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Preface to Second Edition

This second edition reflects a slight evolution in the methods for analysis of data for
research in the field of management and in the related fields in the social sciences.
In particular, it places a greater emphasis on measurement models. This new ver-
sion includes a separate chapter on confirmatory factor analysis, with new sections
on second-order factor analytic models and multiple group factor analysis. A new,
separate section on analysis of covariance structure discusses multigroup problems
that are particularly useful for testing moderating effects. Some fundamental multi-
variate methods such as canonical correlation analysis and cluster analysis have also
been added. Canonical correlation analysis is useful because it helps better under-
stand other methodologies already covered in the first version of this book. Cluster
analysis remains a classic method used across fields and in applied research.

The philosophy of the book remains identical to that of its original version, which
I have put in practice continuously in teaching this material in my doctoral classes.
The objectives articulated in Chapter 1 have guided the writing not only of the first
edition of this book but also of this new edition.

In addition to all the individuals I am indebted to and who have been identified
in the first edition of this book, I would like to express my thanks to the cohorts
of students since then. The continuous feedback has helped select the new material
covered in this book with the objective to improve the understanding of the material.
Finally, I would like to thank my assistant of 15 years, Georgette Duprat, whose
commitment to details never fails.

vii



Preface

Iam very indebted to a number of people without whom I would not have envisioned
this book. First, Paul Green helped me tremendously in the preparation of the first
doctoral seminar I taught at the Wharton School. The orientations and objectives set
for that book reflect those he had for the seminar on data analysis, which he used to
teach before I did. A second individual, Lee Cooper at UCLA, was determinant in
the approach I used for teaching statistics. As my first teacher of multivariate statis-
tics, the exercise of having to program all the methods in APL taught me the benefits
of such an approach for the complete understanding of this material. Finally, I owe a
debt to all the doctoral students in the various fields of management, both at Wharton
and INSEAD, who have, by their questions and feedback, helped me develop this
approach. I hope it will benefit future students in learning these statistical tools,
which are basic to academic research in the field of management especially. Special
thanks go to Bruce Hardie, who helped me put together some of the databases, and
to Frédéric Dalsace, who carefully identified sections that needed further explana-
tion and editing. Also, my research assistant at INSEAD, Gueram Sargsyan was
instrumental in preparing the examples used in this manual to illustrate the various
methods.
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Chapter 1
Introduction

1.1 Overview

This book covers multivariate statistical analyses that are important for researchers
in all fields of management, whether finance, production, accounting, marketing,
strategy, technology, or human resources management. Although multivariate statis-
tical techniques such as those described in this book play key roles in fundamental
disciplines of the social sciences (e.g., economics and econometrics or psychology
and psychometrics), the methodologies particularly relevant and typically used in
management research are the focus of this study.

This book is especially designed to provide doctoral students with a theoret-
ical knowledge of the basic concepts underlying the most important multivariate
techniques and with an overview of actual applications in various fields. The book
addresses both the underlying mathematics and problems of application. As such,
a reasonable level of competence in both statistics and mathematics is needed.
This book is not intended as a first introduction to statistics and statistical analy-
sis. Instead, it assumes that the student is familiar with basic univariate statistical
techniques. The book presents the techniques in a fundamental way but in a format
accessible to students in a doctoral program, to practicing academicians and data
analysts. With this in mind, it may be recommended to review some basic statistics
and matrix algebra such as those provided in the following books:

Green, Paul E. (1978), Mathematical Tools for Applied Multivariate Analysis,
New York: Academic Press, [Chapters 2—4].

Maddala, Gangadharrao S. (1977), Econometrics, New York: McGraw Hill
Inc., [Appendix A].

This book offers a clear, succinct exposition of each technique with emphasis
on when each technique is appropriate for use and how to use it. The focus is on
the essential aspects that a working researcher will encounter. In short, the focus is
on using multivariate analysis appropriately through understanding of the founda-
tions of the methods to gain valid and fruitful insights into management problems.
This book presents methodologies for analyzing primary or secondary data typically

H. Gatignon, Statistical Analysis of Management Data, 1
DOI 10.1007/978-1-4419-1270-1_1, © Springer Science+Business Media, LLC 2010



2 1 Introduction

used by academics as well as analysts in management research and provides an
opportunity for the researcher to have hands-on experience with such methods.

1.2 Objectives

The main objectives of this book are

1. To develop the student’s knowledge of the technical details of various techniques
for analyzing data.

2. To expose students to applications and “hands-on” use of various computer
programs. This experience will enable students to carry out statistical analy-
ses of their own data. Commonly available software is used throughout the
book, as much as possible, across methodologies to avoid having to learn mul-
tiple systems, each presenting their own specific data manipulation instructions.
However, not a single data analysis software performs all the analyses presented
in the book. Therefore, three basic statistical packages are used: SAS, LIMDEDP,
and LISREL.

1.2.1 Develop the Student’s Knowledge of the Technical
Details of Various Techniques for Analyzing Data

The first objective is to prepare the researcher with the basic technical knowledge
required for understanding the methods, as well as their limitations. This requires
a thorough understanding of the fundamental properties of the techniques. Basic
knowledge means that the book will not deal in-depth with the methodologies.
This depth should be acquired through specialized, more advanced books on the
specific topics. Nevertheless, this book provides enough details of what is the min-
imum knowledge expected of a doctoral candidate in management studies. “Basic”
should not be interpreted as a lower level of technical expertise. It is used to express
the minimum knowledge expected of an academic researcher in management. The
objective is to train the reader to understand the technique, to be able to use it, and to
have the sufficient knowledge to understand the more advanced technique that can
be subsequently found in other books.

1.2.2 Expose Students to Applications and “Hand-On”
Use of Various Computer Programs for Carrying
Out Statistical Analyses of Data

Although the basic statistical theories corresponding to the various types of analysis
are necessary, they are not sufficient to carry out research. The use of any technique
requires the knowledge of the statistical software corresponding to these analyses.
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It is indispensable that students learn both the theory and the practice of using these
methods at the same time. A very effective, albeit time consuming, way to ensure
that the intricacies of a technique are mastered is by programming the software
oneself. A quicker way is to ensure that the use of the software coincides with the
learning of the theory by associating application examples with the theory and by
doing some analysis oneself.

Consequently, in this book, each chapter comprises four parts. The first part of
each chapter presents the methods from a theoretical point of view with the var-
ious properties of the method. The second part shows an example of an analysis
with instructions on how to use a particular software program appropriate for that
analysis. The third part is an assignment so that students can actually practice the
method of analysis. The data sets for these assignments are described in Appendix
C and can be downloaded from the personal web page of Hubert Gatignon at:
http://www.insead.edu/. Finally, the fourth part consists of references of articles
in which such techniques are used appropriately, and which serve as templates.
Selected readings could have been reprinted in this book for each application.
However, few articles illustrate all the facets of the techniques. By providing a
list of articles, each student can choose the applications that correspond best to his
or her interests. By accessing multiple articles in the area of interest, the learning
becomes richer. All these articles illustrating the particular multivariate techniques
used in empirical analysis are drawn from major research journals in the field of
management.

1.3 Types of Scales

Data used in management research are obtained from existing sources (secondary
data) such as the data published by Ward for automobile sales in the USA
or from vendors who collect data, such as panel data. Data are also collected
for the explicit purpose of the study (primary data): survey data, scanner data,
or panels.

In addition to this variety of data sources, differences in the type of data that
are collected can be critical for their analysis. Some data are continuous measures
such as, for example, the age of a person, with an absolute starting point at birth,
or the distance between two points. Some commonly used data do not have such
an absolute starting point. Temperature is an example of such a measure. Yet in
both cases, i.e., temperatures and distances, multiple units of measurement exist
throughout the world. These differences are critical because the appropriateness of
data analysis methods varies, depending on the type of data at hand. In fact, very
often, the data may have to be collected in a certain way in order to be able to test
hypotheses using the appropriate methodology. Failure to collect the appropriate
type of data would prevent performing the test.

In this chapter, we discuss the different types of scales, found in management
research, for measuring variables.



4 1 Introduction
1.3.1 Definition of Different Types of Scales

Scales are quantitative measures of a particular construct, usually not observed
directly. Four basic types of scales categorize measurements used in management:

e Ratio

e Interval

e Rank order or ordinal
e Categorical or nominal

1.3.2 The Impact of the Type of Scale on Statistical Analysis

The nature of analysis depends, in particular, on the scale of the variable(s).
Table 1.1 summarizes the most frequently used statistics which are permissible
according to the scale type. The order of the scales in the table from Nominal to
Ratio is hierarchical, in the sense that statistics which are permissible for a scale
above are also permissible for the scale in question. For example, a median is a
legitimate statistic for an ordinal scale variable and is also legitimate for an interval

Table 1.1 Scales of measurement and their properties

Mathematical group
Scale structure Permissible statistics Typical examples

Nominal  Permutation group y = f(x) e Frequency distribution e Numbering of brands

[f(x) means any one-to-one e Mode e Assignment of numbers to
correspondence] type of products or
models

e Gender of consumers
e Organization types

Ordinal Isotonic group e Median e Order of entry
y=flx) e Percentiles e Rank order of preferences
[f(x) means any increasing e Order (Spearman)
monotonic function] correlations
e Sign test
Interval General linear group y = e Mean o Likert scale items
a+bx e Average deviation (agree—disagree)
b>0 e Standard deviation e Semantic scale items
e Product-moment (ratings on opposite
correlation adjectives)
e f test
o Ftest
Ratio Similarity group e Geometric mean e Sales
y=cx e Coefficient of variation e Market share
c>0 o Advertising expenditures

Sources: Adapted from Stevens (1962), p. 25; Stevens (1959), p. 27; and Green and Tull (1970),
p- 181.
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or ratio scale. The reverse is not true; for example, a mean is not legitimate for an
ordinal scale.

1.4 Topics Covered

This book covers the major methods of analysis that have been used in the recent
management research literature. A survey of the major journals in the various fields
of management was conducted to identify these methods. This survey revealed
interesting observations.

It is striking that the majority of the analyses involve the estimation of a single
equation or of several equations independently of one another. Analyses involving
a system of equations represent a very small percentage of the analyses reported in
these articles. This appears, at first sight, surprising given the complexity of man-
agement phenomena. Possibly, some of the simultaneous relationships analyzed are
reflected in methodologies that consider explicitly measurement errors; these tech-
niques appear to have advanced over the recent years. This is why the methodologies
used for measurement modeling receive special attention in the book. Factor anal-
ysis is a fundamental method found in a significant number of studies, typically to
verify the unidimensionality of the constructs measured. The more advanced aspects
such as second-order factor analysis and multiple group factor analysis have gained
popularity and have also been discussed. Choice modeling has been an important
topic, especially in the field of Marketing and also in the other fields of Management,
with studies estimating probit or logit models. Still, a very small percentage of arti-
cles use these models for ordered choice data (i.e., where the data reflects only the
order in which brands are preferred from best to worse). Analysis of proximity data
concerns few studies, but cluster analysis and multidimensional scaling remain the
favorite methods for practice analysts.

Therefore, the following topics were selected. They have been classified accord-
ing to the type of the key variable or variables which is or are the center of the
interest in the analysis. Indeed, as discussed in Chapter 2, the nature of the criterion
(also called dependent or endogenous) variable(s) determines the type of statisti-
cal analysis that may be performed. Consequently, the first issue to be discussed
concerns the nature and properties of variables and the process of generating scales
with the appropriate statistical procedures, subsequently followed by the various
statistical methods of data analysis.

Introduction to Multivariate Statistics and Tests About Means
e Multivariate Analysis of Variance

Multiple Item Measures

e Reliability Alpha
e Principal Component Analysis
e Exploratory Factor Analysis



Confirmatory Factor Analysis
Second-Order Factor Analysis
Multigroup Factor Analysis

Canonical Correlation Analysis
Single Equation Econometrics

e Ordinary Least Squares

e Generalized Least Squares

e Tests of Homogeneity of Coefficients: Pooling Tests
System of Equations Econometrics

e Seemingly Unrelated Regression

e Two-Stage Least Squares

e Three-Stage Least Squares

Categorical Dependent Variables

e Discriminant Analysis
e Quantal Choice Models: Logit

Rank-Ordered Data

e Conjoint Analysis
e Ordered Probit

Analysis of Covariance Structure
Analysis of Similarity Data

e Cluster Analysis
e Multidimensional Scaling

1.5 Pedagogy

1

Introduction

There are three key learning experiences necessary to be able to achieve these

objectives:

1. Sufficient knowledge of statistical theory to be able to understand the method-

ologies, when they are applicable, and when they are not appropriate.
2. An ability to perform such analyses with proper statistical software.

3. Anunderstanding of how these methodologies have been applied in management

research.
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This book differs from others in that no other book on multivariate statistics or
data analysis addresses the specific needs of doctoral education. The three aspects
mentioned above are weighted differently. This book emphasizes the first aspect of
the methodology by providing the mathematical and statistical analyses necessary to
fully understand them. This can be contrasted with other books that prefer primarily
or exclusively a verbal description of the method.

This book favors the understanding of the rationale for modeling choices, issues,
and problems. While the verbal description of a method may be better accessible to
a wider audience, it is often more difficult to follow the rationale, which is based on
mathematics. For example, it is difficult to understand the problem of multicollinear-
ity without understanding the effect on the determinant of the covariance matrix,
which needs to be inverted. The learning that results from verbal presentation tends,
therefore, to be more mechanical.

This book also differs in that, instead of choosing a few articles to illus-
trate the applications of the methods, as would be found in a book of readings
(sometimes with short introductions), a list of application articles is provided
from which the reader can choose. Articles tend to be relatively easy to access,
especially with services available through the Internet. The list of references
covers a large cross section of examples and a history of the literature in this
domain.

Finally, the examples of analyses are relatively self-explanatory and, although
some explanations of the statistical software used are provided with each exam-
ple, this book does not intend to replace the instruction manuals of those particular
software packages. The reader is referred to those for details.

In summary, this book focuses on the first aspect of understanding the statistical
methodology while providing enough information to the reader for developing skills
in performing the analyses and in understanding how to apply them to management
research problems.

More specifically, the learning of this material involves two parts: learning of
the statistical theory fundamental to the technique and learning of how to use
the technique. Although there may be different ways to combine these two expe-
riences, it is recommended to first learn the theory by reading the sections in
which the methodologies are presented and discussed. Then, the statistical com-
puter package (e.g., SAS, LIMDEP, LISREL, and other specialized packages) used
to apply the methodology is presented in the context of an example. Students can
then apply the technique using the data sets available from the personal page of
Hubert Gatignon at http://www.insead.edu/. Finally, application issues can be illus-
trated by other applications found in prior research and listed at the end of each
chapter.

In addition to the books and articles included with each chapter, the fol-
lowing books are highly recommended to develop further one’s skills in dif-
ferent methods of data analysis. Each of these books is highly specialized and
covers only a subset of the methods presented in this book. However, they
are indispensable complements to gain proficiency in the techniques used in
research.
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Chapter 2
Multivariate Normal Distribution

In this chapter, we define univariate and multivariate normal distribution density
functions and then we discuss tests of differences of means for multiple variables
simultaneously across groups.

2.1 Univariate Normal Distribution

Just to refresh memory, in the case of a single random variable, the probability
distribution or density function of that variable x is represented by Equation (2.1):

1 1 5
q’(x)—mexp{—m(X—M) } (2.1)
2.2 Bivariate Normal Distribution

The bivariate distribution represents the joint distribution of two random variables.
The two random variables x| and x> are related to each other in the sense that they
are not independent of each other. This dependence is reflected by the correlation
p between the two variables x; and x,. The density function for the two variables
jointly is

! L [@—p)? | - m)’
D (x1,0) = ———F——=¢xp— 3 3 + 3
2ro1024/1 — p? 2(1-p?%)

gy )
~ 2p(x1 — p1) (2 — p2)
01072

(2.2)
This function can be represented graphically as in Fig. 2.1:
The Isodensity contour is defined as the set of points for which the values of
x1 and x, give the same value for the density function &. This contour is given by
Equation (2.3) for a fixed value of C, which defines a constant probability:

(= p)? =) ) (o — )

3 + 3 2p C 2.3)
g 1 a, 5 0102
H. Gatignon, Statistical Analysis of Management Data, 9

DOI 10.1007/978-1-4419-1270-1_2, © Springer Science+Business Media, LLC 2010
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Fig. 2.1 The bivariate
normal distribution D (x4, xp)

> %

Fig. 2.2 The locus of points

of the bivariate normal X,
distribution at a given density A
level

Hy

\? -
/ ) -

Equation (2.3) defines an ellipse with centroid (g1, 7). This ellipse is the locus
of points representing the combinations of the values of x| and x, with the same
probability, as defined by the constant C (Fig. 2.2).

For various values of C, we get a family of concentric ellipses (at a different
cut, i.e., cross section of the density surface with planes at various elevations) (see
Fig. 2.3).
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Fig. 2.3 Concentric ellipses X,
at various density levels A

L

X,

The angle ¢ depends only on the values of o |, o2, and p but is independent of C.
The higher the correlation between x| and x;, the steeper the line going through the
origin with angle &, i.e., the bigger the angle.

2.3 Generalization to Multivariate Case
Let us represent the bivariate distribution in matrix algebra notation in order to

derive the generalized format for more than two random variables.
The covariance matrix of (x1, xp) can be written as

2
y=| 71 PO (2.4)
po102 O

The determinant of the matrix X is

2| = 0202 (1 - ,02) 2.5)

Equation (2.3) can now be re-written as

_ X1 —
C =[x — 1% — 2] X l[x;_m (2.6)
where
-1 2 2 2 oy —poi1oy 1 ﬁ o167
=V [01 o1 =p )] [—,00%102 ol } - 1—p? % e 2.7)
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Note that ©~! = |Z|7! x matrix of cofactors.
Let
x —
X— X1~ H
X2 — 12
then X’ 1X = XZ, which is a quadratic form of the variables x and is, therefore, a

chi-square variate.
Also, because | 2| = 012022(1 —p?), |Z|1/2 = 0102/ (1 — p?), and consequently,

1
2m o100y 1 — p2

the bivariate distribution function can be now expressed in matrix notation as

=Qn) iz (2.8)

I y—
® (x1x2) = (2m) ! 2] 72 TN X 2.9)
Now, more generally with p random variables (x1, x2, .. ., xp), let
X1 M1
X2 2%)
X=1. 5

HE

The density function is

_ b vy —log
®(x) = (27) ”/2|2|—%e[ by 5 oo (2.10)

For a fixed value of the density ®, an ellipsoid is described. Let X = x — w. The
inequality X’ yIX < %2 defines any point within the ellipsoid.

2.4 Tests About Means

2.4.1 Sampling Distribution of Sample Centroids

2.4.1.1 Univariate Distribution

A random variable is normally distributed with mean & and variance o 2:

xNN(/L,O'Z) @2.11)

After n independent draws, the mean is randomly distributed with mean @ and
variance o2 /n:

2
i~N (ua—) 2.12)
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2.4.1.2 Multivariate Distribution

In the multivariate case with p random variables, where x = (x1, x2, ..., Xp), X is
normally distributed following the multivariate normal distribution with mean g
and covariance X:

x~N(uX) (2.13)
The mean vector for the sample of size n is denoted by
X1
X2

Xp

This sample mean vector is normally distributed with a multivariate normal
distribution with mean p and covariance %/n:

X~ N (“%) (2.14)

2.4.2 Significance Test: One-Sample Problem

2.4.2.1 Univariate Test

The univariate test is illustrated in the following example. Let us test the hypothesis
that the mean is 150 (i.e., ;g = 150) with the following information:

0?2 =256;n=64; % = 154
Then, the z score can be computed as

_ 14150 4
© J/256/64  16/8

At @ = 0.05 (95% confidence interval), z = 1.96, as obtained from a normal
distribution table. Therefore, the hypothesis is rejected. The confidence interval is

12 12
|:154 — 1.96 x ra 154 4+ 1.96 x €i| = [150.08, 157.92]

This interval excludes 150. The hypothesis that g = 150 is rejected. If the
variance o had been unknown, the 7 statistic would have been used:

t_)_f—lio
s//n

where s is the observed sample standard deviation.

(2.15)
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2.4.2.2 Multivariate Test with Known X

Let us take an example with two random variables:

2=|fle| neu

10 16
%= 20.3
— 1126
The hypothesis is now about the mean values stated in terms of the two variables
jointly:
20
H: po= [ 15 }

At the alpha level of 0.05, the value of the density function can be written
as below, which follows a chi-squared distribution at the specified significance
level «:

n (o —%) X7 (o — %) ~ x; (@) (2.16)

Computing the value of the statistics,

IX| =25 x 16 — 10 x 10 = 300

_ 1 16 —10
1— JR—
Xo= 300 [—10 25 }

16 —10i| |:2O —20.3

1
2 —
x° =36 x 300 (20 — 20.3, 15 — 12.6) |: 10 25 15 -12.6

i| =15.72

The critical value at an alpha value of 0.05 with two degrees of freedom is
provided by tables:

X2y (& = 0.05) = 5.991

The observed value is greater than the critical value. Therefore, the hypothesis

that p = [?g} is rejected.

2.4.2.3 Multivariate Test with Unknown %

Just as in the univariate case, ¥ is replaced with the sample value SAn — 1),
where S is the sum-of-squares-and-cross-products (SSCP) matrix, which provides
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an unbiased estimate of the covariance matrix. The following statistics are then used
to test the hypothesis:

Hotelling: 72 = n(n — 1) (X — 120) /S™" (X — 110) (2.17)
where, if

X1 — X1 X21 — X2 - -
X12 — X1 X2 — X2 - -

Xlp — X1 Xop — X2 - -+
S = x¥x4
Hotelling showed that

n—p T2 P

—T“~F 2.18
(n—1p " 219
Replacing 72 by its expression given above
nn—p) _ s
PP - o) ST &= o)~ B, (2.19)

Consequently, the test is performed by computing the expression above and com-
paring its value with the critical value obtained in an F table with p and n — p degrees
of freedom.

2.4.3 Significance Test: Two-Sample Problem

2.4.3.1 Univariate Test

Let us define x| and X, as the means of a variable on two unrelated samples. The
test for the significance of the difference between the two means is given by

k), i —R)? (2.20)
s‘/n—ll + niz s? (%)
where
\/ Zx%i Zx%i
YDt e Dy 2.21)

(= 1D+ (=1
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s is the pooled within groups variance. It is an estimate of the assumed common
variance o2 of the two populations.

2.4.3.2 Multivariate Test
(D)
X
D
LetX'! be the mean vector in sample 1 = 2 and similarly for sample 2.

b
We need to test the significance of the difference between X! and x2). We will
consider first the case where the covariance matrix, which is assumed to be the same
in the two samples, is known. Then we will consider the case where an estimate of
the covariance matrix needs to be used.

% Is Known (The Same in the Two Samples)

In this case, the difference between the two group means is normally distributed
with a multivariate normal distribution:

11
(,—(m _ ,—(<Z>> ~N (,“ o, X (_ + _)) (2.22)
ni ny

The computations for testing the significance of the differences are similar to
those in Section 2.4.2.2 using the chi-square test.

22 Is Unknown

If the covariance matrix is not known, it is estimated using the covariance matrices
within each group but pooled.

Let W be the within-groups SSCP (sum of squares cross products) matrix. This
matrix is computed from the matrix of deviations from the means on all p variables
for each of nj observations (individuals). For each group k,

(ky (k) (k) (k)
Xip =X X — AT

(ky (k) (k) (k)
x do — | *12 fxl X fxz (2.23)

nEXp N N
Ky _ k) (k) _ ~(k)
Lxlnk - xl xan - xZ o J
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For each of the two groups (each k), the SSCP matrix can be derived:

S = X4W xd® (2.24)

 EpxXn g xp

The pooled SSCP matrix for the more general case of K groups is simply:

K
W= S (2.25)
pxp  k=lpxp

In the case of two groups, K is simply equal to 2.

Then, we can apply Hotelling’s 7, just as in Section 2.4.2.3, where the proper
degrees of freedom depending on the number of observations in each group (ny) are
applied.

-1
T2 — (;{(1) _ ,—((2))/ |: w m+ n2i| (;((1) _ ;((2)) (2.26)
n+n —2 nny
_ mm (m+n —2) (i“) - i(Z))/W—l ()—((1) _ )—((2)) 2.27)
np +ny

n1+n2—p—1T2N »

(ni+n2—2)p Fntnape 229

2.4.4 Significance Test: K-Sample Problem

As in the case of two samples, the null hypothesis is that the mean vectors across
the K groups are the same and the alternative hypothesis is that they are different.
Let us define Wilk’s likelihood-ratio criterion:

_w

= 2.29
] (2.29)

where T = total SSCP matrix, W = within-groups SSCP matrix.

W is defined as in Equation (2.25). The total SSCP matrix is the sum of squared
cross products applied to the deviations from the grand means (i.e., the overall mean
across the total sample with the observations of all the groups for each variable).
Therefore, let the mean centered data for group k be noted as

ky - (k) _
R (2.30)
nixp . .

PR S (R S
1ny 1 2ny 2

where ; is the overall mean of the j’s variate.
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Bringing the centered data for all the groups in the same data matrix leads to

xd" (1)
. X'
n)x;; = : (2.31)
xd" ()

The total SSCP matrix T is then defined as

T =X X (2.32)
pPXp pXn nXxp

Intuitively, if we reduce the space to a single variate so that we are only deal-
ing with variances and no covariances, Wilk’s lambda is the ratio of the pooled
within-group variance to the total variance If the group means are the same, the
variances are equal and the ratio equals one. As the group means differ, the total
variance becomes larger than the pooled within-group variance. Consequently, the
ratio lambda becomes smaller. Because of the existence of more than one variate,
which implies more than one variance and covariances, the within SSCP and Total
SSCP matrices need to be reduced to a scalar in order to derive a scalar ratio. This
is the role of the determinants. However, the interpretation remains the same as for
the univariate case.

It should be noted that Wilk’s A can be expressed as a function of the
Eigenvalues of W~!'B where B is the between-group covariance matrix (Eigenvalues
are explained in the next chapter). From the definition of A in Equation (2.29), it
follows that

K

1 |T| —1 —1 —1

TS W WIT| =W (W4B)| = I+W 'B :]‘[(1+,\,-) (2.33)
i=1

and consequently

1 1
A=— = 1‘[ T (2.34)
[TA+xr) =
=1
Also, it follows that l
1 K
LnA = Ln——— = — Z (1+A) (2.35)
(1+ ) i=1

1

Il
&N

When Wilk’s A approaches 1, we showed that it means that the difference in
means is negligible. This is the case when LnA approaches 0. However, when A
approaches 0 or LnA approaches 1, it means that the difference is large. Therefore,
a large value of LnA (i.e., close to 0) is an indication of the significance of the
difference between the means.
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Based on Wilk’s lambda, we present two statistical tests: Bartlett’s V and Rao’s R.

Let n = total sample size across samples, p = number of variables, and K =
number of groups (number of samples).

Bartlett’s V is approximately distributed as a chi-square when n — 1 — (p + K)/2
is large:

V=—[n—1-(p+K)/2]LnA ~ Xﬁ(K—n (2.36)

Bartlett’s V is relatively easy to calculate and can be used when n—1 — (p + K)/2
is large.

Another test can be applied, as Rao’s R is distributed approximately as an F
variate. It is calculated as follows:

_ 1—AYms—p(K—1)/2+1 . vi=p(K—1) (2.37)
T Als p(K—1) = Tna=ms—p(K—1)/2+1 .

where
m=n—1—(p+K)/2

- P2(K—1)?*—4
VPR E-1D -5

2.5 Examples Using SAS

2.5.1 Test of the Difference Between Two Mean
Vectors — One-Sample Problem

In this example, the file “MKT_DATA” contains data about the market share of a
brand over seven periods, as well as the percentage of distribution coverage and the
price of the brand. These data correspond to one market, Norway. The question is
to know whether the market share, distribution coverage, and prices are similar or
different from the data of that same brand for the rest of Europe, i.e., with values of
market share, distribution coverage, and price, respectively of 0.17, 32.28, and 1.39.
The data are shown below in Table 2.1:

Table 2.1 Data example for the analysis of three variables

PERIOD M_SHARE DIST PRICE
1 0.038 11 0.98
2 0.044 11 1.08
3 0.039 9 1.13
4 0.03 9 1.31
5 0.036 14 1.36
6 0.051 14 1.38
7 0.044 9 1.34
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/* % J J % J K ok Kk kok Examplez_l_sas % Je o o d ok ok Kk ok ok ok ok ok ok */
OPTIONS LS=80;
DATA work;
INFILE
"C:\SAMD2\Chapter2\Examples\Mkt Data.csv"
dlm = ',' firstobs=2;
INPUT PERIOD M SHARE DIST PRICE;
data work;
set work (drop = period) ;
run;
/* Multivariate Test with Unknown Sigma */

proc iml;
print " Multivariate Test with Unknown Sigma " ;
print "--------m e "oy
use work; /* Specifying the matrix with raw market data for Norway */
read all var {M Share Dist Price} into Mkt Data;
start SSCP; /* SUBROUTINE for calculation of the SSCP matrix */
n=nrow (x) ; /* Number of rows */
mean=x[+,]/n; /* Column means */
x=x-repeat (mean,n, 1) ; /* Variances */
sscp = X *x; /* SSCP matrix */
finish sscp; /* END SUBROUTINE */
x=Mkt Data; /* Definition of the data matrix */
p=ncol (Mkt_Data) ;
run sscp; /* Execution of the SUBROUTINE */
print SSCP n p;
Xbar = mean; /* Definition of the mean vector */
mo = { 0.17 32.28 1.39 }; /* Myu zero: the mean vector for Europe */
dX = Xbar - m o; /* Matrix of deviations */
dxt = dx°; /* Calculation of the transpose of dX */
print m o;
print Xbar;
print dX;
sscp_1 = inv(sscp); /* Calculation of the inverse of SSCP matrix */
T _sq = n*(n-1)*dX*sscp_l*dXt; /* Calculation of the T square */
F = T_sqg*(n-p)/ ((n-1)*p); /* Calculation of the F statistic */
Df num = p;
Df den = n-p ;
F _crit = finv(.95,df num,df den); /* Critical F for .05 for df num, df den */
Print F F_crit;
quit;

Fig. 2.4 SAS input to perform the test of a mean vector (examp2-1.sas)

The SAS file showing the SAS code to compute the necessary statistics is shown
below in Fig. 2.4. The first lines correspond to the basic SAS instructions to read
the data from the file. Here, the data file was saved as a text file from Excel.
Consequently, the values in the file corresponding to different data points are sep-
arated by commas. This is indicated as the delimiter (“dlm”). Also, the data (first
observation) starts on line 2 because the first line is used for the names of the vari-
ables (as illustrated in Table 2.1). The variable called period is dropped so that only
the three variables needed for the analysis are kept in the SAS working data set. The
procedure IML is used to perform matrix algebra computations.

This file could easily be used for the analysis of different databases. Obviously,
it would be necessary to adapt some of the instructions, especially the file name and
path and the variables. Within the IML subroutine, only two things would need to
be changed: (1) the variables used for the analysis and (2) the values for the null
hypothesis (m_o).
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Fig. 2.5 SAS output of Multivariate Test with Unknown Sigma

analysis defined in Fig. 2.4
(examp2-1.1st)

sscp N P
0.0002734 0.035 0.0007786 7 3
0.035 30 0.66
0.0007786 0.66 0.1527714
M O
0.17 32.28 1.39
XBAR
0.0402857 11 1.2257143
DX
-0.129714 -21.28 -0.164286
F F_CRIT

588.72944 6.5913821

The results are printed in the output file shown below in Fig. 2.5:

The critical F statistic with three and four degrees of freedom at the 0.05
confidence level is 6.591, while the computed value is 588.7, indicating that the
hypothesis of no difference is rejected.

2.5.2 Test of the Difference Between Several Mean
Vectors — K-Sample Problem

The next example considers similar data for three different countries (Belgium,
France, and England) for seven periods, as shown in Table 2.2. The question is
to know whether the mean vectors are the same for the three countries or not.

We first present an analysis that shows the matrix computations following pre-
cisely the equations presented in Section 2.4.4. These involve the same matrix
manipulations in SAS as in the prior example, using the IML procedure in SAS.
Then we present the MANOVA analysis proposed by SAS using the GLM proce-
dure. The readers who want to skip the detailed calculations can go directly to the
SAS GLM procedure.

The SAS file which derived the computations for the test statistics is shown
in Fig. 2.6.

The results are shown in the SAS output on Fig. 2.7.

These results indicate that the Bartlett’s V statistic of 82.54 is larger than the
critical chi-square with six degrees of freedom at the 0.05 confidence level (which is
12.59). Consequently, the hypothesis that the mean vectors are the same is rejected.
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Table 2.2 Data example for three variables in three countries (groups)

CNTRYNO CNTRY PERIOD M_SHARE DIST PRICE

1 BELG 1 0.223 61 1.53
1 BELG 2 0.22 69 1.53
1 BELG 3 0.227 69 1.58
1 BELG 4 0.212 67 1.58
1 BELG 5 0.172 64 1.58
1 BELG 6 0.168 64 1.53
1 BELG 7 0.179 62 1.69
2 FRAN 1 0.038 11 0.98
2 FRAN 2 0.044 11 1.08
2 FRAN 3 0.039 9 1.13
2 FRAN 4 0.03 9 1.31
2 FRAN 5 0.036 14 1.36
2 FRAN 6 0.051 14 1.38
2 FRAN 7 0.044 9 1.34
3 UKIN 1 0.031 3 1.43
3 UKIN 2 0.038 3 1.43
3 UKIN 3 0.042 3 1.3

3 UKIN 4 0.037 3 1.43
3 UKIN 5 0.031 13 1.36
3 UKIN 6 0.031 14 1.49
3 UKIN 7 0.036 14 1.56

The same conclusion could be derived from the Rao’s R statistic with its value of
55.10, which is larger than the corresponding F value with 6 and 32 degrees of
freedom, which is 2.399.

The first lines of SAS code in Fig. 2.8 read the data file in the same manner
as in the prior examples. However, the code that follows is much simpler as the
procedure automatically performs the MANOVA tests. For that analysis, the general
procedure of the General Linear Model is called with the statement “proc glm”. The
class statement indicates that the variable that follows (here “CNTRY”) is a discrete
(nominal scaled) variable. This is the variable used to determine the K groups. K is
calculated automatically according to the different values contained in the variable.
The model statement shows the list of the variates for which the means will be
compared on the left-hand side of the equal sign. The variable on the right-hand
side is the group variable. The GLM procedure is in fact a regression where the
dependent variables are regressed on the dummy variables automatically created by
SAS reflecting the various values of the grouping variable. The optional parameter
“nouni” after the slash indicates that the univariate tests should not be performed
(and consequently their corresponding output will not be shown). Finally, the last
line of code necessarily indicates that the MANOVA test concerns the differences
across the grouping variable, CNTRY.

The output shown in Fig. 2.9 provides the same information as shown in Fig. 2.7.
Wilk’s Lambda has the same value of 0.007787. In addition, several other tests are
provided for its significance, leading to the same conclusion that the differences in
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J*  kkkkkkkkkkkkkkkkkk Examp2-2.Sas kkkkkkkkkkkkkkkkkkk %/
OPTIONS LS=80;
DATA work;
INFILE
"C:\SAMDZ\CHAPTERZ\EXAMPLES\Mkt_Dt_K.csv"
dlm = ',' firstobs=2;
INPUT CNTRYNO CNTRY $ PERIOD M _SHARE DIST PRICE;
data work;
set work (drop = cntry period) ;
proc print;
proc freq;
tables cntryno / out = Nk_out (keep = count) ;
run;
/* Significance Test: K-Sample Problem */
proc iml;
reset center;
print " Multivariate Significance Test: K-Sample Problem " ;
print "--------mm ;
use work ; /* Specifying the matrix with raw data */
read all var { CNTRYNO M SHARE DIST PRICE} into Mkt Data;
use Nk_out;
read all var {count} into Nk_new;

/* Number of observations within each group */

n_tot = nrow(Mkt Data) ;
K=max (Mkt_Data[,1]); /* Number of groups (samples) */
p=ncol (Mkt Data)-1; /* Number of variables */
print n_tot " "K " "op;
start SSCP; /* SUBROUTINE for calculation of the SSCP matrix
*/

n=nrow (x) ;

mean=x[+,]/n; /* Column means (mean vector)
*/

x=x-repeat (mean,n,1) ; /* Matrix of variances
*/

SSCP = x *x; /* SSCP matrix
*/
print i " "  mean;
finish SSCP; /* END SUBROUTINE
*/
S =J(p,p,0); /* Definition of a p x p square matrix with zeros
*/
do i =1 to K;
if i =1 then a =1;
else
a=1+(i-1)*nk new[i-1];
b=a+nk_new[i]-1;
x = Mkt Data[a:b,2:4];
run SSCP; /* Execution of the SUBROUTINE for each group
*/
S = S + SSCP; /* Accumulation of the sum of SSCP matrices
*/
end; /* in order to calculate W (within-the-groups SSCP)
*/
W = S; DetW = Det(W);
print W " " DetW;
x=Mkt Datal[,2:4]; /* Definition of the data matrix (dropping the first
column: CNTRYNO) */
run SSCP; /* Execution of the SUBROUTINE for total data
*/
T=SSCP;
DetT = Det(T);
print T " " DetT;

Lmbd = Det (W) / Det(T);
m = n_tot-1-(p+kK) / 2;
reset noname fw=5 nocenter;
print "Lambda =" Lmbd [format=10.6];
print "m =" m [format=2.0]
" Use Bartlett's V for large m's and Rao's R otherwise " ;
v -m*Log (Lmbd) ;
s = sqrt((p*p* (K-1) **2-4) / (p*p+ (K-1) **2-5) ) ;
R = (1-Lmbd**(1/s))* (m*s-p*(K-1)/2 + 1)/ (Lmbd**(1/s)*p*(K-1));

Df_num = p*(K-1); Df_den = m*s—Df_num/Z +1 ;
Chi_crit = CINV(0.95,Df num); F _crit = finv(.95,df_num,df_den);
print "Bartlett's V = " V [format=9.6] " DF =" DF_num [format=2.0] ;
print " Chi_crit =" Chi_crit [format=9.6];
print "Rao's R =" R [format=9.6]
" DF_NUM =" Df num [format=2.0]
" DF _DEN =" Df den [format=2.0] ;
print " F crit =" F_crit [format=9.6];
quit;

Fig. 2.6 SAS input to perform a test of difference in mean vectors across K groups (examp2-2.sas)
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Multivariate Significance Test: K-Sample Problem

N_TOT K P
21 3 3

I MEAN

1 0.2001429 65.142857 1.5742857

I MEAN

2 0.0402857 11 1.2257143

I MEAN

3 0.0351429 7.5714286 1.4285714

W DETW
0.0044351 0.2002857 -0.002814 0.246783

0.2002857 288.57143 1.8214286
-0.002814 1.8214286 0.2144286

I MEAN

4 0.0918571 27.904762 1.4095238

T DETT
0.1276486 42.601714 0.1808686 31.691145

42.601714 14889.81 63.809048
0.1808686 63.809048 0.6434952

Lambda = 0.007787
m = 17 Use Bartlett's V for large m's and Rao's R otherwise

Bartlett's V = 82.539814 DF = 6
Chi_crit = 12.591587

Rao's R = 55.104665 DF NUM = 6  DF DEN = 32
F_crit = 2.399080

Fig. 2.7 SAS output of test of difference across K groups (examp2-2.1st)

/* kkkkkkkkkkkkkkkkkk Examp2-3-Manovasas.sas k¥kkkkkkkkkkkkkkkkk  *k/

OPTIONS LS=80;

DATA work;

INFILE
""C:\SAMDZ\CHAPTERZ\EXAMPLES\Mkt_Dt_K.csv"

dlm = ',' firstobs=2;

INPUT CNTRYNO CNTRY $ PERIOD M SHARE DIST PRICE;

/* Chapter 2, IV.4 Significance Test: K-Sample Problem */
proc glm;

class CNTRY;

model M SHARE DIST PRICE=CNTRY /nouni ;

manova h = CNTRY/ printe;
run;

quit;

Fig. 2.8 SAS input for MANOVA test of mean differences across K groups (examp2-3.sas)
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The GLM Procedure

Class Level Information

Class Levels Values

CNTRY 3 BELG FRAN UKIN
Number of Observations Read 21
Number of Observations Used 21

Multivariate Analysis of Variance

E = Error SSCP Matrix

25

M SHARE DIST PRICE
M _SHARE 0.0044351429 0.2002857143 -0.002814286
DIST 0.2002857143 288.57142857 1.8214285714
PRICE -0.002814286 1.8214285714 0.2144285714

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 18 M SHARE DIST PRICE

M SHARE 1.000000 0.177039 -0.091258

0.4684 0.7102

DIST 0.177039 1.000000 0.231550

0.4684 0.3402

PRICE -0.091258 0.231550 1.000000
0.7102 0.3402

Characteristic Roots and Vectors of: E Inverse * H, where

H = Type III SSCP Matrix for CNTRY
E = Error SSCP Matrix

Characteristic Characteristic Vector V'EV=1l
Root Percent M SHARE DIST PRICE
67.2013787 98.70 7.5885004 0.0457830 0.0045113
0.8829099 1.30 3.7773797 -0.0204742 2.2231712
0.0000000 0.00 -12.8623871 0.0361429 0.2847771
MANOVA Test Criteria and F Approximations for
the Hypothesis of No Overall CNTRY Effect
H = Type III SSCP Matrix for CNTRY
E = Error SSCP Matrix
S=2 M=0 N=7
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.00778713 55.10 6 32 <.0001
Pillai's Trace 1.45424468 15.10 6 34 <.0001
Hotelling-Lawley Trace 68.08428858 176.86 6 19.652 <.0001
Roy's Greatest Root 67.20137868 380.81 3 17 <.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

Fig. 2.9 SAS output for MANOVA test of mean differences across K groups (examp2-3.1st)
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/*******************************************************************************
Assign2.sas
Creation of additional data files for Chapter2 assignments.

R R i is Y]

option 1s=120 ;

.................................................................................. */
data panel;
infile 'C:\SAMD2\Chapter2\Assignments\panel.csv' firstobs=2 dlm = ',;' ;
input period segment segsize ideali-ideal3
brand § adv_pct aware intent shop1-shop3
perc1-perc3 devi-dev3 share ;
run;
proc sort data=panel;
by period brand;
run;
/* .................................................................................
Creating the dataset INDUP by reading data from c:\...\indup.csv
.................................................................................. */
data indup;
infile 'C:\SAMD2\Chapter2\Assignments\indup.csv' firstobs=2 dlm = ',' ;
input period firm brand $ price advert
chari-char5 salmeni-salmen3
cost dist1-dist3 usales dsales ushare dshare adshare relprice ;
run;
proc sort data =indup;
by period brand;
run;
/* .................................................................................
Merging PANEL and INDUP into ECON
.................................................................................. */
data econ;
merge panel indup;
by period brand;
if segment<5 then delete;
run;
proc means noprint;
var intent share ;
output out = econmean mean=IntMean ShrMean;
run;
/* .................................................................................
Writing EconMean to a C8V file (easily opened by Excel)
.................................................................................. */
data _NULL_;
set EconMean (keep = IntMean ShrMean);
by IntMean ;
TAB = ',' ;
FN = "C:\SAMD2\CHAPTER2\ASSIGNMENTS\Meanigrp.CSV";
file PLOTFILE filevar=FN;
if ( FIRST.IntMean ) then
do;
put "IntMean" TAB "ShrMean"
end;
put IntMean TAB ShrMean ;
run;
/* .................................................................................
Creating a new dataset EconNew with selected variables from ECON
__________________________________________________________________________________ */

data EconNew;
set Econ
keep segment period brand intent share ;

Fig. 2.10 Example of SAS file for reading data sets INDUP and PANEL and creating new data
files (assign2.sas)
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means are significant. In addition to the expression of Wilk’s lambda as a function
of the Eigenvalues of W~1B, three other measures are provided in the SAS output.

K
—_— . Ai
Pillai’s Trace is defined as Xi ey
=

K
Hotelling-Lawley Trace is simply the sum of the Eigenvalues: Y A;
i=1

) . . ) ax
Roy’s Greatest Root is the ratio ; The

These tests tend to be consistent, but the numbers are different. As noted in the
SAS output, Roy’s Greatest Root is an upper bound to the statistic.

2.6 Assignment

In order to practice with these analyses, you will need to use the databases INDUP
and PANEL described in Appendix C. These databases provide market share and
marketing mix variables for a number of brands competing in five market segments.
You can test the following hypotheses:

1. The market behavioral responses of a given brand (e.g., awareness, perceptions,
or purchase intentions) are different across segments,

2. The marketing strategy (i.e., the values of the marketing mix variables) of
selected brands is different (perhaps corresponding to different strategic groups).

Figure 2.10 shows how to read the data within a SAS file and how to create new
files with a subset of the data saved in a format, which can be read easily using the
examples provided throughout this chapter. Use the model described in the examples
above and adapt them to the database to perform these tests.

where brand = 'salt';
run;

proc sort ;

by Brand Segment Period ;
run;

data _NULL_;
set EconNew;
by BRAND Segment ;
TAB = ',' ;
FN = "C:\SAMD2\CHAPTER2\ASSIGNMENTS\DatKgrp.CSV";
file PLOTFILE filevar=FN;
if ( FIRST.Brand ) then
do;
put "SEGMENT" TAB "BRAND" TAB "PERIOD" TAB "INTENT" TAB "SHARE" ;
end;
put SEGMENT TAB BRAND TAB PERIOD TAB Intent TAB Share ;
run;

Fig. 2.10 (continued)
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Chapter 3
Reliability Alpha, Principle Component
Analysis, and Exploratory Factor Analysis

In this chapter, we will discuss the issues involved in building measures or
scales. We focus on two types of analysis: (1) the measurement of reliability with
Cronbach’s alpha and (2) the verification of unidimensionality using factor analysis.
In this chapter, we concentrate on exploratory factor analysis and we only introduce
the notion of confirmatory factor analysis in this chapter. The next chapter devel-
ops in detail the confirmatory factor analytic model and examines the measures of
convergent and discriminant validity.

3.1 Notions of Measurement Theory

3.1.1 Definition of a Measure

If T is the true score of a construct and e represents the error associated with the
measurement, the measure X is expressed as

X=T+e @3.1)

This relationship can be represented graphically as in Fig. 3.1 where the observed
variable or measure is shown in a box and the unobserved true score or construct
is distinguished by a circle. The measurement error term is just represented by the
letter e. The directions of the arrows represent the “causal” directionality of the rela-
tionships. The ends of both arrows go toward the measure X because both the True
construct and the measurement error are determinants of what is being observed.

Fig. 3.1 Representation of @—>
simple measurement model
In addition, we assume that E[e] = 0 and Cov[e, 7] =0

H. Gatignon, Statistical Analysis of Management Data, 29
DOI 10.1007/978-1-4419-1270-1_3, © Springer Science+Business Media, LLC 2010
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3.1.2 Parallel Measurements

Measures Y] and Y» are parallel if they meet the following characteristics:

Yi=T+e (3.2)
,=T+e (3.3)
Elei] = E[e2] =0 (3.4)
Viell=Vie = o] (3.5)
plerer) =0 (3.6)

3.1.3 Reliability

The reliability of a measure is the squared correlation between the measure and the
true score: p*(X,T), also noted ,o)Z(T. It is also the ratio of the true score variance to
the measured variance: 5
2 or
PXT = — 3.7
Ox
This can be demonstrated as follows:

o X,1) =E[(X - EXD(T - E[T])]
[XT — E[X|T + E[X]E[T] — XE[T]]

E
E
E
=E[(T+e)T]—E|T + e]E[T] (3.9)
E
E
E

This last equality can be shown as follows:

(T — E[T])> = T? + (E[T))> — 2TE[T] (3.9)
=T?+ (E[T)* - 2(E[T])? (3.10)
=T° — (E[T])* (3.11))

but E[(T — E[T])?] = a%, which is the numerator of the reliability expression.
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Let us now express the correlation between the true score and the measure:

oX,T) o2 o
pxr = e (3.12)
o(X)o(T) oxoT ox
2 U%
0x

Therefore, the reliability can be expressed as the proportion of the observed score
variance that is true score variance. The problem with the definition and formu-
lae above is that the variance of the true score is not known since the true score
is not observed. This explains the necessity to use multiple measures and to form
scales.

3.1.4 Composite Scales

A composite scale is built from using multiple items or components measuring the
constructs. This can be represented graphically as in Fig. 3.2. Note that by con-
vention, circles represent unobserved constructs and squares identify observable
variables or measures.

Fig. 3.2 A graphical e

2
representation of measures /
—
/ ;
(]

The unweighted composite scale is the sum of the two items:

X=Y,+Y (3.14)

3.1.4.1 Reliability of a Two-Component Scale

In this section, we show that the reliability of a composite scale has a lower
bound. This lower bound is coefficient alpha. The two components of the
scale are

Yi=T1+e (3.15)

Yo=T)+ e (3.16)
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The composite scale corresponds to a formative index:

X=Y1+Yr= T1+Tr+e +e
e’
= T e

(3.17)

Although, a priori, T and T, appear as different true scores, we will see that they
must be positively correlated, and we will show the impact of that correlation on
the reliability of the scale. As a consequence, it is best to think of these scores as
corresponding to different items of a single construct.

Computation of Coefficient o

From Equation (3.17), the composite scale defined as

X=Y1+1n (3.18)
Tr=T+T (3.19)
o7 =02 (1) + 0% () + 20 (T1.T3) (3.20)
However, because
[0 (T1) — 0 (T2)* >0 (3.21)

(equality if the test is parallel), then it follows that
0% (T1) + 07 (T2) 2 20 (T1.12) (3.22)

This last inequality results from developing the left-hand side of the inequality
in (3.21):

[0 (T1) — o ()1 = [0 (T + [0 (T2)1> = 2[0 (T1) o (T2)] (3.23)

Given a positive correlation between 7’1 and 7> and p(T1,12)<1:
a(T1,17) = p(T1,12)o (T1)o (T2) < o(T1)o (T2) (3.24)
It follows that

[0 (T + [0 (T2)1* — 2[0 (T1) o (T2)] < [0 (T1)1* + [0 (T2))> = 2[0 (T1,T2)]
(3.25)

The left-hand side of the inequality above being positive, a fortiori, the right-hand
side is also positive. This is the conclusion in Equation (3.22).
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It should be noted that this property is only interesting for cases where the items
(components) are positively correlated. Indeed, in the case of a negative correlation,
the inequality is dominated by the fact that the left-hand side is greater or equal
to zero.

Therefore, in cases of positively correlated items, bringing together Equations
(3.20) and (3.22)

02 > 4o (T1,T») (3.26)

Consequently, the reliability has a lower bound, which is given by

=L 0 3.27
oxT a)% = a)% (3.27)
But
o (Y1,Y2) = E[(T1 +e1) (T2 + e2)]
= E[TT>] (3.28)
=0 (T1,17)
Therefore
40 (Y1,Y2)
prr > (3.29)
Ox
Since
o2 =E [(1/1 i YZ)Z] —E [le] +E [Y%] + E[2Y, Y] (3.30)
=02 (Y1) + 02 (Y2) + 20 (Y1,Y2) (3.31)
it follows that
26 (Y1.Y2) = 05 — 0 (Y1) —0” (Y2) (3.32)

and therefore

2 2 2
p§T22[UX_U ) —o (YZ)} =2{1— GZ(YIHGZ(YZ)} (3.33)

2 2
Ox Ox

This demonstrates that there is a lower bound to the reliability. If this lower bound
is high enough, this means that the actual reliability is even higher and, therefore, the
scale is reliable. It is also clear from Equation (3.33) that as the (positive) correlation
between the two items or components increases, the portion that is subtracted from
one decreases so that coefficient alpha increases. If the correlation is zero, then
coefficient alpha is zero.
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3.1.4.2 Generalization to Composite Measurement with K Components

For a scale formed from K components or items:

K
X = Z Yi (3.34)

k=1

The reliability coefficient alpha is a generalized form of the calculation above:

K
> o2 (Yo
o= i (3.35)

K—1 a)%

« is a lower bound estimate of the reliability of the composite scale X, that is of ,o)Z(T

3.2 Exploratory Factor Analysis

Factor analysis can be viewed as a method to discover or confirm the structure of a
covariance matrix. However, in the case of exploratory factor analysis, the analysis
attempts to discover the underlying unobserved factor structure. In the case of con-
firmatory factor analysis, a measurement model is specified and tested against the
observed covariance matrix.

Exploratory factor analysis is a special type of rotation. Consequently, rotations
are first reviewed in the general context of space geometry.

3.2.1 Axis Rotation

Let us consider Fig. 3.3, which shows a set of orthogonal axes X; and X;. The
vector Y| shows an angle ¢ relative to X;. Similarly, the vector Y, forms an angle ¢
with X5.

The rotation corresponds to a linear transformation of x to y. If x is a p-
dimensional vector and V is a square matrix of size p by p (which represents the
linear weights applied to vector x), then y, the linear transformation of x, is also
with dimension p. However, orthogonality conditions must be met so that V cannot
be any matrix. Therefore, the rotation can be expressed in the following equations:

y =V x (3.36)
px1  pxppxl
st.VV=I (3.37)

so that conditions for orthogonal rotation are met.
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B

Fig. 3.3 Axis rotation

~
[N

Yl
6
) >,
An example of a rotation in a two-dimensional space is given below:
y1 = (cosB)x1 + (sinb)xp (3.38)
yy = (—siné)x; + (cosG) xp 3.39)

These weights represented in Equations (3.38) and (3.39) are appropriate for an
orthogonal rotation because the constraints of orthogonality expressed in Equation
(3.37) are respected. Indeed,

(cos8)? + (sin6)? = 1 (3.40)
(—sin6)? + (cos0)? = 1 (3.41)
(cosB) (—sinb) + (sinf) (cosB) =0 3.42)

These constraints can be expressed in matrix notations as
cost sin0 || cosO —sinb 10
|:—sin9 cos@i||:sin9 cos @ i|_ |:Oli| (3.43)
This corresponds to the constraint expressed more generally in Equation (3.37).

3.2.2 Variance-Maximizing Rotations
(Eigenvalues and Eigenvectors)

The advantage of an orthogonal rotation is that it enables to represent the same
points in a space using different axes but without affecting the covariance matrix,
which remains unchanged. The idea is now going to be to find a specific
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rotation or linear transformation, which will maximize the variance of the linear
transformations.

3.2.2.1 The Objective

The objective is, therefore, to find the linear transformation of a vector that maxi-
mizes the variance of the transformed variable (of the linear combination), i.e., to
find the weights v’ such that if for one observation the transformation is

and for all N observations
y/ — V/ X/
1xN IxppxN

the variance of the transformed variable, which is proportional to

y/y — Zylz —VvVX'Xv=V S v
Ixt o Ixp pxppx1

is maximized.
In other words, the problem is

Find V|Max.y'y (3.44)
Lvv=) v=1 3.45
RSP (49

This is equivalent, by replacing y with its expression as a linear combination of
X, to

Max v'Sv (3.46)
st.vv=1 (3.47)
This can be resolved by maximizing the Lagrangian L:
MaxL = v'Sv — A(V'v— 1) (3.48)
Using the derivative rule 9x’Ax/3x = 2Ax

oL
— =2Sv—-2xw=0 (3.49)
av

_ (,S _ ,\1) v =0 (3.50)
xp pxXpJ px1l  px1
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Solving these equations provides the eigenvalues and eigenvectors. First we
show how to derive the eigenvalues. Then, we proceed with the calculation of the
eigenvectors.

Finding the Eigenvalues

We need to resolve the following system of equations for v and x:
(S—ADv=0 (3.51)
A trivial solution is v = 0. Pre-multiplying by (S-AI)~!,
v=(-)"'0=0 (3.52)

This implies also that, for a nontrivial solution to exist, (S—AI) must not have an
inverse because, if it does, v = 0 and gives a trivial solution.

Therefore, the first condition for a nontrivial solution to Equation (3.51) to exist is
that the determinant is zero because the operation shown in Equation (3.52) cannot
then be performed:

IS — Al =0 (3.53)

Equation (3.53) results in a polynomial in A of degree p and therefore which has
p roots. Following is an example. Let us assume that the covariance matrix is

[ 1681 .88
| 88 6.64

Then,

16.81 —A» .88

S =i = ‘ 88 6.64— 2

‘ =12 — 23451+ 110.844 = 0 (3.54)

Resolving this second-degree equation gives the two roots:

{M = 16.8856 (3.55)

Ay = 6.5644

They are the eigenvalues.

Finding the Eigenvectors

Knowing the eigenvalues, the eigenvectors can now be easily computed. For each
eigenvalue, there are p equations with p unknowns:

(S—ADv=0 (3.56)

subject to normality, i.e., vV'v = 1.
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The p unknowns are then straightforward to estimate.

3.2.2.2 Properties of Eigenvalues and Eigenvectors

Two properties of eigenvectors and eigenvalues are indispensable in order to
understand the implications of this rotation:

1. V'V =1, and therefore: V' = V~! (3.57)
2. V'SV=A,where A = diag{A;} (3.58)
pPXp

It is important to understand the proof of this last property because it shows how
the covariance matrix can be reconstituted with the knowledge of eigenvectors and
eigenvalues.

From the first-order derivative of the Lagrangian (dL/dv = 2Sv —2iv = 0), and
putting all eigenvectors together

S V=V A (3.59)
pXppxp  pXppPXp

Pre-multiplying each side by V' gives

VSV=VVA=A (3.60)
—_——
I

Furthermore, a third property is that the eigenvalue is the variance of the linearly
transformed variable y. From Equation (3.56), pre-multiplying the left-hand side by
v/, one obtains for eigenvalue i and eigenvector i:

Vi(S — 2 Dv; =0 (3.61)
or
ViSV; = A;Viv; (3.62)

However, the left-hand side of Equation (3.62) is the variance of the transformed
variable y;:

ViSv; = v.X'Xv; =ylyi = A (3.63)
Therefore, the eigenvalue represents the variance of the new variable formed as
a linear combination of the original variables.

In addition, considering the equality A = V'SV in Equation (3.60),

tr(A) =tr (V’SV) =tr (V’VS) =tr(S) (3.64)
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This means that the total variance in X, as measured by the sum of the variances
of all the x’s, is equal to the sum of the eigenvalues.

It should be clear that if the variables x are normalized, the S matrix is the corre-
lation matrix R. The trace of R (i.e., the sum of the diagonal terms) is equal to the
number of variables p. It then follows from the equality in Equation (3.64) that the
sum of the eigenvalues of a correlation matrix is equal to the number of variables p.

Furthermore, considering only the rth largest values of the eigenvalues, they
explain a percentage of the total variance in X, which is

r
> Ak

k=1

pp
k=1

x 100 (3.65)

3.2.3 Principal Component Analysis (PCA)

The problem in principal component analysis is just what has been described in
the prior section. It consists in finding the linear combination that maximizes the
variance of the linear combinations of a set of variables (the first linear combina-
tion, then the second, given that it should be perpendicular to the first, etc.) and to
reconstitute the covariance matrix S = VAV'. Therefore, the problem is identical to
finding the eigenvalues and eigenvectors of the covariance matrix.

3.2.3.1 PCA: A Data Reduction Method

In principal component analysis, new variables (y) are constructed as exact linear
combinations of the original variables. This is represented graphically in Fig. 3.4,
using the same convention for the representation of observed and unobserved
variables with boxes and circles, respectively.

Furthermore, it is a data reduction method, in the sense that the covariance matrix
can be approximated with a number of dimensions smaller than p, the number of
original variables. Indeed, from Equation (3.60)

VV'SV = VA (3.66)
SV=VA (3.67)
SVV' = VAV (3.68)
S=VAV (3.69)

Let V* include the eigenvectors corresponding to the r largest eigenvalues and
A* to include the r largest eigenvalues:

S* = V¥ A* VY (3.70)

PXp PXFIrXrrXxp
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Therefore, it can be seen from Equation (3.70) that replacing the small eigen-
values by zero should not affect the ability to reconstitute the variance—covariance
matrix S (S* should approximate S). Consequently,  data points are needed for each
i, instead of the original p variables.

3.2.3.2 Principal Component Loadings

The correlation between a single variable x; and the composite variable y; corre-
sponding to the k’s eigenvalue is called a loading. Let us consider the normalized

data matrix X . The principal component variables Y are such that
Nxp

Y =XV (3.71)
Nxp  Nxppxp

where the weights V are the eigenvectors such that

1 ~, ~
R = Nx’x = VAV (3.72)
The cross products of Y are given by

1 1 e on
LYY= Nv’x’xv = VRV = VVAV'V = A (3.73)

Consequently, Y is normalized by postmultiplying Y by A3 Let us write the
normalized Y’s as

~ 1

Y=YA: (3.74)

The correlation between X and Y is

1 -~ - 1o~ - 1. - 1
Cor(X,Y)=— X Y = —XYA ?=—-XXVA ? (3.75)
pXp N pxN Nxp N N
1
—RVA~2 = VAV'VA™? = VA? (3.76)

Consequently, the loadings are given by

Nl—

=VA
pxp

(3.77)

3.2.3.3 PCA vs. Exploratory Factor Analysis

Two points can be made which distinguish principal component analysis from factor
analysis:



3.2 Exploratory Factor Analysis 41

1. The new variables y are determined exactly by the p x variables. There is no
noise introduced, which may represent some measurement error, as discussed
in the section on measurement theory. Factor analysis introduces this notion of
measurement error.

2. The new unobserved variables y are built by putting together the original p vari-
ables. Therefore, y is constructed from the original x variables in an index. This
is represented graphically in Fig. 3.4. As opposed to this formative index, in fac-
tor analysis the observed x variables are the reflections of the various unobserved
variables or constructs.

Fig. 3.4 A graphical
representation of the principal
component model

This last distinction between reflective indicators and constitutive indices is
developed in the next section.

3.2.4 Exploratory Factor Analysis (EFA)

Now that we have explained the difference between principal component anal-
ysis and factor analysis, we need to distinguish between two different types of
factor analyses: exploratory factor analysis and confirmatory factor analysis. The
basic difference lies in the fact that in confirmatory factor analysis, a structure is
proposed in which the observed, measurable variables reflect only specific unob-
served constructs while exploratory factor analysis allows all measurable variables
to reflect from each factor. These two types of factor analyses can easily be distin-
guished by the differences in their graphical representation. Then we will examine
the differences analytically.

Exploratory factor analysis is graphically represented in Fig. 3.5 in an example
with two unobserved constructs and five observed variables or measures.

The unobserved constructs are represented with circles, while the measures are
represented by squares. The arrows on the left side coming into the measured
variable boxes indicate the random measurement errors.

Although presented in the next chapter, it can be helpful to compare here the
fundamental difference between the exploratory factor analytic model and the
confirmatory factor analytic model. The basic distinction is that, in confirmatory
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Fig. 3.5 A graphical ~
representation of the
exploratory factor analytic
model

/[ L L/

Fig. 3.6 A graphical N
representation of multiple
measures with a confirmatory N
factor structure
N
N X, | F,

factor analysis, only some measures are reflecting specific, individual unobserved
constructs, as shown in Fig. 3.6.

Exploratory factor analysis can be characterized by the fact that it is data
driven, as opposed to confirmatory analysis, which represents a stronger the-
ory of measurement. The purpose of exploratory factor analysis is, in fact, to
find or discover patterns that may help understand the nature of the unobserved
variables. Consequently, it is a method which, based on the patterns of corre-
lations among variables, inductively brings insights into the underlying factors.
Considering Fig. 3.5, the weights assigned to each arrow linking each factor to each
observed variable indicate the extent to which each variable reflects each factor. This
can be shown analytically.

3.2.4.1 The Exploratory Factor Analysis Model

As discussed above, each observed variable is a function of all the factors underlying
the structure. They also contain a measurement error term. For example, for two
observed variables and two factors:

X1 =AnF1+ 2k + 2 (3.78)

Xy = h1F1 + AnkF> + & (3.79)
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where

of = Vlell; o7 = Vel

VIFil=VIF] =1

(3.80)

The variances are one because they are standardized without imposing additional
constraints but which enable the identification. This in a sense simply determines the
units of measure of the unobserved construct.

Let us now consider the consequences that these equations impose on the
structure of the covariance matrix of the observed variables.

VIXi] =3 4+ 43, +of (3.81)

Using the property that the factors are orthogonal (uncorrelated, with a variance
of 1):

Cov [X1,Xo] = E[(A11F1 + M2F2 + 1) (a1 Fy + AxnFa + &2)] (3.82)
= i1 E| P+ adnE [F}] + Elerea] (3.83)
= A11221 + 12422 (3.84)

These equalities follow from the fact that

Cov [F1,F2] =0 (3.85)
Ele1e2] =0 (3.86)
VIFil=VI[F] =1 (3.87)

Therefore, the variances in the covariance matrix are composed of two
components— commonalities and unique components:

VIXil=23, +23, +o2 = + 0} (3.88)
N —

2
S

c% in Equation (3.88) represents the proportion of variance explained by the common
factors, while 012 represents the unique variance.

The commonalities are our center of interest because the error variance or unique
variances do not contain information about the data structure. This demonstrates
that the noise or measurement error needs to be removed, although it only affects
the variances (the diagonal of the covariance matrix) and not the covariances.
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More generally, we can represent the data structure as

Y2=C+U (3.89)

where U = diag{u}.

C is the matrix of common variances and covariances, and U is the matrix of
unique variances. In exploratory factor analysis, the objective is to reduce the dimen-
sionality of the C matrix to understand better the underlying factors driving this
structure pattern.

Four steps are involved in exploratory factor analysis: (1) estimation of common-
alities, (2) extraction of initial factors, (3) determination of the number of factors,
and (4) rotation to a terminal solution. We discuss each step in turn and then we
derive the factor loadings and the factor scores.

3.2.4.2 Estimating Commonalities

In this first step, we need to remove the unique component of the variance in
order to keep the variance explained by the common factors only. In a typical
exploratory factory analysis, the diagonal elements of C are specified as the squared
multiple correlations of each variable with the remainder of the variables in the
set (i.e., the percentage of explained variance obtained in regressing variable j on
the (p—1) others). U (a diagonal matrix) contains the residual variances from these
regressions.

3.2.4.3 Extracting Initial Factors

The initial factors are obtained by performing a principal component analysis
on C:

C=V AV (3.90)
pPXp PXpPXPPXp

3.2.4.4 Determining the Number of Factors

The issue is to find the number of factors r < p, which are necessary to repre-
sent the covariance structure. Following from the properties of eigenvalues and
eigenvectors

C = VAV (3.91)

Let V* include the eigenvectors corresponding to the r largest eigenvalues and
A* include the r largest eigenvalues:

C* = V* A* V¥ (3.92)

PXp PXFIrXrrXxp

The problem is to find r so as to account for most of the covariance matrix C.
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Two rules are typically used to decide on how many factors to retain.

1. A > 1 (Kaiser’s rule): eliminate values less than 1. The rationale for this rule
is that each factor should account for at least the variance of a single variable.
However, this value is somewhat arbitrary.

2. The elbow rule based on the Scree plot. The Scree plot consists in plotting
the eigenvalues in the order of their decreasing size. The elbow rule cor-
responds to finding the point of the Scree plot, which makes an elbow as
shown in the Fig. 3.7. The exact point may, however, not be always easy to
identify.

Fig. 3.7 Scree plot: the A
elbow rule

| | | -

None of these methods should be used blindly. Especially, the rule of the eigen-
value greater than one is the default option on most statistical analysis software
packages, including SAS. Indeed, the interpretation of the factors is an important
criterion for making sense out of the covariance structure.

3.2.4.5 Rotation to Terminal Solution

The objective for performing a rotation at this stage, using only the retained factors,
is to find more easily interpretable factors through rotation.

The most commonly used method is the VARIMAX rotation method. With this
method, the rotation searches to give the maximum variance of the squared loadings
for each factor (in order to avoid problems due to negative loadings). This results in
obtaining extreme loadings (very high or very low).

3.2.4.6 Factor Loadings

If we consider the standardized correlation matrix of the x variables, which we write
as R, Equation (3.89) becomes

R=C+U (3.93)
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The principal decomposition of C leads to

C=VAV (3.94)

However,

where
oL
=VA? (3.95)

L is the matrix of factor loadings, similarly to the formulation developed for prin-
cipal component analysis in Equation (3.77), with the difference that it was applied
to the common variance matrix rather than the full correlation matrix. These are the
correlations between the x variables and the factors.

3.2.4.7 Factor Scores

The factor scores provide the coordinates of the N observations on the (reduced
number of) factors. The values of the x variables are combined in a linear fashion to
form the factor scores Y. Therefore, if B is a matrix of the weights to apply

Y = X B (3.96)
Nxp  Nxppxp

The problem consists in finding the weights that need to be applied. Pre-
multiplying each side of Equation (3.96) by %X’ :

1o 1o~
XY = NX’XB —RB (3.97)

Noticing that %X’Y = L from Equations (3.75), (3.76), and (3.77), it follows
that

L =RB (3.98)
Consequently,
B=R'L (3.99)
Therefore,
Y =XR'L (3.100)

NXp  Nxp PXP pxp
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3.3 Application Examples Using SAS

Figure 3.8 illustrates how to compute the means and the correlation matrix for
a list of variables in SAS. The output is shown in Fig. 3.9. A factor analysis
on the same list of variables is requested in Fig. 3.10 using the SAS procedure
“Factor.” The results are shown in Fig. 3.11. This factor analysis of the perception
of innovations on nine characteristics is summarized by two factors with eigenval-
ues greater than 1 (the default option in SAS); these two factors explain 89.69%
of the variance. The rotated factor pattern shows that Factor 1 groups variables
IT1, IT3, IT4, IT6, and IT7, while the variables ITS, IT8, and IT9 reflect Factor
2. Variable IT2 does not discriminate well between the two factors, as it loads
simultaneously on both, although it loads slightly more on Factor 2. The reliabil-
ity coefficients of the scales (corresponding to the two factors) are then calculated
in Fig. 3.12 when the variables are first standardized. Those variables with nega-
tive loadings are reversed so that each component has the same direction (positive
correlations). The results are listed in Fig. 3.13, which shows the reliability coeffi-
cient alpha for each scale and the improvements that could be obtained by deleting
any single variable one at a time. Finally, Fig. 3.14 shows how to create a scale
composed of these standardized variables, scales that are used in a single analysis
of variance example. The corresponding output in Fig. 3.15 shows, for exam-
ple, the means of the two scales (labeled Tech and MKT) for two levels of the
variable RAD.

