
Research and Perspectives in Endocrine Interactions

A Time 
for Metabolism 
and Hormones

Paolo Sassone-Corsi
Yves Christen Editors



Research and Perspectives in Endocrine

Interactions



More information about this series at http://www.springer.com/series/5241



Paolo Sassone-Corsi • Yves Christen

Editors

A Time for Metabolism and
Hormones



Editors
Paolo Sassone-Corsi
Department of Biological Chemistry
University of California
Irvine, California
USA

Yves Christen
Fondation IPSEN
Boulogne-Billancourt Cedex, France

ISSN 1861-2253 ISSN 1863-0685 (electronic)
Research and Perspectives in Endocrine Interactions
ISBN 978-3-319-27068-5 ISBN 978-3-319-27069-2 (eBook)
DOI 10.1007/978-3-319-27069-2

Library of Congress Control Number: 2015957954

Springer Cham Heidelberg New York Dordrecht London
© The Editor(s) (if applicable) and the Author(s) 2016. The book is published with open access at
SpringerLink.com.
Open Access This book is distributed under the terms of the Creative Commons Attribution-
Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any
noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and
source are credited.
The images or other third party material in this chapter are included in the work’s Creative Commons
license, unless indicated otherwise in the credit line; if such material is not included in the work’s
Creative Commons license and the respective action is not permitted by statutory regulation, users will
need to obtain permission from the license holder to duplicate, adapt or reproduce the material.
This work is subject to copyright. All commercial rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

Each morning we wake up from a night of sleep, and each day we eat our regularly

timed meals, go through our normal routines, and fall asleep again for another night.

This rhythm, so-called circadian—after the Latin words circa diem (“about a

day”)—underlies a wide variety of human physiological functions, including

sleep–wake cycles, body temperature, hormone secretion, exercise activity, and

feeding behavior. Circadian rhythms are remarkably conserved throughout evolu-

tion, and it is becoming commonly appreciated that circadian rhythms represent an

exquisite example of systems biology.

At the heart of all cyclic biological functions is the circadian clock, a highly

conserved molecular system that enables organisms to adapt to common daily

changes, such as the day–night cycle and food availability. The mammalian ana-

tomical structure in the brain that governs circadian rhythms consists of a small area

of the anterior hypothalamus, called the suprachiasmatic nucleus (SCN). For

decades, this “central pacemaker” was thought to be the unique circadian clock of

the organism. This dogma was challenged when peripheral tissues were also found

to contain functional circadian oscillators that are self-sustained at the single cell

level. This notion, together with the discovery that a remarkable fraction of the

genome is transcriptionally controlled by the clock, illustrated that circadian control

must play a key role in governing the metabolism and physiology of all organisms.

This concept was recently validated by studies of the metabolome revealing that a

large fraction of metabolites oscillate in a given tissue.

Recent years have seen spectacular advances in the field of circadian biology.

These have attracted the interest of researchers in many fields, including endocri-

nology, neurosciences, cancer, and behavior. By integrating a circadian view within

the fields of endocrinology and metabolism, researchers will be able to reveal many,

yet-unsuspected aspects of how organisms cope with changes in the environment

and subsequent control of homeostasis.

The concept behind the Fondation IPSEN Colloque Medecine et Recherche on

“A Time for Metabolism and Hormones,” held in Paris on December 5, 2014, was

to capture the excitement of this field as it is opening new avenues in our
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understanding of metabolism and endocrinology. A panel of the most distinguished

investigators in the field gathered together to discuss the present state and the future

of the field. These proceedings constitute a compendium of the most updated views

by these investigators. We trust that it will be of use to those colleagues who will be

picking up the challenge to unravel how the circadian clock can be targeted for the

future development of specific pharmacological strategies toward a number of

pathologies.

Irvine, CA, USA Paolo Sassone-Corsi

Boulogne-Billancourt Cedex, France Yves Christen
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Sud, Gif-sur-Yvette, France

xii List of Contributors



Paolo Sassone-Corsi Department of Biological Chemistry, Center for Epigenetics

and Metabolism, Unit 904 of INSERM, University of California, Irvine, CA, USA

Amita Sehgal Perelman School of Medicine, University of Pennsylvania, Phila-

delphia, PA, USA

Joseph S. Takahashi Howard Hughes Medical Institute, University of Texas

Southwestern Medical Center, Dallas, TX, USA

Department of Neuroscience, University of Texas Southwestern Medical Center,

Dallas, TX, USA

Paola Tognini Department of Biological Chemistry, Center for Epigenetics and

Metabolism, Unit 904 of INSERM, University of California, Irvine, CA, USA

List of Contributors xiii



The Epigenetic and Metabolic Language

of the Circadian Clock

Paolo Sassone-Corsi

Abstract The circadian clock controls a large variety of neuronal, endocrine,

behavioral and physiological responses in mammals. This control is exerted in

large part at the transcriptional level on genes expressed in a cyclic manner. A

highly specialized transcriptional machinery based on clock regulatory factors

organized in feedback autoregulatory loops governs a significant portion of the

genome. These oscillations in gene expression are paralleled by critical events of

chromatin remodeling that appear to provide plasticity to circadian regulation.

Specifically, the NAD+-dependent deacetylases SIRT1 and SIRT6 have been linked

to circadian control of gene expression. This and additional accumulating evidence

shows that the circadian epigenome appears to share intimate links with cellular

metabolic processes and has remarkable plasticity, showing reprogramming in

response to nutritional challenges. In addition to SIRT1 and SIRT6, a number of

chromatin remodelers have been implicated in clock control, including the histone

H3K4 tri-methyltransferase MLL1. Deciphering the molecular mechanisms that

link metabolism, epigenetic control and circadian responses will provide valuable

insights towards innovative strategies of therapeutic intervention.

Introduction

Metabolism, homeostatic balance and behavior follow the 24-h daily cycle (Eckel-

Mahan and Sassone-Corsi 2013). Circadian rhythms are virtually present in all life

forms on our planet, including mammals, insects, plants, fungi and cyanobacteria.

In higher organisms, circadian rhythms have evolved into a complex physiological

and molecular system demonstrated by sleep-wake cycles, daily fluctuations in

body temperature, blood pressure, cellular regeneration and behavior such as food
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intake and alertness levels (Asher and Sassone-Corsi 2015). Metabolism, nutri-

tional intake and body homeostasis are also under circadian control, displaying

rhythms in the levels of circulating hormones and metabolites, as well as enzymes

within the biochemical pathways participating in their biosynthesis (Eckel-Mahan

and Sassone-Corsi 2013; Gamble et al. 2014). Circadian rhythms are so intimately

linked to biological processes that their misregulation may lead to a number of

pathologies such as obesity, metabolic syndrome, diabetes, cardiovascular diseases,

inflammation, sleep disorders and some cancers (Eckel-Mahan and Sassone-Corsi

2013).

The molecular bases of circadian rhythms have been explored, revealing a

remarkable variety of molecular mechanisms that underlie clock function. An

important system of circadian control utilizes the core clock molecular machinery

that consists of transcription factors and regulators, both activators and repressors,

that act in concert to drive circadian expression of an important fraction of the

genome. A number of high-throughput transcriptome profiling studies have

established that 15–30 % of all transcripts are controlled by the clock, depending

on the tissue or cell type (Duffield et al. 2002; Panda et al. 2002; Storch et al. 2002;

Ueda et al. 2002). Accumulating evidence has shown that this global program of

gene expression is achieved through events of cyclic chromatin remodeling and

epigenetic control.

Chromatin Remodeling, Cyclic Transcription and the Clock

The molecular organization of the circadian system relies on a network of cellular

oscillators present in virtually every cell of the organism. An intricate network of

transcriptional-translational feedback loops constitutes the molecular clock (Eckel-

Mahan and Sassone-Corsi 2013; Zhang and Kay 2010). The basic helix-loop-helix

(b-HLH)-PAS proteins CLOCK and BMAL1 are core elements of this system and

function as transcriptional activators to drive the expression of many clock-

controlled genes (CCGs). CLOCK and BMAL1 heterodimers bind E-boxes in

CCG promoters and activate their expression. Among the CCGs there are genes

encoding other core clock protein repressors Period (PER1-3) and Cryptochromes

(CRY1-2). PER and CRY proteins heterodimerize in the cytoplasm and translocate

to the nucleus to inhibit CLOCK:BMAL1-mediated transcription. The stability of

PER:CRY complexes is regulated by posttranscriptional modifications (Lee

et al. 2009) and ubiquitination events (Busino et al. 2007; Hirano et al. 2013; Siepka

et al. 2007; Yoo et al. 2013). The time-controlled clearance of the repressors primes

for a the next cycle of CLOCK:BMAL1-driven gene activation. This system then

leads to the cyclic activation of other regulatory pathways generating

interconnected transcriptional feedback loops. These provide remarkable plasticity

to the circadian system, eliciting multiple daily oscillations in the transcriptome

(Masri and Sassone-Corsi 2010).
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Specific cyclic chromatin transitions occur in a genome-wide scale and are

associated with circadian waves of transcription (Masri and Sassone-Corsi 2010).

Several chromatin remodelers have been found to be involved in circadian control.

The protein CLOCK was found to operate as an acetyltransferase on histone H3 at

K9 and K14 (Doi et al. 2006), modifications associated with a chromatin state

permissive for transcription. CLOCK acts in concert with other histone

acetyltransferases (HATs) (Etchegaray et al. 2003), such as CBP (CREB binding

protein), p300 and with the CBP-associated factor PCAF (Lee et al. 2010; Curtis

et al. 2004; Takahata et al. 2000). A number of histone deacetylases (HDACs) have

been found to counterbalance these HATs. For example, the circadian repressor

PER recruits SIN3A-HDAC1 (Duong et al. 2011), whereas the protein CRY1

associates with the complex SIN3B-HDAC1/2 (Naruse et al. 2004). The circadian

regulator REV-ERBα recruits the NCoR-HDAC3 complex in a rhythmic manner to

chromatin via a process that has been linked to the control of lipids metabolism in

the liver (Sun et al. 2011). Thus, a variety of circadian repressive complexes appear

to exist that may elicit distinct functions at unique times of the circadian cycle. The

nicotinamide adenine dinucleotide (NAD+)-dependent class III of HDACs was

found to play a critical role in connecting cellular metabolism to circadian physi-

ology. The founding member, SIRT1, gives the name to this class of enzymes,

collectively known as sirtuins. There are seven sirtuins, all involved in various

aspects of metabolism, inflammation and aging; their intracellular localization is

nuclear, cytoplasmic or mitochondrial. The nuclear proteins SIRT1 and SIRT6 have

been shown to contribute to circadian transcription (Nakahata et al. 2008; Masri

et al. 2014).

A number of chromatin post-translational modifications have been linked to

clock function in addition to acetylation. The first evidence that a histone modifi-

cation may play a role in circadian transcription was the light-inducible phosphor-

ylation at H3-S10 in SCN neurons (Crosio et al. 2000). The activating histone

methylation H3K4me3 has also been linked to clock control and it seems to be

essential to permit circadian chromatin transitions that lead to activation of CCG

expression (Ripperger and Schibler 2006). MLL1, a H3K4 histone

methyltransferase (HMT), was shown to elicit CLOCK:BMAL1 recruitment to

chromatin at specific circadian promoters and for the cyclic tri-methylation at

H3K4 (Katada and Sassone-Corsi 2010). Also the repressive mark H3K27me3 is

clock controlled at the Per1 promoter through a mechanism that involves the

methyltransferase EZH2 (Etchegaray et al. 2006). Additional chromatin remodelers

involved in circadian function include the demethylase JARID1a that appears to

inhibit HDAC1, thereby enhancing CLOCK:BMAL1-mediated transcription

(DiTacchio et al. 2011), and the FAD (Flavin Adenine Dinucleotide)-dependent

demethylase LSD1 whose function is controlled by PKCα-mediated circadian

phosphorylation (Nam et al. 2014).

The Epigenetic and Metabolic Language of the Circadian Clock 3



Cellular Metabolism and the Circadian Clock Converge

A large number of human studies and animal models provide solid evidence of the

reciprocal regulation between the circadian clock and cellular and organismal

homeostasis (Eckel-Mahan and Sassone-Corsi 2013; Dallmann et al. 2012; Eckel-

Mahan et al. 2012, 2013; Hatori et al. 2012; Kasukawa et al. 2012). The clock

regulates metabolism by controlling the expression of a large fraction of the

genome. Moreover, the oscillator appears to sense the cellular energy state and

consequently adapts its function accordingly.

Several levels of interplay exist between cellular metabolism and chromatin

remodeling (Masri and Sassone-Corsi 2010; Feng and Lazar 2012; Katada

et al. 2012). Acetylation of histones or non-histone nuclear proteins depends on

the supply of acetyl-CoA in the nuclear compartment. The main carbon source in

mammals is glucose, which generates acetyl-CoA because of the enzyme adenosine

triphosphate (ATP)-citrate lyase (ACLY). ACLY protein levels are cyclic in the

liver (Mauvoisin et al. 2014), and ACLY activity controls global histone acetylation

depending on glucose availability (Wellen et al. 2009). Thus, circadian changes in

histone acetylation are controlled not only by specific HATs but also by

interconnected metabolic pathways and enzymes supplying nuclear acetyl-CoA.

A similar regulation involves S-adenosyl methionine (SAM), the metabolite used

by methyltransferases to deliver methyl groups. Changing SAM levels directly

influence H3K4me3 levels in mouse pluripotent stem cells (Shyh-Chang

et al. 2013). Also, treatment with 3-deazaadenosine (DAA), an inhibitor of SAH

(S-adenosylhomocysteine) hydrolysis that hinders transmethylation, elongates the

circadian period (Fustin et al. 2013). Further research is necessary to decipher the

impact of one carbon metabolism in the circadian transcriptome.

Nicotinamide adenine dinucleotide (NAD+) is a pivotal metabolite for the

circadian epigenome. NAD+ shows robust diurnal rhythms in synchronized cells

and mice (Bellet et al. 2013; Nakahata et al. 2009; Ramsey et al. 2009), and operates

as a cofactor for class III of HDACs, the sirtuins (see next section).

The core machinery may be directly influenced by changing metabolic states.

Specifically, the DNA-binding function of NPAS2:BMAL1 and CLOCK:BMAL1

heterodimers was shown to be influenced by the redox states of NAD(H) or NADP

(H) (Rutter et al. 2001). This finding implied that CLOCK:BMAL1 transcriptional

activity should be sensitive to the levels of cellular redox. While a causal evidence

for this regulation has not been explored, circadian oscillations in intracellular

redox potentials are evolutionary conserved (Eckel-Mahan and Sassone-Corsi

2013; Asher and Sassone-Corsi 2015). Thus, while the ability of NPAS2 or

CLOCK to sense the intracellular redox state in vivo remains to be proven,

independent evidence provides interesting information. Indeed, crystallographic

analyses of the CRY1-PER2 complex indicate that a disulfide bond between two

cysteine residues in CRY1 weakens its interaction with PER2, whereas a reduced

state of CRY1 stabilizes the complex and facilitates transcriptional repression

(Schmalen et al. 2014). In this scenario, CRY2 would retain specific FAD (Flavin
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Adenine Dinucleotide) binding activity, and FAD competes for CRY2 binding

pocket with the ubiquitin ligase complex SCFFBXL3, which has been shown to

control period length by regulating CRYs stability (Xing et al. 2013). Interestingly,

this finding provides a possible approach to pharmacologically adjust circadian

period length by using small molecules resembling FAD (Hirota et al. 2012).

Posttranslational modifications of clock proteins have been shown to modify

their regulatory capacity. For example, CLOCK, BMAL1 and PER2 can be

O-linked N-acetylglucosamine (GlcNAc)-modified by the enzyme O-GlcNAc

transferase (OGT), which results in a change in their activities (Kaasik

et al. 2013; Li et al. 2013). Importantly, liver-specific ablation of OGT leads to

dampened oscillation of Bmal1 and gluconeogenic genes. Thus, glucose levels

dictate the availability of GlcNAc, OGT serving as a signal transducer between

cellular metabolism and circadian components. Along the same lines, phosphory-

lation of CRY1 by the nutrient sensor kinase AMPK (AMP-activated protein

kinase) connects cellular energy levels with the circadian clock by adjusting it to

the changing intracellular ratio of AMP/ATP (Jordan and Lamia 2013; Gomes

et al. 2013).

The Central Role of Sirtuins

The intracellular availability in time and space of specific metabolites constitutes an

intriguing level of control for their protein sensors (Katada et al. 2012). In this

respect, the circadian oscillation in NAD+ concentration represents a revealing

paradigm. The NAD+ biosynthetic salvage pathway controls the conversion of

nicotinamide (NAM) to β-nicotinamide mononucleotide (NMN); this step is cata-

lyzed by a rate-limiting step enzyme, the nicotinamide phosphoribosyltransferase

(NAMPT, also known as visfatin). The circadian machinery controls the transcrip-

tion of the Nampt gene through direct binding of CLOCK:BMAL1 to E-boxes in the

promoter (Nakahata et al. 2009; Ramsey et al. 2009). NMN is converted to NAD+

by the enzymes nicotinamide mononucleotide adenylyltransferase 1-3 (NMNAT1-

3) (Fig. 1). Thus, a transcriptional-enzymatic feedback loop controls NAD+ bio-

synthesis and availability that in turn could result in circadian function of a variety

of NAD+-dependent enzymes. Moreover, there is a differential regulation of NAD+

levels and NAD+-consuming enzymes in various cell compartments (Gomes

et al. 2013; Yang et al. 2007). In this respect the sirtuins deserve special attention.

Indeed, of the seven mammalian sirtuins, three (SIRT1, SIRT3 and SIRT6) have

been functionally linked to circadian control and found to modulate cyclic outputs

in response to metabolic cues.

SIRT3 is a mitochondrial enzyme that displays robust changes in its deacetylase

activity in response to NAD+ levels (Hebert et al. 2013; Peek et al. 2013; Masri

et al. 2013). SIRT3 controls mitochondrial function, including fatty acid oxidation

and intermediary metabolism, by directly targeting rate-limiting enzymes for mito-

chondrial biochemical processes (Peek et al. 2013). As mitochondrial fatty acid

The Epigenetic and Metabolic Language of the Circadian Clock 5



oxidation and protein acetylation show circadian rhythmicity (Masri et al. 2013),

the link with NAD+ availability through SIRT3 is of particular interest. Also,

mitochondria from Bmal1�/� mice display reduced oxidative ability and decreased

mitochondrial NAD+ levels (Peek et al. 2013). These findings, together with the

implication of SIRT1 in circadian control, raise the possibility that the sirtuins-

NAD+ link with the clock may represent a critical molecular pathway to govern the

process of aging.

The implication of nuclear sirtuins in clock function is multiple. SIRT1 is both

nuclear and cytoplasmic whereas SIRT6 is exclusively nuclear and mostly chro-

matin bound, localized at transcriptionally active genomic loci. SIRT1 and SIRT6

operate through distinct mechanisms to coordinate the clock machinery in a differ-

ential manner and thereby delineate the circadian transcriptional output (Masri

et al. 2014). Because of these different mechanisms of action, in the liver these

two sirtuins coordinate circadian expression of distinct groups of genes. SIRT6

exerts its function by coordinating CLOCK:BMAL1 recruitment to specific chro-

matin sites (Masri et al. 2014). SIRT1, which is mostly nucleoplasmic and is

recruited to chromatin only ‘on demand’, deacetylates histones and non-histone

proteins. Among the non-histone targets of SIRT1 there are the clock proteins

BMAL1 and PER2 (Asher et al. 2008; Hirayama et al. 2007). SIRT1 is also able

Fig. 1 Metabolism and the circadian clock converge. A paradigm example is represented by the

role of SIRT1 and other sirtuins in clock regulation. The circadian machinery controls a large

fraction of the genome through the transcriptional regulation of CCGs. One of the CCGs is the

gene encoding the protein NAMPT, the rate-limiting enzyme in the NAD+-salvage pathway.

Cyclic transcriptional control of the Nampt gene results in the cyclic synthesis of NAD+, which

in turn is consumed rhythmically by enzymes such as SIRT1, whose deacetylase activity is

consequently cyclic. One of the non-histone targets is the enzyme AceCS1, which contributes to

the synthesis of Acetyl-CoA. AceCS1 is acetylated at one residue, Lys661, and its cyclic

deacetylation by SIRT1 activates the enzyme, resulting in cyclic synthesis of Acetyl-CoA and

thereby oscillating availability of acetyl groups required for global acetylation

6 P. Sassone-Corsi



to deacetylate MLL1, thereby controlling its methyltransferase activity. Thus, there

is control in H3K4 tri-methylation through the cyclic oscillation of NAD+ levels

(Aguilar-Arnal et al. 2015).

SIRT1-mediated deacetylation also affects circadian levels of other metabolites

besides NAD+. Specifically, intracellular acetyl-CoA levels are controlled by the

clock through SIRT1-controlled deacetylation of the enzyme acetyl-CoA Synthe-

tase 1 (AceCS1) (Sahar et al. 2014). This acetylation switch controls AceCS1

activity, leading to cyclic synthesis of acetyl-CoA (Fig. 1), that then is likely to

influence the acetylation levels of histones and non-histone proteins (Sahar

et al. 2014). In contrast, SIRT6 deacetylase activity seems to be efficient in

removing long chain fatty acids from lysine residues (Jiang et al. 2013). In this

respect it is noteworthy that not only on NAD+, but also on fatty acids, control the

activity of SIRT6 (Feldman et al. 2013). Thus, SIRT6 appears to occupy a key

position in the control of fatty acids metabolism by the clock. Indeed, CLOCK:

BMAL1-driven activation of genes involved in fatty acid biosynthesis is modulated

by SIRT6 (Masri et al. 2014).

High-throughput analysis of the transcriptome and metabolome along the circa-

dian cycle has revealed notable differences in the metabolic functions of SIRT1 and

SIRT6. Using mice with liver-specific deletion of either SIRT1 or SIRT6, a specific

role for SIRT6 was shown in dictating the synthesis and breakdown of fatty acid

pathways, as well as their storage into triglycerides. SIRT6 operates at least in part

through the control of alternative circadian transcriptional pathways, specifically

because of the chromatin recruitment of the sterol regulatory element-binding

protein 1 (SREBP1) (Masri et al. 2014). Thus, it is through genomic partitioning

that the two deacetylases contribute to a parallel segregation of cellular metabolism

(Masri et al. 2014).

Finally, these findings suggest a role for genome topology in circadian control

(Aguilar-Arnal et al. 2013). Our studies have identified the presence of circadian

interactomes where co-regulated genes are physically associated in the circadian

epigenome. Nuclear sirtuins may constitute a paradigm for other chromatin

remodelers that could contribute in the cyclic control of the nuclear landscape.

Also, specific changes in the nuclear localization of NAD+ may provide the

possibility of restricting the distribution of this metabolite to “niches” of activity

(Katada et al. 2012).

