
Books for professionals by professionals®

Companion eBook
See last page for details

on $10 eBook version

CA Press
CA Technologies (NASDAQ: CA) is an IT management software and
solutions company, enabling customers to manage and secure their

Shelve in Information:

User level:
Beginning–Advanced

Related TitlesService Virtualization
what’s the problem?

Get ready for a shock, because the answer to the problem is to avoid reality

is industrializing the process of simulating our software development and test

the design and development lifecycle, and SV is already making a huge impact at

Service Virtualization: Reality Is Overrated
powerful new method for simulating the behavior, data, and responsiveness of

in the speed and cost of delivering innovative and high performance functionality

real-world constraints and deliver new products to market better, faster, and

Fake Praise for Service Virtualization
“Life in nature is nasty, brutish and short. But not so much

in virtual environments.”
—Virtual Thomas Hobbes

“Good developers reuse. Great developers virtualize.”
—Virtual Pablo Picasso

“Strawberry Virtual Development Environments. Nothing is
real. And nothing to get hung about.”

—Virtual John Lennon

“Fool me once, shame on you. Fool me twice… won’t get
fooled by virtual services again.”

—Virtual Dubya

Companion
ebook

available

CA Press
Service Virtualization

Service
Virtualization

by Virtualizing Everything

CA Press

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

Contents
About the Authors��vii
About the Technical Reviewer�� ix
Acknowledgments��� xi
Prologue: 	 Virtually There at FedEx®��� xiii
Chapter 1:	 Introduction��� 1
Chapter 2:	 The Business Imperatives: Innovate or Die.. 5
Chapter 3:	 How We Got Here.. 11
Chapter 4:	 Constraints: The Enemy of Agility... 17
Chapter 5:	 What Is Service Virtualization?... 27
Chapter 6:	 Capabilities of Service Virtualization Technology................................... 37
Chapter 7:	 Where to Start with Service Virtualization?.. 47
	 Intermission... 57
Chapter 8:	 Best Practice 1: Deliver Faster.. 59
Chapter 9:	 Best Practice 2: Reduce Your Infrastructure Footprint......................... 67
Chapter 10:	 Best Practice 3: Transform Performance and Scale................................ 75
Chapter 11:	 Best Practice 4: Data Scenario Management... 83
Chapter 12:	 Rolling Out Service Virtualization.. 89
Chapter 13:	 Service Virtualization and DevTest Cloud.. 99
Chapter 14:	 Assessing the Value..105
Chapter 15:	 Conclusion...115
Afterword:	 Virtual Confession..121
Glossary���125
Index��133

P r o l o g u e

Virtually There
at FedEx®

It’s a Reality Most Businesses Would Want to
Run Away From

Fifteen years ago, a team at FedEx had to make absolutely, positively certain
that their deliveries would be supported by a software architecture of around
200 systems. Today, the number of moving parts and services they must fit
together easily exceeds several thousand unique IT services and systems. And
that’s just one key group. Millions of end-customer and partner transactions
hit FedEx systems from around the globe every day.

Here’s what Russ Wheaton—Director IT, FedEx—had to say about their
journey:

In keeping with the customer demand and expectation of the times, our
company was testing a very specific stack of software 15–18 years ago,
with some of our key systems originally having been built in the ’80s. The
earliest goal was to certify software functions that were considered
“revenue-impacting” or “customer-facing” to our business. As time
progressed and the system reality came closer to business expectation,
the number, type and scale of the systems falling into this category grew
quite a bit.

We were facing a challenge: As we continued to roll out and connect
more services to provide a higher degree of flexibility and service level
to our customers, many more core systems were playing in the space of
customer or revenue impacting. As the number of interconnected
systems rose, the complexity of the “business transaction” increased

Prologuexiv

significantly. This, combined with a fast-growing company strategy
realizing ever-increasing shipping transactions, forced a big think on how
we would address the end-to-end certification of the core flow, without
regularly adding resources or budget to make it happen. We needed to
change our strategy.

Around the same time, a new movement was growing called SOA
(Service-Oriented Architecture) which promised to simplify the problem
via a set of principles and methodologies targeting the design of discrete
but interoperable services. This was great in that it gave us more reuse
and faster development of common enterprise services, allowing us to
design, deploy, and decouple at a much more manageable level, eliminating
many of the “big-system” dependencies and the fall-forward strategy.

But there was a downside that SOA introduced for the large system
certification processes. When you have a lot of teams or systems
depending on one another being ready, that dependency has an impact
on schedules. If the services needed at a specific time in the certification
process weren’t all sized appropriately, or were not ready to go, or were
coming together for the first time in end-to-end testing, it just didn’t
work. It became an exercise in heroics to bring the pieces together
while staying on schedule.

About seven years ago or so, we introduced interface standardization as
a core architecture principle that would sit across all our development
silos. We decided to standardize interface technology on both the
transport and encoding. Many good things resulted from having well-
defined (even in some cases self-defining) interfaces that helped
significantly with software design and delivery in a complex heterogeneous
environment. We had also hoped that we were making an investment in
our future thinking that someday this would facilitate a more standard,
repeatable certification process for our very complex applications.
Ideally we could leverage a “simulation” technology (other industries
had been leveraging simulators for decades), where we could stand up
analogs of our well-defined interface and simulate them for functional or
performance testing purposes in such a way that dependent development
teams could work independently of one another from a development
schedule perspective as long as the interface or “contract” between the
two was well-defined and standardized.

While that was important for our schedule, we were also highly
concerned with reliability. How could we certify each of these systems
independently as a baseline and take a scientific approach, so that if one
piece of code changed, we could ensure in an automated fashion that

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

xvPrologue

the results we expected were happening? In essence, could we leverage
this technology to develop a new technique to push quality further up in
the development lifecycle potentially as far as code and unit test?

For a company our size, the solutions we deploy to certify our revenue-
impacting or customer-facing applications have to be technology-agnostic
on the back end. We continue to work with the architect community to
leverage standardized technologies like SOAP, REST, EJBs and integration
buses, regardless of whether they talk to back-end mainframes, internal
distributed services, clouds, or even external services. We know nirvana
for us is to achieve consistent technology and encoding across all core
enterprise interfaces.

Twenty years ago things were simpler. Business and IT were separated
by a great divide. IT enabled things like accounting, but very little of the
business productivity was driven by IT. But the Internet started bringing
that gap together, and now business strategies are tied at the hip and
very dependent upon the IT solutions and enabling strategies.

That puts pressure on our IT systems to look more like business
solutions. We need IT to drive new capabilities, enable faster turnaround
times for new services, and create greater agility for the business. We
have to certify faster to get to market faster. And while IT evolves,
customer expectations increase, and customer tolerance for system
failure drops. Over time, in some cases, it has evolved from simply
irritating the customer to impacting the customer’s very business model.

We need to keep raising the bar on ourselves. If our systems are not
fast, secure, and accurate, customers will do business elsewhere.

When John Michelsen was in our office a couple years ago, that was the
situation I laid out for him: Ever-increasing business complexity and
demand for new feature development, on time, right the first time, every
time—while nobody gets any extra time, money, or resources to make
it happen. We wanted to change the game to get more productivity out
of the hours and people we had to meet that demand, while maintaining
a sensible and rewarding work–life balance for our professionals. It is
forcing us to rethink our environment.

Today, everything has gone virtual, giving us a higher degree of
repeatability and predictability amongst other things. We have virtualized
servers; the industry nailed that one years ago. Via Service-Oriented
Architecture (SOA), commoditized services and data are commonplace
in today’s enterprise computing environment. With the introduction of
Service Virtualization technologies, something we internally call

Prologuexvi

“Interface Simulation,” we’re now able to stand up hundreds of interfaces
and virtual back ends without requiring the complex interdependencies
of the peripheral systems (to the system under test). In one example
from my team, we simulate 25 back-end services representing about 200
different servers in a space we traditionally struggled with. Interestingly
enough, we didn’t even test those services. We just needed them to test
the higher-end dependent service, yet they took the bulk of the time to
set up and administer.

Taking away the need to work with real systems has greatly simplified
our process. For adoption, we had to prove that virtual services worked
better than the real thing to gain trust. The first time we were able to
hand a performance manager an extra week of time in his cycle, it was
like giving him a sack of gold.

But acceptance of any change in mindset across an organization can be
hard, especially when you are confronted with “the way it’s always
worked.” So my advice to anyone considering moving to virtualized
services and interfaces would be this: Pick a spot where you have the
toughest constraints, focus on it, make it excellent—and people will
come out of the woodwork to support it.

c h apter

1
Introduction
Whether you realize it or not, you are likely already in the business
of making software. Service Virtualization is not just a topic for a select
few IT professionals. If you are in a company that delivers services to customers
over the Internet or enables sales and service teams through software, this
book is for you.

Success is there for the faking. Service Virtualization offers a transformational
new way to overcome the constraints that inhibit your teams from delivering
software to production so you can get your company’s products and services
to market faster, better, and cheaper than your competition.

Service Virtualization Defined
Service Virtualization (SV) is the practice of capturing and simulating the
behavior, data, and performance characteristics of dependent systems and
deploying a Virtual Service that represents the dependent system without any
constraints, thus allowing software to be developed and delivered faster, with
lower costs and higher reliability. This rather concise definition of SV will be
elaborated upon and refined in Chapter 5.

Service Virtualization includes a new type of technology and an accompanying
methodology for “virtualizing everything” in the environment around any
software-enabled or Internet-based business service or product you are
developing. Since there are very few companies in business today that do not
depend on software, the competitive and economic impact of Service
Virtualization will be profound and far-reaching across many industries.

You Make the Transformation Happen
We will challenge you to understand your own role in advancing the
transformational practice of Service Virtualization, whether you are an IT

Chapter 1 | Introduction2

executive, delivery manager, architect, or in almost any way involved in
software development. You will gain a basic understanding of how SV
technology works to alleviate software constraints. More importantly, you
will learn why, when, where, and how SV practices should be employed for
maximum success and value to your business.

Practical applications for SV that are in use by enterprises today enable you to

•	 deliver faster

•	 reduce your infrastructure footprint

•	 transform your performance and scale

•	 manage your data scenarios

These are by no means the limit of what can be done with SV, but provide
valuable approaches we have seen companies use to drastically reduce new
feature delivery timelines, infrastructure, and labor costs, while eliminating
unexpected risks from problematic software projects.

About This Book
This book assumes a basic understanding of how Internet-based business
software projects are planned, budgeted, developed and delivered. The
practice of Service Virtualization has profound potential for improving the
time to market and overall competitiveness of any business strategy with a
technology component. Organizational buy-in is key to success here, so while
the core of Service Virtualization practitioners are software development,
testing, and IT environments teams, we also focus on business-level approaches
and benefits.

Disclosure: The writers of this book are a co-founder and early employee of the
software firm ITKO, now a CA Technologies company. In 2007, ITKO invented,
patented, and released the first Service Virtualization software on the market within
their CA LISA® product suite. Now Service Virtualization is a growing category of
software with established service provider offerings and related tools on the market
from several leading vendors. This book’s purpose is not to make claims about CA
or LISA software products, but instead focuses on the best practices for enabling
Service Virtualization practices, no matter what combination of tools you select and
use in your environment.

3Service Virtualization

Signposts in the Book
Look for these icons as you read—they’ll highlight some useful
supplemental information.

Advice: These are tips that can help you smooth adoption of
Service Virtualization practices for your business.

Alert: These warnings can help you avoid common organizational
pitfalls or implementation dangers often found to inhibit success.

Geek Out: Engineers will find these details quite interesting, but
if you are not reading for technical purposes, you may skip over
these sections.

Remember: Don’t forget these points when embarking on your
own implementation

Definitions: Terms of art are highlighted at first occurrence in the text with
bold italics and an asterisk (term*) and are defined in the Glossary.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

c h apter

2
The Business
Imperatives:
Innovate or Die
Almost all high-level enterprise executives when we first meet will say that
software development is not really their core business. They’ll say: “We are
first and foremost driven to be leaders in the [banking-insurance-telco-
utilities-retail-travel-health care] industry. Our core business is helping
customers, not developing software.” (Unless, of course, they are actually
working for a software company.)

Well, we’d like to challenge that assumption right now. Any major company
with an IT delivery component already has a huge software organization
teeming under its surface, with thousands of developers, performance and
test engineers, and support and customer representatives all attempting to
drive technology to deliver on the expectations of the market. I can’t count
how many CIOs go out of their way to tell me they have more developers on their
staff than a software company the size of CA Technologies, or even in some cases
Microsoft!

Your enterprise software organization is likely spread out over multiple
offices, organizational silos, and partners, and paid for out of multiple
budgets—but it has a shared motivation: Innovate or die! Your competition
has the same motivation too. This innovation race is driven by four very
real business imperatives.

Chapter 2 | The Business Imperatives: Innovate or Die6

.

Business Demands Agile Software Delivery
let’s take a look at one of the largest banks we have worked with� rather
than advertise their long history, strong asset base, deep professional
experience, and many physical locations, they run television ads for things like:

•	 a new “quick pay” web service

•	 a new “scan checks from my phone” app

•	 a better security system for catching online identity theft

none of these above are traditional defining characteristics of a financial
institution—these are all new software features that had better work as
advertised when delivered in a web browser or smartphone! it just goes to
show that the rapid design and development of software applications is now
a primary way companies require us to go to market and differentiate in
today’s consumer-driven economy�

7Service Virtualization

To top it off, over the last decade most major enterprises have put a huge
emphasis on cutting IT costs as much as possible, and therefore the IT budgets
of the old dot-com days aren’t coming back. Do more with less. This is the
new normal* state of IT economics that we must function in. The very same
bank mentioned above is expected to take hundreds of millions of dollars out
of their IT spend over the next few years. That means your business must be
ready to deliver new software functionality at breakneck speed in an
increasingly difficult environment, without an increasing budget expenditure
to match.

Increased Change and Complexity Are Inevitable
In an attempt to make IT more agile in delivering new software features at
Internet speed, most companies have moved toward composite application
development approaches. These new service-oriented methodologies espoused
the idea that new software could be produced more rapidly atop of existing
systems when broken up into smaller functional units or “services” that were
more reusable and loosely coupled.

While this approach did accelerate development on a functional unit basis at
first, over time it also created a “spaghetti mess” of services architecture with
highly unpredictable results: many interdependent components, developed
using heterogeneous technologies, managed and owned by distributed teams,
with each version changing on its own release cycle (Figure 2-1). Yesteryear’s
unitary “app” has evolved into a composite of several piece-parts of several
other applications.

What happens in this type of highly volatile environment? We must account
for this agile service development by expecting to discover more and more
software errors occurring owing to the unintended consequences of change.
Some IT shops are doing more break-fix in production than ever, which is not
a sustainable model. Others throw more and more budget at each project,
sometimes increasing their lab infrastructure and QA budgets by 5 or 10
times in an attempt to ensure the software will function as expected once
released.

One major insurance payer we know said they routinely “planned for their
unpredictability” (oh, the irony) in delivering software by automatically adding
30 percent more hours to the end of every project plan!

Business Software Cannot Sustain
without Simulation
If we built commercial airplanes the same way we build software today,
we would never fly!

Chapter 2 | The Business Imperatives: Innovate or Die8

F
ig

ur
e

2-
1.

 C
om

po
si

te
 a

pp
lic

at
io

n
sp

ra
w

l h
ap

pe
ns

 d
ue

 t
o

th
e

de
co

up
lin

g
of

 a
pp

lic
at

io
ns

 in
to

 s
er

vi
ce

-b
as

ed
,

di
st

ri
bu

te
d

ar
ch

ite
ct

ur
es

, c
on

si
st

in
g

of
 m

ul
tip

le
 in

te
rc

on
ne

ct
ed

 h
et

er
og

en
eo

us
 t

ec
hn

ol
og

ie
s

th
at

 a
re

fr

eq
ue

nt
ly

 c
ha

ng
ed

 a
nd

 u
pd

at
ed

 b
y

m
ul

tip
le

 d
el

iv
er

y
te

am
s.

9Service Virtualization

Let’s compare your business software development challenges to the
manufacturing process for commercial airplanes. If we were the design team
for a new wing and we performed that task as we build software today, we
would demand hundreds of actual airplanes full of cargo and a pilot as our
“lab.” We would then crash hundreds of planes in our horribly inefficient and
desperate attempt to get our new wing design to fly.

But that is exactly what we commonly see companies do with the critical software
that runs their operations today! In software, if some component fails in
production, we just send the release back to development and eat the cost of
finding and fixing those errors, miss opportunities, and fail in front of
customers.

You can see that if airplane manufacturers took this “wait and see, then send
back to dev” approach, they’d go out of business long before we ever had
viable commercial aircraft.

Today, aircraft design, manufacturing, and flight are the result of a process of
constant simulation, testing, monitoring, and improvement. Each and every
part of the plane’s design is developed, then tested independently using
modeling and simulation, and then tested again as part of an integrated system,
while being continuously monitored in-flight for any performance issue. Real
wing-design teams know that they don’t need planes to build a wing: they
need modeling tools and a wind tunnel.

Simulation tools utilize feedback from this real production data to ensure
correctly functioning components without waiting until the integration stage
for verification. Pilots must even spend hours training in flight simulators that
virtualize the airplane’s behavior in real-world scenarios, without the risk.

The design of an aircraft presents engineers with an extremely complex
architecture of thousands of unique and highly interdependent components,
systems, and sensors. It would be impossible to account for all of the “what-
if” scenarios of introducing a new element to a real aircraft without simulation.

Think about it: You can’t expect to find every environmental
condition that our wing will face during a live test flight to see if it
works—of course not! Instead, we must have complete control
over the environment—a “wind tunnel” that simulates all the
environmental conditions we need without the real plane. This
allows us to fully verify the design much faster. Simulation—it’s just
science, Einstein!

Today’s software architectures now look more like a complicated aircraft
design than the previous simplistic client/server* or on-premise systems we
once knew (Figure 2-2). It is surprising any business software runs at all given
the woeful lack of robust simulation.

Chapter 2 | The Business Imperatives: Innovate or Die10

Figure 2-2. An aircraft design process (top) compared with a typical composite application
architecture view (bottom) (US FAA NAS public network architecture, 2008)

Other industries—from consumer electronics to automotive to
pharmaceuticals—understand the science of modeling and simulation for
experimentation purposes in design and development. With so much critical
functionality on the line, it is now time that the business software industry
sign up for the same scientific discipline of proving out our hypotheses by
simulating real-world environments ahead of delivery, for more predictable
and safe results.

c h apter

3
How We
Got Here
Let’s go back to the days of running a software shop twenty years ago—
before many of today’s developers had even compiled their first line of code.
Grizzled techies still talk about it like the Golden Age of software engineering,
but it was such a simple world compared to today.

Software applications were
essentially closed, monolithic
systems. There was one client
UI, the software ran on one
target platform, and we usually
had a year or more to get the
project done. Better yet,
everyone on the project was
likely co-located in the same
building and could have lunch
together.

Yes, we had to homebrew many parts of the system to make it work. But in
the early ’90s, we had much lower expectations of interactivity or system
intelligence. We had little or no interconnectivity or reliance on any external
systems—everything was completely under our control. And we thought it
was hard back then…

Things have gotten incredibly difficult since then. We now have an enormous
distributed staff and many partners, under incredible pressure to deliver new
business functionality faster, with an ever-increasing amount of complexity
and change in IT environments.

Chapter 3 | How We Got Here 12

From Monolithic to Composite Apps
It’s not like anyone wanted to make applications evolve this way. Customers
demanded higher levels of service to meet their specific needs. Therefore,
companies started keeping track of more customer information, as well as
offering more complex products and services that needed to be accounted
for by those core mainframes*.

Rather than replace these often irreplaceable systems, in the later ’80s the
rise of the desktop PC happened, and we naturally learned to “layer” on new
technology and relational data to try and abstract new software features in
these clients, thereby working atop the slow-changing nature of core servers.

To survive, businesses needed to become more flexible and develop new
software to meet the needs of customers. So each evolution of our
applications—from the still-often-critical mainframe to client/server and
n-Tier apps to today’s service-oriented composite apps (Figure 3-1)—was
simply the next way to respond to ever-faster-changing customer and market
demands with new software, while carrying forward the core systems the
business relied upon. We frequently describe our customers’ environments as
“museums without plaques.”

Figure 3-1. Evolution to composite apps from mainframe and client/server approaches.
Note that the existing technology investments never go away.

Today’s Complex Service Environments
Let’s take a look at a simplified reference architecture for a modern composite
application, which we will reference throughout this book (Figure 3-2). (If you
are not a developer, don’t worry. You will understand this!) A real enterprise
software implementation will consist of many, many more boxes, but the
basic concept is a multi-tiered “layer cake” that looks like this:

13Service Virtualization

Figure 3-2. Simplified architecture diagram of a typical modern composite application with
multiple tiers of technology.

UI Layers: End users interface with apps through web or device UI layers
that usually contain very little business logic. These components are usually
the most dynamic and variable aspects of an application, as any user experience
may be customized and configured to accept a near-infinite number of possible
scenarios.

Services: Web and UIs running on app servers call on underlying services
layers, which are modular components that contain much of the discrete
business functionality that development teams are building. These services
basically process requests when called and pass along data using an appropriate
message protocol (SOAP, XML, etc.). While there are industry standards
around these protocols, companies inevitably have customized formats for
some distributed communication.

Integration: As composite applications become more complex and new
services and systems are constantly added, the orchestration of many moving
parts must be addressed. To coordinate these services to meet the needs of
robust business processes, most enterprises adopted an Enterprise
Application Integration (EAI)* approach with an integration “backbone” or
Enterprise Service Bus (ESB)* system as a broker to route and queue up
messages from the services layer and make calls to the back-end mainframes
and systems of record when needed.

Back Ends: Most requests of the top layer of the application will eventually
delegate to these systems for execution. These are the core systems of record
for a company such as SAP and Oracle Financials, as well as legacy applications
and third-party hosted applications and mainframes. Software development
teams usually try to minimize changes to these highly utilized environments as
these layers handle important live tasks and are difficult or costly to change
or replicate.

Chapter 3 | How We Got Here 14

As you can see, each business function supported by a given UI will have many
downstream steps of business logic, data, and dependencies that must respond
in order to successfully execute a given business workflow.

Tech Note: While every composite app is unique, they usually
share common design patterns. As you move outward from the
core systems toward the surface of an architecture, you will notice
that underlying back-end systems and data sources are generally
slow-changing (requiring an “act of God” to make a major shift),
middle-tiers are updated a little more frequently (new processes
or integrations added), while new features are implemented most
frequently and cause the most changes at the services and
application UI layers.

From Waterfall to Agile Development
Let’s take a look at the evolution of software development now through a
process lens. Development teams are attempting to answer the need for
speed as well—by moving away from the exhaustive Waterfall* development
method of several sequential, gated steps that a team must finish and verify in
order to complete a release (Figure 3-3).

Figure 3-3. The Waterfall development process consists of several sequential development
and test gates over time, building toward a long-term project release.