/* examp3-1.sas
computes means and correlation matrix

*/

option 1s=120;

data datal;

infile 'c:\SAMD2\Chapter3\Examples\product.dat';

input prod rad itl it2 it3 it4 it5 it6 it7 it8 it9;

if itl=9 then itl=.

if it2=9 then it2=.

if it3=9 then it3=.

if it4=9 then it4=.

if it5=9 then it5=.

if it6=9 then ité6=.

if it7=9 then it7=.

if it8=9 then it8=.

if it9=9 then it9=.

proc means;
var itl it2 it3 it4 it5 it6 it7 it8 it9;
run;
proc corr;
var itl it2 it3 it4 it5 it6 it7 it8 it9;
run;

Fig. 3.8 SAS input file example for computing means and correlation matrix (examp3-1.sas)
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/* examp3-2.sas

Factor analysis
*/
option 1s=120;
data datal;
infile 'c:\SAMD2\Chapter3\Examples\product.dat';
input prod rad itl it2 it3 it4 it5 it6 it7 it8 it9;
if itl=9 then itl=.;
if it2=9 then ;
if it3=9 then
if it4=9 then
if it5=9 then
if it6=9 then
if it7=9 then
if it8=9 then
if it9=9 then

proc factor rotate=varimax;
var itl it2 it3 it4 it5 it6 it7 it8 it9;
run;

Fig. 3.10 SAS input file example for factor analysis (examp3-2.sas)

Initial Factor Method: Principal Components

Proportion
Cumulative

Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 8 Average = 1

1 2 3 T a8
68,3837 1.6888 0.4677 0.0348 0.0078
4.6949 1.2210 0.2742 0.0287 0.0078
0.7083 0.1876 0.0520 0.0038 0.0008
0.7083 0.B969 0.89489 0.9991 1.0000

2 factors will be retained by the MINEIGEN criterion.
Factor Pattern
FACTOR1  FACTORZ2

m -0.92818  0.26280
1Tz 0.94032 0.23536
Ima -0.92818  0.26260
IT4 0.89698 -0.22064
ITs 0.75835 0.42615
ITé 0.79402 -0.53485
7 0.90676 -0.34096
iTe 0.76170 0.57319
ims 0.60015  0.73096

Variance explained by each factor
FACTOR1  FACTOR2
6.383698 1.6887T2

Initial Factor Method: Principal Components

Final Communality Estimates: Total = 8.072470
Im 1Tz I3 IT4 IT5 ITe 7 I8 I8
0.832342 0.939588 0.832342 0.853266 0.756708 0.916530 0.838466 0.908733 0.894485

Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2
1 0.80558  0.59247
2 -0.59247  0.80559

FACTOR1  FACTOR2

m -0.90412 -0.33897
T2 0.61807 0.74672
IT3 -0.90412 -0.33887
IT4 0.85333 0.35369
ITs 0.35844 0.79281
ITe 0.95654 0.03956
Im7 0.93248 0.26256
ITe 0.27402 0.91304
e 0.05040 0.94443

Variance explained by each factor
FACTORY FACTOR2
4.735659 3.336811

Final Communality Estimates: Total = B.072470
Im 1Tz 113 IT4 175 176 7 T8 iTe
0.932342 0.929598 0.932342 0.853266 0.756708 0.916530 0.938466 0.908733 0.804485

Fig. 3.11 SAS output of factor analysis (examp3-2.1st)
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/* examp3-3.sas
Reliability Coefficient Alpha
*/
option 1s=120;
data datal;
infile 'c:\SAMD2\Chapter3\Examples\product.dat';
input prod rad itl it2 it3 itd it5 it6 it7 it8 it9;
if itl=9 then itl=.;
if it2=9 then it2=.;
if it3=9 then it3=.;
if it4=9 then it4=.;
if it5=9 then it5=.;
if it6=9 then ité6=.;
if it7=9 then it7=.;
if it8=9 then it8=.;
if it9=9 then it%9=.;
itlr=7-itl;
it3r=7-it3;

proc means;
var itlr it2 it3r it4 it5 it6 it7 it8 it9;
output out=results mean=mlr m2 m3r m4 m5 m6é m7 m8 m9
std=slr s2 s3r s4 s5 s6 s7 s8 s9;
run;

data data2;
set datal;
if n_ =1 then set results;

itlrs=(itlr-mlr)/slr;
it2s=(it2-m2)/s2;
it3rs=(it3r-m3r)/s3r;
itds=(itd4-m4)/s4;
it5s=(it5-m5)/s5;
it6s=(it6-m6)/s6;
it7s=(it7-m7)/s7;
it8s=(it8-m8)/s8;
it9s=(it9-m9)/s9;
run;
proc corr alpha;

var itlrs it3rs itds ité6s it7s;

run;
proc corr alpha;

var it2s it5s it8s it9s;
run;

Fig. 3.12 SAS input file for reliability coefficient alpha (examp3-3.sas)
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Variable N Mean Std Dev Minimum Maximum
IT1R 13 4.0769231 1.8009969 1.0000000 6.0000000
iT2 12 4.9166667 0.9962049 3.0000000 6.0000000
IT3R 13 4.0000000 1.7320508 1.0000000 6.0000000
iT4 12 3.3333333 2.0150946 1.0000000 6.0000000
IT5 11 3.1818182 1.6624188 1.0000000 6.0000000
IT6 12 3.7500000 1.6583124 1.0000000 6.0000000
IT7 13 3.6923077 1.7504578 1.0000000 6.0000000
iT8 13 4.2307692 1.4232502 1.0000000 6.0000000
IT9 13 4.3846154 1.7577666 1.0000000 6.0000000

Correlation Analysis
5 'VAR' Variables: IT1RS IT3RS IT4S IT6S IT7S

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
IT1RS 13 0 1.000000 0 -1.708456 1.067785
IT3RS 13 0 1.000000 0 -1.732051 1.154701
1T4s 12 0 1.000000 0 -1.157927 1.323346
1T6S 12 0 1.000000 0 -1.658312 1.356801
IT7S 13 0 1.000000 0 -1.538059 1.318336
Correlation Analysis
Cronbach Coefficient Alpha

for RAW variables : 0.975822

for STANDARDIZED variables: 0.972620

Raw Variables Std. Variables
Deleted Correlation Correlation
Variable with Total Alpha with Total Alpha
B 5 8 A 6 6 6 i A IR R R R
IT1RS 0.943833 0.967688 0.935001 0.963707
IT3RS 0.939013 0.968428 0.932076 0.964164
IT4S 0.888799 0.976050 0.876213 0.972786
IT6S 0.929027 0.969955 0.915387 0.966759
IT7S 0.944836 0.967534 0.943116 0.962438

Correlation Analysis

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / Number of Observations

IT1RS IT3RS IT48 IT6S IT7S

IT1RS 1.00000 0.98843 0.80100 0.85535 0.90687

0.0 0.0001 0.0017 0.0004 0.0001

13 13 12 12 13

IT3RS 0.98843 1.00000 0.79341 0.85385 0.90703

0.0001 0.0 0.0021 0.0004 0.0001

13 13 12 12 13

IT4s 0.80100 0.79341 1.00000 0.89776 0.87782

0.0017 0.0021 0.0 0.0001 0.0002

12 12 12 12 12

IT6S 0.85535 0.85385 0.89776 1.00000 0.88462

0.0004 0.0004 0.0001 0.0 0.0001

12 12 12 12 12

IT7S 0.90687 0.90703 0.87782 0.88462 1.00000
0.0001 0.0001 0.0002 0.0001 0.0

13 13 12 12 13

Fig. 3.13 SAS output example of reliability coefficient alpha (examp3-3.1st)
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Correlation Analysis
4 'VAR' Variables: IT2S IT5S IT9S
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
IT2S 12 0 1.000000 0 -1.923968 1.087460
IT5S 11 0o 1.000000 0 -1.312436 1.695230
IT8S 13 0 1.000000 0 -2.2699%4 1.243092
IT9S 13 0 1.000000 0 -1.925520 0.918998

Correlation Analysis
Cronbach Coefficient Alpha

0.897142
0.895873

for RAW variables
for STANDARDIZED variables:

Raw Variables Std. Variables
Deleted Correlation Correlation

Variable with Total with Total Alpha
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
iT2 50

ITSS 0 763201 0 870324 O 711836 0 886557
1T8s 0.903509 0.817014 0.916809 0.809002
IT9S 0.626815 0.918565 0.631457 0.914788

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / Number of Observations

IT2S IT5S IT8S IT9S

IT2S 1.00000 0.73283 0.86405 0.57608

0.0 0.0159 0.0003 0.0500

12 10 12 12

IT5S 0.73283 1.00000 0.74788 0.44725

0.0159 0.0 0.0081 0.1678

10 11 11 11

IT8S 0.86405 0.74788 1.00000 0.72770

0.0003 0.0081 0.0 0.0048

12 11 13 13

IT9S 0.57608 0.44725 0.72770 1.00000
0.0500 0.1678 0.0048 0.0

12 11 13 13

Fig. 3.13 (continued)

3.4 Assignment

The assignment consists in developing a composite scale, demonstrating its uni-
dimensionality, and computing its reliability. For that purpose, survey data are
provided in the file SURVEY.ASC. These data concern items about psychographic
variables, which contain opinion, attitude, and lifestyle characteristics of individu-
als. The detailed description of the data is given in Appendix C. This type of data is
useful for advertising and segmentation purposes.

In order to develop a scale, it may be useful to summarize the data using
exploratory factor analysis on a wide range of variables. It is important, however,
to make sure that only variables that possess the properties necessary for the anal-
ysis are included. For example, because factor analysis is based on correlations,
categorical or ordinal scale variables should be excluded from the analysis, since
correlations are not permissible statistics with such scales. The factors need to be
interpreted, and you can concentrate on a subset of these factors to derive a single
or multiple composite scales.
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/* examp3-4.sas
Scales
*/
option 1s=120;
data datal;
infile 'c:\SAMD2\Chapter3\Examples\product.dat';
input prod rad itl it2 it3 it4 it5 it6 it7 it8 it9;
if itl=9 then itl=.;
if it2=9 then it2=.;
if it3=9 then it3=.;
if it4=9 then it4=.;
if it5=9 then it5=.;
if it6=9 then it6=.;
if it7=9 then it7=.;
if it8=9 then it8=.;
if it9=9 then it9=.;
itlr=7-itl;
it3r=7-it3;
proc means;
var itlr it2 it3r itd4 it5 it6 it7 it8 it9;
output out=results mean=mlr m2 m3r m4 m5 m6 m7 m8 m9
std=slr s2 s3r s4 s5 s6 s7 s8 s9;

run;
data data2;
set datal;

if n =1 then set results;

itlrs=(itlr-mlr)/slr;
it2s=(it2-m2)/s2;
it3rs=(it3r-m3r)/s3r;
itds=(itd4-m4)/s4;
it5s=(it5-m5)/s5;
it6s=(it6-m6)/s6;
it7s=(it7-m7)/s7;
it8s=(it8-m8)/s8;
it9s=(it9-m9)/s9;

tech=sum(itlrs,it3rs,itds,it6s,it7s)/n(itlrs,it3rs,itds,itbs,it7s) ;
mkt=sum(it2s,it5s,it8s,it9s)/n(it2s,it5s,it8s,it9%s) ;
run;

proc anova;
class rad;
model tech mkt = rad;
means rad;

run;

Fig. 3.14 SAS input file example for scale construction (examp3-4.sas)
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Variable N

IT1R 13
IT2 12
IT3R 13
IT4 12
IT5 11
IT6 12
IT7 13
IT8 13
IT9 13

Mean Std Dev Minimum
.0769231 1.8009969 1.0000000
.9166667 0.9962049 3.0000000
0000000 1.7320508 1.0000000
.3333333 2.0150946 1.0000000
.1818182 1.6624188 1.0000000
7500000 1.6583124 1.0000000
.6923077 1.7504578 1.0000000
.2307692 1.4232502 1.0000000
3846154 1.7577666 1.0000000

Analysis of Variance Procedure

Class Level Information

Class

RAD

Levels

2

Values

01

Number of observations in data set = 13

Dependent Variable: TECH
Source DF
Model 1
Error 11
Corrected Total 12
R-Square
0.395985
Source DF
RAD 1

Dependent Variable: MKT

Source DF Sum of Squares Mean Square
Model 1 5.18610513 5.18610513
Error 11 3.95895360 0.35990487
Corrected Total 12 9.14505873
R-Square cC.V. Root MSE
0.567094 -9999.99 0.59992072
Source DF Anova SS Mean Square
RAD 1 5.18610513 5.18610513
Analysis of Variance Procedure
Level of = --—----------- TECH------------ = -——-------—-
RAD N Mean SD Mean
0 6 -0.59518871 0.71757943 -0.68294587
1 7 0.54515117 0.79934370 0.58402809

Analysis of Variance Procedure

Sum of Squares
.20121164
.40830330
10.60951494
C.V.
4051.201

o n

Anova SS
.20121164

IS

Analysis

Mean Square
4.20121164
0.58257303

Root MSE
0.76326472

Mean Square
4.20121164

of Variance Procedure

55

Maximum
6.0000000
6.0000000
6.0000000
6.0000000
6.0000000
6.0000000
6.0000000
6.0000000
6.0000000
F Value Pr > F
7.21 0.0212
TECH Mean
0.01884045
F Value Pr > F
7.21 0.0212
F Value Pr > F
14.41 0.0030
MKT Mean
-0.00072912
F Value Pr > F
14.41 0.0030
MKT---------—---
SD
0.80440030
0.34728815

Fig. 3.15 SAS output example of scale construction and analysis of variance (examp3-4.1st)

An alternative would be to reflect on the questions that seem related and focus
on those to develop a scale. This is in essence a mental factor analysis.

You need to demonstrate that each of the scales developed are unidimensional
(through factor analysis) and that their reliability is sufficiently high.

Figure 3.16 lists the SAS file which can be used to read the data.



56 3 Reliability Alpha, Principle Component Analysis, and Exploratory Factor Analysis

/* Assign3.sas */
filename survey 'c:\SAMD2\Chapter3\Assignments\survey.asc';
data new;
infile survey firstobs=19;
input (Age Marital Income Educatn HHSize Occuptn Location

TryHair LatStyle DrssSmrt BlndsFun LookDif

LookAttr GrocShp LikeBkng ClthFrsh WashHnds Sportng LikeClrs

FeelAttr TooMchSx Social LikeMaid ServDnrs SaveRcps LikeKtch) (3.)

#2 (LoveEat SpirtVal Mother ClascMsc Children Applianc ClsFamly

LovFamly TalkChld Exercise LikeSelf CareSkin MedChckp

EvngHome TripWrld HomeBody LondnPrs Comfort Ballet Parties

WmnNtSmk BrghtFun Seasonng ColorTV SlppyPpl Smoke) (3.)

#3 (Gasoline Headache Whiskey Bourbon FastFood Restrnts OutFrDnr

OutFrLnc RentVide Catsup KnowSont PercvDif BrndLylt

CatgMotv BrndMotv OwnSonit NecssSon OthrInfl DecsnTim

RdWomen RdHomSrv RdFashn RdMenMag RdBusMag RdNewsMg

RdG1lMag) (3.)

#4 (RdYouthM RdNwsppr WtchDay WtchEve WtchPrm

WTchLate WtchWknd WtchCsby WtchFmTs WtchChrs WtchMoon

WtchBoss WtchGrwP WtchMiaV WtchDns WtchGold WtchBowl) (3.);
proc freq;
tables OwnSonit* (Age Marital Income Educatn HHSize Occuptn);
run;

Fig. 3.16 SAS file to read SURVEY.ASC data file (assign3.sas)
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Chapter 4
Confirmatory Factor Analysis

As mentioned in the last chapter, a measurement model of the type illustrated in
Fig. 4.1 is assumed in confirmatory factor analysis.

Fig. 4.1 A graphical
representation of multiple
measures with a confirmatory
factor structure

[ /S S L
ux N><
N \\

The objective of a confirmatory analysis is to test if the data fit the measure-
ment model.

4.1 Confirmatory Factor Analysis: A Strong
Measurement Model

The graphical representation of the model shown in Fig. 4.1 can be expressed by the
system of equations:

X1 =ArnF1 +e1
Xy = M1 F1+ &
X3 = A31F + &3 4.1)
X4 = haoFo2 + &4
X5 = AsoF2 + &5

H. Gatignon, Statistical Analysis of Management Data, 59
DOI 10.1007/978-1-4419-1270-1_4, © Springer Science+Business Media, LLC 2010
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Let
X ALl A12 1
X3 £ A2l A22 £
X = X3 ;FZ[F}AZ A3l A3 |5 € = | &3
5x1 X, 2x1 2 5x2 Al Ao 5x1 €4
Xs As1 As2 £s

Equation (4.1) can be expressed in matrix notation as

sx1 51:2 251 + 531 4.2)
with
Ele]=0 4.3)
Elee'] = D = diag{3;;} 4.4)
E[FF] =& (4.5)
If the factors are assumed independent:
E[FF] =1 (4.6)

While we were referring to the specific model with five indicators in the expres-
sions above, the matrix notation is general and is identical if we now consider a
measurement model with ¢ indicators and a factor matrix containing »n unobserved
factors.

x =A F +e .7
gx1 gxnnx1l gx1

The theoretical covariance matrix of X is given by

E[xx'| = E[(AF +e) (AF +¢)'] = E[AFF'A’ + e€'] (4.8)
= AE[FF'| A’ + E [e€/] (4.9)
T =A®A +D (4.10)

Therefore Equation (4.10) expresses how the covariance matrix is structured,
given the measurement model specification in Equation (4.7). The structure is
simplified in case of the independence of the factors:

T =AA' +D 4.11)
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The notation used above was chosen to stay close to the notation in the previous
chapter to facilitate the comparison, especially between exploratory factor analysis
and confirmatory factor analysis. However, we now introduce the notation found
in LISREL because the software refers to specific variable names. In particular,
Equation (4.7) uses § for the vector of factors and 8 for the vector of measurement
errors:

q§1 ZqAx);tnil-i_qﬁl @12

with
E[t] =@ (4.13)

and
E[88'] = 05. (4.14)

The methodology for estimating these parameters is presented next.

4.2 Estimation

If the observed covariance matrix estimated from the sample is S, we need to find
the values of the lambdas (the elements of A) and of the deltas (the elements of D),
which will reproduce a covariance matrix as similar as possible to the observed one.
Maximum likelihood estimation is used to minimize S — X. The estimation consists
in finding the parameters of the model which will replicate as closely as possible
the observed covariance matrix in Equation (4.10). For the maximum likelihood
estimation, the comparison of the matrices S and X is made through the following
expression:

F:Ln|):|+tr(sz—1) —LalS| - (q) (4.15)

This expression follows directly from the maximization of the likelihood func-
tion. Indeed, based on the multivariate normal distribution of the data matrix Xd

which has been mean-centered, the sampling distribution is Nxq
N | 1
q 4
fX) = H(zn)—z |):|—zexp{—§x;f ):—lx;f} (4.16)

i=1
which is also the likelihood

N
1,
¢ = ¢(parameters of X|X) = ]_[ Q)3 2|72 exp {—Eng ):—lx;f} (4.17)
i=1
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or
N

1 1,
L=Lnt=) [—gLn () = SLn|Z| - 5x¢ Z_lei|
i=1

N
Ng N 1 et
—TLn(Zn)—ELn|Z|—§Z(X- ) x,.)

i
i=1

N
v ) . (4.18)
=5 |:an(271)+Ln|Z|-l-NX:(X?Z 1X?):|
i=1

N 1 d 5 —1yd
=-3 an(2n)+Ln|Z|+Ntr(X z X)

N 1 4
— an(2n)+Ln|Z|+—tr(XdXd):_l)

2 N

N
L=-3 [an (27) + Lo |Z| +tr (SE‘I)] (4.19)

Therefore, given that the constant terms do not impact the function to maxi-
mize, the maximization of the likelihood function corresponds to minimizing the
expression in Equation (4.15) (note that the last terms —Ln|S|—(g) are constant
terms).

The expression F is minimized by searching over values for each of the parame-
ters. If the observed variables x are distributed as a multivariate normal distribution,
the parameter estimates that minimize the Equation (4.15) are the maximum
likelihood estimates.

There are 5(q)(g+1) distinct elements that constitute the data; this comes from
half of the symmetric matrix to which one needs to add back half of the diagonal
in order to count the variances of the variables themselves (i.e., [(g)x(q)/2+q/2]).
Consequently, the number of degrees of freedom corresponds to the number of dis-
tinct data points as defined above minus the number of parameters in the model to
estimate.

In the example shown in Fig. 4.5, ten parameters must be estimated:

5)»,‘/5 + 58;'s.

These correspond to each of the arrows in the figure, i.e., the factor loadings and
the variances of the measurement errors. There would be 11 parameters to estimate
if the two factors were correlated.

4.2.1 Model Fit

The measure of the fit of the model to the data corresponds to the criterion that
was minimized, i.e., a measure of the extent to which the model, given the best
possible values of the parameters, can lead to a covariance matrix of the observed
variables that is sufficiently similar to the actually observed covariance matrix.
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We first present and discuss the basic chi-square test of the fit of the model. We
then introduce a number of measures of fit that are typically reported and those
which alleviate the problems inherent to the chi-square test. We finally discuss how
modification indices can be used as diagnostics for model improvement.

4.2.1.1 Chi-Square Tests

Based on large-sample distribution theory, v = (N — 1)F (where N is the sample
size used to generate the covariance matrix of the observed variables and F is the
minimum value of the expression F as defined by Equation 4.15) is distributed as a
chi-squared with the number of degrees of freedom corresponding to the number of
data points minus the number of estimated parameters, as computed in the example
above. If the value of v is significantly greater than zero, the model is rejected; this
means that the theoretical model is unable to generate data with a covariance matrix
close enough to the one obtained from the actual data.

This follows from the normal distribution assumption of the data. As discussed
above, the likelihood function at its maximum value (L) can be compared with Ly,
the likelihood of the full or saturated model with zero degrees of freedom. Such
saturated model reproduces the covariance matrix perfectly so that ¥ = S and
tr(SE~!) = tr(I) = ¢. Consequently

N
Lo = -5 [gLn (27) + Ln|S| + ] (4.20)
The likelihood ratio test is

2
—2[L = Lol ~ Xgr—iqq+1y21-1 “.21)

where T is the number of parameters estimated.
Equation (4.21) results in the expression:

N[Ln|)3| i (S):—l) —La|S| — (q)] (4.22)

which is distributed as a chi-squared with [g(q + 1)/2] — T degrees of freedom.

It should be noted that the comparison of any nested models is possible. Indeed,
the test of a restriction of a subset of the parameters implies the comparison of two of
the measures of fit v, each distributed as a chi-squared. Consequently, the difference
between the value v, of a restricted model and vy, the unrestricted model, follows a
chi-square distribution with the number of degrees of freedom corresponding to the
number of restrictions.

One problem with the expression v or Equation (4.22) is that it contains N, the
sample size. This means that as the sample size increases, it becomes less likely that
one will fail to reject the model. This is why several other measures of fit have been
developed. They are discussed below. While this corresponds to the statistical power
of a test consisting in rejecting a null hypothesis that a parameter is equal to zero,
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it is an issue in this context because the hypothesis which the researcher would
like to get support for is the null hypothesis that there is no difference between
the observed covariance matrix and the matrix that can be generated by the model.
Failure to reject the hypothesis, and therefore “accepting” the model, therefore, can
be due to the lack of power of the test. A small enough sample size can contribute to
finding fitting models based on chi-square tests. The parallel is the greater difficulty
in finding fitting models when the sample size is large.

4.2.1.2 Other Goodness-of-Fit Measures

The LISREL output gives a direct measure (GFI) of the fit between the theoretical
and observed covariance matrices following from the fit criterion of Equation (4.15),

and it is defined as
- 2
r [(): 's - 1) }

tr [()A:_IS)Z}

From this equation, it is clear that if the estimated and the observed variances
are identical, the numerator of the expression subtracted from 1 is O and, therefore,
GFI = 1. To correct for the fact that the GFI is affected by the number of indicators,
an adjusted goodness-of-fit index (AGFI) is also proposed. This measure of fit cor-
rects the GFI for the degrees of freedom, just like an adjusted R-squared would in a
regression context:

GFI=1-—

(4.23)

(@@+1)

AGFI = 1 — [—
(@ @+ 1)—2T

} [1 — GFI] (4.24)

where T is the number of estimated parameters.

As the number of estimated parameters increases, holding everything else
constant, the adjusted GFI decreases.

A threshold value of 0.9 (for either the GFI or the AGFI) has become a norm for
the acceptability of the model fit (Bagozzi and Yi 1988, Baumgartner and Homburg
1996, Kuester, Homburg and Robertson 1999).

Another index that is often found to assess model fit is the root mean square error
of approximation (RMSEA). It is defined as a function of the minimum fit function
corrected by the degrees of freedom and the sample size:

Fy
RMSEA = || = (4.25)
where
Fo = Max {(F —[d/ (N - 1)]) ,o} (4.26)

d=[q(q+1)/2]-T (4.27)
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A value of RSMEA smaller than 0.08 is considered to reflect reasonable errors
of approximation and a value of 0.05 indicates a close fit.

4.2.1.3 Modification Indices

The solution obtained for the parameter estimates uses the derivatives of the objec-
tive function relative to each parameter. This means that for a given solution, it
is possible to know the direction in which a parameter should change in order to
improve the fit and how steeply it should change. As a result, the modification
indices indicate the expected gains in fit that would be obtained if a particu-
lar coefficient should become unconstrained (holding all other parameters fixed
at their estimated value). Although not a substitute for theory, this modification
index can be useful in analyzing structural relationships and, in particular, in
refining the correlational assumptions of random terms and for modeling control
factors.

4.2.2 Test of Significance of Model Parameters

Because of the maximum likelihood properties of the estimates which follow from
the normal distribution assumption of the variables, the significance of each param-
eter can be tested using the standard ¢ statistics formed by the ratio of the parameter
estimate and its standard deviation.

4.3 Summary Procedure for Scale Construction

Scale construction involves several steps. The process brings the methods discussed
in the previous chapter (Chapter 3) with those presented in this one. These include
the following statistical analyses, which provide a guide in scale construction:
exploratory factor analysis (EFA), confirmatory factor analysis (CFA), and relia-
bility coefficient alpha. The confirmatory factor analysis technique can also be used
to assess the discriminant and convergent validity of a scale. We now review these
steps in turn.

4.3.1 Exploratory Factor Analysis

Exploratory factor analysis can be performed separately for each hypothesized
factor. This demonstrates the unidimensionality of each factor. One global fac-
tor analysis can also be performed in order to assess the degree of independence
between the factors.
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4.3.2 Confirmatory Factor Analysis

Confirmatory factor analysis can be used to assess the overall fit of the entire
measurement model and to obtain the final estimates of the measurement model
parameters. Although sometimes performed on the same sample as the exploratory
factor analysis, when it is possible to collect more data, it is preferable to perform
the confirmatory factor analysis on a new sample.

4.3.3 Reliability Coefficient o

In cases where composite scales are developed, this measure is useful to assess the
reliability of the scales. Reliabilities of less than 0.7 for academic research and 0.9
for market research are typically not sufficient to warrant further analyses using
these composite scales.

In addition, scale construction involves determining that the new scale developed
is different (i.e., reflects and measures a construct which is different) from measures
of other related constructs. This is a test of the scale’s discriminant validity. It also
involves a test of convergent validity, i.e., that this new measure relates to other
constructs it is supposed to be related to, while remaining different.

4.3.4 Discriminant Validity

A construct must be different from other constructs (discriminant validity) but are
nevertheless mutually conceptually related (convergent validity). The discriminant
validity of the constructs is ascertained by comparing measurement models where
the correlation between the constructs is estimated with one where the correlation
is constrained to be one (whereby assuming a single factor structure). The discrim-
inant validity of the constructs is examined for each pair at a time. This procedure,
proposed by Bagozzi, Yi and Phillips (1991) indicates that, if the model where the
correlation is not equal to 1 improves significantly the fit, the two constructs are
distinct from each other, although they can possibly be significantly correlated.

4.3.5 Convergent Validity

The convergent validity of the constructs is assessed by comparing a measurement
model where the correlation between the two constructs is estimated with a model
where the correlation is constrained to be equal to zero. This test can also be per-
formed simply to test the independence of the constructs. For example, if several
constructs are used to explain other dependent variables, it is desirable that the
explanatory factors are uncorrelated to identify the separate effects of these fac-
tors. In such a case, the researcher would hope to fail to reject the null hypothesis
that the correlations are zero. In the context of assessing convergent validity, the
researchers would want to check that the constructs being measured (likely to be a
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newly developed construct) are related to other constructs they are supposed to be
related to according to the literature and theory. Here, the researcher would hope
to reject the null hypothesis that the correlation is zero. In comparing the restricted
and the non-restricted models, a significant improvement in fit due to removing the
restriction of independence indicates that the two constructs are related, which con-
firms convergence validity. Combining the two tests (that the correlation is different
from one and different from zero) demonstrates that the two constructs are differ-
ent (discriminant validity) although related with a correlation significantly different
from zero correlation (convergent validity).

4.4 Second-Order Confirmatory Factor Analysis

In the second-order factor model, there are two levels of constructs. At the first
level, constructs are measured through observable variables. These constructs are
not independent and, in fact, their correlation is hypothesized to follow from the
fact that these unobserved constructs are themselves reflective of common second-
order unobserved constructs of a higher conceptual level. This can be represented
as in Fig. 4.2.

The relationships displayed in Fig. 4.2 can be expressed algebraically by the
following equations:

Y=A 5 + & 4.28)
px1l  pxXmp1  pxl

Fig. 4.2 Graphical
representation of a
second-order factor analytic
model
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and

n =T &+ ¢ (4.29)

mx1  MXNpsl mxl

The first equation (4.28) expresses the first-order factor analytic model. The
unobserved constructs n are the first-order factors; they are measured by the reflec-
tive items represented by the variables y. The second equation (4.29) shows that the
constructs n are derived from the second-order factors §. The factor loadings cor-
responding to, respectively, the first-order and second-order factor models are the
elements of matrices A and T'. Finally, the errors in measurement are represented
by the vectors € and &.

In addition to the structure expressed by these two equations, we use the
following notation of the covariances:

E[§']= @ (4.30)
E[¢d] = m\gm 4.31)
and
E[ee'] = ©, (4.32)
pxp

Furthermore, we assume that the &’s are uncorrelated to the §’s and similarly that
the €’s are uncorrelated to the n’s.

If the second-order factor model described by the equations above is correct, the
covariance matrix of the observed variables y must have a particular structure. This
structure is obtained as

E[yy|=E[(An+¢)(An+e)] (4.33)
If we develop:
E[yy] = AE[nn'] A'+E [e€'] (4.34)

Replacing n by its value expressed in Equation (4.29):

E[yy'| = AE[(TE + &) (T + &)/ A'+E [e€] (4.35)
Elyy]|=A(TE[£¢'| T+ E[¢¢']) A+E [e€] (4.36)
E[yy]=Z=A(T®I'+¥)A' + O, (4.37)

where the elements on the right-hand side of Equation (4.37) are model parame-
ters to be estimated, such that their values combined in that structure reproduce
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as closely as possible the observed covariance matrix S calculated from the
sample data.

The estimation procedure follows the same principle as described above for the
simple confirmatory factor analytic model. The number of parameters is, however,
different.

How many parameters need to be estimated?

We typically define the covariance matrices ¥, ¥, and @, to be diagonal.
Therefore, these correspond to n + m + p parameters to be estimated, to which
one would need to add the factor loading parameters contained in matrices I' and A.
Taking the example in Fig. 4.2, n =2, m =5, and p = 11. One of the factor loadings
for each first-order factor should be set to 1 to define the units of measurement of
these factors. Consequently, A contains 11 —5 = 6 parameters to be estimated and I’
contains five parameters that need to be estimated. That gives a total of 2 + 5+ 11 +
6 + 5 = 29 parameters to estimate. Given that the sample data covariance matrix (an
11 x 11 matrix) contains (11 x 12)/2 = 66 data points, the degrees of freedom are
66 —29 = 37.

The same measures of fit as described above for confirmatory factor analysis are
used to assess the appropriateness of the structure imposed on the data.

4.5 Multi-group Confirmatory Factor Analysis

Multi-group confirmatory factor analysis is appropriate to test the homogeneity
of measurement models across samples. It is particularly useful in the context of
cross-national research where measurement instruments may vary due to cultural
differences. This corresponds to the notion of measurement invariance. From that
point of view, the existing model described by Equation (4.2) must be expanded
along two dimensions: (1) several sets of parameters must be estimated simultane-
ously for each of the groups and (2) some differences in the means of the unobserved
constructs must be recognized between groups while they are ignored (assumed to
be zero) in regular confirmatory factor analysis. These expansions are represented
in Equations (4.38), (4.39) and (4.40). Equation (4.40) is identical to the simple
confirmatory factor analytic model.

The means of the factors are represented by the vector k in Equation (4.39),
which contains n rows for the mean of each of the n factors. The vector <,
in Equation (4.38) contains g rows for the scalar constant term of each of the
q items:

X =17, +A; § + 8 (4.38)
gx1  gx1  gxnpx1 gx1

E[E] = 4.39

HENS (4.39)

E[88'] = 65 (4.40)
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Therefore, the means of the observed measures x are:

n, =E[x] = TX+AxE|:§:|=Tx+AxK (4.41)
gx1 gx1l gxn  |nxl gx1 pxnnxl

Such a model with a mean structure such as in Equation (4.41) imposed can
be estimated if we recognize that the log likelihood function specified in Equation
(4.19) now contains not only the parameters that determine the covariance matrix X
but also the expected values of the x variables, so that

S=X-n)X-n) (4.42)

Consequently, the objective function or the log likelihood function when model-
ing the means in addition to the covariance structure is

L= —g [qLn o) +Ln B +u{(X - ) (X-n) =71 @)

We now add a notation to reflect that the model applies to group g with g =
1,...,G:

Ve=1,...G: x® =7 4 A®g® 4§ (4.44)
gx1 gx1 gxn nx1 gx1

and
E [i,:(g)] — 1® (4.45)

For identification, it is required that one of the groups serves as a reference with
the means of its factors centered at zero (the same requirement as for a single group
confirmatory factor analysis). Usually group 1 serves as that reference, although, in
principle, it can be any group:

kD=0 (4.46)

It is also necessary to fix one factor loading for each factor in A, to define the
measurement unit of the unobserved constructs.

The estimation is again based on the maximum likelihood. The log likelihood is
the sum of the log likelihoods for all the groups so that we now search for the values
of the parameters which maximize:

G
1
L=—3 > ON® |:q(g)Ln (2) +Ln ‘):@)‘
=1 (4.47)

+tr {(X(g) — ,L)(Cg)) (X(g) _ ﬂ)(cg))/ »@©®" }i|
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Fig. 4.3 Graphical Group 1 Group 2
representation of two-group
confirmatory factor analysis

It is then possible to impose equality constraints on the parameters to be esti-
mated by defining them as invariant across groups. Different types of invariance can
be imposed and tested.

Metric invariance concerns the constraint of equality of factor loadings across
groups:

A® = A& = A, (4.48)
Scalar invariance restricts the scalar constants to be identical across groups:

® =78 = ¢, (4.49)

In order to illustrate the types of restrictions that need to be imposed, let us
consider the example of two groups, depicted in Fig. 4.3.
For the first item of the first group, the measurement model is

D 7y gl g 5D (4.50)

with
=0 (4.51)
This means that the latent construct §(11) is measured in the units of x(ll).
Constraining 7| to be equal across groups is identical for identification as esti-
mating it in one group and fixing the value in the other groups to be equal across
groups. For the first item of the second group, the measurement model is

XV =1 +§7 +8P (4.52)

Even though the mean of & (12) can be different from £ (11), the measurement unit is

fixed to be the units of x(ll).
For the model to have different factor means k that are meaningful, the following
conditions must be met:

1. Metric invariance, i.e., the same factor loadings A, across groups.
2. Scalar invariance, i.e., the same constant for the scale of each item T, across
groups.
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These issues are particularly relevant in cross-cultural research where measure-
ment instruments must be comparable across cultures/countries and especially when
the factor means are of interest to the research.

4.6 Application Examples Using LISREL

We now present examples of confirmatory factor analysis using LISRELS for
Windows (or AMOS). These examples include the test of a single factor analytic
structure and the estimation of a factor analytic structure with two correlated factors.

4.6.1 Example of Confirmatory Factor Analysis

The following example in Fig. 4.4 shows the input file for LISREL8 for Windows:

An exclamation mark indicates that what follows is a comment and is not part of
the LISRELS commands. Therefore, the first real input line in Fig. 4.4 starts with
DA, which stands for data. On that line, NI indicates the number of input (observed)
variables (6 in this example), MA=KM indicates the type of matrix to be modeled,
KM for correlation, or CV for covariance.

The second line of the input is used to specify how to read the data. RA indicates
that the raw data will be read (from which the correlation matrix will be automati-
cally computed) and FI=filename indicates the name of the file containing that data,
where filename is the Windows file name including the full path.

The third line, with LA, indicates that next come the labels of the indicator (input)
variables. These are shown as Q5, Q7, etc., on the following line.

The next line specifies the model, as indicated by the code MO at the beginning
of that line. NX indicates the number of indicators corresponding to the exogenous
constructs (here, there are six). NK stands for the number of ksi constructs (we have
a unique factor in this example). PH=ST indicates that the covariance matrix phi is

'Examp4-1.spl
'Raw Data From File: Examp4-1.txt

DA NI=6 MA = KM XM = 9

RA FI=C:\SAMD2\Chapter4\Examples\Examp4-1.txt

LA

Q5 Q7 Q8 Q12 Q13 Q14

MO NX = 6 NK =1 PH = ST TD = SY

LK

FactorOne 'The First Factor

FR LX(1,1) LxX(2,1) LxX(3,1) LX(4,1) LxX(5,1) LX(6,1) TD(3,2) TD(6,5)
Path Diagram

OU SE TV AD = 50 MI

Fig. 4.4 LISREL input example for confirmatory factor analytic model (examp4-1.spl)
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specified here as a standardized matrix, i.e., a correlation matrix with 1’s in the diag-
onal and 0’s off-diagonal. The covariance matrix of the measurement model error
terms, theta delta, is specified as a symmetric matrix (TD=SY). A diagonal matrix
(TD=DI) could have presented a simpler model where all covariances are zero.
However, this example illustrates how some of these parameters can be estimated.

LK, on the next line, stands for the label of the ksi constructs, although there is
only one of them in this example. That label “FactorOne” follows on the next line.

The following line starting with FR is the list of the parameters that are estimated
where LX stands for lambda x and TD for theta delta. Each is followed by the row
and column of the corresponding matrix, as defined in the model specification in
Equations (4.2) and (4.4).

The line “Path Diagram” indicates that a graphical representation of the model is
requested.

The last line of the input file describes the output (OU) requested. SE means
standard errors, TV their #-values and MI the modification indices.

The LISRELS output of such a model is given in Fig. 4.5.

In the output, as shown in Fig. 4.5, after listing the instruction commands
described earlier according to the model specified in the corresponding input file,
the observed covariance matrix (in this case a correlation matrix) to be modeled is
printed.

The “Parameter Specifications” section indicates the list and number of param-
eters to be estimated, with a detail of all the matrices containing the parameters.
The value zero indicates that the corresponding parameter is fixed and is not to be
estimated. Unless specified otherwise, the default value of these fixed parameters is
set to zero.

The number of iterations shows the number that was necessary to obtain conver-
gence and the parameter estimates follow. Below each parameter estimate value, its
standard error is shown in parentheses and the 7-value below it.

Then follow the goodness-of-fit statistics, among which those described earlier
can be found. The example run in Fig. 4.5 shows that the single factor model rep-
resents well the observed correlation matrix since the chi-squared is not statistically
significant and the GFI is high with a value of 0.98.

The modification indices are reasonably small, which indicates that freeing
additional parameters would not lead to a big gain in fit.

The diagram of such a confirmatory factor analytic model is shown in Fig. 4.6.

4.6.2 Example of Model to Test Discriminant Validity
Between Two Constructs

The following example is typical of an analysis where the goal is to assess the valid-
ity of a construct. Figure 4.7 shows the input file to estimate a two-factor model
(such analyses are usually performed two factors at a time because the modeling
of all the factors at once typically involves problems too big to obtain satisfactory
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LISRETL 8.30
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Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-99
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file C:\SAMD2\CHAPTERS\EXAMPLES\EXAMP4-1.SPL:

'Examp4-1.spl
'Raw Data From File: Examp4-1.txt

DA NI=6 MA = KM XM = 9

RA FI=C:\SAMD2\Chapter4\Examples\Examp4-1.txt

LA

Q5 Q7 Q8 Q12 Q13 Q14

MO NX = 6 NK =1 PH = ST TD = SY

LK

FactorOne !The First Factor

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) TD(3,2) TD(6,5)
Path Diagram

OU SE TV AD = 50 MI

'Examp4-1.spl

Number of Input Variables 6
Number of Y - Variables 0
Number of X - Variables 6
Number of ETA - Variables 0
Number of KSI - Variables 1
Number of Observations 138
'Examp4-1.spl
Covariance Matrix to be Analyzed
o5 Q7 Q8 Q12 Q13 Q14
Q5 1.00
Q7 0.47 1.00
Q8 0.58 0.75 1.00
Q12 0.55 0.60 0.65 1.00
Q13 0.44 0.40 0.51 0.50 1.00
Q14 0.39 0.44 0.57 0.55 0.59 1.00

'Examp4-1.spl

Parameter Specifications

LAMBDA-X
FactorOn
Q5 1
Q7 2
Q8 3

Fig. 4.5 LISRELS for Windows output example for confirmatory factor analytic model (examp4-
1.out)
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Q12 4
Q13 5
Q14 6
THETA-DELTA

Q5

Q5 7
Q7 0
Q8 0
Q12 0
Q13 0
Q14 0

'Examp4-1.spl

Number of Iterations

7

LISREL Estimates (Maximum Likelihood)

LAMBDA-X

FactorOn

Q5 0.68

Q8 0.83
(0.08)
11.01

Q12 0.81
(0.08)
10.64

Q13 0.62
(0.08)
7.46

Q14 0.66
(0.08)
8.07

PHI

FactorOn

Q5

Q5 0.54
(0.08)

7.09

Q7 - -
08 - -
Q12 - -

Fig. 4.5 (continued)

0.50
(0.08)
6.44

0.16
(0.06)
2.81

0.31
(0.06)
4.99

Q12 Q13 Q14

11

0 12

0 13 14
Q12 Q13 Q14
0.35

75
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(0.06)
5.54
Q13 - - - - - - - - 0.62
(0.08)
7.36
Q14 - - - - - - - - 0.18
(0.06)
2.89
Squared Multiple Correlations for X - Variables
Q5 Q7 Q8 Q12 Q13
0.46 0.50 0.69 0.65 0.38
Goodness of Fit Statistics
Degrees of Freedom = 7
Minimum Fit Function Chi-Square = 6.61 (P = 0.47)
Normal Theory Weighted Least Squares Chi-Square = 6.27 (P
Estimated Non-centrality Parameter (NCP) = 0.0

90 Percent Confidence Interval for NCP = (0.0 ; 9.27)

Minimum Fit Function Value = 0.048
Population Discrepancy Function Value (F0) = 0.0

90 Percent Confidence Interval for FO = (0.0 ; 0.068)

0.57
(0.08)
7.17

0.51)

Root Mean Square Error of Approximation (RMSEA) = 0.0
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.098)

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.71

Expected Cross-Validation Index (ECVI) = 0.26

90 Percent Confidence Interval for ECVI = (0.26 ; 0.32)

ECVI for Saturated Model = 0.31
ECVI for Independence Model = 3.02

Chi-Square for Independence Model with 15 Degrees of Freedom

Independence AIC = 414.09
Model AIC = 34.27
Saturated AIC = 42.00
Independence CAIC = 437.65
Model CAIC = 89.26
Saturated CAIC = 124.47

Root Mean Square Residual (RMR) = 0.020
Standardized RMR = 0.020
Goodness of Fit Index (GFI) = 0.98
Adjusted Goodness of Fit Index (AGFI) = 0.95
Parsimony Goodness of Fit Index (PGFI) = 0.33
Normed Fit Index (NFI) = 0.98
Non-Normed Fit Index (NNFI) = 1.00
Parsimony Normed Fit Index (PNFI) = 0.46
Comparative Fit Index (CFI) = 1.00
Incremental Fit Index (IFI) = 1.00
Relative Fit Index (RFI) = 0.96

Critical N (CN) = 383.87

'Examp4-1.spl

Modification Indices and Expected Change

No Non-Zero Modification Indices for LAMBDA-X
No Non-Zero Modification Indices for PHI

Modification Indices for THETA-DELTA

05 - -

Fig. 4.5 (continued)

= 402.09
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Q7 0.50 - -

Q8 1.00 - - - -

Q12 0.00 3.20 3.82 - -

Q13 0.96 0.43 0.00 0.00 - -

Q14 2.38 0.54 1.23 0.33 - - - -

Expected Change for THETA-DELTA

Q5 Q7 Q8 Q12 Q13 Q14
Q5 - -
Q7 -0.03 - -
Q8 0.04 - - - -
Q12 0.00 0.08 -0.09 - -
Q13 0.05 -0.03 0.00 0.00 - -
Q14 -0.08 -0.03 0.04 0.03 - - - -

Maximum Modification Index is 3.82 for Element ( 4, 3) of THETA-DELTA

The Problem used 6608 Bytes (= 0.0% of Available Workspace)

Time used: 0.172 Seconds

Fig. 4.5 (continued)

{0.50—> Q7 ‘\0.68

0.16 0.71
k0.31—> Q8 -=— 0.83 1.00
0.81
0.35-m=  QI2 ’/0.62

0.66

ro.ez-— Q13

0.57—8= Ql4

Chi-Square=6.27, df=7, P-value=0.50813, RMSEA=0.000

Fig. 4.6 Path diagram of confirmatory factor analytic model (examp4-1.pth)

fits). The commands are identical to those described earlier, except that now two
constructs, “FactorOne” and “FactorTwo”, are specified.

The LISRELS output corresponding to this two-factor confirmatory factor struc-
ture is shown in Fig. 4.8. The description of this output is similar to the one
described above involving a single factor. The major difference is the estimate of
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'Examp4-2.spl
'Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9

RA FI=C:\SAMD2\Chapter4\Examples\Examp4-2.txt
LA

Q5 Q7 Q8 Q12 Q13 Q14

Q6 Q9 Q10 Q11 Q17 Q18

MO NX = 12 NK = 2 PH = ST TD = SY 'CORR = Free

LK

FactorOne !'Competence Destroying
FactorTwo !'Competence Enhancing

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) C
LX(7,2) LX(8,2) LX(9,2) LX(10,2) LX(11,2) 1LX(12,2) C
TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)

Path Diagram

OU SE TV RS MR FS AD = 50 MI

Fig. 4.7 LISRELS for Windows input for model with two factors (examp4-2.spl)

the correlation between the two factors, which is shown to be —0.56 in this particu-
lar example. The diagram representing that factor analytic structure is shown in the
next figure (Fig. 4.9).

Figure 4.10 shows the input file for a factor analytic structure where a single
factor is assumed to be reflected by all the items.

Figure 4.11 is the output for such a factor analytic structure where a single factor
is assumed to be reflected by all the items.

The resulting chi-squared (x> = 126.75 in Fig. 4.11) can be compared with the
chi-squared resulting from a model with a correlation between the two factors (x> =
54.78 in Fig. 4.6). The %2 difference (126.75-54.78) has one degree of freedom and
its significance indicates that there are indeed two different constructs (factors), i.e.,
demonstrating the discriminant validity of the constructs.

4.6.3 Example of Model to Assess the Convergent
Validity of a Construct

Next, in order to assess the convergent validity, one needs to compare the fit of a
model with zero correlation between the factors with a model where the factors are
correlated (as in Fig. 4.6). The input file for a model with independent factors (zero
correlation) is shown in Fig. 4.12.

The output file for such a model with independent factors (zero correlation) is
shown in Fig. 4.13.

The independent factor model has a chi-squared of 84.34 (Fig. 4.13), which
when compared with the chi-squared of the model estimating a correlation between
the two constructs (Fig. 4.6) shows a chi-squared difference of 29.56. This differ-
ence being significant (with one degree of freedom at the 0.05 level), this indicates
that the constructs are not independent, i.e., showing convergent validity of the two
constructs.
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LISRETL 8.30
BY
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The following lines were read from file C:\SAMD2\CHAPTER8\EXAMPLES\EXAMP4-2.SPL:

'Examp4-2.spl
'Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9

RA FI=C:\SAMD2\Chapter4\Examples\Examp4-2.txt
LA

Q5 Q7 Q8 Q12 Q13 Q14

Q6 Q9 Q10 Q11 Q17 Q18

MO NX = 12 NK = 2 PH = ST TD = SY !CORR = Free

LK
FactorOne !'Competence Destroying
FactorTwo !Competence Enhancing

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) LX(7,2) LX(8,2) LX(9,2) LX(10,2) C
LX(11,2) 1X(12,2) TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)

Path Diagram

OU SE TV RS MR FS AD = 50 MI

'Examp4-2.spl
Number of Input Variables 12
Number of Y - Variables 0
Number of X - Variables 12
Number of ETA - Variables 0
Number of KSI - Variables 2
Number of Observations 134

'Examp4-2.spl
Covariance Matrix to be Analyzed

Q5 Q7 Q8 Q12 Q13 Q14

Q5 1.00

Q7 0.46 1.00

Q8 0.57 0.74 1.00
Q12 0.53 0.60 0.64 1.00
Q13 0.43 0.40 0.51 0.49 1.00

Q14 0.40 0.44 0.58 0.56 0.59 1.00
Q6 -0.13 -0.27 -0.20 -0.36 -0.06 -0.19
Q9 -0.17 -0.26 -0.18 -0.38 -0.08 -0.11
Q10 -0.13 -0.27 -0.22 -0.40 -0.19 -0.26
Q11 -0.26 -0.25 -0.23 -0.36 -0.18 -0.19
Q17 -0.19 -0.29 -0.32 -0.34 -0.26 -0.32
Q18 -0.20 -0.27 -0.21 -0.40 -0.10 -0.22

Q6 Q9 Q10 Q11 Q17 Q18
Q6 1.00
Q9 0.56 1.00

Fig. 4.8 LISRELS for Windows output for model with two factors (examp4-2.out)
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Q10 0.36 0.33 1.00

Q11 0.58 0.70 0.41 1.00

Q17 0.38 0.41 0.44 0.43 1.00

Qlis8 0.40 0.38 0.47 0.42 0.47 1.00

'Examp4-2.spl
Parameter Specifications

LAMBDA-X

FactorOn FactorTw

Q5 1 [
Q7 2 0
Q8 3 0
Q12 4 0
Q13 5 0
Q14 6 0
Q6 0 7
Q9 0 8
Q10 0 9
Q11 0 10
Q17 0 11
Q18 0 12
PHI

FactorOn FactorTw

FactorOn 0
FactorTw 13 0

THETA-DELTA

Q5 Q7 08 012 013 Q14
Q5 14
Q7 0 15
08 0 16 17
012 0 0 0 18
013 0 0 0 0 19
014 0 0 0 0 20 21
Q6 0 0 0 0 0 0
Q9 0 0 0 0 0 0
010 0 0 0 0 0 0
011 0 0 0 0 0 0
017 0 0 0 0 0 0
018 0 0 0 0 0 0

THETA-DELTA

Q6 Q9 010 011 017 018

Q6 22
Q9 23 24
010 0 0 25
011 26 27 0 28
017 0 0 0 0 29
018 0 0 0 0 0 30

'Examp4-2.spl
Number of Iterations = 10

LISREL Estimates (Maximum Likelihood)
LAMBDA-X

FactorOn FactorTw

Fig. 4.8 (continued)
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Q7 0.70 - -
(0.08)
8.59
Q8 0.80 - -
(0.08)
10.35
Q12 0.84 - -
(0.08)
11.06
Q13 0.60 - -
(0.08)
7.14
Q14 0.67 - -
(0.08)
8.18
Q6 - - 0.57
(0.09)
6.22
Q9 - - 0.56
(0.09)
6.12
Q10 - - 0.65
(0.09)
7.48
Q11 - - 0.62
(0.09)
6.99
Q17 - - 0.69
(0.09)
8.01
Q18 - - 0.69
(0.09)
8.01
PHI
FactorOn FactorTw
FactorOn 1.00
FactorTw -0.56 1.00
(0.08)
-6.93
THETA-DELTA
Q5 Q7 o8 Q12
Q5 0.58
(0.08)
7.19
Q7 - - 0.51
(0.08)
6.60
Q8 - - 0.18 0.36
(0.06) (0.06)
3.21 5.65
Q12 - - - - - - 0.30
(0.06)
5.01

Fig. 4.8 (continued)
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Q13 - - - - - - - - 0.64
(0.09)
7.35
Q14 - - - - - - - - 0.19 0.55
(0.06) (0.08)
3.01 7.04
Q6 - - - - - - - - - - - -
Q9 - - - - - - - - - - - -
Q10 - - - - - - - - - - - -
Q11 - - - - - - - - - - - -
Q17 - - - - - - - - - - - -
Q18 - - - - - - - - - - - -
THETA-DELTA
Q6 Q9 Q10 Q11 Q17 Q18
Q6 0.68
(0.10)
7.00
Q9 0.25 0.69
(0.08) (0.10)
3.27 7.04
Q10 - - - - 0.58
(0.09)
6.51
Q11 0.23 0.35 - - 0.61
(0.07) (0.08) (0.09)
3.13 4.48 6.67
Q17 - - - - - - - - 0.52
(0.09)
6.13
Q18 - - - - - - - - - - 0.52
(0.09)
6.12
Squared Multiple Correlations for X - Variables
Q5 Q7 Q8 Q12 Q13 Q14
0.42 0.49 0.64 0.70 0.36 0.45
Squared Multiple Correlations for X - Variables
Q6 Q9 Q10 Q11 Q17 Q18
0.32 0.31 0.42 0.39 0.48 0.48

Goodness of Fit Statistics

Degrees of Freedom
Minimum Fit Function Chi-Square

48

= 54.78 (P = 0.23)
Normal Theory Weighted Least Squares Chi-Square = 55.76 (P = 0.21)
Estimated Non-centrality Parameter (NCP) = 7.76

90 Percent Confidence Interval for NCP

Minimum Fit Function Value =

(0.0 ; 30.50)

0.41

Population Discrepancy Function Value (F0) = 0.058
90 Percent Confidence Interval for FO
Root Mean Square Error of Approximation (RMSEA) = 0.035
90 Percent Confidence Interval for RMSEA

Fig. 4.8 (continued)

(0.0 ; 0.23)

= (0.0 ; 0.069)
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P-Value for Test of Close Fit (RMSEA < 0.05) = 0.73
Expected Cross-Validation Index (ECVI) 0.87
90 Percent Confidence Interval for ECVI = (0.81 ; 1.04)
ECVI for Saturated Model = 1.17
ECVI for Independence Model = 5.81
Chi-Square for Independence Model with 66 Degrees of Freedom 748.31
Independence AIC = 772.31
Model AIC = 115.76
Saturated AIC = 156.00
Independence CAIC = 819.08
Model CAIC = 232.69
Saturated CAIC = 460.03
Root Mean Square Residual (RMR) = 0.048
Standardized RMR = 0.048
Goodness of Fit Index (GFI) = 0.93
Adjusted Goodness of Fit Index (AGFI) = 0.89
Parsimony Goodness of Fit Index (PGFI) = 0.58
Normed Fit Index (NFI) = 0.93
Non-Normed Fit Index (NNFI) = 0.99
Parsimony Normed Fit Index (PNFI) 0.67
Comparative Fit Index (CFI) = 0.9
Incremental Fit Index (IFI) = 0.9
Relative Fit Index (RFI) = 0.9
Critical N (CN) = 179.90
{Examp4-2.spl
Fitted Covariance Matrix
Q5 Q7 08 Q12 Q13 Q14
Q5 1.00
Q7 0.46 1.00
Q8 0.52 0.74 1.00
Q12 0.54 0.59 0.67 1.00
Q13 0.39 0.42 0.48 0.50 1.00
Q14 0.44 0.47 0.53 0.56 0.59 1.00
Q6 -0.21 =-0.22 -0.25 -0.26 -0.19 -0.21
Q9 -0.20 -0.22 -0.25 -0.26 -0.19 -0.21
Q10 -0.24 -0.26 -0.29 -0.30 -0.22 -0.24
Q11 -0.23 -0.24 -0.28 -0.29 -0.21 -0.23
Q17 -0.25 -0.27 -0.31 -0.32 -0.23 -0.26
Q18 -0.25 =-0.27 -0.31 -0.32 -0.23 -0.26
Fitted Covariance Matrix
Q6 Q9 Q10 Q11 Q17 Q18
Q6 1.00
Q9 0.56 1.00
Q10 0.37 0.36 1.00
Q11 0.58 0.70 0.40 1.00
Q17 0.39 0.38 0.45 0.43 1.00
Q18 0.39 0.38 0.45 0.43 0.48 1.00
Fitted Residuals
Q5 Q7 08 Q12 Q13 Q14
Q5 0.00
Q7 0.00 0.00
Q8 0.05 0.00 0.00
Q12 -0.01 0.01 -0.03 0.00
Q13 0.04 -0.02 0.03 -0.01 0.00
Q14 -0.04 -0.03 0.04 0.00 0.00 0.00
Q6 0.07 -0.05 0.05 -0.09 0.13 0.02
Q9 0.03 -0.04 0.07 -0.12 0.11 0.10
Q10 0.11 -0.01 0.07 -0.09 0.03 -0.01
Q11 -0.04 -0.01 0.05 -0.07 0.02 0.04
Q17 0.06 =-0.02 -0.01 -0.02 -0.03 -0.06
Q18 0.05 0.00 0.10 -0.08 0.13 0.04

Fig. 4.8 (continued)
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Fitted Residuals

Q6 Q9 Q10 Q11 Q17 Q18
Q6 0.00
Q9 0.00 0.00
Q10 -0.01 -0.03 0.00
Q11 0.00 0.00 0.00 0.00
Q17 -0.01 0.03 -0.01 0.00 0.00
Qls8 0.01 0.00 0.02 -0.01 0.00 0.00

Summary Statistics for Fitted Residuals

Smallest Fitted Residual = -0.12
Median Fitted Residual = 0.00
Largest Fitted Residual = 0.13

Stemleaf Plot

- 12
- 01998765
- 044433332221111111111000000000000000000000000
0(1122233334444
0|55556777
11001133

Standardized Residuals

Q5 Q7 Q8 Q12 Q13 Q14
Q5 - -
Q7 -0.02 - -
Q8 1.81 - - - -

Q12 -0.47 0.64 -2.05 - -

Q13 0.92 -0.57 0.85 -0.45 - -

Q14 -0.99 -0.85 1.65 -0.12 - - - -
Q6 1.05 -0.80 0.83 -1.62 1.88 0.26
Q9 0.49 -0.58 1.12 -1.97 1.52 1.43

Q10 1.71 -0.16 1.34 -1.76 0.45 -0.21

Q11 -0.59 -0.14 0.79 -1.22 0.36 0.66

Q17 1.00 -0.30 -0.20 -0.36 -0.49 -0.96

Q18 0.77 0.05 1.83 -1.57 2.05 0.68

Standardized Residuals

Q6 Q9 Q10 Q11 Q17 Q18
Q6 - -
Q9 - - - -

Q10 -0.19 -0.83 - -

Q11 - - - - 0.13 - -

Q17 -0.19 0.74 -0.29 =-0.02 - -

Q18 0.32 0.00 0.57 -0.33 -0.10 - -

Summary Statistics for Standardized Residuals

-2.05
0.00
2.05

Smallest Standardized Residual
Median Standardized Residual
Largest Standardized Residual

Stemleaf Plot

- 2100
- 1866
- 11200
- 0]98866655
- 0]4433322222111000000000000000000000
0]1334
0]556677788899
1101134
11577889
210

!Examp4-2.spl
Qplot of Standardized Residuals

Fig. 4.8 (continued)
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HpEHKOZ

o HHEdBS e

'Examp4-2.spl

Standardized Residuals

85

Modification Indices and Expected Change

Modification Indices for LAMBDA-X

FactorOn FactorTw
Q5 - 2.14
Q7 - 1.44
Q8 - 4.74
Q12 - 9.41
Q13 - 1.70
Q14 - 0.09
Q6 0.00 - -
Q9 0.01 - -
Q10 0.00 - -
Q11 0.08 - -
Q17 0.11 - -
Q18 0.29 - -

Expected Change for LAMBDA-X

FactorOn FactorTw
Q5 - 0.15
Q7 - -0.10
Q8 - 0.17

Fig. 4.8 (continued)
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012 - - -0.29
013 - - 0.13
014 - - -0.03
06 0.00 - -
Q9 0.01 - -
010 0.00 - -
011 -0.02 - -
017 -0.04 - -
018 0.06 - -

No Non-Zero Modification Indices for PHI

Modification Indices for THETA-DELTA

Q5 Q7 08 012 013 014

Q5 - -
Q7 0.48 - -
08 3.12 - - - -

012 0.22 1.53 4.28 - -

013 1.54 0.20 0.24 0.16 - -

014 1.72 1.35 2.58 0.00 - - - -
06 1.47 1.03 0.39 1.11 3.57 0.95
Q9 0.46 1.00 1.30 4.69 0.66 1.61

010 2.69 0.25 1.55 2.84 0.00 0.13

011 3.77 0.73 0.17 1.55 1.97 0.26

017 0.53 0.36 2.02 2.86 1.18 0.89

018 0.02 0.37 2.27 3.02 3.07 0.00

Modification Indices for THETA-DELTA

06 Q9 010 011 017 018
Q6 - -

Q9 - - - -

010 0.00 0.86 - -

011 - - - - 0.39 - -

017 0.13 0.73 0.09 0.15 - -

018 0.15 0.01 0.33 0.17 0.01 - -

Expected Change for THETA-DELTA

05 Q7 08 012 013 014

Q5 - -
Q7 -0.03 - -
08 0.08 - - - -

012 -0.03 0.06 -0.10 - -

013 0.07 -0.02 0.02 -0.02 - -

014 -0.07 -0.05 0.06 0.00 - - - -
06 0.06 -0.04 0.02 -0.05 0.10 -0.05
Q9 0.03 -0.04 0.04 -0.09 0.04 0.05

010 0.09 -0.02 0.05 -0.08 0.00 -0.02

011 -0.09 0.03 -0.01 0.05 -0.06 0.02

Q17 0.04 0.03 -0.06 0.08 -0.06 -0.05

018 -0.01 -0.03 0.06 -0.08 0.09 0.00

Expected Change for THETA-DELTA

Q6 Q9 Q10 Q11 Q17 Q18
Q6 - -
Q9 - - - -
Q10 0.00 -0.05 - -
Q11 - - - - 0.03 - -
Q17 -0.02 0.04 =-0.02 -0.02 - -
Q18 0.02 0.00 0.04 -0.02 -0.01 - -
Maximum Modification Index is 9.41 for Element ( 4, 2) of LAMBDA-X

!Examp4-2.spl
Covariances

X = KSI

Fig. 4.8 (continued)
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Q5 Q7 Q8 Q12 Q13 Q14

FactorOn 0.65 0.70 0.80 0.84 0.60 0.67

FactorTw -0.36 -0.39 -0.45 -0.47 -0.34 -0.37
X - KSI

Q6 Q9 Q10 Q11 Q17 Q18

FactorOn -0.32 -0.31 -0.36 -0.35 -0.38 -0.38

FactorTw 0.57 0.56 0.65 0.62 0.69 0.69

'Examp4-2.spl

Factor Scores Regressions

KSI

Q5 Q7 08 Q12 Q13 Q14

FactorOn 0.15 0.10 0.25 0.37 0.09 0.13

FactorTw -0.03 -0.02 -0.04 -0.06 -0.01 -0.02
KSI

Q6 Q9 Q10 Q11 Q17 Q18

FactorOn -0.01 -0.01 -0.03 -0.01 -0.03 -0.03

FactorTw 0.11 0.06 0.24 0.14 0.28 0.28

The Problem used 22936 Bytes (= 0.0% of Available Workspace)
Time used: 0.230 Seconds

Fig. 4.8 (continued)

Instead of defining the variances of the unobserved constructs to unity, the result
would have been the same if one lambda for each construct had been fixed to one
but the variances of these constructs had been estimated. This is illustrated with
the input, which would be needed for running this model with AMOS (although
it can be done easily with LISRELS following the principles described above, this
example uses AMOS to introduce its commands).

The input of the corresponding two-factor confirmatory factor model with AMOS
is shown in Fig. 4.14.

In AMOS, such as shown in Fig. 4.14, each equation for the measurement
model can be represented with a variable on the left-hand side of an equation
and a linear combination of other variables on the right-hand side. These equa-
tions correspond to the measurement model as specified by Equation (4.2). Inserting
“(1)” before a variable on the right-hand side indicates that the coefficient is fixed
to that value and that the corresponding parameters will not be estimated. The
program recognizes automatically which variables are observed and which are
unobserved.

Correlations are indicated by “variablel <> variable2”, where variablel and
variable2 are the labels of observed variables or of hypothetical constructs. The
output provides similar information as available in LISRELS.
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0.58 = Q5

40.51—— Q7
0.18

0. 36— Q8 65
\70
0.30 - Q12 ‘\0~80
0.84 100
40.64—» Q13 | 8—0 .60 \

0. 55— Q14 -0.56

0. 68— Q6 --_0.57 1.00/
0.25 0.56
0. 69— Q9 il
0'2.3f ,/0.62
0.35 0.58—8= Q10 0769

\ /0.69
0.61 — Q11 /
0.52 —

Q17

0.52 —m= Q18

Chi-Square=55.76, df=48, P-value=0.20619, RMSEA=0.035

Fig. 4.9 LISRELS for Windows path diagram for model with two factors (examp4-2.pth)

'Examp4-3.spl
'Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9

RA FI=C:\SAMD2\Chapter4\Examples\Examp4-2.txt
LA

Q5 Q7 Q8 Q12 Q13 Q14

Q6 Q9 Q10 Q11 Q17 Q18

MO NX = 12 NK =1 PH = ST TD = SY
LK
FactOne

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) C
LX(7,1) LX(8,1) LX(9,1) LX(10,1) Lx(11,1) LX(12,1) (o]
TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)

Path Diagram

OU SE TV RS MR FS AD = 50 MI

Fig. 4.10 LISRELS for Windows input for model with single factor (examp4-3.spl)
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LISREL 8.30
BY

Karl G. Joreskog & Dag Sorbom

This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100
Chicago, IL 60646-1704, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-99
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file C:\SAMD2\CHAPTERS\EXAMPLES\EXAMP4-3.SPL:

'Examp4-3.spl
'Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9

RA FI=C:\SAMD2\Chapter4\Examples\Examp4-2.txt
LA

Q5 Q7 Q8 Q12 Q13 Q14

Q6 Q9 Q10 Q11 Q17 Q18

MO NX = 12 NK = 1 PH = ST TD = SY

LK

FactOne !Competence Destroying

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) C
LX(7,1) 1LX(8,1) LX(9,1) LX(10,1) LX(11l,1) LX(12,1) C
TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)

Path Diagram

OU SE TV RS MR FS AD = 50 MI

'Examp4-3.spl
Number of Input Variables 12
Number of Y - Variables 0
Number of X - Variables 12

Fig. 4.11 LISRELS for Windows output of model with single factor (examp4-3.out)
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Number of ETA - Variables 0
Number of KSI - Variables 1
Number of Observations 134

{Examp4-3.spl
Covariance Matrix to be Analyzed

05 o7 08 012 013 014
Q5 1.00
Q7 0.46 1.00
08 0.57 0.74 1.00
012 0.53 0.60 0.64 1.00
013 0.43 0.40 0.51 0.49 1.00
Q14 0.40 0.44 0.58 0.56 0.59 1.00
06 -0.13 -0.27 -0.20 -0.36 -0.06 -0.19
09 -0.17 -0.26 -0.18 -0.38 -0.08 -0.11
010 -0.13 -0.27 -0.22 -0.40 -0.19 -0.26
011 -0.26 -0.25 -0.23 -0.36 -0.18 -0.19
Q17 -0.19 -0.29 -0.32 -0.34 -0.26 -0.32
Q18 -0.20 -0.27 -0.21 -0.40 -0.10 -0.22

Covariance Matrix to be Analyzed

Q6 Q9 010 011 017 018
06 1.00

Q9 0.56 1.00

010 0.36 0.33 1.00

011 0.58 0.70 0.41 1.00

Q17 0.38 0.41 0.44 0.43 1.00

018 0.40 0.38 0.47 0.42 0.47 1.00

{Examp4-3.spl

Parameter Specifications
LAMBDA-X

FactOne
Q5 1
Q7 2
Q8 3
Q12 4
Q13 5
Q14 6
Q6 7
Q9 8
Q10 9
Q11 10

Q18 12

THETA-DELTA

05 07 o8 012 013 014
Q5 13
07 0 14
08 0 15 16
012 0 0 0 17
013 0 0 0 0 18
014 0 0 0 0 19 20
06 0 0 0 0 0 0
Q9 0 0 0 0 0 0
010 0 0 0 0 0 0
011 0 0 0 0 0 0
017 0 0 0 0 0 0
018 0 0 0 0 0 0
THETA-DELTA
Q6 Q9 Q10 o11 Q17 018

Fig. 4.11 (continued)
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Q6 21
Q9 22 23

010 0 0 24

011 25 26 0 27

017 0 0 0 0 28

018 0 0 0 0 0 29

'Examp4-3.spl
Number of Iterations = 18

LISREL Estimates (Maximum Likelihood)

LAMBDA-X

Q5 0.61

Q7 0.68

Q8 0.75

012 0.85

Q13 0.57

014 0.65

Q6 -0.40

Q9 -0.40

010 -0.46

Q11 =-0.45

017 -0.48

018 -0.47
(0.09)
-5.34

PHI

FactOne

THETA-DELTA

Fig. 4.11 (continued)

91
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Q5 Q7 Q8 Q12 Q13 Q14
Q5 0.62
(0.08)
7.41
Q7 - - 0.54
(0.08)
6.96
08 - - 0.24 0.44
(0.06) (0.07)
4.00 6.51
Q12 - - - - - - 0.27
(0.06)
4.83
Q13 - - - - - - - - 0.68
(0.09)
7.54
014 - - - - - - - - 0.23 0.58
(0.07) (0.08)
3.48 7.24
Q6 - - - - - - - - - - - -
Q9 - - - - - - - - - - - -
Q10 - - - - - - - - - - - -
Q11 - - - - - - - - - - - -
Q17 - - - - - - - - - - - -
Q18 - - - - - - - - - - - -

THETA-DELTA

06 09 010 011 017 018
06 0.84
(0.11)
7.91
Q9 0.40 0.84
(0.08) (0.11)
4.80 7.92
010 - - - - 0.79
(0.10)
7.83
Q11 0.40 0.52 - - 0.80
(0.08) (0.09) (0.10)
4.88 5.95 7.85
Q17 - - - - - - - - 0.77
(0.10)
7.78
018 - - - - - - - - - - 0.78
(0.10)
7.82

Squared Multiple Correlations for X - Variables

Q5 Q7 8 Q12 Q13 Q14

0.38 0.46 0.56 0.73 0.32 0.42

Squared Multiple Correlations for X - Variables

Fig. 4.11 (continued)
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Q6 Q9 Q10 Q11 Q18
0.16 0.16 0.21 0.20 0. 0.22
Goodness of Fit Statistics
Degrees of Freedom = 49
Minimum Fit Function Chi-Square = 126.75 (P =
Normal Theory Weighted Least Squares Chi-Square 158.94 (P 0.00)
Estimated Non-centrality Parameter (NCP) 109.94
90 Percent Confidence Interval for NCP = (75.53 ;
Minimum Fit Function Value = 0.95
Population Discrepancy Function Value =
90 Percent Confidence Interval for FO = ;
Root Mean Square Error of Approximation (RMSERA)
90 Percent Confidence Interval for RMSEA (0.11
P-Value for Test of Close Fit (RMSEA < 0.05) =
Expected Cross-Validation Index (ECVI) 1.63
90 Percent Confidence Interval for ECVI = (1.37
ECVI for Saturated Model = 1.17
ECVI for Independence Model =
Chi-Square for Independence Model with 66 Degrees of Freedom 748.31
Independence AIC = 772.31
Model AIC = 216.94
Saturated AIC = 156.00
Independence CAIC = 819.08
Model CAIC = 329.97
Saturated CAIC = 460.03
Root Mean Square Residual (RMR) 0.10
Standardized RMR = 0.10
Goodness of Fit Index (GFI) =
Adjusted Goodness of Fit Index (AGFI) 0.
Parsimony Goodness of Fit Index (PGFI) 0
Normed Fit Index (NFI) = 0.83
Non-Normed Fit Index (NNFI) =
Parsimony Normed Fit Index (PNFI) 0.62
Comparative Fit Index (CFI) = 0
Incremental Fit Index (IFI) = 0
Relative Fit Index (RFI) = 0.7
Critical N (CN) = 79.62
!Examp4-3.spl
Fitted Covariance Matrix
Q5 Q7 Q8 Q12 Q14
Q5 1.00
Q7 0.42 1.00
Q8 0.46 0.74 1.00

Q12 0.52 0.58 0.64 1.00

Q13 0.35 0.39 0.42 0.48 1.