Conclusion

The ability of the circadian clock machinery to sense the metabolic state of the cell

in a time-specific manner places it in a strategic position. Indeed, fascinating

findings reviewed in this article demonstrate the direct implication of the clock in

the maintenance of cellular homeostasis. The clock machinery appears to integrate

environmental and metabolic signals to directly translate them in plasticity in gene

expression so to favor the adaptation of the organism to specific conditions. As the
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circadian transcriptional landscape is highly complex, including dynamic changes

in nuclear organization (Katada et al. 2012; Aguilar-Arnal et al. 2013), it becomes

critical to decipher how the nuclear landscape integrates metabolic cues and shapes

the transcriptional output. It is through the analysis of the specific coordination that

key chromatin remodelers have with clock transcription factors that we will gain

insights into how the intracellular metabolic state communicates with the clock

machinery. As disruption of clock function has been linked to a variety of patho-

logical conditions, revealing the clock mechanisms will lead to innovative strate-

gies towards the pharmacological treatment of metabolic syndromes, obesity,

diabetes, inflammation and even cancer.
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Molecular Architecture of the Circadian

Clock in Mammals

Joseph S. Takahashi

Abstract The circadian clock mechanism in animals involves an autoregulatory

transcriptional feedback loop in which CLOCK and BMAL1 activate the transcrip-

tion of the Period and Cryptochrome genes. The PERIOD and CRYPTOCHROME

proteins then feed back and repress their own transcription by interaction with

CLOCK and BMAL1. We have studied the biochemistry of the CLOCK:BMAL1

transcriptional activator complex using structural biology as well as the genomic

targets of CLOCK and BMAL1 using ChIP-seq methods. We describe the dynam-

ics of the core circadian clock transcriptional system. CLOCK and BMAL1 interact

with the regulatory regions of thousands of genes. The gene network and dynamics

of the system will be discussed. A mechanistic description of the core circadian

clock mechanism should promote our understanding of how the circadian clock

system influences behavior, physiology and behavioral disorders.

Introduction

Over the last 20 years, my laboratory has been focused on understanding the

molecular mechanism of circadian clocks in mammals. We have used mouse

genetics as a tool for discovery of the critical genes involved in the generation of

circadian rhythms of mammals (Takahashi et al. 1994; Lowrey and Takahashi

2011). Our initial discovery of the Clock gene using forward genetic screens and

positional cloning (Vitaterna et al. 1994; Antoch et al. 1997; King et al. 1997), and

the identification of BMAL1 as the heterodimeric partner of CLOCK (Gekakis

et al. 1998), led to idea that the CLOCK:BMAL1 transcriptional activator complex
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was upstream of the Period and Cryptochrome genes, whose gene products then

repressed CLOCK:BMAL1 to form an autoregulatory transcriptional feedback loop

(Lowrey and Takahashi 2000). Since the identification of these “core circadian

clock genes” (i.e., Clock, Bmal1, Per1, Per2, Cry1 and Cry2), additional feedback
loops driven by CLOCK:BMAL1, such as the loop involving Rev-erbα to repress

Bmal1 transcription, have been described (Preitner et al. 2002). In addition, the

regulation of the stability of the PER and CRY proteins by specific E3 ubiquitin

ligase complexes has been found to be important for determining the periodicity of

the circadian oscillation (Busino et al. 2007; Gallego and Virshup 2007; Siepka

et al. 2007; Meng et al. 2008; Yoo et al. 2013). Together, this work has led to a

description of a model of the circadian clock in mammals (Fig. 1).

With the discovery and cloning of clock genes came the realization that their

expression was ubiquitous (Lowrey and Takahashi 2004). We now accept that

clock genes are housekeeping genes and are expressed in essentially all cells.

What was perhaps even more surprising was the observation made using circadian

gene reporter technology that essentially every peripheral organ system and tissue

has the capacity to express autonomous circadian rhythms (Yoo et al. 2004). Thus

the ubiquitous expression of clock genes is a reflection of the ubiquitous capacity of

most tissues and cells to express circadian oscillations. These distributed circadian

oscillators are cell autonomous and can function independently of the central clock

Fig. 1 Model of the circadian clock in mammals. CLOCK and BMAL1 act as master transcription

factors to regulate: (1) the Per and Cry genes in the core feedback loop of the clock; (2) the

REV-ERB/ROR feedback loop regulating Bmal1 transcription; and (3) thousands of target genes

that are clock outputs. The stability of the PER and CRY proteins is tightly regulated by E3

ubiquitin ligases in both the cytoplasm and nucleus that determine circadian period (Adapted from

Mohawk et al. 2012 and Yoo et al. 2013)
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located in the suprachiasmatic nucleus (SCN) (Nagoshi et al. 2004; Welsh

et al. 2004; Yoo et al. 2004). The realization that the body is composed of a

multitude of cell-autonomous clocks has raised a number of questions concerning

the organization of the clock system and the role of the SCN clock in “circadian

organization.” Elsewhere, we have also explored the role of the SCN as a master

pacemaker to synchronize peripheral oscillators (Yoo et al. 2004; Hong et al. 2007;

Kornmann et al. 2007; Buhr et al. 2010; Hughes et al. 2012), as well as the role of

intercellular coupling in the robustness of the SCN oscillator (Liu et al. 2007; Buhr

et al. 2010; Ko et al. 2010; Welsh et al. 2010).

Structural Biology of Clock Proteins

Despite our general knowledge of clock components and their interactions, the

biochemical mechanisms of circadian clock proteins and how they function within

the circadian feedback loop are largely unknown. For example, many coding

mutations have been described for mammalian clock proteins but, at a macroscopic

level, we have little hope of understanding how they exert their phenotypic effects

without a deeper understanding of their molecular mechanism. For these reasons,

we have turned to structural biology to understand circadian proteins at an atomic

level of resolution. Recently, we have solved the three-dimensional structure of the

CLOCK:BMAL1 heterodimeric transcriptional activator complex using X-ray

crystallography (Huang et al. 2012). The CLOCK:BMAL1 structure reveals an

asymmetric heterodimer in which the bHLH, PAS-A and PAS-B domains of each

subunit interact with their complementary domains but do so in an unexpected

manner (Fig. 2). The PAS-A domains dimerize via symmetrical interactions involv-

ing α-helical domains (that are N-terminal to the canonical PAS fold) that pack

against the β-sheet surfaces of the PAS-A domains (Fig. 3a). In contrast, the PAS-B

domains dimerize in an asymmetric, head-to-tail fashion so that the β-sheet surface
of BMAL1 interacts with the α-helical surface of CLOCK (Fig. 3b). A conserved

BMAL1 Trp427 residue on an H-I loop (connecting the Hβ and Iβ strands) inserts

into a hydrophobic pocket on the α-helical surface of CLOCK that resembles the

co-factor binding pocket in other PAS proteins. Interestingly, a Trp residue is also

conserved on the H-I loops of CLOCK, PER1 and PER2 PAS domains, suggesting

that an aromatic residue inserting into the PAS receiver pocket may represent a

common motif for PAS domain interactions (Crane 2012).

The structure of CLOCK:BMAL1 represents a starting point for understanding

at an atomic level the mechanism driving the mammalian circadian clock. Many of

the previously identified mutations on CLOCK and BMAL1 can be mapped onto

the structure and, for example, predict regions of interaction of CLOCK with the

CRY proteins (Huang et al. 2012). The crystal structures for the PAS-A/PAS-B

domains of the mammalian PERIOD proteins (Hennig et al. 2009; Kucera

et al. 2012), for the photolyase homology domains of the mammalian CRY1

(Czarna et al. 2013) and CRY2 (Xing et al. 2013) proteins, and for the CRY2/

PER2-CRY binding domain complex (Nangle et al. 2014) beg the question of how
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Fig. 2 CLOCK:BMAL1 structure showing bHLH, PAS-A and PAS-B domains. Linker regions

shown in red or orange (From Huang et al. 2012)

Fig. 3 PAS domains of CLOCK:BMAL1. (a) PAS-A interactions shown looking down the axis of

the complex. (b) PAS-B interactions shown from a side view (From Huang et al. 2012)
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PER and CRY interact with CLOCK:BMAL1 to repress their function. Because the

native CLOCK:BMAL1/PER:CRY quaternary complexes are megadalton in size

and involve other interacting proteins, and because important domains of these

proteins are flexible, the solution of these complexes likely will require a combi-

nation of crystallography, NMR, and cryo electron microscopy methods in

future work.

Transcriptional Architecture and Chromatin Dynamics

of the Clock

To define the cis-acting targets of the core circadian transcriptional regulators, we

used chromatin immunoprecipitation followed by sequencing (ChIP-seq) to locate

DNA binding sites for BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1 and CRY2

in vivo in murine liver at six times during the circadian cycle. Figure 4 shows a

browser view of the Dbp locus, a major target gene of CLOCK-BMAL1 (Ripperger

and Schibler 2006). The activators BMAL1, CLOCK and NPAS2 bind in a cyclic

manner between CT0 and CT12 (CT¼ circadian time; CT0 is the beginning of the

subjective day; CT12 is the beginning of the subjective night) at three locations in

the promoter, intron 1 and intron 2. PER1, PER2 and CRY2 bind the same sites with

an opposite phase at CT12-20. CRY1 exhibits a third pattern that peaks at CT0.

In genome-wide analysis, CLOCK and BMAL1 bind to over 4600 and 5900

sites, respectively, corresponding to ~3000 unique genes (Koike et al. 2012). The

repressors CRY1 and CRY2 bind to significantly more sites, and many thousands of

these sites are independent of CLOCK:BMAL1 and reveal DNA binding motifs for

nuclear receptors (Koike et al. 2012), including the glucocorticoid receptor consis-

tent with recent work (Lamia et al. 2011). To examine functional readouts, we used

whole transcriptome RNA-seq to profile cycling genes in the liver using samples

taken every 4 h over 48 h (Koike et al. 2012). Using the intron RNA signal as a

proxy for pre-mRNA, we found ~1300 cycling genes and, surprisingly, they were

clustered in time with a peak at CT15 (Fig. 5). To explore the possible origins of the

global rhythms in nascent transcription, we analyzed the genome-wide occupancy

of RNA polymerase II (RNAPII) as a function of the circadian cycle. The large

subunit of RNAPII contains a C-terminal domain (CTD) that is modified at various

stages of transcription (Sims et al. 2004; Fuda et al. 2009). RNAPII is recruited into

the pre-initiation complex with a hypophosphorylated CTD that is recognized by

the 8WG16 antibody (Jones et al. 2004). Again to our surprise, we found that

RNAPII-8WG16 occupancy was highly circadian across the genome in the liver,

with a peak at CT14.5, which preceded the intron RNA peak by 0.5 h (Fig. 5).

Initiation of RNAPII involve phosphorylation on serine 5 (Ser5P) on the CTD of

RNAPII and is recognized by the 3E8 antibody (Chapman et al. 2007). We found

that RNAPII-Ser5P occupancy was also circadian, with over 13,000 sites that were

significant for cycling. The timing of RNAPII-Ser5P peaked at CT0 and coincided

with the peak of CRY1. At this time we found an association of CRY1, CLOCK,
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BMAL1 and RNAPII-Ser5P binding sites, suggesting that CLOCK:BMAL1 could

recruit and initiate RNAPII but CRY1 repressed the complex leading to a “poised”

state.

Given the genome-wide circadian rhythms of RNAPII occupancy, we assessed

chromatin states associated with transcription initiation and elongation during the

circadian cycle. Figure 6 shows a browser view of six histone modifications that are

characteristic of promoters, enhancers and transcription elongation (Kim

et al. 2005; Barski et al. 2007; Guenther et al. 2007; Li et al. 2007; Creyghton

Fig. 4 UCSC genome browser view of ChIP-seq profiles of circadian transcription factors at the

Dbp gene at six circadian times of day. BMAL1 (blue), CLOCK (green), NPAS2 (dark green),
PER1 (orange), PER2 (gold), CRY1 (red), CRY2 (pink). 0, 4, 8, 12, 16, 20 CT (h). KO knockout.

(From Koike et al. 2012)
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et al. 2010; Ong and Corces 2011; Rada-Iglesias et al. 2011). Histone H3K4me3,

H3K9ac and H3K27ac are enriched at promoters and show robust circadian

rhythms in occupancy at the Dbp gene. When examined across the genome, we

found that circadian rhythms in RNAPII occupancy as well as histone H3K4me3,

H3K9ac and H3K27ac modifications occurred in the majority of expressed genes,

even in cases where cycling RNA could not be detected. Thus a third surprise in this

work was the observation that chromatin states were being modulated in a circadian

manner across the genome in the liver.

What accounts for these genome-wide circadian rhythms in RNAPII occupancy

and histone modifications? Examination of the relationship between circadian

transcription factor occupancy and gene expression shows that approximately

90 % of genes bound by these factors are expressed whereas only 1–5 % of

unexpressed genes are similarly bound (Koike et al. 2012). These results

Fig. 5 Heatmap views of cycling intron RNA genes (left) and RNAPII-8WG16 occupancy

(right). More than 4000 peaks had significant circadian RNAPII binding (From Koike et al. 2012)
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demonstrate that gene expression per se rather than rhythmic gene expression is

tightly correlated with circadian transcription factor binding. Rhythmic circadian

transcription factor occupancy in turn could then be responsible for RNAPII

recruitment and initiation on a genome-wide basis, which would then lead to the

global rhythmic histone modifications seen here. Thus, circadian transcriptional

regulators appear to be involved in the initial stages of RNAPII recruitment and

initiation and the histone modifications associated with these events to set the stage

for gene expression on a global scale, but additional control steps must then

determine the ultimate transcriptional outputs from these sites.

In summary, we have defined the cis-regulatory network of the entire core

circadian transcriptional regulatory loop on a genome scale and found a highly

stereotyped, time-dependent pattern of core transcription factor binding, RNAPII

Fig. 6 UCSC genome browser view of histone methylation and acetylation at the Dbp gene.

BMAL1 (blue), H3K4me1 (red), H3K4me3 (pink), H3K9ac (aqua), H3K27ac (orange),
H3K36me3 (green), H3K79me2 (dark green) (From Koike et al. 2012)
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occupancy, RNA expression and chromatin states (Fig. 7). We defined three

distinctive phases of the circadian cycle: (1) a poised phase in which CLOCK:

BMAL1 and CRY1 bind to E-box sites in a transcriptionally silent state associated

with RNAPII-Ser5P; (2) a temporally coordinated transcriptional activation phase

in which RNAPII and p300 recruitment, pre-mRNA transcript expression, and

H3K9ac, H3K4me3 and H3K27ac occupancy oscillate; and (3) a repression phase

in which PER1, PER2 and CRY2 occupancy peaks. Circadian modulation of

RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale

far greater than that seen previously by gene expression profiling. Thus, the

circadian clock in the liver modulates the occupancy of RNAPII across the genome,

leading at least in part to genome-wide circadian modulation of chromatin states

that, in turn, poise the genome for transcription on a daily basis to act in concert

with the daily metabolic demands of the organism.
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Fig. 7 Circadian transcriptional landscape in the liver. Histograms show the phase distributions of

each factor as a function of time of day. Derep derepression (From Koike et al. 2012)
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Circadian Mechanisms in Bioenergetics
and Cell Metabolism

Joseph Bass

Abstract Circadian clocks are biologic oscillators present in all photosensitive

species that produce 24-h cycles in the transcription of rate-limiting metabolic

enzymes in anticipation of the light–dark cycle. In mammals, the clock drives

energetic cycles to maintain physiologic constancy during the daily switch in

behavioral (sleep/wake) and nutritional (fasting/feeding) states. A molecular con-

nection between circadian clocks and tissue metabolism was first established with

the discovery that 24-h transcriptional rhythms are cell-autonomous and self-

sustained in cultured fibroblasts, and that clocks are present in most tissues and

comprise a robust temporal network throughout the body. A central question

remains: how do circadian transcriptional programs integrate physiologic systems

within individual cells of the intact animal and how does the ensemble of local

clocks align temporal harmonics in the organism with the environment? Our

approach to studies of metabolic regulation by the molecular clock began with

analyses of metabolic pathologies in circadian mutant animals, experiments that

first became possible with the cloning of the clock genes in the late 1990s. A

paradox in our early studies was that the effects of circadian clock disruption were

both nutrient- and time-dependent, so that, under fed conditions, animals exhibited

diabetes whereas during fasting, they decompensated and died. Application of a

broad range of tissue-specific genetic and biochemical approaches has now begun

to provide mechanistic insight into the circadian control of metabolism.
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Genetic Approaches to Dissecting Circadian Physiology

Glucose homeostasis is a dynamic process that is subjected to rhythmic variation

throughout the daily light–dark cycle. Impaired glucose regulation arises from

desynchrony in the integration of anabolic, catabolic, and incretin hormones across

the circadian cycle and leads to metabolic syndrome and diabetes mellitus, disor-

ders that are associated with over-nutrition, sedentary lifestyle, and sleep-wake

disruption common in industrialized society. Individuals with diabetes must adjust

their insulin levels differently every day and night even independently of how much

they eat; however, the molecular underpinnings of circadian glucose regulation

were previously not well understood. Genome-wide association and deep-

sequencing studies have shown that variants of the melatonin receptor 1b and

cryptochrome 2 genes correlate with glucose variation in humans, suggesting a

genetic linkage between the circadian system and glucoregulatory processes in man

(Bouatia-Naji et al. 2009; Mulder et al. 2009; Dupuis et al. 2010). Against this

backdrop, work from our laboratory using circadian clock mutant mice first

revealed an essential role for the intrinsic beta cell clock in insulin secretion, beta

cell development, and diabetes mellitus (Marcheva et al. 2010). Subsequent studies

in three other groups have corroborated our observation that local function of the

clock transcription factor in islets is crucial for normal glucose homeostasis

(Sadacca et al. 2011; Lee et al. 2013; Pulimeno et al. 2013). Importantly, work

from the Dibner laboratory has been the first to manipulate and monitor clock

function in isolated human islet cells, raising the possibility that future investigation

into circadian cell physiology will yield new understanding of beta cell failure in

man (Pulimeno et al. 2013). In recently published work, we have developed

tamoxifen-inducible Cre-LoxP technology to conditionally eliminate clock gene

function in pancreas (PMID 26542580). Remarkably, our results establish that

acute pancreatic clock ablation in the adult is sufficient to cause diabetes mellitus

in the whole animal. These new genetic studies are the first to demonstrate an

essential role for the adult circadian system in beta cell glucose regulation, although

a gap remains in our understanding of the cell and molecular bases for clock

function in the beta cell. Using conditional gene targeting and next-generation

sequencing described in the following sections, we are presently poised to dissect

the genomic, biochemical, and physiologic mechanism of the clock in beta cell

failure. Moreover, since clock transcription factors impact both islet cell growth

and stress response, we also seek to understand the role of the islet cell clock in

susceptibility to beta cell apoptosis in type 1 diabetes, in islet regenerative capacity,

and in islet cell survival in insulin resistant obesity.

Our analysis of the beta cell clock also opens broader insight into the role of

transcription factor deregulation in beta cell failure and the unifying and distinct

molecular events between tissues that culminate in diabetes mellitus. In this regard,

positional cloning of genes causing Maturity Onset Diabetes of the Young (MODY)

in humans has revealed that the hepatic nuclear factor (HNF) network of forkhead

transcription factors plays a critical role in beta cell development and function,
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although knowledge of the cell-context specific determinants of HNF action in liver

and pancreas remains incomplete. By analogy, an important goal in understanding

how beta cell transcription defects related to the clock pathway give rise to diabetes

will be to elucidate differences in the clock-controlled enhancer network in liver

and pancreas and to compare the cistromes and transcriptomes for these factors in

each tissue. Interestingly, there is coincidence of CLOCK/BMAL1 binding sites in

liver at loci marked by monomethylated H3K4 in pancreas, although it is not known

whether the enhancer state (poised, H3K4me1 vs active, H3K4me1 with H3K27Ac)

in pancreas varies over the 24-h cycle. In the long term it will be necessary to

evaluate the cistromes and localization of clock factors with established transcrip-

tion factors involved in beta cell function over the full circadian cycle in both liver

and pancreas. Such studies will further elucidate the mechanism by which the clock

controls gene transcription networks involved in insulin release, namely by deter-

mining the extent to which CLOCK/BMAL1 directly binds to promoters and/or

enhancers or regulates epigenetic chromatin modifiers that determine accessibility

to transcription factors and RNA polymerase genome-wide. Overall, studies of the

beta cell molecular clock will elucidate how glucose homeostasis is coupled to the

light/dark cycle and the transcriptional determinants of circadian physiology.

Clock-NAD+-Sirtuin Pathway in Bioenergetics

Amajor step in understanding how the clock-NAD+ cycle impacts physiology came

from the observations that circadian mutant mice become hypoglycemic and die

when subject to a prolonged fast (PMID 24051248, unpublished data) and also

exhibit muscle and heart failure (PMID 20956306, 21452915), all hallmarks of

mitochondrial disease, which prompted us to dissect the mechanisms of clock

regulation of mitochondrial function. We began our investigation into the effect

of NAD+ deficiency on mitochondrial function in circadian mutant animals using a

multi-faceted approach, including unbiased proteomics, which led to the identifi-

cation of abnormal acetylation of enzymes involved in lipid oxidation, amino acid

catabolism, tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and

superoxide dismutase pathways. Importantly, loss-of-function mutations in several

of these oxidative enzymes have also been identified in the human metabolic

myopathy syndrome and in both glioblastoma and renal cell carcinoma, indicating

a broader effect of the clock-NAD+ pathway on mitochondrial metabolism in both

normal and transformed cells. Using tissue- and cell-based bioenergetics assays, we

discovered that abrogation of the clock impairs electron transfer from lipid to the

TCA cycle, in addition to increased mitochondrial production of superoxide free

radical, increasing sensitivity to genotoxic stress. Our work also showed that cells

exhibit an autonomous rhythm of oxygen consumption, glucose oxidation, and

mitochondrial lipid catabolism. Importantly, the oxygen consumption cycle in

muscle is directly linked to metabolism of NAD+ and activity of the mitochondrial

NAD+-dependent deacetylase SIRT3 (Peek et al. 2013).
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Although the aforementioned work has pinpointed specific defects in clock

control of mitochondrial function, several unanswered questions remain in

dissecting the effect of clock-NAD+ rhythms on physiology and cell biology.

First, it is not yet known how NAD+ deficiency locally within skeletal muscle

contributes to respiration or exercise tolerance in circadian mutant mice or in

animals subjected to environmental circadian disruption. Though skeletal muscle

ablation of the clock has been achieved in our group and others, the biochemical

pathways through which clock abrogation impairs oxidative capacity remain

largely unknown (Dyar et al. 2014).

Second, we still do not know whether clock abrogation and NAD+ deficiency in

liver or skeletal muscle impacts overall energy balance and alters the capacity to

utilize carbohydrate and lipid as a fuel source. New pharmacologic (Wang

et al. 2014) and genetic means to raise NAD+ both globally in the whole animal

and selectively within either liver or skeletal muscle are now available and will be

powerful tools in evaluating the potential to boost NAD+ as a therapeutic strategy in

myopathy and liver defects of circadian mutant animals. Finally, in addition to its

function as a cofactor for the class III histone deacetylases, NAD+ is a cofactor for

the poly-ADP-ribosylases, critical factors in DNA repair and stress response,

though the possible interaction between rhythmic regulation of NAD+ and PARP

activity is not known. Lastly, NAD+ functions as an electron transport molecule

and, as such, it is a direct marker of cellular redox state and the balance between

glycolytic and oxidative metabolism. Whether NAD+ might participate in the

bidirectional communication between metabolism and the clock system remains

an area of intensive investigation. In summary, discovery of the clock as an

upstream regulator of NAD+ provides a wealth of opportunity to dissect the

interrelationship between circadian rhythms, physiology, and epigenetics.