Instead of taking months or more to deliver a release using the Waterfall
approach, in the last 15 years we have seen a huge surge in popularity for
Agile* development methodologies. The Agile approach recommends smaller,
independent teams to define, test, and develop small units of functionality in
shorter cycles or scrums* with short-term deliverables or “sprints” toward
the end goal (Figure 3-4).

One cool aspect of Agile is that it promotes Test-Driven Development*
(TDD)—which means developers “Test, then Code.” First, a test is written.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

15Service Virtualization

Then the developer starts coding. When the developed code passes the test,
this is a proof point that the code works as intended. These unit tests are
typically quite simple and test for the “happy path” of what the developer
expects to deliver, but when developers unit test at a higher frequency, it
increases the quality of each dev cycle. In this manner, incremental adjustments
of software to meet a business requirement can be made over the course of
several iterations, and the productivity (and engagement level) of development
teams should be increased.

Agile development also lends itself naturally to service-oriented technology
approaches, as smaller units of functionality can be built and reused in the
environment as modular, decoupled components. Agile proved excellent for
new, clean-slate development projects. For larger enterprises, however, it
often failed to deliver the expected boost in successful release speed. The
combination of distributed Agile development with service-based applications,
atop a raft of existing system and data dependencies, soon created a new set
of challenges that caused project delays and failures, in the form of constraints.*

Tip on Agile: Tons of great developer-level content has been
published about Agile. We recommend starting with “The Agile
Manifesto” site at http://agilemanifesto.org and following up with
books by some of the leading authors in that space.

Caveat about Agile: Since most Agile authors largely focus on
developer-level coding and testing activities, they tend to ignore
the realities of interconnectedness and complexity inherent in
enterprise IT. Therefore, at this time, Agile experts seldom
acknowledge the external constraints and need for simulation that
we are talking about here.

Figure 3-4. Agile development process breaks development into smaller, independent teams
with the responsibility to develop smaller units of functionality in fast iterations or “scrums,”
with the goal of faster alignment to the delivery requirement than Waterfall approaches.

http://agilemanifesto.org

apter

4
Constraints:
The Enemy
of Agility
Constraints are any dependencies that delay the completion of a task in the
software development lifecycle that are not within the control of the team
responsible for the task� constraints are the primary reasons why business
software projects are delivered late, over budget, and with poor quality�

ask Bob the development Manager why his team missed another delivery
deadline, and you will never hear Bob say, “It’s because we’re just not smart
enough . . .” or “My team just isn’t motivated enough . . .” you will instead likely
hear Bob rationalize the failure thusly:

“We did everything we could do. Sally’s team didn’t finish in time for us.”

“We spent weeks waiting for mainframe access.”

“We spent more time doing data setup and reset than we did testing.”

constraints kill agility� constraints will keep you up at night� the only thing
reassuring about constraints is that just about every enterprise it development
shop has them in spades, so you aren’t alone� your definitions may vary, but
there are four root constraints we will explore in this chapter:

•	 unavailable systems and limited capacity

•	 conflicting delivery schedules

Chapter 4 | Constraints: The Enemy of Agility 18

•	 Data Management and Volatility

•	 Third Party Costs and Control

In-Scope vs. Out-of-Scope
Before we talk about constraints, let’s take a minute to understand the nature
of in-scope vs. out-of-scope systems. In-scope* systems are the focus of a
development or test activity for a given team. Out-of-scope* systems are needed
for the in-scope systems to operate, but are not the focus of activity.

When you are building today’s highly distributed composite apps, you expect
any environment to encompass both in-scope and out-of-scope elements.
Every team will have a different composition of what is in or out of scope.

Figure 4-1. In-scope systems increase over time in a software lifecycle. Early component-
level development activities have very few systems in-scope, while most other systems are
out-of-scope, while each later software project phase of system, integration, and UAT have
an ever-increasing amount of in-scope responsibility across multiple systems.

Over a full Enterprise Release* lifecycle (Figure 4-1), the status of what is
in-scope vs. out-of-scope changes:

•	 When we start development, almost everything is out-
of-scope. Only our component, with its own discrete
requirements, is in-scope. Almost everything else is either an
external dependency or someone else’s responsibility and
out-of-scope.

•	 As we move forward to integration phases, more systems
become in-scope because our need to directly validate

19Service Virtualization

successful handoffs between our component and other
changed systems. There are still many out-of-scope systems
involved as it is rare that every system in the whole business
is taking a change for the given release.

•	 By the time we get to User Acceptance Testing* (UAT)
project phases, even more systems become in-scope since
we must validate that everything is safe for go-live. In the end,
we are left with a live application and almost nothing out-of-
scope.

Unavailable Systems and Limited Capacity
All large companies that rely on IT must deal with the environmental
constraints of unavailable systems, such as mainframes and incomplete
components. Teams need to have an appropriate system environment in place
in order to develop any new functionality and validate that the application is
working correctly.

Figure 4-2. Teams building software are inevitably delayed due to limited access windows
and unavailability of systems they depend on to finish their own application development
processes.

Chapter 4 | Constraints: The Enemy of Agility 20

Examples of unavailable systems include the following (Figure 4-2):

•	 A key mainframe that is used for important customer
transactions has only one shared test partition made available
to your development team by IT Ops for only a few hours
a week.

•	 The test environment for the ERP system is 1/100 of the
scale and performance of production. You cannot sufficiently
performance test your application because of the downstream
capacity limitations.

•	 A critical web service that your app will call on is still under
development by that team—and not expected to be
available until just days before your delivery deadline.

•	 A third party–SaaS-based transaction service provider only
allows 5 test transactions per day on its system before
they start charging you for every transaction, not nearly
enough to cover your scenarios.

What happens when the preceding situations occur? The project stops, and
teams simply wait. There’s a reason why you often find active foosball or ping-
pong tables in the development areas of a company, but none in customer
service.

One SVP of Development for a leading property insurance provider estimates
that across the board, his developers and testers were spending as much as
40 percent of their total work hours just waiting. He put his situation like
this: “I can’t do anything until I have everything—and I never have everything!”

Conflicting Delivery Schedules
While lack of availability is the most commonly identified constraint, it is
certainly not the only reason software projects fail to meet expectations.
We’ve discussed how Agile attempts to do away with the typical Gantt
chart* waterfall-type approach by allowing teams to decouple from each
other and develop their functionality in faster iterations. This is an excellent
plan, but there is still a catch.

Are developers coding in the blind?
Unless the requirement your team is developing for is incredibly simplistic,
the app under development is seldom self-contained. The code will eventually
interact with components that are owned and managed by other teams—

21Service Virtualization

each of which may be on their own independent develop-test-release timeline.
Though you may try to split up the functionality so development teams can
decouple and work in parallel with each other, most business applications
aren’t so easily compartmentalized. There is usually some need to synchronize
with the changes of other teams.

Even if early development succeeds at Agile, when we get to the Integration
phase and beyond in a composite application project, those teams will crash
together—forcing us back into an “AgileFall”-style sequential release process
(Figure 4-3). Hurry up and wait.

Figure 4-3. AgileFall process occurs when multiple teams try to iterate in faster scrum
cycles, but encounter dependencies on each other’s functionality as well as synchronizing
needed integration and test lab schedules.

Inefficiencies entrained by the AgileFall process include the following:

•	 The knock-on problem: Teams are hyperaffected by the
delivery dates of other teams. One team’s delay will have a
huge cascading effect.

•	 The “every other build” problem: A broken build* in the
other team halts your team’s progress.

•	 The “logjam” problem: Agile teams experience a “logjam”
where no system can be adequately tested for even its
application level functionality until all the development teams
are ready.

In spite of the interdependency, priority conflicts are endemic in every large
enterprise, as different development teams are often answerable to entirely
different business goals. Take for example a large retail chain that has one
application team building in-store Point-of-Sale (POS) applications for service
clerks, and a completely separate dev group responsible for the brand’s dot-
com web site. Both teams are compensated for delivering on their own

Chapter 4 | Constraints: The Enemy of Agility 22

agendas, but they also depend on shared access to systems such as inventory
and pricing. At these choke points, friction is bound to occur constantly.

Data Management and Volatility
As software becomes more complex and distributed, and handles more
customers and transactions over time, it is also generating an exponential
increase each year in resulting data. Some systems of record have become so
large and unwieldy (petabytes or zettabytes even), that they can barely even
be managed. You have dozens of data sources in a wide variety of storage
containers. And the data problem is only getting worse. The term big data*
was coined to describe the massive amount of unstructured data being
captured in consumer and transaction activity online. Data is a big, hairy
constraint for every enterprise development effort.

Have your teams ever struggled to set up just the right scenarios across
multiple systems, only to “burn” them all with a single test cycle? Have you
seen issues with regulatory or privacy rules about exactly how customer data
is used within development and testing cycles? Or found it difficult to re-
create scenarios in test systems for those unique types of edge conditions
that happen in production?

In the preceding scenario (Figure 4-4), development teams are attempting to
deliver and test a health care web application. Notice how very little of the
data is “in-scope” where they can extract it directly—most of the data they

Figure 4-4. Test Data Management problems create huge manual effort and delays due to
difficulty setting up complete enough data scenarios from upstream users and out-of-scope
downstream systems that are resistant to “copying” into a local database.

23Service Virtualization

need comes from systems that are “out-of-scope” or not under the team’s
control.

One company has such a severe data problem that they set up a huge “midnight
run” requiring 12 other teams to manipulate their own live systems manually,
all inserting the test data at the same time in order to accommodate one test
run. That’s a lot of overtime. One health care QA director told me, “We
spend two hours running a test cycle, then we spend three full days resetting data
across the systems.”

The most obvious solution is the conventional practice of Test Data
Management* (TDM): extracting a subset of production data directly from
all the involved systems into a local TDM database, and then importing that
data into the nonproduction systems.

Why the traditional approach to TDM isn’t working

•	 Fragile data: Applications change often—requiring frequent,
precisely-timed extract, manipulate, and setup activities.

•	 “Burned” data: Live transactions often “burn” a carefully
constructed set of test data upon use (your previously zero-
balance customer now has a balance!), making the data
unusable for that purpose again and requiring either re-
import or very difficult, manual undoing of the changes made.

•	 Complexity: Heterogeneous sources—SQL, IMS, VSAM,
Flat Files, XML, third-party service interfaces—vary widely,
whereas most TDM solutions only deal with a subset of
possible RDBMS* data sources. Moreover, Big Data brings
nonrelational* data sources to the mix.

•	 Security and regulations: Strict laws and industry standards
govern the protection of private customer data (ID and bank
account numbers, medical records, etc.) by development and
test teams, as well as accountability standards for how that
data is stored and shared.

•	 Labor- and cost-intensive: Many development shops report
that 60 percent or more of test cycle time is spent exclusively
on manual data configuration and maintenance activities.

•	 Difficult-to-reproduce scenarios: It’s hard to isolate and re-
create specific input-and-response scenarios. Lack of realism
limits the success of functional and performance testing.

Chapter 4 | Constraints: The Enemy of Agility 24

We will need to find new ways to free software development from the burden
of data management, as this constraint will only become bigger over time.

Third-Party Costs and Control
Not all companies suffer the constraint of data management equally, but
third-party costs arise as a “do-or-die” aspect of application development as
IT moves toward ever more composite and cloud-based application
architectures.

Custom software development and management of applications can be
incredibly expensive. Therefore, it makes a lot of sense for the enterprise to
offload systems and functionality, whenever possible, to another company
that specializes in providing that functionality via a service-based model. This
third-party provider then charges the company a fee for any access or remote
use of that SaaS offering, cloud service, or managed system resource.

Let’s look at a major airline with a critical customer ticketing application that
is under constant development (Figure 4-5). They outsource the reservation
management aspects of their business to a GDS (Global Distribution Service)
like Sabre or Galileo, and the payment management to another company’s
payment gateway, and so on, paying a fee each time their ticketing app submits
a request to these third-party services. These fees are perfectly acceptable in
production, where they are justified by the resulting revenue opportunity the
airline gets from selling the ticket.

Figure 4-5. Example of third-party costs and control issues at an airline developing their
integration server against downstream applications owned by other companies. Each
noncustomer transaction or test may incur usage fees or penalties.

4

25Service Virtualization

But in preproduction, that transaction fee is considered by the business to be
a cost of development, not a cost of revenue. Think about the number of
unique customer travel scenarios that must be validated, as well as the peak
levels of customer traffic the airline must develop and tune their app to
perform under.

Four years ago, we heard from an IT manager at an airline who requested a
10,000-user test prior to an important release, and the airline got hit with an
unexpected $30,000 bill for service fees—from a single 1-hour performance
test! Multiply the fees this airline pays across more than 1,500 developers and
testers pinging the systems, and they ended up paying between $7 to $9
million annually just on incurred preproduction costs to third-party services.

This story is by no means unique to airlines. We see third-party fees and
preproduction problems on the rise in all IT-intensive industries, from a
retailer with excess MIPS charges on the mainframe to a telco getting their
development budget eaten up by a provisioning gateway. The owner of a
critical health records mainframe charges the insurance payer penalties and
even suspends live access when they get hit with too many noncustomer
transactions by developers. Are these other guys just gouging us with these fees?

Most third-party systems and managed service providers are in the same
boat. They exist to support real production business use. They too have
highly constrained system resources and assign first priority and capacity to
live, revenue-generating customer needs first. They charge fees to your
development and test teams because, in fact, they would usually rather not
support preproduction environments at all.

One of our delivery/logistics customers is mainly accessed by their customers via
their public APIs over the Internet in a SaaS model at no cost to the customer. But
their cost to maintain an entirety of their systems for nonemployees to access is a
significant cost. Despite being free, it is still one of the most common criticisms of
their customers that the test environment provided doesn’t offer the capacity, data,
or uptime of their production systems.

The net effect of these fees is they create a disincentive to quality for everyone.
When continuous integration* and validation become associated with
unwanted costs, teams are discouraged from thorough testing throughout the
software lifecycle, and the end user will feel the impact of poor quality and
performance.

Stubs and Mocks Are Not Enough
How can we possibly address all the constraints considered in this chapter?
One option would be to spend millions of dollars and undertake a huge

Chapter 4 | Constraints: The Enemy of Agility 26

configuration effort to try and replicate a copy of the production hardware
and software environment with data in a unique physical lab for each team.
That’s difficult to swallow and solves only the first constraint mentioned—
unavailable systems and limited capacity—without relieving any of the others.

Therefore, we see developers turn to mocking or stubbing* those
downstream systems by coding their own versions of the dependencies with
dummy data. These mocking efforts can range from very simple “echo”-type
units that always spit back a canned data response to very elaborate collections
of stubs in a “responder framework” that are constantly being added and
updated to fit the changing needs of dev and test teams. These stubs are
usually only effective in development and give no relief to any other phase of
the software lifecycle.

Developers should be building new functionality and making sure it
works—not building stubs. Stubs and mocks are costly and time-consuming
endeavors that are common in most development shops. They don’t provide
the realism or reusability necessary to carry projects forward with any degree
of predictability. Stubs set you up for later integration issues, late defect
discovery, and troublesome scalability blind spots.

Often it will be hard to get teams to give up stubbing, as it is “the only way
we’ve known” for most developers. But since huge collections of stubs can
become a constraint in and of themselves, we must further discuss how to
eliminate them with Service Virtualization.

Business executives often don’t appreciate the severity of the preceding
software constraints on IT teams—until the constraints create a severe
impact that makes the headlines: perhaps a needed product misses its
promised date and the competition gets the upper hand; or the quality of the
project gets sacrificed for cost or time reasons, resulting in critical failures in
front of customers. It’s time for a better way to bring software development into
balance with business.

apter

5
What Is Service
Virtualization?
.

The other half of Virtualization
it is important to understand the difference between Service Virtualization
and the well-known technologies on the market today that perform Server
Virtualization*. Both are extremely useful solutions an enterprise can
leverage to increase efficiency and reduce it costs (Figure 5-1)�

server virtualization is sometimes called Hardware, desktop, os or
application virtualization, and includes a mature class of solutions from

Chapter 5 | What Is Service Virtualization?28

vendors such as VMware, Citrix, Microsoft, IBM, CA, and many others, as
well as some open source software tools. In a nutshell, Server Virtualization
takes a given system you have access to and copies an image of it—hardware
specs, operating system, and current applications it is running, as a Virtual
Machine* (VM).

Most Intel-based hardware or server resources on a network are being vastly
under-utilized*. Companies tend to purchase new systems for each project
and keep more capacity available than they really need. By making VMs and
hosting them in an environment called a hypervisor*, the IT shop can run
multiple VM images on just one server, increasing the utilization of each server
and saving money by reducing the number of Intel boxes that must be
purchased or housed in a server farm for the in-house computing needs of
the company.

Conventional server virtualization is cool and creates a quick reduction in
costs. But what about all the things we can’t grab and image as a VM? Our
enterprise depends on systems that are extremely over-utilized* and critical
for supporting the business. The constraints we mentioned earlier (mainframes,
massive data stores, and third-party systems) are too bulky to be imaged as a
VM. Moreover, these live environments are usually “locked down” and not
available for conventional virtualization. It is in these over-utilized environments
where Service Virtualization delivers a new level of efficiency and value.

Recall also that even if we can have access to a resource, it may still be heavily
constraining. Data volatility, incomplete new features and functions, shared
access, and capacity issues are still usually present.

Figure 5-1. This figure compares Server Virtualization with Service Virtualization,
contrasting between conventional Server (or Hardware) Virtualization solutions, which
address under-utilized systems, and Service Virtualization (SV), which simulates over-utilized
systems.

29Service Virtualization

Creation of a Virtual Service
Service Virtualization creates an asset known as a Virtual Service* (VS),
which is a system-generated software object that contains the instructions
for a plausible “conversation” between any two systems.

Warning: It is important that there must be real software
automation involved in the capture and modeling of the Virtual
Service. Otherwise we are still talking about the “stubs” developers
would manually code and maintain on their own.

Let’s say your team is developing an update to a key application that must
make requests of a downstream mainframe and a cloud-based partner service
(SaaS). Both of those downstream systems are unavailable for you to use to
run your regression and performance tests throughout development. So you
replace them with Virtual Services and get to work. Think of the VS as a
reliable stand-in for those constrained and costly applications that you don’t
want to expose to the daily grind and dangers of being set up, used, and reset
for testing and integration purposes by developers.

We will cover alternate ways to build Virtual Services, but the fundamental
process works this way (Figure 5-2):

1.  Capture: A “listener” is deployed wherever there is traffic or
messages flowing between any two systems. Generally, the
listener records data between the current version of the
application under development and a downstream system that
we seek to simulate.

2.  Model: Here the Service Virtualization solution takes the
captured data and correlates it into a VS, which is a “conversation”
of appropriate requests and responses that is plausible enough
for use in development and testing. Sophisticated algorithms are
employed to do this correctly.

3.  Simulate: The development team can now use the deployed
Virtual Services on-demand as a stand-in for the downstream
systems, which will respond to requests with appropriate data
just as the real thing would, except with more predictable
behaviors and much lower setup/teardown cost.

Remember: We say that a VS is “simulating” the constrained
system for purposes of development and test, not “replaying” it in
terms of a step-by-step sequence, as you would a recorded video.
Sufficient dynamic logic must be captured and modeled into a VS
to allow it to respond with enough intelligence to support the

Chapter 5 | What Is Service Virtualization?30

variability of needed usage scenarios. The VS should resemble the
live system closely enough to make upstream applications and test
users think that they are interacting with the real thing for most
needed scenarios.

Figure 5-2. This figure shows the basic process for creating a Virtual Service.

Options for Creating and Maintaining
Virtual Services
The basic process we have outlined in the preceding three steps is the simplest
way to describe how a VS is commonly captured and built out of live
transactions. However, when dealing with today’s complex IT environments,
teams quickly discover that they may not be able to get sufficiently robust
models from live transactions alone.

Virtual Services should offer the ability to develop for the future state of the
environment as well as the boundary conditions we cannot reproduce simply
by watching live traffic. For instance, hooking up the next generation
application to a global sales partner will increase orders two orders of
magnitude more than we’ve seen and will give us a number of different sales
scenarios.

Options for creating Virtual Services vary depending upon the solution but
may include the following (Figure 5-3):

•	 Capture from live traffic: Listen to transactions between
systems at any available point where calls and responses
occur between any servers, integration layers, or components.
These will take the form of protocols such as HTTP, SOAP,
JMS, JDBC, CICS*, and many more.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

31Service Virtualization

•	 Interpret from document: Take requirements or historical
data recorded in a file, and parse that into a VS. For a simple
starting point, take a WSDL definition or even a spreadsheet
of data, and use it to model a first edition of the VS. Or take
a day’s history of server logs and feed that data into a VS
representing that day’s observed scenarios.

•	 Capture from agents: Sometimes you may have server-
side or internal logic that is not accessible for capture on the
wire, but the application can have an “agent” internal to the
application or server that pushes relevant events or message
data out to be re-created as a VS. This advanced option is not
always available, especially in production or heavily secured
environments.

•	 Create the conversation manually: Assuming the
developers already know the message protocol and payload
being used, they can create the VS from scratch.

In addition, teams need to maintain VS models to populate them with
additional data and scenarios that the development project must support, as
well as account for constant changes. Ideally the SV solution should make this
process as intuitive and automated as possible. Options include the following:

•	 User modeling: The owner of the VS manages the
“conversation tree” or behavior by using management tools
to change logical flows, add or remove request/response

Figure 5-3. How Virtual Services are created and maintained.

Chapter 5 | What Is Service Virtualization?32

data, add or change operations not yet observed in the real
world, and adjust the performance responsiveness to meet
given scenario requirements.

•	 Self-healing: This capability is especially useful for keeping
the VS relevant and reusable in fast-changing application
environments. If an “unknown” type of request is made, the
VS may pass that request through to the original system, and
merge that observed response back into the model under
user control.

There are an infinite number of ways to employ these methods to create and
manage Virtual Services, some of which we will cover later as best practices
in Chapters 8–11 of this book.

What Can You Make into a Virtual Service?
Almost any IT asset that your system can trade information with can be
replaced by a VS. Companies have successfully simulated thousands of unique
services, data sources, and systems, communicating over hundreds of
heterogeneous forms of messaging protocols with a high degree of realism.
Don’t believe me?

The list in Figure 5-4 is just a start of what you can use Service Virtualization
to simulate. Practically any “conversation” between two systems becomes a
VS source. You can also generate Virtual Services from system logs or
requirements documents if a live transaction stream is not available.

Tip: Hey, won’t these guys complain about me virtualizing
them? It’s important to remember that you aren’t copying any
actual software code or application runtime assets into a Virtual
Service. SV is only making a “live-like” simulation for your own
development and testing purposes, based on observed transactions
with that system or dependency.

Remember: Most mainframe, system, and service providers
welcome Service Virtualization and would rather NOT support
nonproduction test partitions for your development teams. Even
when high fees are involved, unique preprod instances are a pain
for them to maintain too, and they usually represent a net cost to
both the consumer and producer.

33Service Virtualization

Virtual Environments Are Better than Real
Environments for Dev and Test
Once a VS is created, it can be deployed and run in a Virtual Service
Environment (VSE)*. Think about a VSE as a space for managing a lightweight
version of everything you have virtualized from your architecture, whether it
is running locally, in the data center, or housed in a private or public cloud.