Q14 0.40 0.44 0.48 0.55 0. 1.00
Q6 -0.25 =-0.27 -0.30 -0.34 -0. -0.26
Q9 -0.25 -0.27 -0.30 -0.34 -0. -0.26

Q10 -0.28 -0.31 -0.34 -0.39 -0. -0.30

Q11 -0.27 -0.30 -0.33 -0.38 -0. -0.29

Q17 -0.30 -0.33 -0.36 -0.41 -0. -0.31

Q18 -0.29 -0.32 -0.35 -0.40 -0. -0.30

Fitted Covariance Matrix
Q6 Q9 Q10 Q11 Q18
Q6 1.00
Q9 0.56 1.00
Q10 0.19 0.18 1.00

Fig. 4.11 (continued)
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Q11 0.58 0.70 0.21 1.00
Q17 0.20 0.19 0.22 0.22 1.00
Q18 0.19 0.19 0.22 0.21 0.23 1.00

Fitted Residuals

Q5 Q7 08 Q12 013 014
Q5 0.00

Q7 0.04 0.00

08 0.11 0.00 0.00

012 0.01 0.02 0.01 0.00

013 0.09 0.01 0.08 0.01 0.00

014 0.00 0.00 0.10 0.01 0.00 0.00
06 0.11 0.00 0.10 -0.01 0.17 0.07
Q9 0.08 0.02 0.12 -0.04 0.15 0.15
010 0.16 0.05 0.13 0.00 0.07 0.04
011 0.01 0.05 0.10 0.02 0.07 0.10
017 0.11 0.04 0.04 0.07 0.01 0.00
018 0.08 0.05 0.14 0.00 0.17 0.09

Fitted Residuals

Q6 Q9 010 Q11 017 018
06 0.00

Q9 0.00 0.00

010 0.17 0.14 0.00

011 0.00 0.00 0.20 0.00

017 0.19 0.22 0.22 0.21 0.00

018 0.21 0.20 0.25 0.21 0.25 0.00

Summary Statistics for Fitted Residuals

Smallest Fitted Residual = -0.04
Median Fitted Residual = 0.05
Largest Fitted Residual = 0.25

Stemleaf Plot

- 014100000000000000000000000
0]11111112224444
0]555777788899
1100001112344
15567779
210011122
2155

Standardized Residuals

Q5 Q7 08 Q12 Q13 014
Q5 - -
Q7 0.92 - -
Q8 3.04 - - - -

Q12 0.45 0.95 0.37 - -

Q13 1.71 0.32 2.15 0.38 - -

Q14 -0.01 0.00 2.76 0.28 - - - -
Q6 1.95 0.00 2.15 -0.48 2.77 1.20
Q9 1.30 0.29 2.56 -1.16 2.37 2.63

Q10 2.79 0.97 2.91 -0.14 1.22 0.77

Q11 0.15 1.00 2.27 0.80 1.14 1.83

Q17 1.98 0.84 1.00 2.58 0.18 -0.08

Q18 1.50 1.00 3.13 -0.08 2.81 1.61

Standardized Residuals

Q6 Q9 Q10 Q11 Q17 Q18
Q6 - -
Q9 - - - -

010 2.57 2.12 - -

Q11 - - - - 3.08 - -

Q17 2.81 3.28 3.37 3.26 - -

Q18 3.17 2.93 3.88 3.18 3.86 - -

Fig. 4.11 (continued)
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Summary Statistics for Standardized Residuals

Smallest Standardized Residual = -1.16
Median Standardized Residual = 0.98
Largest Standardized Residual = 3.88

Stemleaf Plot

-1]2
- 01511100000000000000000000
0]2233344488899
110000122356789
2101113466668888899
310112233499
Largest Positive Standardized Residuals

Residual for Q8 and Q5 3.04
Residual for Q14 and Q8 2.76
Residual for Q6 and Q13 2.77
Residual for Q9 and Q14 2.63
Residual for Q10 and Q5 2.79
Residual for Q10 and Q8 2.91
Residual for Q11 and Q10 3.08
Residual for Q17 and Q12 2.58
Residual for Q17 and Q6 2.81
Residual for Q17 and Q9 3.28
Residual for Q17 and Q10 3.37
Residual for Q17 and Q11 3.26
Residual for Q18 and Q8 3.13
Residual for Q18 and Q13 2.81
Residual for Q18 and Q6 3.17
Residual for Q18 and Q9 2.93
Residual for Q18 and Q10 3.88
Residual for Q18 and Q11 3.18
Residual for Q18 and Q17 3.86

{Examp4-3.spl

Qplot of Standardized Residuals

XX
xx
x*
x*

HpBHROZ

XX X
X X
XX XX

*x
*x

WoHHETDDEI0
*
%
%

Fig. 4.11 (continued)
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Standardized Residuals

!Examp4-3.spl

Modification Indices and Expected Change
No Non-Zero Modification Indices for LAMBDA-X
No Non-Zero Modification Indices for PHI

Modification Indices for THETA-DELTA

Q5 Q7 Q8 Q12 Q13 Q14
Q5 - -
Q7 0.27 - -
Q8 7.37 - - - -
Q12 0.20 0.61 0.02 - -
Q13 3.16 0.06 1.25 0.08 - -
Q14 0.45 1.24 4.69 0.02 - - - -
Q6 3.20 0.84 1.33 0.21 4.75 0.83
Q9 1.10 0.86 2.05 3.59 0.84 1.78
Q10 7.77 0.17 6.68 0.02 0.99 0.11
Q11 1.76 0.88 0.00 3.90 1.32 0.39
Q17 3.93 0.16 0.37 6.64 0.05 0.02
Q18 2.25 0.24 7.86 0.01 5.50 0.35
Modification Indices for THETA-DELTA
Q6 Q9 Q10 Q11 Q17 Q18
06 - -
Q9 - - - -
Q10 1.41 0.01 - -
Q11 - - - - 3.21 - -
Q17 1.05 1.58 11.37 1.29 - -
Q18 2.51 0.55 15.04 1.36 14.90 - -
Expected Change for THETA-DELTA
Q5 o7 Q8 Q12 Q13 Q14
05 - -
Q7 =-0.02 - -
Q8 0.12 - - - -
Q12 0.02 0.03 -0.01 - -
Q13 0.10 -0.01 0.05 0.01 - -
Q14 -0.04 -0.05 0.09 0.01 - - - -
Q6 0.10 -0.04 0.05 =-0.02 0.11 -0.05
Q9 0.05 -0.04 0.05 -0.08 0.04 0.06
Q10 0.18 -0.02 0.13 -0.01 0.06 0.02
Q11 -0.06 0.04 0.00 0.08 -0.05 0.03
Q17 0.13 0.02 0.03 0.14 0.01 -0.01
Q18 0.10 -0.03 0.14 0.00 0.14 0.03
Expected Change for THETA-DELTA
Q6 Q9 Q10 Q11 Q17 Q18
Q6 - -
Q9 - - - -
Q10 0.07 0.00 - -
Q11 - - - - 0.09 - -
Q17 0.06 0.07 0.24 0.06 - -
Q18 0.10 0.04 0.28 0.06 0.27 - -

Fig. 4.11 (continued)
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Maximum Modification Index is 15.04 for Element (12, 9) of THETA-DELTA

|Examp4-3.spl

Covariances
X - KsSI
Q5 Q7 Q8 Q12 Q13 Q14
FactOne 0.61 0.68 0.75 0.85 0.57 0.65
X - KSI
Q6 Q9 Q10 Q11 Q17 Q18
FactOne -0.40 -0.40 -0.46 -0.45 -0.48 =-0.47

Examp4-3.spl

Factor Scores Regressions

KSI

Q5 Q7 Q8 Q12 Q13 Q14

FactOne 0.13 0.09 0.17 0.40 0.07 0.12
KSI

Q6 Q9 Q10 Q11 Q17 Q18

FactOne -0.03 -0.02 -0.08 -0.04 -0.08 -0.08

The Problem used 21704 Bytes (= 0.0% of Available Workspace)

Time used: 0.211 Seconds

Fig. 4.11 (continued)

'Examp4-4.spl
'Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9

RA FI=C:\SAMD2\Chapter4\Examples\Examp4-2.txt
LA

Q5 Q7 Q8 Q12 Q13 Q14

06 Q9 010 Q11 Q17 Q18

MO NX = 12 NK = 2 PH = DI TD = SY

LK
FactOne !'Competence Destroying
FactTwo !Competence Enhancing

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1)
LX(7,2) LX(8,2) LX(9,2) LX(10,2) LX(11,2) LX(12,2)
TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)

Path Diagram

OU SE TV RS MR FS AD = 50 MI

Fig. 4.12 LISRELS for Windows input for model with two independent factors (examp4-4.spl)
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4.6.4 Example of Second-Order Factor Model

Next, we present an example of second-order factor analysis using the same data
as in the previous examples. Since two factors are correlated, we can test a model
where these two factors reflect a single higher-order construct. Figure 4.15 shows
the LISREL input file.

For the most part, the input file contains instructions similar to the description
of the input files of regular confirmatory factor analysis. It should be noted that
the sample size is included on the data line (“NO=145"). The differences are in
the model statement where NX has been replaced by NY, the number of indicator
variables for the n’s. NE corresponds to the number of first-order factors (the n’s).
NK is set to one in this example because only one second-order factor is assumed.
GA indicates that the elements of the I' matrix will be fixed by default, although we

LISRETL 8.30
BY

Karl G. Joreskog & Dag S6rbom

This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100
Chicago, IL 60646-1704, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-99
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file C:\SAMD2\CHAPTER8\EXAMPLES\EXAMP4-4.SPL:
'Examp4-4.spl

'Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9

RA FI=C:\SAMD2\Chapter4\Examples\Examp4-2.txt

LA

Q5 Q7 Q8 Q12 Q13 Q14

Q6 Q9 Q10 Q11 Q17 Q18

MO NX = 12 NK = 2 PH =DI TD = SY !CORR = 0

LK
FactOne !Competence Destroying
FactTwo !Competence Enhancing

FR LX(1,1) LX(2,1) 1LX(3,1) Lx(4,1) LX(5,1) LX(6,1) C
LX(7,2) LX(8,2) LX(9,2) LX(10,2) LX(11,2) 1Lx(12,2) C
TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)

Path Diagram

OU SE TV RS MR FS AD = 50 MI

'Examp4-4.spl

Number of Input Variables 12

Fig. 4.13 LISRELS for Windows output of model with two independent factors (examp4-4.out)
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Number of Y - Variables 0
Number of X - Variables 12
Number of ETA - Variables 0
Number of KSI - Variables 2
Number of Observations 134

'Examp4-4.spl

Covariance Matrix to be Analyzed

05 07 08 012 013 014
05 1.00

07 0.46 1.00

08 0.57 0.74 1.00

012 0.53 0.60 0.64 1.00

013 0.43 0.40 0.51 0.49 1.00

014 0.40 0.44 0.58 0.56 0.59 1.00
06 -0.13 -0.27 -0.20 -0.36 -0.06 -0.19
09 -0.17 -0.26 -0.18 -0.38 -0.08 -0.11
010 -0.13 -0.27 -0.22 -0.40 -0.19 -0.26
011 -0.26 -0.25 -0.23 -0.36 -0.18 -0.19
017 -0.19 -0.29 -0.32 -0.34 -0.26 -0.32
018 -0.20 -0.27 -0.21 -0.40 -0.10 -0.22

06 09 010 011 017 018
06 1.00

09 0.56 1.00

010 0.36 0.33 1.00

011 0.58 0.70 0.41 1.00

017 0.38 0.41 0.44 0.43 1.00

018 0.40 0.38 0.47 0.42 0.47 1.00

'Examp4-4.spl

Parameter Specifications
LAMBDA-X

FactOne FactTwo

Q5
Q7
Q8
Q12
Q13
Q14
Q6
Q9
Q10
Q11
Q17
Q18

WWOWJOOOO0OO0OO

[
o

Coocooco0aUIAWNK
-
=

[
N

THETA-DELTA

[

Ocoooooo0oo4

18

0

=3

~
cocoocoooooco0oocoWw
coooooooo
cocooooocoocon
cocoooo
cocoocooo

Fig. 4.13 (continued)
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THETA-DELTA

06 09 010 011 017 018
06 21
09 22 23
010 0 0 24
011 25 26 0 27
017 0 0 0 0 28
018 0 0 0 0 0 29

'Examp4-4.spl

Number of Iterations = 29

LISREL Estimates (Maximum Likelihood)

LAMBDA-X
FactOne FactTwo
05 0.67 - -
(0.08)
8.11
Q7 0.71 - -
(0.08)
8.50
Q8 0.83 - -
(0.08)
10.76
Q12 0.80 - -
(0.08)
10.31
Q13 0.62 - -
(0.08)
7.29
Q14 0.67 - -
(0.08)
8.19
Q6 - - 0.56
(0.09)
6.08
Q9 - - 0.56
(0.09)
5.97
Q10 - - 0.65
(0.09)
7.35
Q11 - - 0.62
(0.09)
6.78
Q17 - - 0.68
(0.09)
7.75
Q18 - - 0.70
(0.09)
7.97
PHI

Note: This matrix is diagonal.

Fig. 4.13 (continued)
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FactOne FactTwo

Q5 Q7 Q8 Q12 Q13 Q14
Q5 0.56
(0.08)
7.04
Q7 - - 0.50
(0.08)
6.32
08 - - 0.16 0.32
(0.086) (0.06)
2.74 4.91
Q12 - - - - - - 0.36
(0.07)
5.55
Q13 - - - - - - - - 0.62
(0.09)
7.22
014 - - - - - - - - 0.18 0.55
(0.06) (0.08)
2.83 6.92
Q6 - - - - - - - - - - - -
Q9 - - - - - - - - - - - -
Q10 - - - - - - - - - - - -
Q11 - - - - - - - - - - - -
Q17 - - - - - - - - - - - -
Q18 - - - - - - - - - - - -

06 09 010 011 017 018
06 0.68
(0.10)
6.87
09 0.25 0.69
(0.08) (0.10)
3.21 6.91
010 - - - - 0.57
(0.09)
6.31
011 0.24 0.36 - - 0.62
(0.08) (0.08) (0.10)
3.08 4.40 6.53
017 - - - - - - - - 0.53
(0.09)
5.96
018 - - - - - - - - - - 0.51
(0.09)
5.74

Fig. 4.13 (continued)
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Squared Multiple Correlations for X - Variables

Goodness of Fit Statistics

Degrees of Freedom = 49
Minimum Fit Function Chi-Square = 84.34 (P = 0.0013)
Normal Theory Weighted Least Squares Chi-Square = 77.75 (P = 0.0055)
Estimated Non-centrality Parameter (NCP) = 28.75
90 Percent Confidence Interval for NCP = (8.62 ; 56.81)

Minimum Fit Function Value = 0.63
Population Discrepancy Function Value (F0) = 0.22
90 Percent Confidence Interval for FO = (0.065 ; 0.43)
Root Mean Square Error of Approximation (RMSEA) = 0.066
90 Percent Confidence Interval for RMSEA = (0.036 ; 0.093)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.16

Expected Cross-Validation Index (ECVI) = 1.02
90 Percent Confidence Interval for ECVI = (0.87 ; 1.23)
ECVI for Saturated Model = 1.17
ECVI for Independence Model = 5.81

Chi-Square for Independence Model with 66 Degrees of Freedom = 748.31
Independence AIC = 772.31
Model AIC = 135.75
Saturated AIC = 156.00
Independence CAIC = 819.08
Model CAIC = 248.79
Saturated CAIC = 460.03

Root Mean Square Residual (RMR) = 0.17
Standardized RMR = 0.17
Goodness of Fit Index (GFI) = 0.91
Adjusted Goodness of Fit Index (AGFI) = 0.86
Parsimony Goodness of Fit Index (PGFI) = 0.57

Normed Fit Index (NFI) = 0.89
Non-Normed Fit Index (NNFI) = 0.93
Parsimony Normed Fit Index (PNFI) = 0.66
Comparative Fit Index (CFI) = 0.95
Incremental Fit Index (IFI) = 0.95
Relative Fit Index (RFI) = 0.85

Critical N (CN) = 119.15

'Examp4-4.spl

Fitted Covariance Matrix

05 07 08 012 013 014
05 1.00
07 0.47 1.00
08 0.55 0.74 1.00
012 0.53 0.56 0.66 1.00
013 0.41 0.43 0.51 0.49 1.00
014 0.45 0.48 0.56 0.54 0.59 1.00
06 - - - - - - - - - - - -
09 - - - - - - - - - - - -
010 - - - - - - - - - - - -
011 - - - - - - - - - - - -
017 - - - - - - - - - - - -
018 - - - - - - - - - - - -

Fig. 4.13 (continued)
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Fitted Covariance Matrix

06 09 010 011 017 018
06 1.00
09 0.56 1.00
010 0.37 0.36 1.00
011 0.58 0.70 0.40 1.00
017 0.38 0.38 0.45 0.42 1.00
018 0.39 0.39 0.46 0.43 0.48 1.00

05 o7 08 012 013 014
05 0.00
o7 -0.01 0.00
08 0.02 0.00 0.00
012 0.00 0.03 -0.02 0.00
013 0.02 -0.03 0.00 0.00 0.00
014 -0.05 -0.04 0.02 0.02 0.00 0.00
06 -0.13 -0.27 -0.20 -0.36 -0.06 -0.19
09 -0.17 -0.26 -0.18 -0.38 -0.08 -0.11
010 -0.13 -0.27 -0.22 -0.40 -0.19 -0.26
011 -0.26 -0.25 -0.23 -0.36 -0.18 -0.19
017 -0.19 -0.29 -0.32 -0.34 -0.26 -0.32
018 -0.20 -0.27 -0.21 -0.40 -0.10 -0.22

Fitted Residuals

06 09 010 011 017 018
06 0.00
09 0.00 0.00
010 -0.01 -0.03 0.00
011 0.00 0.00 0.01 0.00
017 0.00 0.03 -0.01 0.01 0.00
018 0.01 0.00 0.01 -0.01 -0.01 0.00

Summary Statistics for Fitted Residuals

Smallest Fitted Residual = -0.40
Median Fitted Residual = -0.03
Largest Fitted Residual = 0.03

Stemleaf Plot

- 4100

- 31866

- 31422

- 21977766665

- 2|322100

- 119999887

- 113310

- 01865

- 014332111110000000000000000000000
0[1111222233

Standardized Residuals

05 o7 08 012 013 014
Q5 - -
o7 -0.39 - -
08 0.89 - - - -

012 0.04 1.59 -1.65 - -

013 0.56 -0.90 -0.10 0.01 - -

014 -1.38 -1.05 1.00 0.77 - - - -
06 -1.54 -3.17 -2.33 -4.13 -0.66 -2.23
09 -1.95 -2.97 -2.07 -4.34 -0.92 -1.28

010 -1.45 -3.06 -2.48 -4.58 -2.17 -2.96

011 -3.05 -2.91 -2.66 -4.11 -2.13 -2.18

017 -2.16 -3.32 -3.67 -3.92 -3.04 -3.66

018 -2.33 -3.08 -2.42 -4.62 -1.13 -2.49

Fig. 4.13 (continued)
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Standardized Residuals

06 09 010 011 017 018
Q6 - -

Q9 - - - -

010 -0.18 -0.83 - -

011 - - - - 0.23 - -

017 -0.06 0.92 -0.19 0.22 - -

018 0.23 -0.11 0.41 -0.44 -0.22 - -

Summary Statistics for Standardized Residuals

Smallest Standardized Residual = -4.62
Median Standardized Residual = -0.87
Largest Standardized Residual = 1.59
Stemleaf Plot
- 4166311
- 3197732111000
- 2|9755433222211
- 1196554311
- 019987442221110000000000000000000
0122246899
1|06
Largest Negative Standardized Residuals
Residual for Q6 and Q7 -3.17
Residual for Q6 and Q12 -4.13
Residual for Q9 and Q7 -2.97
Residual for Q9 and Q12 -4.34
Residual for Q10 and Q7 -3.06
Residual for Q10 and Q12 -4.58
Residual for Q10 and Q14 -2.96
Residual for Q11 and Q5 -3.05
Residual for Q11 and Q7 -2.91
Residual for Q11 and Q8 -2.66
Residual for Q11 and Q12 -4.11
Residual for Q17 and Q7 -3.32
Residual for Q17 and Q8 -3.67
Residual for Q17 and Q12 -3.92
Residual for Q17 and Q13 -3.04
Residual for Q17 and Q14 -3.66
Residual for Q18 and Q7 -3.08
Residual for Q18 and Q12 -4.62

'Examp4-4.spl

Qplot of Standardized Residuals

x*

HpEHROZ
%

XX X

XXXX
XXX
XX
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Fig. 4.13 (continued)



4.6 Application Examples Using LISREL

x*
X x *
x*
x*
XX

okt Dd
I

]

Standardized Residuals

'Examp4-4.spl

Modification Indices and Expected Change

Modification Indices for LAMBDA-X

FactOne FactTwo
Q5 - - 0.20
Q7 - - 2.35
Q8 - - 1.02
Q12 - - 15.73
Q13 - - 0.49
Q14 - - 0.89
Q6 0.20 - -
Q9 0.00 - -
Q10 1.35 - -
Q11 0.82 - -
Q17 3.42 - -
Q18 0.78 - -

Expected Change for LAMBDA-X

FactOne FactTwo
Q5 - - 0.03
Q7 - - -0.10
Q8 - - 0.06
Q12 - - -0.27
Q13 - - 0.05
Q14 - - -0.07
Q6 -0.03 - -
Q9 0.00 - -
Q10 -0.09 - -
Q11 -0.06 - -
Q17 -0.14 - -
Q18 -0.07 - -

Modification Indices for PHI

FactOne FactTwo

FactOne - -
FactTwo 25.54 - -

Expected Change for PHI
FactOne FactTwo

FactOne - -
FactTwo -0.54 - -

Fig. 4.13 (continued)

105
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Modification Indices for THETA-DELTA

05 Q7 08 Q12 013 014

Q5 - -

Q7 0.42 - -

Q8 0.99 - - - -

Q12 0.00 3.59 4.40 - -

Q13 0.94 0.21 0.01 0.04 - -

Q14 2.41 1.07 1.55 0.52 - - - -

Q6 1.18 1.09 0.17 1.21 3.24 1.12

Q9 0.27 1.11 0.94 4.50 0.55 1.37

Q10 1.81 0.33 0.80 3.39 0.09 0.33

Q11 4.05 0.76 0.19 1.19 2.12 0.24

Q17 0.35 0.37 2.98 1.85 1.56 1.03

Q18 0.34 0.47 1.19 3.71 2.34 0.04

Modification Indices for THETA-DELTA
Q6 Q9 Q10 Q11 Q17 Q18

6 - -

Q9 - - - -

Q10 0.00 0.94 - -

Q11 - - - - 0.52 - -

Q17 0.10 0.78 0.03 0.06 - -

Q18 0.12 0.00 0.16 0.19 0.05 - -

Expected Change for THETA-DELTA
Q5 Q7 Q8 Q12 Q13 Q14

Q5 - -

Q7 -0.03 - -

Q8 0.05 - - - -

Q12 0.00 0.09 -0.10 - -

Q13 0.05 -0.02 0.00 -0.01 - -

Q14 -0.08 -0.05 0.05 0.04 - - - -

Q6 0.06 -0.05 0.02 -0.05 0.09 -0.05

Q9 0.02 -0.04 0.03 -0.09 0.03 0.05

Q10 0.08 -0.03 0.04 -0.09 -0.02 -0.03

Q11 -0.09 0.03 -0.01 0.04 -0.06 0.02

Q17 0.03 0.03 -0.07 0.07 -0.07 -0.05

Q18 -0.03 -0.03 0.04 -0.09 0.08 -0.01

Expected Change for THETA-DELTA
Q6 Q9 Q10 Q11 Q17 Q18

Qo6 - -

Q9 - - - -

Q10 0.00 -0.05 - -

Q11 - - - - 0.04 - -

Q17 -0.02 0.05 -0.01 -0.01 - -

Q18 0.02 0.00 0.03 -0.02 -0.02 - -
Maximum Modification Index is 25.54 for Element ( 2, 1) of PHI
'Examp4-4.spl
Covariances

X - KsI
05 Q7 08 Q12 013 014
FactOne 0.67 0.71 0.83 0.80 0.62 0.67
FactTwo - - - - - - - - - - - -
X - KsI
Q6 Q9 Q10 Q11 Q17 Q18
FactOne - - - - - - - - - - - -
FactTwo 0.56 0.56 0.65 0.62 0.68 0.70

Fig. 4.13 (continued)
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'Examp4-4.spl

Factor Scores Regressions

KSI
FactOne 0.
FactTwo

KSI
FactOne
FactTwo 0.

The Problem used

Fig. 4.13 (continued)

! FactorOne vs.

FactorTwo in AMOS with non-zero Theta-Deltas

Time used:

0.26

23472 Bytes (=
0.207 Seconds

0.0% of Available Workspace)

$Standardized

$Smc

$Structure

Q5 = (1) FactorOne + (1) eps5
Q7 = FactorOne + (1) eps7
Q8 = FactorOne + (1) eps8
Q12 = FactorOne + (1) epsl2
Q13 = FactorOne + (1) epsl3
Q14 = FactorOne + (1) epsl4
Q6 = (1) FactorTwo + (1) epsé6
Q9 = FactorTwo + (1) eps9
Q10 = FactorTwo + (1) epslO
Q11 = FactorTwo + (1) epsll
Q17 = FactorTwo + (1) epsl7
Q18 = FactorTwo + (1) epsl8
eps8 <> eps7

epsl3 <> epslé

eps6 <> eps9

eps6 <> epsll

eps9 <> epsll

$Include = Examp4-5.amd

Fig. 4.14 AMOS input example for confirmatory factor analytic model (examp4-5.ami)

107

will specify which elements to estimate in the “FREE” line below. The covariance
matrix of the second-order factors is set to be diagonal (“PH=DI"), although in our
example, this matrix is simply a scalar. The labels for the first-order factors are the
same as in the earlier example of regular confirmatory factor analysis, except that
they now correspond to the n’s, which is why they are introduced by “LE” (Label
Etas). The labels for the second-order factor are “new,” which follows the “LK”
(Label Ksis).
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'Examp4-6.spl

'Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9 NO=145

RA FI=C:\SAMD2\CHAPTER4\Examples\Examp4-2.txt
LA

Q5 Q7 Q8 Q12 Q13 Q14

Q6 Q9 Q10 Q11 Q17 Q18

MO NY = 12 NE = 2 NK =1 GA = FI PH = DI

LE

FactorOne !Competence Destroying
FactorTwo !Competence Acquisition
LK

New

VA 1LYy 111LYy 7 2

FR LY(2,1) LY(3,1) LY(4,1) LY(5,1) LY(6,1) LY(8,2) LY(9,2) LY(10,2) C
LY (11,2) LY(12,2) GA(1,1) GA(2,1)

ST 1 ALL

Path Diagram

OU Ss Ns

Fig. 4.15 Input for second-order factor analysis using LISREL 8 (examp4-6.spl)

One of the factor loadings for each first-order factor is fixed to one in order to
define the unit of the factors to the units of that item. Finally, the parameters to be
estimated are freed; they are the elements of the factor loading matrix A and I'.

The output corresponding to this second-order factor analysis is shown in
Fig. 4.16.

The graphical representation of the results is shown in Fig. 4.17.

The results of this second-order factor analysis indicate a poor fit of the model
with a chi-squared, which is highly significant. Nevertheless, the parameter esti-
mates for the second-order factor loadings on the first-order factors correspond to
what would be expected from the correlation pattern between these two constructs
(a positive loading on FactorOne and a negative loading on FactorTwo).

LISREL 8.54
BY

Karl G. J”reskog & Dag S”rbom

This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100

Lincolnwood, IL 60712, U.S.A.

Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-2002
Use of this program is subject to the terms specified in the
Universal Copyright Convention.

Website: www.ssicentral.com

Fig. 4.16 LISREL output for second-order factor analytic model (examp4-6.out)
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The following lines were read from file C:\ SAMD2\CHAPTER4\Examples\Examp4_6.spl:
'Examp4-6.spl

'Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9 NO=145

RA FI=C:\ SAMD2\CHAPTER4\Examples\Examp4-2.txt

Number of different missing-value patterns= 7
Convergence of EM-algorithm in 5 iterations

-2 Ln(L) = 5842.05710

Percentage missing values= 0.60

Note:
The Covariances and/or Means to be analyzed are estimated
by the EM procedure and are only used to obtain starting
values for the FIML procedure

LA
Q5 Q7 Q8 Q12 Q13 Q14
06 09 010 Q11 Q17 Q18

MO NY = 12 NE = 2 NK =1 GA = FI PH = DI
LE

FactorOne

FactorTwo

LK

New

VA1lLY1l1l0LY 7 2

FR LY(2,1) LY(3,1) LY(4,1) LY(5,1) LY(6,1) LY(8,2) LY(9,2) LY(10,2) C
LY (11,2) LY(12,2) GA(1,1) GA(2,1)

ST 1 ALL

Path Diagram

OU SS NS

'Examp4-6.spl

Number of Input Variables 12
Number of Y - Variables 12
Number of X - Variables 0
Number of ETA - Variables 2
Number of KSI - Variables 1
Number of Observations 140

'Examp4-6.spl

Covariance Matrix

05 07 08 012 013 014
05 1.00
07 0.46 1.00
08 0.57 0.74 1.00
012 0.53 0.61 0.65 1.00
013 0.44 0.40 0.51 0.51 1.00
014 0.39 0.45 0.57 0.54 0.59 1.00
06 -0.14 -0.25 -0.17 -0.35 -0.06 -0.22
09 -0.16 -0.24 -0.15 -0.34 -0.08 -0.11
010 -0.12 -0.25 -0.18 -0.37 -0.20 -0.26
011 -0.24 -0.22 -0.21 -0.33 -0.19 -0.19
017 -0.18 -0.29 -0.29 -0.33 -0.26 -0.31
018 -0.19 -0.23 -0.21 -0.40 -0.11 -0.24

Covariance Matrix

06 09 010 011 017 018
06 1.00
09 0.61 1.00
010 0.41 0.35 1.00
011 0.59 0.70 0.43 1.00
017 0.43 0.42 0.45 0.42 1.00

Fig. 4.16 (continued)
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018 0.36

'Examp4-6.spl

Parameter Specifications

LAMBDA-Y
FactorOn
Q5 0
Q7 1
Q8 2
Q12 3
Q13 4
Q14 5
Q6 (]
Q9 (]
Q10 (]
Q11 (]
Q17 (]
Q18 (]
GAMMA
New
FactorOn 11
FactorTw 12
PHI
New
13
PSI
FactorOn
14
THETA-EPS
Q5
16
THETA-EPS
Q6
22

'Examp4-6.spl

Number of Iterations

FactorTw

cCVwWMNONOOOOOOO

[

FactorTw

= 7

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y

FactorOn

05 1.00

07 1.14
(0.15)
7.67

08 1.21

(0.15)
8.24

Fig. 4.16 (continued)

FactorTw

4 Confirmatory Factor Analysis

0.48

1.00
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018 0.36

'Examp4-6.spl

0.40

Parameter Specifications

LAMBDA-Y
FactorOn
Q5 0
Q7 1
Q8 2
Q12 3
Q13 4
Q14 5
Q6 (]
Q9 (]
Q10 (]
Q11 (]
Q17 (]
Q18 (]
GAMMA
New
FactorOn 11
FactorTw 12
PHI
New
13
PSI
FactorOn
14
THETA-EPS
Q5
16
THETA-EPS
Q6
22

'Examp4-6.spl

Number of Iterations

FactorTw

cCVwWMNONOOOOOOO

[

FactorTw

= 7

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y

FactorOn

05 1.00

07 1.14
(0.15)
7.67

08 1.21

(0.15)
8.24

Fig. 4.16 (continued)

FactorTw
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Q12 1.12
(0.14)
7.78
Q13 0.84
(0.13)
6.40
Q14 0.92
(0.14)
6.78
Q6 - -
Q9 - -
Q10 - -
Q11 - -
Q17 - -
Q18 - -
GAMMA
New
FactorOn 0.27
(0.08)
3.54
FactorTw -0.61

0.99
(0.12)
8.47

0.69
(0.11)
6.21

1.09
(0.13)
8.71

0.78
(0.12)
6.49

0.78
(0.12)
6.43

Covariance Matrix of ETA and KSI

FactorOn
FactorOn 1.76
FactorTw -0.69
New 1.12

PHI
New
4.15

PSI

FactorTw

1.59
-2.53

Note: This matrix is diagonal.

FactorOn

FactorTw

4 Confirmatory Factor Analysis

Squared Multiple Correlations for Structural Equations

FactorOn

Fig. 4.16 (continued)

FactorTw
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0.17 0.97
THETA-EPS

05 07 08

2.46 1.49 0.88

(0.32) (0.22) (0.16)

7.64 6.76 5.36
THETA-EPS

06 09 010

1.42 0.98 1.59

(0.21) (0.16) (0.21)

6.82 6.15 7.70

Global Goodness of Fit Statistics, Missing Data Case

-21n(L) for the saturated model =

-21n(L) for the fitted model

Degrees of Freedom =

Full Information ML Chi-Square

51

116.57 (P = 0.00)

5842.057
5958.628

Root Mean Square Error of Approximation (RMSEA) = 0.096

90 Percent Confidence Interval for RMSEA =

(0.073 ;

0.12)

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.00094

'Examp4-6.spl

Standardized Solution

LAMBDA-Y
FactorOn FactorTw
Q5 1.33 - -
Q7 1.51 - -
Q8 1.60 - -
Q12 1.49 - -
Q13 1.11 - -
Q14 1.22 - -
Q6 - - 1.26
Q9 - - 1.25
Q10 - - 0.87
Q11 - - 1.37
Q17 - - 0.98
Q18 - - 0.98
GAMMA
New
FactorOn 0.42
FactorTw -0.99

Correlation Matrix of ETA and KSI

Fig. 4.16 (continued)

113



114 4 Confirmatory Factor Analysis

Fig. 4.16 (continued) Tactordn Pt o
FactorOn 1.00
FactorTw -0.41 1.00
New 0.42 -0.99 1.00
PSI

Note: This matrix is diagonal.

FactorOn FactorTw

Time used: 0.125 Seconds

.

o

=

i

o
[

—.1.23

i

=1
o

=-0.98

o
L+l

i

-.—1.75

=_1.83

117

Chi-Square=116.57, df=51, P-value=0.00000, RMSE2=0.096

Fig. 4.17 Second-order factor analytic model (examp4-6.pth)

4.6.5 Example of Multi-group Factor Analysis

The example we will use to illustrate the analysis of factors across groups con-
cerns the subjective wellbeing of men in three different countries (USA, Austria,
and Australia). There are five items to measure subjective wellbeing. Figure 4.18
lists the input for doing this analysis in LISREL.
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Fig. 4.18 Unconstrained USAM
CFA for subjective wellbeing ~ DA NI=5 NG=3 NO=226 MA=CM
of men in three countries RA=C: \SAMD2\CHAPTER4 \EXAMPLES \usam. txt
@anp4JIB8) MO NX=5 NK=1 TX=FR KA=FI TD=SY,FI
LK
SWB
PA LX
5(1)
FI IX 11
VA 11X 11
FRTD 1 1TDh 2 2 TDh 33 TD44TD55TD S5 4
OU MI
AUSTRIAM
DA NO=63
RA=C:\SAMD2\CHAPTER4 \EXAMPLES\austriam. txt
MO LX=FR TX=FR KA=FI TD=SY,FI
LK
SWB
PA LX
5(1)
FI IX 11
VA 11X 11
FRTD11TO 2 2TDh 33T 44TD55TOS51
ou
AUSTRALIAM
DA NO=56
RA=C: \SAMD2\CHAPTER4 \EXAMPLES\australiam. txt
MO LX=FR TX=FR KA=FI TD=SY,FI
LK
SWB
PA LX
5(1)
FI IX 11
VA 11X 11
FRTD 1 1TDh 2 2 TDh 33 TD44TDS55
PD
ou

We indicate that the data file contains raw data (rather than correlations or covari-
ances) by specifying on the third line “RA=" followed by the full name of the file,
including the directory path. The first line indicates the label for the first group
(country, in this case).

The second line indicates that the data contain five indicators (“NI=5"), that
there will be three groups (“NG=3"), the number of observations in the first group
(“NO=226") and that the covariance matrix will be analyzed (“MA=CM”).

The model line (which starts with “MQO”) indicates that there will be 5 x indi-
cators (observed items), one factor £ (“NK=1"), and that Tau is to be estimated
(“TX=FR”) but Kappa is fixed (“KA=FI"). ®; is specified as symmetric because
we will estimate some of the covariance terms that appeared to be non-zero.

We label the Factor as “SWB” for subjective Wellbeing, following the line LK
for Label Xsi. The Lambda matrix is then specified with five rows of 1’s and the first
value is fixed to the value 1 (the line “FI LX 1 1” fixes the parameter and the line
“VA 1 LX 1 17 sets it to the value 1). The diagonal elements of the measurement
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error covariance matrix are then freed so that these elements can be estimated (as
well as one of the covariances).

Then the output line “OU MI” requests that the modification indices be included
in the output.

Similar information is then entered in turn for the other two groups, except that
some of the parameters do not need to be repeated.

The path diagram is requested through the instruction “PD”.

For this unconstrained analysis, the confirmatory factor analysis is conducted
country by country separately. The chi-square for the three countries is the sum of
the chi-squares for each of the three groups.

Because no constraints are imposed, the construct means cannot be estimated and
each mean (in each country) is zero. Figure 4.19 gives the values of the estimated
parameters on a graphical representation of the model.

USA AUSTRIA AUSTRALIA

Fig. 4.19 Unconstrained estimates (examp4-7.pth)

It is clear from Fig. 4.19 that the estimated loading parameters are country
specific.

In metric invariance, the factor loadings are constrained to be the same across
groups. The scalar values Tau can, however, vary across groups, which makes it
impossible to assess different means for the construct across groups. Figure 4.20
lists the input to run such a partially constrained model.

The input in Fig. 4.20 is identical to the unconstrained estimation, except for the
statement concerning the factor loadings in the second and third group. Indeed, for
these two countries, the statement “LX=IN" indicates that these parameters must
be constrained to be invariant, i.e., equal across groups. Figure 4.21 provides the
output for this problem.

Although the error variances vary across countries, the factor loadings are identi-
cal, i.e., invariant. As indicated above, the means of the unobserved factors are still
zero for each group.

In the scalar invariance model, the factor loadings are equal, i.e., invariant across
groups as in metric invariance. However, in addition, the scalars Tau are also invari-
ant. This is indicated as in Fig. 4.22 with “TX=IN" for the last two groups for Tau
to be invariant or equal across groups.

The means are then shown in Fig. 4.23.
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Fig. 4.20 LISREL input for UsaM

metric invariance model of DA NI=5 NG=3 NO=226 MA=KM

RA=C: \SAMD2\CHAPTER4 \EXAMPLES \usam. txt

MO NX=5 NK=1 TX=FR KA=FI TD=SY,FI

LK

SWB

PA 1IX

5(1)

FIIX11

VA 1I1IX11
FRTD11TDh 22T 33 Tb44TDS55TD S5 4
OU MI

AUSTRIAM

DA NO=63

RA=C: \SAMD2\CHAPTER4 \EXAMPLES\austriam. txt
MO LX=IN TX=FR KA=FI TD=SY,FI

LK

SWB
FRTD11TD 22T 33T 44TO55TS51
ou

AUSTRALIAM

DA NO=56

RA=C: \SAMD2\CHAPTER4 \EXAMPLES\australiam. txt
MO LX=IN TX=FR KA=FI TD=SY,FI

subjective wellbeing for three
countries (examp4-8.1s8)

1K
SWB
FRTD 11TD22TD33TD44TD5S5
PD
ou
USA AUSTRIA AUSTRALIA

Fig. 4.21 Output for metric invariance (examp4-8.pth)

It can be seen from Fig. 4.23 that the means of the SWB factor in the USA
and Austria are almost the same (zero for the USA and close to zero for Austria but
slightly below as indicated by the negative sign before the 0.00). However, the mean
is —0.58 for SWB in Australia, indicating an inferior perception of wellbeing in that
country relative to the USA and Austria.

The full outputs are not listed here, as they provide the same information as in
the case of single-group confirmatory factor analysis. The chi-squared of each of
these models can be compared because these are nested constrained models. The
difference in chi-squares with the proper difference across models in the degrees
of freedom is also chi-squared distributed and can serve to test the extent of the
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Fig. 4.22 LISREL input for UsaM

scalar invariance model DA NI=5 NG=3 NO=226 MA=CM

RA=C: \SAMD2\CHAPTER4 \EXAMPLES \usam. txt

MO NX=5 NK=1 TX=FR KA=FI TD=SY,FI

LK

SWB

PA 1IX

5(1)

FIIX11

VA 11X 11

FRTD11TDh22TDb 33 Tb44TD55TD S5 4
OU MI

AUSTRIAM

DA NO=63

RA=C: \SAMD2\CHAPTER4 \EXAMPLES\austriam. txt
MO LX=IN TX=IN KA=FR TD=SY,FI

LK

SWB

FRTD11TD 22T 33T 44TD55TS51
ou

AUSTRALIAM

DA NO=56

RA=C: \SAMD2\CHAPTER4 \EXAMPLES\australiam. txt
MO LX=IN TX=IN KA=FR TD=SY,FI

(examp4-9.spl)

LK
SWB
FRTD 1 1TDh22TDb 33TDb44TDS5S5
PD
ou
USA AUSTRIA AUSTRALIA

Fig. 4.23 Factor means with scalar invariance model (examp4-9.pth)

loss in fit due to the imposition of the constraint. Insignificant chi-squares when
imposing metric invariance first and scalar invariance next lead to conclude the
appropriateness of a comparison across groups.

The outputs of the three models under different constraints are not included
beyond their graphical representations. The basic statistics needed are (1) the num-
ber of data points to be reproduced, (2) the number of parameters to be estimated,
and (3) the chi-square values for each of the models.

First, we calculate the number of data points available. For each country, there
is a 5x5 covariance matrix, which provides 15 different data points, i.e., 45 for the
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three countries. In addition, there are five means for the five items for each country,
i.e., 15 means. The total number of data points is, therefore, 45+15 = 60.

Next, we calculate the number of parameters to be estimated for each model.
Table 4.1 provides the details.

In the unconstrained model, there are four lambdas to be estimated for each coun-
try (one loading must be fixed to unity to define the unit of measurement); this is
indicated in the corresponding cell of the table by “4+4+4”. In both the metric and
scalar invariance models, there are only four lambdas to be estimated since these
lambdas are constrained to be equal across groups. The error term variances are five
for each country but for two countries, a covariance term has also been estimated
(although Figs. 4.19 and 4.21 show two estimated covariances ®; per country, one
covariance in the USA and Austria is close to zero so that only one covariance for
each of these two countries and none for Australia are estimated in the model for
which the chi-squares are shown in Table 4.1); this explains the “6+6+5”, as no
covariance is estimated for the third country.

Table 4.1 Number of parameters and degrees of freedom of each model

Parameter Unconstrained Metric invariance Scalar invariance
model model model

Ay 4+4+4 4 4

[ 1+1+1 1+1+1 1+1+1

B 6+6+5 6+6+5 6+6+5
5+5+5 5+5+5 5

K 0 0 0+1+1

# of parameters 47 39 31

# of degrees of freedom 13 21 29

Chi-squared 14.79 25.26 40.00

When subtracting the number of parameters from the number of data points (i.e.,
60), one obtains the degrees of freedom for each model.

Given the nested structure of these three models, it is possible to compare the
extent to which imposing additional constraints makes the fit worse. When compar-
ing the unrestricted model to the metric invariance constraint (same loadings across
groups), the chi-squared goes from 14.79 to 25.26, that is a difference of 10.47,
which is chi-squared distributed with 8 degrees of freedom (21-13). The critical
chi-squared with 8 degrees of freedom at & = 0.05 is 15.51. Consequently, we fail to
reject this difference as significant. This supports the restriction that there is metric
invariance.

Similarly, we can further evaluate the impact of the restriction that there is
scalar invariance by comparing the chi-squares of the metric invariance model
with that of the scalar invariance model. The chi-square increases from 25.26 to
40.00 when imposing the constraint that the tau’s are the same, even if we now
can estimate the mean of the unobserved construct relative to one of the coun-
tries (USA) that serves as reference. The difference (40.00 — 25.26) = 14.74 is
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still not significant with 8 degrees of freedom (29 — 28) at « = 0.05. We therefore
conclude for scalar invariance, which allows us to interpret the means estimated
under this scalar invariance model. These means are shown in Fig. 4.23, as indicated
above.

4.7 Assignment

Using the SURVEY data, estimate the parameters of a measurement model corre-
sponding to a confirmatory factor analysis of two or three constructs. Include an
analysis of convergent and discriminant validity.

Considering a categorical variable that distinguishes between respondents, define
several groups of respondents (e.g., respondents of different ages). Then, perform a
multi-group analysis to test the invariance of the measurement model of your choice.

The SAS file listed in Fig. 4.24 shows an example of how to create a new data
file to use with LISREL containing a subset of the data especially that may contain
only the items relevant for your analysis.

/* Assignd.sas */
filename survey 'C:\SAMD2\CHAPTER4\Assignments\survey.asc';
data new;
infile survey firstobs=19;
input (Age Marital Income Educatn HHSize Occuptn Location
TryHair LatStyle DrssSmrt BlndsFun LookDif
LookAttr GrocShp LikeBkng ClthFrsh WashHnds Sportng LikeClrs
FeelAttr TooMchSx Social LikeMaid ServDnrs SaveRcps LikeKtch) (3.)
#2 (LoveEat SpirtVal Mother ClascMsc Children Applianc ClsFamly
LovFamly TalkChld Exercise LikeSelf CareSkin MedChckp
EvngHome TripWrld HomeBody LondnPrs Comfort Ballet Parties
WmnNtSmk BrghtFun Seasonng ColorTV SlppyPpl Smoke) (3.)
#3 (Gasoline Headache Whiskey Bourbon FastFood Restrnts OutFrDnr
OutFrLnc RentVide Catsup KnowSont PercvDif BrndLylt
CatgMotv BrndMotv OwnSonit NecssSon OthrInfl DecsnTim
RdWomen RdHomSrv RdFashn RdMenMag RdBusMag RdNewsMg
RdG1Mag) (3.)
#4 (RdYouthM RdNwsppr WtchDay WtchEve WtchPrm
WTchLate WtchWknd WtchCsby WtchFmTs WtchChrs WtchMoon
WtchBoss WtchGrwP WtchMiaV WtchDns WtchGold WtchBowl) (3.);
data _NULL_;
set new;
TAB = ',';
FN = " C:\SAMD2\CHAPTER4\Assignments\SURBSUB.CSV";
file PLOTFILE filevar=FN;
put TryHair TAB LatStyle TAB DrssSmrt TAB BlndsFun TAB LookDif;
run;

Fig. 424 SAS code example to create a new data file containing a subset of the full survey data
to use with LISREL
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Chapter 5
Multiple Regression with a Single
Dependent Variable

This chapter covers the principles which are basic to understanding properly the
issues involved in the analysis of management data. This chapter cannot constitute
the depth which goes into a specialized econometric book. It is however designed
to provide the elements of econometric theory essential for a researcher to develop
and evaluate regression models. Multiple regression is not a multivariate technique
in a strict sense in that a single variable is the focus of the analysis: a single depen-
dent variable. Nevertheless, the multivariate normal distribution is involved in the
distribution of the error term, which, combined with the fact that there are multiple
independent or predictor variables, leads to considering simple multiple regression
within the domain of multivariate data analysis techniques.

The first section of this chapter presents the basic linear model with inferences
obtained through the estimation of the model parameters. The second section dis-
cusses an important aspect of data analysis, especially in the context of testing
contingency theories — the issue of heterogeneity of coefficients. While many other
econometric issues remain, such as autocorrelation or multicollinearity, the reader
is referred to specialized books for these topics.

5.1 Statistical Inference: Least Squares and Maximum
Likelihood

The linear model is first presented with its basic assumptions. Then, point estimates
using the least squares criterion are derived, followed by the maximum likelihood
estimation. Finally, the properties of these estimators are discussed.

5.1.1 The Linear Statistical Model

The dependent variable y; is modeled as a linear function of K independent
variables:

Yy =X B+ e 5.1
Tx1 TxKgx1 TIxl1
H. Gatignon, Statistical Analysis of Management Data, 123
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where T = number of observations (for example, T periods), X = matrix of K inde-
pendent variables, 8 = vector of K weights applied to each independent variable
k, y = vector of the dependent variable for t = 1 to 7, and e = vector of residuals
corresponding to a unique aspect of y, which is not explained by X.

It should be noted that X is given, fixed, observed data. X is, in fact, not
only observable, but is also measured without error (the case of measurement
error is discussed in Chapter 10). We assume that X is correctly specified. This
means that X contains the proper variables explaining the dependent variable with
the proper functional form (i.e., some of the variables expressed in X may have
been transformed, for example, by taking their logarithm). Finally, the first col-
umn of X is typically a vector where each element is 1. This means that the first
element of the parameter vector 8 is a parameter which corresponds to a con-
stant term, which applies equally to each value of the dependent variable y,; from
t=1toT.

5.1.1.1 Error Structure

Some assumptions need to be made in order to be able to make some statistical
inferences. Not all the assumptions below are used necessarily. In fact, in Section
5.1.4.3, we identify which assumptions are necessary in order to be able to obtain
the specific properties of the estimators. Because y and X are given data points and
B is the parameter vector on which we want to make inferences, the assumptions
can only be on the unobserved factor e.

Assumption 1: Expected Value of Error Term

Ele]=0 (5.2)
Assumption 2: Covariance Matrix of Error Term
Homoscedasticity
Usually, each observation has an error term e¢; independently and identically
distributed with the same variance.

e~ iid = E [e¢'] = 0’Ir (5.3)

where I = identity matrix.
This means that the variances for each observation ¢ are the same and that they
are uncorrelated. The unknown parameters that need to be estimated are 8 and o2,

Heteroscedasticity

More generally,

Elee]=0c’¥ = & (5.4)
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Note that &, a covariance matrix, is a symmetric matrix. Heteroscedasticity
occurs, therefore, when W 3 I. This occurs if either the diagonal elements of the
matrix ¥ are not identical (each error term e has a different variance), and/or if its
oft-diagonal elements are different from zero.

Assumption 3: Normality of Distribution

The probability density function of the error vector can be written formally as per
Equation (5.5) for the case of homoscedasticity or Equation (5.6) for the case of
heteroscedasticity:

e ~ N(0,0°T) (5.5)
or

e~ N(0,9) (5.6)

5.1.2 Point Estimation

Point estimates are inferences that can be made without the normality assumption
of the distribution of the error term e. The Problem can be defined as follows: to find
a suitable function of the observed random variables y, given x, which will yield the
“best” estimate of unknown parameters.

We will restrict 8 to the class that are linear functions of y.

B =AY (5.7)

Kx1 KxTTx1

The elements of the matrix A, {ay,} are scalars that weight each observation; A
is a summarizing operator.
In order to solve the problem defined above, we need (1) to select a criterion,

(2) to determine the A matrix and, consequently, B , and (3) to evaluate the sam-
pling performance of the estimator. These three issues are discussed in the following
sections.

5.1.2.1 OLS Estimator
We now consider the case of homoscedasticity where

=1 (5.8)

The criterion which is used to estimate the “best” parameter is to minimize the
sum of squares residuals:

Minli = ¢ e =(y—Xp)(y—Xp) (5.9)

=yy —-2y'Xg + XX (5.10)

noting that y'XpB = B'X’y is a scalar.
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This criterion is the least squares criterion, and this problem is resolved by taking
the derivative relative to the parameter vector 8, setting it to zero and solving that
equation:

al
ZL _2X'XB — 2X'y = 0 (5.11)
ap
Note that the derivative in Equation (5.11) is obtained by using the following
matrix derivative rules also found in the appendix:

da'v V' Av
= d - A A/
v = o sy
and especially:
2y'XpB ,
=2X 5.12
2B y (5.12)

Therefore, applying these rules to Equation (5.10), one obtains
B=b=(XX)"'XYy (5.13)

This assumes that XX can be inverted. If collinearity in the data exists, i.e., if a
variable x; is a linear combination of a subset of the other x variables, the inverse
does not exist (the determinant is zero). In a less strict case, multicollinearity can
occur if the determinant of X'X approaches zero. The matrix may still be invertible
and an estimate of 8 will exist. We will briefly discuss the problem in subsection
“computation of covariance matrix” of Section 5.1.4.2.

b is a linear function of y:

b = Ay (5.14)
where

A=XX "X (5.15)

5.1.2.2 GLS or Aitken Estimator

In the general case of heteroscedasticity, the covariance matrix of the error term
vector is positive definite symmetric:

W= Ip (5.16)

The criterion is the quadratic form of the error terms weighted by the inverse of
the covariance matrix. The rationale for that criterion is best understood in the case
where W is diagonal. In such a case, it can be easily seen that the observations with
the largest variances are given a smaller weight than the others.
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The objective is then

Minl, = €W le=(y—XB) v ! (y—-Xg) (5.17)
_ N 1 A\ Th! _
=|yV¥ XY ) (y—XB) (5.18)
=yU ly+ XV IXB- g X vy yulxp (5.19)
Ixkkxt TXT Tx1 1x1
=y v ly+ gXvIXg — 2y v Xg (5.20)

Minimizing the quadratic expression in Equation (5.20) is performed by solving
the equation:

oh 1, —1 7y —1

ﬁzz(xqf X)ﬂ—ZX\LI y=0 (5.21)
A A —1

= B =PBas = (X’\Jf—lx) X'wly (5.22)

Consequently, B is still a linear function of y such as in Equation (5.14), but with
the linear weights given by

—1
A= (X’\Jf—lx) X'w! (5.23)

5.1.3 Maximum Likelihood Estimation

So far, the estimators which we have derived are point estimates. They do not allow
the researcher to perform statistical tests of significance on the parameter vector
B. In this section, we will derive the maximum likelihood estimators, which lead
to distributional properties of the parameters. The problem is to find the value of
the parameter, 8, which will maximize the probability of obtaining the observed
sample.

The assumption needed to derive the maximum likelihood estimator is the normal
distribution of the error term:

e~ N (o,ale) (5.24)

It is then possible to write the likelihood function, which for the homoscedastic
case is

-T2 1
0 (Ba?ly) = (270%) exp{—ﬁw—xm’(y—xm} (5.25)

or for the case of heteroscedasticity:

) 1
B(Bo?ly) = (2m02) W exp {‘m (=X ¥~y - Xﬂ)}
(5.26)
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We can then maximize the likelihood or, equivalently, its logarithm,

T 1
Max /] <=> MaxLnl; <=> Max |:—§Ln (27102) ~ 252 (y—XB) (y — Xﬂ)i|
o

(5.27)
which is equivalent to minimizing the negative of that expression, i.e.,

: T 2 1 /

Min | =Ln (2710 ) b —(y—XB) (y — XB) (5.28)

2 202
This can be done by solving the derivative of Equation (5.28) relative to f8.

a[—Ln(/ ~ _

% —0= B, = (XX) "' Xy (5.29)

which is simply the least square estimator.
Similar computations lead to the maximum likelihood estimator in the case of
heteroscedasticity, which is identical to the generalized least squares estimator:

~ —1
B, = (x’qf—lx) X'wly (5.30)

We can now compute the maximum likelihood estimator of the variance by find-
ing the value of o that maximizes the likelihood or that minimizes the expression in
Equation (5.28):

Min Eann + TLno + %0_2 y—XB) (y— Xﬂ)} (5.31)

This is solved by setting the derivative relative to ¢ to zero:

dl—Ln()] T 1

= ~+5(-207) - XB/ (y—X) =0 (532)

This results in

T 1 1

T
L -XB G -XB) =0 S y-XB) (y-XB) ==  (533)
g g g g

which leads to the maximum likelihood estimator:
52—1( Xﬁ)/( X[i)—lé’é (5.34)
=7 y 1 y =7 .

where € is the vector of residuals obtained when using the maximum likelihood
estimator of B to predict y.
The same computational approach can be done for the heteroscedastic case.
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5.1.4 Properties of Estimator

We have obtained estimators for the parameters 8 and o. The next question is to find
out how good they are. Two criteria are important for evaluating these parameters.
Unbiasedness refers to the fact that, on the average, they are correct, i.e., on the
average, we obtain the true parameter. The second criterion concerns the fact that it
should have the smallest possible variance.

5.1.4.1 Unbiasedness

Definition: An estimator is unbiased if its expected value is equal to the true
parameter, i.e.,

E [ﬂ] —B (5.35)

~ ~

b and B, and, a fortiori, the maximum likelihood estimators B, and f8,, are linear
functions of random vector y. Consequently, they are also random vectors with the
following mean:

E[b]=E [(X’X)‘1 X’y] —E [(X’X)_1 X' (XB + e)] (5.36)
—E ’7(X’X)_1 XX+ (X'X) ! X’e—‘ (5.37)
[ —
1
=B+ (XX) 'XE[e]=p (5.38)
S —
=0

This proves the least square estimator is unbiased. Similarly, for the generalized
least squares estimator:

~ -1 —1
E [ﬂ] —E [(X’\IJ_IX) X’\ll_ly} —B+E [(X’\IJ_IX> X’\ll_le} —B
(5.39)
This means that on the average it is the true parameter; it is unbiased.

5.1.4.2 Best Linear Estimator

How do the linear rules above compare with other linear unbiased rules in terms
of the precision, i.e., in terms of the covariance matrix? We want an estimator that
has the smallest variance possible. This means that we need to compute the covari-
ance matrix of the estimator and then, we will need to show that it has minimum
variance.
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Computation of Covariance Matrix

The covariance of the least squares estimator b is

Ty, = E[(b—E[b]) (b~ E[b])]

KxK
=E [(b —B)(b—p)]
—E ((X’X)_l X'y - B) ((XX) "' Xy - ﬂ)/}
_E ((x/x)—1 X (XB+e) —B) ((XX) ' X (XB+e) ﬂ)/}
1 | (5.40)
—E (XX) X'eeX (X'X) ']
= (XX)” X'E[ee] X (x'X)
= (x%) 7' X (o71) X (X'X) '
=02 (X'X)” XX (X'X)”"
=02 (X'X)”!
Therefore 5 1
Iy =o” (X'X) (5.41)
KxK

In the case of multicollinearity, (X'X)~! is very large (because the determinant
is close to zero). This means that the variance of the estimator will be very large.
Consequently, multicollinearity results in parameter estimates which are unstable.

The variance—covariance matrix of the generalized least squares estimator B is,
following similar calculations:

=K [(ﬂ - ﬂ) (/AJ - ﬂ)/} =E (X’\IJ‘IX)_1 X'wleewIX (X’\y—lx)_l
(5.42)

—1
%;=0’ (x’qf—lx) (5.43)

BLUE (Best Linear Unbiased Estimator)

Out of the class of linear unbiased rules, the OLS (or the GLS depending on the error
term covariance structure) estimator is the best, i.e., provides minimum variance. We
will do the proof with the OLS estimator when ¥ = I; however, the proof is similar
for the GLS estimator when ¥ # I.

The problem is equivalent to minimizing the variance of a linear combination of
the K parameters for any linear combination.

Let ¢ be a vector of constants.
Kx1

0 = ¢ B isascalar.
Ix1 IxKKx1
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The least squares estimator of & is

1

0s = ¢'b = ¢/ (X'X) Xy (5.44)

The problem is therefore to find out if there exists another unbiased linear
estimator, which is better than the least squares estimator.

An alternative linear estimator would be written in a general way as

6 =AY +a (5.45)
1x1 I1xT Tx1 1x1

6 should be unbiased. This means that
VB: E [é] —o'B (5.46)
By substitution of the expression of the estimator 0
E[6] = E[A'y+a] = AE[y] +a (5.47)
=AXB+a (5.48)

For 6 to be unbiased, Equation (5.46) must be verified, i.e.,

9'B=AXB+a (5.49)
This can only be true if
a=0 (5.50)
and
o =A'X (5.5

What is the value of A which will minimize the variance of the estimator? The
variance is

v[e]=aviyla (5.52)
However,

V[y] = VIXB +el
Tx1

E[(XB+e)—EXB+e) (XB+e)—~ EXB+e)]

=E[ee] =01
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Therefore,
% [é] — o2A'A (5.54)

The problem now is to minimize V [é] subject to the unbiasedness restrictions
stated in Equations (5.50) and (5.51), i.e.,

Mino2A’A
st =A’X
This is a Lagrangian multiplier problem.
The Lagrangian is
L=0c2A A +2 )J(<p—x’ A) (5.55)

IXT Tx1 IxK \gx1 KxTTx1

oL _ 2024 = 20X =0 (5.56)

A ’
Therefore,

a2A —AX' =0
GIAX —MX'X =0

M =02AX (X'X) ! -7
V=02 (XX)7
In addition,
oL,
=9 —AX=0 (5.58)

Considering again the derivative relative to A given in Equation (5.56), i.e.,

oL
= 20%A — X
9A

replacing A by the expression obtained in Equation (5.57), we obtain

oL _

5= 2624’ — 2029’ (X'X) ' X' =0 (5.59)
and, therefore,

1

A=¢ (XX) X (5.60)

However,

0=Ay
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Thus, the minimum variance linear unbiased estimator of ¢/ is obtained by
replacing A’ with the expression in Equation (5.60):

6=¢ (XX) ' XYy (5.61)
which is the one obtained from the ordinary least squares estimator:
6=¢'b (5.62)

We have just shown that the OLS estimator has minimum variance.

5.1.4.3 Summary of Properties

Not all three assumptions discussed in Section 5.1.1 are needed for all the properties
of the estimator. Unbiasedness only requires assumption #1. The computation of
the variance and the BLUE property of the estimator only involve assumptions #1
and 2, and do not require the normal distributional assumption of the error term.
Statistical tests about the significance of the parameters can only be performed with
assumption #3 about the normal distribution of the error term. These properties are
shown in Table 5.1.

Table 5.1 Properties of estimators

Property Assumption(s) needed
EDb|X]=p #1

V[b[X, 02] =02 (X'X) " #1,2

b is BLUE #1,2

b is the MLE #3

b~ N (B, 0% (xX) ") #

5.1.5 R-Squared as a Measure of Fit
We first present the R-squared measure and its interpretation as a percentage of

explained variance in the presence of homoscedasticity. We then discuss the issues
that appear when the error term is heteroscedastic.

5.1.5.1 Normal Case of Homoscedasticity

y=y+é (5.63)

Let y be the T x 1 vector containing 7 times the mean of y. Subtracting y from
each side of Equation (5.63):

y-F=y-§+é (5.64)
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Multiplying each side by its transpose:

Y-PVE-N=F-Vy+&F-y+8 (5.65)
=F-YF-D+ee+éF-N+GF-y'e (5.66)
=y-NF-H+ee+20-ye (5.67)
=y -yF-y+ee+23e—-ye (5.68)

The last term in the equation is equal to 0 because

§'é = (XBye = f'Xe=pX(y—Xp) =B (Xy—XXB)

N N (5.69)
=B Xy - X'XX'X)"'Xy) = Xy - X'y) = 0
and y'é = 0 because it is the mean of the error term, which is zero if it contains a
constant term.

Therefore, the equality in Equation (5.65) shows that the total sum of squares
(TSS) is equal to the regression sum of squares (RSS) plus the error sum of squares
(ESS):

— — A =/ /A~ - ApA
Y- G-9=F-y) F-3) + ¢e (5.70)
TSS = RSS + ESS '

Consequently, a measure of fit is the R*:

5 e ESS

—1—721——
Y-y -y TSS

This measure can be interpreted as the proportion of explained variance because
of Equation (5.70). For the same reason,

(5.71)

R* € [0,1]

It should be noted that if Equation (5.63) does not contain a constant term, the
equality in Equation (5.70) does not hold because y'é # 0. In such a case, the R?
computed as in Equation (5.71) cannot be interpreted as the percentage of explained
variance.

5.1.5.2 Case with Non-scalar Error Covariance Matrix E[ee’ ]=<I>9é021
y=XB+é=y+é (5.72)

where the appropriate estimator is the GLS estimator:

A —1
B= (X’cb—lx) X oy (5.73)
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Considering again Equation (5.64)
y—-y=y—-y+é (5.74)

Multiplying each side by its transpose

Y-DG-D=F-5+¢ (F-3+¢ (5.75)
(-3 -y +ee+¥ G-y +(F-7) e (5.76)
=GF-3) G-y +&e+2(-3) ¢ (5.77)
=F-9) F-3)+ee+2(Fe—ye) (5.78)

The problem this time is that the last term in the equation is not equal to 0,

because
~ 7

§'e = (Xﬁ)/ e=pgXe=gxX (y - XB) y (X’y - X’XB)

/ (5.79)
= (Xy-XXX®'X)"'X'dy) £0
Therefore,
Roi- ¢ (5.80)
Y-y -y

cannot be interpreted any longer as the proportion of explained variance because the
equality in Equation (5.70) is not true any longer. For the same reason, R> ¢ [0,1].
In fact, R? ¢ [—oo,1].

5.2 Pooling Issues

The pooling issues refer to the ability to pool together subsets of data. Therefore,
this concerns the extent to which datasets are homogeneous or are generated by the
same data generating function. This question can be addressed by testing whether
the parameters of different subsets of data are the same or not. If the parameters
are different, the objective may become, in a second stage, to develop models which
contain variables explaining why these parameters differ. This would lead to varying
parameter models, which are outside the scope of this book.

5.2.1 Linear Restrictions

Let us write a linear model for two sets of data with 77 and 7> observations,
respectively:

Dataset#l: y; = X; B, +u (5.81)
Ty x1 Ty xK
Dataset#2: yo» = X B+ w (5.82)

Tox1  ThxK
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where the y’s and the X’s represent the same variables in each subset of data. The
subscripts in Equations (5.81) and (5.82) represent the two subsets of observations.
For example, the dependent variable may be sales of a product and X may contain a
vector of 1’s for an intercept and the price of the product. The subscript can represent
the country (countries 1 and 2 in this case). There would be T time periods of
observations in country 1 and 73 periods in country 2.

Assembling the two data sets together gives

yi|_ [ X1 0 []|B u
=] B+ ] 653
or

y = B + u (5.84)
Tx1 Tx2Kopgyw1 Txl

where T = T1+15.
B1 = B2 can also be written as 81—f2 = 0 or

B }
1-1 =0 5.85
[1-1] [ 85 (5.85)
which can also be written as
R =0 (5.86)

where R = [1 —1]

This can be generalized to more than two subsets of data. Then the estimation
can be done as for any linear restriction on the parameters as described below.

This linear restriction can also be represented by the model

Y| [ Xy
HEHE s

or

y=X B +u (5.88)
Tx1 TxKgx1 Txl1
Let RRSS be the restricted residual sum of squares coming from Equation (5.87)
and URSS be the unrestricted residual sum of squares coming from Equation (5.83)
or obtained by summing up the residual sum of squares of each equation estimated
separately. Each one is distributed as a chi square:

2
RRSS ~ XV:T] +T,—K

2
URSS ~ Xv:Tl +T,—2K
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The test involves checking if the fit is significantly worse by imposing the con-
straint on the parameters. Therefore, a test of the restriction that the coefficients
from the two data sets are equal is given by the following F test, which com-
pares the residual sum of squares after corrections for differences in degrees of
freedom:

(RRSS — URSS) /K K
URSS/ (T1 + T — 2K) ~ =Ti+T=2K (5.89)

This test necessitates that the number of observations in each set is greater than
the number of parameters to have sufficient degrees of freedom. Otherwise, the
unrestricted model cannot be estimated. If 7> < K, it is still possible to test that
the T, observations are generated by the same model as the one used for the T
observations.

The model is first estimated using only the 77 observations from the first set of
data, as in Equation (5.81). The residual sum of squares for these 7} observations
is RSSj. Then, the pooled model is estimated as in Equation (5.87) to obtain the
residual sum of squares RRSS.

The two residual sums of squares RSS | and RRSS have independent chi-squared
distributions, each with, respectively, 71 — K and T + T> — K degrees of freedom.
The test of homogeneity of coefficients is therefore obtained from the significance
of the difference between the two residual sums of squares:

(RRSS —RSS)) /() + T>» — K — (T1 — K))
RSS/ (T — K)

Therefore, the test considers the F distribution:

(RRSS —RSS1) /T2 =1,

= 5.90
RSS;/(T) — K) r=h-k 690
5.2.1.1 Constrained Estimation
Any linear constraint on the parameters can be written as
R —r=0 (5.9

Minimizing the sum of squares under the linear constraint consists in minimizing
the Lagrangian:

(y—XB)' (y —XB) -2 (RB — 1) (5.92)
This leads to

X' (y—XB)—RA=0 (5.93)
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Pre-multiplying by R (X'X) !