Reciprocal Control of the Clock by Nutrient

Circadian clocks are biologic oscillators that produce 24-h cycles in the transcrip-

tion of rate-limiting metabolic enzymes in anticipation of the solar cycle. The

molecular clock is programmed by a transcription-translation feedback loop that

is comprised of activators (CLOCK/BMAL1) that induce the expression of their

own repressors (CRYs/PERs) in a cycle that repeats itself every 24 h. The

REV-ERB and ROR proteins form an ancillary loop that modulates Bmal1 tran-

scription. In animals, clocks are organized hierarchically, with brain pacemaker

cells synchronizing peripheral tissue clocks, leading to a classical view of the

central clock as the main driver of metabolism. However, circadian oscillations

within both brain and peripheral tissues have recently been shown to be sensitive to

timing of nutrient availability and can become uncoupled from the light–dark cycle,

as demonstrated by experimentally restricting food access to the light cycle when

mice are normally resting (Damiola et al. 2000; Stokkan et al. 2001). Further,

simply substituting regular with high fat chow in mice fed ad libitum lengthens
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periodicity of locomotor activity and alters peripheral metabolic rhythms, providing

further evidence for a bidirectional relationship between clock function and metab-

olism (Kohsaka et al. 2007). Our discovery that diet-induced obesity reprograms

both the cellular molecular clock and behavior revealed for the first time that a

controlled change in nutritional environment leads to altered circadian rhythms.

This idea, that circadian and metabolic systems reciprocally interact and that

perturbation of the metabolic environment alters the homeostatic relationship

between these systems, has been widely confirmed but still remains poorly under-

stood at the mechanistic level. Human analyses, including genome-wide associa-

tion studies, population based case–control investigation, and clinical research,

have cumulatively indicated a strong interrelationship between circadian disrup-

tion, obesity, diabetes mellitus, and metabolic syndrome. Moreover, certain inflam-

matory and cardiovascular events, including thrombosis and nocturnal asthma,

exhibit pronounced circadian variation. Surprisingly, dietary macronutrient directly

impacts behavioral and molecular clock function, and circadian disruption itself

exacerbates the progression of diet-induced obesity, exerting distinct effects within

local metabolic organs. Moreover, limiting high-fat food to the incorrect circadian

phase accelerates weight gain, whereas limiting high-fat feeding to the correct

phase ameliorates hepatic steatosis, a hallmark of metabolic syndrome (Maury

et al. 2010). While we previously demonstrated that diet-induced obesity repro-

grams the cellular molecular clock and circadian behavior, we have more recently

sought to identify the macronutrient disruptor of circadian behavior by providing

mice an isocaloric diet high in either saturated or unsaturated fats (SFD and UFD).

Our goal is to identify the mechanism by which a macronutrient directly alters

behavior and neuronal circadian pacemaker function. We propose that nutrient

signaling plays a central role in inter-organ circadian communication and that

circadian disruption induced by high saturated fat contributes to the rate of pro-

gression of metabolic syndrome.

Summary and Future Directions

A major window to understanding how the clock is coupled to metabolism was

opened with discovery of metabolic syndrome pathologies in multi-tissue circadian

mutant mice, including susceptibility to diet-induced obesity, mis-timed feeding

rhythms, hypoinsulinemia, and energetic collapse upon fasting. Using Cre-LoxP

conditional transgenesis and dynamic endocrine testing, we have pinpointed the

tissue-specific role of the clock in energy and glucose homeostasis, with our most

detailed understanding of this process in liver, muscle, and endocrine pancreas. In

the post-prandial condition, the beta cell clock is essential for nutrient and adenyl

cyclase-induced insulin exocytosis. In contrast, the hepatocyte and myocyte clocks

are required for oxidative metabolism. Circadian mutant mice die upon prolonged

fasting due to mitochondrial failure, a defect that we have tied to the bioavailability

of NAD+, a cofactor of the class III histone deacetylases and poly-ADP ribosylase
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enzymes involved in adjusting metabolic and gene regulation in response to

environmental change, including glucose deprivation, oxidative damage, and cell

stress. Indeed, we have found that liver and myoblasts exhibit an autonomous

rhythm of oxygen consumption, glucose oxidation, and mitochondrial lipid catab-

olism that is directly linked to an autonomous rhythm of NAD+ metabolism and,

consequently, to cyclic activity of the mitochondrial NAD+-dependent deacetylase

SIRT3. NAD+ supplementation using the pro-drug NMN improves respiration in

live animals, indicating that circadian control of NAD+ metabolism plays a key role

in cellular and organismal respiration. A future challenge will be to determine the

cell and molecular basis for the interplay between nutritional and circadian pro-

cesses important in metabolic health and disease states.
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Control of Metabolism by Central

and Peripheral Clocks in Drosophila

Amita Sehgal

Abstract Drosophila is a powerful system for the molecular analysis of circadian

clocks, providing the first account of how such a clock is generated. It is also proving

to be an excellent model to dissect the neural basis of circadian behavior. In addition,

clocks are located in peripheral tissues in flies, but much less is known about these

clocks and about the physiological processes they control. This chapter describes the

use of Drosophila for understanding the circadian control of metabolism. While a

clock in the fat body is critical for metabolic function, it is clear that neuronal clocks

are also involved. Indeed, synchrony between these clocks is important for reproduc-

tive fitness. A complex interplay between circadian and metabolic signals is indicated

by the finding that metabolic pathways can even impact rest:activity rhythms con-

trolled by the brain clock. Drosophila may be an optimal system to dissect the nature

of these interactions and their importance for organismal fitness and life span.

Genetic analysis of circadian rhythms started with the isolation of the period (per)
mutants in the fruit fly, Drosophila melanogaster, followed by isolation of the per
gene in the mid 1980s (Bargiello et al. 1984; Jackson et al. 1986; Konopka and

Benzer 1971; Reddy et al. 1984; Zehring et al. 1984). Subsequent studies identified

the per partner, timeless (tim), and the transcriptional feedback loop that we now

know lies at the heart of the clock mechanism in all species (Sehgal et al. 1994,

1995). In the Drosophila loop, the Clock (CLK) and cycle (CYC) transcriptional

activators promote expression of per and tim mRNA during the mid to late day but

are repressed by feedback activity of PER-TIM in the late night and early morning.

Regulated expression and activity of clock proteins in this loop are sustained

through post-translational mechanisms, in particular the action of multiple kinases

and phosphatases (Zheng and Sehgal 2008, 2012).

Contrary to expectations that clocks would be localized largely, if not exclu-

sively, in the brain, analysis of Drosophila per showed that it was expressed in

multiple tissues throughout the body (Liu et al. 1988; Saez and Young 1988).

Indeed, use of a reporter in which per was fused to firefly luciferase showed that
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per was expressed cyclically in most tissues. Analysis of isolated tissues revealed

that luciferase activity continued to cycle in the absence of neural connections or

systemic signals, indicating the presence of tissue-autonomous clocks (Plautz

et al. 1997). Subsequent studies showed that the degree of autonomy varied from

tissue to tissue. The Malphigian tubules or fly kidneys, for instance, appeared to be

completely autonomous, such that they retained their own “timing” even when

transplanted into a host that was synchronized to a different day:night cycle

(in other words, a different time zone; Giebultowicz et al. 2000). On the other

hand, the clock in the prothoracic gland, which drives a circadian rhythm of

eclosion (hatching of adult flies from pupae) in Drosophila, is “slave” to the “master

clock in the brain (Myers et al. 2003). Thus, the brain clock is required for eclosion

rhythms as well as for maintenance of the prothoracic clock (Myers et al. 2003). In

addition, central nervous system signals, in particular the neuropeptide Pigment

Dispersing Factor (PDF), modulate the clock in pheromone-producing oenocytes,

which regulate mating (Krupp et al. 2013).

The emerging pattern is that of a network of clocks that control many aspects of

physiology and depend upon neural function to varying extents. The question is the

extent to which Drosophila can be used to study circadian regulation of these

different physiological processes and provide an understanding of the circadian

system as a whole. This chapter outlines studies directed towards circadian control

of metabolism in Drosophila.

Use of Drosophila to Study Behavior andMetabolic Function

As noted above, Drosophila has proved to be an outstanding system to dissect the

molecular basis of the clock. Genes first found in Drosophila are now known to be

mutated in some human circadian disorders. It is now also clear that Drosophila can

be exploited to provide a complete understanding of the neural circuits that drive

rhythms in behavior. The per and tim mutants were isolated through screens that

used eclosion behavior as an assay for circadian function. Eclosion is “gated” by the

circadian clock to occur around dawn, so while it only occurs once in the life of

every fly, it can be monitored as a rhythm in a population. In addition to eclosion,

the per and tim mutants were found to affect rhythms of rest:activity, and subse-

quently, in particular with the development of high throughput systems for moni-

toring locomotor activity, the field shifted to almost exclusively using rest:activity

as a readout of internal clock function. Through work done in several laboratories,

we now have a fairly good understanding of the clock neurons in the brain that drive

rhythms of rest:activity (Nitabach and Taghert 2008). Interestingly, different sub-

sets of neurons are required for different aspects of the overt rhythm, for instance.

for the morning and evening peaks of locomotor activity. In addition, we recently

identified a neural circuit that connects the clock neurons to other brain cells

required for rhythmic rest:activity (Cavanaugh et al. 2014). It seems likely that,

in the near future, we will be able to trace the passage of time-of-day signals all the

way from the clock to the motor neurons that drive activity.
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Until ~2008, little to no work had been done on circadian metabolism in

Drosophila. However, flies have been used for general studies of metabolism, and

are particularly useful as a model for aging, which is influenced strongly by

metabolic parameters (Katewa and Kapahi 2010). As circadian regulation may be

relevant for aging, we undertook to address links between metabolism and the

circadian system.

The Drosophila Fat Body Contains a Clock that Regulates

a Rhythm of Feeding

As we were accustomed to monitoring behavior in Drosophila, our studies of

metabolic function also started with measurements of a metabolism-influenced

behavior. We assayed food intake at different times of day and found that flies

display a circadian rhythm of feeding such that food intake occurs maximally in the

morning hours (Xu et al. 2008). A later study identified an additional peak of

feeding that occurs later in the day and confirmed that nighttime hours of quies-

cence are associated with reduced food intake. As required of an endogenously

driven rhythm, the rhythm of feeding persists in the dark, i.e., in the absence of

environmental cycles. Also, it is eliminated in the dark in flies lacking the Clk gene,
demonstrating that it is under the control of the molecular clock mechanism

described above (Xu et al. 2008).

To address the regulation of the feeding rhythm, we considered a role for the fat

body, as this is a major metabolic tissue in Drosophila and is generally considered

the functional equivalent of the liver. We found that clock genes, specifically tim,
were expressed in the fat body and displayed a daily rhythm (Xu et al. 2008). To

determine if this cycling was driven by a clock in the fat body, as opposed to signals

from elsewhere, we disrupted the fat body clock by transgenically expressing a

dominant negative version of the CLK protein. This manipulation abolished tim
cycling, indicating that it depends upon a clock in the fat body. Interestingly,

disruption of the fat body clock also affected the phase of the feeding rhythm,

such that flies now showed maximal food consumption in the evening hours

(Xu et al. 2008). The fact that the feeding rhythm was not abolished suggests that

clocks in other tissues can also drive this rhythm.

Fat Body and Neuronal Clocks Coordinately Regulate

Metabolic Parameters

We found that loss of the fat body clock did not just affect the feeding rhythm but

also overall food intake (Xu et al. 2008). Food consumption was higher at all times

of day relative to controls. Reasoning that increased food consumption increases

sources of energy and therefore might be protective in adverse conditions of low
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nutrient availability, we tested flies lacking a fat body clock in starvation assays. To

our surprise, we found that they were actually more sensitive to starvation and so

died earlier than their wild type counterparts. This finding suggested that the

increased food consumption was not increasing nutrient stores but was perhaps

occurring in response to low endogenous levels of nutrients. Indeed, we found that

glycogen and triglyceride levels were low in flies that lacked a clock in the fat body.

These results were unexpected because clock mutants, in other words flies

lacking clocks in all tissues, do not show obvious metabolic phenotypes. The

defects seen when only the fat body clock was ablated suggested that clocks in

other tissues might have opposing effects on metabolic parameters. Neurons

appeared to be good candidates for housing such clocks, as the brain is known to

regulate metabolic activity, and so we disrupted clock function in neurons. We used

the same tool as for the fat body clock (dominant negative clock proteins) and

confirmed that neuronal clocks were disrupted by monitoring rest:activity behavior.

As expected, rest:activity was arrhythmic. Measurement of metabolic parameters

showed that nutrient stores, triglycerides and glycogen, were higher in flies with

disrupted neuronal clocks than in wild type controls (Xu et al. 2008). As might be

predicted, loss of neuronal clocks also increased resistance to starvation.

These data indicate that the fat body and the neuronal clock oppose each other in

the control of metabolic function (Fig. 1). Typically, the fat body clock suppresses

feeding, promotes storage of nutrients and increases resistance to starvation. Thus,

loss of the fat body clock results in increased feeding, lower nutrient stores and

sensitivity to starvation. Conversely, neurons are very metabolically active, and so

clocks in these promote feeding, depletion of energy stores and sensitivity to

starvation. All these functions are likely reversed when neuronal clocks are lost.

Neurons Metabolic �ssues

Energy stores
Survival when starved

Fig. 1 Neuronal and metabolic clocks have opposing effects on metabolic parameters. These

effects are predicted based upon phenotypes obtained by disrupting neuronal or fat body (meta-

bolic) clocks. Disruption of neuronal clocks increases glycogen and trigyceride stores and pro-

motes survival in response to starvation, whereas disruption of the fat body clock decreases

glycogen and trigyceride stores, increases feeding and decreases survival upon starvation
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We documented increased nutrients and resistance to starvation in the absence of

neuronal clocks but were unable to reliably quantify food intake, as this was so low.

In a subsequent study, we identified a specific group of neuron that regulate

triglyceride levels (DiAngelo et al. 2011). These are the central clock neurons in the

brain, which are critical for rest:activity rhythms. Interestingly, though, the effects

of these neurons on triglyceride levels are separable from their effects on rest:

activity.

Rhythmic Gene Expression in the Fat Body Is Controlled

Largely, but not Exclusively, by the Fat Body Clock

To address the mechanisms by which the fat body clock regulates metabolic

homeostasis, we sought to identify the genes expressed rhythmically in this tissue

(Fig. 2). To this end, we collected tissue every 2 h around the clock over a 2-day

period and profiled gene expression using microarrays (Xu et al. 2011). Simulta-

neously, we collected samples every 4 h from flies lacking a fat body clock due to

expression of a dominant negative form of the CLK protein. We found that

expression of many genes is cyclic in the fat body. Interestingly, several of these

continue to cycle when the fat body clock is ablated, suggesting the influence of

other factors, either the light:dark cycle or clocks elsewhere. In recent work, we

have found that clocks in other tissues are required for at least some of the rhythmic

cycling in the fat body.

Microarrays

Fig. 2 Circadian gene

expression in the fat body:

The protocol shown was

followed to assay circadian

gene expression in the fat

body. Fat bodies were

collected at 2-h intervals

over a 48-h cycle in wild

type flies and at 4-h

intervals in flies lacking a

fat body clock. Several

classes of genes were found

to cycle
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A Restricted Feeding Paradigm Resets the Phase of Cyclic

Gene Expression in the Fat Body but not in the Brain

The genes expressed cyclically in the fat body fall into many different functional

categories, including lipid synthesis (in particular, fatty acid elongation), lipid

breakdown, steroid hormone metabolism and immune function. The peak of gene

expression for these different processes tended to occur at different times of day. To

determine if temporal separation of gene expression by the clock was important for

metabolic physiology, we sought to disrupt this temporal relationship. Reasoning

that the time of feeding might be important for the peak in metabolic gene

expression, but perhaps not for expression of immune genes, we restricted food to

a time of day when feeding was typically less (6 h in the early evening) and we

examined circadian gene expression (Xu et al. 2011). We found that the time of

feeding was indeed important, in fact even more than predicted. Thus, the clock in

the fat body was reset by the time of feeding, which led to a reset of all downstream

cycling genes.

Restricted feeding (RF) only changed the phase of gene expression if it occurred

at the wrong time of day. If food was restricted to a time that corresponded to the

normal daily peak of feeding, then the phase was maintained and the amplitude of

the rhythm became stronger (note that normally the amplitude is low in constant

darkness). On the other hand, RF had no effect on circadian gene expression in the

brain (Xu et al. 2011).

Decoupling Peripheral and Brain Tissues Decreases

Reproductive Fitness

As discussed above, a RF paradigm desynchronizes brain and fat body clocks as it

resets the fat body, but not the brain clock. To determine if this process had

physiological consequences, we monitored egg laying as a measure of reproductive

fitness in animals maintained on RF. To exclude any influence of the duration of

feeding, we compared egg production by flies fed for 6 h daily at the time they

would normally eat with those fed for 6 h at the wrong time of day (Xu et al. 2011).

Measurements of food intake showed equal food consumption in both groups,

indicating that 18 h of starvation promoted equivalent feeding regardless of

circadian time.

We found that flies fed at the wrong time laid fewer eggs than those fed at the

correct time. However, these differences were not noted in a Clk mutant, indicating

that they reflected an interaction of the time of feeding with endogenous clocks

(Xu et al. 2011). We surmise that desynchrony of brain and peripheral clocks,

achieved by an RF paradigm, reduced reproductive success.
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Metabolic Signals Also Affect Clocks in the Brain

While this chapter focuses on the circadian control of metabolism, we have also

uncovered effects of metabolic signals of central clock function and rest:activity

behavior. We found that the FOXO protein, a well-known component of metabolic

pathways, is expressed in the fat body but can influence the brain clock’s response
to oxidative stress (Zheng et al. 2007). We also found that manipulations of the

TOR-Akt pathway alter periodicity of rest:activity rhythms in parallel with effects

on the molecular clock in brain neurons (Zheng and Sehgal 2010). Thus, meta-

bolism and circadian clock interact on multiple levels, with consequences in

both directions.
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Circadian Post-transcriptional Control

of Metabolism

Carla B. Green

Abstract Circadian clocks control thousands of genes, which ultimately generate

rhythms in signaling pathways, metabolism, tissue physiology and behavior.

Although rhythmic transcription plays a critical role in generating these rhythmic

gene expression patterns, recent evidence has shown that post-transcriptional

mechanisms are also important. Here we describe studies showing that regulation

of mRNA poly(A) tail length is under circadian control and that these changes

contribute to rhythmic protein expression independently of transcription.

Nocturnin, a circadian deadenylase that shortens poly(A) tails, contributes to this

type of circadian post-transcriptional regulation. The importance of tail-shortening

by Nocturnin is evident from the phenotype of mice lacking Nocturnin, which

exhibit resistance to diet-induced obesity and other metabolic changes.

Introduction

Circadian clocks regulate and coordinate rhythms in behavior, physiology, bio-

chemistry and gene expression in mammals (Pittendrigh 1981a, b; Akhtar

et al. 2002; Panda et al. 2002; Storch et al. 2002; Ueda et al. 2002; Duffield 2003;

Welsh et al. 2004; Reddy et al. 2006), allowing animals to synchronize appropri-

ately to the environmental light:dark cycles. The mammalian circadian clock is

composed of an intracellular feedback mechanism in which interlocking

transcriptional-translational feedback loops generate the 24-h rhythms (reviewed

in Lowrey and Takahashi 2004; Takahashi et al. 2008) and drive rhythms of 5–10 %

of genes in a cell type-specific manner (Duffield 2003; Rey et al. 2011; Koike

et al. 2012; Menet et al. 2012). This extensive control over mRNA expression

results in rhythmicity of many cellular pathways, including many aspects of

metabolism. Mutations that alter the clock have broad negative effects on the
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organism, including insulin resistance and obesity (Rudic et al. 2004; Shimba

et al. 2005; Turek et al. 2005; Green et al. 2008), some types of cancer

(Fu et al. 2002; Gorbacheva et al. 2005; Hoffman et al. 2009, 2010a, b; Ozturk

et al. 2009; Kang et al. 2010), cardiovascular disease (Curtis et al. 2007; Reilly

et al. 2007) and sleep and affective disorders (Toh et al. 2001; Kripke et al. 2009;

Srinivasan et al. 2009; Touma et al. 2009). Therefore, an understanding of the

molecular mechanism of clocks in mammals is critical for the understanding and

treatment of human health.

The components of the central circadian clock are transcriptional activators and

repressors, and cyclic activation and repression drive the oscillation that comprises

the pacemaker and generates the 24-h periodicity. In addition, these proteins drive

rhythms in many other genes, through both direct and indirect transcriptional

mechanisms. Although this transcriptional control is a major contributor to the

resulting rhythms in mRNA levels, a number of recent studies have demonstrated

that post-transcriptional regulation also must play an important role. For example, a

large percent of rhythmic mRNAs in liver do not have rhythmic pre-RNAs (Koike

et al. 2012; Menet et al. 2012) and, in mouse liver, almost 50 % of the rhythmic

proteins do not have rhythmic steady-state mRNA levels (Reddy et al. 2006).

Moreover, circadian rhythms can exist in red blood cells devoid of nuclei (O’Neill
and Reddy 2011; O’Neill et al. 2011). Therefore, regulatory mechanisms beyond

transcription can also drive rhythmic physiology.

Post-transcriptional Mechanisms

Although transcription drives mRNA synthesis, the ultimate protein expression

patterns also reflect regulation at many other levels (Fig. 1). Even as the mRNA

is being transcribed, large complexes of proteins associate with the nascent tran-

script and regulate the efficiency and pattern of splicing, the choice of 30-end
cleavage site and polyadenylation (Pawlicki and Steitz 2010). The mature transcript

undergoes further regulation during nuclear export, cytoplasmic localization, RNA

stability and translation. The importance of post-transcriptional regulation has

become clear over the last decade, with the discovery of many RNA binding

proteins, specific types of ribonucleases, and the extensive machinery that conducts

microRNA-mediated control of mRNA stability and translation. Although signifi-

cant progress has been made in this area, understanding of post-transcriptional

mechanisms still lags behind that of transcriptional processes.

The poly(A) tails at the 30-end of most eukaryotic mRNAs are thought to be

important for controlling translatability and stability, and one post-transcriptional

regulatory mechanism is to modulate the length of these tails. Indeed, regulation of

poly(A) tail length has been shown to play critical roles in many biological

processes, including oocyte maturation, mitotic cell cycle progression, cellular

senescence and synaptic plasticity (Gebauer et al. 1994; Groisman et al. 2002,

2006; Huang et al. 2002, 2006; Novoa et al. 2010). Changes in poly(A) tail length

can occur at many points during the lifetime of an mRNA. Long poly(A) tails of
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about 250 nt are initially added to the nascent transcript in the nucleus following the

30-end cleavage (Kuhn and Wahle 2004). Following export out of the nucleus, a

protein called cytoplasmic poly(A)-binding protein (PABPC) binds to the tail and

stabilizes the mRNA. Through direct interactions with the translation-initiation

factor eIF4G, which in turn binds to the cap-binding protein eIF4E, PABPC is

thought to facilitate translation initiation by forming a “closed-loop” circular

structure (Kuhn and Wahle 2004). Removal or shortening of the tail by a specific

class of ribonucleases called deadenylases can, in turn, result in translational

silencing and, in some cases, mRNA degradation. Alternatively, cytoplasmic

polyadenylation can, in some cases, lengthen the tail of an mRNA that was

previously shortened and stabilize it and render it translationally competent

(Richter 2007).

