrival and departure probabilities.

7.18. Repeat Problem 7.17 when the departure probability becomes almost equal
to the arrival probability (i.e., ¢ = 0.11). Compare your results with those of the
M/M/1 queue in Problem 7.7 having the same arrival and departure probabilities.

7.19. Equation (7.30), on page 242, describes the M /M /1/B queue when a packet
could be served in the same time step at which it arrives. Suppose that an arriving
packet cannot be served until the next time step. What will be expression for the
state matrix? Compare your result to (7.30).

7.20. Derive the performance for the M/ M /1/B queue described in Problem 7.19.

7.21. Consider an M/M/1/B queue with arrival probability ¢ = 0.4, departure
probability ¢ = 0.39, and maximum queue size B = 5. The queue is not stable
since the arrival probability is larger than the departure probability.

(a) Construct the transition matrix P.
(b) Find the values of the equilibrium distribution vector.
(c) Calculate the queue performance.

7.22. Inthe M/M/1 queue in Problem 7.20 it was found out that the average queue
size O, = 2 packets and the average waiting time is W = 100 time steps. Calculate
the queue arrival and departure probabilities and find the first ten entries of the
distribution vector.
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M™[M/1/B Queue

7.23. Write down the entries for the transition matrix of an M /M /1/B queue in
terms of the arrival and departure statistics aj and c, respectively. Consider the case
when B = 4.

7.24. Equation (7.63), on page 250, describes the M™ /M /1/B queue when up
to m packets could arrive at one time step. Prove that for the special case when
m =1, (7.63) becomes identical to (7.30).

7.25. Equation (7.63) describes the M™/M/1/B queue when a packet could be
served in the same time step at which it arrives. Suppose that an arriving packet
cannot be served until the next time step. What will be expression for the state
matrix? Compare your result to (7.63).

7.26. Consider an M /M/1/B queue with arrival probability a = 0.2, m = 2,
and departure probability ¢ = 0.39 and maximum queue size B = 5. The queue is
not stable since the average number of arrivals is larger than the average number of
departures.

(a) Construct the transition matrix P.
(b) Find the values of the equilibrium distribution vector.
(c) Calculate the queue performance.

M/M™/1/B Queue

7.27. Write down the entries for the transition matrix of an M/M™ /1/B queue in
terms of the arrival and departure statistics a and ¢y, respectively. Consider the case
when B = 4.

7.28. Equation (7.95), on page 257, describes the M/M™/1/B queue when up
to m packets could leave at one time step. Prove that for the special case when
m = 1, (7.95) becomes identical to (7.30).

7.29. Equation (7.95) describes the M™/M/1/B queue when a packet could be
served in the same time step at which it arrives. Suppose that an arriving packet
cannot be served until the next time step. What will be expression for the state
matrix? Compare your result to (7.95).

7.30. Consider an M/M™/1/B queue with arrival probability a = 0.5, departure
probability ¢ = 0.2, m = 2, and maximum queue size B = 5. The queue is not
stable since the average number of arrivals is larger than the average number of
departures.

(a) Construct the transition matrix P.
(b) Find the values of the equilibrium distribution vector.
(c) Calculate the queue performance.
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7.31. In the analysis of the M/M"™ /1 queue it was assumed that when a packet
arrives, it can serviced at the same time step. Suppose the arriving packet is serviced
in the next time step. Draw the state transition diagram and the write down the

C

orresponding transition matrix. Derive the main performance equations of such a

queue.
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Chapter 8
Modeling Traffic Flow Control Protocols

8.1 Introduction

In this chapter we illustrate how to develop queuing models for three protocols for
traffic management:

1. The leaky bucket algorithm
2. The token bucket algorithm
3. Virtual scheduling algorithm (VS)

Modeling a protocol or a system is just like designing a digital system, or any system
for that mater. There are many ways to model a protocol based on the assumptions
that one makes. My motivation here is simplicity and not taking a guided tour
through the maze of protocol modeling. My recommendation to the reader is to
read the discussion on each protocol then lay down the outline of a model that
describes the protocol. The model or models developed here should then be
compared with the one attempted by the reader.

8.2 The Leaky Bucket Algorithm

Computer traffic is seldom uniform and is characterized by periods of burstiness.
Traffic bursts tax the network resources such as switch buffers and lead to network
congestion and data loss. Because it is impossible for the network to accept only
uniform traffic, mechanisms have been proposed to regulate or smooth out these
bursts.

Thus traffic shaping, also known as traffic policing, aims at regulating the average
rate of traffic flow even in the presence of occasional bursts [1]. This helps manage
the congestion problem at the switches.

When a user accesses the network, the important parameter to describe the traffic
is the average data rate (4,). This is estimated by observing the number of packets
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(N) sent over a long time interval ¢ and finding the average data rate as A, = N/t.
This rate is compared to a maximum rate (A;) that is specified by the leaky bucket
algorithm. As long as A, < Ap, the user is classified as conforming and data is
accepted. Users that obey this traffic contract are termed conforming users, while
users that violate this contract are termed violating or nonconforming users. Traffic
policing to ensure that each user is conforming is done at the points where users
access the network (ingress points).

Leaky bucket is a rate-based algorithm for controlling the maximum rate of
traffic arriving from a source. If the input data rate is less than the maximum rate
specified by the algorithm, leaky bucket accepts the data. If the input data rate
exceeds the maximum rate, leaky bucket passes the data at the maximum rate and
excess data is buffered. If the buffer is full, then excess data is discarded. In our
modeling of the leaky bucket algorithm we are interested only in the state of the data
buffer since the state of that buffer dictates the actions to be done on the incoming
traffic. Our aim then is to simply model the buffer state so that we are able to predict
the performance of the algorithm

Figure 8.1a shows the leaky bucket buffer. The buffer accepts incoming data and
releases the stored packets at a data rate that does not exceed A;. Depending on the
data arrival rate A, and the state of occupancy of the packet buffer, the following
scenarios could take place.

1. A, < Ap: Data arrive at a rate (4,) lower than the maximum rate (4,) specified
by the leaky bucket algorithm. In that case data will be accepted as shown by the
arrival of packets 1 and 2 in Fig. 8.1b. The long time interarrival time between
packets 1 and 2 indicates a low data arrival rate. We assumed in the figure that
the maximum departure rate A, is equivalent to three time steps between packets.
As soon as these packets arrive, they are passed through by the leaky bucket

algorithm.
2. A, > Ap: Data arrive at a rate higher than A, and the data buffer is not full. In

that case data will be buffered so it can be issued at the maximum rate A,. This

a
—>| Packet buffer |—>
Variable rate Output traffic with
input traffic fixed maximum rate
b

Input traffic with variable rate

Output traffic with maximum rate

Fig. 8.1 The leaky bucket algorithm smoothes input variable rate traffic by buffering it and
regulating the maximum buffer output traffic rate. (a) Diagram of packet buffer. (b) Packet arrival
and departure
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Fig. 8.2 Control of data rate Maximum output rate
by the leaky bucket
algorithm. Data rate at the °
input is indicated by the grey §
areas and data rate at the =

c . a = — ——
output is indicated by the — - - e —
black lines o —— _—

0

Time

is shown by arrival of packets 3, 4, and 5 in Fig. 8.1b. Note that packets 3, 4,
and 5 are arrived close together in time at the input indicating a high input data
rate. The interarrival time is 2 time steps which indicates higher data rate than A,
which is equivalent to two time steps. At the output, the spacing between these
packets is equivalent to data transmitted at the rate 4.

3. Ay, > Ap: Data arrive at a rate higher than A, and the data buffer is full. In that
case data will be discarded or labeled as nonconforming. This is shown by arrival
of packets 6 and 7 in Fig. 8.1b.

Figure 8.2 shows the variation of output data rate in relation to the input data rate.
Grey areas indicate input data rate and solid black lines indicate maximum data rate
Ap. Output data rate does not exceed A, and any excess input traffic is buffered or
lost. The figure shows two occasions when the input data rate exceeds A,. When this
situation happens excess data is buffered and then released when the output data rate
becomes low again.

8.2.1 Modeling the Leaky Bucket Algorithm

In this section we perform Markov chain analysis of the leaky bucket algorithm.
The states of the Markov chain represent the number of packets stored in the leaky
bucket buffer.

Packets arrive at the input of the buffer at a rate A;, which varies with time
because of the burstiness of the source. To model the source burstiness in a simple
manner, we assume the data source has the following parameters:

Aq Average data rate of source.
o Source burst rate when it is nonconforming.

A, and o typically satisfy the relations

da < Ap (8.1)
o > )kb (8.2)

where A, is the maximum data departure rate as determined by the leaky bucket
algorithm.
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On the other hand, packets leave the buffer with an output rate A,,, given by

min (A;,,, Ap) When packet buffer is empty

8.3
Ap When packet buffer is not empty 8-3)

A()ut =

Notice that the output data rate is governed by the state of the data buffer and not by
the input data rate.

The leaky bucket algorithm can be modeled using two different types of queues
depending on our choice of the time step. These two approaches are explained in
the following two sections.

8.2.2 Single Arrival/Single Departure Model (M /M/1/B)

In this approach to modeling the leaky bucket algorithm we take the time step equal
to the inverse of the maximum data rate on the line.

T = l_z (8.4)

where the time step value is measured in units of seconds and A; is the maximum
input line rate (in units of packets/s) such that

Ab<A/

The above inequality is true since the line is shared by many users. The time 7 is
the time between packet arrivals at the maximum allowable rate on the input line.
When A; is specified in units of bits per second (bps), T is obtained as

A

T=2
vy

(8.5)

where A is the average packet length.

Figure 8.3 shows the events of packet arrival and departure and also the time step
value as indicated by the spacing between the grey tick marks.

At a given time step a maximum of one packet could arrive at or leave the
buffer. The packet arrival probability (@) is given by studying the number of arriving
packets in a time 7. The average number of packets arriving in this time frame is

N(in) = Ay t (8.6)
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Variable rate input traffic

time step
Output traffic with maximum rate

Fig. 8.3 The leaky bucket algorithm where the time step is chosen equal to the inverse of the
maximum line rate

But during this time period, we have N time steps with N = ¢/T. The average
number of arriving packets is estimated also using the binomial distribution as

. t
N(@n)=aN =a — (8.7)
T
From the above two equations we get
Aq
=A, T = — 8.8
a by (8.8)

Of course, when the source is conforming, the departure probability is ¢ = 1. Using
a similar argument, the minimum packet departure probability (c) is given by

Aout

Therefore, we have a single-input, single-output data buffer whose size is
assumed B. The queue we are studying becomes M/M/1/B queue and the
transition matrix is (B + 1) x (B + 1) and is given by

[ fobc 0 0---0 0 0 O
ad f bc 0 ---0 0 0 O
0 ad f bc---0 0 0 O
0 Oad f--0 0 0 0

P=| : :oroiiorr (8.10)

00 0 0--fbcO 0
0 0 0 O0--ad f bc O
0 0 0 O0--0wad f bc

L 00 0 0--0 0 adl—bhc|

whereb=1—-a,d =1—c, fy=1—ad,and f =1—ad — bc.
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8.2.3 Leaky Bucket Performance (M /M /1/B Case)

Having obtained the transition matrix, we are able to calculate the performance of
the leaky bucket protocol.

The throughput of the leaky bucket algorithm when the M/M/1/B model is
used is given from Sect. 7.6 on page 241 by

Th=c (1->sp) (8.11)

The throughput is measured in units of packets/time step. The throughput in units
of packets/second is expressed as

Th A
=0T (8.12)
T A

Th

where we assumed A; was given in units of bits/s.
The average number of lost or tagged packets per time step is obtained using the
results of the M/M/1/B queue

N,(lost) =sgpad (8.13)

The lost traffic is measured in units of packets/time step. And the number of packets
lost per second is

N,(lost)

N/(lost) =
,(lost) T

= N,(lost) x % (8.14)

where we assumed A; was given in units of bits/s. The packet loss probability is
given by

_ Nu(lost) spad

L= = 8.15
Ny(in) Ao 815
The average queue size is given by
B
Qu=> is (8.16)
i=0
where s; is the probability that the data buffer has i packets.
Using Little’s result, the average wait time in the buffer is
W = o (8.17)

T Th



8.2 The Leaky Bucket Algorithm 285

The wait time is measured in units of time steps. The wait time in units of seconds
is given by

_ 9

| —
Th

(8.18)

Example 8.1. A leaky bucket traffic shaper has the following parameters.

Aqs = 1 Mbps o = 4 Mbps
Ap = 1.5Mbps A; = 50 Mbps
A =400 bits B = 5 packets

Derive the performance of this protocol using the M/M/1/B modeling
approach.

The arrival probability is

ra 0.02
a=—=0~0.
Y

The minimum departure probability is

Y _ .03
c=—=0.
by
We see that under the assumed traffic conditions the arrival probability is larger than
the departure probability and we expect the packet buffer to be filled.
The transition matrix will be

[10.9399 0.0281 0 0 0 0
0.0601 0.9117 0.0281 0 0 0
0 0.0601 0.9117 0.0281 0 0
0 0 0.0601 0.9117 0.0281 0
0 0 0 0.0601 0.9117 0.0281
0 0 0 0.0601 0.9719 |

The equilibrium distribution vector is

s = [0.0121 0.0258 0.0551 0.1177 0.2516 O.5377]l

Since 55 = 0.5377, we conclude that 53.77 % of the time the packet data buffer is
full. The other performance parameters are:

Th = 0.0297 packets/time step
Th' = 3.7076 x 103 packets/s
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N,(lost) = 0.0323 packets/timestep
N/(lost) = 4.0424 x 10° packets/s

L = 1.0432 x 1073

oy = 4.1843 packets

w = 141.0713 times steps

w’ = 94.048 s

We note that the leaky bucket is tagging or dropping 76.02 % of the incoming
packets. |

8.2.4 Multiple Arrival/Single Departure Model (M™ /|M/1/B)

In this approach to modeling the leaky bucket algorithm we take the time step equal
to the inverse of the maximum data rate as dictated by the leaky bucket algorithm
for that particular source.

1

T=—
Ap

(8.19)

where the time step is measured in units of seconds and the leaky bucket rate Aj
is in units of packets/s. Usually A, is specified in units of bits/s. In that case T is
obtained as

T = " (8.20)

where A is the average packet length.
Figure 8.4 shows the events of packet arrival and departure and also the time step
value as indicated by the spacing between the successive output packets.

Variable rate input traffic

time step

Output traffic with maximum rate

Fig. 8.4 Events of packet arrival and departure for the leaky bucket algorithm. The time step value
is equal to the time between two adjacent output packets
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At a given time step one or more packets could arrive at the buffer and only one
packet can leave if the buffer is not empty. Therefore, we have an M"/M/1/B
queue to describe the state of the packet buffer.

The average data rate of the source as seen by the leaky bucket algorithm is given
by A,. The maximum number of packets that could arrive at the queue input in one
time step is determined by the maximum burst rate o

N=[oxT]= (%1 (8.21)

where [x] is ceiling function which produces the smallest integer that is larger than
or equal to x.
The probability of k packets arriving in one time step is given by

akZ(Z)akbN_k k=0,1,2,....N (8.22)

where a is the probability that a packet arrives and b = 1 — a.
The average number of packets arriving in one time step is estimated as

Ny(in)=A,T (8.23)
The average input packets is estimated also using the binomial distribution as
N,(in)=a N =a[oT] (8.24)
From the above two equations we get

A T
<

a:[aﬂ_

(8.25)

Qg

Because of our choice for the time step size, the queue size can only decrease by
one at most at any instant with probability ¢ = 1. Assuming the packet buffer size
is B, the transition matrix will be (B + 1) x (B + 1) and will be slightly modified
from the form given by (7.63) on page 250:

X ap 0 0 0 -0

ay dp 7N 0 0 -0

as dp aq agp 0 -0
P=|as a3 a a ay --- 0 (8.26)

. 0

ap dp—1 dp—3 Ap—3 dp—4 *** Ao
| 2B ZB—1 ZB—2 ZB—3 ZB—4 "' 20 |
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where x = ap + a; and

a=1-) g, (8.27)
j=0

8.2.5 Leaky Bucket Performance (M™ [M/1/B Case)

Having obtained the transition matrix, we are able to calculate the performance of
the leaky bucket protocol.

The throughput of the leaky bucket algorithm when the M™/M/1/B model is
used is given from Sect. 7.7 on page 249 with a departure probability ¢ = 1

Th=1- ap So (828)

The throughput is measured in units of packets/time step and the throughput in units
of packets/s is

Th =Thx A packets/s (8.29)
The lost or tagged packets are given by
N,(lost) = N,(in) — N,(out)
=Na—-—(—apsop) (8.30)

The lost traffic is measured in units of packets/time step. The average lost traffic per
second is given by

N, (lost)
T
=[N a—(1—agsy)]rp (8.31)

N.(lost) =

The packet loss probability / is the ratio of lost traffic relative to the input traffic

I = N,(lost)

 Na(in)
1—

—1__—95% (8.32)

N a
The average queue size is given by

B

Qu=> is (8.33)
i=0

where s; is the probability that the data buffer has i packets.
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Using Little’s result, the average wait time in the buffer is

04
W= (8.34)

The wait time is measured in units of time steps. The wait time in units of seconds

is given by

r_ Qa
W= (8.35)

Example 8.2. Repeat Example 8.1 using the M™/M/1/B modeling approach.
Assume the probability the source is conforming is 0.3.

The average input data rate is
A =1x03+4x07=3.1 Mbps
N is found as
o
N = (A—bW =3
The packet arrival probability is
a=Mx,xT =0.6389

The probability that k packets arrive in one time step is

3
ay = (k)akb3_k K=0,12,3
The transition matrix will be
[0.2301 0.0301 0 0 0 0
0.4429 0.2000 0.0301 0 0 0

0.3269 0.4429 0.2000 0.0301 O

0

0.3269 0.4429 0.2000 0.0301 O

P=
0
0 0
0 0

0.3269 0.4429 0.2000 0.0301
0 0.3269 0.7699 0.9699 |

The equilibrium distribution vector is

s =[000.0001 0.0014 0.0370 0.9615 |
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We see that 96 % of the time the packet buffer is full. The other performance
parameters are:

Th =1 packets/time step
Th = 3.7500 x 103 packets/s
N,(lost) = 1.0667 packets/time step
L = 0.5161

Q. = 4.9600 packets

w = 4.96 times steps

w’ =13 ms

Comparing these performance figures with those obtained for the same system
using the M/M/1/B queue, we see that the packet throughput and delay in the
system are approximately similar. One possible reason for the small variation is the
use of the ceiling function in the M™ /M /1/B analysis. |

8.3 The Token Bucket Algorithm

Token bucket is a credit-based algorithm for controlling the volume of traffic
arriving from a source. Tokens are issued at a constant rate and arriving packets
can leave the system only if there are tokens available in the token buffer. Figure 8.5
shows the token bucket algorithm as it applies to a packet buffer. Figure 8.5a shows
the input data buffer and token buffer. Input data arrive with a variable rate while the
tokens arrive with a constant rate. There is mutual coupling or feedback between the
two buffers such that both the tokens and the packets depart at the same rate which
varies depending on the states of both queues.

Figure 8.5b shows the events of packet arrival and departure as well as token
arrival (indicated by the grey circles). Depending on the data arrival rate and the
state of occupancy of the token buffer, the following scenarios could take place.

1. No data arrive and tokens are stored in the buffer and count as credit for the
source. This is similar to the situation before the arrival of packet 1 in Fig. 8.5b.

2. Data arrive at a rate lower than the token issue rate. In that case data will be
accepted and the excess tokens will be stored in the token buffer as credit since
the source is conforming. This is similar to the arrival of packets 1, 2, and 3 in
Fig. 8.5b. More token arrive than data and token buffer starts filling up.

3. Data arrive at a rate higher than the token issue rate. In that case data will be
accepted as long as there are tokens in the buffer. This is similar to the arrival of
packets 4 and 5 in Fig. 8.5b. Packets 4 and 5 go through although no tokens have
arrived because the token buffer was not empty. When the token buffer becomes
empty, data will be treated as in the following step.

4. Data arrive but no tokens are present. Only a portion of the data will be accepted
at a rate equal to the token issue rate. The excess data can be discarded or tagged



8.3 The Token Bucket Algorithm 291

a
Token arrive
at a constant rate _>| Token buffer
. Tokens and output
Mutual coupling traffic depart with
Input traffic arrive > same variable rate
at a variable rate Packet buffer
b

Arriving token
at a constant rate

Input traffic with

EEE L L b

Output traffic with
variable rate

Fig. 8.5 The token bucket algorithm smoothes input variable rate traffic by buffering it and
regulating the maximum buffer output traffic rate. (a) Diagram of packet buffer. (b) Packet arrival
and departure

Fig. 8.6 Control of data rate Token arrival rate

by the token bucket

algorithm. Data rate at the = — /

input is indicated by the grey §

areas, data rate at the output e B e = ? _________

is indicated by the black lines A= - s e B

and the dashed line is the | e e = = =

token issue rate 0 =
Time

as nonconforming. This is similar to the arrival of packets 6, 7, and 8 in Fig. 8.5b.
Packets 6 and 7 arrive when the token buffer is empty and do not go through. The
packets get stored in the packet buffer and when a token arrives packet 6 goes
through.

Figure 8.6 shows the variation of output data rate in relation to the input data
rate. Grey areas indicate input data rate and solid black lines indicate output data
rate. The dashed line in the middle of the figure indicates the token arrival rate. We
see that output data rate can temporarily exceed the token rate but only for a short
time. The duration of this burst depends on the amount of tokens stored in the token
buffer. Bigger token buffer size allows for longer bursts from the source. However,
a bursty source will not allow the token buffer enough time to fill up.

On the other hand, the packet buffer allows for temporary storage of arriving
packets when there are no tokens in the token buffer.
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8.3.1 Modeling the Token Bucket Algorithm

In this section we perform Markov chain analysis of the token bucket algorithm.
The states of the Markov chain represent the number of tokens stored in the token
buffer or bucket and the number of packets stored in the packet buffer.

We cannot model the token buffer separately from the packet buffer since the
departure from one buffer depends on the state of occupancy of the other buffer. In
a sense we have two mutually coupled queues as was shown in Fig. 8.5a.

The token bucket algorithm can be modeled using two different types of queues
depending on our choice of the time step. These two approaches are explained in
the following two sections.

8.3.2 Single Arrival/Single Departure Model (M /M /1/B)

In this approach to modeling the token bucket algorithm we take the time step equal
to the inverse of the maximum data rate on the line

1

T=— .
gy (8.36)

where T is measured in units of seconds and A; is the maximum input line rate in
units of packets/s. Usually A; is specified in units of bps. In that case T is obtained as

A

T=2
vy

(8.37)

where A is the average packet length.
Figure 8.7 shows the events of packet arrival and departure and also the time step
value as indicated by the spacing between the grey tick marks.

Arriving token
at fixed rate

Input traffic with 1 2

xR

. Output traffic with
time step variable rate

Fig. 8.7 The token bucket algorithm where the time step is chosen equal to the inverse of the
maximum line rate
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Packets arrive at the input of the buffer at a rate A, which varies with time because
of the burstiness of the source. To model the source burstiness in a simple manner,
we assume the data source has the following parameters:

A4 Source average data rate.
o Source burst rate.

A, and o typically satisfy the relations

Ao < Ae (8.38)
o> A (8.39)

where A, is the token arrival rate.

The overall average data rate of the source as seen by the token bucket algorithm
is given by A,. At a given time step a maximum of one token could arrive at or leave
the token buffer. Thus the packet buffer is described by an M/M/1/B queue. The
token arrival probability (a) is given by

“Tu

(8.40)

We also define b = 1 — a as the probability that a token does not arrive.

At a given time step a maximum of one packet could arrive or leave the packet
buffer. Since a token leaves the token buffer each time a packet arrives, the token
departure probability c is given by

c=22 (8.41)

We also define d = 1 — ¢ as the probability that a token does not leave the token
buffer.

The state of occupancy of the foken buffer depends on the statistics of token and
packet arrivals as follows:

1. The token buffer will stay at the same state with probability ac +bd ; i.e., when a
token arrives and a packet arrives or when no token arrives and no packet arrives
too.

2. The token buffer will increase in size by one with probability ad; i.e., if a token
arrives but no packets arrive.

3. The token buffer will decrease in size by one with probability bc; i.e., if no token
arrives but one packet arrives.

The state of occupancy of the packet buffer depends on the statistics of the token
and packet arrivals as follows:

1. The packet buffer will stay at the same state with probability ac +bd, i.e. when a
token arrives and a packet arrives or when no token arrives and no packet arrives
too.
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2. The packet buffer will increase in size by one with probability bc; i.e., if no token
arrives but one packet arrives.

3. The packet buffer will decrease in size by one with probability ad; i.e., if a token
arrives but no packets arrive.

Based on the above discussion, we have two single-input, single-output buffers.
The size of the token buffer is assumed B; and the size of the packet buffer is
assumed B,.

Figure 8.8 shows the Markov chain transition diagram for the system comprising
the token and packet buffers. The upper row represents the states of the token
buffer and the lower row represents the states of the packet buffer. The transition
probabilities are dictated by the token and packet arrival probabilities and the states
of occupancy of the token and packet buffers. The figure shows a token buffer whose
size is B, = 4 and a packet buffer whose size is B, = 3.

The numbering of the states is completely arbitrary and does not necessarily
represent the number of tokens or packets in a buffer. The meaning of each state is
shown in Table 8.1.

The transition matrix of the composite system is a (B, + B, + 1) X
(B: + B, + 1) tridiagonal matrix. For the case when B, = 4 and B, = 3 the
matrix is given by

Fig. 8.8 Markov chain actbd ((I51)

transition diagram for the
system comprising the token
and packet buffers. Token
buffer size is B, = 4 and Packet buffer states ad ad
packet buffer size is B, = 3 ac+bd ac+bd l-ad

Table 8.1 Defining the

‘ ) . State | Token buffer occupancy | Packet buffer occupancy
binomial coefficient

S 0 0
52 1 0
83 2 0
S4 3 0
S5 4 0
S 0 1
57 0 2
S8 0 3
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fbc 00 0 ad O 0
ad f bc 0 0 0 0 0
0ad f bc 0 0 O 0
0 O0Oad f bc 0 O 0
P=10 0 0adi=bc0 0 o (842)
bc 0 00 0 fad O
0000 0 bef ad
L0000 0 0 bcl—ad]

whereb=1—a,d =1—cand f =ac+bd =1—ad — bc.

8.3.3 Token Bucket Performance (M/M/1/B Case)

Having obtained the transition matrix, we are able to calculate the performance of
the token bucket protocol.

The throughput of the token bucket algorithm is the average number of packets
per time step that are produced without being tagged or lost. To find the throughput
we must study all the states of the combined system. It is much easier to obtain the
throughput using the traffic conservation principle after we find the lost traffic.

Packets are lost or tagged for future discard if they arrive when the packet buffer
is full and no token arrives at that time step. The average number of lost or tagged
packets per time step is

Ny(lost) =bc sp+p,+1 (8.43)

The lost traffic is measured in units of packets/time step. And the number of packets
lost in units of packets/second is

Ny(lost)

N/ (lost) =
,(lost) T

= Ny(lost) A (8.44)

The average number of packets arriving per time step is given by

N,(in) =c (8.45)
The packet loss probability is
_ Ny(lost)

L= Ny(in)

_bcosp g,

Cc
= b Sp 18,41 (8.46)
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The throughput of the token bucket algorithm is obtained using the traffic conserva-
tion principle
Th = N,(in) — N,(lost)
=c—bc sp+B,+1

=c(1—bsp+s,+1) (8.47)

The throughput is measured in units of packets/time step. The throughput in units
of packets/second is expressed as

Th A
=" =r1hxZ (8.48)
T A

Th

where we assumed A; was given in units of bits/s.
The packet acceptance probability p, or n of the token bucket algorithm is

Th
Ng(in)
1-L
1 —bsp+p,+1 (8.49)

Pa =

We remind the reader that packet acceptance probability is just another name for

the efficiency of the token bucket algorithm. It merely indicates the percentage of

packets that make it through that traffic regulator without getting lost or tagged.
The average queue size for the tokens is given by

By
0= Zi Si+1 (8.50)

i=1

Notice the range of values of the state index in the above equation.
Similarly, the average queue size for the packets is given by

BP
Qp = isSitnti 8.51)

i=1

Notice the range of values of the state index in the above equation.
Using Little’s result, the average wait time or delay for the packets in the packet
buffer is

o Qo

== (8.52)
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The wait time is measured in units of time steps. The wait time to in second is
given by

_ 9

W' =
Th'

(8.53)

Example 8.3. Find the performance of a token bucket traffic shaper that has the
following parameters, where A is the average packet length. Assume the probability
the source is conforming is 0.6.

Aqs = 10 Mbps ¢ = 50 Mbps
A = 15Mbps A; = 100 Mbps
A =400 bits B, = 2 packets
B, = 3 packets

The token arrival probability is

A o015
a=—=0.
Al
The average data rate at the input is
Aa=prs+(1—=p)o=26 Mbps
The token departure probability is
Ao _ 0,06
c=—=0.
Al

The transition matrix will be

[0.6680 0.2210 0 0.11100 0
0.1110 0.6680 0.2210 0 0 0
0 0.1110 0.7790 0 0 0
0.2210 0 0 0.6680 0.1110 0
0 0 0 0.2210 0.6680 0.1110
0 0 0 0 0.2210 0.8890 |

The equilibrium distribution vector is

s = [0.0641 0.0322 0.0162 0.1276 0.2541 0.5059 |'

We see that 50.59 % of the time the packet buffer is full indicating that the source is
misbehaving. The other performance parameters are:
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N,(lost) = 0.1118 packets/time step

N/(lost) = 2.7949 x 10* packets/s

L = 0.7453

Th = 0.1482 packets/time step

Th = 3.7051 x 10* packets/s

Pa =0.57

0. = 2.1533 packets

w = 14.5294 times steps

w’ =58118x107° s |

Example 8.4. Investigate the effect of doubling the token buffer or the packet buffer
on the performance of the token bucket algorithm in the above example.

Doubling the token buffer to B; = 4 or doubling the packet buffer results in the
following parameters:

Parameter | B, =2,B, =3 |B,=4,B,=3 |B,=2,B,=6

N.(lost) 0.1118 0.1104 0.1102
L 0.4300 0.4248 0.4239
Th 0.1482 0.1496 0.1498
Da 0.57 0.5752 0.5761
(oF 2.1533 2.1274 5.0173
W 14.5294 14.2250 33.4988

We note that increasing the buffer size improves the system performance.
However doubling the packet buffer size doubles the delay without too much
improvement in throughput compared to doubling the token buffer size. ]

8.3.4 Multiple Arrivals/Single Departure Model (M™ [M/1/B)

In this approach to modeling the token bucket algorithm we take the time step equal
to the inverse of the fixed token arrival rate.

T=— 54
7 (8.54)

where T is measured in units of seconds and A; is the token arrival rate in units of
packets/s. Usually A; is specified in units of bps. In that case T is obtained as

A

T =—
At

(8.55)

where A is the average packet length.
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Fig. 8.9 Events of packet arrival and departure for the token bucket algorithm. The time step value
is equal to the time between two adjacent arriving tokens

Figure 8.9 shows the events of packet arrival and departure and also the time step
value as indicated by the spacing between the successive tokens.

Thus at a given time step only one token arrives at the buffer and one or more
tokens can leave if the buffer is not empty and data arrives. The token arrival
probability per time step is given by

a=1 (8.56)

The average number of arriving packets per time step is given by

A@Un)::%ﬁ (8.57)

t

where the average input data rate (A, ) is given as before by
Ao = pra+ (1 —p)o (8.58)

where p is the probability that the source is producing data at the rate A, and 1 — p
is the probability that the source is producing data at the burst rate 0. A, could be
smaller or larger than A, depending on the probability p.

The maximum number of packets (N) that could arrive at the queue input as
determined by the maximum burst rate o

g

N=[—
At

1 (8.59)

with [x] is the smallest integer that is larger than or equal to x. The average number
of packets that arrive per time step is given from (8.57) and (8.59) according to the
binomial distribution as

N x = N,(in) (8.60)
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where x is the probability of a packet arriving. The above equation gives x as

NG
X = ﬂ (8.61)
N
Thus we are now able to determine the packet arrival probabilities as
N\ L—i :
=1 .|x0-x) i=012,....,.N (8.62)
i

The state of occupancy of the token buffer depends on the statistics of token and
packet arrivals as follows:

1. The token buffer will stay at the same state with probability c;; i.e., when one
packet arrives.

2. The token buffer will increase in size by one with probability cy; i.e., when no
packets arrive.

3. The token buffer will decrease in size by one with probability ¢;; i.e., when two
packets arrive.

4. The token buffer will decrease in size by i with probability ¢;+1; 1.e., when i + 1
packets arrive withi < N

The state of occupancy of the packet buffer depends on the statistics of token and
packet arrivals as follows:

1. The packet buffer will stay at the same state with probability c; i.e., when one
packet arrives.

2. The packet buffer will decrease in size by one with probability cy; i.e., when no
packets arrive.

3. The packet buffer will increase in size by one with probability c;; i.e., when two
packets arrive.

4. The packet buffer will increase in size by i with probability ¢;+; i.e., wheni + 1
packets arrive withi < N

Based on the above discussion, we have two buffers to hold the tokens and the
packets. The token buffer is single-input multiple output while the packet queue is
multiple input, single-output. The size of the token buffer is assumed B, and the size
of the packet buffer is assumed B,,.

Figure 8.10 shows the Markov chain transition diagram for the system com-
prising the token and packet buffers. The upper row represents the states of the
token buffer and the lower row represents the states of the packet buffer. The
transition probabilities are dictated by the packet arrival probabilities and the states
of occupancy of the token and packet buffers. The figure shows a token buffer whose
size is B; = 4 and a packet buffer whose size is B, = 3. The maximum number of
packets that could arrive in one time step is assumed N = 3. The figure shows the
co, C1, and ¢, transitions. The c3 transitions are only shown out of states s4 and s4 in
order to reduce the clutter.
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Fig. 8.10 Markov chain c c c I-c,
transition diagram for the Token buffer states C o o
system comprising the token
and packet buffers. Token
buffer size is B, = 4, packet
buffer size is B, = 3 and ¢ -@
N = 3. The c; transitions are
only shown out of states 54
and s4 in order to reduce the
clutter

Packet buffer states

cy cy 1-c,

Table 8.2 Defining the

‘ ) - State | Token buffer occupancy | Packet buffer occupancy
binomial coefficient

S1 0 0
$2 1 0
53 2 0
S4 3 0
S5 4 0
S6 0 1
87 0 2
S8 0 3

The token and packet buffer occupancies associate with each state are shown in
Table 8.2.

The transition matrix of the composite system is a (B, + B, + 1) X
(B, + B, + 1) tridiagonal matrix. For the case when B, = 4, B, = 3, and
N = 3 the matrix is given by

(cicae30 0 ¢ O 0
Co C1 620 0 0 0 0
OC()C] Co 0 0 0 0
0 OCQC1 C2 0 0 0
P=]1000cl—c 0 0 0 (8.63)
626‘30 0 0 C1 Co 0
c;000 O ¢ Co
_0000 0 C3C2+C31—C0_

8.3.5 Token Bucket Performance (Multiple
Arrival/Departure Case)

Having obtained the transition matrix, we are able to calculate the performance
figures of the token bucket protocol.
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The throughput of the token bucket algorithm is the average number of packets
per time step that are produced without being tagged or lost. To find the throughput
we must study all the states of the combined system. It is much easier to obtain the
throughput using the traffic conservation principle after we find the lost traffic.

Packets are lost or tagged for future discard if more than one packet arrive when
the packet buffer cannot accommodate all of them.

When N < B,, the average number of lost or tagged packets per time step is
given by

By—1 N
Na(lost) = ) spanpa-i ) i (G =1 (8.64)
i=1 j=i+1

The lost traffic is measured in units of packets/time step. And the number of packets
lost per second is

N,(lost)

N/ (lost) = T

= N,(lost) A; (8.65)

The average number of packets arriving per time step is given by
N
Na(in)=) ici=Nx (8.66)
i=0

The packet loss probability is
_ Ny(lost)
N (in)

_ Ny(lost)

N o (8.67)

The throughput of the token bucket algorithm is obtained using the traffic conserva-
tion principle
Th = N,(@in)— N,(lost)
= N c— N,(lost) (8.68)

The throughput is measured in units of packets/time step. The throughput in units
of packets/second is expressed as

T
Th' = ?h =Thx A (8.69)
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The packet acceptance probability of the token bucket algorithm is

Th
Ny (in)

N, (lost)
N

Pa =

=1 (8.70)

We remind the reader that packet acceptance probability is just another name for

the efficiency of the token bucket algorithm. It merely indicates the percentage of

packets that make it through that traffic regulator without getting lost or tagged.
The average queue size for the tokens is given by

0 = Zi Si+1 (8.71)

i=1

Notice the value of the state index in the above equation.
The average queue size for the packets is given by

B[’
Qp = isSitnt 8.72)

i=1

Notice the value of the state index in the above equation.
Using Little’s result, the average wait time or delay for the packets in the packet
buffer is

- %

W =
Th

(8.73)
The wait time is measured in units of time steps. The wait time to in second is
given by

_ %

W' =
W

(8.74)
Example 8.5. Repeat Example 8.3 using the multiple arrival/departure modeling

approach.

The maximum number of packets that could arrive in one time step m is found as

o
/\uut

N=["1=4

The average input data rate is

Ae =10x0.6 + 50 x 0.4 = 26 Mbps
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The packet arrival probability is

26
x = — =0.4333
100

The probability that k packets arrive in one time step is

4
= (k)akb4_k k=0,1,2

The transition matrix will be 6 x 6 and is given by

[0.3154 0.3618 0.1844 0.1031 0 0
0.1031 0.3154 0.3618 0 0 0
0 0.1031 0.4184 0 0 0
0.3618 0.1844 0.0353 0.3154 0.1031 0
0.1844 0.0353 0 0.3618 0.3154 0.1031
| 0.03530 0 0.2197 0.5815 0.8965 |

The equilibrium distribution vector is

s = [0.0039 0.0006 0.0001 0.0231 0.1388 0.8334 ]’

State s, indicates that 0.06 % of the time the token buffer has one token. However,
state sg indicates that 80.34 % of the time the packet buffer is full indicating the
source is misbehaving.

The throughput of the queue is given by

N,(lost) = 0.3279 packets/time step

N/(lost) = 1.2298 x 10* packets/s

L = 0.1892

Th = 1.4054 packets/time step

Th = 5.2702 x 10* packets/s

Pa = 0.8108

P =2.8 packets

w = 1.9931 times steps

w’ =53149x 1077 s |

Example 8.6. Investigate the effect of doubling the token buffer or the packet buffer
on the performance of the token bucket algorithm in the above example.

Doubling the token buffer to B; = 4 or doubling the packet buffer results in the
following parameters:



8.4 Virtual Scheduling Algorithm 305

Parameter | B, =2,B,=3 | B,=4,B,=3 B, =2,B,=6

Ny(lost) | 0.3279 0.3279 0.3279
L 0.1892 0.1892 0.1892
Th 1.4054 1.4054 1.4054
Pa 0.8108 0.8108 0.8108
Q. 2.8011 2.8011 5.8002
w 1.9931 1.9931 4.1271

Because the token buffer was nearly empty in the original system, doubling the
size of the token buffer has no impact on the system performance as can be seen
by comparing the second and third columns of the above table. Doubling the packet
buffer size doubles the delay without noticeable improvement in throughput. ]

8.4 Virtual Scheduling Algorithm

The virtual scheduling (VS) algorithm manages the ATM network traffic by closely
monitoring the cell arrival rate. When a cell arrives, the algorithm calculates the
theoretical arrival time (TAT) of the next cell according to the formula

1
TAT = -~ (8.75)

a

where A, is the expected average data rate (units of cells/s). TAT is measured by
finding the difference between the arrival times of the headers of two consecutive
ATM cells as explained in Fig. 8.11. This is not the time between the last bit of one
cell and the first bit of the other.

If the cell arrival rate is in units of bits/s, then TAT is written as

A
TAT = = (8.76)

a

where A is the size of an ATM cell which is 424 bits.
Assuming the time difference between the current cell and the next cell is ¢, then
the cell is treated as conforming if ¢ satisfies the following inequality

t > TAT — A (8.77)

Interarrival time

\ 4

<l
-

Cell n Cell n+1

time

Fig. 8.11 Measuring the
interarrival time between two
consecutive ATM cells

\j
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Fig. 8.12 Different cases for current cell event A next cell event

cell arrival in the VS v < *

algorithm. (a) t > TAT and a ) ’

cell is conforming. (b) <+ time
TAT

t = TAT and cell is
conforming. (c)
t = TAT — A and cell is

L]
1
1
1
1
' next cell event
1

conforming. (d) b . T
t < TAT — A and cell is X ' ' time
nonconformmg : next cell event : :
l l
c : . :
i ' ' time
l l l
: next cell event : :
d : :
time

where A is a small time value to allow for the slight variations in the data rate. The
cell is treated as misbehaving, or nonconforming, when the cell arrival time satisfies
the inequality

t <TAT — A (8.78)

The problem with the above two equations is that a source could keep sending data
at a rate slightly higher than A, and still be conforming if every cell arrives within
the bound of (8.77).

Figure 8.12 shows the different cases for cell arrival in VS. Figure 8.12a shows
a conforming cell because the cell arrival time satisfies (8.77). Figure 8.12b shows
another conforming cell because the arrival time still satisfies (8.77). Figure 8.12¢
also shows a conforming cell because the arrival time satisfies the equality part
of (8.77). Figure 8.12d shows a nonconforming cell because the arrival time does
not satisfy (8.77).

8.4.1 Modeling the VS Algorithm

In this section we perform Markov chain analysis of the virtual scheduling algo-
rithm. We make the following assumptions for our analysis of the virtual scheduling
algorithm.

1. The states of the Markov chain represent how many times the arriving cells from
a certain flow have been nonconforming. In other words, state s; of the penalty
queue indicates that the source has been nonconforming i times.

2. The number of states (B) of the queue will dictate the maximum burst size
tolerated, which is equal to the maximum number of penalties allowed for that
source.
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Fig. 8.13 State transition l-c b b b b 1-a
?ﬁz%r;snel g)r =th§ VS queue for ' c ' c ' c ' c ' c '
o@yc@o@Po@Pc@s

a a a a a

The queue changes states upon arrival of each cell.

Credit is given to the source each time it is conforming.

A penalty is given to the source each time it is nonconforming.

a is the probability that the arriving cell satisfies the inequality ¢t > TAT . In that
case credit is issued to the source.

7. b is the probability that the arriving cell satisfies the following inequality

SNk W

TAT — A <t <TAT

In that case no credit or penalty is issued.
8. c is the probability that the arriving cell satisfies the inequality ¢ < TAT . In that
case a penalty is issued to the source.

Of course ¢ = 1 — a — b since the source cannot be in any other state.

Based on the above assumptions, we have a single arrival, single departure
M/M/1/B queue with B + 1 states. Figure 8.13 shows the state transitions for
the VS queue.

It is interesting to note that the state transition diagram of the virtual scheduling
algorithm in Fig. 8.13 is a special case of the state transition diagram for the token
bucket algorithm in Fig. 8.8 when the token bucket buffer size is B, = 1.

The corresponding transition matrix P will be (B + 1) x (B + 1) and will have
the following entries for the case B = 5.

[1—ca000
c baOo0
chbao
Ocbha
00ch a
000c1—a ||

(8.79)

= el oo

S O O O

Notice that the transition matrix is tridiagonal because of the single arrival, single
departure feature of the queue.

8.4.2 VS Protocol Performance

Having obtained the transition matrix, we are able to calculate the performance of
the VS protocol.
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The probability that an arriving cell is marked for discard is considered equal
to the cell loss probability. This happens when the source exceeds the maximum
number of penalties allowed. Thus cell loss probability is given by

L =csg (8.80)

where c is the probability that a cell arrived while the source is nonconforming and
sp is the probability that the penalty queue is full.
The average number of cells that are dropped per time step is given by

N (lost) = L A, (8.81)

where A, is the average input data rate (units cells/time step).
The efficiency or access probability p, is the probability that an arriving cell is
not dropped or marked for future discard. p, is given by

Pa=1—-L=1-csp (8.82)

The average number of packets that are accepted without being dropped per time
step is the system throughput and is given by

Th = psAa
=(1—csp) Ag (8.83)

The maximum bust size allowed from the packet source is determined by the size of
the queue.

Max. burst size = B cells (8.84)

Example 8.7. Estimate the performance of the VS algorithm for a source having the
following properties:

a=02 b=0.5
c=03 A = 424 bits
A =150 Mbps B =5

The transition matrix for the VS protocol is given by

07020 0 0 0
0305020 0 0
0 030502 0 0
0 0 030502 0
0 0 0 030502
| 0 0 0 00308 ]|
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The distribution vector for the system is

s = [0.0481 0.0722 0.1083 0.1624 0.2436 0.3654 |

The performance figures of the protocol are as follows:

L = 0.1096

N.(lost) = 16.4436 x 10° packets/s

Pa - 0.8904

Th = 133.5564 x 10° packets/s |

Example 8.8. What would happen in the above example if the VS algorithm uses a
buffer whose size is B = 2?

The following table illustrates the effect of reducing the buffer size.

Parameter B =38 B=2

L 0.1096 0.1421
N, (lost) (M packets/s) 16.4436 | 21.3158
Da 0.8904 0.8579
Th (M packets/s) 133.5564 | 128.6842

As expected, the reduced penalty buffer results in decreased performance such
as higher cell loss probability and lower throughput. |

8.5 Problems

Leaky Bucket Algorithm

8.1. In aleaky bucket traffic shaper the packet arrival rate for a certain user is on the
average 5 Mbps with a maximum burst rate of 30 Mbps. The output rate is dictated
by the algorithm to be 10 Mbps. Derive the performance of this protocol using the
M/M/1/B modeling approach assuming packet buffer size to be B = 5 and the
maximum line rate is 200 Mbps. Assume different values for the probability that the
source is conforming.

8.2. Repeat Problem 8.1 using the M™ /M /1/B modeling approach.

8.3. An alternative to modeling the leaky bucket algorithm using the M /M /1/B
queue is to assume the Bernoulli probability of packet arrival to be given as
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Aa

CZ:A—Z

which is similar to the packet arrival statistics for the M/ M /1/B queue. Study this
situation using the data given in Example 8.1 and comment on your results.

Token Bucket Algorithm

8.4. Consider the single arrival/departure model for the token bucket algorithm.
Assume that arriving data are buffered in a packet buffer. Now we have two buffers
to consider: the token buffer and the data buffer. Model the data buffer based on the
results obtained for the token buffer

8.5. Estimate the maximum burst size in the token bucket protocol.

8.6. In a token bucket traffic shaper the packet arrival rate for a certain user is on
the average 15 Mbps with a maximum burst rate of 30 Mbps. Assume the source is
conforming 30 % of the time and the token arrival rate is dictated by the algorithm
to be 20 Mbps. Study the state of the token buffer using the M/M/1/B modeling
approach assuming its size to be B = 5 and the maximum line rate is 100 Mbps.

8.7. Repeat Problem 8.6 using the multiple arrival/departure modeling approach.

8.8. Draw the Markov state transition diagram for the multiple arrivals/departures
model when B; =4, B, = 3,andm = 4.

8.9. Write down the transition matrix for the above problem and compare with the
same system that had m = 3 in (8.63) on page 301.

8.10. Write down the transition matrix for the multiple arrivals/departures model
when B, =4, B, = 6, and m = 8.

Virtual Scheduling Algorithm

8.11. Analyze the virtual scheduling algorithm in which an arriving cell is con-
forming if t > TAT — A and is nonconforming if t < TAT — A.