R(X'X) ' Xy—R(XX) ' XXg =R (XX) 'RA (5.94)

b r

withRg —r=20
Therefore,

—1
A= (R (x'x)™" R’) [Rb — r] (5.95)
Replacing the value of A into Equation (5.93)
’ 15\ 7!
X' (y — XB) — R (R (x'X)"'R ) (Rb—r1) =0 (5.96)

This develops into

X'Xp =Xy R (R(XX) "' R’>_1 (Rb — ) (5.97)
and
BY = (xX) ' Xy — (X'X)"' R (R (x'x)"" R’)_l (Rb — 1) (5.98)
or
" =b- (xx)'R (R(XX)" R’)_l (Rb — 1) (5.99)

5.2.2 Pooling Tests and Dummy Variable Models

In this section, we assume that there are multiple firms, individuals, or territories.
There are T observations for each of these N firms, individuals, or territories. We
can write the equation for a single observation y;;. The subscripts i and ¢ indicates
that the observations vary along two dimensions, for example, individuals (i) and
time (f). For example, y;; represents sales in a district in a given month. y;; can be
expressed as a linear function of factors measured in this same territory at the same
time period:

K
Yir = 2b1; + kEZ 2bixkir + e (5.100)

B1; represents the intercept for observation i. This can be expressed in terms of
an individual difference from a mean value of the intercept across all observations:

Bii = By + 1 (5.101)
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which, when inserted into Equation (5.100) gives

_ K
Yie = P1+ pi + 152 BiXir + eir (5.102)

Depending on the nature of the variable p, the model is a dummy variable model
or an error component model.

If p; is fixed, then it is a dummy variable or covariance model. If y; is random,
we would be facing an error component model. In this section, we consider the
dummy variable model (i.e., p; is fixed).

Let us consider a model with constant slope coefficients and an intercept that
varies over individuals. The dummy variable model can be represented for all the T
observations in a given territory i as

yi =Bi+w)ir+ Xi o By e (5.103)
Tx1 Tx1l Tx(K-1)(K-1)x1

where

Ele;] =0
E[ee]] = o1y

E[e,-e/’-] —0 Vi)

This is identical to creating a dummy variable, where each observation dj,, is
such that

dizn = 1 if i = m and O otherwise,

where i and m represent indices for the cross sections.
Equation (5.100) or (5.102) can then be rewritten as

N K
Yie = Y Pimdim + X Pixi + eir (5.104)
=1 k=2
We can then form a vector of dummy variables for each territory (D, ... D;, ...

Dy). Each of these dummy variables vector has T rows (T x 1) where each row is a
1. Then the full data can be expressed as

yi D; 0 -~ - 0 [ by ]

y2 0 D, b1z

=] h : X e 5.105
_yN_ | 0 "'DN_ _blN_
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Let us denote PRSSgjopes the residual sum of squares obtained from least squares
estimation of Equation (5.105). This indicates that the model is Partially Restricted
(PR) on the slopes, which are assumed to be equal.

The model with equal intercepts and different slopes is

"vi7 D Xg 0 - o 0]
y2 D, : >
| | 0 Xo 8,
I S VT N | +e (5.106)
Yi D; X, B
: : : oo N
Lyv | LDw | O Xy | T

Let us denote PRSSintercept the residual sum of squares obtained form the least
square estimation of Equation (5.106). This indicates a Partial Restriction on the
intercepts, which are assumed to be the same.

The model with complete restriction that the intercepts and slopes are equal is
given by

yi X

y2 X5

O te 5.107

v; X, B ( )
Ly~ | | XN |

This equation is the completely restricted case where intercepts and slopes are
assumed to be equal. This results in the residual sum of squares CRSS.

Finally, the completely unrestricted model is one where slopes and intercepts are
different. This model is estimated by running N separate regressions, one for each
individual or territory. The completely unrestricted residual sum of squares is CUSS.

We now develop an example of these models with two groups.

Let d1; = 1 if observation i belongs to group 1 and O otherwise, and dp; = 1 if
observation i belongs to group 2 and 0 otherwise. The model can be written as

Yir = d1ifo1 + doifor + xird1i11 + Xipdoi B12 + i (5.108)

The first two terms correspond to the dummy intercepts and the last two terms
correspond to the dummy slopes (the interaction between the variable x and the
group dummy variables).

Homogeneity of intercepts and/or slopes can be tested using F tests based on the
comparison of restricted and unrestricted residual sum of squares. The next section
discusses the strategies for such pooling tests. Note that in all cases, the homo-
geneity along the second dimension is assumed. For example, homogeneity across
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time periods is assumed and pooling tests are performed across sections (i.e., firms,
territories, or individuals).

5.2.3 Strategy for Pooling Tests

The strategies follow from decomposing the tests over intercept and slopes. The
process follows the one depicted in Fig. 5.1.

The first test consists of an overall test of homogeneity of intercept and slopes.
For that purpose, the residual sum of squares from the completely unrestricted model
(CUSS) is compared to the partially restricted model where intercept and slopes
are restricted to be the same (CRSS). A failure to reject this test indicates that the
intercept and slopes are all the same across sections. No more tests are needed. In the
case of rejection of the equality of intercepts and slopes, we now must test whether
the difference comes from the intercept only, the slope only, or both. Then another
test is now performed to check for the equality of the slopes.

For that purpose, we now compare the residual sum of squares from the com-
pletely unrestricted model (CUSS) with the residual sum of squares obtained from
constraining the slopes to be equal (PRSSgjopes). A failure to reject the difference
between these two models indicates that the slopes are equal. Because the slopes
are equal but the full restriction leads to significant differences, one must conclude
that the intercept is different across sections. If we reject the hypothesis of equal
slopes, the slopes are different, in which case we must still find out if the intercept
of the cross sections are the same or not.

Therefore, a third test is performed where we now compare the completely
unrestricted residual sum of squares (CUSS) with the residual sum of squares
of the model with the restriction that the intercept is the same across sections
(PRSSintercept)- A failure to reject the hypothesis indicates that slopes are the only
source of heterogeneity (the intercept is the same across sections). A rejection of the
test indicates that both intercept and slopes are different across sections.

In this case, we started to check the source of heterogeneity by restricting the
slopes and checking if the slopes where statistically different or not across sections.
Instead, we could have first restricted the intercept, i.e., we could have tested for
the homogeneity of the intercept first. If the hypothesis had been rejected, we would
then have tested for the homogeneity of slopes. This is the second line of tests shown
in Fig. 5.1.

5.3 Examples of Linear Model Estimation with SAS

Let us consider an example where the data set consists of the market share of four
brands during seven periods. This market share is predicted by two variables, the
percentage of distribution outlets carrying the brand during each period and the
price charged for each brand during the period.

Figure 5.2 shows an example of a SAS file to run a regression with such data.
The data are first read: period (period), brand number (brandno), market share
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OPTIONS LS=80;
DATA DATAL;
INFILE "c:\SAMD2\Chapter5\Examples\Examp5.csv" dlm = ',6 '";
INPUT period brandno ms dist price;
if ms gt 0 then do;

lms=log (ms) ;

ldist=log(dist) ;

lprice=log(price) ;
end;
else lms=.;
if brandno=2 then brand2=1; else brand2=0;
if brandno=3 then brand3=1l; else brand3=0;
if brandno=4 then brand4=1; else brand4=0;
ldist2=1dist*brand2;
ldist3=1dist*brand3;
ldist4=1dist*brand4;
lprice2=lprice*brand2;
lprice3=lprice*brand3;
lprice4=lprice*brand4;

proc reg;
model lms=brand2 brand3 brand4 1ldist 1ldist2 1ldist3 ldist4
lprice lprice2 lprice3 lprice4;
model lms=1ldist lprice;
model lms=brand2 brand3 brand4 1ldist lprice;
run;

Fig. 5.2 Example of SAS input file for regression analysis (examp5.sas)

(ms), distribution (dist), and price (price). The variables are then transformed to
obtain their logarithms so that the coefficients correspond to sensitivity parameters.
Dummy variables for each brand except the first one are created. These will be used
for estimating a model with different intercept for each brand. They are also used to
compute new variables created for distribution and price for each brand.

Three models are estimated as per the SAS file shown in Fig. 5.2. The SAS pro-
cedure REG is first called. Then a model statement indicates the model specification
with the dependent variable on the left side of the equal sign and the list of inde-
pendent variables on the right side. The first model is the completely unrestricted
model where each brand has different intercept and slopes. A second model state-
ment is used for the completely restricted model (same intercept and slopes for all
the brands). Finally, the third model statement corresponds to the partially restricted
model where each brand has a different intercept but the same distribution and price
parameters.

The output is shown in Fig. 5.3.

From the output, the residual sums of squares for the completely unrestricted
model appears in the first model (i.e., CUSS=0.14833). The degrees of freedom
for this model are the number of observations (28 which follows from four brands
with each seven periods of data) minus the number of parameters (12), that is 16
degrees of freedom. The second model shows the completely restricted case where
all intercepts are the same and the slopes are the same as well. There are three
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Dependent Variable: LMS

Source
Model
Error
C Total

Root MSE
Dep Mean

C.v.

Variable DF
INTERCEP
BRAND2
BRAND3
BRAND4
LDIST
LDIST2
LDIST3
LDIST4
LPRICE
LPRICE2
LPRICE3
LPRICE4

i T i S (G (U i G {

Model: MODEL2

ﬁnalyais of Variance

Sum of Mean
DF Squares Square F Value Prob>F
11 47.19807 4.29073 462,832 0.0001
16 0.14833 0.00927
27 47.34640
0.09628 R-square 0.9969
—-2.17730 Adj R-sq 0.9947
—4.42217

Parameter Estimates

Dependent Variable: LMS

Source
Model
Error
C Total

Root MSE

Dep Mean
c.V.

Variable DF

INTERCEP 1
LDIST 1
LPRICE 1

Parameter Standard T for HO:

Estimate Error Parameter=0 Prob > |T|
—1.676908 0.03642376 —46.039 0.0001
—2.231837 0.05161904 —43.237 0.0001
—1.014442 0.05151212 —19.693 0.0001

1.264971 0.05150013 24,562 0.0001

0.955385 0.51824563 1.843 0.0839

0.106274 0.55309599 0.192 0.8500
—0.034930 0.75256037 —0.046 0.9636

0.704706 1.64183978 0.429 0.6735

0.248777 0.80524111 0.309 0.7613
—1.855944 0.92552212 —2.005 0.0622
-0.905538 1.19626264 -0.757 0.4601
—1.104439 1.12309972 —0.983 0.3401

Analysis of Variance
Sum of Mean

DF Squares Square F Value Prob>F

2 0.96907 0.48454 0.261 0.7722

25 46.37733 1.85509

27 47.34640

1.36202 R-square 0.0205
-2.17730 Adj R-sq -0.0579
-62.55535
Parameter Estimates
Parameter Standard T for HO:

Estimate Error Parameter=0 Prob > |T|
-2.168119 0.25785160 -8.408 0.0001

1.724982 2.38741557 0.723 0.4767
—-1.191476 4.35217499 -0.274 0.7865

Fig. 5.3 SAS output for regression analysis (examp5.1st)
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Model: MODEL3
Dependent Variable: LMS
Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 5 47.14828 9.42966 1047.081 0.0001
Error 22 0.19812 0.00801
C Total 27 47.34640

Root MSE 0.09490 R-square 0.9958

Dep Mean -2.17730 Adj R-sg 0.9949

C.V. —4.35852

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error  Parameter=0 Prob > |T|
INTERCEP 1 -1.678270 0.03587286 —-46.784 0.0001
BRAND2 1 -2.228246 0.05078652 —-43.875 0.0001
BRAND3 1 -1.012968 0.05072523 -19.870 0.0001
BRAND4 1 1.265914 0.05072809 24,955 0.0001
LDIST 1 1.057472 0.16668030 6.344 0.0001
LPRICE 1 -0.939927 0.30325788 -3.099 0.0052

Fig. 5.3 (continued)

parameters estimated and the CRSS is 46.3733. The third model has a different
intercept for each brand but the same slopes. Therefore, six parameters are estimated
and the PRSSgjqpes is 0.19812.

Tests of poolability can then be performed following the discussion in Section
5.2. The test for complete homogeneity is given by the statistic:

(CRSS — CUSS) /9 _ (46.37733 — 0.14833) /9
CUSS/16 - 0.14833/16

Checking on the table for the F distribution with 9 and 16 degrees of freedom,
the difference is clearly significant and the hypothesis of complete homogeneity is
clearly rejected.

We then proceed with testing for the homogeneity of slopes. We therefore
compare the completely unrestricted model with the model where the slopes are
restricted to be equal, which corresponds to the specification of model 3. There are
six parameters and the residual sum of squares is 0.19812. The test is, therefore,

= 554.07

(PRSS(opes — CUSS) /6 (0.19812 — 0.14833) /6
CUSS/16 - 0.14833/16

Comparing this statistic with the critical value of F with 6 and 16 degrees of
freedom, it is clear that the constraint does not imply a significantly worse fit.
Consequently, we can conclude that the parameters of the distribution and price
variables are homogeneous across the brands. However, each brand has a separate
intercept.

= 0.895
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2 */
/* Example of */
/* (1) Merging files for */
/* (2) regression analysis */
2 */

option 1s=80 ;
data panel;
infile 'C:\SAMD2\Chapter5\Assignments\panel.csv'

input period segment segsize ideall-ideal3
brand $§ aware intent shopl-shop3
percl-perc3 devl-dev3 share ;

run;
proc sort data=panel;
by period brand;
run;
/* proc print;
title 'panel sorted';
run;
*/
data indup;
infile 'C:\SAMD2\Chapter5\Assignments\indup.csv'
input period firm brand $ price advert
charl-char5 salmenl-salmen3
cost distl-dist3 usales DS1s1000 dsales
relprice ;
run;
proc sort data =indup;
by period brand;
run;
/* proc print;
title 'indup sorted';
run;
*/
data econ;
merge panel indup;
by period brand;

/* proc print;
title 'merged data';
run;
*/
if segment<5 then delete;
run;
proc sort data=econ out=econ2;
by brand period;
run;
data econ3;
set econ2;
lagaw =lagl (aware) ;
if period=0 then delete;
run;
/*proc print;
var period segment brand aware lagaw;

run;*/
proc reg;
model aware = lagaw adshare;
/* by brand;*/
run;

firstobs=2 dlm = "',' ;

firstobs=2 dlm = "',' ;

ushare dshare adshare

Fig. 5.4 Example of SAS file for reading data sets INDUP.CSV and PANEL.CSV and for running

regressions (assign5.sas)
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5.4 Assignment

Two data sets are available, which contain information about a market in which
multiple brands compete in an industry composed of five market segments. The full
description of the data is given in Appendix C

The PANEL.CSV data set contains information at the segment level while the
INDUP.CSV data set provides information at the industry level.

The file ASSIGNS5.SAS in Fig. 5.4 is a SAS file, which reads both data sets
(INDUP.CSV and PANEL.CSV) and merges the two files

The assignment consists in developing a model using cross sections and time
series data. For example, it is possible to model sales for each brand as a function
of the price and the advertising for the brand, sales force sizes, etc.

Regardless of the model, you need to test whether the intercepts and slopes are
homogeneous. As another example, let’s say you decide to model the awareness
of each brand as a function of the awareness in the prior period and of the brand
advertising of the current period. You may want to test if the process of awareness
development is the same across brands.
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Chapter 6
System of Equations

In this chapter, we consider the case where several dependent variables are explained
by linear relationships with other variables. Independent analysis of each relation-
ship by ordinary least squares could result in incorrect statistical inferences either
because the estimation is not efficient (a simultaneous consideration of all the
explained variables may lead to more efficient estimators for the parameters) or
may be biased in cases where the dependent variables influence each other.

In the first section, a model of Seemingly Unrelated Regression is presented. In
the second section, we discuss the estimation of simultaneous relationships between
dependent or endogenous variables. Finally, in the third section, we discuss the issue
of identification when systems of equations are involved.

6.1 Seemingly Unrelated Regression (SUR)

The case of Seemingly Unrelated Regression occurs when several dependent vari-
ables are expressed as a linear function of explanatory variables, leading to multiple
equations with error terms, which may not be independent of each other. Therefore,
each equation appears unrelated to the other. However, they are in fact linked by
the error terms, which lead to a disturbance-related set of equations. We will first
present the model. Then, we will derive the proper efficient estimator for the param-
eters and, finally, we will discuss the particular case when the predictor variables
are the same in each equation.

6.1.1 Set of Equations with Contemporaneously Correlated
Disturbances

Let us consider time series of M cross sections. Each cross section i presents T
observations, usually over time, although ¢ could represent individuals for which M
characteristics are modeled. Therefore, for each cross section, the vector of depen-
dent variables has T observations (the vector y; is dimensioned 7 x 1). In this
equation for the ith cross section, there are K predictor variables. A priori, the
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variables explaining a dependent variable y;, are different for each cross section or
variable i. Consequently, the matrix X; contains 7 rows and Kj columns. The linear
equation for each cross section can therefore be represented by equation:

Vi=1,...M: yi = Xi B, + e (6.1)
Txl TxKigjx1 Tx1

Stacking all the cross sections together, the model for all cross sections can be
expressed as

yi Xy W: el
Y2 X2 0 B (33
. . N 6.2
yi X; Bi e; 6.2)
0 ) )
L Yy | | Xu | [ Bu] Lem
MT x1 MTxK Kx1 MTx1

M
where K = > K;
i=1
This can be written more compactly as

y=28+e 6.3)

The error terms have zero mean, variances which vary for each equation, i.e.,
o and the covariance corresponding to the same time period ¢ for each pair of
cross section is ;. All other covariances are zero. This can be expressed for each
cross-sectional vector of disturbances as

Vi: E[ej]] =0 (6.4)
and
Vij: E [e,-e’j] =gl (6.5)

It may be useful to write the full expression for Equation (6.5) for two cross
sections i and j:

€l O',‘j
en Ojj

E (€j1 ejp - ej "'ejT) = - 0 (66)
€t 0 O',‘j
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The matrix for all time periods of all cross sections is expressed as

oy 0 - 0 opp 0 -2 0 q
0 -~ 0 0 app---0
0 0 -0y 0 0 ---0pp
o 0 -+ 0 o9 O
0 opp---0 0 om---0

Q= 0O 0 ---o1p 0 0 ---02 6.7)
1M 0 - 0
0 oM " - 0
L O 0 OM *+° -

Let ¥ be the contemporaneous covariance matrix, i.e., the matrix where each cell
represents the covariance of the error term of two equations (cross sections) for the
same f:

011 012 -+ O1M

012 022 -+ O2M
Y= . . . (6.8)

Consequently, using the Kronecker product, we can write the covariance matrix
for the full set of cross sections and time series data in Equation (6.7):

Eled] =@ =21y (6.9)
6.1.2 Estimation

The structure of the covariance matrix of the error term is characteristic of het-
eroscedasticity. Consequently, the generalized least squares estimator will be the
best linear unbiased estimator:

N —1
BoLs = (Z’Q‘1Z> zely (6.10)

However, from Equation (6.9) and using the property of the inverse of a
Kronecker product of two matrices:

T 'l=3x'gl (6.11)
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and, therefore,

Bors = [Z’ (2‘1 ®I) Z]_IZ’ ():—1 ®I)y 6.12)

This estimation only requires the inversion of an M x M matrix, the matrix of
contemporaneous covariances.
The generalized least squares estimator is unbiased:

E[Baus) = B ©.13)

Its variance—covariance matrix is

v [BGLS] - (Z’ ():—1 ® 1) Z)_l (6.14)

In practice, the contemporaneous covariance matrix is, however, unknown. If it
can be estimated by a consistent estimator, the estimated generalized least squares
estimator can be computed by replacing the contemporaneous covariance matrix in
Equation (6.12) by its estimated value.

% is estimated by following the three steps below:

Step I: Ordinary least squares are performed on each equation separately to
obtain the parameters for each equation or cross section i:

bi = (XIX,) ' Xy (6.15)

These OLS estimators are unbiased.
Step 2: The residuals are computed:

& =y — Xib; (6.16)
Step 3: The contemporaneous covariance matrix can then be computed:
~ R 1,.,.
X =6} = {Te;ej} (6.17)
Alternatively, the cross-product residuals can be divided by T — K; instead

of T.
The estimated generalized least squares estimator is then found as

PrcLs = [Z/ (53_1 ® I) Z]_l VA ()5_1 ® I) y (6.18)

It is then possible to compute the new residuals obtained from the EGLS esti-
mation and recalculate an updated covariance matrix to find a new EGLS estimate.
This iterative procedure converges to the maximum likelihood estimator.
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6.1.3 Special Cases

There are two special cases where it can be demonstrated that the generalized least
squares estimator obtained from the seemingly unrelated regression is identical to
the ordinary least squares estimator obtained one equation (cross section) over time.
These two cases are when

1. The independent variables in each equation are identical (i.e., same variables and
same values):

Vi,j: X,‘ = Xj (619)

2. The contemporaneous covariance matrix is diagonal, i.e., the errors across
equations or cross sections are independent:

¥ = diag {07} (6.20)

Consequently, in both of these cases, there is no need to compute the covariance
matrix.

6.2 A System of Simultaneous Equations

6.2.1 The Problem

Again, the problem consists in estimating several equations, each corresponding
to a variable to be explained by explanatory variables. The difference with the prior
situation for seemingly unrelated regression is that the variables which are explained
by the model can be an explanatory variable of another one, thereby creating an
endogenous system. These variables are then called endogenous variables, and the
variables which are not explained by the system are exogenous variables. Therefore,
we need to estimate the parameters of a system of N linear equations, where there
are T observations for each equation.
For one observation #:

y; isavector of endogenous variables
Nx1

X, isavector of all the exogenous variables in the system.
Kx1

For two equations (i.e., N = 2 for two endogenous variables) and two exogenous
variables, we have the system of equations:

YY1 + vi2ya = Buixis + Braxo + ey ©.21)
V2191 + v22y2r = Boixir + Booxor + €24 )
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Or, in matrix notation:

() (P07 ) = (o) (B 62 ) 4 () 622

Generally, the system of N equations for each t can therefore be expressed as

v T =x B + ¢ (6.23)
IxNNXN |« gk KxN  1xN

where the matrices I' and B are matrices containing the parameters of all equations.
In addition, the error terms have the following properties:

Vi E[e]]= 0 (6.24)
Nx1 Nx1
and the contemporaneous covariance matrix is the symmetric matrix:
Vi Elee)| = X 6.25
[N; A’,] NXN (6.25)
while the noncontemporaneous error terms are independent:
Vi £ E [ete/’.] =0 (6.26)
NxN

NxN

The reduced form can be obtained by post-multiplying Equation (6.23) by T' ™!,
assuming the inverse exists:

y,=xBI ! +e/r! (6.27)
or

' ' ’
y, = x II + u (6.28)
1><tN lxtI(KXN 1><tN

where IT = B!
5 -1 _ ( —1)/
u=¢I" oru=|(T &;

The elements of the matrix Il are the parameters of the reduced form of the
system of equations.
The random term u; is distributed with the following mean and covariance:

Vt: E[u,] =0 (6.29)
Nx1

Vi E [utu;] =F [(F—l)’gteér—l} _ (1"—1)’ yr! (6.30)
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Equation (6.28) represents a straightforward set of equations similar to those
discussed in Section 6.1. We can always get estimates I1. The issue is “can we go
from IT to B and T, i.e., is the knowledge about I sufficient to enable us to make
inferences about the 1nd1V1dua1 coefficients of B and I'?”

Let us write the entire model represented by Equation (6.23) for the T observa-
tions (¢t =1,...7).

Let
y’l yir ya21 -
!
\) Y12 y22 - -
y =| 5 | = o
TxN Y: Yir Y2 -
7
LY7 | LYiT Y21 -+ |
and
— A _ _
X; X1 X1 -
x) X12 X2 -
X = / =
TxK X; X1t X2t * -
7
| X1 | L X1T X217 - - |

Then, the system of equations is

Y T =X B + E (6.31)
TxN NxN TxKKxN TxN

Similarly to what was done above by post-multiplying by the inverse of I':
Y=XBr!'+er! (6.32)
or

Y =X I+ U (6.33)
TxN TxKKxN TxN

Because E[U] = 0, the ordinary least squares estimator of Il are unbiased:

—1
n :(X’ x) X v (6.34)
KxN KxT TxK KxT TxN

Therefore we can predict Y.
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Why is this useful? Let us consider one equation (i = 1). Let T’ = [T T2 ---T'y]
and B = [B;B;---By]
Then, the first equation can be represented by

Y I'' =X B+ ¢ (6.35)
TxN Nx1 TxKKx1 Txl
so that

Vi yiu +Yaviz+---ynviv = X1 Bu+ x2 fio+--- xg ik +e1 (6.36)

Tx1 Tx11x1 Tx1 Tx1
Lety;; =1
Yi =-Y2Y12 - —YnVinN + X111 +X0f10 + - - Xk Pk + €1 (6.37)
or.:
yi =Za; + e (6.38)

Why can’t we estimate the parameter vector « using ordinary least squares?
The reason is that the estimator would be biased because y, and e; are correlated.
This comes from the fact that y, = Z,, o, + e, and e; and e, are correlated due to
2. Indeed, for example, with two equations and one exogenous variable in each
equation:
{YI =—-y2yiz +xi1f11 + e (6.39)
Y2 = —Y1y21 + X220 + €

The covariance matrix between e and y; is

E [(el —Ele]) (y2—E [YZ])/]

=E :el (=y1721 + X282 + €2 — E[—y1y21 + X220 + ez])/]
=E -el (=¥y1721 + X282 + €2 — X220 + Y21 E [YI])/]

r / (6.40)
=E e (=y1v21 + &2+ 2 E[y1]) ]
=Elei (e~ v (v~ E[v1])) ]
=E[el (e2 — y21e1)’]
= E[er€) — ya1e1€]]

=opl—yonl #0 (6.41)

Then, what can we do? We can predict y; from the reduced form, which is

yi = X I+ u (6.42)
Txl1 TxKKx1 Txl1

This estimation is based on the ordinary least squares estimates of the Il param-
eters, which are obtained by regressing y; on the entire set of exogenous variables
(not just the variables in the first equation of the system of equations, but all the
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variables found throughout all the equations in the system, as follows from Equation
6.42). The OLS estimator is

fi, = (XX)' XYy, (6.43)
Therefore, the predicted values of y; are given by
y1 = XIT, (6.44)

Note that y; is not correlated with e, because the X’s are uncorrelated with e;
and that y, is not correlated with e; because e, has been removed. Therefore, one
can replace y, in Equation (6.38) by its predicted value y;.

6.2.2 Two-Stage Least Squares: 2SLS

This follows directly from the conclusion derived in the prior section. One can
remove the bias introduced by the endogeneity of the dependent variables by first
regressing separately each endogenous variable on the full set of exogenous vari-
ables and by using the estimated coefficients to predict each endogenous variable.
In the second stage, each equation is estimated separately using the model as spec-
ified in each equation but replacing the actual values of the endogenous variables
specified on the right-hand side of the equation by its predicted values as computed
from the first stage. More specifically:

Stage 1: Regress using ordinary least squares each y on all exogenous vari-
ables X

Y=XIDI+U (6.45)
= = (XX)7'X'Y (6.46)

and compute the predicted endogenous variables Y:

~

Y = X1 (6.47)
Stage 2: Regress using ordinary least squares each y, on the exogenous

variables of that equation n and on the predicted endogenous as well as
exogenous variables specified in that equation:

Yo = Znt, + €, (6.48)
The parameters estimated f',, and f}n are unbiased.

However, because the nonzero covariances (X # diag(o,,)), the estimation does
not provide efficient estimators. The purpose of the third stage in the three-stage
least square estimation method is to get efficient estimates, at least asymptotically.
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6.2.3 Three-Stage Least Squares: 3SLS

The first two stages are identical to those described above for the two-stage least
squares estimation. We now add the third stage:

Stage 3: (i) Compute the residuals for each equation from the estimated
coefficients obtained in the second stage:

én =¥Yn— 2né\ln (649)

(i1) Estimate the contemporaneous covariance matrix X

[ 611 012 -+ OIN ]
612 6,y
Y = . (6.50)
Olv
GIN - e NN
where
~ 1 ~f ~
Oin = € € (6.51)

r-K 1><lTT><1

(iii) Compute the estimated generalized least squares estimate similarly to
the seemingly unrelated regression case with the system of equations

y1 = @1061 + e
Vo =Zoor + €

YN = ZNOéN + ey

6.3 Simultaneity and Identification

6.3.1 The Problem

The typical example used in economics to discuss the problem of identification con-
cerns the supply and demand inter-relationships. While the curves of supply and
demand in the price—quantity map can be represented as in Fig. 6.1, we only observe
P; and Q.

The question consists, therefore, in determining how we can differentiate empir-
ically between these two curves.
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Fig. 6.1 Supply and demand Q4
curves

“—— supply

demand

A similar marketing example can be used to illustrate the problem with sales and
advertising expenditures. While sales is a function of advertising expenditures, very
often, advertising budgets reflect the level of sales. This is especially an issue with
cross- sectional data. Therefore, we are facing the two functions:

Equation 1: S;=f(A;) (6.52)
Equation 2: A; = g(S;) (6.53)

The first equation is the market response function. The second equation is the
marketing decision function.

Fortunately, sales are not purely driven by advertising in most circumstances.
Similarly, the decision regarding the advertising budget is a complex decision.

The solution to the identification problem resides in specifying additional vari-
ables that will help differentiate the two curves. It is important to note that
these additional variables (exogenous) in each equation must be different across
equations; otherwise, the problem remains.

6.3.2 Order and Rank Conditions

6.3.2.1 Order Condition

If an equation 7 is identified, then the number of excluded variables in the equation n
is at least equal to the number of equations minus 1 (i.e., N — 1). Therefore, checking
for the order condition consists in making sure that each equation excludes on the
right-hand side at least N — 1 variables (exogenous or endogenous).

This condition is necessary but not sufficient for the system of equations to be
identified.
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6.3.2.2 Rank Condition

The rank condition provides necessary and sufficient conditions for identification.
Recall the system of equations for a time period or cross section f:

/ / !
v, I =x; B + g (6.54)
IxNVXN -k KXN - 1N
We will use the example with two equations, which, for a time period ¢, can be

written as
(YIt yz:) ()/11 VZI) = (xlt th) (gi; g;) + (811 82:) (6.55)

Y12 Y22

or
Y111 + Y12y = Brixi + Proxo + €1 (6.56)
V2191 + v22yor = Boixir + Booxor + €24 )

It should be clear from Equations (6.56) that the two equations are indistinguish-
able. More generally, from Equation (6.54)

I —xB=¢ (6.57)
or
r
) (1) =+
Let
A= (_FB)z[oclocz--~oc,,--~ocN] (6.58)
Using again the case of two equations expressed in Equation (6.56)
vir o y21
Yi2 Y22
A= =0 « 6.59
=B —pa [ a2] (659)
—B12 —Pn

Let r, be the row vector of zeros and ones, which when applied to the
corresponding column vector o, defines a restriction imposed on Equation n.

For example, the restriction on Equation 1 that 817 = 0 can be expressed in a
general way as r; o] = 0.

It follows that §1; = 0 by definingr; = (001 0)

Indeed, we have then

Y11
re=0010)| 72 | =0 (6.60)
—Bi1
—B12
< =0

By post-multiplying the restriction vector r, by the matrix A, the rank condition
for the equation 7 to be identified is that the rank of this matrix is at least equal to the
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number of equations minus one. The equation is just identified if p(r,A) =N - 1.1If
the rank is less than NV — 1, the equation is under-identified. If the rank is greater than
N — 1, the equation is over-identified. The equation must be just or over-identified
to be able to obtain parameter estimates. For example:

Yir o Y21
_ Y2 VY2
r A=(0010) B oy (6.61)
—pB12 — P2
= (=B —Pu) =(0—px) (6.62)

if 821 # 0, then p(r1A) = 1. Because N — 1 = 1 (N = 2), the first equation is just
identified.

6.4 Summary

In this chapter, we have presented the issue and estimation corresponding to multiple
cases of simultaneity of variables. In fact, all the possible cases are embedded in the
general case expressed in Equation (6.23).

6.4.1 Structure of T Matrix

If the matrix I' is diagonal, the system of equations is not simultaneous, except as
expressed by the correlation of the error terms. In such a case, the model corresponds
to the case of seemingly unrelated regressions. If the matrix I' is not diagonal but
triangular, this results in a system which is not truly simultaneous either. In such a
case, a dependent variable may affect another one but not the other way around. The
system is then recursive. The various estimations which are appropriate for each of
these cases are summarized in Fig. 6.2.

Following Fig. 6.2, the estimation method depends on the model specification as
reflected in the matrix I' discussed above and in the covariance structure of the error
term X.

6.4.2 Structure of ¥ Matrix

When T is diagonal, the EGLS estimator provides an efficient estimator if the
covariance matrix X is not diagonal; otherwise, each equation can be estimated
separately by OLS as the results are identical. If the covariance matrix X is not
diagonal, seemingly unrelated regression must be used.

If the T matrix is triangular, i.e., the case of a recursive system, OLS estimation
of each equation separately provides unbiased parameter estimates. However, in the
case where the covariance matrix X is not diagonal, the covariance structure must be
taken into consideration and the EGLS obtained from the 3SLS procedure provides
an efficient estimator. If X is diagonal, there is no need to proceed with multiple
stage estimation.
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NO r NO
triang?

YES YES

Recursive System

NO

YES

OLS SUR OLS 3SLS 28LS

Fig. 6.2 Model specification and estimation methods (adapted from Parsons and Schultz 1976)

Finally, if the system of equations is simultaneous, i.e., I is neither diagonal nor
triangular, the OLS estimators would be biased. Therefore, depending on whether
¥ is diagonal or not, 2SLS or 3SLS should be used.

This points out the importance of knowing the structure of the covariance matrix
Y. In most cases, it is an empirical question. Therefore, it is critical to estimate
the covariance matrix, to report it and to use the estimator which is appropriate.
This means that a test must be performed to check the structure of the error term
covariance matrix X.

6.4.3 Test of Covariance Matrix

The test concerns the hypothesis that the correlation matrix of the error terms is the
identity matrix (Morrison 1976):

{Ho: R=I 6.63)

Hi: R #1

where R is the correlation matrix computed from the covariance matrix X.
Two statistical tests are possible.

6.4.3.1 Bartlett’s Test

The following function of the determinant of the correlation matrix follows a chi-
square distribution with v degrees of freedom:

2N+5
- (T —1- T+) Ln|R| = x2 (6.64)
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where T is the number of observations in each equation, N is the number of
equations, and v= %N(N — 1), i.e., the number of correlations in the correlation
matrix.

6.4.3.2 Lawley’s Approximation
The test statistic as expressed in Equation (6.64) can be approximated by

(T_l_ 2N6+5)erizjzxvz (6.65)

i =i

where only the upper half of the correlations are considered in the summation.

6.4.4 3SLS Versus 2SLS

The EGLS estimator is only asymptotically more efficient than the OLS estimator.
Consequently, in small samples, it is not clear what the property of the EGLS esti-
mator is. Therefore, sometimes, when the sample size is small, it may be appropriate
to report the 2SLS estimates instead of the 3SLS ones.

6.5 Examples Using SAS

6.5.1 Seemingly Unrelated Regression Example

In the example below, three characteristics of innovations developed by firms are
modeled as a function of firm factors and industry characteristics. The SAS file will
be presented without going into the details of the substantive content of the model
in order to focus on the technical aspects.

In Fig. 6.3, it can be seen that after reading the file which contains the data, the
variables are standardized and scales are built. The model is specified within the
SAS procedure SYSLIN for systems of linear equations. The SUR statement follow-
ing the PROC SYSLIN instruction indicates that the parameters will be estimated
using seemingly unrelated regression. The dependent variables concern the rela-
tive advantage of the innovation, the radicalness of the innovation and its relative
cost. The model statements for each equation specify the independent or predictor
variables. Some variables are the same but others are different across equations.

The same model can also be estimated with iterative seemingly related regres-
sion. The only difference with the single iteration SUR in the SAS instructions is
that SUR is replaced with ITSUR (see Fig. 6.4).

The output of the SUR estimation is shown in Fig. 6.5.

The output of the SUR estimation is shown in Fig. 6.6.

First, in both cases, the OLS estimation is performed for each equation separately
and the results are printed in the output.

The correlations from the residuals estimated from the OLS estimates are then
shown. A test should be performed to check that the correlation matrix is statistically
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/* Examp6-1.sas */
option 1s=120;
data raw;
infile ' c:\SAMD2\Chapter6\Examples\innov.asc ';
input #1 L1Cl L1C7 L1C10 L1C14 L1C19 L1C21 L1C23 L1C25 L1C27
L1C29 L1C31 L1C33
#2 L1C35 L1C37 L1C39 L1C41 L1C43 L1C45 L1C47 L1C49 L1C51

/*----MISSING VALUES----*/
IF L1C7 =99 THEN L1C7=.;

IF L1C10=999 THEN L1C10=.;
IF L1C14=999 THEN L1Cl4=.;

/*----reversal of items----*/
L1C21R=7-L1C21;
L1C23R=7-L1C23;

/* Standardization of Variables*/
llc4lrs=11c4lr;

Llc45s=11c45;

L1lc53s=11c53;

11c55s=11c55;

proc standard mean=0 std=1 out=scale;
var llc4lrs 1llc45s 11c53s 11c55s 11c73s 1llcéls 12cl9s 11c69s
11c33rs 11lc39s

L4Clls L4C67s L4C71ls 11c59s 12c69s;

data data2;
set scale;
grow0=11cl4;
growl=12c7;

tech=sum (of L1C41Rs L1C45s L1C53s L1C55s L1C73s)/
n(of L1C41Rs L1C45s L1C53s L1C55s L1C73s);

compl=sum(of L1C59s L1Céls 12c19s)/
n(of L1C59s L1C6ls 12cl19s);

proc syslin sur;
model dadvl = dtol dresl;
model dradicl = dcoll dtol dgrow0l ddemuncl dresl;
model dcostl = dtol icl dgrow0l ddemuncl dresl;
run;

Fig. 6.3 Example of SAS input file for SUR estimation (examp6-1.sas)

proc syslin itsur;
model dadvl = dtol dresl;
model dradicl = dcoll dtol dgrow0l ddemuncl dresl;
model dcostl = dtol icl dgrow0l ddemuncl dresl;
run;

Fig. 6.4 Example of SAS input file for iterative SUR estimation (examp6-2.sas)
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significantly different from the identity matrix in order to detect whether it is useful
to use the SUR estimator.

Finally, the SUR estimates (i.e., the EGLS estimator) are provided for each
equation.

It can be seen from the output of the iterative seemingly unrelated regression
that the steps are identical. The estimates reported are those obtained at the last step
when convergence is achieved.

6.5.2 Two-Stage Least Squares Example

In the example for two- and three-stage least squares, we now specify some endo-
geneity in the system in that some variables on the left-hand side of an equation can
also be found on the right-hand side of another equation. In the example shown in
Fig. 6.7, the model definition shows that the variable “dadvl” is a predicted variable
and is also found in the equation to predict “dcostl”.

[* Examp6-3.sas */

proc syslin 2SLS;
endogenous dadvl dradicl dcostl;
instruments dcoill dtol ic1 dresl dgrowOl ddemuncl;
model dadvl = dradicl dtol dresl;
model dradicl = dcoil dtol dgrow0l ddemuncl dresl;
model dcostl = dradicl dadvl dtol ict;

run;

Fig. 6.7 Example of SAS input file for two-stage least squares estimation (examp6-3.sas)

The endogenous variables are identified in a statement that lists the variable
names after the identifier “ENDOGENOUS”.

The statement “INSTRUMENTS?” lists all the exogenous variables in the system.
These variables will be used in stage 1 of the estimation procedure to calculate the
predicted values of the endogenous variables, which will be used for the estimation
in the second stage.

The estimation method is simply indicated on the same procedure line by
“2SLS”.

The output shown in Fig. 6.8 provides the estimates of the second stage for each
equation.

6.5.3 Three-Stage Least Squares Example

Similarly to the case of two-stage least squares, the estimation method is simply
indicated on the SYSLIN procedure line by “3SLS”, as shown in Fig. 6.9. All other
statements are identical to those for two-stage least squares.
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* Examp6-4.sas */

proc syslin 3SLS;
endogenous dadvl dradicl dcostl;
instruments dcoll dtol ic1 dresl dgrowOl ddemuncl;
model dadvl = dradicl dtol dresl;
model dradicl = dcoil dtol dgrowQOl ddemuncl dresl;
model dcostl = dradicl dadvl dtol ici;

run;

Fig. 6.9 Example of SAS input file for three-stage least squares estimation (examp6-4.sas)

The output for the 3SLS procedure provides first the estimates of the second
stage for each equation (they are not shown in Fig. 6.10 because they are identical
to the SAS output shown in Fig. 6.8). In Fig. 6.10, however, the estimated correlation
matrix of the error terms across equations are shown. A test of significance of the set
of correlations can then be performed to know whether it can be useful to continue
to the third stage. These third-stage EGLS estimates are then provided in the SAS
output.

6.6 Assignment

The data found in the files INDUP.CSV and PANEL.CSV, which are described in
the Appendix and for which Chapter 4 described how to read the data in SAS, pro-
vide opportunities to apply the systems of equations discussed in this chapter. The
assignment consists simply in specifying a system of equations to be estimated via
the proper estimation method, as presented in this chapter. The modeling exercise
should include (1) a system of seemingly unrelated equations or a recursive system
and (2) a model with simultaneous relationships.
Examples of such models can concern the following:

1. A model of the hierarchy of effects which consists in awareness, purchase
intentions, and sales.

2. A model of the sales or market share for multiple segments or for multiple
brands.

3. A model of a market response function and marketing decision functions.

Proper justification of the estimation method used must be included (i.e., test of
the covariance structure of the error terms).
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Chapter 7
Canonical Correlation Analysis

7.1 The Method

In canonical correlation analysis, the objective is to relate a set of dependent or
criterion variables to another set of independent or predictor variables. In order to
do that, we find a scalar, defined as a linear combination of the dependent variables,
as well as a scalar defined as a linear combination of the independent variables. The
criterion used to judge the relationship between this set of independent variables
with the set of dependent variables is simply the correlation between the two scalars.
Canonical correlation analysis then consists in finding the weights to apply to the
linear combinations of the independent and dependent variables that will maximize
the correlation coefficient between those two linear combinations. The problem can
be represented graphically as in Fig. 7.1:

Fig. 7.1 Graphical
representation of the
canonical correlation model

z and w represent two unobserved constructs that are correlated. The X’s are
indicators that determine z and the Y’s are indicators that determine w.

Formally, let X be the matrix of p predictor variables on N observations and
Nxp

Y be the matrix of g criterion variables on the same N observations.
Nxp

We will call z; the scalar representing a linear combination of the independent
variables for observation i. Therefore:

Z =X u (7.1

H. Gatignon, Statistical Analysis of Management Data, 187
DOI 10.1007/978-1-4419-1270-1_7, © Springer Science+Business Media, LLC 2010
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Similarly, w; is the scalar representing a linear combination of the dependent
variables for observation i:

wi =Yy, Vv (7.2)
Ixl  1xqq*1

For the N observations

Zz =X u (7.3)
Nx1 Nxppxl
and

w =Y V (7.4)
Nx1 Nxgqgxl

The problem consists in finding the vectors (u, v) so as to maximize the
correlation between z and w. This correlation is

N
Z Ziwi
Faw = =l (7.5)
N
(z2)(z)
i=1 i=1
In matrix notation
7w u'X'Yv
Faw = = (7.6)
V@z)(w'w) VXXu) VYYy)
Let Sxy = XY, Sxx = X'X and Syy = Y'Y. Then
u'S,, v
Fay = el (7.7)

(0’ Sxxu) (V’ Syyv)

The latent variables z and w can be normalized without loss of generality and for
determinacy, i.e.,

uw'Su=vS,v=1 (7.8)

Therefore, the problem is to find (u, v) so as to maximize w’ SxyV subject to
uSyu=v>S,v=1
The Lagrangian is

L (uy) =u'Syv— % (u'Sxxu — 1) — % (VSyyv — 1) (7.9)

The maximum of the Lagrangian can be obtained by setting the derivatives
relative to u and v equal to zero:

oL
— =S8y V—ASxiu=0 (7.10)
Ju
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and
oL

v

From Equations (7.10) and (7.11), it follows that

=u'Syy — uv'Syy =0

u'Sxyv = Au'Syu
and
u' Sy v = puv'Syyv
Consequently

' Syu = pv' Syyv

189

(7.11)

(7.12)

(7.13)

(7.14)

However, because the transformed linear combination variables are standardized

with unit variance, it results that
A=

Therefore, from Equation (7.10), replacing A by pu:
SxyV = USxxu
and from Equation (7.11), by taking its transpose:
Syx = USyyv

Solving for v in Equation (7.17) leads to

|
V= ﬁsyy Syxu

(7.15)

(7.16)

(7.17)

(7.18)

Replacing the value of v expressed in Equation (7.18) into Equation (7.16):

I
Sxy (—SyylSyxu) = uSyu
I
Or, multiplying each side of the equation by S/
S SxySyy Syxtt = 128 S xu
This results in solving for the equation

(55 S8y Sy — 1’T) u =0

(7.19)

(7.20)

(7.21)

which is resolved by finding the eigenvalues and eigenvectors of SX_X1 SxySy_y1 Syx.
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The eigenvalue gives the maximum squared correlation r,y. This is the percent-
age of variance in w explained by z.

Two additional notions can be helpful to understand the relationships between
the set of x and the set of y variables: canonical loadings and redundancy analysis.

7.1.1 Canonical Loadings

The canonical loadings are defined as the correlations between the original x and y
variables and their corresponding canonical variate z and w. For the x variables

1 1 1
= o1 Kt = yoiX KW =S 7.22
[I?;Zl N—leNNil N—1 (Xu) N -1 xxUu ( )

Similarly, for the y variables

1 1 1
ppw=——Y w = —lY’ (Yv) = N—Sny (7.23)

gx1 N —1gxNNx1 N —1

7.1.2 Canonical Redundancy Analysis

Canonical redundancy measures how well the original variables y can be predicted
from the canonical variables. It reflects the correlation between the z and the y vari-
ables. Redundancy is the product of the percentage variance in w explained by z and
the percentage variance in y explained by w. The first component is the squared cor-
relation p2. The second component is the sum of squares of the canonical loadings
fory.
Therefore:
2 Pyw Pyw

q

Redundancy =pn (7.24)

7.2 Testing the Significance of the Canonical Correlations

It is possible to test the significance of these eigenvalues directly. However, the
output in SAS shows eigenvalues that are different, albeit equivalent, from these
eigenvalues or canonical correlation coefficients. These eigenvalues are related to
the solution of the equation:

(W_IB - ,\I) u (7.25)

which corresponds to Wilk’s Lambda in MANOVA (see Chapter 2) and to a dis-
criminant analysis discussed in Chapter 7. It differs from these two contexts because
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in the case of canonical correlation analysis, we do not have the notions of between-
and within-group variances due to the nonexistence of groups. These notions are
generalized, however, to the concepts of total variance and error variance. Therefore,
A is redefined as

A= H (7.26)

where T is the total variance—covariance matrix and E is the residual variance—
covariance matrix after removing the effects of each pair of canonical variable
correlations. However, it should be noted here that the solution to Equation (7.25)
or (7.26) can be expressed as a function of the eigenvalues of Equation (7.21):

2
hi=—i (7.27)
I —
where the y;% are the solution to Equation (7.21) and %, is the solution to
(E_IH - ,\1) u=0 (7.28)

From the generalized definition of Wilk’s Lambda A = ‘% , it follows that

1 T 1 1 1
XZ‘E‘Z‘E T‘:‘E (H+E)‘=‘E H+I‘=H(A,~+1) (7.29)
l

where T = H + E because of their independence. Replacing the i;’s by the u;’s
using the equality in Equation (7.27), A can be expressed as a function of the p;’s,
i.e., the canonical correlations

A= /\—+1 1‘[ 1‘[( ) (7.30)

Based on this expression of A, either as a function of the A;’s or as a function of
the ;’s, it is possible to compute Bartlett’s V or Rao’s R, as discussed in Chapter 2.
The degrees of freedom are not expressed in terms of the number of groups K, since
this notion of group does not fit the canonical correlation model concerned with
continuous variables. Instead, the equivalent is the parameter (¢ — 1), the number of
variates on the left-hand side which corresponds to the number of dummy variables
that would be required to determine K groups.

Bartlett’s Vis:

3 q
V=—[N-1—-(p+qg—1)/2]LnA = [N—E—(p+q)/2};Ln(l+k,-)
- (7.31)
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or equivalently

3 q
Ve=—[N-1-(p+g—1)/2]LnA = [N—E—(p+q)/2}i§Ln(1—M%)

(7.32)

Bartlett’s V is approximately distributed as a chi-square with pg degrees of free-

dom. Alternatively, Rao’s R can be computed as shown in Chapter 2 for MANOVA,
where K is replaced by g — 1:

1
1—Asms—2 +1
R= : 2 (7.33)
AS rq

_N_3_pta _ | P4
wherem = N — 5 >+ and s = P

R is distributed approximately as an F distribution with pg degrees of freedom in
the numerator and ms — % + 1 degrees of freedom in the denominator. This last test
(Rao’s R) is the one reported in the SAS output (rather than Bartlett’s V).

These tests are joint tests of significance of the ¢ canonical correlations. However,
each term in the sum containing the eigenvalues in Equation (7.31) or (7.32) is
distributed approximately as a chi-square with p + ¢ — (2i — 1) degrees of freedom,
where i is the ith eigenvalue from i = 1 to g.

Any subset of eigenvalues is the sum of that subset of terms in Ln(l — ué).
Consequently, one can test if the residual canonical correlations are significant, after
having removed, the first canonical variate, then the first two, and so on. For exam-
ple, the joint test of all g canonical correlation is V as in Equation (7.32) with pg
degrees of freedom. The test of the first eigenvalue is

3
Vi = [N ~S -+ /2} Ln (1 - u?) (7.34)

with (p + g — 1) degrees of freedom.

Consequently, the joint test that the remaining canonical correlations iy, u13,
[4,. .. [4q are zero is obtained by subtracting Vi from V; and V — V| is approxi-
mately chi-square distributed with, for degrees of freedom, the difference between
the degrees of freedom of V and those of V1, i.e., pg — (p + g — 1). This can be con-
tinued until the last gth eigenvalue. The same computations as those detailed above
with Bartlett’s V can be performed with Rao’s R.

7.3 Multiple Regression as a Special Case of Canonical
Correlation Analysis

In the case of multiple regression analysis, the dependent variable is a single variate

represented by the vector Y for the N observations. Consequently, the vector v
Nx1
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reduces to a single scalar, set to the value 1. It follows that w = y. The expression
for the correlation between x and w in Equation (7.7) becomes

/)(/
Taw = S (7.35)
(u'X'Xu) (y'y)

However, because the transformed independent variables are standardized and
the single dependent variable y can be standardized to unit variance without loss of
generality, the problem is to maximize the correlation coefficient r,, subject to the
constraint w'X'Xu = 1. This is solved by maximizing the Lagrangian:

by
Lzuxw—zmxxu—n (7.36)
81‘—X’ AX'Xu=0 7.37
F R A u = (1.37)

Solving for u leads to the least square estimator presented in Chapter 4:

u=—(XX)' Xy (7.38)

> —

7.4 Examples Using SAS

Figure 7.2 shows the SAS code to run a canonical correlation analysis. The data
concerns a number of new products that are characterized by four innovation char-
acteristics: the extent to which the innovation required the firm to acquire new
competences from outside the firm, the extent to which the innovation was compe-
tence destroying, the extent to which the innovation required architectural changes,
and the radicalness of the innovation. A number of consequences of the introduc-
tion of this innovation occurred in the organization: the extent to which it created
changes in the business unit, the extent to which the business unit and the subunit
cultures and processes are different, the extent to which the senior management team
changed, and the extent to which innovation priority changed. The SAS procedure

OPTIONS Nodate Pageno=l;

TITLEl "Innovation and Organizational Change Survey";
TITLE2 "";

TITLE3 "Example of Canonical Correlation Analysis";

proc cancorr;
var CA CD Arch rad;
with buchange iuchange srtmchange prior;
title 'Example of Canonical Correlation Analysis';
title2 'Effects of Innovation Characteristics on Organizational Changes';
RUN;

Fig. 7.2 Example of SAS code for canonical correlation analysis (examp7-1.sas)
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“proc cancorr” runs the canonical correlation analysis. The variables on the right-
hand side (the X’s) are indicated in the list following the key word “VAR” and the
variables on the left-hand side (the Y’s) are listed after the key word “with”. Titles
can be inserted for the output in single quotes after the word “title”.

Figure 7.3 lists the output from running the canonical correlation analysis.

The canonical correlations are presented, which indicate two large correlation
coefficients of 0.6561 and 0.4328. These correspond to the first two eigenvalues that
give a solution to Equation (7.21) (the canonical correlation is the square root of
these eigenvalues). The other two values are significantly smaller and, therefore, we
can concentrate on the first two values.

The eigenvalues A;, which are the solution to Equation (7.28) are those shown in
the SAS output. For example, the first (highest) eigenvalue of 0.756 is related to the
first canonical correlation as

2
0.756 = 00561 (7.39)
[1—(0.6561)]

Given the relationship between the i;’s and the 1;’s, these eigenvalues provide
the same information as the canonical correlations. The F tests corresponding to
Rao’s R indicate that the set of canonical correlations (or eigenvalues) are jointly
significantly different from zero (F = 4.28 with 16 and 232.82 degrees of free-
dom). Then, the next row in that part of the table shows that after removing the first
canonical correlation, the remaining canonical correlations are jointly statistically
different from zero at the 0.05 level (F = 2.01 with 9 and 187.55 degrees of free-
dom). However, after removing the first two canonical correlations, the remaining
ones are not statistically significant. Therefore, we can concentrate on the results
concerning the first two canonical variables.

The raw and the standardized eigenvectors are then listed in the SAS output.
The raw values are subject to variations due to the scale units of each variate
and should be interpreted accordingly. It should be noted that the canonical vari-
ables are normalized to unit variance as per Equation (7.8), and, consequently,
the magnitude of the coefficients that are the elements of the eigenvectors u and
v are affected as well by the unit of the variates. The first eigenvector indicates
that innovations that require new competence acquisition from outside the firm
and competence destroying innovations are associated with changes in the busi-
ness unit and in the senior team. The second eigenvector suggests that radical
innovations which require the acquisition of new competences from outside the
firm but which are not competence destroying (i.e., which are competence enhanc-
ing) correspond to a change in innovation priority but without a change in the
business unit. Then, the correlation of each variate to the canonical variables (com-
posite variable v and then w) is contained in the tables that follow. This allows
assessing the strength of the relationships that form a composite (unobserved)
canonical variable and the relationship of a variable to the other composite canonical
variable.



195

7.4 Examples Using SAS

i

€¥G0GE09TT 0

134

9€T8LOSFT 0-

€M oM

(1o’ T-,dwexa) SISATRUR UOTR[AIIOD [BoTHOUER) Jo ndino S§ys Jo ofdwexy ¢ *SL1

™

SSTQeTIeA HIIM SU]} I0F SIUSTOTIISOD TeOTUOUERD Med

L6¥¥8T88TL 0
FG2CG096GLE "0
GITG66¥6T9° 0

29€8¥66G°0

0I5z oI MOTTOF 1Yl TTE PUB MAOT JUSIAND

STSATeuy UOTIBTSIIOD TEeOoTUouR)d
SINPS00Id YIOONVD SUL

T9EVYVLLSSGY "0
86GLEBCI9E " 0-
¥E€68T00G " 0

GTPETF08EBT 0
2609%924T 0
TZ600609%G° 0

sabueys TeuoTjezTuebIO UO SOTISTISIOBALYD UOTIRAOUUI JO SIO9FFH

STSATeuy UOTIBTSIIOD TEeOTUouR)d

Jo otdurexd

TeoTped
Tean31o9] TYLIY
butioxlsaqg sousiadwon

€G6EVLE6CT "0 6GLG89LY "0~ 9L¥8T¥S62S° 0 $602L0826€°0 uoT3TsTnboy sousjsdwond
A €A oA TA
SOTqeTIRA MVA SU] I0F SJUSTOTFFO0D TeOoTUOURD Med
‘punoq aaddn ue ST j00d 3S93eSI9 §,4A0¥ IOF OTISTIL]IS A :HION
TO00 "> 6L ¥ €6° VT 0L6€09GL" 0 3009 3s93eda9 5,40y
TO00 "> TT 9%T 9T oL"¥ GL¥GEEC00°T ooexl AeTaeI-BUTTTS30H
TO00 "> 9T¢ 9T gL € 8G0T¥¥E9°0 Soell s, TeTTtd
TO00 "> 287 ¢C€¢C 9T 82°¥ €8EETGSY "0 epqureT ; SYTTM
d < Ig dd usda dd umN SnTeA d SnTeA OT3sTIe]S
Le=N G 0= ¥=s
suoTjewTxoxddy 4 pue SOT3ISTIE]S S3BPTARATITIH
Ge08°0 6L T 90°0 SETT 266670 0000°T 800070
T098°0 9GT ¥ €70 L¥28%£86 "0 266670 6GT0°0 2GaT0° 0
€0¥0°0 GG°L8T 6 TO0 ¢ 80€€ET66L°0 €€86°0 862%°0 S¥TIC'0
T000 > 28°2¢€¢ 9T 82°¥ €8EETGSY "0 GEGL'0 GeaL’ 0 §gG62S°0
A < Id Ad usa Ad umN onteaA I oTyed SATIETIUMD uoT3xodoxd SDuUSISIITA
areurxoxddy POOYTTSYTT
(bsyuep-1) /bsyuen =
Hx () AUT JO sonTeAusbTH
SY3} UT SUOT]ETSITOO TeoTuoued SYL :0H JO 3S31L
68L000°0 8L960T "0 €80820°0 ¥
TVLSTO O 9€080T "0 ¥9¥S2T 0 €
¥YPELBT O T02Z680°0 698L6E"0 2€82EY 0 <
LEGOEF "0 L0G290°0 TT2%29°0 €GT9G9°0 T
UOTIRTSIIOD IoITH UOTIRTSIIOD UOTIETIIIOD
TeoTuouRD paepuels TeoTuouRD TeoTUOURD
paxenbsg aremrxoxddy paasnlpy

yoxe
po
eo

8000°0
09T0°0
G0€C 0
09GL°0
snTeAusbTa

- N



7 Canonical Correlation Analysis

196

12,5 €M 4.3

SOTqeTIBA HIIM 9Y3 JO SOTqeTIeA TePTuoued

™

Z6LS 0- vI6V 0- S8T9°0 ¥v10Z°0 A3ta0Tag uoTiRACUUI - ebueyp bao
TZEV 0 ¥825°0- 0z52°0 0989°0 sbueyp uweey a5 - ebueyp Hio
L9607 0 ZSVLO VS0 89870 epusaeyzTa Ng/nI - ebueyp bao
LLIE 0- 88EZ 0~ oLLZ 0- 055870 ng - ebueyp bao
17 €M 47 ™
S8TqeTIRA TEOTUOURD ITSYL PUR SOTJRTIBA HIIM oYUl useMileg SUOTIRISIIOD
018570 €9TF° 0 6EV9°0 0ELZ 0 TePTPRY
V6TL O TIEY " 0- 9¥8T 0~ vZIS 0 TeIn3Pe3 TYPIY
vroE-0- ¥ITE O VIS 0- LBEL™O buthoazseq eousisdumop
8ZLT 0- LT8E 0- 0EVY "0 9Z6L°0 uot3Tstnboy eousjeduod
vA €A zA A
S8TqeTIRA TBOTUOURD ITSYJ PUR SOTQRTIBRA JYVA OUl USSM1IS8g SUOTIRISIIOD
|8IN3ONIIS TesTUouURD
Z659 °0- vITE 0- S68L°0 LYTT 0- A3ta0Tag uoTIRACUUI - ebueyp Bao
08T6°0 VLES 0- V6TE 0 zZ8VE"0 sbueyp uweey a5 - ebueyp Hio
¥520°0 LSLLO 6TTIS 0 VEGE 0 epusaeyzTa Ng/nI - ebueyp bao
LS6S 0~ 6290°0 9EEL 0~ €E€69°0 ng - ebueyp bao
7.1 €M M 42
SOTqeTIEA HIIM 943 I03 SIUSTPTIISOD TePTuouURD POz TPIBpuUeR3S
€ILY 0 ¥¥I8°0 0€£TS 0 z80Z°0 TePTpRY
6TT8°0 L80S 0- vI6V 0- L90Z°0 Tean3ne3 TyoIy
9Z9T 0- 86890 69650~ 0809°0 buthoazseq eousjeduod
LSES 0- Y65 0- 1099°0 L68V 0 uot3Tstnboy eousjeduod
vA €A zA A

CITTILLBEE O
€0¥562205°0
G9G8ZSETFTO 0
B9ETILTIE "0~

SeTqeTIeA YA Y3 I03 SIUSTOTFFSOD TEOTUOURD PezZTPIEpues’s

GT8LBEBBT 0-

€ZTSOV6C 0-
9EE6ILETEV O
SZV6LOCBED O

BLVETCILLY O
TTB6BELVLI O
ETVC60TS8BC 0
LOBEBYSVY " 0-

LELIGEEI0 0-
BGI9EETSO06T 0
SGVC60T6TC 0

A3tx0TIg UOTIRAOUUI - BB
sbueyp uwesy
souSILIITA NT/NI -

S8TTTI860CF 0 ng

(ponunuod) €L 31q

SU3 pue SSTQRTIBA YVYA 9] USSMISE SUOTIBRTOIIOD

zotad
sbueyoulzs
sbueyont
sbueyonqg
pex
yoxe
po
ed
zotad
sbueyoulzs
sbueyont
sbueyonqg
pex
yoxe
po
ed
ueyd bxo zotad
s - abueyp bao sbueyouryxs
sbueyp Bzo sbueyont
- abueyp bao sbueyonq



197

7.4 Examples Using SAS

€9T0°0-
T2T0°0
L200°0
€0T0 0~

va

LT90"
€990°
SE60°
00€0°

€A

seTqeTIeA WUA

€9T0°0
202070
§800°0-
670070~

0-
0-

0-

sy3 Jo seTqetIeA

LL9Z'0
T60T° 0
826T°0
66TT 0-

[N

22s0°0
TrS0°0-
T6€E0°0
6LV0°0-

TZET' O
TO0SV "0
V6TE' O
0T9S°0

A

TesTUCURD SY3

2IN3ONIIS

L8LZ 0
66L0°0-
Lzzz 0~
8T6T°0

K3Tai0Tag UOTIEAOUUI -
abuey) wesl Is -
souUSILIITA NT/NI -
ng -

pue SSTQETIBA HIIM SY3 USS9M1Sg SUOTIBTSIIOD

abueyp bao
abueyp bao
abueyp bao
abueyp bao

TesTuUcuURD
T6LT 0 TesTpey
29€E°0 TeInioelTysIy
L¥8Y "0 butXozysaq souszeduo)
0028°0 uot3TsTnboy aousjsduo)

pex
yoxe
po
en

(ponunuod) €L 31q

zotad
sbueyouryxs
sbueyont
sbueyonq



198 7 Canonical Correlation Analysis
7.5 Assignment

Using the survey data described for the assignment in Chapter 3, associate certain
types of consumer behaviors to their psychographic profiles. The sample SAS code
file to read the data is shown in Fig. 3.16.
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Chapter 8
Categorical Dependent Variables

In this chapter, we consider statistical models to analyze variables where the num-
bering does not have any meaning and, in particular, where there is no relationship
between one level of the variable and another level. In these cases, we are typi-
cally trying to establish whether it is possible to explain with other variables the
level observed of the criterion variable. The chapter is divided in two parts. The
first part presents discriminant analysis, which is a traditional method in multivari-
ate statistical analysis. The second part introduces quantal choice statistical models.
The models are described, as well as their estimation. Their measures of fit are also
discussed.

8.1 Discriminant Analysis

If there were only one variable, the test (i.e., a measure) of the extent of differ-
ences across groups is the ratio of the sum of squares between groups to the sum of
squares within groups corrected by the degrees of freedom of the numerator and the
denominator, i.e.,

§Sp (x) /(K —1)
SSw (x) / (N — K)

8.1)

where N is the sample size and K is the number of groups. This is simply the F test
for the significance of differences across groups for one variable.

In presenting discriminant analysis, the discriminant criterion, which is at the
basis of understanding of the methodology, is first introduced. Then the derivation
and the explanation of the discriminant functions are provided. Finally, issues of
classification and measures of fit are discussed.

8.1.1 The Discriminant Criterion

The objective in discriminant analysis is to determine a linear combination of a set
of variables such that several group means (each group corresponding to a level of
the dependent variable) will differ widely on this linear combination.

H. Gatignon, Statistical Analysis of Management Data, 199
DOI 10.1007/978-1-4419-1270-1_8, © Springer Science+Business Media, LLC 2010
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Let p = number of independent variables, N = number of observations, N; =

number of observations for group j = 1, ... K, K = number of groups, X is the vec-
Ixp
tor representing the values on p variables for one observation i, and v is the vector
pxl1

of weights to be attributed to each of the p variables to form a linear combination.
Therefore, this linear combination is given by Equation (8.2):

7
Yi = X; V. =vixj +Vvaxp + - VpXip (3.2)
Ix1  1xppxl

We will assume that x; follows a multivariate normal distribution. It follows that
each y; is normally distributed.

The problem consists in finding v which is going to maximize the F-ratio for
testing the significance of the overall difference among several group means on a
single variable y.

This value F is given by the ratio of the between-group variance to the pooled
within-group variance of the variable y:

_SS)/ (K~ 1)

— 8.3
55,(v)/ (N —K) (8:3)

where N = number of observations or individuals, K = number of groups, SS,(y) =
between group sum of squares, and SS,,(y) = pooled within group sum of squares.
In the case where there are only two groups (K = 2), it is the classic ¢ test of a
difference of two means. The problem, therefore, is to find the value of v which will
maximize F.
The ratio (K — 1) / (N — K) is a constant; therefore:

Max F < Max S5p ) =A
v v SSy (Y)

The pooled within-group sum of squares is the sum over the groups (j) of the
squares of the deviations of variable y from their group mean.

K
SSw (y) =) SS; (y) (8.4)
=1
Let !
X, =% (8.5)
o h}

where the mean vector for group j (i/’-) is repeated N; times (i.e., N; rows)

For each group j (where j = 1, ... K), we can write the vector of the values
obtained from the linear combination of the variables. This vector has N; elements
corresponding to the number of observations in group j:

Let

X{=X; - X (8.6)
Njxp  Njxp
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and
.. d __ v _ yd
i ¥ =X -X) v =Xv (8.7)
Njx1 Njxp P
Then
SSi(y) =yl vy} =V XX v =Sy (8.8)
pPXp

where Sj = X;IX/‘! . Therefore:

K
SSy (y) = ZV/S/'V
=1

K
=V ) s|v (8.9)
j=1
Let
K
wW=>"s, (8.10)
j=1
Then
SSy (y) = VWy (8.11)
Let ~
Xi
_ Xo
X =| .
Nxp
Xk

NX = matrix composed of the vector of grand means (across all groups) repeated
xp

N times.
B=(X-X) (X-X) (8.12)
Therefore:
SSp, (y) = VBv (8.13)
and consequently
v'Bv
A= — 8.14
vVWy ( )

We can maximize A (the discriminant criterion) by taking the first derivative rela-
tive to v and setting it equal to O (we use the matrix derivation rule A.2 in Appendix
A: OV AV/3v = 2Av):

VWv (2B v |- (VBv](2W Vv
dA . 1x1 pxppxl1 1x1 pxppxl

= =0 1

a v 2 ®.15)

px1 (V’WV)
1x1
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From Equation (8.14)
vVBv = AVWv (8.16)
By substitution in Equation (8.15)

I (VWv) 2Bv) — 1 (VWv) 2Wv)

= (8.17)
a v (VWv)?
px1
and consequently
oA B AW
- v _2M (8.18)
a v vVWv  vWy
pxl1
Bv — AWy
- =0 (8.19)
vVWy
Equation (8.19) is true if
Bv - 2Wv =0 (8.20)
or
B-2W)v=0 (8.21)
which on pre-multiplying by W-! gives
(W_IB - ,\1) v=0 (8.22)

Therefore, the solution for A is given by the eigenvalues of W™'B, and the
solution for v is given by the corresponding eigenvectors of W~'B.

8.1.2 Discriminant Function

The matrix W~'B is not symmetric. In fact, there are K — 1 linearly independent
rows in X — X.

Consequently, the rank of B is K — 1. W~! is of full rank (p); if it were singular,
it could not be inverted.

Therefore, the number of nonzero eigenvalues is the smaller of the rank of W~
and of B, which is usually K — 1 (following from the fact that typically there are
more variables than groups, i.e., K — 1 <p).

This means that discriminant analysis provides K — 1 nonzero eigenvalues and
K — 1 discriminant functions.
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The first discriminant function v; has the largest discriminant criterion value
A1 (eigenvalue), and each of the others has a conditionally maximal discriminant
criterion value.

The centroids for each group j consist of the mean value of y for the group for
each of the K — 1 eigenvectors or discriminating functions:

V1jsY2js -+ Yrijs - - YE—1j (8.23)

where r represents the index for the rth eigenvalue and eigenvector:
By =Xy, (8.24)

These are the dimensions along which one can find the largest differences across
groups.

8.1.2.1 Special Case of K = 2

It is possible to estimate a multiple regression equation where the dependent
variable is a dummy variable (0 for alternative 1 and 1 for the other alterna-
tive). Such a regression would yield weights for the independent variables which
would be proportional to the discriminant weights. However, it is important to note
that the ¢ statistics should not be used. Indeed, the errors are not normally dis-
tributed with mean O and variance o2I, as will be demonstrated in the sections
below.