Circadian Control of poly(A) Tail Length

Daily variations in poly(A) tail length were reported for two mRNAs (Robinson

et al. 1988; Gerstner et al. 2012), causing us to wonder whether the circadian clock

uses this mechanism more broadly to regulate gene expression post-

transcriptionally. Therefore, we fractionated mRNAs from mouse livers collected

Fig. 1 Post-transcriptional regulation controls expression at many steps throughout the lifetime of

the mRNA, and rhythms in poly(A) tail length can result from transcriptionally coupled mecha-

nisms and cytoplasmic mechanisms (Kojima et al. 2012)
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at various circadian times into pools of mRNAs with short (~50 nt) and long

(>100 nt) poly(A) tails (Kojima et al. 2012) using a modification of an oligo

(dT) affinity chromatography method with differential elution stringencies (Meijer

et al. 2007). These pools of mRNAs, along with a non-fractionated total poly(A)+

control, were subjected to microarray analysis, and relative tail-length was deter-

mined by the ratio of expression of each mRNA in the long vs. short tail pools

(normalized for expression level using the total poly(A)+ expression level). Using

this method, followed by independent validation, we identified several hundred

mRNAs that exhibited robust changes in poly(A) tail length over the course of the

circadian day.

Further characterization of these mRNAs revealed that they fell into three

general classes (Fig. 1). The first class contained mRNAs that were transcribed

rhythmically and also exhibited rhythms in their overall steady-state levels. The

second class was also transcribed rhythmically but these mRNAs had long half-

lives and therefore were not rhythmic at the steady-state level. The third class of

mRNAs with rhythmic poly(A) tails were not rhythmic at either the level of

synthesis or at the steady-state level; these mRNAs appear to be long-lived and

have poly(A) tails that are cyclically shortened and lengthened in the cytoplasm.

Strikingly, in all the cases we tested, the poly(A) tail rhythms correlated with

rhythmic protein levels, even in the cases where the steady-state levels of the

mRNAs were not changing. These data suggest that circadian changes in poly

(A) tail length can significantly contribute to rhythmic protein synthesis, indepen-

dent of transcription.

Nocturnin Is a Circadian Deadenylase

The mechanism by which the clock controls poly(A) tail length is not well under-

stood and appears to involve different mechanisms at different circadian phases

(Kojima et al. 2012). However, one strong candidate is the deadenylase Nocturnin

(gene name, Ccrn4l; Green and Besharse 1996; Baggs and Green 2003), which is

robustly rhythmic in many mouse tissues, with peak expression in the middle of the

night (Wang et al. 2001; Garbarino-Pico et al. 2007; Kojima et al. 2010). Nocturnin

is a member of the superfamily of deadenylases that includes CCR4, Nocturnin,

Angel, and 20PDE (Goldstrohm and Wickens 2008; Godwin et al. 2013), but

Nocturnin has a distinct amino-terminus from the other members. Nocturnin is

also unique among all deadenylases in its characteristic high amplitude rhythms,

with nighttime peaks (most of the other deadenylases are arrhythmic or have very

low amplitude rhythms that peak in the day) (Kojima et al. 2012). In addition,

Nocturnin is unique in that it is an immediate early gene that is acutely induced by

many stimuli (Garbarino-Pico et al. 2007). Given the difference in temporal and

spatial expression patterns of the deadenylases (Yamashita et al. 2005; Morita

et al. 2007; Wagner et al. 2007; Kojima et al. 2012) and the different phenotypes

caused by disrupting specific deadenylases (Molin and Puisieux 2005; Morris
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et al. 2005; Green et al. 2007; Morita et al. 2007; Washio-Oikawa et al. 2007), it is

likely that each deadenylase targets a specific set of transcripts, although the

identities of these transcripts and the mechanisms by which they are targeted by a

particular deadenylase are not well characterized.

Loss of Nocturnin Results in Broad Metabolic Changes

The importance of Nocturnin’s contribution to circadian changes in poly(A) tail

length was tested by generating mice lacking Nocturnin (Noc�/�; Green

et al. 2007). These mice appeared normal and healthy when raised in standard

conditions and bred well. However, when raised on a Western-style high fat diet,

the Noc�/� mice did not gain weight at the same rate as the wild-type mice and

remained lean whereas the wild-type mice became obese (Fig. 2). The Noc�/�
mice had smaller fat pads and were protected from hepatic steatosis. Despite this

resistance to diet-induced obesity, the Noc�/�mice did not eat less, were not more

active, and did not show significant changes in whole body respiration as measured

in metabolic cages (Green et al. 2007; Douris and Green 2008). These mice did,

however, have changes in mRNA expression levels of many key metabolic regu-

lators in the liver, often showing loss of rhythmicity of normally rhythmic genes.

Nocturnin is likely not part of the core circadian mechanism, because the Noc�/�
mice had normal circadian locomotor rhythms and normal expression of the core

clock genes in the liver. However, it is directly regulated by the core circadian

transcription factor heterodimer CLOCK/BMAL1 and is, therefore, a direct output

of the intracellular core circadian loop. In addition, it is regulated by systemic

circadian signals, likely originating directly or indirectly from the core circadian

pacemaker in the suprachiasmatic nucleus in the hypothalamus, because Nocturnin

is one of only a few dozen rhythmic genes that maintain rhythmicity following

Fig. 2 Nocturnin knockout (KO) mice are resistant to diet-induced obesity. WT wild-type

(Modified from Green et al. 2007)
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genetic disruption of the clock, specifically in the liver of mice (Kornmann

et al. 2007).

Some clues to the mechanism behind the lean phenotype observed in the

Noc�/� mice came from examination of Nocturnin’s role in the small intestine

(Douris et al. 2011). Nocturnin is expressed throughout the digestive tract, but with

particularly high levels in the upper part of the small intestine. As in other tissues, it

is robustly rhythmic, peaking during the night—the time of maximal food intake in

the nocturnal mouse. Pan and Hussain (2009) had previously shown that many of

the transporters involved in macronutrient absorption by the intestinal enterocytes

were under the control of the circadian clock. Accordingly, we found that lipid

absorption in the wild-type mice was strongly circadian, with rapid appearance of

newly ingested lipoprotein particles into the circulation when the mice were

gavaged with olive oil at night, but slow and limited appearance when olive oil

was administered during the day. In contrast, the Noc�/� mice had no rhythm in

absorption and exhibited slow “daytime-like” absorption profiles following gavage

given both night and day (Douris et al. 2011; Stubblefield et al. 2012). Furthermore,

the enterocytes in the Noc�/� mice accumulated large cytoplasmic lipid droplets,

suggesting that dietary lipids were stored in these cells when Nocturnin was not

present—at all times in the Noc�/� cells or during the daytime in wild-type mice.

The mechanism by which this deadenylase regulates dietary lipid absorption is not

clear, but several mRNAs that encode proteins involved in lipid droplet formation,

breakdown and chylomicron assembly are dysregulated in the Noc�/� intestine,

and some of these may be direct targets of Nocturnin deadenylase activity.

Nocturnin also plays important roles in other metabolically relevant tissues. In

bone, Nocturnin interacts with a specific long isoform of Igf1 mRNA, suppressing

its expression (Kawai et al. 2010a). In bone-marrow stromal cells, Nocturnin is

acutely induced more than 30-fold by the peroxisome proliferator-activated recep-

tor gamma (PPAR-gamma) agonist rosiglitazone, and Noc�/� mice have reduced

marrow adiposity and high bone mass (Kawai et al. 2010b). In addition,

overexpression of Nocturnin enhances adipogeneis in preadipocyte 3T3-L1 cells

and negatively regulates osteogenesis in mouse osteoblastic MC3T3-E1 cells

(Kawai et al. 2010b). Together these data suggest that Nocturnin plays an important

role in the mesenchymal stem-cell lineage allocation that may ultimately influence

adipogenesis and body composition.

Conclusions

The large contribution of post-transcriptional regulation to the generation and

modulation of rhythmic mRNA and protein profiles has recently become apparent

largely thanks to the use of genome-wide interrogation of rhythmic mRNA expres-

sion and transcriptional and post-transcriptional states. The ongoing development

of innovative high-throughput methods for analyzing various nuances of gene

expression (TAIL-seq, GRO-seq, CLIP-seq, and many more) will undoubtedly
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yield ever more information about how the clock controls the many layers of gene

expression that drive the complex rhythmic physiology and behavior of mammals.

We expect that new modes of post-transcriptional regulatory mechanisms will be

uncovered and that these will be shown to play an important role in shaping these

rhythms.

Nocturnin is likely only one of many post-transcriptional modulators that con-

tribute to circadian expression profiles, but the profound metabolic phenotype in the

Noc�/� mice shows that it is playing an important role in regulating circadian

metabolic profiles. However, to understand how loss of Nocturnin causes these

phenotypes, it will be critical to identify the relevant Nocturnin target mRNAs and

to uncover how these target mRNAs are recognized by Nocturnin. Finally, the exact

function of deadenylation by Nocturnin is still not clear. Although removal of tails

has long been thought to target them for decay, it has recently been discovered that

many mRNAs are maintained in the cell in short-tailed states that are quite stable.

Are these short-tailed mRNAs translationally silent and waiting to have their tails

lengthened in response to the appropriate signal or do they have some other

function? Only time will tell. . .
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Redox and Metabolic Oscillations

in the Clockwork

Akhilesh B. Reddy

Abstract Daily (circadian) clocks have evolved to coordinate behaviour and physio-

logy around the 24-h day. Most models of the eukaryotic circadian oscillator have

focused principally on transcription/translation feedback loop (TTFL) mechanisms,

with accessory cytosolic loops that connect them to cellular physiology. Recent work,

however, questions the absolute necessity of transcription-based oscillators for circa-

dian rhythmicity. The recent discovery of reduction-oxidation cycles of peroxiredoxin

proteins, which persist even in the absence of transcription, have prompted a

reappraisal of current clock models in disparate organisms. A novel mechanism

based on metabolic cycles may underlie circadian transcriptional and cytosolic

rhythms, making it difficult to know where one oscillation ends and the other begins.

Introduction

Daily biological clocks provide living organisms with temporal organisation over a

24-h timescale. Organisms from bacteria to humans have evolved these rhythms to

adapt their physiology to the solar cycle and anticipate the availability of resources

(e.g., food and light; Bass 2012). Despite their presence in evolutionarily disparate

organisms, the molecules underlying the clockwork seemed to be different in these

organisms. This finding has given rise to the identification of “clock genes” that

oscillate with 24-h periods but that are not related in their DNA or protein

sequences, except in some cases when comparing fruit flies and mammals. This

has led to the notion of the divergent evolution of different clock circuits in various

model organisms, the only link being the way in which the components are joined

together in a negative feedback loop topology (Rosbash 2009; Fig. 1).
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Challenging Transcriptional Models of the Clockwork

An increasing number of studies, both in higher and lower organisms, have

questioned the necessity of a functional transcriptional oscillator for cellular rhyth-

micity. Circadian transcription is stochastic in mammalian cells (Suter et al. 2011);

therefore, one would expect that perturbation of transcription during cell division

would result in phase variability, which is not seen. In line with this finding, global

inhibition of transcription with actinomycin D and α-amanitin has revealed the

robustness of circadian oscillators to such severe perturbations, and single cells

exhibit bioluminescence rhythms even when the transcription rate is reduced by

~70 % (Dibner et al. 2009).

Perhaps more importantly, studies showing that constitutive expression, or

deletion, of “clock genes” does not abolish circadian rhythms call into question

the importance of transcription in current clock models. In flies, expression of both

per and tim under the control of a constitutive promoter can affect circadian

rhythms. However, ~50 % of the flies still exhibited robust behavioral rhythms

(Yang and Sehgal 2001). Similarly, fungi can exhibit conidiation (spore formation)

rhythms in the absence of central components of their feedback loop [involving the

frequency ( frq) gene] (Lakin-Thomas 2006). Moreover, in some organisms, the

dominant mechanism regulating circadian rhythms seems to be post-

transcriptional, as exemplified by the circadian control of translation of luciferin

binding protein (LBP) in the unicellular alga Gonyaulax polyedra (Morse

et al. 1989; Mittag et al. 1994).

KaiA 
KaiB 
KaiC
 

FRQ 
WC-1 
WC-2
 

TOC-1 
CCA-1
 

Per 
Tim 

Clock 
Cycle 

Per 
Cry 

Clock 
Bmal1 

“ Clock Genes”

FungusCyanobacteria Plants Fly Mouse

Model Organism

Fig. 1 The dominant model organisms used for the study of circadian rhythms are shown. Below

are lists of the more important clock genes that are/were thought to mediate negative feedback

loops in these organisms. At the DNA or protein sequence levels, there is no evolutionary

conversation beyond some in fly and mammals
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In mammals, the situation is difficult to dissect since circadian genes often have

multiple homologues; therefore, double-mutant animals are generally needed to

observe a behavioral phenotype. Bmal1was thought to be the only exception to this,
with its suppression leading to clear behavioural arrhythmicity (Ko et al. 2006).

Constitutive brain-specific expression of Bmal1 in knock-out animals is, however,

able to restore behavioral rhythmicity, questioning the necessity of rhythmic Bmal1
transcription (McDearmon et al. 2006). In addition, brain-specific knockout of

Bmal1 expression produces gross pathology, with a striking abundance of activated
microglia in the brains of mice, which gets progressively worse over the first

6 months of life. This finding makes it extremely difficult to dissociate the effects

if BMAL1 as a generically important transcription factor from those specifically

related to the malfunctioning of a biological clock (Musiek et al. 2013).

Even more importantly, imaging of suprachiasmatic nucleus (SCN) slices from

arrhythmic Bmal1�/� and Cry1�/�Cry2�/� animals with bioluminescence

reporters revealed the persistence of low amplitude rhythms in individual neurons

(Ko et al. 2010; Maywood et al. 2011). As recently shown, it is likely that

developmental effects underlie the apparent arrhythmicity that is observed when

adult animals are assayed, as is the case in most experimental paradigms (Ono

et al. 2013).

There is thus considerable evidence that current transcription-translation feed-

back loops cannot account for the multiple lines of experimental evidence that have

revealed circadian oscillations in the presence of inactivated feedback loops or

indeed in their absence.

Non-transcriptional Clock Mechanisms

The experimental anomalies highlighted above suggest that other mechanisms

are required to fully explain the molecular basis of circadian timekeeping. It is

indeed worth underscoring that transcriptional mechanisms were regarded as only

one of the several possibilities that were investigated before the discovery of

“clock genes” (Edmunds 1988).

An instructive outlier in clock research is the macroscopic unicellular alga

Acetabularia, which can maintain self-sustained circadian rhythms in photo-

synthetic activity when its nucleus is removed by cutting off its nucleus-containing

rhizoid process (Sweeney and Haxo 1961). Intriguingly, its nucleus is able to

dictate the phase of oscillation but is dispensable for entrainment and phase shifting

(Schweiger et al. 1964). Moreover, inhibition of transcription with Actinomycin D

did not suppress rhythms in either nucleated or enucleated Acetabularia cells,

although the former surprisingly lost rhythmicity after 2 weeks under these condi-

tions (Mergenhagen and Schweiger 1975). Similarly, platelets were used to show

that glutathione exhibited circadian oscillations relying on de novo synthesis of this

important cellular reductant (Radha et al. 1985), again in the absence of a nucleus.

These examples point to the fact that current circadian models cannot explain issues
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raised almost 40 years ago, in some cases, suggesting the existence of

non-transcriptional rhythms.

How can we reconcile these seemingly opposite views? One way is to view

transcription and translation in the current models as having limited roles in setting

the pace of the oscillator and to note that they are needed to maintain the levels of

clock proteins and to control circadian output functions. Accordingly, post-

translational modifications of known clock proteins could be the fundamental

oscillator, but the transcriptional oscillator would be important for robustness and

could amplify post-translational oscillations. In fact, such a model exists in

cyanobacteria, in which the master transcriptional regulator KaiC is part of its

post-translational oscillator.

An alternative point of view is that circadian timekeeping might have evolved

more than one clock in the cell to meet the requirements of precision, robustness

and stability. In this case, the known transcriptional oscillator would be coupled to a

post-translational oscillator. Post-translational modifications are an integral feature

of the current transcription-translation feedback models, but a definitive post-

translational oscillator has not yet been identified in eukaryotic species. The recent

discovery of oxidation cycles in peroxiredoxin proteins (PRDXs) offers a new

window on non-transcriptional rhythms in higher organisms (O’Neill and Reddy

2011; O’Neill et al. 2011; Edgar et al. 2012; Olmedo et al. 2012). More importantly,

this finding immediately suggests a common phylogenetic origin for circadian

timekeeping mechanisms in virtually all species relying on oxygen for energy

metabolism (Edgar et al. 2012).

PRDX Rhythms

PRDXs are an antioxidant protein family involved in hydrogen peroxide meta-

bolism and signalling (Hall et al. 2009). Their catalytic mechanism involves the

oxidation of a catalytic cysteine residue in the enzymes’ active site to sulfenic acid

(Cys-SOH), which then forms a disulfide bond with another non-catalytic (and

so-called ‘resolving’) cysteine residue. The thioredoxin system usually completes

the cycle by reducing this disulfide bond while oxidising a molecule of NADPH.

This catalytic loop has rapid turnover and allows the maintenance of low levels of

intracellular hydrogen peroxide.

So-called ‘typical 2-Cys PRDXs,’ a subclass of PRDXs whose basic functional
unit is a homodimer in which catalytic and resolving cysteine residues belong to

different molecules of PRDX, are the main players implicated in circadian cycles.

These can undergo further oxidation of their catalytic cysteine to sulfinic and

sulfonic acid forms (Cys-SO2/3H). The ‘over-oxidised’ Cys-SO2H residues can be

slowly recycled through adenosine triphosphate (ATP)-dependent reduction by

sulfiredoxin (Rhee et al. 2007), whereas further oxidation to Cys-SO3H (termed

‘hyper-oxidation’) is thought to be irreversible.

54 A.B. Reddy



Human red blood cells do not undergo transcription since they lack nuclei in

their mature form. In these unique cells, PRDXs exhibit circadian accumulation of

their dimeric over-oxidised form (PRDX-SO2H) over several days (O’Neill and
Reddy 2011). Such rhythms fulfil all criteria for circadian rhythms: (1) persistence

in constant conditions; (2) the ability to be entrained (via temperature cycles in this

case); and (3) temperature compensation (the clock does not run faster in higher

temperatures). In addition, these redox rhythms are accompanied by oscillations in

haemoglobin oxidation and metabolic variables, including NADH and NADPH

(Fig. 2). Similar results have also recently been found in mouse red blood cells

(Cho et al. 2014).

Fig. 2 A range of circadian oscillations in human red blood cells. (a) Oxidation of PRDXs occurs

on a circadian basis in cells maintained in constant conditions (in the absence of external temporal

cues) for at least 3 consecutive days. (b) Dynamic changes in the equilibrium of haemoglobin

forms (tetramer vs. dimer states) oscillate according to a 24-h rhythm in vitro. (c) Oscillation of the

key cellular reductants, NADH and NADPH, in red blood cells
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Rhythms similar to these are also present in the unicellular alga Ostreococcus
tauri, even when transcription is inhibited by prolonged darkness (O’Neill
et al. 2011); they are autophototrophic, requiring light for synthesis of most cellular

substrates including RNA. Moreover, the deep phylogenetic conservation of PRDX

redox rhythms extends to include fungal, plant, bacterial and even archaeal species.

Critically, such rhythms are not dependent on previously identified clock genes,

since mutants lacking circadian components maintain redox oscillations, albeit

slightly phase-shifted (Edgar et al. 2012).

The phylogenetic conservation of PRDX rhythms suggests that primordial redox

oscillators probably evolved following the Great Oxidation Event 2.5 billion years

ago. At this time, photosynthetic bacteria are thought to have acquired the ability to

produce oxygen from water, which caused a dramatic rise in Earth’s atmospheric

oxygen. Rhythmic production of oxygen and reactive oxygen species (ROS) by

sunlight may therefore have been a critical driving force in the co-evolution of

clock mechanisms and ROS removal systems that could anticipate, and thus

resonate with, externally driven redox cycles (Bass 2012; Edgar et al. 2012; Fig. 3).

4 Bya 3 Bya 2 Bya 1 Bya TodayAge

Hadean Archean Proterozoic Phanerozoic

100

1
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0.0001

Great Oxidation Event

LUCA

Bacteria

Archaea

Algae Plants

Fungi Insects

Mammals

Eukaryota

KaiABC oscillator
ROS pathways (PRX, SOD)

TOC1-CCA1 oscillator
FRQ oscillator
PER oscillator

cAMP/Ca2+ signalling, CK1/2, GSK3

Era

Pathway

O2 (%)

Fig. 3 Phylogenetic origins of circadian oscillatory systems. A timeline is shown at the top of the
schematic, with the geological era illustrated. A schematic phylogenetic tree shows the origins of

each organism studied, stemming from the last universal common ancestor (LUCA). The putative

epoch over which each oscillator system has existed is illustrated by the labeled bars. CK1/2,

casein kinase 1 or 2; GSK3, glycogen synthase kinase 3; SOD, superoxide dismutase (Adapted

from Edgar et al. 2012)
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Redox and Metabolic Clocks in Eukaryotes

There is clearly an interplay between circadian and metabolic cycles, and there is

good evidence of reciprocal effects that disruption of one cycle has on the other at

physiological and molecular levels (Bass 2012; Rey and Reddy 2013). High-fat

diet, for example, lengthens the behavioral period of rhythms in mice and changes

the expression pattern of clock genes (Kohsaka et al. 2007). Conversely, healthy

patients subjected to 3 weeks of circadian disruption exhibit pre-diabetic symptoms

(Buxton et al. 2012). The growing evidence suggesting that circadian rhythms are

fundamentally metabolic requires that currently understood transcriptional oscilla-

tions are tightly coupled to metabolic cycles. This hypothesis is strongly supported

by the numerous examples of accessory loops embedding the circadian transcrip-

tional clock within cellular metabolism (Fig. 4).

An accessory loop involving NAD+/NADH is likely to play an important role in

connecting cytosolic and compartment-specific redox states to transcriptional clock

components such as PER2 (Asher et al. 2008) and CLOCK/BMAL1 (Rutter

et al. 2001; Nakahata et al. 2008; Asher et al. 2010; Yoshii et al. 2013). In addition,

other redox-sensitive mechanisms have been identified in the clockwork and, in

particular, the heme-sensing transcriptional regulators (Dioum et al. 2002; Yin

et al. 2007; Gupta et al. 2011).

Even in early molecular studies of the circadian clock, before “clock genes” had

been discovered in any model organism, rhythms in redox had been reported. For

example, in plants, NADP+:NADPH ratio exhibited circadian cycles in seedlings

kept in constant darkness (Wagner and Frosch 1974). Several studies in rodents

Fig. 4 Links between transcriptional, cytosolic, and metabolic cycles. Cytosolic processes are

thought to be part of the transcription/translation feedback loop (TTFL). The latter are involved

mainly in redox and energy metabolism and form accessory loops that are controlled by the TTFL

oscillator and, in turn, feed back to it. Abbreviations: CREB cAMP response element-binding

protein, GRE glucose response element, PARP poly(ADP-ribose) polymerase, PTMs posttransla-
tional modifications (Adapted from Reddy and Rey 2014)
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showed that redox parameters, including the glutathione redox ratio, were diurnally

regulated in the liver, although it is possible that these oscillations might have been

partially driven by food intake (Isaacs and Binkley 1977a, b; Robinson et al. 1981;

Kaminsky et al. 1984; Belanger et al. 1991). Nevertheless, human platelets kept

in vitro showed circadian rhythms in glutathione content (Radha et al. 1985),

suggesting that feeding cycles might internally resonate with these cell-autonomous

biochemical rhythms.