Most companies approach VSEs as team-shared resources within a software
development group (Figure 5-5). Each VSE contains a catalog of several Virtual
Services, which at any point in time may be idle or running independently of
each other. New Virtual Services can be instantly spun up and ready to
respond when invoked appropriately by any upstream system, and then spun
down as soon as they are no longer needed.

Figure 5-4. What kinds of things can you simulate with Service Virtualization? This is just a
representative list of technologies and service dependencies we’ve seen turned into Virtual
Services by companies. Note that you do not have to “own” or be able to “copy” the whole
application; you just need to have a system conduct transactions with it, or use a service
requirements definition to start the process.

Chapter 5 | What Is Service Virtualization?34

Wait a minute—is this Virtual Service Environment
replacing the live environment all the way up to
production?
Actually, we don’t recommend that—as tempting as it seems given the
efficiencies! Software teams should still perform the “last mile” of User
Acceptance testing against live applications. Despite great wind tunnels and
flight simulators, we still perform a series of real test flights prior to delivery
of a completed aircraft to the public. The value is that we can reach this stage
much faster and with higher quality.

Until that last mile of the entire Software Development Lifecycle* (SDLC)
process, using a VSE for development and test is actually much better
than using the real thing. Unlike a physical environment, which is constrained,
limited, and highly volatile, a VSE is always ready instantly, 24/7, without
conflicts from other teams. It is prestocked with stable, reliable data setups
that provide support for all needed scenarios. It can be ratcheted to perform
faster or slower.

Best of all, when development teams use a VSE to test often and early,
even at component levels, there will be far fewer defects delivered into that
last mile, which further reduces the burden on your production-ready
environments.

Figure 5-5. Virtual Service Environments are used by multiple teams within an enterprise
software development organization. When a team’s system under test makes a downstream
request, it calls the address of a Virtual Service running in the Virtual Service Environment,
which responds with valid data and performance based on the scenario needed.

35Service Virtualization

Tech Note: We elaborate on managing VSEs (including local,
server, and private and public cloud-based environments) in our
chapters on “Best Practices” (Chapters 8-11) and “DevTest Cloud”
(Chapter 13).

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

apter

6
Capabilities of
Service
Virtualization
Technology

When I first heard of Service Virtualization, I immediately thought, “It’s magic;
there’s no way it’s going to work that way.” It’s difficult to explain as it really
doesn’t seem like the capabilities are truly possible. So I asked my most
skeptical group from development to use it. To justify the approach, we had to
prove how many people were being pulled off of value-added projects to build
testing and training stubs, which are throwaway efforts anyway.

We abstracted over 20 complex services over the course of the first 5 weeks,
and now SV allows us to separate development and engineering for about 75
percent of the lifecycle, and do true end-to-end testing only at the end so we
can have much faster time-to-market.

— sven Gerjets, svP, directv

once the power of virtualizing everything in software development becomes
understood, it will create ripples throughout the organization�

service virtualization will certainly cause a change in mindset, and raise the
bar on everyone for delivering faster releases with higher quality� the most
highly valued teams will thrive by learning new skills, such as identifying and
replacing external constraints, collaborating with more distributed teams to

Chapter 6 | Capabilities of Service Virtualization Technology38

resolve issues and dependencies, and reducing cycle time by leveraging Virtual
Services for parallel development.

What follows are a number of unique capabilities your organization should
look for in a Service Virtualization solution.

“Live-Like” Development Environment
Our enterprise software now lives in a heterogeneous, distributed, and highly
interdependent world. Just stubbing the next downstream end point with a
small set of dummy data responses isn’t enough anymore. Development teams
require far more realism from their virtual environments, and a much wider
variety of upstream and downstream systems must be realistically simulated
in their lab environments.

Service Virtualization should be ready and available in between every layer
where dependencies exist, to provide an environment that is realistic and
“live-like” enough for development and testing to go forward. A big part of
that is the requirement for Stateful* business logic.

Figure 6-1. Stateless stubs vs. “live-like” stateful Virtual Services. The most obvious
distinction between manually coded stubs (shown at top) and realistic Virtual Services
(shown at bottom) is usually the live-like Virtual Service response pattern of statefulness,
which maintains the context of key dynamic variables such as customer IDs, session IDs,
dates, cumulative figures and amounts, and even variable response times where a given
scenario may wait for a response.

39Service Virtualization

Most manually built stubs are stateless*, meaning you can only depend upon
getting a rote answer back from them, with little awareness of the current
transaction’s situation within the business workflow (Figure 6-1). This leads to
invalid results—either “false positives” or “false negatives” that can make the
effort a waste of time.

When teams work based on real data scenarios and stateful dynamic behaviors
captured with SV, their productivity levels are higher, as the resulting
environment responds with dynamic data in the appropriate context, and in a
more current representation than the collections of stubs that must be
manually coded and maintained.

However, note that we said SV should be “live-LIKE,” not REAL. Real system
data is unwieldy to manage, and the responses are highly volatile and
unpredictable. A needed customer scenario that is available in the real system
today may be completely invalid and disappear tomorrow, but in our
development and test environment, we need that scenario to be there
whenever we ask for it. We need the ability to set our environment to
represent a specific customer type, in the context of yesterday, or today, or
tomorrow, whenever we need it to be. SV offers this ability, which is one
reason it is “better than live” for most of the lifecycle.

Expected Capabilities

•	 Ability to start development despite interface system or
downstream system unavailability

•	 Support for stateful transactions to maintain the context of
dynamic elements such as dates/times, session IDs, human
input points, and variable wait times as they flow across
multiple systems

•	 Improved code quality due to early access to realistic
environments, with increased scenario test coverage and
regression testing ability

•	 Reduced data dependency with fewer access and schedule
conflicts due to the status of other applications

Automation Eliminates Manual Stubbing
and Maintenance
Before SV, if we were developing a web UI and didn’t want to wait around, we
would build a stub to generate a couple expected responses from the next
layer down, (i.e., the web service). Then the web service developers might

Chapter 6 | Capabilities of Service Virtualization Technology40

stub out their underlying ESB layers, or try to mock up some of the user
requests from the web UI, and so on.

Realize that even when we see significant effort in a stub or
mock from the development team, the test team cannot use those
for themselves because they are ineffective for anything but development’s
limited set of use cases. This is in fact one of the greatest issues with
stubbing: it (on purpose) creates an unrealistic environment for the
development team that is only sorted out when the QA group puts the
code against the real system behaviors. Only then do we discover how
unrealistic the stubs were. Practically every customer we know has this
sense of their projects’ defect discovery being too late. Leveraging SV
both in development and QA will make it happen faster.

Unfortunately, this is a manual process that is never sufficient to encapsulate
the many types of connections and data that exist within enterprise software
architectures. Just keeping up with the variability and constant changes of
other systems becomes a never-ending process in itself. In addition, the
stubbing of those underlying layers may be completely stalled if the UIs or
downstream systems aren’t yet coded (Figure 6-2).

Figure 6-2. Before-and-after automated capture of Virtual Services is shown here. A Service
Virtualization solution automatically builds Virtual Services from observed live messages and
transactions, system logs, and definition documents, allowing development and test to
proceed without wasting time waiting or building and maintaining inadequate stubs.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

41Service Virtualization

The critical capability here is the automation of VS creation and data
maintenance. This automation happens first during the process of listening to
messages and capturing the VS from live traffic, or generating the VS from a
design document or transaction log. The initial creation should require very
little intervention and time on the part of developers. As a rule of thumb, the
resulting services should be on average 90–95 percent complete for the
scenarios needed by the team—or by definition, the solution is not automated.

Usually letting observation run on a fairly active message stream for a few
minutes, or around 1,000 transactions, allows patterns to be recognized and
provides plenty of data to populate a VS. Of course, teams may manually
model or tweak the VS to add scenarios that couldn’t be gathered in the
automated capture process—things like very rare edge scenarios and
nonfunctional use cases.

Virtual Service, Heal Thyself
Automation isn’t just for faster creation. Remember, one of the biggest time
wastes for developers is the maintenance of complicated and brittle “stub
libraries” in an attempt to keep up with the many changes that occur in a fast-
changing environment. Ironically, we must both improve our ability to isolate
our teams from each other and yet also increase their ability to deal with the
interdependent changes they are all constantly making.

Once a VS exists, the idea of “self-healing” comes into play, as we attempt
to expand our testing to cover new use cases, or we discover changes and
learn new information about the downstream systems that should be reflected
in the model of the VS.

Let’s say that the VS gets an unknown request that it doesn’t have a plausible
response for. Rather than just break or return a random default value, the VS
can be set to “pass through” and ask a live system for a response, then note
that request and response type for possible inclusion in the model of the VS
(Figure 6-3).

Figure 6-3. Self-healing of Virtual Services allows the data model to be updated from live
systems.

Chapter 6 | Capabilities of Service Virtualization Technology42

Automation allows development teams to achieve realistic virtual lab
environments with far less effort, even if the user interface is incomplete,
while spending less time working to create and modify outdated stubs.

Expected Capabilities

•	 Ability to automatically capture, build, and change a simulator
quickly with minimal cost and effort that supports most of
the needed requirements of the dependent systems

•	 Natively understands the heterogeneous messaging protocols
and format requirements of the requesting and responding
technologies with little adaptation or custom extension
required

•	 Self-healing from live systems to keep Virtual Services up-to-
date with constantly changing composite applications

•	 Eliminates manual stubbing, maintenance, and data collection,
allowing teams to focus on delivering new functionality

•	 Leverages the developers’ task of creating Virtual Services
not just for their use, but as reusable assets that can be used
by other teams to respond dynamically throughout later
integration and validation phases of the software lifecycle as
well.

Enables Parallel Dev and Test

When dev and test teams can work simultaneously using SV, the overall
software lifecycle reaches a whole new level of efficacy and efficiency. New
solutions can be delivered much faster, at great value to the organization.

In parallel dev and test activities, Virtual Services act as the “go-between”
assets between the System Under Development (SUD) and the System Under
Test (SUT) in a symbiotic fashion. In Figure 6-4, the timeline on the bottom is
a team developing an order management service (OMS), while the team at the
top is developing and testing an “e-store” web app that constantly interacts
with the OMS.

Here’s a rundown of how SV, combined with the parallel development and
test process, helps these two teams work faster while staying out of each
other’s way:

1.  A VS (OMS-VS-1) is captured from the current, live OMS system
as an initial back end for the e-store’s ongoing development.

43Service Virtualization

F
ig

ur
e

6-
4.

 P
ar

al
le

l d
ev

 a
nd

 t
es

t
is

 s
ho

w
n

be
tw

ee
n

tw
o

te
am

s
us

in
g

V
ir

tu
al

 S
er

vi
ce

s.

Chapter 6 | Capabilities of Service Virtualization Technology44

2.  Then as the e-store’s development continues, using the VS for
testing as they go, they can communicate back any unexpected
or new response requirements as “feedback” to the OMS team
as a modified VS (VS-1a).

3.  For the OMS team, that VS-1a from the e-store essentially
becomes additional customer requirements for their own
development and testing.

4.  At any time, the e-store can take another VS (OMS-VS-2) by
observing the latest actual build of OMS, and use it to update
and make changes to the model they are working and testing
against.

5.  Each parallel development and test cycle continues to accel-
erate, as each iteration of VS model updates happens with each
new build, and feedback happens faster and faster. Both teams
can move forward toward release with less dependency, while
being better synched up with changes.

The perfect parallel development solution allows teams to execute against the live
services at regular intervals when they are available, functionally robust, and data
synchronized. And in those cases where teams do not yet have services that support
the component correctly, they can switch immediately back to Virtual Services.

This capability to “flip a switch” between using a purely virtual downstream
system through Virtual Services and the latest version of the live system is an
inherent enabler of parallel development. SV means knowing that you always
can go back if a new build breaks, or check in changes in a very lightweight
fashion if a new data scenario is required.

Is your practice of generating and updating software lab
environments keeping in touch with reality? In essence, the parallelism
of SV truly enables the quickness we expected of Agile development for
complex software environments—by more closely aligning dev and test cycles
with business release goals in tight iterative releases.

Expected Capabilities

•	 Allows parallel development and collaboration for ever-
increasing speed of development and test cycles

•	 Enables true “agile” responsiveness of Agile iterations, with
continuous integration and builds aligned around test results
and business requirements

45Service Virtualization

•	 Reduces the burden of version control, works with existing
development and test management tools to make them more
effective

•	 Increases the rate of issue acceptance and resolution prior to
production

•	 Delivers function points up to 60 percent faster, with higher
quality and accuracy to specification due to better alignment
among teams

Geek Out: Parallelism demands that SV is a “vendor neutral”
substrate for the tools of choice that teams may have in place, so
there is less re-training required to reach productivity. SV should
provide target environments to work alongside existing application
lifecycle solutions such as Test Management (TM), Defect
Management/Issue Tracking, and leading Hardware and Test Lab
Virtualization products that exist in the environment.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

apter

7
Where to Start
with Service
Virtualization?
at a recent tradeshow, the cio of a leading investment bank came up to me
after a presentation, talking about the woes of meeting his company’s business
objectives for new functionality�

He explained to me that every year, before he submits his strategic development
plan to the executive management team for review, he would go through and
reduce the number of projects delivered by 50 percent. and then, going into the
last quarter of the year, he would reduce the expected success rate on those
projects by another 50 percent. there was just no way for him to predict when
projects would get done, and how often his teams would have to go back and
fix something that went wrong� the horror story of this cio who must keep
rationing executive expectations on new software features downward by 50
percent—much like a trapped miner rationing his water—is not unique to
investment banking� constraints drag down any company with an it delivery
component, and they will only become worse as software becomes more
complex�

How can we gain enough velocity to escape from our constraints?

First of all, Service Virtualization is a TRANSFoRMATIoNAl
approach to delivering business technology that begins with
You, not someone else. If you take nothing else away from
this book, take this.

Chapter 7 | Where to Start with Service Virtualization?48

•	 If you are in management, you must manage and incentivize
SV, or it won’t happen.

•	 If you are in development, you must flip a switch in your
mind to realize that using virtual environments is more
productive than using live systems.

We should accept that we are all paddling this leaky software boat together,
from developers and testers to IT operations and field teams to our biggest
SI partners to the VPs and CXOs who manage the programs and budgets.
There is no value to be gained in pointing fingers at one group for the kinds
of endemic delays and failures that are happening today. Software constraints
hinder every aspect of the enterprise’s ability to deliver for customers.

In our engagements, we’ve found certain organizational decisions will
dramatically impact the value a company receives from SV. Without getting
into the messy details of an assessment and delivery process, let’s take a look
at some examples of these.

IT Executives Must Manage and Incentivize SV,
or It Won’t Happen
Once I ran into a VP of Development at an industry event who started an SV
project six months prior. He said to me, “I made this investment in SV software,
and gave it to my developers and IT partners . . . It’s great stuff but how come I’m
not seeing 30 percent lower costs?”

To which I replied, “Did you adjust your actual development budget per feature
down by 30 percent? Does anything happen to your developers if they do or don’t
reduce cycle time by 30 percent?”

If you are in the position of considering funding an initiative, I can almost
guarantee that transformative results WILL NOT happen without a
transformation in your own expectations. This may sound harsh, but in other
words—you will not get the results from SV you want if you don’t incent
and manage to them.

Who is handling the bulk of your development, testing, and delivery work? If
you invested in SV for your teams, as management, it is up to you to require
that they consume it in your projects. SV is not a dessert option on their
buffet of tools. It is the buffet.

49Service Virtualization

A transition may be painful—so how do I break this
to my teams?
How many times has an IT manager been ordered by the EMT and/or Board,
seemingly arbitrarily: “YOU must remove $20 million (or $100 million) from the
software development budget.” or “YOU must lay off 1/3 of the service workforce
and use this offshore partner.” or “YOU must have this software ready within six
months or else . . .” Well, you will also have to exercise some level of prerogative
of your own.

It’s not like you have to force SV on teams because it is unpleasant or risky—
it offers a much faster and less frustrating development experience in so many
ways. However, there is a huge amount of inertia to overcome in the existing
process, as it is the “devil they know.”

We’ve seen that developers and testers and performance teams may be
resistant. If their paycheck cashes either way, they may use a VS to get past
one hurdle in a project, then go right back to the way it was—waiting on each
other or putting together poor workarounds. This means they are not
focusing on the business need at hand.

This may not be fun, and it may make you unpopular for a while. But you must
incent your teams financially and with real goals to make development happen
better, faster, and cheaper. And you must consistently manage their goals
publicly, so they share accountability to get it done. Goals like the following:

•	 “You will eliminate the 30 percent
padding time we used to add at
the end of each release cycle for
unexpected lag time.”

•	 “Any defects released to QA will be
reviewed in the group meeting and
responsible development teams
will need to demonstrate how the
component environment was or
was not virtualized.”

•	 “We are reducing the development
budget for the next product release
by $1.2 million. If you aren’t going
to make it, I will need to know
why.”

Chapter 7 | Where to Start with Service Virtualization?50

The same also holds true for your business partners and vendors who can
benefit from SV enablement. If you hold those contracts, you need to convey
your expectations of SV and make partners stick to them.

Let’s say you have a supplier partner who charges you for integrating their
order systems to your purchasing service. If they can now leverage your VS
instead of writing their own stubs, you should tell them, “I know we’ve just
reduced your development cost—so if this doesn’t pass on a cost reduction to my
company, let’s review the terms!”

Identify Stakeholders (The SV War Council)
So you have located the problems. Now how will you overcome the resistance
to change that is inevitable in any extended enterprise?

Even if one individual owns ultimate responsibility for an implementation, we
have found that the most successful adoptions of SV happen when ownership
is shared among a small group of leaders grounded in different disciplines. We
will call this the “SV War Council,” but you can call it a Task Force, Tiger
Team, Drum Circle . . . whatever works in your culture. The promise of faster
innovation, fewer customer problems, and lower costs can benefit everyone,
so look for champions who understand these benefits. This team will open
doors and provide workarounds, so the project can move forward smoothly.

While the council responsible for carrying out the SV strategy may vary
depending on the politics and organizational structure of your company, it
works best when it spans several competencies:

•	 Line-of-Business Executive: Someone responsible for
delivering current customer-facing projects that depend on
software.

•	 IT Operations/Environments: Someone responsible for
provisioning or managing software development environments.

•	 SVP/Development Owner: Someone who owns overall
software development/delivery functions and who clearly
understands the scope of the constraints.

•	 Trusted Architect: This is one of the “masterminds” in the
company who tends to know the current state and future
plans for the company’s software road map and integration
infrastructure.

•	 QA and/or Performance Team Lead: One or two leads
who are experiencing the day-to-day constraints of lack of
capacity, unavailable systems, and compressed timelines.

51Service Virtualization

•	 Service Partner Lead: If applicable, the smartest lead
consultants from your strategic SI partners who are helping
to carry development or testing projects forward should also
be eager to participate and provide perspective. (And if your
partner discourages SV efficiencies because it may reduce
some billable work hours, you might call that a bad sign . . .)

Secure an executive sponsor responsible for business P&L*, not
just the IT guys. While successful SV initiatives offer huge efficiency
benefits to the IT organization, they usually start with executive sponsorship
and an alignment to real, customer-facing business objectives (read: Revenue).
Time-to-market benefits usually lead the pack for what motivates this
executive sponsor—because if a business can depend on delivering a critical
new product or service to customers 30–50 percent faster, without fail the
revenue and cost benefits will certainly follow, as will a lasting competitive
advantage.

Who Should Use Service Virtualization First?
Do we start our journey with the cliché of “low-hanging fruit?” Not this time.

Ever try out a new stain remover? The instructions will say to “test on the
material in a less noticeable area” first. Well, we think the opposite should
apply to your earliest SV efforts.

Advice: Pick a hairy problem first. Go find the biggest, most
stubborn goat of a software problem that exists in your
environment. You know, the one everyone’s complaining about
that makes delivery run late and over budget. Locate a key software-
enabled initiative with many moving parts, including big mainframe
availability and data conflicts that are eating untold hours and
dollars. Tell them you can use SV to decouple those complex
constraints in days or weeks of modeling, not months or years of
coding. Nobody will believe this is possible.

Why start with a hairy problem? This group should be ready and willing to try
something new. When the constraints are already well known, failure is
certain if something doesn’t change. The potential improvements of eliminating
the constraints will be massive. Yes, you could pick something easy, but would
that make believers out of the organization?

Involve experienced resources for starters.

Since the challenges it must solve are complex, SV initiatives happen best
when accompanied by seasoned people who can lead the rollout strategy. By
bringing experienced resources to bear, initial rollouts lead to early successes,

Chapter 7 | Where to Start with Service Virtualization?52

and participants in the process will become experts who can teach other
teams. Over time, the practice will become a core competency of the
organization.

One typical place to start is with whoever owns development and/or
performance environments. These teams are usually over-utilized them-
selves—trying to provision, configure, and maintain an ever-increasing sprawl
of servers, images, and lab capacity for multiple projects. Replacing much of
that activity with SV lifts a huge burden, while positively impacting the
productivity of many others who depend on these environments to do their
job.

Another good approach we’ve seen is when the rollout team recruits
developers who are already manually coding and maintaining stubs and
mocks. These tireless workers already understand the nature of having to
code around missing components and constrained mainframes by “faking out”
those systems. There may be a little resistance to letting go of all of that hard
work, but it wasn’t wasted effort. Building stubs made these teams understand
the location and difficulty of constraints.

Chances are that coding and maintaining these “responder frameworks” was
the least satisfying part of the developers’ jobs, and quite thankless. The assets
produced early in development were brittle and inadequate for supporting
later integration and testing cycles. By giving them a way to automate that
process with SV, they can carry forward a new set of reusable Virtual Services,
and instead focus on building tighter integrations and killer new functionality
that will make them look like heroes.

There are other scenarios for initial SV users besides these. Generally the
ideal first adopters will be groups with a better than average technical grasp
of your architecture, and first-hand experience with the constraints that
plague software development and delivery.

Set Real Value Goals for Releases
Set value goals for the first SV project up front. While it is tempting for a team
to kick off the install ASAP and start virtualizing some annoying constraints,
don’t skimp on the value. The rest of the organization is watching and will
often meter their expectations of SV based on the success of that first project.
Setting a goal and measuring the value from the beginning enables your
organization to support future projects with confidence.

53Service Virtualization

How does my company expect to create value
from Service Virtualization?
Every company has different priorities for value. These priorities are usually
set at the executive or business operations level, then translated into goals
that the IT and software development functions can use in their own planning.

Value goals may be forward-looking—for instance, a company in a growth
market may state “an obsession with innovation” and value the agile delivery
of advanced new features above all else. Other companies will care more
about process metrics like maximizing efficiency and reducing defects. Or, a
company may only look at hard-dollar benefits and cost savings.

There is an old maxim in software development of “faster, better, or cheaper:
you can’t get all three.” While that used to hold true, SV has the power to
change this equation. So for purposes of this book, we’ll just call the three
value goals “Faster, Better, Cheaper” (Table 7-1).