8.1.2.2 Testing the Significance of the Discriminant Solutions

Recalling that Wilk’s Lambda is the statistic we discussed when testing the
significance of differences of means for multiple variates (MANOVA), we con-
sider this statistic in the context of discriminant analysis. As indicated in
Chapter 2:

w
AW (8.25)
IT|
Consequently, using rule (A.8) in Appendix A
_m_ ‘W_IT‘ - ‘W‘l (W + B)‘ - ‘<I+ W_IB)‘ (8.26)
A W]

However, according to rule (A.8) in Appendix A, the inverse of Wilk’s Lambda
can be expressed in terms of the eigenvalues of W~'B:

>~

—1
=|la+xr (8.27)
1

1
A

1
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Consequently

1 -1

(8.28)

1
K—1 - ] 14+ A;
Masn =00
i=1
The statistic used for MANOVA, Bartlett’s V can then be expressed in terms of
the eigenvalues of W~'B:

K—1
V=—[N—-1-(p+K)/2]LnA=[N—-1-(p+K)/2] ZLn(1+,\,-)
i=1
(8.29)
Bartlett’s V is distributed approximately as a chi-square with p(K-1) degrees of
freedom and, because each of the discriminant functions are uncorrelated, each ele-
ment of the terms of the sum in Equation (8.29) corresponding to the r’s eigenvalue
is distributed as a chi-square with degrees of freedom p + K — 2r. Let

V,=[N—=1=(@+K)/2]Ln(l + 1)

It is then feasible to test the significance of the residual discrimination after
removing the first discriminant function by comparing the value of V — V. If this
difference is still significant, it means that the remaining discriminant functions have
still a discriminant power. The process continues by comparing V — (V1 + V3) and

-
then more generally V — (Z Vr) until this expression becomes insignificant.
i=1

8.1.3 Classification and Fit

8.1.3.1 Classification

The issue we need to address now concerns how to classify the observations.
A group prediction can be made based on the value of the linear combination
obtained from the first discriminant function:

Vi = XiVy (8.30)

The group prediction then depends on the value obtained in Equation (8.30),
relative to a critical value yjyj, i.€., based on the sign of

Y1i — Ylerit (8.31)

The rule can then be based on the distance from group means: assign observation
i to the group to which it is closest (corrected for covariance). The midpoints are
then used as the critical values.
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For example, in the two-group case, there is a single eigenvector:

v=W1E —%x) (8.32)
y=xW 1 (x — %) (8.33)
Group 1: 2 = XpW ™! (X — %2) (8.34)
Group 2: 5, = X,W ™! (%] — %) (8.35)

The classification is based on the midpoint:

1 _ _ 1 _ _ 1 - _
Yerit = 5 (51 +32) = Yerit = 5 (%1 + %) W P& — %) (8.36)
Then the classification rule is

if y1; < Yeric = i € Group 1 else i € Group 2,

which is equivalent to defining w as
W =Yi = Yerit
Then, if w < 0 then i € Group 1 else i € Group 2. Graphically, this is repre-
sented on Fig. 8.1 below, where the dotted vertical line represents the critical value

appearing at the midpoint between the mean of each of the two groups y; and y;.
As discussed above

Vi < Yerit = I € Group 1

or equivalently

W=y — Yerit <0 =i & Groupl

For more than two groups (i.e., K > 2), similar concepts apply.
Let

1
wik(D) = ;W (% — %) = 5 (% + %) W (% - %) (8.37)
——
i Yerit

5 e

| | | R

T I T

Vi

Fig. 8.1 Classification of
observations Yerit
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The rule consists of assigning i to group j if wjx(i) > 0 for all k # j , which means
that y; is closer to k than to j.

For example, for three groups: K = 3. We can compute wia, w13, and wp3 (note
that wo; = —wy2). But, because w3 = wiz—wi2, we do not need wp3.

Then we can classify i as belonging to

Group 1:if wip >0 and w13 >0
Group 2: if wiz <0 and w13 > w1z
Group 3:if w3 <0 and wip > w3

For more than two groups, a plot of the centroids y; on the discriminant functions
as axes can help to interpret them.

8.1.3.2 Measures of Fit

Fit measures are based on the ability of the discriminant functions to classify obser-
vations correctly. This information is contained in the classification table, as shown
in Fig. 8.2.

Percent Correctly Classified

The classification table is a K x K matrix which indicates the number or percentage
of observations which are part of each group and which have been classified into
that group (correctly classified) or into another group.

The diagonal cells in Fig. 8.2 represent the observations which are cor-
rectly classified. The percentage of correctly classified observations can easily be
computed as

)
e =71 (8.38)

N
Predicted
Actual 1 2 K
1 ny4
2 N5y
K Nk
N

Fig. 8.2 Classification table
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where nj; = number of observations actually in category j and predicted to be in
category j, and N = total number of observations.
This measure of fit presents two problems:

e It uses the same N individuals for discrimination and prediction. This leads to an
upward bias in the probability of classifying the observations correctly. A solution
is to use a split sample for prediction.

o If the sample is not distributed evenly across the groups, i.e., the observed pro-
portions are different across groups. Then by merely classifying all observations
arbitrarily into the group with the highest proportion, one can get at least max { p; }
classified correctly, where pj; is the actual proportion of observations in Group j.

Maximum Chance Criterion

This last value, i.e., max {p;}, is defined as the maximum chance criterion. Because
it does not require any model to be able to arrive at such a rate of correct assignment
to groups, this can be used as a minimum standard, and any model should be able to
improve on this rate.

Percent Correctly Classified by Chance: The Proportional Chance Criterion

Assume two groups
P(correct) = P(correct |j = 1). P(j = 1) + P(correct|j = 2). P(j = 2)

Let p; be the observed proportion of observations actually in group j, as defined
earlier, and «; the proportion of observations classified in group j.

correct
P (bychance) - ijaj (8-39)
J

Let us assume that the discriminant function is meaningful. Then we want to
classify in the same proportion as the actual groups.
Under our decision rule, ; = p;. Therefore:

correct . o )
F (byChance) - Zplal = ij (8.40)
J J

Equation (8.40) provides the formula for the proportional chance criterion.
Tau Statistic
The tau statistic involves the same rationale but standardizes the information:
ne = pjnj  (ne/N) =3 pje;
j j

= = (8.41)
N =3 pjn; 1 =2 pje;
J J

T
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where n; = number of observations classified in group j and n. = number of
correctly classified observations.

8.2 Quantal Choice Models

In this section, we will introduce logit models of choice. Although probit models
could also be discussed in this section, they will not be discussed because they fol-
low the same rationale as for the logit model. We start by discussing the difficulties
inherent in using the standard regression model with a categorical dependent vari-
able, even a binomial one. Then we discuss methodologies which can be used to
resolve some of those problems. We then present the logit model with two variants
and explain the estimation of the logit model parameters. Finally, we present the
various measures of fit.

8.2.1 The Difficulties of the Standard Regression Model with
Categorical Dependent Variables

Let us assume the case of two groups. The variable representing the group
assignment can take two values, 0 and 1:

0
This group assignment is made on the basis of a linear model:

Yi=1,....N: yi = X. B + ¢ (8.43)
1x1 Ixppx1 1x1

Are the usual assumptions verified?

1. Is E[e;] =07
This would imply in this case that the error terms for each observation follow a
specific random process. Indeed, from Equation (8.43) it follows that

e =yi—X;p (8.44)

Consequently, the following distribution for y; would be required so that the
equality E[e;] = 0 be verified:

Py;=0)=1-x (8.45)
P(yi=1) =X, (8.46)
However, this is not generally the case, in part because

X/ ¢ [0,1]
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Therefore, the distribution is impossible. Hence, B\OLS is biased.
2. IsE[e}] = o??

The second assumption is the homoscedasticity of the error terms.

e; is distributed as a Bernoulli process.

Vieil = (x;p)(1 — x;f) (8.47)

This implies heteroscedasticity, and consequently ordinary least squares are
inefficient.

3. The range constraint problem: y; ¢ [0,1]
A third problem occurs due to the fact that the predicted values of the predicted
variable can be outside the range of the theoretical values, which are either O or 1.

8.2.2 Transformational Logit

8.2.2.1 Resolving the Efficiency Problem
We may be able to solve the efficiency problem with the estimated generalized least
square estimator.
Let us assume that the data can be grouped into K groups.
j=1,...K

n; = size of group j

where the K groups correspond to “settings” of independent variables.
Let

e (8.48)
il
where
0
Yij 1
z; is the number of 1’s in group ;.
zi
pj= ;f (8.49)
j
The model for a given group is
pj= Xjﬁ + ¢ (8.50)

For the entire K groups, the proportions are represented by

P =X 8+ e (8.51)
Kx1 Kxppx1 Kx1
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In Equation (8.50), the true proportion for group j is given by

P; =X;p (8.52)
Therefore:
e;j follows a binomial distribution:
ej ~ B(0,P;(1 — Pj)/n;) (8.54)

The variance is obtained because z; is such that

E[zj] = njP; (8.55)
Vig] =mP;i(1-P)) (8.56)
Therefore, dividing by n;
E[p]=E [;—’} =P (8.57)
J

; 1 Pi(1—P

Vp] = [;_ﬂ =5V[g]= il ” ) (8.58)
J

Consequently, the covariance of the error term in Equation (8.51) is
E[ee'] = ® = diag {P; (1 — P}} /nj} (8.59)
The generalized least squares estimator would be
N -1
foLs = (x’cp—lx) X' p (8.60)

But & is unknown. It can be replaced by a consistent estimator to obtain the
estimated generalized least squares estimator. Such an estimator of ® is

d = diag {p; (1 — p;) /n;} (8.61)
where
p=Xb=X(XX)"Xp (8.62)

The ordinary least squares estimator b provides estimates for p which are consis-
tent with the theoretical model specification. The estimated generalized least squares
estimator is

. . 1
,BEGLS:(X/CD_IX) X'd1p (8.63)
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Several problems remain:

(i) There is no guarantee that the predicted probabilities p; = X;b are between
0 and 1: an empirical solution which has been recommended is to restrict the
variance so that if p; (1 — p;} < 0, set p;= 0.05 or pj= 0.98

(ii) Even then, there is no guarantee that p based on ﬁEGLS is between 0 and 1.

This points out the need to constrain the range of p to the interval [0,1].

8.2.2.2 Resolving the Range Constraint Problem

We can also solve the range constraint problem through the transformational logit
Let

I = xj’-ﬁ (8.64)
1
Pj = =" (8.65)
pi=Pjte =7 g (8.66)
It can be shown that
L —xp— T (8.67)
1 =pi Pi (1 - P
Let
Dj ¢
Ln = vy; and
l—p P (1 - Pj) !
Then
or, for the full sample
v=Xp8+nu (8.69)
Kx1 Kxppxl  Kxl
@ = E[uu] = diag {E |} (8.70)
KxK
? 1
e
E [uz] =F (—/) =V [ej] (8.71)
! Pi(1-P)) P (1 - Py’
- ! A Cdi) (8.72)
P2(1-P) nj '
J J
1

- (8.73)
niP; (1 = P))
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Therefore, the generalized least squares estimator provides the minimum vari-
ance estimator:

N —1
Bors = (X’cb—lx) Xoly (8.74)
where

¢ = diag { (8.75)

But P; is unknown. We can replace P; by p; in Equation (8.75) and obtain the
estimated generalized least squares estimator:

PrcLs = (X’Cile)_l X'¢ly (8.76)

In practice, let us define
7112 = diag | [npi (1 = p)]'"?} 8.77)
BecLs = (X/Ci)_l/chfl/zX)_l X'o-12p=12y (8.78)

Therefore, we can perform a transformation of the right- and of the left-hand
sides of the equation and obtain the ordinary least squares of the transformed
variables.

Let
vi=d 12y (8.79)
X* = ¢1/2x (8.80)
and consequently:
BroLs = (X¥X*) 7 XV (8.81)

8.2.3 Conditional Logit Model

Let us consider an individual i considering a choice among K alternatives.
Let us define the variable yj;:

1 if alternative j is chosen

0 otherwise (8.82)

Vj:l,...,K:yij:{

Py =l =1] 3
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Only one alternative can be chosen so that

K

Z yi=1 (8.84)
j=1

K
ZP,-,- =1 (8.85)
j=1

The likelihood function for an individual i is

K
0; = HPY/ (8.86)
j=1

The likelihood function for all individuals is:

N K
0= 1‘[ 1‘[ Pyj’ (8.87)

i=1j=1

For the multinomial logit model, if the unobserved utilities are a function of
attributes and an error term that is distributed iid with the extreme value distribution
(i.e., the cumulative distribution function is F(g; < ¢) = exp(—e~?)), then the
probability P;; is defined as

eLlij
K

Z elik

k=1

P =

(8.88)

where u;; represents the utility associated with alternative j for individual i.

Two cases can be found depending on whether the explanatory variables deter-
mining the utility of the alternatives vary across alternatives or not. The first case
of Conditional Logit — Case 1 (or discrete choice in LIMDEP) concerns the case
where the variation in utilities of the alternatives comes from the differences in the
explanatory variables but the marginal utilities are invariant. The second case of
the conditional logit model is when the source of variation in the utilities of the
alternatives comes from the marginal utilities only.

8.2.3.1 Conditional Logit — Case 1 (or Discrete Choice in LIMDEP)

The utility of an option varies because of different values of X’s (e.g., attribute
values of a brand).

G
P = < (8.89)
Z eX;k'B
k=1
For identification, we set X;l = 0 or let us define
X;;-/ = X;j — X (8.90)
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This demonstrates that no constant term can be estimated in this model; a con-
stant term would be indeterminate because the intercept disappears in Equation
(8.92).

The model parameters are estimated by maximum likelihood. The likelihood for
individual i is

K
0; = 1‘[ pf/f (8.91)

j=1

Yij
e
=11 K/ (8.92)
=Ly 3 NP
k=1
For the N observations, the likelihood is
Yij
i
e_]_[e _]_[]_[ (8.93)
i=1j=1 z:e %ﬂ
k=1
Yij
i
L=Ln¢= Z ZLn (8.94)
i=1 j=1 z:exﬂﬂ
k=1
N K i
= ZZ yiln— (8.95)
i=1 j=1

Z eX;k'B

k=1
L= Zy,l (XU,B LnZe tkﬂ) (8.96)
i=1 j=1

The optimization follows the iterative procedure described below.
Let ¢ = iteration number. The gradient at iteration ¢ is

S[ﬁ(f)]={

px1

8.97
3pp(0) } ®D

Let us further define

=

QIB M1 =) [Si(B 0SB ()]

pXp i—1
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The value of the parameters at the next iteration is given by Equation (8.98):

Bl+1) =P+ |01 W17 SIB W] (8.98)

px1

The parameter estimates are obtained by convergence when the gradient vector
approaches zero.

8.2.3.2 Conditional Logit — Case 2

In this case, the utility of an option varies because of different values of the marginal
utilities B’s and the factors predicting the utilities are the same across options.

exgﬂj
Pj=——— (8.99)
3 eXibk
k=1
For identification, it is necessary to set §1 = 0.
The estimation of the model follows the procedure as in the prior case.
Vij
N K X/ B;
et
e=T11T| =—— (8.100)
i=1j=11 3 Xibk
k=1

Taking the logarithms,

N K N K
L=)"% yxp—y Lny & (8.101)
i=1 j=1

i=1 j=1

An iterative procedure similar to case 1 above is used to obtain the maximum
likelihood estimates. The only difference compared with case 1 comes from the
larger size of the vector of parameters. The vector of all coefficients at iteration 7 is
the vector with (K-1)p elements 8 (¢).

(K—1)px1

The interpretation is, therefore, somewhat more complex in the case 2 model. The
marginal utilities due to the increase of a unit of an explanatory variable are different
across alternatives. Therefore, for example, marginally, variable x; may contribute
to the utility of alternative j but not significantly to the utility of alternative k.

8.2.4 Fit Measures

The fit measures follow for the most part those used in discriminant analysis,
which are based on the classification table. However, some additional measures are
available because of the maximum likelihood estimation and its properties.
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8.2.4.1 Classification Table

These measures are the same as in discriminant analysis:

Percentage of observations correctly classified
Maximum chance criterion
Proportional chance criterion

[ )
[ )
[ )
e Tau statistic

8.2.4.2 Statistics of Fit

Because of the properties of the likelihood function, two statistics can be used to
test the model.

Log Likelihood Chi-Square Test

The null model is that the marginal utilities, apart from the constant term, are zero:

Ho: Bsiopes = 0

if n is the number of successes (y; = 1) observed in T observations, e.g., in the
binary case
der H e(,é) (")" T—m\"™ (8.102)
under Hy: == .
0 0 T T

where Ao represents the maximum likelihood estimates of the parameters of the
reduced model with no slopes and E(,éo) is the value of the likelihood function
obtained with these parameter estimates.

Taking the logarithm

~ n T—n
Ln¢ (ﬁ()) = nLn + (T —n)Ln ( - ) (8.103)

If /§ 1 is the value of the likelihood function estimated at the maximum likelihood
estimate 1, then

) [Lne (30) —Ln¢ (31)] ~ X3 (8.104)

Therefore, an obvious advantage of the logit model vis-a-vis discriminant
analysis is that it offers the possibility of testing the significance of the model.

Likelihood Ratio Index or Pseudo-R2

Based on the same properties, the following index can be used.

Ln¢ (31)

m (8.105)

pr=1-
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If the model is a perfect predictor in the sense thatP; = 1 when yi=land Pi=0
when y; = 0, then

E(ﬁl)zliLnE(ﬁl)=O:>,02=1 (8.106)

When there is no improvement in fit due to the predictor variables, then

Ln¢ (31) —Ln¢ (30) = 2 =0

8.3 Examples

8.3.1 Example of Discriminant Analysis Using SAS

In Fig. 8.3, the SAS procedure “discrim” is used. The variables used to dis-
criminate are listed after the “var” term and then the variable which contains
the group numbering follows the term “class” to indicate that it is a categorical
variable.

Fig. 8.3 Example of SAS file =~ OPTIONS LS=80;

for discriminant analysis DATA ALLIANCE;
INFILE "c:\SAMD2\Chapter8\Examples\al8.dat";
(examp8-1.sas)

INPUT #1 choice dunc techu grow
#2 firmsiz x1 7.4 x2 x3 asc
#3 nccc;

proc discrim bsscp psscp wsscp tsscp canonical ;
var dunc techu grow firmsiz asc nccc;
class choice;

run;

The key sections of the SAS output are shown in Fig. 8.4. The output of dis-
criminant analysis clearly shows the within-group SSCP matrices (separately for
each group), the pooled within SSCP matrix W, the between-group SSCP matrix
B and the total sample SSCP matrix T. The raw (unstandardized) and standardized
(correcting for the different units and variances of each of the variables) canonical
coefficients, that is the discriminant coefficients, are then listed. The raw coefficients
indicate the weights to apply to the p variates in order to form the most discrimi-
nating linear function. In the example, y; = 0.455*DUNC; — 1.031*TECHU; +
0.858*GROW; — 0.00008*FIRMSIZ; — 0.808*ASC; + 0.557*NCCC;. In the partic-
ular case where only two groups are analyzed, a single discriminant function exists;
there is only one eigenvector. The eigenvectors or discriminant functions discussed
earlier are interpretable in a way such that a positive (negative) sign of the dis-
criminant function coefficients (weights) indicates that the corresponding variable
contributes positively (negatively) to the discriminant function. A comparison with
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Observations
Variables
Classes

Variable

choice Name

[y

1

2 2

Variable

dunc
techu
grow
firmsiz
asc
nccec

Variable

dunc
techu
grow
firmsiz
asc
nccec

Variable

dunc
techu
grow
firmsiz
asc
nccec

Variable

dunc
techu
grow
firmsiz

8 Categorical Dependent Variables

The DISCRIM Procedure

200 DF Total
6 DF Within C
2 DF Between
Class Level Information
Frequency Weight Pr
155 155.0000
45 45.0000
The SAS System
The DISCRIM Procedure
Within-Class SSCP Matrices
choice = 1
dunc techu
113.3 39.3
39.3 79.4
9.5 48.0
-9339.1 -9615.8
-27.4 1.7
-23.0 0.3
choice = 1
firmsiz asc
-9339.1 -27.4
-9615.8 1.7
-7354.2 6.4
184070705.5 24104.1
24104.1 132.8
9078.2 21.5
choice = 2
dunc techu
30.27 14.71
14.71 26.14
11.68 14.97
981.28 4710.89
-4.70 1.40
0.10 6.50
choice = 2
firmsiz asc
981.28 -4.70
4710.89 1.40
12027.31 6.08
64024111.11 2718.02

Fig. 8.4 SAS output for discriminant analysis (examp8-1.1st)

lasses
Classes

oportion

0.775000
0.225000

199
198

Prior
Probability

0.500000
0.500000

grow

.68
.97
.81
.31

0.38
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asc
nccc

Variable

dunc
techu
grow
firmsiz
asc
ncce

Variable

dunc
techu
grow
firmsiz
asc
ncce

Variable

dunc
techu
grow
firmsiz
asc
ncce

Variable

dunc
techu
grow
firmsiz
asc
ncce

Variable

dunc
techu
grow
firmsiz
asc
ncce

Variable

dunc
techu
grow
firmsiz
asc

Fig. 8.4 (continued)

2718.02
-418.20

Pooled Within-Class SSCP Matrix

Pooled Within-Class SSCP Matrix

firmsiz

-8357.
-4904.
4673.
248094816.
26822.
8660.

Between-Class

-0.

-467.
-1.

Between-Class

ONONVO®

dunc

.6129

4180

L7117

3848
7287

.2759

firmsiz

-467.
318.
-542.
356391.
1318.
-210.

3848
7464
7074
4050
2102
3682

22.14
8.67

techu

54.
105.
62.
-4904.
3

6

o+ WYL o

asc

-32.
3.

12.
26822.
154.
30.

NONUORE

SSCP Matrix

techu

-0.4180
0.2851
-0.4854
318.7464
1.1790
-0.1881

SSCP Matrix

asc

-1.7287
1.1790
-2.0074
1318.2102
4.8758
-0.7781

Total-Sample SSCP Matrix

dunc

OcOwVWwNOVON

techu

53.
105.
62.
-4586.
4.

6.

NWwWkH O oo

Total-Sample SSCP Matrix

firmsiz

-8825.
-4586.
4130.
248451208.
28140.

BOoOBKEN

asc
-33.
10

28140.
159.

o s U W

132.
4130.

8.67

22.90

grow

L7117
-0.
.8264
-542.

-2.
.3203

4854

7074
0074

nccc

.2759
-0.
.3203
-210.

-0.
L1242

1881

3682
7781

grow

21.

(6 B0 I S BT

219
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ncce 8449.6 29.4 106.9

Pooled Covariance Matrix Information

Natural Log of the

Covariance Determinant of the
Matrix Rank Covariance Matrix
6 11.06578

Pairwise Generalized Squared Distances Between Groups
2 _ -1
D (ilj) = (X - X )' cov (X - X)
i 3j i j

Generalized Squared Distance to choice

From choice 1 2
1 0 0.39588
2 0.39588 0

Canonical Discriminant Analysis

Adjusted Approximate Squared

Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation

1 0.255312 0.209914 0.066267 0.065184

Eigenvalues of Inv(E)*H
= CanRsq/ (1-CanRsq)

Eigenvalue Difference Proportion Cumulative
1 0.0697 1.0000 1.0000

Test of HO: The canonical correlations in the
current row and all that follow are zero

Likelihood Approximate
Ratio F Value Num DF Den DF Pr > F

1 0.93481561 2.24 6 193 0.0408
NOTE: The F statistic is exact.
Canonical Discriminant Analysis

Total Canonical Structure

Variable Canl
dunc 0.255331
techu -0.203296
grow 0.309396
firmsiz -0.148344
asc -0.684158
ncce 0.133471

Between Canonical Structure

Variable Canl
dunc 1.000000
techu -1.000000
grow 1.000000
firmsiz -1.000000
asc -1.000000
ncce 1.000000

Fig. 8.4 (continued)
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Pooled Within Canonical Structure

Variable Canl
dunc 0.247396
techu -0.196824
grow 0.300080
firmsiz -0.143531
asc -0.671812
ncce 0.129123

Canonical Discriminant Analysis

Total-Sample Standardized Canonical Coefficients

Variable Canl
dunc 0.3875344511
techu -.7516524862
grow 0.7000312218
firmsiz -.0910945522
asc -.7239897268
ncce 0.4082828732

Pooled Within-Class Standardized Canonical Coefficients

Variable Canl
dunc 0.3876854449
techu -.7525324874
grow 0.6996037720
firmsiz -.0912587756
asc -.7146572217
ncce 0.4090748704

Raw Canonical Coefficients

Variable Canl
dunc 0.455199542
techu -1.030770927
grow 0.858082117
firmsiz -0.000081526
asc -0.807915970
ncce 0.556967570

Class Means on Canonical Variables

choice Canl
1 0.1415685600
2 -.4876250399

Linear Discriminant Function
-_— _1 -_— _1 -_—
Constant = -.5 X' COV X Coefficient Vector = COV X
3 3J j

Linear Discriminant Function for choice

Variable 1 2
Constant -0.49854 -1.04596
dunc 0.28366 -0.00275
techu -0.21886 0.42970
grow 0.03893 -0.50097
firmsiz 0.0004568 0.0005081
asc 0.94089 1.44923
nccc -0.24923 -0.59967

Fig. 8.4 (continued)
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Classification Summary for Calibration Data: WORK.ALLIANCE
Resubstitution Summary using Linear Discriminant Function

Generalized Squared Distance Function
2 _ -1 _
D (X) = (X-X )' COV (X-X )
3 3 b

Posterior Probability of Membership in Each choice

2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))
3 k k

Number of Observations and Percent Classified into choice

From choice 1 2 Total
1 97 58 155
62.58 37.42 100.00
2 12 33 45
26.67 73.33 100.00
Total 109 91 200
54.50 45.50 100.00
Priors 0.5 0.5

Error Count Estimates for choice

1 2 Total
Rate 0.3742 0.2667 0.3204
Priors 0.5000 0.5000

Fig. 8.4 (continued)

the group means on the discriminant function indicates in what way the variates
discriminate among the groups. For example, in Fig. 8.4, Choice 1 has a higher
(positive) mean value (0.142) on the discriminant function y (the mean for Choice
2 is negative, i.e., —0.488). Therefore, the positive coefficient of DUNC means that
the higher the demand uncertainty (the higher the value on DUNC), the higher the
discriminant function and, consequently, the more likely choice 1 (internal devel-
opment mode). On the opposite, because of the negative coefficient of TECHU,
the higher the technological uncertainty, the more likely choice 2 of using an
alliance.

In addition, the absolute value of the standardized discriminant function coef-
ficients (where the raw coefficients are multiplied by the standard deviation of
the corresponding variables) reflect the contribution of the variables to that dis-
criminant function so that a larger standardized weight indicates a bigger role
of that variable in discriminating between the options. For example, the variable
technology uncertainty (“techu”) appears the most discriminant variable (-0.75),
followed closely by the variables “asc” (=0.71) and “grow” (0.69) although obser-
vations with higher values of growth (“grow”) are likely to belong to different
groups from those with high ratings on “asc” and “techu” because of the opposite
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signs of these coefficients. Therefore, these standardized coefficients explain the
contribution (extent and direction) of each variable for discriminating between the
two groups.

For two-group discriminant analysis, the interpretation of the discriminant func-
tion weights is relatively clear, as presented above. When there are more than two
groups, each discriminant function represents different dimensions on which the
discrimination between groups would occur. For example, the first discriminant
function could discriminate between groups 1 and 3 versus group 2, and the sec-
ond discriminant function could discriminate between groups 1 and 2 on the one
hand and group 3 on the other hand. The interpretation in such cases requires the
comparison of the group means on the discriminant function values (y). A plot of
the group means or centroids on the discriminant functions as axes helps the inter-
pretation of these discriminant functions which can be difficult. It is also very useful
to analyze the profiles of each group in terms of the means of the predictor variables
for each group.

In Fig. 8.4, a vector of coefficients for each group is printed under the heading
of “linear discriminant function.” These are not, however, the discriminant func-
tions discussed earlier; they are the classification functions. Indeed, in that particular
example with two choices only, there could not be two discriminant functions. What
the SAS output shows are the classification functions, which are the two components
of Equation (8.32) above, i.e., W-1%, and W 1x,.

The classification table is also shown in Fig. 8.4. In this example, 62.58% of the
observations in Group 1 were classified in the correct group and 73.3% for Group 2.

8.3.2 Example of Multinomial Logit — Case 1 Analysis Using
LIMDEP

Figure 8.5 presents a typical input file using LIMDEP to estimate a logit model of
the case 1 type. The data set used for this example, scanner.dat, has the same struc-
ture as the data scan.dat described in Appendix C. The first part of the file defines
the data variables and reads them from the data file. The specification of the analy-
sis follows in the second part with the procedure “discrete choice”. The variables in
the left-hand side of the equation are then specified (purchase) following the code
“lhs=". Finally, the explanatory variables are listed after the code “rhs=" for the
right hand side of the equation. It is important to note that in LIMDEDP, the options
must be coded from 0 to K—1. The predicted variables in the example of Fig. 8.5
consist of the price of each brand, any price cut applied to each transaction and
whether the brand was on display on not. Each brand is also specified as having
a different intrinsic preference or utility which is modeled as a different constant
term with dummy variables (the reference where all brand dummies are zero cor-
respond to private labels). Some heterogeneity in preferences across consumers is
also captured by a loyalty measure representing past purchases of the brand.
The LIMDEP output is shown in Fig. 8.6.
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read; nrec = 4648; nvar=14; file = scanner.dat;
format = (£8.0,f4.0,2f2.0,£3.0,2£5.2,f2.0,£9.6,5£2.0) ;

names (x1 = panelid,
x2 = week,
x3 = purchase,
x4 = count,
x5 = brand,
x6 = price,
x7 = prcut,
x8 = feature,
x9 = loy,
x10 = duml,
x11 = dum2,
x12 = dum3,
x13 = dum4,

x14 = dum5) ;
$
open; output=c:\SAMD2\Chapter8\Examples\Examp8-2.out$
discrete choice; lhs=purchase, count;
rhs=price, prcut, feature, loy, duml, dum2, dum3, dum4, dum5$
close$

Fig. 8.5 Example of LIMDEDP file for logit model — case 1 (examp8-2.lim)

Normal exit from iterations. Exit status=0.

LIMDEP Estimation Results Run log line 3 Page 1
Current sample contains 4648 observations.
B e e e e +

Discrete choice (multinomial logit) model
Maximum Likelihood Estimates

Dependent variable Choice
Weighting variable ONE
Number of observations 949
Iterations completed 6
Log likelihood function -814.1519
Log-L for Choice model = -814.1519

R2=1-LogL/LogL* Log-L fncn R-sqrd RsqgAdj
No coefficients -1700.3797 .52119 .52003
Constants only. Must be computed directly.

Use NLOGIT ;...; RHS=ONE $
Response data are given as ind. choice.
Number of obs.= 949, skipped 0 bad obs.
B e e e e +
Fommmmmm - e B Fom oo - e Fommm - +
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
Fommmm oo o mmmmm o B e oo Fommm - +
PRICE -2.372695061 .33603584 -7.061 .0000
PRCUT 1.973968500 .35129043 5.619 .0000
FEATURE .7023317528 .13901356 5.052 .0000
LOY 3.791733215 .15780806 24.028 .0000
DUM1 .9717318976E-01 .24160340 .402 .6875
DUM2 .9067318292 .25947016 3.495 .0005
DUM3 .9511561911 .31347219 3.034 .0024
DUM4 .4835120963 .25106381 1.926 .0541
DUM5 .9019121730 .38997209 2.313 .0207

Fig. 8.6 LIMDEDP output for logit model — case 1 (examp8-2.out)
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The output shown in Fig. 8.6 should be self explanatory. The gradient is printed
at each iteration until convergence is achieved. Then, the estimated parameters are
listed with the usual statistics which enable the test of hypotheses and the computa-
tion of the fit statistics based on the likelihood function. The coefficients represent
the marginal utility of each choice option (brand) of one additional unit of the corre-
sponding variable. In the example in Fig. 8.6, price has a significant negative impact
while price cuts and being on display add to the brand utility.

8.3.3 Example of Multinomial Logit — Case 2 Analysis Using
LIMDEP

Figure 8.7 shows the LIMDEP file which estimates the same model as above. There
are two aspects to pay particular attention to

1. The choice variables should have a value of zero for the base case, up to the
number of choice options minus one. In the example, the choice variable, which
is the R&D mode is re-coded to take the value O or 1 dependent on whether the
original variable read from the data file is 1 or 2.

2. The second point is that LIMDEP does not automatically estimate a constant
term. Therefore, if one expects different proportions to be chosen for the same
values of the independent variables, then the variable called “one” in LIMDEP
serves to add the constant term.

It can be seen from the LIMDEP output, shown in Fig. 8.8, that the results are the
same as described previously, in terms of the parameter estimates and of the clas-
sification table. The information necessary to compute the likelihood ratio test are
also given with the log-likelihood functions for the full model and for the restricted

read; nrec = 200; nvar=8; file = al8.dat;
format = (£1.0,3£f8.4/£f17.4,24x,£f8.4/£17.4,24%,£8.4);
names (x1 = rdmode,

x2 = dunc,

x3 = techu,
x4 = grow,

x5 = firmsiz,
x6 = as2,

x7 = nccc,

x8 = ads,

$
create; rdmode= rdmode-1$
open; output=c:\SAMD2\chapter8\examples\examp8-3.out$
logit; lhs=rdmode;
rhs=one, dunc, techu, grow, firmsiz, as2, nccc, ads$
close$

Fig. 8.7 Example of input for logit model using LIMDEP (examp8-3.1im)
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LIMDEP Estimation Results Run log line 4 Page 1
Current sample contains 200 observations.

e +
| Multinomial logit model |
| There are 2 outcomes for LH variable RDMODE |
| These are the OLS start values based on the |
| binary variables for each outcome Y (i) = j. |
| Coefficients for LHS=0 outcome are set to 0.0 |
e +
Fom - i T B e B Bt o mmmmmmo o +
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
Fom - i T B e B Bt o mmmmmmo o +
Characteristics in numerator of Prob[Y = 1]
Constant .2071964751 .38692314E-01 5.355 .0000
DUNC -.1371394030E-01 .36081756E-01 -.380 .7039 -.22794000E-01
TECHU .5819511367E-01 .47307026E-01 1.230 .2186 -.11773500E-01
GROW -.8250070805E-01 .37666224E-01 -2.190 .0285 .19359500E-01
FIRMSIZ .1275473374E-04 .23474470E-04 543 .5869 706.10000
AS2 .1665741370E-01 .32130499E-01 .518 .6042 .79726850
NCCC -.4558722443E-01 .37072263E-01 -1.230 .2188 -.24566500E-01
ADS .2261545326 .31404416E-01 7.201 .0000 -.16065145E-01
Normal exit from iterations. Exit status=0.
LIMDEP Estimation Results Run log line 4 Page 2
Current sample contains 200 observations.
B e e e +
| Multinomial Logit Model |
| Maximum Likelihood Estimates |
| Dependent variable RDMODE |
| Weighting variable ONE |
| Number of observations 200 |
| Iterations completed 7 |
| Log likelihood function -73.57682 |
| Restricted log likelihood -106.6328 |
| Chi-squared 66.11190 |
| Degrees of freedom 7 |
| Significance level .0000000 |
B e e e +
Fom - Fommmmmmmmmm oo B e +—m—m——— - e o mmmmmmo o +
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z]|>z] | Mean of X|
Fom - Fommmmmmmmmm o B e +om—m—— - Fom - o mmmmmmo o +

Characteristics in numerator of Prob[Y = 1]

Constant -2.247599465 .40470933 -5.554 .0000

DUNC -.1341133808 .30167521 -.445 .6566 -.22794000E-01
TECHU .5217618767 .38423330 1.358 .1745 -.11773500E-01
GROW -.7767888885 .32769650 -2.370 .0178 .19359500E-01
FIRMSIZ .1237468921E-03 .17355371E-03 .713 .4758 706.10000

AS2 .1825140247 .27622638 .661 .5088 .79726850
NCCC -.6736865330 .31454643 -2.142 .0322 -.24566500E-01
ADS 2.038879995 .36284355 5.619 .0000 -.16065145E-01

Frequencies of actual & predicted outcomes
Predicted outcome has maximum probability.

Predicted
________________ 4+ —m———
Actual 0 1 | Total
________________ 4 —————

0 143 12 | 155
1 25 20 | 45
________________ 4 —————
Total 168 32 | 200

Fig. 8.8 Example of LIMDEP output for logit model (examp8-3.out)
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version (no slopes). The chi-squared statistic is also provided. The pseudo R squared
can be computed with this information as well.

8.4 Assignment

Use SURVEY.ASC data to run a model where the dependent variable is a categorical
scale (choose especially a variable with more than two categories). For example, you
may want to address the following questions:

Can purchase process variables be explained by psychographics?
Are demographics and/or psychographics determinants of media habits?

Note that for these analyses, you can use discriminant analysis with SAS or the
Multinomial logit — case 2 — model estimated using LOGIT.EXE or LIMDEP. In
both cases (discriminant analysis and logit model), provide fit statistics in addition
to the explanation of the coefficients. Compare the results of both analyses. Pay par-
ticular attention to the format for reading the variables in LIMDEP, as the Windows
version does not recognize format i for integers.

Model the brand choice of this frequently purchased grocery product using scan-
ner data in the file SCAN.DAT (the description of the file can be found in Appendix
C). Use LIMDERP to estimate the Multinomial logit — case 1 — models.

You may want to consider the following ideas for possible analysis:

e What does the inclusion of the “loyalty” variable (i.e., a measure of cross-
sectional heterogeneity and nonstationarity) do to the brand choice model?

e What do we gain, if anything, by separating price paid into its two components?

e Are there brand-specific price effects?
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Chapter 9
Rank-Ordered Data

When the criterion variable is defined on an ordinal scale, the typical analyses
based on correlations or covariances are not appropriate. The methods described
in Chapter 6 do not use the ordered nature of the data and, consequently, do not use
all the information available. In this chapter, we present methodologies that take the
ordinal property of the dependent variable into account.

A particular methodology which typically uses ordinal dependent variable is
based on experimental designs to obtain preferences of respondents to different
stimuli: conjoint analysis. We first discuss the methodology involved in conjoint
analysis and the methods used to estimate the parameters of the conjoint mod-
els, i.e., monotone analysis of variance (MONANOVA). Then, we discuss a choice
probability model which takes the ordinal property of the dependent variable into
consideration, the ordered probit model.

9.1 Conjoint Analysis - MONANOVA

In the conjoint problem, preference responses to stimuli are obtained. These stimuli
are designed to represent a combination of characteristics or attributes. Therefore,
we start discussing the design itself which defines the independent or predictor vari-
ables and the manners in which the combination of attributes can be coded for
analysis.

9.1.1 Effect Coding Versus Dummy Variable Coding

In a typical experimental setting, the independent variables which characterize the
conditions of a cell or a stimulus are discrete categories or levels of attributes.
For example, the color of the packaging of a product is red or yellow. It can be
ordered (for example a “low,” “medium” or “high” value) or not (e.g., colors). Each
combination of level of all the attributes can correspond in principle to a stimulus,
although responses to all the combinations may not be necessary. Two methods
can be used to code these combinations of levels of attributes. Effect coding is

H. Gatignon, Statistical Analysis of Management Data, 231
DOI 10.1007/978-1-4419-1270-1_9, © Springer Science+Business Media, LLC 2010
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the traditional method in experimental research using analyses of variance models.
Dummy variables are typically used in regression analysis. We present each coding
scheme and discuss the differences.

The coding principle is best described by taking an example of a two by two
factorial design. This means that there are two factors in the experiment, each with
two levels. For example, the stimulus may or may not have property A and may or
may not have property B. This is illustrated in Table 9.1.

Table 9.1 A 2x2 factorial design

A
a a
B b 40.9 (1) 47.8 (a) 44.4
b 42.4 (b) 50.2 (ab) 46.3
41.6 49.0 45.3

This 22 factorial design can easily be generalized to the 2" design or any design
mxnx---xk.

In Table 9.1, the stimulus possesses the attribute A or not. If it does, the condition
is noted as a, and if it does not, it is noted as a. The same two cases for attribute
B are noted as b and b. The combinations of levels of the two attributes lead to the
following cases:

(1) = Treatment combination which consists of the 1st level of all factors,

(a) = Treatment combination which consists of the 2nd level of the first factor
and the 1st level of the second factor,

(b) = Treatment combination which consists of the 1st level of the first factor
and the 2nd level of the second factor,

(ab) = Treatment combination which consists of the 2nd level of the two
factors.

These labels of each treatment condition are shown in each cell of the table
describing the design in Table 9.1. Assuming that the various stimuli are evalu-
ated on an intervally scaled response measure, the values also shown in each cell of
Table 9.1 are the average ratings provided by respondents in each of these condi-
tions. Assuming that the number of respondents in each cell are the same, one can
derive the grand mean rating, the main effects of each attribute or factor and the
specific incremental effect of the combination of A and B.

The grand mean is the average value across the four cells:

1
M = Grand Mean = Z(ab +a+b+ (1)) ©.1)

The main effect of A is the average of the effect of the presence of A (i.e., the
difference in the ratings whether A is present or not) across the two conditions
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determined by whether B is present or not. If B is present, the effect of A is (ab)
— (b); if B is not present, it is (a) — (1), or

A (Main Effectof A) = = [{(ab) — (b)} + {(a) — (1)}] 9.2)

1
2

Similarly, the main effect of B is the average of the effect of the presence of
B (i.e., the difference in the ratings whether B is present or not) across the two
conditions determined by whether A is present or not. If A is present, the effect of B
is (ab) — (a); if B is not present, it is (b) — (1), or

B(Main Effectof B) = = [{(ab) — (a)} + {(b) — (1)}] 9.3)

N =

The joint effect of A and B beyond the main effects of A and B is given by the
difference between the value of the criterion variable when both effects are present
and its value when none are present (i.e., (ab) — (1)), after removing the main effect
of A (i.e., (a) — (1)) and the main effect of B (i.e., (b) — (1)):

AB = [{(ab) — (D} — {(b) — (D)} — {(a) — (D}]
= [(ab) — (b) — (a) + (1)]

94

Using the data in Table 9.1

(1) = 40.9
(ab) = 50.2
(@) =478
(b) =424

Therefore, using Equations (9.2), (9.3), and (9.4)

1
A= > [502 —42.4 4478 —409] = - (7.84+69) =74

N = N =

1
B= 3 [502 —478+424 —-409]=-(24+15 =19

AB =[50.2 — 424 —47.84409] =09

These effects can simply be computed using a linear model where the indepen-
dent variables are coded using a specific scheme. The coding scheme is different
depending on whether the effects are coded directly (effect coding) or whether the
levels are coded (dummy coding).
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9.1.1.1 Effect Coding

A variable will be created for each factor, for example, x; for factor A and x, for
factor B. We first present the coding scheme with two levels and then when more
than two levels are involved.

9.1.1.2 Effect Coding with Two Levels

Let us assume a factor with two levels. The upper level will be coded “+1” and the
lower level “—1"".

Therefore, a stimulus (a cell) is be represented by the vector “(x;, x2),” which for
the four cells in Table 9.1 gives the following combinations:

@) ()
() ()

A main effect model can be represented by the linear model:
y = Po+ Prx1 + faxz 9.5)

The individual cells’ ratings can then be obtained by the combination of the
values of x; and x» as indicated below:

X1 X2
1) —1-1
@ 1 —1
b)) —1 1
(ab) 1 1

For each cell, this leads to the equations

(D) y=po—B1—H2
(@ y=po+b1— 52
b)) y=pBo—B1+ 82
(ab) y = Bo+ B1 + B2

The effects of each factor are therefore represented by the values of the fs.

1
A=§(,30+/31—/32)—(,30—/31—,32)+(,30+/31+,32)—(,30—/31+/32)

= —Fb+p+th+Bi+Hh+H—H
=1+ p1 =28
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B=p+pH—Br—-P)=pH+Hh-PH+H
—Bi+B—-—f - =-H+h+H+Hh
=+ =20

Effect Coding with More than Two Levels

When more than two levels are involved, the coding scheme depends on the assump-
tions made about the functional form of the relationship between the variable
(factor) and the dependent variable. This issue obviously does not arise in the case
of only two levels.

We present below the case of three levels of a variable. The effects can be coded
to reflect a linear relationship or a non-linear one.

Linear Effect Coding

Let us consider first the coding scheme for a linear effect. Such a coding is
represented in Table 9.2:

Table 9.2 Linear effect coding for three level variable

Level 1 2
Coding -1 0 +1

It can be seen that the difference between level one and level two is the same as
the difference between level two and level three, which is one unit. The difference
between level one and level three is twice the difference between level one and level
two. Therefore, the effect is linear.

Non-linear Effect Coding

The coding of non-linear effects varies depending on the functional form, which
the researcher wants to represent and test. Table 9.3 shows the coding scheme for a
quadratic form:

Table 9.3 Quadratic effect coding for three level variable

Level 1 2
Coding +1 -2 +1

The shape of the function shows symmetry around level two and the values
depend on the coefficient which multiplies this variable. Furthermore, a positive
value of the coefficient would imply a decreasing and then increasing function and
vice versa for a negative coefficient.
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The coding scheme can become quite complex. For more than three levels,
Table 9.4 provides the appropriate schemes:

Table 9.4 Coefficient of orthogonal polynomials

Number
of levels Polynomial  Coefficients (d;) 3 d,.2
3 Linear -1 0 1 2
Quadratic 1 -2 1 6
4 Linear -3 -1 1 3 20
Quadratic 1 -1 -1 1 4
Cubic -1 3 -3 1 20
5 Linear -2 -1 0 1 2 10
Quadratic 2 -1 -2 -1 2 14
Cubic -1 2 0o =2 1 10
Quartic 1 —4 -4 1 70
6 Linear -5 -3 -1 1 3 5 70
Quadratic 5 -1 -4 -1 5 84
Cubic -5 7 4 4 T 5 180
Quartic 1 -3 2 2 3 1 28
7 Linear -3 -2 -1 0 1 2 3 28
Quadratic 5 0 -3 -4 -3 0 5 84
Cubic -1 1 1 0o -1 -1 1 6
Quartic 3 -7 1 6 1 -7 3 154
8 Linear -7 -5 -3 -1 1 3 5 7 168
Quadratic 7 1 -3 -5 -5 -3 1 7 168
Cubic -7 5 7 3 -3 -7 -5 7 264
Quartic 7 -13 -3 9 9 3 -13 7 616
Quintic -7 23 -17 -I5 15 17 23 7 2184
9 Linear -4 -3 -2 -1 0 1 2 3 4 60
Quadratic 28 7 -8 -17 20 -17 -8 7 28 2772
Cubic -14 7 13 9 0 -9 -13 -7 14 990
Quartic 14 21 -11 9 18 9 -11 =21 14 2002
Quintic —4 11 -4 -9 0 9 4 -11 4 468
10 Linear -9 -7 -5 -3 -1 1 3 5 7 9 330
Quadratic 6 2 -1 -3 -4 4 3 -1 2 6 132
Cubic 42 14 35 31 12 -12 31 -35 -14 42 8580
Quartic 18 22 -17 3 18 18 3 -17 22 18 2860
Quintic -6 4 -1 -1 -6 6 11 1 -14 6 780

Adapted from: Fisher and Yates, Statistical Tables for Biological, Agricultural and Medical
Research, published by Oliver and Boyd Ltd., Edinburgh (Table 23).

9.1.1.3 Dummy Variable

Dummy coding corresponds to creating a variable (dummy variable) for each level
of each factor minus one. Therefore, for a design where a factor has three levels,
two variables are created: variable x; takes the value O for level one and level three,
and 1 for level two and x; takes the value O for level one and level two, and 1 for
level three. This implies that a separate coefficient will be estimated for each level,
relative to the reference cell where all the dummy variables are 0.
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9.1.1.4 Decomposing the Effects in a Regression Model

Let us assume the following model:

yi = Bixi + Paxip + Baxipxip + & (9.6)

where the variables are coded (—1,+1).

The dependent variable y; is assumed to be mean-centered or to have a mean of
Zero.

The three variables are orthogonal so that the effects can be analyzed indepen-
dently. Indeed, it can be shown that the interaction term is independent of the other
effects.

The covariance between the product term of two variables x| and x, with one of
its components X is

Vixi,xixz] = VixixlElxi ] + E[(x1 — X1)%(x2 — X2)] + E[x2]V[x1] 9.7)

In ANOVA, the mean of the two variables coding the effects is zero.
Consequently, the expression reduces to

Vixixix] = Vixix] - 04 E[(x1 — X1)* (2 — X2)] + 0 - Vxi] (9.8)
or
Vxp ] = El(xg — %12 — %)) 9.9)

But in ANOVA, the covariance of the two variables coding the effects is zero
(they are independent). Therefore:

E[(x; — %1)°(x2 — X2)] = Elxjx2] = 0 (9.10)

Therefore:

N N N
> xiyi .‘ZO)’i— '\Zoyi
i=1 U)X > 1|x;<< _ _
= =yy — 9.11
N Y2 =1 9.11)

fr=—
> ¥
i=1

where y; = the mean of the dependent variable over the observations when xj is
coded -1, and y» = the mean of the dependent variable over the observations when
x1 is coded +1.

This means that the coefficient of x| can be interpreted as the difference in group
means due to that variable.
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9.1.1.5 Comparing Effect Coding and Dummy Coding

The two coding schemes do not give identical results because, from the presentation
above, it is clear that effect coding places a restriction on the relationship which
does not apply to dummy variable coding. Consequently, like any restricted form of
a relationship compared to its unrestricted form, a test of the appropriateness of the
restriction can be performed. The two approaches can consequently be combined to
perform tests about the functional forms.

In summary, effect coding is appropriate when testing for the significance of the
effect of a variable (conditionally on assuming a specific form of the relationship).
Dummy coding is used to estimate and to test the effects of each level of a variable,
independently of the other levels.

9.1.2 Design Programs

A particularity of conjoint analysis concerns the generation of the experimental
design itself. Recently, several companies have developed PC-based software for
generating stimuli reflecting the combination of the levels of attributes. Two such
software packages are Conjoint Designer, by Bretton-Clark and Consurv, by IMS
Inc. Each of these packagesoffer similar services, which, once the attributes and
their levels are determined, generate the combination of the attributes in the form
of the description of the stimuli, enable the entry of the data by respondents and
analyze the data.

9.1.3 Estimation of Part-Worth Coefficients

In Section 9.1.1, we have discussed one of the characteristics of conjoint analysis:
the specific nature of the independent variables. The other characteristic of con-
joint analysis concerns the rank-ordered nature of the dependent variable. Although
the term “conjoint” has recently been used in more broad contexts, these two
aspects were initially what distinguished conjoint analysis from other methodolo-
gies. MONANOVA was developed as an appropriate methodology for estimating
the effects of variables using the rank-ordered nature of the dependent variable.
More recently, as conjoint studies developed successfully in industry, the simpler
ordinary least squares estimation has replaced the use of MONANOVA. This is due
not only to the simplicity but also to two other factors: (1) the robustness of OLS
which gives generally similar results to those obtained from MONANOVA and (2)
the increased usage of ratings instead of rankings for the dependent variables.

We first present MONANOVA and the estimation using PC-MDS. We then show
how to perform OLS estimations using the SAS GLM procedure.

9.1.3.1 MONANOVA

Monotone analysis of variance is an estimation procedure based on an algorithm
which transforms the dependent variable using a monotonic transformation so that



9.2 Ordered Probit 239

the data can best be explained by a linear model of main effects of the independent
variables or factors. More formally, let the data be represented by the set of values
{8}, each corresponding to the evaluation of alternative j by individual i (i = L,. ..
I;j=1,...J). The data consists, therefore, for each individual of a table such as the
one represented in Table 9.5.

Table 9.5 Example of input data for a 2 x3 design

2nd Factor
Levels 1 2 3
IstFactor 1 811 812 813
8o1 822 323

The objective is, therefore, to estimate the main effects of each factor to fit best
the relationship:

f(8ip) = Po + Pixiij + Poxaij + & 9.12)

where f(.) is a monotonic transformation of the rank-ordered dependent variable
and x; and x; are the variables representing the main effects of the two factors using
effects coding.

The monotone transformations are performed using an algorithm to improve
the fit.

9.1.3.2 OLS Estimation

The GLM procedure found in SAS creates automatically the dummy variables
which correspond to the design. By defining a variable as a discrete variable using
the CLASS function, the levels of the variable are automatically generated with the
proper dummy variables. The model is linear and the estimation follows the OLS
estimation described in Chapter 5.

It remains that MONANOVA is technically more appropriate when rank data is
obtained and used as a dependent variable. This is particularly important for aca-
demic research where inappropriate methods should not be used, even if technically
inappropriate methods provide generally robust results. Obviously, the use of ratings
makes OLS a perfectly appropriate methodology.

9.2 Ordered Probit

Ordered probit modeling is a relatively recent approach to analyzing rank-ordered
dependent variables (McKelvey and Zavoina 1975). Let us assume that there exists
an unobserved variable Y, which can be expressed as a linear function of a single
predictor variable X. Furthermore, while the variable Y is not observed, only discrete
levels of that variable can be observed (levels one, two, and three).
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Fig. 9.1 The underlying
linear relationship of the Y
ordered probit model

underlying relationship

Figure 9.1 illustrates the case of a trichotomous dependent variable (observed
variable) with a single independent variable.
It is important to make the distinction between the theoretical dependent variable
Y and the observed dependent variable Z, which, in the example of Fig. 9.1, takes
three possible values.
The variable Y is an interval scale variable and, if we could observe it, it would
fit a linear model Y = X8 + u.
The variable Z is ordinal, and generally presents M observed response categories
Ry....Ry.
The model of the unobserved dependent variable Y follows the usual linear model
assumptions:
Y=XB+u 9.13)
with
u~ N@O,6°1) (9.14)

We define M + 1 real numbers fi,. . ., (13 With the following prespecified values:
Mo = —00
Ky = +00

These values are rank ordered such that jio < 1 <... < .

Let us consider an individual observation i. The value of the dependent variable

Z;; will be one if the underlying unobserved variable falls within the values of Y; in
the range of [¢j_1, u;]. This can be expressed as

w1 <Y< pj e Zij=1Vk#j: Zg =0 (9.15)
Let us focus our attention on the interval in which the value of Y; falls.

mj-1 < Yi < i (9.16)
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We can replace the unobserved variable by the linear function of observed

variables which determines it.
Hi—1 < Xif +u; < pj 9.17)

Subtracting the deterministic component from the boundaries, we obtain
(9.18)

Hi—1 — Xip < uj < pj— Xip
We can now standardize the values by dividing each element of the inequality by

the standard deviation of the error term:

Hj—1 i - Ui < Hj i (9.19)
o o o
The central element is a random variable with the normal distribution:
(9.20)

uj
— ~N(0,1)
g

We can therefore write the probability that this variable is within the range given
by Equation (9.19) by subtracting the cumulative density functions at the upper and

nj —Xip

P[Z,-,-:l]:qb[ -

lower levels:
o

where ¢ is the cumulative density function:

12y (9.22)

MZ/J%—H

In order to identify the model, we need to impose the restrictions
H1r=20

og=1

The first restriction has no consequence and the unit variance of the unobserved
variable simply standardizes that variable. Consequently, Equation (9.21) reduces to
P[Zj=1]=¢ [ — XiP] = ¢ [1j-1 — XiB] (9.23)

The parameters which need to be estimated are

B m2, .. pm—1
kx1

This means that there are (K + M — 2) parameters to be estimated.
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The estimation is obtained by maximum likelihood.
Let
Yi = — Xip 9.24)

and, for simplification of the notation:

@ij = ¢(Yy) (9.25)

Then, the probability of Z;; being in the interval [ j_1,44;] is

P[Z,‘j: 1]=¢5J—(]§,'J_1 (9.26)

Consequently, the likelihood of observing all the values of Z for all the
observations in the data set is

=L (ZI|Bs12,- .. ptm—1) 9.27)

N M
=HH $ij — dij1)” 9.28)

The logarithm of the likelihood is

¢=LnL = ZZZ Ln (¢ij — dij-1) (9.29)

i=1 j=1

The estimation problem consists in finding the values of the parameters which
maximize the logarithm of the likelihood function ¢, subject to the inequality
constraints about the values of us, i.e.:

One issue can be raised as, sometimes, it is not always clear whether the depen-
dent variable is ordered or not. The question is then to know whether one is better
off using ordered vs. an unordered model.

On the one hand, using an ordered model assumption when the true model is
unordered creates a bias of the parameter estimates. On the other hand, using an
unordered model when the true model is ordered does not create a bias but a loss
of efficiency rather than consistency (Amemiya 1985, p. 293). Consequently, if the
data is indeed ordered, the efficient and unbiased estimator will be provided by
the ordered model. Using an Unordered model may lead to parameters which are
not significant but which would have been significant, had the most efficient model
been used. Of course, this may not be an issue if all the parameters are significant.
Using an ordered model if the data is not ordered is more dangerous because the
parameter estimates are biased. Consequently, unless there is a strong theoretical
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reason for using an ordered model, it is recommended to use a non-ordered model
when the order property of the dependent variable is not clearly proven.

9.3 Examples

9.3.1 Example of MONANOVA Using PC-MDS

We will take the example of a 2 x2x?2 design where the data is as given in Table 9.6.

Table 9.6 Example of data for data entry using PC-MDS MONANOVA (a 23 design)

3rd Factor
2nd Factor 2nd Factor
Level 1 2 1 2
1st Factor 1 X111 X121 X112 X122
X211 X221 X212 X222

The MONANOVA program is run by clicking on the monanova.exe file from
Windows Explorer. The data as well as the information about the run are contained

in an input file. An example is given in Fig. 9.2. The first line shows the parameters
of the problem, as shown in Table 9.7.

3 2 2 2 1
(8F10.2)
98.18 65.62 39.97 7.41 87.08 54.52 28.86 .0

Fig. 9.2 Example of input file for MONANOVA using PC-MDS (examp9-1.dat)

Table 9.7 Parameter line for reading data shown in Table 9.6

Parameter line 3 2 2 2 1

# of factors #of levels of  # of levels of  # of levels of  # of
Ist factor 2nd factor 3rd factor replications

The second line corresponds to the format in which the data can be read using
FORTRAN conventions.

The third line (and subsequent lines if there are more than one replication) cor-
responds to the data line(s). The data must be entered in a specific sequence. This
sequence is best described through an example. In our 2 x2x?2 example, the indices
of the x variable are such that the first index represents the level on the first factor,
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the second represents the level on the second factor, and the third the level on the
third factor. The sequence should then be as shown below:

111 112 121 122

211 212 221 222

The full input file is shown in Fig. 9.2.

The results of the MONANOVA analysis are shown in Fig. 9.3.

The utilities for the levels within each factor are shown under the heading
“UTILITIES OUTPUT FOR LEVELS WITHIN FACTORS.”

9.3.2 Example of Conjoint Analysis Using SAS

In the example below, data representing the ratings of different hypothetical schools
are being used. The hypothetical schools were described in terms of (1) being either
(a) not very or (b) very quantitative, (2) using methods of instructions characterized
by (a) the case method, (b) half case and half lectures, or (c) using only lectures, (3)
the research reputation of the Faculty which can be (a) low, (b) moderate, or (c) high,
(4) the teaching reputation of the Faculty which can be also (a) low, (b) moderate or
(c) high, and the overall prestige of the school as (a) one of the ivy league colleges,
(b) a private school but not part of the ivy league, and (c) a state school. The sample
input file used with SAS is given in Fig. 9.4.

Figure 9.5 gives the output of such analysis. The tests of significance of each
factor are performed and then the marginal means of the dependent variable is shown
for each level of each factor, one at a time. The example also illustrates the test of
some restrictions on the parameters such as for linear effects.

MONANOVA
MONOTONE ANALYSIS OF VARIANCE
WRITTEN BY DR. J. B. KRUSKAL
PC-MDS VERSION

ANALYSIS TITLE: Monanova
DATA IS READ FROM FILE: examp9-1.dat
OUTPUT FILE IS: examp9-1.out

ANALYSIS START: DATE 03/18/1999, TIME 15:09:49

INPUT DATA FILE PARAMETERS: 3 2 2 2 1
INPUT FORMAT: (8F10.2)

SEQ. NO. DATA SUBSCRIPTS

Fig. 9.3 Output file for MONANOVA example (examp9-1.out)
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1 98.18000 1 1 1
2 65.62000 1 1 2
3 39.97000 1 2 1
4 7.41000 1 2 2
5 87.08000 2 1 1
6 54.52000 2 1 2
7 28.86000 2 2 1
8 .00000 2 2 2

HISTORY OF COMPUTATION.

ITERAT STRESS SRAT SRTAVG CAGRGL
0 .000 .0000 1.2000 .000

ZERO STRESS WAS REACHED

MINIMUM WAS ACHIEVED

SATISFACTORY STRESS WAS REACHED
FINAL CONFIGURATION HAS STRESS OF

Monanova

UTILITIES OUTPUT FOR LEVELS WITHIN

2 .266 -.266

.498 -1.498
2 .827 -.827

N
[y

5.8908. 27.4904.
-4.9090 16.6906 38.

COSAV ACSAV

.000 .200
.0 PERCENT.
FACTORS

49.0900. 70.6896.

2902 59.8898

GRMAG
.00000

81.4894

92.

GRMULT

2892.
103.0890

* kkkk hhkkk dkhkkk khkkk dhkkk kkkk hhkkk khkkk dkkk hkkk Xk

m

=W
RFHERENNMNNN
o
Pt

oW EZHe [
1
© w
v} N
(=}

H®EOOR
1
N
N
N

Fig. 9.3 (continued)

49.0900. 70.6896. 92

2902 59.8898

81.4894

0

* kkkk khkkk dkhkkk hhkkk dhkkk kkkk kkhkkk khkkk hkkk hkkk Xk

5.8908. 27.4904.
-4.9090 16.6906 38.

.2892.

103.0890
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SEQ NO DATA LINEAR MONOTONE MODELS
1 98.180 2.592 2.592
2 65.620 .937 .937
3 39.970 -.405 -.405
4 7.410 -2.059 -2.059
5 87.080 2.059 2.059
6 54.520 .405 .405
7 28.860 -.937 -.937
8 .000 -2.592 -2.592

*hkkkkkkkkkkk

SPEARMAN-S RANK DIFFERENCE CORRELATION COEFFICIENT (RD)
RD = 1.000000

RD - SQUARED = 1.000000

END MONANOVA RUN: Monanova

Fig. 9.3 (continued)

options 1s=80;

DATA DATAl;

INFILE "C:\SAMD2\Chapter9\Examples\Examp9-2.dat";
INPUT rating xid quant instruct resrep tearep prestige;
PROC glm;

CLASS xid quant instruct resrep tearep prestige;
MODEL rating = quant instruct resrep tearep prestige;
MEANS QUANT INSTRUCT RESREP TEAREP PRESTIGE;

estimate 'quant' quant 1 -1;

estimate 'instr2 vs 1' instruct 1 -1 0O;

estimate 'instr3 vs 1' instruct 1 0 -1;

run;

Fig. 9.4 Example of input file for conjoint analysis using SAS (examp9-2.sas)

9.3.3 Example of Ordered Probit Analysis Using LIMDEP

The input file for LIMDEP which enables the estimation of an ordered probit model
is straightforward (Fig. 9.6). The only difference with the statements for a logit
type model specification is the use of the command “ORDERED.” It should be
noted that the right-hand side list of variables must include one. This particular
example concerns the ranking of business schools as a function of ratings on the
MBA program, the diversity of populations represented in the schools and the rating
of research activities of the schools.

Figure 9.7 shows the results of this analysis.

Diversity appears insignificant but the rating of the MBA program as well as the
rating of the school on R&D appears to strongly predict the overall ranking of the
school.
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The SAS System

General Linear Models Procedure

Class Level Information

Class Levels Values
XID 9 1234567829
QUANT 2 12
INSTRUCT 3 123
RESREP 3 123
TEAREP 3 123
PRESTIGE 3 123
Number of observations in data set = 162
General Linear Models Procedure
Dependent Variable: RATING
Sum of Mean
Source DF Squares Square F Value
Model 9 465.30941469 51.70104608 24.01
Error 152 327.33256062 2.15350369
Corrected Total 161 792.64197531
R-Square c.v. Root MSE
0.587036 33.76876 1.4674821
Source DF Type I SS Mean Square F Value
QUANT 1 0.00308642 0.00308642 0.00
INSTRUCT 2 21.48504274 10.74252137 4.99
RESREP 2 75.94088319 37.97044160 17.63
TEAREP 2 332.45486111 166.22743056 77.19
PRESTIGE 2 35.42554123 17.71277062 8.23
Source DF Type III SS Mean Square F Value
QUANT 1 0.02816755 0.02816755 0.01
INSTRUCT 2 14.50887457 7.25443728 3.37
RESREP 2 64.20418593 32.10209297 14.91
TEAREP 2 302.01431665 151.00715833 70.12
PRESTIGE 2 35.42554123 17.71277062 8.23
General Linear Models Procedure
Level of = —--——-———--- RATING-----------—
QUANT N Mean SD
1 108 4.34259259 2.27609289
2 54 4.35185185 2.12049663
Level of = -----——-—-—- RATING-----------
INSTRUCT N Mean SD
1 63 4.30158730 2.35300029
2 45 3.86666667 1.64593162
3 54 4.79629630 2.41363759
Level of = -----——-—-—- RATING-----------
RESREP N Mean SD

Fig. 9.5 Output for GLM procedure using SAS example (examp9-2.1st)

Pr > F

0.0001

RATING Mean

4.3456790

Pr > F

0.9699
0.0080
0.0001
0.0001
0.0004

0.9091
0.0370
0.0001
0.0001
0.0004

247
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2 54 4.72222222 1.99448926
3 54 4.94444444 2.46037784
Level of = —-------———- RATING-----------
TEAREP N Mean SD

1 54 2.46296296 1.29895405
2 54 4.62962963 1.61708212
3 54 5.94444444 2.08694655
Level of = —-------———- RATING-----------
PRESTIGE N Mean SD

1 54 4.94444444 2.34252457
2 45 4.95555556 2.22542698
3 63 3.39682540 1.75554130

General Linear Models Procedure

Dependent Variable: RATING

T for HO: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
quant 0.02821743 0.11 0.9091 0.24672641
instr2 vs 1 0.13109512 0.42 0.6762 0.31324315
instr3 vs 1 -0.57290168 -2.04 0.0432 0.28097845

Fig. 9.5 (continued)

read; file = Examp9-3.wks;
format = WKS ;
names

$

open; output = c:\SAMD2\Chapter9\Examples\Examp9-3.out$
ORDERED; lhs Rnk;
rhs = ONE, MBA rate, Div_rate, R Drate $

close$

Fig. 9.6 Example of ordered probit estimation using LIMDEP (examp9-3.lim)

9.4 Assignment

1. Decide on an issue to be analyzed with a conjoint study and gather data on a
few (10-20) individuals. Make sure at least one of the factors has more than two
levels.

Investigate issues concerned with level of analysis and estimation procedures:
Types of analysis:

Aggregate analysis

Individual level analysis
Estimation:

SAS GLM

SAS with dummy variables

SAS with effect coding

MONANOVA
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LIMDEP Estimation Results Run log line 3 Page
: Current sample contains 50 observations. :
B e e e e e T e Tt +
| Dependent variable is binary, y=0 or y not equal 0
| Ordinary least squares regression Weighting variable = none |
| Dep. var. = Y=0/Not0 Mean= .9000000000 , S.D.= .3030457634 |
| Model size: Observations = 50, Parameters = 4, Deg.Fr.= 46 |
| Residuals: Sum of squares= 1023.254148 , Std.Dev.= 4.71642 |
| Fit: R-squared=******x*** Adjusted R-squared = -241.21958 |
| Diagnostic: Log-L = -146.4149, Restricted(b=0) Log-L = -10.7483 |
| LogAmemiyaPrCrt.= 3.179, Akaike Info. Crt.= 6.017 |
B et et e e +
e et o B e E e - e et e et +
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
e et B ettt B e E e - e et e et +
Constant 1.299653062 2.8185737 .461 .6447
MBA RATE -.1151966230E-02 .51232691E-01 -.022 .9821 52.493633
DIV_RATE -.4042208781E-02 .12218127 -.033 .9736 9.5247202
R_DRATE -.8542081297E-02 .34109580E-01 -.250 .8023 35.200000
Normal exit from iterations. Exit status=0.
LIMDEP Estimation Results Run log line 3 Page 2 :
Current sample contains 50 observations. :
e e L e e T T +
| Ordered Probit Model
| Maximum Likelihood Estimates
| Dependent variable RNK |
| Weighting variable ONE |
| Number of observations 50
| Iterations completed 27 |
| Log likelihood function -76.87438 |
| Restricted log likelihood -115.1293 |
| Chi-squared 76.50975 |
| Degrees of freedom 3 |
| Significance level .0000000
| Cell frequencies for outcomes
| Y Count Freq Y Count Freq Y Count Freq |
| O 5 .100 1 5 .100 2 5 .100 |
| 3 5 .100 4 5 .100 5 5 .100 |
| 6 5 .100 7 5 .100 8 5 .100 |
| 9 5 .100 |
e e L e e T T +
B Bt e e E e - e e ettt +
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
B e e e E e - e e ettt +
Index function for probability
Constant 11.27611554 1.9470225 5.791 .0000
MBA RATE -.9184333969E-01 .14200317E-01 -6.468 .0000 52.493633
DIV_RATE .6944545143E-02 .33367796E-01 .208 .8351 9.5247202
R_DRATE -.8690702844E-01 .17888303E-01 -4.858 .0000 35.200000
Threshold parameters for index
Mu( 1) 1.132867414 .41874468 2.705 .0068
Mu( 2) 2.318480730 .70743429 3.277 .0010
Mu( 3) 3.227069878 .78748983 4.098 .0000
Mu( 4) 3.929271873 .82592852 4.757 .0000
Mu( 5) 4.474735177 .84409675 5.301 .0000
Mu( 6) 5.000183482 .88623007 5.642 .0000
Mu( 7) 5.573052169 .95533576 5.834 .0000
Mu( 8) 6.311310116 1.0282479 6.138 .0000

Fig. 9.7 Output of ordered probit model using LIMDEP (examp9-3.out)
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2. Using data from the SURVEY, choose a rank-ordered variable and develop a
model to explain and predict this variable. Compare the multinomial logit model
with the ordered logit or probit model. Use also a variable which is categorical
and illustrate the problem of using an ordered logit or probit model when it is
not appropriate.
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Chapter 10
Error in Variables — Analysis of Covariance
Structure

In this chapter, we bring together the notions of measurement error discussed in
Chapters 3 and 4 with the structural modeling of simultaneous relationships pre-
sented in Chapter 6. We will demonstrate that a bias is introduced when estimating
the relationship between two variables measured with error if that measurement
error is ignored. We will then present a methodology for estimating the parameters
of structural relationships between variables which are not observed directly: analy-
sis of covariance structures. We will discuss especially the role of the measurement
model as discussed in the chapter on the confirmatory factor analytic model.

10.1 The Impact of Imperfect Measures

In this section, we discuss the bias introduced by estimating a regression model with
variables which are measured with error.

10.1.1 Effect of Errors-in-Variables

Let us assume two mean-centered variables, a dependent variable and an indepen-
dent variable, y, and x;, respectively, which are observed. However, these variables
are imperfect measures of the true unobserved variables y; and x}. The measurement
models for both variables are expressed by the equations:

X=X +uy (10.1)
yi=y; +v (10.2)

There exists a structural relationship between these two unobserved variables, as
indicated by the equation below:

i =x{p (10.3)

This equation can be expressed in terms of the observed variables by replacing
the unobserved variables by their expression as a function of the observed variables
obtained from Equations (10.1) and (10.2):

yi= X —u)p+v (10.4)
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DOI 10.1007/978-1-4419-1270-1_10, © Springer Science+Business Media, LLC 2010



254 10  Error in Variables — Analysis of Covariance Structure
or, placing the random error terms at the end:

Ve =X+ vi — uf (10.5)

It should be noted that the error on the dependent variable y is similar to the error
on the structural relationship. Indeed, if we had added an error term to Equation
(10.3), it would have been confounded with the measurement error of the dependent
variable v;.