The hypothesis that metabolic cycles might be a fundamental mechanism under-

lying biological clocks has been proposed based on both theoretical and experi-

mental observations (Roenneberg and Merrow 1999). Potential evidence for this

hypothesis in mammals has come from theMcKnight and Sagami groups, who have

shown that BMAL1/CLOCK DNA-binding activity can be modulated in vitro by

the redox poise of NAD(P)+/NAD(P)H coenzymes (Rutter et al. 2001; Yoshii

et al. 2013). In addition, the action of BMAL1/CLOCK on the NAD+-producing

enzymes lactate dehydrogenase (Ldh) and Nampt could potentially feed back onto

intracellular redox balance (Rutter et al. 2001; Nakahata et al. 2009; Ramsey

et al. 2009). These results still require in vivo confirmation, given the relatively

high concentration (millimolar range) of the coenzymes used in in vitro assays

previously (Rutter et al. 2001; Yoshii et al. 2013). The recent discovery of PRDX

oscillations in non-transcriptional systems, however, offers supportive evidence

that redox cycles can function as circadian oscillators in their own right.

It is evident that, in organisms in which metabolic oscillations have been found

but transcription-translation feedback loops have not, as in the worm

Caenorhabditis elegans, insights into metabolic oscillatory mechanisms may be

easier to come by. It is thus possible that metabolic oscillations could drive PRDX

oscillations in the absence of known transcriptional feedback oscillators (Olmedo

et al. 2012). So-called accessory loops, including NAD+/NADH and NADP+/

NADPH cycles, are potential candidates for self-sustained metabolic oscillators,

but further studies of their oscillatory properties in clock mutant backgrounds will

be of great interest to identify bona fide components of metabolic oscillators.

However, this assumes that deletion of important circadian-relevant transcription

factors itself does not lead to abhorrent redox changes in cells and tissues, as is the

case in Bmal1�/� animals (Kondratov et al. 2006), which could compromise redox

oscillations indirectly.

Conclusion

Metabolic non-transcriptional cycles clearly interlock with transcriptional pro-

cesses in the circadian system. The peroxiredoxin system could be part of an

uncharacterised metabolic oscillator, given its broad phylogenetic conservation

and its slow kinetics, which is compatible with 24-h rhythmicity. Establishing the

molecular links between fundamental cellular redox metabolism and transcriptional

components of the clockwork remains an exciting challenge in the field.
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Rev-erbs: Integrating Metabolism Around

the Clock

Mitchell A. Lazar

Abstract Mammalian circadian and metabolic physiologies are intertwined, and

the nuclear Rev-erbα is a key transcriptional link between them. Rev-erbα, and the

highly related Rev-erbβ, are potent transcriptional repressors that are required for

the function of the core mammalian molecular clock. The Rev-erbs are also critical

regulators of clock output in metabolic cells and tissues. This chapter focuses on the

physiological functions of Rev-erbα and β in regulating circadian rhythms and

metabolism in mammalian tissues.

Introduction

Much of biology is conducted with rhythms that have a phase of approximately

24 h, matching the duration of a day on planet Earth (Huang et al. 2011). The

genetic basis of these circadian rhythms was unveiled in the fruit fly, Drosophila
melanogaster, where the clock mechanism involves feedback regulation by factors

whose own expression exhibit circadian rhythmicity (Rosbash et al. 1996). These

factors function as transcriptional regulators, and it is now recognized that most

genomes, including those of all mammals that have been evaluated, are transcribed

in a rhythmic manner (Schibler 2006).

The mammalian clock mechanism involves interconnected transcriptional and

translational feedback loops, where the most well-understood positive regulator is a

heterodimer of the basic helix-loop-helix (HLH) transcription factors BMAL1 and

CLOCK (King and Takahashi 2000). In addition to positively regulating clock output

genes, the BMAL1/CLOCK heterodimer activates the expression of two negative

regulators. One is another bHLH heterodimer, comprised of the proteins PERIOD

(PER) and CRYPTOCHROME (CRY), which interact with BMAL1/CLOCK to
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interfere with its activity (King and Takahashi 2000). The second repressive loop is

mediated by the Rev-erb nuclear receptors (NRs) α and β, of which Rev-erbα is the

more highly functional (Everett and Lazar 2014). This chapter will focus on the

Rev-erbs, particularly on the more well-studied Rev-erbα.

Repression of Transcription by Rev-erbs

Rev-erbs belong to a large NR superfamily of ligand-regulated transcription factors

(Evans 2013). Discovered in 1989 (Lazar et al. 1989; Miyajima et al. 1989),

Rev-erbα was one of the first identified orphan NRs, i.e., a member of the family

whose ligand was not predicted from earlier physiology and biochemical studies

(Mullican et al. 2013). The highly related Rev-erbβ was identified in 1994

(Bonnelye et al. 1994; Dumas et al. 1994; Forman et al. 1994; Retnakaran

et al. 1994). Molecular heme has been identified as the endogenous ligand for

Rev-erbα and Rev-erbβ (Raghuram et al. 2007; Yin et al. 2007). Although the

physiological function of this regulation is not well understood, the ability to sense

heme levels may position Rev-erb as a mediator of metabolic effects on

metabolism.

Rev-erbs bind sequence-specifically to DNA, with the preferred binding site

consisting of the classical NR half-site AGGTCA flanked by an A/T-rich 50

sequence (Harding and Lazar 1993). This binding site is referred to as the RevRE

or as the RORE, as it is also bound by the Retinoic Acid Receptor-related Orphan

Receptor (ROR; Giguere et al. 1994). The DNA-binding domain (DBD) of

Rev-erbα binds in the major groove of the AGGTCA half-site, whereas a

C-terminal extension makes minor groove contacts with the A/T-rich 50 sequence
(Zhao et al. 1998). Rev-erbs bind as a monomer to this site but bind even more

tightly as a dimer to a direct repeat with a 2 base pair spacer, referred to as the

RevDR2 (Harding and Lazar 1995).

Rev-erbs lack the C-terminal region that is required for ligand-dependent tran-

scriptional activation by other NRs (Glass and Rosenfeld 2000). Thus, they function

primarily as potent repressors of transcription when bound to DNA (Zamir

et al. 1997), interacting constitutively with the Nuclear Corepressor 1 (NCoR;

Horlein et al. 1995; Zamir et al. 1996). NCoR is a large protein (~270 kDa) with

inherent repressive function as well as several short helical domains that specifi-

cally interact with NRs, called the corepressor-NR (CoRNR) boxes (Hu and Lazar

1999). Heme further stabilizes its interaction with full-length, endogenous NCoR

(Raghuram et al. 2007; Yin et al. 2007). In addition to serving as a heme sensor, the

Rev-erb activity may also be sensitive to the oxidation state of the heme iron

(Marvin et al. 2009). To bind NCoR stably enough to actively repress transcription,

two Rev-erbα molecules must interact with CoRNR peptides from NCoR; this

interaction can occur at the RevDR2 site, which the Rev-erbs bind cooperatively

as a dimer, or at two Revre/RORE sites bound independently by Rev-erb monomers

(Zamir et al. 1997).
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NCoR represses transcription by nucleating a large multiprotein repressor com-

plex, which impacts the epigenome and the function of core transcriptional factors

and RNA polymerase II (Guenther et al. 2000; Yoon et al. 2003). Stoichiometric

components of the NCoR complex include Transducin Beta-Like 1 (TBL1),

G-protein Pathway Suppressor 2 (GPS2), and Histone Deacetylase 3 (HDAC3;

Guenther et al. 2000; Zhang et al. 2002; Yoon et al. 2003). HDAC3 is of particular

interest, because it is an epigenomic modulator that deacetylates lysine residues in

the tails of nucleosomal histone proteins to create a repressive chromatin environ-

ment (Haberland et al. 2009). NCoR and HDAC3 are both required for Rev-erbα to

repress Bmal1 gene transcription (Yin and Lazar 2005), and both NCoR and

HDAC3 are associated with Rev-erbα at thousands of DNA binding sites genome

wide in the mouse liver (Feng et al. 2011).

Circadian Biology of Rev-erbs

In 1998, Rev-erbα was noted to one of the genes that oscillates within the circadian

transcriptome of mammalian cells cycling in tissue culture (Balsalobre et al. 1998).

In mice Rev-erbαmRNA expression is robustly circadian in multiple tissues (Yang

et al. 2006), and genetic deletion of Rev-erbα shortens the period of behavioral

rhythms by ~30 min in the absence of daily light cues (Preitner et al. 2002).

Rev-erbα modulates the rhythmicity of additional circadian regulators, including

Clock (Crumbley and Burris 2011), Cry1 (Ukai-Tadenuma et al. 2011), Nfil3/
E4Bp4 (Duez et al. 2008), and Npas2 (Crumbley et al. 2010) and thus has a

major influence on the cell-autonomous molecular timing system. Indeed, consti-

tutive expression of Rev-erbα in mouse liver represses the majority of cycling

transcripts (Kornmann et al. 2006). Importantly, ablation of both Rev-erbα and β
abrogates circadian gene expression in mouse embryonic fibroblasts, demonstrating

a fundamental requirement for the Rev-erbs (Bugge et al. 2012). Moreover, genetic

mutation of Rev-erbα and β caused arrhythmic behavior in mice (Cho et al. 2012).

Therefore Rev-erbα and β are both required components of the core clock machin-

ery. Loss of either Rev-erb alone is insufficient to abolish circadian rhythms,

indicating that their clock functions are redundant, although Rev-erbα is more

critical because its absence modestly disrupts normal circadian rhythms whereas

the loss of Rev-erbβ does not.

Rev-erbα and Metabolism

Circadian rhythms and metabolism are highly intertwined (Eckel-Mahan and

Sassone-Corsi 2013), and indeed Rev-erbα regulates metabolic function in many

tissues. In the liver, Rev-erbα regulates cholesterol and bile acid metabolism (Duez

et al. 2008; Le Martelot et al. 2009), and more recently has been observed to play a
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key role in the circadian regulation of triglyceride metabolism (Feng et al. 2011).

Rev-erbα binds widely and robustly to the genome at ZT10, when its expression is

maximal; however, it binds to very few sites when its expression is at a nadir, such

as at ZT22. This genomic binding is enriched at genes involved in lipid metabolism

and, indeed, mice lacking Rev-erbα have mild fatty liver, or hepatic steatosis (Feng

et al. 2011). The oscillatory expression of Rev-erbα regulates circadian gene

expression directly at target genes with strong binding motifs, whose circadian

expression is antiphase to that of Rev-erbα, as well as indirectly by repression of

another circadian repressor called E4BP4, whose target genes are expressed in

phase with Rev-erbα (Fang et al. 2014). The liver cistrome of Rev-erbβ is quite

similar, and knockdown of Rev-erbβ in livers of Rev-erbα null mice caused a more

markedly fatty liver (Bugge et al. 2012). NCoR and HDAC3 bind to the genome at

the vast majority of Rev-erb sites and, indeed, ablation of either NCoR or HDAC3

in mouse liver leads to marked hepatic steatosis (Knutson et al. 2008; Sun

et al. 2012, 2013).

Studies of adipocyte differentiation in cultured cell lines have suggested that

Rev-erbα plays an important role in adipocyte differentiation (Chawla and Lazar

1993; Fontaine et al. 2003; Wang and Lazar 2008), yet white adipose tissue (WAT)

mass was not reduced in mice lacking Rev-erbα (Chomez et al. 2000; Delezie

et al. 2012), indicating that Rev-erbα is not absolutely required for adipocyte

formation in vivo. Rev-erbα may play a role in brown adipose tissue (BAT),

which is a major site of thermogenesis (Gerhart-Hines et al. 2013). Circadian

expression of Rev-erbα in BAT peaks at ZT10, which is antiphase to the circadian

rhythm of body temperature. Mice lacking Rev-erbα have a higher nadir in body

temperature, at least in part due to derepression of Uncoupling Protein 1 (UCP1),

which is a circadian target of Rev-erbα and constitutively high in the BAT of mice

genetically lacking Rev-erbα (Gerhart-Hines et al. 2013). Mice also have an

increased vulnerability to cold temperature at times of day when Rev-erbα levels

are high; this vulnerability is ameliorated in the absence Rev-erbα (Gerhart-Hines

et al. 2013).

A role for Rev-erbα in skeletal myocytes was first identified in C2C12 cultured

myoblasts, where Rev-erbα represses the expression of genes involved in muscle

cell differentiation (Downes et al. 1995). Rev-erbα mRNA expression is circadian

manner in mouse skeletal muscle (Yang et al. 2006), and loss of Rev-erbα function

reduces mitochondrial content and function, leading to an impaired exercise capac-

ity (Woldt et al. 2013). It should be noted that the transcriptomic changes in muscle

are not observed in liver or BAT and thus reflect tissue-specific functions of

Rev-erbα.
Rev-erbα is also expressed in a circadian manner in the pancreatic islets and

plays a role in the function of insulin-producing β-cells and glucagon-producing

α-cells (Vieira et al. 2012, 2013). Islets isolated at the peak of Rev-erbα expression

have higher levels of glucose-stimulated insulin secretion (Vieira et al. 2012), and

Rev-erbα also promotes glucagon secretion in α-cells of the pancreas (Vieira

et al. 2013).
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Inflammatory cells are increasingly linked to metabolic function (Osborn and

Olefsky 2012), and Rev-erbα mediates the circadian gating of the LPS-induced

endotoxic response (Gibbs et al. 2012). Genome-wide studies of Rev-erbα and

Rev-erbβ cistromes and transcriptomes suggest that Rev-erbα influences macro-

phage gene expression at bindings sites marked by hematopoietic transcription

factors, including PU.1 (Lam et al. 2013).

Conclusions

The nuclear receptor Rev-erbα acts in a tissue-specific manner to regulate circadian

rhythms as well as metabolism, in some cases acting redundantly with Rev-erbβ. A
critical question is whether Rev-erbα can be targeted for therapeutic purposes.

Synthetic pharmacological agonists have been developed (Grant et al. 2010; Solt

et al. 2012), yet the tissue-specific complexity of Rev-erb biology raises major

challenges to human therapeutics. Perhaps the dramatic circadian expression of

Rev-erbs can be exploited by timing drug delivery to selectively impact their

specific and beneficial functions in integration of metabolism and the circadian

clock.
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Control of Sleep-Wake Cycles in Drosophila

Abhishek Chatterjee and François Rouyer

Abstract Inter-oscillator communication modulates and sustains the circadian

locomotor rhythms in flies and rodent animal models. In Drosophila, the multi-

oscillator network that controls sleep-wake cycles includes about 150 clock neu-

rons. A subset of lateral neurons (LNs) expressing the Pigment-dispersing factor

(PDF) appears to act as a master clock in constant darkness (DD). In light–dark

(LD) cycles, flies show a bimodal distribution of their activity, and the

PDF-expressing LNs play a major role in the control of the morning bout of

activity. In contrast, a subset of PDF-negative LNs can generate evening activity

in the absence of other functional oscillators. How these oscillators interact in a

fully functional network to shape the sleep-wake cycle remains debated. The PDF

neurons strongly influence the PDF-negative ones in DD and, to a lesser extent, in

LD. The extent of hierarchy depends on environmental conditions and the way the

dominance of PDF neurons is exerted on the different types of PDF-negative

neurons is unclear. The recent discovery of light- and temperature-dependent

oscillators in the dorsal neurons (DNs) sheds new light on the circuits that control

the Drosophila diurnal behavior and its adaptation to environmental changes.

Background

The fruit fly Drosophila melanogaster displays rest-activity rhythms that rely on a

circadian clock located in the brain. In light–dark (LD) cycles, adult flies show a

bimodal activity with morning and evening peaks at dawn and dusk. Activity

rhythms persist in constant darkness (DD), indicating the circadian nature of this

behavior. Like peripheral clocks, the brain clock depends on a molecular feedback

loop where the CLOCK (CLK) and CYCLE (CYC) transcriptional factors drive the

expression of the PERIOD (PER) and TIMELESS (TIM) proteins that repress

CLK/CYC activity. The negative feedback loop operates in about 150 neurons,
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the so-called clock neurons, which account for about 0.1 % of the total CNS neural

population. The numerical simplicity of these 150 neurons that form a network is

remarkable in comparison to central circuits for other hardwired behaviors such as

courtship or learning and memory. The Drosophila clock neuronal network is also

remarkably simple in comparison to circadian control circuits in vertebrates, where

several brain areas, including the hypothalamus, pituitary gland, pineal gland,

olfactory bulb, etc., harbor numerous bona fide clock neurons. This smaller number

of neurons offers the potential to manipulate oscillators at the single-cell level

in vivo, through well-defined genetic handles.

There are two broad populations within the 150 clock neurons of the fly brain;

one population is laterally placed and another is located along the dorsal margin of

the brain. The lateral neurons (LNs) lie near the interface of the central brain and the

optic lobe and are organized into a ventral cluster that include small (s-LNvs) and

large (l-LNvs) cells, a dorsal cluster (LNds) and a posterior cluster (LPNs). The

dorsal neurons (DNs) are in turn subdivided into three clusters designated as DN1,

DN2 and DN3 (Fig. 1). Such anatomical categorization frequently has neurochem-

ical and functional bases; for example, the four most ventral s-LNvs express the

Pigment-dispersing factor (PDF) neuropeptide and promote morning activity in

LD. Based on strong functional data, mostly behavioral and some neurophysiolog-

ical in nature, a wiring diagram of these differentiated clusters of brain clock

neurons has begun to materialize over the past 10 years. In the following section

we will summarize the logic of organization of this circuit.

MB
EB

PI

ME

LOB

v

Fig. 1 The clock neurons of the Drosophila brain. Left panel: seven groups of clock neurons have
been defined on an anatomical basis. The lateral neurons are organized into a ventral cluster that

include small (s-LNvs) and large (l-LNvs) cells, a dorsal cluster (LNds) and a posterior cluster

(LPNs). The dorsal neurons include three clusters designated as DN1, DN2 and DN3. Several

neuropiles are indicated: Medulla (ME) and Lobula (LOB) in the optic lobe and Pars

Intercerebralis (PI), Mushroom Bodies (MB) and Ellipsoid Body (EB) in the central brain. Central
panel: projections of the different clock neuron subsets: s-LNvs and l-LNvs (orange), LNds and
fifth PDF-negative s-LNv (red), DN1s (blue). Right panel: communication between neuronal

clusters involves PDF from s-LNvs to LNds and DN1s as well as from l-LNvs to LNds, and

glutamate from DN1s to s-LNvs
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Layout of the Network in Constant Conditions

In the absence of cycling environmental cues, the fly clock circuit has been shown

to adopt a functionally minimalist organization. In flies that experienced light–dark

cycles and were subsequently kept in constant darkness, the presence of

PDF-expressing s-LNvs was required to drive robust rhythmic behavior

(Helfrich-F€orster 1998; Renn et al. 1999) and a clock restricted to the

PDF-expressing cells was sufficient to drive 24-h rhythms (Grima et al. 2004). In

contrast, PDF-negative neurons drove behavioral rhythmicity under constant light

if light inputs were reduced by the absence of the cell-resident photopigment

cryptochrome (CRY). The precise location of these neurons that act as the pace-

maker in constant light (LL) has been suggested to be either within the LNd cluster

(Picot et al. 2007) or within the DN1s (Murad et al. 2007; Stoleru et al. 2007). In

spite of running a functioning oscillator, the s-LNv neurons fail to influence the

behavioral period in LL (Picot et al. 2007; Stoleru et al. 2007). The predominant

contribution of the s-LNvs to behavioral rhythmicity, as evident in DD, becomes

dramatically corroded in LL as ambient light inhibits their behavioral output (Picot

et al. 2007). Under constant conditions the operation of the clock circuit remains

highly centralized, but depending on the sustained presence or absence of light, this

central position is occupied by either the PDF-negative clock neurons or the

PDF-positive s-LNv neurons, respectively. Notably, in DD, the s-LNvs operate at

the pinnacle of a hierarchy as they enforce a majority of other oscillators to realign

their clock program in accordance with the sLNv pace (Stoleru et al. 2005). In

contrast, messages from the non-PDF clocks have considerably subdued influence

on the running of the master pacemaker in DD (Stoleru et al. 2005; Picot et al. 2007;

Collins et al. 2014).

Recently, however, the existence of a centralized monopolar circuit organization

in DD has been seriously challenged. The PDF clock has been shown to coherently

change behavioral period only over a limited range, which is distributed asymmet-

rically around the 24-h focal point (Yao and Shafer 2014; Beckwith and Ceriani

2015). When the PDF neurons were forced to run at a pace beyond this specified

range, multiple peaks of behavioral period emerged within a single fly, likely as a

result of internal desynchronization among multiple oscillators (Yao and Shafer

2014; Beckwith and Ceriani 2015). Because these oscillators are coupled to the

PDF clock with differing strength and range of entrainment, they are differentially

affected by speed changes in the PDF clock (Yao and Shafer 2014). Thus, the

behavioral period in DD is determined by the pace of not only the s-LNv clock but

also by other oscillators enjoying different degrees of independence, although they

were formerly thought to uniformly behave as slaves of the s-LNv pacemaker. As

opposed to direct manipulation of individual oscillator pace, a parallel line of

research was to putatively increase the excitability of different subsets of clock

neurons to enhance their contribution in the network. This study raised the inter-

esting possibility that the CRY-negative clock neurons, e.g., the DN2s, may have

the potential to affect behavioral period like the well-known s-LNvs (Dissel
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et al. 2014). Going one step further, it was proposed that the DD behavioral period

is constructed by integrating the slightly longer period dictated by the s-LNvs and

the slightly shorter period imposed by the DN2s, with other clock neurons modu-

lating the contributions of these two oscillators (Dissel et al. 2014). The behavioral

period would thus depend on the interactions between differently paced oscillators

whose endogenous period and influence in the network vary according to environ-

mental conditions. However, speed changes in all clock neurons excluding the PDF

cells fell short of altering the behavioral period (Yao and Shafer 2014), in fact

bolstering the older idea that PDF oscillators are the predominant determinant of

the behavior period in DD. In absence of PDF signaling, the output from the s-LNvs

was compromised, thereby allowing secondary oscillators to strongly influence the

behavior period (Yao and Shafer 2014). Precisely which oscillators are coupled,

whether coupling is directional, how the coupling strength is determined and what

are the relative weights of different oscillators to behavioral period according to

environmental conditions are some of the questions that fly chronobiologists will

probably resolve in next few years. We predict that the existing momentum on

neuronal mechanisms of behavioral period determination will be extended to

understand the other fundamental parameters of rhythm, such as phase and

waveform.

Network Architecture Under LD Cycles

Depending on the constraints of physiological thermal limit and light availability,

animals evolved few basic patterns of diel activity: diurnal, nocturnal, crepuscular

or cathemeral (Bennie et al. 2014). In mammals, a given animal can stably and

predictably switch back and forth between different patterns in context-dependent

ways (Kas and Edgar 1999; Mrosovsky 2003). The choice of a temporal niche takes

place downstream of the suprachiasmatic nucleus (SCN) clock and is strongly

influenced by light inputs (Mrosovsky and Hattar 2005; Doyle et al. 2008). A

comparable plasticity is observed in flies. For example, a typically crepuscular

male fly will become nocturnal in the presence of a mate or during moonlit nights

(Bachleitner et al. 2007; Fujii et al. 2007) and will be more diurnal when daylight is

low (Schlichting et al. 2015). At first glance, the similar phasing of molecular

oscillations in the different clock neuron subsets of the brain suggests that shaping

the sleep-wake cycle occurs downstream of the clock, but results obtained from

manipulating these different subsets support a more complex model.