Table 7-1. Sample Value Goals for a Service Virtualization Initiative. These are typically
discrete numbers based on the strategic objectives of the company for the IT/software
delivery function.

Faster Better Cheaper

Decrease software
cycle times from 6
months to 3 months

Reduce defects delivered to
QA and production by 50%

Lower labor and overtime costs
for testing and break-fix by 30%

Increase the number of
function points
delivered per release by
20% per year

Bring systems into
compliance with new
privacy and data regulations
by this year

Avoid planned $20M capital
outlay for new software
integration and performance
labs

Successfully get to
market with a critical
new service by August
ahead of competition

Increase customer
satisfaction survey results to
average 4.0 and reduce
complaints by 25%

Eliminate third-party fees and
capacity charges in nonrevenue
systems by $7.5M/year or 90%

These are just some example value goals we’ve seen stated before adoption
in the field. Most companies follow the limitation that they can’t get all three—
and only pick goals for one benefit such as cost reduction over the others.
With SV, those boundaries on software development will finally become
obsolete.

Chapter 7 | Where to Start with Service Virtualization?54

Remember: If the only justification for investing in SV is to “get a
better TOOL” for a given task, the resulting value will be limited by
definition. To the company at large, SV will just be a patch that
helped complete the next step in a project, and therefore progress
with SV becomes dormant when the project ends. The real value
of SV is only realized when a genuine transformation is expected,
one that changes the way applications are developed and tested,
now and in the future.

Avoid Inappropriate Technologies
As of the publish date of this book, SV is still an emerging solution space in
the software development industry—so unfortunately you won’t find objective
views from the usual sources in the press and analyst community on what SV
vendors have to offer today. In addition, you will find software in the market
that claims to be SV, when it is actually outside of SV as defined by your
humble authors (who invented, coined the term, and patented the first SV
technology).

We’ve already covered how SV is the concept of virtualization, only applied
to software instead of hardware. Server virtualization solutions such as
VMware require that you have access and ability to image a resource from
things like Intel boxes, hardware, and desktop software. Here are some other
applications that are not representative of a SV solution:

SV does not replace your ALM software
Most software shops own a set of tools for Application Lifecycle
Management (or ALM). This broad and mature technology space covers
the scheduling, organization, and workflow tasks of software development—
from requirements and test management to source code control to issue
tracking and release management to other similar project tasks that teams
need to collaborate on. Whether your firm standardizes on a big vendor like
HP or IBM or leverages a combination of boutique software and open source,
these tools are very useful for managing the process, but not the environment.
ALM benefits greatly from SV, which contributes the environments and VS
assets to the process, in order to shift that project left for earlier testing and
delivery. Since different teams select different ALM tools, your SV environments
should work with any ALM, test, or requirements tool of choice.

55Service Virtualization

More than a simplistic “record-playback” tool
Another set of solutions on the market automates a very specific task of
recording a stream of message requests and responses, then in effect “playing
the session back” in the same order as it was observed. This is the back-end
equivalent of the old way UI testing tools would record “click stream” activity
and make that into a procedural sequence that followed the user’s mouse and
keystrokes around the screen. It may be useful for some tasks such as replaying
the exact responses of a given scenario, but it doesn’t represent the dynamic
variability of the application environment needed.

Will not require a specific vendor integration or
business application platform
Composite enterprise applications are by nature becoming more distributed
and heterogeneous every day. Therefore, a SV platform should take this into
account and not require you to “rip and replace” existing integration and
business applications with the other systems of a specific vendor in order to
realize the benefits of robust simulation. If you can only successfully virtualize
one stovepipe of proprietary technology, your teams will still be constrained
by any systems falling outside of that vendor’s standards.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

Intermission

Go ahead and take a break. You now know what Service Virtualization
technology is, and what it can do to accelerate the software development
lifecycle. You’ve earned it.

MEDITATIoN EXERCISE:

Based on what you’ve learned so far, meditate for a while on other
parallels of using simulation to solve real-world problems in other
industries. Service Virtualization is like . . .

. . . a wind tunnel used in car design, as you can’t test aerodynamics from inside
the car. SV is a wind tunnel for your apps where you can control the environment

around it . . .

. . . a stuntman or stand-in on the movie set, to replace expensive actors for
dangerous stunts or nonproduction scenes when you don’t need a close-up, at

lower risk and cost . . .

. . . a flight simulator for planning aircraft design and training pilots to fly in
noncritical simulated settings . . .

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

58 | Intermission

 . . . the holodeck from Star Trek, only for app dev . . .

 . . . a fake Wild West town, where your app can “shoot it out” with dependencies,
but the “buildings” and “mountains” are all cheap set pieces . . .

 . . . a test harness from the world of electronics design . . .

 . . . arranging and planning your design layouts with thumbnail images instead of
full-size ones . . .

 . . . the dreams of software . . .

Next, let’s cover the Four Best Practices of Service Virtualization. These
are the most successful adoption trends we’ve noticed at some of the largest
enterprises, facing the biggest challenges. In the “New Virtual” science of
software development, a strong methodology backed by experienced teams
that continually learn and adapt is the key to realizing lasting customer success.

c h apter

8
Best Practice 1:
Deliver Faster
I once worked with a contractor who did a great job on a couple interface design
projects, but unfortunately, both took him twice as long as he estimated. Though he
gave me a discount, I still had to pick up much of the work along the way, and his
excuse was always “I just got too busy.” Of course, about six months later, he wasn’t
busy at all—and asked me if I had any more work for him. “Sure, next time I have
a project that doesn’t have a deadline, I’ll call you . . .”

With software, we always want to deliver faster. In composite application
environments, Waterfall development approaches slow down results because
of the constraints of unavailable or unready systems throughout the software
development lifecycle. By the time software is integrated, fitted with an
interface, and reaches QA, the defects that surface are much more difficult
and costly to fix. The component-level code development and integration
work is already baked into the product.

To answer this, development teams naturally tried Agile development to
attempt to produce a more frequent rhythm of smaller releases with tighter
scope. The Agile approach of rapid unit-test-first development, standups, and
scrums is indeed a faster way for developers to work—if they were building
stand-alone applications without constraints.

For most of today’s composite applications, when multiple teams’ Agile
releases hit the integration, performance, and user acceptance phases, they
stack up and wait to be synchronized for testing. The developers may think
they are “done and onto the next” bit of coding, when they are often still
delivering unready components over the wall into QA.

Chapter 8 | Best Practice 1: Deliver Faster60

Figure 8-1. Faster Delivery with “shift-left” means testing is enabled far earlier in the SDLC
by the use of Service Virtualization, as each team can validate and tune their own
development in parallel at a component level, while also reducing the number of defects that
must be fixed later in QA or UAT, resulting in overall faster releases.

By eliminating the constraints common in typical software development
approaches, much of the SDLC becomes parallel again, even with multiple
teams working in the most complex distributed environments. Much of the
testing at a component and integration level should “shift-left,” or be moved
earlier in the SDLC (Figure 8-1). To shift-left, Service Virtualization is applied
so each component is tested individually in the context of its real environment,
instead of waiting for issues to surface later during assembly when they are
costliest to remediate.

Shift-Left truly enables the Agile goal of TDD (Test-Driven Development), as
developers can prove their software with realistic testing and fix issues before
checking in code, or moving onto the next task and declaring a component
“ready for integration.” Regression and performance testing happens earlier
with far more complete coverage, so more defects and potential conflicts are
caught before integration or user acceptance testing activities.

Reducing Wait Time
through Virtual
Privacy
We’ve discussed how much
time developers spend waiting
on each other. Most enterprise
developers we talk to admit
spending at least a third of ©iStockphoto.com/Nicole S. Young

61Service Virtualization

their time waiting on downstream system and data dependencies, even when
using Agile development approaches.

With SV, developers can truly be autonomous, leveraging their own private
environments for developing code. We call this aspect of Shift-Left “Virtual
Privacy” because just like putting on headphones or closing the office door
and holding phone calls, the isolation it grants is ideal for allowing developers
to concentrate on the task of coding toward business goals with fewer
distractions.

Imagine this private virtual environment where developers:

•	 Get an on-demand lab that contains very current, known
aspects of the “as is” or “to be” test harness of the target
application environment they will deliver their code into

•	 No longer need to call IT Operations to procure and provision
new servers and software, or beg and borrow capacity and
time from another team

•	 Never queue up for shared environments during development

•	 Never maintain their own VM images of environments they
only need as a dependency

•	 Never wait on the bench for other developers to finish their
new services—they can even start work based on a contract
or definition of how the service-to-be will function when
complete

•	 Never again write and maintain libraries of stubs and mocks,
which are usually too simplistic and brittle for most tasks
anyway

•	 Perform early and complete validation and regression testing
of their code for fewer defects per cycle

Since Virtual Services are generally far more lightweight than their real-world
counterparts, it is easy to store and retrieve them at will with far less system
overhead. Some developers even keep a small “personal cloud” as a VSE on
their laptop, which is perfectly suitable for supporting most component
development tasks.

Certainly, when you implement SV environments into your project plans, you
can expect the practice to start shifting toward parallel development, as well
as individual developer productivity and quality (and job satisfaction, most
likely).

i

Chapter 8 | Best Practice 1: Deliver Faster62

Kill Stubs Now, or Pay Later
After years of manually building unit tests and mocking frameworks alongside
their code, some developers will be hesitant to change—and will want to
continue mocking up quick stubs. But unless they are working on very
simplistic apps, there is so much detail needed by the consuming application
that calling it “something I can mock up quickly” means they don’t
understand the true nature of the problem.

Replacing component-level stubs isn’t just a nice-to-have feature for quality
and time savings. For complex applications, it is mandatory that we replace
stubs in order to reliably deliver on business requirements.

When developers make stubs early in development, they quickly code them
for a simplistic or “happy path” view of the responses in the target environment.
The best they can do with this artifact is make a “round trip” from their
component software to the stub to prove connectivity to that stub. Once the
code checks out against the stub, the developers usually move on to the next
task.

Unfortunately when carried forward into integration, UAT, and release phases,
that early developer use of stubs invariably produces unintended consequences.
The problems that may appear later in the SDLC aren’t just quality issues—
they are often missed requirements. The cost to the business of correcting a
defect or missed requirement in QA or deployment is astronomical—1,000
times or much more, in comparison to fixing that issue during early
development (Figure 8-2).

Figure 8-2. The high cost of developing with stubs. When developers code against very
simplistic manually built stubs, they get little context into the real environment and then
move on to other projects once that code is thrown over the wall. Repair and remediation
costs later in the software lifecycle increase exponentially as a result.

Let me explain: If every customer response for a stub has the exact same profile
and the exact same address, account balance, etc. all with hard coded values and

63Service Virtualization

dates, then that stub only proves ONE needed scenario. But what about customers
with high account balances? What about old invoices? What about transactions that
occurred yesterday—and will they work the same tomorrow when that date becomes
two days ago?

The problem with a stub is that it can never realistically be coded dynamically
enough to support the increasingly complex variety of scenarios needed for a
real-world application. Now is the time to stop making assumptions about
how developed components will work once they are integrated. Regain that
wasted time spent coding stubs, and have developers Shift-Left to build in
quality from the start using SV instead.

Sprint: Putting Shift-Left in Practice
We are trying to avoid what we call “system test gridlock.” App A waits on App
B, they wait on App C, and everybody delays real-system testing. We looked at
adopting Service Virtualization as a way to take all of those excuses out of the
lifecycle for the development teams we depend on. So we started with an
in-store app as our pilot and built 80 Virtual Services in the first two-week
project, which enabled us to do system testing for that app in a stand-alone
way we could never do before.

Now a year later, we have more than 300 Virtual Services built. The primary
benefit of SV was our ability to cut down the release cycle time and improve
the quality of the code much earlier in the lifecycle. In very complex integration
environments you need this ability.

We had an incredibly important external integration project coming up. With
SV, we were able to promote a Virtual Service as a specification of how we
would expose APIs to our partner. We had that Virtual Service built and
running within 24 hours of getting those design requirements, and our partners
were thrilled with that result. SV has enabled us to “Shift-Left” and get our
most important products to market faster.

— Jamie Williams, IT Director, Sprint-Nextel

Let’s take a slightly more detailed look at Sprint. With more than 300 complex
enterprise services currently under management or development behind the
scenes of its customer-facing apps, the development teams were facing serious
integration and timeline issues in their test environments. The goal was to
shave time off testing and release cycles so that the projects would come in
on time for the launch of critical new customer features.

Sprint was introducing new capabilities to their retail store management
system, which relies on extensive calls into back-end systems to get customer
data and provision new handsets. Typically, any meaningful system testing on

Chapter 8 | Best Practice 1: Deliver Faster64

F
ig

ur
e

8-
3.

 A
 S

hi
ft

-L
ef

t
pi

lo
t

pr
oj

ec
t

w
ith

 S
er

vi
ce

 V
ir

tu
al

iz
at

io
n

at
 S

pr
in

t.
Pr

oj
ec

t
te

am
s

ar
e

sh
ow

n
in

 h
or

iz
on

ta
l “

sw
im

la
ne

s”
 a

s
th

ey
 a

pp
ly

 V
ir

tu
al

 S
er

vi
ce

s
to

 r
ed

uc
e

tim
el

in
es

 a
nd

 in
cr

ea
se

 t
es

t
co

ve
ra

ge
 le

ve
ls

. (
So

m
e

pr
op

ri
et

ar
y

pr
oj

ec
t

ph
as

e
na

m
es

 h
av

e
be

en
 r

em
ov

ed
 fr

om
 t

he
se

 c
ap

tu
re

d
pr

oj
ec

t
re

su
lts

.)

65Service Virtualization

code changes in this application was blocked until the shakeout of many back-
end systems and middleware was completed in the end-to-end (ETE) test
environment.

By virtualizing the services that the retail store application depended on,
meaningful system testing was able to occur much earlier in the lifecycle than
ever before (Figure 8-3). The first pilot project’s System Test phase was
completed two weeks earlier than before and covered more scope. The
coverage and quality results of system testing during the pilot were a whole
lot better as well. Testing during the pilot with Virtual Services allowed system
test teams to find a lot more defects and ultimately increase defect effectiveness
rates for system testing by 400 percent from previous releases! In fact, defects
became so scarce that there were zero significant integration defects found in
a later integration testing phase. This was a result that was unheard of before
the use of Virtual Services.

Pleased with their pilot project results, Sprint embarked on an aggressive
journey to roll out Virtual Services for all key middleware transactions,
engaging development teams across the company to insulate their applications
from back-end dependencies during system testing and shift more defect
discovery to the left into development and system test phases of the lifecycle,
just as had been seen with the pilot. The IT middleware organization at Sprint
started a Service Virtualization Center of Excellence (CoE)*, rolling out
more than 300 Virtual Services in a catalog available to dev and system test
teams throughout the company. Sprint now enjoys decreased costs for testing
and defect resolution, along with faster cycle times for project testing and
deployment.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

apter

9
Best Practice 2:
Reduce Your
Infrastructure
Footprint
solving the problem of available it infrastructure for software development
doesn’t seem like the sexiest thing service virtualization can do outside its
ties to “Green it” initiatives for reducing energy consumption� However, the
potential business value goes way beyond environmental impact, and the roi
it can generate sure is sexy once it is understood by management�

every large company continuously accumulates additional infrastructure to
support ongoing business and new service offerings� this includes buying
more web servers and app servers, additional mainframe partitions, increased
network capacity, more software licenses, exponentially larger databases, and
additional transaction space on third-party and shared resources�

When conventional server virtualization emerged on the scene starting
around the year 2000, businesses jumped on it with haste, and that
consolidation created an immediate reduction in capital expense (CapEx)*
by reducing hardware and server room costs� However, if we follow Moore’s
law*, we also know that these commodities will also become faster, more
compact, more efficient, and cheaper every month as technology advances�

Chapter 9 | Best Practice 2: Reduce Your Infrastructure Footprint68

So while the use of VMs and hypervisors hastened the reduction of “under-
utilized” system resource costs and saved some power in the server room, it
couldn’t touch the even costlier and faster growing infrastructure availability
problems of “over-utilized” systems needed to support distributed enterprise
applications.

Finding Over-Utilized Resources
Businesses that identify infrastructure availability as a growing problem are
basically complaining about over-utilized system constraints in their software
environments. These over-utilized resources cannot be easily replicated,
controlled, or accessed by development teams and partners when needed.
This results in endemic project delays and failures.

These constraints are very sore spots and should be easy to identify—as you
will find teams waiting around for access or data setups to happen. As a
general rule, we recommend prioritizing SV rollout where the most conflict
and wait time is occurring first by conducting a formal or informal survey of
development and product managers. Here are some things to look for:

•	 Core business applications that are handling critical daily
transactions for customers; therefore, they “lock out”
development teams due to necessity.

•	 Enterprise back-end systems (SAP, Oracle apps, managed
services, and mainframes) with too few test instances to
support the number of distributed development and test
teams that need them.

•	 External SaaS applications or data services that charge per-
use fees for preproduction traffic, have availability problems,
or impose harsh “caps” and shut off access after a few
noncustomer requests.

•	 IT Operations and environment groups that are overwhelmed
with software lab provisioning requests from multiple teams,
often with little or no budget to improve their situation.

•	 Performance labs that are seemingly stocked with technology,
but suspiciously sitting idle most of the time due to access
issues outside the performance lab.

•	 Regulation or IT governance* policies that prevent
distributed teams, SI partners, and offshore resources from
accessing the systems and data they need to work with to
move forward.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

69Service Virtualization

Make a report card of all the preceding choke points you discover in your
initial survey, and set a value to solving each of them in your environment. The
value of eliminating a constraint would include the following:

•	 Number of teams or resources waiting on access to the
infrastructure constraint and potential wasted hours of labor.

•	 Criticality or lost revenue of projects the constraint is
delaying or derailing.

•	 Cost of replicating another copy of the constraint or buying
more test regions and partitions.

•	 Amount of time spent manually configuring the resource,
including importing and cleaning up datasets for different
teams’ testing activities.

•	 Reduced impact of development activities and changes on
infrastructure that handles live customer transactions.

The preceding list does not need to be a mathematical calculation. Simply rate
the constraints for starters on an estimated 1–5 scale of severity. One piece
of infrastructure likely to make your most wanted list for optimization will be
the mainframe.

Mainframe Development Needs Virtualization Too
Yeah, this part is boring. It’s about old mainframe technology; there’s really not much
development happening in there. It’s stodgy, monolithic stuff . . .

A confession: At this point in the book, I have to admit, like many
of my colleagues in the distributed development world, that I have
improperly characterized the mainframe for much of my professional
life. We spend so much time obsessed with building new features,
on richly functional composite applications, new integration buses,
SaaS, cloud, and so on. We even lumped the mainframe into the
“Legacy Apps and Back Ends” box in our old diagrams.

Well, we now realize nothing could be farther from the truth. Many enterprise
IT leads we talk to say they still spend as much as 50–60 percent of their
development and change integration time within mainframe environments. In fact,
when you take a closer look at most mainframes you find they are not
monolithic at all. Mainframes encompass whole landscapes of service-oriented
apps in and of themselves.

For most enterprises, business rides on the mainframe. In these groups, you
have all the same constraints in the service-oriented world—different teams

Chapter 9 | Best Practice 2: Reduce Your Infrastructure Footprint70

maintaining business logic for interconnected components across different
CICS regions; data sources like DB2, ADABAS, IMS services; and so on (Figure
9-1). Mainframe development teams often find themselves constrained for
access, waiting for critical data scenarios to be set up in other mainframe
regions, and in conflict over resources.

IT Operations teams don’t want to rock the boat for real customers by
allowing developers and testers to play “under the hood,” yet new test region
environments are extremely difficult and expensive to produce. SV should be
practiced in a similar fashion within the mainframe, capturing and modeling
dependencies between components. For instance, simulating the other half of
CICS-CICS transactions or gathering scenarios from an IMS region as it makes
calls to the data layer.

In short, don’t leave efficiencies on the table inside the mainframe. We must
ensure that we get under the hood and liberate mainframe development of
constraints with SV in addition to the upstream application layers.

Avoiding Big IT Outlays
Enterprises used to have only one alternative for addressing constrained
infrastructure, besides simply waiting:

Figure 9-1. Mainframe internal architectures also contain components that can be managed
by separate teams and create dependencies that inhibit the changes developers need to make
to meet business requirements.

71Service Virtualization

Write a huge check.

Without realistic infrastructure, our
applications won’t successfully get to
market—but the cost of building more of
these complex environments through
conventional means is becoming so high
that it almost seems like a joke when
you hear folks tell you what it takes. We
know that VPs of development and IT
directors are delivering unwelcome
purchase requests like these to executives
all over the world when asked, “What do
you need to do this right?”

Try building an environment that is even just 25 percent of the size of
production. That’s configuring every server and licensing every component—a
massive effort and cost just to get a version that will still never be an adequate
simulation of production.

It’s not like companies aspire to attain a big infrastructure—that’s just what
happens when a company gets big. Take for instance a company like PayPal
when it was in startup mode in 1998. A small development team probably
built the first prototype of their app in two to three months. But fast forward
to PayPal today as part of a huge enterprise inside eBay, and—it functions
more like a bank now. There are more hooks to other systems and baggage
to contend with for each successive release they add, more customers relying
on promised support, bigger databases and more services and systems they
must talk to, each of which may be owned and managed by different groups.

The problem with infrastructure costs for development, test, and partner labs
(Figure 9-2) is that they create a very big hit to CapEx—in the form of big
purchases and big-bang implementation projects. But that’s not all—each new
infrastructure buy creates a very large and growing operational expense
(OpEx)* for maintaining and upgrading the lab environment constantly in
order to keep up with configuration changes, increased data, etc. The more
environment infrastructure you buy, the more that infrastructure becomes a
job in and of itself, with its own dedicated maintenance and support team.

A leading firm we know wanted to ensure flawless partner integration and
performance, so management demanded that IT build a certification environment
representing 100 percent of production. The IT department came back with an
estimate of $60 million for starters, plus at least $15 million/year
maintenance to try to keep it current! That was just not going to happen!

Chapter 9 | Best Practice 2: Reduce Your Infrastructure Footprint72

Many companies don’t count “cost avoidance” as hard value results. But that
$60 million outlay estimate wasn’t ridiculous given the complexity at hand.
Whether the firm would have bitten the bullet or not, it was clear they
couldn’t survive for long without a more complete environment. Using SV
(Figure 9-3), they were able to replace most of that expected development
infrastructure outlay with virtual models and virtual data management within
two quarterly release cycles, at a fraction of the cost.

Figure 9-2. Massive infrastructure costs occur when live and preproduction systems are
replicated for use by development, performance, and test/QA organizations within and
outside the company. Changes happen so fast it is nearly impossible to keep up in today’s
multitier environments.

Figure 9-3. Infrastructure cost savings after Service Virtualization are significant, as the
groups only request “just what they need” from a simulation of the live app environment,
which runs with very low overhead. Most of the configuration, data maintenance, and change
updates of the Virtual Services are automated, saving both CapEx and OpEx.