8.12. Compare the performance of the VS algorithm treated in the text to the VS
algorithm analyzed in Problem 8.11.
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8.13. Analyze the virtual scheduling algorithm in which an arriving cell is issued a
credit or penalty according to the criteria:

credit: ¢t >TAT + A

no action: TAT <t < TAT + A

no action: ATA —A <t < TAT + A
credit: t >TAT — A

Reference

1. A.S. Tanenbaum, Computer Networks (Prentice Hall, Upper Saddle River, 1996)



Chapter 9
Modeling Error Control Protocols

9.1 Introduction

Modeling a protocol or a system is just like designing a digital system, or any
system for that mater. There are many ways to model a protocol based on the
assumptions that one makes. My motivation here is simplicity and not taking a
guided tour through the maze of protocol modeling. My recommendation to the
reader is to read the discussion on each protocol then lay down the outline of a
model that describes the protocol. The model or models developed here should then
be compared with the one attempted by the reader.

Automatic-Repeat-reQuest (ARQ) techniques are used to control transmission
errors caused by channel noise [1]. All ARQ techniques employ some kind or
error coding of the transmitted data so that the receiver has the ability to detect the
presence of errors. When an error is detected, the receiver requests a retransmission
of the faulty data. ARQ techniques are simple to implement in hardware and they
are especially effective when there is a reliable feedback channel connecting the
receiver to the transmitter such that the round-trip delay is small.

There are three main types of ARQ techniques:

¢ Stop-and-Wait ARQ (SW ARQ).
¢ Go-Back-N ARQ (GBN ARQ).
e Selective-Repeat ARQ (SR ARQ).

We discuss and model each of these techniques in the following sections.

© Springer International Publishing Switzerland 2015 313
F. Gebali, Analysis of Computer Networks, DOI 10.1007/978-3-319-15657-6_9



314 9 Modeling Error Control Protocols
9.2 Stop-and-Wait ARQ Protocol

Stop-and-Wait ARQ (SW ARQ) protocol is a simple protocol for handling
frame transmission errors when the round-trip time (27,) for frame propagation
and reception of acknowledgment is smaller than frame transmission time (t;).
The propagation delay 7, is given by

d

sz

where c¢ is speed of light and d is the distance between transmitter and receiver.
The transmission delay t; is given by
L
T = I
where L is the number of bits in a frame and A is the transmission rate in bits per
second.
Thus ARQ protocols are efficient and useful when we have

21, K 1y (CRY

If the above inequality is not true, then Forward Error Correction (FEC) techniques
should be used [1].

When the sender transmits a frame on the forward channel, the receiver checks it
for errors. If there are no errors, the receiver acknowledges the correct transmission
by sending an Acknowledge (ACK) signal through the feedback channel. In that
case the transmitter proceeds to send the next frame. If there were errors in the
received frame, the receiver sends a Negative Acknowledgment signal (NAK) and
the sender sends the same frame again. If the receiver does not receive ACK or NAK
signals due to some problem in the feedback channel, the receiver waits for a certain
timeout period and sends the frame again.

Based on the above discussion, we conclude that the time between transmitted
frames is equal to 2z, where 7, is the one-way propagation delay.

Figure 9.1 shows an example of transmitting several frames using SW ARQ.
Frame 1 was correctly received as indicated by the ACK signal and the sender starts
sending frame 2.

Frame 2 was received in error as indicated by NAK and the grey line. The trans-
mitter sends frame 2 one more time. For some reason no acknowledgment signals
were received (indicated by short grey line) and the sender sends frame 2 for
the third time after waiting for the proper timeout period. Frame 2 was received
correctly as indicated by the ACK signal and the sender starts sending frame 3.
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9.2.1 Modeling Stop-and-Wait ARQ

In this section we perform Markov chain analysis of the stop-and-wait algorithm.
We make the following assumptions for our analysis of the SW ARQ

1.

The average length of a frame is n bits.

2. The forward channel has random noise and the probability that a bit will be

received in error is €. Another name for ¢ is Bit Error Rate (BER) .
The feedback channel is assumed noise free so that acknowledgment signals
from the receiving station will always be transmitted to the sending station.

. The sender will keep sending a frame until it is correctly received. The effect of

limiting the number of retransmissions is discussed in Problem 9.2.

The state of the sender while attempting to transmit a frame depends only on the
outcome of the frame just sent. Hence we can represent the state of the sender as a
Markov chain having the following properties:

1.

2.

State i of the Markov chain indicates that the sender is retransmitting the frame
for the i-th time. State zero indicates error-free transmission.

The number of states is infinite since no upper bound is placed on the number of
retransmissions.

The time step is taken equal to the sum of transmission delay and round-trip
delay T' = 1, + 27,.

The state transition diagram for the SW ARQ protocol is shown in Fig.9.2. In the
figure, e represents the probability that the transmitted frame contained an error. e is
given by the expression

e=1-(1—¢) 9.2)
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For a noise-free channel ¢ = 0 and so e = 0 also. When the average number of
errors in a frame is very small (i.e., € n < 1), we can write

ex~en 9.3)

The quantity € n is an approximation of the average number of bits in error in a
frame (see Problems 9.4 and 9.5). Naturally we would like the number of errors to
be small so as not to waste the bandwidth in retransmissions. Thus we must have

e=en<Kl 9.4)

Equation (9.2) assumed no FEC coding is implemented. Problem 9.4 requires you
to derive an expression for e when FEC is employed.
We organize the state distribution vector as follows.

t
s=[s0 S1 sz---] 9.5)
where s; corresponds to retransmitting the frame for the i-th time. sy corresponds
to transmitting the frame once with zero retransmissions. This is the case when the

frame was correctly received without having to retransmit it.
The corresponding transition matrix of the channel is given by

l—el—el—el—e---
e 0 0 0

P= 0 e 0 o - (9.6)
0 0 e 0

At equilibrium the distribution vector is obtained by solving the two equations

Ps=s 9.7)
Zs =1 9.8)

The solution to the above two equations is simple:

s:(l—e)x[leez---]t 9.9)
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9.2.2 SW ARQ Performance

The average number of retransmissions for a frame is given by

Ne=(1—e)x(sy+2s,+3s53+---)

=(1—e)2x2iei

=0

=e transmissions/frame (9.10)

For a noise-free channel ¢ = 0 and the average number of retransmissions is 0 also.
This indicates that a frame is sent once for a successful transmission.

For a typical channel e &~ € n < 1 and the average number of transmissions can
be approximated as

N, ~en ©.11)

We define the efficiency of the SW ARQ protocol as the inverse of the total number
of transmissions which includes the first transmission plus the average number of
retransmissions. In that case 7 is given by

IR
14N l+e

n 9.12)

For an error-free channel N, = 0 and n = 100 %. For a typical channele ~ e n < 1
and the efficiency is given by

n~1l—e€en (9.13)

This indicates that the efficiency decreases with increase in BER or frame size. Thus
we see that the system performance will degrade gradually with any increase in the
number of bits in the frame or any increase in the frame error probability.

The throughput of the transmitter can be expressed as

Th=n=1-—e frames/time step (9.14)
Thus for an error-free channel, » = 1 and arriving frames are guaranteed to be
transmitted on the first try. We could have obtained the above expression for the

throughput by estimating the number of frames that are successfully transmitted in
each transmitter state:

Th

(1-e)) s
i=0
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When errors are present in the channel, then n < 1 and so is the system throughput.

Example 9.1. Assume an SW ARQ protocol in which the frame size is n = 1,000
and the BER is € = 107*. Find the performance of the SW ARQ protocol for this
channel. Repeat the example when the BER increases by a factor of ten.

According to (9.10) the average number of transmissions for a window is
N, =0.1052

and the efficiency is
n = 90.48 %

Notice that because the BER is low, we need just about one transmission to correctly
receive a frame.
Now we increase the BER to e = 107 and get the following results.

N, =1.7196
and the efficiency is
n =36.77

Notice that when the BER is increased by one order of magnitude, the average
number of frame retransmission is increased by a factor of 16.35. |

9.3 Go-Back-N (GBN ARQ) Protocol

In the go-back-N protocol the transmitter keeps sending frames but keeps a copy
in a buffer, which is called the transmission window. The number of frames in the
buffer, or the window, is N which equals the number of frames sent during one
round-trip time.

When the sender transmits the frames on the forward channel, the receiver checks
them for errors. If there are no errors, the receiver acknowledges each frame by
sending ACK signals through the feedback channel. Upon reception of an ACK for
a certain frame, the receiver drops it from the head of its buffer. If a received frame
is in error, the receiver sends a NAK for that particular frame. When the transmitter
receives the NAK signal, it resends all N frames in its buffer starting with the frame
in error.

Figure 9.3 shows an example of transmitting several frames using go-back-N
where the buffer size is N = 3. Solid arrows indicate ACK signals and grey arrows
indicate NAK signals. Frame 1 was correctly received while frame 2 was received in
error. We see that the transmitter starts to send frame 2 and the 3 subsequent frames
that were in its buffer.
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Fig. 9.3 Go-back-N ARQ protocol with buffer size N = 3. Solid arrows indicate ACK signals
and grey arrows indicate NAK signals

9.3.1 Modeling the GBN ARQ Protocol

In this section we perform Markov chain analysis of the GBN ARQ protocol.
We make the following assumptions for our analysis of the go-back-N protocol.

1. Each window contains N frames.

2. The average length of a frame is n bits.

3. The forward channel has random noise and the probability that a bit will be
received in error is €. Another name for € is BER

4. The feedback channel is assumed noise free so that acknowledgment signals
from the receiving station will always be transmitted to the sending station.

5. The maximum number of retransmissions is k,, after which the sender will
declare the channel to be not functioning.

The state of the sender while attempting to transmit a frame depends only on
outcome of the frame just sent. Hence we can represent the state of the sender as a
Markov chain having the following properties:

1. The states of the Markov chain are grouped into the sets 7, Ry, R, etc. These
sets are explained below.

2. The number of states is infinite since no upper bound is placed on the number of
retransmissions.

3. The time step is taken equal to the sum of transmission delay of one frame
T = t;. Thus a window that contains N frames will require N time steps to
be transmitted.

The set T represents the states of the sender while it is transmitting a window for
freshly arrived N frames.

T={titr - ty} (9.16)
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The set R represents the states of the sender while it is retransmitting frames for
the first time due to a damaged or lost frame. This set is the union of several subsets

Rl = Rl,l URlyzU“-URl.N (917)

where subset R;; is the subset of R, that contain i states corresponding to
retransmitting i frames for the first time. In other words, the first N — i frames
have been correctly received. With the help of (9.23) below we can verify that all
states in subset R ; are equal so that we can write the i states associated with R, ; as

Rl.,' = {rl,i r- - 7'1,,'} (918)

Thus R has N unique subsets such that subset R;; has i equal states r ;:
ri1 corresponding to last frame in error
r1» corresponding to frame before last in error

r1n correspondingto first frame in error
Similarly the set R, represents the states of the sender while it is retransmitting
frames for the second time. This set is the union of several subsets

RQZ RZ,IUR2,2U--'UR1_N (919)

where subset R,; is the subset of R, that contain i states corresponding to
retransmitting 7 frames for the second time. With the help of (9.23) we can verify
that all states in subset R, ; are equal so that we can write the i states associated
with R, ; as

Ryj ={raira;-r} (9.20)

Thus R, has N unique subsets such that subset R, ; has i equal states r, ;:
ry corresponding to last frame in error
ry, corresponding to frame before last in error

ry.n correspondingto first frame in error

The state transition diagram for the GBN ARQ protocol is shown in Fig.9.4.
The sets of states 7, R and R, are shown. To reduce clutter, only transitions in
and out of R, are indicated. The thick lines indicate multiple transitions lumped
together. However, (9.23) shows all the transitions between states.

In the figure, all states in each column are equal due to the fact that the transition
probabilities between them is one.

We organize the state distribution vector in the following order.

s=[TRI Ry 9.21)
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For the case when N = 2 the distribution vector can be written as
13
S = [I tlrig riarip | ra rarg | ] 9.22)

The corresponding transition matrix of the sender for the case when N = 2 is
given by

[0 2o P10 0 p2o P10 0 pag -+
10 00O OO0OO

0ps 000 00 O

O0pp 000 00O
pP=(00 010 O0O0O0 - (9.23)

o
o
o

0 0 p110po;

0 Oprp 00 O

00
00 00O OT1O0

In the above matrix, the transition probability p; ; is the probability that the last j
frames need to be retransmitted given that a frame of i frames was sent. For instance,
Ps.» indicates the probability that the last two frames have to be retransmitted given
that five frames were sent and the first three frames were received without error. p; ;
is given by the expression

pij=0—e) e (9.24)
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where e is the probability that a frame contained one or more errors.
e=1-—(1-¢) (9.25)
At equilibrium the distribution vector is obtained by solving the two equations

Ps=s (9.26)
Zs =1 (9.27)

When k,,, is the maximum number of retransmissions, the dimension of s would be
given by

KnN(N + 1)

dim (s) = N + 5

(9.28)

As an example, for a window size N = 32 frames and the maximum number of
retransmissions is K,, = 16, the size of s would be 33,344 and the state transition
matrix would be of size 33,344 x 33,344. We can use MATLAB to find the
distribution vector s.

9.3.2 Using Iterations to Find s

An alternative approach is to find s using iterations. From the structure of the matrix
P, we can easily prove that all transmit states in the set 7 are equal.

t=HhH=tHh=---=1y (9.29)

In fact, all states in any column of the matrix are equal. For example, we can write
the N unique states of R| as

N =1t PNN (9.30)
FiN—1 =1 DNN—-1 (9.31)
FiN—2 =1 DNN—2 (9.32)

r, = I PN (933)

In general we have

rj =1PpN;j j=12 N (9.34)
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In that case state r; | will be repeated once. State r|, will be repeated twice, and
finally r; v will be repeated N times.

For the rest of the retransmission states, we use iterative expressions as follows.
The N unique states of R, are expressed in terms of the unique states of R as

"2.N =TIN PNN (9.35)
N
rN-1 = i PiN—1 (9.36)
=N-1
N
raN-2= Y FiLiPin-2 (9-37)
i=N-2
N
rag =Y T pii (9.38)
i=1
In general we have
N
raj =Y riipi j=1,2, N (9.39)
i=j

The states associated with the k-th retransmission Ry are given by the iterative
expression

N
T j = Zrk—l,i Di.j (9.40)
i=j

with the initial condition

" =1PN;j j=12 - N (9.41)

9.3.3 Algorithm for Finding s by Iterations

The above iterations express all the retransmission states in terms of the transmit
state 7. In order to find the distribution vector s, we follow this algorithm:

1. Assign to each transmit state some value, for example

t=1 (9.42)
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2. Estimate the retransmit states for R using the iterative expression (9.34).

3. Estimate the values of the other retransmit states Ry using the iterative expres-
sion (9.40).

4. Find the sum of all states

K, N
S=Nt+Y Y jr, (9.43)
k=1j=1

5. The normalized value of the distribution vector is given by the following
equation.

t
s=—[tt |ry raria | rg rarn | ] (9.44)

»| =

9.3.4 GBN ARQ Performance

As long as the sender keeps retransmitting frames that were received in error, the
next frame cannot be sent. Therefore, we are interested in estimating the average
number of retransmissions for a given frame (R, ), the average number of frames
sent in each retransmission attempt (N, ), and the average delay a frame takes to be
transmitted when errors are present (7).

Estimating Average Number of Retransmissions R,

The probability that the source is in the k-th retransmission state is given by
N
=Y jre; (9.45)
Jj=1

oy is also equal to the average number of frames sent at the k-th retransmission (7).
The average number of retransmissions by the source for a given frame is
given by

km
R, = Z k oy (9.46)
k=1
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Estimating Average Delay T,

The delay associated with the k-th retransmission is given by the accumulation of all
the frames that were previously sent by earlier retransmissions. Thus we can write

k
=) o (9.47)
=1

The average delay for transmitting a given frame is given by

km

T, = Zrk o (9.48)

k=1

Estimating the Average Number of Frames Sent N,

The average number of frames sent due to all retransmissions is given by

km
Na = an (073 (949)
k=1

GBN ARQ Efficiency n and Throughput (Th)

The efficiency of the GBN ARQ protocol is the ratio of frame size to the total
number of frames transmitted:

N

n= NN (9.50)
When there are no errors N, = 0 and we get 100 % efficiency.
The throughput of the transmitter can be expressed as
Th=n frames/time step (9.51)
Thus for an error-free channel, » = 1 and arriving frames are guaranteed to be

transmitted on the first try.
When errors are present in the channel, then n < 1 and so is the system
throughput.
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Example 9.2. Assume a GBN ARQ protocol with the following parameters.

n = 500 bits
N =28 frames
e=10"
K, =16

Find the performance of the GBN ARQ protocol for this channel.

Using the technique in Sect. 9.3.2, the average number of retransmissions for a given
frame is

R, =0.2195

the average delay for a given frame is
T, = 0.0306

the average number of retransmitted frames for a given frame is
N, = 0.026

and the efficiency is

n = 99.68 %

9.4 Selective-Repeat (SR ARQ) Protocol

The selective-repeat protocol is a general strategy for handling frame transmission
errors when the round-trip time for frame transmission and reception of the
acknowledgment is comparable to frame transmission time. SR ARQ is used by
the TCP transport protocol. In this protocol the transmitter groups the frames into
windows, so that each window contains N frames. When the sender sends frames
within a window, the receiver stores the frames of the current window and checks
for errors. After a complete window has been received, or after the proper timeout
period, the receiver instructs the transmitter to resend only the frames that contained
errors. That results in a more efficient protocol compared to GBN ARQ that resends
frames in error as well as error-free frames.

Figure 9.5 shows an example of transmitting several frames using selective-
repeat protocol where the buffer size is N = 3. Solid arrows indicate ACK signals
and grey arrows indicate NAK signals. Frame 1 was correctly received while frame
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14 Time
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Fig. 9.5 Selective-repeat ARQ protocol with buffer size N = 3. Solid arrows indicate ACK
signals and grey arrows indicate NAK signals

2 was received in error. We see that the transmitter starts to send frame 2 as soon as
the corresponding NAK is received. Frame 4 was also received in error and we can
see that it is retransmitted as soon as its NAK signal was received.

9.4.1 Modeling the SR ARQ Protocol

In this section we perform Markov chain analysis of the SR ARQ protocol. We make
the following assumptions for our analysis of the selective-repeat protocol.

1. Each window contains N frames.

2. The average length of a frame is n bits.

3. The forward channel has random noise and the probability that a bit will be
received in error is €. Another name for € is BER.

4. The feedback channel is assumed noise free so that acknowledgment signals
from the receiving station will always be transmitted to the sending station.

5. The maximum number of retransmissions is k,, after which the sender will
declare the channel to be not functioning.

The state of the sender while attempting to transmit a frame depends only on the
outcome of the frame just sent. Hence we can represent the state of the sender as a
Markov chain having the following properties:

1. The states of the Markov chain are grouped into the sets 7, R, R», etc. These
sets are explained below.

2. The number of states is infinite since no upper bound is placed on the number of
retransmissions.

3. The time step is taken equal to the sum of transmission delay of one frame
T = t;. Thus a window that contains N frames will require N time steps to
be transmitted.
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The set T represents the states of the sender while it is transmitting a window for
freshly arrived N frames.

T={titr-ty} (9.52)

The set R represents the states of the sender while it is retransmitting frames for
the first time. This set is the union of several subsets

R] = Rl.’] UR]QU'"URLN (953)

where subset R;; is the subset of R; that contain i states corresponding to
retransmitting i frames for the first time. With the help of (9.59) we can verify
that all states in subset R;; are equal so that we can write the i states associated
with R;; as

Ri; = {Vl,i Fii--- rl_i} (9.54)

Thus R has N unique states:
r1, repeated once,
1| » repeated twice,

ri y repeated N times.
Similarly the set R, represents the states of the sender while it is retransmitting
frames for the second time. This set is the union of several subsets

Rz = Rz.’] @] Rzﬁz U---u Rl,N (955)

where subset R,; is the subset of R, that contain i states corresponding to
retransmitting i frames for the second time. With the help of (9.59) we can verify
that all states in subset R,; are equal so that we can write the i states associated
with Ry ; as

Ryj ={ryira;-r} (9.56)

12,1 repeated once,

ry» repeated twice,
Thus R, has N unique states: |

ry.n repeated N times.

The state transition diagram for the SR ARQ protocol is shown in Fig.9.6. The
sets of states T, R, and R, are shown. To reduce clutter, only transitions in and out
of R, are indicated. The thick lines indicate multiple transitions lumped together.
However, (9.59) shows all the transitions between states.
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In the figure, all states in each column are equal due to the fact that the transition
probabilities between them is one.
We organize the state distribution vector in the following order.

s=[TRIRy---] 9.57)

For the case when N = 2 the distribution vector can be written as

15
s=[tt |ry riaria [ r rarn | 0] (9.58)

The corresponding transition matrix of the sender for the case when N = 2 is
given by

[0 p20 2100 P20 pro0 pao -+ |
10 000 0O0OO

O0py 000 O0O0O
O0p, 000 00O
p=(00 00O OO0OO0O - (9.59)

=)
)
=)

0 0 p110p2;

00 00pys 000
00 000 010
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In the above matrix, the transition probability p; ; is the probability that ; frames
need to be retransmitted given that a frame of i frames was sent. For instance, ps,
indicates the probability that two frames have to be retransmitted given that five
frames were sent. p; ; is given by the expression

pij = (;) (1—e) /el (9.60)

where e is the probability that a frame contained one or more errors.
e=1—-(1-¢) 9.61)
At equilibrium the distribution vector is obtained by solving the two equations

Ps=s 9.62)
Zs =1 9.63)

When k,,, is the maximum number of retransmissions, the dimension of s would be
given by

dim (s) = N + w (9.64)

As an example, for a window size N = 32 frames and the maximum number of
retransmissions is K,, = 16, the size of s would be 33,344 and the state transition
matrix would be of size 33,344 x 33,344. We can use MATLAB to find the
distribution vector s.

9.4.2 SR ARQ Performance

As long as the sender keeps retransmitting frames that were received in error, the
next frame cannot be sent. Therefore, we are interested in estimating the average
number of retransmissions for a given frame (R,), the average number of frames
sent in each retransmission attempt (N, ), and the average delay a frame takes to be
transmitted when errors are present (7).
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Estimating Average Number of Retransmissions R,

The probability that the source is in the k-th retransmission state is given by
N
W=y 1, (9.65)
Jj=1
The average number of retransmissions by the source for a given frame is given by

kl‘ﬂ
Ry=) ko (9.66)
k=1

Estimating Average Delay T,

The average number of frames sent at the k-th retransmissions is given by
N
ne=Y Jjre; (9.67)
j=1

The delay associated with the k-th retransmission is given by the accumulation of all
the frames that were previously sent by earlier retransmissions. Thus we can write

k
=Y nj (9.68)

Jj=1

The average delay for transmitting a given frame is given by

km
T, = sz o (9.69)
k=1

Estimating the Average Number of Frames Sent N,

The average number of frames sent due to all retransmissions is given by

km
Ny =Y ng oy (9.70)
k=1
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SR ARQ Efficiency 3 and Throughput (Th)

The efficiency of the SR ARQ protocol is the ratio of frame size to the total number
of frames transmitted:

N

n= A (9.71)
When there are no errors N, = 0 and we get 100 % efficiency.
The throughput of the transmitter can be expressed as
Th=n frames/time step (9.72)
Thus for an error-free channel, » = 1 and arriving frames are guaranteed to be

transmitted on the first try.
When errors are present in the channel, then 7 < 1 and so is the system
throughput.

Example 9.3. Assume an SR ARQ protocol with the following parameters.

n = 500 bits
N =38 frames
e=10""
K, =16

Find the performance of the SR ARQ protocol for this channel.

Using the technique in Sect. 9.3.2, the average number of retransmissions for a given
frame is

R, =037

the average delay for a given frame is
T, =0.14

the average number of retransmitted frames for a given frame is
N, =0.13

and the efficiency is

n = 98.41%

Comparing these results with those of GBN ARQ we note that SR ARQ performs
better for the same parameters. |



9.5 Problems 333

9.5 Problems

SW ARQ Protocol

9.1. Prove that the probability e that a frame in the SW ARQ protocol is in error is
e~ enwhene < 1.

9.2. One of the assumptions in Sect.9.2.1 of the SW ARQ protocol was that the
sender will keep retransmitting the frame until it is correctly received. Assume
the maximum number of retransmissions is limited to k,,. How will this impact
the state transition diagram, state transition matrix, the distribution vector, and the
system performance?

9.3. Assume an SW ARQ protocol in which the frame size is 100 bits and the
probability that a received frame is in error is € = 107>, Find the performance of
the protocol.

9.4. Assume a Forward Error Control (FEC) coding is used such that the receiving
station can correctly decode a received frame if the number of errors does not exceed
k errors. Obtain an expression for the frame error probability e under this scheme
and compare the expression you get to Eq. (9.2).

9.5. Assume an SW ARQ protocol in which the frame size is n bits but FEC is
used to improve the performance. The FEC code employed can correct only up to
k = 3 bits in error.

1. Draw the transition diagram for such a protocol and compare with the standard
SW ARQ protocol discussed in the text.

2. Derive the transition matrix and compare with the standard SW ARQ protocol.

3. Estimate the performance of this protocol and compare with the standard SW
ARQ protocol.

9.6. Equations (9.11) and (9.13) indicate that SW ARQ performance will not
change if we scale n to an, where @ > 1 and decrease € by the same scale factor
€/a when € < 1. Verify these assertions using an SW ARQ parameters of n = 100,
e=10"%

9.7. Assume SW ARQ where the sender has a transmit buffer of size B. Study the
sender transmit buffer.

GBN ARQ Protocol

9.8. Obtain the transition matrix for the GBN ARQ protocol having the following
parameters (chosen to make the problem manageable)

N=3 k,=1
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Assume two cases of the channel: a very noisy channel (¢ = 0.01) and for a less
noisy channel (¢ = 107>). Compare the two matrices and state your conclusions.

9.9. Given a GBN ARQ protocol in which the window size is N = 20 frames and
the probability that a received frame is in error is e = 107, Find the performance
of such a protocol for this channel assuming k,, = 8.

9.10. Given a GBN ARQ protocol in which the window size is N = 20 frames and
the probability that a received frame is in error is e = 5x10™*. Find the performance
of such a protocol for this channel.

9.11. Assume the GBN ARQ protocol is now modified such that if the received
window contained one or more frames in error, then the whole window is discarded
and a request is issued to retransmit the entire window again. This is repeated for a
maximum of k,, times until an error-free window is received.

1. Identify the states of this system.

2. Write down the transition matrix.

3. The transition matrix that results will be reducible. Derive the steady-state
distribution vector.

SR ARQ Protocol

9.12. Obtain the transition matrices for the SR ARQ protocol having the following
parameters (chosen to make the problem manageable)

N=3 k,=1

Assume two cases of the channel: a very noisy channel (e = 0.01) and for a less
noisy channel (¢ = 107°). Compare the two matrices and state your conclusions.

9.13. Given an SR ARQ protocol in which the window size is N = 20 frames and
the probability that a received frame is in error is ¢ = 10~*. Find the performance
of such a protocol for this channel assuming k,, = 8.

9.14. Given an SR ARQ protocol in which the window size is N = 20 frames and
the probability that a received frame is in error is e = 5x10™*. Find the performance
of such a protocol for this channel.

9.15. Consider an SR ARQ protocol where FEC coding is employed. In that
scheme, the sender adds extra correction bits to each frame or frame. The receiver is
thus able to correct frames that have up to two errors per window. Draw the transition
diagram for this system and compare with the SR ARQ protocol discussed in this
chapter. Derive the relevant performance for this modified protocol.

9.16. In the SR ARQ protocol discussed in the test, when a window is received
with i errors, the i frames are retransmitted until all of them are received without
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any errors. Now consider the case when the receiver only request to retransmit j
frames out of the i frames that contained i errors originally. Do you expect this
protocol to perform better than the SR ARQ protocol discussed in text?

Reference

1. S. Lin, D.J. Costello, Jr., M.J. Miller, Automatic-repeat-request error-control schemes. IEEE
Commun. Mag. 22(12), 5-17 (1984)



Chapter 10
Modeling Medium Access Control Protocols

10.1 Introduction

In this chapter we illustrate how to develop models for several medium access
control (MAC) protocols that are commonly used in computer communications.
We will model the following medium access protocols in this chapter and in the
next chapters as well:

1. IEEE Standard 802.1p: The Static Priority Scheduling Algorithm
2. Pure ALOHA
3. Slotted ALOHA
4. IEEE 802.3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD)
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
6. IEEE 802.11: for ad hoc wireless local area networks (LANSs) using the basic
distributed coordination function (DCF)
7. IEEE 802.11: for ad hoc wireless LANs using the request to send/clear to send
(RTS/CTS) protocol.
8. IEEE 802.11e: for ad hoc wireless LANs using Enhanced Distributed Channel
Access (EDCA)
9. IEEE 802.11e: for infrastructure wireless LANs using Hybrid Coordination
function Control Channel Access (HCCA)
10. IEEE 802.16 (WiMAX): for infrastructure metropolitan area networks (MAN).

i

The static, or fixed, priority scheduling algorithm is lumped with media access
algorithms since static priority is also used as a medium access protocol. Because
MAC belongs to the data link layer, our unit of data transfer is the frame since
packets are the business of the higher layer like the network layer and above.

Modeling a protocol is just like designing a digital system, or any system for
that mater. There are many ways to model a protocol based on the assumptions that
one makes. Our motivation here is simplicity and not taking a guided tour through
the maze of protocol modeling. Our recommendation to the reader is to read the
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discussion on each protocol then lay down the outline of a model that describes
the protocol. The model or models developed here should then be compared with
the one attempted by the reader.

10.2 IEEE Standard 802.1p: Static-Priority Protocol

The IEEE 802.1p is based on the static priority scheduling algorithm. IEEE 802.1p
standard has a priority scheme such that frames queued in a lower priority queue are
not sent if there are frames queued in higher priority queues. The frames are sent
only when all higher priority queues are empty. In that sense, the static-priority
protocol is a scheduling protocol to provide access to an outgoing link among
several competing queues.

The IEEE 802.1p enables creating priority classes for network traffic. This
enables quality of service (QoS) support. The analysis given here provides insight
into how to use Markov chains to derive important performance figures.

10.2.1 Modeling the IEEE 802.1p: Static-Priority Protocol

In this section we assume there are N priority classes and each class has its own
queue to store incoming traffic for that class. The state of each queue depends only
on its immediate past history and we can model the queues using Markov chain
analysis. To start our analysis, we employ the following assumptions.

1. The states of the Markov chain represent the occupancy of the priority queues.
2. The time step is taken equal to the transmission delay of a frame.

There are N priority classes; with class 1 having the highest priority and so on
till class N which has the lowest priority.

The size of the queue in priority class i is equal to B;.

a; is the frame arrival probability for queue i.

¢; is the frame departure probability for queue i.

Arrivals are processed at the same time step.

All frames have equal lengths.

(O8]

A

Figure 10.1 illustrates the flows into and out of each queue. The downward arrows
represent lost flows. Notice that some data is lost by each queue when the arrival
rate exceeds the departure rate. The highest priority queue does not suffer any data
loss since its data is guaranteed service. The highest priority queue does not need
a buffer to store incoming data when preemptive static priority is employed. If a
nonpreemptive scheme is employed, then the highest priority queue will require a
buffer of size one to store incoming data until the frame being sent is finished.

From the above assumptions, we can write for queue 1 the following frame arrival
and departure probabilities:
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Fig. 10.1 The flows into and out of each priority queue in the static priority scheduling protocol.
The downward arrows represent lost flows

uy (arrival) = a; (10.1)
uy (departure) = ¢y = 1 (10.2)

For queue 2 we can write the following frame arrival and departure probabilities:

up (arrival) = a, (10.3)
up(departure) = ¢; = e (10.4)

where ey = by = 1 — a; is the probability that queue 1 is empty since no frames
arrive. Thus queue 2 can access the output channel only when queue 1 is empty.
The probability that queue 2 is empty is given by the expression for state sy of the
M/M/1/B queue:

1—p2
1_[052-1-1

(10.5)

€ =

where B; is the size of the queue 2 buffer and p; is the distribution index for queue 2.

an d2

P2 (10.6)

by s

withb, =1 —asand dr, = 1 — ¢5.
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For queue 3 we can write the following frame arrival and departure probabilities:

ps(arrival) = a3 (10.7)

p3(departure) = c3 = e; X ) (10.8)
1 —p3

e3 = Tfﬁl (10.9)

In general we can write the following iterative expression for queue i, where 1 <
i <N,

pi(arrival) = g; (10.10)

pi(departure) = ¢; = e;_1 €;j—p -+ €] (10.11)
L—p;

e = TR pB"“ (10.12)

where p; is the distribution index for queue i and is given by

(10.13)

withb; =1 —a; andd; = 1 —¢;.
After the arrival and departure probabilities of each queue are found, we can
estimate the queue parameters according to the M/M/1/ B analysis in Sect. 7.6.
The performance parameters for queue 1 are a bit unique due to its high priority

T h = 1 frames/time step
Pa,1 =1

Ng.1(lost) = 0 frames/time step
Ly =0

Qaa = 0 frames

24 = 0 time steps

For queue i with 1 <i < N we can write

Th; =¢; (1 —b; e;) frames/time step
Dai — (’i(ljli)i ei)
Nyi(lost) = e; a; d; frames/time step

Li = €; d,‘
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[pi—Bi+Dp" +Bip" !

frames
B;+1
(1=pi)x(1=p/ 1)

Qa,i =

_ Qi :
W, = T time steps

Example 10.1. Consider a static-priority protocol serving four users where the
frame arrival probabilities for all users are equal (i.e.,a; = a forall 1 <i < 4)and
all users have the same buffer size (i.e., B; = B for all 1 < i < 4). Estimate the
performance of each user.

The following table shows the performance parameters for each user starting with
the highest priority user.

1|2 3 4
Th 1 10.3965 | 0.3167 0.0376
Pa 1 10.9912 | 0.7916 0.0940
Ny(lost) |0 0.0035 | 0.0833 0.3624
L 0 | 0.0088 | 0.2084 0.9060
Q. 0 10.6941 | 3.8790 4.9377
w 0 | 1.7507 |12.2502 | 131.2926
As expected, the least priority queue has the worst performance. ]

10.3 ALOHA

ALOHA was developed by N. Abramson in the 1970s at the University of Hawaii
to allow several computers spread over a wide geographical area to communicate
using a broadcast wireless channel. The technique chosen was simple and applies
to any system where several users attempt to access a shared resource without the
help of a central controller. ALOHA did not require global time synchronization and
simplified its implementation but impacted its performance.

In ALOHA network, a user that has a frame to transmit does so without waiting
to see if the channel is busy or not. When two users transmit at the same time
both colliding frames will be received in error due to interference. The collision
phenomenon that occurs in a shared medium is also known as contention. The
sender knows that contention has occurred by listening to the channel to check if
the frame it just sent is in error or not. If errors are detected, the sender retransmits
the frame after waiting for a random amount of time. Another way for the sender to
sense collision is to wait for an acknowledgment from the receiver.

Figure 10.2 illustrates the ALOHA contention problem. The figure assumes all
transmitted frames have equal lengths and each frame has a duration 7". The time
T is equal to the maximum propagation delay between any pair of stations in the
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Fig. 10.2 ALOHA
contention problem.

T «—»
Illustrating all possible

conflict situations

encountered by the
transmitted frame (shaded
rectangle) I:l

Critical Zone 2T

Frame | Start time ¢ | Contention with shaded frame
1 to<t<t; |No
tH<t<t |No
h<t<ty |Yes
13 <t <ty |Yes
ty<t<t; |No

Table 10.1 ALOHA
contention problem.
Illustrating all possible
conflict situations
encountered by the
transmitted frame (shaded
rectangle in Fig. 10.2)

WA W N

network. Because of the “free for all” situation, anything can happen. Let us see how
a conflict might arise while attempting to transmit one frame, shown as the shaded
block in Fig. 10.2. Table 10.1 summarizes potential conflict situations.

We make the following conclusions based on Fig. 10.2 and Table 10.1. Any frame
transmitted in the period 7' before our shaded frame will cause contention (e.g.,
frame 3). Any frame transmitted during the period 7" when our shaded frame is being
sent will cause contention (e.g., frame 4). The critical zone during transmission
of the shaded frame is shown at the bottom of Fig. 10.2. Thus for a successful
transmission at a given time step, the channel must be quiet and all users must be
idle for previous time step.

10.3.1 Modeling the ALOHA Network

In this section we perform Markov chain analysis of the ALOHA network. We make
the following assumptions for our analysis of ALOHA

1. The states of the Markov chain represent the status of the wireless channel: idle,
transmitting, and collided.

The propagation delay between any pair of users is less than the frame time 7.
The time step value 7 is taken equal to the frame transmission delay.

There are N users in the system.

Users can transmit any time they want.

The probability that a user transmits a frame in one time step is a.

All frames have equal lengths and the duration of each frame is 7'.

Nownkwbh



10.3 ALOHA 343

Fig. 10.3 State transition
diagram for the ALOHA
channel

Transmitting L-ug Collided

8. Contention occurs if a frame is sent at time ¢ and there are transmissions during
the time period T —t tot + T.
9. A user retransmits a corrupted frame after waiting a random amount of time.

Based on the above assumptions the wireless channel can be in one of three
states: idle, collided, or transmitting. Figure 10.3 shows the transition diagram for
our Markov chain. The following observations help explain the figure.

Idle state: We remain in s; as long as all users are idle (probability uy). We move
to transmitting state if exactly one user requests access (probability u;) and
we move to collided state if two or more users request access (probability
1 —uy—u).

Transmitting state: We move to idle state if all users are idle and if one or more
users request access, we move to collided state since there will be no period of
calm before the next transmission.

Collided state: We move to idle state if all users are idle. Any arriving requests
keep the system in collided state.

Note in the figure that the channel can only move to the transmitting state in the
next time step only if it is presently idle. If the channel is presently in the collided
state, it cannot move to the transmitting state in the next time step since this would
violate condition 8 above. The channel must first become idle and quiet since any
user that attempts to transmit will only succeed in jamming the channel again. When
the channel is transmitting, a period of calm has to be maintained for one step time
and the channel then moves to the transmitting state. Otherwise, the channel will
become collided again.

The probability that k users request access during a time step is given by binomial
statistics

up = (i)a"(l —a)N* (10.14)
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The transition matrix of the system is

Uo Uo Uo
P= l—Mo—ull—uol—Mo (1015)
ui 0 0

At equilibrium the distribution vector is obtained by solving the two equations

Ps=s (10.16)
St +s2+s3=1 (10.17)

The solution to the above two equations is simple:

S1 = U
Sy, = 1 — Uy — Uy U] (1018)
§3 = Uy Uy

10.3.2 ALOHA Performance

We are interested in the throughput of ALOHA which is given by
Th=s3 =uu (10.19)
Substituting the values of ug and u; from (10.14), we get
Th=Na(l—a)*"! (10.20)
For large N, the throughput can be expressed in terms of the input traffic as
Th = Nae N (10.21)

The throughput is measured in units of frames/time step. The throughput in units of
frames/s is

_Th
T

Th (10.22)

The dotted line in Fig. 10.4 shows the variation of the throughput against the
average number of users transmitting frames per time step for the case when N = 10
users. The solid line is for the slotted ALOHA network which is discussed in the
next section.
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Fig. 10.4 The throughput for ALOHA versus the average number of requests per time step for the
case N = 10. Dotted line is for ALOHA and solid line is for slotted ALOHA

The input traffic is found from the binomial distribution
N,(in)= N a (10.23)

We define the acceptance probability or efficiency p, as the probability of a
successful transmission for a given user. p, is given by

_Th

Pa = "N (in)
=(1-a)N! (10.24)
~ e 2aN (10.25)

The last equation relies on the approximation

lim (1 - f)" — o

n—00 n

The average energy required to transmit a frame is estimated as

o0
E=Eo ) (i+1)(1-ps) pa
i=0
E
=0 (10.26)
Pa
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where Ej is the energy required to send the one frame. In dB, the above equation
can be written as

E/Ey, = —10log,, p, dB (10.27)

~ 20aN log,e =8.7aN dB (10.28)

We see that average energy to transmit a frame increases exponentially with

increasing traffic.
The average number of attempts before a successful transmission is

o0
ng=y n (1=pJ)" pa (10.29)
n=0
This evaluates to
1 —
n, = —2e (10.30)
Pa

If the average duration of the random wait period is 7 (in seconds), then the average
wait for a frame before successful transmission is

1_
W=n,xr=0=rd s (10.31)

DPa

Assume that the number of stations is fixed, in that case we can vary the
arrival probability a and investigate how the throughput varies with input traffic.
The maximum throughput occurs when

dTh
da

0 (10.32)

Differentiating (10.20) indicates that the maximum throughput for ALOHA occurs
when

1

a =57 (10.33)
Thus, the maximum throughput is theoretically equal to
1 [\ V-1
T h(max) = 3 (1 — ﬁ) (10.34)

The above equation gives the maximum throughput for any number of users N.
A simple expression is obtained when the user population is very large N — oo:
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1
T h(max) = 7s
e

= 18.394 % (10.35)

In summary, maximum throughput occurs when N — oo and we would have

Th = 0.18394 frames/time step (10.36)
N,(in) = 0.5 frames/time step (10.37)
ap= 1/(2N) (10.38)
Pa = Th/N,(in) = 0.367 (10.39)

This discrete-time, and very general, result compares extremely well with the
throughput estimate obtained using fluid flow analysis [1] for a continuous-time
system with Poisson traffic. Thus when the number of users increases, the transmis-
sion request probability must decrease in proportion. For example, when the system
has N = 50 users, then maximum throughput is approximately 18.487 %, using
Eq. (10.34), and the transmission request probability for maximum throughput must
be a &~ 0.01. The problems at the end of the chapter confirm our predictions.

Example 10.2. Assume an ALOHA network supporting N = 20 users and each
user issues a request per time step with probability @ = 0.01. Find:

(a) The throughput

(b) The average number of time steps before successful transmission
(c) The maximum throughput

(d) The value for a for maximum throughput

The performance figures are as follows

Th = 0.1351 frames/time step

Ny = 0.4799 attempts

T h(max) = 0.1839 frames/time step

ayp = 0.025 for maximum throughput

10.4 Slotted ALOHA

Slotted ALOHA was proposed to improve the throughput of the original
ALOHA [2]. As the name implies, time in slotted ALOHA is divided into slots
and the value of one time step equals the frame time 7. Users know about the
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Fig. 10.5 State transition
diagram for the slotted
ALOHA channel

Transmitting Lttgty collided

start of a new slot through a synchronizing signal that is transmitted by a source.
A user with data to send is only permitted to transmit at the start of a time step.
This removes the chaos of pure ALOHA and improves the efficiency as we shall
see below.

10.4.1 Modeling the Slotted ALOHA Network

In this section we perform Markov chain analysis of the slotted ALOHA network.
We employ the same assumptions that we used to model ALOHA in Sect. 10.3.1
with the only exception that users are allowed to transmit only at the start of a time
step and not at any time as before.

Based on our assumptions the wireless channel can be in one of three states: idle,
collided, or transmitting. Figure 10.5 shows the transition diagram for our Markov
chain. Further, the time step value is naturally chosen equal to the slot time value.
Now it is a good time for the reader to compare that figure with the pure ALOHA
transition diagram of Fig. 10.3. What is the major difference?

The major difference is that the channel can move from collided state to
transmitting state in one time step. This basically creates more chances for the
channel to move to the transmitting state and this enhances the throughput and
performance in general.

Idle state: We remain in s; as long as all users are idle (probability uy). We move
to transmitting state if exactly one user requests access (probability u;) and
we move to collided state if two or more users request access (probability
1-— uy — Ml).

Transmitting state: We move to idle state if all users are idle. We move to
transmitting state if exactly one user requests access (probability u;) and
we move to collided state if two or more users request access (probability
1-— uy — ul).

Collided state: We move to idle state if all users are idle. We move to transmitting
state if exactly one user requests access (probability ;) and we stay in collided
state if two or more users request access (probability 1 — uy — uy).
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The probability that k users request access during a time step is given as before
by binomial statistics

we = (i)ak(l —a)Nk (10.40)

The transition matrix of the system is

uo uo uo
P= 1—MQ—M11—M0—M11—M0—M1 (]041)
U ui ui

At equilibrium the distribution vector is obtained by solving the two equations

Ps=s (10.42)
S1+8+s53=1 (10.43)

The solution to the above two equations is simple:

S1 = Uy
Sy = 1 —ug — uy (1044)
S3 = Uy

Now it is a good time for the reader to compare the above equation with the
corresponding equation for the equilibrium distribution vector of pure ALOHA
in (10.18). Several observations can be made even before we get any numerical
values:

1. Pure ALOHA and slotted ALOHA channels have the same probability of being
in state s; (the idle state).

2. Slotted ALOHA has a lower probability of being in state s, (the collided state)
compared to pure ALOHA.

3. Slotted ALOHA has a higher probability of being in state s3 (the transmitting
state) compared to pure ALOHA.

All these factors contribute to enhance the performance of slotted ALOHA.

10.4.2 Slotted ALOHA Performance

We are interested in the throughput of slotted ALOHA which is given by

Th=s3=uy=Na(l—a)"! (10.45)
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A frame will be transmitted if only one user requests to access the channel
irrespective of the previous state of the channel. For large N, the throughput can
be expressed in terms of the input traffic as

Th = Nae N (10.46)

Slotted ALOHA has higher throughput compared to ALOHA by a factor of uo_l =
(1 —a)~N. We expect the two network to perform almost the same for very low
traffic conditions (@ < 1). Slotted ALOHA will perform better than ALOHA by
orders of magnitude for high values of traffic (a ~ 1) especially for systems with
many users (N > 1).

The throughput in units of frames/s is

_Th

ThH
T

(10.47)

The solid line in Fig. 10.4 shows the variation of the throughput against the average
number of users transmitting frames per time step for the case when N = 10 users.
The average number of users is given by the binomial distribution

Ny,(in)=Na (10.48)

We define the acceptance probability or efficiency p, as the probability of a
successful transmission for a given user. p, is given by

_Th

Pa = Natin)
=(1-a)N! (10.49)
~ e N (10.50)

The average energy required to transmit a frame is estimated as

o0
E=Ey Y (i+D(-p.) pa
i=0
Ey
=— (10.51)
Pa

where Ej is the energy required to send the one frame. In dB, the above equation
can be written as

E/Ey = —10log,, p, dB (10.52)
~ 10aN log,pe =4.3aN dB (10.53)
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We see that average energy to transmit a packet increases exponentially with
increasing traffic but at a rate half that of pure ALOHA.
The average number of attempts before a successful transmission is

o0
na=7y n (1=p)" pa (10.54)
n=0
This evaluates to
1 —
ny = —>= (10.55)
Pa

If the average duration of the random wait period is 7 (in seconds), then the average
wait for a frame before successful transmission is

W=n,x1=—"-"= S (10.56)

Assume that the number of stations is fixed, in that case we can vary the arrival
probability a and investigate how the throughput varies. The maximum throughput
occurs when

dTh
da

=0 (10.57)

Differentiating (10.20) indicates that the maximum throughput for ALOHA occurs
when

1
ap = N (10.58)

Thus, the maximum throughput is theoretically equal to

1 N—1
Th(max) = (1 - ﬁ) (10.59)

The above equation gives the maximum throughput for any number of users N.
A simple expression is obtained when the user population is very large N — oo:

1
Th(max) = —
e

= 36.788 % (10.60)
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In summary, maximum throughput occurs when N — oo and we have

Th = 36.788 % frames/time step (10.61)
N,(in) =1 frames/time step (10.62)
ap= 1/N (10.63)
pa = Th/N,(in) = 0.367 (10.64)

This compares very well with the throughput estimate obtained using fluid flow
analysis [1] where for a continuous-time system with Poisson traffic. Thus when
the number of users increases, the transmission request probability must decrease
in proportion. For example, when the system has N = 100 users, then maximum
throughput is approximately 36.788 % and the transmission request probability must
be a ~ 0.01.