Flies in the standard laboratory condition of 12:12 LD cycles show a bimodal

profile with peaks of activity coinciding with the putative twilight transitions. Very

nicely, the behavioral sub-routines of generating a morning peak and an evening

peak are orchestrated by two separable subsets of oscillator neurons, the s-LNvs and

the LNds, respectively, providing concrete experimental support for the dual-

oscillator model of Daan and Pittendrigh (Pittendrigh and Daan 1976; Grima

et al. 2004; Stoleru et al. 2004) (Fig. 2). Of note, this dual-oscillator ground plan
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contrasts with the predominantly monopolar hierarchical organization prevailing in

DD. The rather autonomous operation of two oscillators under LD cycles is abetted

by their independent access to light information through redundant pathways—in-

house CRY signaling and the visual system—whose output impinges on the clock

circuit probably at multiple nodes, including the LNvs (Cusumano et al. 2009;

Zhang et al. 2009). However, network interaction between oscillator neuron clus-

ters could still be evident in LD. In the absence of PDF secretion by the LNvs, the

evening peak of activity is advanced by a couple of hours (Renn et al. 1999). In the

absence of both CRY and PDF, the evening peak vanishes and the phase of the

molecular oscillations in the LNds is strongly altered (Cusumano et al. 2009; Zhang

et al. 2009; Im et al. 2011). The phasing of the evening activity thus increasingly

depends on PDF signaling when autonomous CRY-dependent photoreception

decreases at the end of the day because of less intense and more reddish light. So

far, the role of DNs in shaping the LD activity pattern seems to be largely secondary

to the LNs (Grima et al. 2004; Stoleru et al. 2004; Zhang et al. 2010a, b). A

functional clock restricted to the DN1s is sufficient to drive both morning and

evening activity bouts in low light LD conditions, whereas high light permits

morning activity only (Zhang et al. 2010b). These outputs are affected by temper-

ature, and the DN1 neurons thus appear to be capable of integrating certain light and

temperature information from the ambient environment (Zhang et al. 2010a, b).

Although the expression of PDFR in the DN1s is important for their proper function

(Zhang et al. 2010a), how they modulate the clock network’s collective output

remains unknown.

In summary, under periodic environmental cues, multiple, highly autonomous

oscillators with distinct behavioral contributions collaboratively sculpt the organ-

ism’s activity profile. In line with the ‘internal coincidence model’ of photoperiod-
ism (Pittendrigh and Minis 1964), flexible changes in the clock network favoring

the contribution of particular oscillators under certain ambient environmental

conditions have been put forward as the mechanistic basis of seasonal adaptation

in flies (Stoleru et al. 2007). The Daan/Pittendrigh model proposed that light

Fig. 2 Contribution of different clock neuron subsets to the LD behavior. Activity plots show the

contribution of neuronal groups to morning and evening LD behavior. s-LNvs promote morning

activity (left) whereas LNds and the fifth PDF-negative s-LNv promote evening activity (center).
DN1s can promote morning activity and evening activity (right). The evening output of the DN1s

is very weak in high light but strongly increases in low light (dashed line)
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accelerates morning oscillators and decelerates evening oscillators to adapt the

bimodal activity to the changing photoperiod. Fast- and slow-running neuronal

oscillators were described in flies displaying split rhythms in LL (Yoshii

et al. 2004). However, short and long period components were observed to derive

from the LD evening bout, suggesting that light-accelerated clock neurons contrib-

ute to the evening activity (Yoshii et al. 2004; Rieger et al. 2006), in contrast to the

prediction of the model. As indicated above, light was shown to promote the output

of the LNd-based evening oscillator while inhibiting the morning oscillator carried

by the PDF-expressing s-LNvs (Picot et al. 2007). The importance of PDF-negative

cells in the presence of light is also shown by experiments comparing the relative

influence of PDF-positive and PDF-negative neuronal subsets in different photo-

periods. This work was done by looking at morning and evening activity peaks of

flies with accelerated PDF-positive or PDF-negative neurons. Under long photope-

riods, the evening oscillator located in PDF-negative cells was proposed to control

the speed of the morning oscillators, whereas in short photoperiod conditions the

morning oscillator of PDF cells would take the lead (Stoleru et al. 2007). The

discovery of other subsets contributing to morning and evening activity bouts, in

particular the DN1s contributing to evening activity in low light only, suggest that

the adaptation to photoperiod changes might be more complex. Indeed, we have

data indicating that new groups of oscillators are recruited when flies are confronted

with summer-like conditions. Such laboratory-based simplified environmental

parameters are probably inadequate to explain the working of the network under

the complex natural conditions that exist in the spatiotemporal niche inhabited by

Drosophila in the wild (Menegazzi et al. 2012, 2013; Vanin et al. 2012; De

et al. 2013). In particular, daily temperature variations have a strong impact on

the sleep-activity pattern and can even induce some morning and evening antici-

patory activity in clockless flies (Vanin et al. 2012; Menegazzi et al. 2013). But the

principles and logic of circuit operation learned from a severely artificial set-up

could well be valid and applicable for the same network’s functionality under more

complex natural conditions.
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CircadianMetabolomics: Insights for Biology
and Medicine

Steven A. Brown and Ludmila Gaspar

Abstract A biological “circadian” clock governs nearly all aspects of mammalian

behavior and physiology. This control extends from activities of entire organ

systems down to individual cells, all of which contain autonomous molecular

clocks. Under this control, a significant fraction of the cellular metabolome—the

collection of all small-molecule metabolites—varies in abundance according to

time of day. Comparing the rhythmic expression of transcripts, proteins, and

metabolites has yielded valuable insights into clock-controlled physiological mech-

anisms. In the future, their analysis could provide a glimpse of instantaneous clock

phase, even providing notions of clock time based upon molecules within a single

breath. Such knowledge could be important for disease diagnosis and for

chronopharmacology.

Introduction: A Many-Clock Problem

A “master clock” tissue in mammals has been identified in the suprachiasmatic

nuclei (SCN) of the hypothalamus, about 20,000 neurons distributed into bilateral

nuclei just above the optic chiasma. Lesioning of this region results in loss of

circadian behavior and physiology under constant environmental conditions (East-

man et al. 1984), and transplantation results in circadian behavior corresponding to

that of the donor animal (Ralph et al. 1990). Although the SCN directs circadian

timing, the circuitry of which circadian clocks are composed is in fact much more

widespread: nearly every cell in the body contains an autonomous molecular

oscillator driven by feedback loops of transcription and translation of dedicated

“core clock” proteins (Brown and Azzi 2013). Therefore, circadian control of

complex physiology is at least in part a question of orchestration: on the one

hand, circadian signals from the SCN must synchronize peripheral oscillators
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elsewhere in the brain and body and, on the other, peripheral clocks must them-

selves direct circadian processes at a cellular level.

The ultimate consequences of this pervasive circadian control are that, in most

mammalian tissues, 6–20 % of all transcripts and proteins are expressed in circa-

dian fashion, i.e., with higher expression at one time of day and lower expression at

another (Panda et al. 2002; Storch et al. 2002; Reddy et al. 2006; Robles

et al. 2014). It is therefore not surprising that about 20 % of the mammalian

metabolome shows circadian variation in both mice and men (Minami

et al. 2009; Dallmann et al. 2012; Eckel-Mahan et al. 2012). Given the lower

complexity of the metabolome and its extremely high conservation across species

compared to the genome, an increasing number of studies have turned to

metabolomics analyses to understand circadian biology.

Normally, circadian clocks throughout the body remain in relative synchrony

with defined phase relationships. However, during timing shifts provoked by travel

and shiftwork, in pathological cases such as inflammation and disease, or even due

to the abnormal timing of food intake, this synchrony can be disrupted. For

example, if normally nocturnal rodents are fed only during the day, clock phase

in peripheral organs like liver and heart will change phase by nearly 12 h, while the

SCN remains unaltered (Damiola et al. 2000; Stokkan et al. 2001). On the other

hand, during a sudden change in light timing, the SCN will quickly alter its phase

whereas peripheral organs require multiple days to do so (Davidson et al. 2009).

Disease-mediated inflammation provides another example of peripheral clock

dampening or dephasing: in response to infection, the circadian amplitude of

transcription for multiple clock and clock-controlled genes decreases markedly

(Cavadini et al. 2007). Finally, in both brain and peripheral tissues, sleep-related

cellular signals can conflict with clock-related ones, leading to a dampening of

circadian amplitude of clock-controlled genes (Maret et al. 2007; Moller-Levet

et al. 2013; Archer et al. 2014). Both immediate and long-term consequences of

such “clock desynchrony” are only beginning to be understood. For example,

circadian amplitude in human subjects is directly correlated with survival time in

some cancers (Innominato et al. 2012), and multiple studies in both humans and

animals have linked shiftwork to increased disease and mortality (Viswanathan and

Schernhammer 2009; Evans and Davidson 2013). As we discuss further below,

metabolomics analyses could provide a powerful tool to study circadian phase and

amplitude in both humans and animal models, potentially linking these parameters

to human health in a wide variety of contexts.

An Overview of Circadian Metabolomics

Typically, comprehensive metabolomics analyses are conducted by flow injection

mass spectrometry. Thus, in a single assay lasting a few seconds, thousands of

peaks corresponding to individual metabolites can be detected. At the moment, a

significant limiting factor for these studies is the identification of the metabolites
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corresponding to each peak. Most commercially accessible platforms can discretely

identify a few hundred different substances, including lipids, amino acids, sugars,

enzymatic cofactors, and peptides and hormones. In at least one study, these

circadian metabolites have been compared to circadian transcripts in the same

tissues in rodents, allowing a direct and comprehensive look at cellular pathways

regulated in circadian fashion (Eckel-Mahan et al. 2012).

From this study, it was clear that the circadian clock exerts coordinated control

over a large number of metabolic pathways, including those controlling the abun-

dance of lipids, carbohydrates, and amino acids. Of course, given that food is itself

consumed in time-of-day-dependent fashion, it would be formally possible that

these variations could be indirect consequences of rhythmic activity, rather than

direct clock control. In mice, for example, without rhythmic feeding only a small

percentage of circadian transcripts continued to show diurnal oscillations (Vollmers

et al. 2009). In humans, however, a very different picture has emerged. By analyz-

ing metabolomics parameters from saliva and blood taken from humans kept in a

“constant routine” of immobile reclined posture, hourly isocaloric meals, and sleep

deprivation, Dallmann et al. (2012) could definitively rule out food-dependent

control: 17 % of metabolites in both matrices were rhythmic even in the absence

of rhythmic feeding, sleep, and activity (Fig. 1). These included lipids, carbohy-

drates, and amino acids, the same pathways that demonstrated metabolic control in

mice (Eckel-Mahan et al. 2012). The same study also showed that the abundance of

some metabolites increased or decreased monotonically with sleep deprivation,

implying that sleep pressure and circadian influences might independently regulate

diurnal metabolic physiology.

Metabolomics: Applications for Circadian Medicine

Because various circadian metabolites show peak abundance at different times of

day, it is possible to use these relative quantities as indicators of timing. The idea is

analogous to the “chronological garden” of the Swedish botanist Carl Linnaeus,

who used plants flowering at different times of day to determine geological time at

any moment. In precisely the same fashion, Minami et al. (2009) used blood

metabolites from mice as a way of detecting circadian body time, and Martinez-

Lozano Sinues et al. (2014) used metabolites within human breath. While poten-

tially quite powerful, these molecular timetable-based methods are hampered by the

high inter-individual variability of metabolite abundance among different subjects,

making single-time-point analyses relatively imprecise. So far, an accuracy of

about 2 h in circadian time is the best that has been attained. As more individuals

are metabolomically characterized into different endophenotypic subtypes, it is

likely that this accuracy will increase substantially.

Major applications of such technology would be twofold. First and most simply,

it would be possible to determine human body time prior to clinical intervention.

For most drugs, both pharmacokinetics and pharmacodynamics vary in circadian
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fashion. In other words, not only is the metabolism of many xenobiotic substances

strongly regulated but also the biological targets of the drugs themselves (Dallmann

et al. 2014). Thus, potentially both increased efficacy and reduced toxicity could be

obtained by precise timing of delivery, at least in the case of unstable compounds.

Currently, multiple clinical trials have been run or are running, especially in the

field of cancer, to test this concept (Innominato et al. 2014). Since cell division has

been shown to be coordinated with circadian clock timing in both adult animals and

cells (Matsuo et al. 2003; Nagoshi et al. 2004; Kowalska et al. 2013; Bieler

et al. 2014; Feillet et al. 2014), and many chemotherapeutic agents are metabolized
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Fig. 1 (a) Heat map of circadian metabolites identified in human blood (left) and saliva (right)
from subjects maintained in a constant routine of hourly isocaloric meals, immobile posture,

constant dim light, and sleep deprivation. Rows: individual metabolites; columns: time relative to

start of experiment. (b) Major classes of compounds identified in blood (top) and saliva (bottom),
plotted in circadian time relative to theoretical dawn (Adapted from Dallmann et al. 2012)
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by circadian isoforms of cytochrome P450 in the liver, it is logical to imagine that

chemotherapeutic toxicity would itself be circadian. This concept has been dem-

onstrated experimentally in mice (Gorbacheva et al. 2005), and human trials have

also shown time-of-day-dependent effects (Innominato et al. 2014).

Secondly, metabolite timetable-based methods would be able to predict not only

clock phase but also clock amplitude and possibly even circadian desynchrony.

These parameters have been increasingly linked to disease both in humans and in

animal models, as mentioned in the introduction, leading the World Health Orga-

nization to classify shiftwork as a suspected carcinogen. Even a simple indicator

like the amplitude of circadian behavior correlates directly with survival during

chemotherapy of metastatic colon carcinoma in humans (Innominato et al. 2012).

It is suspected that one of the main deleterious effects of shiftwork is circadian

desynchrony among different organs. In mice, changes in daylight timing shift

different organs at different speeds (Davidson et al. 2009). Potentially,

metabolomics could give insight into this phenomenon, since various circadian

components come from different tissues. For example, the hormone melatonin is

secreted by the pineal gland of the hypothalamus and is thought to be a direct output

of the SCN. By contrast, many other endocrine factors and metabolites detectable in

blood or in breath arise primarily as byproducts of peripheral organ function

(Gamble et al. 2014). Therefore, we propose that circadian metabolomics could

be useful in elucidating desynchrony between clocks in brain and in other periph-

eral tissues. To date, no studies have used metabolomics methods in this fashion,

but great potential exists.

Outlook and Conclusion

Questions of circadian desynchrony in health and disease are only beginning to be

addressed. The idea that shiftwork might affect circadian clock function is easy to

see. However, many other factors could play important and unsuspected roles. For

example, recent studies have suggested that chronic sleep restriction alone, even

without changed diurnal patterns of activity, could also disrupt circadian transcrip-

tion (Moller-Levet et al. 2013). Similarly, depressive and affective disorders have

long been known to be accompanied by dramatically different sleep–wake patterns

(Lamont et al. 2007). Recent research has established a close tie between circadian

dysfunction and metabolic disorders like obesity and diabetes (Maury et al. 2014).

All of these syndromes are potentially explorable by circadian metabolomics. The

conclusions that such studies might derive could both answer outstanding questions

about circadian biology and improve human health.
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Rhythms Within Rhythms: The Importance

of Oscillations for Glucocorticoid Hormones

Stafford Lightman

Abstract The circadian activity of the hypothalamic-pituitary-adrenal (HPA) axis

is made up from an underlying oscillatory rhythm of ACTH and glucocorticoid

pulses that vary in amplitude but not frequency over the 24 h. This oscillatory

activity is not the result of a hypothalamic oscillator but emerges as a natural

consequence of the feedforward:feedback interaction between the pituitary

corticotropes and the glucocorticoid-secreting cells of the adrenal cortex. This

oscillatory activity has resulted in adaptations in the way tissues read their ‘digital’
ligand signal. The adrenal cortex is relatively insensitive to constant signals of

ACTH but responds briskly to the equivalent amount of ACTH administered in a

pulsatile manner. Similarly glucocorticoid-responsive tissues such as the brain and

the liver are able to read the oscillating signals of cortisol or corticosterone

secretion, with differential biochemical and functional responses to different pat-

terns of ligand presentation. During a prolonged acute stress there is a major change

in the pituitary-adrenal relationship, with a marked increase in the sensitivity of the

adrenal to small changes in ACTH, so that following cardiac surgery small oscil-

lations in ACTH result in massive swings in cortisol. This response appears to be

due to a change both in the ACTH signalling pathway and in the endogenous

activators and inhibitors of glucocorticoid synthesis.

Introduction

Oscillations are a basic characteristic of all matter. Atoms have their own charac-

teristic oscillation frequencies, and the frequency of the oscillations of Cesium

133, for instance, is often chosen as the basis for atomic clocks. The kinetic theory

of matter goes further to suggest that all matter is made up of particles that are

constantly moving; in 1905, it was Albert Einstein who demonstrated how this
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atomic activity explained the phenomenon of Brownian movement (Einstein 1905).

It is therefore of no surprise that biological systems are also invariably dynamic,

with both stochastic interactions and deterministic processes across multiple time

scales ensuring the maintenance of homeostatic regulation and allowing the organ-

ism to adapt to changes in both internal and external environments.

The physical world has a direct impact on the one neuroendocrine system that is

critical for life: the hypothalamic-pituitary-adrenal (HPA) axis. The daily rotation

of the earth on its axis provides our planet with its regular 24-h day/night cycle and

this is the cue for the circadian activity of the HPA axis, which ensures energy

supplies are available prior to the daily phase of activity—day in man and night in

rodents—by ensuring an anticipatory increase in plasma glucocorticoid levels.

These glucocorticoid hormones—cortisol in man and corticosterone in the rodent

(both called CORT in this manuscript)—do not simply organise the circadian

aspects of metabolic, cognitive and immunological functions, they are also vital

homeostatic regulators that are extremely responsive to any threat to the organism’s
internal stability. In addition to their circadian variation, they need to maintain

exquisite sensitivity to both perceived and genuine stressors. It is this combined

function of providing a day-to-day regulatory role together with a rapid response

mode that requires a system that maintains its reactivity at all times, whatever the

status of its circadian activity.

How can this be achieved? The circuitry for the HPA axis is shown in Fig. 1. As

has been well described by other authors in this symposium, the suprachiasmatic

nucleus (SCN) of the hypothalamus provides the circadian regulation via an

inhibitory input to the corticotrophin-releasing hormone (CRH)-containing neurons

of the hypothalamic paraventricular nucleus (PVN) (Vrang et al. 1995; Dickmeis

2009). These neurons in turn release CRH, which travels in the hypothalamic-

pituitary portal blood system to corticotroph cells in the anterior pituitary, which

then release adrenocorticotropic hormone (ACTH) into the systemic circulation.

Surprisingly, the output from this system is not a simple analogue release of ACTH

from the pituitary gland but a complex episodic series of pulses of hormone

secretion (Jasper and Engeland 1991; Windle et al. 1998). In this chapter I shall

describe the mechanism underlying the genesis of this oscillating hormone system

and why it is so important for the ability of glucocorticoids to perform their multiple

activities in so many different systems in the body.

The Origin of HPA Pulsatility

It had always been assumed that the pulsatility of both ACTH and CORT must be

due to some hypothalamic oscillator resulting in pulses of CRH, which are then

transcribed into pulses of ACTH and CORT. Indeed, there is evidence for episodic

release of CRH from macaque hypothalamic explants (Mershon et al. 1992) and for

rapid changes in CRH in the median eminence of rats (Ixart et al. 1991) and portal

blood of sheep (Caraty et al. 1988). There is, however, a mismatch between the

higher frequency of CRH pulses than the ACTH/CORT pulses, and Engler
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et al. (1990) also demonstrated the maintenance of ACTH and cortisol pulses in the

sheep even after disconnection of the pituitary from hypothalamic portal blood.

We therefore reconsidered what we knew about the interaction between pituitary

corticotropes and adrenal cortical cells. Since the adrenal gland cannot store

glucocorticoids—which are very lipophilic and thus cannot be stored in vesi-

cles—every pulse of steroid released into the circulation must be newly

synthesised. There must, therefore, be a delay between the signal from ACTH

activation of adrenal MC2 receptors and the release of CORT. Indeed, this has

been clearly demonstrated both in the rat and in man (Carnes et al. 1989; Henley

et al. 2009). There is, in other words, a clear delay in the feedforward effect of

ACTH on the release of CORT. What about the feedback of CORT on the pituitary

corticotropes? A very rapid effect of CORT inhibiting ACTH release has been

demonstrated both in the rat and in man (Jones et al. 1972; Rotsztejn et al. 1975;

Hinz and Hirschelmann 2000; Russell et al. 2010). We therefore have a

feedforward/feedback interaction between pituitary corticotroph-derived ACTH

and adrenal cortical-derived CORT, with a built-in delay in the feedforward part

of the loop. This is a system that mathematically must show endogenous oscillatory

activity!
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Fig. 1 The hypothalamic-

pituitary-adrenal (HPA)
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With this knowledge, we were able to collaborate with our mathematical col-

leagues who developed a mathematical model that predicted the ability of the

pituitary adrenal system to support self-sustained ACTH and CORT oscillations

at the frequency found in normal physiology, even in the face of a constant CRH

drive (Walker et al. 2010). This model also predicted that these oscillations would

not occur at very low CRH concentrations and would be damped at the high levels

of CRH found after an acute stress, as we had found in rats following an acute

stressor (Windle et al. 1998). We were then able to test this model experimentally

using constant infusions of CRH into free running animals in the morning, a time

when their endogenous CRH systems are suppressed by the SCN. Consistent with

our mathematical model, a constant infusion of CRH produced normal ultradian

oscillations of both ACTH and CORT, with the same pulse frequency as that found

during normal nocturnal HPA activity (Walker et al. 2012). Furthermore, giving a

constant infusion of a higher concentration of CRH resulted in a high and prolonged

constant secretion of CORT, similar to that found following a severe stress.

Since circadian rhythmicity of the HPA axis is controlled by an inhibitory output

from the SCN to the PVN, another prediction from our mathematical model was

that interruption of this pathway would not only abolish circadian rhythmicity but

would also allow unrestrained CRH secretion throughout the 24 h, resulting in

ultradian secretion of ACTH and CORT throughout the 24 h and not just during

times of peak activity. We tested this prediction both by lesioning of the SCN and

by maintaining animals on a 24-h constant light cycle. Indeed, we found that in both

cases there was a loss of circadian variability but maintenance of ultradian activity

across the 24 h (Waite et al. 2012).

Implications of HPA Pulsatility

Since HPA pulsatility emerges as a natural consequence of the feedforward:feed-

back interaction between the pituitary and adrenal gland, it is not surprising that it

has been reported to exist in all mammalian species that have been studied,

including rat (Jasper and Engeland 1991; Windle et al. 1998), sheep (Fulkerson

1978), rhesus monkey (Holaday et al. 1977) and man (Weitzman et al. 1971;

Henley et al. 2009). It would seem very likely, therefore, that physiological systems

have adapted to read this digital ACTH and CORT signalling, and indeed this has

proved to be the case.