Because the variables are not observed, only the relationship between the
observed variables can be estimated. This can be done by using the ordinary least
square estimator of the regression of y; on x;:

-1
’élciLlS - (1§/T T§1) 1§/T T};l (10.6)
The bias can be evaluated by taking the expectation of the OLS estimator:
E I:,éOLs:I =K [(X/X)_l X/YJ
=E [(x’x)_1 x' (xp+v— uﬁ)]
=B+ (x’x)_1 E [X’ (v— uﬁ)]

=B+ (X% E[x +u) (v —up)]
E [ﬁ%m] =p+E [(x’x)‘1 (—ﬁu’u)] (10.7)

Let
E [u/u] = auz

If x has a mean of 0, the bias is

. o2
E [ﬁom] —F=-F3 (10.8)
X
since 02 = 02 + 072, the bias can be expressed as
2
=P ! (10.9)
Oy + UL% I+p

2
where p = %is the signal-to-noise ratio.

From Equgtion (10.9), we can not only assert that there is a bias but we can also
indicate properties about this bias. Because the variances in the signal-to-noise ratio
are positive (auz,axz* > 0), this means that the bias is always negative (Equation
10.9 is always negative), i.e., the OLS estimates are under-estimated when using a
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predictor variable with error. This is known as the attenuation effect. It may lead to
failing to reject the null hypothesis that the effect of the independent variable on the
dependent variable is insignificant.

As the signal-to-noise ratio p increases, the bias decreases (1/(1+p) becomes
smaller). Therefore, we can summarize the results as follows:

(1) We have found a lower bound for b. Indeed, we have shown that the OLS
estimator ,éOLS is smaller than the true 8.

(2) Error in measurement of x attenuates the effect of x.

(3) Error in measurement of y does not bias the effect of x (the measurement error
is then confounded with the noise in the relationship between the independent
and dependent variables).

10.1.2 Reversed Regression

Let us write the equation which expresses the independent variable x; as a function
of the dependent variable y;:

Xr =Yy + & (10.10)

Or, for all the observations:
X=yy+e¢ (10.11)

The OLS estimator of the parameter y is

A -1
yoLs = (y'y)  y'x (10.12)
Let
kLYY
YoLs YX
If the variables are centered to zero mean
A Vv
R _ i (10.14)
Cov[x,y]
However, from Equations (10.2) and (10.3):
y=x"B+v (10.15)
Consequently:
VIyl = %62 + 02 (10.16)
and

Covlxy] = o (10.17)
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Therefore, Equation (10.14) can be expressed as

2 2 2 2 2 2 2
3R=M=ﬁ(M):ﬁ(l+a_v)=ﬁ(l+w) (10.18)

po p2o7 p2o7

where o = which is always positive.

UV

Because o is positive, it follows that ,@R overestimates f.

If we recall that the coefficient obtained from a direct regression (Equation 10.6),
which we may call /§D , always under-estimates the true value of 8, we then have
shown that /§D and ,éR provide bounds in the range where the true g falls.

Consequently, the choice of the dependent variable in a simple regression has
nothing to do with causality. It follows from the analysis presented above that if
O'VZ is small, one should use reversed regression (@ in Equation 10.18 is then close
to 0 and the bias is small). If, however, 03 is small (i.e., little measurement error in
the predictor variable), direct regression should be used because the bias in Equation
(10.6) is then small. From this discussion, it follows that the researcher should select

for the dependent variable, the variable with the largest measurement error.

10.1.3 Case with Multiple Independent Variables

The case where there are several independent variables is more complex. Let us
consider Equation (10.19) where some variables (z;) are estimated without error
and others (x}') are estimated with measurement error:

Vi =2y +x/p (10.19)

In such cases, the direction of the bias is not easy to analyze. Some conclusions
are possible, however, in the special case when only one of the independent variables
is measured with error, i.e., X; is a single variable. Then, it can be shown that the
bias can be expressed as follows:

.y o (10.20)
o2 (1 —R%,) '

where R)%z is the R-squared of the regression of the variable measured with error (x;)
on those measured without error (z;).

Because the ratio which multiplies —§ in Equation (10.20) is always positive, the
coefficient is, therefore, always under-estimated.

It should be noted that having one of the independent variable measured with
error does not affect only the estimation of the impact of that variable. It also affects
the coefficients of the variables measured without error. Furthermore, both the over-
all F statistics and the individual coefficient variances are affected. The F' statistic
is always understated. Therefore, we would expect to reject the models more often
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than we should. The impact on individual statistics is not as clear, however, as there
is no unambiguous bias.

This case of a single variable measured with error is, however, unusual. Most of
the research in the social sciences involves the formation of scales that cannot be
considered to be without measurement error. In such cases, the analysis shown in
the first section of this chapter does not provide any guidance. The second section
presents a methodology, analysis of covariance structure, which takes care of the
problems associated with measurement errors.

10.2 Analysis of Covariance Structures

In the analysis of covariance structures, both the measurement errors and the
structural relationships between the variables of interest are modeled.

10.2.1 Description of Model

We start with a system of simultaneous equations identical to the ones analyzed in
Chapter 6:

B n =T &+ ¢ (10.21)

mxmmx1  MXNpl mx1

where

m = Number of endogenous constructs,

n = Number of exogenous constructs,

1 = Column vector of m endogenous constructs,

& = Column vector of n disturbance terms,

£ = Column vector of m disturbance terms,

B = Matrix of structural parameters of endogenous variables,
I' = Matrix of structural parameters of exogenous variables.

The endogenous constructs are represented by the vector n and the exogenous
ones by &. Equation (10.21) represents the structural relationships that exist among
the constructs n and § with a random disturbance &. The diagonal elements of the
matrix B are specified as being equal to one without affecting the generality of the
model. The endogenous and exogenous constructs n and & are not observed but are,
instead, measured with error using multiple items. Before defining the measurement
models, we should note that these unobserved constructs are defined as centered
with zero mean without any loss of generality.

En=E[§]=0 (10.22)
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Like for the regression model, the error term is assumed to have zero mean:
E[¢]=0 (10.23)

In addition, the matrix of parameters B should be non-singular.

Let us now define the factor analytic measurement models. These are repre-
sented by Equations (10.24) and (10.25). There are p items or observable variables
reflecting the m endogenous constructs and there are g items or observable variables
reflecting the n exogenous constructs:

Y =Ay n + ¢ (10.24)
px1 pxmmx1  px1

where

p = Number of items measuring the m endogenous constructs,

y = Column vector of the p items or observable variables reflecting the
endogenous constructs,

Ay = Matrix of factor loadings,

€ = Column vector of measurement errors.

The elements of the matrix Ay represent the factor loadings. Similarly for the
measurement model of the exogenous constructs:

Xx =Ax £ + & (10.25)
gx1 gxnpx]1 gx1

where

g = Number of items measuring the n exogenous constructs,

x = Column vector of the ¢ items or observable variables reflecting the
exogenous constructs,

A = Matrix of factor loadings,

8 = Column vector of measurement errors.

Furthermore, we can express the covariances of the latent variables and of the
error terms according to Equations (10.26), (10.27), (10.28), and (10.29).

E[8]= @ (10.26)

E[¢d] = v (10.27)

E[ee'] = ©, (10.28)
pxp

E[88'] = ©; (10.29)
axq

We can now write the expression of what would theoretically be the covariance
matrix of all the observed variables (x and y), assuming the model expressed in the
equations above:
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Let

z =Y (10.30)
(p+q)x1 (X)

The theoretical covariance matrix of z is

Y =E[z]=E [(i) (y/x/)} —E [g: ij} (10.31)

We derive the expression of each of the four submatrices in Equation (10.31)
with the following three blocks (the off-diagonal blocks are symmetric):

E[xx'] = E[(Ax§ +8) (Ar& +6)']
= E[(AEE'AL)] + E[88] (10.32)
= AxPA. + O
Elwy']=E[(Ayn +€) (Ayn+e) ]

= AyE[ny'] A} + O,

/ / 10.33
= AJE [B_1F§§’F’B_l +Ble/B! ] A+ O, (1033)
= A, (B'Ter’B™" + B 4B ") A} + O,
E[yx'] = E[(Ayn + &) (A& + )]
(10.34)

—E [(AyB_l re+B 'z + e) (Axé + 6)’] = AB'T®A/

Equations (10.32), (10.33), and (10.34) provide the information to complete the
covariance matrix in Equation (10.31).

In fact, the observed covariance matrix can be computed from the sample of
observations:

S— [Syz SY} (10.35)

10.2.2 Estimation

The estimation consists in finding the parameters of the model which will repli-
cate as closely as possible the observed covariance matrix in Equation (10.35). The
maximum likelihood estimation compares the matrices S and X is made through the
following expression which is derived from the likelihood function as presented in
Chapter 4 for the confirmatory factor analytic model:

F:Ln|>:|+tr(s>:—1)—Ln|S|—(p+q) (10.36)
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The only difference with the derivations in Chapter 4 are inherent to the fact that
the covariance matrices contain the variances and covariances among the (p+¢q) x
and y variables. Therefore, under the assumption that the observed variables i
are distributed as a multivariate normal distribution, the parameter estimates that
minimize the Equation (4.15) are the maximum likelihood estimates.

There are % (p+q)(p+ g+ 1) distinct elements which constitute the data
(this comes from half of the symmetric matrix to which one needs to add back
half of the diagonal in order to count the variances of the variables themselves
(i.e.,[(p +)xpP+q)/2+(p+q) /2]. Consequently, the number of degrees of
freedom corresponds to the number of distinct data points as defined above minus
the number of parameters in the model to estimate.

An example illustrates the model and the degrees of freedom. MacKenzie et al.
(1986) compare several models of the role of attitude toward the ad on brand attitude
and purchase intentions. Focusing on their dual-mediation hypothesis model (DMH)
which they found to be supported by the data, three types of cognitive responses to
advertising (about the ad execution, about the source, and about repetition) are the
three exogenous constructs explaining the attitude toward the ad. Attitude toward
the ad, according to that DMH theory, affects the attitude toward the brand not only
directly but also indirectly by affecting brand cognitions which, in turn, affect the
attitude toward the brand. Purchase intentions are affected by the attitude toward the
brand as well as directly by the attitude toward the ad. These relationships between
the three exogenous constructs and these four endogenous constructs are drawn in
Fig. 10.1.

These relationships can be expressed by the system of four equations:

1 = Pranz + yié1 + yvi2é2 + yi3é3 + &1
N2 = Boint + Poana + &

n3 = B3in1 + Bam+ 43

N4 = Parn1 + &4

’7 I B2 0 0 —‘ ’7171—‘ ’7)/11 Y12 V13—‘ £ ’Yf‘
=B 1 O0O—Poa||m|_| O 0O O £
—B31 P21 O mi |0 0 0 2 + £3 (10.38)
L—ﬁm 0 0 1 J |J74 L 0 0 0 J LC4J

In addition, Fig. 10.1 indicates that the exogenous constructs are each measured
by a single item, x| for £, x; for &, and x3 for £3. The attitude toward the ad (17) is
measured by two items y; and y». The attitude toward the brand (72) and purchase
intentions (1773) are both measured by three items, y3, y4, and y5 for 12, and yg, y7,
and yg for 3. Finally, the brand cognitions (74) are measured by a single indicator
v9. The measurement model for the endogenous constructs can then be represented

(10.37)

or
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Fig. 10.1 A graphical 3 b ™
representation of MacKenzie, N S e
Lutz, and Belch’s model 5
(1986) of the role of attitude AW
towards the ad. Adapted from
MacKenzie et al. (1986) B

™

X} = ad execution cognitive responses T} &

X2 = source bolstering/derogation cognitive } 3
3

responses

X3 = repetition-related cognitive responses ) R

Y1 = favorable/unfavorable reaction to ad

y. M

2 = interesting/boring reaction to ad

Y3 = favorable/unfavorable feeling toward
using brand 1
2
Y4 = good/bad feeling toward using brand

¥s = wise/foolish feeling toward using brand

Y6 = likely/unlikely estimate of trying brand
Y7 = probable/improbable estimate of trying brand 5

Y8 = possible/impossible estimate of trying brand

¥9 = product/claim-related cognitive responses N

by Equation (10.39) and the measurement model for the exogenous constructs can
be expressed by Equation (10.40).

yi [2y1 0 0 O £
V2 A2 00 0 £n
3 0 23 0 O £3
Y4 0aa 0 0 || £4
ys =] 0250 0 [|™]+]es (10.39)
Y6 0 0 ag 0 ||P €6
V7 0 0 Ay 0 |[L™ &7
8 0 0 2 O £g
| Yo | _0 0 O )»yg_ | €9 |
and
X1 Ayr 00 &1 81
=00 ||&]+]8 (10.40)

X3 0 0 X & 83
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It should be noted that some restrictions on the measurement model parameters
must be made for identification purposes. For each construct, the unit or scale of
measurement must be defined. This is accomplished by setting one of the lambdas
for a given construct to one; the corresponding variable will then serve as the unit
of reference for that construct. For example, we can define hy; = hy3 = hyg = hyo
= ’x1 = hx2 = A3 = 1. Alternatively, especially in the case of confirmatory factor
analysis, the variance of the constructs could be set to unity.

We also need to impose some restrictions on some parameters in the cases where
the constructs are measured by a single item. In such cases, indeed, the loading
parameter is set to one, as discussed above and the error term is necessarily equal
to zero. This means that the variance of the error term of that measurement equa-
tion must be constrained to be zero. This is the case for the example with .9, 651,
052, and 053. Normally, the covariance matrices 85 and 8, are assumed to be diag-
onal. Exceptionally, a few of the correlations between error terms of measurement
equations can be estimated. This was the case in the example reported above from
MacKenzie et al. (1986). However, it should only be done with great care, as the
interpretation may be difficult.

The covariance matrix of the exogenous constructs can be symmetric or, with
orthogonal factors, it can be defined as diagonal with zero covariances. With
orthogonal factors in the example, three variances ¥ must be estimated.

Finally, the covariance matrix ¢ must be specified. It can be symmetric in the
general case where the error terms of the structural equations are correlated. In this
example, there would be four variances and six covariances to estimate. The matrix
is often assumed to be diagonal, in which case only four parameters (four variances)
need to be estimated.

The equations described and the restrictions applied above indicate that 29
parameters must be estimated: there are five lambdas, six betas, three gammas, eight
thetas, four phis and three psis. Given that with 12 observed variables, the covariance
matrix consists of 78 different data points (i.e., (12 x 13)/2), this leaves 49 degrees
of freedom.

10.2.3 Model Fit

We refer here to Section 4.2.1, as the measures of it are identical to the description
given when discussing the confirmatory factor analytic model. It should be simply
noted that, for the adjusted goodness-of-fit index (AGFI), the adjustment for the
degrees of freedom must take into account the p + ¢ variables, instead of just the ¢
variables in confirmatory factor analysis:

rPt+tap+qg+1
p+qep+qg+1)—-2T

AGFI = 1 — [ } [1 — GFI] (10.41)

where T is the number of estimated parameters.
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The same change must be applied to the formula for the root mean square error
of approximation (RMSEA) as the degrees of freedom d is given by

d=[{p+@ p+q+1)/2]-T (10.42)

10.2.4 Test of Significance of Model Parameters

The significance of each parameter can be tested using the standard ¢ statistics
formed by the ratio of the parameter estimate and its standard deviation. It should be
recalled that this is possible because of the assumption about the normal distribution
of the variables which enabled us to perform a maximum likelihood estimation.

10.2.5 Simultaneous Estimation of Measurement Model
Parameters with Structural Relationship Parameters Versus
Sequential Estimation

It can be noted that in the estimation method described above, the measurement
model parameters are estimated at the same time as the structural model parameters.
This means that the fit of the structural model and the structural model parameters
are affected by the measurement model parameters. The motivation of the approach
was to correct the bias produced by errors in measurement. However, the simultane-
ity of the estimation of all the parameters (measurement model and structural model)
implies that a trade off is made between the values estimated for the measurement
model and those for the structural model. In order to avoid this problem, it is a bet-
ter practice to estimate first the measurement model and then estimate the structural
model parameters in a fully specified model (i.e., with the measurement model) but
where the parameters of the measurement model are fixed to the values estimated
when this measurement model is estimated alone (Anderson and Gerbing 1988).
This procedure does take into account the fact that the variables in the structural
model are measured with error in order to estimate the structural model parame-
ters, but does not let the estimation of the measurement model interfere with the
estimation of the structural model and vice versa.

10.2.6 Identification

As discussed earlier in Chapter 6, a model is identified if its parameters are identi-
fied, which means that there is only one set of values of the parameters that generate
the covariance matrix. Although there is no general necessary and sufficient condi-
tions for the general model discussed here to be identified, if the information matrix
is not positive definite, the model is not identified. Furthermore, it appears logical
that the structural model be identified on its own. The order and rank conditions
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presented in Chapter 6 should consequently be used to verify the identification of
the structural relationships in an analysis of covariance structure model.

10.2.7 Special Cases of Analysis of Covariance Structure

The system of equations discussed in Chapter 6 and, a fortiori, Multiple Regression
Analysis presented in Chapter 5, are obviously directly related to the general
analysis of covariance models described above. This is because the fundamental
relationships establishing the structural model follow the linear model. The distin-
guishing feature is the simultaneous modeling of measurement errors. If, however,
each unobserved construct is defined by a single indicator (therefore fixing the fac-
tor loading to one and the error variance to zero), the models described in Chapters
5 and 6 are reproduced.

Although less obvious, three of the analytical methods discussed earlier are also
special cases of the general model we presented in this chapter: confirmatory factor
analysis, second-order factor analysis and canonical correlation analysis. We show
how the general model reduces to these special cases in turn.

10.2.7.1 Confirmatory Factor Analysis

In confirmatory factor analysis, there is no endogenous latent construct. The
model simply reduces to the measurement model expressed in Equation (10.25).
Consequently, only the submatrix corresponding to the exogenous items covariances
are considered in Equation (10.31), i.e., the part given in Equation (10.32).

10.2.7.2 Second-Order Factor Analysis

It is a little bit less obvious to see how the general model can reduce to the second-
order factor analytic model. However, the relationships between the second-order
factors and the first-order factors are established through Equation (10.21) but with
the peculiarity that B = 1. This means that there is no endogeneity and that each 1 is
a function of only the exogenous constructs. It may be confusing that the structural
relationships expressed in Equation (10.21) reflect a measurement model in this
particular case. However, this is mathematically and statistically equivalent. The
other distinction with the general model is the lack of exogenous indicators. Indeed,
the n’s are considered as the reflective measures for the &’s. Consequently, we are
only interested in reproducing the submatrix in Equation (10.31) that deals with the
y variables, i.e., the covariances represented in Equation (10.33).

10.2.7.3 Canonical Correlation Analysis

The equivalence of canonical correlation analysis with the general model described
in this chapter is even more subtle. Again, the structural parameters are not truly
considered as such. Let us consider a case where the exogenous constructs (the
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£’s), are each measured by a single indicator. This means that the corresponding
factor loadings will be set to one and the corresponding measurement error variances
will be zero. If we now consider a single endogenous construct 1, the “structural
relationship parameters” can be interpreted as the weights applied to the x’s to form
a linear combination of these variables. This can be seen more clearly by considering
the graphical representation in Fig. 10.2.

Fig. 10.2 Graphical
representation of a canonical
correlation model within the
general analysis of covariance
structure model

Independent Canonical Variate

The dotted box in Fig. 10.2 shows the part of the graphic which corresponds
to the right-hand side of the canonical correlation equation. Then, the relationships
between the single 1 and the y variables is established through the “measurement”
parameters in Ay, combined with the specification of a full covariance matrix among
the error terms €’s. Once again, the role of structural and measurement parame-
ters as described earlier in this chapter does not hold; however, there is a statistical
equivalence between these representations. This model is expressed as a multiple
indicators/multiple causes (MIMIC) model of a single latent construct. Although
equivalent, one should be careful not to interpret the parameters Ay as the weights of
the dependent variables in the canonical correlation model specification. However,
they are directly related to them and the canonical weights could then easily be
inferred from the estimated parameters Ay.

Indeed, Ay1 in Fig. 10.2 represents the correlation between y; and n; (assuming
that 1 has unit variance). However, 7 is the canonical variate corresponding to the
X variables in canonical correlation analysis (i.e., = z = Ay1x] + Ay2x2). But the
squared correlation between y and z is precisely the definition of the redundancy
measure in canonical correlation analysis (see Chapter 7). Therefore:

/1t Ry v (10.43)
x1 995 2x1

1
where v are the weights applied to the y variables to form the y canonical variate,
i is the correlation between the two canonical variates, and Ryy is the correlation
matrix among the y variables (note in this case that g = 1).

Consequently, there is equivalence between the factor loadings in the analysis of
covariance specification of the canonical correlation model and the weights of the
linear combination of the y variables as seen in Chapter 7 when canonical correlation
analysis is performed.
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10.3 Analysis of Covariance Structure with Means

Just as we introduced means and scalar constants in multi-group confirmatory fac-
tor analysis (Chapter 4), we not only introduce them in the general model for
the exogenous variables (Equation 10.45) but also for the endogenous variables
(Equation 10.44).

Y=1+A, 5 + ¢ (10.44)
px1 px1l pxmmx1  pxl
X =7, +A £ + 8 (10.45)

In addition, we introduce constant terms (intercepts) in the structural relation-
ships to acknowledge the fact that the means of the unobserved constructs are not
zero. These constant terms are the «’s in Equation (10.46):

n =« +B n+T &+ ¢ (10.46)
mx1 mx1  mxngymx] MXNpy] gxl
with
E[§]= « (10.47)
nxl1
E[¢d] = (10.48)
mxm
E[ee'] = 0. (10.49)
pXp
E[88'] = 65 (10.50)
qxq

It follows that the expected values of the observed exogenous variables are

E|:Xi|=ﬂx=Tx+AxK (10.51)
gx1 gx1 gx1 pxnnxl

The means of the endogenous constructs follow from Equations (10.46) and
(10.51). From Equation (10.46)

(I-B)E[yg] =+ TE[£] (10.52)

E[nl=I-B) (e +Tk) (10.53)
However, the expected value of the endogenous observable items is

E[y]=p,=1,+AEn] (10.54)
Consequently, the expected value of the endogenous observable items is

py=71y+A,AI—B)"" (¢ +Tk) (10.55)
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Similarly to the likelihood function discussed for confirmatory factor analysis
with means and multiple groups in Chapter 4, the log likelihood function con-
tains also the parameters that model the means. Generalizing to the case of multiple
groups, as was done in Chapter 4, leads to the log likelihood:

G
1
L= = Z ® [(p(g) + q(g)) Ln(27) + Ln ‘E(g)‘
g=1 (10.56)

+tr{(Z(g) _ ,ég)) (Z<g> _ ﬂ;@)’ y@! H

If the theoretical model fits the data, Equations (10.51) and (10.54) provide
the constraints that must be met to replicate the means of the observed variables.
Therefore, in the full model with means, we model simultaneously the covariance
matrix and the means of the observed variables in order to replicate as closely as
possible the observed values. Then, the data will not only consist of the covariance
matrix but also of the mean values of the observed variables. This is particularly use-
ful in the presence of multiple groups where means across groups are likely to differ.
Such multi-group analyses are common when testing the homogeneity of coeffi-
cients across groups, just as the pooling tests performed with multiple regression
analysis in Chapter 5. However, with this general model, the structural relationships
tested take into consideration the measurement errors which would introduce a bias
if ignored.

A particular type of test of homogeneity occurs when a moderator variable
explains differences in structural relationships. In this case, one frequently used
approach consists in splitting the observations in two (or more) groups according
to the values of the moderator variable. Then a rejection of the homogeneity of
coefficients hypothesis lends support to the moderating hypothesis.

10.4 Examples of Structural Model with Measurement Models
Using LISREL

We now present examples of analysis of covariance structure using LISRELS8 for
Windows. These examples concern full structural models with error in measure-
ment. Examples were given in prior chapters that were concerned exclusively with
measurement models or confirmatory factor analysis. As shown earlier in this chap-
ter, this is only one component of analysis of covariance structures. The full model
contains also structural relationships among the unobserved constructs that need to
be estimated. An example is provided below, where two characteristics of inno-
vations (the extent to which an innovation is radical and the extent to which it
is competence enhancing) are hypothesized to affect two constructs, one being
changes in the management of the organization and the other being the success of
that organization. Figure 10.3 presents the LISRELS input file for the first step in
the analysis, i.e., the measurement model for all the constructs (including both the
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'Exampl0-1.spl
'Raw Data From File: ExamplO-1.txt
'Path Diagram

DA NI=19 MA = KM

RA FI=C:\SAMD2\Chapterl0\Examples\Exampl0-1.txt

MO NX = 19 NK = 4 PH = SY TD = SY

FI LX(1,1) LX(4,2) LX(9,3) LX(15,4)

VA 1 LX(1,1) LX(4,2) LX(9,3) LX(15,4)

LA

Q46 Q47 Q48 Q40 Q42 Q43 Q44 Q45 Q5 Q7 Q8 Q12 Q13 Q14 Q19r Q20 Q21 Q22 Q23
LK

Success Org2 CompEnh Radical

FR LX(2,1) LX(3,1) c
LX(5,2) LX(6,2) LX(7,2) LX(8,2) c
1X(10,3) ILxX(11,3) ILxX(12,3) LX(13,3) LX(14,3) c
LX(16,4) LX(17,4) LX(18,4) LxX(19,4) c
TD(14,11)

Path Diagram
OU SE TV AD = 50 MI

Fig. 10.3 Step 1: LISRELS input of measurement model for exogenous and endogenous
constructs (examp10-1.spl)

exogenous and endogenous constructs, although it would be feasible to estimate a
separate measurement model for each).

The results are shown in Fig. 10.4, and are also represented graphically in
Fig. 10.5.

The values obtained in step 1 are then used as input for step 2, which consists in
estimating the structural model parameters with the measurement parameters fixed
to the values obtained in step 1. This LISRELS input file is shown in Fig. 10.6. The
estimation of the model presented in that figure leads to maximum likelihood struc-
tural parameter estimates which take into consideration the fact that the constructs
are measured with error.

These parameter estimates are shown graphically in Fig. 10.7.

The full LISRELS output is listed in Fig. 10.8. These examples are given for
illustrative purposes; the model shown here could be improved, as its fit to the data
is not as high as would be desirable.

10.5 Assignment

Using the SURVEY data, develop a model that specifies structural relationships
between unobservable constructs measured with multiple items. Develop a model
with multiple equations and verify the identification of the structural model.
Estimate first the measurement model corresponding to a confirmatory factor
analysis and then estimate the structural model parameters.

Considering a variable which you hypothesize to be a moderator of a relationship
of your choice, split the sample into subgroups and test the significance of such a
moderating effect.
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DATE: 12/ 7/1999
TIME: 17:49

LISREL 8.30
BY

Karl G. Joreskog & Dag Sorbom

This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100
Chicago, IL 60646-1704, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-99
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file C:\SAMD2\CHAPTERS\EXAMPLES\Examp8-6.SPL:

'Exampl0-1.spl
'Raw Data From File: ExamplO-1.txt
'Path Diagram

DA NI=19 MA = KM

RA FI=C:\SAMD2\Chapter1l0\Examples\ExamplO-1.txt
MO NX = 19 NK = 4 PH = SY TD = SY

FI LX(1,1) LX(4,2) LX(9,3) LX(15,4)

VA 1 LX(1,1) LX(4,2) LX(9,3) LX(15,4)

LA

Q46 Q47 Q48 Q40 Q42 Q43 Q44 Q45 Q5 Q7 Q08 Q12 Q13 Q14 Q19r Q20 Q21 Q22 Q23
LK

Success Org2 CompEnh Radical

FR LX(2,1) LX(3,1) [¢]

LX(5,2) LX(6,2) LX(7,2) LX(8,2) C

LX(10,3) LX(11,3) LX(12,3) LX(13,3) LX(14,3) C

LX(16,4) LX(17,4) LX(18,4) LX(19,4) Cc

TD(14,11) 'LX(1,1) LX(4,2) LX(9,3) LX(15,4)

Path Diagram
OU SE TV AD = 50 MI

'Exampl0-1.spl

Number of Input Variables 19
Number of Y - Variables 0
Number of X - Variables 19
Number of ETA - Variables 0
Number of KSI - Variables 4
Number of Observations 146

'Exampl0-1.spl

Covariance Matrix to be Analyzed

046 047 048 040 042 043
046 1.00
047 0.71 1.00
048 0.60 0.83 1.00
040 0.25 0.26 0.24 1.00
042 0.31 0.30 0.25 0.59 1.00
043 0.29 0.27 0.21 0.72 0.60 1.00
044 0.32 0.36 0.27 0.60 0.59 0.67
045 0.26 0.31 0.25 0.63 0.56 0.70
05 0.28 0.30 0.25 0.22 0.05 0.20
o7 0.26 0.32 0.30 0.19 0.06 0.17
08 0.18 0.15 0.11 0.26 0.37 0.36
012 0.22 0.26 0.25 0.11 -0.02 0.08
013 0.26 0.14 0.09 0.28 0.39 0.32

Fig. 10.4 Step 1: The measurement model results — LISRELS output (examp10-1.out)
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Q14 0.17 0.11 0.11 0.28 0.41 0.31
Ql9r 0.26 0.21 0.15 0.29 0.38 0.32
Q20 0.30 0.19 0.18 0.40 0.42 0.39
Q21 0.18 0.11 0.09 0.32 0.39 0.33
Q22 0.22 0.23 0.20 0.16 0.28 0.18
Q23 0.33 0.23 0.21 0.31 0.35 0.28
Covariance Matrix to be Analyzed
Q44 Q45 Q5 Q7 Q8 Q12
Q44 1.00
Q45 0.63 1.00
Q5 0.18 0.19 1.00
Q7 0.13 0.15 0.62 1.00
Q8 0.35 0.36 -0.03 0.01 1.00
Q12 0.08 0.11 0.63 0.72 -0.06 1.00
Q13 0.21 0.26 -0.10 -0.08 0.56 -0.08
Q14 0.31 0.32 -0.12 -0.07 0.65 -0.13
Ql9r 0.28 0.34 0.00 0.00 0.35 -0.09
Q20 0.30 0.32 0.00 0.01 0.47 -0.03
Q21 0.24 0.35 0.07 0.02 0.36 0.03
Q22 0.15 0.17 0.12 0.21 0.29 0.15
Q23 0.20 0.16 0.23 0.20 0.24 0.16
Covariance Matrix to be Analyzed
Q13 Q14 Q19r Q20 Q21 Q22
Q13 1.00
Q14 0.60 1.00
Ql9r 0.48 0.38 1.00
Q20 0.55 0.47 0.60 1.00
Q21 0.43 0.35 0.63 0.77 1.00
Q22 0.29 0.32 0.48 0.40 0.45 1.00
Q23 0.40 0.26 0.61 0.60 0.61 0.59
Covariance Matrix to be Analyzed
Q23
Q23 1.00
'Exampl0-1.spl
Parameter Specifications
LAMBDA-X
Success org2 CompEnh Radical
Q46 0 0 0 0
Q47 1 0 0 0
Q48 2 0 0 0
Q40 0 0 0 0
Q42 0 3 0 0
Q43 0 4 0 0
Q44 0 5 0 0
Q45 0 6 0 0
Q5 0 0 0 0
Q7 0 0 7 0
Q8 0 0 8 0
Q12 0 0 9 0
Q13 0 0 10 0
Q14 0 0 11 0
Ql9r 0 0 0 0
Q20 0 0 0 12
Q21 0 0 0 13
Q22 0 0 0 14
Q23 0 0 0 15
PHI
Success org2 CompEnh Radical

Fig. 10.4 (continued)
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Success 16

Org2 17
CompEnh 19
Radical 22

THETA-DELTA

046 2
047
048
040
042
043
044
045
05
07

Q12
Q13
014
Q19r
Q20
Q21
Q22
Q23

[~ N-N-N-N-N-N-N-N-N-N- NN NN NN NN

THETA-DELTA

Q44 3
Q45
Q5
Q7
Q8
Q12
Q13
Q14
Ql9r
Q20
Q21
Q22
Q23

[-N-N-N-N-N-N-N-N-N-N-N-2\)

THETA-DELTA

Q13 38
014 0
Q19r 0
Q20 0
Q21 0
Q22 0
Q23 0

Q23 45

'Exampl0-1.spl

Number of Iterations

18
20
23
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LISREL Estimates (Maximum Likelihood)
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Success

Fig. 10.4 (continued)
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Fig. 10.4 (continued)

Q46 1.00 - - - - - -
047 1.34 - - - - - -
(0.12)
10.86
Q48 1.16 - - - - - -
(0.11)
10.37
Q40 - - 1.00 - - - -
Q42 - - 0.90 - - - -
(0.10)
9.43
Q43 - - 1.07 - - - -
(0.09)
11.74
Q44 - - 0.96 - - - -
(0.09)
10.17
Q45 - - 0.99 - - - -
(0.09)
10.58
Q5 - - - - 1.00 - -
Q7 - - - - 1.13 - -
(0.12)
9.48
Q8 - - - - -0.04 - -
(0.12)
-0.31
Q12 - - - - 1.13 - -
(0.12)
9.47
Q13 - - - - -0.14 - -
(0.12)
-1.16
Q14 - - - - -0.17 - -
(0.12)
-1.46
Q19r - - - - - - 1.00
Q20 - - - - - - 1.13
(0.11)
10.18
Q21 - - - - - - 1.15
(0.11)
10.36
Q22 - - - - - - 0.75
(0.11)
6.63
Q23 - - - - - - 1.00
(0.11)
8.93
PHI
Success Org2 CompEnh Radical
Success 0.53



10.5 Assignment

4.95

Org2 0.22
(0.06)

3.71

CompEnh 0.20
(0.06)

3.47

Radical 0.13
(0.05)

2.49
THETA-DELTA
Q46

06 0.47
(0.06)

7.71

047 - -
Q48 - -
Q40 - -
Q42 - -
Q43 - -
044 - -
045 - -
95 - -
Q7 - -
8 - -
Q12 - -
Q13 - -
Q14 - -
Q19r - -
Q20 - -
Q21 - -
Q22 - -
Q23 - -
THETA-DELTA
044

04 o0.40
(0.06)

Fig. 10.4 (continued)

0.65
(0.11)
5.70

0.11
(0.06)
1.86

0.30

(0.07)
4.41

0.05
(0.04)
1.09

0.56
(0.11)
4.96

0.03

(0.05)
0.59

0.28
(0.05)
5.95

0.56
(0.11)
5.10

0.35
(0.05)
6.80

0.47
(0.06)
7.49

0.25
(0.04)
5.80
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7.17
Q45 - - 0.37
(0.05)
6.93
05 - - - - 0.44
(0.07)
6.74
Q7 - - - - - - 0.28
(0.06)
4.69
08 - - - - - - - - 1.00
(0.12)
8.51
Q12 - - - - - - - - - - 0.29
(0.06)
4.79
Q13 - - - - - - - - - - - -
Q14 - - - - - - - - 0.65 - -
(0.10)
6.59
Q19r - - - - - - - - - - - -
020 - - - - - - - - - - - -
021 - - - - - - - - - - - -
022 - - - - - - - - - - - -
023 - - - - - - - - - - - -
THETA-DELTA
013 014 Q19r 020 021 022
013 0.99
(0.12)
8.50
Q14 - - 0.98
(0.12)
8.49
Q19r - - - - 0.44
(0.06)
7.22
020 - - - - - - 0.28
(0.05)
5.92
021 - - - - - - - - 0.26
(0.05)
5.53
022 - - - - - - - - - - 0.68
(0.08)
8.05
023 - - - - - - - - - - - -

THETA-DELTA

023 0.44

Fig. 10.4 (continued)
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Squared Multiple Correlations for X - Variables

Squared Multiple Correlations for X - Variables

Goodness of Fit Statistics

Degrees of Freedom = 145
Minimum Fit Function Chi-Square = 332.35 (P = 0.00)
Normal Theory Weighted Least Squares Chi-Square = 330.77 (P = 0.00)
Estimated Non-centrality Parameter (NCP) = 185.77
90 Percent Confidence Interval for NCP = (136.72 ; 242.54)

Minimum Fit Function Value = 2.29
Population Discrepancy Function Value (F0) = 1.28
90 Percent Confidence Interval for FO = (0.94 ; 1.67)
Root Mean Square Error of Approximation (RMSEA) = 0.094
90 Percent Confidence Interval for RMSEA = (0.081 ; 0.11)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.00

Expected Cross-Validation Index (ECVI) = 2.90
90 Percent Confidence Interval for ECVI = (2.56 ; 3.29)
ECVI for Saturated Model = 2.62
ECVI for Independence Model = 12.01

Chi-Square for Independence Model with 171 Degrees of Freedom = 1702.81
Independence AIC = 1740.81
Model AIC = 420.77
Saturated AIC = 380.00
Independence CAIC = 1816.49
Model CAIC = 600.03
Saturated CAIC = 1136.89

Root Mean Square Residual (RMR) = 0.17
Standardized RMR = 0.17
Goodness of Fit Index (GFI) = 0.81
Adjusted Goodness of Fit Index (AGFI) = 0.75
Parsimony Goodness of Fit Index (PGFI) = 0.62

Normed Fit Index (NFI) = 0.80

Non-Normed Fit Index (NNFI) = 0.86
Parsimony Normed Fit Index (PNFI) = 0.68
Comparative Fit Index (CFI) = 0.88
Incremental Fit Index (IFI) = 0.88

Relative Fit Index (RFI) = 0.77

Critical N (CN) = 82.82

'Exampl0-1.spl

Modification Indices and Expected Change

Fig. 10.4 (continued)
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Modification Indices for LAMBDA-X

Success Org2 CompEnh Radical

Q46 - - 2.36 0.26 6.54
Q47 - - 0.16 0.40 1.64
Q48 - - 0.40 0.14 0.09
Q40 0.76 - - 0.87 0.08
Q42 0.57 - - 3.71 6.56
Q43 2.02 - - 0.00 0.26
Q44 2.65 - - 0.02 1.94
Q45 0.18 - - 0.22 0.27
Q5 0.76 3.01 - - 0.94
Q7 0.48 0.87 - - 0.47
Q8 0.87 5.43 - - 5.36
Q12 1.04 2.45 - - 0.22
Q13 6.24 22.55 - - 44.94
Q14 1.22 5.46 - - 7.33
Q19r 0.73 0.53 2.85 - -
Q20 0.01 1.56 2.90 - -
Q21 6.79 0.59 0.36 - -
Q22 2.45 0.52 5.18 - -
Q23 2.10 0.71 10.40 - -

Expected Change for LAMBDA-X

Success Org2 CompEnh Radical

Q46 - - 0.13 0.05 0.22
Q47 - - -0.03 -0.05 -0.09
Q48 - - -0.04 0.03 -0.02
Q40 -0.07 - - 0.08 0.03
Q42 0.07 - - -0.17 0.26
Q43 -0.11 - - 0.00 -0.04
Q44 0.14 - - 0.01 -0.13
Q45 0.04 - - 0.04 -0.05
Q5 0.08 0.14 - - 0.08
Q7 0.06 0.07 - - 0.06
Q8 0.09 0.19 - - 0.20
Q12 -0.09 -0.12 - - -0.04
Q13 0.32 0.52 - - 0.78
Q14 0.11 0.19 - - 0.24
Q19r 0.07 0.07 -0.14 - -
Q20 0.01 0.10 -0.13 - -
Q21 -0.20 -0.06 -0.04 - -
Q22 0.16 -0.08 0.23 - -
Q23 0.13 -0.08 0.28 - -

No Non-Zero Modification Indices for PHI

Modification Indices for THETA-DELTA

Q46 047 048 040 Q42 043
Q46 - -
047 0.05 - -
Q48 0.97 3.24 - -
Q40 0.14 1.68 1.11 - -
Q42 0.64 0.04 0.01 0.02 - -
043 0.79 0.47 0.58 2.47 2.32 - -
Q44 0.00 2.28 0.53 1.34 1.17 0.03
Q45 1.10 0.62 0.01 0.43 0.40 0.46
Q5 1.34 0.01 0.49 0.77 1.31 0.30
Q7 0.00 0.01 0.15 0.58 0.15 0.17
08 0.19 0.15 0.60 1.69 0.01 0.82
Q12 0.02 0.34 0.22 0.17 0.48 0.24
Q13 7.38 0.24 0.65 0.02 5.51 0.21
Q14 0.73 0.77 0.50 0.36 3.35 0.60
Q19r 0.02 1.95 0.92 1.43 0.19 0.17
020 2.17 1.17 0.45 2.24 0.00 0.72
021 0.86 0.33 0.15 0.57 0.08 0.27
Q22 0.18 0.56 0.03 0.91 1.23 0.44
023 2.78 0.71 0.26 1.70 0.85 0.01

Modification Indices for THETA-DELTA

Fig. 10.4 (continued)
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044 045 05 o7
044 - -

045 0.32 - -

05 0.13 0.07 - -

07 0.32 0.32 1.58 - -

08 0.60 0.69 0.11 0.18
012 0.04 0.36 0.03 1.10
013 1.26 0.04 0.19 0.04
014 0.02 0.00 0.38 0.27
019r 0.28 2.10 0.02 0.33
020 0.00 1.58 1.51 0.02
021 1.30 5.34 0.26 2.95
022 0.03 0.09 0.68 3.25
023 0.15 10.86 2.80 0.42

Modification Indices for THETA-DELTA

013 014 Ql9r 020
013 - -

014 13.55 - -

olor 2.45 0.33 - -

020 7.22 1.08 2.97 - -
021 0.20 0.55 0.70 17.27
022 0.04 1.50 1.75 8.00
023 0.31 0.02 2.32 2.20

023 - -

Q46 047 Q48 Q40

Q46 - -

047 -0.02 - -

Q48 -0.06 0.23 - -

Q40 -0.01 -0.03 0.03 - -
Q42 0.03 0.01 0.00 0.01
043 0.03 -0.02 -0.02 0.06
Q44 0.00 0.04 -0.02 -0.05
Q45 -0.04 0.02 0.00 -0.03

Q5 0.05 0.00 -0.02 0.03

Q7 0.00 0.00 0.01 0.03

08 0.02 0.01 -0.03 -0.05
Q12 0.00 -0.02 0.01 -0.01
013 0.16 -0.02 -0.04 0.01
Q14 0.04 -0.03 0.02 0.02
Q19r 0.01 0.04 -0.03 -0.05
020 0.05 -0.03 0.02 0.05
021 -0.03 -0.01 -0.01 -0.02
022 -0.02 0.03 0.01 -0.04
023 0.07 -0.02 0.02 0.05

Expected Change for THETA-DELTA

044 045 05 o7
044 - -

045 0.02 - -

05 0.01 0.01 - -

07 -0.02 -0.02 -0.13 - -

08 0.03 0.03 0.02 0.02
012 -0.01 0.02 0.02 0.15
013 -0.06 -0.01 -0.03 0.01
014 -0.01 0.00 -0.03 0.02
019r 0.02 0.06 -0.01 0.02
020 0.00 -0.04 -0.05 0.00
021 -0.04 0.08 0.02 -0.06
022 -0.01 -0.01 -0.04 0.08
023 -0.02 -0.13 0.07 0.03

Fig. 10.4 (continued)

1.82
3.37

-0.03
0.17
0.01
0.06
0.01

-0.01

-0.05
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Expected Change for THETA-DELTA

013 014 Q19r 020 021 022
013 - -
014 0.23 - -
ol9r 0.09 0.03 - -
020 0.14 0.04 -0.08 - -
021 -0.02 -0.03 -0.04 0.20 - -
022 0.01 0.06 0.07 -0.13 -0.06 - -
023 0.03 0.01 0.07 -0.07 -0.08 0.22

Expected Change for THETA-DELTA

023 - -

Maximum Modification Index is 44 .94 for Element (13, 4) of LAMBDA-X

The Problem used 52512 Bytes (= 0.1% of Available Workspace)

Time used: 0.340 Seconds

Fig. 10.4 (continued)
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Fig. 10.5 Step 1: Graphical representation of measurement model for exogenous and endogenous

constructs (examp10-1.pth)
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'Exampl0-2.spl
'Raw Data From File: ExamplO-6.txt
'Path Diagram

DA NI=19 MA = KM XM = 9
RA FI=C:\SAMD2\Chapterl0\Examples\Exampl0-1.txt
MO NY = 8 NX = 11 NE =2 NK =2 PH = SY TD = SY

FI LY(1,1) LY( 2,1) LY(3,1) c
LY(4,2) LY( 5,2) LY(6,2) LY(7,2) LY(8,2)
LX(1,1) LX( 2,1) LX(3,1) LX(4,1) LX(5,1) Lx(6,1)
LX(7,2) LX( 8,2) LX(9,2) LX(10,2) LX(11,2)
TE(l1,1) TE( 2,2) TE(3,3) TE(4 ,4) TE( 5,5) TE(6,6) TE(7,7)
TE (8,8)
TD(1,1) TD( 2,2) TD(3,3) TD(4 ,4) TD( 5,5) TD(6,6) TD(7,7)
TD(8,8) TD( 9,9) TD(10,10) TD(11l,11)
PH(1,1) PH( 2,1) PH( 2, 2)

eNeNeNeNeNeNe]

va 1 LY( 1,1) LX(1,1) LY(4,2) LX(7,2)
VA 1.34 LY( 2,1)
VA 1.16 LY( 3,1)
VA 0.90 LY( 5,2)
VA 1.07 LY( 6,2)
VA 0.96 LY( 7,2)
VA 0.99 LY( 8,2)
vA 1.13 LX( 2,1)
VA -0.04 LX( 3,1)
vA 1.13 LX( 4,1)
VA -0.14 LX( 5,1)
VA -0.17 LX( 6,1)
vA 1.13 LX( 8,2)
VA 1.15 LX( 9,2)
VA 0.75 LX(10,2)
VA 1.00 LX(11,2)
VA 0.47 TE( 1,1)
VA 0.05 TE( 2,2)
VA 0.28 TE( 3,3)
VA 0.35 TE( 4,4)
VA 0.47 TE( 5,5)
VA 0.25 TE( 6,6)
VA 0.40 TE( 7,7)
VA 0.37 TE( 8,8)
VA 0.44 ™( 1,1)
VA 0.28 ™D( 2,2)
VA 1.00 TD( 3,3)
VA 0.29 TD( 4,4)
VA 0.99 TD( 5,5)
VA 0.98 TD( 6,6)
VA 0.44 ™( 7,7)
VA 0.28 TD( 8,8)
VA 0.26 T™D( 9,9)
VA 0.68 TD (10,10)
VA 0.44 TD(11,11)
VA 0.65 TD( 6,3)
VA 0.56 PH( 1,1)
VA 0.03 PH( 2,1)
VA 0.56 PH( 2,2)
LA

Q46 Q47 Q48 Q40 Q42 Q43 Q44 045 Q5 Q7 Q8 Q12 Q13 Q14 Q19r Q20 Q21 Q22 Q23
LE

Success 0Org2

LK

CompEnh Radical

Path Diagram
OU SE TV AD = 50 MI

Fig. 10.6 Step 2: LISRELS input of full structural model (examp10-2.spl)
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DATE: 1/ 8/2001
TIME: 9:51

LISREL 8.30
BY

Karl G. Joreskog & Dag Sérbom

This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100
Chicago, IL 60646-1704, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-99
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file C:\SAMD2\CHAPTERS\EXAMPLES\EXAMP8-7.SPL:

Exampl0-2.spl
'Raw Data From File: ExamplO-1.txt
!'Path Diagram

DA NI=19 MA = KM XM = 9
RA FI=C:\SAMD2\Chapterl0\Examples\Exampl0-1.txt
MO NY =8 NX =11 NE =2 NK =2 PH = SY TD = SY

FI LY(1,1) LY( 2,1) LY(3,1) c

LY(4,2) LY( 5,2) LY(6,2) LY(7,2) LY(8,2) c

LX(1,1) LX( 2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) c
LX(7,2) LX( 8,2) LX(9,2) LX(10,2) LX(11,2) c

TE(1,1) TE( 2,2) TE(3,3) TE(4 ,4) TE( 5,5) TE(6,6) TE(7,7) C
TE(8,8) c

TD(1,1) TD( 2,2) TD(3,3) TD(4 ,4) TD( 5,5) TD(6,6) TD(7,7) C
TD(8,8) TD( 9,9) TD(10,10) TD(11,11) c

PH(1,1) PH( 2,1) PH( 2, 2)

va 1 LY( 1,1) LX(1,1) LY(4,2) LX(7,2)
VA 1.34 LY( 2,1)
VA 1.16 LY( 3,1)
VA 0.90 LY( 5,2)
VA 1.07 LY( 6,2)
VA 0.96 LY( 7,2)
VA 0.99 LY( 8,2)
vAa 1.13 LX( 2,1)
VA -0.04 1x( 3,1)
VA 1.13 LX( 4,1)
VA -0.14 1X( 5,1)
VA -0.17 1X( 6,1)
VA 1.13 1x( 8,2)
vA 1.15 1X( 9,2)
VA 0.75 1LX(10,2)
va 1.00 LX(11,2)
va 0.47 TE( 1,1)
VA 0.05 TE( 2,2)
VA 0.28 TE( 3,3)
VA 0.35 TE( 4,4)
VA 0.47 TE( 5,5)
VA 0.25 TE( 6,6)
VA 0.40 TE( 7,7)
vAa 0.37 TE( 8,8)

Fig. 10.8 Step 2: LISRELS output of full structural model (examp10-2.out)
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VA 0.99
VA 0.98
VA 0.44
VA 0.28
VA 0.26
VA 0.68
VA 0.44
VA 0.65
VA 0.56
VA 0.03
VA 0.56
LA

LK

046
047
048
Q40
042
043
044
045

Q5

Q8
Q12
013
014

Ql9r
020
021
022
023

044
045

Q7
Q8
012
013
014
Ql9r
020
021
Q22
023

'Exampl0-2.

T™™( 5,5)
TD( 6,6)
™( 7,7)
T™( 8,8)
TD( 9,9)
TD(10,10)
TD(11,11)
TD( 6,3)

PH( 1,1)
PH( 2,1)
PH( 2,2)

Success Org2
CompEnh Radical

Path Diagram
QU SE TV AD

= 50 MI

spl

'Examp8-7.spl

Covariance Matrix

Number
Number
Number
Number
Number
Number

of
of
of
of
of
of

Input Variables 19
Y - Variables 8
X - Variables 11
ETA - Variables 2
KSI - Variables 2
Observations 96

to be Analyzed

Q46 Q47 Q48 Q40 Q42 Q43 Q44 Q45 Q5 Q7 Q8 Q12 Q13 Q14 Ql9r Q20 Q21 Q22 Q23
LE

Covariance Matrix to be Analyzed

Q46 Q47 048 Q40 Q42 Q43
1.00

0.75 1.00

0.73 0.84 1.00

0.04 0.09 0.16 1.00

0.20 0.25 0.31 0.41 1.00

0.09 0.11 0.16 0.57 0.54 1.00
0.17 0.21 0.21 0.52 0.59 0.73
0.00 0.18 0.28 0.49 0.55 0.57
0.21 0.13 0.13 0.11 -0.13 0.03
0.26 0.20 0.25 0.10 -0.07 0.00
-0.11 -0.04 0.05 0.21 0.19 0.26
0.23 0.20 0.24 0.05 -0.09 -0.03
0.06 0.06 0.04 0.07 0.12 0.14
0.01 -0.02 0.05 0.11 0.25 0.15
0.19 0.17 0.12 0.05 0.26 0.14
0.13 0.08 0.08 0.20 0.15 0.21
0.08 0.07 0.04 0.17 0.22 0.24
0.28 0.34 0.31 0.07 0.24 0.14
0.33 0.17 0.13 0.12 0.14 0.16

Covariance Matrix to be Analyzed

Q44 Q45 Q5 Q7 Q8 Q12
1.00

0.59 1.00

0.04 0.00 1.00
-0.04 -0.03 0.55 1.00

0.19 0.22 -0.37 -0.31 1.00
-0.09 -0.02 0.69 0.77 -0.41 1.00
0.12 0.13 =0.25 =0.30 0.38 =-0.32
0.29 0.20 -0.37 -0.32 0.45 -0.37
0.19 0.27 -0.03 -0.06 -0.01 -0.19
0.19 0.17 0.00 -0.01 0.23 -0.05
0.18 0.30 0.17 0.14 0.02 0.13
0.23 0.10 0.09 0.19 -0.01 0.08
0.21 0.00 0.22 0.16 -0.08 0.08

Fig. 10.8 (continued)
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013 014 o19r 020 021 022
013 1.00

014 0.38 1.00

019r 0.23 0.10 1.00

020 0.15 0.16 0.35 1.00

021 -0.03 -0.03 0.42 0.61 1.00

022 0.06 0.09 0.39 0.24 0.39 .00
023 0.12 -0.05 0.48 0.49 0.56 .47

Covariance Matrix to be Analyzed

Q23 1.00

!Exampl@-spl

Parameter Specifications

GAMMA
CompEnh
Success I
Org2 3
PSI

Radical

Note: This matrix is diagonal.

Success

'Exampl@-spl

Number of Iterations

12

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y
Success
a6 1.00
Q47 1.34
Q48 1.16
Q40 - -
Q42 - -
Q43 - -
044 - -
Q45 - -

LAMBDA-X
CompEnh
o5 1.00
Q7 1.13
o8 -0.04

Radical

Fig. 10.8 (continued)
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Q13 -0.14
Q14 -0.17
Q19r - -
020 - -
Q21 - -
Q22 - -
Q23 - -
GAMMA
CompEnh
Success 0.22
(0.11)
2.06
Org2 -0.04
(0.11)
-0.36

1.00

1.15

Radical

Covariance Matrix of ETA and KSI

Success Org2 CompEnh Radical
Success 0.54
Org2 0.04 0.60
CompEnh 0.13 -0.01 0.56
Radical 0.11 0.21 0.03 0.56
PHI
CompEnh Radical
CompEnh 0.56
Radical 0.03 0.56
PSI

Note: This matrix is diagonal.

Success

Success Org2
os o3
THETA-EPS
Q46 Q47 Q48 Q40 Q42 Q43
0.47 0.05 0.28 0.35 .47 .25
THETA-EPS
Q44 045
o0 0w

Fig. 10.8 (continued)
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Squared Multiple Correlations for Y - Variables
Q46 047 Q48 040 042 043
0.53 0.95 0.72 0.63 0.51 .73
Squared Multiple Correlations for Y - Variables
044 Q45
T oss o6
THETA-DELTA
Q5 Q7 Q8 Q12 Q13 Q14
Q5 0.44
Q7 - - 0.28
Q8 - - - - 1.00
Q12 - - - - - - 0.29
Q13 - - - - - - - - 0.99
Q14 -- - - 0.65 - - - - 0.98
Q19r - - - - - - - - - - - -
Q20 - - - - - - - - - - - -
021 - - - - - - - - - - - -
Q22 - - - - - - - - - - - -
Q23 - - - - - - - - - - - -
THETA-DELTA
Q19r Q20 Q21 Q22 Q23
Q19r 0.44
Q20 - - 0.28
Q21 - - - - 0.26
Q22 - - - - - - 0.68
Q23 - - - - - - - - 0.44
Squared Multiple Correlations for X - Variables
Q5 Q7 Q8 Q12 Q13 Q14
0.56 0.72 0.00 0.71 0.01 0.02
Squared Multiple Correlations for X - Variables
Q19r 020 Q21 Q22 Q23
0.56 0.72 0.74 0.32 0.56
Goodness of Fit Statistics
Degrees of Freedom = 184
Minimum Fit Function Chi-Square = 324.49 (P = 0.00)
Normal Theory Weighted Least Squares Chi-Square = 375.12 (P = 0.00)
Estimated Non-centrality Parameter (NCP) = 191.12
90 Percent Confidence Interval for NCP = (139.61 ; 250.40)

Fig. 10.8 (continued)




10.5 Assignment

287

Minimum Fit Function Value = 3.42

Population Discrepancy Function Value (F0) = 2.01
90 Percent Confidence Interval for FO = (1.47 ; 2.64)
Root Mean Square Error of Approximation (RMSEA) = 0.10

90 Percent Confidence Interval for RMSEA = (0.089 ; 0.12
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.00

Expected Cross-Validation Index (ECVI) = 4.07
90 Percent Confidence Interval for ECVI = (3.53 ; 4.70)
ECVI for Saturated Model = 4.00
ECVI for Independence Model = 10.79

Chi-Square for Independence Model with 171 Degrees of Freedom
Independence AIC = 1025.42
Model AIC = 387.12
Saturated AIC = 380.00
Independence CAIC = 1093.14
Model CAIC = 408.50
Saturated CAIC = 1057.23

Root Mean Square Residual (RMR) = 0.13
Standardized RMR = 0.13
Goodness of Fit Index (GFI) = 0.75
Adjusted Goodness of Fit Index (AGFI) = 0.74
Parsimony Goodness of Fit Index (PGFI) = 0.72

Normed Fit Index (NFI) = 0.67
Non-Normed Fit Index (NNFI) = 0.84
Parsimony Normed Fit Index (PNFI) = 0.72
Comparative Fit Index (CFI) = 0.83
Incremental Fit Index (IFI) = 0.83
Relative Fit Index (RFI) = 0.69

Critical N (CN) = 68.79

{Exampl0-2.spl
Modification Indices and Expected Change

Modification Indices for LAMBDA-Y

Success Org2
Q46 0.46 0.17
Q47 0.36 0.15
Q48 0.05 3.16
Q40 0.72 1.28
Q42 3.70 0.01
Q43 1.03 0.23
Q44 1.31 1.27
Q45 0.58 0.14

Success Oorg2
Q46 0.07 -0.04
047 -0.05 -0.03
Q48 0.02 0.14
Q40 -0.08 -0.10
Q42 0.20 -0.01
Q43 -0.09 0.04
Q44 0.11 0.11
Q45 0.07 -0.04

Modification Indices for LAMBDA-X

CompEnh Radical

05 0.18 0.77
Q7 0.06 0.34
08 6.10 0.16

012 0.20 0.86

013 5.29 1.50

014 0.20 0.10

)

987.42

Fig. 10.8 (continued)
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Q19r
Q20
021
Q22
Q23

Q5
Q7
Q8

Q12
Q13
Q14
Ql9r
Q20
Q21
Q22
Q23

CompEnh
Radical

CompEnh
Radical

Success
Org2

Success
Org2

046
047
048
040
042
043
044
045

044
Q45

Expected

NE®& W

.16
.18

CompEnh

CompEnh

Success

Success

0.

09

1 11
Ccoooooooococo

Radi

Radi

-0

cocoor

No Non-Zero Modification Indices for GAMMA

Modification Indices for PHI

cal

Expected Change for PHI

cal

.10

Modification Indices for PSI

Expected Change for PSI

Modification Indices for THETA-EPS

Q46 047 Q48 Q40 Q42 Q43
1.20

0.16 0.09

2.98 0.07 0.29

0.05 0.55 0.12 12.82

0.46 0.00 1.11 3.94 1.04

0.85 0.50 0.18 1.48 1.43 2.58
0.67 0.99 0.98 2.66 0.98 5.32
8.88 0.21 4.00 1.21 1.09 4.51

Q46

Modification Indices for THETA-EPS

Expected Change for THETA-EPS

047

Q48 Q40 Q42 Q43

Fig. 10.8 (continued)
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046 ~0.08
047 -0.01 0.01

048 0.07 -0.01 -0.02

Q40 -0.01 -0.02 0.01 0.22

Q42 0.04 0.00 0.04 -0.10 0.08

043 0.04 -0.02 -0.01 -0.05 -0.05 0.08
044 0.04 0.03 -0.04 -0.07 0.05 0.09
045 -0.14 0.02 0.08 -0.05 0.05 -0.08

Expected Change for THETA-EPS

044 045
044 -0.05
045 0.00 0.12

Modification Indices for THETA-DELTA-EPS

Q46 Qa7 Q48 Q40 Q42 Q43

05 0.58 0.01 0.79 0.33 4.75 0.17
Q7 0.55 0.92 0.92 1.17 0.08 0.02
08 3.69 0.01 1.32 1.35 1.25 5.03
Q12 0.06 0.03 0.43 0.02 0.06 0.01
013 0.12 0.26 0.01 0.25 0.01 0.31
Q14 2.46 0.53 0.06 2.15 3.19 4.43
Q19r 0.07 1.10 0.31 5.93 3.86 2.20
Q20 0.00 0.70 0.28 4.10 2.55 0.28
021 2.26 0.01 0.45 0.27 0.14 0.02
022 0.05 1.12 0.54 1.02 2.52 0.09
023 10.55 1.01 0.41 0.54 0.00 0.50

Modification Indices for THETA-DELTA-EPS

044 045
05 1.64 0.06
Q7 0.12 0.72
08 3.41 0.00
012 1.07 0.65
013 0.03 0.19
014 7.70 0.23

Q19r 0.08 6.86
020 0.26 1.21
021 3.48 8.04
Q22 2.52 1.24
023 2.76 16.59

Expected Change for THETA-DELTA-EPS

046 047 048 040 042 043

Q5 0.04 0.00 -0.04 0.03 -0.12 0.02
Q7 0.04 -0.03 0.04 0.05 0.01 -0.01
08 -0.10 0.00 0.05 0.06 -0.06 0.10
Q12 -0.01 -0.01 0.02 -0.01 0.01 0.00
Q13 0.03 0.03 -0.01 -0.03 0.01 0.03
Q14 0.08 -0.03 0.01 -0.07 0.10 -0.10
Q19r 0.01 0.04 -0.02 -0.12 0.10 -0.06
020 0.00 -0.03 0.02 0.08 -0.07 0.02
Q21 -0.07 0.00 -0.02 -0.02 -0.02 0.00
Q22 -0.01 0.05 0.04 -0.06 0.10 -0.02
023 0.17 -0.04 -0.03 0.04 0.00 0.03

Expected Change for THETA-DELTA-EPS

044 045
Q5 0.07 -0.01
07 -0.02 -0.04
08 -0.10 0.00
012 -0.05 0.04
013 0.01 0.03
014 0.15 0.02

Q19r 0.01 0.13
Q20 -0.02 -0.05

Fig. 10.8 (continued)
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Q21 -0.08 0.12
Q22 0.09 -0.06
Q23 0.08 -0.20

Modification Indices for THETA-DELTA

Q5 Q7 Q8 Q12 Q13 Q14

Q5 0.20

Q7 6.16 0.03

Q8 0.43 0.03 12.62

Q12 2.93 1.86 3.30 3.81

Q13 0.02 0.46 2.99 0.90 0.11

Q14 0.36 0.01 20.67 0.28 1.38 10.70
Q19r 0.03 0.13 3.70 5.56 4.21 2.83
Q20 1.00 0.27 9.50 0.04 1.08 0.29
021 0.25 0.37 0.08 3.18 7.15 2.06
Q22 0.64 2.64 2.28 0.15 0.01 2.62
023 3.22 0.34 2.28 0.80 0.64 0.00

Modification Indices for THETA-DELTA

Ql9r 020 021 022 023
019r 12.84

020 14.36 21.95

021 7.22 0.20 6.99

022 2.87 13.48 0.25 0.58

023 1.44 3.37 0.55 4.76 0.89

Expected Change for THETA-DELTA

05 Q7 08 012 013 014

Q5 0.03

07 -0.12 0.01

08 -0.04 0.01 0.29

012 0.08 0.05 -0.09 -0.12

Q13 -0.01 -0.05 0.13 -0.06 -0.05

014 -0.03 0.00 -0.22 0.03 0.09 0.27
019r 0.01 0.02 -0.11 -0.11 0.15 0.09
020 -0.05 -0.02 0.15 0.01 0.07 -0.03
021 0.02 -0.02 0.01 0.07 -0.17 -0.07
Q22 -0.05 0.09 -0.10 -0.02 0.01 0.10
023 0.10 0.03 -0.08 -0.04 0.06 0.00

Expected Change for THETA-DELTA

o19r 020 021 022 023
019r 0.26

020 -0.17 0.26

021 -0.12 -0.02 0.14

022 0.10 -0.19 -0.03 0.08

023 0.06 -0.08 -0.03 0.13 0.07

Maximum Modification Index is 21.95 for Element ( 8, 8) of THETA-DELTA

The Problem used 34008 Bytes (= 0.1% of Available Workspace)

Time used: 0.320 Seconds

Fig. 10.8 (continued)
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Chapter 11
Cluster Analysis

The objective of cluster analysis is to group observations (e.g., individuals) in such
a way that the groups formed are as homogeneous as possible within each group
and as different as possible across groups.

These criteria remind us of those for discriminant analysis where the objective
was to derive a linear combination of the variables such that this transformed linear
combination would exhibit the largest difference between centroids but the smallest
variance within groups. However, in discriminant analysis, the groups are known a
priori. The purpose of cluster analysis is to form such groups. These groups are cold
“clusters”.

This type of analysis is particularly relevant in market research where market
segments are searched for in order to handle from a practical point of view the
heterogeneity of consumers. This technique is more generally useful in any situa-
tion where the analyst needs to reduce the heterogeneous observations of interest
to a manageable number of groups that should reflect the diversity of cases to be
analyzed.

11.1 The Clustering Methods

The clustering solutions are found by applying an algorithm which determines the
rules by which observations are aggregated. A number of algorithms can be found in
the literature. They are more or less complicated procedures based on “rules” which
lead to reasonable solutions, although these are clearly not grounded in statistical
theory, and different algorithms often lead to different solutions. For this reason, it
is particularly critical to understand the specific “rules” used in the method that is
chosen and to identify the specific method used in reporting the clustering solution
found.

Algorithms can be classified into two groups: hierarchical methods and nonhier-
archical methods.

Hierarchical algorithms are the most common methods of cluster analysis. In
such algorithms, observations are added to each other one by one in a treelike fash-
ion. Such a tree can be graphed to form the dendrogram showing the aggregation
process from the N groups made up of the N individuals to any level of K groups.

H. Gatignon, Statistical Analysis of Management Data, 295
DOI 10.1007/978-1-4419-1270-1_11, © Springer Science+Business Media, LLC 2010
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In nonhierarchical algorithms, the number of groups K is known (or assumed) a
priori and each observation is assigned one of the K groups according to its distance
to the group centroid and keeps being relocated until a stopping rule criterion is
verified.

11.1.1 Similarity Measures

Any of these methods requires the proximity of the observations to be measured.
These proximity measures can take multiple forms although, given the multivariate
description of the observations through P variates, the Euclidean distance or related
measures come immediately to mind. The squared distance between objects i and j
is therefore:
P
&= (i — )’ (11.1)

p=1

where xp; = value of observation i on variate p.

It is clear from this measure that the scale of each variable can have a large impact
on the distance measure. Therefore, the question of standardization of the variable
is a pertinent one. Unfortunately, there is no obvious response to that question.

11.1.2 The Centroid Method

The algorithm of the centroid method starts by bringing together into the first group,
observations that exhibit the smallest distance from each other. In a second step, the
centroid formed by this group is computed. The centroid is the average value of
each variate across the observations in that group. The observations which have not
been assigned to a group yet are then assessed based on the distances among them-
selves as well as according to the distance to the centroid of the group formed. The
observations or group corresponding to the smallest distance of all combinations
are grouped together. That is, if the smallest distance formed by a pair of observa-
tions is not contained into a group yet, then a new group is formed. Otherwise, the
observation with the smallest distance to a centroid joins this group.

We now illustrate the process of the centroid method with a small sample of data.

Let us consider the data in Table 11.1 where six individuals are characterized by
two variables, variable 1 and variable 2.

Step one (s = 1): Calculate the Euclidean distances between all pairs of obser-
vations according to Equation (11.1). These calculations lead to the matrix of
similarities between each of the six individuals as shown in Table 11.2.

Taking the smallest distance indicates that one should group individuals 2 and 6,
as they are the closest together with a distance of only 4.

Step two (s = 2): In this step, we need to first compute the means (centroids)
of the variates for the first cluster (2,6); the value of the variates for the other



11.1 The Clustering Methods 297

Table 11.1 Sample data

Individual Variable 1 Variable 2
1 15 12
2 10 20
3 14 18
4 10 14
5 16 15
6 8 20

Table 11.2 Dissimilarity measures based on Euclidean distances (only the upper half of the
symmetric matrix is shown)

Individuals 1 2 3 4 5 6

1 0 89 37 29 10 113
2 0 32 35 61 4
3 0 32 13 40
4 0 37 40
5 0 89
6 0

individuals remains the value of the variable of each individual since each indi-
vidual constitutes its own cluster at this stage. This forms the N — 1 cluster solution
(i.e., 5 clusters in our example). Then, the new distance matrix can be computed
between this first cluster and each of the other individuals.

(1) Compute centroids of N — 1 = 5 clusters.
The averages lead to the new table of data shown in Table 11.3. The average
value on variable 1 for cluster (2,6) is the average of the values of that variable
for individuals 2 and 6, i.e., (10 + 8)/2 = 9. The same calculation is made for
variable 2, which results in a value of 20.

(i) Compute Euclidean distances between each group centroid.

Table 11.3 Centroids for 5-cluster solution

Individuals (clusters) Variable 1 Variable 2
(2,6) 9.0 20.0
1 15.0 12.0
3 14.0 18.0
4 10.0 14.0
5 16.0 15.0
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The Euclidean distance between each of these five groups is computed using
Equation (11.1) applied to the data in Table 11.3. This results in the new dis-
similarity matrix shown in Table 11.4 between the first cluster (2,6) and each of

the other individuals:

The smallest distance is between individuals 1 and 5 with a distance of 10.00,
leading to grouping individuals 1 and 5 in a new cluster for a N — 2 or 4 cluster

solution.

11

Step three (s = 3): Step 2 is now repeated with N — 2 data points.

(1) Compute centroids of N — 2 = 4 clusters.

First we compute the average values of each variate for the two clusters found,
with the values of the other individuals remaining unchanged. This gives the
new data matrix as shown in Table 11.5. For example, the average value of

variate 1 for cluster (1,5)is (15 + 16)/2 = 15.5.

(i) Compute Euclidean distances between each group centroid.

We can then compute the dissimilarity matrix, which results in Table 11.6.