Comparing these predictions with pure ALOHA we find that slotted ALOHA
could support double the number of users and achieve double the throughput.

We note that at maximum throughput, pure ALOHA and slotted ALOHA have
the same efficiency. This is a bit surprising since it was not previously reported in
the literature. In fact, the efficiency for pure ALOHA is given by the expressions

Pa = (1 —ag)™™!

ap = 1/2N
And the efficiency for slotted ALOHA is given by the expressions

Pa = (1 _CIO)N_1
ap = I/N

Both of these expressions evaluate to e~! as N — oo and the arrival probability at
maximum throughput is taken as agp = 1/2N (for pure ALOHA) and ay = 1/N
(for slotted ALOHA).

Both systems show maximum efficiency at very low traffic. As traffic increases
the efficiencies of both systems start to decrease. However, the efficiency of slotted
ALOHA decreases at a slower rate compared to pure ALOHA.

Example 10.3. Repeat Example 10.2 assuming a slotted ALOHA network.

The performance figures are as follows:

Th = 0.1652 frames/time step

ng = 0.2104 attempts

T h(max) = 0.3679 frames/time step

aop = 0.05 for maximum throughput
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We note that the throughput of slotted ALOHA is slightly higher than pure
ALOHA but it is not its double since we are far from the optimum traffic arrival
probability for either systems.

Similarly, the average number of tries is less for slotted ALOHA. ]

10.5 CSMA/CD and the IEEE 802.3 (Ethernet) Protocol

The CSMA/CD and the IEEE 802.3 standard is used for wired LANs where the time
required for one bit to travel between the two farthest stations (propagation time)
is much smaller than the time required for one frame to be sent by the sender
(transmission delay). The IEEE Standard 802.3 is based on CSMA/CD.

Signals on the channel travel very close to the speed of light and it takes a
finite amount of time before all stations become aware that a channel is starting
to access the medium. Therefore, a collision is said to take place when two or more
stations start transmitting within the frame propagation delay. Because during this
time, transmitting stations think that the medium is idle. When that happens, the
two colliding stations stop transmitting and wait for a random amount of time
before attempting to transmit again. This reduces the chance that the stations
will once again transmit simultaneously. The maximum distance limitation for
CSMA/CD is about 2,500 m (1.5 miles). At this value, the ratio of propagation delay
to transmission delay is less than 0.1 [3].

To summarize, in CSMA/CD protocol all stations monitor the channel to
determine when it is free. This is done by special carrier sensing circuits in each
station. If the channel is busy, a station backs off and starts sensing the channel
with probability p. This is called p-persistent CSMA/CD. The station refrains from
transmitting on an idle channel with probability 1 — p. This reduces the probability
of collisions. If the channel is sensed free, the station starts to transmit. Transmitting
stations monitor the signal on the channel and compare it to the transmitted signal to
decide if a collision is taking place or not. This is done by special collision detection
circuits. When the LAN contains N stations, p is chosen such that the product
N p <1][3].

The IEEE 802.3 standard describes a 1-persistent CSMA/CD with exponential
backoff strategy which is more commonly known as Ethernet.

At this point, it is worthwhile mentioning three different CSMA access strategies:

* 1-persistent CSMA
* Nonpersistent CSMA
* p-persistent CSMA

In a 1-persistent CSMA, a station with frame to send senses the channel. If the
channel is sensed free, the frame is sent immediately. If the channel is busy, the
station continuously monitors the channel and sends the frame when the channel is
sensed idle. When a collision takes place, the station adopts a backoff strategy where
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it waits for a random amount of time before it starts to sense the channel. The IEEE
802.3 (Ethernet) adopts this backoff strategy.

In a nonpersistent CSMA, a station with frame to send senses the channel. If the
channel is sensed free, the frame is sent immediately. If the channel is busy, the
station waits for a random amount of time before monitoring the channel and sends
the frame when the channel is sensed idle. If the channel is sensed busy, the station
repeats the random wait. Of course, when a channel suffers a collision, it adopts a
backoff strategy where the collided user sends a frame only when the channel is not
busy and a random wait period has expired.

In a p-persistent CSMA, a station with frame to send senses the channel. If the
channel is sensed free, the frame is sent with probability p. The transmission is
deferred for the next time slot with probability 1 — p. This process is repeated until
the frame is sent. The IEEE 802.11 (WiFi) adopts this transmission strategy.

10.5.1 CSMA/CD Model Assumptions

A simple analysis of IEEE 802.3 was given in [4, 5]. A more complicated analysis
of IEEE 802.3 can be found [6] which is by no means more accurate since it makes
drastic assumptions about the channel states and the probability of a successful
transmission. We follow here the middle ground and provide a tractable analysis
making reasonable approximations.

Let us define 7, to be the delay time required for a user to detect that a collision
has taken place. This delay is approximately equal to the propagation delay ,.
We define t; to be the transmission delay for one frame. Typically 7, <« 7,
since collision detection is done using fast electronic circuits. Therefore, periods
of transmission are separated by one or more contention minislots [7]. Similar to
ALOHA, a user could determine if there is contention or not during a time period
equal to the propagation delay, i.e. 7, ~ ..

To start our analysis, we employ a set of assumptions for IEEE 802.3 model as
follows:

1. Since the current state of the channel depends only on its immediate past history,
we can model the channel using Markov chain analysis.

2. The states of the Markov chain represent the states of the channel: idle,

transmitting, and collided.

The channel is shared among N stations.

There is a single station class (equal priority).

The frame arrival probability per time step is a.

All transmitted frames have equal lengths.

A frame duration is equal to the transmission delay of a frame t;.

The time step of the Markov chain is chosen equal to the collision detection

delay,ie. T = ..

© NN kW
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9. We define n as the ratio of transmission delay to propagation delay, i.e.,
n = t,/t.. We assume that n > 1 which is true for small LANs carrying long
frames or operating at low transmission speeds.

10. The time required to detect a collision is less than or equal to the time step
value T'.

11. Probability that an idle station receives a frame for transmission during a frame
transmission time (or frame duration) is a.

12. A p-persistent CSMA/CD is assumed. When p = 1, we get the model for the
IEEE 802.3 Ethernet protocol.

13. A collided users transmits with probability y when it senses the channel free.

14. A station can have at most one message waiting for transmission.

10.5.2 CSMA/CD State Transition Diagram

In this section we attempt to model the states of a tagged user. It is best to model
the user as opposed to modeling the channel since the CSMA/CD medium access
control protocol (MAC) specifies certain actions of the user such as backoff and
persistence. These actions cannot be explicitly modelled by the channel.

Based on the above assumptions the user can be in one of the following states:

. Idle state (s;) where the user has no frames to send.

. Wait state (s,,) where the user has a frame to send but sensed the channel busy.

3. Collided state (s.) where the transmitting user just sensed a collision after the
first transmission time step.

4. n transmitting states (s, ) with 1 <i <n.

N =

Figure 10.6 shows the state diagram of CSMA/CD protocol. There are several
transmitting states because the time required for transmitting one frame (t;) is bigger

L-puy

Waiting )

: g

) iy 1 g
Fig. 10.6 State transition (i
diagram for the IEEE 802.3 oy

CSMA/CD tagged user
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than the propagation delay 7,. In the figure uo denotes the probability that all N — 1
users, apart from the tagged user, will not transmit when the channel is free. The
probability that a user will not start transmission even when the channel is sensed
free is given by:

Piaie = (1 —a'p)s; + (1 — p)s,y + (1 —y)se (10.65)

where a’ = a/n is the probability that a station requests a transmission during a
time step, p is the persistence probability and y is the probability that a collided
user starts a transmission.

Based on that, excepting the tagged user, the probability all untagged users will
not start transmission is given by:

uo = [(1—a)si + (1= pIsy + (1 —y)se ] (10.66)
We organize the distribution vector at equilibrium as follows.
S = [s,- Sw S¢ St Syt Sy, ]t (10.67)
The corresponding transition matrix of the user when n = 3 is given by
[ 1-a 0 0 0 01]
a'(l—pu) 1 —puy O 0 00
0 0 l—)/uol—u()OO
P= 10.68
a’ puyg puo Yo 0 00 ( )
0 0 0 up 00
L 0 0 0 0 10 ]

At equilibrium the distribution vector is obtained by solving the two equations

Ps=s (10.69)
Zs =1 (10.70)

However, the terms in P depend on the state vector components. This constitutes
a highly nonlinear set of equations. The solution for s is obtained through several
techniques such as optimization or iterative techniques as follows:

Input the values of p, y,a, N, and n.

Assume a trial value for state vector s.

Start the iterations by obtaining the probability ug

Substitute the value of uy to obtain an updated value s(updated).

Calculate the error e = s(updated) — s and the root mean square error e,;,s.
Update the state vector

A

S=s+uoe
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Fig. 10.7 The throughput for 0.8 T T
persistent CSMA/CD versus
the average input traffic when
n=20,N =10, p =0.1,
and y = 0.1. The blue line is
the throughput of p-persistent
CSMA/CD, the green line
represents the throughput of
slotted ALOHA, and the red
line represents the throughput
of pure ALOHA
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where « is the update step size which is usually taken equal to 0.1 or even
smaller.

7. Repeat the iterations starting at Step 3 and stop when e,,,; is below a certain
value.

10.5.3 IEEE 802.3 (CSMA/CD) Protocol Performance

The throughput is given by the equation
Th=nNT, (10.71)

Figure 10.7 shows the throughput of the p-persistent CSMA/CD when n = 20,
N =10, p = 0.1, and y = 0.1. The blue line is the throughput of p-persistent
CSMA/CD, the green line represents the throughput of slotted ALOHA, and the red
line represents the throughput of pure ALOHA. For a given value of N, the two
main parameters that affect the throughput are n and y. Increasing n improves the
throughput since little time is allocated for collisions detection. At high traffic, the
users are mostly in the collided state. Increasing y will result in more collisions
and less throughput since most users will attempt to transmit when they sense the
channel free. Decreasing y will also result in more collisions and less throughput
since collided users will not attempt to transmit even when the channel is sensed
free. The optimum value for y = 1/N through experimentation. Unlike ALOHA or
Slotted ALOHA, CSMA/CD shows high throughput even when traffic level is high.
This is a definite advantage that resulted from two factors:

1. Adoption of backoff strategy for collided users
2. Monitoring the channel state and only transmitting when the channel is sensed
idle.
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Access Probability
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Fig. 10.8 Access probability for p-persistent CSMA/CD versus the average input traffic when
n =20, N = 10, p = 0.1, and y = 0.1. The blue line is the access probability of persistent
CSMA/CD, the green line represents the access probability of slotted ALOHA, and the red line
represents the access probability of pure ALOHA

The access probability for the user in the p-persistent CSMA/CD protocol is
given by

_Th

= — 10.72
Na ( )

Pa

Figure 10.8 shows the access probability of the persistent CSMA/CD protocol.

The blue line is the access probability of p-persistent CSMA/CD, the green line

represents the access probability of slotted ALOHA, and the red line represents

the access probability of pure ALOHA. We notice that p-persistent CSMA/CD has

the highest value for p, followed by slotted ALOHA then ALOHA, as expected.
The average number of attempts for a successful transmission is

o0
ng = Zi ( _pa)i Pa
i=0
I- a
L ) (10.73)
Pa

Figure 10.9 shows the frame delay for p-persistent CSMA/CD versus the average
input traffic when n = 20, N = 10, and y = 0.1. The blue line is the delay
of p-persistent CSMA/CD, the green line represents the delay of slotted ALOHA,
and the red line represents the delay of pure ALOHA. We notice that persistent
CSMA/CD shows the least delay and that the delay shows signs of saturation for
high values of input traffic.
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Fig. 10.9 Frame delay for p-persistent CSMA/CD versus the average input traffic when n = 20,
N =10, p = 0.1, and y = 0.1. The blue line is the delay of p-persistent CSMA/CD, the green
line represents the delay of slotted ALOHA, and the red line represents the delay of pure ALOHA

The average energy required for a successful transmission is given by:

E o0

0 . ;

E=Eo+—E (=1 (= pa) pa
ni=0

= E, (1 + ) (10.74)

npa
where Ej is the energy required to send one frame. Figure 10.10 shows the frame
energy for p-persistent CSMA/CD versus the average input traffic when n = 20,
N = 10, p = 0.1, and y = 0.1. The blue line is the energy of p-persistent
CSMA/CD, the green line represents the energy of slotted ALOHA, and the red
line represents the energy of pure ALOHA. We notice that p-persistent CSMA/CD
shows the least energy and that the energy shows signs of saturation for high values
of input traffic. The low energy required to transmit a frame is due to the fact that
CSMA/CD detects a collision in one slot and back off when it occurs. On the other
hand, ALOHA protocols detect a collision at the end of the frame transmission and
this leads to more lost energy.

10.6 Carrier Sense Multiple Access—Collision Avoidance

CSMA/CA is used in wireless LANs where a transmitting station is unable to
determine if a collision occurred while transmitting or not. Collision detection,
as is employed in Ethernet, cannot be used for the radio frequency transmissions.
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Fig. 10.10 Average energy required to send a frame versus the average input traffic when n = 20,
N = 10, p = 0.1, and y = 0.1. The blue line is the energy of p-persistent CSMA/CD, the
green line represents the energy of slotted ALOHA, and the red line represents the energy of pure
ALOHA

The reason for this is that when a node is transmitting it cannot hear any other node
in the system which may be transmitting, since its own signal will drown out other
signals arriving at the node. A station will ultimately know when a collision has
taken place by reception of negative acknowledgment or by timeout mechanisms.

An ad hoc network is a collection of communicating nodes that do not have
established infrastructure or centralized administration [8]. CSMA/CA protocol is
useful in ad hoc networks where access to the network is decentralized since each
station coordinates its own decisions for accessing the medium. There is no central
access point to coordinate activities of all stations. Thus ad hoc networks are simpler
to implement and to modify. The price for this simplicity is that ad hoc networks are
prone to collisions.

10.6.1 CSMA/CA Model Assumptions

Let us define 7, to be the propagation delay between users, and 7, to be the
transmission delay for one frame. To start our analysis, we employ a set of
assumptions for CSMA/CA model as follows:

1. Since the current state of the channel depends only on its immediate past history,
we can model the channel using Markov chain analysis.

2. The states of the Markov chain represent the states of the channel: idle,
transmitting, and collided.

3. The channel is shared among N stations.
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There is a single station class (equal priority).

The frame arrival probability per time step is a.

All transmitted frames have equal lengths.

A frame duration is equal to the transmission delay of a frame 7.

The time step of the Markov chain is chosen equal to the propagation delay,
ie. T = 1,.

9. We define n as the ratio of transmission delay to propagation delay, i.e., n =
7;/7,. We assume that n > 1 which is true for small LANs carrying long frames
or operating at low transmission speeds.

10. A p-persistent CSMA/CA is assumed.
11. A station can have at most one message waiting for transmission.

P NN

10.6.2 CSMA/CA State Transition Diagram

In this section we attempt to model the states of a tagged user. It is best to model
the user as opposed to modeling the channel since the CSMA/CD medium access
control protocol (MAC) specifies certain actions of the user such as backoff and
persistence. These actions cannot be explicitly modelled by the channel.

Based on the above assumptions the user can be in one of the following states:

1. Idle state (s;) where the user has no frames to send.

2. Wait state (s,,) where the user has a frame to send but sensed the channel busy.

3. n transmitting states (s;,) with 1 <i <n.

4. n collided states (s.,) with 1 < i < n where the transmitting user sensed a
collision after the end of transmission.

Figure 10.11 shows the state diagram of CSMA/CA protocol. There are several
transmitting states because the time required for transmitting one frame (t;) is bigger
than the propagation delay 7,. There are also several collided states since a user
continues to transmit after a collision has taken place. In the figure uy denotes the
probability that all N — 1 users, apart from the tagged user, will not transmit when
the channel is free. The probability that a user will not start transmission even when
the channel is sensed free is given by:

piagte = (1—a’'p)s; + (1 = p)s, + (1 —y)se, (10.75)

where @’ = a/n is the probability that a station requests a transmission during a
time step, p is the persistence probability when the user is waiting for the channel
to be free, and y is the probability that a collided user starts a transmission. Based
on that, excepting the tagged user, the probability all untagged users will not start
transmission is given by:

up=[(1—a'p)s; + (1= p)s + (1= p)sa]" (10.76)
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Fig. 10.11 State transition
diagram for the CSMA/CA
tagged user
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We organize the distribution vector at equilibrium as follows.

t
s = [s,- Sw Sty Sty Sty Sy Sy e Sc,,] (10.77)
The corresponding transition matrix of the channel for the case when n = 3 is
given by
l—a 0 0 01 0 00T
a(l—pu)l—puy 0 00 0 00
apug PUp 0 00 yu 0O
0 0 up 00 0 00
P= 10.78
0 0 0 00 O 00 ( )
0 0 1—up001—yuy01
0 0 0 00 0 00
B 0 0 0 10 0 10

At equilibrium the distribution vector is obtained by solving the two equations

Ps=s (10.79)
ds=1 (10.80)

However, the terms in P depend on the state vector components. This constitutes
a highly nonlinear set of equations. The solution for s is obtained through several
techniques such as optimization or iterative techniques as follows:

1. Input the values of p, y,a, N, and n.

2. Assume a trial value for state vector s.

3. Start the iterations by obtaining the probability u

4. Substitute the value of uy to obtain an updated value s(updated).
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d

Calculate the error e = s(updated) — s and the root mean square error e,,.
6. Update the state vector

Ss=s+uoe

where « is the update step size which is usually taken equal to 0.1 or even
smaller.

7. Repeat the iterations starting at Step 3 and stop when e, is below a certain
value.

10.6.3 CSMA/CA Protocol Performance

The throughput is given by the equation:
Th=nNT, (10.81)

Figure 10.12 shows the throughput of p-persistent CSMA/CA. Figure 10.12a shows
the throughput when n = 20, N = 10, y = 0.01, and p = 0.5. The blue line is the
throughput of p-persistent CSMA/CA, the green line represents the throughput of
slotted ALOHA, and the red line represents the throughput of pure ALOHA.

It is interesting to compare Fig.10.7 for CSMA/CD and Fig.10.12 for
CSMA/CA. The latter protocol shows lower throughput for the same set of
parameters as the former. This is due to the fact that CSMA/CA keeps transmitting
frames even when collisions have taken place. Therefore precious bandwidth
and time is wasted transmitting frames while CSMA/CD stops the transmission
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Fig. 10.12 The throughput for CSMA/CA versus the average input traffic. (a) is case when
n=20, N =10, p = 0.5, and y = 0.01. (b) is case whenn = 20, N = 10, p = 0.5,
and y = 0.1. The blue line is the throughput of p-persistent CSMA/CA, the green line represents
the throughput of slotted ALOHA, and the red line represents the throughput of pure ALOHA
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promptly. Unlike ALOHA or Slotted ALOHA, CSMA/CA shows high throughput
even when traffic level is high, similar to CSMA/CD. This is a definite advantage
that resulted from two factors:

1. Adoption of backoff strategy for collided users

2. Monitoring the channel state and only transmitting when the channel is sensed
idle.

3. Adopting a persistence probability p.

The access probability for a user in the CSMA/CA protocol is given by

_Th

= — 10.82
Na ( )

Pa

Figure 10.13 shows the access probability of CSMA/CA. (a) Case when n = 20,
N =10, p = 0.5, and y = 0.01. (b) Case whenn = 20, N = 10, p = 0.5,
and y = 0.1. The blue line is the access probability of p-persistent CSMA/CA,
the green line represents the access probability of slotted ALOHA, and the red line
represents the access probability of pure ALOHA.

The average number of attempts for a successful transmission is

00
Ng = Zi (1 _pa)i Pa
i=0

1- a
. (10.83)
Da
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Fig. 10.13 Access probability of CSMA/CA. (a) Case whenn = 20, N = 10, p = 0.5, and
y = 0.01. (b) Case whenn = 20, N = 10, p = 0.5, and y = 0.1. The blue line is the access
probability of p-persistent CSMA/CA, the green line represents the access probability of slotted
ALOHA, and the red line represents the access probability of pure ALOHA
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Fig. 10.14 Frame delay of CSMA/CA. (a) Case whenn = 20, N = 10, p = 0.5, and y = 0.01.
(b) Case whenn = 20, N = 10, p = 0.5, and y = 0.1. The blue line is the delay of p-persistent
CSMA/CA, the green line represents the delay of slotted ALOHA, and the red line represents the
delay of pure ALOHA

Figure 10.14 shows the delay of the CSMA/CA protocol whenn = 50, N = 10,
and p = 0.5. Figure 10.14a is the case when n = 20, N = 10, p = 0.5, and
y = 0.01. Figure 10.14b is the case whenn = 20, N = 10, p = 0.5, and y = 0.1.
The blue line is the delay of p-persistent CSMA/CA, the green line represents the
delay of slotted ALOHA, and the red line represents the delay of pure ALOHA.

The average energy required to transmit a frame is estimated as

o0
E=E Y (i+1)(-ps) pa
i=0
Ey
== (10.84)
Pa

where Ej is the energy required to send the one frame. In dB, the above equation
can be written as

E/Ey = —10log,, p, dB (10.85)

Figure 10.15 shows the average energy needed to transmit a frame of the CSMA/CA
protocol when n = 50, N = 10, and p = 0.5. Figure 10.15a is the case when
n =20, N =10, p = 0.5, and y = 0.01. Figure 10.15b is the case when n =
20, N = 10, p = 0.5, and y = 0.1. The blue line is the energy of p-persistent
CSMA/CA, the green line represents the energy of slotted ALOHA, and the red line
represents the energy of pure ALOHA.
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Fig. 10.15 Average energy to transmit a frame for the CSMA/CA. (a) Case when n = 20,
N =10, p = 0.5, and y = 0.01. (b) Case whenn = 20, N = 10, p = 0.5, and y = 0.1.
The blue line is the energy of p-persistent CSMA/CA, the green line represents the energy of
slotted ALOHA, and the red line represents the energy of pure ALOHA

10.7 Problems

ALOHA Network

10.1. Use Eq. (10.20) to find the maximum value for the throughput of an ALOHA
network and the value of a at the maximum.

10.2. Using the results of Sect. A.6 in Appendix A on page 543 prove that
the maximum throughput of the ALOHA network approaches the value 1/2e¢ as
N — oo.

10.3. Assume an ALOHA network that is operating at its optimum conditions.
What is the average number of attempts for a user to be able to transmit a frame
under these conditions?

10.4. Assume an ALOHA network where the frame length is a multiple of some
unit of length with an upper limit on the maximum frame size. Draw a possible
transition diagram for such system and write down the corresponding state transition
matrix.

10.5. Assume an ALOHA network where the propagation delay is bigger than
the frame time 7. What would be a good choice for the time step of the Markov
chain? Draw a possible transition diagram for such system and write down the
corresponding state transition matrix.

10.6. Assume there are 25 users in an ALOHA network. What is the transmission
request probability a that corresponds to maximum throughput and what is the value
of the maximum throughput?
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10.7. Assume there are 25 users in an ALOHA network and the probability that a
user request access is a = 0.06. What is the throughput of the channel and what is
the probability that a user will successfully transmit frame after three unsuccessful
attempts?

10.8. What is the average number of unsuccessful attempts before a user can
transmit a frame in the above problem?

Slotted ALOHA Network

10.9. What is the major difference between ALOHA and slotted ALOHA?

10.10. What are the major differences between the transition diagrams of ALOHA
and slotted ALOHA?

10.11. Write down the expressions for the steady state distribution vectors for
ALOHA and slotted ALOHA and comment on their similarities and differences.
Explain why slotted ALOHA is expected to perform better than ALOHA.

10.12. Write down the ratio of throughput for slotted ALOHA compared to
ALOHA. Approximate the expression for the limits whena <« 1 anda ~ 1.

10.13. Use Eq. (10.45) to find the maximum value for the throughput of a slotted
ALOHA network and the value of a at the maximum.

10.14. Using the results of Sect. A.6 in Appendix A on page 543 prove that the
maximum throughput of the slotted ALOHA network approaches the value 1/e
as N — oo.

10.15. Assume a slotted ALOHA network that is operating at its optimum condi-
tions. What is the average number of attempts for a frame to be transmitted under
these conditions?

10.16. Assume a slotted ALOHA network where the frame length is a multiple of
some unit of length with an upper limit on the maximum frame size. Draw a possible
transition diagram for such system and write down the corresponding transition
matrix.

10.17. Assume a slotted ALOHA network where the propagation delay is bigger
than the frame time 7. Draw a possible transition diagram for such system and
write down the corresponding transition matrix.

10.18. Assume there are 25 users in a slotted ALOHA network. What is the
transmission request probability a that corresponds to maximum throughput and
what is the value of the maximum throughput?
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10.19. Assume there are 25 users in a slotted ALOHA network and the probability
that a user request access is a = 0.06. What is the throughput of the channel
and what is probability that a user will successfully transmit frame after three
unsuccessful attempts?

10.20. What is the average number of unsuccessful attempts before a user can
transmit a frame in the above problem?

10.21. Compare the maximum throughput values for ALOHA and slotted ALOHA
and the level of activity for the sources under these conditions assuming the same
number of user in both systems.

10.22. Assume an ALOHA network and a slotted ALOHA network. Both systems
support N users and each user is active with probability a = 0.02. What is the
optimum value of N for maximum throughput for both systems?

p-Persistent CSMA/CD and IEEE 802.3 (Ethernet)

10.23. Consider Fig. 10.6 for the p-persistent CSMA/CD MAC protocol. What
would the state diagram be when a binary exponential backoff strategy is used?

10.24. Consider the state transition diagram in Fig. 10.6. At saturation we have
a ~ 1 and we can solve for the states in terms of the probability ug, n, p, and y.
Find expressions for the states and the throughput.

10.25. Assume an IEEE 802.3 network where the frame length is not constant.
In that case the number of time slots required by the transmitted frames could take
between n,,,;, t0 1,4y slots.

(a) Draw the resulting state transition diagram.
(b) Indicate on the diagram the transition probabilities.
(c) Write down the state transition matrix.

10.26. Assume an IEEE 802.3 network in which a transmitting user could move on
to transmit another frame without turning to the idle state. The probability of this
event happening is c.

(a) Identify the possible states of this Markov chain.
(b) Study the state transition probabilities and write down the state transition
matrix.

10.27. Assume in the 802.3 that a collided station attempts a retransmission for a
limited number of times (assume two only). If it fails after two attempts, it returns
back to being idle. Analyze this situation.
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CSMA/CA

10.28. Consider Fig. 10.11 for the p-persistent CSMA/CA MAC protocol. What
would the state diagram be when a binary exponential backoff strategy is used?

10.29. Consider the state transition diagram in Fig. 10.11. At saturation we have
a ~ 1 and we can solve for the states in terms of the probability ug, n, p, and y.
Find expressions for the states and the throughput.

10.30. Assume a CSMA/CA network where the frame length is not constant. In that
case the number of time slots required by the transmitted frames could take between
Nppin 1O Ny SlOLS.

(a) Draw the resulting state transition diagram.
(b) Indicate on the diagram the transition probabilities.
(c) Write down the state transition matrix.

10.31. Assume a CSMA/CA network where the frame length is not constant. In
that case the number of time slots required by the transmitted frames could take
between 7,;,;, tO 1,4, slots.

(a) Draw the resulting state transition diagram.
(b) Indicate on the diagram the transition probabilities.
(c¢) Write down the state transition matrix.

10.32. Assume a CSMA/CA network in which a transmitting user could move on
to transmit another frame without turning to the idle state. The probability of this
event happening is c.

(a) Identify the possible states of this Markov chain.
(b) Study the state transition probabilities and write down the state transition
matrix.

10.33. Assume in the CSMA/CA protocol that a collided station attempts a
retransmission for a limited number of times (assume two only). If it fails after
two attempts, it returns back to being idle. Analyze this situation.
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Chapter 11
Modeling IEEE 802.11 (WiFi) Protocol

11.1 Introduction

The IEEE 802.11 (WiFi) is the most widely used medium access control protocol
for wireless local area networks (LANs). Being a wireless protocol, it is based
on p-persistent CSMA/CA discussed in Chap. 10. The only difference between
WiFi and CSMA/CA is that when a user has a packet or frame to send and senses
channel is free, it will unconditionally go through a random wait before it attempts
a transmission. On the other hand, CSMA/CA under the same conditions will
immediately send the frame. WiFi underwent several versions such as 802.11a,
802.11b, 802.11g, 802.11n, 802.11ac, 802.11ad, and 802.11ah. We shall discuss
here simplified versions of the protocol since our intention is to illustrate how such
protocol is using the features common in all versions. IEEE 802.11 wireless LAN
standard is used for infrastructure as well as ad hoc networks.

Infrastructure wireless networks have a central controller called access point
(AP) that coordinates medium access among the users. This part of the protocol
is referred to as Point Coordination Function (PCF) and it occupies a short time
period at the start of each transmitted frame as shown in Fig. 11.1. The frame starts
with a PCF period which is a time period to enable prioritized access for control
messages and time-critical traffic [1-3]. This form of centralized medium access
scheme enables the IEEE 802.11 to offer some quality of service (QoS) guarantees
through implementation of a scheduling algorithm at the AP.

Ad hoc wireless networks do not have a central controller. Instead, each node
or user attempts to access the shared medium on its own. This part of the protocol
is referred to as Distributed Coordination Function (DCF) and it follows the PCF
period of each transmitted frame as shown in Fig. 11.1. This is a form of distributed
reservation scheme that could provide statistical QoS guarantees.

© Springer International Publishing Switzerland 2015 371
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Fig. 11.1 Location of PCF and DCF periods in the frame of IEEE 802.11 protocol

11.2 IEEE 802.11: Basic DCF for Ad Hoc Wireless LANs

The DCF MAC part of IEEE 802.11 standard is based on CSMA-CA (listen-
before-talk) with rotating backoff window [1]. When a node receives a frame to be
transmitted, it chooses a random backoff value which determines the amount of time
the node must wait until it is allowed to transmit its frame. A node stores this backoff
value in a backoff counter. During periods in which the channel is clear, the node
decrements its backoff counter. (When the channel is busy it does not decrement
its backoff counter.) When the backoff counter reaches zero, the node transmits the
frame. Since the probability that two nodes will choose the same backoff factor is
small, collisions between frames are minimized. Collision detection, as is employed
in Ethernet, cannot be used for the radio frequency transmissions of IEEE 802.11.
The reason for this is that when a node is transmitting it cannot hear any other node
in the system which may be transmitting, since its own signal will drown out any
others arriving at the node.

In that sense, 802.11 could be classified as CSMA/CA but with provisions for
reducing the chance of collisions through adoption of the reservation slots using the
backoff counters. The slots have the effect of ensuring that a reduced number of
users compete for access to the channel during any given reservation slot.

Figure 11.2 shows the DCF part of the IEEE 802.11 frame. After the PCF period
(i.e., SIFS), there is the DCF period (i.e., DIFS) which is a contention window that
is divided into reservation slots. The figure shows six such slots. The duration of a
reservation slot depends on the propagation delay between stations. The rest of the
frame is dedicated to transmitting the frames.

A station that intends to transmit senses if the channel is busy. It will then wait
for the end of the current transmission and the PCF delay. It then randomly selects
a reservation slot within the backoff window. The figure shows that a station in time
reservation slot 2 starts transmitting a frame since the channel was not used during
reservation slots O and 1.

Collisions occur when two or more stations select the same reservation slot. If
another station started transmission at an earlier reservation slot, the station freezes
its backoff counter and waits for the remaining contents of this counter after the
current transmission ends.

The basic DCF uses a two-way handshaking data exchange mechanism shown in
Fig. 11.3.
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11.2.1 Markov Chain Modeling of the Basic DCF

We consider the behavior of one user, which we term the tagged user. Figure 11.4
shows the IEEE 802.11 MAC scheme as viewed by a certain user (called the tagged
user). Figure 11.4 indicates that the tagged user, as indicated by the black circle,
randomly selected reservation slot 7 to start transmission. So its backoff counter
contains the value 7 now. However, another user starts transmission at reservation
slot 2 as indicated by the grey box. Since the channel was quite for two reservation
slots (slot 0 and 1), the backoff counter of the tagged user will contain the value 5
at the end of the current frame.
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Figure 11.4b shows next frame. However, another user at reservation slot 1
started transmission. Since the channel was quite for one reservation slots (slot 0),
the backoff counter of the tagged user will contain the value 4 at the end of the
current frame.

Figure 11.4c shows next frame. The tagged user is successful in starting trans-
mission since the channel was quite for four reservation slots (0, 1, 2, and 3).

Modeling the behavior of the backoff counter can certainly be done using Markov
chains. However, we can equally model such random behavior through a backoff,
or persistence, probability p when the user is waiting for the channel to be free
before attempting to transmit a packet. We will follow this approach in the following
subsection.

11.2.2 IEEE 802.11: Basic DCF Model Assumptions

We employ the following simplifying assumptions.

1. Since the current state of the user depends only on its immediate past history,
we can model the user using Markov chain analysis.

2. The states of the Markov chain represent the states of the user: idle, waiting,
transmitting, and collided.

3. There are N equal priority users in the network. By network we mean a single-
hop network or the nodes within the transmission range of a particular node.

4. We replace the waiting backoff window with a transmit probability p when the
channel is sensed idle.

5. The duration of one time step in the contention window is roughly taken equal
to the maximum expected propagation delay 7, plus the time it takes a station
to sense the presence of a carrier. This time is called the Distributed Interframe
Spacing (DIFS).

6. The Markov chain time step is taken equal to the DIFS period.

The ratio of frame transmission delay to contention window delay is n > 1.

8. All frames have equal lengths such that a frame takes n time steps to be
transmitted.

9. Probability that an idle station receives a frame for transmission during a frame
period is a.

10. A station can have at most one message waiting for transmission.

11. Collided users employ a random backoff strategy with transmit probability y

when the channel is sensed idle.

=~

Figure 11.5 shows the state transition diagram for the IEEE 802.11 WiFi
tagged user when the basic DCF protocol is used. There are several transmitting
states because the time required for transmitting one frame (t;) is bigger than the
propagation delay t,. There are also several collided states since a user continues to
transmit after a collision has taken place.
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Fig. 11.5 State transition
diagram for the IEEE 802.11
WiFi tagged user when the
basic DCF protocol is used
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In the figure u( denotes the probability that all N — 1 users, apart from the tagged
user, will not transmit when the channel is free. The probability that a user will not
start transmission even when the channel is sensed free is given by:

pidte = 8i + (L= p)sy + (1 —y)s, (111
where @’ = a/n is the probability that a station requests a transmission during a
time step, p is the persistence probability when the user is waiting for the channel
to be free, and y is the probability that a collided user starts a transmission. Based

on that, excepting the tagged user, the probability all untagged users will not start
transmission is given by:

up = [si + (1= p)sy + (1 = p)sc V! (11.2)

We organize the distribution vector at equilibrium as follows.

s = [si Sw St Sty t* St Sep Sey ** Se, ]t (11.3)
The corresponding transition matrix of the channel for the case when n = 3 is
given by:
[1—-d" 0 0 01 0 00]
a l1l—puy 0 00 0 00
0 4 0 00 Yuo 00
pP— 0 0 up 00 0 00 (11.4)
0 0 0 00 O 00
0 0 1—-u001—-yu0l
0 0 0 00 O 00
L O 0 0 10 0 10
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At equilibrium the distribution vector is obtained by solving the two equations

Ps=s (11.5)
dos=1 (11.6)

However, the terms in P depend on the state vector components. This constitutes
a highly nonlinear set of equations. The solution for s is obtained through several
techniques such as optimization or iterative techniques as follows:

Input the values of p, y,a, N, and n.

Assume a trial value for state vector s.

Start the iterations by obtaining the probability u.

Substitute the value of uy to obtain an updated value s(updated).

Calculate the error e = s(updated) — s and the root mean square error e,,.
Update the state vector

AR S

S=s+uwe

where « is the update step size which is usually taken equal to 0.1 or even smaller.
7. Repeat the iterations starting at Step 3 and stop when e, is below a certain
value.

11.2.3 IEEE 802.11 WiFi: Basic DCF Protocol Performance

The throughput is given by the equation:
Th=nNT, (11.7)

Figure 11.6 shows the throughput of IEEE 802.11 WiFi for the IEEE 802.11/DCF
protocol versus the average input traffic when n = 20, N = 10, p = 0.8, and
y = 0.01. The black line is the throughput of IEEE 802.11 WiFi, the blue line is the
throughput of p-persistent CSMA/CA with the same parameters as the WiFi, the
green line is the throughput of slotted ALOHA, and the red line is the throughput of
pure ALOHA.

At low input traffic, the WiFi basic DCF protocol throughput is comparable to
p-persistent CSMA/CA but then it becomes a bit smaller than it since users with a
frame to transmit have to wait before accessing the channel.

Changing the value of p has little effect on the throughput. However, the collided
backoff probability drastically affects the throughput. When y is increased from
0.01 to 0.05, the throughput of both CSMA/CA and IEEE 802.11 is reduced.
Increasing y to 0.1 will reduce the IEEE 802.11 drastically, a very small value.
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Fig. 11.6 Throughput for the IEEE 802.11/DCF protocol versus the average input traffic when
n =20, N =10, p = 0.8, and y = 0.01. The black line is the throughput of IEEE 802.11
WiFi, the blue line is the throughput of p-persistent CSMA/CA, the green line is the throughput of
slotted ALOHA, and the red line is the throughput of pure ALOHA

Fig. 11.7 Access probability
of IEEE 802.11 basic DCF
whenn = 20, N = 10,

p =0.8,and y = 0.01. The
black line is the access
probability of IEEE 802.11
basic DCEF, the blue line is the
access probability of
p-persistent CSMA/CA, the
green line is the access
probability of slotted
ALOHA, and the red line is
the access probability of pure
ALOHA
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The user access probability is given by:

Pa

_Th
" Na

4 6
Input traffic (packet/slot)

(11.8)

Figure 11.7 shows the access probability of IEEE 802.11 when n = 20, N = 10,
p = 0.8, and y = 0.01. Again, we see that p, for IEEE 802.11 basic DCF is equal
to or a bit smaller than p, for CSMA/CA.
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Fig. 11.8 Frame delay of 1010
IEEE 802.11 basic DCF when
n=20,N =10, p =0.5,
and y = 0.01. The black line
is the delay of IEEE 802.11
basic DCF, the blue line is the ~ 10°
delay of p-persistent
CSMA/CA, the green line is
the delay of slotted ALOHA,
and the red line is the delay of
pure ALOHA
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The average number of attempts for a successful transmission is

00
Ng = Zi (1 _pa)i Pa
i=0

I- a
— 1" Pa (11.9)
Pa

Figure 11.8 shows the delay of the IEEE 802.11 basic DCF protocol when
n=>50,N =10,and p = 0.5 whenn =20, N = 10, p = 0.5, and y = 0.01.
The black line is the delay of IEEE 802.11 basic DCEF, the blue line is the delay of
p-persistent CSMA/CA, the green line is the delay of slotted ALOHA, and the red
line is the delay of pure ALOHA.

The average energy required to transmit a frame is estimated as

o0
E=Ey Y (i+1(1-p) pa
i=0
E
=0 (11.10)
Pa

where E| is the energy required to send the one frame. In dB, the above equation
can be written as

E/Ey = —10log,, p. dB (11.11)

Figure 11.9 shows the average energy needed to transmit a frame of the IEEE 802.11
basic DCF protocol when n = 20, N = 10, p = 0.8, and y = 0.01. The black



11.3 IEEE 802.11: DCF Using RTS/CTS for Ad Hoc Wireless LANs (MACA) 379

10°

102}

101 L

10°

Energy (dB)

10™

102 . . . .
0 2 4 6 8 10
Input traffic (packets/slot)

Fig. 11.9 Average energy to transmit a frame for the IEEE 802.11 basic DCF when n = 20,
N =10, p = 0.8, and y = 0.01. The black line is the energy of IEEE 802.11 basic DCEF, the blue
line is the energy of p-persistent CSMA/CA, the green line is the energy of slotted ALOHA, and
the red line is the energy of pure ALOHA

line is the energy of IEEE 802.11 WiFi, the blue line is the energy of p-persistent
CSMA/CA, the green line is the energy of slotted ALOHA, and the red line is the
energy of pure ALOHA.

11.3 1EEE 802.11: DCF Using RTS/CTS for Ad Hoc Wireless
LANs (MACA)

As was mentioned in Sect. 11.2, the basic DCF function is based on CSMA/CA for
MAC functionality. That is why we notice that the system throughput was equal
to, or slightly below, the CSMA/CA throughput. We also saw that in Chap. 10
that CSMA/CD protocol has higher throughput compared to CSMA/CA. This is
the main motivation for attempting to modify the IEEE 802.11 DCF function to
incorporate the CSMA/CD protocol. This is achieved through the use of four-way
handshaking protocol as shown in Fig. 11.10.

A station with a packet to send will first send a request to send packet (RTS)
when it senses the channel is free for a minimum of DIFS time. If the RTS packet
is successfully received without suffering collisions, the intended receiver will issue
a clear to send packet (CTS). After this, the sender will commend to send the data
and wait for an acknowledgment (ACK) for the receiver.
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Fig. 11.10 Four-way handshaking RTS/CTS (MACA) protocol for IEEE 802.11 WiFi DCF
function

Fig. 11.11 State transition 1dle
diagram for the IEEE 802.11
WiFi tagged user when the
RTS/CTS DCF protocol is
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11.3.1 Modeling DCF Using RTS/CTS

To derive a simple model for WiFi DCF using RTS/CTS, we employ a set of
assumptions similar to those employed in Sect. 11.2.2. The only difference is that
the RTS/CTS mechanism is used to start assure no collisions will take place. We note
that the time a station requires to determine if a collision occurred is the duration
of the RTS/CTS packets. This is definitely shorter than the data duration. Thus the
RTS/CTS mechanism mimics the CSMA/CD and hopefully the performance will
improve over that of the basic DCF function.

Figure 11.11 shows the state transition diagram for the IEEE 802.11 WiFi tagged
user when the RTS/CTS DCF protocol is used. There are several transmitting
states because the time required for transmitting one frame (t;) is bigger than the
propagation delay t,. There is only one collided state since a user will not transmit
after a collision has taken place.

In the figure uy denotes the probability that all N — 1 users, apart from the tagged
user, will not transmit when the channel is free. The probability that a user will not
start transmission even when the channel is sensed free is given by:

Didle = Si + (1 —P)SW + (1 - )/)sa (11.12)
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where p is the persistence probability when the user is waiting for the channel to
be free and y is the probability that a collided user starts a transmission. Based
on that, excepting the tagged user, the probability all untagged users will not start
transmission is given by:

uo = [si + (1= p)sy + (1 —p)s V! (11.13)

We organize the distribution vector at equilibrium as follows:

t

s = [si Sw Sy S¢ St; Sty ---stn] (11.14)
The corresponding transition matrix of the channel for the case when n = 3 is
given by:
[a1—puy © 0 000]
0 PUo 0 YUuo 000
0 0 1—-ul—yu000
P= 11.15
0 0 U 0 000 ( )
0 0 0 0 100
0 0 0 0 010

At equilibrium the distribution vector is obtained by solving the two equations

Ps=s (11.16)
dos=1 (11.17)

However, the terms in P depend on the state vector components. This constitutes
a highly nonlinear set of equations. The solution for s is obtained through several
techniques such as optimization or iterative techniques as follows:

Input the values of p, y, a, N, and n.

Assume a trial value for state vector s.

Start the iterations by obtaining the probability uy.

Substitute the value of uy to obtain an updated value s(updated).

Calculate the error e = s(updated) — s and the root mean square error e,,,s.
Update the state vector

AR e

S=s+uwue

where o is the update step size which is usually taken equal to 0.1 or
even smaller.

7. Repeat the iterations starting at Step 3 and stop when e,,s is below a
certain value.
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11.3.2 IEEE 802.11 WiFi: RTS/CTS Protocol Performance

The throughput is given by the equation:
Th=nNT, (11.18)

Figure 11.12 shows the throughput for the IEEE 802.11 RTS/CTS protocol
versus the average input traffic when n = 20, N = 10, p = 0.05, and y = 0.01.
The black line is the throughput of IEEE 802.11 RTS/CTS, the blue line is the
throughput of p-persistent CSMA/CD, the green line is the throughput of slotted
ALOHA, and the red line is the throughput of pure ALOHA.

At low input traffic, the WiFi RTS/CTS protocol throughput is comparable to
p-persistent CSMA/CD but then it becomes a bit smaller than it since users with a
frame to transmit have to wait before accessing the channel.

Changing the value of p has little effect on the throughput. However, the collided
backoff probability drastically affects the throughput. When y is increased from
0.01 to 0.05, the throughput of both CSMA/CD and IEEE 802.11 RTS/CTS is
reduced.

The user access probability is given by:

_ Th

= — 11.19
Na ( )

DPa

Figure 11.13 shows the access probability of IEEE 802.11 RTS/CTS when n = 20,
N =10, p = 0.05, and y = 0.01. The black line is the throughput of IEEE 802.11
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Fig. 11.12 Throughput for the IEEE 802.11 RTS/CTS protocol versus the average input traffic
whenn = 20, N = 10, p = 0.05, and y = 0.01. The black line is the throughput of IEEE
802.11 RTS/CTS, the blue line is the throughput of p-persistent CSMA/CD, the green line is the
throughput of slotted ALOHA, and the red line is the throughput of pure ALOHA
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Fig. 11.13 Access probability of IEEE 802.11 RTS/CTS when n = 20, N = 10, p = 0.05,
and y = 0.01. The black line is the throughput of IEEE 802.11 RTS/CTS, the blue line is the
throughput of p-persistent CSMA/CD, the green line is the throughput of slotted ALOHA, and the
red line is the throughput of pure ALOHA

RTS/CTS, the blue line is the throughput of p-persistent CSMA/CD, the green line
is the throughput of slotted ALOHA, and the red line is the throughput of pure
ALOHA. Again, we see that p, for IEEE 802.11 RTS/CTS is almost equal to the
access probability for the p-persistent CSMA/CD protocol.

The average number of attempts for a successful transmission is

00
ng = Zl (l _pa)l Pa
i=0

1_
L (11.20)

Pa

Figure 11.14 shows the delay of the IEEE 802.11 RTS/CTS protocol when n =
50, N = 10, and p = 0.5 whenn = 20, N = 10, p = 0.05, and y = 0.01.
The black line is the delay of IEEE 802.11 WiFi, the blue line is the delay of p-
persistent CSMA/CD, the green line is the delay of slotted ALOHA, and the red
line is the delay of pure ALOHA.