Adrenal Adaptation to Pulsatile ACTH

Adrenal steroidogenesis is an extraordinarily dynamic process. Since steroid hor-

mones cannot be stored for subsequent rapid release, each pulse of CORT seen in

the plasma is the result of the very rapid intra-adrenal conversion of cholesterol to
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CORT. Pituitary-derived ACTH binds to the melanocortin-2 receptor in adrenal

fasciculata cells (Mountjoy et al. 1994), activating adenylyl cyclase and

PKA-induced genomic and non-genomic steroidogenic pathways. CREB-induced

transcription of the rate-limiting step of cholesterol transport into the mitochon-

drion (StAR) is enhanced by the binding of positive regulators (Sugawara

et al. 1996; Caron et al. 1997; Song et al. 2001; Conkright et al. 2003; Takemori

et al. 2007) and inhibition of the negative regulator DAX-1 (Song et al. 2004). PKA

also modifies the rapid non-transcriptional modification of steroidogenic proteins,

including phosphorylation of StAR itself (Arakane et al. 1997) and of hormone-

sensitive lipase (HSL), which increases the intracellular levels of cholesterol itself.

So how does this complex system of different activators and inhibitors of CORT

synthesis respond to different patterns of ACTH presentation? We have shown that,

when endogenous ACTH is suppressed by administration of methylprednisolone,

rats respond to pulsatile exogenous ACTH with a pulsatile release of CORT (Spiga

et al. 2011). When the same dose of ACTH is infused at a constant rate, however, no

CORT is secreted. Indeed, constant ACTH infusion actually results in a suppressed

response to a subsequent stress amplitude pulse of ACTH, suggesting a

dysregulation of the normal steroidogenic mechanisms (Spiga and Lightman

2014). The exact mechanism underlying this is unclear, but there is evidence that

intra-adrenal GR can mediate local negative feedback on steroidogenesis via

induction of DAX-1, perhaps accentuating the pulsatile characteristics of the

response to a physiological pulse of ACTH while effectively inhibiting the response

to a more constant exposure. Interestingly, by integrating our in vivo data with

mathematical modelling of adrenal responses, we do find that rapid intra-adrenal

inhibition must be an important factor in adrenal ultradian oscillations (Walker

et al. 2014). This all suggests that the adrenal gland is beautifully adapted to

respond to a pulsatile signal of ACTH, rather than showing a simple analogue

response to different concentrations of this hormone.

During severe stress, there also seem to be special adaptations at the adrenal

level. In a study of patients undergoing coronary artery bypass graft procedures

(Fig. 2), we found an initial surge in both ACTH and CORT, followed by a fall in

ACTH back to baseline levels but maintenance of the high levels of CORT, with

continued but amplified ultradian responses of CORT to small changes in basal

ACTH (Gibbison et al. 2014). The initial rise in both hormones was delayed after

the actual surgery itself, suggesting it was the result of inflammatory cytokine

production (from the sternotomy), which is known to go up at this time (Lahat

et al. 1992; Roth-Isigkeit et al. 1999; de Mendonca-Filho et al. 2006). Therefore, in

a reverse translation approach, we used a model of severe stress both with (LPS)

and without (depot ACTH) associated systemic inflammation. ACTH and CORT

followed each other closely in the depot ACTH-induced response, but after LPS we

had the same findings as after cardiac surgery: maintenance of high CORT even

after ACTH had fallen to normal levels. Furthermore, only in this group was there

an increased expression of StAR and MRAP (a vital accessory for the MC2

receptor) mRNAs and StAR protein. This presumably explains the increased

sensitivity to ACTH and the increased steroidogenesis at this time, which is quite
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different from the situation in patients who have had prolonged critical illness in

whom steroidogenic genes appear to be depleted (Boonen et al. 2014).

Tissue Adaptation to Pulsatile CORT

The large oscillations of total CORT seen in blood are also reflected in similar large

oscillations of the active free cortisol levels (unbound to cortisol binding globulin)

in the brain and subcutaneous tissue (Droste et al. 2008; Qian et al. 2012; Bhake

et al. 2013), indicating that both glucocorticoid (GR) and mineralocorticoid

(MR) receptors will be exposed to oscillating levels of their ligand (Fig. 3). These

receptors are latent transcription factors initially sequestered in the cytoplasm

bound to chaperone molecules including HSP90 and p23. Upon binding of

CORT, they undergo a conformational change dissociate from the chaperone

complex and are actively transported into the nucleus where they rapidly cycle on

and off glucocorticoid response elements (GREs) at the chromatin template (Fig. 4;

Hager et al. 2006; Conway-Campbell et al. 2012). Each endogenous pulse of CORT

results in a rapid increase in activated GR available for binding to GREs, with

Fig. 2 Changes in cortisol and ACTH levels throughout the 24-h perioperative period of cardiac

surgery. (a) Group mean� SEM cortisol and ACTH. All sampling (i.e., the first sample in every

case) started between 0800 and 0900 h. (b) Mean� SEM 24-h cortisol profile from patients

undergoing coronary artery bypass graft using the off-pump or the on-pump technique. All

off-pump surgeries were performed between sample 5 and sample 35; all on-pump surgeries

were performed between samples 5 and samples 36. (a) and (b), light grey area, period during

which some patients were undergoing surgery. Dark grey area, period during which all patients

were undergoing surgery. (c) Individual 24-h ACTH and cortisol profile of a patient undergoing

off-pump CABG. Light grey area, period during which the patient was undergoing surgery

(0919–1349-h). (d), Individual 24-h ACTH and cortisol profile of a healthy volunteer. Reproduced

with permission from Gibbison et al. (2014)
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repeated pulses resulting in cyclical changes in GR chromatin association profiles

on regulatory elements of endogenous CORT-regulated gene promoters (Fig. 4;

Conway-Campbell et al. 2011). The interaction of GR with other accessory

Fig. 3 Glucocorticoid pulsatility drives transient activation of GR-responsive genes. CORT levels

rise in anticipation of the active phase. Hormone levels follow a circadian pattern, although the

underlying pattern of hormone secretion is ultradian, where glucocorticoids are released approx-

imately every hour. During a pulse, exposure to hormone drives GR translocation into the nucleus,

where it binds to genomic elements to drive transcription. Hormone troughs result in GR

dissociation from chromatin, releasing the receptor into the nucleoplasm ready to initiate tran-

scription during further rises in hormone levels. The dynamics of the receptor and hormone

secretion patterns allow rapid response to rapidly changing cellular and physiological conditions.

Reproduced with permission from Biddie et al. (2011)
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DNA-binding factors will clearly be cell and tissue specific, providing scope for

differential responses to the same pattern of CORT pulses in different tissues.

There are now increasing data that ultradian pulsatility has considerable rele-

vance for gene transcription. Ultradian oscillations of CORT induce cyclic

GR-mediated pulses of gene transcription, both in vitro and in vivo, which differ

from the response to equivalent constant levels of the ligand (Stavreva et al. 2009;

Conway-Campbell et al. 2012; McMaster et al. 2011). Indeed, gene pulsing of the

clock gene period 1 occurs in vivo in response to physiological pulses, both in the

liver (Stavreva et al. 2009) and in the hippocampus (Conway-Campbell et al. 2010).

In addition to these genomic effects, glucocorticoids have rapid non-genomic

effects on neuronal activity in the brain (Karst et al. 2005; Evanson et al. 2010;

Hill and Tasker 2012), with rapid effects on both excitatory and inhibitory inputs to

the hippocampus (Karst et al. 2005), and evidence for a specific effect on the

insertion of Ca2+-permeable AMPA receptors into synapses (Whitehead

et al. 2013). Glucocorticoid pulsatility has also been shown to have specific

non-genomic effects on miniature excitatory postsynaptic current (mEPSC)
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frequency in different brain areas, with differential effects being described for the

amygdala and the hippocampus (Karst et al. 2010). Recently, using high-resolution

imaging and electrophysiology, this group showed that, while a single pulse of

CORT increases hippocampal AMPAR signalling and impairs the induction of LTP

for several hours, a second pulse restores the potentiation range of the glutamate

synapses (Sarabdjitsingh et al. 2014). This finding suggests that pulsatile exposure

to CORT is necessary to maintain optimal glutamatergic neurotransmission.

It is also becoming clear that the pattern of glucocorticoid secretion has a

considerable impact on behaviour. Adrenalectomised rats replaced with constant

infusions of CORT show a blunted ACTH and behavioural response to a noise

stress, whereas animals replaced with the same dose of CORT but in a physiological

pulsatile pattern have normal responses (Sarabdjitsingh et al. 2010). Interestingly,

these changes are associated with brain-specific differences in c-fos activation,

most particularly in the amygdala, suggesting that different brain circuits respond

differentially to different patterns of CORT pulsatility. This study also demon-

strated a phase-dependent and region-specific response, revealing a different

response during the ascending and descending phases of each CORT pulse. This

finding is complementary to data from Haller et al. (2000a, b), who found that rats

exposed to male intruders during a rising phase of an endogenous CORT pulse were

more aggressive than rats exposed to the same stimulus on a falling phase.

The relevance of CORT pulsatility in man needs investigation. We do know that

the use of non-pulsatile oral hydrocortisone replacement therapy in patients with

Addisons’s disease is associated with a doubling in mortality (Bergthorsdottir

et al. 2006) as well as increased morbidity predominantly related to mental and

physical fatigue (Løvås et al. 2002). We have now designed a technique to provide

physiological CORT replacement (Russell et al. 2014) and will be using it to

investigate the importance of pulsatility for optimal cognitive and metabolic

function.

Conclusion

Oscillatory activity is widespread in both our physical and biological environment.

At the biological level, it can occur in multiple time domains. Within the HPA there

is a very rapid (seconds) interaction at the level of GR:chromatin interactions, a

slower (minutes) interaction between GR and its associated chaperones, an hourly

cycle that emerges as a natural consequence of subhypothalamic feedforward:

feedback interactions, and a daily oscillation regulated by the SCN. The circadian

variation in CORT is actually made up of changes in the amplitude of the under-

lying subhypothalamic ultradian rhythm. The ultradian rhythm provides digital

signals for both ACTH signalling to the adrenal and CORT signalling to tissues

across the whole body, including the nervous, cardiovascular, metabolic and

immune systems. The body has adapted to read these signals in a tissue-specific

manner, allowing one hormone to have many effects in different tissues. This
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strategy of using a feedforward:feedback created digital signalling system is not

unique to the HPA axis and is in fact commonly used across the endocrine system

(Lightman and Terry 2014).
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The Genetics of Autism Spectrum Disorders

Guillaume Huguet, Marion Benabou, and Thomas Bourgeron

Abstract In the last 30 years, twin studies have indicated a strong genetic contri-

bution to Autism Spectrum Disorders (ASD). The heritability of ASD is estimated

to be 50 %, mostly captured by still unknown common variants. In approximately

10 % of patients with ASD, especially those with intellectual disability, de novo
copy number or single nucleotide variants affecting clinically relevant genes for

ASD can be identified. Given the function of these genes, it was hypothesized that

abnormal synaptic plasticity and failure of neuronal/synaptic homeostasis could

increase the risk of ASD. In parallel, abnormal levels of blood serotonin and

melatonin were reported in a subset of patients with ASD. These biochemical

imbalances could act as risk factors for the sleep/circadian disorders that are

often observed in individuals with ASD. Here, we review the main pathways

associated with ASD, with a focus on the roles of the synapse and the serotonin-

NAS-melatonin pathway in the susceptibility of ASD.
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Introduction

Autism Spectrum Disorders (ASD) are a group of neuropsychiatric disorders

characterized by problems in social communication as well as the presence of

restricted interests and stereotyped and repetitive behaviors (Kanner 1943;

Asperger 1944; Coleman and Gillberg 2012). Epidemiological studies estimate

that more than 1 % of the population could receive a diagnosis of ASD (Elsabbagh

et al. 2012; Developmental Disabilities Monitoring Network Surveillance Year

Principal 2014). Individuals with ASD can also suffer from other psychiatric and

medical conditions, including intellectual disability (ID), epilepsy, motor control

difficulties, Attention-Deficit Hyperactivity Disorder (ADHD), tics, anxiety, sleep

disorders, epilepsy, depression or gastrointestinal problems (Gillberg 2010;

Moreno-De-Luca et al. 2013). The term ESSENCE, for ‘Early Symptomatic Syn-

dromes Eliciting Neurodevelopmental Clinical Examinations,’ was coined by

Christopher Gillberg to take into account this clinical heterogeneity and syndrome

overlap (Gillberg 2010). There are four to eight times more males than females with

ASD (Elsabbagh et al. 2012), but the sex ratio is more balanced in patients with ID

and/or dysmorphic features (Miles et al. 2005). Autism can be studied as a category

(affected vs. unaffected) or as a quantitative trait using auto- or hetero-

questionnaires such as the Social Responsiveness Scale (SRS) or the autism quo-

tient (AQ) (Ronald et al. 2006; Skuse et al. 2009; Constantino 2011). Using these

tools, autistic traits seem to be normally distributed in clinical cases as well as in the

general population (Ronald et al. 2006; Skuse et al. 2009; Constantino 2011).

The causes of autism remain largely unknown, but twin studies have constantly

shown a high genetic contribution to ASD. Molecular genetics studies have iden-

tified more than 100 ASD risk genes carrying rare and penetrant deleterious

mutations in approximately 10–25 % of patients (Huguet et al. 2013; Gaugler

et al. 2014; Bourgeron 2015). In addition, quantitative genetics studies have

shown that common genetic variants could capture almost all the heritability of

ASD (Huguet et al. 2013; Gaugler et al. 2014). The genetic landscape of ASD is

shaped by a complex interplay between common and rare variants and is most

likely different from one individual to another (Gardener et al. 2011; Hallmayer

et al. 2011; Bourgeron 2015). Remarkably, the susceptibility genes seem (Huguet

et al. 2013) to converge in a limited number of biological pathways, including

chromatin remodeling, protein translation, actin dynamics and synaptic functions

(Bourgeron 2009; Toro et al. 2010; Huguet et al. 2013; Bourgeron 2015). In

addition, several studies have pointed to a dysfunction of the serotonin-NAS-

melatonin pathway in patients with ASD. Abnormalities of this pathway might

increase the risk of circadian/sleep disorders often observed in patients with ASD.

In this chapter, we will detail the advances in the genetics of ASD (Fig. 1) with a

focus on the role of both synapses and biological rhythms in the susceptibility of

ASD (Abrahams and Geschwind 2008; Bourgeron 2009; Toro et al. 2010; Devlin

and Scherer 2012; Huguet et al. 2013).
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Twin and Family Studies in ASD

Based on more than 13 twin studies published between 1977 and 2015, researchers

have estimated the genetic and environmental contribution to ASD (Fig. 2). In

1977, the first twin study of autism by Folstein and Rutter (1977) reported on a

cohort of 11 monozygotic (MZ) twins and 10 dizygotic (DZ) twins. This study

showed that MZ twins were more concordant for autism—36 % (4/11)—compared

with 0 % (0/10) for DZ twins. When a “broader autism phenotype” was used, the

concordance increased to 92 % for MZ twins and to 10 % DZ twins (Bailey

et al. 1995). Since this first small scale study, twin studies have constantly reported

a higher concordance for ASD in MZ compared with DZ (Ritvo et al. 1985;

Steffenburg et al. 1989; Bailey et al. 1995; Le Couteur et al. 1996). Between

2005 and 2009, three twin studies with relatively large groups of twins

(285–3419) have reported high concordances for ASD in MZ twins (77–95 %)

compared with DZ twins (31 %; Ronald et al. 2005; Taniai et al. 2008; Rosenberg

et al. 2009). Notably, MZ concordances were similar to those reported in the

previous studies, but DZ concordances were higher. In 2010, Lichtenstein

et al. reported a relatively low concordance for ASD in 39 % of the MZ twins

compared with other studies (the concordance for DZ twins in this study was 15 %).

However, as previously indicated by studies using the “broader autism phenotype,”

all discordant MZ twins of this cohort had symptoms of ESSENCE (e.g., ID,

ADHD, language delay, etc.). A significant proportion of the genetic contribution

to ASD was shown to be shared with other neurodevelopmental disorders such as

ADHD (>50 %) and learning disability (>40 %; Lichtenstein et al. 2010; Ronald

et al. 2010; Lundstrom et al. 2011; Ronald and Hoekstra 2011). In summary, when

all twin studies are taken into account, concordance for ASD is roughly 45 % for

1.4 %

1.2 %

1 %

0.8 %

0.6 %

0.4 %

0.2 %

0 %

P
re

va
le

nc
e 

of
 A

S
D

Twin studies

Chromosomal abnormalities FMR1

NF1 TSC2

TSC1
UBE3A SCN1A

MECP2 PTEN

SCN2A
CNTN4

Human Genome
sequence NRXN2

NLGN3
NLGN4x

NRXN1
SHANK3

CNTNAP2
NLGN1

TMLHE
ARID1B

KATNAL2
DYRK1A
GRIN2B
NRXN3

SHANK1

SHANK2

HDAC4
MEF2C

ADNP
RIMS1
POGZ
TBR1
CHD8

CNTNAP4

700

600

500

400

300

200

100

0

N
um

ber of G
enes in S

FA
R

I

DSM II DSM III DSM III-R DSM-IV DSM-IV-TR DSM-5

1975 1980 1985 1990 1995 2000 2005 2010 2015

Karyotype Microarrays
Whole Exome Sequencing

Whole Genome Sequencing
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ASD (data taken from the Center for Disease Control and Prevention), the different versions of the

Diagnostic Statistical Manual (from DSM II to DSM 5.0) and the advance in genetics technology
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MZ twins and 16 % for DZ twins (Ritvo et al. 1985; Steffenburg et al. 1989; Bailey

et al. 1995; Le Couteur et al. 1996).

Family studies also showed that the recurrence of having a child with ASD

increases with the proportion of the genome that the individual shares with one

affected sibling or parent (Constantino et al. 2010; Risch et al. 2014; Sandin

et al. 2014). In a population-based sample of 14,516 children diagnosed with

ASD (Sandin et al. 2014), the relative risk for ASD (compared to the general

population) was estimated to be 153.0 [95 % confidence interval (CI):

56.7–412.8] for MZ twins, 8.2 (3.7–18.1) for DZ twins; 10.3 (9.4–11.3) for full

siblings, 3.3 (95 % CI, 2.6–4.2) for maternal half siblings, 2.9 (95 % CI, 2.2–3.7) for

paternal half siblings, and 2.0 (95 % CI, 1.8–2.2) for cousins.

Heritability is the proportion of the phenotypic variation in a trait of interest,

measured in a given studied population and in a given environment, that is

co-varying with genetic differences among individuals in the same population. In

1995, based on a twin study, Bailey et al. estimated the heritability of autism to be

91–93 %. Since then, the estimation of heritability has differed from one study to

another, but the genetic variance has accounted for at least 38 % and up to 90 % of

the phenotypic variance (Hallmayer et al. 2011; Ronald and Hoekstra 2011; Sandin

et al. 2014). Using a large cohort of 14,516 children diagnosed with ASD Sandin

et al. (2014), estimated the heritability to be 0.50 (95 % CI, 0.45–0.56) and the

non-shared environmental influence was also 0.50 (95 % CI, 0.44–0.55).

100

80

60

40

20

0

100

80

60

40

20

0

C
on

co
rd

an
ce

MZ ASD = 44.8

DZ ASD = 16.2

Max MZ = 94.7

Max DZ = 38
Min MZ = 36

Min DZ = 0

Max Heritability
 = 93

Min Heritability
 = 26

H
er

ita
bi

lit
y

Monozygote (MZ)

Dizygote (DZ)

Heritability of ASD Heritability of ASD for Males

Heritability of ASD for Females

N = Number of Individuals

> 6000

1000

20

19
77

19
85

19
89

19
95

19
96

20
00

20
03

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
14

Fols
te

in 
an

d 
Rut

te
r 1

97
7

Ritv
o 

et
 a

l. 1
98

5

Ste
ffe

nb
ur

g 
et

 a
l. 1

98
9

Bail
ey

 e
t a

l. 1
99

5

Le
 C

ou
te

ur
 e

t a
l. 1

99
6

Con
sta

nt
ino

 a
nd

 T
od

d 
20

00

Con
sta

nt
ino

 a
nd

 T
od

d 
20

03

Con
sta

nt
ino

 a
nd

 T
od

d 
20

05

Ron
ald

 e
t a

l. 2
00

5

Ron
ald

 e
t a

l. 2
00

6

Ron
ald

 e
t a

l. 2
00

8

Tan
iai

 e
t a

l. 2
00

8

Ede
lso

n 
et

 a
l. 2

00
9

Ros
en

be
rg

 e
t a

l. 2
00

9

Lic
ht

en
ste

in 
et

 a
l. 2

01
0

Stilp
 e

t a
l. 2

01
0

Hall
m

ay
er

 e
t a

l. 2
01

1

Lu
nd

str
om

 e
t a

l 2
01

2

Gau
gle

r e
t a

l 2
01

4

San
din

 e
t a

l 2
01

4

Hoe
ks

tra
 e

t a
l. 2

00
7

Sku
se

 e
t a

l. 2
00

5

Fig. 2 The main twins studies in ASD. A total of 13 twins studies and 17 heritability studies are

depicted. Means of concordance and heritability weighted by sample size are presented on the

right of the figure (Adapted from Huguet and Bourgeron 2016)
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Surprisingly, only the additive genetic component and the non-shared environment

seemed to account for the risk of developing ASD (Sandin et al. 2014).

In summary, epidemiological studies provide crucial information about the

heritability of ASD. However, they do not inform us about the genes involved or

the number and frequency of their variants. In the last 15 years, candidate genes and

whole-genome analyses have been performed to address these questions.

From Chromosomal Rearrangements to Copy Number

Variants in ASD

The first genetic studies that associated genetic variants with ASD used observa-

tions from cytogenetic studies (Gillberg and Wahlstrom 1985). However, because

of the low resolution of the karyotypes (several Mb), it was almost impossible to

associate a specific gene to ASD using this approach. The prevalence of large

chromosomal abnormalities is estimated to be less than 2 % (Vorstman et al. 2006).

Thanks to progress in molecular technologies such as Comparative Genomic

Hybridization (CGH) or SNP arrays, the resolution in the detection of genomic

imbalances has dramatically increased. Depending on the platforms, Copy Number

Variants (CNVs) of more than 50 kb are now robustly detected (Pinto et al. 2011).

Since the first articles published in 2006, a very large number of studies have

investigated the contribution of CNVs to ASD (Jacquemont et al. 2006; Sebat

et al. 2007). Several studies using the Simons Simplex Collection could even

provide an estimation of the frequency of the de novo CNVs in patients with

ASD compared with their unaffected siblings (Sanders et al. 2011). All together,

de novo CNVs are present in 4–7 % of the patients with ASD compared to 1–2 % in

the unaffected siblings and controls (Glessner et al. 2009; Sanders et al. 2011; Pinto

et al. 2014). The studies have also indicated that de novo CNVs identified in patients
are most likely altering genes and most especially genes associated with synaptic

functions and/or regulated by FMRP, the protein responsible for the fragile X

syndrome (Pinto et al. 2010, 2014). Beyond ASD, large CNVs (>400 kb) affecting

exons are present in 15 % of patients with Developmental Delay (DD) or ID

(Cooper et al. 2011). Most of the CNVs are private to each individual, but some

are recurrently observed in independent patients. For example, three loci on chro-

mosomal regions 7q11, 15q11.2–13.3, and 16p11.2 have been strongly associated

with ASD (Ballif et al. 2007; Kumar et al. 2008; Weiss et al. 2008; Szafranski

et al. 2010; Sanders et al. 2011; Leblond et al. 2014).