73Service Virtualization

Customer Example: Dodging a Wave
I was visiting the architecture team of one of the world’s largest banks when
I heard a stunning statistic. This gentleman related to me that the hardware
asset management system claims there are more servers deployed in the
bank than there are employees in the bank.

He then explained how his firm’s typical project-based budgeting process
created the perfect fertile ground for growing huge server farms. Every
project team would justify the expense of its own development, testing,
preproduction, and production environment expenditures. Almost every one
of the 1,000+ applications currently in use at the bank still has at least four
environments sitting behind it, even if the maintenance or changes on some
of those applications now only happen annually!

One solution was to attempt a massive consolidation process. It would be a
huge endeavor to centralize and rationalize all those development and test
servers, image them as VMs, and then have the responsibility for that process
roll up to the CIO. The cost would practically be prohibitive and because it
would be replicating only the systems that could be Server (not Service)
virtualized, there would still be many dependencies they could not replicate.

This bank is now getting tremendous value from Virtual Service technology.
Hundreds of pre-production labs fold into a vastly simpler to manage
infrastructure, with software-based provisioning on an on-demand basis for
any of the required environments. Projects not currently under change no
longer consume power, generate heat, or consume floor space—or cost
millions of dollars and require dedicated staff allocations to support and
maintain.

c h apter

10
Best Practice 3: 
Transform
Performance
and Scale
In most enterprises, the Performance group’s needs are prioritized highly in
terms of IT budget and hiring expert staff because the stakes are very high.
Performance teams are usually the last line of defense against delivering a
losing game in the marketplace.

You need to get a feeling for how critical performance is. The customers we
are talking about are not just uploading the latest funny picture to a social
media site—they are running applications that handle critical business.
Without high performance, your systems cannot sustain over time and will
not be able to scale to meet increasing customer demands and requirements.

Virtualizing Performance Environments:
Are You Waiting to Fail?
Performance will make or break an application. We need to do everything in
our power to ensure that our software can scale and sustain high performance
levels over time, even in an environment of constant change and volatile usage
levels.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

Chapter 10 | Best Practice 3: Transform Performance and Scale 76

Yet almost everyone, even many very smart people in the software community,
still think of performance testing as an “after-the-fact” activity. We run a
finished or near-finished application under a certain amount of load [transaction
per second (TPS) or a number of “virtual users”] and record the app’s response
times for each request.

The idea is to confirm the speed of our application, whether that is to meet
a contractual Service Level Agreement (SLA)* or simply a customer
satisfaction goal:

•	 “We’ve determined that users leave our site 25 percent more
frequently when the web site’s response time is greater than
3.0 seconds, so ensure it never exceeds 2.0 seconds.”

•	 “Our competitor’s Customer Rate Quote time is 2.5 seconds.
Ours needs to be faster.”

•	 “If maximum response time of the app under test is less than
500ms with 1,000 TPS load for 1 hour, it passes our clients’
SLA agreement.”

If our performance tests and monitors confirm we are consistently meeting
our goals, that’s great. But what if performance is failing?

Since conventional performance testing happens from an end-user interface
perspective, it can only tell us that something is wrong somewhere—not
where the problem is in the composite application or how we can solve it.
There is only so much you can do to “tune” a web page, perhaps by reducing
image sizes or changing how the HTML of a page is loaded. Most of the
business logic is played out in machine-to-machine transactions. The common
practice of validating and tuning the performance of your applications
just prior to production is when you have the least ability to actually
make any improvement in performance.

Developers try to be Agile and do more testing earlier, which catches some
structural code errors and bugs in functional and unit tests. But when a
developer checks in some code that will become a performance defect, it is
often impossible to detect until several months later, when it rears its ugly
head under real-world integration pressures (Figure 10-1).

Furthermore, the performance lab will often sit idle, waiting on the bench for
everyone else to finish their software releases and integrate. This end game
only perpetuates the problem of having to hurry performance testing at the
end of several serial development cycles.

77Service Virtualization

F
ig

ur
e

10
-1

. P
er

fo
rm

an
ce

 d
ef

ec
ts

 e
sc

ap
e

d
ev

el
op

m
en

t.

 W
he

n
de

ve
lo

pe
rs

 o
nl

y
“u

ni
t

te
st

”
an

d
w

ri
te

 m
oc

k
st

ub
s

in

.

t

he
se

 d
ef

ec
ts

 c
an

 e
sc

ap
e

to

la
te

r
st

ag
es

 o
r

ev
en

 c
au

se
 p

er
fo

rm
an

ce
 is

su
es

 in
 p

ro
du

ct
io

n,
 w

he
re

 t
he

y
ar

e
th

e
co

st
lie

st
 t

o
fix

.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

Chapter 10 | Best Practice 3: Transform Performance and Scale 78

Service Virtualization offers a proactive solution to this dilemma, and should
drastically change your perspective on what it means to do performance
testing for today’s composite applications.

Component-Level Performance Budgeting
If a performance defect is going to occur, we need to isolate it and find it
much earlier in component-level testing. That seems impossible, as many
performance lags are related to interactions between live systems—and won’t
surface until integration or deployment. Let’s use SV to decouple these
systems, while still proactively looking at their performance when they come
together.

A technique we call performance budgeting enables teams to practice
performance engineering in a manner congruent with the incredibly high
amount of distributed components and teams making changes to today’s
composite applications. To tune the aggregate performance of an application,
fractional response times must be “budgeted” out to each component.

We also call this concept Service Level decomposition. Expected Service
Levels must be broken down into smaller units, then verified and enforced at
the component level.

As shown in the example in Figure 10-2 from a leading telco customer,
performance testing a near-finished solution falls short. In the top line, we see
the completed Solution (made up of Verify, Lookup and Quote steps) coming
back with a poor response time of 4.0 seconds, which is way over the 2.1
second SLA. What happens next? Teams typically throw more hardware at the
problem, perhaps trying to install more servers, memory, storage, etc. in the
test lab. But more often than not, this fails to solve the root problem.

Elaboration: The performance test team intends to invest in
technology to better find the issues’ root causes. The problem is
that that we basically cover up a needle with a huge haystack, then
attempt to find the needle. Performance budgeting allows you to
find the needle in a very small haystack, inline with any other issue
the development team has to resolve.

Fast forward to the “After” example below the timeline, showing how the
team decomposed the SLA—giving each piece of the solution its own
“performance budget” to tune at the component level. SV allows teams to
isolate each of those components by simulating the surrounding dependencies
(and the expected or observed response times) of other components in the
system.

79Service Virtualization

F
ig

ur
e

10
-2

. P
er

fo
rm

an
ce

 b
ud

ge
tin

g
us

in
g

Se
rv

ic
e

V
ir

tu
al

iz
at

io
n.

 S
er

vi
ce

 L
ev

el
 A

gr
ee

m
en

ts
 (

SLA

s)
 t

yp
ic

al
ly

 o
nl

y
re

qu
ire

 a
n

ag
gr

eg
at

e
re

sp
on

se
 t

im
e

(s
ho

w
n

at
 t

op
),

so
 t

ra
di

tio
na

l p
er

fo
rm

an
ce

 t
es

tin
g

ca
n

on
ly

 g
ue

ss
 a

bo
ut

 t
he

 u
nd

er
ly

in
g

ca
us

e
of

 s
lo

w

pe
rf

or
m

an
ce

 o
r

re
co

m
m

en
d

m
or

e
ha

rd
w

ar
e.

 B
y

de
co

m
po

si
ng

 s
er

vi
ce

 le
ve

ls
 o

ut
 t

o
in

di
vi

du
al

 t
ea

m
s,

 t
he

y
ca

n
te

st
 a

t
a

co
m

po
ne

nt

le
ve

l i
n

co
nt

ex
t

ag
ai

ns
t

V
ir

tu
al

 S
er

vi
ce

s
an

d
fix

 u
nd

er
pe

rf
or

m
in

g
co

m
po

ne
nt

s
ea

rl
ie

r
in

 d
ev

el
op

m
en

t.

Chapter 10 | Best Practice 3: Transform Performance and Scale 80

Using this method, you can determine, for instance, that the pricing app is
delivering excess time to the overall solution. And because you set a budget
on the response time, you can individually take corrective steps to tune each
component in isolation, faster, and at far lower infrastructure cost.

Informing Performance from Production
In order to keep software projects moving in preproduction, developers and
testers make guesses about what happens in production. They might try to
guess what users are most commonly doing with an application that is
consuming their component’s logic, estimate the web traffic on Black Friday,
or guess how fast the SAP financials system might respond to a query. The
industry of software really needs to innovate and become more scientific
here.

Indictment: App development teams are largely uneducated about
the actual use and performance of their applications in the product
context. They often are wrong when making their “educated”
guesses with regard to common use cases, errors encountered,
performance profiles, and more. This trend has continued in the
wrong direction for a variety of reasons.

With SV, we can capture and simulate the performance and response rate of
the back end, as well as measure a profile of the requests that we would
typically make of it—the load patterns, scenarios, and types of data we are
pushing toward the back end.

When we “shift-left” for quality, we want to do so for performance as well to
ensure more reliable outcomes at much lower repair and adjustment costs.
SV creates the environment for performance testing, but its response behavior
is also informed by system logs and other tools such as load testing and
Application Performance Monitoring (or APM) tools that can continuously
export useful data from production for this profiling (Figure 10-3).

This process is called Production Data Mining (or PDM). A great example
would be from a major electronics retailer who was planning to upgrade the
Order Management System—from OMS version 2.0 to OMS version 2.1—for
their many stores’ use for the upcoming holiday season.

Instead of making estimates, let’s use SV to capture the performance profile
of the underlying systems on an actual business day—the busiest day of the
year in fact. Then as we build our new OMS 2.1 release, we can be certain
that we are taking into account a range of possible response times (and
possibly timeouts) from those systems.

81Service Virtualization

In addition, why not also capture the front end of that scenario, using the
observed load pattern from Customer Service requests on that day and feed
that data into a load testing solution as a realistic simulation of that front-end
interaction? Using PDM with SV provides a real “performance sandwich”
around the System Under Development (OMS) we are working on. We gain
an early and very efficient way to prove performance of the new system, at a
fraction of the infrastructure cost of setting up real environments.

Setting Thresholds to Move Performance Even
Farther Left Than We Ever Imagined
There’s one more interesting wrinkle we can exploit here, as bottlenecks
don’t just occur in our own System Under Test (SUT). By observing data of
when and how downstream components break or run out of capacity in
production, we can set that value in their corresponding VS like a “redline” on
your engine, where it goes into the danger zone when pushed too hard. With
this behavior in place, you will already know if your application is likely to push
a dependency out of its comfort zone and account for it.

Using PDM and SV together to understand performance thresholds allows us
to become even more proactive about understanding how to improve end-to-
end responsiveness.

Figure 10-3. Informing Virtual Services from production monitoring allows the performance
of Virtual Service response times to be throttled by typical response times that occur in the
real-world systems when under certain load conditions. The front-end load can also be
similarly captured and profiled for very accurate simulation of traffic for a given time period.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

Chapter 10 | Best Practice 3: Transform Performance and Scale 82

Performance Testing by Design
Performance testing has historically never been very agile—because teams
could only uncover defects ONE at a time. Basically with each run, performance
teams uncover the most significant bottleneck first. Then they would send the
application back to development to debug the source of the lag and fix the
offending component. Then reset and rerun . . . only to find the next bottleneck
and start over again.

Conversely, with SV in place, performance testing is no longer a “big step at
the end” at odds with Agile—it becomes an effective enabler for Agile. Now
multiple developers and testers as well as the performance lab itself can get
their own virtual labs, while collaborating to improve performance within the
context of the end-to-end business application.

When we have to make new features, we make assumptions about their
performance during design. With component-level performance testing, we
can finally do the “R” part of R&D and even make design decisions that we
have tested out before they get committed.

Case Study: Performance Testing Takes Flight at Design Time
Take our friends at a federal agency. They didn’t just conduct performance
tests early in development; they used SV to help make better performance-
related choices in design.

For instance, one aspect of their next release’s architecture called for a
software messaging technology (an XML Gateway) that would likely handle a
lot of traffic. Instead of hoping they could get their vendor’s XML Gateway to
scale after they invested millions of dollars in and around this critical
component, they used Service Virtualization to simulate a basic, but high-
capacity environment around it. Then they conducted high volume Non-
Functional Testing (NFT), firing transactions against several different vendors’
XML Gateway components. The best performing one was then specified for
the design—before a single line of code had been written!

The same “performance by design” approach also works with external service
providers—let’s say you are choosing between two transaction processing
firms as a SaaS-based back end for your application. You would never have
been able to conduct nonfunctional testing this way until now. So don’t just
wait and see how they perform—set an expectation and validate it!

c h apter

11
Best Practice 4:
Data Scenario
Management
It is not uncommon for some teams to spend fully 40–60 percent of their
integration, regression, and performance test cycle times on setting up
and cleaning out test data. We’ve talked about the mess of data issues and
the enormous difficulty development and test teams encounter when trying
to manage their own projects against an ever-increasing amount of volatile
data within out-of-scope systems that are beyond control.

If you’ve ever sat on a prerelease conference call with a couple dozen
developers and testers at midnight, where a system is reset and everyone
waits for the signal to “GO!” to start entering specific test data scenarios
into their screen, you already know what we’re talking about!

Software teams need to synchronize realistic data scenarios across all systems
their apps talk to in the environment to verify business requirements are
being met. We call this process “aligning the stars.” As our software becomes
more distributed and changes faster every day, achieving this level of
synchronization becomes practically impossible, and throwing more people at
the problem provides little help.

Service Virtualization should be used to bring all of the systems needed into
a development and test lab environment, including provisioning the data of
out-of-scope systems and maintaining the context of a scenario as it passes
between systems in a workflow over time.

Chapter 11 | Best Practice 4: Data Scenario Management84

vTDM: Just the Data You Need
Just as Service Virtualization has a counterpart in Server Virtualization, there
is a mature set of tools for conventional Test Data Management (or TDM)
that allow you to extract and import data from systems that your teams have
been given access to.

But for most development activities in a composite app world, most of the
data you need exists in systems that are “out-of-scope” and not under your
control. So rather than try to extract data directly from these sources, you
should use SV to capture and simulate the behavior of out-of-scope systems
by responding with just enough appropriate data and dynamic behavior
to “fool” your system under development into believing it is talking to
the real thing.

We call this virtual Test Data Management (or vTDM).

Using vTDM instead of real TDM seems too simple, but this is actually the
healthiest way for your development teams to get stable, relevant test data
they can rely on in a lightweight form. SV makes gathering just the data needed
from downstream systems much easier by automating the capture of relevant
scenarios, intelligently interpreting the kinds of data seen, and masking and
manipulating that data as part of a VS.

Virtual Service–based data allows all your teams to always have on-demand
access to relevant datasets for systems under test, and that data can be
expanded upon to cover almost infinite valid data scenarios to support high-
volume performance and regression testing needs.

Eliminate Conflicts over Data
The composite nature of today’s business apps lends itself well to dividing
development and testing tasks across multiple teams, each with responsibility
for their own discrete functionality. This approach can be highly advantageous,
if we can apply SV to overcome the scourge of test data conflicts.

Conventional TDM is a very time-consuming process that often concerns
several teams, as certain scenarios must be loaded and ready with data
coordinated across multiple systems. Once all of this data is synchronized, it
can be used to support a given performance or end-to-end test, after which
it is “burned” and must be rebuilt before it can be used by anyone again.

Each data setup activity is rather fragile—so if a new release appears in the
preproduction stack or another team attempts a test that touches one of the
data sources used in a test, it will immediately corrupt the test data, making
the results suspect.

85Service Virtualization

Using SV, many of the old conflicts of conventional TDM disappear entirely
(Figure 11-1). You no longer need to align the stars to make data appear
exactly where you need it, in an appropriate structure and format.

Figure 11-1. Out-of-Scope test data conflicts are addressed by providing each team
with all needed scenarios in the form of a Virtual Service that can be launched and
run independently of other teams or volatile, changing conditions in the architecture.

Unique situations such as edge conditions, negative test scenarios, and error
handling are easily configured in the behavior of the VS, and are never burned
since the VS is simply making appropriate behavioral responses. Best of all,
each team can always launch their own VS that is already configured and
synchronized.

As new software is built, teams use existing vTDM scenarios of downstream
systems as the baseline starting point, and then quickly feed in additional
scenarios for each new requirement. The resulting updated VS provides
documentation for the business cases the team validated, as well as indicates
the needed changes for the downstream component. Now when multiple test
cycles or teams have differing needs for test data, they will no longer collide
in the test lab.

Data Masking: Trust, but Virtualize
Let’s touch on one more aspect of vTDM that is always mentioned, especially
as we further segment our software development activities across different
teams, companies, and even countries: desensitizing*, de-identifying, or
masking test data.

Many industries have very strict standards about how they handle private
customer data—how it is stored, accessed, and transmitted; when and where
it needs to be private; and who can see it. For instance, the health care

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

Chapter 11 | Best Practice 4: Data Scenario Management86

industry in the United States has specific federally mandated controls on how
patient data is transmitted and used, such as HIPAA. And data issues for the
U.S. Department of Defense are even more extreme.

Even if not mandated by law, all businesses obviously need high standards for
data privacy and security to prevent fraud and misuse of that data, or they will
pay the consequences in the market. This certainly extends to software
development and testing in today’s distributed world.

If our company has developers working at our trading partners in Canada and
Germany and another large team is doing testing in India, those teams do not
need real test data with actual customer addresses and ID numbers to do
their job. That only matters during a final customer verification process. They
only need valid test data that supports the needed scenarios and appears in
a format that is usable in building their apps and tests.

When employed properly, SV offers a great solution to this problem. Data
elements that are captured from live transactions or logs should be recognized,
but carefully obscured—we’re not talking about “randomizing” responses
here, as that only reintroduces the kind of data volatility we are trying to
escape!

Take for instance a Visa or MC credit card number. It has a certain format you
expect: 16 numbers, starting with a “4” or “5” and other rules. My development
teams are fine if the real customer’s number is changed to a “fake card
number” in this instance, as long as it fits the basic rules and maintains the
context of that number throughout their test sessions.

Expected Results
In today’s composite apps, the data we need can reside within dozens of
different locations, each with its own connection protocols and cryptic
formats. Furthermore, much of the live data needed to verify applications and
move forward in software projects is sensitive and locked down.

Data scenario management, and finding a better way to do it, has become a
really big deal almost everywhere we go. Using vTDM has the potential to
save thousands of wasted hours. Since SV at heart is simply “having a
conversation” with other systems, harnessing that dialogue for vTDM is a
natural fit.

Expected Benefits of virtual Test Data Management:

•	 Improves overall delivered quality due to more thorough and
stable data scenarios

87Service Virtualization

•	 eliminates delays due to lack of access or current data from
out-of-scope systems

•	 Provides on-demand availability and faster spinup of valid data
scenarios for multiple test and development teams to work in
parallel

•	 ensures no conflicts over test data or invalidation of other
teams’ activities by overwriting or changing data in systems

•	 Has little or no impact on data within critical live systems

•	 reduces the time spent on data setups and resets by up to 90
percent, cutting overall lifecycle times by 40–60 percent

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

c h apter

12
Rolling Out
Service
Virtualization

For us, Service Virtualization is all about the ability to deliver faster, and with
higher quality, while reducing our setup time and not having to build new
architecture. In our organization, collaboration was key on this initiative. We
didn’t have a Center of Excellence for this practice, so we had to bring in
stakeholders from capacity planning, development, infrastructure teams, as well
as functional testing and other groups. It was the first time we really brought
all these groups together.

—Laura Miller, VP Global Product Development, First Data Corporation

Achieving a successful adoption of Service Virtualization takes more than
getting a current project across the finish line. The best practices of SV
become profound change agents when ALL development teams and partners
responsible for your software leverage virtual infrastructure to eliminate
constraints.

The Stakes for Service Virtualization are Huge,
So Don’t Settle
SV offers a transformational approach to delivering business technology
without constraints. Therefore, your goal with SV must be to permanently
and substantially improve your company’s rate of innovation and return

Chapter 12 | Rolling Out Service Virtualization90

on technology investments, now and in the future. Settling for anything
less than this transformation is basically conceding the lead to your competition.

But what about the risk? Won’t this create upheaval
in my organization?
Any time you hear the word “transformation,” it sounds risky. But in reality,
SV causes very little disruption because it overlays the technology and process
you already have. The actual function of SV is to relieve much of the disruption
now being caused by change in the software lifecycle.

The reward of faster innovation at lower cost far outweighs any risk. Let’s
frame SV change in the context of other major IT shifts your company has
already made:

•	 When you went from mainframe to distributed
applications, you had to change your entire architecture.
You brought in new tools and technologies and reoriented
your teams from primarily mainframe developers to open and
distributed system developers. Instead of owning your whole
infrastructure, you started working with services, some of
which were managed by other companies. It was an incredibly
costly effort, and the results weren’t guaranteed. But going
to composite applications was a risk you had to take to
get new features to market.

•	 When your company looked at the economics of
offshoring, you saw the potential of realizing a 30 percent or
more reduction in labor costs—too compelling a value to
ignore. Despite the risk in trusting a remote workforce to get
up to speed and deliver critical services, you shifted a
significant amount of your labor force from onshore to off.
You took on an enormous risk of business failure and
upheaval to obtain this labor efficiency.

With SV, your company can make a bigger impact on its overall
rate of innovation and cost than either of these earlier
transformations ever created, without the disruption and without
the upheaval. Your EXISTING people should be able to deliver 30 percent
or more faster than they do today, with far less investment and time to value.
SV is not nearly as hard a pill to swallow, but it can deliver more value at a
faster rate than either of these transformations did.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

91Service Virtualization

The risk of making the commitment to SV is far outweighed by the reward.
Our goal with SV is nothing less than removing more than half the entire
cost of delivering software, and in so doing, make your company far more
agile and innovative in capturing new opportunities.

Changes to the Software Development Lifecycle
Process (SDLC)
Leveraging SV does not require a change to your SDLC. In fact, the effect of
SV on your overall SDLC is that your processes should execute much closer
to your intentions than they likely do now, with far less friction (Table 12-1).

In a traditional SDLC, discontinuous development cycles “crash together” in
the system test function, followed by an integration test function, then by
performance and user acceptance testing.

Honestly, very little real “testing” is actually performed in most enterprise
SDLCs today. These are more furious shakedown activities, compressed as
much as possible to meet a deadline. We know this by the lack of functional
issues discovered in system test and the number of component-specific issues
found much later in UAT.

Table 12-1. Sample process changes to the SDLC due to Service Virtualization are
seldom disruptive, as they tend to ease friction and wait time from each phase.

SDLC
Phase Development

System
Test Integration Performance

Changes due
to Service
Virtualization

No writing stubs
More component-
level functional
validation

No hardware
procurement
No collision
over test labs

No
environment
setup/config
Automated
scenario data
ready

No server test
region wait
Test at 80–95%
higher back-end
capacities

Not changing Everything else Everything
else

Everything
else

Everything else

Clearly, there are practitioners in your organization who will need to change
their own personal steps within the SDLC. For instance, they should stop the
up-front work of writing stubs by hand or standing up huge test environments
while configuring data at system and integration test time. In that sense, the

Chapter 12 | Rolling Out Service Virtualization92

steps change but the top-down view of your development and delivery
process does not.