The average energy required to transmit a frame is estimated as

o0
E=Ey Y (i+1(1-p) pa
i=0
E
=0 (11.21)
Pa
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Fig. 11.14 Frame delay of 10'°

CSMA/CA when n = 20,
N =10, p = 0.05, and 108 |
y = 0.01. The black line is
the delay of IEEE 802.11
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Fig. 11.15 Average energy to transmit a frame for the IEEE 802.11 RTS/CTS when n = 20,
N =10, p = 0.05, and y = 0.01. The black line is the energy of IEEE 802.11 RTS/CTS, the
blue line is the energy of p-persistent CSMA/CD, the green line is the energy of slotted ALOHA,
and the red line is the energy of pure ALOHA

where Ej is the energy required to send the one frame. In dB, the above equation
can be written as

E/Ey = —10log,, p, dB (11.22)

Figure 11.15 shows the average energy required to transmit a packet for the IEEE
802.11 RTS/CTS protocol when n = 20, N = 10, p = 0.05, and y = 0.01. The
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black line is the energy of IEEE 802.11 RTS/CTS, the blue line is the energy of
p-persistent CSMA/CD, the green line is the energy of slotted ALOHA, and the red
line is the energy of pure ALOHA.

11.4 1EEE 802.11e EDCA (WMM) Protocol

The IEEE802.11e standard was introduced to support QoS. The new standard
defines the Hybrid Coordination Function (HCF) for supporting QoS over the wire-
less communication. The HCF uses two access modes: the Enhanced Distributed
Channel Access (EDCA) for ad hoc wireless networks and Hybrid Coordination
function Control Channel Access (HCCA) for infrastructure wireless networks.
The contention-based EDCA replaces the DCF of the standard 802.11 and the
contention-free HCCA replaces the PCF of the standard 802.11. Sometimes EDCA
is called WiFi Multi Media (WMM) and is essentially DCF with four priority
classes: background, best effort, video, and audio.

The basic idea for QoS support is to provide different minimum and maximum
backoff slots for the service classes. The minimum backoff value dictates a deter-
ministic delay before the user is able to start the backoff timer access the channel.
The minimum backoff delay is called Arbitration Inter-Frame Space (AIFS).
Figure 11.16 shows the AIFS channel access for the IEEE 802.11e EDCA (WMM).

Note in the figure that Class 1 service is the higher priority class since its
contention window starts earlier and the size of its backoff counter is smaller. Both
these factors give class 1 service better chance of accessing the service before the
lower priority class.

11.4.1 Modeling the IEEE 802.11e EDCA (WMM) Protocol

Let us make few simplifying assumptions:

1. All users can communicate together using one hop. This assumption eliminates
the hidden terminal problem.



386 11  Modeling IEEE 802.11 (WiFi) Protocol

Fig. 11.17 State transition
diagram for the tagged user in
class 1 or class 2 when the
IEEE 802.11.e EDCA
(WMM) protocol is used

2. There are only two classes of service with class 1 being the higher priority class.

. The number of users in class 1 is Ny and the number of users in class 2 is N,.

4. The probability that a class 1 user has a packet to send in one frame time is a;.

a, is a similar probability for class 2 users.

. The AIFS delay for class 1 is d; slots and d, > 1, for class 2.

6. The transmit opportunity (TXOP) is the same for both classes of service which
corresponds to same packet size .

7. The probability that a class 1 uncollided user transmits when the channel is free
is p; and p, for class 2.

8. A collided class 1 user attempts a retransmission with probability y; and y, for
class 2 user.

W

9,1

Based on the above assumptions we can derive a state transition diagram for
either class of service as shown in Fig.11.17. The figure can be considered an
extension of the IEEE 802.11basic DCF MAC protocol and bears some resemblance
to the CSMA/CA protocol. However, to support QoS, there are two sets of delay
states. The first set s4, (1 < i < m) belongs to the idle users that just got a packet to
send. This set of states provides a deterministic delay for the uncollided users before
they even try to send a frame when the channel becomes free. Note that the delay
counter is decremented only when the channel is sensed free.

The second set of delay states is s (1 < i < m) provides a deterministic delay
for the collided users before they even try to send a frame when the channel becomes
free. Note that the delay counter is decremented only when the channel is sensed
free. Without this delay, and at heavy traffic conditions, most users would be in the
collided state and the system would revert to the basic DCF function.

In the figure uy denotes the probability that all users (except the tagged user) will
not transmit when the channel is free. To derive this probability we need to find
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the probability that a user is idle and will not transmit. The probability that a user in
class 1 or class 2 will not start transmission even with the channel is free is given by:

m m
Piate = 5i + O _5a, + (1= p)sw, + D55 + (1= )8, (11.23)
i=1 i=1

The probability that all users (excepting the tagged user) will not start a transmission
is given by:

N N
U0 = Pidres X Pidien (11.24)
Assuming that AIFS m = 2 and n = 3, we organize the distribution vector at
equilibrium as follows:
t
s = [si Sdy Sdy Swy Sty Sty Stz Sey Se3 Sfi S fy swz] (11.25)

The corresponding transition matrix of the channel for the case when AIFS =2 and
n = 3 is given by:

[1—a’ 0 0 0 0 0100 O 0 0

a 1—uy O 0 0 0000 O 0 0

0 wu l—uy O 0 0000 O 0 0

0 0 u l—puy 0 0000 O 0 0

0 0 0  puo 0 0000 O 0 yuo

p_| O 0 0 0 wy 0000 O 0 0

0 0 0 0 0 1000 0 0 0

0 0 0 0 1-u0000 1 0 0

0 0 0 0 0 0010 O 0 0

0 0 0 0 0 00011—u O 0

0 0 0 0 0 0000 uy l—uy O
|0 0 0 0 0 0000 0 uy 1—yu|

(11.26)
At equilibrium the distribution vector is obtained by solving the two equations

Ps=s (11.27)

Yos= (11.28)
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However, the terms in P depend on the state vector components. This constitutes
a highly nonlinear set of equations. The solution for s is obtained through several
techniques such as optimization or iterative techniques as follows:

Input the values of py, payi1, ¥2, a1, a2, N1, Na, n, and m.

Assume a trial value for state vector s.

Start the iterations by obtaining the probability u.

Substitute the value of u to obtain an updated value s(updated).

Calculate the error e = s(updated) — s and the root mean square error e,,.
Update the state vector

A e

S=s+uoe

where « is the update step size which is usually taken equal to 0.1 or even
smaller.

7. Repeat the iterations starting at Step 3 and stop when e, is below a certain
value.

11.4.2 IEEE 802.11.e EDCA (WMM) Protocol Performance

The throughput is given by the equation:

Th= [sn + Zs,,.] N (11.29)
=2

Figure 11.18 shows the throughput of IEEE 802.11.e EDCA protocol versus the
average input traffic for two classes of service when Ny = N, = 10, n = 20,
my = 5,my = 10, py = 0.5, p = 0.05, y; = 0.01, and y, = 0.001. The top
black line is the throughput of IEEE 802.11.e EDCA class 1, the bottom black line
is the throughput of IEEE 802.11e EDCA class 2, the red line is the throughput
of the IEEE 802.11 basic DCF protocol, the green line is the throughput of slotted
ALOHA, and the blue line is the throughput of pure ALOHA. The parameters for
basic DCF protocol were the same as the parameters for the class 1 EDCA protocol.

We note that the class 1 throughput is comparable to the basic DCF protocol and
that at most traffic levels the throughput of both is close to the maximum value of the
slotted ALOHA protocol. The chosen values for delay states d; and f; in Fig. 11.17
apparently have no significant effect on the class 1 performance in comparison with
the basic DCF protocol.

The class 2 EDCA protocol has almost one-half the throughput of the class 1
protocol due to the chosen parameter values. That is why class 2 throughput is close
to the peak of the pure ALOHA protocol.

The user access probability is given by:

Th

= — 11.30
Na ( )

Pa
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Fig. 11.18 Throughput of IEEE 802.11.e EDCA (WMM) protocol versus the average input traffic
for two classes of service when Ny = N, = 10, n = 20, m; = 5, my = 10, p; = 0.5,
p2 = 0.05, y; = 0.01, and y» = 0.001. The top black line is the throughput of IEEE 802.11.e
EDCA class 1, the bottom black line is the throughput of IEEE 802.11e EDCA class 2, the red
line is the throughput of the IEEE 802.11 basic DCF protocol, the green line is the throughput of
slotted ALOHA, and the blue line is the throughput of pure ALOHA. The parameters for basic
DCEF protocol were the same as the parameters for the class 1 EDCA protocol

Figure 11.19 shows the access probability of IEEE 802.11.e EDCA protocol versus
the average input traffic for two classes of service when Ny = N, = 10,n = 20,
my = 5,my = 10, py = 0.5, p = 0.05, y; = 0.01, and y, = 0.001. The top
black line is the throughput of IEEE 802.11.e EDCA class 1, the bottom black line
is the throughput of IEEE 802.11e EDCA class 2, the IEEE 802.11 basic DCF
protocol red line almost coincides with the top black line, the green line is the
throughput of slotted ALOHA, and the blue line is the throughput of pure ALOHA.
The parameters for basic DCF protocol were the same as the parameters for the class
1 EDCA protocol. The higher p, of class 1 compared to class 2 traffic is indicative
of the higher QoS afforded through the use of different parameters for the two class.
The average number of attempts for a successful transmission is

o0
ng = Zi (1 _pa)i Pua
i=0
1_
=" Pa (11.31)
Pa
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Fig. 11.19 Access probability of IEEE 802.11.e EDCA (WMM) protocol versus the average input
traffic for two classes of service when Ny = N, = 10, n = 20, m; = 5, my = 10, p; = 0.5,
p2 = 0.05, y1 = 0.01, and y, = 0.001. The rop black line is the throughput of IEEE 802.11.e
EDCA class 1, the bottom black line is the throughput of IEEE 802.11e EDCA class 2, the IEEE
802.11 basic DCF protocol red line almost coincides with the top black line, the green line is the
throughput of slotted ALOHA, and the blue line is the throughput of pure ALOHA. The parameters
for basic DCF protocol were the same as the parameters for the class 1 EDCA protocol

Figure 11.20 shows the delay of the IEEE 802.11.e EDCA protocol when
n=50,N =10,and p = 0.5whenn =20, N = 10, p = 0.5, and y = 0.01. The
bottom black line is the delay of IEEE 802.11.e EDCA class 1, the top black line is
the delay of IEEE 802.11e EDCA class 2, the IEEE 802.11 basic DCF protocol red
line almost coincides with the top black line, the green line is the delay of slotted
ALOHA, and the blue line is the delay of pure ALOHA. The parameters for basic
DCEF protocol were the same as the parameters for the class 1 EDCA protocol.

The average energy required to transmit a frame is estimated as

o0
E=E Y (i+1)(-ps) pa
i=0
Ey
=20 (11.32)
Pa

where E| is the energy required to send the one frame. In dB, the above equation
can be written as

E/Ey = —10log,, p, dB (11.33)

Figure 11.21 shows the average energy required to transmit a packet for the IEEE
802.11.e EDCA protocol when n = 20, N = 10, p = 0.5, and y = 0.01. The
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Fig. 11.20 Frame delay of IEEE 802.11.e EDCA whenn = 20, N = 10, p = 0.5,and y = 0.01.
The bottom black line is the delay of IEEE 802.11.e EDCA class 1, the top black line is the delay
of IEEE 802.11e EDCA class 2, the IEEE 802.11 basic DCF protocol red line almost coincides
with the fop black line, the green line is the delay of slotted ALOHA, and the blue line is the delay
of pure ALOHA. The parameters for basic DCF protocol were the same as the parameters for the
class 1 EDCA protocol

10°

102

101 L

Energy (dB)

10°

10™

102 . . . .
0 2 4 6 8 10

Input traffic (packets/slot)

Fig. 11.21 Average energy to transmit a frame for the IEEE 802.11 EDCA protocol when n = 20,
N =10, p = 0.8, and y = 0.01. The bottom black line is the energy of IEEE 802.11.e EDCA
class 1, the top black line is the energy of IEEE 802.11e EDCA class 2, the IEEE 802.11 basic DCF
protocol red line almost coincides with the top black line, the green line is the energy of slotted
ALOHA, and the blue line is the energy of pure ALOHA. The parameters for basic DCF protocol
were the same as the parameters for the class 1 EDCA protocol
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Fig. 11.22 The IEEE 802.11e HCCA frame structure

bottom black line is the energy of IEEE 802.11.e EDCA class 1, the top black line is
the energy of IEEE 802.11e EDCA class 2, the IEEE 802.11 basic DCF protocol red
line almost coincides with the top black line, the green line is the energy of slotted
ALOHA, and the blue line is the energy of pure ALOHA. The parameters for basic
DCEF protocol were the same as the parameters for the class 1 EDCA protocol.

11.5 IEEE 802.11e¢ HCCA Protocol

The HCCA is an evolution of the IEEE 802.11 basic PCF protocol. The HCCA is
the most advanced coordination function and requires the availability of an Access
Point (AP) to coordinate the medium access. Another name for AP is Hybrid
Controller (HC). HCCA is not mandatory in IEEE 802.11e.

Figure 11.22 shows a simplified view of how HCCA divides the time into
frames. Each frame is composed of a downlink subframe followed by an uplink
subframe. The downlink subframe is composed of several downlink data bursts
sent by the access point. The burst is composed of downstream data and control
messages informing each user or station if they are allowed to send data in the
uplink subframe.

The HCCA standard does not specify how the upstream request contention period
operates. This period is shown as the red block in Fig. 11.22. Several modes of
sending a station request could be used:

1. Using an ALOHA-type protocol, users could transmit their requests and hope
there are no users that simultaneously send their requests. The chance of
collided requests increases with increasing number of users and with increased
traffic. QoS support could be established using different persistence and
backoff probabilities. We expect that at heavy traffic conditions the number
of transmitted requests will drop off in a manner similar to the exponentially
decreasing throughput of the ALOHA protocol, refer to Eq.(10.21) on page
344 or the S-ALOHA protocol, refer to Eq. (10.46) on page 350.

2. The access point could poll the users in a round robin fashion. Request
collisions will not take place but still not all requests will be granted due to
the limited uplink duration and TXOP limitations. QoS could be supported by



11.5 IEEE 802.11e HCCA Protocol 393

controlling the round robin frequency and allocation of bandwidth. However,
maintaining fairness and QoS requires accurate control of the polling sequence.
The performance of the individual users will be drastically affected by the
polling sequence.

Any multiple access multiplexing technique could be used to reduce the chance
of request collisions. Examples include: time division multiple access (TDMA),
code division multiple access (CDMA), orthogonal frequency division multiple
access (OFDMA), etc. This approach starts to look similar to the IEEE 802.16
(WiMax) protocol discussed in Chap. 12.

11.5.1 A Simple Markov Model for IEEE 802.11 HCCA

In order to derive a simple model for the WiMax protocol we make several
assumptions as follows:

1.

2.

W

10.

All users can communicate with the access point using one hop. This assump-
tion eliminates the hidden terminal problem.

The states of the Markov chain represent the states of the user: idle, waiting,
transmitting, and collided.

There are only two classes of service with class 1 being the higher priority class.
The number of users in class 1 is N, and the number of users in class 2 is N,.
The probability that a class 1 user has a packet to send in one frame time is a;.
a, is a similar probability for class 2 users.

The transmit opportunity (TXOP) is the same for both classes of service which
corresponds to same packet size 1.

. The probability that a class 1 uncollided user transmits when the channel is free

is p; and p, for class 2.

A collided class 1 user attempts a retransmission with probability y; and y, for
class 2 user.

We use a shared multiple access request multiplexing scheme where there are
K < min (N;, N;) contention slots. The duration of each contention slot is
sufficient to send a request.

There are enough bandwidth to allow up to K successful users to transmit in
the next uplink subframe.

The restriction K < min (N, N;) guarantees that there will be no idle contention
slots when most of the users are active.

Each user can be in one of three states as shown in Fig. 11.23. The figure can

be considered an extension of the IEEE 802.11basic DCF MAC protocol and bears
some resemblance to the CSMA/CA protocol.
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Fig. 11.23 The IEEE
802.11e HCCA Markov chain
model for a user

A tagged user’s request will not collide with another user under two conditions:
either the other user is not attempting a transmission or the other user has selected
another contention slot. The probability of this event happening is given by:

x=si+ (1= p)sw+ (1 =y)se + (psw + yse)(1 —1/K) (11.34)

The value of p and y will depend on the user’s class of service which will lead to
two probabilities x; and x; for users in class 1 or class 2, respectively.

The probability that the tagged user’s request will not suffer a collision and will
receive an acknowledgement is given by:

o = x1" x x2" (11.35)
We organize the distribution vector at equilibrium as follows.
s=[si 55 5] (11.36)
The corresponding transition matrix of the channel is given by:

l—a 0 1 0
p=| ¢ 0 0 0 (11.37)
0 PUo 0 Y Uuo

0 1—pu01—yu
At equilibrium the distribution vector is obtained by solving the two equations
Ps=s (11.38)

dos=1 (11.39)

However, the terms in P depend on the state vector components. This constitutes
a highly nonlinear set of equations. The solution for s is obtained through several
techniques such as optimization or iterative techniques as follows:



11.5 IEEE 802.11e HCCA Protocol 395

. Input the values of p, y,a, N, and K.

. Assume a trial value for state vector s.

. Start the iterations by obtaining the probability uy.

. Substitute the value of 1 to obtain an updated value s(updated).

. Calculate the error e = s(updated) — s and the root mean square error e,,;.
. Update the state vector

AN AW =

S=s+uae

where « is the update step size which is usually taken equal to 0.1 or even smaller.
7. Repeat the iterations starting at Step 3 and stop when e, is below a certain
value.

11.5.2 IEEE 802.11.e HCCA Protocol Performance

The throughput for each class of service is given by the equation:
Th=s N (11.40)

Figure 11.24 shows the throughput of IEEE 802.11.e HCCA protocol versus the
average input traffic for two classes of service when Ny = N, = 10, p; = 1,
p2 =1,y = 0.1, and y, = 0.05. The top black line is the throughput of IEEE
802.11.e HCCA class 1, the bottom black line is the throughput of IEEE 802.11e
HCCA class 2, the blue line is the throughput of slotted ALOHA, and the red line is
the throughput of pure ALOHA.

Fig. 11.24 Throughput of
IEEE 802.11.e HCCA
protocol versus the average
input traffic for two classes of
service when Ny = N, = 10,
p=L1Lp =1y =01,
and y, = 0.05. The top black
line is the throughput of IEEE
802.11.e HCCA class 1, the
bottom black line is the
throughput of IEEE 802.11e
HCCA class 2, the blue line is
the throughput of slotted
ALOHA, and the red line is L .
the throughput of pure 0 2 4 6 8 10
ALOHA Input traffic (packet/slot)

Throughput (packet/slot)
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We note that the class 1 throughput is close to the maximum value of the slotted
ALOHA protocol. Reducing the value of the persistence probability p results in
reduced throughput. The highest throughput was achieved when p = 1. However,
service differentiation and optimization of the throughput is accomplished by the
proper choice of y. Small or large values of y reduce the throughput.

The class 2 EDCA protocol has almost one-half the throughput of the class 1
protocol due to the chosen parameter values. That is why class 2 throughput is close
to the peak of the pure ALOHA protocol.

The user access probability is given by:

_Th

= 11.41
Na (11.41)

Pa

Figure 11.25 shows the access probability of IEEE 802.11.e HCCA protocol versus
the average input traffic for two classes of service when Ny = N, = 10, p; = 1,
p> = 1, y; = 0.1, and y, = 0.05. The top black line is the access probability
of IEEE 802.11.e HCCA class 1, the bottom black line is the access probability
of IEEE 802.11e HCCA class 2, the blue line is the access probability of slotted
ALOHA, and the red line is the access probability of pure ALOHA. The higher p,
of class 1 compared to class 2 traffic is indicative of the higher QoS afforded through
the use of different parameters for the two classes.

10° ; . . .

104+ .

Access Probability

10-12 L L L L
0 2 4 6 8 10

Input traffic (packet/slot)

Fig. 11.25 Access probability of IEEE 802.11.e HCCA protocol versus the average input traffic
for two classes of service when Ny = N, = 10, py = 1, p, = 1, y; = 0.1, and y, = 0.05.
The top black line is the access probability of IEEE 802.11.e HCCA class 1, the bottom black line
is the access probability of IEEE 802.11e HCCA class 2, the blue line is the access probability of
slotted ALOHA, and the red line is the access probability of pure ALOHA
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Fig. 11.26 Frame delay of IEEE 802.11.e HCCA when Ny = N, = 10, p; = 1, p» = 1,
y1 = 0.1, and y, = 0.05. The bottom black line is the delay of IEEE 802.11.e HCCA class 1,
the top black line is the delay of IEEE 802.11e HCCA class 2, the blue line is the delay of slotted
ALOHA, and the red line is the delay of pure ALOHA

The average number of attempts for a successful transmission is

00
ng = Zl (1 _pu)I Pa
i=0

1_
— P (11.42)

Pa

Figure 11.26 shows the delay of the IEEE 802.11.e HCCA protocol when
Ny =N, =10, py =1, pp = 1, y1 = 0.1, and y, = 0.05. The bottom black
line is the delay of IEEE 802.11.e HCCA class 1, the top black line is the delay of
IEEE 802.11e HCCA class 2, the blue line is the delay of slotted ALOHA, and the
red line is the delay of pure ALOHA.

The average energy required to transmit a frame is estimated as

o0
E=Ey Y (i+1(1-p) pa
i=0
Ey
=20 (11.43)
Pa

where Ej is the energy required to send the one frame. In dB, the above equation
can be written as

E/Ey=—10log,, p, dB (11.44)
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Fig. 11.27 Average energy 10° ; r T T
to transmit a frame for the
IEEE 802.11e HCCA
protocol when
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Figure 11.27 shows the average energy required to transmit a packet for the IEEE
802.11e HCCA protocol when n = 50, N = 10, and p = 0.5. Figure 11.21 is the
case when N = N, =10, p;y = 1, p, = 1, y; = 0.1, and y, = 0.05. The bottom
black line is the delay of IEEE 802.11.e HCCA class 1, the top black line is the
delay of IEEE 802.11e HCCA class 2, the blue line is the delay of slotted ALOHA,
and the red line is the delay of pure ALOHA.

11.6 IEEE 802.11 Final Remarks

The DCF mode of the IEEE 802.11 protocols has been studied by many researchers.
We tried to present here a simple model to start the reader in the area of modeling
protocols. However, there are many ripe areas that have not been adequately
explored for this protocol and for others also. We enumerate some of these
directions:

1. Channel errors have not been considered. This is a physical layer problem but
could also be considered in a cross-layer modeling. What matters here is to
obtain the probability that a frame or packet is in error.

2. Channel fading has not been considered. This is called cross-layer modeling. It
becomes useful when adaptive modulation and decoding are used. Chapter 13
attempts to provide a simple discussion of modeling channel fading.

3. Simple backoff strategies were used here in order to obtain simple expressions.
Adopting binary exponential backoff (BEB) strategy would result in a more
realistic model.

4. Perhaps the most serious deficiency in the models in this chapter is the implicit
assumption that no new traffic arrives while the user is attempting to access
the channel. This amounts to assuming the transmit buffer has a single storage
location only. Using a more realistic buffer would require solving two queuing
systems.
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5. It was implicitly assumed that the transmit antennas were omnidirectional. The
author’s group, as well as others, have dealt with the interesting case of using
directional antennas and its concomitant deafness problem.

6. It was implicitly assumed that all N users in our system can talk to each other
through one hop. Using a multi-hop network would improve the performance
even with the hidden terminal problem.

11.7 Problems

IEEE 802.11 Basic DCF

11.1. Explain what is meant by the following PHY layer terms:

1. Frequency-hopping spread spectrum (FHSS),
2. Direct-sequence spread-spectrum (DSSS) link layer,
3. Orthogonal Frequency Division Multiple Access (OFDM).

11.2. Explain what is meant by infrastructure wireless networks and relate that to
the concepts of Ad-Hoc networks and base stations.

11.3. Explain what is meant by ad hoc wireless networks.

11.4. Explain what is meant by wireless sensor networks. How these differ from ad
hoc networks.

11.5. Explain the operation of the DCF and indicate the type of LAN that uses it
(infrastructure or ad hoc)?

11.6. Explain how DCF reduces the probability of collisions.

11.7. Is the basic DCF function close to CSMA/CA or CSMA/CD? Explain your
answer.

11.8. Simulate the performance of the IEEE 802.11 basic DCF protocol for
different values of the persistence probability p.

11.9. The analysis of the IEEE 802.11 basic DCF protocol assumed equally likely
assignment of users to the w reservation slots. Develop a model of the channel when
the assignment of active users to reservation slots follows a distribution different
from the uniform distribution.

11.10. The analysis of the IEEE 802.11 basic DCF protocol assumed that the
backoff counters of active users decrement by one when the channel is free. Develop
amodel of channel when the backoff counters assume a new random value each time
the channel is busy. Only users that can transmit a frame are the ones that happen to
have a backoff counter value of 0.
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11.11. In an attempt to improve the performance of the IEEE 802.11 basic DCF
protocol let us assume that an idle user will immediately attempt a transmission
when the channel is sensed idle. Analyze this situation.

11.12. Model the IEEE 802.11 basic DCF protocol when truncated binary backoff
strategy is employed. In other words when the collided user attempts m retransmis-
sion attempts before declaring the channel unavailable.

IEEE 802.11 RTS/CTS

11.13. Is the RTS/CTS mechanism of the IEEE 802.11 close to CSMA/CA or
CSMA/CD? Explain your answer.

11.14. Simulate the performance of the IEEE 802.11 RTS/CTS protocol for
different values of the persistence probability p.

11.15. Simulate the performance of the IEEE 802.11 RTS/CTS protocol for
different values of the backoff probability y.

11.16. The actual implementation of the IEEE 802.11 RTS/CTS protocol assumed
that backoff is accomplished using a counter that decrements by one when the
channel is free. Develop a model of system.

11.17. In an attempt to improve the performance of the RTS/CTS protocol let us
assume that an idle user will immediately attempt an RTS transmission when the
channel is sensed idle. Analyze this situation.

11.18. Model the IEEE 802.11 RTS/CTS protocol when truncated binary backoff
strategy is employed. In other words when the collided user attempts m retransmis-
sion attempts before declaring the channel unavailable.

IEEE 802.11 EDCA

11.19. Model the EDCA protocol when the TXOP for the two classes of service is
not equal. The higher value of XTOP is assigned to the higher priority class.

11.20. How will the EDCA model in Sect. 11.4 change if four classes of service
are modeled? How will you ascertain that there is service differentiation for the
developed model?
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11.21. Explain the operation of the PCF and indicate the type of LAN that uses it
(infrastructure or ad hoc).

11.22. Explain if IEEE 802.11e HCCA eliminates collisions.

11.23. Investigate the types of scheduling protocols that could be used in the HCCA
portion of the IEEE 802.11e protocol.

11.24. Develop a discrete-time Markov chain model for the IEEE 802.11e user
when the access point uses polling.

11.25. Assume the IEEE 802.11e HCCA protocol that serves 10 customers and the
channel speed is 1 Mbps. Each customer is assumed to issue requests at a rate of
100 requests/s and the average length of a frame is 5.12 kb. Obtain the performance
of this system.

11.26. Analyze the IEEE 802.11e HCCA protocol in which there are two customer
classes. Class 1 has N; customers and class 2 has N, customers. Users in class 1 can
access the channel when they issue a request, while users in class 2 can only access
the channel when none of the users of class 1 has a request.

11.27. In the analysis of the IEEE 802.11e HCCA protocol, where users had
transmit buffers, it was assumed that requests arriving at a given time step are
processed in that time step. Develop a new analysis that processes these requests
at the next time step.
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Chapter 12
Modeling IEEE 802.16 (WiMAX) Protocol

12.1 Introduction

The IEEE 802.16 (WiMAX) provides a wireless high speed access (2-11 GHz)
to users through a centralized base station that can cover several thousand square
kilometers. In that sense, WiMAX is a metropolitan area network (MAN). The base
stations are connected together and to the rest of the Internet using high speed wired
links or microwave links. The IEEE 802.16e-2005 allows mobile users.

Table 12.1 provides a comparison between WiFi and WiMAX.

12.2 1EEE 802.16 Frame Structure

Figure 12.1 shows a simplified view of how WiMAX divides the time into frames.
Each frame is composed of a downlink subframe followed by an uplink subframe.
The downlink subframe is composed of several downlink data bursts sent by the base
station. The burst is composed downstream data and control messages informing
each user if they are allowed to send data in the uplink subframe and which
frequency band to use.

The upstream subframe starts with several contention slots. WiMAX uses a
scheduling algorithm such that each user is assigned an access slot in the uplink
phase to use exclusively by that user. In that sense each user will not suffer any
collisions from other user requests.

After the contention slots, the uplink subframe contains uplink data bursts from
the users to the base station.
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Table 12.1 Comparing WiFi and WiMAX

IEEE 802.11 WiFi IEEE 802.16 WiMAX
Ad Hoc networking where medium access | Infrastructure networking where access control
is distributed among the users is done through a base station
Local area network access (LAN) Metropolitan area network (MAN)
Support tens of users Support hundreds of users
Fixed 20 MHz channel size Flexible channel size from 1.5 to 20 MHz
User with data to send performs User with data to send issues a request in the
CSMA/CA. When channel is free, it waits | uplink phase and waits for a grant from the base
for random delay before attempting to station
transmit
Downlink Subframe Uplink Subframe
(base station to mobile) (mobile to base station)
A
. RS N

[ DL burst || DL burst ][ DL burst | * [UL burst ][ UL burst ][ UL burst

Contention slots

Fig. 12.1 The IEEE 802.16 frame structure

12.3 A Simple Model for the IEEE 802.16 WiMAX

This section deals with modeling the IEEE 802.16 protocol. We choose to model
the performance of the system through modeling the access point (AP) since this
is where all the user requests are processed and scheduled. We make the following
assumptions for our analysis of the WIMAX system

1. The states of the Markov chain represent the number of queued users requesting

access at the start of any time step.

The Markov chain time step is taken equal to the frame duration.

The system has a fixed population of N users.

There is a single customer class.

A user can have, at most, one message waiting for transmission. At the end of

certain time step users that have requests pending cannot issue more requests at

the next time step.

6. There are K channels and they are assumed to be always available for transmis-
sion in every time step.

7. The AP will store the requests that were denied access and will include them in
the pool of requests at the next frame cycle.

8. Probability that a user requests transmission is @ and probability that the user is
idleisbh =1—a.

9. The scheduler will randomly select up to K requests from the queued requests
and assign those to the available K channels.

Nk we
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The states of the system are chosen to represent the number of queued requests at a
given time step. Therefore we have N — K + 1 states in our state vector:

s=[sos1-snvx] (12.1)

where s; indicates there are i queued requests. We have only N — K + 1 components
because the AP will never have more than N — K queued requests at any given time.
The worst case happens when N requests are received on the contention slots from
all N users. In the downlink phase the AP will award K users access to the channel
and only N — K unsatisfied requests will remain.

Starting at state j, the probability of making a transition to state i is governed by
the following observations.

1. When the AP is in state s;, the number of new received requests will vary
between 0 and N —i.

2. When the AP is in state 5; with 0 < j < K, the next state will be s; where
0<i<N-—-j.

3. When the AP is in state s; with K < j < N — j, the next state will be s; where
j—K<i<N-K.

Based on the above observations, the corresponding transition matrix of the AP is
N — K +1x N — K + 1. The state transition matrix is given by:

Yo )4 == 0
x(N,K+1)x(N—-1,1) -0

(12.2)

;c(N,N) ;c(N—l,N—l)--: ;c(N—K,N—K)

where x (i, j) is the probability that there were j queued requests from the previous
frame and j new requests were received from j of the N — j users that could
potentially issue a request at the current frame. The probability x (7, j) is given by:

x(@i,j) = (N i_j)a”bN—f—f (12.3)

The entries y; are given by:

K—j

yj=Y_x(N=—jk) (12.4)

k=0
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For the case N = 8 and K = 3, the transition matrix is 6 X 6 and is given by:

Yo V1 y2 x(5,00 0 0
x(8,4) x(7,3) x(6,2) x(5,1) x(4,0) 0
x(8,5) x(7,4) x(6,3) x(5,2) x(4,1) x(3,0)

P=1 1686 x(7.5) x(6.4) x(5.3) x(4.2) x(3. 1) (12.3)
x(8,7) x(7,6) x(6,5) x(5,4) x(4,3) x(3,2)
| x(8,8) x(7,7) x(6,6) x(5,5) x(4,4) x(3,3) |
where, for example, y; is given by:
y1=x(7,0)+x(7,1) + x(7,2) (12.6)

Notice that for this case the system had one queued request from the previous frame
and could accommodate up to two new requests before it clears all requests and go
back to state s( at the next frame.

12.3.1 IEEE 802.16 WiMAX System Performance

Having obtained the transition matrix, we are able to find the performance of the
IEEE 802.16 system.
The throughput of the system is given by:

K—1 k K—1 N—j N—K
Th=>Y kY six(N—jk=j)+KY s; > x(N—ji)+KY s
k=1 j=0 j=0 i=K—j j=K
(12.7)

The first term on the right-hand side corresponds to the case when the number of
queued requests from previous frame is in the range [0, K) such that the total number
of requests is less than K.

The second term on the right-hand side corresponds to the case when the number
of queued requests from the previous frame is in the range [1, K) such that the total
number of requests is equal to or greater than K.

The third term on the right-hand side corresponds to the case when the number
of queued requests from previous frame is in the range [K, N — K].

Figure 12.2 shows the throughput of the IEEE 802.16 WiMAX protocol when
N = 50 and K = 10. Notice that the throughput reaches the value K as soon as
the input traffic approaches K since at that level there is a good probability that K
users have frames to send. Further, the storage of queued requests at the AP ensures
that arriving requests are not dropped.
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Fig. 12.2 The throughput for IEEE 802.16 WiMAX versus the average input traffic when N = 50
and K = 10

The channel utilization is defined as:

Th 12.8

u=— (12.8)
where 0 < u < 1 indicates the percentage of using a channel from the K available
channels. Figure 12.3 shows the channel utilization of the IEEE 802.16 WiMAX
protocol when N = 50 and K = 10. Notice that the utilization reaches the value
100 % as soon as the input traffic approaches K since at that level there is a good
probability that K users have frames to send. Further, the storage of queued requests
at the AP ensures that arriving requests are not dropped.

We define p, as the access probability for a user’s request which is given by:

_ Th(user)  Th
Pa = T NoGin)

(12.9)

Figure 12.4 shows the access probability versus input traffic when N = 50 and
K =10.

Having found the acceptance probability, we are able to determine the average
number of frames before a user gets access to the medium.

o0

ng =Y k(1= p)* pa (12.10)
k=0

_ 1= P (12.11)

Pa
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Fig. 12.3 Channel utilization for IEEE 802.16 WiMAX versus the average input traffic when
N =50and K =10

Fig. 12.4 The access
probability in IEEE
802.11/PCF versus the
average input traffic when
N =50and K = 10
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Figure 12.5 shows the delay of IEEE 802.16 WiMAX when N = 50 and K = 10.
The average number Q of queued users with waiting requests is found as:

K
0=>js, (12.12)
j=0

Figure 12.6 shows the average number of queued requests of IEEE 802.16 WiMAX
when N = 50 and K = 10. We notice that at the highest input traffic of 50
requests/frame, the maximum number of queued users becomes 40, as expected
since K = 10 and at these conditions, ten requests are accommodated and 40 remain
queued.
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Fig. 12.5 Delay for the IEEE 802.16 WiMAX protocol versus the average input traffic when N =
50and K = 10
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Fig. 12.6 Average number of queued requests for the IEEE 802.16 WiMAX protocol versus the
average input traffic when N = 50 and K = 10

12.3.2 IEEE 802.16 WiMAX User Performance

The previous section modeled the states all the N users of the IEEE 802.16 WiMAX.
In this section we study an individual user, usually called the tagged user.
Because all users are identical, the throughput seen by the tagged user is given by:

Th
Th(user) = N (12.13)
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Fig. 12.7 User throughput for the IEEE 802.16 WiMAX protocol versus the average input traffic
when N = 50 and K = 10

Figure 12.7 shows the user throughput of IEEE 802.16 WiMAX when N = 50 and
K = 10. As expected, the maximum user throughput is given by:

K
Th(user) g = N (12.14)

For the case in the figure, the maximum throughput is 10/50 = 0.2.

Example 12.1. An IEEE 802.16 WiMAX has K = 10 channels and serves 60
customers. The channel bit rate is 1,920 kbps and each customer issues 200 requests
per second. Assuming the average frame length is 5.12 kb, obtain the performance
of this system.

First we must find the time step value 7' knowing the duration of an average frame.
T =512/1920 =2.7 ms

To find the frame arrival probability a per time step we need to estimate the number
of requests issued by the user over some observation time and we need also to find
the number of time steps during this same observation period. Take the observation
period to be 1's. Thus the total user traffic during this period is:

N, (in) = user request rate x 1 = 200 requests

The number of frames during this period 7 is given by:

1
n= [?S] = 375 frames
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The number of requests from the binomial distribution is given from the relation
a xn = N,(in)
Thus we have the user request probability as
a = 0.5333 frame/time step

Now that we know a, N and K, the transition matrix P has dimensions 51 x 51 and
the bottom right six entries are given by:

-+ 0.1238 0.1547 0.1865 0.2152 0.2353 0.2407
.-+ 0.0643 0.0884 0.1184 0.1537 0.1921 0.2292
P =1...0.02450.0367 0.0541 0.0781 0.1098 0.1497
-+ 0.0065 0.0105 0.0169 0.0268 0.0418 0.0642
-- 0.0011 0.0018 0.0032 0.0056 0.0096 0.0163

- 0.0001 0.0002 0.0003 0.0005 0.0010 0.0019 |

The associated distribution vector has 51 components and the last ten entries are
given by:

s = [ 0.0525 0.0235 0.0080 0.0019 0.0003 O.OOOO]Z

The performance figures are

Th = 10 frames/time step
Q0 = 0.0011 requests

pa = 03125

ng = 22 time steps

12.4 Problems

12.1. Assuming that a user’s request in a contention slot was correctly received by
the base station but still, the user did not receive a grant during the next downlink
subframe. Can you figure out why this might happen?

12.2. Use the simple model provided in this chapter to explore the effect of the
number of users N on the system performance.
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12.3. Use the simple model provided in this chapter to explore the effect of the
number of data channels K on the system performance.

12.4. Modify the simple model provided in this chapter to explore the effect of
having the AP use a binary exponential back off strategy for the ungranted requests.

12.5. The simple model provided in this chapter assumed that the base station stores
a received request if it did not issue a grant to the user. How can you modify this
model to develop an access protocol where the base station does not store received
requests that were not issued a grant.



Chapter 13
Modeling of Wireless Fading Channels

13.1 Introduction

A wireless signal sent from a transmitter to a receiver undergoes several energy loss
mechanisms:

1. Path loss (large-scale phenomenon)
2. Shadowing (large-scale phenomenon)
3. Multipath fading (small-scale phenomenon)

13.2 Path Loss

Path loss, or free-space propagation, occurs due to the spread of the signal beam
over distance and absorption through the channel. It is a large-scale phenomenon
since variations in the signal occur over distances large compared to the signal
wavelength. Figure 13.1 shows path loss due to two types of antennas. Figure 13.1a
shows two omnidirectional antennas being used by the transmitter and receiver. The
combined antenna gain G = 1. Figure 13.1b shows two directional antennas where
the combined antenna gain is G > 1. The received signal power P, is related to the
transmitted signal power P, through the free-space fading formula [1]:

A’ 2
P, = P,G x (m) (13.1)

where G is the product of the transmitter and receiver antenna gains due to
directivity and efficiency, A is the signal wavelength, and d is the distance between
the transmitting and receiving antennas.

Example 13.1. Assume the signal carrier frequency f. is 900 MHz, the transmitted
power is 1 mW, the transmit antenna has a gain of 1 and the receive antenna has

© Springer International Publishing Switzerland 2015 413
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Fig. 13.1 Transmitted signal
energy loss due to free-space a

propagation. (a) Transmit and b
receive antennas are Transmit ® Transmit ®
omnidirectional. (b) Transmit Antenna Antenna
and receive antennas have
directionality
Receive a Receive a
Antenna Antenna

a gain of 1.5. Find the power level when transmitter and receiver are 50 m apart
assuming free-space propagation.

The wavelength of the signal is:

c
A=—=03333m
fe

Jc

The antennal gain is G = 1.5. Applying (13.1) the received power is given by:
P, =0.7958 uW ]

Actual path loss seldom follows the simple relation in (13.1). A more general
formula is given by [1]:

do\”
Pr = PIK X g (132)

where K is a dimensionless constant determined by the antennas used, dj is some
reference distance and y is the path loss exponent.

Sometimes the value of K is chosen equal to the free-space formula by
combining (13.1) and rewriting (13.2) as follows:

dod 1\’
p, =P (22 (13.3)
47Tdod

2 N\ (do\
b (4ndo) (?) (34

A 2
K:(M%) (13.5)
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Note that K uses the free-space exponent of 2 instead of y.

13.3 Shadowing

Shadowing is also a large-scale propagation effect due to presence of objects
between the transmitter and receiver. The intervening object could reflect of scatter
some of the transmitted signal and it could also attenuate its magnitude due to its
dielectric properties. Figure 13.2 shows the reflected and scattered beams due to the
presence of an object in the path of the transmitted signal between the transmit and
receive antennas. Shadowing effect is modeled using log-normal shadowing. The
pdf distribution of the received power is given by [1]:

2
_M} 136)

1
X) = —F=¢€X
pX) = ——= p[ 757

where x = P;/P, > 0, j is the mean of x, and o is the standard deviation of x.

13.4 Multipath Small-Scale Fading

Multipath fading is a small-scale propagation effect since it occurs over short dis-
tances comparable to the signal wavelength. Fading refers to the rapid fluctuations in
the received signal amplitude and power due to reflections, refraction, and scattering
off or through intervening objects. This phenomenon occurs when the transmitted
signal travels through different paths before arriving at the receive antenna. The
different paths are due to signal reflection and scattering off objects and signal
diffraction when passing through objects with different dielectric constants. Because
of constructive and destructive interference, the received signal fluctuates in ampli-
tude.

Scattered &
Reflected
Beams
® -
Fig. 13.2 Transmitted signal Transmit
energy loss due to reflection Antenna Recei
and scattering of the beam AZCtZL\fa

due to an object
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Propagation of the signal over multipaths creates different types of random and
rapid distortions:

1. Changes in received signal amplitude and power due to coherent interference
between the different received signal copies.

2. Frequency modulation due to Doppler shifts due to the motion of the transmitter,
receiver or surrounding objects.

3. Dispersion or spreading of the signal due to the different time delays of the paths.

Multipath signals experience different delays before arriving at the receiver. The
delay spread T, (s) of the channel is the time difference between arrival of the
earliest component (line of sight path) and the latest time of arrival of the multipath
components. Delay spread affects inter symbol interference (ISI).

The symbol duration Ty (s) is the time required to transmit one symbol. When
Ty < Ty, we can expect ISI-free transmission.

In the frequency domain, coherence bandwidth B, = 1/T; (Hz) corresponds
to delay spread in the time domain. Smaller values of T, result in large values of
coherence bandwidth B,.

Frequency selectivity is caused by self-interference of the transmitted signal
caused by multipath arrival of the signal components. We can intuitively figure out
that when 7} is small, and B, is large, the phase differences between the arriving
signals will almost be the same and constructive interference results. Such a channel
will show the same constructive interference results for a signal with a small value
of B; since the signals have almost the same wavelength and have close phase
variations.

The opposite situation happens when T, is large (i.e., small B.). The phase
differences of the arriving signals could approach 180° and destructive interference
results.

We can classify the frequency selectivity of the channel based on the relative
magnitudes of signal bandwidth B; (Hz) and coherence bandwidth B.:

B; < B, — flat in frequency (narrow fading) channel (13.7)

B; > B. — frequency selective channel (13.8)

Most wireless communication systems are modeled as flat in frequency/narrow
fading channels.

A mobile device experiences Doppler shift in the frequency of the received
signals due to relative motion of the receiver or transmitter. The difference between
the maximum Doppler shift and minimum received signal frequencies is defined as
the Doppler spread f. (Hz). The channel coherence time is defined as T, = 1/f.
(s). The coherence time is thought of as the time period over which the arriving
signals have almost the same phase.

We can classify the time selectivity of the channel based on the signal symbol
duration 7j:
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T, < T, — flat in time channel (13.9)

T, > T, — time selective channel (13.10)

Most wireless systems are also modeled as flat in time channels.

13.5 Statistical Modeling of Wireless Narrow
Fading Channels

The received signal amplitude power varies randomly with time. The Rayleigh
fading model provides a simple expression for the pdf of the received signal
amplitude x [1-3]. The pdf of the Rayleigh distribution is given in Sect. 1.21 by:

fx(x) = ZeD x>0, a>0 (13.11)
a

where a is the shape parameter.

The random variable representing the signal amplitude was denoted x. We denote
the random variable for the received signal power by y = x2. Therefore, the average
signal power is obtained by:

) =P = [ 55

© 2 x_222
=/ X2 x e dx (13.12)
x=0 a

We change the variables as y = x2, and we have dy = 2x dx. Substituting this in
the above equation gives us:

E(y)

= A e
y=0y ?e dy

o0

f y fr(y)dy (13.13)
y=0

where fy () is the pdf for the received signal power and is given by:

1
fr(y) = ;e‘”z“z (13.14)

Example 13.2. Assume the average received signal power is P and given the pdf
for the received signal power in (13.14):
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Determine the shape parameter value a as a function of P.
. Determine the corresponding pdf’s for the received signal amplitude and power
in terms of P.
3. Determine the corresponding CDF’s for the received signal amplitude and power
in terms of P.
4. Find the average values of the received signal amplitude and received signal
power in terms of P.

N —

1. The mean of the power distribution P in (13.14) is given by:

® L e
P = y=0y ;e dy
= 24> (13.15)

where we made use of the integrations tables in Appendix A. Therefore the shape
parameter for a Rayleigh distributed fading signal should be:

P (13.16)
a=—= .
2

2. Substituting the scale parameter into the pdf for the received signal amplitude
in (13.11), we get:

2
Fr(x) = %e—xz/”, x>0, a>0 (13.17)

From (13.14), the pdf for the received signal power is given by:

1
) = e YIEy >0 (13.18)

3. Using the CDF expression for the CDF of the Rayleigh distribution in (1.55) on
page 21, the CDF for the received signal amplitude is given by:

Fy(x)=1—e¢ /" (13.19)
The CDF for the received signal power is given by:
Fy(y)=1—e7/" (13.20)

4. Using (13.17), the expected value for the received signal amplitude is given by:

fz/ooxfx(x)zévﬂP (13.21)
0
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Using (13.18), the expected value for the received signal power is given by:

7=/0 yfir(y) =P (13.22)

As expected. u

Example 13.3. Find the root mean square (RMS) value of the received signal
amplitude for Example 13.2.

The RMS value of x is x,,, and is given by:

o0
2
Xrms = \// x2 x —xe_xz/P dx
A P

We change variables y = x? and above equation becomes:

%)
Xrms = P / ye_y dy
0

=JP [ ]

Figure 13.3 shows the pdf and CDF for the received signal amplitude for
a Rayleigh fading channel for the case when average received signal power is
P = 10mW. Figure 13.3a is the pdf distribution and Fig. 13.3b is the correspond-

ing CDF.
Figure 13.4 shows the pdf and CDF for the received signal power for a Rayleigh
fading channel for the case when average received signal power is P = 10 mW.

Figure 13.4a is the pdf distribution and Fig. 13.4b is the corresponding CDF. There
are other models for fading channels such as the Riccian [3] and Nakagami-m [4].
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Fig. 13.3 pdf and CDF for the received signal amplitude for a Rayleigh fading channel for the
case when average received signal power is P = 10mW. (a) The pdf distribution. (b) The CDF
distribution
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Fig. 13.4 pdf and CDF for the received signal power for a Rayleigh fading channel for the case
when average received signal power is P = 10mW. (a) The pdf distribution. (b) The CDF
distribution

Example 13.4. Given the pdf of the Rayleigh distribution model for the fading
channel, obtain a trace for the received signal amplitude and power.