In summary, large chromosomal rearrangements and CNVs increase the risk of

having ASD in 5–10 % of the individuals (Vorstman et al. 2006; Pinto et al. 2010,

2014). To go further in the identification of the ASD risk genes, candidate genes and

whole exome/genomes studies were performed.
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From Candidate Genes to Whole Exome/Genome

Sequencing Studies in ASD

The first approach to associate a gene with ASD was to select specific candidate

genes based on data coming from functional or genetic studies or a combination of

the two. This approach was successful in identifying several synaptic genes asso-

ciated with ASD such as NLGN3, NLGN4X, SHANK3 and NRXN1 (Jamain

et al. 2003; Durand et al. 2007; Szatmari et al. 2007). Thanks to the advance in

Next Generation Sequencing (NGS), we can now interrogate all genes of the

genome in an unbiased manner using Whole Exome/Genome Sequencing (WES,

WGS).

To date, more than 18 WES studies of sporadic cases of ASD (O’Roak
et al. 2011, 2012a; Chahrour et al. 2012; Iossifov et al. 2012; Neale et al. 2012;

Sanders et al. 2012; He et al. 2013; Lim et al. 2013; Liu et al. 2013, 2014; Willsey

et al. 2013; Yu et al. 2013; An et al. 2014; De Rubeis et al. 2014; Iossifov

et al. 2014; Samocha et al. 2014; Chang et al. 2015; Krumm et al. 2015) have

been performed, comprising altogether more than >4000 families (Table 1). In

almost all these studies, the authors have especially focused their analysis on the

contribution of de novo Single Nucleotide Variants (SNVs) in ASD. All together,

the average number of de novo coding SNVs per individual (including missense,

splicing, frameshift, and stop-gain variants) is estimated to be approximately 0.86

in female patients, 0.73 in male patients, and 0.60 in unaffected male and female

siblings (Krumm et al. 2014; Ronemus et al. 2014). Interestingly, de novo SNVs

were three times more likely to be on the paternal chromosome than on the maternal

one (Kong et al. 2012; O’Roak et al. 2012a) with an increase of almost two de novo
mutations per year and doubled every 16.5 years (Kong et al. 2012).

Based on these studies (Iossifov et al. 2012; Neale et al. 2012; O’Roak
et al. 2012a; Sanders et al. 2012), 3.6–8.8 % of the patients were shown to carry

a de novo causative mutation (Iossifov et al. 2012) with a twofold increase of

deleterious mutations in the patients compared with their unaffected siblings. In a

meta-analysis, using more than 2500 families, Iossifov et al. (2014) found that de

novo Likely Gene Disrupting (LGD) mutations (frameshift, nonsense and splice

site) were more frequent in patients with ASD compared with unaffected siblings

(P¼ 5� 10�7). The carriers of these de novo LGDs were more likely diagnosed

with a low non-verbal IQ. The de novo LGDs are significantly enriched in genes

involved in chromatin modeling factors (P¼ 4� 10�6) and in genes regulated by

the FMRP complex (p¼ 4� 10�7). Following these whole exome studies, targeted

re-sequencing studies of the most compelling candidate genes were performed

(O’Roak et al. 2012b). All together, 10 genes carrying de novo mutations were

significantly associated with ASD: CHD8, DYRK1A, GRIN2B, KATNAL2, RIMS1,
SCN2A, POGZ, ADNP, ARID1B and TBR1.

Only a few studies have analyzed the contribution of inherited SNVs in ASD. In

2013, Lim et al. analyzed whole exome sequencing of 933 cases (ASD) and

869 controls for the presence of rare complete human knockouts (KO) with homo-

zygous or compound heterozygous loss-of-function (LoF) variants (�5 %
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frequency). They observed a significant twofold increase in complete KOs in

patients with ASD compared to controls. They estimated that such complete KO

mutations could account for 3 % of the patients with ASD. For the X chromosome,

there was a significant 1.5-fold increase in complete KO in affected males com-

pared to unaffected males that could account for 2 % of males with ASD (Lim

et al. 2013). The same year, Yu et al. (2013) analyzed 104 consanguineous families

including 79 families with a single child with ASD (simplex families) and 25 fam-

ilies with more than one affected individual (multiplex families) collected by the

Homozygosity Mapping Collaborative for Autism (HMCA). They identified

biallelic mutations in AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1. Finally,
a very recent study by Krumm et al. (2015) ascertained the relative impact of

inherited and de novo variants (CNVs or SNVs) on ASD risk in 2377 families.

Inherited truncating variants were enriched in probands (for SNV odds ratio¼ 1.14,

P¼ 0.0002; for CNV odds ratio¼ 1.23, P¼ 0.001) in comparison to unaffected

siblings (Krumm et al. 2015). Interestingly, they also observed a significant mater-

nal transmission bias of inherited LGD to sons. New ASD-risk genes were also

identified such as RIMS1, CUL7 and LZTR1.
To date, few whole genome sequencing studies have been published for ASD

(Table 1). Michaelson et al. (2012) analyzed 40 WGS of monozygotic twins

concordant for ASD and their parents. They proposed that ASD-risk genes could

be hot spots of mutation in the genome and confirmed the association between ASD

and de novo mutations in GPR98, KIRREL3 and TCF4. Shi et al. (2013) analyzed a
large pedigree with two sons affected with ASD and six unaffected siblings,

focusing on inherited mutations. They identified ANK3 as the most likely candidate

gene. In 2015, Yuen et al. analyzed 85 families with two children affected with

ASD. This study represents the largest published WGS data set in ASD. They

identified 46 ASD-relevant mutations present in 36 of 85 (42.4 %) families. Only

16 ASD-relevant mutations of 46 (35 %) identified were de novo. Very interest-

ingly, for more than half of the families (69.4 %; 25 of 36), the two affected siblings

did not share the same rare penetrant ASD risk variant(s).

Whole genome sequencing is also very efficient to identify mutations in regions

of the human genome that are wrongly annotated and in regions that are highly GC

rich. For example, mutations on the SHANK3 gene were rarely identified using

whole exome sequencing, given its high GC content (Leblond et al. 2014). In

contrast, whole genome sequencing could successfully identify SHANK3mutations

(Nemirovsky et al. 2015; Yuen et al. 2015).

The Common Variants in ASD

In the general population, one individual carries on average three million genetic

variants in comparison to the reference human genome sequence (Xue et al. 2012;

Fu et al. 2013; Genome of the Netherlands and Genome of the Netherlands 2014).

The vast majority of the variants (>95 %) are the so-called common variants shared
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with more than 5 % of the human population (Xue et al. 2012; Fu et al. 2013;

Genome of the Netherlands and Genome of the Netherlands 2014). While there is

not a clear border between common and rare variants, it is nevertheless interesting

to estimate the role of the genetic variants found in the general population in the

susceptibility to ASD.

Using quantitative genetics, Klei et al. (2012) estimated that common variants

were contributing to a high proportion of the liability of ASD: 40 % in simplex

families and 60 % in multiplex families. In 2014, a study by Gaugler et al. used the

same methodology (Yang et al. 2011) and provided an estimation of the heritability

(52.4 %) that is almost exclusively due to common variation, leaving only 2.6 % of

the liability to the rare variants. The contribution of common variants is therefore

important, but unfortunately the causative SNPs still remain unknown since they

are numerous (>1000) and each is associated with a low risk. To date, the largest

genome wide association studies (GWAS) performed on<5000 families with ASD

were underpowered to identify a single SNP with genome wide significance (Anney

et al. 2012; Cross-Disorder Group of the Psychiatric Genomics 2013).

The recruitment of larger cohorts of patients with dimensional phenotypes is

therefore warranted to better ascertain the heritability of ASD and to identify the

genetic variants, which explain most of the genetic variance.

The Genetic Architecture of ASD

Based on the results obtained from epidemiological and molecular studies, it is now

accepted that the genetic susceptibility to ASD can be different from one individual

to another with a combination of rare deleterious variants (R) and a myriad of

low-risk alleles [also defined as the genetic background (B)]. Most of the inherited

part of ASD seems to be due to common variants observed in the general popula-

tion, with only a small contribution from rare variants (Fig. 3). Importantly, while

the de novo mutations are considered per se as genetic factors, they do not

contribute to the heritability since they are only present in the patient (with the

relatively rare exception of germinal mosaicisms present in one of the parental

germlines and transmitted to multiple children). These de novo events could

therefore be considered as “environmental causes” of ASD but acting on the

DNA molecule. It is currently estimated that more than 500–1000 genes could

account for these “monogenic forms” of ASD (Iossifov et al. 2012; Sanders

et al. 2012), confirming the high degree of genetic heterogeneity.

The interplay between the rare or de novo variants R and the background B will

also influence the phenotypic diversity observed in the patients carrying rare

deleterious mutations. In some individuals, a genetic background B will be able

to buffer or compensate the impact of the rare genetic variations R. In contrast, in

some individuals, the buffering capacity of B will not be sufficient to compensate

the impact of R and they will develop ASD (Rutherford 2000; Hartman et al. 2001).

In the R‘n’B model, ASD can be regarded as a collection of many genetic forms of
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“autisms,” each with a different etiology ranging from monogenic to polygenic

models.

The presence of multiple hits of rare CNVs, SNVs or indels in a single individual

also illustrates the complexity of the genetic landscape of ASD (Girirajan

et al. 2010, 2012; Leblond et al. 2012). In addition, the analysis of the whole

genome sequence of multiplex families also indicates that clinically relevant

mutations can be different from one affected sib to another even in a single family

(Yuen et al. 2015). It is therefore still difficult to ascertain robust genotype-

phenotype relationships based on our current knowledge.

Fortunately, although the ASD-risk genes are numerous, they seem to converge

in a limited number of biological pathways that are currently scrutinized by many

researchers.

The Biological Pathways Associated with ASD

Unbiased pathway analyses indicated that ASD-risk genes seem to be enriched in

groups of proteins with specific functions (Voineagu et al. 2011; De Rubeis

et al. 2014; Ronemus et al. 2014; Uddin et al. 2014; Hormozdiari et al. 2015).

Pinto et al. (2014) analyzed the burden of CNVs in 2446 individuals with ASD and

Fig. 3 Relative contribution of the genetics and environment in ASD. Based on twin and familial

studies, it is estimated that the genetic and environmental contributions to ASD are approximately

50/50 %. Most of the heritable part seems to be due to common variants observed in the general

population, with a small contribution of rare variants. Importantly, the de novo mutations are

genetic causes of ASD but do not contribute to the heritability since there are only present in the

patient. These de novo events are therefore considered to be “environmental causes” of ASD, but

acting on the DNA molecule (Adapted from Huguet and Bourgeron 2016)
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2640 controls and found enrichment in genes coding post-synaptic density proteins

and FMRP targets. Ronemus et al. (2014) reviewed the results of four whole exome

sequencing studies and showed an enrichment of mutated genes in chromatin

modifier genes (P¼ 4� 10�6) and FMRP targets (P¼ 7� 10�6). Protein-protein

interactions (PPI) analyses of the genes carrying LGD mutations also showed

enrichment in proteins involved in neuronal development and axon guidance,

signaling pathways and chromatin and transcription regulation. De Rubeis

et al. (2014) also used the PPI network and showed enrichment in clusters of

proteins involved in the cell junction TGF beta pathway, cell communication and

synaptic transmission, neurodegeneration and transcriptional regulation.

In parallel to the genetic studies, several transcriptomic analyses were performed

using post-mortem brain of individuals with ASD (Voineagu et al. 2011; Gupta

et al. 2014). Several genes were differentially expressed or correlated between brain

regions. Two network modules were identified. The first module was related to

interneurons and to genes involved in synaptic function (downregulated in brains

from ASD patients compared to controls). The second module was related to

immunity and microglia activation (upregulated in brains from ASD patients

compared to controls).

Based on these results, neurobiological studies using cellular and animal models

have been performed to identify the main mechanisms leading to ASD. Remark-

ably, several studies showed that neuronal activity seems to regulate the function of

many of the ASD-risk genes, leading to the hypothesis that abnormal synaptic

plasticity and failure of neuronal/synaptic homeostasis could play a key role in the

susceptibility to ASD (Belmonte and Bourgeron 2006; Auerbach et al. 2011; Toro

et al. 2010). Here, we will only depict four main biological pathways associated

with ASD: chromatin remodeling, protein synthesis, protein degradation, and

synaptic function (Fig. 4). In parallel, several biochemical studies have indicated

a dysfunction in the serotonin-NAS-melatonin pathway.

Chromatin Remodeling Mutations in genes encoding key regulators of chromatin

remodeling and gene transcription (e.g., MECP2, MEF2C, HDAC4, CHD8 and

CTNNB1) have been reported in individuals with ASD (Fig. 4). Remarkably, a

subset of these genes is regulated by neuronal activity and influences neuronal

connectivity and synaptic plasticity (Cohen et al. 2011; Sando et al. 2012; Ebert

et al. 2013).

Protein Synthesis The level of synaptic proteins can be influenced by neuronal

activity through global and local synaptic mRNA translation (Ma and Blenis 2009).

Several genes involved in such activity-driven regulation of synaptic proteins have

been found to be mutated in individuals with ASD (Kelleher and Bear 2008). For

example, the mTOR pathway controls global mRNA translation and its deregula-

tion causes diseases associated with increased cell proliferation and loss of

autophagy, including cancer (Ma and Blenis 2009), but also increases the risk for

ASD. Remarkably, mutations in the repressor of the mTOR pathway such as NF1,
PTEN and SynGAP1 cause an increase of translation in neurons and at the synapse

(Auerbach et al. 2011). Mutations of the FMRP–EIF4E–CYFIP1 complex cause the
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fragile X syndrome and increase the risk of ASD (Budimirovic and Kaufmann

2011). This protein complex controls local translation of mRNA at the synapse and

acts downstream of the Ras-ERK signaling pathway. This complex regulates the

translation of more than 1000 specific genes, many of which are ASD risk genes

(De Rubeis et al. 2013; Fernandez et al. 2013; Gkogkas et al. 2013; Santini

et al. 2013). An alteration of this FMRP–EIF4E–CYFIP1 complex should therefore

create an imbalance in the level of many synaptic proteins that are associated

with ASD.

Protein Degradation The Ubiquitin-Proteasome System (UPS) is central for the

degradation of the proteins and, consequently, for the regulation of synapse com-

position, assembly and elimination (Mabb and Ehlers 2010). The UBE3A gene

encodes a ubiquitin ligase, is mutated in patients with Angelman syndrome and is

duplicated on the maternal chromosome 15q11 in individuals with ASD. Neuronal

activity increases UBE3A transcription through the MEF2 complex and regulates

excitatory synapse development by controlling the degradation of ARC, a synaptic

protein that decreases long-term potentiation by promoting the internalization of

AMPA receptors (Greer et al. 2010).

Synaptic Functions Many proteins encoded by ASD-risk genes participate in

different aspects of neuronal connectivity, such as glutamatergic (e.g., GRIN2B),

GABAergic (e.g., GABRA3 and GABRB3) and glycinergic (e.g., GLRA2) neuro-

transmission, neuritogenesis (e.g., CNTN), the establishment of synaptic identity

(e.g., cadherins and protocadherins), neuronal conduction (CNTNAP2) and perme-

ability to ions (CACNA1, CACNA2D3 and SCN1A). Some of these proteins are

directly involved in activity-driven synapse formation, such as the neurexins

(NRXNs) and neuroligins (NLGNs). Some are scaffolding proteins involved in

the positioning of cell-adhesion molecules and neurotransmitter receptors at the

synapse (Sheng and Kim 2011; Choquet and Triller 2013). For example, deletions,

duplications and coding mutations in the three SHANK genes (SHANK1, SHANK2
and SHANK3) have been recurrently reported in individuals with ASD (Leblond

et al. 2014). SHANK proteins assemble into large molecular platforms in interac-

tion with glutamate receptors and actin-associated proteins (Grabrucker

et al. 2011). In vitro, SHANK3 mutations identified in individuals with ASD reduce

actin accumulation in spines affecting the development and morphology of den-

drites as well as the axonal growth cone motility (Durand et al. 2012). In mice,

mutations in SHANK3 decrease spine density in the hippocampus but also increase

dendritic arborizations in striatal neurons (Peca et al. 2011). Mice mutated in

SHANK present with behavior resembling autistic features in humans. Shank1
knockout mice display increased anxiety, decreased vocal communication,

decreased locomotion and, remarkably, enhanced working memory, but decreased

long-term memory (Hung et al. 2008; Silverman et al. 2011; Wohr et al. 2011).

Shank2 knockout mice present hyperactivity, increased anxiety, repetitive

grooming, and abnormalities in vocal and social behaviors (Schmeisser

et al. 2012; Won et al. 2012). Shank3 knockout mice show self-injurious repetitive
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grooming, and deficits in social interaction and communication (Bozdagi

et al. 2010; Peca et al. 2011; Wang et al. 2011; Yang et al. 2012).

The Serotonin-NAS-Melatonin Pathway

In parallel to the genetic investigations pointing to the biological pathways

described above, several biological abnormalities have been reported in individuals

with ASD, including neurochemical, immunological, endocrine or metabolic traits

(Lam et al. 2006; Rossignol and Frye 2012), which may provide insights into the

pathophysiology of ASD. Among these, elevated blood serotonin is one of the most

replicated findings (Pagan et al. 2012) (Fig. 5). A deficit in melatonin (which

chemically derives from serotonin) in the blood or urine of individuals with ASD

has also been described in several studies (Tordjman et al. 2005; Melke et al. 2008)

and is associated with increased peripheral N-acetylserotonin (NAS), the interme-

diate metabolite between serotonin and melatonin. Several mutations affecting this

pathway were identified but the mechanisms of these biochemical impairments

remain mostly unexplained. Melatonin is a neurohormone mainly synthesized in

Fig. 5 The serotonin-NAS-melatonin pathway in ASD. (a) The serotonin-NAS-melatonin syn-

thesis pathway consists of two enzymatic steps involving first the N-acetylation of serotonin to N-
acetylserotonin (NAS) by the rate-limiting enzyme AANAT and the methylation of NAS by the

ASMT (also known as HIOMT). Different alterations such as higher serotonin or low melatonin

levels were observed in the blood of patients with ASD. The enzymes are represented in gray and
metabolites are in white. Alterations of the biochemical parameters are shown with red arrows. (b)
A schematic view of the pineal gland with the pinealocytes that contain the “melatoninosome.”

This complex includes at least four proteins: AANAT, ASMT, 14-3-3 and S-antigen. The

immunofluorescence confocal image of AANAT (green) and 14-3-3δ/ε (red) in the pinealocytes

is adapted from Maronde et al. (2011). The structure of the 14-3-3ζ homodimer binding to

AANAT is adapted from Obsil et al. (2001). (c) Main sources of serotonin (blue) and melatonin

(green) and the symptoms or comorbidities of ASD relevant to alterations in serotonin and

melatonin levels observed in ASD (Adapted from Pagan et al. 2012)
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the pineal gland during the night. It is a biological signal of light/dark cycles and is

considered to be a major circadian synchronizer. It is also a modulator of metab-

olism, immunity, reproduction and digestive function. Furthermore, it displays

antioxidant and neuroprotective properties and can directly modulate neuronal

networks (Bourgeron 2007). Melatonin appears as a therapeutic target of the

frequently reported sleep disorders associated with ASD (Andersen et al. 2008;

Wright et al. 2011; Malow et al. 2012). NAS displays intrinsic biological proper-

ties: it is an agonist of the TrkB receptor and may thus share the neurotrophic

properties of brain-derived neurotrophic factor (BDNF), the canonical TrkB ligand

(Jang et al. 2010; Sompol et al. 2011). Serotonin conversion into melatonin

involves two sequential enzymatic steps: N-acetylation of serotonin into NAS by

arylalkylamine N-acetyltranferase (AANAT, EC: 2.3.1.87) followed by methyla-

tion by acetylserotonin O-methyltransferase (ASMT, also called hydroxyindole

O-methyltransferase HIOMT, EC: 2.1.1.4) (Fig. 5a). We previously showed that

deleterious mutations of the ASMT gene could disrupt melatonin synthesis in a

subset of patients with ASD. Nevertheless, the frequency of such a deleterious

mutation is too low (2 % of the cases) to explain the relatively high frequency of

melatonin deficit in ASD (>50 % of the patients, taking as a threshold the fifth

percentile of the controls). More recently, we observed a low level of the 14-3-3

proteins both in the blood platelet and pineal gland of patients with ASD (Pagan

et al. 2014). These ubiquitous chaperone proteins are known to form a protein

complex, the ‘melatoninosome,’ involving AANAT and ASMT in pinealocytes

(Obsil et al. 2001; Maronde et al. 2011). This interaction between 14-3-3 and

AANAT and/or ASMT might be essential for the production of melatonin and an

adequate balance of the serotonin-NAS-melatonin pathway. Indeed, a low level of

14-3-3 could eventually lead to a deficit in enzyme activity, contributing to the

global disruption of the serotonin-NAS-melatonin pathway observed in ASD.

Studies investigating the regulation of the complex 14-3-3/ASMT/AANAT in

ASD and controls are in progress.

Perspectives

In the last 30 years, very significant progress has been made in the genetics of ASD.

We now have a better knowledge on the genetic architecture of this heterogeneous

syndrome and some of the biological pathways have been investigated using

different approaches such as cellular and animal models. There are, however,

many aspects of the genetics of ASD that remain largely unknown.

The first challenge concerns the role of the common variants. These variants are

most likely playing a key role in the susceptibility to ASD and in the severity of the

symptoms. But, because the impact of each single SNP is very low, it is currently

impossible to identify the risk alleles using conventional GWAS. In human quan-

titative traits such as height, neuroanatomical diversity or intellectual quotient, very
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large cohorts of many thousands of individuals are necessary to identify the main

causative SNPs (Toro et al. 2014; Yang et al. 2010; Deary et al. 2012).

The second challenge concerns the stratification of the patients and the role of

the ASD-risk genes during brain development/function. Based on our current

knowledge, the genetic architecture of ASD seems to be different from one indi-

vidual to another, with possibly contrasting impact on when and where neuronal

connectivity could be atypical compared to the general population. For example, in

animal models, several mutations lead to higher connectivity whereas other muta-

tions alter synaptic density. It is therefore crucial to increase our knowledge from a

basic research perspective about the biological roles of the ASD-risk genes and

their partners.

Finally, while we all agree that biological research is necessary to improve the

quality of life of the patients and their families (for example, to alleviate the

comorbidities associated with ASD like sleep and gastrointestinal problems), pro-

gress should also be made toward better recognition and inclusion of people with

neuropsychiatric conditions in our societies (no mind left behind). Hopefully,

increasing knowledge in genetics, neurology and psychology should allow for

better diagnosis, care for and integration of individuals with autism.
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AL, Cantor RM, Curland M, Grice DE, Günel M, Lifton RP, Mane SM, Martin DM, Shaw CA,

Sheldon M, Tischfield JA, Walsh CA, Morrow EM, Ledbetter DH, Fombonne E, Lord C,

Martin CL, Brooks AI, Sutcliffe JS, Cook EH Jr, Geschwind D, Roedr K, Devlin B, State MW

(2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams

syndrome region, are strongly associated with autism. Neuron 70:863–885

Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG,

DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, El-Fishawy P,

Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar K, Mane
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