SV provides an isolated yet live-like environment for doing system test. This
causes more realism and therefore more testing to occur, earlier. We have
already documented the impact of “shifting quality left” in general and
specifically at Sprint (Chapter 8). When the System Test phase successfully
executes as it was intended, the overall SDLC runs more as defined and less
as a victim of constraints.

Using VSE back ends, better quality is built into each line of code with earlier
development testing, system testing environments can stand up instantly and
uncover defects much faster, fewer issues make it through integration and
UAT testing, and if they do, they are usually far less costly and severe. None
of these delivery benefits are disruptions to the SDLC—they are, in fact,
everything we hoped for in an ideal process.

Later we will introduce the notion of how SV affects the Enterprise Release
paradigm itself (Chapter 15). There, process changes will indeed occur, as we
test and release ever-larger architectures in ever-smaller increments. But let’s
not get ahead of ourselves. There is tremendous value in simply executing on
what you have already documented in terms of process by leveraging SV.

Build New Skills and Roles in a Virtual IT World
Constraints are a problem in every industry that relies heavily on software to
function. We talked about simulation in other engineering disciplines, but the
concept is not entirely without precedent for software. Some financial
companies have had a large technical staff doing simulation for a long time—
but only for things that are very specific to their industry, such as predictive
risk analysis and validating banking protocol standards.

In some telcos, there is literally an entire career track for “simulation
engineers”—thousands of developers writing tons of simulation code for
system feedback that NEVER sees a customer and NEVER processes a
business transaction.

Fast forward to now, and it is particularly interesting to see how companies
are defining new job titles and sometimes even new departments for tasks
such as building and managing environments. Adjusting titles and departments
like this is certainly not a prerequisite of a successful SV initiative, but it does
provide an interesting “sign of the times” of what is happening in the field.

93Service Virtualization

Good Help Is Virtually Always in Demand
SV is rapidly becoming an area of focus and continuous improvement for
major companies. Therefore, SV is also becoming a highly demanded strategic
job skill. Right now, the number of available resources with meaningful
experience applying SV in enterprises falls far behind the demand for these
developers, architects, and testers.

Closing this SV “talent gap” is not really a question of aggressive recruiting
practices. The best adoption of SV grows from within a company. Companies
that consistently take on an attitude of mentorship will do the best. Here are
some good pointers we’ve seen for improving SV proficiency:

•	 Take the help: If your software delivery or SI firm can bring
experts to the table to deliver services such as training,
release strategy, and initial implementation, by all means
accept the help! The benefits of a faster rampup and more
complete adoption will far exceed the cost.

•	 Absorb knowledge: Wherever the most meaningful SV
project activity is happening, put your best people from other
groups to “shadow” or work next to that delivery team and
get them up to speed fastest.

•	 Share often: Skilled SV practitioners who are good at
modeling and simulation should become resources for the
rest of the company, for instance by posting examples and
answering questions in a Wiki, weekly “lunch-and-learns,” or
informal webinars to discuss current SV work with other
practitioners.

•	 Have a SV developers’ help desk: Team members may
feel like they are stepping out onto thin ice when first using
SV instead of test hardware and stubs. If you assign someone
that can provide answers or locate good help as they take
those first few steps, whether on-call or managing an issue
tracking queue, this will bring up everyone’s confidence level.

•	 Increase everyone’s technical savvy for distributed
development: Don’t let developers work in silos, as they
should now be able to consider their component role in a
larger application context thanks to SV. Developers should
also raise the tech ability of QA/Test organization team
members by training them on concepts of service-orientation,

Chapter 12 | Rolling Out Service Virtualization94

app development and integration—this will make them better
understand the needs of component-level testing.

Each of us personally in our own role should help advance SV and think about
how it can fit in and enable automation and efficiency across our entire
extended IT organization, including our partners. This includes both “How
can I make my job easier with SV?” and “How can I leverage the practice of
SV to better involve everyone to achieve the company’s value goals?”

Should We Centralize or Federate?
One of the questions we get asked most is this: “Should I centralize SV within
the corporate environment that all teams use, or should we just give out SV to
everyone so they can do their own thing?”

Our answer is that you should have an equilibrium or hybrid of the two
approaches (and in this case, the word “hybrid” is not just a cop-out on
making a decision). Generally, here’s what we recommend:

•	 Centralize VS Creation and Catalog: We want to
centralize the administration or ownership of Virtual Services,
so usually the initial creation of a VS catalog is assigned to
dedicated teams with a high level of expertise and knowledge
in this specific skill.

•	 Federate for Maintenance: Here’s where it makes the
most sense for specific teams of development, test, and
performance managers to maintain the Virtual Services. They
have a local environment where the maintenance and
deployment of their specific vertical or transaction needs
occurs.

Often our customers start as centralized and then move to more federated
approaches as adoption increases. Let’s say we are at a bank that has a central
SV Center of Excellence that runs a set of VSEs for the company, and they are
quite efficient at making a library of robust Virtual Services at the request of
development teams. If this works well enough, why wouldn’t we just stick
with that centralized format?

The reason you federate VSEs is not just a technical one; rather, it is a part of
the Agile mindset we should adopt. We want to federate the use of Virtual
Services because we need developers and component teams to take
responsibility for clearing their own constraints every time they endeavor
to deliver a component. To the development team, a centralized VSE is out of
their control, capacity constrained, and data restricted. It’s great that there is

95Service Virtualization

a CoE team leading SV and helping create Virtual Services, but we want
developers to be empowered with a real sense of control to move forward
faster.

Each team needs to rapidly change their own VS without concern for other
teams; they need to be able to bury the VSE server with transaction requests
at their own discretion. They also need to be able to completely bring down
the VSE for their fault recovery testing needs. If shared use is the only option,
it will eliminate all of these possibilities and make the VS team feel no different
than any other constrained resource that frustrates teams.

Having the best of both worlds allows SV experts to do the heavy lifting
centrally, while developers can go forward and customize their environments
to overcome their own specific dependencies without waiting for shared
resources.

Cool Alternative Use: Virtual Training
Environments?
Here’s a very cool new way we have seen both a major telco and a large
regional bank employ SV that has NOTHING to do with software development,
but still offers a huge value proposition. Let’s take the telco for instance.
These guys have thousands of representatives, both domestic and offshore,
performing different levels of phone, e-mail, and chat-based support functions
for customers.

There is a huge amount of accretion or turnover of employees in this function,
as it is largely an entry-level role. That means training is a nonstop activity.
Like many firms, the old system of training consisted of flying them all into a
physical training facility and then giving them a little too much rote instruction
and manuals. This was followed by a limited amount of time on terminals in a
very costly training environment, with painstakingly mocked-up services,
training data, and a training partition on the mainframe—all of which were a
huge hassle to set up and maintain for each class—while still being a little
outdated compared to the current live software.

Setting up realistic system environments to support training became a
nonstop, expensive, back-breaking endeavor. After all, you can’t set trainees
loose mucking around with real customer data in a live system, but they still
needed that “live-like” hands-on experience to learn their jobs.

Using SV, the telco now creates on-demand Virtual Training Environments
(VTEs) that contain all the required “safe customer” data scenarios, with the
realistic responses and behaviors needed for thorough training (Figure 12-1).

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

Chapter 12 | Rolling Out Service Virtualization96

F
ig

ur
e

12
-1

. V
ir

tu
al

 T
ra

in
in

g
En

vi
ro

nm
en

ts
 (

or
 VTE

s

)
ap

pl
y

th
e

sa
m

e
pr

in
ci

pl
es

 o
f v

ir
tu

al
 la

bs
 fo

r
te

st
 a

nd
 d

ev
el

op
m

en
t,

ex
ce

pt

ap
pl

ie
d

to
 t

he
 t

as
k

of
 r

ap
id

ly
 s

et
tin

g
up

 a
nd

 p
ro

vi
si

on
in

g
al

l t
he

 b
ac

k
en

ds
 a

nd
 d

at
a

sc
en

ar
io

s
ne

ed
ed

 t
o

su
pp

or
t

ro
bu

st
 e

m
pl

oy
ee

an

d
pa

rt
ne

r
tr

ai
ni

ng
, f

or
 a

 h
ig

he
r

de
gr

ee
 o

f s
ta

bi
lit

y
an

d
po

rt
ab

ili
ty

 a
t

a
fr

ac
tio

n
of

 t
he

 c
os

t
of

 r
ea

l e
nv

iro
nm

en
ts

.

97Service Virtualization

they can instantly launch 100 or 1,000 vtes behind their educational user
interfaces, and even conduct that training remotely through a browser�

so with no more per-user setups, no data scrubbing, unlimited 24/7 access,
and the flexibility to deliver that vte remotely with a high degree of current
realism, the firm is better equipping employees to work at a small fraction of
the cost� as far as trainees are concerned, they are entering orders and getting
appropriate responses from the real back-end systems � � � except maybe
faster� (they actually slowed down the virtual services a little to make the
“wait time” more like the real systems!)

c h apter

13
Service
Virtualization
and DevTest
Cloud
“The cloud” may be the most overhyped technology in recent memory. Every
major software vendor has jumped on the cloud computing bandwagon.
There are good reasons why it captures our imagination. The promise of
almost unlimited elastic computing capacity, available in an on-demand, pay-
as-you-go model, with management and security aspects of the applications
often included for you, is incredibly appealing.

We’ve seen instances of consumer-oriented startups and SaaS-based business
models having success selling cloud-based offerings—most notably Amazon,
Salesforce.com, and Apple have gained traction with business models that are
a natural fit for cloud. New startups also realize the advantage of cloud
infrastructure, as they can basically take a “blank slate” approach to their
application design using cloud-based applications, instead of layering on top of
existing technology.

So why hasn’t cloud caught on for most major enterprise apps? When a
larger company attempts to “run business in the cloud,” they quickly realize
that the well-publicized successes of some cloud business models don’t yet
translate into enterprise development success for many companies. Cloud

Chapter 13 | Service Virtualization and DevTest Cloud100

has not yet delivered the miracle of pushing critical business software functions
to an automatically reusable “app assembly and hosting” environment.

If anything, leaning on cloud-based components to conduct real business in an
unplanned fashion will exacerbate development and test constraints and make
governance harder. Therefore, enterprises should employ cloud where it
makes the most sense—and the best, first place to leverage cloud is for
development and test labs.

Constraints of Cloud Dev and Test
To do development work in cloud, we will first look for a self-provisioning
utility kind of way to stand up and tear down dev and test labs for preproduction.

The setup and provisioning of a real production environment is a huge effort.
We are constantly monitoring, maintaining, and managing it carefully to keep
it running. Production is so complex and constrained that you are unlikely to
ever create more instances of these environments. At the same time, you
can’t afford to have even a little bit of exposure of these production systems
and data to development teams. So by using cloud for development and test,
we seek to manipulate that environment more safely in preproduction.

Contrast that big production environment to preproduction use. Dev and
test teams need to create and provision new labs EVERY TIME there is an
incremental release. There could be hundreds of labs and thousands of
conventional VMs of applications that different teams are using (Figure 13-1).
Preprod use of virtual labs is where the explosion of cloud is really happening.

Figure 13-1. “Wires hanging out” of the cloud due to external dependencies for
development and test that cannot be imaged or included.

101Service Virtualization

This is great. So what is the problem? There are still “wires hanging out”
of your cloud . . .

Let’s paraphrase a customer’s enlightenment on this issue: “I tried to move my
development and test labs to a cloud to give us that elasticity and let them quickly
provision an environment in just minutes—and yes, they can do that quite efficiently
for some of our app components. But what about all the “wires hanging out” of our
cloud? You can’t replicate things like a huge mainframe, copy a third-party fee-based
service, or image that huge database in the cloud—yet your development project
can’t move forward without these elements available. If it takes me three weeks to
get access to the mainframe, that means it still takes me three weeks to wait and
provision a cloud lab.”

No matter how much you improve the speed of provisioning systems
in cloud, you can still only move as fast as your most constrained
system allows. Let’s instead use Virtual Services to model and represent the
off-cloud resources within the same environment (Figure 13-2). No more wires!

Figure 13-2. No more “wires hanging out of the cloud” with Service Virtualization
simulating off-cloud dependencies and data.

Service Virtualization makes cloud real for on-demand development and test
environments. You can leverage Virtual Services (VSs) alongside VMs to
capture and simulate those “wires hanging out” and manage them in a
complete DevTest Cloud environment. Preproduction teams can now get
complete labs that include stable versions of all the mainframes, data scenarios,
and services they need to truly realize elastic capacity.

Achieving High-Performance Cloud Environments
Cloud is best used when the volatility of demand varies among a variety of
uses of a particular infrastructure. Different applications have different capacity

Chapter 13 | Service Virtualization and DevTest Cloud102

needs over time. The ability to leverage one common resource pool among
many teams gives us an appearance of higher capacity on a per-team basis,
when in fact we are simply leveraging the unused capacity of other teams.

In the utilization graph shown in Figure 13-3, many teams are leveraging shared
infrastructure. One team might peak its usage during performance tuning or
a “big bang” release cycle. Other teams are simply doing typical dev and test
activities, and they are generating no such peak. This works best if each team
plans its peak performance testing times when other teams don’t need that
additional capacity. In general, it also means we must invest in or reserve the
maximum possible capacity.

Using cloud combined with SV allows for a whole new economy in the
development of high-performance applications. This creates a dramatic
decrease in the cost structure—one effect you can see from Figure 13-4 is
that the overall dev and test infrastructure requirements and costs go down
for shared capacity, including on-premise and off-premise cloud.

When Virtual Services represent out-of-scope systems, they utilize computing
resources far more efficiently than a live system does. For example, it might
take several VMs to represent a 25 percent capacity back-end app, whereas a
VS will consume only a fraction of the CPU and memory requirements of just
one of those machines for preproduction.

In a typical performance test, the entire architecture has to scale to the load
desired, making the most over-utilized systems become bottlenecks. In the

Figure 13-3. Volatile utilization of Performance Lab resources requires the company to
reserve enough capacity to handle peak demands, leaving inefficient valleys of lab utilization.

103Service Virtualization

virtual environment world of VMs and VSs, only the VMs must scale. An
almost infinite number of Virtual Services can be instantly launched and
utilized on-demand, with all the elasticity the cloud can offer.

If more scale is needed for performance tests, only a fraction of the entire lab
must be scaled up, while the typically larger and more complex systems
represented by Virtual Services will scarcely need to scale up at all. When an
enterprise’s IT management team understands their capacity in this regard,
they have a greater ability to make sound economic decisions about how to
leverage cloud-based infrastructure.

Massively Parallel Regression Testing in Cloud
The desire to perform continuous integration or regression tests on a large
scale is not new. Teams have been looking for ways to reduce the time and
huge manual effort required for regression testing for years. The use of
automation for regression testing is, of course, a well-known way to reduce
this time.

Figure 13-4. Service Virtualization in cloud reduces capacity and cost for development and
test performance labs. Peak traffic can be consumed by both private and public cloud capacity
if needed, thereby reducing overall spend and still meeting capacity needs.

Chapter 13 | Service Virtualization and DevTest Cloud104

However, once a suite of regression tests starts to get very large, test
execution again becomes an issue in that the team wants to see the regression
results in just a few hours, but the test suites must often run for days.

When pressed for time, how many times has IT had to tell the business, “You
can’t get a baby in 4.5 months by adding another mother!” Well, thanks to SV’s
lack of capacity constraints, it is time to throw another analogy out the
window.

Running a massively parallel test bed requires that your automated testing
platform be able to monitor its own execution of tests over time, and
dynamically provision additional capacity as Virtual Services into the test bed
as needed to reach the time goals provided.

As the tests are running, monitors discover the resource consumption needed
to perform the testing and calculate the additional capacity needed to bring
the test suite execution into the timeframe desired. As more tests are initiated
and staged, more Virtual Service capacity is dynamically added, with all the
needed scenarios ready to go.

As you can see in Figure 13-5, the provisioning of SV for massive parallel
regression testing in cloud is similar to the elastic capabilities of load and
performance testing in cloud. Simply by leveraging testing technology and SV,
we can regain the elasticity we expected while taking days off of the average
development cycle.

Figure 13-5. Business case for Massively Parallel Regression Testing when using Service
Virtualization in cloud. Note that the resource cost when leveraging cloud infrastructure for
taking a week to run the test suite and its environment is the same cost for that same test
bed to run for just an hour. This is because we generally pay for cloud resources on a
consumption basis; hence, if we need 2,000 hours of CPU time we can either do that as 1
machine for 2,000 hours, or 200 machines for 10 hours.

c h apter

14
Assessing
the Value
The days of accepting multi-year ROI statements from technology providers
are gone. In the “new normal,” the expectations on IT to deliver faster will
only continue to increase, while the economics of application development
will remain lean. Therefore, we can’t wait to start uncovering value.

Service Virtualization technology benefits are clear and present. It is quite
rare for us to see a customer not reach ROI within a few weeks or months of
rollout. With full buy-in and mentorship from experts to help make your first
implementation successful, Service Virtualization should pay for itself
within a year of your investment.

As we’ve discussed, in order for an SV initiative to deliver the most compelling
results, value starts with YOU, and your key peers and stakeholders in the
organization. Whether you are in management or development, YOU must
shift your mindset, and YOU must take on the responsibility to drive results
by shifting application development away from depending on physical labs and
manually built stubs, toward leveraging automated, dynamic VS environments
across the software lifecycle.

Beyond that, the short-term and long-term value your company measures
through SV depends on answering two questions:

•	 Where did you start as a baseline?

•	 What results does your company really want most from SV?

Baselining is a very important activity that must be conducted at the very
start of your SV initiative, as you want to base your future results on empirically
measured improvements to the current state of software development.

h

Chapter 14 | Assessing the Value 106

Your team must gather a good baseline at the initiation of SV that not only
contains specific numbers, but focuses on results that match the most
important IT or software delivery priorities of the company. Without this,
you will lack the specific goals you need to manage and incent SV across your
teams—and therefore success will be much harder to demonstrate in your
next review.

If we revisit some of those earliest preproject value goals, let’s express them
as a baseline metric, and then fill them in with the results we measured in the
first six months after the start of a successful project.

Table 14-1. Sample of Three Baseline Metrics vs. Results Metrics Typical of an SV
Implementation. There are hundreds of possible goals to baseline and measure results
from, and monetary values can be assigned to the results depending on the size and
accounting methods of the company.

SV Implementation Faster Better Cheaper

Before (Baseline) Software release
happening every
5–6 months

Avg. 5 major, 12
minor defects
delivered to QA
or Prod

Average 2,500 hours
spent on break-fix
from Perf team per
quarter

After (Results after 6
months)

Software release
cycle reduced to
3 months (after
2 cycles)

Only 1 major
defect discovered
in QA, 6 minor
defects

850 hours total
spent on break-fix in
Q3–Q4

Different IT service providers and software vendors (including our own
company’s service delivery teams) provide wildly varying methodologies for
measuring value. So rather than get into too much detail for a general guide,
let’s talk about how companies we’ve seen measure value with SV along the
simple lines of realizing “Better, Faster, and Cheaper” software development
lifecycles.

Faster: The Value of Time-to-Market
Winning the innovation race is first and foremost about time-to-market. Ask
anybody about the most innovative companies in the world and they will
immediately mention Apple, Google, or maybe even Dyson (the vacuum
cleaner company)—all companies that are consistently fast at delivering new
features to market.

Our goals here are to take the air out of the schedule—all that wait time,
data reset time, and “slush time” that is set aside for unexpected events and

107.

Measuring Results: Faster
When we make every hour a productive hour for our teams, labor costs on
a per-project or per-feature basis come down dramatically� When we stabilize
the environment with sv, we get started faster, gain more reuse out of our
work, and automation becomes far more effective� this causes the absolute
and relative labor cost associated with every phase of the sdlc to come way
down�

let’s look at some examples of metrics we’ve seen measured by customers in
the field in the form of a familiar table, structured as a value scorecard for
Faster delivery (table 14-2):

Table 14-2. value scorecard examples of Faster delivery through service virtualization
sample metrics are drawn from baseline and progress measurements from service
virtualization client engagements�

SV Scorecard: Faster Baseline 6 Month 12 Month
Improve-
ment

regression test cycle 92 hours 36 hours 18 hours 80%

data setup and teardown time 4 days avg 5 hours 4 hours 96%

Per-cycle wait between sys/int/
Perf teams

6 weeks 2�5 weeks 3 work days 93%

release cycle time (overall) 8 months 5 months 3 months 63%

.

Chapter 14 | Assessing the Value 108

Indirect Value: Moving Faster
Many companies will only consider the hard-dollar savings or direct revenue
increase in their value assessment for lifecycle acceleration with SV. However,
there are many indirect value propositions that create very compelling
statements:

•	 Rate of innovation: If we are able to deliver releases to
market 30 percent faster, can we devote more time to the
research and development budget for newer, differentiated
features?

•	 Revenue uplift: How much additional revenue would we
generate by having this new product or feature ready in 3
months vs. 6–8 months from now?

•	 First-mover impact: If we are first to market, how much
market share can we take from our competition?

•	 Late-mover compensation: Conversely, if we are late to
market, over time how much market share will we lose by
not offering comparable features or services?

•	 Time between phases/releases: Aside from reducing the
time required for completing specific project phases, can we
continuously reduce days from the lifecycle when the next
team expects an early delivery, and is ready to start the next
one immediately using virtual environments?

Better: The Value of Quality
Quality can be measured in terms of avoiding the negative impact of poor
quality, as well as realizing the positive benefits of good quality. Delivering
higher quality to customers is of the utmost importance in a customer-driven
economy, yet it is seldom valued as highly as it should be in many organizations.

We know the rate of change and complexity of today’s applications increases
exponentially every year, making the difficulty and cost of testing and assurance
increase with it. Yet many companies squeeze quality out of their timeline by
exclusively incenting faster delivery or cost reduction, thereby making testing
and performance appear to be a cost center rather than a critical part of the
revenue engine.

The most successful software organizations will incentivize quality across the
entire SDLC, including test-driven development, functional testing, and
performance engineering as highly necessary parts of the software lifecycle
and a requirement of successfully delivering product to market.

109Service Virtualization

Results: Better Quality
Many of our customers experience high costs to resolve defects that are
released into production, and they know they pay a much higher price today
for problems overlooked months ago. SV allows you to dramatically reduce
defect counts and capture that savings for more productive uses.

With the proviso that results vary widely with application and development
circumstances, let’s look at a “better quality” scorecard of sample value
measurements (Table 14-3):

Table 14-3. Value Scorecard Examples of Better Quality through Service Virtualization.
Sample metrics are drawn from baseline and progress measurements from Service
Virtualization client engagements.

SV Scorecard: Better Baseline 6 Month
12
Month

Improve-
ment

Defects per KLOC from
development

300 100 50 83%

Regression test scenarios
covered

5% 50% 90% 1,700%

Number of defects referred to
break-fix

30 10 5 83%

Customer support issues
reported per quarter

2,500 1,500 1,000 60%

Most companies can monetize the hard-dollar value of quality metrics and set
a baseline by keeping track of their historical information on the average
number of issues, average hours spent on resolution times, and chargebacks
for penalties or refunds, both in preproduction and later in production.