Let us assume that we need to generate a 100-sample trace and that the average
received signal power is 10 mW. We start by obtaining a table for the values of the
pdf of the received signal amplitude and power, shown in Fig. 13.3a or Fig. 13.4a,
respectively. We ensure that the resulting pdf distribution is normalized and adds up
to unity.

Second step is to obtain a table for the values of the CDF shown in Fig. 13.3b.
We accumulate the values of the pdf to get the CDF. We ensure that the resulting
CDF distribution is normalized and that its maximum value is unity.

To generate random numbers that follow the Rayleigh distribution, we use the
inversion method discussed in Chap. 1. We must ensure that the resulting trance
is normalized such that the average of the samples is 10 mW. Figure 13.5 shows
100 samples of received signal amplitude and power following the Rayleigh fading
model for the case when P = 10 mW. Figure 13.5a shows a 100-sample trace of the
received signal amplitude and Fig. 13.5b shows a 100-sample trace of the received
signal power. ]

Other channel fading models include Ricean fading, log-normal distribution,
and Nakagami fading. Goldsmith [1], Proakis [2] and Stuber [3] provide detailed
discussions about those other models and why they are needed.

13.6 Level Crossing Rate

Figure 13.5 shows how the received signal amplitude or power changes over time.
We can assign a fade state to the channel at any given time instance based on the
amplitude or power of the received signal. Figure 13.6 shows the division of the
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Fig. 13.5 100 samples of received signal amplitude and power following the Rayleigh fading
model for the case when P = 10 mW. (a) The amplitude trace. (b) The power trace
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channel into states based on the signal amplitude or power. The figure shows the
division of the received signal amplitude into six zones where 7y, = 0 and tc = oco.

The choice of the thresholds 7, between zones is arbitrary. Figure 13.4 showed
the pdf and CDF of received signal power. We can choose a range for the power
based on the signal mean p and standard deviation o. The power range could be
given as i + 30. Since 4 = P and 0 = P, the power range is given by:

W+ 30 =4P (13.23)
The power range could be divided into zones of equal values in the linear scale:

(K—1DA =~ u+30=4P (13.24)
4p

A= —ro 13.25
X1 ( )

where K is the number of zones with 7y = oo and A is the step size chosen to cover
the expected power range.
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The values of the thresholds can be written as:
th = Ak, 0<k<K (13.26)
with tx = oo.

Another choice for the thresholds is to have equal distribution in the logarithmic
scale:

K—1
AF ~ 1 + 30, A#1 (13.27)
k=1
1— AKX
T S A0+ 1=4P 41 (13.28)

We can use the above equations to solve for the value of A. The ordering of the
thresholds depends on the value of A. When A > 1, the thresholds can be written as:

th=0 (13.29)

i = AF, 0<k<K (13.30)

When A > 1 the highest-index threshold corresponds to largest received power
value. In that case fy < t; < #; ---. The thresholds will be given by:

th=0,1 ZA,tzzAz,"'tK_l ZAKil,l‘K:OO (13.31)

On the other hand, when A < 1 the high-index threshold corresponds to the least
power value. In that case tx < fx—; < fx—» ---. The thresholds will be given by:
the thresholds will be given by:

tk =0tk 1 =AKT 1k b =AKT2 o= A 1) =00 (13.32)

According to [5, 6] the number of times the received signal power crosses a power
level zone to the next lower power level zone is given by:

27ry

Ny = fneP (13.33)

where f,, = v/A is the maximum Doppler shift with v being the speed of the
moving object and A is the signal wavelength.

Using (13.33), we are now ready to derive an expression for the level crossing
rate at a signal power threshold #:

ZJTtk /P

Ny = fe 0<k<K (13.34)
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where Ny is taken as the rate of crossing from the higher power level to the lower
power level. Note that the index k does not equal the edge values O or K.

13.7 Markov Chain Model for Wireless Narrowband
Fading Channels

Figure 13.5 showed the random fluctuations in the received signal amplitude and
power. Figure 13.6 shows the pdf of received signal amplitude distribution after it
has been divided into zones and each zone is defined based on the amplitude being
between two thresholds. For example, the figure shows six zones defined by the
thresholds ¢y, 1, - - -, t5 and t5 = o0.

We can assign a state with each zone and we would have the channel state vector
s given by:

s=1[sos1 - sg1] (13.35)

where K is the number of fade states of the channel. State s; denotes the probability
that the channel is in state k, where the signal power lies between the thresholds
e =y <ti+1-

Figure 13.7 shows the states of the channel and the transition probabilities among
the states. According to the slow fade conditions, it is widely assumed that the
transitions are confined to same or the immediate next neighboring state only. The
transition probability p; ; indicates the probability of making a transition from state
Jj to state i. The associated state transition matrix is given by:

[ poopos O -+ 0 0
P1o P11 P12 * 0 0
0 pa1 paa--- 0 0

p=| P . . (13.36)

0 0 O - pk—2k—2 Pk-2K-1
0 0 O - pxk—1k-2 Pk-1.k-1 |

P1o

) . Po 1 P12
Fig. 13.7 States of a fading p
wireless channel Po,o P11 K-1,K-1
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From the figure we have a tridiagonal state transition matrix with entry p; ; in row
i and column j is the probability the channel making a transition from state j to
state i, where i = j ori = j £ 1. The assumption of a simple birth—death process
is justified by the slow fade condition compared with the data rate.

The traditional Markov chain analysis of fading states starts by making the fun-
damental assumption that the two super and subdiagonal of P are equal. Following
this, it is customary to find the value of the state vector s. However, Problem 13.1
assures us that a tridiagonal Markov matrix with equal sub and superdiagonals
(i.e., symmetric matrix) will produce a state vector whose components are equal.
Specifically:

s=[1/K1/K---1/K] (13.37)

We adopt the assumption that the kth component of the distribution vector is
given by:

sk = Fy (te1) — Fr (t)
= e /P _gTle1/F (13.38)

where the received power CDF was obtained in (13.20).
Thus we study the states of the fading channel by first determining the following
quantities:

1. The received signal power range.
2. The values of the thresholds #; defining the zones.

Using (13.38) we are able to obtain the values of the distribution vector s. Having
found s, we can obtain the state transition matrix P under the assumption that the
matrix is tridiagonal but the upper and lower diagonals are not equal. We can use
forward or back substation to find the components of P. Problem 13.2 is related to
finding a technique for estimate P knowing the distribution vector s.

The transition probabilities in the superdiagonal are given by:

Ny
= — 13.39
Dkk—1 R ( )

where N was given in (13.34) and Ry is the number of symbol transmitted per
second when the channel is in state si. Ry is given by:

Ri = R x 5¢ (13.40)

where R is the symbol transmission rate. Due to the slow fade conditions, we have
Ni < Rg.
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Because P is column stochastic, the following condition must be satisfied for
each column:

Pk—1k + Pkk + Pr+1x = 1; 0<k<K (13.41)
At steady state we can write:
Ps=s (13.42)

Equations (13.41) and (13.42) can be used to find all the components of P using
forward or back substation.
The main parameters for our problem are:

. The number of states K for the channel states.

. The values of the K thresholds t, t;, -, tx—1.

. The mean received signal power P.

. The maximum Doppler shift f,,, which depends in turn on the signal frequency
and speed of moving objects.

5. The symbol transmission rate R.

AW =

13.8 Bit Error Probability

The wireless communication channel corrupts the received signal by adding random
noise. Typically this random noise is treated as additive white Gaussian noise
(AWGN). Channel fading affects the signal to noise ratio (SNR) since the received
signal strength varies. Within the symbol transmission interval 7, the received signal
amplitude r can be written as:

r=x+4n (13.43)

where n is the random variable corresponding to the AWGN with zero mean and
infinite variance. For digital communications, we use the noise power spectral
density Ny (W/Hz). The pdf for the noise signal amplitude is given by:

|
Fu(n) = We—”Z/NO (13.44)
0

where the variance of the noise is 0> = Ny/2.
For the case of binary signalling, we send either of two symbols x; or x;. In that
case (13.43) becomes:
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Fig. 13.8 Conditional
probability density functions
Sr(r|x1) and fr(r|x2) that
correspond to the two
situations when symbol x; or
X, 18 transmitted

where N, is the energy used to transmit the symbol x; or x,, respectively. The
more general transmission system comprising M -ary symbols is dealt with in many
excellent textbooks on wireless communications such as Goldsmith [1], Proakis [2],
Stuber [3], Jakes [6], Sklar [7], and Rappaport [8], to name a few.

Figure 13.8 shows the conditional probability density functions fz(r|x;) and
fr(r|x;) that correspond to the two situations when symbol x| or x; is transmitted
with equal probability. When symbol x; is transmitted the conditional pdf is
given by:

fr(rlx) = e~ r=m’/No (13.46)

\/7TN()

where i = /N, is the mean of the received signal when symbol x; is transmitted.
When symbol x; is transmitted, the conditional pdf is given by:

1

Fr(rlx) = me—“ﬂ”z/% (13.47)
0

The probability of error occurs when symbol x; is detected while symbol x; was
actually sent or the opposite situation. Thus we can write the probability of error

1
Pe =7 [p(x2]x1) + p(x1]x2)]
=/ fr(r|xy) dr
0
0
_ / Fr(rlx) dr (13.48)

We can simplify the above equations to the form:

1 o —r2/2
Pe = —\/2_ e dr (13.49)
T Jz

- Ey 13.50
=o(\% (13.50)
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Fig. 13.9 Probability of error p, vs. SNR per bit for binary signals

Q(x) is called the Q-function and the quantity £}/ Ny is the signal to noise ratio per

bit. We should note that the quantity £/ N is dimensionless. As expected, the error

probability depends on the strength of the received signal and the level of noise.
The Q-function is close to the complementary error function erfc by the

following relation:

0(x) = %erfc (%) (13.51)

Example 13.5. Plot the probability of error p, versus SNR per bit (N, /Np).

We apply Eq. (13.51) for the range of SNR between 0 and 10 dB. The result is shown
in Fig. 13.9. u

In order to find the bit error probability when the channel is in a given state sy,
we need to find the average power associated with that state. The average power Py
is given using (13.18) by:

Tk4-1
P = / yfr (y)dy
173

He+1
= / e/ dy (13.52)
174 P
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Changing the variable to x = y/P, we get:

lk4+1/P
P / xe *dx
x=tx /P

Py

tx P
—P (x+ DM

(tx + P)e /P — (tyyp + Ve *+1/P (13.53)

The energy of the received signal is given by:

Py
E, = P.T = = (13.54)

where T is the duration of the symbol during transmission.
The signal to noise ratio when the channel is in state sy is then given by:

E
=0 (F];) (13.55)

The average bit error rate is therefore given by:

ey = Ze’ s (13.56)
k

where e is the error vector given by:

t

e=[epe - ex | (13.57)

13.9 Numerical Results

Let us consider a wireless system having the parameters in Table 13.1.
We need to calculate the channel state distribution vector s which will allow us
to estimate the bit error rate (BER).

Table 13.1 Numerical

- - Parameter Symbol | Value
simulation parameters —
Transmission rate R 900 MHz
Number of states K 6
Mean received signal power | P 10mW
Signal frequency fe 900 MHz
Maximum speed v 10 m/s

Noise power spectral density | Ny 10 wW/Hz
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13.9.1 Linear Scale Results

We choose to divide our pdf into zones according to the equal distributions in the
linear scale as in (13.25). Therefore we have

A= ? = 8mW (13.58)
From (13.26) the thresholds vector is given by:
o =[081624324000] (13.59)
From (13.38) and (13.59) we are able to obtain the distribution vector:
s =[0.5507 0.2474 0.1112 0.0500 0.0224 0.0183 ]t (13.60)
From (13.34), the level crossing rate vector is given by
Ny = [26.6346 30.9400 32.0637 27.0650 15.8011 ]t (13.61)

Now we are able to obtain the corresponding state transition matrix as:

[0.9995 0.0012 0 0 0 0 |
0.0005 0.9980 0.0017 0 0 0
P 0  0.0008 0.9973 0.0021 0 0 (13.62)
0 0  0.0010 0.9968 0.0024 0
0 0 0  0.0011 0.9963 0.0015
0 0 0 0  0.0012 0.9985 |

From the structure of the system matrix, we can conclude that the channel will
remain in the same state at the next time state with high probability, as indicated by
the values of the diagonal terms py ;. Also, if the channel is going to change states,
the channel will tend to switch to the lower energy state, as indicated by the super
diagonal terms py x—i-

Using (13.55), the bit error probability for each state is given by:

e = [ 0.0279 0.0023 0.015 0.085 0.2129 0.1799 ]t (13.63)
Using (13.56) the overall average bit error rate is given by:

ep = 2.9951 x 1072 (13.64)
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13.9.2 Logarithmic Scale Results

We choose to divide our pdf into zones according to the equal distributions in the
logarithmic scale as in (13.28). Therefore we have
1—A>=41(1-A) (13.65)

Thus we have A = 1.7970 mW.
From (13.31) the thresholds vector is given by:

o =[0 1.7970 32294 5.8034 10.4289 10.4289 oo | (13.66)

From (13.38) and (13.66) we are able to obtain the distribution vector:
s = [ 0.1645 0.1115 0.1643 0.2073 0.1989 0.1535 ]t (13.67)

From (13.34), the level crossing rate vector is given by

Ni = [ 26.6346 30.9400 32.0637 27.0650 15.8011 | (13.68)

Now we are able to obtain the corresponding state transition matrix as:

[0.9991 0.0013

0

0

0.0009 0.9979 0.0005
0  0.0008 0.9992 0.0021

0
0

0
0
0

0.0010 0.9968 0.0002

0
0
0

0

0

0.0003 0.9997 0.0001

(13.69)

0

0 0
| 0 0 0 0 0.0001 0.9999 |
From the structure of the system matrix, we can conclude that the channel will
remain in the same state at the next time state with high probability, as indicated by
the values of the diagonal terms py . Also, if the channel is going to change states,
the channel will tend to switch to the lower energy state, as indicated by the super
diagonal terms py j—1.

Using (13.55), the bit error probability for each state is given by:

ey = [0.0279 0.0023 0.015 0.085 0.2129 0.1799 ]t (13.70)
Using (13.56) the overall average bit error rate is given by:
e, = 0.1654 (13.71)
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13.10 Problems

13.1. The traditional Markov chain analysis of fading states starts by making
the fundamental assumption that the two super and subdiagonal are equal (i.e., a
symmetric tridiagonal matrix). Prove that a tridiagonal Markov matrix with equal
sub and superdiagonals will produce a state vector whose components are equal.
Specifically:

s=[1/K1/K---1/K] (13.72)

where K is the number of rows or columns of P.

13.2. Assume that the state distribution vector s has been estimated as was
explained in Sect. 13.7. Since the channel state transition matrix is tridiagonal, it is
possible to estimate P using forward or back substitution. Attempt both techniques.

13.3. Prove that the signal to noise ratio £,/ Ny is dimensionless.

13.4. Using Eq. (13.51) on page 427 prove that the error probability for symmetric
binary modulation is below 0.5; i.e., p, < 0.5.
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Chapter 14
Software Defined Radio

14.1 Introduction

Conventional radio (CR) networks require a dedicated channel with little or no
interference and provides a fixed functionality for all users. A software defined radio
in general can customize its functionality and performance to provide:

* Service and functionality personalization.

* Adapting its medium access protocol and modulation strategy to respond to
varying transmission channel impairments.

* Make use of white space or inactivity in the assigned radio frequency spectrum.

* Support latest wireless protocols and be fully programmable to support next
generation interfaces and standards.

e Take advantage of performance-increasing innovations and over-the-air
updates [1, 2].

It was found out that the licensed bands are under-utilized. Figure 14.1 shows the
use of the radio frequency bands allocated to three users over time. Utilization of an
assigned radio spectrum could be as low as 10 %.

We see that each user transmits data according to its traffic load characteristics.
The frequency bands are idle at different times and other users could opportunisti-
cally use these bands if they have a means of rapidly sensing the idle channels.

This is the essence of cognitive, and opportunistic radio. Cognitive radio employs
agile transmission strategies that can adapt to the channel and has been an active
research topic since the early 2,000 s. Cognitive radio relies on software to give it
the required responsiveness and adaptability.

We can therefore define software defined radio (SDR) as aradio system or device
that uses software to select the parameters of operation. SDR dynamically modifies
the communication protocol between the communicating nodes. SDR continuously
monitors its own transmission and the channel parameters and channel activity.

© Springer International Publishing Switzerland 2015 433
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Fig. 14.1 Assigned radio spectrum utilization over time for the case of four primary users
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It can change its transmit parameters such as power, modulation scheme, or search
for spectrum bands that are unused or have small channel impairments.

Figure 14.2 shows SDR technology hierarchy.

Adaptive radio is system or device monitors its own performance and varies its
parameters to improve its performance.

Cognitive radio (CR) uses software to automatically adjust its operation to
achieve a desired objective.

Opportunistic radio uses CR technology to continuously monitor the radio
frequency spectrum to search for idle bands; i.e., white space opportunistic usage.

14.2 Modeling Adaptive Radio

In an adaptive radio, the system or device monitors its performance and varies its
parameters to improve performance. Typically the parameter to be changed is in
data modulation and coding [3]. Figure 14.3 shows an adaptive SDR system. The
transmitter could send two types of signals: the normal data signal (shows by the
top arrow) and the pilot signal (shown by the bottom arrow). The data signal is
modulated and coded by the transmitter and is demodulated and decoded by the
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Fig. 14.3 Adaptive SDR Transmission Channel
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receiver. The pilot signal is sent to the channel estimator which provides an estimate
of the channel state and accordingly informs the transmitter and receiver to adjust
their parameters. However, certain time delay is encounters and it is possible that
the produced estimate could be outdated if the channel changes its state too quickly.

Let us now model the channel states as a Markov chain as shown in Fig. 14.4.
We assume that the wireless channel can exist in n states sg, 5y, -+, and s,—;. The
channel state vector is given by:

s=[sossu1] (14.1)

The associated state transition matrix is given by:

_Po,o po1 0 --- 0 0
P1o P11 Pip o 0 0
0 p21 p22--- 0 0

P=1 : : (14.2)

0 0 0 - pxko2k—2 PK—2.K—1
0 0 0 - pxk—1k-2 PK—1.K—1 |

From the figure we have a tridiagonal state transition matrix with entry p; ; in row
i and column j is the probability the channel making a transition from state j to
state ;. Chapter 13 explained how the channel fade state can be modeled. The chapter
also shows how the bit error rate can be modeled as the error vector e associated with
each fade state:
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€ = [e() e "'@K_l]l (143)

Knowing s and e we are able to get some performance figures for the adaptive
radio (AR).

The most obvious measure is the average bit error rate (BER) which can be
estimated as:

BER = ¢'s
K—1

=Y ejs; (14.4)
j=0

For an adaptive radio, the main idea is to vary the transmission parameters to suit
an anticipated channel state such that the error probability will be low. The problem
happens when the actual future channel state is not what was anticipated.

We make the following simplifying assumptions to facilitate modeling AR
systems:

1. The system transition matrix is tridiagonal.

2. p; is the highest component in column i of the transition matrix P.

3. ¢; is the error probability when the actual channel state matches the estimated
next state.

4. ¢; is the error probability when the actual channel state does not match the
estimated next state.

Based on the above assumptions, the bit error probability when the system is in
state j is given by:

€, =¢€;p; +¢€;(1-Dpj) (14.5)

Under these conditions, the resulting average bit error rate is given by:
K—1
BER =) ¢;s; (14.6)
j=0
The above equation reduces to (14.4) when adaptive techniques are not used.

14.3 Modeling Opportunistic Spectrum Access
(ALOHA Access)

In this section we discuss modeling opportunistic radio, or opportunistic spectrum
access that uses the ALOHA medium access control protocol to access the available
channel. Here the device continuously monitors the radio spectrum for white space
or idle channels. Figure 14.1 showed the available white space in the radio spectrum.



14.3  Modeling Opportunistic Spectrum Access (ALOHA Access) 437

The radio spectrum bands shown are assigned or allocated to the primary users.
Secondary users are allowed to access these bands opportunistically when a primary
user is idle and the particular band is free.

Let us discretize the time into time slots such that the system state changes in
each time slot depending on the activity of the primary users.

Let us start by the following simplifying assumptions:

1. There are N primary users and each user is assigned one of N available
spectrum bands.

2. The state of activity of each primary user does not depend on its state in the
previous time slots.

3. There are M secondary users that are continuously monitoring the N spectrum

regions.

Probability that a primary user is active at a given time slot is a.

Probability that a secondary user is active at a given time slot active is c.

Active secondary users randomly choose one of the available channels.

Active secondary users adopt the ALOHA medium access control scheme to

start transmitting when they sense the primary user is idle.

Nk

Because of assumption 2, we can model our system as a discrete-time Markov
chain. The number of states of the system is N + 1 where s; is the state where there
are I active primary users in a time slot.

Probability #n; that there are i available channels/bands, out of an available N
channels, at a given time slot is given by:

n; = (?)(1 —a)aV¥ (14.7)

The above equation indicates that i available channels occur when any i primary
users are inactive and the other N — i primary users are active.
The state vector s for the available channel Markove chain is defined as:

s = [so S ---sN]t (14.8)

where s; is the state when there are i available channels. The associated state
transition matrix is given by:

no no no +++ No
ny ny nyo--- Ny

P=| N2 nyny - n (14.9)

nNy ny ny === ny

We note that all the columns of P are identical. This special form implies that at
steady state the distribution vector s is given by:
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s=[non--ny] (14.10)

When the system is in state s;, probability that a secondary user chooses an available
channel is given by:

1
X = - (14.11)
i
Let us now turn our attention to the secondary users. Probability m1; that there are
J active secondary users, out of potential M secondary users, at a given time slot is
given by:

m; = (7)&(1 — )M (14.12)

Assume the system is in state s; and there are j secondary active users. We define
vi,j as the probability that a tagged channel is available and is chosen by exactly one
active secondary user when there are i available channels and j active secondary
users. y; ; is given by:

AWA! /™!
yj,j=(ll)(lf)(l—lf) . I<i<N, 1<j<M (14.13)

When we have N primary users and M secondary users, the average secondary user
throughput Th(N, M) is given by

N M
Th(N.M) =Y "5y yijm; (14.14)
j=1

i=1

Figure 14.5 shows the secondary user throughput of an opportunistic SDR system
for number of primary users being N =1, 2, and 4; and M = 10, a = 0.2 and
¢ = 0.1. Red, green, and blue lines are for N = 1, 2, and 4, respectively. As
expected, secondary user throughput increases with the increasing values of M.
Further, that throughput increases with increasing number of primary users N > 1.
The case when N = 1 shows constant value for the throughput independent of M
because of two factors: a low value for a = 0.2 which indicates that 80 % of the
time the channel is idle and ready to accommodate secondary user requests.

Let us now try to reverse the situation and have the activities of the primary users
increase such that a = 0.8. Figure 14.6 shows the secondary user throughput of an
opportunistic SDR system for number of primary users being N =1, 2, and 4; and
M = 10,a = 0.8 and ¢ = 0.1. Red, green, and blue lines are for N = 1, 2, and 4,
respectively. Under these conditions, secondary user throughput is almost constant
with the increasing values of M. This is because there is a small number of available
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Fig. 14.5 Throughput of an opportunistic SDR system for number of primary users being N =1,

2,and 4;and M = 10, a = 0.2 and ¢ = 0.1. Red, green, and blue lines are for N = 1, 2, and 4,
respectively
2
15 b

Throughput

0.5 - 1

2 4 6
Secondary Users

o -

10

Fig. 14.6 Throughput of an opportunistic SDR system for number of primary users being N =1,

2,and 4;and M = 10,a = 0.8 and ¢ = 0.1. Red, green, and blue lines are for N = 1, 2, and 4,
respectively

channels and they are always used by the secondary users. However, that throughput
increases more significantly with increasing number of primary users N.

Probability of channel access is given by the ratio of system throughput divided
by the number of secondary users:

Th(N, M)

J(N, M) =
Pal ) i

(14.15)
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Fig. 14.7 Access probability of a secondary user in an opportunistic SDR system for number of
primary users being N =1, 2, and 4; and M = 10, a = 0.2 and ¢ = 0.1. Red, green, and blue
lines are for N = 1, 2, and 4, respectively

Figure 14.7 shows the access probability of a secondary user in an opportunistic
SDR system for number of primary users being N =1, 2, and 4; and M = 10,
a = 0.2 and ¢ = 0.1. As expected, the secondary user access probability
decreases with increasing values of M due to the increased competition from other
secondary users. Also, the secondary user access probability increases (improves)
with increasing number of primary users. This is due to the increased chances of
finding an idle channel at a given time slot. However, we note that increasing values
of N beyond 2 does not really lead to increased values of p,.

Figure 14.8 shows the access probability of a secondary user in an opportunistic
SDR system for number of primary users being N =1, 2, and 4; and M = 10,
a = 0.8 and ¢ = 0.1. The access probability p, is smaller compared to its values in
Fig. 14.7 are more active and offer small number of available channels. As expected,
the secondary user access probability decreases with increasing values of M due
to the increased competition from other secondary users. Also, the secondary user
access probability increases (improves) with increasing number of primary users.
This is due to the increased chances of finding an idle channel at a given time slot.

Beside estimating the average throughput and secondary user access probability,
we are also interested in estimating how much energy and delay are needed before
a secondary user frame is successfully transmitted. The average energy required to
transmit a frame is estimated as

o0
E=E Y (i+1)(1-ps) pa
i=0
Ey
_kEo (14.16)
Pa



14.3  Modeling Opportunistic Spectrum Access (ALOHA Access) 441
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where Ej is the energy required to send the one frame. In dB, the above equation
can be written as

E/Ey = —10log,, p. dB (14.17)

Figure 14.9 shows the average energy to transmit a frame of a secondary user in
an opportunistic SDR system for number of primary users being N =1, 2, and 4;
and M = 10,a = 0.2 and ¢ = 0.1. The average energy increases as the number
of secondary users increases, as expected, due to increased collisions with other
secondary users. Also, the average energy decreases as the number of primary users
increases. This is due to the reduced chance of collision with other secondary users.

Figure 14.10 shows the average energy to transmit a frame of a secondary user
in an opportunistic SDR system for number of primary users being N =1, 2, and
4;and M = 10, a = 0.8 and ¢ = 0.1. We notice that the average energy required
to transmit a packet increases above its values in Fig. 14.9 due to the increasing
number of attempts to successfully access the channel.

The average number of attempts before a successful transmission is

o0
ng=Yy n (1=pJ)" pa (14.18)
n=0
This evaluates to
1 —
n, = —2a (14.19)
Pa

Figure 14.11 shows the average delay to transmit a frame of a secondary user in
an opportunistic SDR system for number of primary users being N =1, 2, and 4;
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Fig. 14.9 Average energy to transmit a frame of a secondary user in an opportunistic SDR system
for number of primary users being N =1,2,and 4;and M = 10,a = 0.2 and ¢ = 0.1. Red,
green, and blue lines are for N = 1, 2, and 4, respectively
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Fig. 14.10 Average energy to transmit a frame of a secondary user in an opportunistic SDR system
for number of primary users being N =1,2,and 4; and M = 10,a = 0.8 and ¢ = 0.1. Red,
green, and blue lines are for N = 1, 2, and 4, respectively

and M = 10,a = 0.2 and ¢ = 0.1. The average delay increases as the number
of secondary users increases, as expected, due to increased collisions with other
secondary users. Also, the average delay decreases as the number of primary users
increases. This is due to the reduced chance of collision with other secondary users.
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Fig. 14.11 Average delay to transmit a frame of a secondary user in an opportunistic SDR system
for number of primary users being N =1,2,and 4; and M = 10,a = 0.2 and ¢ = 0.1. Red,
green, and blue lines are for N = 1, 2, and 4, respectively
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Fig. 14.12 Average delay to transmit a frame of a secondary user in an opportunistic SDR system
for number of primary users being N =1, 2,and 4;and M = 10,a = 0.8 and ¢ = 0.1. Red,
green, and blue lines are for N = 1, 2, and 4, respectively

Figure 14.12 shows the average delay to transmit a frame of a secondary user in
an opportunistic SDR system for number of primary users being N =1, 2, and 4;
and M = 10,a = 0.8 and ¢ = 0.1. As expected, the when the primary users
are more active, the average delay for the secondary users increases due to the
reduced number of available channels and the increased competition from the other
secondary users.
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14.4 Problems

14.1. Prove Eq. (14.10).
14.2. Prove that (14.6) reduces to (14.4) when adaptive techniques are not used.

14.3. Assume a fading channel having the parameters of Table 13.1. Estimate the
average BER when adaptive modulation is not used versus when it is used. For this
problem assume that ¢; = 0.1e¢; and €; = 10e;

14.4. In an AR radio system part of the adaptation could be to modulate the
transmitter energy level so that p; is reduced when SNR is large and to increase
p; for states with small SNR. How can one model average energy consumption and
average BER when such a system is being used?
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Chapter 15
Modeling Network Traffic

15.1 Introduction

Models that describe and generate telecommunication traffic are important for
several reasons [1]:

Traffic description: Network users might be required to give a traffic description to
the service provider. Based on that, the service provider decides whether the
new connection can be admitted with a guaranteed quality of service (QoS) and
without violating the QoS for established connections.

System simulation: Future networks and new equipment could be designed and the
expected network performance checked.

Different models are used to describe different types of traffic. For example,
voice traffic is commonly described using the on—off source or the Markov
modulated Poisson process (MMPP). Studies suggest that traffic sources such as
variable bit rate (VBR) video and Ethernet traffic are better represented by self-
similar traffic models [2—7]. The important characteristics of a traffic source are
its average data rate, burstiness, and correlation. The average data rate gives an
indication of the expected traffic volume for a given period of time. Burstiness
describes the tendency of traffic to occur in clusters. A traffic burst affects buffer
occupancy and leads to network congestion and data loss. Data burstiness is
manifested by the autocorrelation function which describes the relation between
packet arrivals at different times. It was recently discovered that network traffic
exhibits long-range dependence, i.e. the autocorrelation function approaches zero
very slowly in comparison with the exponential decay characterizing short-range
dependent traffic [2-7]. Long-range dependent traffic produces a wide range in
traffic volume away from the average rate. This great variation in traffic flow also
affects buffer occupancy and network congestion. In summary, high burstiness or
long-term correlation leads to buffer overflow and network congestion. We begin by
discussing the different models describing traffic time arrival statistics.
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Simple traffic models are sometimes called point processes since they are
basically counting processes that count the number of packets that arrives in a time
interval. These point processes sometime give the random sequence representing the
time separations between packets. Several random processes are grouped together
to give more complex traffic patterns. The Internet traffic archive (http://ita.ee.lbl.
gov/index.html) provides data sets for network traffic and some useful software.

The other extreme for traffic modeling is to use fluid flow models. Fluid flow
modeling groups the traffic into flows that are characterized by average and burst
data rates. The object in these models is to investigate traffic at the aggregate level
such as Ethernet traffic or traffic arriving at ingress and egress points of some
Internet service provider (ISP). Fluid flow models do not concern themselves with
the details of individual packet arrivals or departures.

The difference between point processes and fluid flow models is similar to the
difference between describing an electric current in terms of the individual electrons
or in terms of the current amplitude.

15.2 Flow Traffic Models

Flow traffic or fluid traffic models hide the details of the different traffics flowing
in the network and replace them with flows that have a small set of characterizing
parameters. The resulting models are easily generated, measured, or monitored.

For an end-to-end application, a flow has constant addressing and service require-
ments [19]. These requirements define a flow specification or flowspec which is used
for bandwidth planning and service planning. Individual flows belonging to single
sessions or applications are combined into composite flows that share the same
path, link, or service requirements. Composite flows, in turn, are combined into
backbone flows when the network achieves a certain level of hierarchy. Describing
flows in this fashion makes it easier to combine flow characteristics and to work
with a smaller set of data. For example, a core router might separate incoming data
into individual flows, composite flows, and backbone flows depending on the QoS
required by the users. This results in smaller number of service queues and simpler
implementation of the scheduling algorithm implemented in the router. In most
networks, the majority of the flows are low-performance backbone flows; there will
also be some composite flows; and there will be few high-performance individual
flows. The high-performance flows will influence the design of the scheduling
algorithm in the switch, size, and number of the queues required since they usually
have demanding delay and/or bandwidth requirements. The backbone flows will
influence the buffer size required since they will usually constitute the bulk of the
traffic most of the storage within the switch.
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15.2.1 Modulated Poisson Processes

In a Markov modulated traffic model, states are introduced where the source changes
its characteristic based on the state it is in. The state of the source could represent its
data rate, its packet length, etc. When the Markov process represents data rate, the
source can be in any of several active states and generates traffic with a rate that is
determined by the state. This is commonly called MMPP. The simplest model is the
on/off model and more complex models are described in the next section for video
traffic.

15.2.2 On-0Off Model

A popular model for bursty sources is the on—off model where the source switches
between an active state, producing packets, and a silent state where no packets
are produced. In that sense, the on—off model is a two-state MMPP. Traffic from
this type of source is characterized by many variable length bursts of activity,
interspersed with variable length periods of inactivity. This model is commonly used
to describe constant bit rate (CBR) traffic in ATM [20-22]. Figure 15.1 shows the
two-state model for the on—off source.

The source stays in the active state with probability @ and stays in the silent state
with probability s. When the source is in the active state the source generates data
at arate A in units of bits/s or packets/s. The traffic pattern generated by this source
is shown in Fig. 15.2.

Fig. 15.1 An on—off source

model
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Fig. 15.2 Packet pattern for an on—off source model
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The probability that the length of the active period is  time steps is given by the
geometric distribution

An)=a"(1—a) n=>1 (15.1)

The average duration of the active period is given by

T, = N 4 time steps (15.2)

Similarly, the probability that the length of the silent period is n time steps is given
by the geometric distribution

Sn)y=s"1—s) i>1 (15.3)

The average duration of the silent period is given by

T, = N i time steps (15.4)

— S

Assume that A is the data rate when the source is in the active state. In that case, the
average data rate is obtained as

N

x T,
Ty + T

A
— = =
14+ T,/ T,

Ao =
A (15.5)

Example 15.1. Assume a 64 kbit/s voice source which is modeled as an on—off
source with an average duration of the active period of 7, = 0.45s and average
duration of the silent period is 7y = 1.5s. Estimate the source parameters and the
average data rate.

From (15.2), the probability the source remains in active state is

Ta
a= = 0.3103
1+7,

From (15.4) the probability the source remains silent is

T 06
s = = 0.
1+ T,

The average data rate is

Ay = 1477  Kkbps |
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Fig. 15.3 A three-state
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15.2.3 Markov Modulated Poisson Process

The on—off traffic source model does not describe too well the effect of multiplexing
several data sources. There is only one rate when the source is active while actual
sources display differing data rates when they are active. To handle this situation,
more states are added to the MMPP. Figure 15.3 shows a three-state configuration
which is naturally called three-state MMPP.

For an MMPP with N states, we construct an N X N state transition matrix P
whose element p;; represents the probability of making a transition from state j to
state i. This choice is consistent with our definition for the transition matrix of a
Markov chain. Needles to say this matrix is a column stochastic matrix.

When the source is in state i, 1 < i < N, the packets are produced at a rate A;.
When the number of states is N = 2, we have a switched Poisson process (SPP)
[21]. When N = 2 and A; = 0, we have an interrupted Poisson process (IPP) which
is also the on—off model that was discussed above.

15.2.4 Autoregressive Models

Autoregressive models produce traffic with short-range dependence where the
autocorrelation function decays exponentially. An autoregressive model of order N,
denoted AR(N), is described by

N
X(n)y=> a; X (n—k)+e(n) (15.6)
k=1

where X (n) is a random variable indicating the traffic rate at that time; and € (n) is
a random variable having small range to fit experimental data. The above formula
gives a simple method for generating the next random number given the previous
set of N random numbers which is computationally appealing.

Alternative forms of the above expression using moving average (MA) and
autoregressive moving average (ARMA) expressions were also proposed [22].
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15.3 Continuous-Time Modeling: Poisson Traffic Description

Poisson traffic description is a model often used by many researchers due to the
simplicity of the model. A characteristic of traffic is the lull period in which no
packets arrive. We can think of the interarrival time between two successive packets
as a random variable 7'. This r.v. is continuous for Poisson traffic. The attractive
feature of Poisson traffic is that the sum of several independent Poisson processes
results in a new Poisson process whose rate is the sum of the component rates [8].
Poisson traffic accurately describes user-initiated TELNET and FTP connections
[4]. To study the random variable 7 we need to study the probability p(0) that
no packets arrive in the period ¢. Let us start by assuming Poisson traffic with
probability p(k) that k packets arrive in a time period ¢ which is given by

(Ajc't)k e—Aa t

plk) = (15.7)
where A, (packets/s) is the average packet arrival rate. Note that this expression for
probability is valid for all values of 0 < k < oo. Of course we do not expect an
infinite number of packets to arrive in a time interval ¢, but this is the expression and
that is what it predicts. Note that Poisson distribution really talks about numbers. It
specifies the probability of getting a number of packets k in a given time period 7.

For the interarrival time, we ask a different sort of question: what is the
probability that the time separation between adjacent packets is #? To derive an
expression for the pdf distribution for the interarrival time, we need to find the
probability that no packets arrive in period ¢. Using (15.7), the probability that no
packets arrive in a time period ¢ is obtained by substituting k = 0 in the above
equation

p(0) =e P! (15.8)
This probability is equivalent to the event A : T > ¢ and we can write
p(A:T > 1) = p(0)
= Ha! (15.9)

The event A is basically the event that no packets arrived for a time period 7. What
happens after this time period is not specified. A packet might arrive or no packets
arrive.

In order to find the pdf associated with the interarrival time we need to define
event B which is complementary to A as follows:

B:T<t
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and the probability associated with event B is

p(B:T <t)=1-p(A)

| —e Pt (15.10)

The CDF for the random variable 7" is given from (15.10) by
Fr(t)=p(T <t)=1—e ! (15.11)
The pdf for this random variable is obtained by differentiating the above equation
Fr(t) = Age ™! (15.12)

Thus the pdf for the interarrival time of Poisson traffic follows the exponential
distribution that was discussed in Chap. 1.

Example 15.2. Find the average value for the exponentially distributed interarrival
time having the distribution in (15.12)

The average time between arriving packets 7, is given by

o0
T, = / t hgehet dr
=0

S

1
=5
We see that as the rate of packet arrival decreases (A, <« 1), the average time
between packets increases as expected. ]

Example 15.3. Consider an ATM channel where a source transmits data with an
average data rate of 500 kbps. Derive the corresponding Poisson distribution and
find the probability that 10 cells arrive in a period of 1 ms.

Since we are talking about cells, we have to convert all the data rates from bits/s
quantities into cells/s using the information we have about average packet length A.
We start by calculating the average arrival rate which is easily done since we know
the size of an ATM cell.

500 x 10°

.= =1.1792x 10*  cells/s
8 x 53

The probability of 10 cells arriving in the time period ¢ according to the Poisson
distribution is found using (15.7):

(Aa f)loe_x

ol = 4,407 x 1077 [
(10)! x

p(10) =
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15.3.1 Memoryless Property of Poisson Traffic

The memoryless property of Poisson traffic is defined using the following condi-
tional probability expression related to the interarrival time:

p(T>t+€lT >t)=p(T >¢) forall ¢, €e>0 (15.13)

Basically this equation states that the probability that no packets arrive for a time
t + € given that no packets arrived up to time ¢ does not depend on the value of ¢. It
depends only on €. So in effect the expression states that we knew that we waited for
t seconds and no packets arrived. Now we reset our clock and we ask the question:
What is the probability that a packet arrives if we wait for a period € seconds? The
probability of this event only depends on our choice of € value and will not use our
prior knowledge of the period ¢.

Let us state this property using two examples of systems having the memoryless
property. Assume that we are studying the interarrival times of busses instead of
packets. Assume also that the time between bus arrivals is a random variable with
memoryless property. We arrive at the bus station at 9:00 a.m and wait for one hour
yet no buses show up. Now we know that no buses showed up for the past hour and
we naturally ask the question: What are the odds that a bus will show up if we wait
for five more minutes. The probability that no buses will come in the next 5 min will
depend only on the wait period (5 min) and not on how long we have been waiting
at the bust stop.

Another example of memoryless property is the case of an appliance (a television
set for example). If the time between failures is a random variable with memoryless
property, then the probability that the TV will fail after 1 hour of use is the same at
any time independent of when we bought the TV or how long the TV has been used.

Obviously the time between failures in cars and airplanes has a memory property.
That is why an older car breaks down more often compared to a new car or compared
to an older car that is only driven on weekends in the summer months only.

Let us turn back to our interarrival time statistics. From (15.9) we could write

p(T>1)=ete! (15.14)
Changing the time value from 7 to ¢ + €, we get
p(T >t +¢€) = et (F9) (15.15)
Equation (15.13) is a conditional probability and we can write it as

p(4B)

plalm) = =

(15.16)
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where the events 4 and B are defined as

A:T>t+c¢ (15.17)
B:T >t (15.18)

But A()| B = A since € > 0 implies that if event A took place, then event B has
taken place also. Thus we have

A
P>t +elT >1)= % (15.19)
o—ha (t46)
= ¢ hae (15.21)

Thus we have proven that the interarrival time for the exponential distribution is
memoryless.

15.3.2 Realistic Models for Poisson Traffic

The Poisson distribution and the interarrival time considered in Sect. 15.3 do
not offer much freedom in describing realistic traffic sources since they contain
one parameter only: A (packets/s) that reflected the average data arrival rate. The
minimum value for the interarrival time is zero. This implies that the time interval
between two packet headers could be zero. An interarrival time value of zero implies
two things: that our packets have zero length and the data rate could be infinity. Both
of these conclusions are not realistic.

A realistic bursty source is typically described using some or all of these
parameters:

A, the average data rate
o the maximum data rate expected from the source

Since we are talking about rates in terms of packets/s, we need to make sure that
the rates are in terms of packet/s. The source parameters above could be elaborated
upon further, depending on our need. Section 15.2.1 discusses source with multiple
data rates.

Now we ask the question: How can we write down an expression for a Poisson
distribution that takes into account all of the source parameters? We have two
options:
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Flow Description This option allows us to specify the randomness of the instanta-
neous data rate produced by the source.

Interarrival Time Description This option allows us to specify the randomness of
the periods between adjacent packets produced by the source.

15.3.3 Flow Description

We start by writing the pdf for the instantaneous data rate in the form
faQ)=be™ (15.22)

where A is the data rate and the parameter b is the shape parameter that determines
the steepness of the exponential curve.

Figure 15.4 shows the distribution where A, in the figure indicates the average
data rate. The distribution in (15.22) is a valid pdf since its integral equals unity.

To find the parameter b, we need to estimate the average data rate A,. The average
data rate for the distribution given in (15.22) is

oo 1
Ay = / Abe P dyr= 5 (15.23)
0

Based on this equation, we can determine the pdf for the data rate produced by the
source given its average rate. If A, is the average data rate of a source, then the pdf
for its rate is given by

fa) = — e (15.24)

1
Aq
Thus to describe the data rate of a source that follows the Poisson distribution, we
need to specify its average data rate A, only.

FA)

Fig. 15.4 Exponential
distribution describing
instantaneous rate of a
Poisson source

>V
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15.3.4 Interarrival Time Description

The pdf description of the interarrival time for a Poisson source follows the
exponential distribution which we repeat here for convenience.

fr(t) = Age™ (15.25)

We mentioned that this equation is not sufficient to describe real traffic since it
contains one parameter only A, which describes the average data rate only. We
can modify the interarrival time distribution and obtain the biased exponential
distribution as follows.

0 t<a
Jr®) = b exp—b(t —a) t>ua (15.26)

where a > 0 is the position parameter (units s) and b > 0 is the shape parameter
(units s™1). Basically a represents the minimum time between adjacent packets and
b determines how fast the exponential function decays with time. Both a and b will
determine the average packet rate as will be explained in Example 15.4 below.

Figure 15.5 shows the distribution given by the expression in (15.26). We see
from the figure that a places the pdf at the desired position on the time axis and
b determines how fast the exponential function decays with time. The distribution
in (15.26) is a valid pdf since its integral equals unity. The next section explains how
to obtain the correct values for a and b for a typical source.

Example 15.4. Find the average value for the exponentially distributed interarrival
time with pdf given by (15.26)

The average time separation between arriving packets 7, is given by
oo
T, = [ t be™"17 qy
t=a

L]
— S
“aTy

-

S0 A

Fig. 15.5 A biased
exponential distribution with
two design parameters:

.. Il
position parameter a and — >
a T Interarrival time
shape parameter b a
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The average interarrival time 7, depends on both @ and b parameters. We see that as
the shape parameter decreases (b < 1), the average time between packets increases.
On the other hand, when b is large (b > 1), the exponential function will
approach a delta function and the interarrival time will have its minimum value
T, ~ a.
The variance of the interarrival time for the shifted exponential distribution is
given by

which depends only on the shape parameter. So large values for » will result in
traffic with low burstiness approaching CBR. Lower values for » result in more
bursty traffic. [ ]

15.3.5 Extracting Poisson Traffic Parameters

In this section we show how to find the values of the position parameter a and shape
parameter b for a source whose average rate A, and burst rate ¢ are known.

The position parameter a is equivalent to the minimum time between two
adjacent packets. In a time period ¢, the maximum number of packets that could
be produced by the source is given by

Ny =0t (15.27)

where it was assumed that o was given in units of packets/s. The minimum time
between two adjacent packets was defined as a and is given by

= — = 15.28
C=y-T5 S ( )

Problem 15.5 discusses obtaining the parameter a when o is expressed in units of
bits/s.

In a time period ¢, the average number of packets that could be produced by the
source is given by

Ny =gt (15.29)

= (15.30)
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But from Example 15.4 we obtained an expression for the average interarrival
time as

1
T, =a+ 5 S (15.31)

From the above two equations we are able to obtain a value for the shape parameter b

1 1
— = — 15.32
w a-+ 5 ( )
Therefore we have
A
p= Tl (15.33)
o — Ay

Problem 15.6 discusses obtaining the parameter a when o and A, are expressed in
units of bits/s.

Example 15.5. A data source follows the Poisson distribution and has an average
data rate A, = 10° packets/s and maximum burst rate of ¢ = 3 x 103 packets/s.
Estimate the exponential distribution parameters that best describe that source.

The position parameter is given from (15.28) by

1

a=———=333x10"* s
3 x 100

The shape parameter b is given from (15.33) by
b=1500 s~
The pdf for the interarrival time is given by

fr(t) = 1500 exp—1000 (r — 3.3 x 107*) [ |

15.3.6 Poisson Traffic and Queuing Analysis

The previous subsection discussed how the biased exponential distribution parame-
ters can be extracted given the system parameters:

A, the average data rate
o the maximum data rate expected from the source
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A Poisson source matching these given parameters has position parameter given
by (15.28) and shape parameter given by (15.33). In this section we ask the question:
Given a Poisson source with known parameters that feeds into a queue what is the
packet arrival probability for the queue? Remember that in queuing theory the two
most important descriptors are the arrival statistics and the departure statistics.

There are two cases that must be studied separately based on the values of the
step size T and the position parameter a.

Case When T <a

The case T < a implies that we are sampling our queue at a very high rate that is
greater than the burst rate of the source. Therefore, when 7' < a at most one packet
could arrive in one time step with probability x that we have to determine. We use
the symbol x for arrival probability since the symbols « is used here to describe the
position parameter.