Table 11.4 5-Cluster dissimilarity matrix

Individuals (clusters) (2,6) 1 3 4 5

(2,6) 0 100.00  29.00 37.00 74.00

1 0 37.00 29.00 10.00

3 0 32.00  13.00

4 0 40.00

5 0
Table 11.5 Centroids for 4-cluster solution

Individuals (clusters) Variable 1 Variable 2

(2,6) 9.0 20.0

(1,5) 15.5 13.5

3 14.0 18.0

4 10.0 14.0

Table 11.6 4-Cluster dissimilarity matrix

Individuals (clusters) (2,6) (1,5) 4

(2,6) 0 84.50 29.00 37.00

(1,5) 0 22.50 30.50

3 32.00

4 0

Cluster Analysis
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The smallest distance is now between individual 3 and cluster (1,5), lead-
ing to a change in one cluster from 2 individuals (1,5) to 3 individuals
(1,3,5). Therefore, we now have three clusters (N — 3) composed of Cluster
1 = (2,6), Cluster 2 = (1,3,5), and Cluster 3 = (4). This is the 3-Cluster
solution.

Step four (s = 4): We now perform the same procedure for the N — 3 = 3
clusters.

(i) Compute centroids of N — 3 clusters. This is done in Table 11.7.
(i) Compute Euclidean distances between each group. These are computed in
Table 11.8.

Table 11.7 Centroids for 3-cluster solution

Individuals (clusters) Variable 1 Variable 2
(2,6) 9.0 20.0
(1,3,5) 15.0 15.0
4 10.0 14.0

Table 11.8 3-Cluster dissimilarity matrix

Individuals (clusters) (2,6) (1,3,5) 4
(2,6) 0 61.00 37.00
(1,3,5) 0 26.00
4 0

The clusters (1,3,5) and individual 4 are the less dissimilar with a distance
of 26.00, which leads to forming a single cluster composed of these four
individuals: 1, 3, 4, and 5. This gives us the 2-cluster solution: (2,6) and
(1,3,4.,5).

This is the last step which occurs when there are only two clusters left (value
of step s when N—s+1 = 2) since there is only one way left in which they can be
grouped together.

The dendrogram as illustrated in Fig. 11.1 summarizes the results of that pro-
cess. The individuals are represented on the x axis without reflecting any scale but
simply in the order in which they enter the clustering hierarchy. The y axis rep-
resents the Euclidean distance (on standardized variables in the figure) between
each cluster for any solution of (N — s + 1) clusters (where s is the step of group
formation).
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Distance Between Cluster Centroids
A

1 5 3 4 2 6
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Fig. 11.1 Dendogram for centroid method on illustrative sample

11.1.3 Ward’s Method

The criterion used in Ward’s algorithm to add observations to a group is the within-
clusters sum of squares (the sum of squares measure is defined precisely below).
Therefore, at each step, the within-clusters sum of squares is computed for all
possible combinations remaining.

For the first step, all the pair combinations of observations are considered as
potentially forming the first cluster, each of the remaining observations forming
each one of the N — 2 remaining clusters. The sum of squares of each of these
combinations is obtained by taking the deviations from the cluster mean, squaring
it, and summing it over the P variates. In that first step, only the pairs of observations
in the first potential cluster count since the other clusters have a single observation,
showing zero deviation from that centroid.

Therefore, the pair means or centroids are first computed according to
equation

)_Cp(izj) = (xpi - xpj) (11.2)

N =

where

i and j are the indices for the two individual observations,
p is the index for the variable or variate,

Xpi is the coordinate or value of observation / on variate p,
Xp(i,j) is the mean of variate p for observations i and j.
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The squared deviations from the centroid can then be computed as

P
(i) = Y| Li = 5] + [ — 5ol | (113)

p=l1

The combination that provides the smallest value d(i,j) is chosen for the first
cluster. As indicated above, the other N — 2 clusters are composed of the single
remaining observations.

For the subsequent steps, all combinations for grouping two of the first step clus-
ters together are considered. These consist of adding any observation not in cluster
1 to that cluster, as well as considering grouping any pair of observations in the
other N — 2 clusters made up of single observations. The sum of squares is then
computed for any such combination. More generally, at any step s, we will be con-
sidering (N — s) clusters. A number of alternative combinations are then possible;
let us index any of these alternatives by a. We designate the combination of a par-
ticular cluster formed within that alternative a as Ci(a), where k = 1,... (N-s),
and which contains a number of observations in the cluster, i.e., Cx(a) = {ij,...}.
We first compute the centroid of the cluster made of the subset of observations
Cr(a):

1
%, (Cl(a) = Z X (11.4)

"G jeCia)

where p is the variate index and nc,(4)is the number of observations in subset Cy(a).
The squared deviations from the centroid are then

P
dCu@n =33 (i — %(Culan)’ (11.5)

p=1j€Ci(a)

The sum of squares of a particular alternative a is the sum over the number of
clusters at step s (i.e., N — s) of the deviations within each cluster. Therefore:

N—s

d@) =) d(Cr(a) (11.6)

k=1

The alternative that provides the smallest value d(a) is then chosen for the next
step.

In step 2, this could result in an observation being added to the two observations
constituting cluster 1 or to any other observation forming more than one cluster
with more than one observation. The process continues until all observations are
allocated to a cluster. Therefore, this procedure takes N — 1 steps.

We illustrate the Process of Ward’s Method with the same data as used previously
for the centroid method (Table 11.1).
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Step one: In this step, we consider all the alternatives for classifying the 6 indi-
viduals into 5 groups or clusters. We will then select the alternative that provides the
smallest sum of squares.

Assign to cluster 1 all possible combination of pairs among the 6 individuals
(Cé = 15 combinations) and the remaining observations (individuals) to each of
the remaining clusters. These various alternatives can be considered by develop-
ing the 6 by 6 matrix (displayed in Table 11.9) where only the upper half needs
to be considered because the bottom half represents the same combinations as the
upper half.

To be complete, we can represent the full set of alternatives with all the elements
composing each of the five clusters as shown in Table 11.10.

Compute within-cluster sums of squares for each combination and pick the
combination with the smallest sum of squares (ties are broken by picking one
randomly).

These sums of squares for each combination are calculated and displayed in
the last column of Table 11.10. The smallest value is for the combination where

Table 11.9 Possible alternatives of 2 individual clusters in step 1

Individuals 1 2 3 4 5 6

1 - (1,2) (1,3) (1,4) (1,5) (1,6)
2 - 2,3) 2,4) 2,5) (2,6)
3 - (34 (3,5) (3,6)
4 - 4.,5) (4,6)
5 - (5,6)
6 _

Table 11.10 Composition of all possible groups of 5 clusters and corresponding sum of squares

Cluster composition

Alternative CL1 CL2 CL3 CL4 CL5 Sum of squares
1 (1,2) 3 4 5 6 44.50
2 (1,3) 2 4 5 6 18.50
3 (1,4) 2 3 5 6 15.00
4 (1,5) 2 3 4 6 5.00
5 (1,6) 2 3 4 5 56.50
6 (2,3) 1 4 5 6 10.00
7 2,4) 1 3 5 6 18.00
8 2,5) 1 3 4 6 30.50
9 (2,6) 1 3 4 5 2.00
10 3,4) 1 2 5 6 16.00
11 3,5) 1 2 4 6 6.50
12 3,6) 1 2 4 5 20.00
13 4,5) 1 2 3 6 18.50
14 4,6) 1 2 3 5 20.00
15 (5,6) 1 2 3 4 44.50
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individuals 2 and 6 are grouped together to form the first cluster. We, therefore,
retain that cluster (2,6) as the first step in the hierarchy. We are now ready for step 2.
Step two: We are now considering all the alternative 4-cluster solutions, given
that cluster 1 contains individuals 2 and 6. These are represented in Table 11.11.
The full description of each alternative at this stage is shown in Table 11.12 with
the computed values of the within-clusters sums of squares for each alternative.
The smallest within sum of squares indicates that a second cluster should be
formed with individuals 1 and 5. At this stage, this gives us two clusters of two
individuals (2,6) and (1,5) and two clusters with a single individual, i.e., individuals

3 and 4.

Step three: We now consider all alternatives that would make three clusters.

These combinations can be found in Table 11.13.

Table 11.11 Possible alternatives in step 2

Individuals (2,6) 1 3 4 5

(2,6) (2,6,1) (2,6,3) (2,6,4) (2,6,5)
1 - (1,3) (1,4) (1,5)
3 - 3.4) (3,5
4 - 4.5

5 _

Table 11.12 Composition of all possible groups of 4 clusters and corresponding sum of squares

Cluster composition

Alternative ~ CL1 CL2 CL3 CL4 Sum of squares
1 (2,6,1) 3 4 5 68.67
2 (2,6,3) 1 4 5 21.34
3 (2,6,4) 1 3 5 34.67
4 (2,6,5) 1 3 4 227.12
5 (2,6) (1,3) 4 5 20.50
6 (2.6) (14) 3 5 17.00
7 (2,6) (1,5) 3 4 7.00
8 (2,6) (3.4) 5 6 18.00
9 (2,6) (3.5) 1 4 8.50
10 (2,6) (4,5) 1 3 20.50
Table 11.13 Possible alternatives in step 3

Individuals (2,6) (1,5) 3 4

(2,6) - (2.6,1,5) (2,6,3) (2,64

(1,5 - (1.5.3) (1,5.4)

3 - (CX)

4
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Table 11.14 Composition of all possible groups of 3 clusters and corresponding sum of squares

Cluster composition

Alternative CL1 CL2 CL3 Sum of squares
1 (2,6,1,5) 3 4 116.48
2 (2,6,3) (1,5) 4 26.35
3 (2.6:4) (1,5) 3 39.67
4 (2,6) (1,5,3) 4 22.00
5 (2,6) (1,5,4) 3 27.34
6 (2,6) (1,5) 3.4) 23.00

The complete description of each alternative is shown in Table 11.14 as well as
the sum of squares for each alternative.

Based on the sum of squares, we now add individual 3 to Cluster 2 now composed
of individuals 1, 5, and 3 while Cluster 1 remains unchanged and Cluster 3 contains
a single observation, individual 4.

Step four: In the final step where only two clusters are considered, we identify
the alternative combinations of two clusters as shown in Table 11.15.

Table 11.15 Possible alternatives in step 4

Individuals (2,6) (1,5,3) 4

(2,6) - (2,6,1,5,3) (2,6,4)
(1,5,3) - (1,5,3,4)
4 _

The complete description of each alternative in this step 4 is shown in Table 11.16
as well as the sum of squares for each alternative.

This step finalizes the process, and the best alternative combination results in
two clusters, one composed of individuals 2 and 6 and one of individuals 1, 3, 4,
and 5.

We can follow that process at each step using the dendogram as shown in
Fig. 11.2.

Table 11.16 Composition of all possible groups of 2 clusters and corresponding sum of squares

Cluster composition

Alternative CL1 CL2 Sum of squares
1 (2,6,1,5,3) 4 95.20
(2,6:4) (1,5,3) 54.67

3 (2,6) (1,5,3.4) 41.48
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Fig. 11.2 Dendogram for Ward’s method on illustrative sample

11.1.4 Nonhierarchical Clustering: K-Means Method
(FASTCLUS)

In a nonhierarchical clustering algorithm, the solution is conditional on a predeter-
mined number of clusters selected a priori. If K is the number of groups or clusters,
the algorithm follows the four basic steps described below:

Step one: Assign each of the first K observations to the K clusters as the initial
centroids (other assignment rules such as random selection offer variants of
the method).

Step two: Compute the distance of each of the other N — K observations to the
initial K cluster centroids and assign each observation to the cluster for which
the distance is smallest (a variant may consist in using a different distance
measure). FASTCLUS (found in SAS) uses the smallest distance between an
observation and each of the elements contained in a cluster, instead of the
distance to the centroid.

Step three: Compute the centroids of the K clusters and recompute the distance
of each observation not yet assigned to a cluster. Assign that observa-
tion to the cluster which has the shortest distance (a variant consists in
recomputing the centroid after each observation is assigned within this
step).

Step four: Repeat step three as long as the stopping rule is not satisfied.
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11.2 Examples Using SAS

We illustrate the methods described above with the same data and show how to
perform such analyses using SAS. These data concern the assessment of innova-
tions according to a number of variables reflecting different types of innovation
characteristics.

11.2.1 Example of Clustering with the Centroid Method

The SAS code for performing cluster analysis is similar across methods. Figure 11.3
shows the code for the centroid method using the data described above as an
example.

The SAS procedure “cluster” is used and the method=centroid instruction sim-
ply determines the method used. The dendogram is requested as an output with
the instruction “out=tree”. The observations classified are identified with the id for
variable prod (individual product number contained in the variable named “prod”).
The variables used for the clustering are listed after the key word “var”, and this list
includes all the product characteristics itl through it9.

The observations (products) will be sorted by cluster as found from the results of
the cluster analysis and the dendogram. The results are shown in Fig. 11.4.

After providing standard statistics of the variables used for the classification anal-
ysis, each step at each level of the hierarchy is shown. For example, at the first step

/* Exampll-1-Cluster-centroid.sas

*/

option 1s=120;

data datal;

infile 'c:\SAMD2\Chapterll\Examples\product.dat';
input prod rad itl it2 it3 it4 it5 it6 it7 it8 it9;
if itl=9 then itl=.;

if it2=9 then it2=.;

if it3=9 then it3=.;

if it4=9 then it4d=.;

if it5=9 then it5=.;

if it6=9 then ité6=.;

if it7=9 then it7=.;

if it8=9 then it8=.;

if it9=9 then it9=.;

Proc cluster simple noeigen method=centroid rmsstd rsquare nonorm out=tree;
id prod;

var itl-it9;

proc tree data=tree out=clus2 nclusters=2;

id prod;

copy itl-it9;

proc sort; by cluster;

proc print; by cluster;

var prod itl-it9;

Title '2-cluster solution';

Run;

Fig. 11.3 SAS code for centroid method (examp11-1.sas)
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2—cluster solution

Distance Between Cluster Centroids
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1 4 5 6 2 9 11 13 8 3 7 12 10
prod

Fig. 11.5 Dendogram (exampl1-1) of cluster analysis using the centroid method

(i.e., when 8 clusters are considered as shown in the output with the value 8 in the
NCL column), products 7 and 12 are the less dissimilar and are placed together in
a cluster called CLS. In the next step, when seven clusters are considered, product
number 3 is the most similar to that cluster CL8 that was just formed. This process
continues until only two clusters are formed.

The dendogram corresponding to that analysis is shown in Fig. 11.5 where the
entire hierarchy appears.

Products identified by numbers 1, 4, 5, and 6 appear as dots on the graph and
were not classified because values were missing for some of the variables on these
products. This final classification and the corresponding data are printed in the out-
put sorted by cluster and the same data can be found in the SAS work file “clus2”
by clicking in the SAS menu bar on “solutions/Analysis/Interactive Data Analysis”
and then by selecting the SAS library “WORK” and the SAS Data Set clus2 (the
name indicated in the SAS code to create that file). That file is shown in Fig. 11.6.
Note that it is possible to print that file using the File/Print menu option.

It remains to interpret the grouping found statistically. For that purpose, it is use-
ful to calculate the means of the variables by cluster, i.e., the values of the centroids
at the final solution of 2 clusters. This can be easily done by adding the following
code at the bottom of Fig. 11.7.

The results are shown in Fig. 11.8.

The variables that show the largest differences can help interpret the meaning
of the groups. In that sense, cluster analysis is purely exploratory as there is no a
priori theory needed to discover how the observations can be grouped by similarity
to each other.
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Fig. 11.6 Example (exampl1-1) of 2-cluster solution with centroid method

proc means; by cluster;
var itl-it9;
run;

Fig. 11.7 Calculating means of clustering variables by cluster

11.2.2 Example of Clustering with Ward’s Method

The instructions in SAS for Ward’s method consist of the same code as in the prior
example, except for replacing “method=centroid” with “method=ward” in the proc
cluster code line. An example is shown in Fig. 11.9.

The output of Ward’s method example is given in Fig. 11.10. After listing the
basic statistics for the variables used in the cluster analysis, the formation of the
clusters at each step is shown and the final solution is given with the values of
the variables for each observation listed by cluster. The centroids, i.e., the mean of
each variable for each cluster is then given with the standard deviation (as well as
the minimum and the maximum).

Finally, the dendogram is shown in Fig. 11.11 with up to two clusters, as
instructed in the input code on the proc tree line.

11.2.3 Example of FASTCLUS

Finally, the FASTCLUS method is illustrated with input code in SAS in Fig. 11.12.
The SAS procedure is “proc fastclus” and the maximum number of clusters is shown
as “maxclusters=2". In this particular example, the observations with missing
variables have been deleted.
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/* Exampll-2-Cluster-ward.sas

*/

option 1s=120;

data datal;

infile 'c:\SAMD2\Chapterll\Examples\product.dat';
input prod rad itl it2 it3 it4 it5 it6 it7 it8 it9;
if itl=9 then itl=.;

if it2=9 then it2=.;

if it3=9 then it3=.;

if it4=9 then it4=.;

if it5=9 then it5=.;

if it6=9 then ité6=.;

if it7=9 then it7=.;

if it8=9 then it8=.;

if it9=9 then it9=.;

Proc cluster simple noeigen method=ward rmsstd rsquare nonorm out=tree;
id prod;
var itl-it9;
proc tree data=tree out=clus2 nclusters=2;
id prod;
copy itl-it9;
proc sort; by cluster;
proc print; by cluster;
var prod itl-it9;
Title '2-cluster solution';
run;
proc means; by cluster;
var itl-it9;

run;

Fig. 11.9 SAS code for cluster analysis using Ward’s method (examp11-2.sas)

Figure 11.13 lists the output. The results indicate the composition of the two
clusters and the cluster means on each of the variables used, similarly to the results
from the other methods.

11.3 Evaluation and Interpretation of Clustering Results

Because cluster analysis techniques are exploratory and are not founded on statisti-
cal theory, any cluster solution reported in the literature should evaluate these results
very carefully. A number of issues should be discussed in such reports.

11.3.1 Determining the Number of Clusters

The determination of the number of clusters is a critical choice, which, unfortu-
nately, cannot be inferred from the analysis. In hierarchical methods, the stopping
rule is fairly ad hoc and in the nonhierarchical method presented, the choice must
be done a priori. Although one can consider some guiding measures, these are not
without problem and the best argument for the choice of the number of clusters is
probably the one based on the interpretability of the resulting clusters.



313

Evaluation and Interpretation of Clustering Results

11.3

(s1 -1 1dwexe) poypow s, preay Suisn stsAeue 19psnpd Jo ndino §vs  OTTT “SIA

8G°TET
G6°2¢¢
LT

€8G°ET
L99° 0T

° ssd

6€0GTL T

(2]

o

«©

N
coooCcococoo

K3TTepowtd

000"
T¢9°
ogL”
018"
vL8"
¥e6°
866"
986"

osy

€129’
¥80T"
€080°
T¥90°
¥050°
T€C0”
£8¢0°
¢v10”

cocooococoo

0s¥ds

0GTL®
9GT¢”
0000°
G8G0°
€¢96°
vGvL”
G918°
VLLG®

arLs
S

cococo -
NN IO

[ofci::d

KI03STH I93SnTD

0T
€T

T
¢T

€10

LID
81D

= UOT}eTAS(Q paepuels sTdwes-Tejo] sxenbs-uesp-jo009

666C°C

sTsoj3Iny

ceeEy”
ST-
‘0

coocoooco

T-

ssouMays

€849

[e]
i
(2]
©o
HoE AN A A

ASQ P3IS

L999"

uesy

STSATeUY I93SNTD SOULTIBA WNWIUTH S,PIeM
SINPS00Igd YALSNTD SYL

N FH NN N

63T
83T
L3T
93T
Gt
¥at
€3T
¢3T
T3t

sTqeTIeA

<
€
6
L

¢TI
710
91D
SO

WM~V NN

"TON




Cluster Analysis

11

314

L O 8 F O O o8 F 8 O O O O A O F 8 A O o o8 A O O A O O A S P

0000000°9 0000000° ¢ 8¢GGT90° ¢ 00000GL° € 14 63T
0000000° 9 0000000°¢ 000000S° T 000006¢C" ¥ 14 83T
0000000°G 0000000° ¢ 0000006°T 000006¢C" ¥ 14 3T
0000000°G 0000000° ¢ 80G0CEL"T 0000000° ¥ € 93T
0000000° 9 0000000° ¢ €0CeTCT ¢ 0000005° € < 63T
0000000°G 0000000° ¢ [A YA Y KA £999999° ¢ € ¥aT
0000000°9 0000000° ¢ 0000000° ¢ 0000000° ¢ 14 €3T
0000000°9 0000000° 9 €0GELLG'O £EELELE’ S € ¢t
0000000°9 0000000°T 8GGELTC ¢ 00000GL°C 14 T3t
L 28 F O A8 o O O O O OF A A O8O O F o O A 8 F O O O O O O O F O A A OF PO A oY P
WNUIT X B WNUIT U T ASd PaS uesi N STqeTIBA
|||||||||||||||||||||||||||||||||| L SN T) — - s s s s s e e e e
T T € € T T 14 € 14 8 €T
S € < 14 T 14 14 14 14 €T ¢t
14 14 T < < T 9 14 9 < T
14 14 < € € T € 14 € T 0T
9 S < T € T 14 S 14 6 6
63T 83T L3t 93T 63T ¥aT €3T ¢at T3t poxd €90
|||||||||||||||||||||||||||||| P ] 1 e
9 S 14 € S 14 € S € 0T 8
9 S S S 9 S T 9 T € L
14 S 9 9 € 9 T 9 T ¢t 9
9 9 9 9 14 9 T 9 T L S
63T 83T 3T 93T 63T ¥aT €3T ¢t T3t poad €90
|||||||||||||||||||||||||||||| s 1 T b B bl b
9 S S S : 14 < S < 9 14
< < < < < < 9 : 9 S €
< S S : S : < S < 14 <
S S S S : S < 9 T T T
63T 83T 3T 93T 63T ¥aT €3T ¢t T3t poad €90
|||||||||||||||||||||||||||||||| M 1 ] 1 e bbbl

(penunuod) QT'IT 314



315

f Clustering Results

and Interpretation o

Evaluation

11.3

FESSSSSESSSESSSESSSSSSSSESSESSSSSHSSSSSSSSISSSSSSSSSSSSE554S555S5545545555545545

00000009 0000000°T L8Z80L8 T 0000000 ¥ S 63T
0000000°§ 0000000°T TGLGITS' T 000000% "€ S 83T
0000000°€ 0000000°T 890TLOL 0 0000000°2 S L3T
0000000 ¥ 0000000 T YSLTIOPT T 00000092 S 93T
0000000°€ 0000000°T 0000000°T 0000000°2 S g3T
0000000 " ¥ 0000000°T 80¥9TYE T 0000009 " T S ¥aIT
00000009 0000000 € IShPS60°T 0000002 ¥ S €3t
0000000° S 0000000 € 890TLOL 0 0000000 ¥ S zat
00000009 0000000 °€ TSPPS60° T 0000002 ¥ S 13T
B Yy
unuTxeN WNUWTUTR ASQ P3s uesN N °TqeTIeA
|||||||||||||||||||||||||||||||||| Z=HELSOTD —— === == m e m o

FEESSSSESSSESSSESSSSSSS SIS SESSSSSASSSSSSSSNSSSSSSSSSSSSSSSES5SS54S545555545545

0000000°9 0000000° ¥ 0000000°T 000000S°S 14 63T
0000000°9 0000000°S 000000570 000005¢2°S 14 83T
0000000°9 0000000° 7% TLTYLS6 0 000005¢2°S 14 L3T
0000000°9 0000000°€ 9ETCVIV'T 0000000°S 14 93T
0000000°9 0000000°€ Y¥66062°T 000000S" ¥ 14 G3T
0000000°9 0000000° 7% TLTYLS6 0 000005¢2°S 14 73T
0000000°€ 0000000°T 0000000°T 000000S°T 14 €371
0000000°9 0000000°S 000000570 00000SL"S w 23t
0000000°€ 0000000°T 0000000°T 000000S°T 13T
mmmmmmwmmwmmwmmwmmwmmwmmwmmwmmmmmmmwmmwmmwmmwmmwmmwmmwmmwmmmmwmmwmmwmmwmmwmmwm
WNWTXEN WNWTUTH ASQ P3IS uesy N STqeTIBA
|||||||||||||||||||||||||||||||||| T=¥ELSNT) ———— === e e ——

(penunuod) QT'IT 314



316 11 Cluster Analysis

150 4

-
N
(6]

-
o
o

)]
o

Between Cluster Sum of Squares
~
(6]

N
[

1 4 5 6 2 9 11 13 8 3 7 12 10
prod

Fig. 11.11 Dendogram from Ward’s method

/*  Exampll-3-FASTCLUS.sas
*/
option 1s=120;
data datal;
infile 'c:\SAMD2\Chapterll\Examples\product.dat';
input prod rad itl it2 it3 it4 it5 it6 it7 it8 it9;
if itl=9 then itl=.;
if it2=9 then it2=.;
if it3=9 then it3=.;
if it4=9 then itd=.;
if it5=9 then it5=.;
if it6=9 then ité6=.;
if it7=9 then it7=.;
if it8=9 then it8=.;
if it9=9 then it9=.;
if itl=. then delete;
if it2=. then delete;
if it3=. then delete;
if itd4=. then delete;
if it5=. then delete;
if it6=. then delete;
if it7=. then delete;
if it8=. then delete;
if it9=. then delete;
Proc fastclus radius=0 replace=full maxclusters=2 maxiter=50 list distance;
id prod;
var itl-it9;
run;

Fig. 11.12 SAS code for cluster analysis using FASTCLUS (examp11-3.sas)
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11.3.2 Size, Density, and Separation of Clusters

One criterion to assess how good a solution is, is the clusters must each contain a
sufficient number of observations. A group that is alone is more probably an outlier,
and it may be difficult to find a logical explanation based on theory-based distin-
guishing features. In general, a balance in the size of clusters may be ideal, although
it is by no means a necessary condition for a meaningful grouping of observations.

The density and separation of the clusters is more critical in principle because
this discrimination is the reason for the method. Density refers to how similar the
observations within a group are (i.e., the within group variance). Separation refers to
the spread or how different observations across groups are (i.e., the between group
variance). Consequently, the least one would hope from a cluster solution is that
the groups are statistically different on the variables used to perform the cluster
analysis. In practice, although it is not a bad idea to perform such an analysis using
MANOVA, the results tend to be highly significant and the diagnostic value is small.
Moreover, it can be misleading because it does not imply that the distribution of
any variable used for clustering is bimodal or multimodal. In fact, for example, a
variable distributed according to a normal distribution may lead to the formation
of two groups (low and high) when clustering the observations on that variable.
The mean of the two groups is likely to be significantly different from each other.
Nevertheless, this does not mean that the observations in each group are sampled
from a different distribution.

11.3.3 Tests of Significance on Other Variables
than Those Used to Create Clusters

The best method for “validating” the clustering solution consists in verifying that
the clusters differ on variables which are not used in the clustering process. These
variables typically concern differences the researcher expects from such groups but
do not characterize the groups per se, i.e., they do not contribute to their definition.
For example, consumers can be segmented on the basis of demographics and psy-
chographics and once groups are formed based on these descriptive variables, it can
be verified if each group differs in terms of specific purchase behavior.

11.3.4 Stability of Results

Given that the results of a cluster analysis are rather exploratory and could vary
depending on the method, it is recommended to verify the stability of the results.
This can be done by a split sample procedure where the analysis is performed on the
two subsamples and the researcher can check that the interpretation of the clusters
remain the same. Also, because it is difficult to justify one method versus another
on theoretical grounds, it is reasonable to perform the analysis using different pro-
cedures so that the biases inherent to each method (e.g., tendency to cluster around
seed points) can be better evaluated. Although it is a good idea to perform such an



Bibliography 321

analysis, this stability is necessary but does not guarantee that the clustering solution
corresponds to “real” groups that present “real” differences.

11.4 Assignment

Using the data contained in the survey described in the appendix of the book (in
SURVEY.ASC), identify a segmentation scheme that would be appropriate with the
sample by grouping individuals to form groups that are relatively homogeneous
along the psychographic profiles.
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Chapter 12
Analysis of Similarity and Preference Data

Similarity data in management research are typically collected in order to under-
stand the underlying dimensions determining perceptions of stimuli such as brands
or companies. One advantage of such data is that it is cognitively easier for respon-
dents to provide subjective assessments of the similarity between objects than to
rate these objects on a number of attributes which they may not even be aware of.
Furthermore, when asking respondents to rate objects on attributes, the selection of
the attributes proposed may influence the results while, in fact, it is not clear that
these attributes are the relevant ones. In multidimensional scaling, the methodology
allows one to infer the structure of perceptions by enabling the researcher to make
inferences regarding the number of dimensions necessary to fit the similarity data. In
this chapter, we first describe the type of data collected to perform multidimensional
scaling and we then present metric and nonmetric methods of multidimensional
scaling. Multidimensional scaling explains the similarity of objects such as brands.
We then turn to the analysis of preference data, where the objective is to model
and explain preferences for objects. These explanations are based on the underlying
dimensions of preferences that are discovered through the methodology.

12.1 Proximity Matrices

The input data for multidimensional scaling correspond to proximity or dis-
tance measures. Several possibilities exist, especially metric versus nonmetric and
conditional versus unconditional.

12.1.1 Metric Versus Nonmetric Data

The data that serve as input to similarity analysis can be metric or nonmetric. Metric
measures of proximity are ratio scales where zero indicates perfect similarity of two
objects. The scale measures the extent to which the objects differ from each other.
This measure of dissimilarity between objects is used as input to the method which
consists in finding the underlying dimensions that discriminate between the objects
to reproduce the dissimilarities (or similarities) between objects. In effect, these

H. Gatignon, Statistical Analysis of Management Data, 323
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measures are distance measures (dissimilarity) or proximity measures (similarity),
and the objective is to produce the map underlying the distances between the objects.

Nonmetric data also reflect these proximity measures; however, only information
about the rank order of the distances is available. As discussed in Chapter 1, special
care must be taken with such data because most standard statistics such as means,
standard deviations, and correlations are inappropriate.

12.1.2 Unconditional Versus Conditional Data

With unconditional data, all entries in the rows and columns are comparable, i.e.,
each stimulus is ranked relative to all other stimuli in the matrix (a number from 1
to n (n—1)/2 for nonmetric data).

If only the entries within a particular row are comparable, i.e., each of the n
column stimuli is ranked relative to one row stimulus (a number from 1 to n for
nonmetric data), the data are said to be conditional. In this case, the data matrix
consists of n — 1 objects ranked in terms of similarity relative to the row stimulus.
Even though it is less cognitively complex for respondents to provide conditional
data, unconditional data are frequent.

12.1.3 Derived Measures of Proximity

It should be noted that it may be possible to derive distance measures from data
consisting in the evaluation of stimuli on attributes. However, it is not clear what
attributes should be used and why some other relevant ones may be missing.
Furthermore, if the objective is to assess the underlying dimensions behind these
attributes, multidimensional scaling will use the computed proximities as input and
will ignore some of the information contained in the original attribute-level infor-
mation. Consequently, the use of such a procedure will lose information relative
to, for example, principal component analysis. It therefore appears more effective
to reserve multidimensional scaling for direct measures of similarity rather than
similarity measures derived from attribute-level data.

12.1.4 Alternative Proximity Matrices

Apart from these two broad categories of proximity data, the matrix can take several
specific forms.

12.1.4.1 Symmetric (Half) Matrix — Missing Diagonal (= 0)

When dealing with distance measures, it is clear that the distance between objects
A and B is the same as the distance between objects B and A. Therefore, when
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concerned with pure distance or proximity data, the full data are contained in half of
the matrix, where the rows and the columns denote the objects and the cells represent
the distance between these two objects. This matrix is symmetric. Furthermore, the
diagonal represents the distance between an object and itself, and, consequently, the
elements of the diagonal are zeros (often they are not even included in the input).

12.1.4.2 Nonsymmetric Matrix — Missing Diagonal (= 0)

In some cases, the matrix may not be symmetric. This is the case for confusion data,
which consists of having each cell represent the frequency with which object i is
matched with object j (for example, with Morse codes, the percentage of times that
a code of a particular letter is understood to be some other letter) or one minus that
percentage. The greater the confusion, the greater the similarity between the two
objects.

12.1.4.3 Nonsymmetric Matrix —Diagonal Present (# 0)

In the case of confusion data, the diagonal may not be zeros because a particular
stimulus (e.g., a letter) may not be recognized all the time.

12.2 Problem Definition

In defining the problem, we consider nonmetric dissimilarity measures among N
stimuli. This is the basic problem such as defined for the KYST algorithm.
Let the table or matrix of dissimilarity (input data) be represented by

A ={5(.k) 12.1)
NxN

where 5(j, k) is the dissimilarity between objects j and k, A is symmetric and the
diagonal cells are zero (8(j, j) = 0, for all j’s).

Although we do not know the dimensions of perceptions underlying these dis-
tance measures, let us assume there are r such dimensions and that the stimuli are

rated on these dimensions. Let X; be the vector of coordinates of object j in the
rx1
r-dimensional space. If, indeed, we knew these values x; and r, then we would be
rx1
able to compute the Euclidean distance between each pair of objects j and k:

r

1‘{<21 Gy = (% = %) (x5 = xe) = 1; (e — xxe)’ (12.2)

The problem is then defined as finding the x;’s such that the computed distances
d?(j, ky’s for all pairs are closest to the actual dissimilarities 8(j, k)’s.
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12.2.1 Objective Function

Because the input data about the dissimilarities are not metric, the basic concept
used here is to transform the rank-ordered dissimilarities through a monotonic
function:

I (8jx) = dix (12.3)

To reproduce the original dissimilarity data, the calculated Euclidean distance
should lead to a rank order of these similarities as close as possible to the original
or, equivalently, there should be a monotonic transformation of the rank-ordered
dissimilarities that are as similar as possible to the computed distances. The differ-
ences between the monotonic transformation of the rank-ordered dissimilarities and
the calculated dissimilarities are the error in the fit for each pair i, j:

fGir) = djk (12.4)

which, for all the pairs, gives the function to minimize

DU (i) — ]’ (12.5)

This quantity above is divided by a scaling factor, usually (Z %: djzk) , in order
J
to interpret the objective function relative to the distance values:

2

? )3 [f (3) — di]

scale factor

(12.6)

12.2.2 Stress as an Index of Fit

Equation (12.6) provides the basis of the measure or index of fit of the model at the
optimal level. This measure is called the stress and is obtained as

MM

S [DIST (M) — DHAT (M)}
Stress = M:A;M (12.7)
3" [DIST (M) — DBAR]?
M=1

where

M = index for each object pair from 1 to MM (=N?),
DIST(M) = computed distances from the solution of x;’s,
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DHAT = predicted distances obtained from the monotonic regression of DIST
on the rank-ordered dissimilarity data,
DBAR = arithmetic average of the values of variable DIST.

The denominator enables the comparison across solutions with a different
number of dimensions r.
Equation (12.7) can be rewritten as

MM a2
¥ o]
M=1
Stress = VM - (12.8)
> [y ]
M=1
where
dy = DIST(M)
dv = o + Pidu (12.9)
1 MM
d—= — 12.1
d=— ;dM (12.10)

It is clear from Equation (12.7) or (12.8) that a stress of 0 indicates a perfect fit.

12.2.3 Metric

The discussion above used Euclidean distance measures:

1

r h
dyj = {Z (i — xjk)2:| (12.11)

k=1

This is the most commonly used metric. However, it is possible also to use the

Minkowski p-metric:
1

r Ip
dij (p) = {Z |xik — x,-kl”} p>1 (12.12)
k=1

The easiest case to interpret is for p = 1, which represents the city block metric.
For p = 2, it is the Euclidean distance.

These different distance measures correspond to different ways of combining the
information across the dimensions. They reflect differences in processing percep-
tions on individual dimensions to arrive at the perceived similarities/dissimilarities.
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12.2.4 Minimum Number of Stimuli

A minimum number of data points (distances) are needed to be able to derive a space
that can reproduce the distances. This number has been empirically assessed to be
between 4 and 6 objects per dimension. Even though the researcher does not know
a priori the number of dimensions, this means that a significant number of objects
are needed to implement the methodology successfully. However, because the most
typical solutions involve two or three dimensions, a dozen to 18 objects should be
sufficient in most cases.

12.2.5 Dimensionality

Because the number of dimensions r is not known a priori, and because the solu-
tion for the x;’s depends on the number of dimensions, the dimensionality must be
inferred from the results obtained for different values of r. Three criteria can be used
together: the stress levels under different dimensionality assumptions, the stability
of the results, and the interpretability of these solutions.

The goodness of fit or stress values can be plotted as a function of the number of
dimensions (screen plot) to identify the elbow where adding dimensions produces
little marginal gain in stress levels:

stress

Ibow
— )

# of dimensions

The stability of the results is typically assessed by splitting the sample in two and
verifying that the results are similar for each subsample.

The interpretability of the results concerns the meaning of the dimensions of
perception uncovered by the procedure. Although subjective, this is the most critical
for the research to be meaningful.

12.2.6 Interpretation of MDS Solution

The interpretation of the dimensions is mostly the fruit of the researcher’s expertise.
However, this expertise can benefit from a complementary data analysis when the
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objects have also been rated on a number of attributes (although this does lengthen
considerably the task for the respondents). This analysis consists of property
(attribute) fitting procedures. Three possibilities are available:

(a) Maximum r procedure: This is based on the bivariate correlation coefficient
of each attribute with a particular dimension. A high value of the correlation
indicates a strong linear relationship between that attribute and the dimen-
sion. Consequently, this attribute would provide a significant input in the
identification of the dimension.

(b) Monotone multiple regressions: A combination of attributes can explain the
dimension in a nonlinear fashion. The R?’s provide a measure of the explanatory
power.

(c) Property Fitting (PROFIT): This analysis provides for the possibility of non-
monotonous relationships. The objective is to obtain a fit so that the stimulus
projections are correlated with the scale.

12.2.7 The KYST Algorithm

Finding a solution, as described above, involves finding an initial configuration from
which to start an iterative process and then determining the process by which to
move from an iteration to the next.

Step 1: Finding Initial Configuration
Assume that the coordinates x;’s are centered at the origin (the means are

ZEero).
Let the n objects be identified by their coordinates in the p-dimensional
space:
X = (X102, ... Xj,. .. Xn) (12.13)
rxn
9
*2
, :
nlfn:XXZ % (x1xz 0 xn) (12.14)
¥

= : (12.15)

X = Zx/'gxkg (12.16)
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The principal component decomposition of A can provide the initial config-
uration with r eigenvectors or orthogonal dimensions.
Step 2: Configuration Improvement

In this step, the gradient of the stress provides the direction in which the solu-
tion should be changed to improve its value. For that purpose, the disparities
between the actual dissimilarities and the predicted dissimilarities computed
from the current iteration solution are calculated and the stress S is com-
puted according to the equations above. The gradient is computed from the
changes in the stress from one iteration to the next, relative to the changes in
the coordinate values from the prior to the current iteration:

S
fort=1,...r (12.17)
Xtn

The coordinate values x;;’s are then modified in the direction of the gradient.

12.3 Individual Differences in Similarity Judgments

One way to recognize individual differences in perceptions is to allow all m subjects
to share a common space, but to permit each individual to weight differently the
dimensions of this space (which corresponds to stretching and shrinking of the axes).
This assumption is reflected in the INDSCAL algorithm.

Consequently, we denote the matrix of dissimilarities between objects for
individual i as

AD = {5<1> (j,k)} fori=1,...m (12.18)

where m is the number of individuals.

Each individual has a different weight for each dimension. These weights are
represented by the diagonal matrix.

Let

W = diag {w§">} (12.19)

rxr

The problem consists now of finding not only the coordinates of points in the
common space but also the weights of each dimension for each individual so as to
reproduce as much as possible the original dissimilarities:

500y~ ) WOy~ (12:20)

Wold’s nonlinear iterative least squares procedure is used where, at each iteration,
either x or W is fixed to the last iteration estimate.
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12.4 Analysis of Preference Data

In this section we do not refer any longer to modeling for the purpose of under-
standing the underlying dimensions of perceptions. Now the objective is to represent
preferences for some stimuli over others.

Preferences follow from two basic models. One model predicts that more of
any dimension is always preferred to less. This is the vector model of preference.
Another model assumes that the more the better is true only up to a certain point,
from which too much is as bad as not enough. This assumption corresponds to the
ideal point model of preference.

12.4.1 Vector Model of Preferences

MDPREF is a model that derives the space where stimuli are represented in terms
of preferences, as well as the individual differences in preference. Individuals are
represented in a preference space by different vectors. Each vector is defined so that
the projections of the brands/stimuli on this vector correspond to this individual’s
preferences such that the more the projection falls in the direction of the vector, the
more preferred the stimulus. The stimuli are represented in the space by points such
that the projections on the individual vector correspond the closest possible to the
stated preferences. In MDPREEF, both the individual vectors and the stimuli points
are inferred simultaneously from the preference data.

12.4.2 Ideal Point Model of Preferences

PREFMAP differs in two major ways from MDPREF. First, while the individual
vectors of preferences and the stimuli points are derived simultaneously from the
preference data, this is not the case in PREFMAP. In this program, the stimuli
configuration is provided externally. This configuration is obtained from the other
methods we described above to derive a perceptual map from similarity data. The
results of KYST or INDSCAL can be used as input in this analysis of preferences.
The second difference comes from the possibility of analyzing a vector model of
preference as well as ideal point models.

Indeed, PREFMAP offers two models of preferences. The vector model is similar
to the model described above in the context of MDPREF. However, the difference
is, as discussed above, due to the fact that the stimuli points are externally sup-
plied. The interpretation of the individual vectors is similar to what is described
above. However, the interpretation of the stimuli configuration is more easily done,
as the configuration corresponds to perceptions and not preferences. The joint space
for representing perceptions and preferences facilitates also the interpretation of
the individual vectors since the dimensions are those derived from the perceptual
analysis.

The ideal point model of preferences is such that the preferences for an individual
are also represented as a point in the perceptual space. The preferences for stimuli
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are such that the most preferred are the stimuli that are the closest in that space to
the point representing the individual ideal preference. The further away the stimuli
are from the ideal point, the less preferred they are. PREFMAP derives the ideal
points for each individual that best represent his/her preference. It should be noted
that the vector model is a particular case of the ideal point model where the ideal
point is located at infinity.

12.5 Examples Using PC-MDS

Examples of the various algorithms described above are now given using the PC-
MBDS software.

12.5.1 Example of KYST

Rank-ordered measures of dissimilarity between brands are the major input of
KYST. The example input file is shown in Fig. 12.1:

The first line of the input file contains three numbers. The first number is the
number of stimuli (here, 10 brands). The second number and the third number are
for the number of replications and the number of groups (usually 1 each).

The second line is the format (Fortran style) in which the data will be read.

The data matrix is then shown with 9 rows and 9 columns of the bottom half of a
symmetric matrix without the diagonal (assumed to be zeros).

Finally, the stimuli (here, brands) labels are written on separate lines.

The output of KYST with this particular problem is shown in Fig. 12.2.

1011
(9£3.0)
22
13 26

31 32 23 16

44 18 14 02 30

04 24 40 35 17 05

07 27 38 42 19 06 34

09 28 39 41 21 08 33 45
37 20 15 03 29 43 12 10 11
sama

salt

semi

self

sibi

siro

sono

sold

suli

susi

Fig. 12.1 Example of
PC-MDS input file for KYST
(examp12-1.dat)
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KYST MULTIDIMENSIONAL SCALING
WRITTEN BY JOSEPH B. KRUSKAL, FOREST W. YOUNG, WITH JUDITH SEERY
PC-MDS VERSION

ANALYSIS TITLE: KYST Rankings

DATA IS READ FROM FILE: ex_kystr.dat
OUTPUT FILE IS: ex_kystr.out

INPUT PARAMETERS:

MAXIMUM DIMENSIONS 2
MINIMUM DIMENSIONS 2
DIMENSION DECREMENT 1
MINIMUM STRESS .01000
SCALE FACTOR GRADIENT .00000
STRESS STEP RATIO .99900
MAXIMUM ITERATIONS 50
COSINE OF ANGLE BETWEEN GRADIENTS .66000
AVERAGE COSINE OF ANGLE .66000
NUMBER OF PRE-ITERATIONS 1

THE NUMBER OF DATA POINTS TO BE FIXED IS: 0

EUCLIDEAN DISTANCE

STRESS FORMULA 1

TIES PRIMARY

LOWER HALF MATRIX

NOT BLOCK DIAGONAL

DIAGONAL ABSENT

SPLIT BY DECK

TORSCA INITIAL CONFIGURATION

NO WEIGHTS AFTER DATA

MONOTONE MODEL

ASCENDING DATA

ALL PLOTS OF FINAL CONFIGURATION
ALL SCATTER PLOTS OF DIST VS DHAT
ROTATE FINAL CONFIG. COORDINATES

PARAMETERS : 10 1 1
TITLE:  (9£3.0)

DATA FOR RECORD: 10
.37E+02 .20E+02 .15E+02 .30E+01 .29E+02 .43E+02 .12E+02 .10E+02 .11E+02

ON THE SHEPARD DIAGRAM THE ORIGINAL DATA (DATA) ARE PLOTTED;

ON THE Y AXIS AND DISTANCES (DIST,0) AND ESTIMATED DISTANCES

(DHAT,X) ON THE X AXIS. A ; INDICATES TWO VALUES ARE PLOTTED

ON TOP OF EACH OTHER AND A > INDICATES POINT NUMBERS GREATER

THAN 50. IDENTIFIERS FOR THE CONFIGURATION PLOT IN 2 DIMENSIONS ARE:

*****IDENTIFICATION KEY FOR PLOTS WITH IDENTIFIED POINTS****%*

PT # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CHAR 1 2 3 4 5 6 7 8 9 A B Cc D E F

PT # 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
CHAR G H I J K L M N [e] P Q R S T U

PT # 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
CHAR V W X Y zZ2 + [/ = * & $ @ 1 - <

PT # 46 47 48 49 50

CHAR ( ) " # !

TITLE: KYST Rankings

INITIAL CONFIGURATION COMPUTATION NO. PTS.= 10 DIM= 2
STRESS STARTING TO INCREASE BEST VALUE ACHIEVED ON PRE-ITERATION NUMBER 0
THE BEST INITIAL CONFIGURATION OF 10 POINTS IN 2 DIMENSIONS

Fig. 12.2 PC-MDS output of KYST (examp12-1.out)
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HAS A STRESS OF .401. STRESS FORMULA 1 WAS USED.
TITLE: KYST Rankings
HISTORY OF COMPUTATION:

N= 10 THERE ARE 45 DATA VALUES, SPLIT INTO 1 LIST(S).
DIMENSION(S) = 2

MINIMUM WAS ACHIEVED

THE FINAL CONFIGURATION HAS BEEN ROTATED TO PRINCIPAL COMPONENTS.

THE FINAL CONFIGURATION OF 10 POINTS IN 2 DIMENSIONS HAS STRESS OF .266
FORMULA 1 WAS USED. THE FINAL CONFIGURATION APPEARS:

1 2
.007 -.210

I
[

[
o
w
o
©
(54
'y

COWOLAUIBdWNR
[ I
o o
o w
(8 o
| |
© o
w o
o ©o

[

DATA GROUP (S)
SERIAL COUNT STRESS REGRESSION COEFFICIENTS (FROM DEGREE 0 TO MAX OF 4)
1 45 .266 ASCENDING

Khkhkhkkhkhkkhkhkhkhhhhkhhkhhkhhkhkhhkhhhkhkhkhhkhhhkhhkhhhkhhkhhhkhkhkhkhhkhkhkhkhkhhkhhkkhhkhkkkhkhkkk
KYST Rankings

DIST AND DHAT VERSES DATA FOR 2 DIMENSION (S)

STRESS = .2662
. .5095. .9675. 1.4255. 1.8835. 2.3415.
.2805 .7385 1.1965 1.6545 2.1125 2.5705
* kkkk kkkk hhkkk kkkk hhkkk kkkk hhkkk kkkk kkkk hhkkk *
47.20 .. .. 47.20
45.41 .. X .. 45.41
43.61 .. 0 X0 .. 43.61
41.82 0 X X .. 41.82
40.03 0 X 40.03
s 38.24 0 X 0 38.24
H 36.44 0 X 0 36.44
E 34.65 0 X 0 34.65
P 32.86 0 X 0 32.86
A 31.07 0 X 31.07
R 29.27 0 X0 29.27
D 27.48 .. 0 X 0 27.48
25.69 .. 0X o0 25.69
23.90 0 X 23.90
22.10 0 X 0 22.10
20.31 0 X 0 .. 20.31
D 18.52 0 X0 .. 18.52
I 16.73 0 0 X 16.73
A 14.93 0 X .. 14.93
G 13.14 0x 0 .. 13.14
R 11.35 .. X 0 0 .. 11.35
A 9.56 .. 0x 0 .. 9.56
M 7.76 X 0 0 7.76
5.97 X 0 5.97
4.18 .. 0 X 0 4.18
2.39 .. 0x 0 .. 2.39
.59 .. X .. .59
-1.20 .. .. -1.20
* kkkk kkkk hhkkk kkkk hhkkk kkkk hhkkk kkkk kkkk hhkkk *
. .5095. .9675. 1.4255. 1.8835. 2.3415.
.2805 .7385 1.1965 1.6545 2.1125 2.5705

CONFIGURATION PLOT DIMENSION 2 (Y-AXIS) VS. DIMENSION 1 (X-AXIS)

Fig. 12.2 (continued)
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KYST Rankings
*

. Lk ok ko ok ko ko kK
3.000** ** 3.000
2.769%%* ** 2.769
2.538*%* ** 2,538
2.308*%* ** 2,308
2.077** ** 2.077
1.846%** ** 1.846
1.615%* ** 1.615
1.385%% ** 1.385
1.154%* ** 1.154

.923%*%* 9 6 ** 023
.692%% 2 ** 692
.462%% ** 462
L231%*%* 4 ** 231
L000** e S5-—-=T - ** .000
-.231%* 1 ** - 231
-.462%% ** - 462
-.692%% 3 ** - 692
-.923%% A 8 ** - .023
-1.154%** **-1.154
-1.385%* **-1.385
-1.615%* **-1.615
-1.846%* **-1.846
-2.077** **-2.077
-2.308** **-2.308
-2.538%* **-2.538
-2.769%* **-2.769
-3.000%** **-3.000
* Kk Kk ok ok ok ok ko k k k%
. -3.3333. -2.0000. -.6667. .6667. 2.0000. 3.3333.
-4.0000 -2.6667 -1.3333 .0000 1.3333 2.6667 4.0000

Fig. 12.2 (continued)

A two-dimensional solution was requested during the interactive dialog while
running the software by indicating a minimum and a maximum number of dimen-
sions of 2. The output shows the results by providing the stress obtained from
that solution (a stress value of 0.266) and the coordinates in that two-dimensional
space for the ten brands. The Shepard diagram represents the plot of the pairs of
brands with the actual dissimilarity data on the y axis and the computed distances
(before and after transformation through monotone regression). This shows how
well the model replicates each of the pairs of stimuli. The plot of the brands in the
two-dimensional space is shown, where the brands are numbered in the order of
the input. The interpretation can be inferred from the knowledge about the brands
according to the attributes that appear to discriminate these brands along the two
dimensions found (here, an economy and a performance dimension). An example
of PROFIT analysis to help interpret the meaning of the dimensions is shown next.

12.5.2 Example of INDSCAL

In INDSCAL, the data for several individuals are analyzed. The input file of an
example is shown in Fig. 12.3.
The first line of the input file contains the following information:
— Number of ways of the data (3-way data: # of brands x # of brands x # of
subjects)
— Maximum number of dimensions (2 in this example)
— Minimum number of dimensions (2 in this example)
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3 2 2 2 25 1 0 1 0 0 '12345677' O 0 1 0 .001
4 10 10

(2X,9F5.2)

01 4.88

01 4.07 0.93

01 5.33 0.62 1.27

01 2.89 1.99 1.24 2.47

01 0.51 5.38 4.56 5.83 3.39

01 3.67 1.37 0.44 1.69 0.94 4.16

01 5.40 0.61 1.34 0.13 2.53 5.90 1.77

01 5.38 0.59 1.33 0.13 2.51 5.88 1.76 0.02
01 0.69 5.56 4.73 5.99 3.57 0.19 4.32 6.06 6.05
02 5.65

02 6.37 2.98

02 7.84 3.52 1.54

02 3.28 2.38 3.97 5.16

02 0.63 6.10 6.58 8.08 3.77

02 6.74 3.95 0.99 1.87 4.70 6.86

02 7.42 2.78 1.48 0.77 4.57 7.70 2.17

02 7.36 2.71 1.47 0.84 4.51 7.65 2.19 0.07
02 1.18 6.18 6.35 7.87 3.93 0.65 6.54 7.55 7.51
03 4.34

03 5.08 2.45

03 6.22 2.92 1.19

03 2.51 1.84 3.27 4.20

03 0.49 4.67 5.21 6.37 2.88

03 5.44 3.25 0.80 1.42 3.90 5.49

03 5.84 2.30 1.13 0.64 3.69 6.03 1.68

03 5.79 2.24 1.12 0.69 3.64 5.98 1.70 0.06
03 0.95 4.71 4.98 6.16 2.99 0.54 5.20 5.87 5.83
04 2.42

04 4.86 2.89

04 5.63 3.56 0.80

04 1.27 1.17 3.86 4.59

04 0.34 2.33 4.63 5.41 1.25

04 5.68 3.79 0.90 0.60 4.73 5.43

04 4.91 2.78 0.46 0.78 3.83 4.70 1.15

04 4.84 2.71 0.47 0.85 3.76 4.64 1.20 0.07
04 0.96 2.04 4.06 4.85 1.19 0.64 4.84 4.16 4.10
sama

salt

semi

self

sibi

siro

sono

sold

suli

susi

Fig. 12.3 Example of PC-MDS input file for INDSCAL (examp12-2.dat)

— Type of input data (2 means lower-half dissimilarity matrix with no diagonal,
other possibilities include a value of 1 for a lower-half similarity matrix without
diagonal)

— Maximum number of iterations (25 were defined in this example)

The remaining codes on this first line correspond to more advanced options.

The second line contains a number for each way. The first one is the number of
subjects and the other two give the number of stimuli.

The third line shows the format (Fortran-style) in which the data will be inputted.
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The dissimilarity data are then shown for each individual (it is good practice to
show first the subject number, although, as indicated by the format statement, this
number is not read in).

Finally, the objects labels (brand names) are listed, one per line.

The results of INDSCAL are shown in Fig. 12.4.

INDSCAL
INDIVIDUAL DIFFERENCES SCALING
BY DR. J. D. CARROLL AND JIH JIE CHANG
PC-MDS VERSION

ANALYSIS TITLE: INDSCAL Example
DATA IS READ FROM FILE: ex_inds.dat
OUTPUT FILE IS: ex_inds.out

INDIFF- INDIVIDUAL DIFFERENCES ANALYSIS USING CANONICAL DECOMPOSITION
OF 3 WAY TABLE IN 2 DIMENSIONS

TITLE: INDSCAL Example
hhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhhhkhkhkhhkhhhhhkhhkhkhhhhhkhkhhkhhhhhkhhkhkhhhhhhhkhkhhkhkhhkhkhkkhhhhhkhkkhkhhk

PARAMETERS

NF DIMENSION OF SOLUTION 2
N NO. OF WAYS OR MATRICES 3
MAXDIM MAXIMUM NO. OF DIMENSIONS 2
MINDIM MINIMUM NO. OF DIMENSIONS 2
IRDATA TYPE OF DATA INPUT 2
ITMAX MAXIMUM NO. OF ITERATIONS 25
ISET OPTION TO SET MATRIX 2 EQUAL TO MATRIX 3 1
IOoY SELECT SIMULTANEOUS SOLUTION 0
IDR CORRELATIONS FOR EACH SUBJECT 1
ISAM SOLVE FOR ALL MATRICES 0
IPUNSP PUNCH SCALAR PRODUCT MATRICES 0
IRN RANDOM NUMBER GENERATOR START SET 12345677
CRIT CRITERION FOR QUITTING ITERATION .001
IVEC MATRIX OR VECTOR FORM FOR DATA 0
IP OUTPUT NORMALIZED A-MATRIX 0
IA PRINT ORIGINAL DATA MATRICES 1
Is PRINT INTERMEDIATE ITERATIVE MATRICES 0
MATRIX SIZES 4 10 10

Khkhkhkhkhkkhkhkhkhkhkhkhhkhkhhhkhkhhhkhkhhhhkhhkhkhkhhkhkhhkhkhhhkhkhhhkhkhhhhkhhkhkhkhkhkhkhkhkkhkhkkkhkhhkhkhkhhkhhkhkhkhkkk

***x**IDENTIFICATION KEY FOR PLOTS WITH IDENTIFIED POINTS****%*

PT # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CHAR 1 2 3 4 5 6 7 8 9 A B C D E F

PT # 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
CHAR G H I J K L M N o P Q R S T U

PT # 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
CHAR V W X Y 2z + / = * & $ @ [ ? <

PT # 46 47 48 49 50
CHAR () " ;]

POINT NUMBERS ABOVE 50 IDENTIFIED AS > MULTIPLE POINTS IDENTIFIED AS #

Fig. 12.4 Output example for INDSCAL (examp12-2.out)
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SUBJECT 1

4.88
4.07 .93
5.33 .62 1.27
2.89 1.99 1.24 2.47
.51 5.38 4.56 5.83 3.39
3.67 1.37 .44 1.69 .94 4.16
5.40 .61 1.34 .13 2.53 5.90 1.77
5.38 .59 1.33 .13 2.51 5.88 1.76 .02
.69 5.56 4.73 5.99 3.57 .19 4.32 6.06 6.05

SUBJECT 4

2.42
4.86 2.89
5.63 3.56 .80
1.27 1.17 3.86 4.59
.34 2.33 4.63 5.41 1.25
5.68 3.79 .90 .60 4.73 5.43
4.91 2.78 .46 .78 3.83 4.70 1.15
4.84 2.71 .47 .85 3.76 4.64 1.20 .07
.96 2.04 4.06 4.85 1.19 .64 4.84 4.16 4.10
INITIAL A MATRICES
MATRIX 1
1 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000
MATRIX 2
1 .4257 -.0724 -.1040 .4653 -.1853
-.3849 -.0541 .3826 -.0469 -.3351
2 .3026 .1942 -.3516 -.2383 .2954
.3221 .3436 -.4229 .1126 -.3603
MATRIX 3
1 .4448 .3780 .4900 .0394 -.4308
-.2456 -.2815 -.4792 -.4867 .2676
2 -.2278 -.4010 -.2592 -.1818 .3562
-.1681 .1906 -.4663 -.3248 .2688
HISTORY OF COMPUTATION
ITERATION CORRELATIONS BETWEEN
Y (DATA) AND YHAT (R**2) (1-R**2)
0 -.021067 .000444 .999556
1 .953993 .910103 .089897
2 .984229 .968707 .031293
3 .986800 .973774 .026226
4 .990679 .981445 .018555
5 .995783 .991585 .008415
6 .998820 .997641 .002359
7 .999428 .998857 .001143
8 .999591 .999182 .000818
9 .999690 .999380 .000620

e

EQUATE MATRIX 2 AND MATRIX 3, ITERATE AGAIN

INITIAL A MATRICES

MATRIX 1
1 -.1499 -.1080 -.1020 -.0334
2 -.0194 .1066 L1212 .2540
MATRIX 2
1 1.1527 -.6224 -.4095 -.8760 .1087
1.3216 -.2866 -.8801 -.8722 1.3638
2 .3719 .1729 -.2487 -.3310 .2871

.3238 -.3798 -.2185 -.2089 .2312

Fig. 12.4 (continued)
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MATRIX 3
1 1.1527 -.6224 -.4095
1.3216 -.2866 -.8801
2 .3719 L1729 -.2487

.3238 -.3798 -.2185

HISTORY OF COMPUTATION

ITERATION CORRELATIONS BETWEEN
Y (DATA) AND YHAT
0 -.795407
1 .999731

INDSCAL Example

NORMALIZED A MATRICES

MATRIX 1
1 1.03187 -.05535
2 .73697 .36435
3 .69485 .41314
4 .21598 .85421
MATRIX 2
1 .41044 .41167
2 -.22162 .19138
3 -.14581 -.27529
4 -.31193 -.36649
5 .03871 .31787
6 .47060 .35844
7 -.10205 -.42043
8 -.31338 -.24193
9 -.31057 -.23122
10 .48561 .25599
MATRIX 3
1 .41044 .41167
2 -.22162 .19138
3 -.14581 -.27529
4 -.31193 -.36649
5 .03871 .31787
6 .47060 .35844
7 -.10205 -.42043
8 -.31338 -.24193
9 -.31057 -.23122
10 .48561 .25599
MATRIX 1

SUMS OF PRODUCTS

1 2.13736 .68297
2 . 68297 1.03618
SUM OF SQUARES = 3.17353

MATRIX 2

SUMS OF PRODUCTS

1 1.00000 .77684
2 .77684 1.00000
SUM OF SQUARES = 2.00000

MATRIX 3

SUMS OF PRODUCTS

1 1.00000 .77684
2 .77684 1.00000
SUM OF SQUARES = 2.00000

Fig. 12.4 (continued)

-.8760
-.8722

-.3310
-.2089

(R**2)
.632673
.999463

.1087
1.3638

.2871
.2312

(1-R**2)
.367327
.000537

339
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THIS IS PLOT OF DIMENSION 1 VS.DIMENSION 2 FOR TABLE NO. 1
L I S U e T e N T O e
1.20+ | +
|
. | .
.92+ | +
| 4
. | .
.65+ | +
|
. | .
.37+ | 32 +
|
. | .
.09+ | +
______________________________ YR
. | 1 .
-.18+ | +
|
. | .
-.46+ | +
|
. | .
-.74+ | +
|
. | .
-1.02+ | +
|
. | .
L I S U e LTI e N T U e
-1.2 -1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 1.2
THIS IS PLOT OF DIMENSION 1 VS.DIMENSION 2 FOR TABLE NO. 2
R T N T e S N T e TS R 3
1.20+ | +
|
. | .
.92+ | +
|
. | .
.65+ | +
|
. | .
.37+ | 16 +
15 A
. 2 | .
.09+ | +
______________________________ Y
. | .
-.18+ | +
# 3 |
. 4 | .
-.46+ 7 | +
|
. | .
-.74+ | +
|
. | .
-1.02+ | +
|
. | .
L R S e L T e T N e T
-1.2 -1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 1.2

Fig. 12.4 (continued)
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THIS IS PLOT OF DIMENSION 1 VS.DIMENSION 2 FOR TABLE NO. 3

:
-
.
:
.

.92+
.65+
.37+

.09+

-1.02+

CfmE————— e O —— — &

INDSCAL Example
CORRELATION BETWEEN COMPUTED SCORES AND ORIGINAL DATA FOR SUBJECTS
1 .999445
2 .999983
3 .999995
4 .999500
AVERAGE SUBJECT CORR. COEFF. = .99973
MEAN SQUARE CORR. COEFF. = .99946

Fig. 12.4 (continued)

The output, under the title “history of computation,” shows the fit measure at each
iteration. Because INDSCAL is a metric model, the fit measure is the correlation
between the input dissimilarity data and the predicted dissimilarity from the model
parameter values at that iteration. The value of 0.999 obtained in the example is
excellent.

Under the title “Normalized A Matrices” matrix 1 lists the individual weights for
each of the 4 individuals. Matrix 2 lists the coordinates of the objects in the common
object space.

The individual weights shown in Matrix 1 are plotted along the two dimensions
in the first plot. Plot No. 2 represents the brands corresponding to the coordinates
listed in matrix 2.

12.5.3 Example of PROFIT (Property Fitting) Analysis

In the example below, we use the configuration (coordinates) obtained from the
KYST analysis described earlier in Section 12.5.1. (It is possible to use the out-
put configuration of other models such as INDSCAL.) The relationships of the
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Fig. 12.5 Example of

PC-MDS input file for 110250 0 2 0.0
PROFIT (examp12-3.dat) (2X,2F7.3)
1 -1.007 -.210
2 .162  .728
3 .194 -.726
4 -.992 .175
5 -.030 -.009
6 1.036 .854
7 .715 .020
8 1.055 -.830
9 -.586 1.012
10 -.546 -1.014
(2X,10F3.0)
Weight
01 10 12 17 15 11 10 10 17 10 15
Design
02 08 09 07 05 09 03 03 07 03 06
Volume

03 30 37 50 60 35 50 70 50 50 40
Max Frequency

04 25 25 30 40 25 20 20 30 25 20
Power

05 10 30 80 90 20 10 90 70 20 70
sama

salt

semi

self

sibi

siro

sono

sold

suli

susi

two dimensions corresponding to these perceptions of the ten brands with five
characteristics of the brands (i.e., weight, design, volume, maximum frequency,
and power) are analysed in this run of PROFIT. Therefore, the ratings of these
brands on these characteristics are matched as well as possible with the ratings
obtained from the KYST configuration. Each characteristic is represented in the
perceptual space by a vector so that the fit with the perceptions of the brands is
maximized. For rating data on the properties (brand characteristics), the correlation
between these ratings and the projection of the brand perceptions on that vector is
maximized.

The input file shown in Fig. 12.5 provides the information necessary to run the
program. The first line of input indicates the basic parameters of the problem. The
first number (1 in Fig. 12.5) indicates that a linear relationship between properties
and perceptions will be evaluated. The second number (10 in Fig. 12.5) indicates the
number of stimuli (brands). The third number (2 in Fig. 12.5) shows the number of
dimensions in the perceptual space used as input. The fourth number (5 in Fig. 12.5)
is the number of properties to be analyzed. The other numbers correspond to more
advanced options.
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The second line is the Fortran-style format in which the data for the stimuli
(brands) coordinates are read. Then follow the perception coordinates, one line for
each stimulus (brand). In this example, the stimulus number (1-10) is shown to bet-
ter visualize the input, but this information is not read by the program, as the format
above indicates that the first two columns are skipped (“2X”). After the perceptual
coordinates, the data on the properties are shown. First, the format in which the data
are to be read is indicated in the usual Fortran-style format. Then, for each of the
properties, the label of the property is shown on a line and on a separate line the
values of the property on all the ten stimuli are shown. The first number indicates
the property number but is not used, as shown by the format of the input, which
skips the first two columns of data (“2X”). Finally, the last ten lines correspond to
the labels of the ten stimuli, in this case the names of the brands.

Figure 12.6 shows the output of the PROFIT analysis. First, for each property,
the correlations between the original and the fitted vectors are shown, followed by
the corresponding plot of the stimuli.

The last graph shows the perceptions of the stimuli (the ten brands) numbered
from 1 to 9, plus the letter A to represent the tenth brand. The points labeled B to F
represent the end points of the property vectors that maximize the correlation with
the projections of the brands on this vector with the original property values. The
vectors have been added in Fig. 12.6 and do not appear on the original computer
output. B represents the weight property, C represents the design, D the volume, E
the maximum frequency, and F the power of the brands.