We often see a 60 to 80 percent reduction in the number of high-severity
defects released to production, as there is more testing being conducted by
every team, all the way back to early development. This represents a dramatic
reduction in the cost of support issues and infrastructure around supporting
break-fix.

Indirect Value: Better
Faster innovation in isolation is only useful for patents and prototypes. If
quality can’t keep up with the pace of change, innovation actually becomes an

Chapter 14 | Assessing the Value 110

unhealthy thing for customers and your business reputation. There are
hundreds of ways companies can measure quality, and SV can bring more
predictability to the software lifecycle. Here are a few other considerations
companies use to measure quality improvements with SV:

•	 Customer satisfaction ratings: Wise companies will
prioritize this single metric as much as any balance-sheet
figure, as it has the most long-term impact. If the software
behind your product or service works flawlessly, customers
will be far more likely to recommend it to their friends or
peers, and far less likely to leave. While factors such as
innovation, price, and service play into customer satisfaction,
it is very much a quality-driven metric.

•	 Service Level maintenance: Service interruptions or
system lags can be extremely costly in terms of missed
revenue, as well as possible penalties for nonperformance if
SLAs are not met.

•	 Ability to offer guarantees: The converse of SLAs is the
company’s own ability to predictably offer guarantees of high
performance and availability.

•	 Partner quality: This is a huge success factor for companies
with an ecosystem of technology and delivery partners. By
offering key partners readily available VSEs, they can much
more easily validate their own software interactions with
your business on a continuous basis, often at much lower
cost.

•	 Ensuring compliance: This is a “must-do” priority that
drives many companies facing government and industry
regulations. SV is critical for providing a reference system for
certification of quality levels, while supporting the
requirements of data masking or privacy, security of critical
live systems, and more.

Cheaper: The Value of Cost Savings
The third value of cheaper development is almost always the very first one
measured by companies concerned with infrastructure savings. With each
new release, each new partner, and each new technology we introduce into
our environment, the associated software infrastructure and service costs
will almost always continue to increase faster over time. We are not only
building new functionality—we have to verify that it works against all the old

111Service Virtualization

systems. Therefore, even if hardware and bandwidth become cheaper to buy,
infrastructure costs will still rise drastically when left unchecked.

Infrastructure cost savings vary wildly from a drip of reducing incremental
costs by hundreds of thousands of dollars a month to saving tens of millions
in one shot. That savings function has more to do with your current investment
level, your planned investment level, and the amount you leverage SV to
reduce third-party costs and deliver additional capacity in the performance
lab.

Results: Cheaper (Lower Costs)
Aside from labor hours saved, reduced infrastructure is the easiest cost
savings to quantify—as you have very specific ideas of your current spending.
You likely have already budgeted what you will probably spend on environments,
plus you can identify how much infrastructure you can more efficiently manage
or repurpose.

Let’s look at a sample scorecard for “Cheaper” value measurement of
infrastructure and other cost savings (Table 14-4):

Table 14-4. Value Scorecard Examples of Cheaper Development Infrastructure through
Service Virtualization. Sample metrics are drawn from baseline and progress measurements
from SV client engagements.

SV Scorecard:
Cheaper Baseline 6 Month 12 Month

Improve-
ment

Number of test servers in
preprod environment

60 30 10 83%

Mainframe partitions
needed

13/max charges 6/
unlimited

4 69%

Licensing and config costs
for development
environments

$15M $10M $5M 67%

Third-party partner fees
for preprod service access

$700K/month $150K $0K 100%

Even if a conventional dev and test lab strategy only delivers 10 percent of the
sizing of live environments, this represents a ton of infrastructure, with very
high licensing, configuration, and capacity charges. Every lab you currently

Chapter 14 | Assessing the Value 112

construct today must have a full complement of components, capacity on
shared services, and manually built stubs and workarounds.

When you think about all of the plans for new infrastructure on the table, as
well as the unplanned investments that we can avoid, you will be amazed at
the hard dollars you can redirect to innovation and more productive activities
with SV—and the infrastructure footprint of the SV version will be one to
two orders of magnitude smaller.

In addition to its dramatic infrastructure savings, SV enables performance labs
to do production-level load at a much higher frequency, with no additional
MIPS charges.

Indirect Value: Cheaper
There’s an interesting development worth mentioning here, as we are seeing
many firms concerned about cost structure in addition to cost savings. Especially
with the infusion of cloud, lots of teams are trying to turn infrastructure
purchases and even applications into subscriptions. These companies are
seeking to eliminate any expected CapEx for IT infrastructure and convert
that cost to OpEx—and thereby pay a recurring fee to another company or
partner to manage the infrastructure externally.

While this may appear to be shuffling costs around in a sense, it is more
desirable for some companies’ accounting practices to be a renter of
infrastructure, rather than having assets tied up as an owner. However, the
benefits of this switch are tempered if unexpected lab costs in that “rented”
infrastructure cause significant problems with preproduction activities. SV can
provide a great insurance policy against preproduction infrastructure costs
getting out of control.

For example, a leading transport company we worked with switched to cloud
infrastructure and managed application vendors wherever possible in its
production environments, but reduced its vendor spend for test labs and
partitions—as they could more reliably simulate those environments using SV
with no fees.

Additional Indirect Values of Cheaper Infrastructure

•	 Major re-architecture cost avoidance: We mentioned
that many companies won’t count “cost avoidance” as a real
IT cost savings, but when application projects fall behind and
problems truly become critical, they must either spend
heavily to re-architect the development and test environment
or try another way with SV.

113Service Virtualization

•	 Better collaboration: The ready availability of virtual
environments eliminates conflicts over shared and live
systems in preproduction, as well as aligning all teams and
partners for more productivity thanks to less finger-pointing
and dependency.

•	 Avoid service and VM “sprawl”: Many companies find
that they attempt to reduce excess Intel boxes in the server
room, only to find that they are rapidly proliferating a huge
mass of VMs and preproduction services across teams that
are even more difficult to manage and govern. By comparison,
SV provides “easy come, easy go” assets. Though a given VS
can be highly valid and intelligent, it requires little or no
upkeep and helps reduce this clutter and cost.

•	 Incentive to test early and often: This feeds back to
better quality, but since infrastructure for test in preproduction
is generally seen as a cost and not a revenue generator, this
discourages teams from testing as early or often as they
should. If teams can afford that infrastructure at a low cost of
entry and incremental cost, the impact on delivery efficiency
and effectiveness will be huge.

Organizational Roadmap: Planning to
Continually Improve
Do you notice a trend in the preceding value measurements? Just like our
applications, they are never standalone. They are highly interconnected and
cumulative—so results in one area will create increasing value in others.

If you think about it in the broadest
sense, Service Virtualization
basically provides decision
support for the IT investments
of the organization. SV gives
anyone who needs to build, use,
or manage software capabilities in
your business a more meaningful
way of predicting “what if” results

for any change in technology direction that happens, so the company can
become more agile with less risk.

For instance, if I automate with SV and decrease the time spent managing stubs and
test data, that makes my regression cycle much faster. This also allows teams to
have ready environments to build and run more test scenarios and increase coverage,

Chapter 14 | Assessing the Value 114

which makes the software better quality. That quality also reduces the hours spent
fixing software as well as buying additional infrastructure in the break-fix lab, so the
software is far cheaper to build and support. Then I can take that two weeks’ time
to make design-level R&D choices that could make software faster to deliver for a
new set of customers and so on, and so on . . .

Most companies conduct value assessments annually after adoption, with
reviews at the 6-month, 12-month, 24-month, 36-month mark, and so on.
Tracking value at a lower frequency often means the company isn’t serious
about the results, and is still thinking of SV as a “tool” to complete a given
project.

We can look at the balance sheet of a company that is just 2 percent better
in a key investment metric like R&D spend vs. Services revenue. Comparing
these numbers with peers in the industry can speak volumes about the
priorities of the company. The IT shop may THINK they are efficient by
looking at some bottom-up successes, but in reality they will not stack up as
well as they hoped with competition. The corporation has to think about the
balance sheet from the top-down and use IT investments to reflect long-term
value.

Will your organizational roadmap encourage success? Or inhibit it?

An organizational roadmap is a rolling plan that sets the future goals for
adoption and collaboration, based on the long-term results of SV in terms of
the bigger picture of the enterprise, its market, and its competition.

The importance of a strategic approach increases along with the size of the
enterprise, and its overall opportunity for making gains. If you are building and
releasing some VS assets on an ad-hoc basis for a product division, you might
still measure a couple million dollars in value just by reducing hours and
eliminating some service costs . . .

But let’s say your goal is to squeeze more than $100 million or $200 million out
of the entire IT budget over the next year—not unreasonable at all for some
global companies.

If your company intends to realize these bigger goals, you had better create
an organizational roadmap to achieve that level of continuous improvement,
including everything from training and mentorship to communication plans to
roles and responsibilities—all the way to execution. Real line items for SV
activities should be propagated into every upcoming software development
and integration project.

c h apter

15

Conclusion
Paris. December 28, 1895. An audience
takes their seats in Le Salon Indien du Grand
Café, paying a franc each to view the first
ever publicly projected film, “Train Pulling Into
a Station.” The pioneering brothers Lumière
dim the lights, and a moving picture of less
than a minute in length begins, opening with
a shot of passengers waiting at Marseilles La
Ciotat Station. As a locomotive began to roll closer in the shot, the audience
immediately jumps from their seats, scrambling to the exits in fear for their lives.

Scary, huh? It’s kind of funny when you think about this story, but are normally
reasonable managers and developers committing the same gaffe today with
Service Virtualization? More than 100 years ago, an audience saw the room
was empty, and they sat down in front of a screen to witness a new technology.
While they might have cognitively known it wasn’t real, they still instinctively
feared the train.

While we find this old tale amusing, we also see it as a parallel of any truly
disruptive technology—especially one like SV. Even if development and
performance teams learn about all the advantages of SV, when it comes down
to the next big project, they instinctively fear moving forward without
the real systems.

We were recently at a regional SV industry forum where an SVP of
Development for a large entertainment firm talked about the fact that, based
upon the cost savings, his office was going to require ALL the firm’s
development and test teams to use ONLY Virtual Service environments
instead of real servers and VM images by one year out.

Chapter 15 | Conclusion116

To which one development director instinctively blurted, “Wait, that’s fine for
the Services team, but it’s not going to work for us—for our project we still need
access to the live integration server, and all the data we need to test the scenarios.”
He was OK with other teams using SV, but afraid to step out of the real world
on his own—so afraid in fact that he had to contradict his boss right there in
the meeting!

The SVP didn’t miss a beat after the interjection: “We actually switched your
team’s environment over to Virtual Service back ends first about six months ago—
you’ve been developing against them ever since. Did you notice anything different?”

Hey, we hear this everywhere we go, and we can understand the guy’s
trepidation about stepping off the real platform into something virtual, into
something he’s never known. Just like those folks seeing the train virtually
bearing down on them in 1895, we should know that SV isn’t scary. But we
instinctively fear the unknown and worry about what will happen on our next
big project if we don’t have the real system—when in fact SV is far less scary
than using the real thing.

SV is inherently far more stable, predictably available, safe, and inexpensive
than using production-style environments and live data.

The Industrialized Software Supply Chain
As enterprise software developers and managers, we accepted the reality of
constraints in our work for years as well. And we accepted that we’d forever
use manual mocks and workarounds just to try and get the job done.
Therefore, it is completely understandable if the idea of dispensing with them
entirely seems too good to be true.

Having read this book to this point, you know how SV is the productization
of the old practice of stubbing and mocking throughout the software
development and test lifecycle.

SV lets us industrialize the modern supply chain for software to keep up with
today’s demand, from simulation in design, through assembly and optimized
delivery. This should make a huge impact someday . . .

But then you will return to work on Monday and begin planning for the next
big, critical software integration and release project—that all-important new
“wing” on your airplane. And your development teams (or “wing designers”)
will say, “Great! Where are my 20 real airplanes?”

You aren’t going to win the innovation game if you only
use SV on your least critical projects. You have to be willing
to change your thinking before you can change anyone else’s

117Service Virtualization

thinking� you have to sign up for the science of simulation, and sign
up for total predictability throughout your sdlc� nothing less will
do if you want to outpace your competition�

there will come a time that you, your team, and your entire organization, will
say, “We MUST use a Virtual Service instead of a live system—because it
is the ONLY way we can actually control our environment and predict
our ability to deliver.”

other industries have achieved great efficiencies through simulation� so why
haven’t we done so in software development? if you asked an engineer at
Boeing to build a wing design now without modeling and simulation, they
would tell you, “No way. I need a wind tunnel and modeling software, not a plane!”

it’s not like we just made up this idea as an invention—we saw that other
industries and systems already know there is no way to develop complex
things like this without simulation technology� simulation needs to be
pervasive, it needs to be easy, and it needs to be par for the course!

so the next time you have a project start, tell your developers, “Sorry, but
you will NOT use production-style labs, not anymore. Use Service
Virtualization instead. I know it is scary, but you will find it is far faster
and more predictable than the real servers.”

Innovate and Thrive in Good Times and Bad
sv is mandatory in both good
times and bad� i’m going to use
our friends down under in
australia to demonstrate this
concept, as many of the most
successful enterprise adoptions
of sv have happened there�

When times are GOOD, businesses demand faster time-to-market and more
aggressive software delivery schedules to capitalize on ideal conditions� For
instance, while the rest of the world was feeling an economic pinch starting
in 2008, australia had strong resources and a growing economy� therefore,
they needed unconstrained development to seize on business opportunities
in asia and the rest of the world�

a small company gets better and bigger by being aggressive with its it
investments in good times� that’s why you began to see virtually every bank
in australia as well as other it-enabled companies radically accelerating their

Chapter 15 | Conclusion118

development shops by adopting VS environments, and even deploying them in
development clouds in recent years.

But what about bad economic times? We are familiar with a different reality
for the last few years in North America and Europe. Overall budget slashes
and IT cost-cutting measures happened across the economy. Yet many
companies still invested in SV when times were bad. Why?

Increasing IT efficiency in bad times with SV allows companies to keep their
existing developers making gains in productivity, helps their systems adjust
more quickly to the impact of meeting new regulations, reduces costly defects,
retains loyal customers with better services, and reduces the infrastructure
and operating cost of software.

Companies usually grow in good times, but they grow relative to each other
even faster during BAD times. The companies that can deliver on their
promises while maintaining high quality will retain customers, and further,
those that can innovate through hard times will gain new customers and come
out ahead when good times return.

Prepare to Revisit Your Enterprise Release Strategy
Let’s look at a story well-known by anyone in e-commerce and retail. Let’s say
you accept credit cards on your site and connecting to that company’s system
accounts for a huge portion of your customer transactions. You get a notice
of an upcoming major upgrade at the credit card company, and soon after,
access to a “test system” version of the new vendor network release that has
certain limitations on traffic. You are only 45 DAYS from go-live. Your
enterprise is now in a mad dash to adjust and test your own apps in less than
45 days, or your core business is in huge trouble.

But here’s the rub: many of these changes were known months ahead of time by
the credit card company—they just weren’t implemented yet. Instead of having
to wait to deliver a finished test environment, their thousands of customers
could have been given three to four more months to do their critical adjustments
to their apps, if the credit card provider had only delivered a Virtual Service
based on all the known requirements and API changes to date. Just like defining
the “bank in a box” that our “Virtual Poster Child” talks about in the
Afterword.

This kind of story is not isolated. It happens in every extended enterprise
. . .

Enterprise-wide coordination was not demanded years ago. Application teams
were their own islands; they enjoyed mostly independent architectures, and

119Service Virtualization

therefore did not have to synchronize changes with other applications. Oh for
those simpler days . . .

Today’s organizations aiming for the highest levels of cost avoidance, increased
agility, and top-line revenue impact have targeted optimizing their entire
Enterprise Release strategy. You know, the “big bang” release that drives
everyone into an annual frenzy.

By using SV across organizations and teams, they concurrently run several
development teams in parallel, then bring those many development teams
into one integration and test environment for a coordinated release to
production.

But wait—Enterprise Releases might be the single most anti-Agile process change
we could possibly have adopted! How many times will our development teams
be able to deliver a business-critical change in a few weeks—while the next
release train won’t be available for many months? Our agility disappears when
we force coordination among dozens of applications that aren’t even involved
in the task at hand to get each app change delivered.

In time, even the largest organizations will find that many steps of an Enterprise
Release can be optimized away with the effective use of Virtual Services. We
already showed you an example of a compressed Enterprise Release plan in a
telco case study. The next logical step is to enable many more application
changes to occur outside the Enterprise Release schedule with pairwise
integration testing, instead of building out an entire integration/test landscape
for each team (Figure 15-1).

Figure 15-1. A high-level view of synchronized continuous release cycles across multiple
teams contributing to a larger Enterprise Release process with Service Virtualization.

Ultimately, we are convinced that by using SV even wholesale enhancements
to your applications will be safely delivered to production—without requiring
massive coordination efforts among applications and teams that shouldn’t
even need to be involved.

Chapter 15 | Conclusion120

How many times in your career have you been asked to “get real”? How often
have real-world boundaries crushed your best ideas? We happen to believe
that Service Virtualization can indeed reset your expectations of reality, at
least in the realm of software innovation.

True, this one book won’t let you escape the world’s business limitations. But
we hope it has given you a little mental break from reality—the kind of self-
delusion we could all use to fine-tune our capacity for innovation. Success was
right there for the faking all along. After all, reality is overrated.

Virtual
Confession
From the Desk of a Service Virtualization
Poster Child

I guess you could say I was the guy they
invented Service Virtualization for.

Back in 2007 I was SVP of IT performance
and resiliency at one of the top banks in
the world. But I wasn’t on top of the
world. Like most peers in my position at
other companies, I had a constant volcano
brewing on the application surface of a
business that needed to handle several
billion transactions a day.

To compete, we needed to keep delivering new features to our customers
through our website, teller and ATM networks, and mobile devices—and have
them perform flawlessly. But unfortunately, most of the things we needed to
ensure that this actually happened were either moving targets or beyond my
control.

For any new release, we had to verify that the software our teams built would
work in a production environment against more than 200 back-end systems,
from mainframes to data stores, as well as systems acquired from other
companies, and services hosted by other parties for things like credit checks
and transfers. Simply getting all of these systems aligned could happen maybe
once a month, and the setup process and fees cost millions of dollars per
release cycle. Most of these systems were too heavy or out-of-scope for us

afterw o rd

122 Afterword | Virtual Confession

to possibly virtualize conventionally as a VM. We had a large team of
consultants trying to code our own “responders” to answer this challenge.

Obviously these stubs weren’t good enough representations of a complex and
changing environment. Projects often ran 50 percent or more past deadline,
as critical problems were popping up near the end of each release cycle. We
were in fact so constrained that I had a $30 million+ infrastructure purchase
order sitting on my desk to try and build an appropriate scale version of
production that we could use.

When John Michelsen first showed up in our office and told me about Service
Virtualization technology I thought “This has got to be a joke! You can’t do
that!” I had gotten so used to the constraints of system unavailability, and the
manual effort of mocking up services and data, that it seemed impossible.

But this new type of virtualization worked for real. In two weeks, we were
able to create a Virtual Services environment for 70 back-end systems and
complete an integration-level performance test with it, something we couldn’t
accomplish reliably with 25 people custom coding for two years on our own.
We avoided cutting that $30 million+ check, and I estimate we have missed at
least three more of those size infrastructure outlays over the last three years.

But the biggest impact of SV happened when we spread its use across the
larger enterprise.

We were able to design a reusable resource we called a “bank in a box”—
which required that any team or partner wanting to deliver a new release into
our environment actually certified that their code worked at the level
expected in our “virtual world” before getting released into our QA and
production environments. This made a huge impact on delivered quality and
timelines—as well as getting back the nights and weekends we once spent
putting out fires.

I can’t estimate the value we created with Service Virtualization now in terms
of revenue uplift due to an average 35 percent faster time-to-market—we
actually stopped trying to measure ROI after year 1 but it is well over $100
million. The agility we gained from simulating real-world IT environments,
24/7, on-demand, for use by hundreds of development, partner and test teams
had a huge impact on an entire organization’s ability to deliver new features
for customers. Better, faster and cheaper than our competition.

I invite you to join the discussion, and learn about the practices and technology
behind Service Virtualization. While it is an emerging discipline, SV is now
supported by several major consulting and software vendors, and I have had
the pleasure of growing this practice across many different groups within a

123Service Virtualization

global enterprise for more than five years, and now taking it out to other
companies.

Every day I hear about new ways customers in other industries are using SV
to optimize their overall delivery capabilities. You don’t need to be an engineer
to see the business value of having everything in your IT environment ready
when you need it.

Virtually Yours,

An IT Executive

Glossary
Agile methodology. Practice of empowering smaller software development

teams of requirements owners and developers to define, code, and test
functionality in smaller increments, rather than in a large, sequential or
Waterfall (q.v.) approach.

big data. Data sets that have become too complex, unstructured, distributed
or cumbersomely large in size (often measured in petabytes or exabytes)
to be managed within conventional relational database systems. As big
data can be stored across several systems, it often needs to be managed
and referenced differently, using massively parallel systems and new
technologies to leverage it.

build. The step of compiling and assembling the code and/or components of
a given piece of software, prior to testing/validation in pre-production, or
runtime in production. Usually handled by a tool such as ANT or within
the software team’s ALM (Application Lifecycle Management) solution of
choice.

capital expense (CapEx). Accounting term for business spending related to
increasing capital, or the means for producing goods, including new
equipment, hiring workers, facility construction, software licenses, etc.

Center of Excellence (CoE). A department or organization within a larger
enterprise that maintains a centralized embodiment of training, best
practices, and implementation aids for the larger organization on a
particular topic.

CICS. A form of transaction management software that runs on the mainframe
produced by IBM. Many CICS customers’ enterprise software eventually
has to “talk to CICS” at some point behind the scenes of web applications
and integration layers for execution.

126 Glossary

client/server. Early definition of any distributed software architecture,
involving a “client” system that makes requests of a “server” system that
either retrieves or processes data and makes a response to the client.
Client/Server came about as a next step in evolution atop mainframe
computers in the ’80s and ’90s when desktop PCs became popular clients
for business software.

composite applications. For purposes of this book, we describe “composite
apps” as the next level of advancement in today’s distributed software
architecture. While the first defined Client/Server (q.v.) environments may
have only included two or three layers of system architecture, composite
applications generally contain three, four, or many more tiers and often
horizontal integration among applications.

constraints. Anything that hinders progress or completion of a task; a
hindrance to throughput or limitation of capacity. Specifically in business
terms, we are referring to constraints as bottlenecks in the supply chain of
software development and delivery, à la Eli Goldratt’s Theory of Constraints.
Look that one up when you have more time.

continuous integration (or CI). Software development practice of more
frequent unit and regression testing, and faster check-in of any changes
developers make to application code, in order to avoid additional
integration problems that happen because the other features of the
application have changed while that developer was working on the source
code.

desensitizing. Method of obscuring, obfuscating, or otherwise masking
private data such that it is de-identified from the original private data
usually for the purpose of development and test environment use of the
data. This prevents unauthorized viewers from seeing the private data of
real users (like user passwords, SSNs, and addresses).