The number of time steps over a time period ¢ is estimated as

n=— (15.34)

The average number of packets arriving over a period ¢ is given by

N, = A, t
=A,nT (15.35)

where A, was assumed to be given in units of packets/s.
From the binomial distribution, the average number of packets in one step time is

N,=xn (15.36)

where x is the packet arrival probability in one time step.
From the above two equations, the packet arrival probability per time step is
given by

xX=A,T (15.37)
We see in the above equation that as 7' gets smaller or as the source activity is

reduced (small A,), the arrival probability is decreased which makes sense.

Example 15.6. Estimate the packet arrival probability for a source with the follow-
ing parameters. 1, = 50 packets/s and 0 = 150 packets/s. Assume the time step
valueis 7 = 1 ms.
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The position parameter is

1
oa=—=067 ms
o
The shape parameter is
AaO
=——=7 s
p o — Ay ;
The packet arrival probability is
x =0.05 |

Case When T > a

The case T > a implies that we are sampling our queue at a rate that is slower than
the burst rate of the source. Therefore, when 7" > @ more than one packet could
arrive in one time step and we have to find the packet arrival statistics that describe
this situation.

We start our estimation of the arrival probability x by determining the maximum
number of packets that could arrive in one step time

Ny = [0 T (15.38)

The ceiling function was used here after assuming that the receiver will consider
packets that partly arrived during one time step. If the receiver does not wait for
partially arrived packets, then the floor function should be used.

The average number of packets arriving in the time period T is

Ny=A,T (15.39)
From the binomial distribution, the average number of packets in one step time is

N, =x N, (15.40)
From the above two equations, the packet arrival probability per time step is

AT

X =

>

- 15.41
N . ( )

IA

The probability that k packets arrive at one time step 7' is given by the binomial
distribution
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pk) = (j\,]cm)xk (1 —x)Nn=* (15.42)

Example 15.7. A data source follows the Poisson distribution and has an average
datarate A, = 10° packets/s and maximum burst rate of & = 5x 10° packets/s. Find
the biased Poisson parameters that describe this source and find the packet arrival
probabilities if the time step is chosen equal to 7 = 1 ms.

The biased Poisson parameters are

a 2x 1074 ms

b

1.250 x 103> s~

The maximum number of packets that could arrive in one time step is
N, =5

The packet arrival probability per time step is
x =02

The probability that k packets arrive per time step is

p(0) = 3.2768 x 10~*
p(1) = 4.0960 x 107"
p(2) =2.0480 x 107!
p(3) =5.1200 x 102
p(4) = 6.4000 x 1073
p(5) = 3.2000 x 10~* [ |

15.4 Discrete-Time Modeling: Interarrival Time
for Bernoulli Traffic

Poisson traffic description applies when time is treated as continuous. Bernoulli
traffic is analogous to Poisson traffic when time is discrete. Discrete-time traffic is
typically described by Bernoulli trials that give rise to a binomial process in which
the probability that a packet arrives at a given time step is x and the probability that
a packet does not arrive is y = 1 — x. We use the symbol x for arrival probability
since the symbol a is used here to describe the position parameter.
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We can think of Bernoulli traffic with binomial packet arrival distribution as
the discrete version of Poisson traffic with exponential packet interarrival time
distribution. The latter distribution could be termed a fluid flow traffic model since
it deals with flow rate as opposed to count the number of packets that arrive in a
certain time period.

The probability that k packets arrive in n time steps is given by the binomial
distribution

p(k) = <Z>xk yrk (15.43)

We can think of the interarrival time n between two successive packets as a random
variable N. This r.v. is discrete for Bernoulli traffic.

The probability p(0) that no packets arrive for at least n consecutive time steps
is given by

p(0) = y"

The above equation simply states that we did not get any packets in n time steps.
What happens during time step n + 1 is not specified in the above equation. We
might get a packet or we might not. Notice that for large n the probability that no
packets arrive diminishes which makes sense.

The above probability is equivalent to the event A : N > n and we can write

p(A: N >n) = p(0)
=(1—x)" (15.44)

This equation will help us in the next section to prove the memoryless property
of Bernoulli traffic. However, we proceed here to find the pmf associated with the
interarrival time.

In order to find the pmf associated with the interarrival time we need to find the
probability that the interarrival time exactly equals n time steps. In other words, our
event now specifies that no packets arrived for n time steps followed by a packet
arrival event at the next step when the time index is n + 1. The desired probability
is given by

p=x(l-x)" (15.45)

This probability is equal to the pmf of the interarrival time and we can write the
pmf as

p(N =n)=x(1—-x)" (15.46)
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Fig. 15.6 A simple p(N=n)
geometric distribution with i
one parameter x, the
probability that a packet
arrives in a given time step

X

> -

Figure 15.6 illustrates the pmf for the interarrival time of Bernoulli traffic has
geometric distribution. A simple geometric distribution with one parameter x, the
probability that a packet arrives in a given time step.

Example 15.8. Find the average value for the interarrival time of Bernoulli traffic
which is described by (15.46).

The average number of time steps between packets n, is given by

o0
ng = E nxy"
n=0

We see that as the probability for packet arrival decreases (x < 1), the average
number of steps between packets increases as expected. On the other hand, when x
approaches unity, the interarrival time becomes n, & 0 as expected. This indicates
that arriving packets have no empty time slots in between them. [ |

Example 15.9. Consider an ATM channel where cells arrive with an average data
rate of A, = 2.3 x 10* cells/s and a burst rate limited only by the line rate is
0 = A; = 155.52Mbps. Derive the equivalent binomial distribution parameters
and find the probability that 10 cells arrive in one sample time period of 7 = 1 ms.

The average number of ATM cells received in one time step period is given by
N, =23x10*x107° =23

which represents the average traffic produced by the source.
The maximum number of ATM cells that could be received in this time is found
by estimating the duration of one ATM cell as determined by the line rate.

8 x 53

= 15552x 108 ~ 27263 s
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The maximum number of ATM cells that could be received in 1 ms period is
given by

T
Ny =[—] =367
<1

The cell arrival probability per time step is given from the equation

X Ny =N,
which gives
23
x = — = 0.0627
367

and of course y = 1 — x = 0.9373.
The probability of 10 cells arriving out of potential N, cells is

N - _
p(10) = (lo)x“’ y¥n=10 = 93192 x 107*
We note that p(10) as obtained here is almost equal to p(10) as obtained using the
Poisson distribution in Example 15.4. [ ]

15.4.1 Memoryless Property of Bernoulli Traffic

Assume 7 is the number of time steps between arriving packets. It is obvious that
the value of n shows random variations from one packet to another. Define N as the
random variable associated with n. The memoryless property of the interarrival time
for Bernoulli traffic is defined using the following conditional probability expression
for discrete random variables

p(N >n+m|N >n)=p(N >m) forall n,m>0 (15.47)

Basically this equation states that the probability that a packet arrives after a time
n + m given that no packets arrived up to time n does not depend on the value of n.
It depends only on m.

From (15.44) we could write

p(n)=(1-x)" (15.48)
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where x is the packet arrival probability during on step time. Changing the time
value from n to n + m, we get

p(n+m) = (1—x)"*" (15.49)

Equation (15.47) is a conditional probability and we can write it as

p(A()B)
p(A|B) = ——— (15.50)
p(B)
where the events A and B are defined as
A:N>n+m (15.51)
B:N>n (15.52)

But A() B = A since m > 0 which implies that if event A4 took place, then event
B has taken place also. Thus we have

p(A)

p(N >n+m|N >n) = m (15.53)
_ (1 _ x)n+m

W (15.54)

=({1-x)" (15.55)

= p(N > m) (15.56)

Thus we have proven that the interarrival time for Bernoulli traffic is memoryless.

15.4.2 Realistic Model for Bernoulli Traffic

The interarrival time considered in Sect. 15.4 does not offer much freedom in
describing realistic traffic sources since it contains one parameter only: x the
probability that a packet arrives at a certain time step. As was mentioned before,
a realistic source is typically described using more parameters than just the average
data rate.

A, the average data rate
o the maximum data rate expected from the source

The question becomes, how can we write down an expression similar to the
one given in (15.46) that takes into account all of these parameters? We can
follow a similar approach as we did for Poisson traffic in Sect. 15.3.2 when we
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Fig. 15.7 A biased p(N=n)
geometric distribution with
two design parameters:
position parameter o and
packet arrival probability x

Mavg Interarrival time

modified the exponential distribution by shifting it by the position parameter o. We
modify (15.46) to obtain the biased geometric distribution as follows.

0 n<ao
= = 1 .
p(N =n) fd—x) n>a (15.57)

where n is the number of time steps between packet arrivals, « > 0 in is called
the position parameter, in units of time steps, and x is the probability that a packet
arrived during one time step. Basically a represents the minimum number of time
steps between adjacent packets.

Figure 15.7 shows the discrete exponential distribution. We see from the figure
that « places the pmf at the desired position on the time axis and x determines how
fast the exponential function decays with time. The distribution in (15.57) is a valid
pmf since its sum equals unity. The values of & and x will be derived in the next
section.

Example 15.10. Find the average value for the geometrically distributed interarrival
time given by (15.57).

The average number of time steps between packets n, is given by
oo
ng = Zn x (1—x)"*
=«a

X-i—ot
b

We see that as the probability for packet arrival decreases (x < 1), the average
number of steps between packets increases as expected. A high value for o implies
slow traffic since the minimum separation between packets is large. This results in
increased values for n,.

The expression we obtained for the average interarrival time reduces to the
expression obtained in Example 15.8 for the simple exponential distribution when
the position parameter o« — O. ]
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15.4.3 Extracting Bernoulli Traffic Parameters

In this section we show how to find the values of the position parameter a and packet
arrival probability x for a source whose average rate A, and burst rate o are known.
The position parameter ¢ in (15.57) is found by studying packet arrival during
a period 7. The time step T associated with this discrete arrival process is arbitrary
and depends on the specifics of the system being studied.
If we study our system for a time period ¢, then the number of time steps n
spanned by this time period is given by

n=— (15.58)

The maximum number of packets N,, that could arrive during this time period
depends on the burst rate o

Ny =0 xt (15.59)

where o was assumed to be given in units of packets/s.
The minimum number of time steps between adjacent packets when the source
is transmitting at the burst rate is given by

1
o= LNLJ = (15.60)

where the floor function was used to find a conservative estimate of . Now we have
an expression for the position parameter a for the biased exponential distribution
that depends on the source burst rate and the time step value.

Now we turn our attention to estimating the arrival probability x. Consider a
period of time ¢ again which corresponds to n time steps. Because we have Bernoulli
traffic, we can estimate x from the average number of packets received in that time
period ¢ which corresponds to n time steps:

N, =xxn (15.61)
The average number of packets can also be estimated from the average data rate A,.
N, =L, xt (15.62)

We can find a value of x from the above two equations as

x = =2 T (15.63)
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Example 15.11. An ATM data source follows the binomial distribution and has an
average data rate A, = 400 packets/s and maximum burst rate of o = 10° packets/s.
Estimate the geometric distribution parameters that best describe that source if the
step time value 7 is chosen equal to 0.1 ms.

The position parameter is given by
o =10 time steps
and the packet arrival probability per time step is given by
x =0.04
Thus the pmf describing the interarrival time is given by

p(N =n) =0.04x0.96""1° [ |

15.4.4 Bernoulli Traffic and Queuing Analysis

The previous subsection discussed how the biased geometric distribution parameters
can be extracted given the system parameters:

A, the average data rate
o the maximum data rate expected from the source

A Bernoulli source matching these given parameters has position and shape
parameters:

a=1/(cT) (15.64)

x=A T (15.65)

In this section we ask the question: Given a Bernoulli source with known
parameters that feeds into a queue what is the packet arrival probability for the
queue? Remember that in queuing theory the two most important descriptors are
the arrival statistics and the departure statistics. The analysis we undertake is very
similar to the one done for Poisson traffic in Sect. 15.4.

There are two cases that must be studied separately based on the values of the
step size T and the position parameter a.
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Case When T <a

The case T < a implies that we are sampling our queue at a very high rate that is
greater than the burst rate of the source. Therefore, when 7" < a at most one packet
could arrive in one time step with probability x that we have to determine.

The number of time steps over a time period ¢ is estimated as

n=— (15.66)

The average number of packets arriving over a period 7 is given by

N, = Ayt
=2, nT (15.67)

From the binomial distribution, the average number of packets in one step time is
N,=xn (15.68)

where x is the packet arrival probability in one time step.
From the above two equations, the packet arrival probability per time step is
given by

x=AT (15.69)

We see in the above equation that as 7' gets smaller or as the source activity is
reduced (small A,), the arrival probability is decreased which makes sense.

Case When T > a

The case T > a implies that we are sampling our queue at a rate that is slower than
the burst rate of the source. Therefore, when 7' > a more than one packet could
arrive in one time step and we have to find the packet arrival statistics that describe
this situation.

We start our estimation of the arrival probability x by determining the maximum
number of packets that could arrive in one step time

N, =ToT] (15.70)
The ceiling function was used here after assuming that the receiver will consider

packets that partly arrived during one time step. If the receiver does not wait for
partially arrived packets, then the floor function should be used.
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The average number of packets arriving in the time period T is
N,(in) =A, T 15.71)
From the binomial distribution, the average number of packets in one step time is
N,(in) =x Ny (15.72)

From the above two equations, the packet arrival probability per time step is

AT

15.73
N, ( )

X

The probability that k packets arrive at one time step T is given by the binomial
distribution

pk) = (j\,im)xk (1 —x)Nn=* (15.74)

15.5 Self-Similar Traffic

We are familiar with the concept of periodic waveforms. A periodic signal repeats
itself with additive translations of time. For example, the sine wave sin wt will have
the same value if we add an integer multiple of the period T = 27 /w since

sinwt =sinw(t +i T)

On the other hand, a self-similar signal repeats itself with multiplicative changes
in the time scale [8—18]. Thus a self-similar waveform will have the same shape if
we scale the time axis up or down. In other words, imagine we observe a certain
waveform on a scope when the scope is set at 1 ms/division. We increase the
resolution and set the scale to 1 us/division. If the incoming signal is self-similar,
the scope would display the same waveform we saw earlier at a coarser scale.

Self-similar traffic describes traffic on Ethernet LANs and variable-bit-rate video
services [2—7]. These results were based on analysis of millions of observed packets
over an Ethernet LAN and an analysis of millions of observed frame data generated
by VBR video. The main characteristic of self-similar traffic is the presence of
“similarly-looking” bursts at every time scale (seconds, minutes, hours) [8].

The effect of self-similarity is to introduce long range (large lag) autocorrelation
into the traffic stream which is observed in practice. This phenomenon leads to
periods of high traffic volumes even when the average traffic intensity is low.
A switch or router accepting self-similar traffic will find that its buffers will
be overwhelmed at certain times even if the expected traffic rate is low. Thus
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switches with buffer sizes selected based on simulations using Poisson traffic will
encounter unexpected buffer overflow and packet loss. Poisson traffic models predict
exponential decrease in data loss as the buffer size increases since the probability
of finding the queue in a high-occupancy state decreases exponentially. Self-similar
models, on the other hand, predict stretched exponential loss curves. This is why
increasing link capacity is much more effective in improving performance than
increasing buffer size. The rationale being that it is better to move the data along
than to attempt to store them since any buffer size selected might not be enough
when self-similar traffic is encountered.

15.6 Self-Similarity and Random Processes

Assume we have a discrete-time random process X(n) that produces the set of
random variables {Xj, X1,---}. We define the aggregated random process X™ as
a random process whose data samples are calculated as

1
Xém) — n_1 [X() + X+ + Xm—l]
m 1
Xl( ) = E [Xm + Xpt1+--- + X2m—1]

1
Xz(m) = [Xom + Xomi1 + - 4+ Xzm—i]

The random process is self-similar if satisfies the following properties.

1. The processes X and X " are related by the equation

1

(m) _
X" = ) X (15.75)
where H is the Hurst parameter (0.5 < H < 1).
2. The means of X and X are equal
E[X]=E[X™]=pu (15.76)

3. The autocovariance functions of X and X ™™ are equal

E[(Xn+k)y—p)(X(n)—w))=E [(X(n + k)(m) _ M) (X(n)(m) _ /'L)]
(15.77)
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A self-similar random process exhibits long-range dependence where the autocor-
relation function ryy (n) or the autocovariance function cyx(n) does vanish for
large values of n. Distributions that have long-range dependence are sometimes
called heavy-tailed distributions. A random process that displays no long-range
dependence will have the autocorrelation and autocovariance functions vanish for
low values of n. A typical random process that has no long-range dependence is the
Brownian motion.

Typically self-similar phenomena are described using the Hurst parameter H
whose value lies in the range

05<H<1 (15.78)

The case H = 0.5 describes random walk problems or Brownian motion which
exhibits no self-similarity. As H — 1 the degree of self-similarity increases as well
as the long-range dependence.

One way to model self-similar traffic is to use pdf distributions for the interarrival
time that exhibits heavy-tailed distribution as explained in the following section.

15.7 Heavy-Tailed Distributions

A heavy-tailed distribution gives rise to traffic that shows long-range dependence
like in compressed video traffic. A distribution is heavy-tailed if it exhibits the
following characteristics:

1. Its variance is high or infinite.
2. Its CDF has the property

1
I-Fx)=pX>x)~— Xx—>0 (15.79)
xl)l

where 0 < o < 2 is the shape parameter and X is a random variable.

15.8 Pareto Traffic Distribution

The Pareto distribution that we studied in Sect. 1.20 on page 19 is used here to
describe realistic traffic sources that have bursty behavior. The Pareto distribution
is described by the pdf

b a®
fo =25 (15.80)
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where a is the position parameter, b is the shape parameter, and the random variable
X has values limited in the range a < x < o0o. The Pareto distribution CDF is
given by

Fx)=1- (%)b (15.81)

Notice that the Pareto distribution satisfies condition 2 of heavy-tailed distributions
defined in Sect. 15.7.
The mean and variance for X are

= 15.82
=1 (15.82)
) ba®
0= —5— (15.83)
b-1)"0b-2)

The mean is always positive as long as b > 1. The variance is meaningful only

when b > 2. The variance of the Pareto distribution could be made high by properly

choosing the shape parameter b to be close to 1 as the above equation indicates.
The Hurst parameter corresponding to the Pareto distribution is given by the

equation
H=—— (15.84)

Table 15.1 shows the relation between the source burstiness and the two parameters
H and Pareto distribution shape parameter b.

From the table we conclude that in order to describe self-similar traffic using
the Pareto distribution, we must have the shape parameter b close to one. Typically
H is chosen within the range 0.7-0.8 which corresponds to b values in the range
1.4-1.6. By proper choice of b, we can satisfy all the conditions defining heavy-
tailed distributions defined in Sect. 15.7.

From (15.81) we can write

P(X>x)=1-F(x) = (%)b (15.85)

Table 15.1 Relation between the source bursti-
ness and the two parameters H and Pareto
distribution shape parameter b

Traffic statistics H value | b value
Long-range dependent | H — 1 b—1
Short-range dependent | H — 0.5 (b — 2
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which means that the probability that the random variable has a value greater than x
decreases at a rate that depends on the shape parameter b. If b & 1, the distribution
has very large mean and variance [11].

A realistic bursty source is typically described using some or all of these
parameters:

Amin the minimum data rate
Aa the average data rate
o the maximum data rate expected from the source

Since we are talking about rates in terms of packets/s, we need to convert these
specifications into proper packet rates. The question becomes, how can we write
down an expression for a Pareto distribution that takes into account all of these
parameters?

We have two options:

Flow Description This option allows us to specify the randomness of the instanta-
neous data rate produced by the source.

Interarrival Time Description This option allows us to specify the randomness of
the periods between adjacent packets produced by the source.

15.8.1 Flow Description

We start by writing the pdf for the instantaneous data rate in the form

0 when A < A
ba’/AP*1  when A > A,

) = (15.86)

where A,,;, is the minimum data rate, which could be zero, a is the position
parameter and b is the shape parameter that determines the steepness of the curve.

The values of the two parameters a and b can be found for a source with traffic
descriptors (A, Ag, 0) as follows.

a = Amin (15.87)

b= —— 15.88
Aa _/xmin ( )

To produce a bursty source, the value of b could be chosen close to 1 according to
the data in Table 15.1.
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Pareto pdf

Fig. 15.8 The pdf distribution for the case when ¢ = 2 and b = 3 (solid line) and b = 7
(dashed line)

15.8.2 Interarrival Time Description

The interarrival time following the Pareto distribution has a pdf that is given by

b ab .
fr(t) = =) witha <t < o0 (15.89)

where a (units seconds) is the position parameter and » > 1 is the shape parameter.
Figure 15.8 shows the pdf distribution for the case when ¢ = 2 and b = 3 (solid
line) and b = 7 (dashed line). For the smaller value of shape parameter b the pdf
becomes flatter and has higher values at larger values of ¢. This results in larger
variance in the interarrival time distribution.

15.8.3 Extracting Pareto Interarrival Time Statistics

A realistic source is typically described using some or all of these parameters:

A, the average data rate
o the maximum data rate expected from the source

The question we pose here is how to find a Pareto distribution that best matches the
given source parameters?
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In a time period #, the maximum number of packets that could be produced by
the source is given by

Nnp=o0t (15.90)

We use this estimate to calculate the minimum time between two adjacent packets
as follows.

t
a = — =

1
— 15.91
N o ° ( )

The position parameter depends only on the average packet size and burst rate.
In the time period ¢, the average number of packets that could be produced by
the source is given by

Ny =gt (15.92)

The average time between two adjacent packets is given by

T, =—=— 15.93
N, - S (15.93)

But from the Pareto pdf distribution, the average interarrival time is given by

®©  pgb ba
Tazl_atmdt: - S (15.94)

From the above two equations, we are able to obtain a value for the shape
parameter b

(15.95)

Therefore we have

(15.96)

The shape parameter depends only on the average rate A, and burst rate o.
Furthermore, the shape parameter lies between the following extreme values

b= 1 wheno > A,
b—> o0 whenA, > o

The first expression applies to a fairly bursty source and the second expression
applies to a CBR source where the average data rate equals the burst rate. Thus

the range of the shape parameter b can be expressed as

1<b<c (15.97)
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Lower values of b imply bursty sources and higher values of b imply sources with
little variations in the interarrival times since we would have a constant rate source.

Example 15.12. A bursty source produces data at an average rate of 5 Mbps and
its maximum burst rate is 20 Mbps. Estimate the Pareto parameters that best
describe that source assuming that the average packet size is 400 bits. The position
parameter is

A
a=—=20 us
o
The average data rate is used to determine the shape parameter b

=1.333 ]

o — Ay

15.8.4 Pareto Distribution and Queuing Analysis

The previous subsection discussed how the Pareto distribution parameters can be
extracted given the system parameters:

A the source data rate

o the maximum data rate expected from the source

A Pareto distribution matching these given source parameters has position and
shape parameters:

a=1/c s (15.98)
b=o/(c—2A,) (15.99)

where we assumed the rates to be given in terms of packets/s.

In this section we ask the question: Given a Pareto source with known parameters
that feeds into a queue. What is the packet arrival probability? There are two cases
that must be studied separately based on the values of the step size 7" and the position
parameter a.

Case When T <a

When T < a at most one packet could arrive in one time step with probability x
that we have to determine.
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The number of time steps over a time period ¢ is estimated as
n=— (15.100)

The average number of packets in time period ¢ is given by
N, = A4t

=A,nT (15.101)

From the binomial distribution, the average number of packets that arrive during
time ¢ is given by

N, =xn (15.102)

where x is the packet arrival probability in one time step.
From the above two equations we get

x=A T (15.103)

We see in the above equation that as 7' gets smaller or as the source activity
is reduced (small A,), the arrival probability is decreased which makes sense.
The arrival probability for a Pareto distribution when 77 < a is identical to the
arrival probability for the Poisson distribution.

Example 15.13. Estimate the Pareto parameters and the packet arrival probability
for a source with the following parameters. A, = 10° packets/s and 0 = 1.5 x 10*
packets/s. Assume the time step value is T = 0.1 ms.

The position parameter is
a=6.6667x 107" s
The shape parameter is
b =1.0714

The arrival probability is
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Case When T > a

When T > a more than one packet could arrive in one time step and we have to find
the binomial distribution parameters that describe this situation.

We start our estimation of the arrival probability x by finding the maximum
number of packets that could arrive in one step time

N, =ToT] (15.104)
The ceiling function was used here after assuming that the receiver will consider
packets that partly arrived during one time step. If the receiver does not wait for
partially arrived packets, then the floor function should be used. The average number
of packets arriving in the time period 7 is

N, =11A,T] (15.105)
From the binomial distribution, the average number of packets in one step time is

Ny =x Ny (15.106)

From the above two equations, the packet arrival probability per time step is

=

No A
Za (15.107)
o

The probability that k packets arrive at one time step 7 is given by the binomial
distribution

p(k) = (im)x" (1 —x)Nn=k (15.108)

Example 15.14. A data source follows the Pareto distribution and has an average
data rate A, = 2 x 103 packets/s and maximum burst rate of 0 = 5 x 10 packets/s.
Find the Pareto pdf parameters that describe this source and find the packet arrival
probabilities if the time step is chosen equal to 7 = 2 ms.

The Pareto parameters are
a=2x10" ms<T
The maximum number of packets that could arrive in one time step is

Ny, =10
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The average number of packets that could arrive in one time step is
N, =4
The packet arrival probability per time step is

x=04 ]

15.9 Traffic Data Rate Modeling with Arbitrary Source
Distribution

In this section we attempt to model a traffic source that follows a general or arbitrary
user-defined data rate traffic pattern. Assume that the probability mass function
(pmf) of the source data rate is shown in Fig. 15.9. The number of pmf points is
assumed K and the time resolution is T'. The traffic model for this source is defined
by two K-component vectors:

vo=[popr-pr—] (15.109)
vi=[AoA Ak ] (15.110)

where the vector v, contains the pmf probabilities and the vector vy contains the
corresponding data rate values. The peak and average data rates (packets/s) are
given by

o= Ak_1 (15.111)
K—1
Ao =) piki (15.112)
i=0
p(A=A) A Py
o)
Py
1)

Px-1
Fig. 15.9 PMF distribution T T f _
for a source with arbitrary o M Ao - /11<-1'

user-specified data rate
statistics Data Rate (1)
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Fig. 15.10 The state
transition diagram for a traffic 0
source that follows a ’ @ ’

particular pmf distribution

To generate traffic that obeys that general distribution we construct the source state
transition diagram as shown in Fig. 15.10. State s; of the source states in Fig. 15.10
corresponds to data rate A;.

We need to calculate the state transition probabilities x; in the figure and see
how they are related to the source probabilities p;. We cannot just assume that the
probabilities x; are equal to p; without some proof. From pmf definition and the
figure, we can write the probability p; as

pi =5 (15.113)
The RHS of the above equation indicates that the probability that the source data

rate is A; given by the probability that the source state is in state s;. At steady state,
we can write

K—1
&:mih:m (15.114)
i=0

And from the above two equations we determine the state transition probabilities
X; as

X; = pi (15.115)

Although x; was proved to be equal to p;, this situation will not hold true for the
interarrival traffic model in Sect. 15.10.

15.10 Interarrival Time Traffic Modeling with Arbitrary
Source Distribution

In this section we attempt to model a traffic source that follows a general or
arbitrary user-defined interarrival time traffic pattern. Assume that the probability
mass function (pmf) of the interarrival time is shown in Fig. 15.11. The number of
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Fig. 15.11 PMF disFribution ov=n) A Po
for a source with arbitrary 0
user-specified interarrival P,
time statistics 2
—»I T ,4—
et
nO I’l] n2 nK_]

Interarrival Time

Fig. 15.12 The state
transition diagram for a traffic 0 S L
source that follows a @ OO o

particular pmf distribution x, 1 @ 1 0

D @O
X3 1 1 1 1

—>() ()

pmf points is assumed K and the time resolution is 7'. The traffic model for this
source is defined by two K-component vectors:

t
Vo =[popi - pr—i1] (15.116)
Vo =[noni--ng] (15.117)
where the vector v, contains the pmf probabilities and the vector v,, contains the

corresponding interarrival time values. The peak and average data rates (packets/s)
are given by

1
0= -— (15.118)
0
A, = ! (15.119)
Y b '

To generate traffic that obeys that general distribution we construct the source state
transition diagram as shown in Fig. 15.12. We take the time step value T in the
Markov chain equal to the time resolution value in Fig. 15.11. Row i of the source
states in Fig. 15.12 corresponds to data arrival with an interarrival time value of ¢;.
The rightmost state in each row is the state where data is actually generated.
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We need to calculate the state transition probabilities x; in the figure and see how
they are related to the source probabilities p;. From pmf definition and the figure,
we can write the probability p; as

pi =n;s; (15.120)

The RHS of the above equation indicates that the probability that the interarrival
time is n; given by the probability that the source state is any of the states in row i.
Thus we determine s; as

_ b
n;

5; (15.121)

At steady state, we can write
K—1
Si=X Y s (15.122)
i=0

And from the above two equations we determine the state transition probabilities
X; as

N

L (15.123)
Z:’K=01 Si

X; =

15.11 Destination Statistics

Data or traffic arriving at the inputs of a switch or a router need to be routed to
the desired output ports based on the information provided in the packet header and
the routing table of the switch. The distribution of packets among the output ports
is random and we identify three types of destination statistics as discussed in the
following sections.

15.11.1 Uniform Traffic

For a switch with N inputs and N outputs, uniform traffic implies that an incoming
packet chooses a particular output port with probability 1/N. This is true for any
packet arriving at any input port. This model is referred to as the independent
uniform traffic model [23]. Most studies assume uniform traffic to simplify the
analysis. This assumption is true for traffic at routers or switching nodes in the
network since the queuing and gradual release of the packets leads to randomization
of the addressing [24]. These results apply to Ethernet LAN traffic as well as to
WAN IP and ATM traffic.
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15.11.2 Broadcast Traffic

If incoming traffic is such that an input port requests to access all output ports, we
get what is called broadcast traffic. This type of traffic occurs when a site is sending
data to many users at the same time or when a computer updates the databases of
many computers.

Assume an N x N switch with N inputs ports and N output ports. We assume
for simplicity that each input port carries two types of traffic flows: uniformly
distributed traffic flow whose rate is A,, and broadcast traffic flow whose rate is A;,.

The traffic flows at each input and output port are given by

Ain = Ay + Ap (15.124)
)Lnut = A’u + N )\'h (15125)

Note that each output port now has to carry more output traffic than what came in
on the average because of the amplification effect of data broadcast.
The fotal traffic flows at the input and output of the switch are given by

f@n) =N A, + N A (15.126)
f(out) = N A, + N? 2, (15.127)

The amount of traffic through the network increases due to data broadcast.

15.11.3 Hot-Spot Traffic

If incoming traffic is such that many input ports request one particular output port,
we get what is called hot-spot traffic. This type of traffic occurs when a popular
web site is being browsed by many users at the same time or when many computers
request access to the same server. Pfister and Norton [25] models hot-spot traffic as
a fixed fraction of the arrival rate or arrival probability.

Assume an N x N switch with N inputs ports and N output ports. We assume
for simplicity that each input port carries two types of traffic flows: uniformly
distributed traffic flow whose rate is A, and hot-spot traffic flow whose rate is A;,.

The traffic flow at each output port that is not the destination of the hot-spot
traffic is given by

Ay (out) = A, (15.128)



484 15 Modeling Network Traffic

The data rate at the output port that is the destination of the hot-spot traffic is
begin by

An(out) = X, + N, (15.129)

Note that hot-spot traffic effectively increases the traffic at the hot-spot port.
The overall traffic flow at the input of the switch is given by

f(@n) =N A, + N A (15.130)
The overall traffic flow at the output of the switch is given by
flout) =N A, + N Ay (15.131)

The amount of traffic through the network does not increase due to hot-spot traffic.

15.12 Packet Length Statistics

Unlike ATM, many protocols produce packets that have variable lengths. Examples
of protocols that have variable length packets are IP, Frame Relay, and Ethernet.
Knowledge of the packet size is essential if one wants to estimate the buffer space
required to store data having a certain arrival distribution statistics.

Poisson distribution could be used to provide a simple model for packet length
statistics. The probability of receiving a packet of length A is given by

A
p(A) = "re (15.132)

where A = 1, 2, - -- units of length and p is the average packet length.
An exponential distribution could be used also in the form

f(A) = i e~/ (15.133)

where p is the average packet length. Alternatively, we could use the binomial
distribution to describe the probability of receiving a packet of length A

p(A) = (]Z)XA(I —x)N-4 (15.134)

where N is the maximum packet length and x is the probability that one byte is
received. We could find the value of x if the average packet length u is known:

x =L (15.135)
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If the packet length is highly irregular, then a Pareto distribution might be used
in the form

b b
f(4) = Ab—‘il (15.136)

where a is minimum packet length and » > 1 is a shape parameter. The average
packet length for this distribution is

(15.137)

We could also use the MMPP models to describe packet length statistics as was
discussed in Sect. 15.2.3. In that model, we assume a Markov chain with N states
such that in state s; the source produces a packet with length A;. The probability
of making transitions from one state to another is assumed based on experimental
observations or based on model assumptions.

15.13 Packet Transmission Error Description

The previous sections dealt with issues related to network traffic such as data rate
variation, packet length variation, and packet destination. When the packets are in
transit, they are corrupted due to channel impairment or they could be totally lost
due to congestion or address errors. We would like to model channel errors since
these will affect the performance of the overall data transmission.

Figure 15.13 shows a model for adding errors to traffic during transmission. We
have a data source that randomly generates frames as time progresses such that
the interarrival time between the generated frames follows one of the distributions
discussed earlier.

Generated frames

Lm | [om | @

I|

Lea |l [ e | e

Errors per frame

>

Time

Fig. 15.13 Time series sequence of generated data and channel errors. A received frame is in error
if it is generated at the same time that an error is generated
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We could even add another degree of freedom by randomly assigning different
frame lengths. The number of packets per frame follows some distribution like
Poisson, Bernoulli, or Pareto. The number of packets per frame is indicated in the
figure by the numbers n, n,, etc.

An error source also randomly generates errors with time. The number of errors
per frame also follows some distribution like Poisson, Bernoulli, or Pareto. For
example, a bursty error source could follow the Pareto distribution to generate
lengthy error bursts. The number of packets in error per frame is indicated in the
figure by the numbers ej, e,, etc. When the number of errors is either 0 or 1, we
have a binary error source. When a Pareto distribution is used to generate the random
numbers, we get bursts of errors with high probability.

Example 15.15. Assume an on—off data source that generates equal length frames
with probability a per time step. Assume for simplicity that each frame contains
only one packet. The channel introduces errors in the transmitted frames such that
the probability of a packet is received in error is e. Perform a Markov chain analysis
of the system and derive its performance parameters.

The Markov chain model we use has four states:

State  Significance

1 Source is idle

2 Source is retransmitting a frame that was in error
3 Frame is transmitted with no errors

4 Frame is transmitted with an error

Figure 15.14 shows the Markov chain transition diagram and the associated
transition matrix for the system is given by

l—-a 0 10
p— 0 0 01
a(l—e)1—e00
ae e 00
The system throughput is given by
Th = 83

The average number of lost packets per time step is given by
N,(lost) = N,(in) — N,(out)
=a-—-Th

=da-—353
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Fig. 15.14 State
-transition-rate diagram for

transmitting a frame on a l-a

channel that introduces
random errors

The probability that the packet will be transmitted is

The packet loss probability is

L
a a

The average number of retransmissions is given by
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w
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Example 15.16. Assume in the above example that a = 0.7 and e = 0.1. Obtain

numerical values for the performance of the channel.

Figure 15.15 shows the variation of throughput (7h), delay (W), access proba-
bility (p,), and loss probability (L) versus the input traffic (a). Two values of error
probability are used el = 0.1 (solid line) and e2 = 0.6 (dotted line). We note that
there is a maximum value on the throughput of Th(max) = 0.5 and that the system

performance deteriorates rapidly when the error probability increases.

15.14 Problems

Traffic Modeling

15.1. Why do we need to develop models for network traffic?

15.2. What is meant when we say that a source is bursty?
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Fig. 15.15 Throughput (7' h), delay (W), access probability (p,), and loss probability (L) versus
the input traffic (a). Two values of error probability are used el = 0.1 (solid line) and e2 = 0.6
(dotted line)

15.3. What is meant by a point process in traffic modeling?

15.4. What is meant by a fluid flow model to describe network traffic?

Exponential Interarrival Time

15.5. Obtain (15.28) on page 456 when the source maximum data rate ¢ is given in
units of bits/s.

15.6. Obtain (15.33) on page 457 where the source maximum data rate o and
average data rate A, are given in units of bits/s.

15.7. A Poisson packet source produces packets at the rate of 1,500 packets/s. Find
the probability that a packet will be received within a 0.5 ms interval. What is the
average number of packets received within this same time interval?
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15.8. A data source has the following parameters: A, = 200kbps and o0 =
300 kbps. Find the pdf that describes the data rate distribution using the results of
Example 15.5 on page 457.

15.9. Obtain the mean and variance the random variable 7" for the exponential
interarrival time whose pdf distribution is given in (15.12)

15.10. A radioactive material has a half-life of 1ms. Find the average time
interval between the emitted particles assuming a Poisson process. Write down an
expression for the probability of detecting 5 radiated particles in a period of 0.5 ms.

15.11. A radioactive material has a half-life of 10 ms. An observer finds that the
material did not emit a particle 20 ms, what is the probability that it will radiate a
particle after 1 ms?

15.12. Consider the position parameter a in (15.28) for a Poisson source. What are
the effects of the packet length and maximum burst rate? Is a high data rate source
characterized by a small or a large a value?

15.13. Consider the position parameter a in (15.33) for a Poisson source. What are
the effects of the packet length, average rate, and maximum burst rate? Is a bursty
source characterized by a small or a large b value?

15.14. Obtain expressions for the position parameter a and shape parameter b in
Egs. (15.28) and (15.33), respectively, for exponential interarrival time distribution
when the source exhibits burst rate such that o > A,.

15.15. Obtain expressions for the position parameter a and shape parameter b in
Egs. (15.28) and (15.33), respectively, for exponential interarrival time distribution
when the source is a CBR source such that 0 = A,. Comment on your results and
sketch the resulting pdf distributions.

15.16. A Poisson source has an interarrival time pdf distribution with the following
two parameter values @ = 1 ms and » = 5,000 packets/s. Write down an expression
for the probability that the source produces 20 packets in a period of 1 ms.

15.17. A data source follows the Poisson distribution and has an average data rate
100 kbps and maximum burst rate of 500 kbps. Estimate the exponential distribution
parameters that best describe that source assuming the average packet size is 0.5 kB.

Discrete Exponential Interarrival Time

15.18. Because of the snow, the bus arrival times become messed up. Assume that
buses should arrive on the average each 10 min. However, because of the snow, the
probability that a bus arrives at this time on time is 30 %. A passenger just missed
the bus, what is the probability that she will have to wait for 1 h before the next bus
arrives?
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15.19. A data source has a exponential interarrival time pdf distribution with the
following two parameter values x = 0.1 and b = 5000. Write down an expression
for the probability that the source produces 20 packets in a period of 20 time steps.

15.20. A data source follows the binomial distribution and has an average data
rate 10 kbps and maximum burst rate of 100 kbps. Estimate the discrete exponential
distribution parameters that best describe that source if packets are being transmitted
on an ATM network operating at OC-3 (155.52 Mbps).

15.21. A data source follows the binomial distribution and has an average data
rate 10 packets/s and maximum burst rate of 100 packets/s. Estimate the discrete
exponential distribution parameters that best describe that source if packets are
being transmitted on an Ethernet network operating at 10 Mbps where the average
packet length is 1,024 bytes.

Pareto Interarrival Time

15.22. Prove that the Pareto distribution is not memoryless. This implies that if a
burst is received, it is likely that the burst will continue.

15.23. A bursty source produces data at an average rate of 5 Mbps and its maximum
burst rate is 20 Mbps. Estimate the Pareto parameters that best describe that source
assuming the average packet size is 400 bits.

15.24. Find the average interarrival time for the source in the previous problem.

Packet Transmission Error Description

15.25. Use the results of Example 15.15 on page 486 to study the effect of channel
error on data transmission. Pick some value for a = 0.5, say, and vary the error
probability between 0.001 < e < 0.9. Plot the system throughput and comment on
your results.

15.26. Consider Example 15.15 and suppose that there is an upper limit on the
number of retransmissions before the frame is considered lost. Obtain the resulting
Markov transition diagram and the associated transition matrix.

15.27. Consider Example 15.15 again, and suppose that no transmissions are
allowed. This could be the case for real-time data or best-effort traffic. Obtain the
resulting Markov transition diagram and the associated transition matrix.

15.28. Consider Example 15.15 again, but this time assume that the number of
errors per frame varies between 0 and 5. A forward error correction (FEC) scheme
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is used where a frame is considered to be error free if it contains up to two packets in
error. Obtain the resulting Markov transition diagram and the associated transition
matrix.

15.29. Assume an adaptive FEC scheme where three levels of error correction are
employed:

FEC level 1: can correct one error in received frame only.
FEC level 2: can correct up to 3 errors.
FEC level 3: can correct up to 5 errors.

When the errors in the received frame can be corrected, the next frame is transmitted
using the next lower FEC level. When the errors in the received frame cannot be
corrected, the frame is retransmitted using the next higher FEC level. Assume each
frame to contain no more than 5 errors in it due to packet size limitations. Derive
the Markov chain transition diagram and the associated transition matrix.
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Chapter 16
Scheduling Algorithms

16.1 Introduction

A scheduling algorithm must be implemented at each network router or switch
to enable the sharing of the switch limited resources among the packets traveling
through it. The resources being shared include available link bandwidth and buffer
space. The main functions of a scheduler in the network are (1) provide required
quality of service (QoS) for the different users, by making proper choices for
selecting next packet for forwarding to the next node; (2) select next packet for
dropping during periods of congestion when the switch buffer space is starting to
get full, and (3) provide fair sharing of network resources among the different users.

Packet Selection Policy

In a typical switch or router, several packets will request to access a certain output
port. Because only one packet can leave, the rest must be stored in an intermediate
buffer. Somehow we must find a way to decide which stored packet must be sent
next. Different selection policies could be implemented for different types of queues
depending on the service classes of the queues. For example, some applications have
rigid real-time constraints on delay and jitter, while other adaptive applications agree
to modify their behavior based on the network status. At the time of writing, most
Internet applications are handled using best-effort packet transfer policy with no
bandwidth or delay guarantees [1].
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Packet Dropping Policy

The fact that packets have to be stored in each switching node of the network implies
that buffer storage in a switch is a resource that must be shared among the different
users or sessions. During periods of congestion, the switch buffers become full and
the scheduler must also decide which packets to drop.

Fair Sharing Policy

The switch resources such as available output link bandwidth and local buffer space
must be shared among the switch users. Because of the different classes of service
supported by the switch, an equal sharing of the resources is not the best option.
Rather, the scheduler must allocate these finite resources in a fair manner so that
each user can get its share based on its class of service. Another issue related to fair
sharing is isolation or protection. This is required because not all users abide by their
agreed upon data rate. When this happens, the misbehaving (nonconforming) user
starts to hog the resources at the expense of other well-behaving (conforming) users.

It is obvious from the previous discussion that data scheduling is required at each
node in the network for three reasons: (a) selection of a packet for transmission from
the population of queued packets destined to a certain switch output; (b) provide
QoS for the different types of flows going through the switch; and (c) drop packets
when the buffer space becomes full.

16.2 Scheduling as an Optimization Problem

From the above discussion it is clear that the scheduling problem is an optimization
problem since the scheduler distributes the system limited resources among the user
traffic which impacts the offered QoS. The scheduling algorithms to be discussed
in the following sections are all heuristic and have no solid proof that the proposed
scheduling policy is optimal in any mathematical sense. Further, we will note that
the scheduler discussed here reduces packet delay by allocating large bandwidth to
the delay-sensitive traffic. This might be self-contradictory for some types of traffic
which is delay-sensitive but does not require high bandwidth.

The author developed a hierarchical scheduler [2] that is based on the transporta-
tion problem optimization technique [3, 4]. The transportation problem technique
allows optimizing different QoS types such as delay-sensitive traffic and bandwidth-
sensitive traffic through the same switch.

Finding the optimum solution to a transportation problem is not simple and might
consume a certain amount of time. However, the author developed a simple greedy
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algorithm for solving the transportation problem based on computational geometric
concepts. The algorithm uses only simple add/subtract operations and hence should
be fast to compute [2].

16.3 Scheduler Location in Switches

The scheduler will be located in the switch where packets are buffered and where
packets must share a resource like the switch fabric or the output links.

When a switch is capable of supporting different QoS classes, each service class
will have its own dedicated buffer. At the extreme, each session or user channel
will have its own dedicated buffer in each switch it encounters. Figure 16.1 shows
two buffer location options in switches. The rectangles labeled “SF” indicated the
switching fabric of the switch whose function is to provide connectivity between
each input port and each output port. The figure on the top shows an input queuing
switch where the buffers are located at each input port. The figure on the bottom
shows an output queuing switch where the buffers are located at each output port.
Multiple buffers are shown at each input or output port when multiple service classes
are supported.

Irrespective of the buffering strategy employed, packets will contend for
the shared resources and some form of scheduling algorithm will be required.
The figure shows that there are three types of shared resources: (1) the buffer
storage space, (2) the switch fabric (SF), and (3) the output links (i.e., available
bandwidth)
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For the input queuing switch, top sketch in Fig. 16.1, we can get two potential
contention points. Point 1 is a potential contention point where all the packets from
the different queues at an input port compete to access the switch fabric. Of course
a remedy for this problem would be to modify the switch fabric to allow more than
one packet to access the fabric simultaneously. At point 1 the scheduler must also
determine which packets to drop when the buffers start being full. Point 2 is another
potential contention point where packets from the different inputs compete to access
a certain output port. At this point, the output link usually is only able to transmit
one packet only except when the output link is composed of multiple channels such
as in wavelength division multiplexing (WDM).

For output queuing switch, bottom sketch in Fig. 16.1, we can get two contention
points also. Point 1 is a potential contention point where all the packets from the
different inputs compete to access the queues of a certain output port. Point 2
is another potential contention point where packets from the different queues in
each output compete to access the output link. At point 2 the scheduler must also
determine which packets to drop when the buffers start being full.

16.4 Scheduling and Medium Access Control

From the discussion in the previous section we can tell that a scheduling algorithm is
a method to allow many users or traffic flows to access the output link. In that sense
the problem is access to the shared resource. Chapter 10 discusses medium access
control techniques which allow packets to access a shared resource such as the
communication channel. A question naturally arises whether schedulers and media
access control (MAC) protocols are one and the same. The quick answer is that they
are similar but not the same thing. Table 16.1 compares scheduler algorithms and
MAC techniques.

Table 16.1 Comparison between scheduling algorithms and MAC techniques

Scheduling algorithms MAC techniques
Designed to provide QoS guarantees Designed to provide resource access only

Determine the user’s share of bandwidth, buffer | Does not deal with these issues
space allocation and packet discard decisions

Shared resource is outgoing link of a Shared resource is a bus, a wireless channel, or

switch/router and buffer space a shared memory

Operate at switch or router output ports Operate at output ports or each device
connected to the medium

Used with switches or routers Used with buses, wireless channels, etc.