This plot indicates that the Y dimension (dimension 2) is closely related to
Weight and Power and also, although not as strongly, to Design (the higher the
values of the properties, the lower the perceptions on that dimension). The X
dimension (dimension 1) reflects more the volume, which appears to be negatively

PROFIT
PROPERTY FITTING ANALYSIS
PROGRAM WRITTEN BY DR. J. D. CARROLL AND JIH JIE CHANG
PC-MDS VERSION

ANALYSIS TITLE: Profit test
DATA IS READ FROM FILE: ex_prof.dat
OUTPUT FILE IS: ex_prof.out

LANA (REGRESSION OPTION) : 1
N NO. OF STIMULI (400 MAX) 10
K NO. OF DIMENSIONS (10 MAX) 2
M NO. OF PROPERTIES (60 MAX) 5
IRX 0 =N X K INPUT; 1 = K X N INPUT 0
IWGT 0 = RATIO OF ERROR VAR. TO TRUE VAR. (USUAL OPTION) 0
1 = RATIO OF MEAN SQ. SUCCESSIVE DIFFERENCE TO VARIANCE
IPLOT 0 = PROPERTIES ONLY 2
1 = PLOT PROPERTIES AND FUNCTIONS
2 = DO ALL PLOTS
BCO (FLOATING POINT NUMBER FOR NON LINEAR REG.) 0.
DATA FOR RECORD: 1

Fig. 12.6 Output example for INDSCAL (examp12-3.out)
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-.10E+01-.21E+00

DATA FOR RECORD: 10
-.55E+00-.10E+01
LINEAR REGRESSION

NORMALIZED CONFIGURATION

1 -1.0071 .1619 .1939 -.9921 -.0301
1.0359 . 7149 1.0549 -.5861 -.5461

2 -.2100 .7280 -.7260 .1750 -.0090
.8540 .0200 -.8300 1.0120 -1.0140

COVARIANCE MATRIX
1 5.4020 -.0008
2 -.0008 4.6028

X* (X' 'X) INVERSE

1 -.1864 .0300 .0359 -.1837 -.0056 .1918 .1323
.1953 -.1085 -.1011

2 -.0457 .1582 -.1577 .0380 -.0020 .1856 .0044
-.1803 .2198 -.2203

PROPERTY 1

INTERMEDIATE SUMS BEFORE SQUARING: .2484 -2.9634

ssQ = 8.84321 XL = 2.97375

ORIGINAL VALUES ON PROPERTY 1
10.0000 12.0000 17.0000 15.0000 11.0000
10.0000 10.0000 17.0000 10.0000 15.0000

PROJECTIONS ON FITTED VECTORS
.1251 -.7119 .7397 -.2573 .0065
-.7645 .0398 .9152 -1.0574 .9648

PLOT OF ORIGINAL (X-AXIS) VERSUS OBTAINED (Y-AXIS) FOR PROPERTY VECTOR NO. 1

oo +oo... ool +oo... oo +oo... +
1.066+ +
A
. 8
819+ +
3
572+ +
324+ +
. 1
077+ 7 +
5
-.170+ +
4
-.417+ +
-.664+ +
6 2
-.911+ +
. 9
-1.159+ +
oo +oo... ool +oo... oo +o... +

9.6510.2910.9311.5712.2212.8613.5014.1414.7815.4216.0716.7117.35

Fig. 12.6 (continued)
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CORRELATION BETWEEN ORIGINAL AND FITTED VECTORS FOR PROPERTY 1 1Is:

R = .713 , RSQ = .509

PROPERTY 2

INTERMEDIATE SUMS BEFORE SQUARING: -.5318 -1.2280

SsQ = 1.79091 XL = 1.33825

ORIGINAL VALUES ON PROPERTY 2
8.0000 9.0000 7.0000 5.0000 9.0000
3.0000 3.0000 7.0000 3.0000 6.0000

PROJECTIONS ON FITTED VECTORS
.5929 -.7324 .5891 .2337 .0202
-1.1953 -.3025 .3424 -.6957 1.1475

PLOT OF ORIGINAL (X-AXIS) VERSUS OBTAINED (Y-AXIS) FOR PROPERTY VECTOR NO. 2

+.oooi. +.ooii. +.o.... +.ooo.. +.o... +.o.ooa . +
1.265+ +
A
978+ +
692+ +
3 1
406+ +
8
. 4
119+ +
5
-.167+ +
.7
-.453+ +
-.740+ 9 2+
-1.026+ +
.6
-1.312+ +
+.oooi. +.ooii. +.o.... +.ooo.. +.o... +.o.ooa . +

2.70 3.25 3.80 4.35 4.90 5.45 6.00 6.55 7.10 7.65 8.20 8.75 9.30

CORRELATION BETWEEN ORIGINAL AND FITTED VECTORS FOR PROPERTY 2 1Is:

R = .404 , RSQ = .163

Fig. 12.6 (continued)
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PROPERTY 3

INTERMEDIATE SUMS BEFORE SQUARING: 5.2440 1.5567

SsQ = 29.92298 XL = 5.47019

ORIGINAL VALUES ON PROPERTY 3
30.0000 37.0000 50.0000 60.0000 35.0000
50.0000 70.0000 50.0000 50.0000 40.0000

PROJECTIONS ON FITTED VECTORS
-1.0252 .3624 -.0207 -.9013 -.0314
1.2361 . 6910 .7751 -.2739 -.8121

PLOT OF ORIGINAL (X-AXIS) VERSUS OBTAINED (Y-AXIS) FOR PROPERTY VECTOR NO. 3

oo +oo.. +.o...a. +.ooaL. +.o.a. oo +
1.349+ +
6
1.073+ +
796+ 8 +
7
520+ +
. 2
244+ +
-.033+ 5 3 +
-.309+ 9 +
-.586+ +
. A
-.862+ 4 +
. 1
-1.138+ +
+o..aa. +oo.. +.o...a. +.ooaL. +.o.a. o +

28.0031.6735.3339.0042.6746.3350.0053.6757.3361.0064.6768.3372.00

CORRELATION BETWEEN ORIGINAL AND FITTED VECTORS FOR PROPERTY 3 Is:

R = .348 , RSQ = .121

Fig. 12.6 (continued)
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PROPERTY 4

INTERMEDIATE SUMS BEFORE SQUARING: -2.7142 -.9683

SsQ = 8.30432 XL = 2.88172

ORIGINAL VALUES ON PROPERTY 4
25.0000 25.0000 30.0000 40.0000 25.0000
20.0000 20.0000 30.0000 25.0000 20.0000

PROJECTIONS ON FITTED VECTORS
1.0191 -.3971 .0613 .8756 .0314
-1.2626 -.6801 -.7147 .2120 .8551

PLOT OF ORIGINAL (X-AXIS) VERSUS OBTAINED (Y-AXIS) FOR PROPERTY VECTOR NO. 4

+o. +.oaa. +.o. +oooi. +.o. +oooaaL. +
1.133+ +
1
854+ A 4 +
575+ +
297+ +
9
018+ 5 3 +
-.261+ +
2
-.540+ +
. 7 8
-.819+ +
-1.098+ +
. 6
-1.377+ +
+o. +.ooa. +.o. +oooi. +.o. +oooaaL. +

19.0020.8322.6724.5026.3328.1730.0031.8333.6735.5037.3339.1741.00

CORRELATION BETWEEN ORIGINAL AND FITTED VECTORS FOR PROPERTY 4 IsS:

R = .360 , RSQ = .130

Fig. 12.6 (continued)
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PROPERTY 5

INTERMEDIATE SUMS BEFORE SQUARING: 3.5137 -26.3463

SsQ = 706.47380 XL = 26.57957

ORIGINAL VALUES ON PROPERTY 5
10.0000 30.0000 80.0000 90.0000 20.0000
10.0000 90.0000 70.0000 20.0000 70.0000

PROJECTIONS ON FITTED VECTORS
.0750 -.7002 .7453 -.3046 .0049
-.7096 .0747 .9622 -1.0806 .9329

PLOT OF ORIGINAL (X-AXIS) VERSUS OBTAINED (Y-AXIS) FOR PROPERTY VECTOR NO. 5

+o. +.oaa. +.o. +oooi. +.o. +oooaaL. +
1.064+ +
8
. A
815+ +
3
565+ +
315+ +
066+ 1 7 +
5
-.184+ +
4
-.434+ +
-.683+ 6 2 +
-.933+ +
. 9
-1.183+ +
+o. +.ooa. +.o. +oooi. +.o. +oooaaL. +

6.0013.3320.6728.0035.3342.6750.0057.3364.6772.0079.3386.6794.00

CORRELATION BETWEEN ORIGINAL AND FITTED VECTORS FOR PROPERTY 5 Is:

R = .563 , RSQ = .317

Fig. 12.6 (continued)
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TABLE 1. THE MAXIMUM CORRELATION BETWEEN THE PROPERTY
AND THE PROJECTIONS ON FITTED VECTOR

RHO PROPERTY
1 .7133  Weight
2 .4035 Design
3 .3484 Volume
4 .3602 Max Frequency
5 .5630 Power
TABLE 2. DIRECTION COSINES OF FITTED VECTORS
IN NORMALIZED SPACE
DIMENSION
VECTOR 1 2
1 .0835 -.9965
2 -.3974 -.9176
3 . 9587 .2846
4 -.9419 -.3360
5 L1322 -.9912
TABLE 3. COSINE OF ANGLES BETWEEN VECTORS
VECTOR: 1 2 3 4
2 .881
3 -.203 -.642
4 .256 .683 -.999
5 .999 .857 -.155 .209

PLOT FOR FIRST TWO DIMENSIONS OF STIMULUS POINTS AND DIRECTION COSINES OF

FITTED PROPERTY VECTORS

PT #
CHAR

PT #
CHAR

PT #
CHAR

PT #
CHAR

POINT

-2.00-1.67-1.33-1.00 -.67 -.33

***x*x*IDENTIFICATION KEY

1
1

4 5 6 7 8

2 3
2 3 4 5 6 7 8

46 47 48 49 50
) " A

NUMBERS ABOVE 50 IDENTIFIED AS

Fig. 12.6 (continued)

.00 .33 .67 1.00

9 10 11 12 13
9

>, MULTIPLE POINTS

1.33 1.67 2.00

FOR PLOTS WITH IDENTIFIED POINTS*****

14 15
E F
29 30
T U
44 45
? <

IDENTIFIED AS #

349
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correlated with the maximum frequency. Therefore, generally, the higher the per-
ceptual value on dimension 1, the higher the volume but the lower the maximum
frequency. It should be noted that these can be used only to help the interpreta-
tion of the dimensions. However, the dimensions and the properties do not coincide
perfectly. For example, although the vectors B and F are particularly close to axis
Y. Axis X is not very close to either vector D or E. Consequently, the property
fitting analysis will not be as useful to interpret the X axis as it will be for the

Y axis.

12.5.4 Example of MDPREF

The first row in the input file shown in Fig. 12.7 defines:
— the number of rows in the data matrix, or number of subjects (there are 5 subjects

in this example);

— the number of columns in the data matrix, or number of stimuli (there are

10 brands shown in Fig. 12.7);

— number of dimensions (2 in this example);

— number of dimensions to be plotted (2);

— a code to normalize by subtracting the row mean (=1) or to normalize and divide
by the standard deviation (=2);
— a dummy code to normalize subject vectors (=1 ; 0 otherwise).

01
02

41
70

510 2 2
(2X,10F3.

39
38
72
83
16

10

0)

62 47 46 40
47 28 59 70
95 78 58 25
84 76 66 24
18 00 41 84

68

84
73

43
28
81
81
00

43
28
81
82
00

26
67
02
00
87

Fig. 12.7 Example of PC-MDS input file for MDPREF (examp12-4.dat)

12 Analysis of Similarity and Preference Data
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The second line defines the format in which the preference data are read, followed
by the data themselves. The first number of each row is the subject number, which
is not read by the program, as indicated by the format statement starting with 2X.
For each row (subject), the ten numbers indicate the values given by the subject to
each of the ten brands.

The following lines are used for the labels of the subjects and then of the stimuli.

The first graph in the output file (Fig. 12.8) maps the subject vectors starting
at the origin with the end point at the location of the number corresponding to the
subject. The second graph maps the stimuli according to their preferences, while the
third graph shows both the subject vectors and the stimuli points at the same time.
Given that the sole input concerns preferences, this plot of the brands should be
carefully interpreted, as it does not correspond to perceptual data but is only derived
from preferences.

On the graphs shown in Fig. 12.8, the vectors have been added to the original
output. The projections of the stimuli on a particular subject vector indicate the
preferences of that individual subject. For example, subject 1 (indicated by the letter

MDPRETF
MULTIDIMENSIONAL ANALYSIS OF PREFERENCE DATA
PROGRAM WRITTEN BY DR. J. D. CARROLL AND JIH JIE CHANG
PC - MDS VERSION

ANALYSIS TITLE: MDPref example
DATA IS READ FROM FILE: mdprf t.dat
OUTPUT FILE IS: mdprf_ t.out

NP (NO. OF VECTORS (SUBJECTS)) 5
NS (NO. OF POINTS (STIMULI)) 10
NF (NO. OF DIMENSIONS) 2
NFP (NO. OF DIMENSIONS PLOTTED) 2
IREAD 1=NP X NS SCORE MATRIX WITH ROW MEAN SUBTRACTED 1

2=SAME AS 1 WITH SCORES DIVIDED BY ROW S. D.

NORP 0=NORMALIZE SUBJ. VECTORS 0
1=DO NOT

INPUT FORMAT = (2X,10F3.0)

DATA FOR RECORD: 1
.41E+02 .39E+02 .62E+02 .47E+02 .46E+02 .40E+02 .68E+02 .43E+02 .43E+02 .26E+02

DATA FOR RECORD: 5
.78E+02 .16E+02 .18E+02 .00E+00 .41E+02 .84E+02 .17E+02 .00E+00 .00E+00 .87E+02
MEAN OF THE RAW SCORES (BY SUBJECT)

Fig. 12.8 Output example for MDPREF (examp12-4.out)
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45.5000 48.1000 60.6000 59.9000 34.1000

FIRST SCORE MATRIX (SUBJECT BY STIMULUS)

1 -4.5000 -6.5000 16.5000 1.5000 .5000 -5.5000
22.5000 -2.5000 -2.5000 -19.5000

2 21.9000 -10.1000 -1.1000 -20.1000 10.9000 21.9000
-2.1000 -20.1000 -20.1000 18.9000

3 -30.6000 11.4000 34.4000 17.4000 -2.6000 -35.6000
23.4000 20.4000 20.4000 -58.6000

4 -29.9000 23.1000 24.1000 16.1000 6.1000 -35.9000
13.1000 21.1000 22.1000 -59.9000

5 43.9000 -18.1000 -16.1000 -34.1000 6.9000 49.9000
-17.1000 -34.1000 -34.1000 52.9000

CROSS PRODUCT MATRIX OF SUBJECTS

1 1266.5000 -511.5000 2419.0000 1961.5000 -1913.5000

2 -511.5000 2754.9000 -3957.6000 -3985.9000 5421.9000

3 2419.0000 -3957.6000 8640.4000 8247.6000 -9382.6010

4 1961.5000 -3985.9000 8247.6000 8286.9000 -9282.8990

5 -1913.5000 5421.9000 -9382.6010 -9282.8990 11630.9000

CORRELATION MATRIX OF SUBJECTS

1 1.0000 -.2738 .7313 .6055 -.4986
2 -.2738 1.0000 -.8112 -.8342 .9578
3 L7313 -.8112 1.0000 .9747 -.9359
4 .6055 -.8342 .9747 1.0000 -.9455
5 -.4986 .9578 -.9359 -.9455 1.0000

CROSS PRODUCT MATRIX OF STIMULI

1 4257.4400 -2026.0600 -2578.3600 -2957.7600 436.5401 4857.7400
-2005.6600 -3181.0600 -3210.9600 6408.1400

2 -2026.0600 1135.4400 1144.1400 1380.7400 -126.9600 -2323.7600
753.8400 1556.4400 1579.5400 -3073.3600

3 -2578.3600 1144.1400 2296.8400 1582.4400 -57.2600 -3008.0600
1769.5400 1740.1400 1764.2400 -4653.6600

4 -2957.7600 1380.7400 1582.4400 2131.0400 -400.6601 -3347.4600
1277.1400 2257.7400 2273.8400 -4197.0600

5 436.5401 -126.9600 -57.2600 -400.6601 210.6400 453.8401
-110.5600 -379.9601 -373.8600 348.2401

6 4857.7400 -2323.7600 -3008.0600 -3347.4600 453.8401 5556.0400
-2326.3600 -3611.7600 -3647.6600 7397.4400

7 -2005.6600 753.8400 1769.5400 1277.1400 -110.5600 -2326.3600
1522.2400 1322.8400 1335.9400 -3538.9600

8 -3181.0600 1556.4400 1740.1400 2257.7400 -379.9601 -3611.7600
1322.8400 2434.4400 2455.5400 -4594.3600

9 -3210.9600 1579.5400 1764.2400 2273.8400 -373.8600 -3647.6600
1335.9400 2455.5400 2477.6400 -4654.2600

10 6408.1400 -3073.3600 -4653.6600 -4197.0600 348.2401 7397.4400
-3538.9600 -4594.3600 -4654.2600 10557.8400

Fig. 12.8 (continued)
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30298.1700

.9300

.9300

-.0914
.4424

L4172
.0036

-.3292
.2637

-.3536
.2243

.3972
-.1191

ROOTS OF THE FIRST SCORE MATRIX
1799.9580 417.2757 50.7452 13.4566
PROPORTION OF VARIANCE ACCOUNTED FOR BY EACH FACTOR

2 3 4 5
.0552 .0128 .0016 .0004

CUMULATIVE PROPORTION OF VARIANCE ACCOUNTED FOR

2 3 4 5
.9852 .9980 .9996 1.0000

SECOND SCORE MATRIX (SUBJECT BY STIMULUS)

-.0220 .5479 -.0747 .1387 -.1508
-.0662 -.0610 -.6630
-.2344 -.0098 -.3569 .1138 . 4534
-.3786 -.3794 L3712
.1409 .3360 .1897 .0086 -.3888
.20091 .2128 -.6428
.1610 .2882 .2241 -.0125 -.4107
.2444 .2477 -.6129
-.2029 -.1602 -.2976 .0631 . 4460
-.3193 -.3215 .5143

POPULATION MATRIX (VECTORS)

FACTOR

1

2

3

4

5

. 6395

-.9089

.9821

.9961

-.9872

.7688

.4171

.1882

.0877

.1593

NORMALIZED STIMULUS MATRIX (POINTS)

FACTOR
1

2

10

Fig. 12.8

-.3717
L1771
.2445
.2519

-.0307

-.4262
.1883
.2729
.2758

-.5820

(continued)

.1903

-.1759

.5093

-.3067

.2059

.1583

.4189

-.3131

-.3087

-.3783
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STIMULUS MATRIX (STRETCHED BY SQ. ROOT OF THE EIGENVALUES)

FACTOR
1 -64.6951 8.0733
2 30.8328 -7.4634
3 42.5580 21.6070
4 43.8507 -13.0122
5 -5.3419 8.7374
6 -74.1819 6.7176
7 32.7685 17.7715
8 47.4974 -13.2833
9 48.0113 -13.0977
10 -101.2998 -16.0502

***x** IDENTIFICATION KEY FOR PLOTS WITH IDENTIFIED POINTS****%

PT # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CHAR 1 2 3 4 5 6 7 8 9 A B C D E F

PT # 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
CHAR G H I J K L M N o P Q R S T U

PT # 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
CHAR v W X Y 4 + / = * & $ @ % ? <

PT # 46 47 48 49 50
CHAR ( ) " ; (¢

POINT NUMBERS ABOVE 50 IDENTIFIED AS >, MULTIPLE POINTS IDENTIFIED AS #

IN JOINT SPACE PLOTS, THE FIRST 10 POINTS ARE STIMULI AND THE NEXT 5
ARE VECTOR (SUBJECT) END POINTS.

Fig. 12.8 (continued)
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PLOT OF SUBJECT VECTORS IN DIMENSIONS 1 AND 2

1.80+
1.38;
.97;
.55;

.14+

-.28+

|
|
|
. | .
-.69+ | +
|
. | .
-1.11+ | +
|
. | .
-1.52+ | +
|
. |
+ + + bt b bt + oot + +

-2.0 -1.7 -1.3 -1.0 -.7 -.3 .0 .3 .7 1.0 1.3 1.7 2.0

PLOT OF STIMULUS POINTS IN DIMENSIONS 1 AND 2

+ + -+ + + +.o...+k Lt + + .+ + +
1.80+ | +
|
. | .
1.38+ | +
|
. | .
.97+ | +
|
. |
.55+ | 3 +
|7
. | .
.14+ # 5 +
______________________________ O mm e e
. | 2
-.28+ | # +
A |
. | .
-.69+ | +
|
. | .
-1.11+ | +
|
. | .
-1.52+ | +
|
. |
R S S S S S S S

-2.0 -1.7 -1.3 -1.0 -.7 -.3 .0 .3 .7 1.0 1.3 1.7 2.0

Fig. 12.8 (continued)
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PLOT OF POINTS AND VECTORS IN DIMENSIONS 1 AND 2

1.38;
.97+
.55;
14+

—.28;

—.69;

—1.11;

-1.52+

-2.0 -1.7 -1.3 -1.0 -.7 -.3 .0 .3 .7 1.0 1.3 1.7 2.0

Fig. 12.8 (continued)

B on Fig. 12.8) has a preference for brands 3 (SEMI) and 7 (SONO). Subject 5 (letter
F on Fig. 12.8) prefers brand 10 (SUSI; indicated by the letter A) and then brands 1
(SAMA) and 6 (SIRO), both confounded on the map and represented by the symbol
“#”. The least preferred brands for this subject are brands 2 (SALT), 8 (SOLD), and
9 (SULI), these last two brands being confounded on the map and represented by
the # sign in the lower right quadrant.

12.5.5 Example of PREFMAP

In the example provided in Fig. 12.9, the external source of the perceptual space
configuration has been taken from the INDSCAL run. The first line of input in that
file allows the user to define the various parameters concerning the data and the
analysis to be done:
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10

(2X,2F8.3)
0.
-0.
-0.
-0.
0.
0.
-0.
-0.
-0.
10 0.
(2X,10F4.0)

wCodoUIEd WNR

01 059
02 030
03 070
04 070
05 022
sama
salt
semi
self
sibi
siro
sono
sold
suli
susi
SUBJ1
SUBJ2
SUBJ3
SUBJ4
SUBJS

Fig. 12.9 Example of PC-MDS input file for PREFMAP (examp12-5.dat)

2

410
222
146
312
039
471
102
313
311
486

061
062
028
017
084

5

-0
-0

-0
-0
-0

038
053
005
016
082

.412
.191
.275
.366
.318
.358
.420
.242
.231
.256

053
072
022
024
100

sama
salt
semi
self
sibi
siro
sono
sold
suli
susi

054
041
042
034
059

060
030
075
076
0le

032
054
016
027
083

— the number of stimuli (here 10 brands)

— the number of dimensions of the externally supplied perceptual space (here 2)
— the number of subjects for which preferences are being modeled (here 5).

057
072
019
019
100

057
072
019
018
100

074
033
098
100
013

357

— a code to indicate that the higher the score of a brand in the data, the higher the
preference for that brand (code=1) or that the higher the score, the lower the
preference (code=0); in the example, preferences are decreasing with the ratings
and, therefore, a code 0 has been entered.

These numbers are followed by additional codes corresponding to advanced
setting options.
The second line of input gives the format in which the coordinates in the per-
ceptual space will be read. Then follow these coordinates for the ten stimuli/brands.
Note that, given the format provided, the stimulus number (the first number on each

of the line for the coordinates) is not read by the program.
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Then follows the format in which the preference data will be read. These prefer-
ence data correspond to the ones described for the input of MDPREF. Therefore, the
preference ratings of the ten brands are shown for each of the four subjects studied.
Finally, the stimuli labels (brand names) are indicated.

The results are shown in Fig. 12.10. Phase 1 corresponds to the general unfold-
ing model where the axes may be rotated differently for each subject and where
each subject can weight each axis differently. Although it makes the visualization
difficult, due to the different rotation of the axes, this is the most flexible model.
It should be noted that there is one more point for subjects than there are subjects.
This last point corresponds to the average preference (average ratings) across all the
subjects.

Phase 2 corresponds to the weighted unfolding model wherein all subjects share
the same configuration without rotation but each subject is allowed to weight each
dimension differently. The preferences of each subject are shown by his/her ideal
point in that common perceptual space.

In Phase 3, each subject uses the same perceptual space configuration with no
axis rotation and no differential weighting of the dimensions.

Finally, Phase 4 corresponds to the vector model of preferences, similarly
to MDPREF, except for the fact that the perceptual configuration is externally
provided. Here is an example from the INDSCAL analysis.

The plot resulting from the analysis of Phase 3 provides the ideal points of
the five subjects, as well as that of the average subject. This plot shows that
subject 4 (represented by the letter D) prefers brands 2 (SALT), 3 (SEMI), 8
(SOLD) or 9 (SULI) best (the closests to his/her ideal brand). This fits the pref-
erence data used as input, where these brands have a low score value (most
preferred).

For the vector model of preferences, the last graph shows the end points of the
individual vectors. The vectors drawn on Fig. 12.10 have been added to the original
output, showing the differences in preferences across individuals according to the
projections of the stimuli on their respective vectors. For example, the projections
of the brands on the vectors of subjects 2 (C) and 5 (F), indicate that brands 1
(SAMA), 6 (SIRO) and 10 (SUSI; indicated by the letter A on the plot) are the
preferred ones. These correspond indeed to the lowest scores (most preferred) in the
input data.

12.6 Assignment

Collect proximity data about a set of brands of your choice and determine the dimen-
sions used in the perception of these brands. Gather data about characteristics of
these brands to help you interpret the underlying perceptual dimensions. For these
same brands, obtain preferences of the respondents in order to develop a map of
subject preferences and stimuli.



12.6 Assignment

PREFMAP

MDSCALING VIA A GENERALIZATION OF COOMBS UNFOLDING MODEL
BY DR. J. D. CARROLL AND JIH JIE CHANG

PC - MDS VERSION

ANALYSIS TITLE: Prefmap example
DATA IS READ FROM FILE: prefv_t.dat

OUTPUT FILE IS: prefv_t.out
hhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkkkkkkk

N NO. OF STIMULI 10
K NO. OF DIMENSIONS 2
NSUB NO. OF SUBJECTS 5
sV 0=SMALL SCALE VALUE REPRESENTS GREATER PREF. 0
NORS  1=NORMALIZE SCALE VALUES 1
IRX 0=STIMULUS COORDINATES N BY K, OR 1 = K BY N 0
1Ps STARTING PHASE 2
IPE ENDING PHASE 4
IRWT 1=READ IN WEIGHTS, O0=NO WEIGHTS READ IN 0
LFITSW HOW D**2 IS RELATED TO SCALE VALUES 1
0=LINEARLY,
1=MONOTONE WITH NO TIES,
2=BLOCK MONOTONE WITH ORDERING IN BLOCKS
3=BLOCK MONOTONE WITH EQUALITY IN BLOCKS
IAV 0=AVERAGE SUBJECTS COMPUTED ONCE FOR ALL PHASES, 1
1=CALCULATE EACH PHASE
MAXIT MAXIMUM ITERATIONS, WHEN 0 IT IS SET TO 15 15
ISHAT O=USE SCALE VALUES FROM PREVIOUS PHASE, 0
1=USE ORIG VALUES
IPLOT O=AVERAGE SUBJECTS, 0
1=AVERAGE SUBJECTS & SUBJECT FUNCTIONS,
2=ALL PLOTS
CRIT CRITERIA FOR STOPPING MONOTONE FIT .0010

359

Khkhkhkhkhkhkhkhkhkhkhkhkkhhhkhhkhkhhkhkhhkhhhkhhhkhkhhkhkhkhhkhhkkhkkhhkhhhkhhhkhkhhhkhkhhkhkhkhkhkhkhkhkhhkhkkhkhkhkk

PT

***x** IDENTIFICATION KEY FOR PLOTS WITH IDENTIFIED POINTS****%

# 1 2 3 4 5 6 7 8 9 10 11

CHAR 1 2 3 4 5 6 7 8 9 A B

PT

# 16 17 18 19 20 21 22 23 24 25 26

CHAR G H I J K L M N (o} P Q

PT

# 31 32 33 34 35 36 37 38 39 40 41

CHAR v w X Y Z + / = * & $

PT

# 46 47 48 49 50

CHAR ( ) " # @

POINT NUMBERS ABOVE 50 IDENTIFIED AS >, MULTIPLE

POINTS 1 TO 10 ARE STIMULI AND POINTS 11 TO

v

ORIGINAL CONFIGURATION (X MATRIX)

1 .41000 .41200
2 -.22200 .19100
3 -.14600 -.27500
4 -.31200 -.36600
5 .03900 .31800
6 .47100 .35800
7 -.10200 -.42000
8 -.31300 -.24200
9 -.31100 -.23100
10 .48600 .25600

Fig. 12.10 Output example for PREFMAP (examp12-5.out)

12 13 14 15
C D E F

27 28 29 30
R S T U

42 43 44 45

POINTS IDENTIFIED AS ;

15 ARE IDEAL POINTS
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PHASE 2

X MATRIX, (INPUT CONFIGURATION AFTER NORMALIZATION)

1 .4100 -.2220 -.1460 -.3120 .0390 .4710
-.1020 -.3130 -.3110 .4860
2 .4120 .1910 -.2750 -.3660 .3180 .3580
-.4200 -.2420 -.2310 .2560
PHASE 2

SUBJECT 1
SCALE VALUES BEFORE NORMALIZATION FOR SUBJECT 1
59.00000 61.00000 38.00000 53.00000 54.00000 60.00000
32.00000 57.00000 57.00000 74.00000
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.12645 .18265 -.46364 -.04215 -.01405 .15455
-.63224 .07025 .07025 .54794

BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)

-.13961 -.72085 .81888 3.30984 -1.91886
(CORRELATION) = .99947
SIGNED DSQ, (SIGNED DISTANCE SQUARED FROM STIMULI TO IDEAL)

.22438 .36144 -.24263 -.05777 -.00483 .39385
-.62257 .19123 .20465 .46720

Khkkhkhkhkhkhkhkhkhkhkhkkhhhkhhkhkhhkhkhhkhhhkhhhkhkhhkhkhkhhkhhkkhkkhhkhhhkhhkhkhkhkhhkhkhhkhkhkhkhkkhkhkkhkhkhkkhkhkkk
SUBJECT 1

COORDINATES OF IDEAL POINT WITH RESPECT TO OLD AXES
.10889 .21338

IMPORTANCES OF NEW AXES
3.30984 -1.91886

Khkhkhkhkhkhkhkhkhkhkhkhkkhhhkhhkhkhhkhkhhkhhhkhhhkhkhkhkhkhkhhkhhkkhkkhkhhhkhhhkhhkhhkhkhhkhkhkhkhkkhkhkhkhkhkkhkhhkkk
SUBJECT 2

SCALE VALUES BEFORE NORMALIZATION FOR SUBJECT 2

30.00000 62.00000 53.00000 72.00000 41.00000 30.00000
54.00000 72.00000 72.00000 33.00000
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
-.41725 .19243 .02096 .38295 -.20767 -.41725
.04001 .38295 .38295 -.36009

BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)

-.17419 -1.21683 -.04638 1.55564 .18543
(CORRELATION) = .99931
SIGNED DSQ, (SIGNED DISTANCE SQUARED FROM STIMULI TO IDEAL)

.01582 .58556 .47845 .81375 .19976 .01999
.43334 .79621 .79036 .01719

Fig. 12.10 (continued)
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e e

SUBJECT 2

COORDINATES OF IDEAL POINT WITH RESPECT TO OLD AXES
.39110 .12507

IMPORTANCES OF NEW AXES
1.55564 .18543

P T T e T T e T
SUBJECT 3
SCALE VALUES BEFORE NORMALIZATION FOR SUBJECT 3

70.00000 28.00000 5.00000 22.00000 42.00000 75.00000
16.00000 19.00000 19.00000 98.00000
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.32920 -.12264 -.37008 -.18719 .02797 .38299
-.25174 -.21946 -.21946 .63042

BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)

-.15664 .48421 .24583 1.52976 .03537
(CORRELATION) = .99909
SIGNED DSQ, (SIGNED DISTANCE SQUARED FROM STIMULI TO IDEAL)
1.02841 .48159 .36244 .37805 .56841 1.12542
.33497 .40634 .40792 1.12735

B e

SUBJECT 3

COORDINATES OF IDEAL POINT WITH RESPECT TO OLD AXES
-.15826 -3.47505

IMPORTANCES OF NEW AXES
1.52976 .03537

e e

SUBJECT 4

SCALE VALUES BEFORE NORMALIZATION FOR SUBJECT 4

70.00000 17.00000 16.00000 24.00000 34.00000 76.00000
27.00000 19.00000 18.00000 100.00000
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.32845 -.25376 -.26474 -.17686 -.06701 .39437
-.14390 -.23179 -.24277 .65801

BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)

-.12124 .76701 -.06093 1.39435 -.18300
(CORRELATION) = .99917
SIGNED DSQ, (SIGNED DISTANCE SQUARED FROM STIMULI TO IDEAL)
.59310 -.01946 .02106 -.00538 .09456 72572
.02999 .00097 .00104 .77492

e e e 2T

SUBJECT 4

COORDINATES OF IDEAL POINT WITH RESPECT TO OLD AXES
-.27504 -.16648

IMPORTANCES OF NEW AXES
1.39435 -.18300

Fig. 12.10 (continued)
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dkkhkkkhkhkkhkhkhhkhkkhkkhkhhhhhkhhkhkkkkkkkkkkkkkkkkkkkkkhkkhhkhhkhhkhkkhkkkkkkkkkkkhkkh*x

SUBJECT 5
SCALE VALUES BEFORE NORMALIZATION FOR SUBJECT 5
22.00000 84.00000 82.00000 100.00000 59.00000 16.00000
83.00000 100.00000 100.00000 13.00000
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
-.40706 .16783 .14929 .31619 -.06398 -.46269
.15856 .31619 .31619 -.49051
BEGIN ITERATION ON MONOTONE FIT
AVERAGE SUBJECT
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.02086 .05391 -.12695 .02712 -.11193 .08604
-.19693 .06852 .06852 .11084
BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)
-.13147 -.34136 .18293 1.57832 -.26520
(CORRELATION) = .99884
SIGNED DSQ, (SIGNED DISTANCE SQUARED FROM STIMULI TO IDEAL)
.14262 .16575 .00004 .14458 .00735 .20777
-.08546 .18859 .18933 .22325
KA A A A A A AR AR AR AR A Ak kA kA Ak Ak AR Ak Ak ko kA ko ko khk kA kA hkhkkkkhkhkhkhkhkkhkhkhkhkkkkkk

SUBJECT 6

COORDINATES OF IDEAL POINT WITH RESPECT TO OLD AXES
.10814 .34488

IMPORTANCES OF NEW AXES
1.57832 -.26520

dkkhkkkhkkkkkkhkhkkhkhhhhhhhhhhkhkkkkkkkkkkkkkkkkkkkkhkhkkhhkhhkhhkhkkhkkkkkkkkkkkkkk*x
PHASE 3

X MATRIX, (INPUT CONFIGURATION AFTER NORMALIZATION)

1 .5151 -.2789 -.1834 -.3920 .0490 .5917
-.1281 -.3932 -.3907 .6106
2 .2122 .0984 -.1l416 -.1885 .1638 .1844
-.2163 -.1246 -.1190 .1318
PHASE 3

SUBJECT 1

S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.13300 .28639 -.33440 -.14939 -.09641 .28639
-.71466 .10653 .10653 .37602

BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)
-.31127 -.83629 1.99854 2.36724
(CORRELATION) = .99951
SIGNED DSQ, (SIGNED DISTANCE SQUARED FROM STIMULI TO IDEAL)

.16681 .24310 -.44543 -.11724 -.11944 .27404
-.74493 .06110 .06892 .24625

Fig. 12.10 (continued)
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Fkkkkkkkkhkkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

SUBJECT 1

COORDINATES OF IDEAL POINT WITH RESPECT TO OLD AXES
.17664 .42212

IMPORTANCES OF NEW AXES
2.36724 -2.36724

Fkkkkkkkkhkkkhkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

SUBJECT 2

S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
-.39970 .17073 .04090 .39919 -.21554 -.39693
.04090 .37870 .37870 -.39693

BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)
-.11185 -.87503 -.23917 .85102

(CORRELATION) = .99876

SIGNED DSQ, (SIGNED DISTANCE SQUARED FROM STIMULI TO IDEAL)
-.10586 .48661 .41405 .69670 .10530 -.08470
.34614 .70038 .69633 -.05521

Fkkkkkkkkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

SUBJECT 2

COORDINATES OF IDEAL POINT WITH RESPECT TO OLD AXES
.51410 -.14052

IMPORTANCES OF NEW AXES
.85102 -.85102

e e sk de e e ok e 3k ok ok ok ok ok ok ok ek ok ok ok ok ok e ok ok ok ok ok ok ok ok ek ok ok ok ok ok ok ke ok ok ok ok ek sk ok ok ok
SUBJECT 3
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.40689 -.14069 -.27377 -.22496 -.05375 .50402
-.27377 -.22496 -.22496 .50596
BEGIN ITERATION ON MONOTONE FIT
SUBJECT 4
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.37192 -.22229 -.22229 -.22229 -.12725 .50470
-.19190 -.22229 -.22229 .55396

BEGIN ITERATION ON MONOTONE FIT
SUBJECT 5
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
-.40780 .17542 .15478 .33307 -.06671 -.46796
.15478 .30461 .30461 -.48483
BEGIN ITERATION ON MONOTONE FIT
AVERAGE SUBJECT
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.02402 .05482 -.13502 .03375 -.10786 .08389
-.19180 .06715 .06715 .10390

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)

-.12947 -.27321 .36106 .98483
(CORRELATION) = .99713
SIGNED DSQ, (SIGNED DISTANCE SQUARED FROM STIMULI TO IDEAL)
.13869 .16465 -.00178 .14122 .00755 .20210
-.08713 .18528 .18606 .21666

Fig. 12.10 (continued)
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L
SUBJECT 6

COORDINATES OF IDEAL POINT WITH RESPECT TO OLD AXES
.13871 .18331

IMPORTANCES OF NEW AXES
.98483 -.98483
L T R s )

STIMULI COORDINATES

DIMENSION 1 2
STIMULI
1 .51509 .21217
2 -.27890 .09836
3 -.18342 -.1l4162
4 -.39197 -.18848
5 .04900 .16376
6 .59172 .18436
7 -.12814 -.21629
8 -.39323 -.12463
9 -.39071 -.11896
10 .61057 .13183

COORDINATES OF IDEAL POINTS

DIMENSION 1 2

SUBJECTS
1 .17664 . 42212
2 .51410 -.14052
3 -.24813 .22016
4 -.33261 -.04437
5 -7.43571 2.44479
6 .13871 .18331

SUBJECT 6 IS THE AVERAGE SUBJECT

WEIGHTS OF AXES

DIMENSION 1 2

SUBJECTS
1 2.36724 -2.36724
2 .85102 -.85102
3 .89211 -.89211
4 .89720 -.89720
5 -.04765 .04765
6 .98483 -.98483

SUBJECT 6 IS THE AVERAGE SUBJECT

kL Lk Lk kL kL kL * * * * x * *
1.50%% | **
1.38%% | **
1.27%% | **
1.15%% | **
1.04%% | **
L 92%% | **
L 81x* | **
L 69%* | **
. 58%% | **
L46** |
. 35%% |
L23%% |
L12%* |
.00**
— . 12%% ;3 c *x
—.23%% 4 71 *x
— .35%% | **
. 46%* | **
_ . 58%% | **
. 69%*% | **
—.81%% | **
—.92%% | **
—1.04%% | **
—1.15%% | **
—1.27%% | **
-1.38*%* | *x
-1.50%* | *x
kL Lk kL kL ko ko kL kL kL ko k%
. -1.6667. -1.0000. -.3333. .3333. 1.0000. 1.6667.
-2.0000 -1.3333 -.6667 .0000 .6667 1.3333 2.0000

Fig. 12.10 (continued)
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PHASE 4

X MATRIX, (INPUT CONFIGURATION AFTER NORMALIZATION)

1 .5151 -.2789 -.1834 -.3920 .0490 .5917
-.1281 -.3932 -.3907 .6106
2 .2122 .0984 -.1l416 -.1885 .1638 .1844
-.2163 -.1246 -.1190 .1318
PHASE 4

SUBJECT 1

S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
-.20366 -.29138 .40907 .08173 .08173 -.29138
.70881 -.10177 -.10177 -.29138

BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)

.00010 .11482 -1.90631
(CORRELATION) = .87383
PROJECTIONS ON THE FITTED VECTOR
-.18082 -.11495 .13034 .16458 -.16052 -.14845
.20820 .10076 .09525 -.09489

SUBJECT 2

S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.42686 -.16703 -.06027 -.37874 .21519 .40565
-.06027 -.37874 -.37874 .37609

BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)

-.00002 .68450 .33335
(CORRELATION) = .99939
PROJECTIONS ON THE FITTED VECTOR
.55599 -.20768 -.22691 -.43493 .11575 .61271
-.20991 -.40810 -.40336 .60666

SUBJECT 3

S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
-.39168 .14174 .26475 .23034 .05320 -.50049
.26475 .23034 .23034 -.52329

BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)
.00004 -.48253 -.86681
(CORRELATION) = .99356
PROJECTIONS ON THE FITTED VECTOR
-.43592 .04971 .21295 .35533 -.16692 -.44889
.25131 .30015 .29398 -.41216
SUBJECT 4
S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)

-.37048 .22038 .22038 .22038 .12371 -.50450
.20456 .22038 .22038 -.55519

Fig. 12.10 (continued)
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BEGIN ITERATION ON MONOTONE FIT
END OF ITERATION, REACHED CRITERION

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)

-.00000 -.80876 .07031
(CORRELATION) = . 98856
PROJECTIONS ON THE FITTED VECTOR
-.49478 .28637 .17047 .37417 -.03463 -.57353
.10893 .38095 .37894 -.59685

SUBJECT 5

S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
.41885 -.17783 -.15883 -.32247 .06547 .47127
-.15883 -.30594 -.30594 .47426

BEGIN ITERATION ON MONOTONE FIT
AVERAGE SUBJECT

S (VECTOR OF SCALE VALUES, E.G. PREFERENCES)
-.06377 -.07260 .11979 .05698 -.00084 -.06240
.11541 -.01085 -.01085 -.07087

BETA VALUES (IN THE MOST GENERAL CASE THERE ARE (2K + K(K-1)/2 + 1) TERMS -
QUADRATIC, LINEAR, THEN A CONSTANT TERM)
.00002 .04867 -.43837

(CORRELATION) = .81988

PROJECTIONS ON THE FITTED VECTOR

-.15404 -.12854 .12052 .14408 -.15736 -.11795
.20083 .08047 .07512 -.06366
STIMULI COORDINATES
DIMENSION 1 2
STIMULI
1 .51509 .21217
2 -.27890 .09836
3 -.18342 -.14162
4 -.39197 -.18848
5 .04900 .16376
6 .59172 .18436
7 -.12814 -.21629
8 -.39323 -.12463
9 -.39071 -.11896
10 .61057 .13183
K3 * *, Lk * * S S S SN S S
1.50%% | *k
1.38%% | *k
1.27%% | *k
1.15%% | *k
1.04%* | *k
L92%* | *k
L81%* | *k
L69%* *k
.58%* *k
L46%* [¢] *k
.35%% F *k
L23%% *k
L12%* *k
R0 Y B2y , =R *k
—.12%% | *k
—.23%% | *k
—.35%% | *k
—.46%* | *k
—.58%% | *k
—.69%* | *k
—.81%*% | *k
—.92%% D | *k
-1.04%* |BG *k
—1.15%% | *k
—1.27%*% | *k
—1.38%% | *k
—1.50%* | *k
LRk kL k ok k Lk k_ ok k. k. k___ %
. -1.6667. -1.0000. -.3333. .3333. 1.0000. 1.6667.
-2.0000 -1.3333 -.6667 .0000 .6667 1.3333 2.0000

Fig. 12.10 (continued)
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DIRECTION COSINES OF FITTED SUBJECT VECTORS

DF
SUBJ

s wWwN e

AVG

DF
SUBJ

s wNhEk

AVG

DIMENSION

1 2

.0601 -.9982
.8991 .4378
.4864 -.8737
.9962 .0866
.9488 .3160
.1103 -.9939

CORRELATION (PHASE)

R1

.000
.000
.000
.000
.000
.000

R2

.999
.999
.999
.999
.999
.999

R3

1.000
.999
.998

1.000

1.000
. 997

F RATIO (BETWEEN PHASE)

F12
14

.000
.000
.000
.000
.000
.000

F13
2 4

.000
.000
.000
.000
.000
.000

ROOT MEAN SQUARE

PHASE

1
2
3
4

.000
.999
.999
.972

Fl4
34

.000
.000
.000
.000
.000
.000

R4

.874
.999
.994
.989
1.000
.820

F23

-.409
3.997
3.491
-2.871
-3.122
7.348

F RATIO (PHASE)

Fl

5

4

.000
.000
.000
.000
.000
.000

554.

15.
31.
-1.
350.

674

.309

060
812
820
915

F2

4

1177.
904.
682.
752.
765.
537.

1000.
-3.
18.

1000.

1000.

337.

AN F - VALUE OF 1000.0 IN THE ABOVE TABLE INDICATES
I.E. R IS VERY CLOSE TO 1.00

A POSSIBLE DIVISION BY ZERO.

Fig. 12.10 (continued)

F3
5 3
124 1000.
412 803
663 642.
687 1000.
898 1000.
822 347
4
6
000
077
817
000
000
465

6

000

.281

385
000
000

.263

F4

11.
2889.
269.
150.
1000.

304
408
136
310
000

.177
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Appendices

Appendix A: Rules in Matrix Algebra

Vector and Matrix Differentiation

da'v
—a (A.1)
av
IV A
Vav Y (A+A)v (A.2)
Kronecker Products
A®B (A.3)
A= | @11 a2 (A.4)
asy axn '
__ | anB apB
A®QB= [ale azzB} (A.5)
A®B) '=A"TgB™! (A.6)
Determinants
P
Al =] (A7)
i=1
[AB| = |A| |B| (A.8)
Trace

tr (ABC) = tr (ACB) = tr (CAB) = tr (BAC) = tr (BCA) = tr (CBA)  (A.9)
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Appendix B: Statistical Tables

Cumulative Normal Distribution

z  0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
03 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 009115 09131 09147 0.9162 0.9177
1.4 09192 0.9027 0.9222 09236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 09713 0.9719 0.9726 09732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 09772 09778 09783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 09821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
22 09861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 09918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 09938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 09990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 09993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 09997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Chi-Squared Distribution

¢ 0.005 0.010 0.025 0.050 0.100 0.250 0.500 0.750 0.900 0.950 0.975 .990 0.995

1 0.00004 0.0002 0.001 0.004 0.02 0.10 045 132 271 3.84 502 6.63 788
2 0.01 0.02 005 0.10 021 058 139 277 461 599 738 9.21 10.60
3 0.07 0.11 022 035 058 121 237 411 625 7.81 935 11.34 12.84
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¢ 0.005 0.010 0.025 0.050 0.100 0.250 0.500 0.750 0.900 0.950 0.975 .990 0.995
4 021 030 048 0.71 1.06 192 336 539 7.78 9.49 11.14 13.28 14.86
5 041 055 083 1.15 1.61 267 435 6.63 924 11.07 12.83 15.09 16.75
6 0.68 087 124 164 220 345 535 7.84 10.64 12.59 14.45 16.81 18.55
7 099 124 1.69 217 2.83 425 635 9.04 12.02 14.07 16.01 18.48 20.28
8§ 134 165 218 273 349 5.07 734 1022 13.36 15.51 17.53 20.09 21.95
9 1.73 209 270 333 417 590 834 11.39 14.68 16.92 19.02 21.67 23.59
10 216 256 325 394 487 674 9.34 1255 1599 18.31 20.48 23.21 25.19
11 260 3.05 382 457 558 758 10.34 13.70 17.28 19.68 21.92 24.72 26.76
12 307 357 440 523 630 844 11.34 14.85 18.55 21.03 23.34 26.22 28.30
13 357 411 5.01 589 7.04 930 12.34 1598 19.81 22.36 24.74 27.69 29.82
14 407 4.66 563 657 7.79 10.17 13.34 17.12 21.06 23.68 26.12 29.14 31.32
15 460 523 626 726 8.55 11.04 1434 18.25 2231 25.00 27.49 30.58 32.80
16 5.14 581 691 796 9.31 1191 15.34 19.37 23.54 26.30 28.85 32.00 34.27
17 570 641 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 35.72
18 626 7.01 823 9.39 10.86 13.68 17.34 21.60 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 891 10.12 11.65 14.56 18.34 22.72 27.20 30.14 32.85 36.19 38.58
20 743 826 959 10.85 12.44 1545 19.34 23.83 28.41 31.41 34.17 37.57 40.00
21 8.03 890 1028 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35.48 38.93 41.40
22 8.64 954 1098 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 19.04 23.34 28.24 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93
30 13.79 1495 16.79 18.49 20.60 24.48 29.34 34.80 40.26 43.77 46.98 50.89 53.67
35 17.19 18.51 20.57 22.47 24.80 29.05 34.34 40.22 46.06 49.80 53.20 57.34 60.27
40 20.71 22.16 24.43 26.51 28.05 33.66 39.34 45.62 51.81 55.76 59.34 63.69 66.77
45 2431 2590 2837 30.61 33.35 38.29 44.64 50.98 57.51 61.66 65.41 69.96 73.17
50 27.99 29.71 3236 34.76 37.69 42.94 49.33 56.33 63.17 67.50 71.42 76.15 79.49
F Distribution
g1 = Degrees of freedom for the numerator
o 1 2 3 4 5 6 7 8 9
1 16145 19950 215.71 22458 230.16 23399 236.77 238.88 240.54
2 1851 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.99 5.14 4.76 453 4.39 4.28 421 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
10 4.96 4.10 3.71 3.48 3.33 322 3.14 3.07 3.02
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
20 4.35 349 3.10 2.87 2.71 2.60 2.51 2.45 2.39
25 4.24 3.39 2.99 2.76 2.60 2.49 240 2.34 2.28
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o 1 2 3 4 5 6 7 8 9

30 4.17 3.32 2.92 2.69 2.53 242 2.33 227 221
40 4.08 3.23 2.84 2.61 245 2.34 2.25 2.18 2.12
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97
oo 3.84 3.00 2.60 2.37 221 2.10 2.01 1.94 1.88

g1 = Degrees of freedom for the numerator

$2 10 12 15 20 30 40 50 60 00

1 241.88 24391 24595 248.01 250.10 251.14 25220 252.20 254.19
2 19.40 19.41 19.43 19.45 19.46 19.47 19.48 19.48 19.49
3 8.79 8.74 8.70 8.66 8.62 8.59 8.57 8.57 8.53
4 5.96 591 5.86 5.80 5.75 5.72 5.69 5.69 5.63
5 4.74 4.68 4.62 4.56 4.50 4.46 4.43 443 4.37
6 4.06 4.00 3.94 3.87 3.81 3.77 3.74 3.74 3.67
7 3.64 3.57 3.51 3.44 3.38 3.34 3.30 3.30 3.23
8 3.35 3.28 3.22 3.15 3.08 3.04 3.01 3.01 2.93
9 3.14 3.07 3.01 2.94 2.86 2.83 2.79 2.79 2.71
10 2.98 291 2.85 2.77 2.70 2.66 2.62 2.62 2.54
15 2.54 2.48 2.40 2.33 225 2.20 2.16 2.16 2.07
20 2.35 2.28 2.20 2.12 2.04 1.99 1.95 1.95 1.85
25 224 2.16 2.09 2.01 1.92 1.87 1.82 1.82 1.72
30 2.16 2.09 2.01 1.93 1.84 1.79 1.74 1.74 1.63
40 2.08 2.00 1.92 1.84 1.74 1.69 1.64 1.64 1.52
50 2.03 1.95 1.87 1.78 1.69 1.63 1.58 1.58 1.45
70 1.97 1.89 1.81 1.72 1.62 1.57 1.50 1.50 1.36
100 1.93 1.85 1.77 1.68 1.57 1.52 1.45 1.45 1.30
o0 1.83 1.75 1.67 1.57 1.46 1.39 1.34 1.31 1.30

Appendix C: Description of Data Sets

The data sets described below can be downloaded from the web at: http://www.
insead.edu/~gatignon. Three different kinds of information, which correspond to
typically available data about markets, are provided for analysis: industry, panel,
and survey data. In addition, scanner data are provided for a product category in the
form typically available in practice.

The industry data set includes aggregate product and market data for all of the
brands sold in each time period. This type of information is often provided by mar-
ket research services, trade and business publications, and trade associations, to all
of the firms competing in an industry. The other two data sets contain information
collected from a sample of consumers rather than from the entire population. The
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first, panel data, is gathered from a group of consumers who have agreed to peri-
odically record their brand perceptions, preferences, and purchase behavior. This
information is often purchased by advertisers from syndicated research services and
is useful for tracking changes in consumer behavior over time. The second, sur-
vey data, is collected by questionnaire or personal interview from a large group
of consumers. Surveys are often conducted by advertising agencies (such as DDB
Needham Worldwide, N. W. Ayer, and others), survey research companies, and
by the advertisers themselves. These surveys typically measure a broad range of
consumer characteristics, including attitudes, interests, values, and lifestyles. This
information is especially useful for selecting target audiences and designing creative
appeals.

The MARKSTRAT® market simulation program was used to create the industry
and panel data sets. The survey data set was developed separately to conform to this
environment. We first describe the MARKSTRAT® environment and the charac-
teristics of the industry. We then present the three types of data provided with this
book and discuss the contents of each dataset.

The MARKSTRAT® Environment

To understand the industry in which competing firms operate, the reader must be
familiar with two general dimensions of the MARKSTRAT® environment: (1) the
structure of the industry in terms of the products, competition, and market char-
acteristics, and (2) the marketing decisions that each firm can make over time.
The discussion that follows concentrates on those aspects that are most relevant
to advertising planning decisions.

Competition and Market Structure

In the MARKSTRAT® environment, five firms compete in a single market with a
number of brands. Each firm starts out with a set of brands and has the ability to
initiate research and development (R&D) projects to create new brands. If an R&D
project is successful, then the sponsoring firm has the option of bringing the new
product to market. All new products are introduced with new brand names.

Product Characteristics

The generic products in this industry are consumer durable goods comparable to
electronic entertainment products. They are called Sonites. Because these products
are durable, each customer will usually purchase only one item over a long period of
time. Consequently, there are no issues of repeat purchase, brand loyalty, or brand
switching in this market.

The products are characterized by five physical attributes: (1) weight (in kilo-
grams), (2) design (measured on a relative scale), (3) volume (in cubic decimeters),
(4) maximum frequency (in kilohertz), and (5) power (in watts). Not all attributes
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are equally important to consumers. Different segments have different preferences
for these product characteristics, although the preferences are expressed in terms of
brand image rather than purely physical characteristics. Consumers’ brand evalua-
tions are a function of their perceptions of the brands on three general dimensions,
roughly corresponding to three of the five physical characteristics listed above. The
first and most important characteristic is the perceived price of the product. Next,
people consider the product’s power (wattage). Finally, consumers evaluate the
product’s design (aesthetic value). Although less important than the other dimen-
sions, the product’s design helps consumers to differentiate between the various
competing brands. The design attribute is measured on a scale from 1 to 10 by
expert judges. To form an overall evaluation of each brand, consumers compare the
brand’s performance on each dimension with their preferences for a certain “ideal
level” on each of these dimensions.

Because of the durability of the Sonite product and the importance of the
purchase, the consumer decision process tends to follow a “high involvement”
hierarchy. Measures of brand awareness, perceptions, preferences, and purchase
intentions are, therefore, particularly relevant to the advertising decisions.

Consumer Segments

The consumer market for Sonites can be decomposed into five segments with dis-
tinguishable preferences. Segment 1 consists primarily of the “buffs,” or experts
in the product category. They are innovators and have high standards and require-
ments in terms of the technical quality of the product. Segment 2 is composed of
“singles,” who are relatively knowledgeable about the product but somewhat price
sensitive. “Professionals” are found mostly in segment 3. They are demanding in
terms of product quality and are willing to pay a premium price for that quality.
“High earners” constitute segment 4. These individuals are also relatively price
insensitive. However, they are not as educated as the professionals and are not par-
ticularly knowledgeable about the product category. They buy the product mostly
to enhance their social status. The fifth and last segment covers all consumers who
cannot be grouped with any of the other four segments. They have used the product
less than consumers in other segments and are considered to be late adopters of this
product category. Given that this group is defined as a residual, it is very difficult to
characterize the members in terms of demographics or lifestyle.

Although the preferences of the five consumer segments may change over time,
the composition of each segment does not. Consequently, the survey data collected
in the eighth time period (to be described) also describes consumers during the
previous seven periods.

Distribution Structure

Sonites are sold through three different channels of distribution. Each channel
carries all brands of Sonites, but the potential number of distributors and the char-
acteristics of each channel are different. Channel 1 is made up of specialty retail
stores. These stores provide specialized services to customers, and the bulk of their
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sales come from Sonites. There are 3000 such outlets. Electric appliance stores are
channel number 2. The 35,000 appliance stores carry Sonite products only as an
addition to their main lines of electric appliances. Channel 3 is the 4000 department
stores that exist in the MARKSTRAT® world. Department stores sell a broad range
of products, including clothing, furniture, housewares, and appliances. The three
channels differ in terms of the proportion of the product they sell and the types of
clientele they attract.

Marketing Mix Decisions

A product’s marketing mix reflects the marketing strategy for the brand. A brand’s
attributes will influence how the brand is positioned and to whom it is marketed.
Its price will affect the advertising budget and the brand image. Its distribution will
determine where the brand is advertised, and so on. In this section we review the four
main marketing mix variables, price, sales force, advertising, and product, which
characterize brands in the MARKSTRAT® environment.

Prices. Each Sonite brand has a recommended retail price. These prices are gen-
erally accepted by the distribution channels and are passed on to consumers. As
indicated earlier, different consumer segments are more or less sensitive to price
differences across brands. A segment’s price sensitivity or “elasticity” also depends
on the selection of products offered to that segment and on the other marketing mix
variables.

Sales force. The two most important aspects of a firm’s sales force are its size
and its assignment to the three channels of distribution. Each salesperson carries
the entire line of brands produced by his or her company. When a firm changes the
number of salespeople it assigns to a particular channel, this is likely to affect the
availability or distribution coverage of the firm’s brands.

Advertising. Each brand of Sonite is advertised individually. Firms in this indus-
try do not practice umbrella or generic (product category) advertising. However,
advertising of specific brands can increase the total market demand for Sonites or
affect Sonite demand in one or more segments.

Advertising can serve a number of communication purposes. It can be used
to increase top-of-mind brand awareness and inform consumers about a brand’s
characteristics. Research has revealed that advertising expenditures are strongly pos-
itively related to brand awareness. Advertising can also have a substantial persuasive
effect on consumers. Advertising can be used to position or reposition a brand so
that the brand’s image is more closely aligned with consumers’ needs.

In addition, it is clear that advertising plays an important competitive role. One
cannot consider a brand’s advertising in isolation. Instead, the relative advertising
weight or “share of voice” is a better predictor of consumers’ purchase behavior
than absolute advertising expenditures. Share of voice is the ratio of the brand’s
advertising expenditures to the total industry spending on advertising.

Products. The database reports information on all of the Sonite products that
were marketed by firms during an 8-year time period. The names of the brands sold
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during this period are listed in Table C.1. This table also lists the periods during
which each brand was available. The reader should note that some of the brands
were introduced after the first time period and/or were discontinued before the last
(eighth) period.

The brands of Sonites are named to facilitate identification of the marketing firm.
The second letter of each brand name is a vowel that corresponds to one of the five
competing firms. Firm I markets all brands that have an “A” as the second letter of
the name, such as SAMA. “E” corresponds to firm 2, “T” to firm 3, “O” to firm 4,
and “U” to firm 5.

During the eight time periods, each firm has the opportunity to design and market
a portfolio of different brands. In response to consumer or market pressures, compa-
nies may change the physical characteristics of each brand over time. Information
about brands and their attributes is provided in the industry data set, as described
below.

Table C.1 Names of brands marketed during each period

Firm Brand Period of availability
1 SALT 0-6
1 SAMA 0-6
2 SELF 0-5%
2 SELT 3-6
2 SEMA 4-6
2 SEMI 0-6
2 SEMU 4-6
3 SIBI 0-6
3 SICK 4-6
3 SIRO 0-3%
3 SIRT 4-6
4 SODA 2-6
4 SOLD 0-6
4 SONO 0-5%
5 SULI 0-6
5 SUSI 0-6

4ndicates a discontinued brand.

Survey

A mail survey of a group of 300 consumers was conducted in the eighth (most
recent) time period. The survey collected a variety of consumer information, includ-
ing demographic data, psychographics, information on product purchase behavior,
decision processes, and media habits. These data are particularly useful for seg-
mentation analysis, which is an important precursor to selecting a target market,
generating copy appeals, and media selection. A list of the variables from the
questionnaire and the coding scheme for the items are provided in Tables C.2 and
C.3, respectively.
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Table C.2 Survey questionnaire and scale type
Number  Abbreviation  Question Scale
Demographics
1 Age Age Continuous
2 Marital Marital status Categorical
3 Income Total household income Categorical
4 Education Education Categorical
5 HHSize Household size Continuous
6 Occupation Occupation Categorical
7 Location Geographic location of household Categorical
Psychographics
8 TryHairdo I often try the latest hairdo styles Likert?®
9 LatestStyle I usually have one or more outfits that are of the very =~ Likert
latest style
10 DressSmart An important part of my life and activities is Likert
dressing smartly
11 BlondsFun I really do believe that blondes have more fun Likert
12 LookDif I want to look a little different from others Likert
13 LookAftract ~ Looking attractive is important in keeping your Likert
husband (wife)
14 GrocShop I like grocery shopping Likert
15 LikeBaking I love to bake and frequently do Likert
16 ClothesFresh  Clothes should be dried in the fresh air and Likert
out-of-doors
17 WashHands It is very important for people to wash their hands Likert
before eating every meal
18 Sporting I would rather go to a sporting event than a dance Likert
19 LikeColors I like bright, splashy colors Likert
20 FeelAffract I like to feel attractive Likert
21 TooMuchSex  There is too much emphasis on sex today Likert
22 Social I do more things socially than do most of my friends  Likert
23 LikeMaid I would like to have a maid to do the housework Likert
24 ServDinners I like to serve unusual dinners Likert
25 SaveRecipes I save recipes from newspapers and magazines Likert
26 LikeKitchen = The kitchen is my favorite room Likert
27 LoveEat I love to eat Likert
28 Spiritual Val Spiritual values are more important than material Likert
things
29 Mother If it was good enough for my mother, it’s good Likert
enough for me
30 ClassicMusic  Classical music is more interesting than popular Likert
music
31 Children I try to arrange my home for my children’s Likert
convenience
32 Appliances It is important to have new appliances Likert
33 CloseFamily  Our family is a close-knit group Likert
34 LoveFamily There is a lot of love in our family Likert
35 TalkChildren I spend a lot of time with my children talking about Likert
their activities, friends, and problems
36 Exercise Everyone should take walks, bicycle, garden, or Likert

otherwise exercise several times a week
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Table C.2 (continued)

Number Abbreviation Question Scale

37 LikeMyself I like what I see when I look in the mirror Likert

38 CareOfSkin I take good care of my skin Likert

39 MedCheckup You should have a medical checkup at least once a  Likert
year

40 EveningHome I would rather spend a quiet evening at home than  Likert
go out to a party

41 TripWorld I would like to take a trip around the world Likert

42 Homebody I am a homebody Likert

43 LondonParis I would like to spend a year in London or Paris Likert

44 Comfort I furnish my home for comfort, not for style Likert

45 Ballet I like ballet Likert

46 Parties I like parties where there is lots of music and talk Likert

47 WomenNtSmoke ~ Women should not smoke in public Likert

48 BrightFun I like things that are bright, fun, and exciting Likert

49 Seasoning I am interested in spices and seasoning Likert

50 ColorTV If I had to choose, I would rather have a color Likert
television set than a new refrigerator

51 SloppyPeople Sloppy people feel terrible Likert

Purchase behavior

52 Smoke How often do you smoke? 0-7

53 Gasoline How much gasoline do you use? 0-7

54 Headache How much do you use headache remedies? 0-7

55 Whiskey How much do you drink whiskey? 0-7

56 Bourbon How much do you drink bourbon? 0-7

57 FastFood How often do you eat at fast food restaurants? 0-7

58 Restaurants How often do you eat at restaurants with table 0-7
service?

59 OutForDinner How often do you go out for dinner? 0-7

60 OutForLunch How often do you go out for lunch? 0-7

61 RentVideo How often do you rent video tapes? 0-7

62 Catsup How often do you use catsup? 0-7

Purchase decision process

63 KnowledgeSon How much do you know about the product Likert
category of Sonites?

64 PerceiveDif How large a difference do you perceive between Likert
various brands of Sonites?

65 BrandLoyalty ‘When purchasing a Sonite, how loyal are youtoa  Likert
particular brand name?

66 CategMotiv ‘What is your primary reason or motivation for Categorical
purchasing a Sonite (the product category)?

67 BrandMotiv ‘What is your primary reason or motivation for Categorical
purchasing a particular brand of Sonite?

68 OwnSonite Do you currently own a Sonite? 0/1

69 NecessSonite Do you feel that owning a Sonite is a necessity? 0/1

70 Otherinflnc If you were to purchase a Sonite, would you make  Categorical

the decision about which brand to purchase by
yourself or with the help of others?
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Table C.2 (continued)
Number Abbreviation Question Scale
71 DecisionTime If you were to purchase a Sonite, would you make  Categorical
the decision about which brand to purchase
before going to the retail store, or would you
wait until you were in the store to decide?
Media habits
72 ReadWomen I read Women’s magazines 0/1
73 ReadHomeServ ~ Iread Home Service magazines 0/1
74 ReadFashion I read Fashion magazines 0/1
75 ReadMenMag I read Men’s magazines 0/1
76 ReadBusMag I read Business and Financial magazines 0/1
77 ReadNewsMag I read News magazines 0/1
78 ReadGIMag I read General magazines 0/1
79 ReadYouthMag I read Youth magazines 0/1
80 ReadNwspaper I read the newspaper 0/1
81 WtchDayTV I watch network television during the day time 0/1
82 WitchEveTV I watch network television early evening news 0/1
83 WtchPrmTV I watch network television during prime time 0/1
84 WitchLateTV I watch network television in the late evening 0/1
85 WtchWKEndTV I or my kid(s) watch children’s programs on 0/1
television during the weekend
86 WitchCosbyTV I watch The Cosby Show regularly 0/1
87 WichFamTisTV I watch Family Ties regularly 0/1
88 WitchCheersTV I watch Cheers regularly 0/1
89 WtchMoonTV I watch Moonlighting regularly 0/1
90 WichBossTV I watch Who’s the Boss regularly 0/1
91 WichGrwTV I watch Growing Pains regularly 0/1
92 WitchMiaVicTV I watch Miami Vice regularly 0/1
93 WitchDynasTV I watch Dynasty regularly 0/1
94 WichGoidGTV I watch Golden Girls regularly 0/1
95 WichBowlTV I watch the Superbowl each year 0/1
likert items are scaled from 1 = Disagree to 7 = Agree.
Table C.3 Coding of variables
Variable Category Code
Question #2: Married 1
Marital status Widowed 2
Divorce 3
Separated 4
Single 5
Question #3: Less than $4,000 1
Household income $4,000-$5,999 2
$6,000-$7,999 3
$8,000-$9,999 4
$10,000-$11,999 5
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Table C.3 (continued)

Variable Category Code
$12,000-$14,999 6
$15,000-$17,499 7
$17,500-$19,999 8
$20,000-$24,999 9
$25,000-$29,999 10
$30,000-$49,999 11
$50,000 and over 12

Question #4: Did not attend school 1

Education level Went to elementary or grammar school 2
Went to high school or trade school for less 3

Question #6:
Occupation

Question #7:
Location

Question #66:

Category purchase motivation

than 4 years
Graduated from high school or trade school
Some college, Jr. college, or technical school
Graduated from college
Have postgraduate degree
Professional workers
Managers and administrators, except farm
Clerical workers
Sales workers
Craftsmen
Operatives, except transport
Transport equipment operators
Laborers, except farm
Farmers, farm managers, laborers and foremen
Service and private household workers
New York
Los Angeles
Chicago
Philadelphia
San Francisco
Boston
Detroit
Dallas
Washington
Houston
Cleveland
Atlanta
Pittsburgh
Miami
Minneapolis-St. Paul
Seaftle-Tacoma
Tampa-St. Petersburg
St. Louis
Denver
Sacramento-Stockton
To remove a problem
To avoid a problem
To replace another Sonite

—
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Table C.3 (continued)

381

Variable

Category

Question #67:
Brand purchase motivation

Question #70:
Decision making
Question #71:
Decision timing
Other variables:

For sensory stimulation

For intellectual stimulation

For social approval

To enhance my self esteem

To remove a problem

To avoid a problem

Because of dissatisfaction with my current
brand

For sensory stimulation

For intellectual stimulation

For social approval

To enhance my self-esteem

By myself (individually)

With the help of others (as a group)

Before going to the store

In the store

N =N = 9o W

Questions Scale

8-51 Disagree 1234567 Agree

63-65

52-62 Never/none 0123456 7 Very often/a lot
68 and 69 0=No1l=Yes

72-95

Indup

The industry data set provides two types of performance information for each brand
and time period: sales figures (in units and dollar sales) and market share data (based
on unit and dollar sales). The data set also includes information on the values of the
marketing mix variables for each competing brand. The data describe each brand’s
price, advertising expenditures, sales force size (for each channel of distribution),
and physical characteristics (i.e., the four Ps). Finally, the data set reports the vari-
able cost of each brand at each time period. The reader should note that this cost is
not the actual current production cost, as this information is typically not available
for each competitive brand. The reported cost figures reflect the basic cost of pro-
duction that can be estimated for a given first batch of 100,000 units at the period of
introduction of the brand. A list of the variables in the industry dataset is given in
Table C.4.

Panel

The panel data set provides information that, in many ways, complements the data
in the industry data set. Panel data are available at the level of the individual market



382 13 Appendices

Table C.4 Variables in industry-level database

Abbreviation Variable

Period Period number

Firm Firm number

Brand Brand name

Price Price

Adver Advertising expenditures

Char0l Product characteristic #1: Weight (kg)
Char02 Product characteristic #2: Design (Index)
Char03 Product characteristic #3: Volume (dM3)
Char04 Product characteristic #4: Maximum frequency (kHz)
Char05 Product characteristic #5: Power (W)
Salesmenl Number of salesmen-Channel 1
Salesmen2 Number of salesmen-Channel 2
Salesmen3 Number of salesmen-Channel 3

Cost Average unit cost of initial batch

Dist0l Number of distributors-Channel 1

Dist02 Number of distributors-Channel 2

Dist03 Number of distributors-Channel 3
UnitSales Total sales in units

DolSales Total sales in dollars

UnitShare Market share (based on units)

DolShare Market share (based on dollars)

AdShare Advertising share (share of voice)
RelPrice Relative price (price relative to average market price)

segment rather than at the total market level. The panel data set includes informa-
tion on the size of each segment (in unit sales of Sonites) and the market share for
each brand with each segment. The data set also provides the results of a panel
questionnaire with items on advertising communication, brand perceptions, and
preferences. Variables include the extent of brand name awareness, segment prefer-
ences in terms of the ideal levels of the three most important attributes (price, power,
and design), consumers’ brand perceptions on the same three dimensions, and brand
purchase intentions. Finally, the data set reports the shopping habits of each segment
in the three channels of distribution. A summary of these variables is provided in
Table C.5.

Scan

SCAN.DAT contains a simulated sample of scanner data, similar to the data set of
refrigerated orange juice data set used in Fader and Lattin (1993), Fader et al. (1992),
and Hardie et al. (1992) (See these papers for a full description of this dataset). The
six brands, along with their brand id codes, are

This file is set up for estimation of the standard Guadagni and Little (1983)
MNL model of brand choice, including their “loyalty” variable. The value of the
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Table C.5 Variables in panel database

Abbreviation Variable
Period Period number
Segment Segment number
SegSize Segment size (unit sales in segment)
IdealO1 Ideal value of price (for each segment)
Ideal02 Ideal value of power (for each segment)
Ideal03 Ideal value of design (for each segment)
Brand Brand name
Awareness Percentage of segment aware of the brand
Intent Purchase intent (for each brand and segment)
ShopOl1 Percentage of segment shopping in Channel 1
Shop02 Percentage of segment shopping in Channel 2
Shop03 Percentage of segment shopping in Channel 3
PercOl Perception of price (for each brand)
Perc02 Perception of power (for each brand)
Perc03 Perception of design (for each brand)
Dev0l Deviation from ideal price (for each brand in each segment)
Dev02 Deviation from ideal power (for each brand in each segment)
Dev03 Deviation from ideal design (for each brand in each segment)
Share Segment share (for each brand)
1 Brand 1
2 Brand 2
3 Brand 3
4 Brand 4
5 Brand 5
6 Brand 6

smoothing constant is set to 0.8; the loyalty variable is initialized using purchase
information for weeks 1-52.

In this data set, the number of choice alternatives varies over time (due to shop-
ping at different stores, stock-outs, etc.). Rather than having one record per purchase

occasion, we have one record per choice alternative.
The format of SCAN.DAT is as follows:

Panelist id

Week of purchase

A dummy variable indicating whether this record is associated with the brand
chosen

The number of records (brands available) associated with this purchase
occasion

The brand id of this record

Regular shelf price for this brand

Any price reduction for this brand on this purchase occasion (price paid =
price—price cut)
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A dummy variable indicating the presence of a feature ad for this brand
The value of the Guadagny and Little loyalty variable for this brand (on this
purchase occasion)

A brand-specific constant/dummy for brand 1

A brand-specific constant/dummy for brand 2

A brand-specific constant/dummy for brand 3

A brand-specific constant/dummy for brand 5

A brand-specific constant/dummy for brand 6

The reference brand is, therefore, brand 4, a private label.

This data set was created specifically for analysis using LIMDEP. The file
examp6-2.lim contains a sample “program” for reading this data set into LIMDEP.
Note that other estimation packages may require the data in a slightly different
format. Minor formatting changes can easily be accomplished using SAS.

Fader et al. (1992) describe a procedure for estimating nonlinear parameters in
MNL models using standard MNL estimation routines. The smoothing constant in
the G&L loyalty variable is such a nonlinear parameter. The value used in the cre-
ation of SCAN.DAT (0.8) is not necessarily optimal but is sufficiently close to the
optimal value for practicing the analysis of this data set.
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