Enterprise Application Integration (EAI). A form of distributed architecture
that involves multiple types of business applications as components, for
instance a CRM sales application, a financials system, and a pricing/
configuration application. Often these systems are provided by different
specialized business software vendors.

Enterprise Release. A strategy for implementing large-scale changes to one
or more composite applications (q.v.) by coordinating the parallel
development and synchronized testing and promotion to production of
the usually widespread set of changes implemented.

Enterprise Service Bus (ESB). An integration backbone middleware solution
that allows disparate software components to be connected by handling

i

127.

q

128 Glossary

non-relational. A data source that does not hew to relational database
standards. This is becoming more common recently as Internet-based
applications continue to grow in scope and distribution across multiple
components or locations. In a non-relational data scenario, there is no
conformity of the data to so-called normalized columns of data types and
rows of data instances, and multiple data stores may have redundant or
different local data. The forgoing of these tight relationships is built into
the expected behavior of the application that leverages such sources (see
Big Data).

operational expense (OpEx). Business accounting term for any recurring
expenditures that enable the ongoing operations of the business, often
including rent, power and other utilities, payroll service, security, network
fees, etc.

out-of-scope. Any downstream or upstream systems or data that are not
within the control or authority of a given application development and
testing team. These may be live systems that are off-limits at times, or
resources that are managed by other departments or even business
partners.

over-utilized. When a system is frequently accessed by users such that the
shared usage impacts the effectiveness of the system for those users.

Profit and Loss (P&L). Business accounting term denoting an individual
manager or department’s responsibility for achieving certain measured
fiscal performance goals, i.e., revenue vs. expenses over a given quarter or
period of time.

Relational Database Management System (RDBMS). Type of database
that is largely an industry standard today, which stores both data and the
relationships among that data in tables. Most DB2, Oracle, SQL, and
JDBC-compliant databases are RDBMS.

Rich Internet Application (RIA). A web application where much of the
presentation logic and behavior is presented within the browser, using any
number of browser plug-ins or presentation technologies (HTML5, Flash/
Flex, Java Swing, etc.) to provide a “richness” of user experience. One
interesting aspect of RIAs for more complex business functionality. they
may make dozens or hundreds of individual calls to back end systems in
order to represent that dynamic app in a browser, making good integration
quality and performance even more important.

scrum. An Agile (q.v.) software development method for precisely timed
development and delivery steps, with frequent progress feedback to allow
projects to remain malleable to business requirements, especially in

129Service Virtualization

situations where there is not a lot of central control or authority defining
specific software requirements up front.

Server Virtualization (aka Hardware Virtualization aka OS Virtualization).
Technique of creating a software-only image of a given piece of hardware,
including the processor, hard drive and possibly the OS or programs
running on that hardware, as a Virtual Machine or VM (q.v.), which is a
more lightweight asset that can be run with other VM images in an
environment called a hypervisor (q.v.).

Service Level Agreement (SLA). Contractual requirements with a business
entity that represents the expected performance and reliability levels of
any delivered application. Often an SLA is expressed as a certain speed of
response time, or a guarantee of scalability and availability up to a certain
predetermined set of circumstances.

Service-Oriented Architecture (SOA). A model for building composite
applications that are highly distributed and componentized into smaller,
reusable software components that are loosely coupled, with the intent
of allowing greater flexibility and reuse from these components to more
quickly adapt to meet business requirements. Often involves Web Services
(WSDL/SOAP) layers, but SOA can be accomplished using many other
integration and messaging technologies.

Service Virtualization (SV). Read this book.

Software Development Life Cycle (SDLC). The entire process of designing,
developing, testing, and releasing any software product or project.

sprint. A short window of time, usually less than a month, in which a small
gathering of developers focuses on delivering a specific next set of
functionality for a software application. A tenet of scrum (q.v.) as well as
overall Agile (q.v.) methodology.

stateful. Data that maintains its context across a software workflow as it
passes through multiple decision points or steps in a given process. It is
especially important to have stateful logic in Virtual Services (q.v.) that
must simulate a complex business transaction with variables such as
dates/times, cumulative balances, etc. that should remain in lock-step
with the intended functional or performance use case. For instance, if I
am making and checking airplane reservations over a 24-hour period
today and tomorrow, a flight that is available this evening should be
stateful enough to know it should be expired tomorrow when it receives
a similar request.

stateless. Data or application behaviors that do not maintain the user’s
context within the workflow of an application over the course of several

130 Glossary

transactions. Generally this means a given request will get the same
response from a stateless stub or service regardless of previous requests
that the requestor has made.

Test Data Management (TDM). A system that manages the import,
conditioning, setup and teardown of data within a testing environment,
usually within databases or systems that are in-scope. Most TDM solutions
are designed for heavy lifting types of data extraction and porting in the
final verification stages of testing, rather than simulating very “lightweight
data” models as seen in virtual services.

Test-Driven Development (TDD). Agile-related software development
methodology of first defining a unit test for an expected functionality,
before development of that functionality starts. When the test passes,
the functionality is then considered complete.

under-utilized. Systems that seldom, if ever, run at capacity. This describes
most physical infrastructure and servers in an IT shop, but under-utilization
can usually be easily remedied using conventional Server Virtualization (q.v.)
and VMs (q.v.), or many other methods.

Uniform Description, Discovery & Integration (UDDI). Proposed standard
for having a directory of Services that can be located within a distributed
architecture, and using that UDDI directory to help speed up integration
of services and components to build an application.

User Acceptance Testing (UAT). Last-mile testing of an application on behalf
of its intended business users and stakeholders at the end of a project,
usually conducted exclusively through the application’s UI.

virtualization. The general practice of simulating any IT resource, including
servers, other applications, networks, devices, and more.

Virtual Machine (VM). A direct image or copy of a given system using
conventional or Server Virtualization. Multiple VMs can be managed and
run in a hypervisor (q.v.).

Virtual Service (VS). An executable model of a given system’s behavior
usually based on automated observations about messages passing from
and to a system under development or test. Service Virtualization is the
practice of making Virtual Services, and they are run in VSEs (q.v.).

Virtual Service Environment (VSE). A management platform that can run
multiple Virtual Service (q.v.) instances for purposes of interacting with
other software components during development and testing. A VSE is the
Service Virtualization counterpart to the hypervisor of conventional
Server Virtualization technology.

131Service Virtualization

Waterfall development. Traditional serial project approach to software
development, involving sequential and ordered phases of development
and testing, requiring completion of each step before commencing the
next phase. A significant difference in approach from Agile (q.v.) in that it
attempts to fully pre-define the requirements prior to development
commencing, so ongoing changes to those requirements during
development are harder to accommodate.

XP. See Extreme Programming.

The journey toward Service
Virtualization doesn’t stop here.
Join the authors, as well as leading enterprise development managers and IT
executives, in the site dedicated to Service Virtualization. Hear case studies
and learn more about the best practices and technology that enable SV at
ServiceVirtualization.com—your community resource for expert insight and
collaboration in a virtual development world!

http://www.servicevirtualization.com

http://www.servicevirtualization.com

I
Index
A
Agile development, 44

caveat, 15
faster delivery, 59
scrums, 14–15
service-oriented technology, 15
software delivery, 6
TDD, 14
waterfall development method, 14

AgileFall process, 21
Anti-Agile process, 119
Application Lifecycle Management (ALM), 54
Application Performance Monitoring (APM),

80
automated capture process, 41

B
Business imperatives

agile software delivery, 6
inevitable change and complexity, 7
merciless consumers, 6
software simulation, 7

C
Capital expense (CapEx), 67, 71–72, 112
Center of Excellence (CoE), 94
Complex service environments

back-ends, 13
integration, 13
services layers, 13
tech note, 14

UI layers, 13
component level stubs, 62
Composite apps, 12
Constraints, 48, 52, 92, 94

conflicting delivery schedules, 20
data management and volatility, 22
definition, 17
DevTest cloud, 100
in-scope vs. out-of-scope systems, 18
stubs and mocks, 25
third-party costs and control, 24
unavailable systems and limited capacity,

19

D
Data scenario management

advantages, 86
conflicts elimination, 84
data masking, 85
out-of-scope system, 83
vTDM, 84

Data volatility, 28
DevTest cloud

“app assembly and hosting” environment,
100

“blank slate” approach, 99
constraints, 100
consumer-oriented startups, 99
high-performance cloud environments,

101
massively parallel regression testing, 103
SaaS-based business models, 99
unlimited elastic computing capacity, 99

Index134

DevTest Cloud, 35
distributed Agile development, 15

E
End-to-end (ETE) test environment, 65
Enterprise service bus (ESB) system, 13
ERP system, 20

F
Faster delivery

agile development, 59
composite application environments, 59
regression and performance testing, 60
shift-left, 60, 63
Sprint, 63
TDD, 60
virtual privacy, 60
waterfall development approach, 59

G
Gantt-chart waterfall approach, 20
Global Distribution Service (GDS), 24

H
High-performance cloud environments, 101
Hypervisor, 28

I, J, K, L
Infrastructure footprint

CapEx, 67
customer example, 73
“Green IT” initiatives, 67
IT outlays

CapEx, 71–72
infrastructure cost savings, 72
massive infrastructure costs, 72
OpEx, 71–72
PayPal, 71
realistic infrastructure, 71
virtual data management, 72
virtual models, 72

Mainframe development, 69
Moore’s Law, 67
over-utilized resources, 68
VMs and hypervisors, 68

In-scope systems, 18
Integration phase, 21
Integration phases, 18

M
Mainframe internal architectures, 70
Message protocol, 13
Monolithic systems, 11

N
Non-Functional Testing (NFT), 82
n-Tier apps, 12

O
OpEx, 71–72, 112
Order management service (OMS), 42, 80
Out-of-Scope systems, 18
Out-of-scope test data conflicts, 85
Over-utilized environments, 28

P, Q
Performance budgeting, 78
Performance defects escape development,

76–77
Point-of-Sale (POS) applications, 21
Production Data Mining (PDM), 80–81

R
RDBMS data sources, 23

S
SaaS-based transaction service, 20
SaaS model, 25
SDLC, 60
Server Virtualization, 28
Service Level Agreement (SLA), 76

135Index

Service level decomposition, 78
Service-oriented apps, 69
Service Virtualization (SV)

advantages, 115
automation

manual stubbing process, 40
self-healing, 41
transaction log, 41
web UI, 39

centralization vs. federalization, 94
constraints, 48, 52
definition, 1, 27
development/performance environments,

52
Enterprise Release strategy, 118
experienced resources, 51
hairy problem, 51
inappropriate technologies

ALM software, 54
business application platform, 55
not for hardware, 54
“record-playback” tool, 55
vendor integration, 55

industrialized software supply chain, 116
innovation and thriving, 117
live-like development environment

expected capabilities, 39
real system data, 39
stateful business logic, 38
upstream and downstream systems,

38
vs. stateless stubs, 38

management and incent, 48
parallel dev and test

agile development, 44
“E-Store” web app, 42
expected capabilities, 44
OMS, 42
parallel development, 44
software lifecycle efficacy and

efficiency, 42
vendor neutral substrate, 45

performance and scale
component-level performance

budgeting, 78
environments, 75

from production, 80
testing by design, 82

practical applications, 2
real value goals, 52
SDLC, 91
skills and roles, 92
stakeholders identification, 50
stubs and mocks, 52
transformation, 1, 90
TRANSFORMATIONAL approach, 47
virtual service. See Virtual service
virtual service environments, 115
virtual training environments, 95
vs. live-like development environment

stateless stub, 39
vs. server virtualization, 27

Software applications, 11
Software Development Lifecycle Process

(SDLC), 91, 107–108, 117
Software Development Life Cycle (SDLC)

process, 34
System intelligence, 11
System Under Development (SUD), 42
System Under Test (SUT), 42

T
Test data management (TDM), 22
Test Data Management (TDM), 23, 84–85
Test-Driven Development (TDD), 14, 60
Transaction per second (TPS), 76

U
Under-utilized environment, 28
User acceptance testing (UAT), 19

V
Value assessment

baseline, 105
cost savings, 110
organizational roadmap, 113
quality, 108
ROI statements, 105
time-to-market, 106

Index136

Virtual Machines (VMs), 101
Virtual Machine (VM), 28
Virtual privacy, 61
Virtual service environment (VSE), 33–34,

105, 115, 118
Virtual Services (VSs), 101
Virtual Service (VS)

cloud-based partner service, 29
creation options, 30
downstream mainframe, 29
dynamic logic, 29
environments, 33
fundamental process, 29
live transaction, 32
live transactions, 30
maintenance, 31
messaging protocols, 32
OMS, 42

plausible conversation, 29
self-healing, 41
SUD and SUT, 42
system-generated software object, 29
technologies list, 32–33

virtual Test Data Management (vTDM), 84,
86

Virtual Training Environments (VTEs), 95
VMware, 54

W
Waterfall development method, 14

X, Y, Z
XML Gateway, 82

service virtualization
reality is overrated

John Michelsen
Jason English

PRESS

Service Virtualization: Reality Is Overrated

Copyright © 2012 by CA. All rights reserved. All trademarks, trade names, service
marks and logos referenced herein belong to their respective companies.

The information in this publication could include typographical errors or technical
inaccuracies, and the authors assume no responsibility for its accuracy or
completeness. The statements and opinions expressed in this book are those of the
authors and are not necessarily those of CA, Inc. (“CA”). CA may make modifications
to any CA product, software program, method or procedure described in this
publication at any time without notice.

Any reference in this publication to third-party products and websites is provided for
convenience only and shall not serve as the authors’ endorsement of such products
or websites. Your use of such products, websites, any information regarding such
products or any materials provided with such products or on such websites shall be
at your own risk.

FedEx® is a registered trademark of Federal Express Corporation.

To the extent permitted by applicable law, the content of this book is provided “AS IS”
without warranty of any kind, including, without limitation, any implied warranties
of merchantability, fitness for a particular purpose, or non-infringement. In no event
will the authors or CA be liable for any loss or damage, direct or indirect, arising from
or related to the use of this book, including, without limitation, lost profits, lost
investment, business interruption, goodwill or lost data, even if expressly advised in
advance of the possibility of such damages. Neither the content of this book nor any
software product referenced herein serves as a substitute for your compliance with
any laws (including but not limited to any act, statute, regulation, rule, directive,
standard, policy, administrative order, executive order, and so on (collectively, “Laws”)
referenced herein or otherwise. You should consult with competent legal counsel
regarding any such Laws.

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system, without the prior written permission
of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-4675-8
ISBN-13 (electronic): 978-1-4302-4672-5

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

President and Publisher: Paul Manning
Acquisitions Editor: Robert Hutchinson
Technical Reviewer: Ruston Vickers
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Rita Fernando
Copy Editor: Jennifer Sharpe
Compositor: Bytheway Publishing Services
Indexer: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact us by e-mail at info@apress.com, or
visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For
more information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales. To place an order, email your request to support@apress.
com.

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither the
author(s) nor Apress shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales

About the Authors
John Michelsen, CTO, CA Technologies and Co-
Founder, ITKO

John has lived his career helping enterprise customers
push the leading edge of IT transformation to deliver on
business outcomes and is a highly respected technologist
who moves others to action. As the CTO of CA
Technologies, John is responsible for technical leadership
and innovation, as well as aligning CA’s software strategy,
architecture, and partner relationships to deliver
customer value. With 12 patents awarded or in process and with market-
leading inventions delivered in database, distributed computing, virtual/cloud
management, multichannel web application portals, Service Virtualization
(LISA®), and many other areas, John is a factory of innovation.

John is a frequent writer in leading trade publications and has presented at
technology and business conferences around the world. He joined CA
Technologies in 2011 through its acquisition of ITKO, a company he co-
founded and drove successfully for 12 years. Prior to ITKO, John’s broad
technology experience included leading SaaS and e-commerce transformations
for global enterprises at Trilogy and Agency.com. In his spare time, he enjoys
vacationing with his family on islands or in the mountains, and he has also
become an expert at country and Texas swing dancing.

Jason English, CA Technologies Director, Product
Marketing and ITKO Historian

Jason joined ITKO (now a CA Technologies company)
in 2004 as employee #3, functioning as the company’s
“Marketing Department” during many stretches of
its existence, while handling other tasks from
software UI design to sales support.

Before managing marketing for ITKO, Jason was Executive Producer of the
in2action interactive consulting unit at i2 Technologies, where he was

viii About the Authors

responsible for web marketing and messaging during a period of extreme
growth, as well as working directly with major companies of every industry to
build easy-to-use workflows for complex B2B collaboration systems. Prior to
that, he served as one of the first information architects, defining customer
experience for Fortune 500 clients at the pioneering interactive firm Agency.
com. He has also designed, written, and scored soundtracks for internationally
released computer games in addition to producing advertising and television
commercials. He continues to compose and play music and remains an active
brewer.

About the Technical
Reviewer
Ruston Vickers, CA Technologies VP Research and
Development and ITKO Co-Founder

As co-founder of ITKO (now a CA Technologies
company) and leader of R&D efforts, Ruston has been
instrumental in advancing the company’s product suite
from its inception. He manages all customer product
deployments and is the lead developer of CA LISA’s
integration frameworks, which help clients gain
tremendous extensibility and quality across many technologies within complex
IT environments.

Prior to ITKO, Ruston designed and built solutions for world-class clients in
energy, automotive, and travel industries while working at Agency.com and
EDS. Early in his career, he developed some of the first highly interactive
online experiences for EDS, General Motors, and Dr. Martens. He also
worked closely with Netscape and Macromedia during development of new
technologies for dynamic and streaming content delivery. Ruston is also an
aficionado of high-end guitar and sound gear, which generally gets him VIP
access to all entrances. He holds a Bachelor of Science degree from Texas
Tech University.

Acknowledgments
The authors would like to thank:

Our patient wives, impatient kids, Moms, Dads, and families;

The visionary customers from whom John has learned so much, for your help
documenting dozens of great SV examples and case studies with Jason over
the past six years, especially Sven Gerjets, Laura Miller, Russ Wheaton, Jamie
Williams, and many others for allowing us to recount your stories herein;

All the genius, committed technologists from ITKO’s early days who made
this incredible new technology happen, especially our cofounder Ruston
Vickers—you are all the best in the business;

Ken Ahrens and Rajeev Gupta for helping us kill it on a couple of the tougher
sections on SV process and performance techniques;

Shridhar Mittal, Chris Kraus, Anuj Gulati, and Luther Birdzell for valuable
input and help;

Robert Humphrey for championing the cause, and Scott King, Paul Neumann,
Jim Dugger, Justin Vaughan-Brown, and everyone else who stepped up
while Jason was off noodling on this book;

And finally, all the technologists, executives, and partners who are acting on
this unique opportunity to make a game-changing new approach real for
business. We hope this book inspires you to take it even further.

www.Ebook777.com

Free ebooks ==> www.Ebook777.com

http://www.ebook777.com

	Contents
	About the Authors
	About the TechnicalReviewer
	Acknowledgments
	Virtually There at FedEx
	Introduction
	Service Virtualization Defined
	You Make the Transformation happen
	About This Book
	Signposts in the Book

	The Business Imperatives: Innovate or Die
	Consumers have No Mercy
	Business Demands Agile Software Delivery
	Increased Change and Complexity Are Inevitable
	Business Software Cannot Sustain without Simulation

	How We Got Here
	From Monolithic to Composite Apps
	Today’s Complex Service Environments
	From Waterfall to Agile Development

	Constraints: The Enemy of Agility
	In-Scope vs. out-of-Scope
	unavailable Systems and limited Capacity
	Conflicting Delivery Schedules
	Are developers coding in the blind?
	Data Management and Volatility
	Third-Party Costs and Control
	Stubs and Mocks Are Not Enough

	What Is Service Virtualization?
	The other half of Virtualization
	Creation of a Virtual Service
	options for Creating and Maintaining Virtual Services
	What Can You Make into a Virtual Service?
	Virtual Environments Are Better than Real Environments for Dev and Test
	Wait a minute—is this Virtual Service Environment replacing the live environment all the way up to production?

	Capabilities of Service Virtualization Technology
	“live-like” Development Environment
	Automation Eliminates Manual Stubbing and Maintenance
	Virtual Service, heal Thyself
	Enables Parallel Dev and Test

	Where to Start with Service Virtualization?
	IT Executives Must Manage and Incentivize SV, or It Won’t happen
	A transition may be painful—so how do I break this to my teams?
	Identify Stakeholders (The SV War Council)
	Who Should use Service Virtualization First?
	Set Real Value Goals for Releases
	how does my company expect to create value from Service Virtualization?
	Avoid Inappropriate Technologies
	SV does not replace your AlM software
	More than a simplistic “record-playback” tool
	Will not require a specific vendor integration or business application platform

	Intermission
	Best Practice 1: Deliver Faster
	Reducing Wait Time through Virtual Privacy
	Kill Stubs Now, or Pay later
	Sprint: Putting Shift-left in Practice

	Best Practice 2: Reduce Your Infrastructure Footprint
	Finding over-utilized Resources
	Mainframe Development Needs Virtualization Too
	Avoiding Big IT outlays
	Customer Example: Dodging a Wave

	Best Practice 3: Transform Performance and Scale
	Virtualizing Performance Environments: Are You Waiting to Fail?
	Component-level Performance Budgeting
	Informing Performance from Production
	Setting Thresholds to Move Performance Even Farther left Than We Ever Imagined
	Performance Testing by Design

	Best Practice 4: Data Scenario Management
	vTDM: Just the Data You Need
	Eliminate Conflicts over Data
	Data Masking: Trust, but Virtualize
	Expected Results

	Rolling Out Service Virtualization
	The Stakes for Service Virtualization are huge, So Don’t Settle
	But what about the risk? Won’t this create upheaval in my organization?
	Changes to the Software Development lifecycle Process (SDlC)
	Build New Skills and Roles in a Virtual IT World
	Good help Is Virtually Always in Demand
	Should We Centralize or Federate?
	Cool Alternative use: Virtual Training Environments?

	Service Virtualization and DevTest Cloud
	Constraints of Cloud Dev and Test
	Achieving high-Performance Cloud Environments
	Massively Parallel Regression Testing in Cloud

	Assessing the Value
	Faster: The Value of Time-to-Market
	Measuring Results: Faster
	Indirect Value: Moving Faster
	Better: The Value of Quality
	Results: Better Quality
	Indirect Value: Better
	Cheaper: The Value of Cost Savings
	Results: Cheaper (lower Costs)
	Indirect Value: Cheaper
	organizational Roadmap: Planning to Continually Improve

	Conclusion
	The Industrialized Software Supply Chain
	Innovate and Thrive in Good Times and Bad
	Prepare to Revisit Your Enterprise Release Strategy

	Virtual Confession
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I, J, K, L
	M
	N
	O
	P, Q
	R
	S
	T
	U
	V
	W
	X, Y, Z