Physically exists inside a switch or router Distributed among all users and MAC
controllers

Implemented in software (at least for now) Implemented in software and hardware

Operate at layers above the physical layer Operate at the physical layer
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16.5 Scheduler Design Issues

There are several design issues related to schedulers. These issues are reviewed in
the following subsections. In the discussion to follow we shall use the terms “user,”
“session,” “connection,” or “flow” to describe the traffic carried by the switch.

16.5.1 Priority

Ideality dictates that equality is a good thing. However, real life tells us that
special people are “more equal”! Alas, equality is not a good thing in computers
or networks. The scheduler is only able to do a decision to select a certain user only
when this user has higher priority compared to all other users. Priority assignment
could be static or dynamic. A static priority assignment implies that users belonging
to a certain class of service have a certain level of priority that does not change with
time or with the traffic load. On the other hand, dynamic priority allocation changes
the priority of a certain class of service with time or based on the traffic volume.

In addition to priority assignment, there is an arbitration rule that is invoked to
resolve the conflicts between users with the same priority.

16.5.2 Degree of Aggregation

In order to provide guaranteed QoS, the scheduler has to keep state information
about the performance of each user or connection. The problems with such
schedulers are limitations on scaling, deployment difficulties, and the requirement of
mapping between application and network service parameters [5]. The large number
of states that must be maintained and references slow down the scheduler and
limit the number of users that can be accepted. Other schedulers aggregate several
connections into classes to reduce the amount of state information and workload.
This approach is more promising since it deals with large aggregates of network
traffic and its per-hop behavior is configurable [6]. The differentiated services
scheduler provides constant ratios of the QoS ratios between the service classes
even when the quality level is varying. The price to be paid by aggregating traffic is
loss of deterministic QoS guarantees since the state of each connection is lost. QoS
guarantees for a high-level aggregation server are provided on a probabilistic basis.
In other words, the scheduler loses specific information about the status of each user
since it only keeps track of groups of users. This reduces the number of states that
must be checked and updated. Guarantees can be provided on the QoS for groups of
users, but each user cannot be guaranteed specific level of service.
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16.5.3 Work-Conserving vs Non-Work-Conserving

A work-conserving algorithm is idle when all of the priority queues are empty.
A non-work-conserving algorithm might not transmit a packet even when the
priority queues are occupied. This might happen to reduce the delay jitter for
example [7]. This is nice in theory but is not implemented in practice. In general it
was found that work-conserving algorithms provide lower average delay than non-
work-conserving algorithm.

Examples of work-conserving algorithms include generalized processor sharing
(GPS) [8], weighted fair queuing (WFQ) [9], Virtual Clock [10], Weighted Round
Robin [11], Delay-Earliest-Due-Date (Delay-EDD) [12], and deficit round robin
(DRR) [13].

Examples of non-work-conserving algorithms are Stop-and-Go, jitter earliest due
date (jitter-EDD) [14], and rate-controlled static priorities (RCSP).

16.5.4 Packet Drop Policy

Schedulers not only select which packet to serve next, but also they have to select
which packet to drop when the system resources become overloaded. There are
several options for dropping packets such as dropping packets that arrive after the
buffer reaches a certain level of occupancy (this is known as tail dropping). Another
option is to drop packets from any place in the buffer depending on their priority. As
we shall see later, a third approach is to randomly select packets for dropping once
the system resources become congested.

16.6 Rate-Based vs Credit-Based Scheduling

Scheduling methods could be classified broadly as rate-based or time-based. A rate-
based scheduler selects packets based on the data rate allocated for the service class.
Rate-based scheduling methods include fair queuing (FQ) [9] and [15] which is
equivalent to virtual clock (VC) [10] WFQ [9], hierarchical round robin (HRR)
[16], DRR [13], stop-and-go (S&G) [17-20], and RCSP [21]. Rate-based methods
allow a variety of techniques for arriving at a service policy [22]. Some of the
methods are fairly complex to implement since they require complex mathematical
operations and require knowledge of the states of the different flows. However, they
can only provide guarantees on the maximum delay or delay jitter bounds since
they translate these requirements into an equivalent bandwidth. This proves to be the
weak point on these algorithms since providing bandwidth guarantees to effect delay
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guaranteers ignores the actual bandwidth requirements of the actual traffic stream.
Needless to say, this would lead to unfair bandwidth allocation to the other services
that have real QoS bandwidth requirements.

A time-based scheduler selects packets based on their time of arrival. Time-based
methods include earliest-due date for delay (EDD-D) [23], earliest-due date for jitter
(EDD-J) [24], and smallest response time (SRT) [25]. Scheduler-based methods
require keeping track of the arrival times of the different packets and calculate the
packet priority based on the packet arrival time and the deadline imposed on it. To
provide end-to-end guarantees on the delay and delay jitter, the scheduler must be
implemented at all the switching nodes and the incoming traffic must conform very
closely with the assumed model [22].

16.7 Scheduler Performance Measures

A good scheduling algorithm must satisfy several of the following performance
measures [26].

QoS The scheduler must be able to support different types of QoS classes with
varying requirements such as bandwidth (throughput), delay, delay jitter, and
loss probability [27].

Fairness: The main goal of fairness is to serve sessions in proportion to some
specified value [28]. The simplest fair allocation of resources is to equally divide
the available bandwidth and buffer space among all the users and to drop excess
packets equally from the different queues. However, if a user does not require
all of its allocated share, then the excess share should be divided equally among
the other users.

Isolation or Protection: Isolation means that a misbehaving user should not
adversely impact other users. The user becomes misbehaving when its packet
arrival rate exceeds what is expected. Isolating the effects of misbehaving users
is equivalent to protecting conforming users.

Simplicity: The scheduler must be easy to implement in hardware especially at high
network speeds. This requires that computations to be done by the scheduler to
be small in number and simple to calculate.

Scaling: The scheduler must perform well even when the number of sessions
increases or when the link speed is increased. Some scheduling algorithm must
keep state information about every user and must update this information very
frequently. This places limitations on how many users can be supported by the
scheduler and places limitations on the scheduler delay.
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16.8 Analysis of Common Scheduling Algorithms

The remainder of this chapter discusses several scheduling algorithms that vary in
performance from support of best-effort traffic with no performance guarantees to
schedulers that support guaranteed services with bounds on bandwidth and delay.
Models that describe the performance of each algorithm are also developed.

16.9 First-In/First-Out

First-in/first-out (FIFO) is also known as first-come/first-served (FCFS). The FIFO
method sorts users according to their arrival time. The users that arrive early are
served first [29]. In that sense, all users have the same priority and the arbitration
rule is based on the time of arrival of the packets. This method is used naturally
to store incoming packets in queues that could be associated with the input or
output ports.

FIFO is simple to implement and packet insertion and deletion are particularly
simple and do not require any state to be maintained for each session. However, this
proves to be a disadvantage since the server has no way of distinguishing between
the packets belonging to different users. Thus some users might be misbehaving and
fill a large portion of the queue which increases the chance of dropping the packets
of other users.

When all incoming flows are queued in a single queue, greedy users exhibiting
long periods of activity (bursty behavior) will take the lion’s share of the queue
capacity at the expense of other flows. When the queue is filled, packets at the tail
are dropped. This is the reason why this method is known as FIFO with tail drop.
Most routers adopt this method because of its simplicity.

FIFO does not provide per-connection delay or rate guarantees since priority is
based solely on arrival time. One way to provide delay bounds is to limit the size
of the queue so that the maximum delay equals the time to serve a full queue. Of
course, once the queue size is limited, there will be a probability that an arriving
packet will be discarded if it arrives when the queue is full. To reduce the packet
discard probability, the number of sessions should be limited.

16.9.1 Queuing Analysis of FIFO/FCFS

Let us perform a simple queuing analysis for a FIFO buffer. We make the following
simplifying assumptions.

1. The size of the buffer is B.
2. The maximum number of customers that could arrive at the input of the buffer at
a certain time step is m.
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Fig. 16.2 A FIFO buffer Session 1
with m flows at its input —>

Session 2 FIFO

Session m

—>

3. The average length of packets from any user is A.
4. The arrival probability for any user is a.
5. The departure probability for the buffer is c.

Figure 16.2 shows the FIFO buffer where several sessions converge at the input
and only one packet can leave which correspond to an M™/M/1/B queue. The
transition matrix for such queue was derived in Sect. 7.7 on p. 249. Based on that we
can derive expressions for the scheduling delay which corresponds to the queuing
delay in that situation.

The throughput of the FCFS queue was given in Sect. 7.7, which we repeat here
for convenience.

The average throughput is estimated as

Th=c (1 —agsp) (16.1)

where ay is the probability that no packets arrive during a time step and s is the
probability that the queue is empty.
The average lost traffic N, (/ost) is given by
N,(lost) = N,(in) — N,(out)
= N,(in)—Th
=ma—c (1 —apsy) (16.2)

We refer the reader to Sects.7.7.1 and 7.7.2 for a more detailed discussion of the
performance figures for the M™ /M /1/B queue.

16.10 Static Priority Scheduler

In a static priority scheduler, separate queues are assigned different priorities.
Incoming data is routed to the different queues depending on their priority. The
scheduler serves packets in a lower priority queue only if all the higher priority
queues are empty [29-33].
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The static priority scheduler is also known as the IEEE 802.1p which was
discussed in Chap.10. A queuing analysis of the static priority scheduler was
performed in Sect. 10.2 on p. 338.

16.11 Round Robin Scheduler

The round robin scheduler serves backlogged sessions one after another in a fixed
order. When the scheduler finishes transmitting a packet from session 1, say, it
moves on to session 2 and checks if there are any packets waiting for transmission.
After the scheduler has finished going through all sessions, it comes back to the first
session, hence the name round robin. Figure 16.3 shows a round robin scheduler
serving four sessions.

The main features of this scheduler are ease of implementation in hardware and
protection of all sessions even best-effort sessions. A greedy or misbehaving user
will not be able to transmit more than one packet per round. Hence all other users
will not be penalized. The misbehaving user will only succeed in filling its own
buffer and data will start getting lost. However, the long packets will be transmitted
since the scheduler serves whole packets. This could affect the delay experienced
by other sessions that might have short packets to transmit.

Assuming m sessions, the maximum bound on delay for a queue is given by

W(max) = Z % s (16.3)

i=1

where A; is the head of the line (HOL) packet length in bits for session i and C
(bps) is the output link rate.

The ratio of service provided for session i relative to the total service provided to
all sessions is equivalent to finding the ratio of number of bits moved from session
i relative to the total number of bits moved in one round. We define f; as that ratio
which is written as

A

fi = s
Z;Ll Aj

(16.4)

Session 1
Scheduler

Session 2

Session 3
Fig. 16.3 Round robin
scheduler serving four

. Session 4
sessions



16.11 Round Robin Scheduler 503

Thus the bandwidth C; given to session i relative to the total output bandwidth is
simply given by

C:=C f (16.5)

In an ideal round robin algorithm, all packets have equal lengths and each session
share would be

1 (16.6)
m

C; = (16.7)

C
m
The above two equations assume that all sessions are backlogged and have packets
with equal lengths. The algorithm is not fair when some sessions have variable
length packets since the server will allocate more time for these sessions.

16.11.1 Queuing Analysis for RR

We can study the occupancy of each queue in a round robin scheduler using the
following assumptions.

1. The outgoing link capacity is C.
The number of queues or sessions is 1.
The size of queue i is B;.
Time step equals 7, the duration of one round of the scheduler.
The input data rate for session i is A;.
The maximum burst rate for queue i is o;.
The head of line packet length for queue i is A;.
The arrival probability for queue i is a;.
9. A maximum of N; packets could arrive during one round into queue i.
10. The size of queue i is B;.
11. The probability of departure from queue i is ¢; = 1.

NN B DD

Based on the above assumptions we find that we have an M™ /M /1/B queue. The
transition matrix for such queue was derived in Sect. 7.7 on p. 249. Based on that we
can derive expressions for the scheduling delay which corresponds to the queuing
delay in that situation.

The arrival probability a; can be found as follows. The duration of one round 7’
is given by

N

d s (16.8)

i=1

Q|



504 16 Scheduling Algorithms

and when all sessions have packets with equal length A, the above expression
simplifies to

m A

T =
c

s (16.9)
The average interarrival time for session 7 is given by
T, =L s (16.10)

The probability of k arrivals in one time step is given by
N; -
pik = (k’>a{f pNi—* k=0,1,2,....N; (16.11)

where a; is the Bernoulli probability of packet arrival, b; = 1 — a; and N; is the
maximum number of packets that could arrive at the queue input as determined by
the maximum burst rate o;

O','XT
A;

N =] ] (16.12)

with [x] is the smallest integer that is larger than or equal to x. Assuming binomial
distribution, we can estimate a; from the average number of packets received on one
time step:

)Ll' xT
a; x N; = (16.13)
A;
which gives
A,‘ xT
i = 16.14
4= NTh ( )

Because of our choice for the step size, the queue size can only decrease by one at
most at any instant with probability ¢; = 1.

Assuming the packet buffer size B;, the transition matrix for queue i will be
(B; +1) x (B; + 1) and is given
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q DPo 0 0 0 0
p2 Pl p() 0 0 O
ps P2 pr po O 0
P=| P+ P3 P2 D1 Do 0 (16.15)
S : : : .0
DPB; DBi—1 DPB;—2 PB;—3 PBi—4 *** Do
LS s fa  fs e SRt
where ¢ = po + p; and
Bi—j+1
fi=1=> m (16.16)
k=0

Of course, if B; > N;, then the terms p; = 0 whenever N; < j < pgp,.

The transition matrix helps us find performance parameters for queue i. For that
we need to determine the equilibrium distribution vector s. Repeating the same
procedure for all other queues, we would then be able to find the performance of
the round robin scheduler.

For queue i, the throughput is given by

Th=1-s packets/time step 16.17)

where s¢ is the probability that the queue is empty. The throughput in units of
packets/s is simply given by

1 —
Th= TSO packets/s (16.18)

And the throughput in units of bps is simply given by

1-— A;
Th= (L2504 bps (16.19)
T
The average queue length is given by
Bi
Qu=) is, (16.20)

j=0

We can invoke Little’s result to estimate the wait time, which is the average number
of time steps a packet spends in the queue before it is served, as

0.=W xTh (16.21)
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where W is the average number of time steps that a packet spends in the queue.

Y
1—S0

time steps (16.22)

The wait time in units of seconds is simply given by

0.T

W=_—<4"
(1 —s0) A;

(16.23)

Example 16.1. Assume a round robin scheduler in which all sessions are identical
with the following parameters:

N = 4 sessions C = 1 Mbps
B = 5packets L = 1,024 bits
A =50kbps o = 500 kbps

Determine the transition matrix and determine the system performance parameters.
The duration of one round is

1024

T=4x ———
5 x 100

=4.1 ms

Based on the data burst rate, a maximum of two packets could arrive during a time
period T'. The Bernoulli arrival probability at each queue during this time period is
given by

a=0.1
The transition matrix is 6 X 6

099081 0 0 0 O
0.01 018081 0 0 0
0 001 018 081 0 0
0 0 0.01 018 0.81 0
0 0 0 0.01 0.18 0.81
0O 0 0 0 001 019

The equilibrium distribution vector is
s = [ 0.9877 0.0122 0.0002 0 0 O ]t
The throughput of the queue is

Th=1-sy=0.0124 packets/time step
3.0864 kbps
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The average queue length is
0., =0.0125
The average wait time for a queue is

W =4.05 us |

16.12 Weighted Round Robin Scheduler

The round robin scheduler discussed in the previous section treats all connections
equally. When each connection has a different weight we get the weighted round
robin (WRR) scheduler.

Assume session i has an integer weight w; associated with it. Then in each round
of service, the WRR scheduler transmits w; packets for session i, and so on.

The fraction of the bandwidth for session i in this algorithm can be measured
as the service associated with session i relative to the total service in one round.
The service received by the HOL packet in queue i is simply the number of bits
transmitted.

w; A;

ﬁ =<m . 4
Zj1=1Wj Aj

(16.24)

In an ideal WRR algorithm, all packets have equal lengths and share would be

Wi

fi= =
I 21w,

(16.25)

The algorithm is not fair when some sessions have variable length packets since the
server will allocate more time for these sessions.

16.12.1 Queuing Analysis for WRR

We can study the occupancy of each queue in a WRR scheduler using the following
assumptions.

The outgoing link capacity is C.

The number of queues or sessions is m1.

The size of queue i is B;.

The weight associated with queue i is w;.

Time step equals T, the duration of one round of the scheduler.
The input data rate for session i is A;.

SRRl S e
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7. The maximum burst rate for queue i is o;.

8. The head of line packet length for queue i is 4;.

9. The arrival probability for queue i is a;.
10. A maximum of N; packets could arrive during one round into queue i.
11. A maximum of w; packets could leave during one round from queue i.
12. The probability of departure from queue i is ¢; = 1.

Based on the above assumptions we find that we have an M™/M™ /1/B queue.
The arrival probability a; can be found by first selecting a time step value. We
choose the time step to be equal to the duration of one round T

" wi A;
T=> —+ (16.26)

Next, we have to estimate how many packets arrive in one time step from session i.
The average interarrival time for session 7 is given by

T =L (16.27)

The probability of k arrivals in one time step is given by
= )k p k=0,1,2,...,N; 16.28
pl,k - k a[ i T Vs by &y ey 1 ( . )

where a; is the Bernoulli probability of packet arrival, b; = 1 — a; and N; is the
maximum number of packets that could arrive in one time step. N; is determined by
the maximum burst rate o; as follows

Ni = |—O',' X T-| (1629)
where the ceiling function [x] is the smallest integer that is larger than or equal

to x. Assuming binomial distribution, we can estimate a; from the average number
of packets received on one time step:

aixN; =M1 xT (16.30)
which gives
Ai xT
ai = (16.31)
N;

Because of our choice for the step size, the queue size can decrease by w; packets
at most at any instant with probability ¢; = 1.
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From the above calculations we are able to construct a transition matrix for the
queue of session i. Having done that, we are able to obtain expressions for the queue
parameters such as throughput, delay, and average queue length.

16.13 Max-Min Fairness Scheduling

Scheduling deals with the sharing of a resource among several users. However, not
all users have the same demands on the resource. In many cases not all users require
an equal share of that bandwidth. How should we divide the bandwidth among all
users in a fair manner? One way to do that is to use the max—min policy.

Max—min sharing policy is an iterative technique for fair sharing of the resource.
For example, assume the outgoing link capacity is C and there are m users. Assume
user i requires a bandwidth A; and the users are sorted such that

The allocation of the bandwidth proceeds as follows.

1. Allocated the bandwidth equally among all users C /m.

2. If Ay < C/m, then give user 1 only A;.

3. Allocate the remaining bandwidth C — A; equally among the remaining users
(C —A)/(m—1).

4. If A, < (C — Ay)/(m — 1), then give user 2 only A,.

5. Repeat the procedure until all users have been considered.

Example 16.2. Assume an outgoing link is being shared among five channels. The
system parameters (in units of Mbps) are as follows:

C =155
A =10
Ay =20
Az = 60
Ay = 80
As = 80

Find the rates assigned to each flow according to the max—min algorithm.

The sum of the flows due to all users is

10 + 20 + 60 + 80 + 80 = 250 Mbps
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which is larger than the link capacity. The initial fair rate f is given by
f=155/5=3l1 Mbps
Flow 1 has the minimal rate and is assigned the flow
A1 = min(10,31) = 10 Mbps

We adjust the link capacity shared among the remaining four users as

C=155-10=145 Mbps
The fair rate among four remaining users becomes

f =145/4 =36.25 Mbps
Flow 2 has minimal rate and is assigned the flow

A5 = min(20, 36.25) = 20 Mbps
We adjust the link capacity shared among the remaining two users as
C =145 —-20 = 125 Mbps
The fair rate among three remaining users becomes
f =125/3 =417 Mbps
Flow 3 has minimal rate and is assigned the flow
Ay = min(60,41.7) = 41.7 Mbps
We adjust the link capacity shared among the remaining two users as
C =125—-41.7=0933 Mbps

The fair rate among two remaining users becomes

f =93.3/2=46.7 Mbps
The bandwidths assigned to the flows become

AL =10 Mbps
Ay =20 Mbps
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L =417 Mbps
W =46.7 Mbps
L =46.7 Mbps
Note that the aggregate assigned rates equal the outgoing link capacity. |

16.14 Processor Sharing

Processor sharing is an ideal work-conserving scheduler that treats each flow like
a fluid model. Data of a given flow is assumed to be infinitely divisible (even
at level smaller than a bit), and all flows are served simultaneously. Processor
sharing provides max—min fair service. However, PS is an ideal solution that is not
implementable in practice. We study it only to provide the background to other
practical algorithms.

Assuming we have m(t) active flows at a given time ¢, the rate assigned to flow
i is given by

C

where C is the outgoing link capacity. Figure 16.4 shows a PS scheduler serving
four queues.

Example 16.3. Assume a PS scheduler that serves three flows. Packets arrive at the
scheduler according to the following table.

Time 0|12 |3 4
Flow1 (0 |1 |0 |0 |1
Flow2 |1 |1 |1 |0 |1
Flow3 |0 |0 |1 |1 |1
—» Session 1
Scheduler
—» Session 2
Fig. 16.4 Processor sharing
(PS) scheduling in which > Session 3
each queue shares an equal
rti f s bandwidth
portion of server bandwi - Seiona

in a fluid flow fashion
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A “0” indicates that the flow is inactive and does not require any output
bandwidth. A “1” entry indicates an active flow that requires a fair portion of the
outgoing link capacity. For simplicity, we assume discrete time intervals T, 77, etc.
Calculate the percentage of the outgoing link capacity allocated to each active flow
at the different times.

According to PS scheduling, the percentage of the bandwidth dedicated to each
active flow is shown in the following table. ]

Time |0 1 |2 |3 4
Flow 1 o/ 1,0 0|1
Flow 2 111 01
Flow 3 0|01 1|1
% rate | 100 |50 |50 | 100 |33.3

16.15 GPS

GPS is an ideal work-conserving scheduling scheme that is not implemented in
practice. It only helps as a reference to compare the performance of other more
practical scheduling algorithm. GPS assumes a fluid flow traffic model where the
scheduler is able to serve an infinitely small amount of data from each queue at the
same time and at different rates.

The bit-by-bit GPS server works on incoming flows in a round robin fashion
transmitting one bit from each flow before it moves on to the next flow. When a
session is idle, the server skips over to the queue of the next session. Therefore, a
single packet requires several rounds of service before it is able to move out of the
scheduler but each packet is guaranteed a fair share of the outgoing link capacity.

In processor sharing all flows had the same weight and all active flows had an
equal share of the outgoing link capacity. In GPS each session or flow is assigned
a weight that indicates the desired share of the outgoing link capacity. Flow i will
have a weight w; > 1 and the share of session i out of the outgoing link bandwidth
C (bps) is given by

Wi

() =Cx =21
ZjeB(z) Wj

(16.34)

where B(t) is the set of backlogged sessions at time ¢.
The number of bits transmitted from flow i in a time period #, — ¢; is given by

Si = ¢ (lz—ll) bits (16.35)

where t, > ;.
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The time T required to completely transmit a packet of length A; in flow 7 is
determined from the expression

T
A; :/ ci(t) dt (16.36)
t

=0
This time depends on the number of backlogged sessions which could vary.

Example 16.4. Assume a GPS scheduler serving four flows with associated weights
wy = 1, w, = 2, w3 = 3, and wy = 4. The outgoing link capacity is 1 Mbps and the
packet arrival pattern in the different flows is as shown below, where the numbers in

t (ms) 0 |10
Session 1 |3
Session 2 1
Session 3 |2
Session 4 7

the rows of each session indicate the length of the packet that arrived at that time in
units of kb. Calculate the assigned bandwidth and completion times for the arriving
packets.

Att = O sessions 1 and 3 are backlogged and their combined weights are 1 +3 = 4.
The bandwidth assigned to sessions 1 and 3 is

c1(0) = 10° x 1/4 = 0.25 Mbps
3(0) = 10° x 3/4 = 0.75 Mbps

Assuming the system is not changed, the completion times for the backlogged
packets are

t =3x103/0.25 = 12 ms
3 =2x103/0.75 = 2.67 ms

at 7 = 10 packet 3 is gone but a small portion of packet 1 is still left.
The number of bits transmitted from packet 1 of session 1 is given from
(16.35) by
51 =025x10=2.5 kb

Thus at t = 10 ms there are 0.5 kb still left to be transmitted for packet p;(1).
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The bandwidth assigned to sessions 1, 3, and 4 is

¢1(10) = 10° x 1/8 = 0.125 Mbps
¢3(10) = 10° x 3/8 = 0.375 Mbps
c4(10) = 10° x 4/8 = 0.5 Mbps

Assuming no more sessions become backlogged, the completion times for the
backlogged packets are

fn=05x10%/0.125 = 4 ms
t, = 10°/0.375 = 2.67 ms
t,=7x103/0.5 =14 ms [ ]

16.16 Fair Queuing

The Fair Queuing (FQ) algorithm proposed independently in [9] and [15] is
completely equivalent to the Virtual Clock (VC) algorithm proposed by Zhang
[10] in which the individual sessions are assigned separate queues. The queues are
serviced in a round robin manner which prevents a source from arbitrarily increasing
its share of the bandwidth. It is called “fair” because it allocates an equal share of
the output bandwidth to each traffic flow or queue.

Figure 16.5 schematically shows queue serving sequence in FQ. In the figure it
was assumed that the incoming flows are divided among m queues. Fair queuing is
used on a per-flow basis. Note, however, that the algorithm works on a packet-by-
packet basis with no consideration to the separate end-to-end connections carried in
each flow.

Assume flow i has an arrival rate A;. The bandwidth allocated to flow i is
determined according to max—min scheduling strategy discussed in Sect. 16.13.

Al =min (A;, f) (16.37)

Session 1

Session 2 Scheduler

—>

Fig. 16.5 Fair queuing
scheduling in which each
queue shares an equal portion
of server bandwidth in a
round robin fashion

Session m

—>
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where [ is the fair rate assigned by the algorithm to each flow as follows.

C
f=x% (16.38)

where C is the outgoing link rate, and K is the number of backlogged sessions. f
is calculated such that when the switch is congested, the aggregate flow rate equals
the switch capacity C.

Equation (16.37) indicates that f is calculated recursively by removing the user
with the minimal A; and reducing the link capacity accordingly

C < C —Apin (16.39)

Example 16.5. Assume four sessions are being served by a fair queuing scheduler.
The system parameters (in units of Mbps) are as follows:

C =20
M =1
Ay =3
Ay =38
As =10

Find the rates assigned to each flow.

The sum of the flows due to all backlogged sessions is
14+3+8+10=22

which is larger than the link capacity. The initial fair share f is given by

f=20/4=5

Flow 1 has the minimal rate and is assigned the flow
Al =min(1,5) =1

We adjust the link capacity shared among the remaining three users as

C=20-1=19
The fair share becomes

f=19/3=633
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Flow 2 has minimal rate and is assigned the flow
A5 = min(3,56.33) = 3
We adjust the link capacity shared among the remaining two users as
C=19-3=16
The fair share becomes
f=16/2=38

The bandwidths assigned to the flows become

A =1
A, =3
Ay =8
A, =38
The sum of all the assigned rates equals the outgoing link capacity. ]

Greedy flows that exceed the fair rate will have similar flow rate at the output
equal to the fair rate assigned by the scheduler and will succeed only in filling their
buffer which increases their cell loss probability.

Fair queuing is not completely satisfactory because it does not distinguish among
long vs. short queues or high-priority vs. low-priority queues. Thus when bursty
traffic is encountered, some queues will become full and their packets will be lost
even if some of the other queues are far from full.

Switches or routers employing FQ have to classify each incoming packet to
assign it to the proper queue. Furthermore, the switch or router has to perform some
operations on each queue to determine its instantaneous flow A;.

16.17 Packet-by-Packet GPS

Packet-by-packet GPS (PGPS) is a packetized approximation of the GPS algorithms
for fluid flow [34, 35]. This algorithm is also known as WFQ. Thus in PGPS data is
served in terms of complete packets and only one packet can be served at a time.

A PGPS/WEFQ server works on incoming flows in a static priority fashion based
on a timestamp calculation. The flows or sessions are assigned separate queues
based on packet header information. The scheduler scans the backlogged queues or
sessions to select a packet for service. The packet with the highest priority (least
timestamp) is selected and the output link capacity is dedicated to sending that
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packet without sharing the resource with any other queued packets. After a packet
has moved out of a FIFO queue, all packets in that queue move ahead by one position
and the HOL packet enters the pool of selection from among all other HOL packets
belonging to other sessions.

PGPS requires the computation of three quantities:

Virtual time V(¢): Indicates the share of the outgoing link capacity for each back-
logged session.

Finish number F;: Determines the priority of serving the packet in flow i. The
packet with the least finish number is the one that will be served by the
scheduler.

Completion time 7;: Determines the service time required by the packet based on
the packet length and outgoing link bandwidth.

16.17.1 Virtual Time Calculation for PGPS/WFQ

Assuming B(t) to the set of backlogged sessions at time ¢, the virtual time V(t) is
defined using the differential equation

V() =0 (16.40)
av() 1
i S (16.41)

where w; > 1 is the weight assigned to session i. Figure 16.6 shows the time
development of V(¢) as packets arrive and sessions become backlogged.
‘When all sessions are idle, the virtual time is reset to zero

V(ie)=20 when all sessions are idle (16.42)

Example 16.6. Assume a PGPS/WFQ scheduler serving flows of equal weights.
The outgoing link capacity is 1 Mbps and all arriving packets equal lengths of 1kb.

Vir)
3.0

[
-

2.0

Fig. 16.6 Development of
the virtual time V'(¢) in
PGPS/WFQ scheduling 0 1 2 3 4 5 6

A 4
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The packet arrival pattern is shown below where it is assumed that packets arrived
at the idle sessions.

¢t (ms) 0|1 |2 |34 |5 |6
Arrivals | 4 1 2

Determine the number of backlogged sessions vs. ¢ and obtain the values for V(¢).

A packet will require 1 ms to be transmitted.

At t = 0, four packets arrived and the number of backlogged sessions is
m(0) = 4.

Att = 1, no packets arrive and the number of active sessions is reduced by one.
Therefore, m (1) = 3 since one packet is guaranteed to be serviced.

Att = 2, no packets arrive and the number of active sessions is decremented by

one m(2) = 2.

At t = 3, one packet arrives and one packet leaves which leaves m(3) = m
2)=2.

Att = 4, no packets arrive and the number of active sessions is decremented
by one.

Att = 5, no packets arrive and the number of active sessions is decremented by
one and we get m(5) = 0.

Att = 6, two packets arrive and m(6) = 2.

The following table shows the development of m(t).

t (ms) 0|12 1|34 5|6
Arrivals (4 [0 (O |1 |0 |0 2
m@)y |4 322102
We use (16.41) to determine the value of V(¢) at each time. |
t (ms) 0 1 2 3 4 5 6
Arrivals 4 0 0 1 0 0 2
m(t) 4 3 2 2 1 0 2

dv(y/de |14 13 12 (12 U1 0 12
V(t) 0.0 025 058 1.08 |1.58 258 |0
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16.17.2 Finish Number Calculation for PGPS/WFQ

Assuming packet k has arrived at the queue for session 7, then the finish number for
that packet is calculated as

Fi(k) = max [F;(k — 1), V(1)] + i— (16.43)

1

where F;(k — 1) is the finish number for preceding packet in queue i and A; is
the length of the arriving packet. An empty queue will have a zero finish number
associated with it.

The first term on the R.H.S. ensures that for a backlogged queue an arriving
packet will have bigger finish number compared to packets already in queue i so
that each queue functions as FIFO.

The second term on the R.H.S. ensures that the finish number for packet k of
queue i takes into account the size of that packet and the weight associated with the
session. This ensures that sessions with lots of bits to send are slightly penalized to
ensure fairness to other users that might have smaller packets to send.

Notice that a long packet or a greedy session will be characterized by large finish
numbers and will receive lower service priority. On the other hand, short packets
belonging to a conforming session with short queue will by characterized by small
finish numbers and will be served more frequently. A greedy or bursty user traffic
will only succeed in filling its buffer and losing packets while other users will still
access their fair share of the link capacity.

The scheduler orders all the finish numbers for the packets at the head of all the
queues. The packet with the least finish number is served first.

One last remark is worth making here. The finish number equation (16.43)
guarantees that packets already in the system at time ¢ will be served before any
packets that arrive after z.

When session i is idle, its finish number is reset to zero

F,=0 when session is idle (16.44)

16.17.3 Completion Time Calculation for PGPS/WFQ

The completion time for a packet is simple to calculate in PGPS/WFQ since the
outgoing resources are completely dedicated to the selected packet.

Assuming packet k in session i has a length Ay, then the time 7' required to
transmit it is given by

- C

T s (16.45)

where C is the outgoing link capacity in bps.
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Example 16.7. Assume a PGPS/WFQ scheduler serving four flows of equal
weights. The outgoing link capacity is C = 1 Mbps and the packet arrival pattern is
shown below.

¢ (ms) o |1 |2 |3

Session 1 | 3 2
Session 2 1 4
Session 3 | 2 7
Session 4 5

where the numbers in the rows of each session indicate the length of the packet in
units of kb. Calculate the system virtual time and finish numbers for the arriving
packets of each session.

A packet of unit length (1 kb) takes 1 ms to transmit. At the start virtual time and all
the finish numbers are reset to 0.
At ¢t = 0 our table will be

t (ms) 0 1 2 |3
Session 1* | 3 2
Session 2 1 4
Session 3* | (2) 7
Session 4 5
dV/dt 0.5

V(t) 0.0

Sessions 1 and 3 are backlogged, as indicated by the asterisk (*) and the finish
numbers for the arriving packets are
Fi(1) = max(0,0) +3 =3
F3(1) = max(0,0) +2 =2
Packet p3(1) will be served first and will require 2 ms to transmit. This is indicated
by the brackets round the entry for this packet.
Attt = 1 our table will be
The finish numbers for all congested sessions (i.e., 1, 2, and 3) are given by
F()=2
F(1) = max(0,0.5) +1=1.5
(1) =3
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t (ms) 0 1 2 |3
Session 1*

Session 2% 1 4
Session 3* | (2) 7
Session 4 5
dV/dt 0.5 103

V(t) 0.0 105

Since F;(1) has the least finish number, we could have chosen the packet in session 2
for transmission. However, this would mean that we stop the transmission of packet
in session 3 which is not finished yet. This is a form of preemptive scheduling. We
choose a nonpreemptive scheduling scheme and continue transmitting packet out of
session 3 as indicated by the brackets surrounding the packet of session 3.

At ¢ = 2 our table will be

t (ms) 0 1 2 3
Session 1* |3 2
Session 2% (D) 4
Session 3% | 2 7
Session 4 5
dV/dt 0.5 103 03
V() 0.0 105 038

Packet p,(1) is chosen for transmission since it has the lowest finish number
among all the backlogged sessions. The finish numbers for the new packets are
Fi(2) = max(3,0.8) +2 =5
F;(2) = max(2,0.8) +7=9
Since finish number for packet in session 2 is 1.5, we choose this packet for

transmission as indicated by the brackets surrounding that packet.
Att = 3 our table will be

t (ms) 0 1 2 3
Session 1* | (3)

Session 2* 1 4
Session 3* |2 7
Session 4* 5

dVv/dt 0.5 03 03 025
V() 00 05 08 LI
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The finish numbers for the new packets are

F,(2) = max(1.5,1.1) +4=5.5
Fy;(1) = max(0,1.1) + 5= 6.1

Since the finish number for the HOL packet in session 1 is 3, we pick this packet for
transmission. ]

16.18 Frame-Based Fair Queuing

Frame-based fair queuing (FFQ) belongs to the general class of rate-proportional
servers (RPS) proposed in [36]. This type of schedulers are claimed to offer similar
delay and fairness bounds as PGPS/WFQ but with much simpler computations of
the packet priorities.

FFQ server works on incoming flows in a static priority fashion based on a
timestamp calculation. The flows or sessions are assigned separate queues based on
packet header information. The scheduler scans the backlogged queues or sessions
to select a packet for service. The packet with the highest priority (least timestamp)
is selected and the output link capacity is dedicated to sending that packet without
sharing the resource with any other queued packets. After a packet has moved out
of a FIFO queue, all packets in that queue move ahead by one position and the HOL
packet enters the pool of selection from among all other HOL packets belonging to
other sessions.

FFQ requires the computation of three quantities:

System potential P(¢): Indicates the amount of data transferred through the outgo-
ing link up to time 7.

Timestamp S;: Determines the priority of serving the packet in flow i. The packet
with the least timestamp is the one that will be served by the scheduler.

Completion time 7;: Time required by the packet to be fully transmitted. It depends
on the packet length and outgoing link bandwidth.

16.18.1 System Potential Calculation for FFQ

Assume that the server started serving a packet at time ;. At a later time ¢ > £, the
system potential P(t) is defined as

P(t) < P + @ (16.46)
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where C (bps) is the outgoing link capacity and F' is the frame size in bits. The
system potential P (¢) measures the amount of data transferred up to time # relative
to the frame size F. The system potential is updated each time a packet starts service
and when all sessions are idle, the system potential is reset to zero.

P(t)=0 when all sessions are idle (16.47)

The frame size F is chosen so that at least the maximum length packet from any
session can be sent during one frame period; i.e.,

F > Amax bits (16.48)

The frame period T corresponding to the chosen frame size is given by

T=x s (16.49)

16.18.2 Timestamp Calculation for FFQ

When a k packet arrives at session i, a timestamp is associated with it according to
the following formula

S; (k) = max [S;(k — 1), P(t)] + f— (16.50)

1

where S;(k — 1) is the timestamp of the previous packet in the queue, A4; is the
packet length in bits, and A; is the reserved rate for session i. An empty queue will
have a zero timestamp associated with it.

A long packet will be penalized by having a large timestamp value and users with
higher reserved bandwidth will consistently receive lower timestamp values so as to
obtain their reserved rate in a fair manner.

One issue remains to be resolved which is determining when the current frame
is to be completed and a new frame is to be started. We mentioned above that a new
frame starts when all sessions are idle. When one or more sessions are backlogged,
a new frame is started when the accumulated bits transferred approaches the frame
size F. To keep track of the number of bits transferred, a bit counter could be used.
When a packet is selected for transmission the counter contents are updated

B(k) = Bk — 1) + Ax (16.51)

If B(k) < F, the current frame is continued and the packet is sent. If B(k) > F, a
new frame is started and the packet sent during the new frame.
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16.18.3 Completion Times Calculation for FFQ

The completion time for a packet is simple to calculate in FFQ since the outgoing
resources are completely dedicated to the selected packet.

Assuming packet k in session i has a length A, then the time 7" required to
transmit it is

T C

T s (16.52)

where C is the outgoing link capacity in bps.

Example 16.8. Assume an FFQ scheduler serving flows of equal weights. The
outgoing link capacity is 1 Mbps and the frame size is chosen as F = 10" bits.
The packet arrival pattern is shown below.

t (ms) 01 ]2]3

Session 1 |3

Session 2 1 4
Session3 | 2 7
Session 4 5

where the numbers in the rows of each session indicate the length of the packet in
units of kb. Calculate the system potential and timestamps for the arriving packets
of each session.

A packet of unit length (1kb) takes 1 ms to transmit. At the start system potential
and all the timestamps are reset to 0.
Att = 0 our table will be

t (ms) 0 1 |2 |3
Session 1* |3 2
Session2 |0 1 4
Session 3* | (2) 7
Session4 |0 5
B(1) 0

P() 0.0

where the session entries at ¢ = 0 are timestamp values. Sessions 1 and 3 are
backlogged, as indicated by the asterisk (*) and the timestamp values are

S1(1) = max(0,0) +3 =3
S3(1) = max(0,0) +2 =2
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Packet p3(1) will be served first and will require 2 ms to transmit. This is indicated
by the brackets round the entry for this packet.
Att = 1 our table will be

t (ms) 0 1 2 |3
Session 1* |3

Session 2* 1 4
Session 3* | (2) 7
Session 4 5
B(t) 0 1

P(t) 0.0 0.1

where the entry for B(t) is in kbits. The timestamp for p,(1) is
S7(1) = max(0,0.1) + 1 = 1.1

At t = 2 our table will be

t (ms) 0 1 2 3
Session 1* |3 2
Session 2* (D) 4
Session 3% | 2 7
Session 4 5
B(t) 0 1 2

P() 0.0 0.1 |02

Packet p,(1) is chosen for transmission since it has the lowest timestamp among
all the backlogged sessions. The timestamps for the new packets are

S1(2) = max(3,0.2) +2 =5
S3(2) = max(2,02) +7=9

At t = 3 our table will be
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t (ms)
Session 1*
Session 2%
Session 3*
Session 4*
B(1)

P()

The timestamps for the new packets are

3)

(=]

2 3
2

4
7

5
2 3
0.2 /0.3

S$>(2) = max(1.1,0.3) +4 = 5.1
S4(1) = max(0,0.3) +5=5.3

16.19 Core-Stateless Fair Queuing

16

Scheduling Algorithms

The problem with the schedulers discussed so far is the need to maintain a separate
state for each flow at all routers in the path of the packets. Such schedulers allow the
system to provide firm QoS guarantees for each flow. However, they are complex
to implement and their performance is limited by the number of flows that can be

supported [37].

Core-stateless fair queuing (CSFQ) attempts to simplify matters by dividing the
routers in the network into two categories: edge routers and core routers as shown

in Fig. 16.7 [37].

M

Edge switch/

Fig. 16.7 Routers in core-stateless fair queuing (CSFQ) are divided into edge routers (grey
circles) and core routers (empty circles). End nodes (squares) are connected to edge routers
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Flow 1 | Rate estimator
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Labeling

FIFO
Packet
. Dropping _>:|:|:|:|:|_>
A t
Flow m | Rate estimator f

—» + - Buffer Occupancy
Labeling Fair rate Information
Estimator

.

Fig. 16.8 The architecture of an edge router implementing CSFQ scheduling

Edge routers maintain a per-flow state and label incoming packets accordingly.
They also regulate the incoming flows such that flow i receives a fair service rate A;
determined by

A = min[A;, f] (16.53)

where A; is the arrival rate for flow i and f is the fair share rate determined in the
following section.

Figure 16.8 shows the functions performed by each edge router. The rate of each
incoming flow is estimated based on the timing of arriving packets. The estimated
arrival rates for all incoming traffic are used to obtain an estimated value for the fair
share f. The edge router also decides whether to accept or drop the arriving packet
based on the arrival rate and the fair share estimate as discussed below. The figure
shows that the packet drop probability depends both on the arrival rate, estimated
fair share, and the state of the FIFO buffer occupancy.

Core routers do not maintain a per-flow state but use the per-flow label in each
packet to decide whether to drop an incoming packet or to accept it. The probability
that a packet is dropped is calculated by each core router based on the packet label
and on the estimated fair rate at the core router. Accepted packets are placed in a
simple FIFO buffer for transmission.

Figure 16.9 shows the functions performed by each core router. The rate of each
incoming flow is extracted from the header of arriving packets. The arrival rates for
all incoming traffic are used to obtain an estimated value for the fair share f. The
core router also decides whether to accept or drop the arriving packet based on the
arrival rate and the fair share estimate as discussed below. The figure shows that the
packet drop probability depends both on the arrival rate, estimated fair share, and
the state of the FIFO buffer occupancy.
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Fig. 16.9 The architecture FIFO
of a core router implementing Packet :I:I:I:D_>
CSFQ scheduling | Dropping [ ™
A
f
Fair rate
Estimator

16.19.1 Determination of Packet Arrival Rate A ;

Central to CSFQ is obtaining an accurate estimate of the average packet arrival rate
for each flow. The arrival rate A; is estimated in an iterative manner each time a new
packet arrives:

Ai(k) = (1 —a) % +arik—1) (16.54)
a=exp—T;(k)/K (16.55)

where T; (k) is the packet interarrival time for flow i at time k, K is some constant,
and A; (k) is the length of the arriving packet.

A conforming user will have a high value for the interarrival time 7; (k). This will
result in an exponentially low value for @ which increases the assigned rate A; (k).

16.19.2 Determination of Fair Rate f

The fair share f is determined based on whether the link is congested or uncon-
gested. The update operation is performed at regular intervals of time determined
by the system administrator.

The link is congested when the total arrival rate exceeds the outgoing link
capacity C

C < Z min (A;, f) link congested (16.56)
i=1
and in that case the fair share is set equal to its old value
flk) = flk—1) (16.57)

The link is uncongested when the total arrival rate is smaller than the outgoing link
capacity C
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m
C > Z min (4;, ) link uncongested (16.58)

i=1
and in that case the fair share is determined as follows

C
Sfk) = fk— Dmax—()t) (16.59)

The estimated fair share also is slightly modified based on the level of occupancy
of the FIFO buffer but this is a minor detail that the reader could check in
reference [37].

16.19.3 Bit Dropping Probability py

When the traffic rate for flow i is such that A; < f, then that session is conforming
and no bit dropping is necessary. The packets of that flow can pass through the
network.

A misbehaving session i is characterized by A; > f and the packet must be
dropped with a drop probability given by

pi = max (0, 1- /\i) (16.60)

16.20 Random Early Detection

The schedulers we discussed in the previous sections emphasized techniques for
selecting the next packet for service. Selecting which packet to drop when the buffer
overflows was simple. The last packet to arrive is dropped when the buffer is full.
This type of packet drop is called fail drop strategy. To achieve max—min buffer
sharing, the scheduler must assign a buffer to each service class or each user.

Random early drop detection (RED) belongs to the class of early drop schedulers
where a packet is dropped even when the buffer is not full. There are several
plausible reasons why early dropping of packets is beneficial:

1. In tail drop schedulers misbehaving users occupy precious buffer space and
packets belonging to conforming users would be dropped if they arrive when
the buffer is full.

2. Dropping packets from some sessions or classes sends a message to end-points to
reduce their rate before the network becomes congested and more packets would
then be lost.
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In RED the switch calculates the average queue size at each time step. Based
on this estimate, the switch decides whether to drop the packet or label it with
a probability that is a function of the queue size [38]. The switch calculates the
average queue size Q, using a low-pass filter. Calculating an average queue length
based on filtering is better than using the instantaneous queue length since this
allows small temporary traffic bursts to go through unharmed.

The average queue size is compared to two thresholds Q,,;, and Q 4y

1. When Q, < Qin, packets are not marked.
2. When Q, > Q4. all packets are marked.
3. When Q,in < Qs < Qmax, packets are marked with a probability p, given by

ZL
1-0 p»

where Q is the number of packets received since the last marked packet and pj
is given by

Pa (16.61)

_ Qa - Qmin
Qmax - Qmin

One of the problems of RED is the amount of operations that have to be done
each time step on each packet. This is one reason why FIFO with tail drop method
is still in use.

Another related algorithm that is similar to RED is flow random early drop
(FRED) where the switch drops each arriving packet with a fixed drop probability
paq when the queue size exceeds a certain drop threshold. FRED is classified as a
early random drop algorithm where arriving packets are randomly dropped. The
reasoning being that misbehaving users send more packets and will have a higher
probability that their packets are dropped. However, it has been shown that this drop
policy is not very successful [10].

Db (16.62)

16.21 Packet Drop Options

We discussed above two advantages for dropping packets in a router. Packets are
dropped to reduce network congestion and to improve its efficiency [39]. There
are several options for selecting the next packet to drop and for determining the
times when the drop policies are implemented. Below we discuss some of the packet
drop policies that could be implemented alone or in combinations, depending on the
transmission and scheduler protocols being used.

The simplest packet drop policy is to drop incoming packets when the shared
buffer or queue is full. This drop policy does not offer protection against mis-
behaving users. A full buffer most probably has been caused by a misbehaving
user and the packets dropped might belong to conforming users. Of course such
simple policy does not require maintaining any state information. There is only one
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state to maintain here which is the level of occupancy of the buffer. Attempting to
protect conforming users requires defining state variables for each user indicating
the amount of packets present in the system and belonging to each session. During
periods of congestion, users that have high buffer occupancy states are eligible to
have their packets dropped. While this offers protection against misbehaving users,
the system must maintain many state variables.

An intermediate solution is to group or aggregate the users into classes of service
and maintain state information for these classes only. This solution offers some
protection and isolation and also reduces the amount of state variables required.

If the scheduler implements PGPS/WFQ or FFQ algorithms, then a simple packet
drop strategy is to drop the packet with the highest finish number or timestamp
value. The reasoning for this is that large values for these parameters indicate either
long packets or many packets belonging to this session.

Sometimes the packet header contains information that can help with the packet
drop policy. For example in ATM the AAL layer contains information about missing
cells. When a switch or router detects that a connection has a missing cell, it drops
all subsequent cells until the last cell of the frame [39]. This frees the network from
supporting a cell stream that will be discarded by the receiver since the frame will
be retransmitted anyway.

16.22 Problems

Scheduler Functions

16.1. Explain the main functions performed by a scheduler.
16.2. What are the main switch resources shared among the different users?

16.3. What are the scheduler performance measures most important to the follow-
ing applications: electronic mail, file transfer, web browsing, voice communications,
and one-way video?

16.4. Which is the important QoS parameter for best-effort applications and CBR
traffic?

16.5. Explain the functions performed by the scheduler at the different contention
points for input, output, and shared buffer switches.

16.6. One solution to solve the HOL problem in input queued switches is to use
VOQ. Explain how VOQ works then explain how the scheduler will work in such a
scheme.

16.7. Explain what is meant by fairness and what is meant by protection from a
scheduler perspective.
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16.8. It was explained that to provide deterministic QoS guarantees the scheduler
must maintain separate queues for the separate sessions. Explain how this can be
done in input, output, and shared buffer switches. Discuss the pros and cons of each
scheme from the point of view of the implementation of the scheduler in each case.

Scheduler Performance Measures

16.9. Explain what is meant by protection in terms of outgoing link bandwidth
utilization.

16.10. Explain what is meant by protection in terms of switch buffer utilization.

16.11. Investigate how a scheduler might be able to reduce delay jitter for the
different sessions.

Scheduler Classifications

16.12. Explain the difference between work-conserving and non-work-conserving
schedulers.

16.13. Explain what is meant by degree of aggregation and the advantages and
disadvantages of this strategy.

16.14. Explain the different packet drop policies that could be used by schedulers.

Max-Min Fairness

16.15. Explain max—min fairness as it applies to outgoing link bandwidth.

16.16. Explain max—min fairness as it applies to outgoing shared buffer space in a
switch.

16.17. Assume an outgoing link is being shared among six channels. The system
parameters (in units of Mbps) are as follows:

C =622
Ay =200
Ay =30
Az =100

Ay =50
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As = 180
Ae = 180

Find the rates assigned to each flow according to the max—min algorithm.

16.18. Assume a 1,000 byte buffer is being shared among five sessions. The buffer
requirements (in units of bytes) for each session are as follows:

B; = 250
B, = 250
By = 300
By = 400
Bs = 150

Find the buffer space assigned to each flow according to the max—min algorithm.

FIFO (or FCFS) Scheduling

16.19. Assume a FIFO scheduler where the output link rate is C and the arrival rate
for each session is A, the number of arriving sessions is 7 and all flows have equal
packet lengths L. Find the performance of the system assuming a fluid flow model.

16.20. Assume a FIFO scheduler where there are m users accessing the buffer but
one of the users has an arrival probability that is different from that of the other
users. Derive the transition matrix for such a system.

16.21. Assume a FIFO scheduler where there are m users accessing the buffer but
one of the users produces packets with different length compared to those of the
other users. Derive an expression for the average length of the queue and the average
queuing delay of such a system.

Static Priority Scheduling

16.22. Consider queue i in the static priority scheduler. Assume the arrival
probability for this queue a; and its priority is 7, where lower values of i indicate
higher priority. Write down the transition matrix for this queue and comment on
methods to find its steady state distribution vector.

16.23. Repeat Problem 16.22 for the case when all queues have the same size B
and have the same arrival probability a.
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16.24. Consider a static-priority protocol serving four users where the packet
arrival probabilities for all users are equal (i.e., a; = 0.3 forall 1 <i < 4) and
all users have the same buffer size (i.e., B; = 8 forall 1 < i < 4). Estimate the
performance of each user.

16.25. Consider a static-priority protocol serving four users where the packet
arrival probabilities for all users are equal (i.e., a; = 0.6 forall 1 <i < 4) and
all users have the same buffer size (i.e., B; = 4 forall 1 < i < 4). Estimate the
performance of each user.

16.26. Repeat Problem 16.25 when the probability of the queue being empty
becomes high e = 0.9

Round Robin Scheduler

16.27. Assume a round robin scheduler in which all packets have equal lengths.
Obtain expressions for the maximum scheduler delay and the fraction of the
bandwidth assigned to any session.

16.28. Assume a round robin scheduler in which all queues have identical traffic
characteristics (arrival probability, packet length, etc.). Obtain the transition matrix
for one queue and obtain expressions for its performance parameters: queue length,
throughput, and loss probability.

16.29. Assume a round robin scheduler in which all sessions are identical with the
following parameters:

m = 8 sessions C = 10 Mbps
B = 8 packets L = 512 bits
A = 100 kbps o = 500 kbps

Determine the transition matrix and determine the system performance parameters.

GPS

16.30. Assume a GPS scheduler serving four flows with associated weights
wy = 4, w, = 2, ws = 3, and wy = 1. The outgoing link capacity is 10 Mbps
and the packet arrival pattern in the different flows is as shown below.

where the numbers in the rows of each session indicate the length of the packet that
arrived at that time in units of kb. Calculate the assigned bandwidth and completion
times for the arriving packets.
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t (ms) 0o 1 2
Session 1 |3 2
Session 2 1 |3
Session3 | 2

Session 4 7

16.31. What is the longest delay bound experienced by the packet in session i
in GPS?
Fair Queuing

16.32. Assume four sessions are being served by a fair queuing scheduler. The
system parameters (in units of Mbps) are as follows:

C =40
A =6
Ay =2
A3 = 20
Ay =16

Find the rates assigned to each flow.

Packet-by-Packet GPS/Weighted Fair Queuing

16.33. Assume a PGPS/WFQ scheduler serving flows of equal weights. The
outgoing link capacity is 1 Mbps and all arriving packets equal lengths of 1 kb. The
packet arrival pattern is shown below.

t (ms) 0|1 |2 |34 |56
Arrivals | 2 2 4

Determine the number of backlogged sessions vs. ¢ and obtain the values
for V().

16.34. Assume a PGPS/WFQ scheduler serving flows of equal weights. The
outgoing link capacity is 1 Mbps and the packet arrival pattern is shown below.
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t (ms)

Session 1
Session 2
Session 3
Session 4

16 Scheduling Algorithms

o1 2 |3
4 2
2 3
1 5
4

where the numbers in the rows of each session indicate the length of the packet in
units of kb. Calculate the system virtual time and finish numbers for the arriving

packets of each session.

16.35. Assume a PGPS/WFQ scheduler serving flows of equal weights. The
outgoing link capacity is 1 Mbps and the packet arrival pattern is shown below.

t (ms)

Session 1
Session 2
Session 3
Session 4

0o |1 |2 |3
3 12 |1

1 2
1 5

where the numbers in the rows of each session indicate the length of the packet in
units of kb. Calculate the system virtual time and finish numbers for the arriving

packets of each session.

16.36. Assume a PGPS/WFQ scheduler serving flows of equal weights. The
outgoing link capacity is 2 Mbps and the packet arrival pattern is shown below.

t (ms)

Session 1
Session 2
Session 3
Session 4

0o |1 |2 |3
7 2
3 2
3 7
8

where the numbers in the rows of each session indicate the length of the packet in
units of kb. Calculate the system virtual time and finish numbers for the arriving

packets of each session.
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FFQ

16.37. Assume an FFQ scheduler serving flows of equal weights. The outgoing link
capacity is 1 Mbps and the frame size is chosen as F = 10 bits. The packet arrival
pattern is shown below.

t (ms) 01213

Session 1 |1 2
Session 2 1 4
Session3 | 2 7
Session 4 5

where the numbers in the rows of each session indicate the length of the packet in
units of kb. Calculate the system potential and timestamps for the arriving packets
of each session.

16.38. Assume an FFQ scheduler serving flows of equal weights. The outgoing link
capacity is 1 Mbps and the frame size is chosen as F = 10* bits. The packet arrival
pattern is shown below.

t (ms) o1 2 |3

Session 1 |2 2
Session 2 1 4
Session3 | 1 7
Session 4 5

where the numbers in the rows of each session indicate the length of the packet in
units of kb. Calculate the system potential and timestamps for the arriving packets
of each session.
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Appendix A
Series and Useful Formulas

A.1 Series and Useful Formulas
n—1 n
> (a+id) = S @+
i=0

where l =a+ (n—1)d

A.2 Geometric Series

where r # 1 in the above two equations.
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A.3 Arithmetic-Geometric Series

a(l—r") rd [1 —nr" 4 (m=1) r”])
+ 2
1—r (1-=r)

n—1
Y a+id)yr =
i=0

where r # 1 in the above two equations. If —1 < r < 1, the series converge and
we get

a n rd
l—r  (1-r)

o0
Z(a +id)r =
i=0

A.4 Sums of Powers of Positive Integers

i+ 1)
i = T (A.1)

2 n(n + 1)6(2}1 +1) (A2)

=

2 2
i3 = @ (A.3)

A.5 Binomial Series

special cases



A Series and Useful Formulas
n n
Sy ( . ) ~o
i=0 !

() - (2)

(1+x)q:1+qx+q(q—l)xz+q(q—l)(q—Z)xa_._

2! 3!
A4+ =1-x4+x2=x>+x*—-

where x < 1 in the above equations.

A.5.1 Properties of Binomial Coefficients

N N /N? N
Il
~] 3

I .
n! ~ 2an"t2e™" Stirling’s formula

A.6 Other Useful Series and Formulas

Zi (’i’)ai—lbn—i — na(a + b)n—l
1

i=0

Ziz(,?)a"b”_" =n(n —a’*(a+b)" >+ na(a + b)"!
i

i=0
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(n B 1) la"(l —a)" = ! [1-(-a)]
AUV !

n—o00 n

, n\ . . ade™

lim || Ja'(1—-a)"™" = — a<l1
n—oo \ i!

The last equation is used to derive the Poisson distribution from the binomial
distribution.

A.7 Integrals of Exponential Functions

e dx = —e*
c
2 |
xe dx = —e*
2c
o0
/ e dx = -
0

a
o0

/ e_“"zdxz\/i, a>0
0 a

/

a— /b (” Z‘ 1)



Appendix B
Solving Difference Equations

B.1 Introduction

Difference equations describe discrete-time systems just like differential equations
describe continuous-time systems. We encounter difference equations in many
fields in telecommunications, digital signal processing, electromagnetics, civil
engineering, etc.

In Markov chains, and many queuing models, we often get a special structure for
the state transition matrix that produces a recurrence relation between the system
states. This appendix is based on the results provided in [1] and [2]. We start first
by exploring simple approaches for simple situations, then we deal with the more
general situation.

B.2 First-Order Form

Assume we have the simple recurrence equation
s;i=asi_1+b (B.1)

where a and b are given. Our task is to find values for the unknown s; for all values
ofi =0,1,--- that satisfy the above equation. This is a first-order form since each
sample depends on the immediate past value only.

Since this is a linear relationship, we assume that the solution for s; is composed
of two components, a constant component ¢ and a variable component v that
depends on i. Thus, we write the trial solution for s; as

Si =v; +¢ (B.2)
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Substitute this into our recursion to get
vitc=a(i-1+c)+b (B.3)
We can group the constant parts and the variable parts together to get

c=ac+b (B.4)
Vi = d Vj— (BS)

and the value of the constant component of s is

e= (B.6)
Assume a solution for v; in (B.5) of the form
v = A (B.7)
Substitute this solution in the recursion formula (B.5) for v; to get
A=a A (B.8)
which gives
A=a (B.9)
and v; is given by
v =A =df (B.10)
Thus s; is given from (B.2) as
slza"+1fa (B.11)

This is the desired solution to the difference equations.

B.3 Second-Order Form

Assume we have the simple recurrence equation

Si+1 +as; + b Si—1 = 0 (B12)
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This is a second-order form since each sample depends on the two most recent past
samples. Assume a solution for s; of the form

si= A (B.13)
The recursion formula gives
Mrar+b=0 (B.14)

There are two possible solutions (roots) for A, which we denote as « and §, and
there are three possible situations.

B.3.1 Real and Different Roots o # f8

When the two roots are real and different, s; becomes a linear combination of these
two solutions

si = Ao’ + Bp’ (B.15)
where A and B are constants. The values of A and B are determined from any
restrictions on the solutions for s; such as given initial conditions. For example, if

s; represent the different components of the distribution vector in a Markov chain,
then the sum of all the components must equal unity.

B.3.2 Real and Equal Roots o = 8

When the two roots are real and equal, s; is given by

si=(A+iB)d (B.16)

B.3.3 Complex Conjugate Roots

In that case we have
a=y+jo (B.17)
B=y—jb (B.18)
s; is given by

si =y [Acos(i 8) + Bsin(i 6)] (B.19)
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B.4 General Approach

Consider the N -order difference equations given by

N
Si= ) a Sig. i>0 (B.20)
k=0

where we assumed s; = 0 wheni < 0.
We define the one-sided z-transform [3] of s; as

S@=Y sz’ (B.21)
i=0

Now take the z-transform of both sides of (B.20) to obtain
N o)
S(z) —so = Zak 77F x |:Z Si—k z_(’_k)j| (B.22)
k=0 i=0

We assume that ¢, = 0 when k& > N and we also assume that s; = 0 wheni < 0.
Based on these two assumptions, we can change the upper limit for the summation
over k and we can change the variable of summation of the term in square brackets
as follows.

S@—so=) ar " x [Zsm z_’"} (B.23)
k=0 m=0

where we introduced the new variable m = i — k. Define the z-transform of the
coefficients a; as

AR =) ar 7" (B.24)
k=0

Thus we get

S(z) —s0 = A(z) x [Z Sm z’"}
m=0
= A(z) x S(2) (B.25)

Notice that the two summations on the RHS are now independent. Thus we
finally get
S0

S(2) = =40 (B.26)
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We can write the above equation in the form

S@) = % (B.27)

where the denominator polynomial is
D) =1—-A@®) (B.28)
MATLAB allows us to find the inverse z-transform of S(z) using the command
RESIDUE(a,b)

where a and b are the coefficients of the nominator and denominator polynomials
A(z) and B(z), respectively, in descending powers of 7!

The function RESIDUE returns the column vectors r, p, and ¢ which give the
residues, poles, and direct terms, respectively.

The solution for s; is given by the expression

s =c¢ + er(pj)(i_l) i>0 (B.29)

Jj=1

where m is the number of elements in 7 or p vectors.
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Appendix C
Finding s(n) Using the Z-Transform

When the transition matrix P of a Markov chain is not diagonalizable, we could
use the z-transform technique to find the value of the distribution vector at any
time instance s(n). An alternative, and more appealing technique, is to use the
Jordan Canonic form (JCF). However, we will explain the z-transform here. The
z-transform of the distribution vector s is given by

S@) =) s(n)z" (C.1)

n=0

We express s(n) in the above equation in terms of the transition matrix P using the
relation

s(n) = P" s(0) (C.2)
Alternatively, s(n) can be written as
s(n) =Ps(n—1) (C.3)

From (C.1), the z-transform of s(n) can be written as

S(z) =s(0)+ Y Ps(n—1)z" (C.4)
n=1
Thus we have
S(2) —s(0) =z""PY s(n—1)z "7 (C.5)

n=1

Changing the index of summation, we get
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S(z) —s(0) =z~ PS(2) (C.6)
we can thus obtain an expression for the z-transform of the distribution vector as
S(z) = (I—z"'P) ' 5(0) (C.7)
Denoting the transform pair
S(z) & s(n) (C.3)
then we can write (C.7), using (C.2), in the form
(I—z7'P) 's(0)  P's(0) (C.9)
Since s (0) is arbitrary, we have the z-transform pair
P& (I—z'P)” (C.10)

WWW: We have defined the MATLAB function invz (B, a) which accepts the
matrix B whose elements are the nominator polynomials of (I — z_lP)_1 and the
polynomial @ which is the denominator polynomial of (I — z_lP)_l. The function

returns the residue matrices r that correspond to each pole of the denominator.
The following two examples illustrate the use of this function.

Example C.1. Consider the Markov chain matrix

0.50.80.4
P=|050 03
0 0203

Use the z-transform technique to find a general expression for the distribution vector
at step n and find its value when n = 3 and 100 assuming an initial distribution

vector s(0) = [1 0 0]t
First we must form
1-05z71—0.877" —0.4z77!

I-z7'"P=| —0.57"! 1 —0.377!
0 —02771'1-037"
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we have to determine the inverse of this matrix using determinants or any other
technique to obtain

_ 1
I = —
@ —7'P) = 5x
1—0377'—0.06772 0.8771—0.16772  0.477! 4+ 0.24772
0.5z7' —0.152721-0.827" +0.15272  0.3z7! 4+ 0.05z72
0.10z72 0.2z7' —0.10z72 1 —0.577" —0.40772

where
D=(1-z")(1+0457") (1-0257")

We notice that the poles of this matrix are the eigenvalues of P. We now have to find

the inverse z-transform of (I — z‘lP)71 which can be done on a term-by-term basis
[1] or by using the MATLAB function invz (B, a) [1].

[0.59 0.59 0.59
P’ =|0.32032032 | +
| 0.09 0.09 0.09

0.27 —=0.51 0.06]
(—0.45)" | —0.37 0.70 —0.08 | +
0.10 —0.19 0.02 |

0.14 —0.08 —0.64 ]
(0.25)" | 0.05 —0.02 —0.24 n=0,1,...
| —0.19 0.10 0.88 |

We notice that the matrix corresponding to the pole z~! = 1 is column stochastic

and all its columns are equal. For the two matrices corresponding to the poles
771 = —0.45 and 0.25, the sum of each column is exactly zero.
s(3) is given from the above equation by substituting # = 3 in the expression

for P".

t

0.57
s(3) = P’s(0) =s(3) = | 0.36
0.08

s(100) is given by
0.597"
s(100) = P'%(0) = | 0.32
0.09 n
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Example C.2. Consider the Markov chain matrix

020404
P=|080.104
0 0502

Use the z-transform technique to find a general expression for the distribution vector
at step n and find its value when n = 7 for an initial distribution vector s(0) =

[100]
First we must form
1-02z7" —04z7' —0.477!

I-z'P= —0.877'1-0.1z7!  —0477!
0 —0.5z7'1-027"

we have to determine the inverse of this matrix using determinants or any other
technique to obtain

@ -7'P) = —x

1-03z7"'—0.18z72 04774012772 04771 40.12772
08771 —0.162721—-0.4z"" 4+0.40z72  0.4z7' 4+ 0.24772
0.40772 0.5771=0.10z72 1 —0.3z7! — 0.30772

where
D=(1-z"(1+03")(1+02")

We notice that the poles of this matrix are the eigenvalues of P. We now have to find

the inverse z-transform of (I - z_lP)_l which can be done on a term-by-term basis
[1] or by using the function invz (B, a).

0.33 0.33 0.33
P"=]0410.41041 |+
0.26 0.26 0.26
[ 00 00 007

(—0.3)" | =3.08 1.92 0.92 | +
3.08 —1.92 —0.92 |

0.67 0.67 0.677
(—=0.2)" | 2.67 2.67 2.67 n=0,1,...
| —3.33-3.33 —3.33 |
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We notice that the matrix corresponding to the pole z~! = 1 is column stochastic

and all its columns are equal. For the two matrices corresponding to the poles 7!
—0.3 and 0.2, the sum of each column is exactly zero.
s(7) is given from the above equation as

s(7) = P’s(0)
or

0.33
s(7) =1 0.41
0.26 |

C.1 Problems

C.1. Use the z-transform to find the distribution vector at any time instant n for the
transition matrix

020404
0.80.10.4
0 0502

C.2. Use the z-transform to find the distribution vector at any time instant z for the
transition matrix

0.50.3

0.50.7

C.3. Use the z-transform to find the distribution vector at any time instant z for the
transition matrix

0.20.30.50.6
0.30.10.20.1
0.50.10.10.2
0 0.50.20.1

C.4. Use the z-transform to find the distribution vector at any time instant n for the
transition matrix

0.10.40.1
0.7 0 0.3
0.20.6 0.6
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Appendix D
Vectors and Matrices

D.1 Introduction

The objective of this appendix is to briefly review the main topics related to
matrices since we encounter them in most of our work on queuing theory. There
are excellent books dealing with this subject and we refer the reader to them for
a more comprehensive treatment. Perhaps one of the best books on matrices is [1].
This is book is not only easy to read, but the author’s writing style and insights make
the topic actually enjoyable. The reader that wants to read a comprehensive book,
albeit somewhat dry, could consult [2].

D.2 Scalars

A scalar is a real or complex number. We denote scalars in this book by lowercase
letters or Greek letters. Sometimes, but not too often, we use uppercase letters to
denote scalars.

D.3 Vectors

A vector is an ordered collection of scalars vy, vy, - - -, which are its components. We
use bold lowercase letters to indicate vectors. A subscript on a vector will denote a
particular component of the vector. Thus the scalar v, denotes the second component
of the vector v. Usually we say v is a 3-vector to signify that v has three components.

A vector v could have its component values change with the time index n. At
time #n, that vector will be denoted by v(n).
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As an example, a vector that has only three components is written as:
vV=| v, (D.1)

To conserve space, we usually write a column vector in the following form
t
V=[v1 ) v3] (D.2)
where the superscript ¢ indicates that the vector is to be transposed by arranging the
components horizontally instead of vertically.
A vector is, by default, a column vector. A row vector r could be obtained by

transposing v

r=v'=[v vy ;] (D.3)

D.4 Arithmetic Operations with Vectors

Two vectors can be added if they have the same number of components

v + wy .
ViEw=|v+w | = [ +w) (2+w) (v3+ws)] (D.4)
v3 + w3

A vector can be multiplied by a scalar if all the vector components are multiplied by
the same scalar as shown

av=[av1 avy av3]t (D.5)

A row vector can multiply a column vector as long as the two vectors have the same
number of components.

C1
rc= [r1 r r3] ) (D.6)
C3
=rici+nrnc+rcs D.7)

The dot product of a vector is just a scalar that is defined as
VW=V Wi + Uy wy + U3 w3 (DS)

where corresponding components are multiplied together.
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Two vectors x and y are said to be orthogonal if their dot product vanishes.

x-y=0

D.5 Linear Independence of Vectors

The two vectors x; and Xx; are said to be linearly independent or simply independent
when

aix) + ax, =0 (D.9)
is true if and only if
ap = 0
ay; = 0

D.6 Matrices

Assume we are given this set of linear equations

an X1 +ap xo+aiz x3 = by
a1 X1 + an xo + ax x3 = by (D.10)

asy X1 +az xo + asz x3 = b3

we can write the equations in the form

ap ap an X1 by
dz1 A ax X2 | =1 b (D.11)
as| aszp asj X3 bs

where the first equation is obtained by multiplying the first row and the vector x and
the second equation is obtained by multiplying the second row and the vector x, and
so on. A concise form for writing the system of linear equations in (D.10) is to use
vectors and matrices

Ax=b (D.12)
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The coefficient matrix of this system of equations is given by the array of numbers

ap apz ap
A= ajsy A A3 (D13)
asy dzz asz
A matrix with m rows and 7 columns is called a matrix of order m x n or simply an

m X n matrix. When m = n we have a square matrix of order n. The elements a;;
constitute the main diagonal of A.

D.7 Matrix Addition

If A is an m x n matrix and B is an m x n matrix, then we can add them to produce
an m x n matrix C

C=A+8B (D.14)
where the elements of C are given by
Cij = a,-j + bij (DlS)

withl <i <mand1 < j <n.

D.8 Matrix Multiplication

If A is an / x m matrix and B is an m x n matrix, then we can multiply them to
produce an / x n matrix C

C=AB (D.16)

where the elements of C are given by
i =Y ai by (D.17)
k=1

withl <i </and1<j <n.
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D.9 Inverse of a Matrix

Given the matrix A, its left inverse is defined by the equation

LA=1 (D.18)
The right inverse is defined by the equation

AR =1 (D.19)

When A is square, the left and the right inverses are equal and we denote the inverse
as A~! which satisfies the equations

AAT'=ATTA =1 (D.20)

The inverse of the matrix is found by treating the above equation as a system
of simultaneous equations in the unknown matrix A~'. The matrix A~' is first
written as

A'=[a a;---a,] (D.21)

where 7 is the dimension of A. The i column a; of A7! is treated as an unknown

vector that is to be found from the equation
AaiZ[O"'OIO'“O]t (D.22)

where the vector on the RHS has 1 in the i 1 location. Gauss elimination is a useful
technique for finding the inverse of the matrix.

Not all matrices have inverses. A square matrix has an inverse only if its rank
equals the number of rows (rank is explained Sect. D.11).

D.10 Nullspace of a Matrix

Given an m X n matrix A, a nonzero n-vector X is said to be a nullvector for A when
Ax =10 (D.23)

All possible solutions of the above equation form the nullspace of A, which we
denote by null(A). If n is the number of all possible and independent solutions, then
we have

n = null (A) (D.24)

Finding the nullvectors x is done by solving (D.23) as a system of homogeneous
linear equations.
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MATLAB offers the function null to find all the nullvectors of a given
matrix. The function null (A) produces the null space basis vectors. The func-
tion null (A, ‘r’) produces the nullvectors in rational format for presentation
purposes. For example

(123

A=|(123

123
[—2 -3
null(4,’ ') = 1 0
L0 1

D.11 The Rank of a Matrix

The maximum number of linearly independent rows, or columns of a matrix A is
the rank of the matrix. This number r is denoted by

r = rank (A) (D.25)

A matrix has only one rank regardless of the number of rows or columns. An m x n
matrix (where m < n) is said to be full rank when rank(A) = m.

The rank r of the matrix equals the number of pivots of the matrix when it is
transformed to its echelon form (see Sect. D.19.3 for definition of echelon form).

D.12 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors apply only to square matrices. Consider the special
situation when we have

Ax =Ax (D.26)

The number A is called the eigenvalue and x is called the eigenvector. Math
packages help us find all possible eigenvalues and the corresponding eigenvectors
of a given matrix.

We can combine all the eigenvectors into the eigenvector matrix X whose
columns are the eigenvectors and we could write

AX=XD (D.27)



D Vectors and Matrices 563

where
X=[xiX X, | (D.28)
A0 -0
0 Ay 0
D=} . . (D.29)
00 - A,

When the inverse X! exists, we can diagonalize A in the form

A=XDX! (D.30)

D.13 Diagonalizing a Matrix

We say that the square matrix A is diagonalized when it can be written in the
form (D.30). A matrix that has no repeated eigenvalues can always be diagonalized.
If some eigenvalues are repeated, then the matrix might or might not be diagonaliz-
able.

A general rule for matrix diagonalization is as follows: A matrix is diagonalizable
only when its JCF is diagonal. Section 3.14.1 on page 105 discusses the JCF of a
matrix.

D.14 Triangularizing a Matrix

Sometimes it is required to change a given matrix A to an upper triangular matrix.
The resulting matrix is useful in many applications such as

1. Solving a system of linear equations.
2. Finding the eigenvector of a matrix given an eigenvalue.
3. Finding the inverse of a matrix.

Householder or Givens techniques can be used to triangularize the matrix. We
illustrate Givens technique here only. The idea is to apply a series of plane rotation,
or Givens rotation, matrices on the matrix in question in order to create zeros below
the main diagonal. We start with the first column and create zeros below the element
ap;. Next, we start with the second column and create zeros below the element
ay and so on. Each created zero does not disturb the previously created zeros.
Furthermore, the plane rotation matrix is very stable and does not require careful
choice of the pivot element. Section D.19.7 discusses the Givens plane rotation
matrices.
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Assume, as an example, a 5 X 5 matrix A and we are interested in eliminating
element a4y, we choose the Givens rotation matrix G4,

1 0000
0cO0s0
Gp=[100100 (D.31)
0—-5s0cO
00001

where ¢ = cosf and s = sin 8. Premultiplying a matrix A by G4, modifies only
rows 2 and 4. All other rows are left unchanged. The elements in rows 2 and 4
become

ayj = Cazj +§ay (D.32)
a4j = —S azj + C ay; (D.33)

The new element a4 is eliminated from the above equation if we have

tang = 22 (D.34)

ann

The following MATLAB code illustrates how an input matrix is converted to an
upper triangular matrix.

$File: givens.m

$The program accepts a matrix performs a series of
$Givens rotations to transform the matrix into an
$upper-triangular matrix.

$The new matrix is printed after each zero is created.

o° o

Input matrix to be triangularized
A=[-0.6 0.2 0.0
0.1 -0.5 0.6
0.5 0.3 -0.6]
n=3;
$iterate for first n-1 columns
for j=1:n-1
$cancel all subdiagonal elements
$in column j
for i=j+1:n
$calculate theta
theta=atan2(g(i,3),q(3,3))
for k=j:n
temp x= A(j,k)=*cos(theta)+A(i,k)*sin(theta);
temp y=-A(j,k)*sin(theta)+A(i,k)*cos (theta);
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$update new elements in rows i and j
A(j,k) = temp x;

A(i,k) = temp y;
end
A %print g after each iteration.
end
end

An example of using the Givens rotation technique is explained in the next
section.

D.15 Linear Equations

A system of linear equations has the form
Ax=Db (D.35)

where the coefficient matrix A is a given n X n nonsingular matrix so that the system
possesses a unique solution. The vector b is also given. The unknown vector X is
to be found. The system is said to be homogeneous when b is zero, otherwise, the
system is said to be nonhomogeneous. Before we discuss methods for obtaining
the solution to the above equation, we define first some elementary row operations
[2, 4]

1. Interchange of two rows.
2. Multiplication of a row by a nonzero constant.
3. Addition of a constant multiple of one row to another row.

Each of the above elementary row operations is implemented by multiplying
the matrix from the left by an appropriate matrix E called an elementary matrix.
The three elementary matrices corresponding to the above three elementary row
operations are illustrated below for 4 x 4 matrices [6].

1000 1000 1000
0010 0a00 0100
0100 |’ 0010 |’ a010 (D.36)
0001 0001 0001

There are two classes of numerical methods for finding a solution. The direct
methods guarantee to find a solution in one step. This is the recommended approach
for general situations and for small values of n. The iterative methods start with an
assumed solution then try to refine this assumption until the succeeding estimates
of the solution converge to within a certain error limit. This approach is useful for
large values of n and for sparse matrices where A has a large number of zeros.
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The advantage of iterative solutions is that they practically eliminate arithmetic
roundoff errors and produce results with accuracy close to the machine precision
[3]. We discuss the two approaches in the following sections. We refer the reader
to Appendix D for a discussion of the techniques used by MATLAB to numerically
find the solution.

In the following section we review the useful techniques for solving systems of
linear equations.

D.15.1 Gauss Elimination

Gauss elimination solves a system of linear equations by transforming A into upper
triangular form using elementary row operations. The solution is then found using
back-substitution. To create a zero at position (2,1) we need to multiply row 2 by
a1 /ay; then subtract this row from row 1. This is equivalent to a row operation
matrix of the form

100
. azy
E);y=]el10 | withe=—— (D.37)
001 an

The reader could verify that this matrix performs the desired operation and creates
a zero at position (2,1).
We illustrate this using an example of a 3 x 3 system for a matrix with rank 2:

—-05 03 0.2 S0 0
03 -04 05 st | =10 (D.38)
0.2 0.1 -0.7 $2 0

Step 1 Create a zero in the (2,1) position using the elementary matrix E;;

100 a
Ey = |r10]| withe=——"
001 an
which gives
—-0.5 03 0.2
T,=E;A = 0 —-0.22 0.62

02 0.1 —0.7
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Step 2 Create a zero in the (31) position using the elementary matrix E3;

100

Es=|010] with r = -5
r ol an
which gives
-0.5 0.3 0.2
Ty=E3 T, = 0 —0.22 0.62
0 0.22 —0.62

Step 3 Create a zero in the (3, 2) position using the elementary matrix E3,

100 u
En=|010] with e = ——2>
Oel 4z
which gives
—0.5 0.3 0.2
T3= E32T2 == 0 —022 062
0 0 0

Note that the triangularization operation produced a row of zeros, indicating
that the rank of this matrix is indeed 2.
Step 5 Solve for the components of s assuming s3 = 1
s =[2.09092.8182 1 |

After normalization, the true state vector becomes.

s = [0.3538 0.4769 0.1692 |

D.15.2 Gauss—Jordan Elimination

Gauss—Jordan elimination is a powerful method for solving a system of linear
equations of the form

Ax =b (D.39)
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where A is a square matrix of dimension n X n and X and b are column vectors with
n components each. The above equation can be written in the form

Ax = Ib (D.40)

where I is the n X 7 unit matrix.
We can find the unknown vector x by multiplying by the inverse of matrix A to
get the solution

x=A"'b (D.41)

It is not recommended to find the inverse as mentioned above. Gauss elimination
and Gauss—Jordan elimination techniques are designed to find the solution without
the need to find the inverse of the matrix. This solution in the above equation can be
written in the form

Ix=A"'b (D.42)

Comparing (D.40)—(D.42) we conclude that we find our solution if somehow we
were able to convert the matrix A to I using repeated row operation. Gauss—Jordan
elimination does exactly that by constructing the augmented matrix [A I] and

converting it to the matrix [I A~ ]

Example D.1. Solve the following set of linear equations.

2X1 —X2 =0
—X1 +2X2 —X3=3
—X2 +2X3=2
We have
2-1 0
A=|-1 2-1
0-1 2
b=1[032]
The augmented matrix is
2—-1 0100
[AI]=|-1 2-1010

0-1 2001
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2-1 01007
>0 3-2120
L0-1 2001
[2-1 01007
>0 3-2120
L0 0 4123

569

row 1 + 2 row 2

row 2 + 3 row 3

So far we have changed our system matrix A into an upper triangular matrix. Gauss
elimination would be exactly that and our solution could be found by forward

substitution.

Gauss—Jordan elimination continues by eliminating all elements not on the main

diagonal using row operations.

[60-2420
03-2120
(00 4123

Al -

(120 0963
03-2120
| 00 4123

(1200963
060363
L 004123

3

row 1 + row 2

2row 1 +row 3

2 row 2 + row 3

Now we can simplify to get the unit matrix as follows

100
010
001

(1] =

EN ST PN [N

[STE i ST

Bl = A=

As aresult, we now know the matrix A~! and the solution to our system of equations

is given by

x=A""b

=[243]
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D.15.3 Row Echelon Form and Reduced Row Echelon Form

The row echelon forms tells us the important information about a system of linear
equations such as whether the system has a unique solution, no solution or an infinity
of solutions.

We start this section with a definition of a pivot. A pivot is the fist nonzero
element in each row of a matrix. A matrix is said to be in row echelon form if it
has the following properties [7]

1. Rows of all zeros appear at the bottom of the matrix.
2. Each pivot has the value 1.
3. Each pivot occurs in a column that is strictly to the right of the pivot above it.

A matrix is said to be in reduced row echelon form if it satisfies one additional
property.
4. Each pivot is the only nonzero entry in its column.

MATLAB offers the function rref to find the reduced row echelon form of a
matrix.
Consider the system of equations

X1 +2)(I2 +3X3 = 1
2x1 +3x; +4x3 =4
3x; +3x3 +5x3 =3

The augmented matrix is given by

1231
[Ab]=|2344
3353
The reduced echelon form is given by
R = rref(A , b)
100 2
=1010 4
001-3

Thus the solution to our system of equations is

x=[14-3]
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Let us now see the reduced echelon form when the system has no solution.

3x1 +2x; +x3 =1
2x; +x2 +x3 =0
6x1 +2x; +4x3 =6

The augmented matrix is given by

3213
[Ab]=|[2110
6246

The reduced echelon form is given by

R = rref(A , b)

10 10
=101-10
00 01

The last equation implies that
0Ox; +0x, +0x3 =1

There are no values of x|, x,, and x3 that satisfy this equation and hence the system
has no solution.
The following system has an infinite number of solutions.

3x1 +2x, +x3 =3
2x1 +x2 4+x3 =0
5x1 +3x3 +2x3 =3

The augmented matrix is given by

3213
[Ab]=[2110
5323
The reduced echelon form is given by
R = rref(A , b)
10 1-3
=|101-1 6
00 0 O

Thus we have two equations for three unknowns and we could have infinity
solutions.
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D.16 Direct Techniques for Solving Systems
of Linear Equations

Direct techniques for solving systems of linear equations are usually the first one
attempted to obtain the solution. These techniques are appropriate for small matrices
where computational errors will be small. In the next section we discuss iterative
techniques which are useful for large matrices.

D.16.1 Givens Rotations

Givens rotations operation performs a number of orthogonal similarity transforma-
tions on a matrix to make it an upper triangular matrix. Another equivalent technique
is the Householder transformation but we will illustrate the Givens technique here.
The technique is very stable and does not suffer from the pivot problems of Gauss
elimination. We start with the equilibrium steady-state Markov chain equation

Ps=s (D.43)

and write it in the form
P-Ds=0 (D.44)
As=0 (D.45)

where 0 is a zero column vector. Thus, finding s amounts to solving a homogeneous
system of n linear equations in n unknowns. The system has a nontrivial solution if
the determinant of A is zero. This is assured here since the determinant of the matrix
is equal to the product of its eigenvalues. Here A has a zero eigenvalue which results
in a zero determinant and this guarantees finding a nontrivial solution.

Applying a series of Givens rotations [5S] will transform A into an upper
triangular matrix T such that

Ts=0 (D.46)

We are now able to do back-substitution to find all the elements of s. The last
row of T could be made identically zero since the rank of T is n — 1. We start our
back-substitution by ignoring the last row of T and assuming an arbitrary value for
s, = 1 then proceed to evaluate s,—; and so on. There still remains one equation
that must be satisfied

Xn:si =1 (D.47)

i=1
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Let us assume that the sum of the components that we obtained for the vector s gives

isi =b (D.48)

i=1
then we must divide each value of s by b to get the true normalized vector that we
desire.

Example D.2. Use Givens method to find the equilibrium state vector state s for the
Markov chain with transition matrix given by

04020
P=|01050.6
050304
Step 1 Obtain the matrix A =P —1
—-0.6 0.2 0.0
A=| 01-05 0.6
0.5 03-0.6

Step 2 Create a zero in the (2, 1) position using the Givens rotation matrix Gy,

csO 01
Gy =|—-sc0O | withf = tan™! W
001 ’
which gives

0.6083 —0.2795 0.0986
Ti=GyA=|0 0.4603 —0.5918
0.5 0.3 —0.6

Step 3 Create a zero in the (3, 1) position using the Givens rotation matrix Gs;

cOs 05
= ith = tan™! ——
G31 010 W1 an 0.6083
—s0c

which gives

0.7874 —0.0254 —0.3048
To=G;Ti=|0 0.4603 —0.5918
0 0.4092 —0.5261
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Step 4 Create a zero in the (3, 2) position using the Givens rotation matrix Gs;

Gy = (1) 0 with § = tan~! 0.4092
2= €3 - 0.4603
0—sc

which gives

0.7874 —0.0254 —0.3048
Ts=G3T, = | 0 0.6159 —0.7919
0 0 0

Step 5 Solve for the components of s assuming s3 = 1
s =[0.3871 1.2857 1]
After normalization, the true state vector becomes.

s =[0.1448 0.4810 0.3741 |

D.17 Iterative Techniques

Iterative techniques continually refine the estimate of the solution while at the same
time suppressing computation noise. Thus, the answer could be accurate within the
machine precision. Iterative techniques are used when the system matrix is large and
sparse. This is a typical situation in Markov chains and queuing theory.

D.17.1 Jacobi Iterations
We start with the steady-state Markov chain equation
Ps=s (D.49)

The matrix P is broken down as the sum of three components

P=L+D+U (D.50)
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where L is the lower triangular part of P, D is the diagonal part of P, and U is the
upper triangular part of P. Thus, our steady-state equation can be written as

L+D+U)s=s (D.51)

We get Jacobi iterations if we write the above equation as
Ds=(I-L-U)s (D.52)
where I is the unit matrix and it is assumed that P has nonzero diagonal elements.
The technique starts with an assumed solution s then iterates to improve the guess

using the iterations

sSTl=D'0I-L-U) s (D.53)

Each component of s is updated according to the equation

e L

1 i—1 n—I1
e\ s = D b (D.54)
1l /:0

j=i+1

D.17.2 Gauss—Seidel Iterations

We get Gauss—Seidel iterations if we write (D.51) as
D+L)ys=1-0U) s (D.55)

The technique starts with an assumed solution s then iterates to improve the guess
using the iterations

sTl=d+L)'d-0U) s (D.56)
Each component of s is updated according to the equation
1 i—1 n—1
s{‘+1=f sl{‘ — Zp,-j s';+l — Z Dij sf (D.57)
pii j=0 j=i+l
Notice that we make use of previously updated components of s to update the next

components as evident by the iteration index associated with the first summation
term (compare that with Jacobi iterations).
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D.17.3 Successive Overrelaxation Iterations

We explain successive overrelaxation (SOR) technique by rewriting a slightly
modified version of (D.57)

i—1 n—1

1
A GRS LA ST o3
H j=0 Jj=i

We can think of the above equation as updating the value of s{‘ by adding the term
in brackets. We multiply that term by a relaxation parameter w to get the SOR
iterations

i—1 n—1

w
Rt 7i G DT e WIE ™39
il j=0 j=i

when o = 1, we get Gauss—Seidel iterations again of course.

D.18 Similarity Transformation

Assume there exists a square matrix M whose inverse is M~!. Then the two square
matrices A and B = M~'AM are said to be similar. We say that B is obtained from
A by a similarity transformation. Similar matrices have the property that they both
have the same eigenvalues. To prove that assume x is the eigenvector of A
Ax =Ax (D.60)
We can write the above equation in the form
AMM™! x =Ax (D.61)
Premultiply both sides of this equation by M~! we obtain
M 'AMM ™! x =AM 'x (D.62)
But B = M_lAM, by definition, and we have
B(M 'x) =1 (M 'x) (D.63)

Thus, we proved that the eigenvectors and eigenvalues of B are M~ 'x and A,
respectively.
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Thus we can say that the two matrices A and B are similar when their eigenvalues
are the same and their eigenvectors are related through the matrix M.

D.19 Special Matrices

The following is an alphabetical collection of special matrices that were encountered
in this book.

D.19.1 Circulant Matrix

A square circulant matrix has the form

[000---001]
100---000
010---000
P=1troe e (D.64)
000---000
000---100
[ 000---010 |

Premultiplying a matrix by a circulant matrix results in circularly shifting all the
rows down by one row and the last row will become the first row.
An m x m circulant matrix C has the following two interesting properties:

Repeated multiplication m-times produces the identity matrix
ck=1 (D.65)

where k is an integer multiple of m.
Eigenvalues of the matrix all lie on the unit circle

ki
/\,-:exp(jZNX—) ki=1,2,---, m (D.66)
m

where j = +/—1 and

| =1 (D.67)
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D.19.2 Diagonal Matrix

A diagonal matrix has a;; = 0 whenever i # j and a;; = d;. A 3 x 3 diagonal
matrix D is given by

d 00
D=|04d, 0 (D.68)
0 0 ds
An alternative way of defining D is
D = diag (d; d1 d3) (D.69)
or
D = diag (d) (D.70)

where d is the vector of diagonal entries of D.

D.19.3 Echelon Matrix
An m x n matrix A can be transformed using elementary row operations into an
upper triangular matrix U, where elementary row operations include

1. Exchanging two rows.
2. Multiplication of a row by a nonzero constant.
3. Addition of a constant multiple of a row to another row.

Such operations are used in Givens rotations and Gauss elimination to solve the
system of linear equations

Ax=Db (D.71)
by transforming it into

Ux=c¢ (D.72)
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then doing back-substitution to find the unknown vector x. The matrix U that results
is in echelon form. An example of a 4 x 6 echelon matrix is

XXXXXX
Oxxxxx
= D.73
v 0000xx ( )

00000x

Notice that the number of leading zeros in each row must increase. The number of
pivots! equals the rank r of the matrix.

D.19.4 Identity Matrix

An identity matrix has a;; = 0 wheneveri # j and a;; = 1. A 3 x 3 identity matrix
I is given by
100
I=]010 (D.74)
001

D.19.5 Nonnegative Matrix

An m x n matrix A is nonnegative when
ajj = 0 (D.75)

foralll <i <mandl1 <j <n

D.19.6 Orthogonal Matrix

An orthogonal matrix has the property
AA'=1 (D.76)

The inverse of A is trivially computed as A~! = A’. The inverse of an orthogonal
matrix equals its transpose. Thus if G is an orthogonal matrix, then we have by
definition

GG=G!G=1 (D.77)

! A pivot is the leading nonzero element in each row.



580 D Vectors and Matrices

It easy to prove that the Givens matrix is orthogonal. A matrix A is invertible if there
is a matrix A~! such that

AAT'=ATTA=1 (D.78)

D.19.7 Plane Rotation (Givens) Matrix

A 5 x 5 plane rotation (or Givens) matrix is one that looks like the identity matrix
except for elements that lie in the locations pp, pq, gp, and gq. Such a matrix is
labeled G . For example, the matrix G4, takes the form

10000
0cO0s0
Gp=|100100 (D.79)
0—s0cO
00001

where ¢ = cos 6 and s = sin . This matrix is orthogonal. Premultiplying a matrix
A by G,, modifies only rows p and g. All other rows are left unchanged. The
elements in rows p and g become

Apk = Capi + Sagk (D.80)

gk = —SApk + cag (D.81)

D.19.8 Stochastic (Markov) Matrix

A column stochastic matrix P has the following properties.

1. a;; > 0 for all values of i and ;.
2. The sum of each column is exactly 1 (i.e., ZT:l pij = 1).

Such a matrix is termed column stochastic matrix or Markov matrix. This matrix
has two important properties. First, all eigenvalues are in the range —1 < A < 1.
Second, at least one eigenvalue is A = 1.

D.19.9 Substochastic Matrix

A column substochastic matrix V has the following properties.

1. a;; > O for all values of i and ;.
2. The sum of each column is less than 1 (i.e. 27':1 pij < 1.
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Such a matrix is termed column substochastic matrix. This matrix has the
important property that all eigenvalues are in the range —1 < A < 1.

D.19.10 Tridiagonal Matrix

A tridiagonal matrix is both upper and lower Hessenberg. That means that the only
nonzero elements exist only on the main diagonal and the adjacent upper and lower
subdiagonals. A 5 x 5 tridiagonal matrix A is given by

ay dyn 0 0 0
ayyapap 0 0
A= 0 aszy azsz dz4 0 (D82)
0 0 a4 as ass
0 0 O asy4 dss

D.19.11 Upper Hessenberg Matrix

An Upper Hessenberg matrix has #;; = 0 whenever j < i — 1. A5 x 5 upper
Hessenberg matrix H is given by

hiy hia Bz hig hys
hat By has hog hos
0 0 hyz hay hys
0 0 O hsshss

A matrix is a lower Hessenberg matrix if its transpose is an upper Hessenberg
matrix.
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